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Abstract

European options are the most fundamental financial derivatives which are ex-

tensively traded in the current world. They form as an underlying for various exotic

derivatives. The objective of this thesis is to understand pricing models of European

puts and calls - in a way that is consistent with the market quoted prices. Three

different models are considered for it, Dupire model - deterministic local volatility

model; Heston model - simple mean-reverting stochastic volatility model; and SABR

model - complex non-mean-reverting stochastic volatility model. Further, their re-

lation to market quoted Black-Scholes implied volatility is explored. Advantages

and disadvantages of each model are discussed when applying it to the options on

S&P500.
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Chapter 1: Introduction

European options are the most fundamental financial derivatives defined on an

underlying stock. They are of two types, call and put. The call option gives the buyer

the right to buy a stock at a fixed price called strike price at the time of maturity

whereas the put option gives the buyer the right to sell the stock at the strike price

at the time of maturity. Fig-1.1 shows their payoff at the time of maturity.

(a) Call Option (b) Put Option

Figure 1.1: Payoff of European Options

Different models are used to price and analyze these options which have vary-

ing assumptions for the volatility of the underlying stochastic process, from being

constant to stochastic. The objective of this thesis is to understand and implement
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some of these models for options on S&P500 using historical data. Three particu-

lar models are considered here, namely, Dupire model - deterministic local volatility

model; Heston model - simple mean-reverting stochastic volatility model; and SABR

model - complex non-mean-reverting stochastic volatility model. These models are

analyzed here with two particular intent - firstly to reproduce observed market prices

and secondly to forecast future prices of the options.

The most commonly used model is the Black-Scholes model which assumes that

stock price St follows the geometric Brownian motion with constant volatility.

dSt = µSt dt+ σSt dWt (1.1)

where Wt is Brownian motion, µ is the drift rate and σ represents the constant

volatility. The drift rate can be thought of as the annualized change in the expected

value of the stock price. Under the no dividend assumption this comes out to be the

risk-neutral rate. The market price of the option is quoted in terms of the constant

Black-Scholes implied volatility i.e. that value of volatility which when plugged in

the Black-Scholes equation of the option price will return a theoretical value equal to

the current market price of the option. Comparison of implied volatilities can further

reveal information about corresponding stocks, however, this model cannot be exclu-

sively used to price options since the implied volatility cannot be directly obtained

from any market observable factor. Despite the popularity of Black-Scholes model,

the fact that it uses different implied volatility for different strikes and maturities for

a fixed stock defined as the volatility smile Fig-1.2 invalidates its assumption of con-

stant volatility. This also results in unstable vega hedges1. Constantly changing the

1Vega gives the sensitivity of the option price to the volatility. Vega hedging strategy involves
constructing a portfolio which is vega-neutral in other words it is insensitive to change in volatility.
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volatility assumption changes the hedge ratios in an uncontrolled way. Hence to ad-

dress this problem, further models were explored which don’t have constant volatility

assumption.

Figure 1.2: Implied Black-Scholes Volatility for the call option on S&P500 with vary-
ing strikes as of date 2 January, 2019 maturing on 18 January, 2019.

Local volatility models are fundamental models developed as state-dependent co-

efficients i.e. volatility is a function of strike price and time left to maturity. It can be

thought of as a generalization of the Black-Scholes model. These coefficients can then

be used directly to calculate the price of the options. This concept was first developed

by Bruno Dupire [3] and Emanuel Derman and Iraj Kani [2] in 1994. They observed

that there exist a unique diffusion process which is consistent with the risk-neutral

densities2 obtained from the market prices of European options. Under the Dupire

2A risk-neutral measure is a probability measure where the price of the stock is exactly equal to
the discounted expectation of the stock price under this measure. It is possible only in arbitrage-free
market.
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model, the stock price has following stochastic process

dSt = µ(t) St dt+ σ(t, St) St dWt (1.2)

where Wt is a Brownian motion and µ(t) is the risk-neutral drift of stock price process.

