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Abstract 

Fractions are important in mathematics but notoriously difficult to learn. One 

obstacle for learners is the “whole number bias,” in which the whole numbers in fractions 

(i.e., in numerators and denominators) overshadows fractional magnitudes in numeric 

reasoning. How to overcome the “whole number bias” and make use of prior whole 

number knowledge? Here we investigated whether comparison to whole numbers on the 

number line can facilitate children’s learning of fraction magnitudes.  

In Experiment 1, 30 children identified a number (integer or fraction) from a mark 

on a number line or placed a mark on a number line to indicate a target number. 

Estimates of integers were as much as 2x more accurate than estimates of fractions. 

Therefore, we hypothesized that comparing fraction to integer scales might improve 

representations of fractions as much as 2x.  

Using a pretest-training-posttest design (Experiment 2), 64 children were trained 

to estimate and compare positions of fraction and integers on number lines (e.g., 

3/8:1::3:8). At post-test, children solved number-line problems either with (Cue group) or 

without (No Cue group) visually-aligned cues to facilitate source retrieval. Children in 

the Cue groups did improve their estimates from pretest to post-test as much as 2x, 

suggesting that children’s understanding of fractional magnitudes came from the 
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comparison to integers. Further, visually-aligned cues activated inert knowledge at post-

test.  

Together, the two experiments suggest that comparisons of integers and fractions 

on number lines can reduce the whole number bias and teach fractional magnitudes.
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Chapter 1. Introduction 

Mathematical knowledge is important for educational and financial success. 

Knowledge of algebra and high school mathematics strongly predicts college entrance, 

college grades, college graduation, early earnings and earnings growth (Murnane, Willett, 

& Levy, 1995; National Mathematics Advisory Panel, 2008). Knowledge of fraction 

magnitudes is positively related to overall mathematics achievements both concurrently 

(Siegler, Thompson, & Schneider, 2011; Siegler & Pyke, 2013) and longitudinally 

(Siegler et al., 2012; Bailey, Hoard, Nugent, & Geary, 2012; Booth, Newton, & Twiss-

Garrity, 2014). In high school mathematics, knowledge of fractions seems particularly 

important. In both the USA and the UK, fifth graders’ knowledge of fractions uniquely 

predicts their knowledge of algebra and overall mathematics achievement in high school, 

controlling for integer knowledge, general intellectual ability, working memory, and 

family income and education (Siegler et al., 2012). Together, these findings suggest that 

knowledge of fraction magnitudes plays an essential role in mathematics achievement, 

and thus is of vital importance in education. 

Despite its importance, the development of fraction proficiency has been 

controversial over the past decades. In some theories, development of fraction 

magnitudes understanding is fundamentally different from – and thus impaired by – 

development of integer magnitude understanding. One reason this might be the case is 
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that there are many properties of integers that cannot generalize to fractions. Among 

these properties, integers have unique representations of single Arabic numerals, have 

unique successors, are countable, never decrease with multiplication, never increase with 

division, and so on. Thus, knowledge of the properties of integers might distort 

understanding of fractions, sometimes termed as “the whole number bias” (Ni & Zhou, 

2005). More specifically, an early developed and solid understanding of integers can 

interfere with children’s later developing understanding of fractions.  

A somewhat similar claim is made by the privileged domain theories which posit 

that an innate cognitive system of representing numbers discretely is incommensurate 

with ordered and continuous fractions (Gallistel & Gelman, 1992; Hartentt & Gelman, 

1998). In this view, too, knowledge of integers may serve to distort understanding of 

fractions (Gelman & Williams, 1998). Similarly, from an evolutionary perspective, Geary 

(2006) posits that integer representation is biologically primary whereas fraction 

representation is biologically secondary, and the biological constrains that facilitate 

integer knowledge can impede fraction understanding. To sum up, both the privileged 

domain theories and the evolutionary theory suggest that there are qualitative differences 

between integer and fraction learning, and better understanding of integer magnitude is 

independent from (and might lead to worse) representations of fraction magnitudes. 

In contrast, an alternative theory, the integrated theory of numerical development, 

emphasizes the commonality between learning integers and fractions (Siegler et al., 

2011). This theory posits that learning the magnitude of numbers is a basic process 

uniting the development of understanding all real numbers, and the development of 
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numerical magnitude can be captured as a progressively broadening set of numbers 

whose magnitudes can be accurately represented. In their view, although there are many 

differences between the development of fractions and that of integers, fractions and 

integers share the developmental continuity that knowledge of magnitude is essential in 

overall understanding. Fractions, like integers, have magnitudes, and fraction magnitudes, 

like integer magnitudes, can be placed on a number line as a linear function of their 

actual value. Siegler and Lotie-Forgues (2014) further propose that the development of 

knowledge of symbolic numerical magnitude can be depicted as extending mental 

number line from small whole numbers to larger whole numbers to rational numbers, 

including fractions, decimals, and integers. 

The integrated theory of numerical development proposed a unified perspective of 

development of rational number magnitudes understanding, but it also raises new 

question: How do children extend their existing mental number line from integers to 

fractions? More broadly, how can children develop representations of a potentially 

infinite number of numbers on a continuous number line when they can only have limited 

experiences with particular numbers? What are the mechanisms of extending limited 

knowledge of small whole numbers to magnitudes children rarely (if ever) meet? 

Analogies are one mechanism that can bootstrap limited experience far beyond 

the training space (Case & Okamoto, 1996; Gentner 1983; Gick & Holyoak, 1983). The 

domain-general ability of analogy – not privileged domains -- is what makes humans so 

smart relative to other species (Gentner, 2003). Analogical ability enables people to better 

understand a novel concept based on their related prior knowledge, to extract the 
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structure of relational similarity, to make inferences in novel situations, and to transfer 

learning across contexts. Analogy also serves as a mechanism of representational change 

in childhood, making it possible for people to re-organize existing knowledge in light of 

new information (Opfer & Siegler, 2007). Therefore, analogies from poorly- to well-

understood magnitudes might be a general mechanism in numerical development, 

including development of fraction understanding. 

In the current study, we aim to investigate whether analogies to integer magnitude 

would improve children’s understanding of fraction magnitudes, and to determine 

different cognitive supports that would facilitate this analogical transfer. This issue is 

important theoretically because the privileged domains approach posits that integer and 

fraction understanding must develop in parallel, whereas the integrated approach posits a 

necessary connection between the two. This issue is also important practically because 

fractions are central to math achievement and because fractions are always taught after 

integers, thereby requiring an approach that could reduce the whole number bias. In the 

next sections, we will detail (a) analogy as a mechanism of developmental change across 

numeric representations, (b) cognitive supports for analogical transfer, and (c) more 

specific empirical questions that were examined in the present studies. 

1. Analogy as a Mechanism of Representational Change 

1.1 Development of Representations of Integer Magnitudes 

Typically, children’s representation of integers undergoes a transition from a 

logarithmic to a linear function (Siegler & Opfer, 2003; Siegler & Booth, 2004). Children 

have an early erroneous logarithmic representation of linearly increasing numbers, i.e., 



5 
  

estimated magnitudes at the low end of the scale are further apart than estimated 

magnitudes at the high end, which later turn into a more accurate linear representation. 

This logarithmic to linear shift happens from kindergarteners to second graders on the 

scale of 0 to 100, and from second graders to sixth graders on the scale of 0 to 1000. 

More specifically, most kindergarteners have logarithmic distributions of estimates with 

numbers from 0 to 100, with which scale most second graders have linear distributions 

(Siegler & Booth, 2004); most second graders have logarithmic distributions of estimates 

with numbers from 0 to 1000, with which scale most sixth graders have linear 

distributions (Siegler & Opfer, 2003). These findings are consistent with the integrated 

theory of numerical development, showing that the accurate representations of integers 

on a mental number line gradually extends from small whole numbers to large whole 

numbers. 

