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Abstract 

Mechanism Design Theory, introduced by 2007 Nobel laureates Hurwicz, Maskin, and 

Myerson, has guided economic institutions worldwide to achieve desirable goals in 

allocating scarce resources.  However, most of the literature on Mechanism Design Theory 

that guides its application, in reality, assumes that people are fully rational; this omission 

of people’s bounded rationality raises doubt over the reliability of the theory’s empirical 

implications. To bridge this gap between theory and reality, we introduce new 

formalizations to characterize new types of boundedly rational behavior that is missing in 

existing models but supported by experimental evidence.  

NLK, the first formalization we propose, is a new solution concept in Game Theory that 

connects two existing ones, Nash Equilibrium (NE) and Level-K model. Of these two, NE, 

introduced by 1994 Nobel Laureates John Nash has revolutionized the economics of 

Industrial Organization and has influenced many other branches such as the theories of 

monetary policy and international trade. However, there is mounting and robust evidence 

from laboratory experiments of substantial discrepancy between the predictions of NE and 

the behavior of players. Among all the alternative models that retain the individual 

rationality of optimization, but relax correct beliefs, Level-K model is probably the most 

prominent. Absent in NE, Level-K model explicitly allows players to consider their 

opponent as less sophisticated than themselves.  But Level-K does not allow players to use 



 

iii 

 

an important element of strategic thinking, namely, “put yourself in the others’ shoes” and 

believe the opponent can think in the same way they do. Bridging NE and Level-K, NLK 

allows a player in a game to believe that her opponent may be either less- or as sophisticated 

as they—a view supported by various studies in Psychology. We compare the performance 

of NLK to that of NE and some versions of Level-K by applying it to data from three 

experimental papers published in top economics journals and to data from a field study. 

These studies allow us to test NLK on: (1). A static game of complete information, (2). A 

static game of incomplete information, (3). A dynamic game of perfect information, and 

(4). On field data. 

NLK provides additional insights to those of NE and Level-K. Moreover, a simple version 

of it explains the experimental data better in many cases. As a new solution concept, NLK 

shares a similar foundation to NE but is also applicable to games with players of different 

cognitive or reasoning abilities. As an analytical tool, NLK exists and gives a sharp 

prediction in general, and therefore it can be applied to empirical analysis in a broad range 

of settings.  

In the second formalization, we first propose two alternative axiomatic approaches, 

formalizing a distinct anomaly in hypothetical reasoning that agents fail to reason state-by-

state. Our theory expands the foundation of Decision Theory and ties together a broad range 

of evidence documented in multiple disciplines that decision makers often choose a 

dominated strategy. Secondly, we extend our concept to Game Theory and Mechanism 

Design, where we identify a rich class of mechanisms that successfully achieve desirable 

goals even with boundedly rational agents and agents who mistrust the market makers. 



 

iv 

 

Thirdly, we test and verify our theory and its implications, by two laboratory experiments 

with a cross-over design that enables pooled data, within-subject, and cross-subject 

comparisons. Finally, we address how our approach contributes to accomplishing two goals 

simultaneously in modeling bounded rationality: providing a unified framework that 

subsumes existing ones as limiting cases and stimulating transdisciplinary conversations 

connecting the concepts of heuristics and emotions in Psychology, the utilization of eye-

tracking technology in Neuroscience, and considerations of the moral foundation 

underlying a mechanism design in Ethics. The general insights of our work can be 

transferred to practical impacts on applications of Mechanism Design. Among these 

applications are the U.S. Federal Communications Commission auctions that raise more 

than 10 billion dollars yearly in government revenue; College Admissions that affect more 

than 10 million students every year around the world; and a Kidney Exchange Program 

with more than 1 million people waiting for kidney transplants. By formalizing bounded 

rationality into economic theory, our study honors the elegance of classic economic theory; 

at the same time, by modeling human behavior even more closely, it directs us to a new 

way of improving human welfare. 

 

In the history of economic thought lies a dilemma for future economists: should we adopt 

simple models with unrealistic assumptions, or should we describe human behavior closely 

but give up elegant abstractions? In the projects above, we endeavor to create a middle way 

that synthesizes the merits in both directions and leave unanswered questions for future 

researchers.  
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Chapter 1. Bridging Level K to Nash Equilibrium 

1. Introduction 

There is mounting and robust evidence from laboratory experiments of substantial 

discrepancies between the prediction of Nash Equilibrium (NE) and the behavior of 

agents.1 Among all the alternative models that retain perfectly maximization behavior is 

the prominent Level-K model.2 First proposed by Stahl and Wilson (1994, 1995) and Nagel 

(1995), it introduces a non-equilibrium, structural model of strategic thinking, which 

admits possible cognitive limitations of players that are not allowed in NE.3 This model 

has a hierarchy of levels of sophistication that are constructed iteratively starting with an 

exogenous, non-strategic and least sophisticated level0 player. Higher levels are then 

constructed by assuming that a levelk player best responds to levelk-1 opponents, 𝑘 = 1,2, …. 

Absent in NE, the Level-K model explicitly allows players to consider their opponents as 

less sophisticated than themselves. However, it does not allow players to use an important 

element of strategic thinking, namely, “put yourself in the other’s shoes.” 

                                                 
1 There is much experimental evidence that predictions of both (Bayesian) NE in static games and Subgame 

Perfect Nash Equilibrium (SPNE) in dynamic games fail miserably. For instance, see McKelvey and 

Palfrey (1992) and Kagel and Levin (2002). 
2 Another strand of literature like Quantal Response Equilibrium (McKelvey and Palfrey 1995), on the 

other hand, relax the assumption of perfect best response.  
3 There are many variations and extensions of the Level-K model and we refer the reader to Crawford, 

Costa-Gomes and Iriberri (2013) and the references therein.  
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Our paper introduces a new solution concept, NLK that bridges the gap between NE and 

the Level-K model. Our model has two possible interpretations: 

1. A population game: In this interpretation, an NLK player behaves as if she faces 

a population composed of naïve players and NLK players. In equilibrium, an NLK 

player best responds to her belief that with a probability 𝜆, her opponent is a naïve 

player, and that with a probability of (1 − 𝜆), her opponent is another NLK player 

(like herself). Note that 𝜆 is the subjective belief formed by the player and it does 

not have to coincide with the objective proportions of naïve players in the 

population, denoted by ρ. Thus, with 𝜆 ≠  ρ, NLK is not a “full-equilibrium,”4 

allowing an NLK player to hold inconsistent beliefs regarding the proportion of 

naïve players in the population, which is supported by a psychology literature: the 

“False Consensus Effect,” first introduced by Ross, Greene, and House (1977), 

claims that people overestimate the proportion of people like themselves (𝜆 <  ρ).5 

More recent works, both in psychology and experimental economics, have re-

evaluated the “False Consensus Effect” with some works providing evidence in 

support of such effect (Krueger and Clement 1994, Jimenez-Gomez 2016), while 

other works point at evidence to an opposite effect (𝜆 > ρ) (Dawes 1990, Sherman, 

Presson, and Chassin 1984) or the absence of a biased belief (Engelmann and 

                                                 
4 Stahl and Wilson (1995) include a rational expectation type together with different types of levelk and Nash 

players in analyzing experimental data of a 3× 3 symmetric game. Their results reject the existence of 

rational expectation type. 
5 There is a rich psychology literature supporting the finding of FCE or the “self-anchoring” argument. 

Mullen et al. (1985) reported 115 studies that show FCE. For more detailed empirical and theoretical 

discussion, refer to Marks and Miller (1987) and all the listed references therein.  
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Strobel 2000). Apparently, one may insist on consistency by requiring that in a 

“full-equilibrium” 𝜆 = ρ. 

2. A hierarchy of heterogeneous players: A construction of such hierarchy can be 

accomplished in two ways.  

a. As an analog of the Level-K model: A player is an NLK player of type 𝑚, 

denote by NLKm, when his naïve opponent is exogenously given as a levelm-1 

player of the Level-K model. Thus, an NLKm player coincides with a levelm 

player when 𝜆 = 1 and NLK equilibrium reduces to NE when 𝜆 = 0. 

b. As an analog of the Poisson Cognitive Hierarchy (P-CH) model (Camerer, 

Ho, and Chong 2004): Denote by 𝑓(𝑚) the probability function of a Poisson 

distribution 𝑓(𝑚) =
𝑒−𝜏𝜏𝑚

𝑚!
. Then by a similar treatment of truncated probability 

distributions as in the P-CH model, an NLKm believes that he faces a naïve 

player of level ℎ, ℎ = 0,1, … , 𝑚 − 1 with probability 𝑔(ℎ) =
𝑓(ℎ)

∑ 𝑓(𝑙)𝑚
𝑙=0

, and 

another NLKm player with probability (1 − ∑ 𝑔(ℎ)) =
𝑓(𝑚)

∑ 𝑓(𝑙)𝑚
𝑙=0

𝑚−1
ℎ=0  . 

In this work we only use m=1, resulting in NLK that has just one parameter, λ. We show 

that this simplest version of NLK already outperforms Level-K in many cases, although in 

some of them Level-K uses more than one parameter. 

To illustrate the NLK equilibrium, consider a simple example of the chicken game 

introduced by Rapoport and Chammah (1966). It is a two-player symmetric game, where 

each player chooses either “Dove” or “Hawk,” and the player’s payoffs depend on her own 

action and that of the opponents as follows: 
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 Dove Hawk 

Dove 30,30 20,70 

Hawk 70,20 0,0 

 

Table 1.1. The dove and hawk game. 

 

 

A random level0 chooses either Dove or Hawk with equal probability. A level1 best 

responds to the level0 player by choosing Hawk. Then a level2 player optimally chooses 

Dove. A level3 player chooses Hawk again. A level4 player reverts to Dove, and so on. 

There are two pure NE strategies: (Hawk, Dove) and (Dove, Hawk) and a third mixed-

strategy where Dove and Hawk are played with the probability of  
1

3
  and 

2

3
 respectively. 

Now, consider an NLK1 player who faces a naive random level0 player with the probability 

of 𝜆 and another NLK1 player with the probability of (1 − 𝜆). For 1 ≥ 𝜆 ≥
2

3
, only one 

pure strategy NLK equilibrium exists, where each player chooses Hawk. For 
2

3
≥ 𝜆 ≥ 0, 

there exist two pure strategy NLK equilibria: (Hawk, Dove) and (Dove, Hawk) and a 

mixed-strategy where Dove and Hawk are played with the probabilities of 
2−3𝜆

6(1−𝜆)
 and 

4−3𝜆

6(1−𝜆)
, 

respectively.  
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As a new solution concept, NLK shares a similar foundation to NE but is also applicable 

to games with players of different cognitive or reasoning abilities. For example, in the 

experiment of Alaoui and Penta (2015), when students from math and science departments 

interact with opponents from the field of humanities, it is reasonable to expect that they 

adopt a larger subjective 𝜆 than when they play with fellow math and science students. We 

also adapt our basic definition of NLK to Bayesian games and dynamic games, as 

extensions of Bayesian Nash Equilibrium (BNE) and Subgame Perfect Nash Equilibrium 

(SPNE).  

As an analytical tool, NLK can be applied to empirical analysis in a broad range of settings. 

We are fortunate to be able to compare the performance of NLK to that of NE and some 

versions of Level-K by applying it to data from three experimental papers published in top 

economic journals and to data from a field study. These studies allow us to test the NLK 

on a static game of complete information and another with incomplete information, a 

dynamic game of perfect information, and on field data. In the experiments we analyzed, 

NLK provides several insightful implications. First, in the static Guessing Game by Arad 

and Rubinstein (2012), a simple version of NLK with one parameter, 𝜆 ∈ (0,1), that is 

chosen optimally, fits data better than both NE and Level-K models with an optimal 

distribution among three types of players, i.e., two parameters. After allowing for an error 

structure that is sensitive to payoffs, NLK still performs better than Level-K models with 

the same number of one parameter but not when we allow Level-K to choose freely more 

parameters. The results suggest that in some cases, NLK can also serve as an analytical 

tool. Second, in application to the data from an experiment of the Centipede Game by 
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Palacios-Huerta and Volij (2009), NLK’s predictions, adapted to dynamic games, are 

different and more precise than those of SPNE and Level-K models, with only few 

exceptions when they coincide or when Level-K adopts more parameters. It is also 

reassuring that the optimal 𝜆 < 1 is the largest when players are all students, the smallest 

when only chess players are involved, and in the middle when a chess player plays with a 

student. Thus, the optimal 𝜆 for NLK seems to track well and capture the shift in subjective 

beliefs that can be expected in the different mixes of subjects’ populations. The better 

performance of NLK than Level-K in the Centipede Game is reconfirmed using the data 

from Levitt, List and Sadoff (2011). Moreover, NLK can capture belief updating in every 

round of a game that a dynamic Level-K cannot. Finally, we compare predictions of NLK 

to those of Level-K for the data from the Common Value Auction experiment by Avery 

and Kagel (1997). For inexperienced bidders, NLK’s performance coincides with that of 

Level-K; but for experienced bidders, NLK with 𝜆 ∈ (0,1) provides the most accurate 

prediction. Moreover, since the estimated 𝜆 is larger for the data of experienced bidders 

than that of inexperienced bidders, NLK may also be used to track dynamic learning from 

experience, for example, learning in repeated games and convergence to a “full-equilibrium” 

(𝜆 = ρ = 0). Finally, in a recent experimental work on a rank-order tournament with an 

outside option-a dynamic game with imperfect information, Brünner (2018) finds that a 

mixture of Level-K and PBNLK – the dynamic version of NLK – that predicts both the 

population of types in the tournament, as well as the mean variance of efforts remarkably 

well.  In fact, that paper show that PBNLK predicts the experimental data better than a 
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level-K model without updating of beliefs,6 which highlights the importance of the belief 

updating criterion that PBNLK adds onto Level-K.  

Like other models that use “relaxed beliefs,” NLK has its limitations. For instance, NLK 

cannot explain deviations from theoretical predictions in games with a dominant strategy 

solution, such as overbidding one’s value in Second Price Sealed Bid auctions with private 

values, first reported by Kagel, Harstad, and Levin (1987). 

We follow with a brief discussion of related literature. In Section 2, we present our basic 

solution concepts as used in different types of games (static or dynamic, with complete or 

incomplete information). In Section 3, 4 and 5, we provide the NLK solutions and compare 

them to those of NE and Level-K models for a static Guessing Game, a dynamic Centipede 

Game, and a Common Value Auction. In Section 6, we discuss and explore possible 

extensions to games with more than two players, allowing for heterogeneous beliefs and 

distributions of lower-level players. We conclude in Section 7. 

1.1 Related Literature 

Level-K and its related extension, Cognitive Hierarchy models by Camerer, Ho and Chong 

(2004) are applied to many laboratory experiments and Field data. 7  The survey by 

Crawford, Costa-Gomes, and Iriberri (2013) documents many successes of Level-K and its 

                                                 
6 Brünner (2018) shows that Nash Equilibrium performs even worse than the Level-K without belief updating.  
7 Applications to static games with complete information include the p-beauty contest (Bosch-Domenech, 

Montalvo, Nagel, and Satorra, 2012), the two persons’ guessing game (Costa-Gomes and Crawford 2006) 

and the 11-20 money request game (Arad and Rubinstein 2012). For dynamic games, Kawagoe and Takizawa 

(2012) show that Level-K out predicts the Agent Quantal Response Equilibrium (AQRE) in a centipede game 

with an increasing pie. Ho and Su (2013) apply dynamic Level-K to both four- and six-stage centipede games 

and find it fits the data well. In Bayesian Games like auctions, particularly first-price and common-value 

auctions, Crawford and Iriberri (2007) claim that Level-K performs better than Cursed Equilibrium (CE) for 

inexperienced bidders in most cases (and it does better than NE, which fails badly.) 
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extensions over other solution concepts, including NE. However, as we saw in the Chicken 

Game above, Level-K is less useful than NLK in certain scenarios; and as we will see in 

other examples later, NLK outperforms Level-K.  

Theoretically, Level-K has been extended in two ways. Strzalecki (2012) allows beliefs to 

vary arbitrarily for players at a certain level. Specifically, a levelk player can believe the 

opponent to be levelj; j < k; by any arbitrary subjective distribution. However, here as well, 

beliefs are restricted to lower levels. Alaoui and Penta (2015) use another approach and 

show how cognitive bounds, beliefs about opponents, and beliefs about opponents’ beliefs 

vary according to incentives by a cost-benefit analysis. In their model, if agents believe 

that their opponents behave at lower levels than their own cognitive bound, they would 

behave at one level higher than these opponents; but if they believe that the strategies of 

their opponents are reaching or exceeding their own cognitive bound, they would act at 

their own cognitive bound. So, although the researchers considered a situation where the 

opponents have the same or even a higher cognitive level than the agents themselves, they 

treated it as if the opponents were nevertheless one level below the agents. Thus, as far as 

we are aware, no extension of the Level-K model allows the player to believe she faces the 

same type as herself. 

Another strand of literature also relaxes the restriction of beliefs in NE, while maintaining 

the equilibrium concepts for players’ strategies. Eyster and Rabin (2005) proposed Cursed 

Equilibrium (CE), extending BNE to rationalize behavior (data) from experiments where 

BNE fails. In particular, this rationalization occurs in Common-Value Auctions, where 

Kagel and Levin (2002) found systematic overbidding and losses, a phenomenon called the 
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Winner’s Curse. The CE also fits experimental data from voting and signaling models 

better than BNE. In its extreme situation, entitled as “fully CE,” people correctly predict 

other players’ distribution of actions, but ignore the correlation between actions and the 

specific players’ types who chose those actions. In their general model, 𝜒 -Cursed 

Equilibrium, beliefs are a weighted average of beliefs in fully cursed opponents (with 

weight  𝜒 ) and Bayesian Nash opponents (with weight (1- 𝜒 )). The CE characterizes 

heterogeneous behaviors by different cursed levels (with 𝜒 = 1 being fully cursed, and  𝜒 

= 0 being BNE). However, CE reduces to NE when there is complete information. Hence 

it cannot be applied to explain deviations from NE in both static and dynamic games with 

complete information. Conceptually, the CE models bounded rational agents who only 

partially take into account how other players’ actions depend on their type. In contrast, our 

solution concept allows our NLK player to consider that it might be possible to meet both 

a naive player and “another self” of the NLK player. 

For application to dynamic games with perfect information and recall Analogy-Based 

Expectation Equilibrium (ABEE), a solution concept proposed by Jehiel (2005),  is the 

most closely related to ours.8 In ABEE, agents first group the set of opponents’ decision 

nodes into a partition, namely, an analogy class. Then, they form expectations about each 

opponent’s average behavior at every element of the analogy class rather than, more 

precisely, at each decision node. Though conceptually, ABEE is similar to CE, when 

applied to a different type of games, ABEE also suggests that people might not fully 

                                                 
8 Jehiel and Koessler (2008) extends his analogy-based concept to Bayesian games. 
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consider how others’ choices depend on their information, 9  and such deficiency in 

reasoning is common knowledge among all players. Differently, our model allows NLK 

players to consider heterogeneity in their opponents’ inference process. In our version of 

NLK equilibrium as adapted to dynamic games, beliefs for different types of opponents are 

anchored at the beginning of the game and are updated at each stage, using Bayes’ Rule. 

Analytically, ABEE coincides with SPNE for the finest analogy partition. And like our 

NLK, ABEE also rationalizes, in the Centipede Game, “passing” to the last few stages for 

a large range of partitions, in contrast to the implication of backward induction. However, 

ABEE does not provide a specific way to choose an analogy class, while our model offers 

a way of parametric estimation to specify beliefs in equilibrium.10 

NLK is not the first equilibrium solution concept to introduce an exogenous type; Kreps, 

Milgrom, Roberts and Wilson’s (KMRW) models have already used an exogenous type 

(Kreps and Wilson 1982, Milgrom and Roberts 1982, Kreps etc. 1982). However, NLK 

and KMRW's models are different drastically in facets of motivation and generality. 

Regarding motivation, KMRW’s works are motivated by Selten’s (1978) Chain-Store 

Paradox (CSP) and by vast experimental evidence of cooperation in finitely repeated 

Prisoner’s Dilemma (PD) games. Deterrence strategy in CSP,11 and cooperation in PD 

                                                 
9 More specifically, information means the history upon reaching a decision node at which the choice is 

made.  
10 As an extension of the Level-K model to dynamic games, Ho and Su (2013) apply their model to the 

experiment data of the Centipede Game. However, theirs is intended for learning across repetitions while 

ours explains strategic behavior better, even for novel games. Moreover, unlike their model, our solution 

concept does not restrict the strategy set, while allowing us to capture Bayesian updating for beliefs across 

stages within one round. 
11 Deterrence strategy, where the monopoly fights an early entrant, although it is not the best response in the 

stage game, was offered by Selten (1978), as a sensible, though not an equilibrium, strategy to deter later 

entrant. 
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games contradict the solution of backward induction, whereby unraveling to the one-shot 

stage game solution. KMRW’s objective is to resolve the paradox of using deterrence 

strategy in the CSP game and to rationalize cooperation in the finitely repeated PD game. 

To do so, they transform these games from complete, to incomplete, information games by 

introducing a tiny probability of exogenous type and showing that it is sufficient to “choke 

off” the otherwise unavoidable logic of unraveling. The emphasis on tiny probability is a 

critical novelty, as otherwise deterrence strategy in the CSP game or cooperation in the PD 

game may be rationalized even in a one-shot game. In NLK, the probability λ of such 

exogenous type is typically quite large, similarly to, but less extreme than, that in Level-K 

model.  Thus, whereas the motivation of the KMRW’s models is to “defend” the standard 

NE, NLK, is a behavioral model of bounded rationality. 

Regarding generality, NLK introduces one nonstrategic exogenous type to be applied to 

all, or at least to a large class of different games. In contrast, KMRW admit that their 

“defense” of the standard NE, requires a particular exogenous type for each case.12 For 

instance,  in the CSP case, Kreps and Wilson, use a “strong” monopoly, who is hard-wired 

to fight; In the finitely repeated PD game, KMRW use two nonstrategic types for two cases 

respectively: the one who play Tit-for-Tat for the one-sided incomplete information game, 

and the one who prefers the stage payoffs from joint-cooperation to the payoff of defection 

when the other player cooperates for the two-sided incomplete information game.13 

                                                 
12 KMRW explicitly acknowledge that such particular, and different, exogenous type may be needed for 

different cases. 
13 In addition, NLK can require that λ matches the probability of the exogenous type in the population 

making the model an equilibrium model with rational expectations. 
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As all the aforementioned solution concepts, NLK maintains the best response to beliefs 

but relaxes, relative to NE, assumptions of players’ beliefs about other players. In dynamic 

games, Aumann (1992), like several other writers afterward, has shown that a failure of 

backward induction does not imply a failure of individual rationality. For example, in the 

Centipede Game, backward induction implies that the first mover stops the game at the 

first decision node, which is rarely found in the data from experiments. However, some 

relaxations of the “common knowledge of rationality.”14 may rationalize several rounds of 

continuation, although all of the players are rational.15 

2. The solution concept 

In this section, we formally define the NLK equilibrium in different types of games and 

prove its existence. We focus on the simple case of only two players with symmetric beliefs. 

We discuss several extensions in Section 5. 

                                                 
14 One has to be careful about the terminology according to the epistemic condition of NE. Aumann and 

Brandenburger (1995) prove that in a two persons’ game, mutual knowledge of preferences and payoffs, 

rationality, and beliefs for the other players’ strategies are sufficient for NE. In other words, common 

knowledge of rationality is not necessary for NE in two persons’ game. Moreover, Battigalli and Bonanno 

(1999) argue that there is a contradiction between results of backward induction and a common belief in 

sequential rationality at later stages. Thus, in this paper by the “common knowledge of rationality,” we mean 

in general, the extra assumptions needed for NE/BNE/SPNE besides individual rationality. 
15 Aumann (1992) shows that continuation of the game beyond the first node for several rounds could occur 

even with “mutual knowledge” of high degrees. Considering the fact that some sequentially rational 

behaviors off the equilibrium path are only reachable by the violation of sequential rationality, Reny (1992) 

defines a weaker version of sequential rationality in light of forward induction. Ben-Porath (1997) proves 

that cooperation in the Centipede Game is consistent with Common Certainty of Rationality, a weaker 

concept than the Common Knowledge of Rationality. Asheim and Dufwenberg (2003) introduce the concept 

of “Fully Permissible Sets” to the extensive form game, where players reason deductively by trying to figure 

out one another’s moves. They show that deductive reasoning does not necessarily imply backward induction. 
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2.1 The Basic Case  

Consider a normal form game with two players, 𝐺 = (𝑆𝑖 , 𝑢𝑖)𝑖=1,2, where (𝑆𝑖 , 𝑢𝑖) are the 

strategy set and the utility function of player 𝑖, respectively. The strategy of a naïve player 

𝑖  is given exogenously by 𝜎𝑖
𝑜 ∈ ∆(𝑆𝑖), 𝑖 = 1,2 . In our strategic environment, an NLK 

player believes that her opponent is either a naïve player with probability 𝜆 or another NLK 

player with probability (1 −  𝜆), 𝜆 ∈ [0, 1] . In an NLK equilibrium, an NLK player 

chooses an optimal strategy by best responding to her belief. A formal definition of the 

NLK equilibrium is as follows: 

Definition 1.1. A mixed-strategy profile (𝜎𝑖
∗)𝑖=1,2, is a 𝜆-NLK equilibrium if for each 𝑖 =

1,2, and each 𝑠𝑖
′ ∈ 𝑆𝑖, 

 𝜆𝑢𝑖(𝜎𝑖
∗, 𝜎−𝑖

0 ) + (1 − 𝜆)𝑢𝑖(𝜎𝑖
∗, 𝜎−𝑖

∗ ) ≥ 𝜆𝑢𝑖(𝑠𝑖
′, 𝜎−𝑖

0 ) + (1 − 𝜆)𝑢𝑖(𝑠𝑖
′, 𝜎−𝑖

∗ ). 

 

2.2. Bayesian Games 

Consider a Bayesian Game of incomplete information 𝐵 = (𝑆𝑖 , 𝑢𝑖 , Θ𝑖 , 𝑝)𝑖=1,2, where Θ𝑖 

denotes the set of player 𝑖 ’s types and where 𝑝  is the joint density function of the 

probability distribution over Θ1 × Θ2. Similar to the relationship between NE and BNE, a 

BNLK equilibrium is the NLK equilibrium of the “extended game” in which each player 

𝑖’s space of pure strategies is 𝑆𝑖
Θ𝑖, which denotes the set of mappings from Θ𝑖 to 𝑆𝑖. Again, 

let 𝜎𝑖
0 ∈ ∆(𝑆𝑖), 𝑖 = 1,2, denote the strategy of a naïve player 𝑖 which is independent of his 

type. Then a formal definition of BNLK with respect to subjective symmetric belief 𝜆 is as 

follows: 
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Definition 1.2. A profile of strategies {𝑠𝑖
∗(∙)}𝑖=1,2, is a 𝜆-BNLK equilibrium, if for each 𝑖 =

1,2, and each 𝜃𝑖 ∈ Θ𝑖, 

 𝑠𝑖
∗(𝜃𝑖) ∈ arg 𝑚𝑎𝑥𝑠𝑖∈𝑆𝑖

∫ 𝑝(𝜃−𝑖|𝜃𝑖)[𝜆𝑢𝑖(𝑠𝑖 , 𝜎𝑖
0; 𝜃𝑖, 𝜃−𝑖) + (1 −

𝜆)𝑢𝑖(𝑠𝑖 , 𝑠−𝑖
∗ (𝜃−𝑖); 𝜃𝑖 , 𝜃−𝑖)]𝑑𝜃−𝑖. 

