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Abstract 
 

 

Elastic constants Cij are one of the essential properties to understand mechanical behaviors 

of materials. They are indispensable inputs for physics-based models of microstructural 

evolution and constitutive/micro-mechanistic simulations of properties. Young’s modulus, 

bulk modulus, shear modulus and Poisson’s ratio are just different combinations of elastic 

constant components and they only describe mechanical behavior under specific 

conditions. Elastic constants Cij are the intrinsic parameters fully describing the elastic 

mechanical behavior under any given condition. Several experimental methods have been 

developed to measure elastic constants of materials but most of them require single-crystal 

samples, which are time-consuming to grow. Many compounds are not even possible to 

grow single crystals. As a result, only about 1% (roughly 1500 out of 160,000 kinds) of 

distinct solid compounds have experimental values of the elastic constants. To change this 

scenario, an innovative experimental method has been developed to measure single-crystal 

elastic constants directly from polycrystalline samples, without the need of growing single 

crystals. 

 

The new method is based on measuring and modeling femtosecond laser-generated surface 

acoustic waves (SAWs) that only propagate on the sample surface and decay with the 

distance from the surface into the sample exponentially.  
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An elastodynamic model has been developed to predict the SAW phase velocities along 

any general direction at given full elastic constants and density. A femtosecond laser-based 

experimental set-up was applied to generate and detect SAW velocities along any specific 

direction. To enable measuring narrow-band SAW velocities along a single direction 

without any interference from multiple modes, an organic PDMS (polydimethylsiloxane) 

film of 1-D grating was placed on top of the sample surface to guarantee only one SAW 

mode survives to be detected. With modeling predictions and experimental measurements, 

either a forward simulation algorithm or a neural network machine learning method has 

been applied to extract the full elastic constants.  

 

Polycrystalline samples of Ni, Al, Ta, Nb, Fe (bcc), Co (hcp) and β-Sn (tetragonal) have 

been used to benchmark the measurement accuracy. The extracted elastic constants from 

our method are within 6.8% of the corresponding values obtained from single-crystal 

samples for all seven pure metals. This new method completely frees us from growing 

single crystals. The high spatial resolution feature (~20 microns) in tests makes it highly 

applicable in obtaining high throughput composition-dependent elastic constants through 

localized measurements on a diffusion couple. 

 

The power and versatility of this new method are illustrated with five measurement 

examples: (1) composition-dependent elastic constants from an Fe-Ni diffusion couple; (2) 

full elastic constants of Sn from its powders; (3) key elastic constants of the intermetallic 

compound Ni3Sn4 of the monoclinic crystalline symmetry; (4) full elastic constants of a 
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polycrystalline Ni-based superalloy René 88DT; and (5) Young’s moduli of inorganic glass 

materials. 

 

Several appendixes are provided and attached at the end of this dissertation, including bulk 

acoustic wave modeling, surface acoustic wave modeling, the transformation of coordinate 

systems among the sample coordinate system, the crystalline coordinate system and the 

PDMS based coordinate system, and MATLAB coding used in this dissertation.  
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Chapter 1:  Introduction 
 

 

1.1 Significance of elastic constants 

 

Elastic constants, describing a material’s resistance to elastic deformation when a force is 

applied to it, is one of the very fundamental material properties. They are essential data not 

only for constitutive and micro-mechanistic modeling of various properties (especially 

mechanical properties including plastic deformation and fracture)1,2 but also for 

simulations of microstructure evolution during phase transformations and materials 

processing3,4. Moreover, since single crystals are directly used in many applications from 

microelectronic devices to jet engine turbine blades, anisotropic elastic constants are 

essential for the design of those devices and components.  

 

Even though significant progress has been made in computing the elastic constants using 

density functional theory (DFT)5–10 and molecular dynamics (MD)11–14, accurate 

experimental measurements are still essential until the computed results are fully validated 

for accuracy. 
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In addition, elastic constants are highly related to thermal mechanical and dynamic 

properties of materials, such as thermal expansion coefficient15,16, Debye temperature17–19, 

lattice thermal conductivity20 and specific heat capacity (or Grüneisen parameter)21. As a 

result, several thermal mechanical and dynamic properties or at least relevant components 

are correlated to elastic constants. In addition, a change of elastic constants of materials 

often implies a change of microstructure, which can help detect grain orientations, phase 

transitions or transformations, such as superconducting phase transition22. Therefore, 

elastic constants are very essential to understand and characterize materials in terms of both 

mechanisms and applications.  

 

1.2 Fundamentals of elastic constants 

 

Elastic constants Cijkl  intrinsically constitute a fourth rank tensor conjoining stress and 

strain in elastic deformation region through Hooke’s law. It has 81 components in total but 

they are not completely independent from one another. Provided there is no body torque in 

the material, the stress under small deformations must be symmetric. This poses a 

constriction on the elastic constant components. 

 

Stress symmetric: 

   
𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜖𝑘𝑙

𝜎𝑗𝑖 = 𝐶𝑗𝑖𝑘𝑙𝜖𝑘𝑙

𝜎𝑖𝑗 = 𝜎𝑗𝑖

} 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙                                              (1.1) 
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On the other hand, the strain by definition is also symmetric, this poses a second 

constriction on the elastic constants. 

 

Strain symmetric: 

 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜖𝑘𝑙

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑙𝑘𝜖𝑙𝑘

𝜖𝑘𝑙 = 𝜖𝑙𝑘

⇒ 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘 

(1.1) 

   

Due to these two symmetry relationships, the 81 components in tensor notation reduce to 

36, which can be expressed in a two-dimensional 6 × 6 matrix notation for sake of 

simplicity, called Voigt notation. But as the reduced form is not a physical tensor, any 

tensor transformation rule could not be applied directly on it. The original tensor expression 

is still necessary when transformation matrix is applied to change the base of coordinate 

systems. 

 

Moreover, elastic constants are physically the second-order coefficient in the Taylor 

expansion series of the strain energy with respect to strain, it must satisfy Equation 1.3 

 
Ψ = Ψ(0) +

𝜕Ψ

𝜕𝜖𝐼
𝜖𝐼 +

1

2

𝜕2Ψ

𝜕𝜖𝐼𝜕𝜖𝐽
𝜖𝐼𝜖𝐽 + 𝑂(𝜖2) 

(1.2) 

   

where Ψ is strain energy, 𝜖 is strain and 𝑂(𝜖2) express the terms higher than the second 

order of the strain. The elastic constants are thus expressed as the second derivative of 

energy 

1

2

𝜕2Ψ

𝜕𝜖𝐼𝜕𝜖𝐽
= 𝑐𝐼𝐽                                                                 (1.4) 
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As the order of differentiation doesn’t matter, Equation 1.4 also applies if we change the 

order of differentiation of ϵI and then ϵJ to first ϵ𝐽 and then ϵI. Thus, we can have 𝐶𝐼𝐽 =

𝐶𝐽𝐼 ⇒ 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗 , further reducing the number of independent elastic components to 21. 

For more details, readers are referred to the classical book by Nye23. 

 

The 21 independent components correspond to the most general case, such as a material in 

the triclinic crystal class. For the other six crystal classes, the number of independent 

components is further reduced due to the crystal symmetry defining them. Note that even 

within the same crystal class, the number of independent elastic components can be 

different. For example, tin (Sn) with a point group of 4/mmm has six independent 

components of elastic constants while Ashburtonite with a point group of 4/m has seven 

independent components of elastic constants. Generally, the number of independent 

components in each crystal class is: cubic (3), hexagonal (5), tetragonal (6 or 7), trigonal 

(6 or 7), orthorhombic (9), monoclinic (13), triclinic (21). 

 

In addition, the form of the elastic constants is also dependent on the orientation of the 

symmetries. For instance, in monoclinic crystal class, the 2-fold axis parallel to the y axis 

or z axis will generate a different form of the elastic constants. 

 

The physical restrictions and symmetries of materials discussed above determine the 

number of elastic constants.  There are also numerical value restrictions on elastic constants 

that arise from the stability of the strain energy. For a crystal to stably exist, the strain 
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energy, which can be considered as the eigenvalue of the elastic constants matrix, must all 

be positive values. This is equivalent to saying the strain energy quadratic form 

1

2
𝐶𝐼𝐽𝜖𝐼𝜖𝐽 has to be positive and definite. One of the necessary and sufficient conditions for 

this is that the determinants of the 6 × 6 elastic constants from the first order to the full 

order are all positive, as numerically expressed in Equation 1.5. More details can be found 

in Ferrar’s book24. 

 
𝐶11 > 0, | 

𝐶11 𝐶12

𝐶21 𝐶22
| > 0, … … . , |

𝐶11 … 𝐶16

… … …
𝐶61 … 𝐶66

| > 0 

 

(1.5) 

Generally, Equation 1.1 to Equation 1.5 describe all the conditions the elastic constants 

must satisfy.  

 

1.3 Experimental methods of measuring elastic constants 

 

Since full elastic constants are hard to measure, simplified moduli have been developed for 

practical use such as Young’s modulus, defined to be the ratio of the longitudinal stress to 

the longitudinal strain; P-wave modulus, defined to be the ratio of the longitudinal stress 

to the longitudinal strain without any lateral strain; bulk modulus, defined to be the absolute 

ratio of the dilation to the hydrostatic pressure; shear modulus, defined to be the ratio of 

shear stress to shear strain; Poisson’s ratio, defined to be the ratio of lateral strain to the 

longitudinal strain due to a uniaxial tension applied to the longitudinal direction. These 

moduli describe elastic mechanical behavior response under different external stress-strain 
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conditions. Standards of sample preparations and experimental protocols to measure those 

moduli have also been established and extensively used in industry and academia25–27.  

 

Those methods are very straightforward to apply; but the disadvantages are also obvious: 

(1) it needs a sample of quite a large size (at least mm) to measure; (2) it needs a 

standardized shape of samples, such as a dog-bone shape for Young’s modulus; (3) it only 

measures an average effective modulus of the sample; and (4) it only measures several 

practical moduli rather than the intrinsic fourth rank tensor elastic constants. 

 

In order to measure the full elastic constants, several experimental techniques have been 

developed. Most of current methods, however, more or less depend on single crystals to 

extract the full elastic constants, such as the RUS (Resonant Acoustic Spectroscopy) 

method, ASM (Acoustic Spectro-Microscopy), BS (Brillouin Scattering), SAM (Scanning 

Acoustic Microscopy), and PS/PR (Point-Source/Point-Receiver) measuring either bulk 

acoustic waves or surface acoustic waves. Their features and limitations are generally 

described below. 

 

The RUS method generates acoustic waves into the sample through a contact transducer 

and measures resonant frequencies. It extracts the elastic constants by matching the 

simulated resonant frequency response patterns at given sample geometry, density and 

elastic constants with the experimental ones28,29 . Since the resonant modes depend not 

only on the material itself but also on the geometry of the sample, regular shapes of samples 
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are often used, which poses a requirement on the sample preparation. Moreover, it 

measures the whole sample and thus no spatial resolution could be considered.  

 

The ASM method also inputs acoustic pulses into the sample but it measures the acoustic 

velocity directly30,31 rather than the resonant frequency. This configuration is appropriate 

for localized measurements and doesn’t need to require a specific sample geometry except 

a polished surface. However, it needs a couplant liquid such as water to measure the 

velocity, which limits the types of samples and conditions of experiments. In addition, it 

requires a high accuracy of eucentricity during the rotational measurement and high 

position accuracy when switching between the optical unit and the ASM unit. This 

increases complexity and uncertainty. 

 

The BS method essentially makes use of the inelastic scattering often induced by laser and  

measures the width of the shift frequency (the doublet) to determine propagation velocities 

to obtain the elastic constants32,33. The BS method also frees us from the constraint of 

sample geometry and macroscopic size, and also it has high special resolution. A good 

example of application of BS on cubic materials can be found in the paper by Benedek et 

al.32. However, as it needs an accurate alignment of incident light direction, the 

determination of orientation of the sample becomes extremely important. Moreover, it 

requires a bulk sample of high quality because and scattering from particles or defects 

along the way in transmitting across the bulk will lead to deterioration of the measurement 
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results. More details about the principle and analysis of BS in determining elastic constants 

can be found in the book of Hayes and Loudon 34.   

 

The PS/PR method uses a point source and a point receiver to generate and detect acoustic 

waves and extract elastic constants through measuring acoustic velocities. Since the advent 

of laser, PS/PR methods have been improved to a large extent.  A laser is employed to 

generate either surface or bulk acoustic waves, depending on experimental configurations. 

A systematic method conjoining phase velocity of bulk waves and elastic constants has 

been developed by Every35. Due to the anisotropy of materials, however, the 

experimentally measured acoustic velocities are actually group velocities rather than phase 

velocities. Early on, researched simply neglected the difference and substituted group 

velocities into the model built for phase velocities, which could lead to generate significant 

error36. In order to overcome the dispersion issue derived from material anisotropy, Every 

and Sachse established the technique to extract elastic constants directly through measuring 

group velocities of bulk waves37. A systematic explanation of the bulk wave features can 

be found in the book of Rosenbaum38. 

 

As bulk wave modeling is more straightforward and convenient, extraction of elastic 

constants from bulk acoustic waves has made great progress. However, as bulk 

microstructure can affect bulk acoustic wave propagation, especially if the wave passes 

through multiple phases or multiple grain orientations; experimental configurations for 
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bulk acoustic waves often need to access two sides of a sample with thickness between 

them known, which limits the applicability of this method to plate type samples.  

 

To minimize the interference from bulk microstructure and deal with the possible lack of 

good availability of front and back sides of a sample, the relation between SAW velocities 

and elastic constants attracted more attention. Because surface waves only penetrate a very 

limited length, estimated to be the wavelength divided by 2π39, it can significantly reduce 

constraints on the sample geometry. Farnell has made a concise description of the 

characteristics of SAWs40. 

 

Interdigital transducer (IDT) is widely used to generate and detect SAW velocities. 

Typically, it consists of an array of piezoelectric electrodes to launch SAWs and use 

another array of electrodes to receive them. More details in theoretical modeling and 

solution to SAWs generated by IDT can be found in the paper by Milsom et al.41. An 

example of applying this method in measuring elastic constants of AlN can be found in the 

paper by Bu et al.42. But this method is complicated in modeling as both mechanical and 

electrical boundary conditions need to be considered. Moreover, it needs relatively large 

single crystals, at least large enough to accommodate separate electrodes, for measurement. 

It also needs a transducer layer between electrodes and piezoelectric sample, which 

significantly reduces the applicability of this method in determining elastic constants. 
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SAWs generated by PS/PR method are mostly broadband waves. Two phenomena should 

be considered in measuring the SAW velocities. One is phonon focusing43,44, which leads 

to stronger amplitudes of acoustic waves in certain directions even though the source 

generates uniform distribution of wave vectors. The other is cuspidal structure45, which 

leads to the formation of some cusps in certain directions. These two phenomena bring 

confusions in wave characterization, such as multiple arrivals of SAW waves along a 

direction46, thus affects the velocity measurement for the broadband waves.  The dispersion 

between phase and group velocities in broadband waves as in bulk wave cases still 

significantly interfere velocity measurements.   

 

 

In order to measure the full elastic constants accurately, generation and detection of 

narrow-band SAWs is more preferable. Usually, a periodic grating pattern needs to be put 

on the sample surface to obtain narrow-band SAWs by suppressing other wave modes and 

only allowing one mode of SAW wave to propagate along the grating vector with the 

wavelength equal to the period of the grating. So far, SLM (Spatial Light Modulator)47–50, 

GMD (Grating Metal Deposit)51–54 , ISTS (Impulsive Stimulated Thermal Scattering)55–58 

and OFG (Organic Film Grating) are often used to produce the grating pattern. These 

methods have successfully generated reliable single-mode SAW. The OFG method is 

adopted in this study. 

 

On the modeling side, a robust mathematical solution has been first developed to compute 

the SAW velocity along any crystallographic orientation of any crystal structure type with 
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given elastic constants and density59. Such a solution with inclusion of the thermal 

expansion effect induced by localized heating of a Gaussian-shaped laser beam is essential 

to accurately correlate the SAW velocities to the elastic constant values. The solution 

includes full computation of all the bulk waves including the longitudinal (L) mode, the 

fast-transverse (FT) mode, and the slow transverse (ST) mode as well as SAWs including 

both the Rayleigh wave (RW) and the pseudo surface acoustic wave (PSAW).  

