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Abstract 

Soil health is an emerging framework that seeks to integrate the physical, chemical, and 

biological components of soil. It is defined by the USDA as “the continued capacity of soil to 

function as a vital living ecosystem that sustains plants, animals, and humans”. The breadth of 

this definition has allowed “soil health” to become a context-specific definition, letting soil 

health be defined in terms of the desired outcomes. In the context of agronomic nutrient 

management, the primary desired outcome is a tightening of the nutrient cycle to minimize losses 

to the environment. Here, I use the framework of soil health to understand how soil health 

indicators influence and are influenced by on-farm nutrient management practices. Three 

separate studies were conducted to: 1) understand the factors influencing the efficacy of the most 

widely used biological soil health metric, mineralizable carbon, 2) determine the effect of 12 

years of phosphorus (P) restriction on biological and physical soil health in three Ohio sites, and 

3) integrate biological soil health indicators into nitrogen (N) management strategies across the 

Corn Belt. The first study found that mineralizable C was variable across and within soil test 

labs. However, even after controlling for variations in methodology, a significant amount of the 

variability was soil-specific. The second study found very few effects of P restriction on soil 

biological and physical health. However, P restriction slightly increased organic P stocks and 

resulted in consistent shifts in the balance between the processed and easily-metabolized portions 

of the active C pool. In the third and final study, an increase in soil biological health was shown 

to increase the yields for a given N fertilization rate, as well as having slight predictive abilities 
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in predicting whether a site would be responsive to N fertilization. This study also showed that 

soil biological health may be slightly increased at moderate N fertilization rates. Collectively, 

these results show that biological soil health metrics can be used in nutrient management 

schemes, provided that a careful analysis and interpretation of the data is undertaken.  
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Chapter 1. Introduction 

The history of agriculture is a consistent cycle of innovation and over-adoption, which is only 

slowed by ecological catastrophe. When the ancient Sumerians first began continuous cultivation 

of the Fertile Crescent c. 5000 B.C.E, they could never have anticipated the long-term effects of 

their irrigation management practices would be soil salinization and silt illuviation across the 

valley, ultimately contributing to the collapse of their civilization nearly 2000 years later (Hillel, 

1992). Similarly, a direct line can be traced between John Deere’s commercialization of the cast 

iron plow in the 1830s and the Dust Bowl of the 1930s that resulted from 100 years of excessive 

tillage (Baveye et al., 2011). While the Green Revolution has seen a nearly doubling of global 

food production, the intensive chemical fertilization that accompanied it has resulted in 

staggering losses of reactive nitrogen and phosphorus to the environment (MacDonald et al., 

2011; Sattari et al., 2012; Lassaletta et al., 2014; Ladha et al., 2016). 

 

The contemporary response to an over-reliance on chemical sources of fertility has been the 

development of a biologically-centered paradigm: soil quality or soil health. Although the 

earliest definition of soil quality in the scientific literature is “the ability of soils to yield corn, 

soybeans, and wheat” (Mausel, 1971), desirable soil health outcomes have since been broadened 

to include a diverse set of ecosystem services (Bünemann et al., 2018). In this way, soil health 

represents a substantial shift in the functionality of modern agriculture. It represents a bridge 
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between short-term thinking of yields and profit and the long-term thinking of land stewardship 

(Arbuckle, 2017). The desire for this bridging is evident in the farmer-reported concerns for the 

health of their soil, with short-term financial constraints being reported as the primary obstacle to 

achieving this goal (Carlisle, 2016; Arbuckle, 2017). While the paradigm of soil health largely 

centers biological activity, decades of work on indicators of soil biological health have produced 

little consensus in the scientific community (Doran and Zeiss, 2000). Those few indicators that 

have been proposed are underutilized and less well understood in terms of associated outcomes 

(Fierer et al., 2009; Bünemann et al., 2018).  

 

In the second chapter, the most commonly used indicator of soil health—mineralizable C or 

respiration upon rewetting—is explored for its reliability across contexts. Reliability is 

determined by comparing values from across commercial labs, a comparison of several common 

methodological permutations, as well as an assessment of consistency of values obtained within 

a given lab. These results help bound the level of certainty we have in our current knowledge of 

soil biological health indicators. 

 

Although biological soil health indicators are still largely understudied, understanding how they 

interact with fertilizer applications is a vital step in integrating soil biology into nutrient 

management. While N fertilizer applications can increase microbial biomass (Hartman and 

Richardson, 2013; Geisseler and Scow, 2014) and alter enzyme activity (Chen et al., 2018), P 

limitations can also constrain microbial metabolic activity (Ehlers et al., 2010; Hartman and 

Richardson, 2013). Therefore, a better understanding of how fertilization influences soil 
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biological health as well as how soil biological health influences fertilizer needs is a substantial 

gap remaining in the literature. The remainder of the dissertation explores these interactions. 

 

The third chapter is an exploration of the potential impacts of phosphorus fertilizer restriction on 

soil physical and biological health. Consideration of agronomic productivity (e.g. grain yield and 

grain P content) is included in order to examine potential tradeoffs between soil health and 

maintaining yields. Results from this chapter show that 12 years without P fertilization will 

likely have no adverse impacts on soil health and very few impacts on crop yields. 

 

In the fourth chapter, we have a multi-site study that looks to answer the basic question “does a 

healthier soil need less N fertilizer?” These sites include a variety of N rates and management 

practices that affect soil biological health, presenting a wide range of expected soil health levels. 

We use a combination of regression techniques, several common biological soil health 

indicators, and yield data to answer this basic question. Results show that increasing soil 

health—as indicated by our soil health variable—can help reduce, but not replace mineral N 

fertilizer application. 

 

Improving the long-term sustainability of our agroecosystems is a monumental task, with many 

short-term considerations. Among these considerations is the ability to maintain agronomic 

efficiency or profitability. While the paradigm of soil health shows immense promise in 

endeavoring towards the long-term goal of sustainability, its short-term agronomic relevance has 
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been limited thus far. Collectively this dissertation strives to inch the paradigm of soil health 

along the path towards actionable sustainability for the Midwestern United States.  

 

The soil is the great connector of lives, the source and destination of all... It is 

alive itself. It is a grave, too, of course…. Given only the health of the soil, 

nothing that dies is dead for very long. 

-Wendell Berry (The Unsettling of America)



 

 

5 

Chapter 2.  Sources of Variability that Compromise Mineralizable Carbon as a Soil Health 

Indicator 

Abstract 

Mineralizable C, or respiration upon rewetting of dried soil, is a common soil health metric, but 

still lacks a widely-accepted and standardized protocol. A standardized protocol is an essential 

first step in quality control needed for a robust soil test. Here we examined numerous sources of 

laboratory variability associated with mineralizable C, with the overall goal of understanding the 

influence of each source on final values. Mineralizable C had 2-20 times greater inter-lab 

variability than other commonly-utilized soil tests, leading to a high degree of uncertainty 

associated with the interpretation of results. Procedural differences—such as sieve size and 

method of rewetting—significantly influenced mineralizable C measurements and underscore the 

need for the development of a standardized and universally adopted protocol. Capillary rewetting 

consistently suppressed mineralizable C relative to rewetting with a specific amount of water and 

is therefore not a recommended approach. However, the sensitivity of mineralizable C to 

changes in management did not differ between 6, 24, and 72 h incubation intervals. While these 

procedural effects may influence the inter-lab variability, there was also a considerable amount 

of analytical variability associated with mineralizable C measurements within a lab that is highly 

dependent upon soil type. 
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Introduction 

The development of commercially-viable soil health testing focused on biological 

properties is an essential step for improving the sustainability of our agricultural production 

systems (Kibblewhite et al., 2008). The burst of respiration upon rewetting of air-dried soil, 

commonly referred to as “the Birch effect” (Birch, 1959) or the “flush of CO2 upon rewetting” 

(Franzluebbers et al., 2000), hereafter referred to as ‘mineralizable C’, is a potentially valuable 

tool in helping growers better understand the role that the microbial community plays in their 

soil (Franzluebbers, 2016). Mineralizable C has been widely accepted to be an important 

measure of the overall health and quality of a soil (Karlen et al., 1997; Moebius-Clune et al., 

2016) and has been used as an integrated measurement of soil microbial biomass (Anderson and 

Domsch, 1978), microbial activity (Wang et al., 2003), and soil carbon availability 

(Franzluebbers et al., 2000; Wang et al., 2003).  

The strong response from growers for currently available commercial tests of 

mineralizable C (e.g., Solvita ®) illustrates the demand for a rapid measure of soil biological 

activity and health. Additionally, governmental institutions have also begun to support the use of 

mineralizable C to measure improvements in soil quality and have established incentive 

programs for growers to use respiration measurements to track changes in their fields after 

improvements in management (NRCS, 2015). However, integrating biology—a central 

component of the framework of soil health (Doran and Zeiss, 2000)—results in increased 

complexity and, as with any new method, additional caution must be exercised upon the 

interpretation and use of the results. Mineralizable C, has been used extensively in research trials 

and although it has been shown to consistently differentiate between imposed treatment effects 

on a given soil type, there is no recognized standard operating procedure that has been utilized 
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across soil types. Standardization is one of many essential steps in the creation of a robust soil 

health indicator that can be translated across systems, soil type, and commercial test labs. 

As with any laboratory metric, there are many potential sources of variation in 

mineralizable C measurements. One substantial source of variability is inter-lab variability, 

which is the basis for lab proficiency testing. However, proficiency testing assumes a 

standardization of methods between labs, which has not been the case thus far in multiple studies 

surrounding mineralizable C measurements. Variations in methodologies have included: sieve 

sizes ranging from 2mm to 6mm (Franzluebbers et al., 2000; Franzluebbers, 2016; Morrow et al., 

2016; Castro Bustamante and Hartz, 2016), incubation intervals ranging from 6 to 72 h 

(Franzluebbers et al., 2000; Haney and Haney, 2010; Wade et al., 2016), as well as differences in 

the direction and final water content upon rewetting (Haney and Haney, 2010; Sherrod et al., 

2012; Wade et al., 2016). Therefore, it is also necessary to investigate how any procedural or 

methodological differences may contribute to the variability of mineralizable C. Given that 

mineralizable C is a biologically-based metric, investigation of this variability is particularly 

salient when attempting to draw robust, accurate conclusions. Included in methodological 

considerations is the length of incubation for mineralizable C measurements, which has also 

differed between studies (Franzluebbers et al., 2000; Haney et al., 2008a; Wade et al., 2016).  

The ultimate goal of a universal protocol would be to minimize sources of unwanted variability 

so that the use of mineralizable C as a soil health metric would be as robust as possible. 

Therefore, this study seeks to: (1) assess inter-lab and analytical agreement for current 

commercially-available mineralizable C tests, (2) evaluate the effects of methodological 

differences—such as soil sieve size, water content, and direction of rewetting—on mineralizable 
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C values, and (3) determine the length of incubation that is most sensitive for detecting treatment 

and/or management differences. 

 

Materials and Methods 

Data Description 

Our analysis included soil from eight studies on 72 agricultural cropland sites from across the 

United States (Table 2.1). In addition to traditional soil measurements (Table 2.2) mineralizable 

C was measured using permutations of soil processing and rewetting protocols (n=1142 

individual observations) to determine the sources of variation associated with these procedures 

(sieve size, water content, direction of rewetting). Additionally, selected studies were used to 

determine analytical and inter-lab variability associated with mineralizable C measurements. A 

description of methods and analyses performed on each study are shown in Table 2.3. 

Soil Analyses 

Soil physiochemical characteristics, such as pH, textural characteristics, and soil C and N 

contents are listed in Table 2.2. To determine the effect of grinding or sieve size on mineralizable 

C, NY Grain soils were air-dried and either hand-sieved to <8mm, <2mm, or ground to <0.75 

mm. ALP soils were either ground to <2mm or <0.8mm using an Agvise flail mill. Water-

holding capacity (WHC) was calculated as the difference in weight between a saturated soil that 

was allowed to drain for an hour and the weight after the soil was oven-dried for 24 hours at 

105°C. 
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Mineralizable Carbon 

Mineralizable C measurements were taken during incubations of 10-40g of air-dry soil ranging 

from 6h to 72h. The amount of soil used for each incubation was consistent within each study. 

For all studies, other than the Agricultural Proficiency Laboratory (ALP) study, gas samples 

were taken by extracting 1-5mL from the headspace of a 0.4 L Mason jar capped with a metal lid 

and a butyl rubber septum, and run on an infrared gas analyzer (model S-151, Qubit Systems 

Inc., Kingston, Canada). Mineralizable C was calculated as the difference between a sample and 

a control, using the total headspace and the ideal gas law (Zibilske, 1994) at a constant 

temperature of 22°C.  In the ALP study, mineralizable C was measured using Solvita gel paddles 

at a constant temperature of 23°C.  Rewetting of the air-dried soil was done either through 

capillary rewetting from below using the methods described in (Haney and Haney, 2010) or by 

adding a percentage (25, 50, 75, or 100%) of the calculated WHC with DI water dispensed 

directly on to the soil surface using a micropipette. In addition to rewetting from above, air-dried 

soil samples were also rewetted at 50% WHC from bottom to assess the effect of direction of 

rewetting on mineralizable C. For rewetting from the bottom, 50 mL polypropylene beakers with 

4-5 6.5 mm diameter holes drilled in the bottom and glass microfiber filter were filled with soil 

and placed in the microcosm, which had been filled with the appropriate amount of DI water. All 

measurement methods (i.e. incubation length and instrumentation) are shown in Table 3. 

Depending on the study, soils were air-dried and stored at room temperature before mineralizable 

C analyses were performed. Storage time ranged generally clustered in three groups: <1 year 

(CA Grower Survey, WSREC, and RRSAF studies), 2-4 years (TS, OUG, and WORT), or 9-11 

years (NY Grain and select ALP Lab soils). While long-term storage of air-dried soil is well-

known to increase the rewetting effect on mineralizable C measurements (De Nobili et al., 2006; 
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Kaiser et al., 2015), for this study we assumed that any artifacts due to sample storage would be 

influence all treatments within a study equally. For our data, we did not find any evidence that 

storage increased mineralizable C amounts (p=0.47; data not shown) or variability. To further 

ensure that differences in storage time did not impact our results, all statistical analyses were 

constrained to individual studies or when comparing across multiple studies (e.g., Table 2.9), we 

used study was used as a covariate in the analysis. 

 

 

 

Table 2.1 A description of study sites used for comparative analyses. 

Study Description 
State 

(Location) 
Sites 

(Plots/Site) Reference(s) 
Agricultural Lab 

Proficiency (ALP) 

Lab 

Soils are collected from across the US 

and Canada and processed similarly to 

assess lab variability 

Numerous†,‡ 

 

27 (1) None 

CA Grower Survey Survey of grower fields across four 

growing regions of CA using mineral 

fertilizer with and without cover crops 

California 

(38°37′- 36°49′ 

N, 121°51′- 

119°49′ W) 

21 (3-4) (Wade et al., 2016) 

CA Tomato 

Survey (TS) 

Organically-managed tomato fields using 

compost and manures as fertilizer sources 

California 

(38°33′-38°51′ 

N, 121°48′-

122°12′ W) 

13 (1) (Bowles et al., 2014, 

2015)   

NY Grain Grain farms across a management-

induced soil fertility gradient 

New York 

(42°36′-42°44′ 

N and 76°42′-

77°03′ W) 

7 (1-6) (Schipanski et al., 

2010; Schipanski and 

Drinkwater, 2011)  

Ohio Urban 

Garden (OUG) 

Urban garden using compost, compost + 

biochar, or compost + sudangrass cover 

crop 

Ohio 

(41°04′49″N, 

80°40′35″W) 

1 (24) (Beniston et al., 2015)  

Russell Ranch 

Sustainable 

Agriculture 

Facility (RRSAF) 

Long-term research trial involving corn-

tomato rotations: mineral fertilizer w/ and 

w/o cover crops, or cover crops + 

compost/manure 

California 

(38°32′ N, 

121°52′ W) 

1 (9) (Wade et al., 2016) 

West Side 

Research and 

Extension Center 

(WSREC) 

Research plots with 15 years of minimal 

vs conventional tillage, with and without 

cover crops 

California 

(36°20′ N, 

120°7′ W) 

1 (21) (Mitchell et al., 2015) 

Windsor Organic 

Research Trial 

(WORT) 

Organic conversion trial with cropland 

converted from perennial ley, vegetable 

crops, or row crops, with compost, 

manure, or cover crop organic additions 

Illinois 

(40°06′ N, 

88°16′ W) 

1 (36) (Ugarte and Wander, 

2013)  

† ALP lab samples for inter-lab variability were from Arizona, British Columbia, Alabama, California, Connecticut, Florida, 

Idaho, Iowa, Kansas, Maine, Minnesota, Montana, Nebraska, Ontario, Quebec, South Carolina, South Dakota, Texas, and 

Wisconsin 

‡
 ALP lab samples for sieve size, water content, direction of water addition, and analytical variability were from Iowa, Montana, 

Nebraska, North Dakota, Ohio, Saskatchewan, and Texas. 
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Statistical Analyses 

 

 

 

Table 2.2 Soil physical and chemical characteristics for each study. Values are mean (minimum, maximum). 