 

2.3. Dynamic Games 

Consider a dynamic game with perfect information and perfect recall played by two 

players16 𝑃 = (𝑢𝑖 , Υ)𝑖=1,2 , where Υ denotes a game tree. A node in the game tree Υ is 

denoted by ℎ𝑡, and the set of nodes is denoted by 𝐻. The set of nodes at which player 𝑖 

must move is denoted by 𝐻𝑖. An NLK player holds a prior belief that the opponent is either 

a naïve player with probability 𝜆  or another NLK player with probability (1 − 𝜆), 𝜆 ∈

[0, 1]. At every decision node with history ℎ𝑡, as more information is revealed, beliefs are 

updated. We denote the updated belief that the opponent is a naïve player as 𝑝𝑖(ℎ𝑡). In 

equilibrium, an NLK player chooses an optimal strategy according to her belief at every 

decision node. In other words, here the choice is sequentially rational as defined below: 

Definition 1.3. (sequential rationality). A strategy profile {𝜎𝑖
∗}𝑖=1,2 is sequentially rational 

with respect to the profile of beliefs {𝑝𝑖(ℎ𝑖
𝑡)}ℎ𝑖

𝑡∈𝐻𝑖
, 𝑖 = 1,2 if for 𝑖 = 1,2, all strategies 𝜎𝑖

′, 

and all nodes ℎ𝑖
𝑡 ∈ 𝐻𝑖: 

(1.1) 𝑝𝑖(ℎ𝑖
𝑡)𝑢𝑖(𝜎𝑖

∗, 𝜎−𝑖
0 |ℎ𝑖

𝑡) + (1 − 𝑝𝑖(ℎ𝑖
𝑡))𝑢𝑖(𝜎𝑖

∗, 𝜎−𝑖
∗ |ℎ𝑖

𝑡) ≥ 𝑝𝑖(ℎ𝑖
𝑡)𝑢𝑖(𝜎𝑖

′, 𝜎−𝑖
0 |ℎ𝑖

𝑡) + (1 −

𝑝𝑖(ℎ𝑖
𝑡))𝑢𝑖(𝜎𝑖

′, 𝜎−𝑖
∗ |ℎ𝑖

𝑡) 

                                                 
16 That is, at any decision node, all previous moves are assumed to be known to every player.  
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We also require that the beliefs of an NLK player are consistent. That is, to start with a 

subjective prior distribution and then get updated by Bayes’ Rule at each succeeding 

decision node. To present formally the consistency restriction, let 𝑝(ℎ𝑡|𝜎𝑖 , 𝜎−𝑖) denote the 

probability that decision node ℎ𝑡 is reached according to the strategy profile, (𝜎𝑖 , 𝜎−𝑖). 

Definition 1.4. (consistency). A profile of beliefs  {𝑝𝑖
∗(ℎ𝑖

𝑡)}ℎ𝑖
𝑡∈𝐻𝑖

, 𝑖 = 1,2 is consistent with 

the subjective prior 𝜆 and the strategy profile {𝜎𝑖}𝑖=1,2 if and only if for i=1,2, and all 

nodes ℎ𝑖
𝑡 ∈ 𝐻𝑖: 

(1.2)                                          𝑝𝑖
∗(ℎ𝑖

𝑡) =
𝜆𝑝(ℎ𝑖

𝑡|𝜎𝑖,𝜎−𝑖
0 )

𝜆𝑝(ℎ𝑖
𝑡|𝜎𝑖,𝜎−𝑖

0 )+(1−𝜆)𝑝(ℎ𝑖
𝑡|𝜎𝑖,𝜎−𝑖)

,  

where 𝑝(ℎ𝑖
𝑡|𝜎𝑖 , 𝜎−𝑖

0 ) > 0 or 𝑝(ℎ𝑖
𝑡|𝜎𝑖 , 𝜎−𝑖) > 0. 17 

Although the game itself has perfect information, the belief structure in our strategic 

environment makes our solution concept more like an analogy of a Perfect Bayesian 

Equilibrium (PBE), So we denote it as PBNLK, formally treated below: 

Definition 1.5. An assessment (𝜎𝑖
∗, {𝑝𝑖

∗(ℎ𝑖
𝑡)}ℎ𝑖

𝑡∈𝐻𝑖
)

𝑖=1,2
 is a 𝜆-PBNLK equilibrium if  

1. The strategy profile  {𝜎𝑖
∗}𝑖=1,2 is sequentially rational with respect to the profile of 

beliefs  {𝑝𝑖
∗(ℎ𝑖

𝑡)}ℎ𝑖
𝑡∈𝐻𝑖

, 𝑖 = 1,2 and  

2. The profile of beliefs {𝑝𝑖
∗(ℎ𝑖

𝑡)}ℎ𝑖
𝑡∈𝐻𝑖

, 𝑖 = 1,2 is consistent with the subjective prior 

λ and the strategy profile {𝜎𝑖
∗}𝑖=1,2. 

                                                 
17 It should be noted that Definition 1.4 places no restrictions on player 𝑖’s expectations about those decision 

nodes that are not possibly reached according to 𝜎, regardless of facing a naïve player or another NLK player. 

A stronger notion of consistency could be defined in the spirit of a trembling hand or a sequential equilibrium 

(Kreps and Wilson, 1982a). Such stronger restriction and its impact on prediction are discussed in Section 5. 
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2.4. Existence 

Proposition 1.1. for any 𝜆 ∈ [0, 1]: 

a) In every finite strategic-form game, there exists an NLK equilibrium. 

b) In every finite Bayesian game, there exists a BNLK equilibrium. 

c) In every finite extensive form game, there exists a PBNLK equilibrium. 

Proof. The existence of an NLK equilibrium is guaranteed by a standard fixed-point 

theorem (Kakutani 1941), similar to the proof of the existence of a NE (Glicksberg 1952). 

For (b), a similar argument follows from Harsanyi (1973). For (c), consider an alternative 

dynamic game of incomplete information P = (ui, Φi, Υ)i=1,2 , where Φi  denotes the 

possible types for agent i, which can be either a naïve player or an NLK player. Let Σ0be 

the strategy set of the naïve player and restrict it to be {σ0}. Then according to Kreps and 

Wilson (1982a), for every finite extensive form game, there exists at least one sequential 

equilibrium (𝜎𝑖
∗, 𝑝𝑖

∗)𝑖=1,2 should satisfy equation 1.1 and 1.2 for sequential rationality and 

consistency. In other words, PBNLK exists.  

Remark 1.1. In the special case when  λ = 0 , NLK/BNLK/PBNLK coincides with 

NE/BNE/SPNE. In another special case, if the strategy of our naïve player is exogenously 

given as that of a levelk-1 player, where k ∈ ℵ+ and λ = 1, then the strategy for an NLK 

player coincides with that of a levelk player in all three types of games considered above. 

3. The Arad-Rubinstein Money Request Game. 

In the basic version of the Money Request Game by Arad and Rubinstein (2012), there are 

two risk-neutral players, and each can request and receive an integer amount of money 
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from $11 to $20. In addition, a player receives an extra $20 if she asks for exactly one 

integer less than the other player.  

 

 

NLK

(𝜆)
 15 16 17 18 19 20 

NLK (%)

(0 ≤ 𝜆 ≤
1
2

)
 

5(5 − 10𝜆)

1 − 𝜆
 

5(5 − 2𝜆)

1 − 𝜆
 

5(4 − 2𝜆)

1 − 𝜆
 

5(3 − 2𝜆)

1 − 𝜆
 

5(2 − 2𝜆)

1 − 𝜆
 

5(1 − 2𝜆)

1 − 𝜆
 

NLK (%)

(
1
2

≤ 𝜆 ≤
14
20

)
 0 

5(14 − 20𝜆)

1 − 𝜆
 

15

1 − 𝜆
 

10

1 − 𝜆
 

5

1 − 𝜆
 0 

NLK (%)

(
14
20

≤ 𝜆 ≤
17
20

)
 0 0 

5(17 − 20𝜆)

1 − 𝜆
 

10

1 − 𝜆
 

5

1 − 𝜆
 0 

NLK (%)

(
17
20

≤ 𝜆 ≤
19
20

)
 0 0 0 

5(19 − 20𝜆)

1 − 𝜆
 

5

1 − 𝜆
 0 

NLK (%)

(
19
20

≤ 𝜆 ≤ 1)
 0 0 0 0 100 0 

Table 1.2. NLK equilibrium strategy for different subjective beliefs.  

 

 

Consider the Level-K model with a level0 payer who randomizes uniformly within the 

strategy set: {$11, $12, … , $20}. A level1 player that requests $20 earns $20. Alternatively, 

if she asks for $19, she would earn $19 for sure and $20 bonus with a probability of 1/10, 

for a total expected payoff of $21.18 Thus, level1 picks $19, level2 picks $18,…, level9 picks 

                                                 
18 To ask for any amount of money less than $19 lead to s strictly lower payoff.  
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$11. But then level10 picks $20, level11 picks $19, and so on. It is difficult to infer from 

players’ actions their sophistication level: A player who requests $19 can be a level1 player 

or a highly sophisticated level11 player. Table 1.2 shows the unique mixed strategy 𝜆-NLK 

equilibrium for each 𝜆 ∈ [0,19/20] and the unique pure strategy for 𝜆 ∈ [19/20,1].19 

 

 

Action 11 12 13 14 15 16 17 18 19 20 MSE 

Level1 (%) 0 0 0 0 0 0 0 0 100 0 980.2 

Level2 (%) 0 0 0 0 0 0 0 100 0 0 620.2 

Level3 (%) 0 0 0 0 0 0 100 0 0 0 580.2 

𝑙𝑒𝑣𝑒𝑙𝑘, 𝑘 = 1,2,3,

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
 0 0 0 0 0 0 40.7 38.7 20.6 0 35.93 

NE (%) 0 0 0 0 25 25 20 15 10 5 137.2 

NLK (%)20

(𝜆 = 0.6485)
 0 0 0 0 0 12.1 43.9 29.4 14.6 0 28.39 

Data (%) 4 0 3 6 1 6 32 30 12 6  

Table 1.3. 11-20 Game: comparison of different solution concepts by MSE.  

 

 

Table 1.3 compares the performance of the Level-K model, NE, and NLK21 using the Mean 

Squared Error (MSE). NLK with the best the best 𝜆(= 0.6585) fits the adta better NE and 

                                                 
19 See Appendix A.1 for detail of the argument.  
20 We choose the value that minimizes the Mean Squared Errors (MSE), that is, the nonlinear least squares 

estimate of 𝜆. 
21 Our naïve player is defined in the same way as the random level0 player.  
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any type of the Level-K model. Moreover, with only one additional parameter compared 

to two in the often-used Level-K model with an optimal distribution of level1, level2 and 

level3, it reduces MSE by 23.45% (from MSE=35.93 to 28.39). 

Finally, we further test the robustness of our results by an alternative statistic method. Our 

econometric specification follows the mixture-of-types models of Stahl and Wilson (1994, 

1995).22 Both levelk and our NLK types are assumed to make logistic errors23 as described 

below. The decision rule suggests that the choice probabilities of type 𝑡  players are 

positively but imperfectly related to expected payoffs according to the beliefs specific for 

type 𝑡. Formally, denote the expected payoff for player 𝑖 of type 𝑡, given strategy 𝑠 by 

𝜋𝑖
𝑡(𝑠). Then the probability of observing 𝑠 by such players is specified as follows:  

𝑝𝑖
𝑡(𝑠) =

exp (𝜂𝜋𝑖
𝑡(𝑠))

∑𝑠′∈𝑆𝑖
exp  (𝜂𝜋𝑖

𝑡(𝑠′))
, 

where 𝑆𝑖 is the strategy set for player 𝑖 and 𝜂 is the parameter of precision. Specifically, 𝜂 

determines the sensitivity of choice probabilities to payoff differences.24 The Likelihood of 

observing sample {𝑠𝑖}𝑖=1
𝑁 , given type 𝑡 is 

𝐿𝑡({𝑠𝑖}|𝜂) = ∏ 𝑝𝑖
𝑡(𝑠𝑖)

𝑁

𝑖=1
. 

                                                 
22 The same econometric specification was also adopted by Costa-Gomes, Crawford and Broseta (2001), 

Camerer, Ho and Chong (2004), Costa-Gomes and Crawford (2006) and Crawford and Iriberri (2007). The 

error model is developed from Quantal Response Equilibrium (See, e.g., Goeree, Holt and Palfrey 2008), 

and discussed in Goeree and Holt (2001). 
23 Random level0 directly specifies a uniform distribution of decisions, and so has no precision parameter. Or 

it is equivalent by specifying the precision parameter to be 0 for a random level0 player.  
24 As 𝜂 goes to ∞, the probability of the optimal decision converges to 1. In other words, the choice is error-

free and fully characterized by the model under consideration. At the other extreme, as 𝜂 goes to 0, the choice 

probability converges to a uniformly random choice as that of the random level0 players. 
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 Let 𝛼𝑡 denote the proportion of type t in the population, with ∑ 𝛼𝑡 = 1𝑡 . The Likelihood 

of observing the sample unconditional on type is ∏ ∑ 𝛼𝑡𝑝𝑖
𝑡(𝑠𝑖).𝑡

𝑁
𝑖=1  

 

 

 

Action Log-Likelihood (LL) The precision parameter (𝜂) 

Level1  -233.97 
0.296

(0.039)
 

Level2  -226.245 
0.066

(0.009)
 

Level3  -221.215 
0.075

(0.010)
 

𝑙𝑒𝑣𝑒𝑙𝑘, 𝑘 = 1,2

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
 -218.093 

0.252
(0.052)

 

𝑙𝑒𝑣𝑒𝑙𝑘, 𝑘 = 1,2,3,

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
 -197.770 

0.207
(0.051)

 

NE  -230.035 
0.231

(0.046)
 

NLK 

(𝜆 = 0.85)
 -210.046 

0.359
(0.025)

 

Table 1.4. Comparison of different solution concepts by Maximum Log-Likelihood 

 

 

The result is reported in Table 1.4. With the error structure, the single type Level-K model 

with the best 𝑘∗ = 3 has both a smaller Log-likelihood and a precision parameter, LL=-

221.275, 𝜂 = 0.075  than those of NLK with the best 𝜆∗ = 0.85, 𝐿𝐿 = −210.046, 𝜂 =
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0.359. Moreover, NLK also performs better than the Level-K model with the optimal 

distribution of level1 and level2,25 LL=-218.093, 𝜂 = 0.252. However, if we allow the 

Level-K to have one more parameter than NLK, the result is different. NLK still have a 

higher precision but a lower Log-likelihood than the Level-K with the optimal distribution 

of level1, level2 and level3,26 LL=-197.770, 𝜂 = 0.207. 

4. The Centipede Game 

Introduced by Rosenthal (1981), the Centipede Game serves as an example where 

deviations from Backward Induction (or SPNE) seem reasonable.27 Following the bulk of 

literature, we study a version of the Centipede Game, where the total payout doubles when 

the game continues to the next stage, which subsumes the game in the experiment of both 

Palacios-Huerta and Volij (2009) and Levitt, List, and Sadoff (2011), as a special case 

(when there are six decision nodes). 

There are two players, A and B, with an initial pot worth $5. At Node 1, Player A moves 

and chooses either to stop the game (T) by taking 80% of the pot and leaving 20% of it to 

Player B or pass the game (P) to player B and doubling the pot. If Player A chooses P, then 

at Node 2, Player B faces a similar decision but with a pot now worth $10. Unless one of 

the players chooses T earlier, the game ends after 𝑆 = 2𝑁 stages, with Player B either 

choosing T, taking 80% of the pot and leaving the other 20% to Player A, or choosing P 

                                                 
25 It is estimated to be 85% level1 and 15% level2 types.  
26 It is estimated to be 46% level1, 24.45% level2 and 28.98% level3 types.  
27 For additional literature, see McKelvey and Palfrey (1992), Fey, McKelvey, and Palfrey (1996), Nagel and 

Tang (1998), Borstein, Kugler, and Ziegelmeyer (2004), and Rapoport, Stein, Parco, and Nicholas (2003). 

These papers show that even in high-stakes situations, involving altruism or group decisions, Backward 

Induction is still inadequate to explain players’ behavior. 
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and doubling the pot, with the result that 20% of the pot goes to Player B and 80% of it 

goes to Player A.  

The payoffs for Players A and B are ($22𝑘 , $2𝑠𝑘−2) if the game ends at an odd decision 

node, 2𝑘 − 1, and ($22𝑘−1, $2𝑠𝑘+1) if the game ends at an even decision node, 2𝑘, 𝑘 =

1, 2, … , 𝑁 − 1. By backward induction, the unique SPNE strategy profile is for Player A to 

play T at node 1; and off equilibrium, the active player always chooses T at each node.  

Following the dynamic Level-K model by Ho and Su (2013), it is equally likely that a 

level0 player will choose T or P at each decision node, and strategies of higher levels are 

generated from iterative best responses to a player of one level below. First, a level1 Player 

B would choose T at the last node.28 Denote the whole pie at each decision node as 𝑥. For 

a level1 Player A, paying T at Node (2𝑁 − 1) generates 
4𝑥

5
 , while playing P generates 

9𝑥

5
, 

so a level1 Player A would choose P at the decision Node (2𝑁 − 1).  

 

 

Role Threshold stage s The level of players 

Player A 2(𝑁 − ℎ) + 1 
𝑘 = 2ℎ 𝑜𝑟 2ℎ + 1
(1 ≤ ℎ ≤ 𝑁 − 1)

  

Player B 2(𝑁 − ℎ) + 2 
𝑘 = 2ℎ − 1 𝑜𝑟 2ℎ

(1 ≤ ℎ ≤ 𝑁)
 

*h is an auxiliary parameter for indicating the same threshold stage of two adjacent levels. 

Table 1.5. Threshold stage for different levels of players.  

                                                 
28 To end the game at Node 2𝑁, Player B gets payoff $22𝑁+1, while he only ends up with $22𝑁 if he 

chooses P instead 
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Table 1.5 summarizes the solution for the Level-K model for a game of length 𝑆 = 2𝑁. 

For a certain level of players (indicated in the second column), there exists a corresponding 

threshold stage (indicated in the first column). A levelk player chooses P before the 

threshold stage 𝑠∗, but T at stage 𝑠∗ and afterward. For example, in a six-stage game (𝑁 =

3), the threshold stage for a level3 (𝑘 = 3, ℎ = 1) Player A is 2(3 − 1) + 1 = 5. So a 

level3 Player A chooses P before Node 5 and T at Node 5.  

In addition, a Player A, at level 𝑘 = 2𝑁 or higher, and a Player B at 𝑘 = (2𝑁 − 1) or 

higher, ought to choose T at each decision node. The Level-K solution requires relatively 

high levels29 to rationalize terminating the game at earlier stages, especially for longer 

games, since the strategies of different level players are independent of the length of the 

game. For example, no matter how long the game is, a level1 Player A ought to keep passing 

to the last decision node, and no matter what the observed history is, a levelk player never 

updates his belief. 30 

Consider a simple version of our PBNLK with only symmetric beliefs, 0 < 𝜆 < 1. First, 

at the last stage, T is the best response for Player B regardless of his subjective belief about 

his opponents’ type. Now, assume that Player B first chooses T at Stage 2𝑛 and Player A 

                                                 
29 Table 1.5 also entails that to increase the level by just 1 would not necessarily predict earlier termination. 

Two adjacent levels of players might behave the same way.  
30  One may argue that the more general Cognitive Hierarchy (CH) solution concept would produce 

qualitatively different predictions. However, since beliefs put more weight on lower levels according to a 

Poisson distribution in CH and lower levels continue passing to later stages, an even higher level of players 

than in the Level-K model would be required to rationalize early termination. 
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plans to choose T at Stage (2𝑛 + 1). Then, at stage (2𝑛 − 1), Player A’s posterior belief 

of the opponent being level0 is  

(1.3)                    𝑝𝐴
𝜆(2𝑛 − 1) =

𝜆(
1

2
)

𝑛−1

𝜆(
1

2
)

𝑛−1
+(1−𝜆)

= [
(

1

2
)

𝑛−1

(
1

2
)

𝑛−1
+

(1−𝜆)

𝜆

] ∈ (0, 𝜆).  

If Player B plays T at Stage 2𝑛, then at Stage (2𝑛 − 1), Player A gets 
4𝑥

5
 by playing T, 

while by playing P now and then T at  (2𝑛 + 1) yields the expected payoff: 

[
𝑝𝐴

𝜆(2𝑛 − 1)

2
+ 1 − 𝑝𝐴

𝜆(2𝑛 − 1)]
2𝑥

5
+ 𝑝𝐴

𝜆(2𝑛 − 1)
1

2
×

4

5
× 4𝑥 =

2𝑥

5
+ 𝑝𝐴

𝜆(2𝑛 − 1)
7𝑥

5
 

Thus, Player A plays P whenever 
2

7
< 𝑝𝐴

𝜆(2𝑛 − 1) ≤ 1 and plays T otherwise. Moreover, 

since 𝑝𝐴
𝜆(2𝑁 − 1) decreases in 𝑁 for a given 𝜆, then, in a longer game, and NLK Player A 

(with a certain 𝜆) is more likely to play T at stage (2𝑁 − 1). This result is a key difference 

between NLK and the Level-K model where a level1 Player A always passes at stage 

(2𝑁 − 1) no matter how long the game is. Since 𝑝𝐴
𝜆(2𝑛 − 1)(≤ 𝜆) is strictly decreasing 

in 𝑛 and 𝑝𝐴
𝜆(2𝑛 − 1)𝑛→∞ = 0, then for 𝜆 ≤

2

7
, Player A would always play T, given that 

Player B plays T at the next sage. For 𝜆 >
2

7
, by continuity, there is a critical value 𝑛𝐴, such 

that 𝑝𝐴
𝜆(2𝑛 − 1) >

2

7
 for 𝑛 < 𝑛𝐴, and 𝑝𝐴

𝜆(2𝑛 − 1) ≤
2

7
 for 𝑛 ≥ 𝑛𝐴. 

Similarly, assume that Player A first chooses T at Stage (2𝑛 + 1), (𝑛 ≤ 𝑁 − 1) and Player 

B plans to choose T at stage (2𝑛 + 2). Then at Stage 2𝑛, Player B’s posterior belief that 

the opponent is level0 is  

𝑝𝐵
𝜆(2𝑛) =

𝜆 (
1
2

)
𝑛−1

𝜆 (
1
2

)
𝑛−1

+ (1 − 𝜆)

= 𝑝𝐴
𝜆(2𝑛 + 1). 
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This implies that the threshold stage for Player B, 𝑠𝐵
∗  is one stage earlier than that of Player 

A, 𝑠𝐴
∗, i.e., 𝑠𝐵

∗ = (2𝑛𝐵) = (2𝑛𝐴 − 1) − 1 = 𝑠𝐴
∗ − 1. 

We use these arguments to construct our PBNLK equilibrium. For 𝜆 = 0, the game ends 

at the first stage (the same result as in SPNE).31 For 𝜆 > 0, there are two possibilities. In a 

short game with a relatively larger  𝜆 satisfying 𝑝𝐴
𝜆(2𝑁 − 1) >

2

7
, Player A plays P to the 

end, and Player B first plays T at the last stage (the same result as when both players are 

level1). In a longer game with 𝑝𝐴
𝜆(2𝑁 − 1) ≤

2

7
, the game would end earlier. For similar 

arguments as in Kreps, Milgrom, Roberts, and Wilson (1982) paper,32 PBNLK must be in 

mixed strategies for this range of 𝜆. The reason is that in a presumed pure strategy PBNLK, 

and NLK player (who ought to play T earlier than the other player) would rather deviate in 

the first node she ought to play T and lay P instead. Doing so would mislead the other 

player to believe that he is facing a level0 player (as only a level0 player would have played 

P in the last node) and thus the other NLK player would play P.33  

We apply our model to experimental by Palacios-Huerta and Volij (2009) and Levitt, List, 

and Sadoff (2011) on the Centipede Game, where N=3 as in Figure 1.1. 

 

                                                 
31 The off-equilibrium path will not be reached by an NLK player (A or B) whether her opponent is another 

NLK player or a naive player. So, it is not restricted by Definition 1.4 of consistency. We assume that an 

NLK player believes the other NLK player would always play T off the equilibrium path. 
32 Inserting a “crazy” type even with a slight probability can rationalize long cooperation in the finitely 

repeated prisoners’ dilemma games.  
33 For example, consider the case when the threshold stage of Player B is 4 and it follows that of Player A is 

5. Now at Node 5, which is reachable for Player A when facing a level0 player, since Player B first choose T 

at 4 not 6, the belief 𝑃𝐴
𝜆(5) represented by Equation 1.3 no longer satisfies our consistency requirement. 

Upon reaching Node 5, by Bayes’ rule, an NLK Player A confirms that her opponent is a level0 player for 

sure, so she would pass instead. Thus, at decision Node 4, an NLK Player B has an incentive to pass with a 

positive probability to mimic the level0 player which motivates an NLK Player A to pass with a positive 

probability at decision Node 5, as well.  
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Figure 1.1. the centipede game 

 

 

The prediction of our PBNLK with all λ ∈ {0.05𝑛}𝑛=0,1,2,…,20 and the Level-K model with 

all k ∈ ℵ+ as well as data from the above-mentioned two papers are summarized in Table 

1.6. When λ = 0 , PBNLK coincides with SPNE and levelk, k ≥ 6 , and when λ ∈

[0.615, 1], PBNLK coincides with level1. For all other λ ∈ (0, 0.615), PBNLK generates 

different predictions. We first compare predictions to data from Palacios-Huerta and 

Volij’s laboratory experiment with four treatments. Unlike other experiments of the 

Centipede Game, in their work, the composition of two opponents varies 34  across 

treatments, and it is common knowledge among all players. This allows us to explore how 

belief represented by λ and the results change as the nature of the subject pool changes. 

Next, we compare predictions to data from Levitt, List and Sadoff’s field experiments of 

chess players to further evaluate the predictions of NLK, since the data are quite different 

from the former experiment data.  

                                                 
34 See Table 1.6 for detail. The two opponents are chess players or students. 
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Data or Prediction Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 

𝑁𝐿𝐾
(λ = 0)

or 
𝑙𝑒𝑣𝑒𝑙𝑘

(k ≥ 6)
 1* 1 1 1 1 1 

𝑁𝐿𝐾
(λ = 0.05)

 0 0.704 0.867 0.899 0.892 1 

𝑁𝐿𝐾
(λ = 0.1)

 0 0.375 0.877 0.889 0.938 1 

𝑁𝐿𝐾
(λ = 0.15)

 0 0.007 0.889 0.889 0.999 1 

𝑁𝐿𝐾
(λ = 0.2)

 0 0 0 0.844 0.879 1 

𝑁𝐿𝐾
(λ = 0.25)

 0 0 0 0.792 0.887 1 

𝑁𝐿𝐾
(λ = 0.3)

 0 0 0 0.732 0.895 1 

𝑁𝐿𝐾
(λ = 0.35)

 0 0 0 0.663 0.905 1 

𝑁𝐿𝐾
(λ = 0.4)

 0 0 0 0.583 0.916 1 

𝑁𝐿𝐾
(λ = 0.45)

 0 0 0 0.489 0.930 1 

𝑁𝐿𝐾
(λ = 0.5)

 0 0 0 0.375 0.946 1 

𝑁𝐿𝐾
(λ = 0.55)

 0 0 0 0.236 0.966 1 

𝑁𝐿𝐾
(λ = 0.6)

 0 0 0 0.0625 0.991 1 

 

Continued 

Table 1.6. Centipede game-prediction and data 
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Table 1.6 Continued 

 
𝑁𝐿𝐾   𝑜𝑟 𝑙𝑒𝑣𝑒𝑙1

(0.615 < λ ≤ 1)
 0 0 0 0 0 1 

𝑙𝑒𝑣𝑒𝑙2 0 0 0 0 1 1 

𝑙𝑒𝑣𝑒𝑙3 0 0 0 1 1 1 

𝑙𝑒𝑣𝑒𝑙4 0 0 1 1 1 1 

𝑙𝑒𝑣𝑒𝑙5 0 1 1 1 1 1 

Data** (S vs S) 
0.030 ∗∗∗

(200)
 

0.17
(194)

 
0.42

(161)
 

0.65
(93)

 
0.82
(33)

 
0.83
(6)

 

Data (S vs C) 
0.30

(200)
 

0.52
(140)

 
0.61
(67)

 
0.69
(26)

 
1.00
(8)

 - 

Data (C vs S) 
0.375
(200)

 
0.44

(125)
 

0.56
(70)

 
0.61
(31)

 
1.00
(12)

 - 

Data (C vs C) 
0.725
(200)

 
0.64
(55)

 
0.90
(20)

 
1.00
(2)

 - - 

Data****(Field) 
0.039
(102)

 
0.102
(98)

 
0.193
(88)

 
0.352
(71)

 
0.587
(46)

 
0.632
(19)

 

 
Note: * presents predicted probabilities of playing T at each node by the model. Columns correspond to the 

probability that a player is predicted to play T upon reaching that node. Odd nodes refer to Player A’s choices, 

while even nodes refer to Player B’s choices.  