Volatility represented by σ(t, St) is a deterministic function. The Dupire model fits the

volatility smile well. However, being deterministic function it proves to be inefficient

in cases when the derivative is dependent on the random nature of the volatility itself.

Local volatility can be looked as an average over all instantaneous volatilities in

the stochastic volatility world. Stochastic volatility models while fitting the volatility

smile assumes more realistic dynamics for volatility. Most stock prices have fat-

tailed daily return distribution Fig-1.3 suggesting volatility clustering and justifying

mean reversion of volatility. The QQ plot in Fig-1.4 depicts how different the tail

distribution of daily returns behaves as compared to the normal distribution. This

stochastic realization of volatility provides more stable delta3 and vega hedges. One

of the most popular stochastic volatility models is the Heston model [6] developed in

1993. The underlying diffusion process in the Heston model is

dSt = µtSt dt+
√
σtSt dW1

dσt = −λ(σt − σ̄) dt+ η
√
σt dW2

dW1 dW2 = ρ dt

(1.3)

where µt is the drift-term, λ is the speed of mean reversion of volatility σt, σ̄ represents

the long-term mean of volatility and η is the volatility of volatility. W1 and W2 are

Brownian motion with correlation ρ. Over here the volatility is a stationary stochastic

function of the stock price with correlated chi-square increments. Calibrating the

3Delta is the derivative of the option value with respect to the stock price i.e. the sensitivity to
stock price. Delta hedging strategy involves constructing a portfolio which is delta-neutral in other
words it is insensitive to change in stock price.
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Heston model is an easy process but it is computationally expensive as it involves

solving the characteristic functions using Fourier transformations which appears in the

option price formula of Heston model. Hence, other stochastic models were explored

which are computationally more efficient.

Figure 1.3: Daily log return of S&P500 for last 20 years

SABR also known as stochastic alpha beta rho model developed in 2002 by Hagan

et al [5] is a stochastic volatility model based on the following equations

dFt = σtF
β
t dW1

dσt = ασt dW2

dW1 dW2 = ρ dt

(1.4)

where Ft is the forward price of the stock and σt is the volatility. W1 and W2 are

Brownian motions which have correlation ρ. The α, β, ρ represent the parameters

of this model. Over here the volatility is a non-stationary stochastic function of

the stock price with correlated power increments. The popularity of this model is

5



Figure 1.4: QQ plot of daily log return of S&P500 for last 20 years with respect to
standard normal distribution

associated to the fact that it provides a closed-form solution for Black-Scholes implied

volatility which makes it computationally inexpensive and it is also known to give

good estimates of vanna4 and volga5 risks. Notice that unlike the previous models,

SABR model is based on the forward price of the stock, so instead of using Black-

Scholes model, its equivalent Black’s model is used.

1.1 Black-Scholes Model

Assume that the stock price St follows a geometric Brownian motion

dSt = µSt dt+ σSt dWt (1.5)

where Wt is Brownian motion, µ is the drift rate and σ represents the constant

volatility. The above process is based on Black-Scholes definition of constant volatility.

4Vanna is the partial derivative of delta with respect to the volatility.

5Volga is the second order derivative of option price with respect to the volatility.
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The drift rate can be thought of as the annualized change in the expected value of the

stock price. Under the no dividend assumption this comes out to be the risk-neutral

rate.

A risk-neutral portfolio is constructed to derive the value of an option dependent

on this underlying stock. Using Ito’s Lemma it can be shown that the value Vt of

any derivative defined on this stock will satisfy the following stochastic differential

equation [7]

∂V

∂t
+

1

2
σ2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (1.6)

where r is the annualized risk-free interest rate. The above equation solves out to

give following arbitrage-free and risk-neutral closed-form solution for the value of

European put Pt and call Ct option

Ct = St N(d1) −Ke−r(T−t) N(d2)

Pt = Ke−r(T−t) N(−d2)− St N(−d1)
(1.7)

where

d1 = 1
σ
√
T−t

[
ln

(
St
K

)
+

(
r + σ2

2

)
(T − t)

]
d2 = d1 − σ

√
T − t

N(.) is the cumulative distributive function of standard normal distribution

T is the time of maturity

K is the strike price.