 

On the experimental side, a Ti:sapphire femtosecond laser was employed to generate and 

detect narrow-band SAW waves assisted by a 1-D grating PDMS film. This leads to high 

spatial resolution to enable measurement on individual grains on a polished surface of a 

polycrystalline sample. The experimental SAW velocities were fitted through either a 

forward simulation method or neural network machine learning method, aimed at obtaining 

a set of optimum elastic constants that reproduce calculated SAW velocities with minimum 

difference with experimental ones. The optimum elastic constants are taken as the elastic 

constants of the material. More details will be given in following chapters.  
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Chapter 2: Theoretical Modeling 
 

 

(This chapter is mostly based on the paper: Xinpeng Du and Ji-Cheng Zhao. Facile 

measurement of single-crystal elastic constants from polycrystalline samples. npj 

Computational Materials 3, 17 (2017).) 

 

2.1 Model establishment 

 

In order to predict surface acoustic wave velocities along any arbitrary crystallographic 

orientation at given crystal structure, orientation, elastic constants and density, a model 

based on the elastodynamic equation has been developed59. On the assumption of linear 

elastic deformation in a homogeneous anisotropic medium and the absence of body force, 

body torque, dissipative process or external fields, the governing equation is expressed as 

follows: 

             Cijkl

∂2Ul

∂xj ∂xk
= ρ

∂2Ui

∂t2
        x3 ≤ 0                                            (2.1) 

where U  is the displacement, ρ  material density and Cijkl  the elastic constants. The 

variables x and t stand for space and time, respectively. The x3 ≤ 0 condition refers to a 
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semi-infinite system and only the lower half space is taken into consideration. Here the 

Einstein summation convention is implied. If the restriction of the half space is removed 

out from Equation 2.1, the equation corresponds to pure bulk wave modeling and the 

solutions correspond to the three (and only three) bulk wave modes: the L wave 

(longitudinal wave), the FT wave (fast transverse wave), and the ST wave (slow transverse 

wave), respectively.   

 

These bulk wave solutions from the unconstrained Equation 2.1 are obtained by assuming 

the displacement U has an exponential form and then substituted into Equation 2.1. This 

method is elegantly summarized by Rosenbaum38. Our bulk wave model is coded 

accordingly. More details on the bulk acoustic wave model are provided in Appendix B. 

 

In order to solve for SAWs, initial and boundary conditions need to be added for the 

response of the surface displacement under a point stimulus exerted by an external force in 

a semi-infinite system. The evolution of the surface displacement provides information to 

predict SAW velocities along any orientation of interest at given elastic constants, 

orientation and density. The corresponding boundary conditions are set as: 

σi3|z=0 = Ci3kl

∂Ul

∂xk

|z=0 = δi3δ(x, y)δ(t)                                        (2.2) 
 

 

          Ui(x, y, z, t) = 0, when x, y, z, t → ∞                                       (2.3)  

Where, 

δi3 = {
1  i = 3
0  i ≠ 3

                                                                      (2.4) 
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δ(x, y) = δ(x)δ(y)                                                               (2.5) 

and i, j, k, l = 1,2,3                                                              (2.6) 

The corresponding initial condition is determined by the causality principle 

 

𝑈𝑖 (𝑥, 𝑦, 𝑧, 𝑡) = 0  𝑓𝑜𝑟  𝑡 < 0                                                     (2.7)  

 

Boundary condition (2.2) refers to beginning when the force only exerts on the origin and 

the stress only has a non-vanish component normal to the surface. Boundary condition (2.3) 

refers to the vanishing displacement on the surface at infinite time or space. Initial 

condition (2.7) refers to the zero displacement before any trigger (laser impingement). 

 

2.2 Model solution of SAWs 

 

Various ways to solve surface waves models are carefully reviewed by Every et al.60 and 

Favretto-Cristini et al.61 . They include Fourier-Laplace transform which is later improved 

and finally combined to be the Cagniard-de Hoop method62; and Fourier-Radon 

transform63; What is adopted here is a method of performing triple Fourier transform 

merely on the time variable and space variables parallel to the surface, leaving the third 

vertical space variable intact. Since only the wave velocities rather than the displacements 

are of interest, the inverse Fourier transform becomes unnecessary. The SAW velocities 

can be obtained in the Fourier-transformed space, saving a significant amount of computing 

time.  
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Results from this new surface acoustic wave modeling are consistent with the work of 

Every et al.60 but the new model is much easier to implement in computer coding, 

especially for handling low-symmetry orientations that are essential for measurements on 

polycrystalline samples. A broader and in-depth understanding on acoustic wave modeling, 

can be found in an elegant review by Favretto-Cristini et al.61. More details on how to solve 

the surface acoustic wave model can be found in Appendix A. 

 

The capability of the models and algorithms in predicting all the bulk and SAW modes is 

demonstrated in Figure 1, which shows modeling results for pure Ni on its (001) plane and 

is plotted in the slowness space – the slowness is the reciprocal of the phase velocity by 

definition and it is widely used to simplify the plotting. A separate fast-acting model is 

used to compute the bulk waves (Figure 1(b)) so they can be quickly identified from the 

general model result (Figure 1(a)). Here we use the term Surface Acoustic Wave (SAW) 

and the term Rayleigh Wave (RW) interchangeably.  By qualitatively matching those bulk 

wave modes in the surface modeling results, the rest two surface modes (RW and PSAW, 

Pseudo Surface Acoustic Wave) can be identified quickly. A careful comparison of the 

bulk-wave-only behaviors without the surface waves (Figure 1(b)) with those in the 

presence of SAWs (Figure 1(a)) shows that the FT wave behavior was slightly altered by 

the SAWs but the L wave is unaffected; thus the FT wave position matching between the 

bulk-wave-only results and those of full calculations can only be qualitative. The PSAW 

is “supersonic” since its velocity exceeds the limiting bulk velocity which is defined as the 

slowest bulk wave velocity, i.e., the velocity of the ST wave along the orientation of 
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interest. In contrast, RW is “subsonic” and thus it can be identified along any given 

propagation orientation as the peak with a velocity lower (higher slowness) than that of the 

ST wave (Only in extremely rare cases the RW velocity is “supersonic” and such situations 

can be identified by the full surface and bulk wave calculations)60,61. For orientations along 

which the RW is too weak to be observable, the PSAW is selected as the SAW. This is 

accomplished by a first search of the RW peak in the slowness region above that of the ST 

wave; and in the absence of an observable RW peak, the program/algorithm selects the first 

peak with the slowness lower than that of the ST wave. The SAW velocity is simply the 

reciprocal of the slowness of the identified SAW/PSAW peak. 
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(a) 

 

(b) 

Figure 1. Computed acoustic wave behavior on the (001) surface of pure Ni plotted in the 

slowness (reciprocal of velocity) space: (a) full solution with both surface waves and bulk 

waves; and (b) bulk wave solutions only. The fast-acting bulk wave solutions in (b) for 

the L, FT, and ST modes help the identification of the two surface waves: the RW and the 

PSAW. The color in (a) shows the relative magnitude of the wave displacement on the 

surface. 
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The presence of multiple bulk and surface waves along a low symmetry orientation is 

shown in Figure 2(b) as an example, in contrast to a high-symmetry [010] orientation in 

Figure 2(a) (the same orientation as the vertical axis of Figure 1(a)), both for pure Ni. The 

slowness (reciprocal of velocity) of the ST wave is also computed for each orientation from 

the bulk wave model and is denoted as the dashed lines in Figure 2. Even though the ST 

peak happens to be too weak to be observable in both orientations in Figure 2, the 

computation of its position from the bulk wave model is essential to help identify the RW 

peak. The RW peak can be identified since it has lower velocity (higher slowness) than the 

corresponding ST wave along the same orientation. 
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(a) 

 

(b) 

Figure 2. Computed wave displacement as a function of slowness for pure Ni along (a) a 

high-symmetry direction [010] and (b) a low-symmetry direction [0.69 0.59 -0.42], 

showing the presence of several wave modes along the low-symmetry orientation. The bulk 

wave modeling helps identify the bulk L and FT modes and can compute the slowness of 

the ST mode even though its displacement is too low to be observable along these two 

orientations. The computed ST mode information is essential for the identification of the 

SAW. 
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In order to identify the RW peak, bulk wave modeling by using the same elastic constants, 

orientation and density was applied as mentioned. L and FT modes are easy to match as 

the peaks match well in both calculations. ST mode is also obtained externally but as it’s 

interfered by other two peaks, there is no significant peak appearing there, thus we draw a 

dashed line to denote where it is. Based on what we mentioned above, the wave velocity 

of ST is the limiting velocity, above which is PSAW peak while below which is RW peak. 

Thus, we could easily recognize RW and PSAW peaks, respectively. Note the relative 

heights of peaks are not the right way to judge which mode is which. Similarly, we take 

the reciprocal of RW slowness to get the surface acoustic wave velocity along that general 

direction. Our surface modeling result is in accordance with Every’s work60.  Readers can 

refer to that book to get more details. 

 

The above description introduced modeling procedures to calculate SAW velocities alone 

any arbitrary orientation at given elastic constants and density. The default orientation of 

the grain plane in the above example is the (100) plane expressed in the sample coordinate 

system. The default reference direction for surface acoustic wave velocity is the sample 

transverse direction (TD).   

 

As SAW velocities are measured under the sample coordinate system while calculations 

are performed under crystalline principle coordinate system, electron backscatter 

diffraction (EBSD) is employed to connect these two coordinate systems. EBSD measures 

grain orientations by comparing electron diffraction patterns (Kikuchi pattern) with 
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reference patterns and returns the Euler angles that represent three consecutive rotations, 

bringing the sample coordinate system into coincidence with the crystalline coordinate 

system. Thus, the direction of the SAW velocity can be expressed in terms of crystalline 

coordinate system through the Euler angles. A polycrystalline Ni sample is provided as an 

example here. 

 

 

 

 

 

 

 

 

 

 

 



22 

 

                             

(a) 

 

(b) 

Figure 3. Schematic showing (a) EBSD orientation map and (b) SAW velocity map along 

the reference TD direction for a polycrystalline Ni sample. Both maps captured similar 

characteristics of the sample surface, confirming the validity of our model. 
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The EBSD inverse pole figure of a region on a polycrystalline Ni is shown in Figure 3(a). 

With the Euler angles, the coordinate system transformation could be applied on the 

governing equation and then the surface acoustic wave velocities along a certain direction 

could be calculated. The surface acoustic wave velocity map along the reference TD 

direction was shown in Figure 3(b), which captures most of the characteristics in the EBSD 

orientation map, showing the consistency with each other. 
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Chapter 3: Experimental Measurements 
 

 

(This chapter is mostly based on the paper: Xinpeng Du and Ji-Cheng Zhao. Facile 

measurement of single-crystal elastic constants from polycrystalline samples. npj 

Computational Materials 3, 17 (2017).) 

 

3.1 Experimental set-up. 

 

Time-domain Thermoreflectance (TDTR) was employed to generate and detect SAW 

velocities64, as is shown in Figure 4. The main Ti:sapphire laser, pumped by a 

semiconductor (Nd:YVO) laser, emitted a laser beam with a wavelength adjusted to be 780 

nm. The beam passed through several optical components and was then split by a PBS 

(Polarizing Beam Splitter) into two branches: one was the pump beam, which was 

modulated at 9.3 MHz by an EOM (Electro-Optic Modulator) and used to trigger acoustic 

waves on the sample surface; and the other was the probe beam, used to detect acoustic 

waves through the change of the surface displacement profile that was confined within the 

parallel grating lines of the PDMS grating film. The mechanism of the TDTR signal is 

explained in detail by Li et al.65. A delay-stage was employed to adjust the optical path 
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length travelled by the pump beam relative to the probe beam; and hence the time 

difference/delay of the arrivals of the two beams on the surface. Therefore, the intensity of 

the signal could be obtained as a function of the time delay between the pump and probe 

beams. The probe beam with a diameter of ~5 µm was placed at the exact location of the 

pump beam with about the same laser beam diameter. When the pump beam was moved 

away from the probe beam in this pump-probe measurement, the signal diminished very 

quickly; indicating that the generated SAW was confined close to the pump beam diameter 

and thus the spatial resolution of the measurement can be on the order of 10–15 µm. In 

order to increase the signal-to-noise ratio, lock-in modulation technique was adapted here. 

A signal generator generated a square wave of frequency 9.3 MHz, which was used to 

modulate the EOM and set as the reference frequency for the lock-in amplifier, which was 

used to demodulate the signal into in-phase and out-of-phase parts for signal analysis. A 

CCD camera was used to observe and check the optical alignment and the laser spot shape 

in the entire process. Once the set-up is ready, the entire measurement process was 

controlled and monitored by a custom programmed main LabVIEW VI (Virtual 

Instrument) code with a graphic interface. 
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Figure 4. Schematic showing the TDTR experimental setup. Optical paths of laser beams, 

and the corresponding optics and instruments are all labeled.  

 

 

The main LabVIEW VI consists of several sub-VIs for data acquisition and delay stage 

motion control. As the experimental procedures mature, more features like experimental 

mapping, data auto-fitting, data auto-saving and results display were incorporated into the 

main VI with each function achieved in a specially programmed sub-VI. A MATLAB 

script node was used in LabVIEW to facilitate linkage to MATLAB programs, which 

brought tremendous convenience. 
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Figure 5. Schematic showing the relative configuration of laser illumination on the 

polycrystalline Ni sample surface. 

 

 

During each TDTR experiment, the optical paths of the laser beams need to be optimized 

first. The laser illuminated the polycrystalline sample surface locally with a complete 

overlay of the pump and probe beams, as shown in Figure 5. Both the pump and probe 

beams are of similar spot size. They were then converged by a 20X object lens to form a 

coincident spot ~5 μm in radius on the sample surface.  
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A biased Si photodiode detector was used to detect the signal intensity. This diode has a 

wide response wavelength range from 200 nm to 1100 nm and very fast response time 

(about 1 ns rise time). The delay stage stopped for 300 ms at each step as it proceeded to 

change the time delay, which took much longer than 1 ns. Therefore, this detector is fast 

enough to capture signal features. A typical signal intensity profile is displayed in Figure 

6.  At zero time delay, both pump and probe arrived on the sample surface at the same time, 

the intensity reached the maximum. With the time delay increasing, the signal intensity 

kept decreasing due to the decreasing surface temperature as the local heat deposited by 

the pump beam was transmitting into the bulk and dissipating away before the probe beam 

could arrive to detect. This gradual decreasing curve could be fitted with an exponential 

function.  
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Figure 6. TDTR signal in the time domain without PDMS grating modulation showing a 

decreasing trend because of the heat conduction into the sample.  

 

 

It is worthwhile to contemplate the time scale. The change of optical reflectivity ΔR of the 

material was due to the temperature change induced by the deposited heat from the pump 

laser, which would generate acoustic wave through the thermo-elastic effect66. Typically, 

the time scale for the acoustic wave propagation in metals is usually in picoseconds67. The 
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laser pulses have a repetition frequency of 80 MHz and pulse duration of 200 femtoseconds 

(fs), which are adequate in time resolution to capture the fast-changing signal. Before the 

appearance of femtosecond mode-locked laser, interferometric or diffraction techniques 

was applied to determine acoustic signals68, which was compatible with a pulse duration 

much longer than femtoseconds. Thus, the TDTR laser experimental setup is very critical 

to ultrafast acoustic research. 

 

3.2 Sample preparations 

 

Seven polycrystalline pure metals were purchased and prepared. They are Al, Co, Fe, Sn, 

Ni, Nb, and Ta. All of them were purchased from commercial sources: Al (99.9995 wt.% 

purity) from Alfa Aesar; Co (99.95 wt.% purity), Fe (99.95 wt.% purity), Sn (99.95 wt.% 

purity) and Ni (99.95 wt.% purity) from the Micron Metals, Inc.; and Nb (99.95 wt.% 

purity) and Ta (99.95 wt.%) from Kamis Inc.  

 

To help grow the grain size and to reduce potential residual stresses, each sample was 

subject to a heat treatment. The temperature and time were selected based on the melting 

point of the metals.  