Studies have shown that analogy plays an important role in extending children’s 

numerical knowledge of small integers to large integers (Opfer & Siegler, 2007; 

Thompson & Opfer, 2008; Thompson & Opfer, 2010). Cognitive supports of analogy can 

dramatically promote the logarithmic to linear shift over a very short period of time 

(Opfer & Siegler, 2007; Thompson & Opfer, 2010). In a microgenetic study of numerical 

estimation, researchers found that often after a single trial of feedback of 150 on a 0-1000 

number line, second graders abruptly improved their estimates with the entire numerical 

range from 0 to1000 (Opfer & Siegler, 2007). The underlying mechanism of this abrupt 

and broad representational change is hypothesized to be analogical mapping from smaller 

to larger numerical contexts, i.e., 150 is to the 0-1000 range as 15 is to the 0-100 range.  
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To directly test the hypothesis that analogies to small whole numbers will prompt 

more accurate linear representations of large whole numbers, Thompson and Opfer 

(2010) provided second graders opportunities to align number line problems of small, 

familiar magnitudes (0-100) to number line problems of larger, less familiar numerical 

scales (0-1,000, 0-10,000, 0-100,000), for instance, the alignment between 15 pears on a 

0 to 100 pears line and 150 on a 0 to 1,000 number line. Through this alignment 

invention, second graders greatly improved their estimates with large numerical scales 

even far beyond the training space. This research line of studies indicates that analogical 

mapping from small numerical contexts to larger numerical contexts facilitate extraction 

of the abstract structure of decimal system, and thus the learning can be generalized to 

even very large number that children seldom experienced. 

1.2 Development of Representations of Fractional Magnitudes 

In terms of fraction learning, however, analogies to integers have been shown to 

distort, instead of facilitating, understanding of fraction magnitudes (DeWolf & 

Vosniadou, 2015; Opfer & DeVries, 2008; Thompson & Opfer, 2008). In fact, a major 

difficulty of learning fraction is the whole number bias – the tendency to focus on the 

whole number components of fractions instead of processing the fractional magnitudes 

holistically, and the tendency to erroneously generalize properties of integers to fractions 

(Ni & Zhou, 2005).  

Studies have shown that both adults and children are influenced by the whole 

number bias (Behr, Wachsmuth, Post, & Lesh, 1984; Bonato, Fabbri, Umilta, & Zorzi, 

2007; Harnett & Gelman, 1998; Vamvakoussi & Vosniadou, 2010). A distance effect of 
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denominators’ values, instead of fraction magnitudes, was observed when adults were 

asked to compare fractions with same numerators (Bonato et al., 2007). Accuracy and 

response time for fraction magnitude comparison depend on the comparison’s 

consistency with whole number ordering, i.e., whether the larger fractions are with larger 

whole number parts. (DeWolf & Vosniadou, 2015). Similarly, children often only 

compare whole number parts when they are asked to compare two fractions (Behr et al., 

1984; Harnett & Gelman, 1998). Even years after learning fractions from school 

curriculum, some children still fail to understand that some properties of integers do not 

generalize to fractions, such as, fractions do not have unique successors, and there are 

infinite number of numbers between two fractions (Vamvakoussi & Vosniadou, 2010). 

More strikingly, research has shown that better representations of integers might 

impede representations of fractions. Opfer & DeVries (2008) presented adults and second 

graders with money lines indicating different values of salaries (e.g., from $1/minute to 

$1/1440 minutes) and asked participants to estimate a target salary on this money line 

(e.g., $1/60 minutes). People tended to use only the denominator’s value, instead of the 

fraction magnitude, as a guide for placing their estimates. Interestingly, as children 

typically have logarithmic representations of integer ranging from 0 to 1000 (Siegler & 

Opfer, 2003), whereas adults have more accurate linear representations of large integer 

numbers, children’s less accurate representations of the denominator’s value favor this 

fractional scale where fraction magnitudes increase as a power function of denominator’s 

value. Thus, second graders provided more accurate estimates with fraction magnitudes 

of common numerators than adults. Consistent with this result, when second graders were 
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trained to form more linear representations of integers, their performance on the 

following fraction number line tasks became worse, indicating that children’s retrieval of 

wrong analogical sources caused a negative transfer for estimates of fractions (Thompson 

& Opfer, 2008). Thus, consistent with privileged domains and evolutionary perspectives, 

a better understanding of integer magnitudes has been shown to lead to worse 

understanding of fraction magnitudes. 

On the other hand, there is also evidence suggesting that analogies to integer 

magnitudes might have a positive transfer to fraction understanding (Kalchman, Moss, & 

Case, 2001; Moss & Case, 1999; Siegler et al., 2011). Siegler et al. (2011) argue that 

analogies to integers do not necessarily interfere with fraction learning – it is the incorrect 

analogies to integers that interfere with fraction learning. Correct analogies to integers, 

such as thinking of fractions as magnitudes that can be placed on a number line just like 

integers, may help children have better representations of fractions.  

Supporting this claim indirectly, evidence from neuroscience (Ischebeck, 

Schocke, & Delazer, 2009), correlational studies (Bailey, Siegler, & Geary, 2014) and 

empirical studies (Kalchman et al., 2001; Moss & Case, 1999; Siegler et al., 2011) 

indicates that knowledge of integer might have a positive transfer to fraction 

understanding. Biologically, neuroscience evidence shows that brain areas associated 

with fraction magnitude representations overlap with those associated with integer 

magnitude representations (Ischebeck et al., 2009), providing potential biological 

mechanisms of analogical transfer from integers to fractions. Longitudinally, integer 

magnitude knowledge in the first grade predicts knowledge of fraction magnitude in 
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middle school, controlling for integer arithmetic proficiency, domain general cognitive 

skills, family income, parental education, race, and gender (Bailey et al., 2014).  

Empirically, rational number curriculum that emphasizes the relation between 

fraction and integer magnitudes has shown to be more effective than traditional 

curriculum (Moss & Case, 1999; Kalchman et al., 2001). To give fourth graders a 

familiar analogical source for understanding fractions, researchers began by teaching 

percentages, which shared more similarities to children’s prior knowledge of integers 

than fractions. Throughout twenty forty-minute lessons in a five-month period, students 

were exposed to different learning activities emphasizing the equivalence of percentages, 

decimals and fraction magnitudes. Among these activities, students were encouraged to 

estimate percentages of various quantities, map decimals with time magnitudes using 

stopwatches, place decimals on a number line, and translate among representations of 

percentages, decimals and fractions. When tested after this curriculum, fraction 

knowledge of fourth graders was better that of eighth grader who received a traditional 

curriculum, and was as good as a group of preservice teachers. 

Moss and Case (1999)’s rational number curriculum has shown to be promising in 

improving children’s fraction understanding. However, the independent role of providing 

a familiar analogical source could not be determined due to the complexity of their 

training, which involved board games with decimals, lessons in translating among 

percentages, decimals, and fractions, lessons in fraction arithmetic, and so on. A more 

rigorously designed study might be helpful to further confirm the effect of familiar 

analogical sources of integers for fraction learning. 
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2. Cognitive Supports to Facilitate Analogical Transfer 

The mixed results of both harmful and beneficial effects from analogies to integer 

on fraction understanding might be due to the difficulties in correct analogical inference. 

Although analogical transfer can lead to considerable insights when it occurs, in many 

cases it also fails to occur among both children and adults (Catrambone & Holyoak, 

1989; Gick & Holyoak, 1980; Novick & Holyoak, 1991; Novick, 1988; Opfer & 

DeVries, 2008; Reed, Dempster, & Ettinger, 1985; Richland, Morrison, & Holyoak, 

2006; Thompson & Opfer, 2008). Fortunately, there are also ways to facilitate analogical 

inference, which might also encourage positive transfer from integer knowledge to 

fraction magnitudes understanding. 