Study 
SOC 

(g kg-1 soil) 
TSN 

(g kg-1 soil) C:N 
pH 

(1:1 water) 
Clay 

(g kg-1 soil) 
Agricultural Lab Proficiency 

(ALP) Lab 
18.1 

(4.2, 55.7) 

1.6 

(0.3, 4.1) 

11.1 

(7.1, 13.5) 

6.3 

(4.6, 8.1) 

195.1 

(39.0, 320.0) 

CA Grower Survey 9.4 

(3.7, 19.7) 

1.0 

(0.4, 1.7) 

9.0 

(6.7, 13.5) 

7.1 

(5.1, 8.4) 

329.6 

(76.8, 608.0) 

CA Tomato Survey (TS) 13.3 

(5.9, 22.1) 

1.5 

(0.7, 2.2) 

8.9 

(7.6, 10.5) 

6.7 

(6.1, 7.3) 

158.1 

(88.7, 222.1) 

NY Grain 19.0 

(12.9, 26.8) 

1.7 

(1.2, 2.7) 

11.1 

(9.7, 12.9) 

7.0 

(6.2, 7.8) 

273.9 

(169.0, 369.5) 

Ohio Urban Garden (OUG) 56.0 

(10.4, 112.6) 

4.1 

(0.8, 8.3) 

13.6 

(12.2, 15.5) 

7.7 

(7.4, 8.0) 

168.0 

Russell Ranch Sustainable 

Agriculture Facility (RRSAF) 
10.7 

(5.6, 15.4) 

1.2 

(0.5, 2.0) 

9.4 

(7.3, 11.9) 

7.2 

(6.5, 8.2) 

323.2 

(147.2, 390.4) 

West Side Research and 

Extension Center (WSREC) 
6.2 

(4.7, 8.0) 

0.7 

(0.5, 0.9) 

8.9 

(7.6, 10.5) 

7.4 

(6.7, 7.8) 

358.8 

(259.2, 531.2) 

Windsor Organic Research Trial 

(WORT) 
23.1 

(13.4, 33.1) 

1.8 

(1.1, 2.3) 

12.9 

(11.4, 15.7) 

ND† ND 

†ND = not determined 

 

 

 

 

All statistical analyses were performed using RStudio (RStudio Team, 2016a). Linear 

regressions were run using the lm( )  command. To obtain F-values and p-values for associated 

differences, Anova( ) in the car package (Fox and Weisberg, 2011) was used to perform a type II 

ANOVA. This type of ANOVA only tests each effect after the other effects are accounted for, 

resulting in a more conservative attribution of significance than other methods of calculation 

(Langsrud, 2003). For all lettered differences, Tukey’s HSD test was performed using the 

HSD.test command in the agricolae package (de Mendiburu, 2016). The sensitivity analysis for 

mineralizable C incubation length was performed using the aov( ) and the conservative type II 
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Anova( ) command in the car package, with the experimental factors (e.g. tillage, management, 

etc.) modeled as predictor variables. Three separate analyses were run using the incubation 

length (6, 24, or 72 h) as the response variable. The corresponding F-values are then 

representative of the magnitude of the effect exhibited by the predictor variable (experimental 

factors) on the response variable (incubation length). 

To assess analytical and inter-lab variability, each soil was run in triplicate for each lab ´ 

treatment combination. The analytical variability between these replicates, represented as the 

coefficient of variation (CV), was calculated using the standard deviation normalized by the 

mean. To investigate the effect of these methodological differences on analytical variability (e.g. 

does sieving alter the analytical variability of mineralizable C?), the CV values were used as a 

response variable and the treatments—study, site/field within a study, sieving, water content, and 

direction of water addition—were used as predictor variables. Analytical variability from the 

treatments was determined in two separate labs (Table 2.3) and the effects were nested within 

these labs to isolate from any inter-lab variation in these measurements. To calculate inter-lab 

variability, three replicates were averaged to obtain the mean mineralizable C values for a given 

soil from that lab. This value was then combined with the means obtained in other labs to 

calculate the inter-lab variability (expressed as a CV-value) for that soil. The CV for inter-lab 

variability was calculated using the median in place of the mean due to the high degree of 

skewness in the distribution. Similar to prior analyses, F-values and p-values were obtained 

using the aov( ) command and the conservative type II ANOVA using the Anova( ) command in 

the car package. 
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Table 2.3 Studies and methods used to study each source of mineralizable C variability. 

Source of 
Variability 

Corresponding 
Table/Figure Studies used 

Sample 
size (n) Measurement Method 

Length(s) of 
Incubation 

Inter-lab 

variability 

Figure 2.1 CA Grower Survey 28 IRGA† (UC Davis), 

Solvita gel paddles 

(Commercial labs) 

24h 

Inter-lab 

variability 

Table 2.4 ALP 480 Solvita gel paddles 24h 

Sieve size Table 2.5 ALP, NY Grain 585 Solvita gel paddles 

(ALP), IRGA (NY Grain) 

24h 

Water content Table 2.6 RRSAF, WSREC 30 IRGA 6h, 24h, 72h 

Direction of 

rewetting 

Table 2.7 ALP 126 Solvita gel paddles 24h 

Incubation length/ 

sensitivity 

analysis 

Table 2.8 CA Grower Survey‡, TS‡, 

OUG‡, RRSAF‡, WSREC‡, 

WORT‡ 

452 IRGA 6h, 24h‡, 72h 

Analytical 

Variability 

Table 2.9 ALP, NY Grain, OUG 219 Solvita gel paddles 

(ALP), IRGA (NY Grain, 

OUG) 

24h 

† IRGA = infrared gas analyzer 
‡ data has been previously published in part or in full in (Hurisso et al., 2016)  

 

 

 

Results and Discussion 

Inter-lab Variability 

Low inter-lab variability is a primary criterion for a robust soil health metric. If different labs 

return different values for the same soil sample, the efficacy of that data is greatly diminished. 

Although numerous studies have shown mineralizable C to be sensitive to management practices 

and outcomes (Fraser et al., 1988; Franzluebbers et al., 2000; Haney et al., 2001; Schomberg et 

al., 2009; Culman et al., 2013; Wade et al., 2016; Castro Bustamante and Hartz, 2016), these 

relative differences, expressed via linear correlations, are not enough to meet the criteria of 

repeatability necessary for a soil health metric. Therefore, assessing absolute differences between 

labs is essential. To study this difference, seven independent soil samples were analyzed for 

mineralizable C at three Solvita Partner Plus certified commercial labs and one university 
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analytical laboratory (Table 2.3). Comparison of these results show that although there were 

moderately strong linear relationships, there were significant absolute differences between labs 

(Figure 2.1). In 4 of the 6 comparisons, there were considerable absolute differences (p<0.01) 

between values obtained in different labs. However, there was no clear relationship between the 

strength of linear relationship (R2 values) and mean absolute differences between labs, with the 

greatest R2 value (R2=0.77) corresponding to a highly significant absolute difference (p<0.0001) 

and the lowest R2 value (R2=0.50) corresponding to the a statistically insignificant absolute 

difference (p<0.05). Some differences in absolute mineralizable C values may be attributable to 

the equipment differences between the infrared gas analyzer (IRGA) used in the UC Davis lab 

and the Solvita gel paddles used in commercial labs (Table 2.3). This is supported by the similar 

slopes in the relationships between the UCD Lab and the commercial labs.  

 

 

 



 

 

15 

 
 

 

 

 However, the differences between regression lines and 1:1 lines that persist between 

commercial labs suggest that there is also significant amount of uncontrolled error associated 

with the use of Solvita gel paddles (Figure 2.1).  Previous work has shown strong linear 

relationships (R2>0.90) between traditional methods of measuring mineralizable C, such as 

IRGA, gas chromatography (GC), and using a NaOH base trap (Haney et al., 2008b; Sherrod et 

al., 2012). However, these strong relationships are not shared in the relationships between the 

Solvita gel paddle and the traditional methods of measuring respiration, such as NaOH base trap 

(R2=0.82) and IRGA (R2=0.79) from (Haney et al., 2008b) and with NaOH base traps (R2=0.84) 

 
 
Figure 2.1 Differences in 24-hour mineralizable C values (mg CO2-C kg

-1
 air dried soil) obtained in 

three commercial labs and one analytical lab. Dashed line represents a 1:1 relationship, indicating 

perfect agreement between values. “Mean diff,” refers to the average difference between labs for a 

sample, with associated significance obtained by T-test. 

*, **, and *** represent significance at the p<0.05, p<0.01, and p<0.001 level, respectively. NS 

represents no significant differences. 
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in (Haney et al., 2008a). Since the slopes and intercepts between NaOH and IRGA methods were 

comparable across studies (Haney et al., 2008a; 2008b; Sherrod et al., 2012), the IRGA-

measured mineralizable C measurements should be considered the more consistent of the two 

methods presented (Table 2.3). In addition to the vetting and adoption of consistency in 

instrumentation, the focus of future study should be on establishing agreement in absolute rather 

than relative terms, which will be crucial in order to begin translating mineralizable C values 

from one lab to values obtained in another lab. Accordingly, the remainder of this paper will 

focus on variations and aberrations in absolute values of respiration rather than correlative 

values. 

 In order to determine the expected variation in mineralizable C values between labs and 

compare this variability to other traditional soil metrics (total C, total N, pH, clay, etc.), a set of 

20 soils was sent to commercial labs, where each measurement was run in triplicate for each soil. 

The mean value of these three analytical reps was then compiled across labs for each soil to 

determine the inter-lab CV for each soil. A wide range of variability was shown between labs 

measuring 24-hour mineralizable C, with inter-lab CV values ranging from 4.21-53.17% across 

20 soils. The mean inter-lab CV was greater than the median (Table 4), with a significant 

skewness value of 1.19 (p<0.05; data not shown) for the sample size (Pearson and Hartley, 

1970), both of which indicate a long right tail on the distribution of CV values. This suggests that 

inter-lab variability is not evenly distributed across all of the 20 soils, but that most of the 

variability was actually less than the mean value in Table 4 and that median values may be a 

more appropriate measure. The median inter-lab CV value for mineralizable C (16.0%) is 2.8-

19.3 times greater than the median inter-lab CV values for other commonly utilized soil test 

metrics, such as total C and N on combustion (2.93% and 5.63%, respectively), pH (0.83%), or 
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clay content (5.69%). Additionally, mineralizable C inter-lab CV was highly variable by soil, 

with CV values ranging from 4.2-53.2%. Taken together, this shows that mineralizable C 

measurements are much more variable between labs than other commercially available soil 

measurements and this variability is likely soil-specific. 

 

 

 

Table 2.4 A comparison of the inter-lab coefficient of variability (%CV) for n=20 soils for 24h 

mineralizable C and other commonly-used lab procedures. 

Metric† # of Labs  Mean‡ Std Error Median Max Min 
Mineralizable C (Solvita) 8 19.8 3.1 16.0 53.17 4.21 

Total C (combustion) 13 10.3 7.3 2.9 149.19 1.06 

Total N (combustion) 15 11.8 4.5 5.6 86.36 2.00 

pH (1:1 water) 59 0.9 0.1 0.8 1.59 0.54 

Sand 26 4.4 0.8 3.6 16.48 0.80 

Silt 26 5.7 0.8 4.9 17.10 2.28 

Clay 26 7.6 1.1 5.7 20.33 2.26 

Nitrate 42 5.0 0.4 4.4 10.19 2.93 
† Each metric was run in triplicate in each lab, the mean of which was averaged with other labs to 

establish the inter-lab CV for each soil. 
‡ Mean refers to the mean inter-lab CV for all 20 soil types. 

 

 

 

Sieve Size 

Soil processing (e.g. sieving of air-dried soils) can alter the results obtained in analyses. Given 

that the susceptibility of soil C to mineralization is largely controlled by physical protection 

rather than chemical recalcitrance (Kleber et al., 2011; Dungait et al., 2012), we hypothesized 

that sieving to smaller sizes would reduce the physical protection of soil C and result in higher 

mineralizable C values. Finely-ground (<0.75mm and <0.8mm in NY Grain and ALP studies, 

respectively) and <2mm soil had similar mineralizable C values in both NY Grain and ALP Lab 

studies, but soil that was sieved to <8mm had a significantly (p<0.05) lower mineralizable C 

value relative to the other sieve sizes (Table 2.5). These results agree with previous findings by 

Franzluebbers (1999b) that the physical protection of mineralizable C reaches a threshold at 
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2mm, below which additional disturbances do not increase C mineralization. Additionally, our 

results show that the effect of sieve size on mineralizable C observed at 72h by Franzluebbers 

(1999b) is also evident at 24h (Table 2.5). Thus, sieve or grinding size can influence 

mineralizable C values, and standardization for soil processing will be required for better 

comparison of treatment effects on soil health across studies. 

 

 

 

Table 2.5 Mean values ± standard error of 24h mineralizable C (mg CO2-C kg-1 soil) for the NY Grain and ALP 

Lab studies. Within rows, means followed by the same letters indicate no significance at the p<0.05 level using 

Tukey’s HSD test. 

Study n Ground 2mm 8mm 
ALP Lab 63 51.1 ± 3.7 a 50.6 ± 3.1 a ND† 

NY Grain 151 75.4 ± 2.3 a 76.5 ± 2.4 a 64.7 ± 2.3 b 
†ND = not determined 

 

 

 

Water Content 

The water content of incubated soil had a significant effect on soil mineralizable C (Table 2.6). 

We observed a bell-shaped response of mineralizable C to water content, similar to previous 

studies (Linn and Doran, 1984; Franzluebbers, 2016), with a maximum response typically 

occurring between 50 and 75% WHC. The greatest mineralizable C value in the RRSAF study at 

72h was at 100%WHC, but this was not significantly different from 50 or 75% WHC (p<0.05; 

Table 2.6). The capillary method of rewetting bringing soil to 100% WHC had a distinct 

inhibitory effect on mineralizable C at both locations and all intervals, with the effect being more 

pronounced at the shorter intervals of 6 and 24 hours (Table 2.6). The glistening soil surface 

observed when using capillary rewetting and the further inhibition of mineralizable C 

measurements over 100% WHC suggest that the capillary rewetting method proposed by Haney  
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(2010) can result in supersaturated (>100% WHC) soils that do not optimize heterotrophic 

respiration incubations. This is in agreement with previous studies that have shown 50-60% of 

saturation simultaneously optimizes substrate transport and gas diffusivity across C contents 

(Linn and Doran, 1984; Hashimoto and Komatsu, 2006; Moyano et al., 2013). 

 

 

 

Table 2.6 The interactive effects of water content and time interval on mineralizable C for two long-term research 

trials in California with n=3 fields for each value. Letters indicate significant differences (p<0.05) within Location 

´ Mineralizable C interval using Tukey’s HSD Test. 

 Mineralizable C (mg CO2-C kg-1 soil) 
Location Water Content 6h 24h 72h 

RRSAF 

25% WHC 79.7 a 119.1 bc 144.0 c 

50% WHC 103.8 a 168.4 ab 267.2 ab 

75% WHC 105.8 a 197.1 a 349.6 a 

100% WHC 91.4 a 169.3 ab 353.4 a 

Capillary method 24.7 b 61.1 c 170.8 bc 

WSREC 

25% WHC 39.0 a 88.7 bc 284.0 ab 

50% WHC 51.2 a 141.7 a 444.2 a 

75% WHC 34.8 ab 126.2 ab 396.4 ab 

100% WHC 18.6 bc 90.2 abc 341.5 ab 

Capillary method 14.1 c 68.0 c 263.1 b 

 

 

 

When directly comparing the two water contents that are currently utilized in commercial soil 

labs and in previous studies (50% WHC and the capillary method of rewetting), the 50% WHC 

had significantly greater mineralizable C values across all combinations of site and time interval, 

except at the 72h interval at RRSAF, which were statistically similar (Table 2.6). These trends 

show that the greater mineralizable C values measured at 50% WHC could allow for greater 

sensitivity of analysis (Wade et al., 2016; Castro Bustamante and Hartz, 2016) and therefore an 

increased ability to detect statistical differences due to management (Ladoni et al., 2015). 

Together, these results show that although the capillary method of rewetting represents a 

significant decrease in labor and analysis time, the decrease in sensitivity of response likely 

offsets the benefits. Both gravimetric (Culman et al., 2013; Wade et al., 2016; Castro Bustamante 
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and Hartz, 2016) and volumetric measurements (Franzluebbers, 1999a; Franzluebbers et al., 

2000; Haney et al., 2001) have been utilized in previous studies and, while they have been found 

to be related to one another (Haney and Haney, 2010), the two approaches have not been 

comparatively evaluated. 

 

 

 

Table 2.7 Differences in 24h mineralizable C by water content and direction of water 

addition. Letters indicate significant differences (p<0.05) using Tukey’s HSD Test, 

n=42 for each mean value obtained. 

Water Content 
Direction of 

Addition 
24h Mineralizable C 
(mg CO2-C kg-1 soil) 

50% WHC Top 70.66 a  

 Bottom 49.90 b 

Capillary Bottom 31.95 c 

 

 

 

Method of Rewetting 

We assessed the effect of method of rewetting on mineralizable C by adding water (50% WHC) 

to air-dried soil (1) from the top as well as (2) from the bottom and then compared with (3) 

capillary rewetting from below . The absolute differences in 24h mineralizable C were greater 

between the directions of rewetting at 50% than between differing water contents when rewetted 

from below (Table 2.7). Thus, similar to the results found in Table 6, capillary rewetting 

inhibited respiration, relative to the 50% WHC, even when accounting for differences in 

direction of rewetting (Table 2.7). The difference between top- and bottom-wetted soils at 50% 

WHC is likely due to differences in water flow: wetting from above would fill all pores, 

followed by the draining of water from the macropores over a short time interval, whereas 

wetting from below is primarily driven by capillary action, which would result in slower and 

more unequal distribution of moisture towards the top of the soil column (McCoy et al., 1994). 
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This effect may be mitigated with incubation intervals longer than the 24h period investigated 

here, although currently, no studies have been conducted on the topic. Therefore, these results 

suggest that rewetting from above will optimize the sensitivity of the measurement for 24h 

incubations. 

 

 

 

Table 2.8 A comparison of the relative sensitivity of mineralizable C measurement interval to 

detecting experimental factors associated with each study. F-values were generated using the 

mineralizable C interval as a response variable for each of the experimental factors (including 

significant interactions). Bolded F-values represent the interval that yielded the greatest 

sensitivity for a given experimental factor within a study. 

Study Name Experimental Factor 

Mineralizable C F-Value 

6h 24h 72h 
CA Grower Survey Site 2.49 *** 4.91 *** 5.49 *** 

Growing Region 7.24 *** 6.06 *** 7.01 *** 

Cover crop use 0.84  0.83  1.74  

CA Tomato Survey Site 5.53 *** 1.71 † 1.39  

 Fertilizer Source 4.69 * 1.97  0.56  

OUG Management 1.53  1.25  2.40 † 

RRSAF Management 7.10 ** 12.67 *** 6.89 ** 

WSREC Cover crop use 7.67 ** 8.89 ** 13.59 *** 

Tillage 1.50  1.81  2.87  

Cover crop ´ tillage 0.87  1.08  3.06 † 

WORT Management 0.18  0.43  0.62  

Fertilizer Source 2.17  1.56  1.50  

Total instances where F-value was greatest 4 1 7 

Total instances where F-value was statistically 
significant (p<0.10) 

6 5 6 

Percentage where interval was most sensitive 33% 8% 58% 

Percentage where interval was statistically 
significant (p<0.10) 

50% 42% 50% 

†, *, **, and *** represent significance at the p<0.10, p<0.05, p<0.01, and p<0.001 level, 

respectively. 