 

After the heat treatment, small pieces of each sample were sectioned from a bulk and 

mounted into conductive bakelites (either graphite- or cooper-based). All samples went 

through the usual metallographic preparation procedures including grinding with 
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progressively finer grit SiC grinding papers (from 120, 320, 600, 800 up to 1200 grit) and 

polishing with 1 μm diamond paste. A final step was the usual process for EBSD sample 

preparation, either a vibratory polishing with 0.05 µm colloidal silica spheres suspended in 

water or an electro-polishing for very soft metals such as Al.  

 

As mentioned before, a PDMS film with periodic pattern was made and used to generate 

narrow-band SAWs. The PDMS films of about 1 × 1 cm squares were prepared from a 

pure Si grating mold with parallel groves of 700 nm periodicity, 50% duty cycle and 350 

nm groove depth (SNS-C14.3-0808-350-D45-P, LightSmyth Technology). The PDMS 

solution (Sylgard 184, Dow Corning) and its curing agent with a ratio 10:1 were well-

mixed and poured onto the Si wafer mold, degassed at ambient temperature in a desiccator 

linked to a mechanical vacuum pump for several hours, and then cured at 80 °C in a reduced 

vacuum oven for at least one day to achieve full curing. The PDMS film was then peeled 

off from the Si mold and placed onto the polished surface of the samples with the PDMS 

film grating lines touching the surface. The PDMS film worked like a set of comb 

transducers, playing the role of confining the acoustic mode propagating along the direction 

parallel to the film grating vector with a wavelength the same as the film periodicity. The 

PDMS film fabrication process is mostly following the literature practice, but modified 

with one formula instead of two. More details about the functionality and the fabrication 

of the PDMS film can be found elsewhere65. Optical microscopy at 1000X magnification 

was often used to check whether the grating structure was successfully transferred from the 

Si mold to the PDMS film.  
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The longer the curing time, the longer the film can keep the grating structure. However, 

curing for too long, say, half a year, resulted in impaired mechanical property of the PDMS 

film. The film became very vulnerable to tearing and peeling. Even though the PDMS films 

can be peeled off and attached to samples repeatedly, it was preferred to apply a fresh 

PDMS film for a different sample in case of any contamination or film damage. 

 

3.3 Determination of SAW propagation directions 

 

The direction of the SAW wave was determined by two orientations. One is the grain 

orientation and the other is the PDMS film orientation. EBSD was employed to measure 

the grain orientation. Several indents were placed on a polycrystalline sample surface to 

encompass a region in interest, then EBSD mapping was performed to get the Euler angles 

that connected the sample coordinate system and crystalline coordinate system. 

 

As SAWs propagated along the direction parallel to the PDMS film grating (perpendicular 

to the grating lines), which was not necessary the transverse direction in the sample 

coordinate system, a new coordinate system was constructed to take that into account. The 

new coordinate system comprised the real propagation direction, the direction pointing out 

of paper and a third direction that made it a right-hand Cartesian coordinate system. Optical 

microscopy was employed to measure the deviation angle between the reference direction 

(often the transverse direction) and the grating vector. As this new coordinate system 

differed from the sample coordinate system by just an in-plane rotation, the deviation angle 
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was enough to connect these two coordinate systems through a coordinate system 

transform in a similar fashion as the evaluation of the Euler angles. The direction of the 

film grating vector (the same as the propagation direction of the measured SAW) was often 

brought into coincidence with the transverse direction. A microscopic image of the PDMS 

film and corresponding coordinate system relations can be seen in Figure 7. More details 

about the mathematical transforms connecting the various coordinate systems are shown 

in Appendix C. 

 

 

Figure 7.  Optical image of the PDMS film and corresponding angle relations in different 

coordinate systems. A1 and A2 stand for RD and TD directions in the sample coordinate 

system. The ND direction points out of the paper. They formed the sample coordinate 

system. OP stands for the PDMS film grating line direction while OS stands for the 

direction of SAW propagation. OP and OS are perpendicular to each other. 
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3.4 Measurements of SAW velocities 

 

As displayed in Figure 5, a small region (800 μm × 1000 μm) in the polycrystalline Ni 

sample was selected for EBSD orientation measurements with step size 8 μm for either 

direction. Nine representative locations based on the distribution and size of grains were 

selected for TDTR measurement. Repeated measurements were performed on each 

location to obtain SAW velocities to show repeatability. The indents put on the sample 

surface previously helped mark positions and facilitate locating successive spots for laser 

measurements. To avoid any grain boundary interference, large grains of size above 100 

μm were preferred and the laser beam was moved to the grain center for measurement. 

About 400 temporal points within 3500 ps were linearly sampled as the delay stage moved 

in its path to complete each measurement, which took about 4.5 minutes. Usually 4 

measurements were performed in a small area within 10 μm of the grain center to get the 

SAW velocity along a single crystalline direction. Thus, it usually took 18 minutes to 

obtain one SAW velocity. 

 

A representative signal intensity profile, with grating modulation, as a function of delay 

time between the pump and probe beam is displayed in Figure 8(a) in the time domain and 

in Figure 8(b) in the frequency domain. The intensity profile was no longer a simple gradual 

decreasing curve as displayed in Figure 6. Rather, the signal had a periodic modulation 

with a gradual decreasing envelop. The gradually decreasing envelop was attributed to the 

heat transport inward to the sample. The periodic modulation was due to SAW as it was 



35 

 

confined by the PDMS grating structure. The detailed mechanism of the generation of the 

TDTR signal by the interaction of SAW with the PDMS grating is explained by Li et al.65 

 

As the SAW velocity is equal to the wavelength times the frequency, and the wavelength 

is equal to the period of the PDMS grating film (700 nm in this case), and thus the 

frequency is measured from TDTR signals. Here the Fourier transform was applied to 

convert the time domain signal to frequency domain signal, as shown in Figure 8, where 

the SAW peak could be obtained to calculate the SAW velocity.   

 

The Fourier transform, or more accurately discrete Fourier transform, was conducted 

through FFT (Fast Fourier Transform) algorithm built in MATLAB69. The data acquisition 

rate was 400 data points in 3500 ps delay time, which leads to a frequency bandwidth of 

roughly 114 GHz. Then the data points were extended to 2 to the power of 16 by padding 

zeros to get sharper FFT bins. Thus, the frequency interval was Δf = 114 GHz/216 =

1.74 MHz, which was the frequency resolution. Hanning (Hann) window70 was applied to 

lower the aliasing with the tradeoff of slight widening in the main lobe.  

 

There are several peaks in Figure 8(b). The highest peak corresponded to the RW (Rayleigh 

wave) mode. The DC frequency (zero frequency) peak along with its weak side lobes was 

ignored as it didn’t carry any information. Several low frequency peaks often appear in the 

frequency domain, they were thought to be associated with the eigen-mode of the PDMS 

film itself as their positions do not change with sample positions or orientations. The 
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higher-frequency lower-intensity peak, if it emerged, was the result of the harmonics of the 

PDMS film since it was always at exactly twice the frequency of the RW peak.  Generally, 

the RW peak was obvious to locate and the SAW velocity was then just the product of the 

wavelength and the RW frequency. 
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       (a) 

                        

       (b) 

Figure 8. Example outputs from a TDTR measurement showing in both (a) the time domain 

and (b) the frequency domain. In the time domain, periodic modulation is due to the 

interaction of the SAW with the PDMS parallel line grating, which leads to a temporary 

standing wave before it dies out. The SAW velocity is equal to the wavelength (700 nm) 

times the SAW frequency. 
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3.5 Benchmark results and discussion 

 

The experimentally measured SAW velocities on the nine locations as shown in Figure 5 

along the same reference direction (one PDMS film orientation) are listed in Table 1. The 

SAW velocities calculated with reference elastic constants (single-crystal data from the 

literature) are listed as Vmodel. The corresponding grain orientations, PDMS orientation and 

differences between modeling velocities and measured velocities (Vexpt.) are also listed in 

the table.  

 

It can be seen from the table that the velocity measurements were robust and had good 

repeatability. As mentioned before, the frequency resolution was 1.74 MHz, and the PDMS 

film period was 700 nm. Therefore, the velocity resolution was 1.22 m/s, which has 

sufficient accuracy in the SAW velocity range. The resultant differences of the acoustic 

velocities between Vmodel values and measurements (Vexpt.) were less than 3.1%, showing 

excellent agreement. 

 

The experimental velocities for the pure Ni sample spanned a range of 518.3 m/s, which 

occupied roughly 80% of the total range of 663.5 m/s that could be spanned due to the 

anisotropy of Ni. This wide spread of velocity guaranteed a good convergence in the 

forward simulation to obtain elastic constants as to be discussed in the next chapter. Since 

the measured and computed SAW velocities were close to each other, we could expect the 



39 

 

extracted elastic constants from this experiment to be also close to the reference elastic 

constants.  

 

 

Table 1. Comparison of the SAW velocities between experiments and modeling. 

 

Grain 

 

Euler angles (radian) 

PDMS 

orientation 

(degree) 

 

Vmodel   

(m/s) 

Vexpt. 

(m/s) 

Difference 

(%) 

G1 6.1857    2.2641    4.6373 8.0 2976.2 2886.7  3.1 

G2 4.3537    2.4559    5.6268 8.0 2437.3 2396.0  1.7 

G3 1.3703    1.5124    5.9412 8.0 2902.2 2914.3  -0.4 

G4 4.9150    2.7210    0.9819 8.0 2621.7 2612.7  0.3 

G5 4.8803    2.7069    5.6597 8.0 2629.6 2640.3  -0.4 

G6 1.8460    1.5427    0.1308 8.0 2868.9 2812.3  2.0 

G7 1.8413    1.5579    0.1312 8.0 2866.5 2808.1  2.1 

G8 1.3812    1.5116    5.9108 8.0 2907.0 2897.3  0.3 

G9 1.3606    1.5239    5.9416 8.0 2895.0 2899.4  -0.2 

 

 

 

Pure metal samples of Ta, Nb, Fe, Co and Sn were sectioned, mounted, girded and polished 

in the same process as we did for Ni. Al was very soft, so it was grinded through 400, 600, 

800, 1200 grit size of sand paper and then subject to an electron-polishing as the final 

sample preparation step. The electro-polishing solution was a mixture of 800 mL absolute 

ethanol and 200 mL 70% perchloric acid. Stainless steel was used as the cathode. The 
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sample was roughly 2 cm in height and clamped between the cathode and a cushion 

immersed in the electrolyte. A very good shining surface was obtained after electron-

polishing for 1 minute under the current 2.5 A (40 V). 

 

The SAW signal was relatively weak for Ta, so a very thin Al film (less than 20 nm) was 

deposited as an effective transducer to enhance the signal intensity. The coating was done 

through a PVD (Physical Vapor Deposition) sputtering machine, where Al target was 

vaporized into gas phase in high vacuum due to electron bombardment and deposited onto 

the surface of Ta sample. The coating thickness could be well controlled by setting the 

sputtering power and time. High vacuum and good surface was required to guarantee a 

good quality of coating. 

 

The next step is to extract elastic constants from the experimental SAW velocities along 

multiple distinct crystalline directions. Ni will be used as the example to illustrate. All 

extracted elastic constants will be given as a benchmark for pure metal samples to check 

the measurement accuracy. 
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Chapter 4: Extraction of Elastic Constants 
 

 

(This chapter is mostly based on the paper: Xinpeng Du and Ji-Cheng Zhao. Facile 

measurement of single-crystal elastic constants from polycrystalline samples. npj 

Computational Materials 3, 17 (2017).) 

 

An elastodynamic model has been established to predict the SAW velocity along any 

direction provided the elastic constants and density are given, as described in Chapter 2. A 

TDTR-based experimental technique assisted by a 1-D PDMS grating film modulation has 

been developed to measure SAW velocities along various crystallographic directions on 

several grains of a polycrystalline sample. The next step is to find a way to extract elastic 

constants from the measurements of SAW velocities and orientation data. Either forward 

simulation or neural network machine learning can be applied, as explained below.  

 

4.1 Forward simulation 

 

Forward simulation: an initial value of input was put into the model and an output was 

obtained afterwards. Then the output was compared with experimental results and the 



42 

 

difference was recorded as a feedback. The input will keep updated to generate better 

outputs until it ends up with an output that has minimized difference with the experimental 

results. As this method only returns a local optimum, various initial values will be provided 

to get the best local minimum and considered to be the “global” minimum. This method is 

very useful and powerful, particularly in cases where there is no analytic solution between 

the input and output variables. If the output variable can be measured experimentally, and 

the input variables are of interest, forward simulation is adequate to apply. In our case, the 

SAW velocity is the output variable and can be measured experimentally. The elastic 

constants are the inputs we need to extract, thus forward simulation is our preferred 

selection here. 

 

The searching algorithm employed for updating the input Cij values in forward simulations 

is called Nelder-Mead simplex algorithm71. This algorithm looks for an optimum value of 

an objective function without knowing any order of derivative implicitly or explicitly, so 

it is one of the direct search algorithms. Assuming the number of the input variables that 

are of interest is n. In the beginning, the initial value is defined as x0, which is a n-

component vector, and then this algorithm forms other n points by adding each component 

by 5% (if that component is not zero) or 0.025% (if that component is zero) to form new 

points (or called vertices x1…xn). Namely,  

 

𝑥𝑖 = 𝑥0 + ℎ(𝑥0, 𝑖) ∗ 𝑢𝑖 , 𝑖 = 1,2,3 … . . 𝑛                                         (4.1) 
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𝑤ℎ𝑒𝑟𝑒 ℎ(𝑥0, 𝑖) = {
0.05           𝑖𝑓 𝑢𝑖 ≠ 0
0.00025   𝑖𝑓 𝑢𝑖 = 0

, 𝑢𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑥0 

 

Then it calculates the differences from f(x0) through f(xn) with the reference values (i.e. the 

experimental SAW velocities) and sorts them in the increasing order. The worst point xi is 

discarded and replaced with a new vertex point which is generated through any one of the 

four types of transformation: reflection, expansion, contraction, and shrink. More details 

of this optimization scheme can be found elsewhere71. Generally, by adjusting the simplex 

shape, the local optimum point converges eventually. 

 

Using Ni as the example, fixing known input parameters such as density and orientations, 

there were only three independent components (C11, C12, C44) of elastic constants that 

needed to be determined. A random initial value (C11, C12, C44) was provided and plugged 

into the model to predict SAW velocities along specified orientations listed in Table 1. The 

difference between the predicted Vmodel and experimental SAW velocities (Vexpt.) was 

defined in Equation 4.2. 

 

Δ = ∑ (
𝑉𝑒𝑥𝑝𝑡.

− 𝑉𝑚𝑜𝑑𝑒𝑙

𝑉𝑒𝑥𝑝𝑡.
 

)

2

𝑖
                                                     (4.2) 

 

Nelder-Mead algorithm kept updating C11, C12 and C44 until the minimum difference Δ was 

obtained, which corresponded to a local optimum set of elastic constants (C11*, C12*, C44*). 

Other local optima of different initial values were also obtained through the same process. 
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The obtained (C11*, C12*, C44*) that referred to the least difference in SAW velocities 

compared among all returned updated elastic constants was claimed as the global optimum 

elastic constants (C11**, C12**, C44**) for the sample material.  

 

In order to have uniform sampling in initial values, Cij with equal spacing in the ranges of 

C11 (1GPa~800GPa), C12 (2GPa~300GPa), C44 (2GPa~300GPa) were adopted. Those Cij 

ranges cover most of engineering materials, thus no assumption of any pre-known Cij of 

the material was necessary.  

 

Table 2. Comparison of the Cij values for pure Ni from this study on a polycrystalline 

sample with single-crystal data reported in the literature72.Table 2 compares the extracted 

elastic constants by the forward simulation and the reference elastic constants of Ni from 

single-crystal measurement72, showing that the extracted elastic constants are within 3.5% 

deviation. The difference was even smaller than those in the SAW velocity measurements 

(Table 1). The reason might be that SAW velocity data from nine orientations were used 

to evaluate only three independent Cij values (variables). More measurements along 

distinct orientations could assist the convergence and hence decrease the error. It turns out 

that more locations for measurements could help counteract the differences in velocity 

measurements but the tradeoff was the increased computing time spent in the forward 

calculation. The adequate number of grains (crystalline directions) needed to obtain the 

elastic constants was a function of the number of the independent components of elastic 

constants, which will be discussed later.  
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Table 2. Comparison of the Cij values for pure Ni from this study on a polycrystalline 

sample with single-crystal data reported in the literature72.   