One way to boost analogies is to compare analogical sources and targets. 

According to structure-mapping theory (Gentner, 1983; Gentner & Markman, 1997), the 

process of comparison can help people extract the maximal structural similarity between 

two representations (Falkenhainer, Forbus, & Gentner, 1989; Wolff & Gentner, 2000). 

Consistent with the structural-mapping theory, cross-cultural studies indicate that 

mathematics teachers in East Asian classes, where students outperform their U.S. peers in 

international mathematics tests, provide more cognitive supports for analogical inferences 

than teachers in U.S classrooms (Richland, Zur, & Holyoak, 2007). Teachers in East 

Asian schools are more likely to visually present familiar source analog along with the 

target being taught, so that students are encouraged to compare the source and the target.  

To determine the effect of structural alignment in understanding fractions by 

analogies, Opfer et al. (2017) designed a simplified version of Moss and Case (1999)’s 
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curriculum. Using a pretest-training-posttest design, experimenters provided fourth and 

fifth graders alignment between fractions and one of the three sources of analogical 

bases: integers (e.g., 3:8::3/8:1), percentages (e.g., 37.5%:100%::3/8:1), fractions (e.g., 

3/8:1:3/8:1), or no analogical bases as a control group. Students estimated the magnitudes 

of the analogical bases and fractions on vertically aligned number lines, so that they 

could have a chance to draw analogies between the base problem and the fraction 

problem. Results showed that aligning target fraction problems with analogical sources 

greatly increased accuracy of estimates. However, effect of alignment was short-lived for 

number line problems. The performance of children in the analogical sources group 

plummeted to the same level of that of children in the control group at post-test, 

indicating that additional support might be necessary to for children to spontaneously 

remember the analogical sources in the future. 

Another way to facilitate analogical transfer is to provide source retrieval cues 

(Gick & Holyoak, 1980; Gick & Holyoak, 1983; Novick & Holyoak, 1991). In the 

primary study of Gick and Holyoak (1980), experimenters first presented people with a 

source story disguised as a story recall task. After completing this story recall task, 

participants were then asked to solve a structurally similar target story. Without any cues, 

only about 30% of participants successfully solved the target story. However, after a 

simple nonspecific cue that the second story can be solved with the help of the previous 

story, the percentage of people who successfully solved the target story strikingly 

increased to 75%, suggesting that successful mapping between source and target itself 
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might be insufficient for successful analogy transfer – reviving inert knowledge and 

retrieving the correct prior knowledge is also essential to analogy inference. 

In this thesis, we presented a further investigation of different cognitive supports 

towards analogical inference from integer to fraction magnitudes. To determine the 

independent role of analogies to integers for fraction learning, we applied a simplified 

version of Moss and Case (1999)’s real number curriculum, same as the training program 

with analogical sources of integers in Opfer et al. (2017). During training, children were 

presented aligning structure of integers and fraction magnitudes on different scales. From 

the perspective of structure mapping theory, this cognitive support might be beneficial to 

improve fourth and fifth graders mapping of fraction magnitudes to better understood 

integers.  

Our study is unique from Opfer et al. (2017) in two important ways, (a) to 

determine cognitive supports of retrieval cues to the analogy base, at post-test we 

provided a group of children with cues to remind them the magnitudes of integers. If 

children’s failure of analogical transfer is due to failure of remembering and retrieving 

the correct analogical base, then they might revive and transfer their inert knowledge of 

integer magnitude with retrieval cues; (b) we reduced the interval between pretest and 

posttest from about one semester to about one week, with an aim of minimizing the effect 

of school curriculum. 

3. The Current Study 

In the current study, the central purpose was to examine and compare children’s 

estimates with integers and fractions (Experiment 1), and to determine whether aligning 
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structure of integer and fraction scales, as well as retrieval cues to remember the 

analogical sources, will prompt children to have a better understanding of fractional 

magnitudes (Experiment 2). 

The purpose of Experiment 1 was to examine an important premise of improving 

children’s fraction understanding by analogical sources of integers: whether children’s 

representation of integer is more accurate than fractional magnitudes. One strategy of 

estimating fractions is to transform the problem to an integer estimation problem on a 

different scale. For example, to estimate 3/8 on a 0-1 number line, one can enlarge the 

scale of the number line by 8 times and then estimate 3 on a 0-8 number line. If 

children’s estimates with fraction scales are worse than their estimates with integer 

scales, then analogies to integers could potentially facilitate children’s estimates with 

fractions. Otherwise, there is not much room left for children to benefit from analogical 

sources of integers. 

Previous studies have shown that estimates of fractional magnitudes overall are 

less accurate than integer magnitudes (Iuculano & Butterworth, 2011; Fazio, Bailey, 

Thompson, & Siegler, 2014). Our task was designed slightly differently from previous 

studies to directly examine whether children’s fraction magnitudes representation would 

benefit from analogies to integer representation. In previous studies, researchers 

investigated integer representations on fixed scales (e.g., 0-100 in Iuculano & 

Butterworth, 2011; 0-1000 in Fazio et al., 2014), whereas in the current one, the right 

ending point for integer estimation tasks varied to correspond to the value of the 

denominator of the fraction magnitude. Therefore, we directly examined whether a 
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representational change from fraction to integer scales (e.g., 3/8 stands in relation to 1 as 

the same ratio as the relation between 3 and 8) might lead to potential benefits for 

children’s understanding of fraction magnitudes. 

In Experiment 2, we attempted to (a) determine whether structural alignment of 

integer and fractions would facilitate children’s understanding of fractions; (b) determine 

whether source retrieval cues can revive children’s inert knowledge and foster their 

analogical transfer in the context of estimating fraction magnitudes on number lines. To 

meet our goals for Experiment 2, sixty-four fourth and fifth graders were presented 

opportunities to compare and draw analogies between fraction and integer magnitudes. 

To test the effect of source retrieval cues, at post-test children either received source 

retrieval cues of integer magnitude (Cue group) or did not receive the cues (No Cue 

group). We hypothesized that (a) comparisons of integers and fractions on number lines 

can bootstrap fractional magnitudes understanding beyond the training space, and (b) 

cues of familiar sources would support analogical transfer in fraction learning. 
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Chapter 2. Experiment 1 

The premise of teaching fractions by highlighting structural similarities of 

integers and fractions (e.g., 3/8:1::3:8) is that children are better at estimates with integers 

than fractions. To examine this premise, in Experiment 1, we investigated children’s 

estimates with fractions (e.g., 3/8 on a 0 to 1 number line) and integers (e.g., 3 on a 0 to 8 

number line) on equivalent number lines. 

1. Method 

1.1 Participants 

Thirty 3rd, 4th, and 5th graders participated in the study (3rd graders: 3 boys and 4 

girls, M = 9.50 years, SD = .49; 4th graders: 8 boys and 5 girls, M = 10.08 years, SD = .55; 

5th graders: 5 boys and 5 girls, M = 10.99 years, SD = .54).  

1.2 Materials and Procedure 

Participants completed 4 different number line estimation tasks in a 2 (format: 

integers, fractions) * 2 (task: Position-to-Number, Number-to-Position) fully-crossed 

design (Figure 1).  The order of tasks was determined by a balanced Latin Square. The 

tasks were presented on a laptop and programmed by MATLAB. 

In the Position-to-Number (PN) task, in each trial children were presented a 

number line with two endpoints. There was also a vertical hatch mark somewhere on the 

line, and children were asked to estimate what number goes with the mark. Children 
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would type their answer in boxes and click ‘Next’ to continue. In the Number-to-Position 

(NP) task, children were presented a number line and were asked to estimate a given 

number by dragging a vertical hatch mark on the line in each trial. They would click 

‘Next’ to see the next trial after making their decisions. 