** The data is from Palacios-Huerta and Volij (2009). S represents students and C represents chess players. 

S vs C represents the situation when Player A is a student and Player B is a chess player. The other way 

around, C vs S is when Player A is a chess player and Player B is a student.  

*** shows the distribution of implied stop probabilities for players in the Centipede Game. The number of 

opportunities observed is displayed in the parentheses below. 

**** The data is from the field Centipede Game of chess players by Levitt, List, and Sadoff (2011). 
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Referring to Ho and Su (2013), we define a measure, 𝐷(𝐻, 𝑀, 𝐺𝑆) to quantify the deviation 

of data, denoted by 𝐻, from the prediction of a model, denoted by 𝑀, in Centipede Game 

𝐺𝑆 with 𝑆 decision nodes as follows: 

𝐷(𝐻, 𝑀, 𝐺𝑆) = ∑ 𝑤𝑠
𝐻𝑑𝑠(𝑝𝑠

𝐻 , 𝑝𝑠
𝑀)𝑆

𝑠=1  , 𝑤𝑠
𝐻 =

𝑛𝑠
𝐻

∑ 𝑤𝑘
𝐻𝑆

𝑘=1
 , 𝑑𝑠(𝑝𝑠

𝐻 , 𝑝𝑠
𝑀) = |𝑝𝑠

𝐻 − 𝑝𝑠
𝑀|, 

Where 𝑛𝑠
𝐻 is the number of observations at each stage, given by data 𝐻, 𝑑𝑠(𝑝𝑠

𝐻 , 𝑝𝑠
𝑀) is the 

distance of stopping probabilities at stage s between data 𝐻 and the prediction of model M 

measured by their absolute difference |𝑝𝑠
𝐻 − 𝑝𝑠

𝑀|. 

Table 1.7 presents the result of 𝐷(𝐻, 𝑀, 𝐺𝑆) for our PBNLK and the Level-K model with 

5 different data sets above. In the lab experiments when opponents are students (Column 

2), PBNLK with λ = 0.35 gives the most precise prediction (𝐷 = 0.1625), which is better 

than the best prediction of the single type Level-K model (𝑘 = 3, 𝐷 = 0.2127); in the 

treatment when chess players and students play with each other (Column 3 and 4), PBNLK 

with λ = 0.1 fits the data the best (𝐷𝑆 𝑣𝑠 𝐶 = 0.2361, 𝐷𝐶 𝑣𝑠 𝑆 = 0.2619  ), which is more 

accurate than the Level-K model with an optimal 𝑘 = 4  (𝐷𝑆 𝑣𝑠 𝐶 = 0.3787, 𝐷𝐶 𝑣𝑠 𝑆 =

0.3947  ); when the opponents are chess players, the best fit goes to the case when PBNLK 

(λ = 0), SPNE and the levelk type, (𝑘 ≥ 6) coincide (𝐷 = 0.2773). For the field data, 

PBNLK with λ = 0.5 gives the most precise prediction (𝐷 = 0.1323), which is more 

accurate than the best prediction of the Level-K model with an optimal 𝑘 = 2   (𝐷 =

0.1933). Moreover, in all 5 datasets, the optimal PBNLK performs better than the Level-

K with an optimal distribution of level1 and level2 types. When we allow the Level-K model 

to have one more parameter, the optimal PBNLK still performs better the Level-K with an 
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optimal distribution of level1, level2 and level3 in three datasets (Column 2, 3, 4) except for 

the lab experiments when opponents are students and the field data.  

 

 

Models 

Data  

(S vs S) 

Data  

(S vs C) 

Data  

(C vs S) 

Data  

(C vs C) 

Data 

(Field) 

𝑁𝐿𝐾
(λ = 0)

or 
𝑙𝑒𝑣𝑒𝑙𝑘

(k ≥ 6)
 0.7102 0.5474 0.5431 0.2773#∗ 0.7760 

𝑁𝐿𝐾
(λ = 0.05)

 0.3016 0.2478 0.3191 0.5393 0.4296 

𝑁𝐿𝐾
(λ = 0.1)

 0.2132 0.2361# 0.2619# 0.5785 0.3589 

𝑁𝐿𝐾
(λ = 0.15)

 0.2071 0.3536 0.3672 0.6500 0.3269 

𝑁𝐿𝐾
(λ = 0.2)

 0.1857 0.4051 0.4062 0.7166 0.2036 

𝑁𝐿𝐾
(λ = 0.25)

 0.1791 0.4019 0.4023 0.7170 0.1946 

𝑁𝐿𝐾
(λ = 0.3)

 0.1714 0.3982 0.3978 0.7175 0.1866 

𝑁𝐿𝐾
(λ = 0.35)

 0.1625# 0.3971 0.3927 0.7181 0.1761 

𝑁𝐿𝐾
(λ = 0.4)

 0.1703 0.4016 0.3905 0.7185 0.1638 

𝑁𝐿𝐾
(λ = 0.45)

 0.1837 0.4069 0.3968 0.7192 0.1497 

Continued 

Table 1.7. Centipede game-prediction for different models 
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Table 1.7 Continued 

 
𝑁𝐿𝐾

(λ = 0.5)
 0.1999 0.4134 0.4044 0.7200 0.1323# 

𝑁𝐿𝐾
(λ = 0.55)

 0.2197 0.4212 0.4137 0.7210 0.150 

𝑁𝐿𝐾
(λ = 0.6)

 0.2444 0.4310 0.4253 0.7222 0.1818 

𝑁𝐿𝐾   𝑜𝑟 𝑙𝑒𝑣𝑒𝑙1

(0.615 < λ ≤ 1)
 0.2840 0.4526 0.4569 0.7227 0.2121 

𝑙𝑒𝑣𝑒𝑙2 0.2533 0.4345 0.4295  0.7227      0.1933* 

𝑙𝑒𝑣𝑒𝑙3 0.2127* 0.4121 0.4139  0.7155    0.2428 

𝑙𝑒𝑣𝑒𝑙4 0.2502 0.3787* 0.3947*  0.6578    0.3703 

𝑙𝑒𝑣𝑒𝑙5 0.4366 0.3660 0.4290  0.6022   0.5540 

𝑙𝑒𝑣𝑒𝑙𝑘, 𝑘 = 1,2

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
 0.2446 0.4345 0.4295 0.7227    0.1484 

𝑙𝑒𝑣𝑒𝑙𝑘, 𝑘 = 1,2,3,

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
 0.1567 0.3946 0.3872 0.7155    0.0895 

Note: * and # indicate the best prediction of a single type Level-K and NLK, respectively.  

 

 

Our solution concept provides an alternative explanation for scenarios where neither the 

original Level-K model nor backward induction applies. Note that we constrained NLK by 

using only symmetric beliefs. However, it is reasonable for each group to have a different 

subjective λ in cases where students interact with chess players, wherein we conjecture that 
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our solution concept would perform even better when allowing for heterogeneous beliefs, 

but accounting for additional parameters.  

 

5. Common Value Auction 

Avery and Kagel (1997, AK afterward) conducted a laboratory experiment using a 

Common-Value, Second Price Auction, the Wallet Game. In their design, there are two 

bidders, 𝑖 = 1,2, each privately observes a signal 𝑋𝑖  that is drawn i.i.d from a uniform 

distribution on [1, 4]. The common value is the sum of the two private signals, that is, 

𝑣𝑖(𝑥1, 𝑥2) = 𝑣(𝑥1, 𝑥2) = 𝑥1 + 𝑥2. Let 𝑣(𝑥, 𝑦) = 𝑥 + 𝑦, and r(x) = x + E[𝑋2] = 𝑥 + 2.5. 

𝑣(𝑥, 𝑥) = 2𝑥 is the unique symmetric BNE.35 In fact, with just two bidders, the strategy 

𝑏(𝑥) = 𝑣(𝑥, 𝑥) = 2𝑥, is an ex-post equilibrium—independent of signals’ distribution and 

risk attitude and with no regret. AK defines Naïve bidding by 𝑟(𝑥) = 𝑥 + 2.5, representing 

a naïve bidder who assumes that whenever she wins, the other bidder’s signal is at its 

expected value (2.5). It turns out that 𝑟(𝑥) is also the level1 player’s strategy in Crawford 

and Iriberri (2007, CI afterward), the best response to a level0 player who bids uniformly 

randomly on [1, 4]. We denote by 𝑏𝜆(∙) the strategy in a 𝜆-BNLK equilibrium and solve 

the symmetric linear strategy. (The detail is provided in Appendix A.2.) 

The data produced by AK is evaluated using the CE by Eyster and Rabin (2005) and the 

Level-K by Crawford and Iriberri (2007). Eyster and Rabin show that for any cursed level, 

0 < χ ≤ 1, their CE predicts better than BNE (i.e. CE with χ = 0) and that for a given χ, 

                                                 
35 Refer to Milgrom and Weber (1982). 
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CE fits better for experienced, rather than for inexperienced subjects, with respect to the 

Mean Squared Error (MSE). For data on only inexperienced bidders, CI use the Level-K 

with a logistic error structure and a subject-specific precision. They compare their model 

using the best mixture of 5 types, including random level1 and level2,36 truthful level1 and 

level2,
37 and BNE players and show that it outperforms CE (with the best mixture of types, 

such that χ ∈ {0.1, 0.2, … ,0.9,1.0}), using both likelihood and the Bayesian Information 

Criterion (BIC).38 

Table 1.8 compares the prediction of 𝜆-BNLK (with all 𝜆 ∈ {0.05n}𝑛=0,1,2,…,20) and the 

Level-K model. As shown, the optimal bidding of a level2 player already reduces to a 

boundary solution (the objective function becomes a linear function), where all bidders 

with a value lower than 2.5 bid 3.5 and the others (with a value higher than 2.5) bid 6.5. 

For a level3 player, when her signal is smaller than 2.5, she bids any number below 3.5, 

(expecting to lose), while bidding any number above 6.5 when her signal is larger than 2.5 

(expecting to win). The predictions are ambiguous for higher levels. In contrast, there 

always exists a symmetric linear strategy for our 𝜆-BNLK players.  

 

 

 

                                                 
36 Random level1 and level2 are generated iteratively by best responding to a random level0, as considered 

in this paper. 
37 Truthful level1 and level2 are generated iteratively by best responding to a ruthful level0 who always bids 

her signal: 𝑏(𝑥) = 𝑥. 
38 BIC penalize models with more parameters to adjust the likelihood.  
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Models 𝑏(𝑥) 

MSE  

(inexperienced) 

MSE  

(experienced) 

𝑁𝐿𝐾
(λ = 0)

or NE 2x 2.897 1.171 

𝑁𝐿𝐾
(λ = 0.05)

 1.951x+0.122 2.823 1.124 

𝑁𝐿𝐾
(λ = 0.1)

 1.904x+0.239 2.756 1.082 

𝑁𝐿𝐾
(λ = 0.15)

 1.859x+0.352 2.693 1.042 

𝑁𝐿𝐾
(λ = 0.2)

 1.815x+0.462 2.634 1.010 

𝑁𝐿𝐾
(λ = 0.25)

 1.772x+0.570 2.579 0.978 

𝑁𝐿𝐾
(λ = 0.3)

 1.730x+0.676 2.531 0.953 

𝑁𝐿𝐾
(λ = 0.35)

 1.688x+0.781 2.484 0.927 

𝑁𝐿𝐾
(λ = 0.4)

 1.646x+0.886 2.440 0.906 

𝑁𝐿𝐾
(λ = 0.45)

 1.604x+0.990 2.396 0.889 

𝑁𝐿𝐾
(λ = 0.5)

 1.562x+1.096 2.356 0.872 

𝑁𝐿𝐾
(λ = 0.55)

 1.519x+1.203 2.320 0.859 

𝑁𝐿𝐾
(λ = 0.6)

 1.475x+1.313 2.286 0.848 

 

Continued 

Table 1.8. Model comparison for the wallet game. 
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Table 1.8 Continued 
𝑁𝐿𝐾

(λ = 0.65)
 1.430x+1.426 2.250 0.840 

𝑁𝐿𝐾
(λ = 0.70)

 1.383x+1.543 2.220 0.835 

𝑁𝐿𝐾
(λ = 0.75)

 

1.333x++1.66

7 

2.190 0.834* 

𝑁𝐿𝐾
(λ = 0.80)

 1.281x+1.798 2.164 0.835 

𝑁𝐿𝐾
(λ = 0.85)

 1.224x+1.940 2.137 0.843 

𝑁𝐿𝐾
(λ = 0.90)

 1.161x+2.098 2.117 0.857 

𝑁𝐿𝐾
(λ = 0.95)

 1.088x+2.280 2.097 0.882 

𝑁𝐿𝐾
(λ = 1)

or level1 x+2.5 2.085#∗ 0.922#∗ 

level2 {
3.5 𝑖𝑓 𝑥 < 2.5
6.5 𝑖𝑓 𝑥 > 2.5

 2.955 1.381 

Level3 {
< 3.5 𝑖𝑓 𝑥 < 2.5
> 6.5 𝑖𝑓 𝑥 > 2.5

 -  

Data (inexperienced) 
0.997

(0.079)
x+

2.950
(0.203)

 1.899  

Data (experienced) 
1.313

(0.053)
x+

2.023
(0.150)

 - 0.745 

 

 

Table 1.8, Figure 1.2 and Figure 1.3 show that for inexperienced bidders (results from the 

first 18 periods), the most accurate prediction of BNLK is with 𝜆 = 1, and it coincides with 
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level1 (MSE39=2.085). For experienced bidders (results from periods 19-42). BNLK with 

𝜆 = 0.75  fits the data the best (𝑀𝑆𝐸 = 0.834)  which is better than the most precise 

prediction of the Level-K (𝑘 = 1, 𝑀𝑆𝐸 = 0.922). 

 

 

 

Figure 1.2. MSE of BNLK with different λ: inexperienced bidders. 

 

                                                 
39 We choose the value of 𝜆 that minimizes the Mean Squared Errors (MSE), that is, the nonlinear least 

squares estimate of 𝜆. 
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Figure 1.3. MSE of BNLK with different λ: experienced bidders. 

 

 

6. Discussion and Possible Extension 

A possible extension of our model is to consider distributions of different naïve players in 

the spirit of Cognitive Hierarchy by Camerer, Ho, and Chong (2004). For example, now 

let 𝜆 be the prior belief that the opponents are naïve players. Let 𝐺(ℎ|𝑁𝑎𝑖𝑣𝑒), ℎ ≤ 𝑘, be 

the probability that the opponent is type ℎ, conditional on being a naïve player. Then the 

probability that the opponent is type ℎ is 𝜆 𝐺(ℎ|𝑁𝑎𝑖𝑣𝑒), and (1 − 𝜆) for being another 

NLK player.  

Allowing heterogeneous beliefs is natural and may help predictions in situations where 

players, who are known to belong to groups with different sophistication levels, interact 

with each other. For example, in the Centipede Game above, in the treatment where 
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students play with expert chess players, it is reasonable to expect them to have different 

subjective beliefs (𝜆). Thus, we could apply NLK with different types of players (with 

different subjective  𝜆 ) to analyze such scenarios. Furthermore, an NLK player might 

rationally expect her NLK opponents to hold different subjective beliefs from her. Let 𝜆𝑖 

be player 𝑖’s belief regarding the probability that the opponent is a naïve player. Then, we 

could re-define the NLK equilibrium as follows 

Definition 1.6. A mixed-strategy profile {𝜎𝑖
∗}𝑖=1,2, is a 𝜆-NLK equilibrium if for each 𝑖 =

1,2, and each 𝑠𝑖
′ ∈ 𝑆𝑖, 

𝜆𝑖𝑢𝑖(𝜎𝑖
∗, 𝜎−𝑖

0 ) + (1 − 𝜆𝑖)𝑢𝑖(𝜎𝑖
∗, 𝜎−𝑖

∗ ) ≥ 𝜆𝑖𝑢𝑖(𝑠𝑖
′, 𝜎−𝑖

0 ) + (1 − 𝜆𝑖)𝑢𝑖(𝑠𝑖
′, 𝜎−𝑖

∗ ), 

Where 𝜆 = ( 𝜆𝑖)𝑖=1,2. 

Our solution concept can easily be extended to games with more than two players. For 

example, with 𝑁 players in the game, the probability of 𝑛 players, 𝑛 = 0,1, … , (𝑁 − 1) 

being a naïve player can be described by the Binominal distribution, 

𝑝𝜆(𝑛) = 𝐶𝑁−1
𝑛 𝜆𝑛(1 − 𝜆)𝑁−1−𝑛, 

where 𝐶𝑁−1
𝑛  is the binomial coefficient. 

Comparing across the applications to experimental data, it appears that a good fitting 𝜆 

depends on the games and players. It is beyond the scope of this paper to identify criteria 

when we should expect a large or a small 𝜆.40 We leave this topic for future research. 

                                                 
40 In general, our intuition and limited evidence in the current paper suggest that we should expect a larger 

𝜆 for less experienced players or a simpler game.  
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7. Conclusion 

This paper proposes a new solution concept, NLK that connects NE and the Level-K. It 

allows a player to believe that her opponent may be either less- or as sophisticated as she 

is, a view with support in psychology. NLK is well-defined in both static and dynamic 

games, making it easy to apply to the data from four published papers on static, dynamic, 

and auction games. In all four cases, NLK provides better predictions than those of NE and 

the Level-K, except for few cases when they coincide or when we allow the Level-K to 

choose freely more parameters.  
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Chapter 2.  Partition Obvious Preference or Mistrust in Mechanism Design-

Theory  

1. Introduction 

In theory, a dominated strategy is inferior regardless of what other players 

contemplate or do. However, substantial evidence in field, lab and thought 

experiments in multiple disciplines, shows that decision makers often eccentrically 

choose a dominated strategy. The long list of literature includes: (1) the deviations 

from truthful-reporting in Strategy-proof Mechanisms such as School Choice and 

College Admission (Chen and Sönmez 2006; Fack et al. 2015; Gross et al. 2015, 

Artemov et al. 2017; Chen and Pereyra 2017; Shorrer and Sóvágó 2018), Matching 

Program (Hassidim et al. 2017, 2018; Rees-Jones 2018), Public Goods (Attiyeh 

2000), and Auctions (Kagel et al. 1987; Kagel and Levin 1993; Harstad 2000; 

Garratt et al. 2011);41 (2) Behavioral and field experiments in various games and 

decision problems in economics (Dawes 1980; Dawes and Thaler 1988; Charness 

                                                 
41 Being a worse response under any subjective beliefs implies that the choice of it cannot be 

explained by models that relax beliefs in equilibrium, such as Analogy-Based Expectation 

Equilibrium (Jehiel 2005), the Level-K (Stahl and Wilson 1994, 1995; Nagel 1995; Crawford and 

Iriberri 2007) and Cursed Equilibrium (Eyster and Ragin 2005). For the same reason, Anticipated 

Regret (Filiz-Ozbay 2007; Engelbrecht-Wiggans 2007), proposed to explain overbidding in First 

Price auctions cannot account for the insincere bidding in private-value Second Price auctions, 

where bidding one’s value is a dominant strategy.  
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and Levin 2009; Esponda and Vespa 2014; Bhargava et al 2015); (3) Disjunction 

Effect in Psychology (Shafir and Tversky 1992) ; (4) Newcomb’s Paradox in 

Philosophy and Mathematics (Robert Nozick 1969). Moreover, experimental 

evidence shows that the choices of dominated strategies in mechanisms such as 

single and multi-unit Vickrey auctions abate significantly in their counterparts 

(Kagel, Harstad, and Levin 1987, Kagel and Levin 2009). 

Aiming at bridging the ironic gap between theory and evidence, in this chapter, we 

focus on answering the following two research questions: (1) How to provide a 

unified framework that ties together above empirical evidence?42 (2) What’re its 

implications for (experiment) mechanism design? 

We start with generalizing the current decision theory for three reasons. First, the 

choice of dominated strategies is not only found in games but also decision 

problems, implying violations of fundamental axioms in decision theory43. Second, 

since dominated strategy is non-optimal regardless of what others contemplate or 

do, to figure out its inferiority in games reducing to an individual optimization 

problem. Finally, as stated and supported by empirical evidence in Esponda and 

Vespa (2017), decision problems share a common ground with strategic choices in 

                                                 
 
43 The decision maker who satisfies the axioms of Subjective Expected Utility Theory (Savage 1954; 

Anscombe and Autumn 1963; Fishburn 1970), or even weaker axioms proposed in Ambiguity 

models (Schmeidler and Gilboa 1989; Gilboa and Marinacci 2011), ought not to choose a dominated 

strategy, due to the monotonicity axiom. 
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terms of hypothetical thinking, i.e. to perform state-by-state reasoning, which is 

critical for the success in spotting a dominated strategy. 

We propose two alternative axiomatic approaches. In both approaches, decision 

makers partitioning the state space into events can reason event-by-event, but not 

state-by-state within each event. The coarser the partition is, the more bounded 

rational the decision maker is. Using a metaphor, “can’t reason state-by-state” is 

like Heraclitus’ famous quote “no man can jump into the same river twice;” while 

“can reason event-by-event” is like that “the man can be sure if he is in or out of 

the water.”  

Our two approaches differ in primitives. The first approach starts with the state 

space and the set of outcomes, and act is defined as a mapping from the state space 

to the set of outcomes. We then propose Partition Obvious Preference (POP) that 

generalizes Subjective Expected Utility Theorem (Savage 1954, Anscombe and 

Autumn 1963, Fishburn 1970), and embeds it as an extreme case when the partition 

is the finest. Specifically, we envision that decision makers partition the state space 

into events, where for each event, they value each act as the weighted average of 

the most and the least preferred outcomes, then form subjective expected 

probabilities over the partition, and choose the action that gives the highest 

subjective expected utility. Our POP contributes to the broad literature on limited 

human cognition and its impact on economic decisions. It develops and illustrates 

a distinct approach by focusing on a deficiency in contingent reasoning under 
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uncertainty, other than incorrect probability judgment (e.g., Kahneman and 

Tversky 2000)44 and previously reported violations of Expected Utility Theory.45  

Moreover, although the general idea that a decision maker has a coarse vision of 

the state-space appears in research in psychology (see e.g., Tversky and Koehler 

1994), ambiguity, and non-additive probabilities (Schmeidler 1989, Epstein et al. 

2007, Ghirardato 2001, Mukerji 1997, Ahn and Ergin 2010, Burkovskaya 2018), 

formation of subjective state-space (Kreps 1992, Dekel et al. 2001), and growing 

awareness (Karni and Marie-Louise 2013), these papers mainly focus on the 

formation of subjective probabilities over the state-space, while ours first proposes 

a weakening of the monotonicity axiom based on such a coarser understanding of 

the state-space. 

The first approach goes in line with the standard approach in decision theory but 

seemly imposes unnecessary controls on its practical use. For instance, in a field or 

lab experiment, there is usually a set of available choice for consideration. The 

decision maker does not have to consider all abstract acts when he makes choice. 

Thus, we also propose an alternative approach that instead starts with the set of 

                                                 
44 The subjects’ inability to make correct probability judgment in a risk environment includes 

overestimation of small probabilities, failure of Bayesian updating and representative bias, 

conjunction fallacy, etc. 
45 To accommodate experimental evidences of the violation of Expected Utility Theory, especially 

the violation of the independent axiom (Allais 1953), several theories were introduced as alternatives. 

Prominent in those are Rank-dependent utility models (Quiggin 1982; Yaari 1987; Hong et al. 1987; 

Green and Jullien 1988), Betweenness Conforming theories (Chew and MacCrimmon 1979; 

Fishburn 1983; Dekel 1986; Gul 1991), Prospect Theory (Kahneman and Tversky 1979) and Regret 

Theories (Bell 1982; Loomes 1982). 
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available actions and the set of outcomes, and, in each event, the new conceivable 

state space is defined as a mapping from the set of available actions to the set of 

outcomes. We then show that to meet the monotonicity axiom in the new problem 

with conceivable state space is equivalent to meet a weaker axiom, partition 

obvious monotonicity in the original problem. We illustrate by some simple 

examples how each approach characterizes the choice of dominated strategies 

found in decision problems. 

Based on the two axiomatic approaches, we then characterize the choice of 

dominated strategies in dynamic games. Notably, in an insightful paper, Li (2017) 

proposed Obviously Strategy-Proof (OSP) Mechanism which has an equilibrium in 

obviously dominant strategy (ODS). Li (2017) also design several experiments that 

document the decrease in choice of dominated strategies in mechanisms with ODS 

than in mechanisms with just DS. But does there exist some intermediate concept 

that fully characterizes levels of bounded rationality from being able to spot ODS 

to being able to spot DS? To answer this question, we define Partition-ODS which 

coincides with ODS, at one polar case, when the partition is the coarsest, and at the 

other polar case, when the partition is the finest, it coincides with DS. We prove 

two propositions. First, we show that a strategy is partition obviously dominant if 

and only if all POP prefers it to any deviating strategy at any reachable information 

set. According to our characterization, the set of POP enlarges when the partition 

gets coarser and when decision makers who are more bounded rational were taken 
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into consideration. So, it’s beneficial to seek a mechanism with DS that is also 

obviously dominant respect to a coarser partition, because it helps bounded rational 

players who reason in a coarser partition and thus could decrease the eccentrical 

choice of dominated strategies. 

 

 

 

Figure 2.1. POP and Partition-ODS 

 

 

Besides the failure to identify DS, the choice of dominated strategies might also be 

due to mistrust in the market maker.  Gross et al. (2015) and Hassidim et al. (2017) 

document the evidence that respondents doubt the veracity of the Strategy-proof 

Mechanism in Israeli Psychology Master’s Match and school choice in Denver and 

New Orleans. Can Partition-ODS help mitigate the problem of mistrust? We first 

define partition identical game as a game that is indistinguishable from the original 
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game under auditing measurable respect to the partition. Based on the second 

axiomatic approach, we prove that a strategy is partition obviously dominant if and 

only if it is dominant in all partition identical games. That is, in a mechanism with 

Partition-ODS, if each player could verify which event of the partition is realized, 

the player has no incentive to choose an alternative dominated strategy even if he 

doubts that the market marker might use another identical game to implement the 

result. Thus, in a mechanism with Partition-ODS under relevant auditing, to trust 

the market maker is strategically rational.46 Moreover, when the partition is coarser, 

less information is needed to be verified, which reduces the auditing cost. 