 

 
Extracted Cij (GPa) from the 

polycrystalline sample 

Reference Cij (GPa) 

from single crystals 
Difference 

C11 256.5 248.1 3.4% 

C12 151.5 154.9 -2.2% 

C44 123.9 124.2 -0.2% 

 

 

In addition to Ni, the elastic constants measurements of Al, Ta, Nb and Fe (bcc), Co (hcp) 

and β-Sn (tetragonal) were also performed. All the results of this study are listed in Table 

3 in comparison with those reference elastic constants72–78 obtained from single crystals. 

 

It is noted that, Al has a very low anisotropy, and thus the normal initial value setting can 

only lead to accurate C44 and anisotropic ratio. In other words, only C44 and C11-C12 can be 

accurately extracted for the typical forward simulation setting. In order to also obtain 

accurate C11 and C12, the number of initial sets was increased and the step size was much 

reduced to result in the reported Cij values in Table 3 and Figure 9. 
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Table 3. Comparison of the elastic constants of seven pure metals obtained from 

polycrystalline samples of this study with those obtained from single crystals reported in 

the literature72–78. 

 

Sample 

C11 (GPa) C12 (GPa) C44 (GPa) 

This 

study 

Single-

crystal 

data 

Difference 
This 

study 

Single-

crystal 

data 

Difference 
This 

study 

Single-

crystal 

data 

Difference 

Ni 256.5 248.1 3.4% 151.5 154.9 -2.2% 123.9 124.2 -0.2% 

Al 105.5 106.8 -1.2% 59.5 60.4 -1.5% 27.6 28.3 -2.5% 

Ta 261.7 260.2 0.6% 156.7 154.5 1.4% 79.2 82.6 -4.1% 

Nb 240.1 246.5 -2.6% 141.0 134.5 4.8% 29.7 28.7 3.5% 

Fe 224.7 226.0 -0.6% 135.9 140.0 -2.9% 109.9 116.0 -5.3% 

Co 306.7 307.1 -0.1% 170.0 165.0 3.0% 70.4 75.5 -6.8% 

Sn 71.1 72.4 -1.7% 57.3 58.5 -2.1% 21.3 22.0 -3.1% 

Sample 

C13 (GPa) C33 (GPa) C66 (GPa) 

This 

study 

Single-

crystal 

data 

Difference 
This 

study 

Single-

crystal 

data 

Difference 
This 

study 

Single-

crystal 

data 

Difference 

Co 105.7 102.7 2.9% 363.5 358.1 1.5%       

Sn 39.5 37.4 5.6% 84.2 88.3 -4.6% 23.4 24.4 -4.3% 

 

 

 

Figure 9 summarizes all the results in this benchmark study, showing an excellent 

agreement with all the 26 Cij values from polycrystalline samples to be within 7% deviation 

from those measured from single crystals.  
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Figure 9. Comparison of the elastic constants measured from polycrystalline Al, Co, Fe, 

Nb, Ni, Sn, and Ta samples using ultrafast laser-generated SAWs with those reported in 

the literature measured from single crystals72–78.  

 

 

The corresponding EBSD inverse pole figures as well as the comparisons between 

calculated and experimental SAW velocities of the benchmark materials are all shown in 

Figures 10 to 15 as well as Tables 4 to 9.  
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Figure 10. EBSD inverse pole figure of pure Al with the reference frame and orientation 

map shown. Grains selected for TDTR measurements are also labelled. 

 

 

Table 4. Comparison of the experimental (Vexpt.) and computed (Vmodel) SAW velocities 

of pure Al. 

 

Grain 

 

Euler angles (radian) 

PDMS 

orientation 

(degree) 

 

Vmodel   

(m/s) 

Vexpt. 

(m/s) 

Difference 

(%) 

G1 3.8767  3.0891  1.9400 7.7 2973.4 2949.1 0.8 

G2 3.7008  2.9686  0.1404 7.7 2924.7 2942.5 -0.6 

G3 1.5903  1.3503  6.0287 7.7 2920.1 2935.8 -0.5 

G4 2.3340  0.8021  3.1641 7.7 2875.7 2920.4 -1.5 

G5 2.0248  0.2881  1.3565 7.7 2974.1 2933.6 1.4 

G6 2.3529  1.0877  0.9211 7.7 2869.8 2913.7 -1.5 

G7 3.4601  1.3748  6.1796 7.7 2950.4 2977.8 -0.9 

G8 3.7851  2.1604  4.0336 7.7 2846.3 2911.5 -2.2 

G9 4.0123  0.3531  0.5562 7.7 2920.4 2935.8 -0.5 
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Figure 11. EBSD inverse pole figure of pure Ta with the reference frame and orientation 

map shown. Grains selected for TDTR measurements are also labelled. 

 

 

 

Table 5. Comparison of the experimental (Vexpt.) and computed (Vmodel) SAW velocities 

of pure Ta. 

 

Grain 

 

Euler angles (radian) 

PDMS 

orientation 

(degree) 

 

Vmodel   

(m/s) 

Vexpt. 

(m/s) 

Difference 

(%) 

G1 5.7594  2.4455  6.2753 10.5 1788.7 1752.7 2.1 

G2 5.3614  1.3642  2.3662 10.5 1835.6 1854.6 -1.0 

G3 4.6369  1.4480  4.7503 10.5 1936.8 1936.6 0.0 

G4 5.3198  2.3721  2.4608 10.5 1787.8 1709.0 4.6 

G5 3.1384  0.5328  1.2012 10.5 1806.4 1718.7 5.1 

G6 5.3074  1.1003  2.2656 10.5 1768.6 1738.1 1.8 

 

 

 



50 

 

 

Figure 12. EBSD inverse pole figure of pure Nb with the reference frame and orientation 

map shown. Grains selected for TDTR measurements are also labelled. 

 

 

Table 6. Comparison of the experimental (Vexpt.) and computed (Vmodel) SAW velocities 

of pure Nb. 

 

Grain 

 

Euler angles (radian) 

PDMS 

orientation 

(degree) 

 

Vmodel   

(m/s) 

Vexpt. 

(m/s) 

Difference 

(%) 

G1 1.4057  1.6255  4.0600 87.4 1806.6 1849.8 -2.3 

G2 1.4129  1.6148  4.0729 87.4 1806.5 1840.1 -1.8 

G3 1.5425  1.6205  4.1218 87.4 1795.9 1810.9 -0.8 

G4 1.5407  1.6249  4.1317 87.4 1795.9 1820.7 -1.4 

G5 5.9371  2.5579  6.0806 87.4 1841.5 1849.8 -0.4 

G6 5.9457  2.5582  6.0868 87.4 1841.6 1883.8 -2.2 

G7 4.4008  0.9500  3.9222 87.4 2027.0 2039.1 -0.6 

G8 2.4648  1.1112  5.1327 87.4 1988.8 2024.6 -1.8 
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As the Nb grain size in this EBSD region is too big to obtain enough anisotropic grain 

orientations. Two more locations outside the displayed EBSD region were selected for 

TDTR measurements.  

 

 

Figure 13. EBSD inverse pole figure of pure bcc Fe with the reference frame and 

orientation map shown. Grains selected for TDTR measurements are also labelled. 

 

 

Table 7. Comparison of the experimental (Vexpt.) and computed (Vmodel) SAW velocities 

of pure bcc Fe. 

 

Grain 

 

Euler angles (radian) 

PDMS 

orientation 

(degree) 

 

Vmodel   

(m/s) 

Vexpt. 

(m/s) 

Difference 

(%) 

G1 5.7594  2.4455  6.2753 147.6 2633.1 2621.7 0.4 

G2 5.3614  1.3642  2.3662 147.6 2734.4 2607.2 4.9 

G3 4.6369  1.4480  4.7503 147.6 2555.2 2544.1 0.4 

G4 5.3198  2.3721  2.4608 147.6 2598.3 2665.4 -2.5 

G5 3.1384  0.5328  1.2012 147.6 2720.7 2699.4 0.8 
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Figure 14. EBSD inverse pole figure of pure hcp Co with the reference frame and 

orientation map shown. Grains selected for TDTR measurements are also labelled. 
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Table 8. Comparison of the experimental (Vexpt.) and computed (Vmodel) SAW velocities 

of pure hcp Co. 

 

Grain 

 

Euler angles (radian) 

PDMS 

orientation 

(degree) 

 

Vmodel   

(m/s) 

Vexpt. 

(m/s) 

Difference 

(%) 

G2 0.6391  2.9570  5.3719 12.9 2738.7 2738.0 0.0 

G3 3.6161  2.5231  4.1407 12.9 2775.6 2666.0 4.1 

G4 5.1627  2.4531  0.1088 12.9 2740.8 2656.0 3.2 

G8 1.7273  1.3540  3.2978 12.9 2649.5 2612.0 1.4 

G10 2.1837  0.5584  0.6312 12.9 2775.6 2665.0 4.2 

G1 1.7996  0.5106  6.0976 88.8 2829.4 2786.8 1.5 

G2 0.6391  2.9570  5.3719 88.8 2734.4 2733.4 0.0 

G3 3.6161  2.5231  4.1407 88.8 2719.5 2709.1 0.4 

G4 5.1627  2.4531  0.1088 88.8 2806.7 2806.3 0.0 

G6 4.8492  2.4256  2.9254 88.8 2829.4 2859.6 -1.1 

G9 4.7569  2.4713  0.7931 88.8 2829.4 2864.5 -1.2 

G1 1.7996  0.5106  6.0976 3.6 2711.1 2753.7 -1.5 

G4 5.1627  2.4531  0.1088 3.6 2721.6 2747.3 -0.9 

G6 4.8492  2.4256  2.9254 3.6 2684 2715.3 -1.2 

G7 5.0670  2.5879  3.1229 3.6 2719.5 2755.9 -1.3 

G10 2.1837  0.5584  0.6312 3.6 2753.7 2784.4 -1.1 
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Figure 15. EBSD inverse pole figure of pure tetragonal β-Sn with the reference frame and 

orientation map shown. Grains selected for TDTR measurements are also labelled. 
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Table 9. Comparison of the experimental (Vexpt.) and computed (Vmodel) SAW velocities 

of pure tetragonal β-Sn. 

 

Grain 

 

Euler angles (radian) 

PDMS 

orientation 

(degree) 

 

Vmodel   

(m/s) 

Vexpt. 

(m/s) 

Difference 

(%) 

G1 1.9711  0.4182  0.1402 37.8 1375.2 1383.8 -0.6 

G2 2.1866  2.3146  1.7054 37.8 1134.5 1204.0 -5.8 

G3 2.0323  1.2694  4.8233 37.8 1288.2 1196.6 7.7 

G4 2.5519  1.9074  0.1895 37.8 1194.5 1199.1 -0.4 

G5 0.9143  0.7934  5.3464 37.8 1260.8 1262.1 -0.1 

G6 1.5530  0.9348  1.9844 37.8 1302.1 1383.8 -5.9 

G7 0.8741  1.5972  1.3232 37.8 1618.1 1602.3 1.0 

G8 1.6460  1.5451  3.1361 37.8 1429.2 1388.8 2.9 

G9 4.8375  0.9819  5.5346 37.8 1417.0 1412.6 0.3 

G10 1.6646  1.6145  2.2199 37.8 1366.7 1257.0 8.7 

G11 4.5249  1.0205  5.6601 37.8 1527.1 1495.2 2.1 

G1 1.9711  0.4182  0.1402 44.5 1527.7 1524.6 0.2 

G2 2.1866  2.3146  1.7054 44.5 1234.6 1165.5 5.9 

G3 2.0323  1.2694  4.8233 44.5 1298.7 1286.6 0.9 

G4 2.5519  1.9074  0.1895 44.5 1254.0 1250.2 0.3 

G5 0.9143  0.7934  5.3464 44.5 1191.7 1223.6 -2.6 

G6 1.5530  0.9348  1.9844 44.5 1399.4 1398.6 0.1 

G7 0.8741  1.5972  1.3232 44.5 1617.4 1665.3 -2.9 

G8 1.6460  1.5451  3.1361 44.5 1382.3 1434.7 -3.7 

G9 4.8375  0.9819  5.5346 44.5 1339.5 1271.9 5.3 

G10 1.6646  1.6145  2.2199 44.5 1292.0 1325.1 -2.5 

G11 4.5249  1.0205  5.6601 44.5 1479.9 1405.6 5.3 
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The forward simulation can extract elastic constants, especially for cubic materials, but the 

computing time is an issue worth considering. Based on experience on many samples, the 

number of crystallographic orientations needed to extract elastic constants are listed in 

Table 10, together with the number of independent components of elastic constants and 

computing time spent in the forward simulations. For cubic crystals, for instance, there are 

three independent components of elastic constants and hence more than three SAW 

velocity measurements along different directions (preferred to be selected on different 

crystalline planes) are required to extract the full elastic constants. To increase the 

convergence rate and decrease the experimental error, five or more velocity measurements 

were often performed. The computing time spent to find the best-match Cij values is 18 h 

for 72 sets of initial Cij inputs. This computing time is acceptable. But for low crystalline 

symmetry materials, say the monoclinic class, there are 13 independent elastic constants to 

be determined. The computing time spent was more than one hundred hours for just 8 initial 

sets of values for 63 measured SAW velocities. The forward-simulation algorithm still did 

not reach an acceptable minimum since each set of input Cij values leads to a different local 

minimum, as to be described in the next chapter for Ni3Sn4. The large ranges of elastic 

constants in each Cij bring a tremendous challenge to initial value sampling in forward 

simulations in terms of time efficiency. 
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Table 10. Computing time in forward simulations for different situations. The number of 

independent elastic constants in different crystal classes, the number of velocity 

measurements used to extract elastic constants, and the number of initial values are all 

affecting the time needed in forward simulations.  

 

Crystal Class Independent # of Cijs # of SAW measurements Computing time  

Triclinic 21   

Monoclinic 13 63 >100h for 8 sets 

Orthorhombic 9   

Tetragonal 7 (or 6) 20 65 h for 24 sets 

Trigonal 7 (or 6)   

Hexagonal 5 10 36 h for 64 sets 

Cubic 3 5 18 h for 72 sets 

Isotropic 2 / / 

 

 

 

4.2 Neural network machine learning 

 

To solve the computing time issue, the neural network machine learning approach, in 

addition to the forward simulations, has been employed to achieve faster extraction of 

elastic constants.  

 

Neural network (or artificial neural network) is a method that imitates how human brain 

works in perceiving and solving problems. This method was first developed in 1943 by 

Warren McCulloch and Walter Pitts79. The principle is to employ many artificial neurons 

linking each other in a layered structure. Each neuron will be stimulated or inhibited by 

surrounding neurons in the ‘signal’ transition process. By providing inputs and expected 
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outputs, neurons will each get trained to have the right weighs to respond. Eventually, a 

model connecting the inputs and outputs will get established. Even through the model is 

not explicitly obtained, the network can work well in providing numerical solutions.     

 

There are many types of neural networks. the most widely used type is Feedforward 

network, which doesn’t need any recurrent feedback connections, thus there is no ring or 

loop in neurons of the Feedforward networks. The Feedforward networks are extensively 

used in pattern recognition, nonlinear fitting function and predictions.  

 

Assuming a cubic crystal material and SAW velocities have been measured for five 

directions. A lot of sets of C11, C12 and C44 are randomly generated and used to calculate 

the SAW velocities for the same five directions through the elastodynamic model. Those 

[C11, C12, C44; v1, v2, v3, v4, v5] pairs are subject to the neural network training program 

in MATLAB Neural Network toolbox for training. The purpose is to get back a function 

(network) that can extract the relation between Cij and SAW velocities. When five 

experimental velocities along specified directions are provided into the network, the full 

elastic constants can be automatically extracted directly, skipping any searching iteration 

in forward simulations. This application of neural network has been demonstrated to obtain 

the same Cij values as the forward simulations. Applications of the neural network method 

to other materials will be given in Chapter 5. 
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Chapter 5: Applications 
 

 

In addition to the benchmark work on polycrystalline pure metals, the new SAW-PDMS-

TDTR-MODEL method has been applied to the measurements of: (1) composition-

dependent elastic constants of Fe-Ni diffusion couple; (2) elastic constants from powder 

Sn sample; (3) the elastic constants of intermetallic compound Ni3Sn4 of monoclinic 

crystalline symmetry; (4) the full elastic constants of Ni-based superalloy René 88DT; and 

(5) Young’s modulus of inorganic glass materials. These examples are described in detail 

in this Chapter. 