For fraction estimation tasks, the number lines ranged from 0 to 1. The numbers 

to be estimated were 1/11, 1/7, 1/4, 3/8, 2/5, 4/7, 2/3, 7/9, 5/6, and 9/10, consisting of a 

total of 10 trials in PN and NP tasks respectively. Two of these fractions were drawn 

from each fifth of the number line. For integer estimation tasks, the numbers to be 

estimated were designed based on the magnitudes in the fraction tasks, in order to 

examine children’s estimates of fraction and integers on equivalent number lines. More 

specifically, for each magnitude tested in fraction estimation tasks (e.g., 3/8), the number 

line would range from 0 to the denominator of the fraction (e.g., 8) in the corresponding 

integer estimation trial and the to be estimated number would be the numerator of the 

fraction (e.g., 3). 

There was a total of 40 trials in all 4 tasks. The order of items within each task 

was randomized. It took approximately 10-15 minutes for children to complete all the 

tasks. 
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Figure 1. Illustrations of number line tasks in Experiment 1. 

2. Results 

 To assess accuracy, we first calculated percent absolute error (PAE), which equals 

the difference between the child’s estimate and the correct answer, divided by the total 

numerical range. For example, if a child answers 2 for estimating 3 on a 0 to 8 number 

line, then the child’s PAE for this item is | 2 — 3 | / 8 * 100% = 12.5%. Thus, lower 

PAEs correspond to more accurate estimates. In some cases, it is impossible to estimate 

the answer exactly correct, for example, in NP tasks where children need to estimate a 

position on a continuous line. Therefore, in our analysis, an estimate was considered 

correct (i.e., accuracy equals 1) if the estimate was within 2.5% of the correct answer 

(i.e., PAE is equal to or smaller than 2.5%). One child missed one trial on Fraction PN 

tasks. Responses with 0 as value of denominator were excluded from the analysis (0.8% 

of trials). 

Effects of gender, grade (3rd, 4th, 5th), task (NP, PN), and format (integers, 

fractions) on PAE were accessed with mixed-linear models using the lme4 package in the 

R environment (Bates, Maechler, Bolker, & Walker, 2015; Bates & Sarkar, 2006). 
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Participants were denoted as a random effect to control for their associated intraclass 

correlations (Pinheiro & Bates, 2000). Similarly, children’s accuracy was assessed by a 

generalized mixed linear model with a logit link, with effects of gender, grade (3rd, 4th, 

5th), task (NP, PN), and format (integers, fractions) as fixed effects and participants as 

random effects.  

 Children’s PAE did not differ across gender, ß = .01, SE = .05, p = .850. PAE 

improved (decreased) from third grade (46%) to fourth grade (14%), ß = .32, SE = .13, p 

< .05, and third grade to fifth grade (8%), ß = .39, SE = .14, p < .01, but was not different 

from fourth grade to fifth grade, ß = .07, SE = .12, p = .576. As expected, PAE was lower 

for integers (8%) than fractions (32%) in general, ß = .12, SE = .02, p < .001. PAE was 

also observed to be lower for NP tasks (10%) than PN tasks (30%), ß = .10, SE = .02, p < 

.001. However, the differences between estimates with integers and fractions were larger 

in PN tasks than NP tasks, ß = .10, SE = .02, p < .001. On PN tasks, estimates with 

integers (8%) were more accurate than estimates with fractions (61%), ß = .22, SE = .03, 

p < .001; whereas on NP tasks, PAE for estimates with integers (9%) were not 

significantly different from estimates with fractions (12%), ß = .01, SE = .02, p = .555 

(Figure 2A).  

The pattern of accuracy was similar to that of PAE. Children’s accuracy was not 

significantly different across gender, ß = .17, SE = .17, p = .308. Accuracy improved 

from third grade (26%) to fourth grade (43%), ß = .95, SE = .44, p < .05, and from third 

grade to fifth grade (47%), ß = 1.22, SE = .46, p < .01, but not from fourth grade to fifth 

grade, ß = .27, SE = .38, p = .483. As expected, accuracy was higher for integers (52%) 
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than fractions (28%), ß = .59, SE = .07, p < .001. Accuracy was higher for PN tasks 

(49%) than NP tasks (32%), ß = .41, SE = .07, p < .001. However, the differences 

between estimates with integers and fractions were larger in PN tasks than NP tasks, ß = 

.51, SE = .07, p < .001. On PN tasks, estimates with integers (71%) were more accurate 

than estimates with fractions (26%), ß = 1.11, SE = .10, p < .001; whereas in NP tasks, 

estimates with integers (33%) were not significantly different from estimates with 

fractions (30%), ß = .08, SE = .09, p = .400 (Figure 2B).  

 
Figure 2. Average PAE (Panel A) and accuracy (Panel B) for estimates across different 
tasks (PN, NP) and formats (integers, fractions) in Experiment 1. Error bars indicate 
standard errors. 

3. Discussion  

In Experiment 1, we investigated children’s estimates with integers and fractions 

when they identified (PN) or placed (NP) a number on a number line. Results revealed a 

general trend of more accurate estimates with integers than fractions, though this trend 

seems to be task dependent. 
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Not surprisingly, there was a huge advantage of integers (PAE: 8%, accuracy: 

71%) over fractions (PAE: 61%, accuracy: 26%) in identifying numbers, which is 

consistent with previous studies (Iuculano & Butterworth, 2011); surprisingly, children’s 

estimates with fractions (PAE: 12%, accuracy: 30%) were as good as their estimates with 

integers (PAE: 9%, accuracy: 33%) when they were asked to place a number on a number 

line, which is inconsistent with previous studies (Iuculano & Butterworth, 2011; Fazio et 

al., 2014). The inconsistent results from previous studies in our NP tasks might be 

accounted for by relatively accurate overall representations of numbers of our 

participants. Compared to Fazio et al. (2014) where average PAEs equals 12% for integer 

estimates, and 20% for fraction estimates, in our study, PAEs in NP were lower for both 

formats (integers: PAE = 9%; fractions: PAE = 12%). 

The discrepancy between PN and NP has been observed in previous studies 

(Iuculano & Butterworth, 2011). Iuculano & Butterworth (2011) provided evidence that, 

contrary to representation of integers, representation of fraction magnitudes seems to be 

“task dependent”, namely, both adults and children had a linear representation of 

fractions on NP tasks, but not PN tasks. It is worth noting that although both tasks target 

on participants’ representations of numbers, there are also essential differences between 

two tasks. For PN tasks, since children were asked to generate a number according to a 

position on a number line, children can generate any number including numbers that are 

beyond the range of two ending points. Therefore, errors are unbounded for PN tasks. 

What is more, PN tasks also require children’s knowledge of writing a fraction, e.g., 

denominators are above the line and numerators are below the line. For NP tasks, 
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however, children only needed to mark somewhere on the line to estimate a target 

number. In this case, children’s responses were bounded between the two ending points 

of the line. The larger discrepancy between estimates with integers and fractions in PN 

tasks might denote the more possibilities of making mistakes in generating a fraction than 

placing a fraction. Consistent with this claim, children had larger average PAEs with 

fractions on PN (61%) than on NP (12%) tasks. 

According to the results from Experiment 1, we hypothesized that children would 

benefit from analogical resources of integers in estimating fractions on PN. Among the 4 

different tasks, performance on PN task with integers was the best on average, with 

lowest PAE (8%) and highest accuracy (71%). Thus, integer PN task might be a good 

source analog for teaching fractional magnitudes. In Experiment 2, we designed a 

progressive alignment training program to help children align fraction magnitudes to 

integers on equivalent number lines, starting with integer PN task. 
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Chapter 3. Experiment 2 

In Experiment 2, we intended to explore (a) effects of aligning structures between 

integers and fraction magnitudes, and (b) effects of retrieval cues on children’s analogical 

transfer in the context of estimating fractions on a number line, using a pretest-training-

posttest design. First, we tested children’s estimates with fractions in both PN and NP 

tasks at pretest. Then we trained children to map fraction magnitude to familiar analogs, 

i.e., integers, in a progressive alignment way. The training program was adapted from 

Opfer et al. (2017). Immediately after training, we again examined children’s estimates 

with fractions either with (Cue group) or without (No Cue group) retrieval cues of 

magnitudes of integers. 