Particularly, when the partition is the coarsest, no auditing is needed, and the 

mechanism is OSP. However, in general, in a Strategy-proof Mechanism with no 

auditing, it might not be strategically rational to trust the market maker and report 

truthfully. 

A literature has characterized several impossibility results for OSP mechanism in 

general.47 Our theory thus provides a second-best choice when an implementation 

in ODS is not feasible. For instance, an OSP implementation for a multi-unit 

Vickrey (1961) auction does not exist. However, Kagel and Levin (2009) document 

                                                 
46 Although it might not be epistemically rational (Baker 1987).  
47 An implementation in ODS rarely exists. Li (2017) proves that no top trading cycle rule with more 

than three agents can be implemented by an OSP mechanism. Ashlagi and Gonczarowski (2017) 

show that for general preferences, no mechanism that implements a stable matching is OSP. Pycia 

(2018) finds that Random Priority is the unique mechanism that is OSP, ex-post Pareto efficient, 

and symmetric. Bade and Gonczarowski (2017) characterize a similar limitation in applications of 

OSP mechanisms in dictatorship mechanisms, house matching, and multi-unit auctions. 
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a significantly higher rate of sincere bidding in an Ausubel (2004) Auction, which 

is strategically equivalent to the multi-unit Vickrey auction when we restrict the 

strategy set to cut-off strategies. Notably, when considering the partition by 

“clinching prices,” coined by Ausubel, sincere bidding is partition-ODS in the 

Ausubel auction but not in the Vickrey auction. Thus, by our theory, Ausubel 

auction help bounded rational agents who reason in a coarser partition and agents 

who mistrust the market maker converse to sincere bidding.  

As a by-product, we show that an implementation using a partition-ODS of an 

extensive game is equivalent to an implementation through an iterative exclusion 

of obviously dominated misreport in a direct mechanism with a specified guide. 

Thus, we also join the literature that explains why a dynamic mechanism might 

perform better than its strategically equivalent static mechanism.48  

Empirically, do games and decision problems with a choice that partition obviously 

dominate others significantly diminish the choice of dominated choice? We test and 

verify our theoretical implication by a simple laboratory experiment with both 

cross-subject and within-subject comparison by a cross-over design. 

In Section 2, we present our two axiomatic approaches. In Section 3, we extend our 

results to games, define partition obviously dominant strategy and address its 

application to mechanism design. In Section 4, we propose one possible extension 

                                                 
48 In the same spirits, but in a discussion of a stronger solution concept in game theory, Glazer and 

Rubinstein (1996) show that an extensive game can be viewed as a guide for a solving normal form 

game.  
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of our concept to games without a dominant strategy, where we define Partition 

Obvious Equilibrium.  

2. Two Axiomatic Approaches 

Denote by 𝒳 a set of deterministic outcomes and by 𝒵 a set of distributions over 

𝒳 with finite supports, i.e., 𝒵 is a collection of random outcomes. Let Ω denote the 

finite state space of all states, 𝜔 ∈ Ω; and let 𝒜  denote the set of all available 

actions, 𝑎 ∈ 𝒜. Denote by 𝜊: 𝒜 × Ω → 𝒵 the outcome function; and by 𝒪(𝑎) the 

set of outcomes induced by action 𝑎.  

Definition 2.1. (partition) 𝛴 = (ℬ𝑘)𝑘=1
𝑛  is a finite partition of 𝛺 if ∪𝑘=1

𝑛 ℬ𝑘 = 𝛺 

and ℬ𝑖 ∩ 𝐵𝑗 = ∅, when 𝑖 ≠ 𝑗.49 

2.1. Partition Obvious Preference 

Let ℱ denote the set of all acts, 𝑓: Ω → 𝒵; and by ℱ𝑐  the set of constant acts in ℱ. 

The first two axioms are standard in decision theory.  

AXIOM 1. (weak order) ≿ is complete and transitive.  

AXIOM 2. (non-degeneracy) there are 𝑓, 𝑔 ∈ ℱ, such that 𝑓 ≻ 𝑔.  

Denote by 𝒪ℬ(𝑓) the set of all possible outcomes induced by act 𝑓 given event ℬ. 

The next axiom generalizes the standard monotonicity axiom. 

                                                 
49 For simplicity, we only consider the case where each ℬ𝑘 is a non-null event.  
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AXIOM 3. (partition monotonicity) for any 𝑓, 𝑔 ∈ ℱ, if for each  ℬ ∈ Σ, we have, 

for all 𝑝 ∈ 𝒪ℬ(𝑓), 𝑞 ∈ 𝒪ℬ(𝑔),  𝑝 ≿ 𝑞, then 𝑓 ≿ 𝑔;In addition, if for a non-null 

event ℬ′ ∈ Σ, we have for all 𝑝 ∈ 𝒪ℬ′(𝑓), 𝑞 ∈ 𝒪ℬ′(𝑔),  𝑝 ≻ 𝑞, then 𝑓 ≻ 𝑔 . 

The partition monotonicity requires the decision maker to compare outcomes of 

two acts event-by-event, but not state-by-state within each event of the partition, 

as in the standard monotonicity axiom.  

The following definition of mixed acts is standard in the literature.  

Definition 2.2. (mixed acts) for any 𝑓, ℎ ∈  ℱ , 𝜆 ∈ [0,1] , and 𝜔 ∈ 𝛺 , [𝜆𝑓 +

(1 − 𝜆)ℎ](𝜔) ≡ 𝜆𝑓(𝜔) + (1 − 𝜆)ℎ(𝜔). 

Definition 2.3. (partition measurable act) ℱ𝑐(𝛴) is the set of acts that is constant 

in each event ℬ of the partition 𝛴. (The set of acts that is measurable with respect 

to the partition.) 

The implication of Definitions 2.2 and 2.3: to understand the concept of mixed acts, 

it’s enough to reason by Partition Σ for the Σ-measurable act, but the reasoning in a 

finer partition is required for other acts.  

The next two axioms generalize the continuity and independence axioms by 

imposing them on mixed acts of only partition measurable acts.  

AXIOM 4. (partition continuity) for any act 𝑔 ∈ ℱ and any two acts 𝑓, ℎ ∈ ℱ𝑐(𝛴) 

such that 𝑓 ≻ 𝑔 ≻ ℎ, there are 𝜆, 𝛽 ∈ (0,1) such that 𝜆𝑓 + (1 − 𝜆)ℎ ≻ 𝑔 ≻ 𝛽𝑓 +

(1 − 𝛽)ℎ. 
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AXIOM 5. (partition independence) for any three acts 𝑓, 𝑔, ℎ ∈ ℱ𝑐(Σ) and any 

𝜆 ∈ (0,1], 𝑓 ≻ 𝑔 implies that 𝜆𝑓 + (1 − 𝜆)ℎ ≻ 𝜆𝑔 + (1 − 𝜆)ℎ. 

Hence, partition continuity and partition independence are analogous to the 

continuity and independence axioms without request the decision maker to reason 

in an even finer partition.  

Definition 2.4. (partition indifferent act) ℱ𝑒(𝛴) = {𝑓 ∈ ℱ|𝑝~𝑞 𝑓𝑜𝑟 𝑎𝑛𝑦 ℬ ∈

𝛴 𝑎𝑛𝑑 𝑎𝑛𝑦 𝑝, 𝑞 ∈ 𝒪ℬ(𝑓)} is the set of acts that generate indifferent outcomes in 

each event ℬ of the Partition Σ. 

Theorem 1. (partition obvious preference) Σ = (ℬ𝑘)𝑘=1
𝑛  is a partition given 

exogenously. Let ≿ be a binary relation defined on ℱ. The following conditions are 

equivalent: 

(i) ≿ satisfies Axiom 1-5. (We call such preferences Σ −Obvious Preference) 

(ii) there exist a non-constant affine function 𝑢: 𝒵 → ℝ, a probability function 

𝑃: Σ → [0,1]  and a function 𝛼: ℱ → [0,1]  such that ≿  is represented by the 

preference functional 𝑉: ℱ → ℝ given by 

(2.1) 𝑉(𝑓) = ∑ 𝑉(𝑓|ℬ𝑘)𝑃(ℬ𝑘)𝑛
𝑘=1 , 

where 

(2.2) 𝑉(𝑓|ℬ) = 𝛼(𝑓) max
𝑝∈𝒪ℬ(𝑓)

𝑢(𝑝) + [1 − 𝛼(𝑓)] min
𝑞∈𝒪ℬ(𝑓)

𝑢(𝑞). 

That is, for all 𝑓, 𝑔 ∈ ℱ, 𝑓 ≿ 𝑔 if and only if 𝑉(𝑓) ≿ 𝑉(𝑔). 
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Furthermore: 

(a) The function 𝑢 in (ii) is unique up to positive affine transformation; 

(b)The probability function 𝑃 is unique; 

(c) 𝛼 is unique on ℱ with the exclusion of ℱ𝑒(Σ).50 

Proof. See Appendix B.1.  

Example 1. Consider the matrix game with incomplete information in Figure 1. 

There are three possible states of nature: A, B, and C. The computer randomly 

draws one, which is unknown to both players, each with a probability of 1/3. Each 

player chooses between R and L and the payoff table is shown in three matrices. 

Each decision maker is randomly matched with a player who is drawn from the 

pool of subjects who played the same game in pairs. The payoff of the decision 

maker thus depends on his choice, the states of nature, and the strategy chosen by 

his opponent in the past. The state space in this decision problem is a cross product 

of states of nature {A, B, C} and choices of the other player {L, R}. Given each 

case (A, B, or C) and each strategy of the opponent (R or L), choosing R always 

generates a higher payoff. Thus, any subjective utility maximizer would not be 

willing to pay for the non-instrumental51 information notifying the states of nature, 

at a positive price.  

                                                 
50 For any 𝑓 in ℱ𝑒(Σ), all 𝛼(𝑓) ∈ [0,1] end up with the same 𝑉(𝑓). 
51 We call a piece of information “instrumental” in the case where this information can alter the 

optimal decision.  
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Figure 2.2. The Matrix Game with Incomplete Information 

 

 

Now consider the partition by states of nature and POP with 𝛼𝐿 =
2

3
  assigned to 

choice L and 𝛼𝑅 =
1

6
 assigned to choice R.52 By our POP Presentation (1), the 

utilities of choosing L in States A, B, and C are as follows: 𝑉(𝐿|𝐴) = 20 ×
2

3
+

8 ×
1

3
= 16; 𝑉(𝐿|𝐵) = 22 ×

2

3
+ 6 ×

1

3
= 16

2

3
; 𝑉(𝐿|𝐶) = 18 ×

2

3
+ 10 ×

1

3
=

15
1

3
. The expected utility of choosing L is thus 𝑉(𝐿) = 16 ×

1

3
+ 18 ×

50

3
+

16 ×
46

3
= 16. The utilities of choosing R in States A, B and C are 𝑉(𝑅|𝐴) =

25 ×
1

6
+ 13 ×

5

6
= 15;  𝑉(𝑅|𝐵) = 27 ×

1

6
+ 11 ×

5

6
= 13

2

3
; 𝑉(𝑅|𝐶) = 23 ×

1

6
+

15 ×
5

6
= 16

1

3
.  The expected utility of choosing R is thus 𝑉(𝑅) = 15 ×

1

3
+

41

3
×

1

3
+

49

3
×

1

3
= 15. Since 𝑉(𝐿|𝐶)  <  𝑉(𝑅|𝐶) but 𝑉(𝐿) > 𝑉(𝑅), the information 

                                                 
52 A similar argument follows for any (𝛼𝐿 − 𝛼𝑅) ∈ (

5

16
,

5

8
) that for POP, the information of states 

of nature can vary optimal decisions. See Appendix B.5 for details.  
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regarding which case the decision maker is in can alter the optimal choice and thus 

it is instrumental for the bounded rational player we characterize. This example 

alerts us to the fact that non-instrumental information, in theory, might nevertheless 

be instrumental for bounded rational players, e.g., POP with a coarser partition.53  

 

 

 

Figure 2.3. Uniqueness is not guaranteed. 

 

 

The partition in our theorem is given exogenously. A natural question is: does there 

always exist a unique finest partition that can rationalize some POP? However, 

uniqueness is not guaranteed at least when the state space is finite. Consider the 

decision problem presented in two ways in Figure 2.3. There are four possible states, 

𝜔1, 𝜔2, 𝜔3, 𝜔4; and two available actions, U and D, that the decision maker can 

take; any payoffs are given in the corresponding matrices. The choice of U can be 

rationalized by Σ = {ℬ1, ℬ2} , where ℬ1 = {𝜔1, 𝜔2} , ℬ2 = {𝜔3, 𝜔4} ; and Σ′ =
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{ℬ1
′ , ℬ2

′ }, where ℬ1
′ = {𝜔1, 𝜔4}, ℬ2

′ = {𝜔2, 𝜔3}. However, it cannot be rationalized 

by their joint, the coarsest common refinement: Σ ∨ Σ′ = {𝜔1, 𝜔2, 𝜔3, 𝜔4}. 

2.2. Partition Conceivable State-space 

State of the world, said by Arrow (1971), is “a description of the world so complete 

that, if true and known, the consequences of every action would be known.” 

However, a true state that might be able to be known by experimentalists or 

mechanism designers in a controlled environment is usually less likely to be 

observable for a decision maker. 54  When the true state is not known or fully 

understood, a decision maker needs to construct an association between actions and 

outcomes based on which a choice could be made (Osborne and Rubinstein, 1998). 

Following previous literature55, we name such an association, a conceivable state.  

For instance, in the Greek mythology (Homer, 1997), when Helen was abducted in 

Troy, Odysseus was called upon by Menelaus to honor his oaths as a suitor of Helen 

and help him retrieve her. Abstract the decision problem: Odysseus has two 

available actions, A= “pretend to be mad,” B = “fight.” If he pretended to be mad, 

he predicts he might be either scorned or forgiven, 𝒪(𝐴) = {𝑠𝑐𝑜𝑟𝑛𝑒𝑑, 𝑓𝑜𝑟𝑔𝑖𝑣𝑒𝑛}; 

if he chooses to fight, he foresees he might either be praised or blamed 𝒪(𝐵) =

                                                 
54 For instance, Ecclesiastes 11:1 says “send your bread upon the surface of the water, for after many 

days you may find it.” For decision makers who “send out their bread”, although they could verify 

whether they get anything in return after years, they could hardly know what alternative payoff they 

might get if they instead “keep their bread” in the same state of the world.  
55 Similar construction of conceivable states could be found in Schmeidler and Wakker (1987), 

Karni and Schmeidler (1991), Gilboa et al. (2009), Karni and Vierø (2013, 2015) and Karni (2017). 
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{𝑝𝑟𝑎𝑖𝑠𝑒𝑑, 𝑏𝑙𝑎𝑚𝑒𝑑} . Ergo, he could conceive 4  ( = 𝐶2
1 × 𝐶2

1)  non-null 

states,(𝜔𝑘)𝑘=1
4  as shown in Table 2.1. 

 

 

 𝜔1 𝜔2 𝜔3 𝜔4 

A=pretend to be mad scorned scorned forgiven forgiven 

B=fight praised blamed praised blamed 

Table 2.1. When Odysseus was called upon 

 

 

However, even though a decision maker might not be able to fully grasp the state 

space, he might be able to understand a partition of it; within which, each event 

could be known or observed. Hence, he only needs to form conceivable state-space 

within each event. Formally, given decision problem 𝒟 = ( Ω, 𝒜, 𝒵, 𝜊), and a 

partition Σ of Ω, we define Σ -Conceivable State-space 𝒞Σ =∪ℬ∈Σ 𝒞ℬ, where 𝒞ℬ =

{𝑐: 𝒜 → 𝒵|𝑐(𝑎) ∈ 𝒪ℬ(𝑎)}. And the new outcome function 𝜊Σ(𝑎, 𝑐) = 𝑐(𝑎), 𝑎 ∈

𝒜, 𝑐 ∈ 𝒞Σ. Denote by 𝒟Σ = (𝒞Σ, 𝒜, 𝒵, 𝜊Σ) the Σ -Conceivable problem of 𝒟. 

Definition 2.5. In a decision problem, 𝒟 = ( Ω, 𝒜, 𝒵, 𝜊) , for any 𝑎, 𝑏 ∈ 𝒜 , 𝑎 

dominates 𝑏 if for all 𝜔 ∈ Ω, 𝜊(𝑎, 𝜔) ≿ 𝜊(𝑏, 𝜔). 
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Definition 2.6. In a decision problem, 𝒟 =(Ω, 𝒜, 𝒵, 𝜊) with a partition Σ of Ω, for 

any 𝑎, 𝑏 ∈ 𝒜, 𝑎 Σ −obviously dominates 𝑏 if for all ℬ ∈ Σ, we have, for all 𝑝 ∈

𝜊(𝑎, ℬ), 𝑞 ∈ 𝜊(𝑏, ℬ),  𝑝 ≿ 𝑞. 

Remark: If a dominates b, we say, b is dominated by a. To figure out dominance, 

monotonicity axiom is required; to figure out Σ −obviously dominance, a weaker 

axiom, 𝛴 −obviously monotonicity is enough.  

Lemma 1. Given a decision problem 𝒟 and 𝒟Σ, the Σ -conceivable problem of 𝒟, 

for any 𝑎, 𝑏 ∈ 𝒜, a Σ −obviously dominates 𝑏 in 𝒟 if and only if a dominates b in 

𝒟Σ. 

Proof. If a Σ −obviously dominates 𝑏 in 𝒟, then in all Σ -conceivable states, the 

outcome of a is weekly preferred to b, thus a dominates b in 𝒟Σ; if a dominates b 

in 𝒟Σ, then in all events of Σ, any randomly selected outcome of a is weekly 

preferred to that of b. Hence, a Σ −obviously dominates 𝑏 in 𝒟. 

Therefore, by Lemma 1, to implement dominance in decision makers’ 

Σ −conceivable problem, it is both necessary and sufficient, for the designer, to 

implement a stronger concept, Σ −obviously dominance in the designed problem.  

Field experiments, such as Hungarian college admission (Shorrer and Sóvágó 2018) 

and admissions for graduate studies in psychology in Israel (Hassidim et al. 2018), 

have documented a common “obvious mistake” (of choosing dominated strategies): 

the applicants either forge financial supports or list it as less preferred. We abstract 
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the scenario to a decision problem in Example 2. We show that the dominated 

choice might not be dominated in applicants’ partition conceivable problem. And 

the choice of partitions matters.   

Example 2. For each applicant, the uncertainty comes from his ranking-H or L, and 

whether the financial support is feasible or not-F or NF. Each applicant is asked, 

“Do you need financial aids?” The answer can be Yes or No. We assume that each 

applicant prefers admission with financial aids (A+F) to admission without 

financial aids (A) to not being admitted (NA). The outcome function is represented 

in Table 2.2. The applicant will get admitted whenever his ranking is H but he will 

only get financial support if, in addition, his answer is Yes and the financial aid is 

feasible. “No” is a dominated choice.  

 

 

 H, F L, F H, NF L, NF 

Yes A+F NA A NA 

No A NA A NA 

Table 2.2. Do you need financial aids? 

 

 

Now, consider the partition Σ1 by the feasibility of financial aids. “No” is not Σ1 − 

obvious dominant.  See the Σ1 − 𝑐𝑜𝑛𝑐𝑒𝑖𝑣𝑎𝑏𝑙𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 in Table 2.3 where “No” 
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is not dominated. An applicant who has a stronger belief that with a high probability 

he is in 𝜔4 and 𝜔8 is more likely to choose “No.” But if we consider the partition 

Σ2  by the ranking of the applicants. “No” is Σ2 −  obvious dominant. The 

Σ2 −conceivable problem is the same as the original problem where “No” is 

dominated.  

 

 

 F NF 

 𝜔1 𝜔2 𝜔3 𝝎𝟒 𝜔5 𝜔6 𝜔7 𝝎𝟖 

Yes A+F NA A+F NA A NA A NA 

No A NA NA A A NA NA A 

Table 2.3. Partition by the feasibility of financial aids 

 

 

3. Dynamic Games and Mechanism Design 

We extend our concept to dynamic games. We introduce the decision environment 

in dynamic games in Subsection 3.1. We propose partition-ODS and relate it to 

POP in Subsection 3.2. In Subsection 3.3, we provide an alternative 

characterization of partition-ODS as a solution of mistrust in market makers. In 

Subsection 3.4, we show that a choice rule can be implemented by a mechanism in 

partition-ODS if and only if it can be implemented by a direct mechanism of 
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exclusion in a solution concept we coin iteratively deletion of obviously-dominated 

misreport.  

3.1. The Decision Problem in a Dynamic Game 

We consider the extensive game form56 Γ  with imperfect information and perfect 

recall as defined in Osborne and Rubinstein (1994). Denote the set of strategy 

profiles by 𝒮 = 𝒮𝑖 × 𝒮−𝑖 and the set of nature’s moves by Ω𝑁 = {𝜔𝑛}. The domain 

of Player 𝑖’s uncertainty consists of moves of nature Ω𝑁 and the strategy of other 

players 𝒮−𝑖. So, let Ω𝑖 = 𝒮−𝑖 ×  Ω𝑁 denote the subjective state space of player i.57 

At each terminal history, ℎ = (𝑠𝑖 , 𝑠−𝑖 , 𝜔𝑛), Player i is assigned a deterministic or 

random outcome in a set 𝒵 defined in Section 2. Again, denote by 𝜊: 𝒮𝑖 × Ω𝑖 → 𝒵 

the outcome function. Thus, Player 𝑖’s preference over her own strategy set is 

characterized by a preference relation ≿ on the set of acts 𝑓: Ω𝑖 → 𝒵. The utility of 

Player i at each terminal history, 𝑢𝑖(𝑠𝑖 , 𝑠−𝑖 , 𝜔𝑛), is thus determined by the utility 

function of lotteries in Theorem 1, 𝑢𝑖: 𝒵 → ℝ. A dynamic game is then a tuple G =

{Γ, 𝒵, ( 𝑢𝑖)𝑖∈𝑁}. 

                                                 
56 An extensive game form is a tuple Γ = {N, Υ}, where N is the set of players and Υ is the game 

tree.  
57 Bayesian Models in decision theory under uncertainty Savage (1954) and Solution Concepts in 

game theory (Nash 1950) originated independently. Aumann (1987) synthesizes the two viewpoints 

by Correlated Equilibrium. In his set-up, the state of the world in games is a specification of which 

strategy is chosen by each player. Esponda (2013) further defines the state space as the product of 

the strategy sets and the set of fundamentals to include both strategic and structural uncertainty. He 

further develops the Rationalizable Conjectural Equilibrium by adding certain restrictions to each 

player’s beliefs over states of the world in equilibrium. Siniscalchi (2016a, 2016b, 2016c) adopts a 

similar definition of the subjective state space in dynamic games in three of his recent works about 

structural rationality. 
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For any information set Ι ∈ ℐ, denote by 𝒮(𝐼) the set of strategy profiles that reach 

I.58 The projections of 𝒮(𝐼) on 𝒮𝑖 and 𝒮−𝑖 are denoted by 𝒮𝑖(𝐼) and 𝒮−𝑖(𝐼); perfect 

recall implies that 𝒮(𝐼) = 𝒮𝑖(𝐼) × 𝒮−𝑖(𝐼), and the set of available strategies for 

Player i at information set I is 𝒮𝑖(𝐼). Player i who chooses an action 𝑎 ∈ 𝒜(𝐼) at 

information set I, must restrict herself to a smaller set of strategies denoted by 

𝒮𝑖(𝐼)[𝑎] = {𝑠𝑖 ∈ 𝒮𝑖(𝐼)|𝑠𝑖(𝐼) = 𝑎}. We denote by 𝒮𝑖(𝐼)[𝑎)]𝑐 = 𝒮𝑖(𝐼)\𝒮𝑖(𝐼)[𝑎] the 

set of strategies from which the player is deviating by choosing 𝑎. 

Upon reaching an information set Ι ∈ ℐ𝑖, Player i must rule out moves of nature and 

strategies of other players that do not allow reaching information set I. We denote 

the conditioning event at information set I by [I], at which I is reachable.59 Finally, 

denote by ℐ(𝑠𝑖) = [𝐼 ∈ ℐ|𝑠𝑖 ∈ 𝒮𝑖(𝐼)], the set of information sets that is reachable 

by strategy 𝑠𝑖. 

3.2. Partition-ODS and POP 

Definition 2.7. (conditional partition-system) A conditional partition-system Σ𝐺 

for Player 𝑖 in a dynamic Game G is a collection of partitions, {Σ(𝐼)}𝐼∈ℐ𝑖∪∅, such 

that 

(i) Σ(∅) = Σ = {ℬ𝑘}𝑘=1
𝑛  is a partition of Ω𝑖, 

                                                 
58 Formally,  

𝒮(𝐼) = {𝑠 ∈ 𝒮|there exists ℎ ∈ 𝐼 𝑎𝑛𝑑 𝜔𝑛 ∈ Ω𝑁  such that h is a subhistory 𝑜𝑓 (𝑠, 𝜔𝑛)} 
59 Formally, [I]= { (𝑠−𝑖 , 𝜔𝑛) ∈ 𝛺𝑖|there exists ℎ ∈ 𝐼, 𝑠𝑖 ∈ 𝒮𝑖  such that h is a sub-history of 

(𝑠𝑖 , 𝑠−𝑖 , 𝜔𝑛)}. 
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(ii) for any 𝐼 ∈ ℐ𝑖 , Σ(𝐼) = {[𝐼] ∩ ℬ𝑘}𝑘=1
𝑛 , from here on we denote [𝐼] ∩ ℬ𝑘  by 

ℬ𝑘(𝐼), 𝑘 = 1, … , 𝑛. 

Definition 2.8. (partition-ODS) In a dynamic Game G, a strategy 𝑠𝑖
∗ is a Σ-obvious 

dominant strategy for Player 𝑖, if for any information set, 𝐼 ∈ ℐ(𝑠𝑖
∗), any non-empty 

event, ℬ(𝐼) ∈ Σ(𝐼) and any deviating strategy, 𝑠𝑖
′ ∈ 𝒮𝑖(𝐼)[𝑠𝑖

∗(𝐼)]𝑐: 

(2.3) inf
(𝑠−𝑖,𝜔𝑛)∈ℬ(𝐼)

𝑢𝑖(𝑠𝑖
∗, 𝑠−𝑖 , 𝜔𝑛) ≥ sup

(𝑠−𝑖,𝜔𝑛)∈ℬ(𝐼)
𝑢𝑖(𝑠𝑖

′, 𝑠−𝑖 , 𝜔𝑛). 

Remark: When the partition is the coarsest, Σ = {Ω𝑖}, Σ-ODS coincides with Li’s 

(2017) ODS.  

Definition 2.9. (dominant strategy)60  In a dynamic Game G, 𝑠𝑖
∗  is a dominant 

strategy for Player i if for any 𝑠𝑖
′ ∈ 𝑆𝑖, any state (𝑠−𝑖 , 𝜔𝑛) ∈ Ω𝑖: 

(2.4) 𝑢𝑖(𝑠𝑖
∗, 𝑠−𝑖 , 𝜔𝑛) ≥ 𝑢𝑖(𝑠𝑖

′, 𝑠−𝑖 , 𝜔𝑛). 

Lemma 2. When the Partition Σ is the finest, Definitions 2.8 and 2.9 are equivalent.  

PROOF: See Appendix B.2.  