 

 

 

Length of Incubation 

Several commercial implementations of mineralizable C have different lengths of incubations 

ranging from 24 to 96 hours. Although it is well documented that short-term mineralizable C 
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measurements correspond well to longer incubation intervals (Franzluebbers et al., 2000; Haney 

et al., 2008b), it is unclear if there is an incubation duration that is more sensitive to treatment 

differences within a trial. To assess the sensitivity of mineralizable C measurements at different 

incubation intervals to experimental factors, we used F-statistics generated from analysis of 

variance models in which incubation length (6, 24, or 72 h) was used to compare the degree of 

treatment effect across incubation times. Incubation duration served as a response variable with 

experimental factors (site, fertilizer source, tillage, etc) as predictor variables. The sensitivity of 

the incubation interval to differences in experimental factors was mixed (Table 2.8). The 6h and 

72h intervals had the greatest sensitivity to experimental factors, being selected as the most 

sensitive indicator 33% and 58% of the time, respectively (Table 2.8). However, both were able 

to detect statistically significant differences in 50% of the studied factors, which was also similar 

to 24h mineralizable C, which was able to detect significant differences in 40% of the 

experimental factors studied here. 

 There were also no distinct trends in terms of types of managements that were better 

detected by mineralizable C measurements. In general, mineralizable C was sensitive to inputs of 

labile carbon and to determining differences between sites (Table 2.8). While many differences 

in labile C inputs were detected, such as cover crops in WSREC, management in both RRSAF 

and OUG, and fertilizer source in CA Tomato Survey, there were also many differences that 

respiration was not sensitive to, such as fertilizer source in the WORT study and cover crop use 

in the CA Grower Survey. Most of the effect of the management differences were shown across 

all three time intervals, with the exceptions of fertilizer source in the CA Tomato Survey and 

management in the OUG site, which were only detected by 6h and 72h mineralizable C, 

respectively. The ability to differentiate between sites was found in both of the multi-site studies 
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included, with 6h being most sensitive in the CA Tomato Survey and 72h being most sensitive in 

the Grower Survey. However, given that both of these were found within the Central Valley of 

California, it is unclear if these trends would be consistent in other climates and edaphic 

conditions. The current sensitivity analysis showed that no single mineralizable C interval was 

consistently more effective at detecting treatment differences, although a relaxing of the 

threshold of statistical significance may increase the efficacy of these metrics in an applied 

setting (Morrow et al., 2016). 

 

 

 

Table 2.9 The effect of each factor on the 

precision of 24h mineralizable C, as 

measured by coefficients of variation 

among triplicate replications. F-values 

are based on a type II ANOVA with all 

factors included. 

Factor F-Value 
Study 10.82** 

Field 13.54*** 

Sieve Size 0.54NS 

Water content 2.25NS 

Direction of water addition 1.45NS 

*, **, and *** represent significance at 

the p<0.05, p<0.01, and p<0.001 level, 

respectively. NS represents no significant 

effect. 

 

 

 

Analytical Variability 

In order to determine the source and magnitude of analytical variability associated with 

mineralizable C measurements, samples that had been treated with procedural variations (e.g. 

sieve size and water additions) were run in triplicate to obtain a CV for a given procedure. These 

CV values were then used as response variables in a linear model to determine their effect, as 

well as study-specific treatment and edaphic effects, on analytical variability. The magnitude of 
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the effects associated with these variables, i.e. F-values, were then evaluated to determine their 

statistical effect on analytical variability (Table 2.9). A range of CV values from 0.5-84.4%, with 

a mean of 18.4% and a median of 12.4% were found (data not shown), which agree with the 

range of analytical variability found in the literature (Ahn et al., 2009; Zagal et al., 2009; 

Morrow et al., 2016). The examined soil processing sources of variability—sieve size, water 

content, and direction of rewetting—all showed that they did not significantly increase the 

analytical variability (Table 9) of 24h mineralizable C. This is not to say that these sources do 

not contribute to variation in the method, but rather how they are standardized (i.e, ground vs. 

sieved) has little influence on the repeatability of the measurement for a given field or soil type. 

There were significant differences in the analytical variability between studies and 

between soils or fields within a study (Table 2.9), i.e. some soils within a study had higher 

intrinsic analytical variability than others and some studies had higher analytical variability than 

others. The analytical variability associated with these respective sources of variability was 

highly significant, although the soil- or field-level variability was slightly greater than the 

difference between studies (FStudy = 10.82 and FField = 13.54; Table 2.9). 

The between-study variability can be attributed to both differences in instrumentation 

(Table 2.3) and climatic differences, although the relative importance of these factors is unclear. 

However, between-site variability is in agreement with the results obtained from the inter-lab 

variability tests (data not shown), in which some soils were more variable across labs than 

others. 

This soil-specific variability is attributable many edaphic characteristics, such as carbon 

or O2 availability, soil aggregation, and soil texture (Linn and Doran, 1984; Mikutta and Kaiser, 

2011; Moyano et al., 2013; Angert et al., 2015; Yan et al., 2016), many of which would not be 
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addressed simply by sieving (Table 2.9). Additionally, the soil mineral composition can 

significantly alter the potential for hysteresis effects upon drying (Kaiser et al., 2015) and on the 

wettability upon rewetting (Woche et al., 2017), which has been previously shown to alter the 

mineralizable C measurements (Goebel et al., 2007). The relative importance of these potential 

confounding factors would likely be especially salient at lower concentrations of mineralizable C 

(Paterson and Sim, 2013) that are thought to indicate less “healthy” soils. 

This study has examined several common method variations in mineralizable C procedures, but 

these variations are by no means exhaustive. Additional factors not examined here, such as soil 

column height, drying time, drying temperature, and incubation temperature (Creamer et al., 

2014), have yet to be optimized, but may also contribute significantly to variability and should 

be investigated. 

Broader Implications of Variability 

Similar to other soil measurements, mineralizable C has multiple sources of variability: spatial, 

temporal and analytical. However, our findings that these sources of variability are soil-specific 

may be a substantial hurdle to a repeatable measurement of mineralizable C and to its utility as a 

robust soil health metric. Here we have used a conservative type II ANOVA to determine effect 

sizes, suggesting that the potentially confounding effects are even greater when more liberal 

analyses are performed. Several in situ studies of respiration have found that samples sizes of up 

to 75 separate samples are needed to achieve 95% confidence in values ±10% of a population 

mean (Davidson et al., 2002; Adachi et al., 2005) in order to account for these multiple sources 

of variability. In the current study, the analytical variability is exemplified in the lack of 

statistical differences at the 95% confidence level between the means of 25% WHC (284.0 mg 
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CO2-C kg-1 soil) and 50% WHC (444.2 mg CO2-C kg-1 soil) in the WSREC study (Table 2.6), 

despite a 56% increase in mean mineralizable C measured. In a commercial setting, this 

analytical variability can result in unreliable and/or inconsistent recommendations when using a 

single measurement. If additional analytical replicates were to be suggested, this would increase 

the cost of analysis and may serve as a financial barrier for growers (Carlisle, 2016). 

 

Conclusions 

Mineralizable C is currently being used in multiple commercial tests as an indicator of soil 

health. Previous studies have often focused on a narrow range of soils in a given study or have 

examined linear relationships of mineralizable C with other variables, obscuring the potential 

discrepancies in absolute values that can be obtained using this metric. However, there are many 

sources of variation that contribute to differences in absolute mineralizable C measurements. 

Sieve size, water content, and direction of rewetting were all found to be significant sources of 

variability, underscoring the need for standardization of soil handling procedures in order to help 

minimize experimental error across locations. In particular, the capillary method of rewetting 

inhibited mineralizable C measurements, which would likely result in decreased analytical 

sensitivity and hence we recommend not using this method to rewet soils in mineralizable C 

analyses. Calculating water content to be added on a soil-by-soil basis will undoubtedly increase 

the analysis time and cost, but will improve the overall accuracy of the measurement. We found 

no evidence that flail grinding to pass through a 2mm sieve (as is commonly practiced in 

commercial labs) negatively impacts the measurement, nor that 6, 24, or 72h yielded results that 

were more sensitive to management differences. Therefore, we see no justification in modifying 

the most common approach of a 24h incubation on ground < 2mm soils. Even after controlling 
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for procedural variations, the repeatability of the metric varied widely across soils and studies. 

Until the sources of analytical variability are better understood, we recommend that 

mineralizable C measurements be run with analytical replication. 
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Chapter 3. How Does Phosphorus Restriction Impact Soil Health Parameters in Midwestern 

Corn-Soybean Systems? 

Abstract 

Limiting agricultural phosphorus (P) losses to surface waters is essential to overall ecological 

sustainability of agroecosystems. Recent studies have suggested that decreasing P fertilization 

rates decrease organic matter content, adversely impacting other mitigation strategies. Corn-soy 

cropping systems from three soil regions of Ohio were subjected to 11 years of P restriction to 

measure impacts on soil P availability, agronomic performance, as well as both physical and 

biological indicators of soil health. While both soil P availability and plant tissue P contents 

decreased with P fertilization rate, crops did not exhibit signs of P stress, such as consistent 

decreases in corn yield. Organic P levels increased in plots with no P fertilization. Both physical 

and biological indicators of soil health showed mixed responses to P fertilization, although trends 

suggested greater organic matter stabilization in unfertilized plots relative to the fertilized plots. 

This study suggests that reductions in P fertilization can result in more efficient nutrient cycling 

without adverse agronomic impacts, although it is unclear how long this effect would persist 

before P restriction would consistently impact grain yields. 

 

Introduction 

The application of fertilizer-based phosphorus (P) is generally thought to be necessary for 

maximizing crop yields (Stewart et al., 2005). To ensure maximum yields are achieved, fertilizer 
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P is often applied in excess of crop P removal rates, a phenomenon that is ubiquitous across 

much of North American croplands (MacDonald et al., 2011). This over-application of both 

organic and mineral sources of P makes agriculture fertilizer a consistent contributor to nonpoint 

pollution of surface waters (Carpenter et al., 1998; Smith et al., 2015). The Western Lake Erie 

Basin is no exception to this surface water pollution, resulting in harmful algal blooms and 

significant risks to public health (Carmichael and Boyer, 2016; King et al., 2017). 

Some strategies to mitigate agriculturally-based P losses focus on improving soil health 

and nutrient management, including: 1) increasing infiltration rates, 2) improving soil structure, 

and 3) decreasing P fertilization rates (Ohio EPA, 2013; Sharpley et al., 2015). Soil health has 

physical, chemical, and biological components to it, with organic matter acting as an 

intermediary between these three components (Magdoff and Weil, 2004). Therefore, the first two 

strategies to limit agricultural P losses to surface water are extensively linked to changes in soil 

organic matter content. On one hand, increases in organic matter lead to increases in aggregation 

(Tisdall and Oades, 1982; Franzluebbers, 2002; Six and Paustian, 2014), which in turn influences 

soil hydraulic conductivity and infiltration (Franzluebbers, 2002; Lado et al., 2004; Zeleke and 

Si, 2005). On the other hand, decreases in P fertilization rate may substantially alter the cycling 

of P through organic matter, with recent studies suggesting P constraints on soil organic matter 

accrual (Cai and Qin, 2006; van Groenigen et al., 2006; Khan et al., 2007; Manna et al., 2007; 

Reid, 2008; Kirkby et al., 2013; Poeplau et al., 2015; Tipping et al., 2016; Liang et al., 2016), 

possibly through plant exudation of low molecular weight organic acids in response to P stress 

(Clarholm et al., 2015; Keiluweit et al., 2015). To further support this mechanistic link, several 

field studies have also shown decreases in soil C content of temperate cropping systems with low 

P availability, further supporting this potential mechanism (Wuest and Reardon, 2016; Romanyà 
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et al., 2017). Collectively, these findings suggest that the differing dimensions of the overall 

strategy to limit P losses to surface water may be working in opposition to one another. 

Specifically, we hypothesize that decreases in P fertilization (dimension 3) could lead to 

decreases in organic matter, ultimately limiting improvements in soil health metrics (i.e. 

dimensions 1 and 2). 

We used long-term (11-year) P restriction trials located in three of Ohio’s major land 

resource areas (MLRAs) to investigate the effect of soil P availability on overall soil health and 

agronomic performance. Specifically, we sought to investigate the effect of P fertilization on: (i) 

agronomic performance in corn-soybean systems, (ii) soil P levels, (iii) biological indicators of 

soil health (i.e. active organic matter), and (iv) physical indicators of soil health, namely 

hydraulic conductivity, aggregate stability, and penetration resistance. These effects were 

examined across three sites that are representative of soil types commonly used in corn-soybean 

production in Ohio and across the Midwest. Therefore, any effects may have implications at 

greater spatial scales. 

 

Material and Methods 

Soil sampling and site description 

We gathered soils in the spring of 2017 from three field trials across the state of Ohio (Table 

3.1). These trials were established in 2005, the full details of which can be found in Fulford and 

Culman (2018). Each site was representative of a MLRA of Ohio extensively cropped in corn 

and soybean (NRCS, 2006). We averaged the site climatic data for the 20 years prior to sampling 

(1997-2017) using the Ohio Agricultural Research and Development Center Weather Network 
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(http://www.oardc.ohio-state.edu/weather1/). We described soil series and classification using 

the Web Soil Survey (NRCS, 2009) (Table 3.1). 

All three field trials are a randomized complete block design with four replications 

(blocks). We established fertilization rates in a corn-soy or corn-corn-soy rotation using the 

estimated grain removal rates. To estimate the removal rates, we multiplied the average 

statewide corn and soy yields at the time of trial establishment (9.1 Mg ha-1 and 2.7 Mg ha-1, 

respectively) by the estimated grain P removal rates (6.6 kg P2O5 Mg grain-1 and 13.3 kg P2O5 

Mg grain-1, respectively) (Vitosh et al., 1995). Fertilization rates were then applied at 0´, 1´, and 

2´ the estimated removal rate from 2005-2015. In 2016, we adjusted the highest rate from 2´ to 

3´ grain removal and eliminated the previous corn-corn-soy rotation. In the current study, we 

only selected plots without rotation alterations, however the highest P rate did increase from 2´ 

to 3´. This resulted in 1´, 2x, and 3´ fertilization rates of 60, 120, and 180 kg P2O5 ha-1, 

respectively, following corn and 35.9, 71.8, and 107.7 kg P2O5 ha-1, respectively, following 

soybean. Fertilizer was surface broadcast following fall harvest of soybeans as diammonium 

phosphate (DAP) and incorporated via chisel tillage. To reflect this legacy of varying P 

fertilization rates in the highest fertilization treatment, this treatment will be referred to as the 

“2´/3´” treatment. Fertilizer P application rates and incorporation practices reflect the full range 

of farmer P application rates and are consistent with “best management practices” for the state 

(Smith et al., 2018). Total fertilizer N rate was 202 kg ha-1 (as urea at planting and urea-

ammonium-nitrate at sidedress) and fertilizer K rate was 43.7 kg ha-1 (as muriate of potash) was 

applied for corn following soybeans. Soybean crops received an additional 62.9 kg ha-1 of K 

fertilization to meet soybean demand, but no additional N fertilization. 
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Immediate after planting in 2017, we took soil samples of 8-10 cores per plot to a depth 

of 25cm using a 4cm diameter soil probe. Samples were composited, air-dried, hand-sieved to 

<2mm, and stored at room temperature pending analysis. To ensure precision, all analyses 

described below were conducted on <2mm sieved soil from the composite sample (Hurisso et al., 

2018b). 

 

 

 

 

 

 

Soil physical and chemical characterization 

Soil chemical properties were determined for the pooled soil samples using the recommended 

analytical procedures for the region (NCR, 2011). In brief, pH was determined using a 1:1 

soil:water mixture (Thomas, 1996) and soil organic C and N was determined via dry combustion. 

Soil nutrient concentration, including P, was determined via a Mehlich-3 extraction (Mehlich, 

1984) and measured using inductively coupled plasma atomic emission spectroscopy (ICP-AES). 

Total soil P was determined independently by x-ray fluorescence (XRF). Cation exchange 

capacity (CEC) was measured using the ammonium acetate method (Warncke and Brown, 1998). 

Table 3.1 Site description and climatic data (1997-2017) for study sites. Values in parentheses indicate 

minimum and maximum, respectively. 

Site 
Major Land 

Resource Area 
Dominant 
Soil Series Classification 

Mean Annual 
Precipitation (cm) 

Mean Annual Air 
Temperature (°C) 

Northwest Erie-Huron 

Lake Plain 

Hoytville clay 

loam 

Fine, illitic, mesic 

Mollic Epiaqualf 

86.2 

(63.1, 126.1) 

10.6 

(8.9, 12.1) 

Western Indiana and 

Ohio Till Plain 

Kokomo silty 

clay loam 

Fine, mixed, 

superactive, mesic 

Typic Argiaquolls 

97.2 

(63.2, 138.3) 

11.2 

(9.7, 12.9) 

Wooster Lake Erie 

Glaciated 

Plateau 

Canfield silt 

loam 

Fine-loamy, mixed, 

active, mesic Aquic 

Fragiudalf 

88.3 

(69.1, 118.9) 

10.2 

(4.1, 11.7) 
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Texture was determined using 50.0g of air-dried soil and the hydrometer method (Bouyoucos, 

1962). The results of these analyses are shown in Table 3.2. 

We determined soil physical properties in-field approximately one week after soil 

sampling. We measured penetration resistance (PR) using a SpotOnÒ digital soil compaction 

meter from Innoquest, Inc. (Woodstock, IL) to a depth of 25cm. Values from each plot were an 

average of 10 subsamples from across the plot. We adjusted these values for the gravimetric 

water content (GWC) using the following equation developed from Mielke et al. (1994): 

!"# = %&'(#)                                                               (1) 

where PR0 is the original measured PR, GWC0 is the water content at the time PR0 was 

measured, and a and b are empirically-derived parameters for each site. Parameters a and b are 

derived for each site using a nonlinear least squares curve. The values were then adjusted for 

moisture content at sampling time using the following equation from Busscher et al. (1997): 

!"* = 	!"# +	 -./0-1230
(&'(* − &'(#)                                       (2) 

where PRc is the corrected PR in MPa, GWCc is the standardized gravimetric water content that 

measured values, 
-./0
-1230

	is the first derivative of equation (1), and PR0 and GWC0 are as denoted 

in equation (1).  The mean of all GWC0 values (0.205 g H2O g-1 soil) was chosen for the 

standardized value of GWCc. All references to “penetration resistance” (PR) will refer to PRc 

values.  