1. Method 

1.1 Participants 

Sixty-four 4th graders and 5th graders participated in the study. (4th graders: 15 

boys and 25 girls, M = 10.02 years, SD = .50; 5th graders: 11 boys and 13 girls, M = 10.93 

years, SD = .52). They were recruited from elementary schools in the Midwestern United 

States. 

1.2 Materials 

Pretest and post-test measures of fractional representations.  
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Fraction Position-to-Number (FPN) Task: The FPN task is identical to the FPN 

task we used in Experiment 1. In each trial, children were presented a number line from 0 

to 1 on a computer screen. There was also a vertical hatch mark somewhere on the line, 

and children were asked to estimate what number went with the mark. Children would 

type their answer in a box and click ‘Next’ to continue. The numbers to be estimated 

were 1/11, 1/7, 1/4, 3/8, 2/5, 4/7, 2/3, 7/9, 5/6, and 9/10, consisting of a total of 10 trials. 

Two of these fractions were drawn from each fifth of the number line 0 – 1. 

Fraction Number-to-Position (FNP) Task: The FNP task is almost identical to 

what we used in Experiment 1, except that we extended the sets of fractions to be 

estimated. In each trial, children were presented a 0-1 number line and were asked to 

estimate a given number by dragging a vertical hatch mark on the line. They would click 

‘Next’ to see the next trial after making their decisions. The numbers to be estimated 

were 1/11, 1/7, 1/4, 3/8, 2/5, 4/7, 2/3, 7/9, 5/6, 9/10, 2/22, 2/14, 6/16, 4/10, 8/14, 4/6, 

14/18, 10/12 and 18/20, consisting of a total of 20 trials. Ten of those fractions that were 

overlapped with PN tasks (i.e., 1/11, 1/7, 1/4, 3/8, 2/5, 4/7, 2/3, 7/9, 5/6, 9/10) were also 

covered in training, i.e., trained items. The other ten magnitudes (i.e., 2/22, 2/14, 6/16, 

4/10, 8/14, 4/6, 14/18, 10/12) are improper fractions of the same magnitudes and they 

were not covered in training. Thus, we refer them in the following analysis as untrained 

items. 

Training Program. 

During the training program, children were provided analogical sources of 

integers in alignment with fraction problems (3:8::3/8:1). First, children received 
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conceptual instructions of integer number lines (Figure 3). Children were shown a tall 

rectangle partly filled with water and asked, ‘How much of the glass is filled in? Some? 

A little bit? Less than half? We can be more Exact. To be exact, we can use numbers on a 

measuring glass.’ Then children were presented two vertical number lines aligned with 

the rectangle and they were told, ‘Numbers on a measuring glass are like numbers on a 

number line. Numbers on a measuring glass tell us how many milliliters there are. 0 is 

none. 100 is all. 1 is almost nothing. 99 is almost everything. 50 is half. With numbers on 

the measuring glass, we can be more exact than with ordinary words, like ‘some’, ‘a 

little’, or ‘less than half’, so we can say the glass is 25 milliliters full”. 

 

Figure 3. An illustration of conceptual instructions of integer number lines. 

The numbers trained were: 1/11, 1/7, 1/4, 3/8, 2/5, 4/7, 2/3, 5/6, 7/9 and 9/10, 

which were all included in the testing battery at pretest and post-test. For each magnitude, 

children learned to map integer PN (IPN) to integer NP (INP), integer NP (INP) to 

fraction NP (FNP), fraction NP (FNP) to fraction PN (FPN), and fraction PN (FPN) to 

integer PN (IPN), consisting of 8 number line estimation trials in total (see Figure 4 for 

an illustration of the training program). For each mapping, children were first presented a 

base problem on the top part of the screen (i. e., problems without alignment). They were 

given feedbacks and the correct answer after they solved the base problem. Their answer 



25 
 

was considered correct if it was within +/- 2.5% of the locations of correct answer, the 

same criterion as in Experiment 1. And then, participants were presented a target problem 

at the bottom part of the screen (i. e., problems with alignment) while they could still see 

the base problem and the correct answer for it. They also received feedbacks after they 

finished the target problem so that they were able to see the alignment between two 

problems. On some trials, participants were also asked to categorize the answer. The 

sequence of mapping was designed to start from relatively easy questions (i.e., integer 

problems) and gradually become more difficult (i.e., fraction problems).  

For example, for magnitude 3/8, first children solved an integer PN problem at the 

top part of the screen and they were given corrective feedbacks. A green check mark 

would appear if their answer was within +/-2.5% of the correct answer (i.e., PAE was 

lower than or equal to 2.5%). After finishing the first problem, children would click next 

and then the second problem, an integer NP showed up at the bottom part of the screen 

while the first problem and its correct answer remained on the screen. Children also 

received feedbacks and correct answer for this second problem. These two problems were 

vertically aligned so that children can compare and see the alignment between them. 

The screen cleared and then a third problem, the same integer NP problem as the 

second problem appeared on the top part of the screen to examine children’s performance 

on this question without alignment, and whether they could retrieve the magnitude right 

after solving it and receiving feedbacks. After children received feedbacks on this 

problem, they were asked to categorize the answer as “Almost Nothing”, “Some”, 

“Around Half”, “Most”, or “Almost Everything” out of the whole range (e.g., “How 
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much is this number if 8 is everything?”). The choices were horizontally arranged bellow 

the number line. Children clicked a choice to response and did not receive feedback on 

categorization questions. The categorization tasks were only presented when children 

needed to map between integers and fractions, in order to examine children’s belief of 

relations between the target number and the ending points across equivalent number 

lines, e.g., 3/8 to 1 is the same as 3 to 8. 

After that, a fraction NP problem (i.e., the fourth problem) appeared at the bottom 

part of the screen, vertically aligned with the integer NP problem, so that children had an 

opportunity to draw an analogy that a fraction stands in relation to 1 as being the same 

ratio as the relation between its numerator and denominator. After receiving feedbacks, 

children were asked to categorize the answer (e.g., “How much is this number if 1 is 

everything?”).  

The screen cleared and the fifth problem, the same fraction NP problem as the 

fourth problem, was presented. The sixth problem was a fraction PN problem, vertically 

aligned with the fifth problem. Again, the screen cleared and children answered another 

fraction PN problem and were asked to categorize the number. Finally, the eighth 

problem, an integer PN problem, was aligned with the seventh problem, and children also 

had to categorize the number.  

Then children were asked to estimate the next largest number across 8 problems. 

The magnitude of trained numbers gradually increased from smallest to largest to give 

children a sense of the relative magnitude among trained numbers. There was a total of 
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80 number line estimation problems. The training program was self-paced and it took 

approximately 30 minutes for children to complete the program. 

 

Figure 4. An illustration of stimuli in the training procedure. For each magnitude, 
children solved 8 problems on 4 screens. On each screen, the problems showed up one by 
one. Children could see the top problem (the problem without alignment) when they 
solved the bottom problem (the problem with alignment). 

Table 1. Fraction problems across different test phases and conditions in Experiment 2. 