                                                 
60 Li (2017, Def. 4) defines DS in a slightly different way. Note that, in our paper, nature’s moves 

Ω𝑁 include both the chance moves and type randomizations in Li’s. Li defines a strategy as weekly 

dominant if its expected payoff with respect to chance moves is not smaller than that of any 

alternative strategy for any realized type. Our notion of dominance is stronger than Li’s, since our 

dominant strategy needs to be ex-post optimal, not only expected, given any realization of chance 

moves. However, Li’s Theorem 1 still holds even if he instead used our notion.  
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Proposition 2.1. In a dynamic Game G, a strategy 𝑠𝑖
∗ is an Σ-ODS for Player i if 

and only if for any Σ-Obvious Preference ≿, it satisfies the following: 

(2.5) 𝑠𝑖
∗ ∈ 𝐶(≿, 𝒮𝑖) ={𝑠𝑖 ∈ 𝒮𝑖|𝑠𝑖 ≿ 𝑠𝑖

′ for any 𝑠𝑖
′ ∈ 𝒮𝑖(𝐼)[𝑠𝑖

∗(𝐼)]𝑐 at any [I], I ∈  ℐ𝑖}. 

PROOF: See Appendix B.3.  

So, a strategy is Σ-ODS if and only if any Σ-Obvious Preference prefers it to any 

deviating strategy at any reachable information set. Hence, mechanisms with a 

strategy that is partition-ODS in a coarser partition work for a larger set of 

preferences.  

 

3.3. Partition-ODS and Mistrust in Market Makers 

In a dynamic Game 𝐺, A player first observes the set of strategy profiles 𝒮 and the 

moves of nature Ω𝑁. Then, when Player i commits to strategy 𝑠𝑖 ∈ 𝒮𝑖 , he observes 

each reachable information set 𝐼 ∈ ℐ(𝑠𝑖), at which the set of strategy he hasn’t 

given up 𝒮𝑖(𝐼), the set of available choices 𝒜(𝐼) and his own choice 𝑠𝑖 (𝐼), and 

finally an outcome z ∈ 𝒵 assigned at the terminal node. We define two games as i-

identical if there exists a bijection between the domain of uncertainty 𝒮 × Ω𝑁 and  

𝒮′ × Ω𝑁′ for Player i in the two games such that any strategy of Player i generates 

the same set of observation as its image.  
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Definition 2.10. (identical games) Game 𝐺′ is identical to Game 𝐺 for Player i if 

there exists a bijection 𝜆𝐺,𝐺′  from 𝒮 × Ω𝑁  to  𝒮′ × Ω𝑁′ , where (𝑠′, 𝜔′) =

𝜆𝐺,𝐺′(𝑠, 𝜔), ∀(𝑠, 𝜔) ∈ 𝒮 × Ω𝑁, such that for any 𝑠𝑖 ∈ 𝒮𝑖: 

(i) for any 𝐼 ∈ ℐ(𝑠𝑖), there exists a 𝐼′ ∈ ℐ(𝑠𝑖′) such that 𝒜(𝐼) = 𝒜′(𝐼′), 𝑠𝑖 (𝐼) =

𝑠𝑖
′(𝐼′), (𝑠−𝑖 , 𝜔) ∈ [𝐼] iff (𝑠−𝑖′, 𝜔′) ∈ [𝐼′], and 𝑠𝑖 ∈ 𝒮𝑖(𝐼) iff 𝑠𝑖′ ∈ 𝒮𝑖′(𝐼′). 

(ii) ο(𝑠𝑖 , 𝑠−𝑖 , 𝜔) = ο(𝑠𝑖
′, 𝑠−𝑖′, 𝜔′)  

Definition 2.11. (partial games) For Player i in dynamic Game 𝐺 with partition 

Σ𝑖 = {ℬ𝑘}𝑘=1
𝑛 . We call 𝐺Σ𝑖 = {𝐺𝑘}𝑘=1

𝑛  the set of partial games of 𝐺, where 𝐺𝑘 is 𝐺 

restricted to ℬ𝑘. 

Definition 2.12. (Σi-identical games) Game 𝐺′ is Σ𝑖-identical to Game 𝐺 for Player 

i, where Σ = {ℬ𝑘}𝑘=1
𝑛 , if there exists a partition Σ𝑖

′ = {ℬ𝑘′}𝑘=1
𝑛  of Ω𝑖′ such that 𝐺′𝑘 

is identical to 𝐺𝑘, ∀k = 1, … , n. 

Proposition 2.2. 𝑠𝑖
∗ is Σ𝑖-obviously dominant in Game 𝐺 if and only if for every 𝐺′ 

that is Σ𝑖-identical to Game 𝐺, the image of 𝑠𝑖
∗ is dominant in 𝐺′. 

Proof. The “if” direction proceeds as follows. Assume by contradiction that 𝑠𝑖
∗ is 

not Σ𝑖 -obviously dominant in Game 𝐺, then there exists an information set 𝐼 ∈

ℐ(𝑠𝑖
∗), an event ℬ(𝐼) ∈ Σ(𝐼) and a deviating strategy, 𝑠𝑖

′ ∈ 𝒮𝑖(𝐼)[𝑠𝑖
∗(𝐼)]𝑐, such that 

Equation (2.3) doesn’t hold. Formally, we denote the violation as 

𝑢𝑖(𝑠𝑖
∗, 𝑠−𝑖

𝑖𝑛𝑓
, 𝜔𝑛

𝑖𝑛𝑓
)< 𝑢𝑖(𝑠𝑖

′, 𝑠−𝑖
𝑠𝑢𝑝

, 𝜔𝑛
𝑠𝑢𝑝

). And we denote by z the outcome assigned to 

(𝑠𝑖
′, 𝑠−𝑖

𝑠𝑢𝑝
, 𝜔𝑛

𝑠𝑢𝑝
) and by z′ the outcome assigned to (𝑠𝑖

′, 𝑠−𝑖
𝑖𝑛𝑓

, 𝜔𝑛
𝑖𝑛𝑓

). We construct a 
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new game 𝐺′  by switching z  and z′ . i.e., Let  z′ = ο(𝑠𝑖
′, 𝑠−𝑖

𝑠𝑢𝑝
, 𝜔𝑛

𝑠𝑢𝑝
)  and z =

ο(𝑠𝑖
′, 𝑠−𝑖

𝑖𝑛𝑓
, 𝜔𝑛

𝑖𝑛𝑓
) . 𝐺′  is Σ𝑖 − 𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙  to 𝐺 , 61  but 𝑠𝑖

′  is preferred to 𝑠𝑖
∗  in state 

(𝑠−𝑖
𝑖𝑛𝑓

, 𝜔𝑛
𝑖𝑛𝑓

)  so that 𝑠𝑖
∗  is not dominant in 𝐺′ . Contradiction. For the “only if” 

direction, it’s crucial to see that at each reachable information set, the partition 

conceivable problem for the decision of choosing 𝑠𝑖
∗ or another deviating strategy 

𝑠𝑖
′ in 𝐺 is the same as the partition conceivable problem for the choice between their 

images in 𝐺′. Ergo, by Lemma 1, the image of 𝑠𝑖
∗ dominates the image of 𝑠𝑖

′. Finally, 

apply the same argument to all deviating strategies and all information sets, by 

Lemma 2, the image of 𝑠𝑖
∗ dominates the image of 𝑠𝑖

′. 

In plain words, Proposition 2 says that in a mechanism with Partition-ODS, if each 

player could verify which event of the partition is realized, the player has no 

incentive to choose an alternative dominated strategy even if he doubts that the 

market marker might use another identical game to implement the result. Thus, in 

a mechanism with Partition-ODS under auditing respect to the partition, to trust the 

market maker is strategically rational. Moreover, when the partition is coarser, less 

information is needed to be verified, which reduces the auditing cost.  

Kagel and Levin (2009) document a significantly higher rate of sincere bidding in 

an Ausubel (2004) Auction with dropout information than in a multi-unit Vickrey 

                                                 
61 Note that here we have 𝜆𝐺,𝐺′(𝑠𝑖

′, 𝑠−𝑖
𝑠𝑢𝑝

, 𝜔𝑛
𝑠𝑢𝑝

) = (𝑠𝑖
′, 𝑠−𝑖

𝑖𝑛𝑓
, 𝜔𝑛

𝑖𝑛𝑓
) and 𝜆𝐺,𝐺′(𝑠𝑖

′, 𝑠−𝑖
𝑖𝑛𝑓

, 𝜔𝑛
𝑖𝑛𝑓

) =

(𝑠𝑖
′, 𝑠−𝑖

𝑠𝑢𝑝
, 𝜔𝑛

𝑠𝑢𝑝
). 
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(1961) Auction. When we restrict the strategy set to cut-off strategies, 62  the 

Ausubel Auction is strategically equivalent with the Vickrey Auction; both are 

strategy-proof. The Ausubel auction is not OSP; thus, its superior performance 

cannot be explained by Li (2017). However, there exists a partition, by the 

“clinching prices”, coined by Ausubel, so that sincere bidding is partition-ODS in 

the Ausubel auction, but not in the Vickrey Auction. Thus, by our theory, the 

Ausubel auction helps bounded rational agent who reason in coarser partitions. 

Moreover, since “the clinching prices” are reported to the bidders in the Ausubel 

Auction with dropout information, the bidders who has incentive to bid insincerely 

in the Vickrey Auction due to mistrust, doubting that the market maker might 

instead implement another partition-identical game, will not have such an incentive 

in the Ausubel Auction. We provide a detailed argument in Appendix B.4.   

Elmes and Reny (1994) prove that if two finite extensive form games with perfect 

recall share the same normal form, then we can get one game from another by three 

kinds of transformations in finite steps. It raises the questions: why in general, 

among two games that share the same normal form, one has a certain Partition-ODS 

but the other does not; which transformation breaks the nice property of partition 

                                                 
62 If we consider a larger set of strategies, where one bidder’s active units of demand can depend 

on not only the clock price, but also on other bidders’ active units of demand, then in the Ausubel 

auction with dropout information, sincere bidding is not even a DS (see Ausubel 2004). However, 

we argue that to consider such strategies, it also requires higher cognitive ability because bidders 

need to consider more contingencies. 
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dominance. We show by the following example that one of their transformation, 

called “ADD,” is critical for answering this question.  

 

 

 
Figure 2.4. Add Transformation. 

 

 

Example 3. In Figure 2.4, we get extensive form Game B from Game A by Elmes 

and Reny’s “ADD” transformation.63 Clearly, the two games share the same normal 

form. Partitioning by moves of nature, L is a Partition-ODS for Player 2 in Game 

A but not in Game B.  

                                                 
63 See Page 12 of Elmes and Reny’s paper for the definition of “ADD” transformation.  
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            3.4. A Direct Mechanism of Exclusion 

Definition 2.14. (choice rule) A choice rule is a function 𝑓 which specifies, for 

each type profile 𝜃 ∈ Θ, and for each feasible set 𝒳𝐴 ⊆ 𝒳, 𝐴 ∈ 𝒜, an allocation 

𝑓(𝜃, 𝒳𝐴) ∈ 𝒳𝐴.64  

A mechanism is an extensive game forms Γ𝑚 with an allocation in 𝒳𝐴. Each player 

𝑖 ∈ 𝑁  who participates in a mechanism Γ𝑚  with choice rule 𝑓(𝜃, 𝒳𝐴) , 𝒳𝐴 ⊆

𝒳, 𝐴 ∈ 𝒜 is playing a dynamic game 𝐺𝑚 = {Γ𝑚, 𝒵, ( 𝑢𝑖)𝑖∈𝑁}: 

(1) A type profile of agents 𝜃 ∈ Θ is generated by a probability measure, denoted 

by 𝛿𝜃 of support Θ; and each agent privately observes 𝜃𝑖. 

(2) By a probability measure 𝛿𝐴, A feasible set of allocations is generated 𝒳𝐴 ⊆

𝒳.The Planner privately observes  𝒳𝐴, proceeds as Γ𝑚, and assigns each terminal 

history with an outcome z ∈ 𝒳𝐴 using an outcome function 𝜊𝐴. 

Definition 2.15. (partition obviously strategy-proof). A choice rule is Σ − OSP, if 

there exists a mechanism Γ𝑚 and a strategy profile (𝑠𝑖)𝑖∈𝑁 in 𝐺𝑚 that implements 

the choice rule, moreover, for any Player i, 𝑠𝑖 is 𝛴𝑖 − ODS. 

We now define a direct mechanism of exclusion as follows: 

The planner privately observes 𝒳𝐴. Denote 𝑀0 = Θ, t = 0. 

                                                 
64   In the mechanism design literature, 𝒵𝐴  is usually treated as fixed. For instance, Dasgupta, 

Hammond and Maskin (1979) states that “since under our assumptions the feasible 𝒵𝐴 is known to 

the planner in advance, we need only ensure that for that fixed 𝒵𝐴 , there exists a game form 

implementing 𝑓.” However, in our setting where 𝒵𝐴 is private information to the market maker and 

there is mistrust in the market marker, we need to inquire whether a mechanism designed ex-ante, 

when 𝒵𝐴 is uncertain, can implement each social choice function ex-poste, when 𝒵𝐴 is known.  
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1. The market maker chooses one player 𝑖 ∈ 𝑁 and sends the standing type-profile 

𝑀𝑡 = (Θ𝑖
𝑡, Θ−𝑖

𝑡 ). 

2. i observes 𝑀𝑡 = (Θ𝑖
𝑡 , Θ−𝑖

𝑡 ), and reports the set of types R𝑖
𝑡 he intends to exclude. 

3. The planner observes R𝑖
𝑡, and update 𝑀𝑡+1 = (Θ𝑖

𝑡\R𝑖
𝑡 , Θ−𝑖

𝑡 ). 

4. The planner either selects an allocation according to a choice rule z=

 𝑓(𝜃, 𝒳𝐴) ∈ 𝒳𝐴 or choose to send another query. 

(a) If the planner selects an outcome, the game ends.  

(b) If the planner chooses to send another query, update t=t+1, go to step 1.  

Definition 2.16. In a direct mechanism of exclusion, we call a solution concept 

iterative deletion of Σ − 𝑜𝑏𝑣𝑖𝑜𝑢𝑠𝑙𝑦 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 misreports, where each player 

iteratively reports the set of types R𝑖
𝑡 that are Σ𝑖 − 𝑜𝑏𝑣𝑖𝑜𝑢𝑠𝑙𝑦 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 by their 

true type 𝜃𝑖. 

Proposition 2.3. (revelation principle of exclusion) If a social choice rule is Σ −

OSP, then it can be implemented by a direct mechanism of exclusion by iterative 

deletion of Σ − 𝑜𝑏𝑣𝑖𝑜𝑢𝑠𝑙𝑦 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 misreports.   

Proof. It’s crucial to identify an equivalent relation between a direct mechanism of 

exclusion and an  Σ − OSP mechanism as show in Table 3.4. Then the result follows 

directly from Eq (2.3) and the definition of Σ𝑖 − 𝑜𝑏𝑣𝑖𝑜𝑢𝑠 𝑑𝑜𝑚𝑖𝑛𝑎𝑐𝑒. 
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Σ − OSP mechanism65        Direct Mechanism of Exclusion 

[𝐼𝑖] Θ−𝑖
𝑡 × 𝒜 

𝒮𝑖 Θ𝑖
𝑡 

𝒮𝑖(𝐼)[𝑎]𝑐 R𝑖
𝑡 

Table 3.4. Equivalence 

 

 

4. Partition Obvious Equilibrium 

Applying the concept of Nash Equilibrium to POP, we propose Partition Obvious 

Equilibrium (POE). Following the notation in Aumann (1976), we denote by 𝜀(𝜔) 

the event in Partition Σ that contains state 𝜔.66 

Definition 2.17. (POE) In a dynamic Game G, a strategy profile 𝑠∗ is a Σ-Obvious 

Equilibrium if for any Player 𝑖, at any information set 𝐼 ∈ ℐ(𝑠𝑖
∗), for any deviating 

strategy 𝑠𝑖
′ ∈ 𝒮𝑖(𝐼)[𝑠𝑖

∗(𝐼)]𝑐 and any move of nature 𝜔𝑛 ∈ Ω𝑁: 

(2.6) 𝑢𝑖(𝑠𝑖
∗, 𝑠−𝑖

∗ , 𝜔𝑛) ≥ sup
(𝑠−𝑖,𝜔𝑛)∈𝜀(𝑠−𝑖

∗ ,𝜔𝑛)(𝐼)
𝑢𝑖(𝑠𝑖

′, 𝑠−𝑖 , 𝜔𝑛). 

Since any equilibrium payoff can be viewed as a constant act, a strategy profile is 

an Σ-Obvious Equilibrium if and only if any Σ𝑖-Obvious Preference prefers any 

realized equilibrium payoff to any deviating strategy at any reachable information 

                                                 
65 We exclude the branches of the game tree that won’t be followed by any strategy-profile in 

equilibrium.  
66 That is, if the state of the world is ω, then the player is informed of the element ε(ω) of Σ that 

contains ω. 
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set conditioning on the event that contains the realized state.67 When the partition 

is the finest Σ𝑖 = Ω𝑖 for any Player 𝑖 , Σ-Obvious Equilibrium coincides with Ex-

post Equilibrium, and when the partition is the coarsest Σ𝑖 = {Ω𝑖} for any Player 𝑖, 

it  coincides with Obvious Nash Equilibrium (Zhang and Levin 2017). In one 

“intermediate” case, when partitioning by strategies of opponents Σ𝑖 = {𝑠−𝑖 ×

Ω𝑁|𝑠−𝑖 ∈ 𝑆−𝑖}68 for any Player 𝑖 , Σ-Obvious Equilibrium coincides with Obvious 

Ex-post Equilibrium (Li 2017).  Following from similar arguments as in the proof 

of Proposition 2.2, any Σ-Obvious Equilibrium is Ex-post Equilibrium for games 

that are Σ-indistinguishable to the original game.  

When multiple Ex-post Equilibria exist, Σ-Obvious Equilibrium can serve as a 

criterion for refinement, as in the following stag-hunt game with imperfect 

information. When nature moves Left (Right), the payoff is shown in the matrix on 

the Left (Right). There are two Ex-post Nash Equilibria, (Stag, Stag) and (Hare, 

Hare). There is no Obvious Nash Equilibrium or Obvious Ex-post Equilibrium. 

However, there exists a unique Σ -Obvious Equilibrium, (Stag, Stag), when 

partitioning by moves of nature, Σ𝑖 = {𝑆−𝑖 × ω𝑛|𝜔𝑛 ∈ Ω𝑁} for any Player 𝑖. 

 

 

                                                 
67 The proof is similar to that of Proposition 2.1.  
68 In the setting of Li (2017), type randomizations are the only type of nature’s moves. 
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Figure 2.5. The stag-hare game with incomplete information 

 

 

In scenarios where a DS mechanism does not exist, POE can be used to identify 

sets of mechanisms that are more robust than mechanisms with just Ex-post 

Equilibria. For example, in some interdependent value settings, a generalization of 

a Vickrey auction achieves efficiency with Ex-post Equilibrium (Crémer and 

Mclean 1988; Dasgupta and Maskin 2000; Bergemenn and Morris 2008). In such 

settings, there might exist a dynamic auction that achieves efficiency with our 

stronger solution concept, POE.6970 

                                                 
69 In the scenario of single-object auctions, Li (2017) proposes Obvious Auctions that achieve 

efficiency with his Obvious Ex-post Equilibrium. 
70 In single-unit, common-value auctions, Levin and Reiss (2017) shows that the dynamic English 

auction generates less Winner’s Curse, a non-equilibrium behavior than a static auction with a non-

regret payment rule. Notably, the dynamic English auction has the sincere bidding as an Obvious 

Ex-post Equilibrium, while the static auction has sincere bidding only as an ex-post equilibrium. 

 

 Stag Hare 

 Stag 10,10 0,8 

  Hare 8,0 8,8 

 

 

 

 Stag Hare 

 Stag 6,6 0,4 

  Hare 4,0 4,4 
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Chapter 3.  Partition Obvious Preference or Mistrust in Mechanism Design-Experiments  

1. Introduction 

In this chapter, we present design and result of experiments that test the theoretical 

implication addressed in Chapter 2.  

Empirically, do games and decision problems with a choice that partition obviously 

dominate others significantly diminish the choice of dominated choice? We test and verify 

our theoretical implication by a simple laboratory experiment with both cross-subject and 

within-subject comparison by a cross-over design in Section 2 of this chapter.  

Information plays an important role in economic activities. However, by the standard 

economic view, any information is valuable only if it improves decision-making. This 

implies no willingness to pay for non-instrumental information. 71  Experimental data, 

however, documents the opposite phenomena.72 In Section 3, we design an experiment to 

                                                 
71 We call a piece of information “instrumental” in the case where this information can alter the 

optimal decision. 
72  In social learning, several experimental works documented a significant proportion of subjects who 

purchase signals that are informative (Kübler and Weizsäcker, 2004; Celen et al., 2005; Goeree and Yariv, 

2007). Some studies in medicine demonstrate that physicians tend to order excess diagnostic tests that give 

no new information (Allman et al., 1985; Myers and Eisenber, 1985; Kassirer, 1989). In second price auctions 

where bidding one’s own value is a dominant strategy, Cooper and Fang (2008) corroborated that more than 

72% of subjects purchased a signal about their opponents’ value at a positive price at least once. In the 

psychology literature, Tversky and Shafire (1992) and Shafir, Simonson, and Tversky (1993) documented 

instances in which decision-makers pursued costly information even when that information had no impact 

on their decision. In one case, students who planned to purchase a vacation to Hawaii regardless of passing 

an exam or not, chose to postpone their decision and pay a $5 non-refundable fee in order to retain the right 

to buy the vacation package the next day—after they had confirmed their exam results. 
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test whether the demand for such non-instrumental information diminishes in situation 

where the best choice is also obviously dominant. A finding that whether subjects’ demand 

for non-instrumental information relates to whether the dominant strategy is obvious (or 

not), would lead to a better understanding of the phenomena which do not align with the 

prediction of standard economic theory. Accounting for cognitive cost of reasoning alert 

us to the fact that, non-instrumental information in theory might nevertheless be 

instrumental for less than fully rational players. Moreover, by incorporating a questionnaire 

that test students’ cognitive abilities, we can further explore whether subjects’ behavior 

differences are related to their cognitive levels. 

2. The empirical effectivity of partition obviously dominance  

       2.1. Games and Decision Problems Used in the Experiments 

Random Serial Dictatorship. Each group has four agents. There are two Cases 𝒜 =

{L, R}, each selected with a probability of ½. The total budget is 𝑇𝐿 = 10 in Case L and 

𝑇𝑅 = 22.5 in Case R. In both cases, values of four prizes A, B, C, D are drawn uniformly 

at random without replacement, from the set:                   

{𝑃1, 𝑃2, 𝑃3, 𝑃4} = {0.1𝑇𝐴, 0.2𝑇𝐴, 0.3𝑇𝐴, 0.4𝑇𝐴}, 

each being a fixed proportion of the total prize TA, A = L or R. See Figure 3.1 for one 

realization of four prize values in each case.  
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Figure 3.1. One realization of four prize values in each case 

 

 

The market maker discriminates agents by the ranking of their priority score. The choice 

rule 𝑓(𝜃, 𝒳𝐴) ∈ 𝒳𝐴, 𝐴 = 𝐿, 𝑅  follows random serial dictatorship in Case L and R 

respectively, where 𝒳𝐴 = {0.1𝑇𝐴, 0.2𝑇𝐴, 0.3𝑇𝐴, 0.4𝑇𝐴}, 𝐴 = 𝐿, 𝑅. 

At the start of each game, the subjects observe the value of four prizes in both Case L and 

R. They are also assigned and informed of a priority score, which is drawn uniformly from 

integers 1 to 10. There are two games, S and D.   

In Game S, each player is asked simultaneously to submit a list that ranks her preferences 

over the four prizes A, B, C, D. The players are then processed sequentially, from the 

highest to the lowest priority score. Ties in priority score are broken randomly. Each player 

is assigned the highest-ranked prize on her list among the prizes that have not yet been 

assigned to players with higher priorities who selected earlier.  

In Game D, the players take turns to select a prize in order of their priority score, from the 

highest to the lowest. When a player takes her turn, she is shown the prizes that have not 

yet been taken and is asked to pick one of them.  
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In both Games S and D, truthful reporting – ranking/picking prizes with respect to the 

monetary value {𝑃1 > 𝑃2 > 𝑃3 > 𝑃4} in either Case – is DS but not ODS in either game.73 

Note that, truthful reporting is partition obviously dominant (by Cases L and R) in Game 

D, but not in Game S.74 Therefore, if subjects are capable of reasoning  

The Decision Task. Consider the following individual choice problem. There are six prizes 

worth 0, 2, 4, 6, 8 and 10. They are randomly, without replacement, inserted inside six 

Boxes (one in each box): A, B, C, D, E and F, and cannot be seen from the outside. See 

Figure 3.2. 

 

 

 

Figure 3.2. Six boxes 

 

 

                                                 
73 For example, See Figure 3.1, in Game D, the agent who has the highest ranking of priority can infer as 

follows: if I am not that greedy and pick A, the most I can get is 8.25, which is larger than 5.00, the least I 

might earn if I Pick C instead. Thus picking 𝑃1, (=A in Figure 3.1) is not an ODS.  
74 In Game D, contingent on Case L or R, once you pick an item with higher value, you assure obtaining a 

higher monetary value for sure; In Game S, even contingent on Case L or R, the least you can get by 

truthful reporting is the lowest value 𝑃4, and the most you can get by reporting 𝑃2 on the top is 𝑃2 > 𝑃4. 

Thus, truthful reporting is partition dominant in Game D but not in Games S.  
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Another six prizes worth: 0, 2, 4, 6, 8 and 10, are randomly, without replacement chosen 

to be written on six Stickers (one on each sticker): A, B, C, D, E and F. See Figure 3.3 for 

one realization.  

 

 

 

Figure 3.3. Six stickers 

 

 

A subject is randomly assigned, with a probability of ½, to Case L or Case R, but they will 

not be informed whether they are in Case L or Case R. There are two decision tasks, S and 

D. The subjects’ payoff depends on the case they are in, and on their choices.  

In Decision S, the subject is asked to first choose one of the stickers, and then pick one box 

with an unknown value. Then the subject sees the monetary value in the box she picks. In 

Decision D, the subject is asked to first pick one box. And then is shown the monetary 

value inside the box. Then she is asked to choose a sticker.  

In both decision tasks, S and D, if the case is L, the subject is assigned the lower monetary 

value between the one in the box and the one on the sticker; if the case is R, the subject is 
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assigned the higher monetary value between these two. Picking a sticker with a monetary 

value other than 10, is dominated,75 but not obviously dominated by picking 10.76  

Consider the partition by Case L and Case R. Picking a sticker with a prize of 10 is a 

partition-ODS in Decision D but not in Decision S.77 Thus, our theory predicts more 

choices of stickers with a prize of 10 in Decision D than in Decision S. 