1.2 Organization of the thesis

This thesis has four chapters. Ch-1 gives the objective of this thesis which is to un-

derstand several models for pricing European options. It outlines four models namely,

7



the Black-Scholes model, Dupire model, Heston model, and the SABR model. It dis-

cusses the underlying assumptions of these models and the advantages-disadvantages

of using them. Black-Scholes model is discussed here in detail.

The next chapter, Ch-2 talks about the Dupire model and the Heston model.

Dupire model is a simple local volatility model. The derivation of Dupire equation

is shown which is used to obtain the local volatility surface using the European

option prices for different strikes and maturities. Further, a relation between local

volatility and Black-Scholes implied volatility is given and analysis of this model for

the call option on S&P500 is done. The next section discusses the Heston model. A

closed-form solution using characteristic functions for pricing European options using

Heston model is provided. Further, it is implemented for the call option on S&P500

and sensitivity analysis of its various parameters is provided.

The next chapter details the SABR model also known as stochastic alpha beta

rho model. Developed by Hagan, Kumar, Lesniewski, and Woodward [5] in 2002,

this model is of particular interest because of the ease of its implementation despite

having stochastic volatility assumption. A generalized equation along with special

cases is provided to calculate the Black-Scholes implied volatility from this model.

Further analysis over call option on S&P500 is shown.

An overall summary of the thesis with conclusion is provided in the last chapter

with a focus on observations made from analyzing these models on real-world data of

call options on S&P500. Advantages and disadvantages of all the above models are

discussed.

8



Chapter 2: Dupire and Heston model

This chapter describes the Dupire local volatility model and the Heston stochastic

volatility model. It gives the underlying equations and assumptions on which these

models are developed. These models are calibrated so as to reproduce the observed

prices in the market and further provide estimates for future prices and the prices

which are not quoted in the market. It then relates them to the Black-Scholes implied

volatility. Analysis of these models is provided for the call options on S&P 500.

2.1 Dupire Model

Dupire [3] and Derman & Kani [2] were the first ones to realize that under risk-

neutral conditions, there exists a unique diffusion process which can be used to obtain

the density from the market prices of European options. This state-dependent local

volatility function σ(t, St) gives a deterministic way to obtain option prices. Dupire

uses Fokker-Plank equation to derive local volatility whereas Derman & Kani used

conditional expectation. Following is the description of Dupire model.

9



2.1.1 Underlying Equation

Under this model it is assumed that the stock price St in risk-neutral condition

follows

dSt = µ(t) St dt+ σ(t, St) St dWt (2.1)

where Wt is a Brownian motion and µ(t) is a time dependent deterministic variable

which represents risk-neutral drift of stock price process. σ(t, St) is a deterministic

function of local volatility.

2.1.2 Derivation

The forward price of a call option at t = 0 in this model is given by

C(S0, K, T ) =

∫ ∞
K

(ST −K) φ(T, ST ) dST (2.2)

where φ(T, •) is the probability density function of stock price ST at maturity (t = T )

which follows the Fokker-Plank equation [4] given by

1

2

∂2

∂S2
T

(σ2S2
Tφ) − ∂

∂ST
(µSTφ) =

∂φ

∂T
(2.3)

Differentiating Eq-2.2 with respect to strike

∂2C

∂K2
= φ(T,K) (2.4)

and with respect to time

∂C

∂T
=

∫ ∞
K

(ST −K)

[
∂

∂T
(φ(T, x))

]
dST

=

∫ ∞
K

(ST −K)

[
1

2

∂2

∂S2
T

(σ2S2
Tφ) − ∂

∂ST
(µSTφ)

]
dST

=
σ2K2

2
φ+

∫ ∞
K

µSTφ dST

=
σ2K2

2

∂2C

∂K2
+ µ(T )

(
−K ∂C

∂K

)
10



using integration by parts. Further,

σ2(T,K) =
∂C
∂T

+ µ(T )K ∂C
∂K

1
2
K2 ∂2C

∂K2

(2.5)

and expressing call option as a function of forward price i.e. C(FT , K, T ) where

FT = S0 exp{
∫ T

0
µt dt} transforms above to

σ2(T,K) =
∂C
∂T

1
2
K2 ∂2C

∂K2

(2.6)

where Dupire assumes zero interest rate and zero dividend yield.