 

5.1 Measurement of composition-dependent elastic constants from an Fe-Ni diffusion 

couple 

 

As mentioned before, elastic constants are essential for both physics-based mechanical 

modeling80–82 and simulation of micro-structural evolution83–85. Elastic constants as a 

function of composition are needed to take into account the compositional effect on the 

elastic constants. Without such data, the anisotropic properties of the pure elements and 
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linearly interpolated data are often used as model inputs, which can lead to significant error 

in the simulated/computed properties.  

 

The Vegard’s law of the linear dependence of elastic constants on composition86,87 works 

for some systems but fails for others88. Various calculation methods have also been 

developed to calculate elastic constants, including valance force field methods89,90, ab-

initio first-principles calculations5–10 and molecular dynamics (MD)11–14. The computed 

results are better than linear interpolation, but still not as reliable as accurate experimental 

measurements.  

 

Composition-dependent elastic constants have been measured for several material 

systems91–95 using single crystals of individual compositions, which is quite time-

consuming and labor-intensive. For this reason, only a few systems have such detailed 

measurements been performed.  

 

The high-throughput diffusion multiples96–99 generate composition gradients through 

high-temperature interdiffusion of elements. The idea here is to perform localized elastic 

constant measurements on the composition gradient to obtain composition-dependent 

elastic constants without making single crystals of individual compositions.  
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5.1.1 Sample preparations and characterizations 

 

The Co-Cr-Fe-Mo-Ni diffusion multiple used for the current measurements was made by 

Dr. Siwei Cao during her Ph.D. study at Ohio State, as described in detail elsewhere100.  

All pure bulk metals were from commercial sources with a purity of Ni (99.9%), Fe 

(99.8%), Co (99.9%), Mo (99.95%) and Cr (99.9%). All sample pieces were cut by EDM 

(electro-discharge machining) and then well grinded and polished before they were 

assembled into a pure Ni cartridge. Then the assembled sample was subject to HIP (hot 

isostatic pressing) after it was sealed under vacuum during electron-beam welding. The 

HIP was conducted at 1200 °C under 207 MPa pressure of argon for 8 h. The sample was 

encapsulated in a quartz tube filled with argon for heat treatment at 1200 °C for 500 h.  

 

The sample was water quenched to room temperature and a slice of sample of ~ 5 mm in 

thickness was cut off and was grinded and polished through 240, 400, 600, 800, 1200 grit 

size of sand paper, 1 μm diamond paste and then 0.05 μm colloidal silica suspension to 

obtain a high-quality metallographic finish. The final appearance of the sample is displayed 

in Figure 16.  
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Figure 16. Photo of the polished Co-Cr-Fe-Mo-Ni diffusion multiple sample after being 

assembled, HIPed and heat treated. The sample was glued to a bakelite mount for 

experimental convenience.   

 

 

The brick-laying elements can be seen in Figure 17, creating ten diffusion couples as well 

as eight diffusion triples (two repeats). The Fe-Ni diffusion couple was selected as the 

measurement region, denoted by the double-arrow in Figure 17. This selection was based 

mostly on the fact that composition-dependent Cij values are available in the literature 

(from measurements on single-crystals of many individual compositions) for this binary 

system for a direct comparison of the measurement accuracy of the new method. 
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Figure 17. Schematic showing the element arrangement and the sizes of the assembled Co-

Cr-Fe-Mo-Ni diffusion multiple. The double-arrow denotes the region of the Fe-Ni 

diffusion couple for the composition-dependent Cij measurement.  

 

 

Figure 18 is an optical image of the selected Fe-Ni diffusion couple region, showing 

Kirkendall voids in the middle and micro-indents that were placed on the region to help 

locate the position on the diffusion multiple and to serve as reference marks to correlate 

the EBSD, SAW TDTR, and composition analysis using energy dispersive spectroscopy 

(EDS) 
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Figure 18. Optical image showing the measurement region. The 4 small corner indents 

denote the boundary of the entire region. The three big indents in the upper right corner 

were used to assist finding the region from the whole sample during characterization. The 

vertical column of porosity is likely due to Kirkendall voiding. 

 

 

The EDS composition profile was obtained using a XL-30 ESEM. The measurement was 

scanned along the line connecting the two top indents in the selected region across the 

Fe-Ni diffusion couple. The measurement was conducted at 20 kV for 0.2 s dwell time 

for each point with a step size of 5 μm. The composition profile is shown in Figure 19. 
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Figure 19. The composition profile of the Fe-Ni diffusion couple along the line as indicated 

by the black arrow connecting the lower two indents in Figure 18. The composition for 

either Fe or Ni is nearly from 0 % to 100% with a diffusion distance of ~ 1.5 mm. 

 

 

EBSD equipped with XL-30 ESEM with an EDAX TSL detector was employed to map 

the grain orientations. Instead of scanning a single line as in EDS, the entire selected 

region was mapped for grain orientations. EBSD was performed at an accelerating 

voltage of 20 kV and a working distance at 23 mm. The scanning region was 1000 μm X 

500 μm from the Ni-rich side. The step size was 5 μm in both scanning directions. 

Orientation data was analyzed using the software of TSL OIM Analysis from which 
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Euler angles (based on Bunge’s convention) were obtained and put into our SAW model 

for 3D orientation indices. The inverse pole figure of the EBSD scanning region is shown 

in Figure 20.  

 

 

 

Figure 20. EBSD inverse pole figure for the indented region of the Fe-Ni diffusion couple. 

Sample coordinate system is also shown. 

 

 

The EBSD orientation map in Figure 20 clearly shows large grain as a result of the high 

temperature (1200 °C) and long-duration (500 h) diffusion heat treatment. These large 

grains facilitate the SAW velocity measurements but limits the number of distinct 

crystallographic orientations. PDMS film rotations were employed to increase the number 

of SAW velocity measurements.  
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As discussed before, density is an input parameter to the SAW velocity model, thus the 

density of the fcc phase of Fe-Ni alloys as a function of composition needs to be evaluated. 

Figure 21 shows the data obtained and summarized by Tomlinson and Andrews101. The 

composition-density curve deviates significantly from the Vegard’s law, with a minimum 

density around Fe-40Ni.  

 

 

 

Figure 21. Composition-dependent density of Fe-Ni alloys101.  
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5.1.2 SAW velocity measurements 

 

Unlike the pure Ni case where SAW measurement can be performed at any location, the 

composition gradient limited the positions for SAW measurements for each composition. 

In order to increase the number of orientations for SAW velocity measurements with fixed 

position, the PDMS films were rotated for five orientations as schematically shown in 

Figure 22. For each PDMS film orientation, the SAW scanning was made along the pre-

set scanning line denoted by the black arrows in Figure 20.  

 

The PDMS films were randomly rotated to cover a wide range of orientations and those 

angles relative to the reference direction (TD direction) were measured to be [179, 84, 77, 

70, 25] degrees under a light microscope, which were incorporated in the SAW velocity 

model as described in more detail in Appendix C.  
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Figure 22. Laser scanning under five different PDMS film orientations along the same 

line as indicated by the two circles representing the starting and finishing positions 

The five SAW velocity profiles as well as the Fe-Ni composition profile along the same 

line are displayed in Figure 23. More details can be found in Table 11.  
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Figure 23. SAW velocities along the same scanning line under the five different PDMS 

film orientations. The Fe-Ni composition profile from EDS is overlaid and read from the 

vertical axis on the right. 

 

 

Table 11. Measured SAW velocities under different crystallographic and PDMS 

orientations at different Ni at.%. compositions. The five PDMS orientations are 179, 80, 

77, 74 and 25 degrees measured from the reference direction (transverse direction).   

 

Position 

(μm) 

 

Euler angle (radian) 

Compo-

sition 

Ni at.% 

Vexpt. 

(m/s) 

PDMS 

Ori-1 

Vexpt. 

(m/s) 

PDMS 

Ori-2 

Vexpt. 

(m/s) 

PDMS 

Ori-3 

Vexpt. 

(m/s) 

PDMS 

Ori-4 

Vexpt. 

(m/s) 

PDMS 

Ori-5 

20 0.1445  1.1793  0.8278 98.6 3034.4 2737.0 2814.7 2693.3 2734.6 

40 0.1624  1.2680  0.8122 98.4 3049.0 2752.8 2808.7 2705.5 2772.2 

60 2.0824  0.8055  1.0850 98.4 3049.0 2729.8 2803.8 2706.7 2814.7 

80 0.1983  1.2020  0.8247 98.2 3059.9 2749.2 2797.7 2692.1 2772.2 

100 2.0999  0.7992  1.0789 97.9 3057.5 2743.1 2809.9 2695.8 2769.8 
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120 0.1808  1.2004  0.8184 97.7 3062.3 2780.7 2859.6 2689.7 2814.7 

140 0.1749  1.1423  0.8173 97.3 3051.4 2750.4 2823.2 2707.9 2794.1 

160 0.1854  1.1480  0.8146 96.9 3067.2 2693.3 2805.0 2703.1 2854.8 

180 0.1889  1.1540  0.8117 96.5 3057.5 2746.8 2800.2 2701.8 2883.9 

200 3.3325  1.9923  0.7572 96.2 3050.2 2767.4 2782.0 2704.3 2859.6 

220 0.1838  1.1322  0.8126 95.7 3047.8 2778.3 2785.6 2701.8 2877.8 

240 0.1890  1.1408  0.8168 95.2 3049.0 2726.1 2775.9 2703.1 2897.3 

260 3.3316  1.9904  0.7522 94.4 3052.6 2766.2 2782.0 2705.5 2871.8 

280 2.1711  0.8423  0.9861 93.9 3044.1 2767.4 2767.4 2699.4 2839.0 

300 0.1797  1.1491  0.8182 93.1 3047.8 2699.4 2763.7 2698.2 2899.7 

320 0.1775  1.1487  0.8283 92.4 3035.6 2701.8 2773.5 2699.4 2869.3 

340 0.1781  1.1544  0.8209 91.6 3038.1 2743.1 2767.4 2704.3 2870.6 

360 0.1743  1.1574  0.8277 90.9 3034.4 2740.7 2743.1 2694.6 2869.3 

380 0.1775  1.1680  0.8201 90.0 3044.1 2684.5 2760.1 2698.2 2862.1 

400 2.1520  0.8262  1.0087 89.2 2670.3 2601.9 2178.7 2579.3 2359.6 

420 2.1611  0.8278  1.0016 88.1 2656.9 2636.3 2182.4 2579.3 2364.4 

440 0.1815  1.1706  3.9629 87.0 2656.9 2635.1 2160.5 2573.2 2375.3 

460 3.3254  1.9713  0.7618 86.1 2632.7 2659.4 2155.7 2567.1 2358.3 

480 0.1842  1.1566  0.8139 85.0 2625.4 2653.3 2145.9 2567.1 2337.7 

500 2.1471  0.8381  1.0136 83.6 2621.7 2646.0 2138.7 2563.5 2330.4 

520 0.1772  1.1667  0.8124 82.6 2649.7 2665.4 2141.1 2558.6 2326.8 

540 0.1760  1.1680  0.8125 81.5 2615.7 2656.9 2150.8 2556.2 2334.1 

560 0.1718  1.1660  0.8112 80.6 2610.8 2652.1 2138.7 2551.3 2313.4 

580 0.1697  1.1663  0.8121 79.1 2598.7 2649.7 2124.1 2540.4 2308.6 

600 0.9828  3.0821  0.0130 77.6 2621.7 2649.7 2133.8 2539.2 2300.1 

620 4.1106  1.6521  3.1325 76.5 2629.0 2644.8 2119.2 2535.6 2297.7 

640 4.1045  1.6290  0.0050 75.0 2609.6 2636.3 2116.8 2535.6 2298.9 

660 4.1044  1.6424  3.1355 73.0 2625.4 2610.8 2110.7 2523.4 2277.0 

680 4.1008  1.6517  3.1286 71.5 2643.9 2601.1 2115.6 0.0 2252.8 

700 4.0977  1.6611  3.1187 70.1 2692.2 2612.0 2098.6 2559.8 2247.9 

720 4.0973  1.6436  0.0086 68.4 2660.7 2652.1 2065.8 2487.0 2235.8 

740 4.1039  1.6569  6.2803 66.9 2674.7 2557.4 2042.8 2477.3 2203.0 

760 4.1003  1.6314  6.2718 65.6 2621.7 2531.9 2041.6 2459.1 2187.2 

780 4.0907  1.6317  6.2620 63.9 2580.5 2505.2 2019.7 2439.7 2176.3 

800 2.5317  1.5614  6.1788 62.5 2576.0 2463.9 1972.4 2425.1 2142.7 

820 4.1064  1.6823  3.1502 60.7 2516.9 2381.4 1966.3 2403.3 2101.0 

840 3.7850  0.0888  3.4536 58.7 2548.0 2375.8 1925.0 2374.1 2091.6 

860 4.0998  1.6598  3.1406 56.4 2440.9 2266.6 1894.7 2343.8 2049.6 

880 4.1017  1.6358  0.0384 54.0 2286.2 2163.7 1838.9 2307.4 1980.0 
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900 4.1051  1.6618  3.1413 51.3 2317.7 2111.2 1813.7 2261.2 0.0 

920 0.1642  3.0802  5.4990 48.1 0.0 0.0 2742.6 2240.6 0.0 

940 0.5741  3.1069  5.8983 44.5 0.0 0.0 2485.7 0.0 0.0 

960 4.1016  1.6180  6.2801 40.6 0.0 2332.9 2485.8 2319.5 0.0 

980 4.7449  2.5150  5.7689 36.6 0.0 0.0 2569.7 2502.8 0.0 

1000 4.7449  2.5150  5.7689 32.0 0.0 0.0 2609.6 2477.3 2508.9 

1020 4.7449  2.5150  5.7689 26.5 0.0 2147.2 2551.3 2408.1 0.0 

1040  21.5 0.0 0.0 2675.1 2406.9 2328.2 

1060  16.5 2598.4 2427.5 2638.7 2522.2 2580.5 

1080  12.2 0.0 2519.8 2667.7 2619.3 2483.4 

1100  8.4 0.0 2465.2 2673.9 2689.7 2510.1 

1120  6.2 0.0 2551.3 2678.8 2688.5 2530.7 

1140  4.3 2516.1 2485.8 2709.0 2510.1 2786.8 

1160  2.9 2556.2 2613.8 2678.8 2534.3 2791.7 

1180  1.6 2568.3 2592.8 2783.2 2541.6 2795.3 

1200  0.9 2576.8 2601.9 2779.5 2546.5 2797.7 

1220  0.3 2578.0 2585.8 2780.7 2544.1 2798.9 

1240  0.2 2575.6 2564.1 2785.6 2545.3 2777.1 

1260  0.3 2573.2 2547.3 2774.7 2516.1 2774.7 

1280  0.3 2573.2 2506.0 2774.7 2541.6 2768.6 

1300  0.3 2552.6 2493.4 2785.6 2535.6 2763.7 

1320  0.3 2558.6 2451.4 2783.2 2527.1 2762.5 

1340  0.1 2470.0 2522.8 2782.0 2523.4 2785.6 

1360  0.0 2476.1 2504.6 2780.7 2517.4 2687.3 

1380  0.0 2477.3 2516.1 2716.4 2555.0 2663.0 

1400  0.0 2654.5 2432.4 2715.2 2589.0 2608.4 

1420  0.1 2603.5 2433.6 2723.7 2586.5 2602.3 

1440  0.1 2602.3 2443.3 2726.1 2597.5 2601.1 

1460  0.1 2559.8 0.0 2721.3 2582.9 2602.3 

1480  0.1 3115.7 2414.2 2717.6 2748.0 2612.0 

1500  0.0 2820.8 0.0 2706.7 0.0 2567.1 

 

 

The laser scanning distance was 1 mm with a 20 μm step size. In can be seen from Figure 

23 that from 0 to 400 μm, velocity profiles were gradually varying and an abrupt drop in 

velocity profiles regardless of orientations was observed around 400 μm. This 



73 

 

corresponds to the transition from one grain to another (the abrupt change of the 

orientation from ‘red’ to ‘blue’, as seen from the EBSD inverse pole figure in Figure 22). 

From roughly 400 μm to 800 μm, the velocities gradually decreased within ‘blue’ 

orientation grain and the composition changed more rapidly. From 800 μm to 1200 μm, 

the velocities show high degree of scattering, they were regarded as unreliable data. In 

addition, there is a narrow strip of composition where no SAW signal could be collected.  