 

       2.2. Treatments 

 

 

 Game Tasks Decision Tasks 

 1st Game 2nd Game 1st Decision 2nd Decision 

Treatment 1 Game S Game D Decision S Decision D 

Treatment 2 Game D Game S Decision D Decision S 

 

Table 3.1. The crossover design 

 

 

We adopt a crossover design (Piantadosi 2005) as shown in Table 3.1 above. The 

treatments are across subjects. Each treatment consists of 4 tasks, Game S, Game D, 

                                                 
75 They are dominated by picking the prize of 10 and the same box.  
76 For example, the highest prize the subject can get by picking a sticker with 8 on it, is 10. It is higher than 

the lowest prize the subject can get by picking a sticker with 10, which is 0.  
77 In Decision D, after the subject see the value inside the box (x ≤ 10): in Case L, the lowest prize by picking 

a sticker with 10 on it is x; the highest prize by picking a sticker with any other value is at most x. In Case R, 

the lowest prize by picking a sticker with 10 on it is 10; the highest prize by picking a sticker with any other 

value is at most 10. Thus, picking a sticker with 10 on it is obviously dominant in both cases. The argument 

does not follow in Decision S. For example, in Case L, the lowest prize by picking a sticker with 10 is 0, 

lower than the highest prize of picking 8 (that is 8). Thus, subjects might pick 8 when they infer as follows: 

if I am not that greedy, God will help me get the best outcome. Similar magical thinking has been addressed 

in Arad’s (2014) choice experiment.   
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Decision S and Decision D, and each task will repeatedly be played for 10 rounds.78 In 

Treatment 1, the subjects first play 10 rounds of Game S followed by 10 rounds of Game 

D, and then Decision S for the first 10 rounds, followed by 10 rounds of Decision D. In 

Treatment 2, the order is reversed. The instructions for each task are given immediately 

before that task. There is no information feedback until the end of the experiment. At the 

start of each game of the experiment, the subjects are randomly assigned into groups of 

four. These groups persist throughout the experiment. Consequently, each group’s play can 

be regarded as a single independent observation in the statistical analysis. Our design 

allows us to compare each subject’s behavior in Game (Decision) S with those in Game 

(Decision) D, controlling for sequential order effects. Moreover, using the data for only the 

1st game and decision tasks in both treatments, we are also able to compare across subjects 

how players behave differently in Game (Decision) S and Game (Decision) D.   

 

       2.3. Administrative Detail 

The subjects were paid $5 for participating in the experiment, in addition to their profits or 

losses from every round of the experiment. On average, they received a total of $16.19, 

including the participation payment.   

We conducted the experiment in January 2017 at the Ohio State University Experimental 

Economics Laboratory, using z-Tree (Fischbacher 2007). We recruited subjects from the 

student population using the ORSEE online recruiting system. We administrated 7 sessions, 

                                                 
78In each task, at the end of Round 10, we randomly select a round and add to the subjects’ earnings the 

payment they receive in that round. Azrieli, Chambers and Healy (2018) prove that such random problem 

section mechanism is the only incentive compatible mechanism assuming monotonicity.   
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where each session involved 3-5 groups. Each session lasted about 60 minutes. The data 

was collected from a total of 108 subjects in 27 groups of 4, with 13 groups in Treatment 

1 and 14 groups in Treatment 2. 48% of subjects are female and 52% are male. Experiment 

Instructions are in Appendix C.   

 

       2.4. Result 

To compare the subjects’ behavior in Game S to their behavior in Game D, we report the 

proportions, in the pooled data, of the games that do not end in the DS outcome. In Game 

S, 36.58% of the games did not end in the DS outcome (non-DS), wherein Game D this 

percentage is just 3.33%. Tables 3.2, 3.3 and 3.4 show the empirical frequency of non-DS 

outcomes by Games and by 5-round blocks, in the pooled data, the within-subject, and the 

cross-subject comparison. Deviations from the DS outcome happen almost 10 times more 

frequently in Game S than in Game D, and these differences are highly significant in both 

early and late rounds of the pooled data, the within-subject, and the cross-subject 

comparison. In Game S, 31.85% of the submitted erroneous rank-order lists, and in Game 

D, this percentage is just 1.11%.  

 

 

 Game S Game D p-value 

Rounds 1-5 36.11% 3.70% <0.001 

Rounds 6-10 37.04% 2.96% <0.001 

p-value 0.987 0.135  

Notes: For each group, for each 5-round block, we record the error rate. When comparing Game S to Game D, we compute 

p-values using a Wilcoxon rank-sum test. When comparing early to late rounds of the same game, we compute p-values 

using the Wilcoxon matched-pairs signed-rank test. 

Table 3.2. Proportions of non-DS outcomes (pool data) 
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Notes:We compute p-values using Wilcoxon matched-pairs signed-ranks test. 

 

Table 3.3. Proportion of non-DS outcomes (within-subject Comparison) 

 

 

 

 

 
 

Notes: We use the data for only the 1st game in both treatments, Game S in Treatment 1 and Game D in Treatment 2, for 

Cross-Subject Comparison. When comparing Game S to Game D, we compute p-values using a Wilcoxon rank-sum test. 

When comparing early to late rounds of the same game, we compute p-values using the Wilcoxon matched-pairs signed-

rank test. 

Table 3.4. Proportions of non-DS outcomes (cross-subject Comparison) 

 

 

To compare subject behavior in Decision S and Decision D, we display the proportion of 

dominated choice. In Decision S of the pooled data, 23.80% of choices are dominated 

strategies. In Decision D of the pooled data, 0.83% of choices are dominated strategies. 

Tables 3.5, 3.6 and 3.7 report the empirical frequency of dominated choice, by Decision 

Tasks, and by 5-round blocks, in the pooled data, the within-subject, and the cross-subject 

comparison. Dominated choice happens more frequently in Decision S than in Decision D, 

 Game S (Treatment 1) Game D (Treatment 2) p-value 

Rounds 1-5 31.92% 5.71% <0.001 

Rounds 6-10 36.92% 4.29% <0.001 

p-value 0.650 0.080  

Treatment 1 
 Game S Game D p-value 

Rounds 1-5 31.92% 1.54% <0.001 

Rounds 6-10 36.92% 1.54% <0.001 

p-value 0.650 1.000  

 

Treatment 2 
 Game D Game S p-value 

Rounds 1-5 5.71% 40.00% <0.001 

Rounds 6-10 4.29% 37.14% <0.001 

p-value 0.080 0.824  
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and these differences are highly significant in both early and late rounds of the pooled data, 

the within-subject, and the cross-subject comparison. 

 

 

 Decision S Decision D p-value 

Rounds 1-5 25.74% 1.11% <0.001 

Rounds 6-10 21.85% 0.56% <0.001 

p-value 0.014 0.473  

Notes: For each group, for each 5-round block, we record the error rate. When comparing Decision S to Decision D, we 

compute p-values using a Wilcoxon rank-sum test.  When comparing early to late rounds of the same game, we compute p-

values using Wilcoxon matched-pairs signed-rank test. 

Table 3.5. Proportions of dominated choice (pooled data) 

 

 

Notes: We compute p-values using Wilcoxon matched-pairs signed-rank test. 

Table 3.6. Proportions of dominated choice (within-subject comparison) 

 

 

 Decision S (Treatment 1) Decision D (Treatment 2) p-value 

Rounds 1-5 23.85% 0.714% <0.001 

Rounds 6-10 20.00% 0.714% <0.001 

p-value 0.143 1.000  

Notes: We use the data for only the 1st decision task in both treatments, Decision S in Treatment 1 and Decision D in 

Treatment 2, for cross-subject Comparison. When comparing Decision S to Decision D, we compute p-values using a 

Wilcoxon rank-sum test. When comparing early to late rounds of the same game, we compute p-values using the Wilcoxon 

matched-pairs signed-rank test. 

Table 3.7. Proportions of dominated choice (cross-subject comparison) 

Treatment 1 
 Decision S Decision D p-value 

Rounds 1-5 23.85% 1.54% <0.001 

Rounds 6-10 20.00% 0.38% <0.001 

p-value 0.143 0.312  

 

Treatment 2 
 Decision D Decision S p-value 

Rounds 1-5 0.714% 27.5% <0.001 

Rounds 6-10 0.714% 23.57% <0.001 

p-value 1.000 0.047  
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In summary, subjects play the dominated strategies at much lower rates in mechanisms 

with partition-ODS, as compared to dominant strategy mechanisms that should implement 

the same allocation rule. Moreover, subjects choose dominated strategy at a much lower 

rate in decision tasks when the optimal choice is also partition obviously dominant than 

when it is not. In Appendix D, we display alternative statistical analyses that yield similar 

results. We also found a significant negative correlation between the priority score and the 

deviation from dominant strategies in Game S.79 See Appendix D for details.80 

3. Pay for non-instrumental information 

       3.1. Main treatments 

We design pairs of two one-shot games with 2 players and incomplete information as in 

Figure 3.4. There are three possible states of nature: A, B, and C. The computer randomly 

draws one, which is unknown to both players. Each player chooses between R and L. We 

provide the payoff table in three matrices. (a, b) denotes that player 1 gets a and player b 

gets b.81 The game on the top of Figure 3.3 is the same as that in Example 1 of chapter 2. 

R is a dominant strategy in both games, but it is obviously dominant only in the game on 

the bottom. Following the argument in Example 1 of chapter 2, the information regarding 

                                                 
79 Hassidim, Romm, and Shorrer (2018) also find a negative correlation between the priority score and the 

deviation from the dominant strategy in Serial Random Dictatorship by revisiting data from one of the 

treatments in Li’s (2017) experiment. 
80 As a side result, we found that women are more likely to choose dominated strategies in both Game and 

Decision S. But we are aware that the gender difference we found might be due to other correlated factors, 

which is beyond the scope of the current paper.  
81 All payoffs are in Experimental Currency Unit (ECU) and will be paid with exchange rate: 2ECU=1 U.S. 

dollar.  
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the state of nature is in can alter the optimal choice for some POP preference and thus it is 

instrumental in the game on the top (Denote by Game-DS); however, regarding Proposition 

2.1, such information cannot alter the optimal choice for all POP preference and hence it 

is not instrumental in the game on the bottom (Denote by Game-ODS).  

 

 

 
Figure 3.4 Two symmetric games: DS or ODS 

 

 

In each of the one-shot games, after the state is randomly selected, as in Figure 3.5, we will 

ask each player whether they are willing to pay some amount of ECU to know the selected 

state A, B, or C.82 They need to provide answers for all listed prices. After choices are 

                                                 
82 The payoff table is showing on the same screen.  
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made, we will randomly draw a number from the listed prices to determine which price to 

be selected and implemented.  

 

 

 
 

Figure 3.5. zTree screenshot: willingness to pay 

 

 

If the subject indicated that he/she is willing to pay for the selected price, as in Figure 3.6, 

he/she will be shown the selected states and then asked to make their choice, R or L. 

Otherwise, as in Figure 3.7, they need to make their choice immediately without any more 

information.  
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Figure 3.6. zTree screenshot: selected state shown 

 

 

 
Figure 3.7. zTree screenshot: selected price not shown 
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       3.2. Control for other explanations 

Our design also controls for other explanations for paying for non-instrumental 

information proposed in existing studies. First, because R is ex-post optimal with 

probability 1, with or without the information about states of nature, our design rules out 

the possibility of paying for confidence, when subjects have an intrinsic preference for the 

likelihood that this decision is ex-post optimal (Eliaz and Schotter 2007, 2010). 

 Second, the possible different behavioral results in the pair of games can’t be 

explained by models of best responding with errors including Quantal Response 

Equilibrium, (McKelvey and Palfrey 1995) and mixture-of-types models (See, e.g. Stahl 

and Wilson 1994; Crawford and Iriberri 2007). Denote the expected payoff of strategy R 

and L by 𝜋𝑅 and 𝜋𝐿; denote the random shock by 𝜀 and precision parameter by 𝜇. Strategy 

R is selected if the disturbed expected utility of R (𝜋𝑅 +
 𝜀 

𝜇
) is larger than that of L (𝜋𝐿 +

 𝜀 

𝜇
). So, the probability of choosing R is 𝐹(𝜇(𝜋𝑅 − 𝜋𝐿)), where 𝐹(∙) is the distribution 

function of the difference in the shocks. Note that in all the four games, given any state, 

the payoff of R is 5 ECU higher than that of L. So 𝜋𝑅 − 𝜋𝐿 = 5 regardless of subjects’ 

belief about the states of nature. So, the probability of choosing R is constant, 𝐹(5𝜇)) for 

both games. 

Third, to control for pay for curiosity, a desire to know ex-post the situation one 

was in (Eliaz and Schotter 2007) or the intrinsic preference for information (Grant et al. 

1998, 2000), we inform subjects at the beginning of the experiment that information 
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regarding states of nature will be released to them at the end of the experiment in all 

treatments.  

Four, to rule out the effect of social preference, we include sessions where each 

player is randomly matched with a past player in the subject pool. 

Five, the possible different behavioral results in the pair of games can’t be 

explained by paying for early resolution of uncertainty (Kreps and Porteus 1978), (Grant, 

Kaji, and Polak 1998, 2002). Because if subjects (do not) have a preference for early 

resolution of uncertainty, then they should (not) be willing to pay for the information in 

both games.  

       3.3. The voting games 

The following voting game is from the experiment of Esponda and Vespa (2014). There is 

a jar with 10 balls, some of which are Green and some of which are Pink. Each subject 

plays with two computers that are programmed to behave in a specific manner: 

(1) If the selected ball is Green: vote Green. 

(2) If the selected ball is Pink: vote Green with probability p and pink with 1-p, 0<p<1. 

The exact value of p is unknown. If the selected ball matched the vote of the majority, the 

subject’s payoff is 2; otherwise, it is zero.  

In Phase 1, subjects vote without any information about actual votes of the 

computers; in Phase 2, each subject plays the same game but is informed that one computer 

voted Green and the other voted Pink.  
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Voting Pink is dominant strategy in both phases. 83  However, it is obviously 

dominant strategy only in phase 2.  

 

       3.4. The treatments 

We adopt a crossover design (Piantadosi 2005) as shown in Table 2. The treatments are 

across subjects. Each treatment consists of 2 tasks, the normal form games, and the voting 

games. The instructions for each task are given immediately before that task. There is no 

feedback whatsoever until the end of the experiment.  

In Treatment 1A, 1B, we group subjects randomly to play the 1st Game and then randomly 

re-group them to play the 2nd Game, which is a perfect stranger protocol.84 In treatment 2A 

and 2B, each subject plays with a past player randomly selected from the subject pool. In 

each treatment and in both task, one game (phase) has an obviously dominant strategy 

(ODS) while the other game (phase) only has a dominant strategy (DS). The Treatments 

iA and iB, i=1,2 switch the order of the two games (phases) in Task 1 (2). So, such design 

allows us to compare each subject’s behavior in both games (phases), controlling for 

sequential effect. Moreover, using the data for only the 1st Game, we are also able to 

compare, across subjects, how players in games with or without an obviously dominant 

strategy behave differently.  

 

 

                                                 
83 The only states that the subject’s vote matters are when the selected ball is pink and two computers vote 

different colors. 
84 The two games in Treatment 1A and 1B have symmetric payoff; while those in Treatment 2A and 2B 

have asymmetric payoff.  



 

89 

 

 Task 1                    Task 2 

 1st Game 2nd Game The other 

player 

1st Decision 2nd Decision 

Treatment 1A DS ODS Current 

Player 

DS ODS 

Treatment 1B ODS DS ODS DS 

Treatment 2A DS ODS Past  

Player 

DS ODS 

Treatment 2B ODS DS ODS DS 

Table 3.8. Treatments 

 

 

       3.5. The questionnaire 

At the end of experiments, we add a questionnaire with items that test students’ different 

aspects of cognitive abilities. By incorporating answers collected from the questionnaire, 

we can further explore if subjects’ behavioral differences are related to the measurement 

of their cognitive abilities.85 Our questionnaire including three parts are in Appendix E. 

Part I is the Cognitive Reflection Test (CRT), a 3-item test first introduced by Kahneman 

and Frederick (2002) and Frederick (2005).86 Part II is the test of Disjunctive Reasoning,87 

a variant on ones used by Toplak and Stanovich (2002). In Part III, we use the 18-item 

Need for Cognition Scale (Cacioppo, Petty, and Kao 1984) to quantitatively measure the 

tendency for an individual to engage in and enjoy thinking (Cacioppo and Petty 1982, 

p.116). 88  We will also request access to student records reporting resources 

                                                 
85 All the tests included in our study are parts of the Comprehensive Assessment of Rational Thinking 

(Stanovich 2016).  
86 CRT is broadly used in literature that measures cognitive abilities. (Oechssler, Roider, and Schmitz 2009, 

Campitelli and Labollita 2010, Bergman, Ellingsen, Johannesson, and Syensson 2010, Moritz, Hill, and 

Donohue 2013, Corgnet, Espoin and Hernan-Gonzalez 2015, Corgnet, Hernan Gonzalez, and Mateo 2015, 

Noori 2016) 
87 The problem of disjunctive reasoning was first introduced by Levesque (1986, 1989). 
88 The 18-item Need for Cognition Scale has been used in several settings. Researchers have used the scale 

to examine (1) how students’ need for cognition relates to their academic performance (Sadowski and Gulgo, 
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(http://oesar.osu.edu/). By eliciting students’ records, we will be able to test how our 

research results vary across students with different academic and geographic backgrounds. 

Among the records, SAT score would be used as another good proxy measure for cognitive 

ability (Filiz-Ozbay, Ham, and Kagel 2016, p. 8). 

 

       3.6. The pilot results 

We have run two pilots so far. The experiment is presented to subjects through software 

programmed in zTree (Fishbacher 2007) in the Economics Experimental Lab of the Ohio 

State University. The experiment instruction is attached in Appendix F. The pilots allowed 

us to test the software and improve the instructions. More importantly, they let us realize 

that two important changes had to be made to the experiment design. 

First, in the pilots, we used Red and Blue ball as in Esponda and Vespa (2014)’s original 

experiments. Surprisingly, almost all subjects voted for the Red ball in both phases. From 

a post-experiment survey, we found that it is just because Red is the color of Ohio State 

Football team and Blue is that of the archenemy Michigan. So Red and Blue tend to 

stimulate a strong bias in subjects who are undergraduate at Ohio State University and thus 

it is not a proper label of choices for the purpose of our experiment.  

Secondly, in the pilots, the first session employed only Game-DS in Task 1 and Phase 1 in 

Task 2 with 12 subjects, and the second session used only Game-ODS in Task 1 and Phase 

                                                 
1992, 1996; Tolentino, Curry, and Leak, 1990); (2) how one’s need for cognition and religious views 

influence satisfaction with one’s life (Gauthier, Christopher, Walter, Mourad, and Marek, 2006); (3) the 

relationship between jurors’ need for cognition and their legal decisions (Bornstein 2004), and (4) how 

college students’ need for cognition impacts their self-reported satisfaction with their lives as a whole 

(Coutinho and Woolery, 2004). 
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2 in Task 2 with 12 subjects. We found that both sessions ended within 40 minutes, which 

suggests that we will be able to finish our crossover design (presented in 3.4) within one 

hour. So, we decide to use the crossover design in future experiments because we could 

collect more data and conduct “within-subject” comparison without much more cost.  

The preliminary results provide some evidence that subjects are less willing to pay for non-

instrumental information when the dominant strategy is obvious. See Figure 1: In Game 

DS, 8 out of 12 agreed to pay 0.5 ECU (66.67%); 6 out of 12 agreed to pay 1 ECU (50.00%); 

5 out of 12 agreed to pay 1.5 ECU (41.67%); 4 out of 12 agreed to pay 2 ECU (33.33%); 

3 out of 12 agreed to pay 2.5 ECU (25.00%) and 1 out of 12 agreed to pay 3 ECU (8.33%).  

In contrast, in Game-ODS, 5 out of 12 agreed to pay 0.5 ECU (41.67%); 3 out of 12 agreed 

to pay 1 ECU (25.00%); 2 out of 12 agreed to pay 1.5 ECU (16.67%) and 1 out of 12 agreed 

to pay 2 ECU (8.33%). 

 

 

 

Figure 3.8. Pilot results 
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Ending Remark: Transdisciplinary Conversations 

As a variant of Tolstoy’s (1966) 89  famous quote, Economist Steve Tadelis (Presh 

Talwalkar 2014) says, “rational people are all alike; every irrational person is irrational in 

his or her own way.” When we leave the paradigm of rationality defined in classic 

Economics, where should we go? On one hand, to model complex human behavior more 

closely, we need to converse with other disciplines wherein specific aspects of human 

behavior are researched in depth, for instance, for emotion and heuristics, with psychology; 

for brain and mind, with neuroscience; for ethic concern, with moral philosophy. On the 

other hand, to honor the elegance of classic Economic theory, we might seek a unified 

model that is broadly applicable, not many unsystematic models, each of which only 

explains a single case. 90  At the end of this dissertation, we address how our model 

contributes to accomplishing the two goals simultaneously: stimulating transdisciplinary 

conversations and providing a unified framework.  

4.1. Converse with Psychology 

Our approach does not necessarily contradict other psychological explanations for 

choosing a dominated strategy. A decision maker who has a POP might be also affected 

by certain “non-optimal” heuristics in scenarios where reasoning the optimal choice is 

beyond his or her bound of rationality. For example, Shafire, Simonson and Tversky (1993) 

                                                 
89 “Happy families are all alike; every unhappy family is unhappy in its own way.” (Anna Karenina, Chapter 

1)  
90 As Rabin (2013) says, “For a good scientific reason, the heart of much psychological and behavioral 

research is to investigate possible flaws, caveats, and modifications to previous theories. But the heart of 

modifying existing economic theory is to formulate credible and systematic alternatives.” 
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proposed a theory of reason-based choice to explain the choice of dominated strategies in 

the prisoner dilemma games and other choice tasks.91 that leads them to cooperation. 

However, such a decision can also be rationalized by our POP,92 as the player somehow 

believes that by cooperating, even in a single shot game, the other player is more likely to 

reciprocate, assigning a larger α  for cooperating. 93  Explanations for the choice of 

dominated strategies such as reason-based choice, magical thinking (Arad 2014) as well 

as joys of winning (Harrison 1989), spite-motive (Morgan et al. 2003), and inequality 

aversion (Cooper and Kagel 2009) offer specific explanations in specific environments. 

Our approach provides a more unified theoretical foundation. It thus serves to bridge the 

gulf between the rational and the psychological narratives.  

Our theory can also be interpreted from the perspective of procedural rationality, similar 

to, but richer than, how Osborne and Rubinstein (1998) motivate their 𝑆(𝐾)-equilibrium. 

We allow a decision maker to have a coarse understanding of the relationship between the 

other players’ choice, state of the world, her own choice and the outcome. The level of 

coarseness is modeled by a partition of their subjective state-space.94 Decision makers 

                                                 
91 They claim that people’s choices are guided by reasons and some players may follow the golden rule, a 

variant of what is mentioned in Kant’s the Categorical Imperative (Paton 1971), “treat others as you wish to 

be treated,” in the Analects of Confucius (Confucius and Watson 2007), “what you don’t want done to 

yourself, don’t do to others,” and in Adam Smith’s (1759, 1976) the Theory of Moral Sentiments, “as to love 

our neighbors as we love ourselves is the great law of Christianity, so it is the great precept of nature to love 

ourselves only as we love our neighbor, or what comes to the same thing, as our neighbor is capable of loving 

us.” 
92 Note that in the prisoner’s dilemma game, there is no ODS. Thus, a player who cannot reason state-by-

state may fail to recognize the DS. 
93 Dawes, McTavish, and Shaklee (1977) found, in an eight-person commons dilemma game, that having to 

make the cooperative or defective choice did affect the expectations of what opponents would do: defectors 

expected much more defection than did cooperators.  
94 Osborne and Rubinstein (1998) only consider the coarsest partition. In their model, decision-makers first 

associate one outcome with one action, by sampling and then choosing the one that has the best outcome.  
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know the set of outcomes that each of their actions induces, given any event of the partition; 

however, they do not distinguish in detail, in which state each outcome would come out. 

Thus, rather than following substantive rationality (Simon 1976) right away, optimizing 

given a belief over the state-space, they adopt the following procedure: They first associate 

one outcome with each of their actions, in each event of the partition, by sampling, literately 

or virtually, in a certain way. They then follow substantive rationality in the reduced 

problem by optimizing a given a belief over the partition. Our approach thus retains the 

tight system of axioms that have dominated classical economics but also consider the actual 

processes of cognition that have prevailed in psychology.   

4.2. Converse with Eye-tracking Technology in Neuroscience 

When face the same problem, different agents might process information differently. 

Especially, they might partition the subjective state-space in different ways. The variations 

in information partitioning do not matter when there is an ODS. However, it matters when 

the DS is partition obviously dominant respect to one partition but not the other. In such 

scenario, if the market maker can drive agents to choose the former partition by a proper 

presentation, 95  then he can reduce the choice of dominated strategies and achieve a 

desirable outcome.   

 

                                                 
95 In an experiment of pure coordination games, Charness and Sontuoso (2018) show that the experimenter 

can manipulate frames-similar to our concept of partitions-on strategic behavior by reminding subjects of 

various attributes by which different frames are generated.  
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Figure 4.1. Two ways of partitioning 

 

 

For example, see two representations of the same game in Figure 4.1. There are two 

(exogenous) states of nature, L and R, and each player has two strategies, A and B. Payoffs 

are shown in the matrices. For each player, each player’s subjective state space is a cross-

product of {𝐴, 𝐵} and {𝐿, 𝑅}. In the top case, the payoffs are presented using partitioning 

by states of nature; in contrast, in the bottom case, the same payoffs are presented using 

partitioning by the strategy of the opponent. B is partition-ODS based on the bottom 

partition but not the top. Thus, if the market maker can drive agents into the information 

partitioning by which the problem is presented, then empirically, we might observe fewer 

choice of dominated strategies with the bottom presentation than with the top one.  

But, can the market maker influence the way how agents partition the state-space by 

different presentations? Choice data alone are limited in answering this question for a 

certain choice does not inversely infer a certain information partitioning. Can we observe 



 

96 

 

attention or information searching pattern more directly? Fortunately, it has long been 

believed that attention is linked to foveal gaze direction in all eye-tracking studies. 96 Based 

on such convention, we can use eye-tracking data to enhance choice data in responding the 

query by recording two facets of eye-movements: fixation, “where” (Von Helmholtz 1925) 

and “what” (James 1981) of visual attention, and scan-path (Noton and Stark 1971), the 

sequence of fixation. For instance, if we observe few or no scan-path connecting 

information across two events of the partition as presented in Figure 4.1, and the subject 

chooses B when facing the bottom presentation while chooses A when facing the top 

presentation, then we have more reasons to believe that the market maker can influence the 

way of information partitioning by different presentations of the same problem and choose 

the proper one to achieve a desirable outcome.  

4.3. Converse with Contract Theory 

Our theory implies a tradeoff between implementing cost and the rate of truthful reporting. 

For instance, to facilitate bounded rational agents who reason in coarser partitions, the 

market marker can highlight a finer partition of the state-space; to solve the problem of 

mistrust, the market marker can conduct an auditing that is measurable to a finer partition. 

However, both highlighting and auditing can be costly. The cost of auditing and its effect 

on truthful-reporting have been studied in the literature of contract theory, mainly in 

principal-agent models (Townsend 1979, Baron and Besanko 1984, Border and Sobel 1987, 

Mookherjee and Png 1989, 1992; Kaplow and Shavell 1994, Rahman 2012).  However, an 

                                                 
96 Psychologist William James (1981) once said, “when the things are apprehended by the sense, the number 

of them that can be attended to at once is small, Pluribus intentus, minor est ad singular sensus (Many filtered 

into few for perception).”  
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appreciable study of such tradeoff in mechanism design or market design is still absent, 

which leaves rooms for a conversation between the literature of contract theory and 

mechanism design.   

4.4. Converse with Moral Philosophy 

Our theory shows that when there is mistrust in the market maker, a Strategy-proof 

Mechanism might not work. A mechanism with both a stronger solution concept and a 

relevant audit could be a remedy. But will the group of participants trust the market maker? 

Or, ought them trust the market maker?  