2.1.3 Relation between local volatility and implied volatility

Equating the price of option obtained in Black-Scholes model to that of Dupire

model [4] in order to find the relation between Black Scholes implied volatility σBS

and local volatility σL gives the following

σL =
∂σBS
∂T

1− y
σBS

∂σBS
∂y

+ 1
4
(−1

4
− 1

σBS
+ y2

σ2
BS

) (∂σBS
∂y

)2 + 1
2
∂2σBS
∂y2

(2.7)

where y = ln( K
FT

). It can be observed in the above formula that if y = 0 i.e. K = FT

then

σL =
∂σBS
∂T

(2.8)

i.e

σBS =

∫ T

0

σL dt (2.9)

local volatility is the forward Black-Scholes implied volatility.

2.1.4 Analysis

The biggest challenge faced in implementing Dupire model is to come up with the

interpolation function for implied Black Scholes volatility. The must condition for the

11



interpolated volatility surface is to match exactly the market prices of liquid options.

Unlike typical cases, the available option data in the market is sparse and limited i.e.

options are generally traded for standard strikes and expiration dates. It is hard to

avoid arbitrage in the interpolated volatilities surface when using standard interpo-

lation techniques which is why these interpolated volatilities can’t be directly used

back in the Black-Scholes model. However in the Dupire model to calibrate the local

volatility function, the first and second derivatives of Black-Scholes implied volatility

surface with respect to time and strike are required, hence, the smoothness of the

surface ensures arbitrage-free local volatility function. Another condition required

for the volatility is that it should be non-negative and bounded which puts condi-

tions on the derivatives of implied volatility surface. Hence, finding an appropriate

interpolation function which satisfies all the criteria can be tricky.

Applying the Dupire model to call option on S&P500 gives out results as shown in

Fig-2.1. Here the local volatility surface is obtained from the implied Black-Scholes

volatility using Eq-2.7. The option prices are further calculated using an in-built

MATLAB function which uses finite difference technique. Comparing it to the Market

quoted prices shows the efficiency of Dupire model. It can be observed that Dupire

model is able to fit the volatility smile well however it is not an ideal choice to predict

future prices of the option as it does not predict the correct behavior of the future

volatility and thus produces bad hedge as seen in Table-2.1.

2.2 Heston Model

The Heston model [6] is the most popular stochastic volatility model. High-peaked

and fat-tailed distributions of stock price returns are characteristics of a mixture of

12



(a) Maturity : 21-Dec-2018

(b) Maturity : 15-Mar-2019 (c) Maturity : 21-Jun-2019

(d) Maturity : 20-Dec-2019

Figure 2.1: Market quoted prices vs Dupire model price in USD for call option on
S&P500 for the dates 1-Oct-2018 to 31-Oct-2018 for strikes 1000, 1500, 2000, 2500
and 3000. The Dupire model is calibrated from market implied volatility surface using
finite difference technique (optByLocalVolFD function in MATLAB).
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Strike Vega
1500 0.0043
2000 -0.6375
2500 178.3873
3000 487.3893

Table 2.1: The value of Vega in case of Dupire model for call option on S&P500
maturing on 21-Dec-2018 as of 1-Oct-2018 for different strikes.

distributions with different variances. Hence, suggesting the volatility to be looked at

as a random variable instead of deterministic one as is assumed in the local volatility

models. Also, the unstable Greeks6 (vega) in case of Dupire model imply that Markov

model based on a single Brownian motion is not a good choice to manage smile risk,

a two-factor model can be a better choice. The relatively quiescent and the relatively

chaotic periods observed historically in the market supports that volatility is indeed

a random function of time.