The reason leading to the scattered data might be the Invar effect of Fe-Ni alloys at the 

composition around Fe-36Ni, which was also roughly in the void region. Around this 

specific composition, the thermal expansion coefficient is very small. As the mechanism 

of the TDTR method was to use laser to deposit heat on a local region, the temperature 

gradient around the laser spot led to thermal stresses, which launched SAW. As a result, 

high thermal expansion coefficient could lead to a higher intensity of local displacements, 

and thus stronger SAWs. The small thermal expansion coefficient implied weaker SAWs, 

and thus reduced the signal-to-noise ratio in SAW velocity measurements, which could 

increase the possibility of unreliable data.    

 

5.1.3 Extraction of elastic constants from SAW measurements 

 

With the model to calculate SAW velocities at specified directions, the grain orientation 

information from EBSD, the PDMS orientation information from optical microscopy, 

density data from Figure 21, and composition information from EDS, either the forward 

simulation or neural network method could be applied to extract the elastic constants.   
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For forward simulations, the process is similar to that for polycrystalline Ni. To extract 

the elastic constants of a specific composition, e.g. Fe-80Ni, the experimental SAW 

velocities on the five different PDMS orientations, as indicated by the red double-

arrowed line in Figure 23 were used for the optimization. The same simplex-based 

optimization method was applied using different initial values to find the best match to 

the experimental SAW velocities. Elastic constants of other compositions were similarly 

obtained and are summarized in Table 12 and Figure 24. 

 

Table 12. Comparison of the elastic constants of different Fe-Ni compositions obtained 

from the polycrystalline diffusion multiple sample of this study with those obtained from 

single crystals reported in the literature. 

Compos-

ition (Fe 

at. %) 

C11 (GPa) C12 (GPa) C44 (GPa) 

This 

study 

Single-

crystal 

data 

Differ- 

ence 

(%) 

This 

study 

Single-

crystal 

data 

Differ- 

ence 

(%) 

This 

study 

Single-

crystal 

data 

Differ- 

ence 

(%) 

10% 237.0 252 -6.0 123.8 143 -13.4 128.7 139 -7.4 

20% 248.1 241 2.9 145.6 143 1.8 138.5 138 0.4 

30% 238.7 233 2.4 155.2 146 6.3 129.3 127 1.8 

40% 227.3 224 1.5 156.0 151 3.3 108.7 112 -2.9 

50% 217.4 212 2.5 154.6 155 -0.3 81.1 90 -9.9 

60% 170.6 157 8.7% 106.1 109 -2.7% 117.0 96 21.9% 

70% 160.1 147 8.9% 86.6 89 -2.7% 138.2 113 22.3% 
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Figure 24. Elastic constants at different Fe-Ni compositions obtained from the current 

experiment on a diffusion multiple in comparison with the literature data from single 

crystals of different compositions102,103. 

 

 

Figure 24 summarizes data obtained from the current study obtained on a Fe-Ni diffusion 

in comparison with literature data from single crystals. The elastic constants at 

composition between Fe-50Ni and Fe-90Ni are in excellent agreement indicating the new 

high-throughput method works well.  

 

However, for Fe-30Ni and Fe-40Ni, the deviations were much higher. This also made 

sense as they were extracted from less reliable scattered SAW velocity data as we 

explained before. Note that for some compositions, if not all five experimental 

measurements were reliable, only qualified data were used to extract the elastic constants. 

As the composition profile was measured at higher spatial resolution, elastic constants for 
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finer composition increment could also be obtained, which is much more efficient than 

those methods requiring using single crystals.  

 

In addition to forward simulations, neural network method was also applied. SAW velocity 

is a function of elastic constants, grain orientation, PDMS orientation, material 

composition and density, as shown in Equation 5.1.1. There are only three independent 

elastic constants (C11, C12, C44) in cubic materials.  

 

VSAW = SAW(C11, C12, C44, Grain Orientation, PDMS Orientation, composition, density)      (5.1.1) 

 

To extract the elastic constants of Fe-80Ni for example, we could get the grain orientation 

information is obtained from EBSD ([0.17   1.17   0.81] radian), composition information 

from EDS (Fe-80Ni) and 5 PDMS orientations information from microscope ([179, 84, 77, 

70, 25] degree), thus the expression was simplified as in Equation 5.1.2: 

 

VSAW = SAW (C11, C12, C44, [0.17   1.17   0.81], [179, 84, 77, 70, 25])                       (5.1.2) 

 

Note each PDMS orientation associates with one individual SAW velocity. Thus, five 

PDMS orientations lead to five SAW velocities. Bold font was used to emphasize the SAW 

velocity vector. 
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The elastic constants are the only variables to be determined, the other variables are 

parameters that are already known. Based on Equation 5.1.2, 6000 elastic constants-

velocities pairs with other variables at fixed values were generated and put into the neural 

network for training. The training was performed using the MATLAB neural network 

toolbox. The box had a graphic friendly interface, which saved time and enhances 

efficiency. The neural network structure was displayed in Figure 25.  

 

 

Figure 25. Neural network structure for extracting elastic constants at different Fe-Ni 

compositions.  

 

 

The neural network had five inputs corresponding to the five SAW velocities with each 

representing a PDMS orientation ([179, 84, 77, 70, 25] degree). It had two layers, one 
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hidden layer and one output layer. The output layer had three outputs corresponding to C11, 

C12 and C44. The hidden layer took charge of exploring the relation between the inputs and 

outputs. There were 26 neurons in the hidden layer. The number of neurons was determined 

by the network.  

 

Figure 26 shows how well the network performed in exploring the relation between the 

inputs (SAW velocities) and outputs (elastic constants C11, C12 and C44). To train the 

network, the original data was divided into 3 sets: training set, validation set and testing 

set. 70% of original data went to the training set to train the network; 15% of original data 

went to the validation set to validate the network; 15% of original data went to the testing 

set to test the network. The performance of the network was reflected in each of the R 

values. The closer to one those R values were, the better the trained network could capture 

the characteristics between inputs and outputs. 

 

 

 

Figure 26. The performance of the neural network in extracting the relation between elastic 

constants and SAW velocities at given density, composition and orientations.  
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The objective was to adjust the number of neurons in the hidden layer to make all three R 

values as closer to one as possible. If the R value of training set is very high but that of 

testing set is low, it indicates too many neurons to fit the relation, i.e. overfitting, thus the 

number of neurons needs to be decreased in the hidden layer. If the R values are generally 

low, it indicates some of the characteristics between the inputs and outputs are missing in 

the network, the number of neurons need to be increased in the hidden layer to increase the 

degree of freedom and fitting accuracy. By several attempts, 26 neurons were found to 

perform to the best.  

 

The extracted elastic constants for several compositions were listed in Table 13. The trend 

in each component of elastic constants is consistent with the forward simulations. The 

extraction of elastic constants of other compositions are still in process. 

 

Table 13. Extracted elastic constants for the Fe-Ni diffusion couple at compositions of 

Fe-80Ni (Ni-20Fe) and Fe-90Ni (Ni-10Fe) through the neural network method.  

 

 

 

In summary, application of a SAW-PDMS-TDTR-MODEL method on a diffusion 

multiple is capable of measuring composition-dependent full elastic constants without 

Compos-

ition (Fe 

at. %) 

C11 (GPa) C12 (GPa) C44 (GPa) 

This 

study 

Single-

crystal 

data 

Differ- 

ence 

(%) 

This 

study 

Single-

crystal 

data 

Differ- 

ence 

(%) 

This 

study 

Single-

crystal 

data 

Differ- 

ence 

(%) 

10% 244 252 -3.2 144 143 0.7 130 139 -6.5 

20% 253 241 5.0 148 143 3.5 137 138 -0.7 
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making any single crystals. The elastic constants at different compositions of Fe-Ni 

alloys have been extracted using either a forward simulation method or a neural network 

machine learning method. The Cij values of compositions between Fe-50Ni and Fe-90Ni 

obtained from current study are in excellent agreement with single-crystal data from the 

literature, leading credibility to the new method. 

 

5.2 Extraction of the elastic constants from powder samples 

 

Many solid compounds and materials are hard to synthesize into bulk samples, not even 

polycrystalline bulk solids. But most of them can be synthesized into powders. Thus, it is 

highly desirable to be able to measure full elastic constants from large grained powders. 

For a conceptual demonstration, Sn powders are used since they are easily available and 

very cost-effective. In addition, β-Sn is tetragonal and has six independent Cij values to 

be measured, which is reasonably challenging.  

 

5.2.1 Sample preparations and characterizations 

 

The Sn powder (99.9% purity) was purchased from AEE (Atlantic Equipment Engineers). 

It has a mesh size of ~100, roughly 150 μm in powder size, as seen in Figure 27. 
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Figure 27. Powder Sn of 99.9% purity with mesh size ~ 100 purchased from Atlantic 

Equipment Engineers.  

 

 

Some Cu-based conductive bakelite powders were crushed with mortar and pestle to 

similar size of the Sn powders. Then, they were mixed uniformly with a ratio of bakelite 

to powder 3:1 and poured into the container of the hot mount machine. Normal uncrushed 

bakelite was also poured in to fill up the holder space. Regular bakelite hot mounting was 

performed and the Sn powders inside the mount were subject to grinding on 800 and 1200 

grit size of SiC sandpaper and then polished on a vibrotary machine with 0.05 μm silica 
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suspension as the polishing fluid until a mirror-like surface was obtained, as shown in 

Figure 28. 

 

The reason to crush a portion of the bakelite powders to mix with Sn powder was to 

increase the amount of the Sn powders that could stay on the surface. Otherwise, the much 

bigger bakelite powders would occupy a large portion of surface and the amount of the Sn 

powders would be very low. 

 

 

 

Figure 28. Optical image showing the surface of Sn after mounding, grinding and 

polishing. Individual powders can still be seen. 
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A region was selected on the polished surface and micro-indents were placed as markers 

on the surface, as seen under SEM in Figure 29(a). EBSD was conducted in the region and 

the inverse pole figure is shown in Figure 29(b). Except a few big grains, the grain size 

(not particle size) was generally small, which posed a challenge on SAW accuracy. The 

laser spot size was 3.6 μm in radius, the affected-area of generated SAW is comparative to 

the single grain size. Thus, the grain boundary could affect the wave propagation and thus 

affect our measurement of SAW velocities. To solve this issue, multiple spots in a single 

grain along a single direction were measured for SAW velocities, the average consistent 

SAW velocity was selected to represent the SAW velocity for a particular orientation.  
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Figure 29. (a) SEM image and (b) the EBSD inverse pole figure of the indented region of 

the Sn powder sample. 

 

 

5.2.2 SAW measurements of powder Sn 

 

The SAW velocities of 20 grains along the same PDMS orientation were listed in Table 

14. The modeled velocities by using reference elastic constants of Sn were also included 
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in Table 14 for comparison. The experimental SAW velocities were generally very close 

to calculated values except a few orientations.  

 

Table 14. SAW measurements of Sn powders. Theoretical SAW velocities computed using 

reference elastic constants and experimental SAW velocities are both listed for 

comparison. PDMS orientation is 48.5 degree referred to the transverse direction. 

 

Grain 
Location 

(x,y) (μm) 
Euler angles (radian) 

Vmodel 

(m/s) 

Vexpt 

(m/s) 

Difference 

(%) 

G1 (155,455) 2.5626    1.9213    1.4655 1027.5 1043.8 1.6 

G2 (350,650) 0.4073    2.1900    3.8573 1348.0 1349.7 0.1 

G3 (100,450) 4.1812    0.7183    4.3835 1009.7 1077.8 6.7 

G4 (350,250) 2.3607    1.8207    2.0829 1183.7 1184.6 0.1 

G5 (350,350) 2.2670    2.1129    4.0086 1336.9 1262.3 -5.6 

G6 (345,750) 4.6602    0.6196    1.8163 1490.2 1466.2 -1.6 

G7 (455,395) 2.6012    0.9669    5.0557 1250.7 1281.7 2.5 

G8 (350,550) 3.7370    1.1981    6.1205 1607.9 1592.5 -1.0 

G9 (145,550) 4.4976    1.0966    5.1125 1390.0 1417.7 2.0 

G10 (250,405) 2.5103    1.8784    5.9788 1586.0 1655.6 4.4 

G11 (250,495) 0.1089    1.6339    6.0752 1599.3 1543.9 -3.5 

G12 (200,455) 2.0756    2.0189    3.9317 1322.4 1344.9 1.7 

G13 (305,595) 0.9627    0.6718    2.0028 1395.3 1364.3 -2.2 

G14 (400,845) 4.1469    1.6761    4.2949 1147.7 1131.2 -1.4 

G15 (400,505) 1.7211    2.1357    1.9328 1384.8 1393.4 0.6 

G16 (300,695) 3.4958    1.4140    5.1770 1148.1 1204.1 4.9 

G17 (95,545) 1.0948    1.5583    2.9468 1614.0 1631.3 1.1 

G18 (195,400) 2.8012    0.9135    5.2354 1478.1 1475.9 -0.1 

G19 (450,400) 4.3008    1.6981    5.2117 1167.7 1281.7 9.8 

G20 (55,100) 1.5370    1.8686    4.2093 1245.7 1272.0 2.1 

 

 

 

 



86 

 

5.2.3 Extraction of elastic constants of powder Sn 

 

The reference elastic constants were selected as the initial value to extract the elastic 

constants through forward simulations. The extracted elastic constants are shown in Table 

15 in comparison with single-crystal values.  

 

Table 15. Comparison between reference elastic constants and extracted elastic constants 

from our method of Sn. 

         Cij (GPa) This study Single-crystal data Difference (%) 

C11 76.3 72.4 5.4 

C12 61.4 58.5 5.0 

C13 51.1 37.4 36.6 

C33 96.1 88.3 8.8 

C44 22.9 22.0 4.1 

C66 24.2 24.4 -0.8 

 

 

The extracted elastic constants are with 6% from single-crystal elastic constants except for 

C13 and C33. More experiments and analysis are needed to obtain better measurements of 

these two elastic constants. The C13 and C33 extracted from another polycrystalline bulk Sn 

sample are 39.5 GPa and 84.2 GPa, respectively, which only deviates from the single-

crystal data by 5.6% and -4.6%, respectively. The bulk Sn elastic constants were obtained 

from 33 orientations in contrast to the powder sample measured along 20 orientations. This 

example shows that for low-symmetry crystals, more orientations need to be measured. In 

addition, the optimization /forward simulation algorithm has a hard time reaching global 

minimum. The algorithm needs significant improvement in the future.  
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5.3 Measurement of elastic constants of intermetallic compound Ni3Sn4 of monoclinic 

crystalline symmetry  

 

(This study is in collaboration with National Taiwan University. The first-principles 

calculations were performed by Ms. Yaxian Wang in Prof. Wolfgang Windl’s group at 

Ohio State. The MCMC analysis was performed with the help of Prof. Steven 

Niezgoda.).  

 

Low symmetrical crystals such as monoclinic and triclinic phases require a large number 

of independent elastic constants (Cij values) to completely describe their elasticity. For 

instance, a monoclinic crystal (compound) has 13 independent Cij values which are hard 

to measure even using single crystals. For this reason, among the approximately 23,000 

monoclinic inorganic solid compounds listed in the CRYSTMET database104, only a 

handful of them have experimentally measured full-tensor Cij values105–108. All of these 

were laboriously measured using single crystals. 

 

The monoclinic Ni3Sn4 phase was selected for this demonstration since its Cij values have 

never been measured, yet they are critical to understanding the performance of solder 

joints in electronic devices where nickel is a commonly used under-bump-metallization 

(UBM) material109.  
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Nickel reacts with the Sn-based solder to form the Ni3Sn4 intermetallic compound (IMC). 

The presence of this Ni3Sn4 IMC between solders and conductor metals is a sign of good 

metallurgical bonding. However, because of the inherent brittle nature of Ni3Sn4, the 

reliability of solder joints becomes a concern. In traditional packaging technology, such 

as ball grid array (BGA)110, this is not a big concern as Ni3Sn4 IMC only occupies a small 

portion of the joint. However, in three-dimensional integrated circuits (3D IC)111–115, 

where the joint size can get down to about 5 to 10 microns, the Ni3Sn4 IMC can occupy a 

substantial portion of the joint and carry a significant part of the mechanical load of the 

joint. Thus, the mechanical properties of the Ni3Sn4 IMC become critical to the reliability 

of the micro joints. 