To answer such questions, we refer to moral philosophy. First, we argue that to trust the 

market maker is plausible in an ideal civil society of high moral standard. For instance, in 

the west, we could find the moral foundation of trust in Adam Smith’s elaboration of 

sympathy, i.e., both the trust giver and the trust receiver would realize the antipathy of the 

trust giving person being betrayed by means of sympathy, and both would feel pleasure for 

this mutual sympathy; and such aligned disapproval of hurting the trust given by others 

would end up with coordinating actions based on trust (Herrmann-Pillath 2010). In the east, 

the schooling of Confucianism dictates that a virtuous gentleman can be cultivated by daily 

reflection on three questions, “in my undertaking on others’ behalf, have I been trustworthy 

and loyal? In my interactions with friends, have I failed to be honest and accountable? In 

what has been passed on to me, have I failed to carry it into practice?” (Yang and Yue 2018) 

Thus, it seems that in a civil society consisting of mutual sympathetic citizens or virtuous 

gentlemen, mistrust would not be an issue.  
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However, how could we be sure that trust in a market maker is rational or warranted in a 

more general setting? In this work, we distinguish strategic rationality from epistemic 

rationality (Baker 1987). In a mechanism with Partition-ODS and an audit that is 

measurable respect to the partition, to trust the market maker might not be epistemically 

rational, since the market maker could still deviate to a partition-identical game without 

being noticed; to trust the market maker is strategically rational, for the player has no 

incentive to choose an alternative dominated strategy even if he doubts that the market 

marker might use another partition-identical game to implement the result.97 Thus, by 

providing a solution to mistrust in market makers in particular, our work also draws 

attention to a discussion between the effectivity of designed mechanisms and the moral 

foundation that the design is based on in general.  

 

 In the history of economic thought lies a dilemma for future economists: should we 

adopt simple models with unrealistic assumptions, or should we describe human behavior 

closely but give up elegant abstractions (Hausman 2013)? In this dissertation, we endeavor 

to crave for a middle way that synthesizes the merits in both directions. And we hope we 

took a modest step forward and contributed to inspiring better solutions.  

 

 

                                                 
97 For more discussions about trust in institutions and government, we refer readers to Govier (1997), 

Hardin (2002), Potter (2002), Townley and Garfield (2013), and the references therein.  
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Appendix A Mathematical Appendix for Chapter 1 

A.1. Solve for 𝜆-NLK equilibrium in the Money Request Game 

We only go through the solution for 0 ≤ 𝜆 <
1

2
, since a similar argument follows for 

1

2
≤

𝜆 < 1. 

We first claim that when 0 ≤ 𝜆 <
1

2
, $20 must be played by an NLK player. Assume for 

contraction that $20 will not be played, then deviation to $20 would end up with $20 for 

sure whereas choosing $19 generates $19+ 𝜆 ×
1

10
× 20(< 20). So, $19 will not be played 

by an NLK player. By induction, no strategy is valid for an NLK player. This is a 

contradiction.98 So $20 must be played by an NLK player. But $20 couldn’t be the only 

pure strategy of an NLK player since he has an incentive to deviate to $19. Assume that 

𝑗 < 19 is the largest number that is played with positive probability. Hence deviating to 

$19 generates strictly larger payoff. Then $19 must be played with positive probability. 

Denote the probability of playing $j in the NLK equilibrium by 𝛽𝑗 , 𝛽𝑗 ∈ [0, 1] and ∑𝛽𝑗 =

1. The expected payoff of all strategies in equilibrium should be the same, and since 

playing $20 yields $20 for sure, it follows: 19 + (1 − 𝜆)𝛽2020 + 𝜆
20

10
= 20. Then 𝛽20

∗ =

1−2𝜆

(1−𝜆)20
< 1. By the same argument, 18 + (1 − 𝜆)𝛽1920 + 𝜆

20

10
= 20. Then 𝛽19

∗ =
2−2𝜆

(1−𝜆)20
. 

                                                 
98 Since the game is finite, by Proposition 1, NLK exists.  
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Because 𝛽20
∗ + 𝛽19

∗ < 1, $18 has to be played in equilibrium (otherwise there would be an 

incentive to deviate to $18), so iteratively, we get 𝛽18
∗ =

3−2𝜆

(1−𝜆)20
, 𝛽17

∗ =
4−2𝜆

(1−𝜆)20
, 𝛽16

∗ =

5−2𝜆

(1−𝜆)20
. Suppose $14 is played in equilibrium too, then 14 + (1 − 𝜆)𝛽1520 + 𝜆

20

10
= 20 

implies that 𝛽15 =
6−2𝜆

(1−𝜆)20
. But in this case, ∑ 𝛽𝑗

20
𝑗=15 > 1. This is a contradiction. So, $14 

(and all lower numbers) would not be played by an NLK player. Then  𝛽15
∗ = 1 −

∑ 𝛽𝑗
20
𝑗=16 =

5−10𝜆

(1−𝜆)20
. In conclusion, when  0 ≤ 𝜆 <

1

2
, there is a unique mixed-strategy for 

an NLK player where  

{𝜎𝑖
∗} = { 𝛽15

∗ , 𝛽16
∗ , 𝛽17

∗ , 𝛽18
∗ , 𝛽19

∗ , 𝛽20
∗ } = {

5−10𝜆

(1−𝜆)20
,

5−2𝜆

(1−𝜆)20
,

4−2𝜆

(1−𝜆)20
,

3−2𝜆

(1−𝜆)20
,

2−2𝜆

(1−𝜆)20
,

1−2𝜆

(1−𝜆)20
}. 

 

A.2. Solve for 𝜆-NLK equilibrium in the Common Value Auction  

Assume there is a linear pure strategy for a 𝜆-NLK player, denote it as 𝑏𝜆(𝑥) = 𝑏𝜆(1) +

𝑏𝜆(4)−𝑏𝜆(1)

3
(𝑥 − 1), 𝑥 ∈ [1, 4] . Denote 𝑑𝜆 = 𝑏𝜆(4) − 𝑏𝜆(1) .The probability that the 

opponent is level0 conditional on a tie is 𝑞𝜆 = Pr(𝑟𝑖𝑣𝑎𝑙 = 𝑙𝑒𝑣𝑒𝑙0|𝑡𝑖𝑒 𝑎𝑡 𝑏𝑖𝑑 = 𝑏) =

𝜆/6

𝜆/6+(1−𝜆)/𝑑𝜆 , 𝑏 ∈ [𝑏𝜆(1), 𝑏𝜆(4)]⊆ [2, 8]. 

Then by indifference in the case of Maximum Willingness to Pay conditional on a tie, 

denoted by 𝑀𝑊𝑃(𝑋) = 𝑏(𝑥): 

MWP (1)= 𝑞𝜆(1 + 2.5) + (1 − 𝑞𝜆)2 = 1.5𝑞𝜆 + 2 = 𝑏𝜆(1), 

MWP (4)= 𝑞𝜆(4 + 2.5) + (1 − 𝑞𝜆)8 = 8 − 1.5𝑞𝜆 = 𝑏𝜆(4). 
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Then 𝑑𝜆 = 𝑏𝜆(4) − 𝑏𝜆(1) = 1 − 3𝑞𝜆 =
𝜆/6

𝜆/6+(1−𝜆)/𝑑𝜆. 

Then (𝑑𝜆)
2

+ 3
2−3𝜆

𝜆
𝑑𝜆 −

36(1−𝜆)

𝜆
= 0. 

So, the bidding strategy is  𝑏𝜆(𝑥) = 𝑏𝜆(1) +
𝑑𝜆

3
(𝑥 − 1), where 𝑏𝜆(1) = 1.5𝑞𝜆 + 2, 

𝑑𝜆 =
3

2𝜆
(3𝜆 + √−7𝜆2 + 4𝜆 + 4 − 2) and 𝑞𝜆 = (1 − 𝑑𝜆)/3. 
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Appendix B. Mathematical Appendix for Chapter 2   

B.1. Proof of Theorem 1 (POP) 

The crucial part of the proof is that (i) implies (ii). First since AXIOM 1, 4, 5 implies von 

Neumann-Morgenstern’s three axioms on lotteries, it follows directly from their theory 

(and the fact that ℱ𝑐(Ω) and 𝒵 are isomorphic) that there exists an affine function 𝑢: 𝒵 →

ℝ, such that for all 𝑝, 𝑞 ∈ ℱ𝑐(Ω): 𝑝 ≿ 𝑞 iff 𝑢(𝑝) ≥ 𝑢(𝑞). Moreover, 𝑢 is cardinally unique. 

By AXIOM2, 𝑢 is not a constant function. 

For the finest partition, Theorem 1 is equivalent with Subjective Expected Utility Theorem. 

We first prove it for the coarsest partition, 𝛴 = {Ω}. When the partition is the coarsest, the 

utility presentation reduces to  

(B.1) 𝑉(𝑓) = 𝛼(𝑓) max
𝑝∈𝒪(𝑓)

𝑢(𝑝) + [1 − 𝛼(𝑓)] min
𝑞∈𝒪(𝑓)

𝑢(𝑞). 

For any 𝑓 ∈  ℱ\ℱ𝑐(Ω), pick measurable acts 𝑓𝑏𝑒𝑠𝑡, 𝑓𝑤𝑜𝑟𝑠𝑡 ∈ ℱ𝑐(Ω) that always generate 

the most and least preferred outcomes given 𝑓  is chosen. Formally, 𝑓𝑏𝑒𝑠𝑡 ∈ {𝑝|𝑝 ≿

𝑞, ∀𝑞 ∈ 𝒪(𝑓)}  and 𝑓𝑤𝑜𝑟𝑠𝑡 ∈ {ℎ|ℎ ≾ 𝑞, ∀𝑞 ∈ 𝒪(𝑓)} . For 𝑓 ∈ ℱ𝑒(Ω)\ℱ𝑐(Ω) , by the 

definition of ℱ𝑒(Ω) ,  𝑓𝑏𝑒𝑠𝑡 ∼ 𝑓𝑤𝑜𝑟𝑠𝑡 , which implies 𝑢(𝑓𝑏𝑒𝑠𝑡) = 𝑢(𝑓𝑤𝑜𝑟𝑠𝑡) , and by 

AXIOM 3, 𝑓 ∼ 𝑓𝑏𝑒𝑠𝑡 ∼ 𝑓𝑤𝑜𝑟𝑠𝑡 . So  𝑉(𝑓) =  𝑢(𝑓𝑏𝑒𝑠𝑡) = 𝑢(𝑓𝑤𝑜𝑟𝑠𝑡) satisfying (2.1) for 

any 𝛼(𝑓) ∈ [0, 1]. Hence 𝑉(𝑓) also calibrates the preference on ℱ𝑒(Ω). 
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Finally, for 𝑓 ∈  ℱ\ℱ𝑒(Ω), by the definition of ℱ𝑒(Ω), 𝑓𝑤𝑜𝑟𝑠𝑡 ≺ 𝑓𝑏𝑒𝑠𝑡 . And by AXIOM 

3, 𝑓𝑤𝑜𝑟𝑠𝑡 ≾ 𝑓 ≾ 𝑓𝑏𝑒𝑠𝑡. 

Lemma B.1. for 𝑓 ∈  ℱ\ℱ𝑒(Ω), AXIOM 1-5 imply that there exists a unique 𝛽∗ ∈ [0, 1] 

such that 𝑓 ∼ 𝛽∗𝑓𝑏𝑒𝑠𝑡 + (1 − 𝛽∗) 𝑓𝑤𝑜𝑟𝑠𝑡. 

Proof. First since 𝑢[𝛽𝑓𝑏𝑒𝑠𝑡 + (1 − 𝛽) 𝑓𝑤𝑜𝑟𝑠𝑡] = 𝛽𝑢(𝑓𝑏𝑒𝑠𝑡) + (1 − 𝛽)𝑢(𝑓𝑤𝑜𝑟𝑠𝑡), so for 

0 ≤ 𝑎 < 𝑏 ≤ 1 , 𝑏𝑓𝑏𝑒𝑠𝑡 + (1 − 𝑏) 𝑓𝑤𝑜𝑟𝑠𝑡 ≻  𝑎𝑓𝑏𝑒𝑠𝑡 + (1 − 𝑎) 𝑓𝑤𝑜𝑟𝑠𝑡 . Then it ensures 

that if 𝛽∗ exists, it is unique. 

If 𝑓 ∼ 𝑓𝑏𝑒𝑠𝑡, then 𝛽∗ = 1 works. The same way around, if 𝑓 ∼ 𝑓𝑤𝑜𝑟𝑠𝑡, then 𝛽∗ = 0 works. 

Otherwise, 𝑓𝑤𝑜𝑟𝑠𝑡 ≺ 𝑓 ≺ 𝑓𝑏𝑒𝑠𝑡. Define 

𝛽∗ = sup{𝛽 ∈ [0, 1]: 𝑓 ≿ 𝛽𝑓𝑏𝑒𝑠𝑡 + (1 − 𝛽)𝑓𝑤𝑜𝑟𝑠𝑡}. 

Since 𝛽 = 0 is in the set, we aren’t taking a sup over an empty set. By the definition of 𝛽∗, 

if 1 ≥  𝛽 > 𝛽∗, then 𝑓 ≺  𝛽𝑓𝑏𝑒𝑠𝑡 + (1 − 𝛽)𝑓𝑤𝑜𝑟𝑠𝑡. Moreover, by the same argument to 

prove uniqueness above, if 0 ≤  𝛽 < 𝛽∗, then 𝑓 ≻ 𝛽𝑓𝑏𝑒𝑠𝑡 + (1 − 𝛽)𝑓𝑤𝑜𝑟𝑠𝑡. To see this, 

note that if 0 ≤  𝛽 < 𝛽∗ , then there exists 𝛽′  such that 0 ≤  𝛽 <  𝛽′ < 𝛽∗  and 𝑓 ≿

 𝛽′𝑓𝑏𝑒𝑠𝑡 + (1 − 𝛽′)𝑓𝑤𝑜𝑟𝑠𝑡 by the definition of 𝛽∗. And 𝛽 <  𝛽′ implies that 𝑓 ≻ 𝛽𝑓𝑏𝑒𝑠𝑡 +

(1 − 𝛽)𝑓𝑤𝑜𝑟𝑠𝑡. 

There are three possibilities to consider. 

(1) Suppose 𝛽∗𝑓𝑏𝑒𝑠𝑡 + (1 − 𝛽∗) 𝑓𝑤𝑜𝑟𝑠𝑡 ≻  𝑓 ≻ 𝑓𝑤𝑜𝑟𝑠𝑡 , then by AXIOM 4, there exists 

𝑏 ∈ (0, 1)  such that 𝑏[𝛽∗𝑓𝑏𝑒𝑠𝑡 + (1 − 𝛽∗)𝑓𝑤𝑜𝑟𝑠𝑡] + (1 − 𝑏)𝑓𝑤𝑜𝑟𝑠𝑡 = 𝑏𝛽∗𝑓𝑏𝑒𝑠𝑡 + (1 −

𝑏𝛽∗)𝑓𝑤𝑜𝑟𝑠𝑡 ≻  𝑓.  But 𝑏𝛽∗ < 𝛽∗ , so by the previous argument 𝑓 ≻  𝑏𝛽∗𝑓𝑏𝑒𝑠𝑡 + (1 −

𝑏𝛽∗)𝑓𝑤𝑜𝑟𝑠𝑡 ≻  𝑓. Contradiction. 
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(2) Suppose instead that 𝑓𝑏𝑒𝑠𝑡 ≻  𝑓 ≻ 𝛽∗𝑓𝑏𝑒𝑠𝑡 + (1 − 𝛽∗) 𝑓𝑤𝑜𝑟𝑠𝑡 . Then by AXIOM 4, 

There exists 𝑎 ∈ (0, 1)  such that 𝑓 ≻ 𝑎[𝛽∗𝑓𝑏𝑒𝑠𝑡 + (1 − 𝛽∗)𝑓𝑤𝑜𝑟𝑠𝑡] + (1 − 𝑎)𝑓𝑏𝑒𝑠𝑡 =

(1 − 𝑎(1 − 𝛽∗))𝑓𝑏𝑒𝑠𝑡 + 𝑎(1 − 𝛽∗)𝑓𝑤𝑜𝑟𝑠𝑡 . Since (1 − 𝑎(1 − 𝛽∗)) > 𝛽∗ , we have from 

above that (1 − 𝑎(1 − 𝛽∗))𝑓𝑏𝑒𝑠𝑡 + 𝑎(1 − 𝛽∗)𝑓𝑤𝑜𝑟𝑠𝑡 ≻ 𝑓. Contradiction. 

(3) This leaves us with the third possibility (which is what we are supposed to proof), 

namely 𝑓 ∼ 𝛽∗𝑓𝑏𝑒𝑠𝑡 + (1 − 𝛽∗) 𝑓𝑤𝑜𝑟𝑠𝑡.  

Proof of Lemma B.1. ends. 

Follows the argument of Lemma B.1, then 𝑉(𝑓) = 𝑉[𝛽∗𝑓𝑏𝑒𝑠𝑡 + (1 − 𝛽∗)𝑓𝑤𝑜𝑟𝑠𝑡]. Since 

[𝛽∗𝑓𝑏𝑒𝑠𝑡 + (1 − 𝛽∗)𝑓𝑤𝑜𝑟𝑠𝑡] ∈ ℱ𝑐(Ω). 

V[𝛽∗𝑓𝑏𝑒𝑠𝑡 + (1 − 𝛽∗)𝑓𝑤𝑜𝑟𝑠𝑡] = 𝑢[𝛽∗𝑓𝑏𝑒𝑠𝑡 + (1 − 𝛽∗)𝑓𝑤𝑜𝑟𝑠𝑡]. 

Moreover, since 𝑢 is affine, 

𝑢[𝛽∗𝑓𝑏𝑒𝑠𝑡 + (1 − 𝛽∗)𝑓𝑤𝑜𝑟𝑠𝑡] = 𝛽∗𝑢(𝑓𝑏𝑒𝑠𝑡) + (1 − 𝛽∗)𝑢(𝑓𝑤𝑜𝑟𝑠𝑡). 

Then by the definition of 𝑓𝑏𝑒𝑠𝑡, 𝑓𝑤𝑜𝑟𝑠𝑡, and 𝑢(∙), 

min
𝑞∈𝒪ℬ(𝑓)

𝑢(𝑞) = 𝑢(𝑓𝑤𝑜𝑟𝑠𝑡) < 𝑢(𝑓𝑏𝑒𝑠𝑡) = max
𝑝∈𝒪ℬ(𝑓)

𝑢(𝑝). 

So  

𝑢[𝛽∗𝑓𝑏𝑒𝑠𝑡 + (1 − 𝛽∗)𝑓𝑤𝑜𝑟𝑠𝑡] = 𝛽∗ max
𝑝∈𝒪ℬ(𝑓)

𝑢(𝑝) + (1 − 𝛽∗) min
𝑞∈𝒪ℬ(𝑓)

𝑢(𝑞). 

So  

𝑎(𝑓) = 𝛽∗ works and is uniquely determined.  

Now for a partition that is neither the finest nor the coarsest, Σ = (ℬ𝑘)𝑘=1
𝑛 . First, for 

partition indifferent acts, 𝑓 ∈ ℱ𝑒(𝛴), 𝑢(𝑓(𝑠)) is constant, given 𝑠 ∈ ℬ for any ℬ ∈ Σ. 
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Define 𝑉(𝑓|ℬ) = 𝑢(𝑓(𝑠)), 𝑠 ∈ ℬ, which satisfies Equation 2.2. Then it follows from the 

proof of Subjective Expected Utility Theorem (Fishburn 1970) that there exists a unique 

probability function 𝑃: Σ → [0,1], such that the utility functional for 𝑓 is  

𝑉(𝑓) = ∑ 𝑉(𝑓|ℬ𝑘)𝑃(ℬ𝑘)𝑛
𝑘=1 . 

For any 𝑓 ∈  ℱ\ℱ𝑒(Σ) , define partition measurable acts 𝑓𝑏𝑒𝑠𝑡 , 𝑓𝑤𝑜𝑟𝑠𝑡 ∈ ℱ𝑐(Σ)  that 

generate the best and the least preferred outcomes in every event 𝐵 of partition Σ when 𝑓 

is chosen. Formally, 𝑓𝑏𝑒𝑠𝑡(ℬ) ∈ {𝑝|𝑝 ≿ 𝑞, ∀𝑞 ∈ 𝒪𝐵(𝑓)}  and 𝑓𝑤𝑜𝑟𝑠𝑡(ℬ) ∈ {ℎ|ℎ ≾

𝑞, ∀𝑞 ∈ 𝒪𝐵(𝑓)}, ∀ℬ ∈ Σ. Then by AXIOM 3, 𝑓𝑤𝑜𝑟𝑠𝑡 ≾ 𝑓 ≾ 𝑓𝑏𝑒𝑠𝑡. 

Lemma B.2. For  ℱ\ℱ𝑒(Σ), AXIOM 1-5 imply that there exists a unique  𝛽∗ ∈ [0, 1] such 

that 𝑓 ∼ 𝛽∗𝑓𝑏𝑒𝑠𝑡 + (1 − 𝛽∗) 𝑓𝑤𝑜𝑟𝑠𝑡. (Note that 𝛽∗𝑓𝑏𝑒𝑠𝑡 + (1 − 𝛽∗) 𝑓𝑤𝑜𝑟𝑠𝑡 ∈ ℱ𝑐(Σ). 

Proof. The same argument follows as in the proof of Lemma B.1.  

Following the argument of Lemma B.2., then 𝑉(𝑓) = 𝑉[𝛽∗𝑓𝑏𝑒𝑠𝑡 + (1 − 𝛽∗) 𝑓𝑤𝑜𝑟𝑠𝑡] =

∑ 𝑉(𝛽∗𝑓𝑏𝑒𝑠𝑡 + (1 − 𝛽∗) 𝑓𝑤𝑜𝑟𝑠𝑡|ℬ𝑘)𝑃(ℬ𝑘)𝑛
𝑘=1 .  

Denote by 𝑉(𝑓|ℬ) = 𝑉((𝛽∗𝑓𝑏𝑒𝑠𝑡 + (1 − 𝛽∗) 𝑓𝑤𝑜𝑟𝑠𝑡|ℬ) . Then 𝑉(𝑓|ℬ) = 𝛽∗𝑢(𝑓𝑏𝑒𝑠𝑡) +

(1 − 𝛽∗)𝑢(𝑓𝑤𝑜𝑟𝑠𝑡) = 𝛽∗ max
𝑝∈𝒪ℬ(𝑓)

𝑢(𝑝) + (1 − 𝛽∗) min
𝑞∈𝒪ℬ(𝑓)

𝑢(𝑞) satisfying Equation 2.2. 

So 𝑎(𝑓) = 𝛽∗ works and is uniquely determined when 𝑓 ∉ ℱ𝑒(Σ).  

B.2. Proof of Lemma 2. 

When the partition is the finest, Σ = {Ω𝑖}, it is straightforward that Definition 2.9 implies 

Definition 2.8. 

Now we show that Definition 2.8 implies definition 2.9. Assume by contradiction that 

Equation 2.3 is satisfied but Equation 2.4 is not. Then there exists a state (𝑠−𝑖′, 𝜔𝑛′) ∈ Ω𝑖 
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such that 𝑢𝑖(𝑠𝑖
∗, 𝑠−𝑖′, 𝜔𝑛′) < 𝑢𝑖(𝑠𝑖

′, 𝑠−𝑖′, 𝜔𝑛′). Then the terminal history (𝑠𝑖
∗, 𝑠−𝑖′, 𝜔𝑛′) ≠

(𝑠𝑖′, 𝑠−𝑖′, 𝜔𝑛′). So there exists a sub-history ℎ ∈ 𝐼 ∈ ℐ(𝑠𝑖
∗) such that h is a sub-history of 

both (𝑠𝑖
∗, 𝑠−𝑖′, 𝜔𝑛′) and (𝑠𝑖

′, 𝑠−𝑖
′ , 𝜔𝑛

′ ), (𝑠−𝑖
′ , 𝜔𝑛

′ ) ∈ [𝐼] and that 𝑠𝑖
′ ∈ 𝒮𝑖(𝐼)[𝑠𝑖

∗(𝐼)]𝑐. Then for 

event ℬ(𝐼) such that  (𝑠−𝑖
′ , 𝜔𝑛

′ ) ∈ ℬ(𝐼), 

inf
(𝑠−𝑖,𝜔𝑛)∈ℬ(𝐼)

𝑢𝑖(𝑠𝑖
∗, 𝑠−𝑖 , 𝜔𝑛) ≤ 𝑢(𝑠𝑖

∗, 𝑠−𝑖
′ , 𝜔𝑛

′ ) < 𝑢(𝑠𝑖′, 𝑠−𝑖
′ , 𝜔𝑛

′ ) sup
(𝑠−𝑖,𝜔𝑛)∈ℬ(𝐼)

𝑢𝑖(𝑠𝑖
′, 𝑠−𝑖 , 𝜔𝑛). 

Contradiction. 

B.3. Proof of Proposition 2.1. 

(⇒) If 𝑠𝑖
∗ is Σ-ODS, then by Equation (2.1), (2.2) and (2.3), (2.5) is satisfied. 

(⇐)If (2.5) holds, assume by contradiction that 𝑠𝑖
∗  is not Σ-ODS. Then there exists an 

information set 𝐼 ∈ ℐ(𝑠𝑖
∗), a deviating strategy 𝑠𝑖

′ ∈ 𝒮𝑖(𝐼)[𝑠𝑖
∗(𝐼)]𝑐, and an event ℬ ∈ Σ(𝐼) 

such that 

inf
(𝑠−𝑖,𝜔𝑛)∈ℬ(𝐼)

𝑢𝑖(𝑠𝑖
∗, 𝑠−𝑖 , 𝜔𝑛) < sup

(𝑠−𝑖,𝜔𝑛)∈ℬ(𝐼)
𝑢𝑖(𝑠𝑖

′, 𝑠−𝑖 , 𝜔𝑛). 

Consider Partition Obvious Preference at [𝐼], where 𝛼(𝑠𝑖
∗) = 0 and 𝛼(𝑠𝑖

′) = 1 with 𝑃(𝐵) 

close enough to 1 such that, by the continuity of real number, 𝑉(𝑠𝑖
∗) < 𝑉(𝑠𝑖

′) . Then 

𝑠𝑖
∗ ≺[𝐼] 𝑠𝑖

′). Contradiction. 

B.4. Ausubel Auction vs Static Vickrey Auction. 

We illustrate the argument by a simple example, consider the case when there are only 

two bidders and two units on sale. We denote bidder 𝑖’s marginal value for unit 𝑗 by 𝑣𝑖
𝑗

∈
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[$0, $100], 𝑖, 𝑗 = 1, 2. 99 In Ausubel auction, bidders can choose any cut-off strategy for 

their quantity demanded at any price of the following form. 

𝑠𝑖(𝑣𝑖
1, 𝑣𝑖

2) = {

2, 0 ≤ 𝑝 < 𝑝𝑖
1

1, 𝑝𝑖
1 ≤ 𝑝 < 𝑝𝑖

2

0, 𝑝𝑖
2 < 𝑝 ≤ 100

 

Where, 0 ≤ 𝑝𝑖
1 ≤ 𝑝𝑖

2 ≤ 100, 𝑖 = 1,2. 100  Player 𝑖  clinches a unit when the other bidder 

reduces his demand by one unit, given Player 𝑖 being active in bidding that unit. Then 

bidders pay each clinched unit at the clinching price−the clock price at which the item is 

clinched. Formally, Player 𝑖 wins and pays one unit at  𝑝−𝑖
1  if 𝑝𝑖

2 > 𝑝−𝑖
1  and another at 𝑝−𝑖

2  

if 𝑝𝑖
1 > 𝑝−𝑖

2 . We define sincere bidding in Ausubel auction as follows 

𝑠𝑖(𝑣𝑖
1, 𝑣𝑖

2) = {

2, 0 ≤ 𝑝 < 𝑣𝑖
2

1, 𝑣𝑖
2 ≤ 𝑝 < 𝑣𝑖

1

0, 𝑣𝑖
1 < 𝑝 ≤ 100

. 