 Pretest Training Post-test 

  With 
alignment 

Without 
alignment 

 

Cue 
NP (20 items), 
PN (10 items) 

NP (10 items), 
PN (10 items) 

NP (10 items), 
PN (10 items) 

NP with cues (20 items), 
PN with cues (10 items) 

No 
Cue 

NP (20 items), 
PN (10 items) 

 

1.3 Procedure 

Two sessions were conducted on separate days, with an interval of 7.23 days (SD 

= 4.23). In Session 1, children completed pretest battery, including 10 trials of PN tasks 

and 20 trials of NP tasks. The order of two tasks was counterbalanced. In Session 2, 

children completed training and post-test. The post-test took place immediately after 
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training. To test the effect of retrieval cues on transfer from training to post-test 

problems, at post-test, children were randomly assigned to one of two groups: a Cue 

group (N = 33) or a No Cue group (the control group, N = 31). Both groups of children 

received the same pretest and training, and the only difference between two groups was 

whether there were retrieval cues for analogical sources at post-test (Table 1).  

At post-test, children in the Cue group were asked to solve problems in the post-

test testing battery (10 PN problems and 20 NP problems) in a randomized order. The 

problems were the same as pretest battery. Children were also instructed to think about 

how they solved the problem in training before solving the problems (e.g., ‘Now you will 

practice some problems like you did before, but you won’t get any feedbacks about 

whether your answer was right or wrong. Just do your best. Also, before you solve each 

problem, think about how you solved the problem in the last game.’). In each trial, they 

would see two problems vertically aligned on the screen (Figure 5). The bottom problem 

was a fraction number line estimation problem from testing batteries, and the top problem 

was the corresponding integer estimation problem serving as a cue. Children were asked 

to only solve the bottom problem, but to think about how they solved the top problem 

before making their decision.  

In the No Cue group, the procedure was the same with that of the Cue group, 

except that children were not presented any cues nor instructed to think about how they 

solved the problems in their last game.  
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Figure 5. An illustration of two conditions (i.e., Cue and No Cue) at post-test in 
Experiment 2. 

2. Results 

Same as Experiment 1, Children’s performance was measured as percent absolute 

error (PAE): | child’s estimate – correct answer| / numerical range * 100%. In addition, 

children’s response was considered correct (i.e., accuracy = 1) if PAE is equal to or 

smaller than 2.5%, which was the same criterion with what we used to give feedbacks in 

training and what we used in Experiment 1. Responses with 0 as value of denominator 

were excluded from the analysis (0.02% of trials). 
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In the following sessions, we will first analyze children’s number line estimates 

with fraction magnitudes that were trained and tested across 4 test phases (pretest, 

training with alignment, training without alignment, and post-test), in order to investigate 

a full trajectory of learning. Two questions we aimed to answer are (a) whether children 

were capable of using alignment to map fractions to integers, and (b) whether children 

benefited from retrieval cues of familiar analogical sources. Next, we will compare 

children’s estimates with trained and untrained fraction magnitude, to investigate where 

children were able to generalize analogical inferences to novel problems. 

2.1 Trained items 

Effects of gender, grade (4th, 5th), test phases (pretest, training with alignment, 

training without alignment, post-test), and condition (Cue group, No Cue group) on PAE 

were accessed with mixed-linear models using the lme4 package in the R environment 

(Bates et al., 2015; Bates & Sarkar, 2006). This model included by-subject random 

intercept and by-subject random slopes for test phases. Similarly, children’s accuracy was 

assessed by a generalized mixed linear model with a logit link, with effects of gender, 

grade (4th, 5th), test phases (pretest, training with alignment, training without alignment, 

post-test), and condition (Cue group, No Cue group) as fixed effects, and by-subject 

random intercept and by-subject random slopes for test phases as random effects.  

In both tasks, children’s performance did not differ across gender (PN: PAE, ß = 

.00, SE = .02, p = .840, accuracy, ß = .15, SE = .15, p = .308; NP: PAE, ß = .00, SE = .00, 

p = .872, accuracy, ß = .04, SE = .07, p = .582), or grade (PN: PAE, ß = .01, SE = .02, p = 
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.491, accuracy, ß = .28, SE = .17, p = .096; NP: PAE, ß = .00, SE = .00, p = .411, 

accuracy, ß = .07, SE = .08, p = .345). 

In the following sections, we will report children’s number line estimation during 

pretest, training with alignment, training without alignment, and at post-test to determine 

whether children were capable of using an analogy to integers to improve their 

representations of fraction magnitude, and also whether retrieval cues would facilitate 

analogical transfer. 

Pretest. First, we examined children’s number line estimation at pretest to make 

sure that children in both groups (Cue group and No Cue group) were equally good at 

fractions estimation before training (Figure 6). As expected, on both tasks, there were no 

differences in accuracy for estimates between two groups (PN: PAE, ß = .07, SE = .13, p 

= .556, accuracy, ß = .03, SE = .19, p = .876; NP: PAE, ß = .01, SE = .02, p = .443; 

accuracy, ß = .08, SE = .18, p = .656). 

Alignment. To test the effect of alignment, we examined the accuracy of the 

training problems with alignment. On both tasks, there were significant gains from pretest 

to training problems with alignment (PN: PAE, ß = .51, SE = .12, p < .001, accuracy, ß = 

6.00, SE = .53, p < .001; NP: PAE, ß = .15, SE = .02, p < .001, accuracy, ß = 5.00, SE = 

.37, p < .001). 

No Alignment. To investigate whether the effect of alignment can generalize to 

the same problem without alignment, we examined the accuracy of the training problems 

without alignment. On both tasks, there were significant gains from pretest to training 

without alignment problems (PN: PAE, ß = .49, SE = .12, p < .001, accuracy, ß = 4.90, 
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SE = .42, p < .001; NP: PAE, ß = .13, SE = .02, p < .001, accuracy, ß = 1.75, SE = .20, p 

< .001). We then compared estimates of problems without alignment and problems with 

alignment to determine whether children were able to remember the aligned magnitude 

immediately after estimations and feedbacks, since each problem without alignment were 

presented immediately after the same problem with alignment. We observed that 

generalization of alignment to the same problem immediately after seeing the alignment 

was task dependent. On PN tasks, estimates of training without alignment problems were 

not different from training with alignment in both PAE and accuracy (PAE, ß = .01, SE = 

.02, p = .577, accuracy, ß = .69, SE = .44, p = .118), suggesting that, shortly after training, 

the effect of alignment generalized to problems without alignment.  On NP tasks, 

however, estimates of training without alignment problems were less accurate than with 

alignment, even if they just solved the same problem with alignment seconds ago (PAE, ß 

= .01, SE = .00, p < .01, accuracy, ß = 1.62, SE = .19, p < .001). The discrepancy between 

PN and NP tasks also suggested that retrieving visuo-spatial information in working 

memory is more difficult than retrieving semantic information, such as symbolic 

numbers. 

Post-test. To examine whether children learned to use the analogy to integers at 

post-test when the analogical bases were not presented, we examined accuracy for 

estimates of children in the No Cue group. Children’s estimates improved from pretest to 

post-test on most measures in both tasks (PN: Accuracy, ß = .81, SE = .23, p < .001; NP: 

PAE, ß = .10, SE = .02, p < .001; accuracy, ß = .07, SE = .02, p < .01), except PAE on PN 

task (ß = .25, SE = .19, p = .188), presumably due to large standard deviations of PAEs 
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on PN task, for instance, the standard deviation (1.06) for children in the No Cue group at 

post-test was almost 3 times larger than the mean PAE (36%). 

To examine the effect of retrieval cues, we compared the accuracy of children in 

the Cue group and No Cue group at post-test. Estimates did not differ between two 

groups on most measures in both tasks (PN: PAE, ß = .13, SE = .09, p = .176; NP: PAE, ß 

= .00, SE = .01, p = .914; accuracy, ß = .00, SE = .11, p = .988), except on PN accuracy 

(ß = .65, SE = .15, p < .001). Accuracy for children in the Cue group (66%) were higher 

than children in the No Cue group (40%) on PN. The absence of effect of retrieval cues 

on NP tasks might be due to the ceiling effect of performance without cues (No Cue 

group at post-test: PAE = 8%; accuracy = 32%). 
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Figure 6. Experiment 2: Mean PAEs, accuracy and 95% confidence intervals for trained 
items on PN and NP tasks across 4 test phases (pretest, training with alignment, training 
without alignment, and post-test) from 1000 simulated data using mixed linear models.  
N.B., y-axes are not identical. 