We measured hydraulic conductivity using Decagon Devices Mini Disc infiltrometers 

(Pullman, WA) at 2 cm of pressure head at two locations per plot. Hydraulic conductivity 

generally followed the stages of soil saturation proposed by Faybishenko (1995) where the 

second stage approaches the saturated hydraulic conductivity. Given the level of suction applied 
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(2 cm of pressure), the smaller pores are likely not saturated and this hydraulic conductivity is 

more appropriately termed “quasi-saturated hydraulic conductivity”. However, for the purposes 

of this study, we will use the term “saturated hydraulic conductivity” (Ksat).  We then calculated 

hydraulic conductivity according to Zhang (1997), which is expressed as the average of the two 

in situ measurements. At this scale and pressure head, the hydraulic conductivities likely 

overestimate Ksat relative to a truly saturated soil, where water flow through the smaller pores 

with pressure head > 2 cm would decrease the measured hydraulic conductivity. 

Hedley P fractionation 

To assess the distribution of soil P fractions, we used a sequential chemical extraction that has 

been modified from Hedley et al. (1982). From the composited soil sample from each plot, we 

sequentially extracted two analytical replicates of 1.0g of air-dried soil, the means of which are 

reported for each fraction. Samples were extracted by shaking soil overnight (16 hr) with 20 mL 

each (in sequential order) of deionized water, 0.5 M NaHCO3, 0.1 M NaOH, and 1 M HCl. Then, 

we centrifuged each extract for 15 minutes at 8000 ´ g and transferred the clear supernatant to 

new 50 mL polypropylene tubes. We determined inorganic P (Pi) using molybdate colorimetry 

(Murphy and Riley, 1962) by reading on a 96-well plate reader at 880 nm. We analyzed all 

extracts in duplicate wells on the plate and used the average of those duplicates for each 

analytical replicate. To minimize analytical variability associated with sample processing, we 

determined total P in each extract by ICP-AES on unfiltered, unacidified, undigested extracts 

(Do Nascimento et al., 2015). Organic P was determined by difference between total P and Pi in 

each fraction. Total organic P was considered the sum of organic P from all fractions, which was 

predominantly (>98%) in the NaOH fractions, although both NaHCO3 and HCl extract contained 
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detectable organic P (He et al., 2006). Similar to Margenot et al. (2017b) the H2O- and NaHCO3-

extractable Pi fractions will be considered Labile Pi. 

Mineralizable carbon 

Mineralizable C, also known as respiration upon rewetting or the flush of CO2 upon rewetting, 

was measured on triplicate 10.0 g samples using 24 hour incubations in 50 mL microcosms. We 

rewetted soils from above to approximately 50% water-filled pore-space (Franzluebbers, 2016; 

Wade et al., 2018a). Mineralizable C was calculated as the difference between a sample and a 

blank control, using the headspace and the ideal gas law (Bottomley et al., 1994; Zibilske, 1994) 

and a constant temperature of 25°C. We measured the concentration of CO2 by analyzing 1.0 mL 

of sample from the headspace on a LI-COR LI-820 infrared gas analyzer (LI-COR Biosciences, 

Lincoln, NE). 

Permanganate oxidizable carbon 

We measured permanganate oxidizable carbon (POXC)—also referred to as “active C” in some 

soil health tests (Moebius-Clune et al., 2016; Fine et al., 2017)—based on the methods of Weil et 

al. (2003), using the modifications proposed by Culman et al. (2012). In brief, 2.5 g was shaken 

for exactly 2 minutes in a 50 mL polypropylene centrifuge tube using 0.02 M KMnO4 and 

allowed to settle for exactly 10 minutes. Next, we immediately transferred 0.5 mL of the 

supernatant to a new 50 mL centrifuge tube with 49.5 mL of deionized water to create a 100´ 

dilution. We then measured sample absorbance on a 96-well spectrophotometer at 550 nm. 
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Autoclaved citrate-extractable protein 

Autoclaved citrate-extractable (ACE) protein was measured using the methods of Hurisso et al. 

(2018c) and the Comprehensive Assessment of Soil Health (CASH) (Moebius-Clune et al., 

2016). In brief, 24 mL of 0.02 mol L-1 sodium citrate (pH =7) was added to 3.0 g of air dried soil 

in a glass screw-top tube, shaken for five minutes, and autoclaved at 121°C (15 psi) for 30 

minutes. After cooling, we shook the tubes for three minutes to resuspend soil particles and 

transferred 1.5 mL to microcentrifuge tubes for clarification of the extract (three min @ 10,000 ´ 

g). After cooling, we added a bicinchoninic acid reagent to soil extracts. Soil extracts were then 

transferred to a 96-well plate, sealed, and heated on a block heater at 60°C for one hour. After 

this one hour incubation, we allowed the plate to cool for 5 minutes prior to reading the samples 

colorimetrically at 562nm. We quantified ACE protein levels using bovine serum albumin 

standards fit to a second-order standard curve. 

Water stable aggregates  

To measure water stable aggregates (WSA), we used the methods of the CASH (Moebius-Clune 

et al., 2016). Briefly, we dry sieved air-dried soil to collect aggregates between 0.25 to 2.00 mm. 

Next, we evenly distributed approximately 30 g of soil on a 0.25 mm sieve and subjected it to a 

simulated heavy rainfall event. Any soil that slaked and passed through the sieve was collected 

on a filter and air-dried at 105°C for at least 24 hours. The amount of slaked soil was subtracted 

from the total weight to determine the proportion of the total that was “water-stable”. 
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Yield and plant tissue analyses 

Plant tissue was gathered at the onset of the reproductive phase (R1). Approximately 10-12 corn 

ear leaves were collected per plot. Tissue was then air-dried, ground, and digested with nitric-

perchloric acid before measuring P content on ICP-AES (Jones Jr and Case, 1990). Yield from 

each plot was determined by harvesting ears from the two central rows of corn plants in each plot 

using a plot combine and adjusting each sample to 15.5% moisture content. After harvest, grain 

was separated, processed, and analyzed for P content similarly to tissue. 

Statistical analyses 

All statistical analyses were performed in JMP Pro 13 (JMP, Version 13, 2017). Linear 

regressions were run as a linear mixed model with site, fertilization rate, and their interaction 

considered fixed effects and block considered a random variable nested within site. Response 

variables (e.g. Yield, POXC, etc.) were log transformed as needed to meet assumptions of 

normality. Planned orthogonal contrasts between specific combinations of treatments were run 

on these mixed models. Principal components analysis (PCA) was performed in RStudio 

(RStudio Team, 2016b) on a standardized correlation matrix using the rda( ) command in the 

vegan package (Oksanen et al., 2016) following the method of Borcard et al. (2011). All 

biological and physical soil health indicators were included in the PCA, as well as clay content, 

corn tissue P, and corn yield data. 

All plots were constructed on transformed data using the geom_boxplot( ) command in 

the ggplot2 package (Wickham, 2016). Mean values are denoted using a white diamond. 

To analyze organic matter trends using soil health indicators, the method of Hurisso et al. 

(2016b) was used where residuals are examined by treatment. A simple linear regression was run 
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for each site using the lm( ) command with POXC as the response variable and mineralizable C 

as the predictor variable. Residuals were extracted and positive residuals (i.e. trending towards 

POXC) were considered organic matter building while negative residuals (i.e. trending towards 

mineralizable C) was considered organic matter use. 

 

 

 

Table 3.2 Soil physiochemical characteristics for each site. All measurements are n=12 for each site, with 

standard errors in parentheses. 

Site 
pH 

(1:1 water) 
Total C 

(g C kg-1 soil) 
Total N 

(g N kg-1 soil) 
Total 
C:N 

Total P 
(mg P kg-1 soil) 

CEC 
(mmol/kg) 

Clay content 
(g kg-1 soil) 

Sand 
Content 

(g kg-1 soil) 
Northwest 6.23 

(0.12) 

25.1 (0.41) 2.56 (0.06) 9.84 

(0.11) 

846.1 (16.4) 16.8 

(0.83) 

415 (4) 272 (4) 

Western 5.88 

(0.03) 

19.2 (0.45) 2.02 (0.05) 9.52 

(0.10) 

621.2 (17.7) 10.2 

(0.38) 

216 (6) 276 (14) 

Wooster 6.71 

(0.08) 

19.0 (0.35) 2.01 (0.05) 9.47 

(0.13) 

708.3 (9.6) 6.0 

(0.37) 

182 (4) 253 (7) 

 

 

 

Table 3.3 Site and fertilization main effects for crop and soil agronomic parameters. All values are 

estimated least-square means with associated standard errors in parentheses. Letters represent significant 

differences within a main effect at the p<0.05 level using Tukey’s HSD means separation. Results from 

analysis of variance (ANOVA) are from mixed effect model with block as random variable. 

Factor Treatment 
Mehlich-3 P 

(mg kg-1) 
Corn Tissue Pa 

(%) 
Corn Yield 

(bu ac-1) 
Corn Grain P 

(%) 
Site Northwest 51.7 (2.4) a 0.41 (0.01) 154 (8) b 0.27 (0.01) a 

Western 32.3 (2.4) b 0.41 (0.01) 205 (8) a 0.24 (0.01) b 

Wooster 35.6 (2.4) b 0.42 (0.01) 164 (8) b 0.26 (0.01) ab 

Fertilization 0´ 21.3 (3.0) c 0.36 (0.01) c 171 (8) 0.23 (0.01) b 

1´ 36.7 (3.0) b 0.42 (0.01) b 169 (8) 0.26 (0.01) a 

2´/3´ 61.6 (3.0) a 0.46 (0.01) a 183 (8) 0.28 (0.01) a 

ANOVA Site (S) ** ns ** ** 

Fertilization (F) **** **** ns **** 

S ´ F ns ** ns ns 

†, *, **, ***, and **** correspond to p-values of <0.10, <0.05, <0.01, <0.001, and <0.0001, respectively. ns 

indicates no significance at the p<0.10 level. 
a Significant interaction is further explored in Table 3.6. 
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Results 

Agronomic response to P 

Corn crop yields were not responsive to P fertilization across all sites (Table 3.3). Even non-

significant general trends emphasized a lack of response to fertilizer, with least-square means in 

the order of 2´/3´ > 0´ > 1´. While fertilization rate showed no effect on yield, there were 

marked differences between sites (p=0.008), with Western having higher yields than either the 

Northwest (p=0.004) or Wooster sites (p=0.009). 

Overall, plant indicators of P status—such as tissue P content at R1 and grain P content at 

harvest—showed consistently strong effects of P fertilization (p<0.0001; Table 3.3). The effect 

of fertilization on tissue P and grain P followed the expected trend of 0´<1´<2´/3´. Corn crops 

showed no site effects on tissue P and strong site effects on grain P. Among the three sites, 

Northwest had the highest grain P contents. The site ´ fertilization interaction for tissue was due 

to the lower tissue P content in the 0x rate (p=0.003) at Western, relative to the other sites. 

Soil phosphorus fractions 

Both Labile Pi and M3-P increased with increasing fertilization rates (Figure 3.1; p<0.0001) and 

differed strongly by site (p=0.02 and p<0.0001, respectively). A significant interaction term 

between site and fertilization rate for Labile Pi (p=0.07) indicates that this effect size differed 

between sites, with Northwest having the largest differentiation between fertilization treatments. 

Generally speaking, the M3-P values for 0x treatments were in the “buildup” or the lower end of 

the “maintenance” range, the 1´ treatments in the “maintenance” range or lower end of the 

“drawdown” range, and the 2´/3´ in the “drawdown” range (Figure 3.1). The exception to this 
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trend was the Northwest site, which had 0´ in the “maintenance” range and both 1´ and 2´/3´ in 

the “drawdown” range. 

 

 

 

 

 

 

Organic P levels differentiated strongly by site (Figure 3.1; p<0.0001): Northwest had 

higher levels of Organic P than Western or Wooster, which were not different from one another 

(p=0.17). There was a slight treatment effect, which showed an inverse relationship between 

fertilization rate and Organic P content (p=0.068). Thus, the ratio between Labile Pi and Organic 

P increased as fertilization rates increased (Figure 3.1). Orthogonal contrasts showed that the 0x 

treatment had an overall much higher level of Organic P than the fertilized treatments (p=0.029, 

data not shown). However, this relationship was only significant in the Western site (p<0.001). 

 
Figure 3.1 Soil phosphorus fractions by site and treatment. Italicized numbers on y-axis show 

backtransformed values. Dotted lines for M3-P indicate limits of the “maintenance range” of 20-

40ppm from Tri-State Fertilizer recommendations (Vitosh et al. 1995; Culman et al., unpublished 

data). 
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Biological soil health indicators: active organic matter fractions 

All three indicators of active organic matter differentiated by site (p<0.10 for all, Table 3.4). 

Northwest had higher levels of both ACE protein and POXC than the other sites (p<0.0001 for 

both). Conversely, Northwest had lower values of mineralizable C than the other two sites 

(p<0.05), which did not differ. Between the remaining two sites, the Wooster site had higher 

ACE protein than Western (p=0.002) and no difference for mineralizable C (p=0.31) or POXC 

(p=0.25). Only ACE protein showed a response to P fertilization treatment across sites. There 

were no differences between the 0´ and the 2´/3´ treatments (p=0.39, data not shown), which 

had the highest ACE protein levels. However, the 1x was significantly lower than both the 0´ 

(p=0.015) and the 2´/3´ (p=0.087) treatments across sites. 

Physical soil health indicators 

Average Ksat values for each site generally agreed with the Ksat values of Dohnal et al. (2010) for 

their respective textural classes (data not shown). Accordingly, Ksat was much greater at Western 

than either Northwest or Wooster sites (Table 3.4; p<0.0001). Overall, Ksat had a negative 

relationship with fertilization rate (p=0.032). However, this relationship was site-dependent, with 

fertilization effects observed at Northwest (p=0.004), but not at Western (p=0.787) or Wooster 

(p=0.430). 

Overall, penetration resistance is considered a “lower is better” metric (Moebius-Clune et 

al., 2016). In the current study, penetration resistance values ranged from 2.32 to 4.69 MPa, 

which is considered a high PR value (Ditzler et al., 2017). PR showed a strong site effect 

(p<0.0001) and a slight fertilization effect (Table 4; p=0.006). Generally, the 1´ treatments 

resulted in similar PR to the 0´ (p=0.18) and lower PR than the 2´/3´ treatments (p=0.027). 
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However, within any given site, the only significant fertilization effect was at Western, where the 

1´ had a lower PR value than the 2´/3´ (p=0.094). 

 

 

 

 

 

 

Water stable aggregates varied predominantly by site (Table 3.4). The Wooster site had 

lower WSA than Western (p=0.043) or Northwest (p<0.001). While Western and Northwest 

were not significantly different from one another (p=0.228), the values at Northwest were 

generally higher. Across these sites, there was no significant treatment effect (p=0.119), although 

the 1´ had lower WSA than the 2´/3´ (p=0.042). The difference between the 1´ and the 2´/3´ 

Table 3.4 Site and fertilization main effects on biological and physical soil health indicators for 0-30cm depth. 

All values are estimated least-square means with associated standard errors in parentheses. Letters represent 

significant differences within a main effect at the p<0.05 level using Tukey’s HSD means separation. Results 

from analysis of variance (ANOVA) are from mixed effect model with block as random variable. 

Factor Treatment 

Biological Physical 
Mineralizable C 

(mg CO2-C kg-1 
soil) 

POXC 
(mg kg-1 soil) 

ACE Protein 
(g kg-1 soil) 

Ksat
a 

(mm hr-1) 

Penetration 
Resistance 

(MPa) 

Water stable 
Aggregates 

(%) 
Siteb Northwest 36.6 (3.1) 510 (20) a 5.14 (0.14) a 1.16 

(0.93, 1.44) b 

2.77 

(0.05) c 

70.8 

(5.5) a 

Western 47.9 (3.1) 319 (20) b 3.19 (0.14) c 5.17 

(4.17, 6.40) a 

3.24 

(0.05) b 

60.8 

(5.5) ab 

Wooster 44.9 (3.1) 284 (20) b 3.95 (0.14) b 1.22 

(0.98, 1.51) b 

4.15 

(0.05) a 

42.7 

(5.5) b 

Fert.b 0´ 42.3 (2.7) 381 (14) 4.23 (0.11) a 2.37 

(1.94, 2.88) a 

3.40 

(0.08) 

58.0 

(3.9) 

1´ 41.1 (2.7) 359 (14) 3.92 (0.11) b 1.89 

(1.57, 2.28) ab 

3.21 

(0.08) 

53.8 

(3.9) 

2´/3´ 46.1 (2.7) 373 (14) 4.13 (0.11) ab 1.63 

(1.35, 1.96) b 

3.54 

(0.08) 

62.4 

(3.9) 

ANOVA Site (S) † **** **** **** **** * 

Fertilization 

(F) 

ns ns * * * ns 

S ´ F ns ns ns ns ns ns 

†, *, **, ***, and **** correspond to p-values of <0.10, <0.05, <0.01, <0.001, and <0.0001, respectively. ns 

indicates no significance at the p<0.10 level. 
a analysis was performed on transformed data, values here represent backtransformed data and values in 

parentheses are 95% confidence intervals; b Values for each S ´ F combination can be found in Table 3.6. 
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only occurred at Western (p=0.022), not at Wooster (p=0.824) or Northwest (p=0.145). Overall, 

the 0´ treatment showed no difference in WSA from the 2´/3´ (p=0.270) or the 1´ (p=0.306). 

 

 

 

 

 

 

Patterns of variation amongst agronomic and soil health variables 

The first principal component (PC1) described 43.7% of the variance amongst our variables, 

primarily soil health indicators and yield (Figure 2). ACE protein, POXC, WSA, clay, and 

organic P were all negatively associated with PC1. Conversely, Ksat and PR were positively 

associated with PC1. The second principal component (PC2) described 18.7% of the variance. 

PC2 was primarily associated with soil available P fractions and tissue P content. Mineralizable 

C and yield were associated with both PC1 and PC2 and were closely associated with one 

another. Interestingly, yield was nearly orthogonal to available soil P and tissue P content. 

 
Figure 3.2 Biplot for principal component analysis (PCA) of soil health metrics, soil 

physiochemical characteristics, and agronomic performance indicators. 



 

 

44 

 

 

 

Table 3.5 Organic matter trends from residuals of linear regressions of 

POXC vs. mineralizable C. Positive residuals indicate treatment trending 

towards POXC (stabilization) and negative residuals indicate trends 

towards mineralizable C (oxidation). 

Treatment 
Site 

Northwest Western Wooster 
0´ ( + ) ( + ) ( + ) 

1´ ( - ) ( - ) ( + ) 

2´/3´ ( - ) ( - ) ( - ) 

 

 

 

Organic matter trends: building vs. breakdown 

The residuals from linear regressions of POXC and mineralizable C showed fairly consistent 

treatment effects across all sites. All 0´ treatments had positive residuals (i.e. tending towards 

POXC) and all 2´/3´ treatments had negative residuals (i.e. trending towards mineralizable C) 

(Table 3.5). The 1´ treatment showed mixed results, exhibiting negative residuals for both 

Northwest and Western sites, but positive residuals at the Wooster site. Thus, according to the 

framework laid out by Hurisso et al (2016), the 0´ was building organic matter while the 

majority of the 1´ and 2´/3´—with the exception of the 1´ at Wooster—were breaking down 

organic matter. 