 

Even though the plastic deformation behaviors of Ni3Sn4 have been studied116,117, no 

experimental measurements have been reported for its Cij values which are essential for 

accurate simulation of microstructural evolution and constitutive/micro-mechanical 

modeling. Ab initio method has been applied to calculate the Cij values of Ni3Sn4
118,119 

with significant discrepancy in the computed values. Nanoindentation has been applied to 

measure the Young’s modulus of Ni3Sn4
120, but the full tensor Cij values are still missing. 

Experimental measurement is highly desirable to obtain reliable full-tensor Cij values.  

 

The 13 independent full-tensor Cij values would be extremely challenging to measure 

using the new method. This is mostly due to the challenges associated with the algorithm 

in reaching global minimum in the 13-variable space. The idea is to employ the elastic 
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constants computed from first-principles calculations as the initial input Cij’s to the model 

in order to facilitate the search for the right Cij’s by the algorithm. It is hoped that such a 

combination will lead to the correct Cij’s from the measured SAW velocities. 

 

5.3.1 Sample preparations and characterizations 

 

The Ni3Sn4 phase was formed by reacting a pure Ni (99.99%) slugs with and Sn (99.99%) 

drops, with an atomic ratio Ni : Sn = 3 : 4, by melting in a sealed and evacuated quartz tube 

at 1000 °C for one week, followed by water quenching and then annealing at 750 °C for 

four weeks. The ingot was then sliced into small pieces and polished to reveal the 

microstructure for observation by optical microscopy with cross polarizers. The sample 

was grinded through 120, 500, 1200, 2400 grit size SiC sandpaper step by step and then 

polished with 1 μm diamond paste and then 0.025 μm SiO2 suspension. A montage image 

is shown in Figure 30. 
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Figure 30. Polarized light microscopic images reflecting the microstructure of the Ni-Sn 

diffusion couple sample. This composite image is a montage consisting of several 

regional sections. Two sites were selected for EBSD and SAW experiments.  

 

Given the anisotropic orientations and sizes of grains, two locations were selected for 

EBSD. The crystallographic orientations of each grain in the two EBSD sites were 

identified using a scanning electron microscope (JEOL JSM-7800F Prime) equipped with 

an EBSD detector, as shown in Figure 31(a) and Figure 31(c).  
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(a)                                                                            (b) 

 

                                       (c)                                                                         (d) 

Figure 31. EBSD Inverse pole figures for (a) site 1 and for (c) site 2 of the polycrystalline 

Ni3Sn4 sample. Both the orientation map and sample coordinate frame are displayed in 

(b) and (d).  

 

 

A1 

A2 



92 

 

From the two EBSD inverse pole figures, several big grains were selected for the SAW 

experiments. To facilitate the location matching between EBSD and the SAW 

measurements, micro indents were put around those two sites. A coordinate system was 

also built to help determine locations in each grain. All grains in the two EBSD figures 

belonged to the Ni3Sn4 phase except for the ones located in the lower left corner of each 

figure, which was determined to be Ni3Sn2 phase. Our focus here was only on the grains 

of the Ni3Sn4 phase.  

 

5.3.2 Elastic constants of Ni3Sn4 from first-principles calculations  

 

The elastic constants of Ni3Sn4 has 13 independent components, which requires large 

number of initial values spanned in 13-dimensions. The forward simulation is not practical 

to run so many initial values in a reasonable amount of time to extract the full elastic 

constants. As a compromise, the first-principles calculations were employed to obtain a set 

of calculated elastic constants as the initial Cij input to the SAW model. Then conventional 

forward simulation was used to update the elastic constants to minimize the difference 

between the computed SAW velocities and experimental SAW velocities until the 

optimized elastic constants were obtained.  

 

First-principles calculations were performed using VASP (Vienna ab initio simulation 

package)121, which implemented the DFT scheme within the plane wave projector 

augmented-wave (PAW) method122 with generalized gradient approximation (GGA) 
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functional by Perdew et al123. After the convergence test, the following parameters are 

employed a cutoff energy of 350 eV and a 14-atom cell with a 9*9*7 Monkhorst-Pack k-

point mesh for Brillouin zone integration to relax the cell to ground state124 where the 

deviation of 𝛽 from experimental value was minimized. The experimental crystal 

structure was used as an input for geometry optimization, where the energy of crystal was 

minimized with respect to lattice constant and any interior degrees of freedom. Shown in 

Table 16 were the results for predicted lattice constants. 

 

Table 16. Lattice constants of Ni3Sn4 after relaxation by VASP at different settings. 

Settings a(Å) b(Å) c(Å) 𝛽(deg) 

Experimental 

values 
12.214 4.060 5.219 105.00 

14 atoms, 350 eV, 

7*7*5 
12.309 4.081 5.100 105.19 

14 atoms, 350 eV, 

9*9*7 
12.308 4.096 5.081 105.09 

14 atoms, 380 eV, 

7*7*5 
12.303 4.090 5.103 105.15 

112 atoms, 350 eV, 

7*7*5 
12.309 4.091 5.085 105.04 

 

 

The relaxed configuration was used to do the elastic property calculation. It used central 

difference, which allowed each ion displaced in each direction by a small positive and 

negative displacement. Then the Hessian matrix was determined, which was the matrix of 

the second derivatives of energy with respect to the atomic positions. Thus, the elastic 

constants 4th-rank tensor was calculated, shown in Table 17. Lee et al. and Gao et al. 
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reported the calculated elastic constant Cij of Ni3Sn4 by using CASTEP software, 

respectively 118,119. Ghosh had compared calculated elastic constant of Fe3C by VASP 

and CASTEP125, the deviation for C11~C66 was averaged to 144% while our 

calculations end up with difference of 6.6% for Gao110 and 17.4% for Lee118. We note 

that nearly all values from Gao were smaller while those from Lee are larger.  

Comparison between those calculated elastic constants and our forward simulation result 

based on each calculated elastic constants as the initial values were all displayed in Table 

17. 

 

Table 17. Elastic constants of Ni3Sn4 calculated by different first-principles calculations 

and extracted from our experimental SAW measurements with first-principles calculation 

results as the initial values to run the forward simulation. 

 

  Cij from pure calculation  

Cij from pure calculation plus 

SAW measurements 

Cij 

This 

work Lee118  Gao110 

This 

work Lee Gao 

C11 191.3 192.2 155.0 272.2 198.2 174.3 

 C22 164.1 176.2 155.7 190.1 180.1 159.5 

 C33 178.1 204.6 180.1 226.6 211.4 197.0 

 C44 57.7 76.2 57.6 51.4 53.2 51.0 

 C55 64.6 77.0 59.9 53.2 61.3 59.2 

 C66 52.3 68.3 55.8 55.6 65.8 66.9 

 C12 67.4 77.4 70.2 17.4 74.7 56.8 

 C13 63.6 82.9 66.4 60.7 88.6 53.0 

 C23 85.3 80.3 71.8 115.8 105.8 81.4 

 C15 -24.3 -25.7 -21.1 -22.7 -25.8 -20.5 

 C25 13.0 12.7 9.9 3.5 3.9 2.5 

 C35 -3.5 -10.9 -8.6 -1.9 -8.5 -7.4 

 C46 3.5 8.2 9.9 2.1 8.7 9.7 

Velocity 

difference 

4.86% ± 

3.99% 

7.49% ± 

5.24% 

6.91% ± 

4.71% 

3.37% ± 

2.84% 

3.61% ± 

3.11% 

3.46% ± 

2.90% 
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5.3.3 SAW measurement results and Cij extraction 

 

As monoclinic Ni3Sn4 has 13 independent Cij values to be determined, multiple grains 

and PDMS film orientations were selected for each site for the SAW experiments, aimed 

at capturing enough anisotropic variations.  

 

Six grains combined with five PDMS orientations were measured to obtain SAW 

velocities along 30 distinct directions for site 1, as shown in Figure 31(a). Similarly, 

seven grains combined with five PDMS orientations were selected for measuring SAW 

velocities along 35 distinct directions for site 2, as shown in Figure 31(b). As a result, 

measurements of SAW velocities along 65 crystalline directions were made. For each 

combination of the grain orientation and PDMS orientation, four velocity measurements 

around the center of the grain location were made. The spatial sampling range of the 

measurements were within a circle of 5 μm in radius from the center of the grain. The 

average velocities after removing significantly dissimilar ones were used as the 

experimental velocity of each crystallographic direction. With reliable experimental 

SAW velocities and initial values obtained from different first-principles calculations, the 

extraction of elastic constants of Ni3Sn4 were done through forward simulations. The 

comparison of elastic constants from pure calculations and from modeling the 

experimental SAW velocities using first-principles data as initial model input were all 

listed in Table 17.  
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(a) 

Figure 32. Sensitivity analysis of each elastic constants extracted by combining SAW 

experiments and first-principles calculations from (a) this study, (b) Lee’s work and (c) 

Gao’s work on average SAW velocity difference.  
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(b) 
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(c) 
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The general trend in each elastic constant component is consistent to each other but some 

deviation between each set of extracted elastic constants using different initial values is 

still quite large. Sensitivity analysis was performed for each set of extracted elastic 

constants, as shown in Figure 32.  

 

The sensitivity analysis shows that the SAW velocities are more sensitive to elastic 

constant components of C11, C22, C33, C44, C55, C66 and C23 regardless of which set of 

extracted elastic constants. The relative small sensitivity in C11 in Figure 32(a) can 

explain the big deviation in the C11 value among all three sets. Moreover, the extracted 

elastic constants are not convergent to the same values. This is attributed to the local 

optimum trap in the forward simulations. Some trap-skip methods like MCMC (Monte 

Carlo Markov Chain) is going to be applied to find the global optimum. 

 

It is very likely that the SAW-PDMS-TDTR-MODEL method, even with first-principles 

input, cannot measure all the 13 independent Cij values due to the fact that: (1) the SAW 

velocities are insensitive to some Cij values; and (2) the current forward-simulation 

algorithm is incapable of finding the global minimum in the 13-variable space even with 

the first-principles data as the initial input. More work needs to be performed in the future 

to overcome these challenges. 
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5.4 Full elastic constants of Ni-based superalloy René 88DT 

 

(This section is mostly based on the paper: Xinpeng Du and Ji-Cheng Zhao. First 

measurement of the full elastic constants of superalloy René 88DT. Scripta Materialia 

152, 24 (2018).) 

 

René 88DT is one of the powder metallurgy superalloys126,127; and it is one of the most 

widely used ones for jet engine high pressure turbine discs. Its composition is Ni-16Cr-

13Co-4Nb-4W-2.1Al-3.7Ti-0.7Nb-0.03C-0.015B (wt.%, Ni-balance). René 88DT has an 

excellent combination of tensile and creep strength as well as corrosion and oxidation 

resistance at elevated temperatures128. Various studies have been performed over the 

years on its phase structures129 and the effect of constituent elements130, creep 

deformation mechanisms at elevated temperatures131,132, and fatigue crack initiation 

mechanisms under cyclic loading133–135.  

 

The elastic behavior of René 88DT is much less studied and the full elastic constants of 

René 88DT have never been reported yet, most likely due to the fact it is a significant 

undertaking to grow a single crystal out of such a complex powder metallurgy 

composition for elastic constant measurement. Nevertheless, extensive studies on the 

fatigue initiation mechanism of René 88DT show that elastic anisotropy plays a 

significant role on the crack initiation process133–135. Moreover, elastic constants are 

essential parameters for various micro-mechanics models, such as fatigue sensitivity136, 
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failure mechanism at microscale137, crack nucleation mechanisms138, fatigue-crack-

initiation interaction139 and so on. Thus, accurate elastic constant values of René 88DT 

will significantly help improve the accuracy of these models 

 

Traditional tensile stress-strain measurement has been used to evaluate the Young’s 

modulus of René 88DT140. The DIC (Digital Image Correlation) technique afforded 

measurement of local strains of polycrystals in both elastic and plastic regimes to help 

measure Young’s modulus more accurately141–143. Hardness test has been used to measure 

the mechanical strength of Nickel-based superalloys144. These methods, however, can 

only result in an average measurement of Young’s modulus rather than the full elastic 

constants. 

 

By using our TDTR-based SAW technique, however, the full elastic constants can be 

extracted accurately. As mentioned in Chapter 2, by combining both experiments 

generating and detecting SAW velocities along various orientations, and models 

predicting SAW velocities along any specified orientation, the full elastic constants can 

be eventually extracted through the forward simulations.   

 

5.4.1 Sample preparations and characterizations 

 

A bulk piece of René 88DT was provided by GE Global Research and a small piece of 

the sample was cut with a diamond saw and then placed in an air furnace for heat 
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treatment at 1150 °C for 50 h. The oxidation resistance of René 88DT is so good that a 

protective oxide scale was formed to protect the sample from internal oxidation. The 

center of the sample was unaffected by any of the oxidation effect. As 1150 °C was 

higher than the solvus line (roughly 1105 °C) of the gamma prime phase, no gamma 

prime precipitate would expect to form at 1150 °C. This heat treatment served the dual 

purpose of both growing the grain size and forming the fcc solid solution phase to reduce 

the potential interference of the gamma prime phase during the measurements. After the 

heat treatment, the sample was directly taken out of the furnace and cooled down to 

ambient temperature. It was mounted in regular metallographic bakelite, grinded with 

SiC sand papers of 120, 320, 600, 800, 1200 grit sizes in sequence in water, and polished 

with a vibratory polishing machine in 0.05 um colloidal silica suspension for 48 h to 

obtain a high-quality surface finish. 

 

Microhardness indents were placed on the sample surface to denote a region (1000 µm x 

500 µm) of interest. Electron backscattering diffraction (EBSD) characterization was 

carried out on a XL-30 ESEM system (FEI, Inc.) with a high-brightness field-emission 

electron gun. The acceleration voltage was 20 kV. The working distance was 20 mm. The 

step size was 5 μm for each direction. The collected data was then analyzed on a TSL 

software platform. The collected inverse pole figure of (001) showing in Figure 33 

displays the distribution of the grain size and orientation.  
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Figure 33. EBSD inverse pole figure of (001) with the reference frame and orientation 

map shown. The scanning region was 1000 μm х 500 μm with a step size of 5 μm in both 

directions. Based on the grain size and distribution, 10 grains were selected and labeled 

for SAW measurements. 

 

 

5.4.2 Experimental measurements of surface acoustic waves 

 

SAW measurements were conducted on ten grains as labelled in Figure 33 under two 

different PDMS orientations. In other words, we performed one set of measurements and 

then rotated the PDMS film orientation and performed a second set of measurements. For 

each grain, four points around the grain center were measured to get SAW velocities. The 

results of one SAW measurement on Grain 10 under PDMS orientation 1 are shown in 

Figure 34 to demonstrate the data in both time domain and frequency domain to explain 

how the SAW velocity was evaluated. The velocities reported in Table 18 are the average 

velocity of four measurements on each grain under each orientation. The laser spot size 

of this experiment was ~5 µm, enabling high spatial resolution of the measurements since 

the SAW attenuates quickly beyond the laser spot by the PDMS film.  
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(a) 

                 

(b) 

Figure 34. (a) Time domain signal of a SAW wave obtained by detecting the SAW 

profile as a function of the delay time between the pump and the probe beam; (b) 

Frequency domain signal of the SAW wave obtained by applying the Fourier transform 

to the time domain signal. The SAW peak could be identified in the frequency domain, 

and the SAW velocity is equal to the frequency times the wavelength which is 700 nm 

that is dictated by the PDMS film grating. 
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To obtain the direction associated with the measured velocity, Euler angles measured 

using EBSD and the PDMS film orientation measured by light microscope were both 

employed. Some measurements were not included in the analysis due to either small 

signal-to-noise ratios or wide variability of the velocities within a grain. The results of the 

reliable measurements were summarized in Table 18 with a total of 15 experimental 

SAW velocities, which spanned a range of ~ 2500 m/s to ~2870 m/s, indicating high 

anisotropy of René 88DT. Those experimental velocities were to be matched by the 

computed SAW velocities from the elastodynamic model with elastic constants and 

density as input parameters. Our forward optimization method was based on Nelder-

Mead simplex method. At any given initial value of elastic constants, the method would 

begin to update the elastic constants iteratively, aimed at minimizing the difference 

between calculated SAW velocities and experimental SAW velocities. As it only 

converges to a local optimum, multiple initial values were provided to achieve the best fit 

possible.   
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Table 18. Comparison of the experimental (Vexpt.) and computed (Vmodel) SAW velocities.  