2.2.1 Underlying Equations

The underlying diffusion process is based upon a square-root diffusion, most fa-

mously applied in the Cox-Ingersoll-Ross interest rate model [1]

dSt = µtSt dt+
√
σtSt dW1

dσt = −λ(σt − σ̄) dt+ η
√
σt dW2

dW1 dW2 = ρ dt

(2.10)

where µt is the drift-term, λ is the speed of mean reversion of volatility σt, σ̄ represents

the long-term mean of volatility and η is the volatility of volatility. W1 and W2

are Brownian motion with correlation ρ. Over here the volatility σt is a stationary

6The Greeks in case of finance are defined as the variables depicting sensitivity of the price of
derivative to a change in underlying parameters for example delta, vega etc.
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stochastic function of the stock price with correlated chi-square increments. In this

case the stochastic differential equation for any derivative defined on this underlying

stock comes out to be

∂V

∂t
+

1

2
σS2∂

2V

∂S2
+ ρησS

∂2V

∂σ∂S
+

1

2
η2σ

∂2V

∂σ2
+ rS

∂V

∂S
− rV = λ(σt − σ̄)

∂V

∂σ
(2.11)

2.2.2 Closed-Form Solution

Heston solved the above differential equation for European option using charac-

teristic function, it is presented in [4] as

Ct = K(ex P1(x, σ, τ)− P0(x, σ, τ)) (2.12)

where x := ln(
Ft,T
K

), Ft,T is the time T forward price of stock and τ = T − t. Then P1

and P0 can be solved using inverse Fourier transformation

Pj(x, σ, τ) =
1

2
+

1

π

∫ ∞
0

Re

[
eCj(u,τ)σ̄+Dj(u,τ)σ+iux

iu

]
du (2.13)

for

C(u, τ) = λ(r−τ −
2

η2
ln(

1− ge−dτ

1− g
))

D(u, τ) = r−
1− e−dτ

1− ge−dτ

g =
r+

r−

r± =
β ±

√
β2 − 4αγ

2γ
=:

β ± d
η2

α = −u
2

2
− iu

2
+ iju

β = λ− ρηj − ρηiu

γ =
η2

2

Notice that the functions C(u, τ) and D(u, τ) are independent of x and σ, thus making

the calculation of Greeks direct and hence, the ease of calculating risk parameters.
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2.2.3 Analysis

Fig-2.2, Fig-2.3 and Fig-2.4 were obtained on applying the Heston model for call

option on S&P500. Over here the historical option prices were used to calibrate the

parameters using the least squares technique. Fig-2.2 shows three scenarios where

the last 5 days, 10 days and 30 days prices were used to estimate the parameters.

The graphs depict the difference between market prices and a 1-day forecast of the

calibrated Heston model using numerical integration. It is observed that prediction

is better in case of small maturity options as compared to long-term maturities.

Also, in-the-money options are overvalued by the Heston model and out-of-the-money

under-valued.

Fig-2.3 gives out the sensitivity analysis of different parameters when calibrated

using 30 days prices. It is observed that long-term variance σ̄ and initial variance

σ0 have a similar impact on the option price. The mean reversion rate λ in a way

represents the degree of volatility clustering. ρ represents the correlation between

the log-returns and volatility of the asset and it directly affects the skewness of the

distribution. Its sign indicates whether the volatility will be right-fat tailed or left-fat

tailed. η affects the kurtosis. Fig-2.4 gives out the sensitivity analysis of underlying

stock-price.
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(a) 5 Day

(b) 10 Day

(c) 30 Day

Figure 2.2: Market quoted prices vs Heston model price for call option on S&P500
for the dates 1-Oct-2018 to 31-Oct-2018 for strikes 1000, 1500, 2000, 2500 and 3000.
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(a) σ̄ : long-term variance level (b) ρ : correlation between Brownian pro-
cesses Z1 and Z2