 

Discussion 

Relationships between physical and biological indicators of soil health 

Biological indicators of soil health differentiated predominantly by site, rather than by 

fertilization. Consistent with previous work (Fine et al., 2017), POXC and ACE protein showed a 
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strong relationship with one another (r=0.82; p<0.0001). Additionally, POXC—which is 

considered a readily-stabilized soil C fraction (Culman et al., 2012; Awale et al., 2013; Hurisso 

et al., 2016b; Margenot et al., 2017a)—showed similar trend between sites as ACE protein. 

Although ACE protein is a relatively new soil health indicator, the essential role of proteins as a 

“base” for further stabilization of organic matter (Rillig et al., 2007; Kleber et al., 2007; Sollins 

et al., 2009) suggests that covariation of these two metrics could serve as an indicator of long-

term organic matter trends. The close association of increased organic matter—namely proteins 

and their similarly bound organic matter—with water stable aggregates (Rillig et al., 2007; 

Wilson et al., 2009; Fokom et al., 2012) is also observed in the covariation of POXC, ACE 

protein, and WSA (Figure 3.2). Mineralizable C—which is considered an indicator of processes 

inverse to these processes (Hurisso et al., 2016b)—was inversely associated with these metrics. 

However, in agreement with previous work (Culman et al., 2013; Hurisso et al., 2016b; Fine et 

al., 2017), POXC and mineralizable C were positively related to one another for each site (data 

not shown), indicating greater overall C cycling at higher POXC and mineralizable C values. 

Although not significant across dozens of sites within the Midwest and Northeastern US (Fine et 

al., 2017), the positive association between clay and POXC and negative association between 

clay and mineralizable C indicates that texture could be influencing this relationship amongst our 

current sites (Figure 2). The increased aggregation of illitic clays typical of the Northwest site is 

likely further contributing to the effect of clay in differentiating soil health parameters between 

sites (Blevins and Wilding, 1968; Denef et al., 2002; Denef and Six, 2005).  

Fertilization effects on biological indicators of soil health were mixed. Absolute values of 

both POXC and mineralizable C were unresponsive to P fertilization (p=0.341 and p=0.259, 

respectively). Previous work in temperate systems has shown that C mineralization was 
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unchanged across many levels of inorganic P (Spohn and Widdig, 2017). However, at a global 

scale, inorganic P availability has been shown to constrain the mineralized C per unit of 

microbial biomass (i.e. the metabolic quotient) (Hartman and Richardson, 2013). While these 

studies point to complex linkages between C and P dynamics, the sensitivity of C mineralization 

to methodological variation make direct comparisons to the current study difficult (Curiel Yuste 

et al., 2007; Franzluebbers and Haney, 2018; Wade et al., 2018a). As such, there is a dearth of 

information regarding effects of long-term P fertilization on the mineralizable C soil health 

metric. Similarly, relationships between soil P status and POXC have been largely unexamined. 

Margenot et al. (2017b) saw increases in POXC after 13 years of P restriction in a tropical 

Oxisol. However, differences in soil type, pH, and clay content imply much different C dynamics 

than the current study (Rasmussen et al., 2018). Unlike mineralizable C and POXC, ACE protein 

was responsive to P fertilization. However, our results of sometimes decreasing soil protein 

differ from previous work which has shown increased contents with P fertilization (Wu et al., 

2011; Dai et al., 2013). Considering that these studies were simply presence/absence of P 

fertilization, rather than multiple rates of P, it is possible that the response of soil protein may be 

non-linear across P fertilization rates. 

Similar to biological soil health indicators, the effect of P fertilization on physical soil 

health was mixed. Some of the clearest effects were within Ksat values, which were greater in 0x 

treatment than either the 1´ (p=0.092) or 2´/3´ (p=0.010). This effect was largest at the 

Northwest site, although the trend was still evident at the Wooster site. Increased root growth 

used for topsoil foraging of soil P is one potential explanation (Lynch and Brown, 2001; Zhu et 

al., 2005). Root-derived C is considered more stable in soils (Jackson et al., 2017; Shahbaz et al., 

2017) and therefore has been associated with increased porosity (Basche and DeLonge, 2017) 
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and increased aggregation (Tisdall and Oades, 1982; Six et al., 2000; Vidal et al., 2018). 

Although biological soil health indicators showed limited fertilization effects (Table 5), the 

complex relationship between organic matter, aggregation, and Ksat (Lado et al., 2004) makes it 

difficult to draw causal links between fertilization effects on aggregation and Ksat (Table 3.4). 

Effects of phosphorus fertilization on organic matter trends 

Although fertilization effects on individual soil health indicators were weak, the effects of P 

fertilization on overall organic matter trends were much clearer. The indication of organic matter 

stabilization in the 0´ treatment of all sites was unexpected (Table 3.5). Though not reflected in 

total C content (data not shown), this finding runs counter to many studies that have found P 

fertilization to be required for increases in organic matter (van Groenigen et al., 2006; Kirkby et 

al., 2013). However, Keller et al. (2012) suggested that increases in soil C content associated 

with P fertilization only occur in environments rich in labile soil C. Agricultural soils in full 

tillage corn-soy cropping systems are expected to be depleted in labile C (i.e. they are sources 

rather than sinks (Karlen et al., 2006), therefore the agroecosystems in the current study would 

not be expected to exhibit a soil C response to P fertilization. However, there are two non-

exclusive explanations for the consistency of the observed effects. 

The first potential mechanism for trends inferred from biological soil health indicators 

could be indicative of a greater proportion of C being held in microbial biomass. Recent stable 

isotope studies have shown that increases in soil C content are attributable to the retention of 

microbially-processed compounds (Kallenbach et al., 2015, 2016; Liang et al., 2017). A high 

degree of plasticity in microbial biomass C:P ratio has been shown (Ehlers et al., 2010; Hartman 

and Richardson, 2013; Horwath, 2017), suggesting that microbial biomass C levels could be 

maintained under low P availability (e.g. 0´ treatment). However, these microbes still are highly 
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competitive with plants to meet metabolic P requirements, likely resulting in P immobilization in 

the microbial biomass (Richardson and Simpson, 2011). Microbial immobilization of P is 

common across ecosystems (Bünemann et al., 2012; Heuck et al., 2015; Spohn and Widdig, 

2017), with 20-35% of inorganic P availability in agricultural systems mediated by microbial 

processes (Bünemann, 2015). Immobilization of P by the microbial community could therefore 

result in increases in organic P (Figure 1) without concomitant increases in overall soil C levels. 

At low levels of soil P, organic P is also mineralized to satisfy both plant and microbial P 

demand (Spohn et al., 2013; Bünemann, 2015; Heuck et al., 2015; Spohn and Widdig, 2017). 

Thus, our observed changes in organic P (Figure 3.1) should be considered a balance between 

these two competing processes. 

Increased root growth under low P availability is a second potential mechanism driving 

observed organic matter trends. Under conditions of reduced soil P availability, both corn and 

soybean forage for soil P by increasing root growth in the P-rich topsoil (Lynch and Brown, 

2001; Rubio et al., 2003; Zhu et al., 2005). Root-derived carbon is considered more stable than 

shoot-derived C (Rasse et al., 2005; Jackson et al., 2017; Shahbaz et al., 2017), which could 

explain the projected trend of stabilization (Table 3.5). Additional root growth could also 

reconcile the concurrent trends in organic P (Figure 3.1). Liu et al. (2017b) showed an increase 

in organic P in the form of phosphomonoesters after 27 years of no P fertilization, relative to 

both baseline and P fertilized samples. They attributed these increases to maize root-derived 

organic P. The hypothesis of increased root growth is also supported by several lines of evidence 

from physical indicators of soil health. Colombi et al. (2018) showed that for compaction values 

similar to values observed in the current study (Table 3.4), corn showed a marked increase in 

lateral root growth. If root growth was concentrated in the upper layers, this could also explain 
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the accompanying increases in Ksat. Additionally, this increased root growth would explain the 

association of Ksat values with yield (Figure 3.2). Therefore, this potential mechanism should 

also be considered, although we do not have any data to specifically support or refute this 

hypothesis. 

Are the crops experiencing P stress? 

Corn crops showed a considerable response of both tissue and grain P content to fertilization rate 

(Table 3.3). However, the values were generally between 0.30-0.50%, which is considered the 

“sufficiency” range for tissue P concentrations in the Tri-State area (Vitosh et al., 1995). While it 

could be argued that hybrids developed since the formulation of the Tri-State recommendations 

would exhibit improved internal P cycling (Calderón-Vázquez et al., 2011), recent studies in the 

region have generally corroborated the sufficiency range for corn ear leaf P concentrations 

(Kovács and Vyn, 2017). Additionally, recent work in Iowa has suggested that P sufficiency 

could be indicated at values closer to 0.25% (Mallarino, 2011). Although tissue P at R1 was 

associated with plant available P pools (labile Pi and M3-P), tissue P and yield were largely 

unrelated to one another (Figure 3.2). Infrequent yield responses to P fertilization have been 

previously documented for these sites dating back to 2006 (Fulford and Culman, 2018). This lack 

of yield response after 11 years without P fertilization is notable when considering profound 

differences in both labile Pi and M3-P between treatments. As previously discussed, increased 

root growth is potentially mediating decreases in available P—as indicated by labile Pi and M3-

P—and yield. However, this effect would only be possible at moderate levels of P deficiency 

(Erel et al., 2017). Thus, although there are differentiations in tissue and grain P between 
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treatments, there is no indication of P deficiency and/or stress. This, in addition to the lack of 

yield response, suggests that the plants are not experiencing P stress. 

Implications 

The implications of a lack of yield response after 11 years without P fertilization cannot be 

understated. This represents the substantial legacy effects of long-term P fertilization. In 

agricultural soils, continued application of fertilizer P results not only in increases in the labile, 

plant-available forms of P, but also increases the less labile pools (Zhang et al., 2004; Negassa 

and Leinweber, 2009; Shi et al., 2013; Soltangheisi et al., 2018). The “drawdown” of residual 

labile phosphorus is essential for maintaining surface water quality (King et al., 2017). A recent 

analysis of isotopically-exchangeable 32P and 33P across a global dataset of 217 studies has 

shown that plant-available phosphorus in solution is highly buffered by phosphorus sorbed to the 

mineral phase (Helfenstein et al., 2018). They found that even though differences in solution P 

may be evident at a given time point, the total amount of exchangeable P available for biological 

uptake remains largely unchanged over a 3-month period. This suggests that as legacy 

phosphorus is drawn down in high-P agricultural soils, physiochemical constraints on P 

availability can give way to a greater contribution of biological processes (Bünemann, 2015). In 

the current study, the relationship between soil P levels and corn yield was lacking (Figure 3.1; 

Figure 3.2). Additionally, we have very little evidence that indicators of biological soil health are 

1) altered by low solution P or 2) mediating the relationship between soil P availability and crop 

yield. However, it is possible that as legacy P effects diminish and available P starts to become 

limiting, the transition to a more biologically-based model of P availability will produce effects 

on biological soil health indicators. 
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Conclusions 

Eleven years of P restriction predictably lowered labile P fractions across all three surveyed sites. 

However, these changes in labile P did not reduce yields or provide evidence of crop P stress. 

Unexpected increases in organic P content also occurred in unfertilized plots. Although absolute 

values of most biological soil health indicators did not change with P fertilization, their relative 

trends showed increases in organic matter stabilization in P restriction (unfertilized) plots. 

Changes in physical indicators of soil health were mixed and the causal mechanisms unclear. 

However, unfertilized plots generally did not exhibit any decreases in soil health or yields 

associated with P restriction. Therefore, substantial reductions in long-term P fertilization rate 

could be implemented, although it is unclear how long this effect of residual P would continue. 

 

 

 

 

 

Table 3.6. Soil test P and soil health parameters for all sites and treatments. All values are means with 

standard errors in parentheses (n=4). Results from analysis of variance (ANOVA) are from mixed effect 

model with block as random variable. 

Site 
Fertilization 
Treatment 

Mehlich-3 P 
(mg kg-1) 

Biological Soil Health Indicators Physical Soil Health Indicators 
Mineralizable C 
(mg CO2-C kg-1 

soil) 

POXC 
(mg kg-1 

soil) 

ACE 
Protein 

(g kg-1 soil) 
Ksat 

(mm hr-1) 
PR 

(MPa) 
WSA 
(%) 

Northwest 0´ 23.8 (1.5) 40.7 (3.8) 524 (6) 5.32 (0.11) 4.54 (2.60) 2.88 (0.08) 73.9 (7.8) 

1´ 41.0 (1.8) 33.6 (0.3) 502 (19) 5.05 (0.15) 0.93 (0.10) 2.66 (0.09) 64.0 (3.0) 

2´/3´ 90.3 (0.9) 35.5 (0.9) 506 (17) 5.06 (0.10) 0.94 (0.10) 2.77 (0.11) 74.4 (5.7) 

Western 0´ 21.0 (3.1) 47.1 (5.8) 332 (22) 3.39 (0.18) 5.54 (0.87) 3.16 (0.06) 61.4 (8.2) 

1´ 36.5 (10.5) 46.7 (2.1) 295 (38) 2.95 (0.05) 6.12 (1.20) 3.01 (0.23) 52.0 (7.7) 

2´/3´ 39.3 (7.5) 49.9 (9.4) 328 (26) 3.23 (0.27) 4.69 (0.74) 3.54 (0.04) 69.0 (9.5) 

Wooster 0´ 19.0 (2.3) 39.2 (0.6) 288 (16) 3.97 (0.10) 1.38 (0.17) 4.16 (0.25) 38.6 (6.7) 

1´ 32.5 (4.2) 42.9 (5.7) 280 (33) 3.76 (0.29) 1.32 (0.14) 3.97 (0.15) 45.4 (2.4) 

2´/3´ 55.3 (6.7) 52.8 (4.1) 285 (22) 4.09 (0.22) 1.09 (0.20) 4.33 (0.14) 43.9 (6.1) 

ANOVA Site (S) ** † **** **** **** **** * 

Fertilization 

(F) 
**** 

ns ns 
* * * ns 

S ´ F ns ns ns ns ns ns ns 
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Chapter 4. Healthier Soils Increase Corn Response to N Fertilizer Across the Corn Belt 

Introduction 

Beginning in the early 1960s, the increased use of nitrogenous fertilizers has nearly doubled 

grain crop yields across the world (Lassaletta et al., 2014). While this yield increase may be a 

boon for global food security, the losses of reactive nitrogen have also doubled, resulting in a 

myriad of adverse environmental effects (Vitousek et al., 1997; Van Groenigen et al., 2010; 

Bowles et al., 2018). Despite promising developments in crop breeding (Han et al., 2015; Li et 

al., 2018b), yields have generally plateaued with increasing N fertilization rates, ultimately 

decreasing nitrogen use efficiency (NUE) (Lassaletta et al., 2014; Bouwman et al., 2017). Recent 

estimates have suggested that between 1961 and 2010, approximately 44% of the N fertilizer 

applied globally to maize systems was lost to the environment (Ladha et al., 2016). The Corn 

Belt of the midwestern United States is no exception to this trend, with NUE stagnating at 

approximately 60% or even decreasing as N fertilization rates increase in recent decades 

(Swaney et al., 2018). 

There are many strategies to address N losses from cropping systems, including the 

“4Rs” of fertilizer management (Christianson and Harmel, 2015; Venterea et al., 2016): right 

rate, right time, right form, and right placement. These strategies are largely centered on the 

management of N fertilizer—which comprises less than 50% of the plant N uptake in a given 

growing season (Kramer et al., 2002; Gardner and Drinkwater, 2009)—neglecting the role of soil 

biology in supplying plant N. This neglect of soil biology reflects the inherent complexity and 
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uncertainty associated with the prediction of N mineralization rates (Ros et al., 2011; Liu et al., 

2016a; Li et al., 2018a). 

The framework of soil health seeks to highlight the role of soil biology, ultimately 

integrating soil biologically with the historically-emphasized chemical and physical soil 

components (Doran, 2002; Kibblewhite et al., 2008). Soil health has been widely embraced by 

farmers, researchers, and private industry alike (Romig et al., 1995; Idowu et al., 2009; 

Arbuckle, 2016; Soil Health Institute, 2017). Buy-in from these stakeholders represents a nexus 

of several of the most influential sources of information growers use in making nutrient 

management decisions (Stuart et al., 2014, 2015, 2018), making soil health uniquely positioned 

to address agricultural N losses. 

To date, there has been little convergence in which biological indicators of soil health 

represent vital soil functions (Bünemann et al., 2018). While many studies have described 

management-induced changes in biological soil health indicators (Culman et al., 2012; Lucas and 

Weil, 2012; Mitchell et al., 2017; Wang et al., 2017; Karlen and Obrycki, 2018; Obrycki et al., 

2018), these indicators have only been loosely correlated with crop productivity (Dick and 

Culman, 2016; Hurisso et al., 2016b; Bongiorno et al., 2019). Recent work has begun to connect 

changes in biological soil health to potential changes in crop fertilization rates (Franzluebbers, 

2018a; Yost et al., 2018). However, these studies 1) used a limited number of measurements of 

soil health and fertility and 2) were conducted under a limited range of pedoclimatic conditions. 

The clustering of data within a given pedoclimatic context can overestimate the strength of the 

relationships between the biological soil health indicators and crop productivity by confounding 

context effects with biological phenomena, increasing the potential for type I errors (Clarke, 

2008). The use of multilevel models helps to reduce bias from data clustering, allowing us to 
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differentiate between effects exerted on a site-by-site basis and effects exerted within a site. 

Therefore, while previous studies have established strong correlations, the lack of accounting for 

other potentially confounding factors undermines the ability to establish a causal link between 

soil biological health and crop productivity measures (Feller and Gelman, 2015). 

 

 

 

 

 

 

In this study we use replicated fertilizer N rate trials across the Corn Belt of the 

Midwestern United States to better elucidate the link between soil biological health and crop 

productivity. These potential linkages will seek to answer the general question “does a healthy 

 
Figure 4.1 Locations of all sites included in the current study. 
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soil need less fertilizer?” Although there are many methods of expressing crop-soil N dynamics 

to inform N fertilization decisions (Morris et al., 2018), here we are looking to answer two basic 

questions. Considering that agronomic optimum grain yields are often achieved in unfertilized 

treatments, our first question is “can biological soil health indicators predict if N fertilization is 

needed?” Secondly, we seek to answer the more general question “do biologically active soils 

produce greater yields than less biologically active soils, given similar N fertilization rates?”. 