2.2 Untrained items 

To investigate effects of training and retrieval cues on untrained items compared 

to trained items, we further analyzed data with NP tasks at pretest and post-test using a 

mixed linear model on PAEs. In the model, we included gender, grade (4th, 5th), type 

(trained, untrained), condition (Cue group, No Cue group), phase (pretest, post-test) as 

fixed effects, by-subject random intercept, and by-subject random slopes for test phases.  

PAEs were lower at post-test (8%) than pretest (16%), ß = .04, SE = .01, p < .001 

(Figure 7). This effect was larger in trained items (pretest: 17%, post-test: 8%) than 
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untrained items (pretest: 15%, post-test: 9%), ß = .01, SE = .00, p < .05. Not only did 

PAEs with trained problems significantly decreased from pretest to post-test, ß = .03, SE 

= .01, p < .001, PAEs with untrained problems also significantly decreased, ß = .03, SE = 

.01, p < .001. More specifically, for untrained problems, estimates at post-test were better 

than pretest in both Cue group and No Cue group (Cue group: ß = .08, SE = .02, p < .001; 

No Cue group: ß = .05, SE = .02, p < .05), indicating that the alignment effect generalized 

to untrained problems as well even when retrieval cues were not presented. 

A generalized mixed linear model analysis on accuracy with the same model 

structure as PAE analysis, found that accuracy was higher at post-test (30%) than pretest 

(22%), ß = .30, SE = .06, p < .001. Again, accuracy with both trained (ß = .33, SE = .08, p 

< .001) and untrained (ß = .29, SE = .08, p < .001) items significantly increased from 

pretest to post-test. For untrained problems, estimates at post-test were more accurate 

than pretest in both Cue group and No Cue group (Cue group: ß = .62, SE = .21, p < .01; 

No Cue group: ß = .52, SE = .21, p < .05). 

No other effects or interactions were found. Specifically, we did not observe an 

effect of retrieval cues on both trained and untrained problems, which was probably due 

to the ceiling effect of estimates with fractions in NP tasks at post-test. 
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Figure 7. Average PAEs and accuracy for estimates of trained and untrained items at 
pretest and post-test on NP tasks in Experiment 2. Error bars indicate standard errors. 

3. Discussion 

In Experiment 2, we designed a training program to provide children with 

structural alignment to familiar analogical sources of integers. Results revealed that 

analogies to integers significantly improved children’s estimates of fractions over a very 

short period. In NP tasks, even without any cognitive supports of retrieval cues, 

children’s estimates of fractions at post-test (PAE = 8%, Accuracy = 32%) were as good 

as estimates with integers (PAE = 9%, Accuracy = 33%) we observed in Experiment 1. 

This effect of analogies between integer and fraction scales can also facilitate better 

representations of untrained items (pretest, PAE = 15%, Accuracy = 21%; post-test, PAE 

= 9%, Accuracy = 28%). Similarly, in PN tasks, simply supports of aligning structures 

between integers and fractions improved children’s estimates from pretest (PAE = 61%, 

Accuracy = 26%) to post-test (PAE = 36%, Accuracy = 40%), though not as good as 

estimates with integers (PAE = 8%, Accuracy = 71%) we observed in Experiment 1 (also 

noted that the difference between PAEs at pretest and post-test were not significant). 
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 To determine whether cognitive supports of retrieval cues would further improve 

children’s fraction estimates, we provided a group of children with cues to remind them 

of integer magnitudes at post-test. On NP tasks, retrieval cues did not show additional 

help to improve children’s estimates compared to children without cues. Both groups of 

children’s estimates with fraction at post-test (Cue: PAE = 8%, Accuracy = 32%; No 

Cue: PAE = 8%, Accuracy = 32%) reached accuracy as high as estimates with integers 

(PAE = 9%, Accuracy = 33%) we observed in Experiment 1, indicating that simply 

aligning structure of integer and fractional magnitudes on different scales improved 

children’s fraction understanding over a very short period of time, and children were 

capable of retrieving analogical bases on integers when the alignment was not presented. 

On PN tasks, however, retrieval cues did boost a more accurate representation of 

fractions. Children in the Cue group outperformed those in the No Cue group at post-test. 

With retrieval cues, children’s estimates with fractions at post-test (PAE = 10%, 

Accuracy = 66%) were almost as good as those with integers (PAE = 8%, Accuracy = 

71%) that we observed in Experiment 1.  

Retrieval cues of integer magnitude on an equivalent number line are more useful 

in PN tasks than NP tasks might be due to different features of these two tasks. For NP 

tasks, even without any cues, the problem itself provides enough information for people 

to convert it to an integer estimation problem, i.e., multiplying the right ending point of 

the number line by the denominator of the to be estimated fraction, and estimating the 

numerator on the new number line. For PN tasks, it is difficult to know the exact 

denominator of the to be estimated fraction without any cues. Though not explicitly told, 
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children seemed to understand that the alignment between integer and fraction number 

line, and that the retrieval cues provided values of denominator, and thus the fraction PN 

problems could be converted to integer estimation problems.  

 However, in our current design, improvement from pretest to post-test might also 

be accounted for by practice and feedbacks on number line estimations of fractions. A 

future follow-up study where children are presented the same aligning structure of 

integers and fractions, but with feedbacks only to integer problems as a control group 

might provide a more rigorous picture.  
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Chapter 4. General Discussion 

Analogies to prior knowledge is a key ability to learn mathematics. In the current 

study, we investigated whether analogies between integer and fractional scales and 

different cognitive supports for analogical transfer might lead to better understandings of 

fraction magnitudes.  

In Experiment 1, third-to-fifth graders identified (Position-to-Number) or placed 

(Number-to-Position) fractions and integers on number lines. Our results indicated a 

general more accurate representation of integers over fractions, confirming the premise of 

using integer knowledge to help fraction understanding. In Experiment 2, we designed a 

training program to help children project fractions to familiar analogical sources of 

integers. Our results indicated that analogies to integers might prompt better 

understanding of fraction magnitudes given cognitive supports of structural alignment 

and retrieval cues. Children were capable of making abrupt and broad analogical transfer 

and estimated fractions as good as integers over a short period of one-session training. 

1. Re-examine the Whole Number Bias 

Our results indicated that integer knowledge can have a positive transfer in 

fraction learning. Children were capable of building relatively novel concepts on their 

prior solid knowledge of integer magnitude, provided correct analogies that the fraction 

magnitude to 1 is the same ratio as value of its numerator to its denominator. Consistent 
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with the integrated theories of numerical development (Siegler et al., 2011), we provided 

evidence that the development of fractions and integers share developmental continuities. 

In contrast with the unintegrated theories of numerical development (e.g., the privileged 

domain theory), knowledge of integers does not necessarily interfere with development of 

fraction understanding, instead, integer magnitude understanding can be a good source 

analog to facilitate fraction learning.  

In the current study, we are not denying the importance of the issue of whole 

number bias, but the interference effect of integer magnitudes on fraction magnitude 

should not be the end of the story. We are trying to further investigate mechanisms that 

might facilitate positive whole number bias, and ways to improve fraction understanding 

based on prior solid knowledge of integers. Several recent studies also targeted on the 

factors influencing the variability in whole number bias (Alibali & Sidney, 2015; 

Vamvakoussi, Van Dooren, & Verschaffel, 2012). Alibali and Sidney (2015) conclude 

that the whole number bias depends on contexts and experiences. In their view, the whole 

number bias arises when the representations of fraction magnitudes are not activated 

strongly enough to guide performance in a specific context, and thus the more strongly 

activated representations of integers might instead guide the performance.  