(c) λ : mean reversion speed for variance

(d) η : volatility of variance (e) σ0 : initial variance

Figure 2.3: Sensitivity analysis of different parameters for Heston model in case of call
option on S&P500 with strike 1000, maturing on 21-Dec-2018 as of date 1-Oct-2018.
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Figure 2.4: Sensitivity analysis of underlying stock price to the option price for Heston
model in case of call option on S&P500 with strike 1000, maturing on 21-Dec-2018
as of date 1-Oct-2018.
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Chapter 3: SABR model

Hagan, Kumar, Lesniewski, and Woodward [5] developed a complex stochastic

volatility model in 2002 called stochastic alpha beta rho or SABR model. They

observed that despite the popularity of the local volatility models in managing smile

and skew risks, the dynamic behavior of smiles and skews predicted by them is the

opposite of what is observed in the marketplace. Local volatility models claim that

underlying stock price and smile have an inverse correlation, however, in reality,

they move in the same direction. This contradiction between the model and the

marketplace tends to destabilize the delta and vega hedges. In order to address

this problem, they came up with the SABR model in which the volatility is non-

stationary stochastic function correlated to the stock price. Due to it’s non-mean

reverting nature, it works well only for short expiration. It captures exact volatility

smile for very short expiration.
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3.1 Underlying Equation

In the case of the SABR model, the stochastic processes are assumed to have the

following dynamics
dFt = σtF

β
t dW1

dσt = ασt dW2

dW1 dW2 = ρ dt

(3.1)

under the forward measure7 where Ft is the forward price of the stock and σt is the

volatility. W1 and W2 are Brownian motions which have correlation ρ. The α, β, ρ

represent the parameters of this model. Over here the volatility σt is a non-stationary

stochastic function of the stock price with correlated power increments. The initial

condition is given as F0 = f .

SABR model is homogeneous in Ft and σt. It accurately predicts dynamics of

market implied volatility curves for a single expiration date, however, it may or may

not fit the volatility surface with multiple expiration dates especially if they are long-

dated. The vega risk in this model can be hedged by selling and buying options on

the underlying asset.

3.2 Pricing European Options

This section relates the constant Black-Scholes implied volatility to the SABR

model. It gives a general closed-form solution for obtaining the Black-Scholes im-

plied volatility from a given SABR model, which can then be directly used in the

Black-Scholes model to obtain the option price. Further specific forms of the general

equation for β = 0 and β = 1 are given.

7Forward measure is a pricing measure absolutely continuous with respect to the risk-neutral
measure but it uses bond as numeraire.

21



3.2.1 General Equation

Single perturbation technique is used to obtain prices for European options as

given in [5] which is further used to obtain constant Black-Scholes implied volatility

under SABR model

σBS(K, f) =
σ0

(fK)
1−β
2 {1 + (1−β)2

24
ln2 f

K
+ (1−β)4

1920
ln4 f

K
+ ...}

.
z

x(z)
.{

1 +

[
(1− β)2

24

σ2
0

(fK)1−β +
1

4

ρβασ0

(fK)
1−β
2

+
2− 3ρ2

24
α2

]
(T − t) + . . .

(3.2)

where

z =
α

σ0

(fK)
1−β
2 ln f/K

x(z) = ln

(√
1− 2ρz + z2 + z − ρ

1− ρ

)

3.2.2 Special Case when β = 1

In case when β = 1 the model behaves like stochastic log normal model in which

case the Eq-3.2 turns out to be

σBS(K, f) = σ0
z

x(z)

{
1 +

[
1

4
ρασ0 +

2− 3ρ2

24
α2

]
(T − t) + . . .

where z and x(z) are same as before with β = 1.

3.2.3 Special Case when β = 0

In case when β = 0 the model behaves like stochastic normal model in which case

the Eq-3.2 turns out to be

σBS(K, f) =
σ0 ln f/K

f −K
.
z

x(z)
.