Due to the wide range of climatic and edaphic influences on relative yield with N fertilization, 

these primary research questions incorporated site-level effects of climate and texture to better 

elucidate potential relationships between soil health and plant-soil N dynamics.. Trials included 

in this study represented a variety of soil health-building managements and pedoclimatic zones, 

allowing for interpretation across a breadth of contexts. 

 

 

 

Table 4.1 Location and primary management information for all study sites. All sites had a 

minimum of four N fertilization rates. Additional management information can be found in Table 

4.9 or in references cited in-table. 

Study Name Treatment(s) State 
Number 
of Sites 

Number of 
total plots 

Treatment 
Duration References 

N Rotation Four rotations: 

continuous corn 

(grain), corn-

soybean, and 

corn-corn-corn-

soybean  

Iowa 1 66 36 years (Karlen et al., 

2006; Russell 

et al., 2006) 

Manure ´ 

CC
a
 

Non-manured 

control, manure 

only, manure + 

barley CC 

Wisconsin 4 48 2 years None 

Radish CC No CC control, 

radish CC, 

radish CC + 

pre-plant N 
b
 

Wisconsin 3 28 3 years (Ruark et al., 

2018) 

Purdue N 

Trials 

None Indiana 6 90 4 years (Moser, 2016) 
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Materials and Methods 

Study Details 

For this study, we compiled soil and yield data from replicated N-rate studies from across the 

Corn Belt (n=31 sites; n=389 total soil samples). Trials had a minimum of four N rates imposed, 

each of which was replicated 3-6 times across a site. Each replication had an unfertilized control 

plot without applied N as well as a minimum of three additional N rates, the highest of which 

was at least 180 kg ha-1 N. The one exception was the Purdue N Trials, in which the check plots 

had an N rate of 19-27 kg ha-1 N applied at planting. Layered within these N rate trials were 

additional soil health-building management strategies: varying rotation lengths and diversities, 

manure application, cover crops, and decreases in tillage intensity (Table 4.1). One site with 

extremely high organic matter content (>20% by mass) was eliminated due the unique fertility 

properties of muck soils (Silva, 2012). Therefore, the final analysis included 29 sites with a total 

of 386 soil samples. 

Blevins Conventional 

tillage and 

continuous no-

till 

Kentucky 1 32 48 years (Liu et al., 

2017a) 

F05 Continuous corn 

(grain), corn-

soybean 

rotations 

Kentucky 1 48 35 years  

Legume CC No CC control, 

clover CC, 

barley CC 

Wisconsin 3 36 1 year None 

Ohio N 

Trials 

On-farm trials 

(varies) 

Ohio 12 36 1 year None 

a
 CC= cover crop; 

b
 67 kg N ha

-1
 was added at during radish planting 
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These studies represented both on-farm and research plots covering a broad range of 

pedoclimatic conditions. Using GPS coordinates for each site, we extracted climatic data for 

each site from the WorldClim2 database (Fick and Hijmans, 2017) using RStudio (RStudio 

Team, 2016b) and the raster package (Hijmans et al., 2015). This climatic data was then used to 

describe climatic influences on relative yield across site. We determined the representativeness 

of our selected sites using technological extrapolation domains (TEDs) (Cassman, 2017; Edreira 

et al., 2018). TEDs are constructed using a combination of climatic and edaphic factors and 

delineate regions of varying yield potential for rainfed cropping systems. Namely, these factors 

are 1) annual growing degree-days, 2) aridity index, 3) annual temperature seasonality, and 4) 

plant-available water holding capacity of the soil.  Using the GPS coordinates and the “corn 

mask” in the TED framework (http://nutrientstar.org/ted-framework/), our sites represented 52% 

of the total rainfed corn production area in the central/eastern United States. 

Soil samples for each study were gathered in the spring prior to or immediately following 

planting of the corn grain crop. We took multiple soil subsamples to a depth of 6-12”, which 

were then composited and homogenized to comprise one representative sample for each plot. 

Samples were then air-dried and stored pending analysis. The specific sampling protocols for 

each study can be found within references cited in Table 4.1 or in Table 4.9. 

Soil Nutrient Status 

We determined soil inorganic N content as the sum of both nitrate and ammonium. Both were 

determined using a 1:5 soil:solution extract using 1 or 2M KCl. Extracts were shaken for 1 hour, 

clarified, and measured colorimetrically (Mulvaney, 1996). Ammonium was determined using 

the salicylate method (Verdouw et al., 1978). Nitrate was determined using the cadmium 
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reduction method (Dorich and Nelson, 1984; NCR, 2011) or by reduction with vanadium (III) 

chloride (Doane and Horwath, 2003). Both nitrate reduction methods typically yield consistent 

nitrate values (Doane and Horwath, 2003). 

 

 

 

Table 4.2 Site data for each study field. 

Study Name 
Field 

Number 
Clay 
(%) 

MATb 

(°C) 
MAPc 
(mm) 

Temperature 
seasonalityd (°C) 

Precipitation 
seasonalitye (%) 

N Rotation 1 22.5 7.6 858 11.2 4.8 

Manure ´ 

CC
a
 

2 22.9 7.4 806 10.6 3.9 

3 12.8 5.5 837 11.0 4.5 

4 4.3 6.4 809 10.8 4.2 

5 22.7 7.9 846 10.6 4.2 

Radish CC
a
 6 14.7 7.1 812 10.4 3.7 

7 24.7 7.3 833 10.2 3.2 

8 22.5 8.0 850 10.5 3.6 

Purdue N 

Trials 

9 36.9 10.1 943 9.7 2.5 

10 43.6 9.8 944 9.5 2.2 

11 29.6 11.9 1102 8.9 1.7 

12 32.3 9.5 973 9.7 2.5 

13 28.0 10.3 962 9.6 2.3 

14 27.3 9.5 947 9.6 2.2 

Blevins 15 18.0 12.5 1148 8.5 1.5 

F05 16 17.9 12.5 1140 8.6 1.5 

Legume CC
a
 17 22.9 7.4 824 10.1 3.2 

18 22.1 7.4 824 10.1 3.2 

19 22.3 7.3 833 10.2 3.2 

Ohio N 

Trials 

20 24.0 10.0 899 9.6 2.1 

21 14.0 10.6 974 8.7 2.0 

22 14.1 10.5 978 8.8 2.0 

23 28.6 9.9 909 9.5 2.2 

24 19.1 9.5 1016 9.0 2.0 

25 17.8 9.2 1014 9.1 2.1 

26 28.8 9.3 867 9.6 2.1 

27 19.5 10.4 1012 9.0 2.0 

28 25.3 9.2 853 9.5 2.0 

29 38.9 9.4 872 9.6 2.0 
a 
cover crop; 

b 
mean annual temperature; 

c 
mean annual temperature; 

d 
calculated as the standard 

deviation of the average monthly temperature; 
e 
coefficient

 
of variation for monthly total 

precipitation within a year 
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Soil Health Metrics 

As an aggregated measure of soil health, we selected three commonly-utilized biological soil 

health metrics. Permanganate oxidizable carbon (POXC) (Weil et al., 2003; Culman et al., 2012), 

autoclave citrate-extractable protein (ACE protein) (Hurisso et al., 2018c), and mineralizable C 

(Franzluebbers et al., 2000; Franzluebbers, 2016; Wade et al., 2018a) were determined for each 

sample. We measured mineralizable C by rewetting 10g of air-dried soil in 50mL microcosms to 

50% water-filled pore space, incubating for 24 hours at a constant temperature of 25°C, and 

measured CO2 concentrations on a 1mL aliquot of headspace on a LI-COR LI-820 infrared gas 

analyzer (LI-COR Biosciences, Lincoln, NE). We calculated mineralizable C as the difference in 

CO2 concentration between a sample and a blank control using the ideal gas law (Bottomley et 

al., 1994; Zibilske, 1994). In the statistical models, the mean value of duplicate measurements 

was used to account for potential measurement variability (Wade et al., 2018a). We measured 

POXC using 2.5g of air-dried soil, which was shaken for precisely 2 minutes in a 0.02 mol L-1
 

KMnO4 solution, allowed to settle for 10 minutes, diluted 1:100 with water, and then measured 

spectrophotometrically at 550 nm on a 96-well plate. We measured ACE protein using 3.0g of 

air-dried soil that was extracted with 0.02 mol L-1 sodium citrate solution (pH=7.0), shaken for 5 

minutes, and autoclaved at 121°C (15 psi) for 30 minutes. Cooled extracts were then clarified (3 

minutes @ 10,000 ´ g) and reheated (60°C for 1 hour) after adding a bicinchoninic acid reagent. 

After a second cooling for 5 minutes, we quantified ACE protein colorimetrically at 562 nm 

using a bovine serum albumin standard. 

In addition to the biological soil health indicators, we also measured organic matter 

content, as it is the most commonly measured metric associated with soil health (Bünemann et 
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al., 2018). Organic matter content was measured using the NCERA-13 recommended method for 

the region (NCR, 2011): loss-on-ignition (LOI) (Cambardella et al., 2001). In brief, 10-15g of 

soil was dried overnight at 110°C, placed in a dessicator, and then combusted at 360°C for 2 

hours, with the difference being representative of total organic matter content. While calibrations 

between LOI and total C on combustion have proved quite successful for the region (Konen et 

al., 2002), the total C on combustion method is generally preferred (Nelson and Sommers, 1996). 

Therefore, wherever both combustion and LOI values were available, total C values were used. 

Where only LOI values were available, LOI was converted to total C, or soil organic carbon 

(SOC), using the conversion factor of 1.74 (Pribyl, 2010) to facilitate comparisons with the 

broader literature. 

Relative Yield and Relative Fertilization Rate Calculations 

Relative yield (RY) was calculated as the ratio between yield in a manipulated plot and the 

calculated yield at the agronomic optimum N fertilization rate (AONR). In the N responsiveness 

model, check plots were used as the numerator. In the N fertilizer efficiency model, yields from 

all applied N rates were used. AONR was calculated using the linear, linear plateau, quadratic, 

and quadratic plateau methods of Cerrato and Blackmer (1990). Model fit (R2) was used to 

determine the appropriate response curve, with an increase of >0.05 being needed to justify any 

variations from the preferred quadratic plateau model. Yield was then calculated using the 

AONR and resulting yield response curve. If calculated AONR exceeded the highest fertilization 

rate, then yield at the highest fertilization rate was used. AONR was calculated independently for 

each treatment ´ block combination to account for: 1) potential long-term effects of treatment on 

AONR (Poffenbarger et al., 2018) and 2) within-field variation in yield potential (Mamo et al., 
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2003). RY was then determined for each treatment ´ block combination and expressed as a ratio, 

where non-responsive sites have a value of RY=1.0. In the long-term studies (N Rotation, 

Blevins, and F05), yields were averaged across years (up to 5 years) to minimize year-to-year 

weather effects on N response (Tremblay et al., 2012). Due to high variability in optimum N rate 

between sites (Dhital and Raun, 2016), the relative fertilization rate was used to compare N rate 

across sites. Relative fertilization rate (RFR) was calculated as the applied N rate divided by the 

AONR. Thus, some plots had values of RFR > 1.0, indicating excess N fertilization. 

Statistical Analyses 

Our overall statistical approach consisted of several steps. First, we used a factor analysis to 

determine the appropriate number of “soil health” factors, as well as which measured variables 

were to be considered. Next, these factors were integrated into a theoretical model describing the 

relationships between soil health, soil inorganic N content, and relative yield. This theoretical 

model (represented in the lower level of our model) was then fit into a multilevel context, 

wherein site-specific effects (i.e. texture and climate) were used to more accurately constrain and 

quantify these relationships. 

We used exploratory factor analysis (EFA), or common factor analysis, to determine if 

the biological soil health indicators describe similar underlying processes. EFA uses the pattern 

of correlations (i.e. covariance structure) of a set of measured variables to infer underlying 

process(es) or constructs (Thurstone, 1947; Fabrigar and Wegener, 2011). The goal of EFA is 

distinctly different from other data reduction processes (e.g. principal components analysis) in 

that EFA is attempting to describe unmeasurable latent constructs. The classical example of this 

is the concept of “general intelligence” being represented by a blending of measured test scores 
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(Spearman, 1904). EFA was performed using a total of four common indicators of biological soil 

health and fertility—POXC, mineralizable C, ACE protein, and soil organic C content—to 

determine if these measured variables are describing similar latent constructs. To determine the 

appropriate number of factors, we used the package nFactors (Raiche and Magis, 2014) in 

RStudio (RStudio Team, 2016b) to conduct several quantitative assessments for factor retention: 

eigenvalues, parallel analysis, optimal coordinates, and the acceleration factor. All four of these 

methods suggested a best fit of one factor to describe soil health, i.e. these four indicators are all 

describing some portion of the underlying construct of “soil health”. However, these four 

indicators differed in their ability to describe this underlying soil health construct; factor loading 

<0.50 and correlation with other measured variables <0.50 (Table 4.5) led us to exclude 

mineralizable C from the final latent factor. 
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(a) 

 
(b) 

 
Figure 4.2 Baseline structural equation models for (a) N responsiveness model and (b) N 

fertilizer efficiency model. 

MAT = mean annual temperature; MAP = mean annual precipitation; POXC = permanganate 

oxidizable C; SOC = soil organic carbon 
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We used multilevel structural equation models to determine the effects of soil health on 

crop N responses. Multilevel models—also referred to as hierarchical models—offer many 

advantages over classical regression models that are relevant to broad-scale studies such as the 

current study (Gelman and Hill, 2006). First, the multilevel structure accounts for varying effects 

to be simultaneously quantified across several scales of analysis. The hierarchically lower level 

in our current model was the “within field” portion of the model and the hierarchically higher 

level was the “between fields” (or “across field”) portion of the model. Within-field models are 

comprised of components that inform N management decisions (e.g. inorganic N content). In 

order to allow for variations in yield potential for each field, we allowed the intercept to vary (as 

a random effect), but included measured model predictors as fixed effects. The upper level of our 

model—the between- or across-field effects—were parameters that would exert their influence 

on a field-by-field basis (e.g. climate conditions). Thus, we could estimate within-field changes 

in N dynamics while holding between-field climatic or edaphic parameters constant. This alludes 

to a second advantage of multilevel modeling over classical regression: prediction to new groups 

drawn from the same sampling population. In accounting for variations between/across fields, 

prediction in new contexts is more robust and reliable. A third salient advantage of multilevel 

models is the balancing of type I and type II errors in multi-site studies. Oftentimes, multi-site 

studies will include all observations in a single predictive regression from which to draw 

conclusions, often referred to as “complete pooling”. While this results in a larger sample size, 

clustering within fields overestimates the strength of that relationship, increasing the potential for 

Type I errors (false positives), (e.g. Figure 2 in Haney et al. (2004)).  Alternatively, many multi-

site studies will average parameters across replicates within a site and then use that average in 
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regression-based evaluations. This approach decreases the overall sample size, resulting in an 

underpowered analysis and an increase in the probability of a type II error (see: Yost et al. (2018) 

and Franzluebbers (2018b) for relevant examples using multi-site N analyses). The partial 

pooling method of multilevel analysis balances these two considerations, producing a more 

accurate error estimate while maintaining an appropriate balance of type I vs type II errors. 

To answer the two primary questions surrounding crop response to N fertilization, we 

built two similar, but separate models (Figure 4.1). Our first model was constructed to address 

the question “can biological soil health indicators predict if N fertilization is needed?”. This 

model, referred to hereafter as the “N responsiveness model”, was conducted using only soil data 

from our check plots. Associated yields from those check plots were then used as the numerator 

and yields at AONR as the denominator in our relative yield (RY) calculations. We constructed 

our second model to answer the question “do biologically active soils produce greater yields for 

similar N fertilization rates?”. This model, which we will refer to as the “N fertilizer efficiency 

model”, included all soil and yield data available. We analyzed our models using the sem( ) 

command in the lavaan package (Rosseel et al., 2018) of RStudio with our data clustered at the 

field level. Using our constructed baseline model (see below for justification), paths were 

iteratively eliminated based on their level of significance until each individual path was 

significant at p<0.10. Overall model fit was assessed using the standardized root-mean-square of 

the residuals (SRMR) as a measure of absolute fit and the Comparative Fit Index (CFI) and 

Akaike’s Information Criteria (AIC) as measures of relative fit (Akaike, 1974; Hu and Bentler, 

1999). Combining CFI and SRMR, we used the cutoff criteria of Hu and Bentler (1999), wherein 

either a CFI > 0.95 or a SRMR < 0.05 was considered a close model fit. For CFI < 0.95 and 

SRMR > 0.05, we would expect a combined type I and type II error rate of ~1% for n » 200 and 
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£ 0.0% for n » 400. We determined fit separately at each level using SRMR (Hsu et al., 2015) 

with a similar criteria of SRMR < 0.05 being considered a close fit and SRMR < 0.08 being an 

acceptable fit. Values of SRMR > 0.10 are considered to be a mediocre model fit (Browne and 

Cudeck, 1993). To ensure the robustness of our results, we used bias-corrected and accelerated 

(BCa) bootstrapping to construct parameter confidence intervals during model development and 

validation (Efron, 1987), as well as to assess mediation (i.e. indirect effects) (Hayes, 2009). 

Statistical model justification 

The N responsiveness model and the N fertilizer efficiency model shared similar general model 

structures. At the lower (within-field) level of our model we included the long-established 

relationship between pre-plant inorganic N content and relative corn yield (Magdoff et al., 1984; 

Bundy and Malone, 1988). One of the primary relationships of interest—the relationship 

between the soil health factor comprised of biological soil health indicators—also was 

hypothesized to have a direct effect on relative yield. While inorganic N content could be 

considered an indicator of soil health itself, the large body of literature relating inorganic N 

content to active organic matter fractions (Franzluebbers et al., 2000; Haney et al., 2001; Russell 

et al., 2006; Culman et al., 2013; Osterholz et al., 2017; Hurisso et al., 2018c), led us to 

hypothesize that inorganic N would be influenced by the biologically active fractions described 

by our soil health factor. These structural components were identical across models. However, 

the integration of fertilizer rate allowed for the interactive effects of fertilizer application and soil 

health on relative yield to be determined. Given the influence of nitrogenous fertilizer on soil 

microbial biomass and activity (Geisseler and Scow, 2014; Geisseler et al., 2016a) and its effects 

on carbon dynamics (Poffenbarger et al., 2018), we hypothesized that our soil health factor 
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would also be influenced by N fertilization rates. At the upper level of our model, we included 

both edaphic (e.g. clay content) and climatic variables that been shown to influence crop N 

responses (Puntel et al., 2018; Spackman et al., 2019). 