Furthermore, Braithwaite and Siegler (2017) propose that there is a 

‘componential-to-fraction magnitude shift’ in the development of fraction magnitudes 

understanding. Parallel to the logarithmic-to-linear shift in the development of integer 

magnitude representations, the development of fraction magnitude understanding 

undergoes a shift from componential or hybrid representations to fraction magnitudes. 
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Braithwaite and Siegler examined fourth-to-eighth grader’s representations of fraction 

and demonstrated that the componential-to-fraction shift might occur more slowly than 

the logarithmic-to-linear shift and might not occur at all for some people.  

How to facilitate this componential-to-fraction shift in fraction learning? Our 

study indicated that correct analogies to integer magnitudes might speed this 

componential-to-fraction magnitude shift. 

2. Analogy as a Mechanism to Speed the Componential-to-Fraction Shift 

Our findings revealed that analogies to integer magnitude can lead to better 

understanding of fraction magnitudes over a short period of time, which is parallel to the 

findings that analogies to small whole numbers lead to representational changes of large 

whole numbers (Thompson & Opfer, 2010). In our study, we provided fourth and fifth 

graders aligning structures of fractional magnitudes on 0-1 number lines and numerators’ 

values on number lines from 0 to the value of denominators. By comparing equivalent 

integer and fraction magnitude on different scales, children were implicitly shown how 

numeral symbols of a fraction function. Therefore, analogies that emphasized relative 

magnitudes between integers and fractions helped children understanding fraction 

magnitudes better.  

Similarly, studies have shown that knowledge of integer arithmetic can also lead 

to positive transfer to fraction arithmetic through analogies (Sidney & Alibali, 2015, 

2017). To facilitate knowledge of fraction division, Sidney and Alibali (2015) provided 

fifth and sixth graders either surface analogue of other fraction operation or structure 

analogue of integer division, and found that students gained more conceptual knowledge 
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of fraction division when they were provided analogical bases of integer division. 

Moreover, this positive transfer can even happen when analogies were not explicit 

instructed. In a follow-up study, Sidney and Alibali (2017) showed that solving integer 

division problems immediately before fraction division problems generated implicit 

analogies between integer and fraction knowledge, and thus improved learners’ 

conceptual structure of fraction division. 

How to facilitate positive analogical transfer between integers and fractions? In 

the current investigation, we provided children with cognitive supports of structural 

alignment and retrieval cues, and both were shown to be beneficial to positive analogical 

transfer. 

2.1 Cognitive Supports of Alignment for Analogies 

In Experiment 2, an important feature of our invention is the structure alignment. 

According to the structure-mapping theory (Gentner, 1983; Gentner & Markman, 1997), 

comparisons facilitate maximum structural similarity between two representations. 

Several features of our training program might provide further support for analogical 

transfer from integer to fraction magnitudes: visual alignment, multiple examples, and 

progressive alignment. For instance, we provided children with vertically aligned number 

lines of integer and fraction scales over 10 different fractional magnitudes. For each 

magnitude, the alignment started with the easiest problem (i.e., integer PN).  

2.2 Cognitive Supports of Retrieval Cues for Analogies 

Our second experiment also indicated that source retrieval cues facilitate 

analogical transfer in fraction learning. At post-test, children with analogical cues 
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produced more accurate estimates when asked to identify fractions on a number line than 

those who did not receive any cues of analogical bases. Consistent with classic findings 

of Gick and Holyoak (1980), we provided further evidence in the context of fraction 

learning that even if target and source has been successfully mapped, failure of retrieving 

the analogical sources can prevent analogical inference.  

The effect of retrieval cues in analogical transfer has also been shown in previous 

studies (Novick & Holyoak, 1991). For example, college students were asked to solve a 

target mathematics problem after they learned the solution of a structurally analogous 

problem. Prior to solving the problem, they were also provided different kinds of retrieval 

cues. Researchers found that cues mapping numbers between base and target were most 

beneficial, cues mapping concepts were the second, and non-specific retrieval cues that 

reminded students of the base problem were least beneficial. In our study, children were 

provided visually aligned cues. Due to the one-to-one correspondence of alignment, these 

retrieval cues implicitly mapped both numbers and concepts between analogical bases 

and target. These features of retrieval cues appeared to provide critical opportunities for 

children to make analogical inferences from integer to fraction magnitudes. 

3. Advantages of Number Line Training 

We used number lines in our invention to help children map between integer and 

fraction magnitudes, and have a better understanding of fraction magnitudes and 

properties. With number lines, children have opportunities of mapping the relations 

between a portion of the length of the line and the total length of the line, to the ratio of 

relations between values of the numerator and denominator of a fraction. What is more, 



44 
 

the continuous feature of the line may hint children that there are infinite fractions 

between two integers. 

Previous findings have also indicated that number line training can improve 

children’s understanding of fraction magnitudes (Hamdan & Gunderson, 2017; Fazio, 

Kennedy, & Siegler, 2016). Using a pretest-training-posttest design, Hamdan and 

Gunderson (2017) presented second and third graders with one of the three training 

programs, a number line training program where children learned to mark magnitudes on 

very thin two-dimensional number lines, an area model training program where children 

learned to divide circles to indicate fractional magnitudes, and a reading crossword 

puzzle control program, and found that number line training plays a causal role in 

children’s fractional magnitudes understanding, and is more beneficial than the 

educational widely-used area model.  

Likewise, Fazio et al. (2016) provided further evidence that training to map 

fractional magnitudes on unidimensional number lines and understanding of unit 

fractions help deepen children’s understanding of fractions. In their experiment, children 

were trained to map fraction magnitudes on a number line with more and more accurate 

estimations. Using the technique of successful approximation, children’s estimates had to 

be within 20% of the target fraction at the start of training, and if they were successful in 

estimating with this criterion, the criterion reduced to 15% the target fraction, and finally 

to 10%. In our training program, we set a very strict criterion of 2.5% within the correct 

answer at the beginning of the program, and we provided evidence that this kind of 

training is also beneficial to children’s understanding of fractions. 
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4. Limitations and Future Directions 

4.1 Limitations of the Current Study 

Several limitations of the current study should be noted. First, there are also 

alternative explanations for the improvement from pretest to post-test other than 

analogies to integers magnitudes. One explanation is that children could benefit from 

school curriculums during the interval between pretest and post-test (Mean = 7.23 days, 

SD = 4.23 days). A second explanation is that simply practice and feedbacks of fraction 

number line estimation problems facilitated children’s understanding of fraction 

magnitudes, as observed in previous studies (Fazio et al., 2016; Hamdan & Gunderson, 

2017). Unfortunately, we could not address this two explanations in the current design. A 

future follow-up study could add a group of children who only receive feedbacks on the 

integer estimation problems as a control group, to further separate the effect of analogical 

bases, the effect of school education, and the effect of feedbacks. 

Second, our post-test took place immediately after training. It would be worth 

investigating whether the effect of analogies can facilitate children’s fraction 

understanding in the long-term. 

4.2 Highlights for Future Studies and Educational Implications 

Finally, the mechanism of analogy to well understood magnitude to extend mental 

number line highlights for future studies and educational implications. Our program was 

limited to fractions 0-1, but analogy can serve as a broad mechanism to expand the 

mental number line, from small whole numbers to large whole numbers, from whole 

numbers to fractions 0-1, from fractions 0-1 to fractions 0-N, from positive numbers to 
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negative numbers, and so on. Also, we found positive results of emphasizing the analogy 

between fraction magnitudes and familiar sources of integers, with cognitive supports of 

visual alignment and retrieval cues, which might have further educational implications. 
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