{
1 +

[
1

24

σ2
0

fK
+

2− 3ρ2

24
α2

]
(T − t) + . . .

where z and x(z) are same as before with β = 0.
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3.3 Analysis

Fig-3.1, Fig-3.2 and Fig-3.3 were obtained on applying the SABR model for call

option on S&P500 for fixing different values of β particularly 0, 0.5 and 1 respectively.

Over here the historical option prices were used to calibrate the parameters using the

least squares technique. Graphs for four different scenarios are shown wherein the

last 1 day, 5 days, 10 days and 30 days prices were used to calculate parameters.

The graphs depict the difference between market quoted Black-Scholes volatility and

a 1-day forecast of the Black-Scholes volatility by the calibrated SABR model.
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(a) 1 Day

(b) 5 Day (c) 10 Day

(d) 30 Day

Figure 3.1: Market quoted prices vs SABR model price for call option on S&P500 for
the dates 1-Oct-2018 to 31-Oct-2018 for strikes 1000, 1500, 2000, 2500 and 3000 with
β = 0.

24



(a) 1 Day

(b) 5 Day (c) 10 Day

(d) 30 Day

Figure 3.2: Market quoted prices vs SABR model price for call option on S&P500 for
the dates 1-Oct-2018 to 31-Oct-2018 for strikes 1000, 1500, 2000, 2500 and 3000 with
β = 0.5
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(a) 1 Day

(b) 5 Day (c) 10 Day

(d) 30 Day

Figure 3.3: Market quoted prices vs SABR model price for call option on S&P500 for
the dates 1-Oct-2018 to 31-Oct-2018 for strikes 1000, 1500, 2000, 2500 and 3000 with
β = 1
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Chapter 4: Conclusion

The Black-Scholes model has laid down the foundations of financial engineering.

It was the first option pricing model which gained global popularity. The analytical

ease of understanding and implementing the model still makes it very useful in the

current world. However, its shortcomings are also well-known. Most drawbacks of the

Black-Scholes model arise from the fact that its underlying assumptions almost never

hold true in the real world. Firstly, as seen in Fig-1.4 the assumption of a normal

distribution of log-returns does not hold true. Fat tailed and high peak distributions

along with volatility clustering effects corroborates the assumption of non-Gaussian

distribution. Secondly, the volatility smile observed in the market directly contradicts

the constant volatility assumption.

The Dupire local volatility model follows the same dynamics as the Black-Scholes

model, but instead of constant volatility assumption, it uses a deterministic function

for volatility. This makes it fit the volatility smile well. The ease of using a determin-

istic function is challenged by the need of finding an interpolation function which can

satisfy all the required conditions. As a result, it provides unstable Greeks making it

a bad hedge strategy. Hence, the model isn’t effective for forecasting future prices.

The Heston stochastic volatility model, on the other hand, allows non-deterministic

volatilities. The dynamics of this model are able to give out European option prices

27



close to the prices observed in the market. It assumes non-log-normal distributions

for the stock price. It also incorporates the mean-reverting property of volatility.

Semi-closed form solution for European options makes the calibration of this model

easier. The model is observed to have high sensitivity to its parameters, making

calibration an important process. Heston performs better for at-the-money options.

Being a stochastic volatility model makes forecasting future prices a computationally

expensive process.

Another stochastic model that was described in Ch-3 was the SABR model. Unlike

Heston model, SABR assumes volatility to be non-mean-reverting, making it work

well only for short maturities. For given short-term-expiration, it is able to capture

the volatility smile well. The closed form solution of Black-Scholes implied volatility

in term of the SABR model, makes it computationally very efficient and easy to work

with to reproduce as well as forecast option prices.

Overall the chapters in this thesis provide a detailed framework of several models

used in option pricing. These different techniques can be used for both, either repli-

cating the market implied volatility surface or the finding a computationally efficient

way to predict the future price of options. While Dupire model is able to efficiently

reproduce the market prices, the computational ease of SABR model makes it a better

choice to forecast future prices.
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