 

Results 

Soil health and physiochemical properties 

Soil physiochemical properties were largely within expected value for Corn Belt fields (Table 

4.3). CEC values ranged from 2.0-25.9, encapsulating a wide range of soil fertility status. 

Similarly, pH for each study was comparable to the median values for each state (Murrell et al., 

2015), with the exception of F05, which was below the state median of pH=6.1. Notably, nearly 

all of the SOC values fell below the ~2% SOC threshold that Oldfield et al. (2019) estimated as a 

plateau for yield increases with N fertilization. 

There are few studies with regionally-representative values for biological soil health 

indicators, so determining “high” vs. “low” values is often difficult. However, the samples in the 

current study exhibited a generally wide range of values. POXC ranged from 160 to 1054 mg kg-

1 soil; around one order of magnitude. Similarly, mineralizable C ranged from 5.8 mg CO2-C kg-1 

soil to 167.1 mg CO2-C kg-1 soil. This represents a broader range of mineralizable C values than 

was recorded by Franzluebbers et al. (2000), despite the narrower range of climatic conditions in 

the current study. Soil protein values ranged from 1.7 to 7.1 g kg-1 soil, which was generally 

within expected values for medium or fine-textured soils (Fine et al., 2017). 
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Table 4.3 Mean values of soil fertility, soil health, and physiochemical characteristics for each study. 

Values in parentheses indicate the minimum and maximum values within each study, respectively. 

Study 
Name pH SOC (%) 

CEC 
(meq/100g 

soil) 

Inorganic N 
(mg N/kg 

soil) 

POXC 
(mg/kg 

soil) 

Mineralizable 
C 

(mg CO2-
C/kg soil) 

Soil Protein 
(g/kg soil) 

N Rotation 5.7 

(4.6, 6.7) 

1.5 

(0.8, 2.2) 

14.2 

(10.0, 18.8) 

55.2 

(8.7, 149.2) 

533 

(431, 623) 

48.7 

(26.2, 79.1) 

3.8 

(2.8, 5.4) 

Manure ´ 

CC
a
 

6.6 

(5.9, 7.2) 

1.2 

(0.1, 2.1) 

9.8 

(2.0, 17.8) 

11.0 

(4.6, 23.4) 

450 

(160, 810) 

35.2 

(5.9, 92.7) 

3.3 

(1.7, 7.1) 

Radish CC 7.0 

(6.4, 7.5) 

1.4 

(1.1, 1.8) 

12.4 

(9.8, 16.1) 

7.6 

(4.3, 18.1) 

518 

(347, 710) 

47.3 

(27.0, 69.0) 

3.0 

(2.3, 4.2) 

Purdue N 

Trials 

6.2 

(5.4, 7.3) 

1.9 

(1.1, 3.1) 

14.6 

(7.3, 25.9) 

14.2 

(3.1, 32.2) 

570 

(291, 821) 

59.4 

(22.8, 167.1) 

3.9 

(2.9, 5.9) 

Blevins 5.5 

(4.9, 6.3) 

1.5 

(1.0, 2.1) 

11.6 

(10.3, 13.4) 

6.1 

(3.6, 14.7) 

620 

(398, 921) 

40.8 

(13.4, 75.5) 

4.7 

(3.5, 6.5) 

F05 5.0 

(4.0, 5.8) 

1.5 

(1.3, 1.9) 

12.7 

(10.1, 16.7) 

8.4 

(4.9, 32.5) 

565 

(347, 1054) 

45.0 

(11.3, 73.5) 

4.2 

(3.3, 5.8) 

Legume 

CC 

7.4 

(6.8, 7.6) 

1.1 

(0.8, 1.9) 

13.2 

(11.1, 16.7) 

7.4 

(3.7, 13.3) 

527 

(370, 761) 

50.0 

(22.4, 81.8) 

2.7 

(1.8, 4.2) 

Ohio N 

Trials 

6.1 

(4.8, 6.9) 

2.2 

(1.6, 6.4) 

11.7 

(5.3, 19.3) 

21.8 

(9.7, 47.9) 

473 

(309, 761) 

33.0 

(5.8, 55.4) 

4.6 

(3.5, 6.3) 
a
 CC = cover crop 

 

 

 

Relationships between soil health, agronomic, and climatic variables 

In both the reduced dataset (N responsiveness) and the full dataset (N fertilizer efficiency), many 

of the soil health and agronomic variables were significantly linearly correlated to one another 

(Table 4.4 and 4.5). Interestingly, mineralizable C was largely unrelated to many of the climatic 

variables and only weakly related to other soil health indicators in both datasets. However, it was 

moderately related to clay (r»0.50). Climatic variables were largely well-correlated with one 

another, with many of the relationships r>0.90. Both MAT and MAP were inversely related to 

their seasonality components. Thus, our warmer sites had less variability in their temperature 

between seasons and our wetter sites had more consistent monthly precipitation. One area of 

significant divergence between the datasets was the relationship between POXC and the climatic 
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variables. In the check plots in the N responsiveness model, POXC was largely unrelated to 

climatic variables. However, in the full dataset (N fertilizer efficiency model), POXC was 

significantly related to all four. Across datasets, very few of the soil health or climatic variables 

exhibited strong relationships with relative yield, except relative fertilizer rate in the full dataset. 

Collectively, these interrelationships represent substantial multi-collinearity within both the 

reduced and full datasets. 

 

 

 

Table 4.4 Correlation matrix of all measured variables in the N responsiveness model (n=186). 

 Inorg. N Min.C POXC Soil protein SOC Clay MAT TS MAP PSi
 

RYa 0.23
**

 0.10 0.12
†
 0.16

*
 0.07 0.13

†
 -0.17

*
 0.19

**
 -0.18

*
 0.15

*
 

Inorg. Nb  -0.06 0.02 0.39
***

 0.36
***

 0.08 0.13
†
 -0.05 0.15

*
 -0.03 

Min. Cc   0.67
*** 

0.24
***

 0.25
***

 0.45
***

 -0.04 0.10 -0.01 0.07 
POXCd    0.44

***
 0.46

***
 0.39

***
 0.05 -0.04 0.06 -0.08 

Soil protein     0.66
***

 0.20
**

 0.34
***

 -0.33
***

 0.38
***

 -0.34
***

 

SOCe      0.60
***

 0.40
***

 -0.34
***

 0.31
***

 -0.40
***

 

Clay       0.34
***

 -0.21
**

 0.12
†
 -0.32

***
 

MATf        -0.87
***

 0.92
***

 -0.83
***

 

TSg 
        -0.82

***
 0.98

***
 

MAPh 
         -0.74

***
 

†, *, **, and *** correspond to p-values of <0.10, <0.05, <0.01, and <0.001, respectively. Italicized 

values are not significant at p<0.10. 
a 
relative yield;

 b 
inorganic N;

 c 
mineralizable C;

 d 
permanganate oxidizable C; 

e 
soil organic carbon; 

f 

mean annual temperature;
 g 

temperature seasonality;
 h 

mean annual precipitation;
 I 

precipitation 

seasonality
 

 

 

 

Soil health and fertilizer N responsiveness  

Within fields, only inorganic N content exhibited a positive direct effect on relative yield 

(b=0.27, p=0.049) (Figure 4.3). However, soil health exhibited a positive direct effect on 

inorganic N content (b=0.44, p<0.0001). Thus, soil health exerted an overall positive indirect 

effect on relative yield that was mediated by inorganic N content (b=0.12, p=0.062). Between 
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sites, there were considerable impacts of the seasonality of temperature (b=1.68, p=0.014) and 

precipitation (b=-1.40, p=0.037) on RY. Bootstrapped 95% confidence intervals for all of these 

regression coefficients did not include zero, indicating that our estimates were consistent in the 

direction of effect across the range of observations in our dataset. Overall model fit—as 

indicated by the combination of the relative fit index CFI (comparative fit index) and the 

absolute fit index SRMR (standardized root-mean residual)—was adequate (Hu and Bentler, 

1999). A greater amount of model error was found at the lower level (SRMRW=0.079) than at the 

higher level (SRMRB=0.028). This indicates that the estimated values for the lower level 

structural model are moderately variable from field to field, while the effects at the higher level 

were more consistent. 

Soil health and N fertilizer efficiency 

At the within-field level, the relative fertilization rate (RFR) exerted a positive direct effect on 

relative yield (b=0.74, p<0.0001) as well as on the soil health latent variable (b=0.39, p<0.0001) 

(Figure 4.4). Soil health had a smaller, positive direct effect on relative yield (b=0.13, p=0.083). 

The overall indirect effect of RFR on relative yield was mediated by soil health (b=0.05, 

p=0.097), resulting in a total standardized effect of RFR on relative yield of b=0.79 (p<0.0001). 

At the site level, mean annual precipitation (MAP) exerted a negative direct effect on relative 

yield (b=-0.35, p=0.087). The overall model was a generally close fit (CFI=0.995 and 

SRMR=0.038). Similar to the N responsiveness model, the majority of the variability was 

exhibited at the field level (SRMRw=0.029) rather than across sites (SRMRB=0.010). 
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Table 4.5 Correlation matrix of all measured variables in the N fertilizer efficiency model (n=290). 

 RFR 
Inorg. 

N 
Min.

C POXC 
Soil 

protein SOC Clay MAT TS MAP PSj
 

RYa 0.69
***

 0.19
***

 0.18
*
 0.25

***
 0.32

***
 0.18

***
 0.21

***
 0.23

***
 -0.13

*
 0.23

***
 -0.15

**
 

RFRb 
 0.20

***
 0.12

*
 0.29

***
 0.48

***
 0.18

**
 0.15

**
 0.49

***
 -0.35

***
 0.49

***
 -0.35

***
 

Inorg. 
Nc   -0.12

*
 -0.03 0.20

***
 0.07 0.02 -0.24

***
 0.42

***
 -0.22

***
 0.45

***
 

Min. Cd    0.45
***

 0.13
*
 0.33

***
 0.51

***
 0.02 0.01 0.00 -0.03 

POXCe     0.43
***

 0.45
***

 0.22
***

 0.18
***

 -0.15
**

 0.19
** 

-0.17
***

 

Soil 
protein 

     0.50
***

 0.06 0.46
***

 -0.39
***

 0.49
***

 -0.37
***

 

SOCf       0.59
***

 0.28
***

 -0.22
***

 0.19
***

 -0.28
***

 

Clay        0.12
*
 -0.05 -0.04 -0.17

**
 

MATg         -0.92
***

 0.96
***

 -0.88
***

 

TSh 
         -0.89

***
 0.98

***
 

MAPi 
          -0.82

***
 

†, *, **, and *** correspond to p-values of <0.10, <0.05, <0.01, and <0.001, respectively. Italicized 

values are not significant at p<0.10. 
a 
relative yield;

 b 
relative fertilizer rate; 

c 
inorganic N;

 d 
mineralizable C;

 e 
permanganate oxidizable C; 

f 

soil organic carbon; 
g 
mean annual temperature;

 h 
temperature seasonality;

 I 
mean annual precipitation;

 j 

precipitation seasonality
 

 

 

 

The effect of mineralizable C on model fit 

The initial exclusion of mineralizable c (or flush of CO2 upon rewetting) from the latent variable 

of soil health represents a considerable deviation from a broad range of previous soil health 

literature. The inclusion of mineralizable C as an additional (exogenous) predictor of relative 

yield resulted in a decrease in overall model fit and parsimony for both final models. For the N 

responsiveness model, the inclusion of mineralizable C doubled the RMSEA and the SRMRW 

value (Table 4.8) without changing the SRMRB values. Similarly, for the N fertilizer efficiency 

model, the RMSEA and SRMRW values increased 300% and 400%, respectively, with a 

negligible decrease in SRMRB (0.001). Thus, the inclusion of mineralizable C resulted in 

considerable increases in the absolute error associated with both model fits, with concomitant 

decreases in CFI values of 0.500 and 0.194 for the N responsiveness and N fertilizer efficiency 
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models, respectively. Accordingly, AIC values increased with the inclusion of mineralizable C, 

indicating a much less parsimonious model. 

 
 
 
Table 4.6 Regression coefficients and bootstrapped confidence interval for each 

relationship in the N responsiveness final model (nB=29 sites, nW=186 samples). 

Level Regressiona 
Standardized 
estimate (b) 

Unstandardized 
estimate (B) 

95% CI 
(unstandardized) p-value 

Between/ 

Across 

Fields 

(1) -1.40 -21.2 (-41.1, -1.27) 0.037 

(2) 1.68 32.7 (6.75, 58.7) 0.014 

(3) 0.95 0.64 (0.30, 0.98) <0.001 

Within 

Fields 

(4) 0.27 0.69 (0.02, 1.38) 0.049 

(5) 0.44 3.56 (2.40, 4.71) <0.0001 

(6) 0.49 66.2 (47.0, 85.3) <0.0001 

(7) 0.94 0.47 (0.39, 0.54) <0.0001 

(8) 0.75 0.73 (0.58, 0.88) <0.0001 
a regression reference numbers correspond to Figure 4.2a; nB and nW indicate sample sizes 

for the between and within field levels of the model, respectively 

 
 
 
Discussion 

Soil health and responsiveness to N fertilization 

The importance of pre-plant inorganic N in predicting crop response to N has resulted in its 

inclusion in many N recommendation frameworks (Morris et al., 2018). Here, we show that its 

importance is ubiquitous across a substantial portion of the Corn Belt (Figure 4.3). However, the 

incorporation of soil health measurements can contribute substantially to the prediction of 

responsiveness to N. Here, the indirect effect of soil health (b=0.05, Table 4.6) contributed 

substantially to the capability of pre-plant inorganic N (b=0.27) to predict N responsiveness. It is 

somewhat surprising that soil health did not have a stronger, direct effect on relative yield, 

considering that previous work has shown that biologically-supplied N exerts an increasingly 
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strong role when mineral fertilizer is not applied (Swaney et al., 2018; Mahal et al., 2019). 

However, the elevated error of model estimation (SRMRW=0.079) indicates considerable site-to-

site variability. Thus, adjustment for other soil characteristics and constraints (Tedersoo et al., 

2014; Docherty et al., 2015; Delgado-Baquerizo et al., 2018; Jilling et al., 2018; Wade et al., 

2018b) may be necessary to improve the accuracy of relationships between soil health and N 

responsiveness. Nevertheless, an accurate measure of N responsiveness is an important and 

separate component of N fertilization frameworks (Raun et al., 2011; Arnall et al., 2013) 

 

 

 

Table 4.7 Regression coefficients and bootstrapped confidence interval for each relationship 

in the N fertilization efficiency final model (nB=29 sites, nW=290 samplesb). 

Level Regressiona 
Standardized 
estimate (b) 

Unstandardized 
estimate (B) 

95% CI 
(unstandardized) p-value 

Between/ 

Across 

Fields 

(1) -0.35 -0.37 (-0.79, 0.05) 0.086 

Within 

Fields 

(2) 0.13 2.99 (-0.24, 6.21) 0.069 

(3) 0.74 40.13 (35.0, 45.3) <0.0001 

(4) 0.39 0.90 (0.56, 1.25) <0.0001 

(5) 0.58 70.4 (55.8, 84.9) <0.0001 

(6) 0.79 0.33 (0.27, 0.39) <0.0001 

(7) 0.64 0.57 (0.46, 0.67) <0.0001 
a regression reference numbers correspond to Figure 4.3; nB and nW indicate sample sizes 

for the between and within field levels of the model, respectively 

 

 

 

Although soil health and pre-plant inorganic N content influenced N responsiveness, the 

strongest influences were climatic variables (Figure 4.3; Table 4.6). The within-year variability 

(i.e. seasonality) of precipitation increased the relative yield in check plots, whereas the 

seasonality of temperature decreased the relative yields. Higher precipitation seasonality typical 

of temperate climates—lower rainfall in the spring and summer, relative to the winter and fall—



 

 

74 

would spur relatively deeper root development due to less in-season rainfall (Lynch, 2013) and 

greater retention of inorganic N within the rooting zone. Together, these would likely lead to a 

more efficient use of available inorganic N and a higher relative yield in the check plots. Less 

clear is how temperature variability reduced N responsiveness. The lower winter temperatures 

associated with greater temperature seasonality (Table 4.4) would be expected to reduce 

microbial activity during the winter, especially in unfertilized plots (Contosta et al., 2011). This 

would allow for an accumulation of readily-oxidizable organic matter (Davidson and Janssens, 

2006) that would presumably increase N availability and subsequently increase relative yields. 

However, here we observe the opposite trend, where temperature seasonality decreased relative 

yields. Nevertheless, the small amount of model error across sites (SRMRB=0.028) suggests that 

these climatic factors are strongly predictive of crop responsiveness to N fertilization. 

 

 

 

Table 4.8 Comparison of model fit indices with and without the inclusion of 

mineralizable C as an exogenous predictor variable for relative yield. 

 

N responsiveness N fertilizer efficiency 
With Without With Without 

CFIa 0.416 0.911 0.800 0.995 

SRMRW
b 0.197 0.079 0.148 0.028 

SRMRB
c 0.028 0.028 0.010 0.010 

RMSEAd 0.308 0.162 0.219 0.052 

AICe 7635.1 6013.0 10140.7 7598.3 
a CFI= comparative fit index; b SRMRW=standardized root mean square 

residual within fields; c SRMRB=standardized root mean square residual 

between fields; d RMSEA=root mean square error of approximation; e 

AIC=Akaike Information Criteria 
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N fertilizer efficiency and soil health 

Improvements in soil health increased the efficiency of applied fertilizer (Figure 4.4). While the 

magnitude of this effect (b=0.12, Table 4.7) was relatively modest in comparison to the effect of 

fertilization (b=0.75), this represents an opportunity for reductions in N fertilization through 

increased soil health. This finding is largely in agreement with a recent global meta-regression 

showed that SOC and N fertilization rate both have positive relationships with crop yield, as well 

 
Figure 4.3 Final model for N responsiveness. All path coefficients are standardized. Numbers in 

parentheses refer to regression coefficients in Table 4.6. 