Its corresponding strategy in the static Vickrey auction is simply reporting the values 

truthfully, 𝑠𝑖(𝑣𝑖
1, 𝑣𝑖

2) = (𝑣𝑖
1, 𝑣𝑖

2). Sincere bidding is DS but not ODS in both multi-unit 

dynamic and static Vickrey Auctions.  

First, we claim that if sincere bidding is a Σ − ODS in static Vickrey auction, then it is also 

Σ − ODS in Ausubel auction. The intuition follows directly from the definition of Σ − ODS: 

since any alternative strategy is given up “later” in the dynamic mechanism when more 

information is updated, Equation (2.3) is a weaker condition at any information set in static 

Ausubel than at the only information set in static Vickrey. Now, we consider a partition 𝛴∗ 

                                                 
99 We assume without loss of generality that 𝑣𝑖

1 ≥ 𝑣𝑖
2. 

100  We assume that the prices and values are discrete.  
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based on the first clinching price 𝑝−𝑖
1  in Ausubel (or equivalently, the lower value reported 

by the other player) and show sincere bidding is  𝛴∗ − 𝑂𝐷𝑆 in Ausubel, however, it is not 

 𝛴∗ − 𝑂𝐷𝑆 in the static Vickrey auction. 

ℬ𝑝 = {(𝑠−𝑖 , 𝜔𝑛) ∈ Ω𝑖|𝑝−𝑖
1 = 𝑝}, 

 𝛴∗ = (ℬ𝑝)
𝑝∈[0,100]

. 

In the static Vickrey auction, consider the event ℬ𝑝 where 𝑝 < 𝑣𝑖
2 < 𝑣𝑖

1. The worst case of 

sincere bidding for bidder 𝑖  is to win one unit at price 𝑝 . However, the best case of 

overbidding is to win both units at 𝑝. Thus, the best case of overbidding is strictly better 

than the worst case of bidding my value− Equation (2.3) does not hold. Hence, sincere 

bidding is not  𝛴∗ − 𝑂𝐷𝑆, in the static Vickrey auction. Now in Ausubel auction, consider, 

for example, the information set 𝐼𝑖 when the clock price reaches bidder 𝑖’s value for the 

second unit at 𝑣𝑖
2, and none item has been clinched. For event ℬ𝑝 where 𝑣𝑖

2 < 𝑝 ≤ 𝑣𝑖
1, the 

worst case of sincere bidding is to win one item at 𝑝 and to win none item for event ℬ𝑝, 

𝑝 > 𝑣𝑖
1, while the best case of any deviating strategy (to drop out later, 𝑝𝑖

1 > 𝑣𝑖
2) can’t 

generate higher payoff. Thus Equation 2.3 is satisfied. A similar argument follows for any 

other information set in the Ausubel auction.101 Thus, sincere bidding  𝛴∗ − 𝑂𝐷𝑆 in the 

Ausubel auction. 

 

                                                 
101 At any clock price when none item has been clinched, we only need to evaluate the events ℬ𝑝 ∈  𝛴∗ 

where 𝑝 is higher than the current price. For the event ℬ𝑝 ∈  𝛴∗ where 𝑝 is lower than the current price, 

ℬ𝑝 ∩ [𝐼] = ∅. 
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B.5. Pay for non-instrumental information 

 

 

𝛼𝑅 − 𝛼𝐿 State A State B State C A, B or C each with 1/3 

 

 

Strictly Prefer R 

 

(
5

12
, 1) (

5

16
, 1) (

5

8
, 1) (

5

12
, 1) 

 

 

Indifferent 

 

5

12
 

5

16
 

5

8
 

5

12
 

     

 

Strictly Prefer L 
(0,

5

12
) (0,

5

16
) (0,

5

8
) (0,

5

12
) 

 

Table B.1. Decision makers’ preference 

 

 

Table B.1. represents the ranges of (𝛼𝑅 − 𝛼𝐿) where the POP strictly prefer R, or L, or the 

POP is indifferent between them in four scenarios, upon knowing A, B, or C, or without 

any information about states of nature. When (𝛼𝑅 − 𝛼𝐿) ∈ (
5

8
, 1), the POP strictly prefers 

R in all states of nature. When (𝛼𝑅 − 𝛼𝐿) ∈ (0,
5

16
), the POP strictly prefers L in all states 

of nature. So, the information regarding states of nature is non-instrumental for 

(𝛼𝑅 − 𝛼𝐿) ∈ (0,
5

16
) ∪ (

5

8
, 1). However, when (𝛼𝑅 − 𝛼𝐿) ∈ (

5

16
,

5

12
), the POP prefers L 

without the information but prefers R in State B; when  (𝛼𝑅 − 𝛼𝐿) ∈ (
5

12
,

5

8
), the POP 

prefers R without the information but prefers L in State C. Thus, the information regarding 

states of nature is instrumental when (𝛼𝑅 − 𝛼𝐿) ∈ (
5

16
,

5

8
).



 

126 

 

Appendix C. Instructions for Experiment I  

C.1. Welcome 

This is a study in decision-making. Money earned will be paid to you in cash at the 

end of the experiment. This study is about 60 minutes long.  What you earn depends partly 

on your decisions, partly on the decision of others, and partly on chance. 

We will pay you $5 for showing up. Additionally, you will be paid in cash your 

earnings from the experiment.  

This experiment involves 4 tasks for real money. You will play each task 10 times. 

We will give you instructions about each task just before you begin to play it. Your choices 

in one task will not affect what happens in other tasks.  

There is no deception in this experiment. Every game will be exactly as specified 

in the instructions.  

Please turn off pagers, mp3 devices, and cellular phones, and close any program 

you may have open on the computer. 

The entire session will take place through computer terminals and all interaction 

with other participants will take place through the computers. Please do not talk or in any 

way try to communicate with other participants during the session. 

All payoffs (earnings) are in Experimental Currency Unit (ECU) and will be paid 

with exchange rate: 2 ECU = 1 U.S. dollar. 
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If you have any questions at any point, please raise your hand and we will answer 

your questions privately.  

C.2. Instruction for Game S 

You have been randomly assigned into a group of 4. You will play this game for 

10 rounds. In each round of this game, there are four prizes labeled A, B, C, and D. Prizes 

will be worth between 1.00 - 9.00, and the value of each prize is the same for all players in 

your group.   

There are two cases: L and R. At the start of each round, your group will be assigned 

to either Case L or Case R, each with a probability of 1/2. But your group will not know 

which Case you are in. At the start of each round, you will learn the value of each prize in 

cases L and R. You will also learn your priority score, which is a random number. Every 

integer between 1 and 10 is equally likely to be chosen. 

The game proceeds as follows: We will ask you to list the prizes, in any order of 

your choice. All players will submit their lists privately and at the same time.  

After all the lists have been submitted, we will assign prizes using the following 

rule: 

1. The player with the highest priority score will be assigned the prize on the top of 

his/her list.  

2. The player with the second-highest priority score will be assigned the prize on 

the top of his/her list, among the prizes that remain.  
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3. The player with the third-highest priority score will be assigned the prize on the 

top of his/her list, among the prizes that remain.  

4. The player with the lowest priority score will be assigned whatever prize remains. 

If two players have the same priority score, we will break the tie randomly. 

You will have 90 seconds to form your list. You do this by typing a number, from 

1 to 4, next to each prize, and then clicking the button says “Confirm Choices”. Each prize 

must be assigned a different number, from 1 (top) to 4 (bottom). Your choices will not 

count unless you click the button that says “Confirm Choices”. 

At the end of Round 10, we will randomly select a round and add to your earnings 

the value of the prize you were assigned in that around. 

C.3. Instruction for Game D 

You have been randomly assigned into groups of 4. You will play this game for 10 

rounds with the other people in the group. In each round of this game, there are four prizes 

labeled A, B, C, and D. Prizes will be worth between 1.00 – 9.00. For each prize, its value 

will be the same for all the players in your group.  

There are two cases: L and R. At the start of each round, your group will be assigned 

to either Case L or Case R, each with a probability of 1/2. But your group will not know 

which Case you are in.  At the start of each round, you will learn the value of each prize in 

cases L and R. You will also learn your priority score, which is a random number. Every 

integer between 1 and 10 is equally likely to be chosen. 

The game proceeds as follows: 
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1. The player with the highest priority score will pick one prize. 

2. The player with the second-highest priority score will pick one of the prizes that remain. 

3. The player with the third-highest priority score will pick one of the prizes that remain. 

4. The player with the fourth-highest priority score will be assigned whatever prize remains. 

If two players have the same priority score, we will break the tie randomly. 

When it is your turn to pick, you will have 30 seconds to make your choice. You 

do this by selecting a prize and then clicking the button that says “Confirm Choice”. Your 

choice will not count unless you click the button that says “Confirm Choice”. 

At the end of Round 10, we will randomly select a round and add to your earnings 

the value of the prize you were assigned in that around. 

C.4. Instruction for Decision S 

You will play this individual decision task for 10 rounds. In each round of the task, 

there are six prizes worth 0, 2, 4, 6, 8, 10. They are randomly assigned, by a one-to-one 

matching, to be put inside box A, B, C, D, E, F, which is not seen from the outside. Another 

six prizes worth 0, 2, 4, 6, 8, 10 are randomly assigned, by a one-to-one matching, to six 

stickers A, B, C, D, E, F, which is shown on the sticker.  

There are two cases: L and R. At the start of each round, you will be assigned to 

either Case L or Case R, each with a probability of 1/2.  But you don’t know which case 

you are in. Your payoff depends on which case you are in and your choice. 
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The task proceeds as follows: we will first ask you to choose one of the stickers, 

and then pick one box with an unknown prize. You will see the prize value in the box once 

you pick it. 

If you are assigned Case L, you will be awarded the lower prize among those in the 

box and on the sticker that you chose. If you are assigned Case R, you will be assigned the 

higher prize among those in the box and on the sticker that you chose. 

You will have 30 seconds to make each choice. You do this by selecting a box or a 

sticker and then clicking the button that says “Confirm Choice”. Your choice will not count 

unless you click the button that says “Confirm Choice”. 

If you do not make a choice by the end of 30 seconds at one choice, you will be 

assigned 0 in that round.  

At the end of Round 10, we will randomly select a round and add to your earnings 

the value of the prize you were assigned in that around. 

C.5. Instruction for Decision D 

You will play this individual decision task for 10 rounds. In each round of the task, 

there are six prizes worth 0, 2, 4, 6, 8, 10. They are randomly assigned, by a one-to-one 

matching, to be put inside box A, B, C, D, E, F, which is not seen from the outside. Another 

six prizes worth 0, 2, 4, 6, 8, 10 are randomly assigned, by a one-to-one matching, to six 

stickers A, B, C, D, E, F, which is shown on the sticker.  
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There are two cases: L and R. At the start of each round, you will be assigned to 

either Case L or R, each with a probability of 1/2.  But you don’t know which case you are 

in. Your payoff depends on which case you are in and your choice. 

The task proceeds as follows: we will first ask you to pick one box, and you see the 

prize value inside the box. Then we will ask you to choose a sticker. 

If you are assigned Case L, you will be assigned the lower prize among those in the 

box and on the sticker that you chose. If you are assigned Case R, you will be assigned the 

higher prize among those in the box and on the sticker that you chose. 

You will have 30 seconds to make each choice. You do this by selecting a box or a 

sticker and then clicking the button that says “Confirm Choice”. Your choice will not count 

unless you click the button that says “Confirm Choice”. 

If you do not make a choice by the end of 30 seconds at one choice, you will be 

assigned 0 in that round.  

At the end of Round 10, we will randomly select a round and add to your earnings 

the value of the prize you were assigned in that around. 
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Appendix D. Additional Empirical Analysis for Experiment I 

D.1. Proportions of incorrect choices in the game task 

For each group in Game S, for each round, we simulate the three choices that we would 

have observed under Game D. For each group, for each 5-round block, we record the 

proportions of choices that are incorrect. Table D.1, D.2, and D.3 display the empirical 

frequency of non-DS choices, by Games and by 5-round blocks in the pooled data, the 

within-subject, and the cross-subject comparison. Subjects deviate from the DS at lower 

rates in Game S than in Game D, and these differences are highly significant in both early 

and late rounds of the pooled data, the within-subject, and the cross-subject comparison. 

 

 
 Decision S Decision D p-value 

Rounds 1-5 12.95% 0.93% <0.001 

Rounds 6-10 13.83% 0.86% <0.001 

p-value 0.568 0.320  

Table Notes: When comparing Game S to Game D, we compute p-values using a Wilcoxon rank-sum test. When comparing 

early to late rounds of the same game, we compute p-values using a Wilcoxon matched-pairs signed-rank test. 

 

Table D.1. Proportions of incorrect choices in the game task (pooled Data): Game S 

(simulated) vs Game D (actual) 
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Table Notes: We compute p-value using a Wilcoxon matched-pairs signed-rank test.  

Table D.2. Proportions of incorrect choices in the game task (within-subject comparison) 

 Game S (Treatment 1) Game D (Treatment 2) p-value 

Rounds 1-5 11.96% 1.34% <0.001 

Rounds 6-10 14.29% 1.07% <0.001 

p-value 0.720 0.575  

Table Notes: We compute p-value using a Wilcoxon rank-sum test. When comparing early to late rounds of the same game, 

we compute p-values using a Wilcoxon matched-pairs signed-rank test. 

 

Table D.3. Proportions of incorrect choice in the game task (cross-subject comparison) 

 

D.2. Logit Regression: Decision S & Decision D 

 Pooled Data Within-Subject Cross-Subject 

  Treatment 1  Treatment 2 (The 1st Game only) 

     

Decision S 4.428*** 

(0.794) 

2.956*** 

(1.124) 

6.093*** 

(1.167) 

3.371*** 

(1.149) 

GPA* Decision S -0.440** 

(0.215) 

-0.059 

(0.313) 

-0.855*** 

(0.309) 

-0.589 

(0.313) 

Female * Decision S 0.803*** 

(0.151) 

0.500** 

(0.226) 

1.038*** 

(0.204) 

0.500*** 

(1.149) 

Table Notes: We report Coefficient (Std. Err.).  

*** Significant at the 1 percent level.  

** Significant at the 5 percent level. 

* Significant at the 10 percent level. 

 

Table D.4. Logit regression on choices of dominated strategies (Decision S vs D) 

 

Treatment 1 
 Game S Game D p-value 

Rounds 1-5 11.96% 0.48% <0.001 

Rounds 6-10 14.29% 0.63% <0.001 

p-value 0.720 0.989  

Table Notes: We compute p-values using a 

Wilcoxon matched-pairs signed-rank test. 

 

Treatment 2 
 Game D Game S p-value 

Rounds 1-5 1.34% 13.87% <0.001 

Rounds 6-10 1.07% 13.39% <0.001 

p-value 0.575 0.331  
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Table D.4 documents higher possibility of choice of dominated strategies in Decision S 

than in Decision D by a Logit regression. It also demonstrates a positive correlation 

between female and the error in Decision S. Both results are significant in the pooled 

data, the within-subject, and the cross-subject comparison. The logit regression also 

shows a negative correlation between the self-reported GPA and the error in Decision S. 

But it is not significant for all comparisons.  

D.3. Logit Regression: Deviations from DS in Game S 

Table D.5. shows a negative correlation between the priority score and the error in Game 

S. The result is significant in the pooled data, and also significant in either Treatment 1 or 

2 data. It also demonstrates a positive correlation between female and the error in Game 

S. The correlation is significant in the pooled data and the Treatment 2 data but not in the 

Treatment 1 data.  

 

 

 Pooled Data Treatment 1 Treatment 2 

    

Priority Score -0.598*** 

(0.038) 

-0.703*** 

(0.064) 

-0.525*** 

(0.048) 

GPA -0.060 

(0.238) 

 

0.643 

(0.352) 

-0.668** 

(0.241) 

Female 0.524*** 

(0.166) 

0.100 

(0.253) 

0.839*** 

(0.224) 

 

Table D.5. Logit regression on deviations from the dominant strategy: Game S 
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Appendix E. Questionnaires for Experiment II 

E.1. Part I 

Below are several problems that vary in difficulty. Try to answer as many as possible: 

1. A bat and a ball cost $1.10 in total. The bat costs a dollar more than the ball. How 

much does the ball cost?                     cents 

2. If it takes 5 machines 5 min to make 5 widgets, how long would it take 100 machine to 

make 100 widgets?                min 

3. In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it takes 

48 days for the patch to cover the entire lake, how long would it take for the patch to 

cover half of the lake?            days 

4. Jack is looking at Ann but Ann is looking at George. Jack is married but George is not. 

Is a married person looking at an unmarried person? 

A) Yes    B) No     C) Cannot be determined 

5. There are 5 blocks in a stack, where the second one from the top is green, and the 

fourth is not green. Is there a green block directly on top of a non-green block? 

A) Yes    B) No       C) Cannot be determined.  

E.1. Part II 

Please indicate the extent to which you agree with each statement: 
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1. I would prefer complex to simple problems. 

Strongly Disagree     Disagree      Neutral     Agree      Strongly Agree 

2. I like to have the responsibility of handling a situation that requires a lot of 

thinking. 

Strongly Disagree     Disagree      Neutral     Agree      Strongly Agree 

3. Thinking is not my idea of fun. 

Strongly Disagree     Disagree      Neutral     Agree      Strongly Agree 

4. I would rather do something that requires little thought than something that is sure 

to challenge my thinking abilities. 

Strongly Disagree     Disagree      Neutral     Agree     Strongly Agree 

5. I try to anticipate and avoid situations where there is likely a chance I will have to 

think in depth about something. 

Strongly Disagree     Disagree      Neutral     Agree      Strongly Agree 

6. I find satisfaction in deliberating hard and for long hours. 

Strongly Disagree     Disagree      Neutral     Agree      Strongly Agree 

7. I only think as hard as I have to. 
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Strongly Disagree     Disagree      Neutral     Agree      Strongly Agree 

8. I prefer to think about small, daily projects to long-term ones. 

Strongly Disagree     Disagree      Neutral     Agree      Strongly Agree 

9. I like tasks that require little thought once I’ve learned them 

Strongly Disagree     Disagree      Neutral     Agree        Strongly Agree 

10. The idea of relying on thought to make my way to the top appeals to me. 

Strongly Disagree     Disagree      Neutral     Agree         Strongly Agree 

11. I really enjoy a task that involves coming up with new solutions to problems. 

Strongly Disagree     Disagree      Neutral     Agree       Strongly Agree 

12. Learning new ways to think doesn’t excite me very much. 

Strongly Disagree     Disagree      Neutral     Agree       Strongly Agree 

13. I prefer my life to be filled with puzzles that I must solve. 

Strongly Disagree     Disagree      Neutral     Agree       Strongly Agree 

14. The notion of thinking abstractly is appealing to me. 

Strongly Disagree     Disagree      Neutral     Agree       Strongly Agree 
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15. I would prefer a task that is intellectual, difficult, and important to one that is 

somewhat important but does not require much thought. 

Strongly Disagree     Disagree      Neutral      Agree       Strongly Agree 

16. I feel relief rather than satisfaction after completing a task that required a lot of 

mental effort. 

Strongly Disagree     Disagree      Neutral      Agree       Strongly Agree 

17. It’s enough for me that something gets the job done; I don’t care how or why it 

works. 

Strongly Disagree     Disagree      Neutral      Agree       Strongly Agree 

18. I usually end up deliberating about issues even when they do not affect me 

personally. 

Strongly Disagree     Disagree      Neutral      Agree       Strongly Agree 
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Appendix F. Where to go for Additional Help  

F.1. Welcome 

 You are about to participate in a session on decision-making, and you will be paid for your 

participation with cash, at the end of each session. What you earn depends partly on your 

decisions, partly on the decision of others, and partly on chance.  

 Please turn off pagers, mp3 device and cellular phones now. Please close any program you 

may have open on the computer. 

Then entire session will take place through computer terminals and all interaction with 

other participants will take place through the computers. Please do not talk or in any way 

try to communicate with other participants during the session. 

We will start with a brief instruction period. During the instruction period you will be given 

a description of the main features of the session and will be shown how to use the 

computers. If you have any questions during the period, please wait until we finish reading 

the instructions. Then you can raise your question will be answered so everyone can hear.  

 All payoffs are in Experimental Currency Unit (ECU) and will be paid with exchange rate: 

2 ECU=1 U.S. dollar. 
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F.2. Game DS  

1. In this experiment you will be asked to make a decision. You will be randomly paired 

with another person. 

2.  There are three possible states: A, B, C. The computer randomly draws one state. Which 

is unknown to you and the person you paired with.  The payoffs are as follows: 

 

 

Table F.1. Game DS 

 

 

The first entry in each cell represents your payoff, while the second entry represents the 

payoff of the person you matched with. 

(i). If the state is A, the choices and payoffs indicated by the above tables are as follows: 

You select L and the other selects L, you each make 20 ECU 

You select L and the other selects R, you make 8 ECU and the other makes 25 ECU. 

You select R and the other selects L, you make 25 ECU and the other makes 8 ECU.  

You select R and the other selects R, you each make 13 ECU. 

A 

 

 The other’s 

 

Your 

choice 

L R 

L 20,20 8,25 

R 25,8 13,13 

 

B 

 

 The other’s  

 

Your 

choice 

L R 

L 22,22 6,27 

R 27,6 11,11 

 

C 

 

 The other’s  

 

Your 

choice 

L R 

L 18,18 10,23 

R 23,10 15,15 
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(ii) If the state is B, the choices and payoffs are as follows 

You select L and the other selects L, you each make 22 ECU. 

You select L and the other selects R, you make 6 ECU and the other makes 27 ECU. 

You select R and the other selects L, you make 25 ECU and the other makes 6 ECU.  

You select R and the other selects R, you each make 11 ECU. 

(iii) If the state is C, the choices and payoffs are as follows 

You select L and the other selects L, you each make 18 ECU. 

You select L and the other selects R, you make 10 ECU and the other makes 23 ECU. 

You select R and the other selects L, you make 23 ECU and the other makes 10 ECU.  

You select R and the other selects R, you each make 15 ECU. 

-Once the state is randomly chosen and you and the person you are paired with have made 

your choices, your payoff is determined as above. 

-After the state is randomly selected, we will ask both of you whether you are willing to 

pay some amount of ECU to know the selected state (A, B, or C). You must provide your 

answer for all listed prices as in the following table. After people make their choices, we 

will randomly draw a number form the listed prices to determine which price to be selected 

and implemented.  

 

 

Price 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

Yes/No           

 

Table F.2. Price list 
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If you indicated that you are willing to pay for the selected price, you will be show the 

selected states and then asked to make your choice, L or R. 

If you indicated that you are not willing to pay for the selected price, you will be asked to 

make your choice immediately without any more information.  

-Are there any questions? If at any point during the experiment you need help, just raise 

your hand.  

F.3. Decision DS  

There is a jar with 10 balls, some of which are Red and some of which are Blue. One of 

these balls will be randomly drawn and will be called the “selected ball”. 

Your payoff will be determined by the color of the selected ball, your action, and the action 

of two computers. You can vote either Red or Blue. Computer 1 and 2 are programmed to 

behave in a specific manner: 

(1) If the selected ball is red: vote Red. 

(2) If the selected ball is blue: vote Blue with probability p and Red with 1-p, 0<p<1. The 

exact value of p is unknown. 

 If the selected ball is Red and the majority voted for Red, your payoff is 2. If the selected 

ball is Blue and the majority votes for Blue, your payoff is 2. In all other cases, your payoff 

is 0. In other words, you get 2 if the vote of the majority coincides with the color of the 

selected ball and 0 otherwise. Note that there is a total of 3 votes (two by the computers 

and one by yourself), so that saying that a majority voted for a specific color means that 

there are 2 or 3 votes for that specific color.  

The following table summarizes the payoffs: 
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  Color of the selected ball 

  Red ball Blue ball 

Decision of the 

Group 

Majority votes for Red 2 0 

Majority votes for Blue 0 2 

Table F.3. Payoff table 

 

 

-Are there any questions? If at any point during the experiment you need help, just raise 

your hand.  

F.4. Game ODS  

1. In this experiment you will be asked to make a decision. You will be randomly paired 

with another person. 

2.  There are three possible states: A, B, C. The computer randomly draws one state. Which 

is unknown to you and the person you paired with.  The payoffs are as follows: 

 

 

 

Table F.4. Game ODS 

A 

 

 The other’s 

 

Your 

choice 

L R 

L 15,15 13,20 

R 20,13 18,18 

 

B 

 

 The other’s  

 

Your 

choice 

L R 

L 16,16 12,21 

R 21,12 17,17 

 

C 

 

 The other’s  

 

Your 

choice 

L R 

L 13,13 15,18 

R 18,15 20,20 
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The first entry in each cell represents your payoff, while the second entry represents the 

payoff of the person you matched with. 

(i). If the state is A, the choices and payoffs indicated by the above tables are as follows: 

You select L and the other selects L, you each make 15 ECU 

You select L and the other selects R, you make 13 ECU and the other makes 20 ECU. 

You select R and the other selects L, you make 20 ECU and the other makes 13 ECU.  

You select R and the other selects R, you each make 18 ECU. 

(ii) If the state is B, the choices and payoffs are as follows 

You select L and the other selects L, you each make 16 ECU. 

You select L and the other selects R, you make 12 ECU and the other makes 21 ECU. 

You select R and the other selects L, you make 21 ECU and the other makes 12 ECU.  

You select R and the other selects R, you each make 17 ECU. 

(iii) If the state is C, the choices and payoffs are as follows 

You select L and the other selects L, you each make 13 ECU. 

You select L and the other selects R, you make 15 ECU and the other makes 18 ECU. 

You select R and the other selects L, you make 18 ECU and the other makes 15 ECU.  

You select R and the other selects R, you each make 20 ECU. 

-Once the state is randomly chosen and you and the person you are paired with have made 

your choices, your payoff is determined as above.  

-After the state is randomly selected, we will ask both of you whether you are willing to 

pay some amount of ECU to know the selected state (A, B, or C). You must provide your 

answer for all listed prices as in the following table. After people make their choices, we 
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will randomly draw a number form the listed prices to determine which price to be selected 

and implemented.  

 

 

Price 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

Yes/No           

Table F.5. Price list 

 

 

If you indicated that you are willing to pay for the selected price, you will be show the 

selected states and then asked to make your choice, L or R. 

If you indicated that you are not willing to pay for the selected price, you will be asked to 

make your choice immediately without any more information.  

-Are there any questions? If at any point during the experiment you need help, just raise 

your hand.  

 

F.5. Decision ODS  

There is a jar with 10 balls, some of which are Red and some of which are Blue. One of 

these balls will be randomly drawn and will be called the “selected ball”. 

Your payoff will be determined by the color of the selected ball, your action, and the action 

of two computers. You can vote either Red or Blue. Computer 1 and 2 are programmed to 

behave in a specific manner: 
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(1) If the selected ball is red: vote Red. 

(2) If the selected ball is blue: vote Blue with probability p and Red with 1-p, 0<p<1. The 

exact value of p is unknown. 

 If the selected ball is Red and the majority voted for Red, your payoff is 2. If the selected 

ball is Blue and the majority votes for Blue, your payoff is 2. In all other cases, your payoff 

is 0. In other words, you get 2 if the vote of the majority coincides with the color of the 

selected ball and 0 otherwise. Note that there is a total of 3 votes (two by the computers 

and one by yourself), so that saying that a majority voted for a specific color means that 

there are 2 or 3 votes for that specific color.  

The following table summarizes the payoffs: 

 

 

  Color of the selected ball 

  Red ball Blue ball 

Decision of the 

Group 

Majority votes for Red 2 0 

Majority votes for Blue 0 2 

Table F.6. Payoff table 

 

 

You will be informed the color of the selected ball before you make a choice.  

-Are there any questions? If at any point during the experiment you need help, just raise 

your hand.  