MAT = mean annual temperature; MAP = mean annual precipitation; POXC = permanganate 

oxidizable C; SOC = soil organic carbon; CFI = comparative fit index; RMSEA = root-mean-

square error of approximation; SRMR = standardized root-mean residual; SRMRB = standardized 

root-mean residual between sites; SRMRW = standardized root-mean residual within sites; 

Relative YieldB = relative yield between sites; Relative YieldW = relative yield within sites 

Between Sites
(Level 2)

Within Sites
(Level 1)

Inorganic 
N content

POXC

SOC Soil 
Health

(4)
0.27

(5)
0.44

(6)
0.49

(7)
0.94

(8)
0.75

Overall model fit
CFI = 0.911   SRMR = 0.107

Soil 
protein

Indirect effect = 0.12

Relative 
YieldW

Temperature 
Seasonality

Precipitation 
Seasonality

(1)
-1.40

(2)
1.68

(3)
0.95

Relative 
YieldB

SRMRB = 0.028

SRMRW = 0.079
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as a synergistic effect (Oldfield et al., 2019). In the current study, the low model error at the 

within-field level (SRMRW=0.029) illustrates the robustness of this relationship in a broad range 

of pedoclimatic contexts. Additionally, it demonstrates that biologically-based soil health 

indicators capture the beneficial effects of improved management on N fertility (Tonitto et al., 

2006; Blanco-Canqui et al., 2012; Gaudin et al., 2015; Osterholz et al., 2018). This validates the 

claims that: 1) these metrics are appropriate indicators of biological soil health, and 2) that a 

healthy soil supplies a greater amount of nitrogen to crops. 

 

 

 

 
Figure 4.4 Final model for N fertilizer efficiency. All path coefficients are standardized. Numbers 

in parentheses refer to regression coefficients in Table 4.7. 

MAT = mean annual temperature; MAP = mean annual precipitation; POXC = permanganate 

oxidizable C; SOC = soil organic carbon; CFI = comparative fit index; RMSEA = root-mean-

square error of approximation; SRMR = standardized root-mean residual; SRMRB = standardized 

root-mean residual between sites; SRMRW = standardized root-mean residual within sites; 

Relative YieldB = relative yield between sites; Relative YieldW = relative yield within sites 
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Interestingly, higher fertilization rates also increased soil health (b=0.39, Figure 4.4). 

While there is a large literature debating how or if mineral fertilizers influence soil C stocks and 

fluxes (McGill and Cole, 1981; van Groenigen et al., 2006; Khan et al., 2007; Reid, 2008; 

Mulvaney et al., 2009; Ladha et al., 2011; Lu et al., 2011; Kirkby et al., 2013; Tipping et al., 

2016; Poffenbarger et al., 2017), here we see evidence that it significantly improves soil health 

(p<0.0001). While this may be due to increases in SOC (Table 4.5; r=0.18, p=0.002), N 

fertilization can also influence microbial biomass (Geisseler and Scow, 2014), plant residue 

composition (Liu et al., 2016b), and ligninolytic activity (Chen et al., 2018). While these 

parameters are not explicitly measured in our soil health latent variable, they are indicative of 

alterations in C and N cycling that are highly related to our biological soil health indicators 

(Grandy et al., 2013; Tiemann and Grandy, 2015; Hurisso et al., 2016b, 2018c; Margenot et al., 

2017a). This linkage between soil health and relative N fertilization rate implies that 

improvements in soil health don’t necessarily equate to drastic decreases in fertilizer application 

rate. Rather, this suggests that more modest decreases in N fertilization may be preferable for 

optimizing both yield and soil health (Poffenbarger et al., 2017). However, the broad 

applicability of our results—more than half of the rainfed corn acreage in the US—suggests that 

even these modest fertilizer reductions could have profound effects on grower profitability and 

reactive N losses to the environment. Previous work has estimated a 12% reduction in N 

fertilization can reduce nitrate fluxes to Gulf of Mexico by 33% (McIsaac et al., 2001). 

At the upper level of our model, the negative effect of MAP on relative yield (i.e. 

increased responsiveness to N fertilization) was unexpected in rainfed maize-based systems 
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(Figure 4.4). Given the coarseness of this metric, this effect is likely attributable to an overall 

higher probability of N losses throughout the corn growing season (Randall and Mulla, 2001). 

This includes crucial periods of the growing season where N supply exceeds crop demand, such 

as in the spring before crop establishment or in the fall after crop physiological maturity 

(Meisinger and Delgado, 2002; Zhou and Butterbach-Bahl, 2014). These N losses would 

decrease the amount of plant-available N—residual or from mineralized organic sources—

ultimately increasing crop reliance on fertilizer N. 

Lack of predictive ability with inclusion of mineralizable C 

Mineralizable C is one of the most widely-adopted measurements of biological soil health 

(Bünemann et al., 2018), yet universally lacked utility in our current study. Mineralizable C had 

little shared variance with other biological soil health indicators—leading to its exclusion from 

our factor model—and made our N response models less accurate and parsimonious (Table 4.8). 

Stated differently, after accounting for confounding site-specific effects, mineralizable C offered 

almost no information on N responsiveness that was not already described by our other 

biological soil health indicators. This was a surprising finding given the large body of literature 

supporting its relationship to N mineralization (Haney et al., 2001; Franzluebbers, 2018c), crop 

response to N fertilization (Franzluebbers, 2018b; Yost et al., 2018), and overall agronomic 

productivity (Culman et al., 2013; Hurisso et al., 2016b). This discrepancy between previous 

studies and the current one is almost entirely attributable to site-level variability in mineralizable 

C (Table 4.10). Aerobic respiration in surface soils is largely influenced by soil physiochemical 

characteristics, such as texture or bulk density (Moyano et al., 2012, 2013; Ghezzehei et al., 

2019) and climatic variables (Engelhardt et al., 2018). These effects would operate at the 
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between- or across-field level, rather than the within-field level, rendering the information 

provided by mineralizable C largely redundant in the context of a multilevel model. This result 

alone underscores the value of multi-level modeling approaches that control for site-to-site 

variability. 

 

Conclusions 

While N management is an inherently multidisciplinary endeavor (Stuart et al., 2015; Bowles et 

al., 2018), the widespread embrace of soil health allows for it to play a key role in mediating the 

biophysical and the socioeconomic components of this challenge. The push to decrease mineral 

N inputs must be accompanied by an increasing reliance on biologically-mediated organic N 

sources. Thus, the utility of biological soil health indicators is acutely of interest in guiding N 

management decisions. Here, we have used rainfed corn N trials representative of over half of 

US corn acres to show that: 1) selected biological indicators can be used in conjunction with 

inorganic N content to predict if a field will be responsive to N fertilization, 2) improved 

biological soil health increases the efficiency of applied fertilizer N, and 3) that appropriate 

applications of N fertilizer can improve soil health. Additionally, our results suggest that the use 

of mineralizable C in N fertilization decisions is not robust across much of the US corn 

production acreage. While these effects are able to be extrapolated widely across sites, climatic 

influences exerted on a site-by-site basis are also highly influential on soil-plant N dynamics. 
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Table 4.9 Location, soil classification, and management information for each site. 
Study 
Name 

Site 
# Location 

Soil 
Series Taxonomic description 

Textural 
class Tillage Rotation 

Cover 
crop 

Sampling 
depth (in) State 

N Rotation 1 42.93661, 
-92.57011 

Kenyon Fine-loamy, mixed, 
superactive, mesic Typic 

Hapludolls 

loam conventional-
till 

Continuous corn (grain), corn-
soybean, corn-corn-corn-

soybean 

None 0-6 IA 

Manure ´ 
CC 

2 43.30129, 
-89.34742 

Plano Fine-silty, mixed, superactive, 
mesic Typic Argiudolls 

silt loam conventional-
till 

Corn (grain) Barley, 
none 

0-12 WI 

 3 44.75818, 
-90.09975 

Withee Fine-loamy, mixed, 
superactive, frigid Aquic 

Glossudalfs 

silt loam conventional-
till 

Corn (grain) Barley, 
none 

0-12 WI 

 4 44.1198, -
89.53573 

Plainfield Mixed, mesic Typic 
Udipsamments 

sand conventional-
till 

Corn (grain) Barley, 
none 

0-12 WI 

 5 42.83066, 
-90.78855 

Fayette Fine-silty, mixed, superactive, 
mesic Typic Hapludalfs 

silt loam conventional-
till 

Corn (grain) Barley, 
none 

0-12 WI 

Radish CC 6 43.42253, 
-88.29314 

Theresa Fine-loamy, mixed, 
superactive, mesic Typic 

Hapludalfs 

silt loam no-till Corn-soybean-wheat Radish, 
none 

0-12 WI 

 7 43.79907, 
-87.91845 

Kewaunee Fine, mixed, active, mesic 
Typic Hapludalfs 

silt loam no-till Corn-soybean-wheat Radish, 
none 

0-12 WI 

 8 42.72563, 
-89.02026 

Plano Fine-silty, mixed, superactive, 
mesic Typic Argiudolls 

silt loam no-till Corn-soybean-wheat Radish, 
none 

0-12 WI 

Purdue N 
Trials 

9 40.47114, 
-86.99223 

Chalmers Fine-silty, mixed, superactive, 
mesic Typic Endoaquolls 

silty clay 
loam 

conventional-
till 

Corn-soybean None 0-8 IN 

 10 40.25335, 
-85.14803 

Pewamo Fine, mixed, active, mesic 
Typic Argiaquolls 

clay loam strip tillage Corn-soybean None 0-8 IN 

 11 39.03314, 
-85.52582 

Cobbsfork Fine-silty, mixed, active, 
mesic Fragic Glossaqualfs 

silt loam no-till Corn-soybean None 0-8 IN 

 12 41.43992, 
-86.92521 

Tracy Coarse-loamy, mixed, active, 
mesic Ultic Hapludalfs 

sandy 
loam 

conventional-
till 

Corn-soybean None 0-8 IN 

 13 40.29690, 
-86.90358 

Toronto Fine-silty, mixed, superactive, 
mesic Udollic Epiaqualfs 

silt loam conventional-
till 

Corn-soybean None 0-8 IN 

 14 41.10729, 
-85.39953 

Morley Fine, illitic, mesic Oxyaquic 
Hapludalfs 

silty clay 
loam 

no-till Corn-soybean None 0-8 IN 

80 



 

 

Blevins 15 38.12194, 
-84.48638 

Maury Fine, mixed, active, mesic 
Typic Paleudalfs 

silt loam conventional-
till and no-till 

Continuous corn None 0-8 KY 

F05 16 38.12944, 
-84.48611 

Lanton Fine-silty, mixed, superactive, 
thermic Cumulic Epiaquolls 

silty clay 
loam 

no-till Continuous corn, corn-soybean None 0-8 KY 

Legume 
CC 

17 43.8065, -
87.89767 

Manawa Fine, mixed, active, mesic 
Aquollic Hapludalfs 

silt loam conventional-
till 

Corn-wheat Barley, 
clover, 
none 

0-12 WI 

 18 43.80939, 
-87.8976 

Kewaunee Fine, mixed, active, mesic 
Typic Hapludalfs 

silt loam conventional-
till 

Corn-wheat Barley, 
clover, 
none 

0-12 WI 

 19 43.80057, 
-87.91917 

Kewaunee Fine, mixed, active, mesic 
Typic Hapludalfs 

silt loam conventional-
till 

Corn-wheat Barley, 
clover, 
none 

0-12 WI 

Ohio N 
Trials 

20 40.56152, 
-84.28631 

Pewamo Fine, mixed, active, mesic 
Typic Argiaquolls 

clay loam conventional-
till 

Corn-soybean-wheat Oats-
cereal 

rye 

0-8 OH 

 21 39.95756, 
-81.90373 

Zanesville Fine-silty, mixed, active, 
mesic Oxyaquic Fragiudalfs 

silt loam conventional-
till 

Corn-soybean Rye 0-8 OH 

 22 39.94164, 
-81.94457 

Zanesville Fine-silty, mixed, active, 
mesic Oxyaquic Fragiudalfs 

silt loam conventional-
till 

Corn-soybean Cereal 
rye 

0-8 OH 

 23 40.73274, 
-83.66592 

Blount Fine, illitic, mesic Aeric 
Epiaqualfs 

silt loam no-till Corn-soybean Cereal 
rye 

0-8 OH 

 24 40.32361, 
-82.32527 

Titusville Fine-loamy, mixed, active, 
mesic Aquic Fragiudalfs 

silt loam no-till Corn-soybean None 0-8 OH 

 25 40.40753, 
-82.68032 

Centerburg Fine-loamy, mixed, active, 
mesic Aquic Hapludalfs 

silt loam no-till Corn-soybean None 0-8 OH 

 26 41.29715, 
-84.70729 

Lenawee Fine, mixed, semiactive, 
nonacid, mesic Mollic 

Epiaquepts 

silty clay 
loam 

conventional-
till 

Corn-soybean None 0-8 OH 

 27 39.95722, 
-82.51416 

Bennington Fine, illitic, mesic Aeric 
Epiaqualfs 

silt loam no-till Corn-soybean None 0-8 OH 

 28 41.70961, 
-83.99495 

Brady Coarse-loamy, mixed, active, 
mesic Aquollic Hapludalfs 

sandy 
loam 

conventional-
till 

Corn-soybean None 0-8 OH 

 29 41.42986, 
-84.21012 

Hoytville Fine, illitic, mesic Mollic 
Epiaqualfs 

clay loam no-till Corn-soybean-wheat Cereal 
rye, 

radish 

0-8 OH 
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Table 4.10 The relationships between mineralizable C and relative yield in a simple 
regression and a mixed effects model. 
 Regression 

coefficient F-value 
Variance explained (R2) 

Mineralizable C Field (random) Total 
Simple regression 0.24 10.8** 0.031 -- 0.031 

Mixed effects model 0.07 0.6ns 0.002 0.362 0.364 
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Chapter 5: Synthesis and Broader Impacts 

The soil health framework has been increasingly gaining traction within both the academic 

literature (Figure 5.1) and in farmer peer-to-peer networks (Arbuckle, 2017). While this 

framework has been increasingly popular, there have also been numerous criticisms of the soil 

health concept. Most notably, critiques have been raised about the value-laden nature of the term, 

as well as the inability to connect to specific (potentially-conflicting) outcomes (e.g. multiple 

ecosystem services) (Sojka and Upchurch, 1999; Bünemann et al., 2018). While these critiques 

are well-received, the opportunity for a framework that unifies grower needs with the 

ecologically-focused concerns of researchers (primarily at land-grant universities) (Romig et al., 

1995; Ingram et al., 2010) is a unique opportunity that merits consideration beyond a strict 

scientific framework. Soil health has the potential to extend beyond strict scientific scrutiny into 

the domain of decision science and agricultural extension (Ingram, 2008; Shepherd, 2015), a 

necessary component to facilitating adoption of any practices. Accordingly, recommendations 

and management prescriptions from soil health researchers should be both reliable and robust 

across contexts, as well as being actionable for growers. 
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 The most commonly-used biological soil health metric is mineralizable C, or respiration 

upon rewetting (Bünemann et al., 2018). Here, chapters 2 and 4 show that even though this is the 

most commonly-used measurement, it has yet to meet the desired conditions of reliability and 

robustness. Its lack of reliability across labs or even between the subsamples used in analytical 

replication (chapter 2) is cause for concern. Its use could be justified—given considerable 

caveats on the appropriate levels of certainty—if it were to provide data that is easily integrated 

into on-farm management decisions. However, we have shown that much of the biological 

“information” it contains (at least in the context of N management) is better-described by other 

soil biological metrics (chapter 4). These measurements have the added benefit of being more 

analytically repeatable and, in the case of soil protein, less temporally variable as well (Hurisso 

 
Figure 5.1 Percentage of total yearly peer-reviewed agricultural publications that are on the 
topic of “soil health” from 1978-2017 (n=6,989). Source: ISI Web of Knowledge using 
topics of “soil science”, “agronomy”, and “interdisciplinary agriculture”. 
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et al., 2018a). However, that is not to say that mineralizable C is without value when making 

management decisions. Hurisso et al. (2016b) have shown that mineralizable C can be used on 

conjunction with POXC to infer management-related effects on organic matter dynamics. 

 As soil health transitions from a theoretical framework into a more applied, agronomic 

context, the nature of the research questions will also shift. One of the foremost questions 

surrounding soil health indicators is the risk associated with reductions in fertilizer applications, 

a claim that growers have long been skeptical of (Andrews et al., 2003). Recent work has begun 

to determine the relationships between biological soil health indicators and N fertilizer response 

(Franzluebbers, 2018b; Yost et al., 2018; Haney et al., 2018). Here, chapter 4 shows that while 

these biological soil health indicators have agronomic utility across much of the Corn Belt, the 

effects are likely more modest than previous studies have shown. Within chapter 4 we also see 

that N fertilization can actually increase our biological soil health indicators, whereas chapter 3 

illustrates that P fertilization does not increase biological soil health. Collectively, these findings 

are compatible with the work illustrating that soil N content was a significant constraint on 

microbial biomass, whereas microbial biomass showed a greater degree of plasticity with soil P 

content (Hartman and Richardson, 2013; Geisseler and Scow, 2014; Geisseler et al., 2016b). This 

agreement with previous work supports the claim that the chosen indicators are biologically-

based. 

 Another critique of using the term “soil health” in an agronomic setting has been the wide 

range of measurement methods. There are many official suites of soil health tests, including the 

Haney Soil Health Test (Yost et al., 2018; Haney et al., 2018), the Comprehensive Assessment of 

Soil Health (Moebius-Clune et al., 2016), the Soil Management Assessment Framework 

(Andrews et al., 2004), or even the use of a single indicator in lieu of a suite of tests 
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(Franzluebbers, 2018c). These efforts are then often further consolidation in search of a 

“minimum data set” for a given context (Govaerts et al., 2006; Rezaei et al., 2006; Lima et al., 

2013; Fine et al., 2017). However, these studies are often disconnected from a specific desired 

outcome and instead intended as an all-encompassing description of soil health. This 

reductionism fails to recognize the heterogeneity of soils and their limitations. In chapter 4, we 

use an approach that has a strong potential to address the arbitrary nature of quantifying soil 

health and its lack of connection to specific outcomes. Factor analysis provides a less subjective 

way of assessing which measurement(s) are necessary. The output—a single value—meets the 

request by growers for less complexity in terms of soil health evaluations (Andrews et al., 2003) 

as well as being amenable to connection with outcomes via linear regression. Integration into a 

multilevel model also allows for extrapolation to fields beyond a given study, an essential 

component to providing growers with management prescriptions. 

 As soil health transitions into an increasingly applied context, a greater understanding of 

its role in nutrient management will be central to its utility in providing ecosystem services (one 

of the primary concerns raised regarding soil health). Here, we have begun to quantify 

uncertainties associated with measuring soil health and have provided an initial exploration into 

interactions between soil health and N and P fertilizer management. 
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