 

Grain 

 

Euler angles (degree) 

PDMS 

orientation 

(degree) 

 

Vexpt. 

(m/s) 

 

Vmodel   

(m/s) 

 

Difference 

(%) 

G5 [95.1, 76.2, 26.8] 89.6 2495.5 2451.0 -1.78 

G6 [348.7, 64.4, 43.0] 89.6 2473.7 2606.1 5.35 

G7 [34.8, 79.2, 241.0] 89.6 2496.7 2588.8 3.69 

G8 [225.1, 93.0, 154.8] 89.6 2869.3 2867.7 -0.06 

G9 [209.0, 32.8, 160.6] 89.6 2507.7 2509.0 0.05 

G10 [136.9, 19.9, 297.6] 89.6 2756.5 2690.2 -2.41 

G1 [215.4, 118.5, 145.6] 60.1 2648.5 2690.2 1.57 

G2 [203.0, 86.3, 169.5] 60.1 2638.8 2501.8 -5.19 

G3 [13.6, 88.5, 47.0] 60.1 2575.6 2581.1 0.21 

G4 [26.8, 35.6, 102.4] 60.1 2517.4 2649.5 5.25 

G5 [95.1, 76.2, 26.8] 60.1 2619.3 2617.8 -0.06 

G7 [34.8, 79.2, 241.0] 60.1 2573.2 2569.8 -0.13 

G8 [225.1, 93.0, 154.8] 60.1 2756.5 2552.9 -7.39 

G9 [209.0, 32.8, 160.6] 60.1 2625.0 2482.3 -5.44 

G10 [136.9, 19.9, 297.6] 60.1 2718.8 2571.6 -5.41 

 

 

5.4.3 Extraction of elastic constants of René 88DT 

 

A total of 45 initial values were equally sampled for C11, C12 and C44 and put into the 

forward optimization algorithm. The best fit yields the elastic constants as C11 = 267.1 

GPa, C12 = 170.5 GPa, and C44 = 107.6 GPa. The anisotropic ratio is 2.23, which is quite 

high. The computed and measured SAW velocities are in excellent agreement as shown 

in Table 18. The density of René 88DT used in the computation is 8.36 g/cm3 145. Since 

there are no literature elastic constants for a direct comparison with our results, the elastic 

constants are used to compute the aggregate polycrystalline properties such as Young’s 
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modulus and Poisson’s ratio for comparison. The computed/aggregated Young's modulus 

from our elastic constants is between 194 and 221 GPa (the lower and upper bonds) using 

the widely employed Voigt and Reuss averaging schemes 146, which agrees well with the 

literature Young’s modulus values ranging from 210 to 220 GPa that were obtained from 

bulk sample measurements130 147. The aggregated Poisson's ratio computed from our 

elastic constants is between 0.32 and 0.34. 

 

The current measurement was made at ambient temperature. The PDMS film may still be 

workable for temperatures up to 200 °C above which a different grating film or an 

alternative grating scheme need to be identified or developed. To prevent sample surface 

oxidation at higher temperatures (e.g., > 400 °C), the sample needs to be put inside a 

vacuum with an optical window to allow laser beam access. Such measurements at the 

working temperatures of the alloy are highly desired and will be pursued in the future. 

In summary, this SAW-PDMS-TDTR-MODEL method was successfully applied to 

measure the full elastic constants of René 88DT from a polycrystalline sample. SAW 

velocities along 15 distinct directions were experimentally measured and were fitted with 

a robust elastodynamic model through a forward optimization algorithm. The full elastic 

constants of René 88DT were obtained and reported for the first time as C11 = 267.1 GPa, 

C12 = 170.5 GPa, and C44 = 107.6 GPa. This new method can be employed to measure 

elastic constants of any polycrystalline sample with a grain size larger than 30 µm as 

demonstrated in this study, thus it will greatly facilitate future measurements of elastic 

constants for complex alloys without the need of growing single crystals. 
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5.5 Extraction of Young’s modulus of inorganic glasses  

In contrast to crystalline materials, glass materials have no long-range order in atomic 

arrangement, which makes them unique in many properties for various applications. 

Though improvement of glass composition, microstructure and fabrication process could 

help reduce brittleness of glass materials148, glasses still dominantly deform in the elastic 

region. The macroscopically plasticity is very limited at room temperature149. Thus, the 

modulus of elasticity is very essential to characterize a glass.  

 

Stress-strain test is conventionally used to measure Young’s modulus of glasses based on 

either compression/tension test150–152 or nano-indentation153,154. However, as the 

measurement results are not only dependent on the materials’ intrinsic properties but also 

dependent on external parameters like indenter shape155, strain rate156, and even sample 

size157, test results are not consistent from time to time or from instrument to instrument.  

 

Atomic Force Acoustic Microscopy (AFAM) has been used to measure local elastic 

properties like Young’s modulus of materials158,159. But as this technique depends not 

only on the Young’s modulus of the sample and the tip, but also on the tip shape, exerted 

load and surface geometry, its accuracy depends on the various corrections. Ultrasonic 

techniques have also been developed to measure modulus160–162, but as the sample needs 

to be machined in a certain geometry and size; and some form of contact transducer or 

coupling agent is also needed. The stringent requirements limit its applicability.  
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The elastodynamic model described in Chapter 2 can be slightly modified to relate 

Young’s modulus to materials density, Poisson’s ratio and SAW velocities. Thus, the 

SAW-PDMS-TDTR-MODEL method can be applied to measure Young’s modulus of 

glasses when their densities and Poisson’s ratios are known. As our model only gives a 

numerical solution, the approximated analytic solution of the SAW velocity as a function 

of the Young’s modulus, Poisson’s ratio and the materials density derived by Viktorov163 

was used here, as shown in Equation 5.5.1. 

VSAW =
0.87+1.12𝑣

1+𝑣
√

𝐸

2𝜌(1+𝑣)
                          (5.5.1)   

where, VSAW is the SAW velocity, E the Young’s modulus, v Poisson’s ratio and ρ 

material density. From this solution, the Young’s modulus can be obtained by measuring 

SAW velocity and Poisson’s ratio separately. 

 

5.5.1 Sample preparations 

 

Three different isotropic materials, crystalline tungsten (which is intrinsically isotropic in 

modulus), a soda lime glass and a Zr-based metallic glass were prepared. The tungsten 

metal was purchased from Kamis, Inc. It was grinded with SiC paper from 320, 400, 600, 

800, 1200 grit size in sequence and polished in a vibratory polishing machine with 0.05 

colloidal silica suspension for 24 hours. This tungsten sample was mainly used as a 

reference for measurements of other inorganic glass samples. The soda lime glass slides 

(76.2 × 25.4 × 1.0 mm) were purchased from Fisher Scientific (Item number: 12-544-1). 
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To increase the efficiency of laser power in inducing thermal gradient for launching 

surface acoustic waves in the soda lime glass, an aluminum coating of less than 20 nm 

was deposited on the sample as a transducer using a vacuum magnetron sputter (Denton 

Vacuum LLC). The Zr-based metallic glass was obtained from Materion (Vit 1b: 

Zr67Cu10.6Ni9.8Ti8.8Be3.8 wt%). The same vibratory polishing process as we did for the 

tungsten sample was done on this metallic glass. 

 

5.5.2 Experimental measurements of SAW velocities 

 

The laser setup is the same except that a half-wave plate working at the laser wavelength 

(780 nm) was inserted in the experimental setup to help match the laser pump light 

polarization with the orientation of the 1D grating PDMS film on the sample, and thus 

increased the signal-to-noise ratio in SAW measurement.   

 

Four locations and five orientations of each sample were selected for SAW 

measurements. The representative experimental signals are shown in Figure 35. The 

acquisition of signal was in the time domain. After applying the Fourier transform to get 

signals expressed in the frequency domain, SAW frequency peaks were identified to 

calculate SAW velocities, which is equal to the peak frequency times the wavelength of 

the SAW wave (700 nm in this case). The velocities were measured to be 2667.6 ± 23.8 

m/s, 3131.5 ± 24.1 m/s and 2226.1 ± 17.8 m/s for tungsten metal, soda lime glass and 

metallic glass, respectively.  
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Figure 35. Time domain signal for (a) tungsten, (c) soda lime glass, and (e) metallic 

glass, and their corresponding Fourier transform in the frequency-domain for (b) 

tungsten, (d) soda lime glass, and (f) metallic glass. The SAW peaks identified in the 

frequency domain determine the experimental SAW velocities. 
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The single-crystal elastic constants and density data for tungsten reported by Lowrie et 

al.164 were used to predict the Young’s modulus of 407.4 GPa; Reference data of the soda 

lime glass was obtained from Fisher Scientific. The density, Poisson’s ratio and Young’s 

modulus for the soda lime glass is 2480 kg/m3, 0.2 and 72 GPa, respectively; Reference 

data sheet from Materion showed the density and the Young’s modulus of the metallic 

glass was 6000 kg/m3 and 95 GPa, respectively. The Poisson’s ratio was estimated to be 

0.353.  

 

By subjecting the measured SAW velocities, and individual densities and Poisson’s ratios 

to Equation 5.5.1, the measured Young’s modulus of each sample as well as the reference 

Young’s modulus are all shown in Table 19. The differences of our extracted Young’s 

modulus from reference values are 1.1%, 3.9% and 2.7%, respectively, indicating the 

reliability and accuracy of our method in measuring Young’s modulus for inorganic glass 

materials.  

 

Table 19. Comparison of the Young’s modulus reported in the literature values and 

extracted from the current SAW measurements.  

 

Materials 
Young’s modulus from 

the literature (GPa) 

Young’s modulus from 

current measurements (GPa) 

Tungsten 407.4 411.7 ± 7.3 

Soda lime glass 72 69.2 ± 1.1 

Zr-based metallic glass 95 92.4 ± 1.5 
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In conclusion, this SAW method can be used to measure Young’s modulus of inorganic 

glasses when the density and Poisson’s ratio can be obtained separately. Less than 4% 

differences of Young’s modulus from SAW measurements with other independent 

measurements have been achieved on tungsten, soda lime glass and Zr-based metallic 

glass. This method has high spatial resolution (~ 10 µm) and thus is amendable to 

measurements of individual phases in a polished surface of a sample.  
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Chapter 6: Conclusions 
 

 

In this dissertation, an innovative laser-ultrasonic method has been developed to measure 

single-crystal elastic constants from polycrystalline samples. This technique is based 

upon measurements of the SAW velocities with the help of a polydimethylsiloxane film 

grating that is placed on a polished surface of a polycrystalline sample to confine surface 

acoustic waves that are induced by a femtosecond laser and measured using pump-probe 

time-domain thermoreflectance (TDTR). Electron backscatter diffraction (EBSD) is 

employed to measure the crystallographic orientation along which the surface acoustic 

wave propagates in each grain (perpendicular to the polydimethylsiloxane grating). Such 

measurements are performed on several grains. A robust mathematical solution was 

developed to compute SAW velocities along any crystallographic orientation of any 

crystal structure with given elastic constants and density. By either inputting various 

starting values of elastic constants to compute the SAW velocities to match experimental 

measurements in several distinct crystallographic orientations using an optimization 

algorithm or applying the neural network machine learning method to train a network on 

generated data to explore the relation among elastic constants, density and orientations 

and directly extract elastic constants from experimental measurements, accurate elastic 
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constant values have been obtained from seven polycrystalline metal samples of Ni, Al, 

Ta, Nb, Fe (bcc) Co (hcp) and β-Sn (tetragonal) to be within 6.8% of single-crystal 

measurements.  

 

In addition to the benchmark work on the polycrystalline pure metals, the new SAW-

PDMS-TDTR-MODEL method has been applied to the measurements of: (1) composition-

dependent elastic constants of Fe-Ni diffusion couple; (2) elastic constants from powder 

Sn sample; (3) the elastic constants of intermetallic compound Ni3Sn4 of monoclinic 

crystalline symmetry; (4) the full elastic constants of Ni-based superalloy René 88DT; and 

(5) Young’s modulus of inorganic glass materials, showing the advantages of this method 

with high accuracy, high spatial resolution and high throughput, saving a significant time 

and cost by avoiding the preparation of single crystals. 

 

This new technique is expected to change the current scenario that experimentally 

measured elastic constants are available for only about 1% of the estimated 160,000 

distinct solid compounds, not to mention the significant need for elastic constants of 

various solid solution compositions that are the base of structural materials. 

 

 

 

 

 



116 

 

 

 

 

Appendix A: The Model for Surface Acoustic Waves 
 

 

(This SAW model is mostly following the paper by Zhao et al59. but with improved 

treatment of eigen value degeneracy.) 

 

On the assumption of linear elastic deformation in a homogeneous anisotropic medium and 

the absence of body force, body torque, dissipative process and external fields, the wave 

motion equation is expressed as 

Cijkl

∂2Ul

∂xj ∂xk
= ρ

∂2Ui

∂t2
       x3 ≤ 0                                    (A. 1) 

 

  

where U stands for the displacement, ρ the mass density and C the elastic constants. x and 

t are the space and time, respectively. Here the Einstein summation convention is implied. 

 

The boundary condition is assumed to be a point source hitting on the sample surface at a 

specific time, which corresponds to the boundary condition (A.2) 

σi3|z=0 = Ci3kl

∂Ul

∂xk

|z=0 = δi3δ(x, y)δ(t) (A. 2) 

 

Wherein, δi3 = {
1  i = 3
0  i ≠ 3

,  δ(x, y) = δ(x)δ(y). 
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i, j, k, l = 1,2,3 

In addition, at very far away, the displacement should be zero. When the time goes to 

infinity, the displacement should also be zero. So, we have another set boundary conditions 

(A.3). 

          Ui(x, y, z, t) = 0, when x, y, z, t → ∞ (A. 3) 

 

The corresponding initial condition is determined by the causality principle, which dictates 

before any trigger takes place, the displacement should be zero. 

Ui(x, y, z, t) = 0  for  t < 0 (A. 4) 

  

To solve Equation (A.1), Fourier transform is applied to the time t and the space variables 

x and y that are parallel to the sample surface. 

Ũ(kx, ky, z, ω) = ∭ U(x, y, z, t)eiωt−ikxx−ikyydxdydt  

∞

−∞

 

 

(A. 5) 

Substitute Equation A.5 into Equation A.1, the differential equation is converted into a 

simple second order differential equation with z and its derivatives as the variables. 

−kx
2Ci11lŨl − kxkyCi12lŨl + ikxCi13l

∂Ũl

∂z
− CiuvlkukvŨl − kxkyCi21lŨl

− ky
2Ci22lŨl + ikyCi23l  

∂Ũl

∂z
+ ikxCi31l

∂Ũl

∂z

+ ikyCi32l

∂Ũl

∂z
+ Ci33l

∂2Ũl

∂z2
+ ikuCi3ul

∂Ũl

∂z
= −ρω2δilŨl 

(A. 6) 

  

In a compact form, it is expressed as, 

−kxkyCiuvlUl + ikvCiv3l

∂Ul

∂z
+ ikuCi3ul

∂Ul

∂z
+ Ci33l

∂2Ul

∂z2
= −ρω2δilUl  (A. 7) 

 

Wherein, u,v = 1,2. Here, the Einstein summation is applied. 
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As this is a homogeneous differential equation, the solution format is assumed to be 

Ũl(kx, ky, z, ω) = Al(kx, ky, ω)e−pz  (A. 8) 

 

Where the Al stands for the displacement vector. 

By substituting this assumption of Equation A.8 into Equation A.7, the differential equation 

is converted into an algebra one. 

DilAl = 0 (A. 9) 

 

Wherein, Dil = Ci33lp
2 − ikuCi3ulp − ikvCiv3lp − Ciuvlkukv + pω2δil 

This actually becomes an eigen-value problem. To assure the displacement vector has a 

non-trivial solution, the determinant must be zero. 

det(D) = 0 (A. 10) 

 

This results in a polynomial equation of sixth order with respect to p. 

 

If a small imaginary part is induced, say, into the frequency, it is guaranteed that there are 

three and only three roots of p that have positive real parts or pure imaginary. However, 

it’s possible for p to have multiple roots, which means p can have degeneracy. (For 

example, when p has three roots, p1, p2 and p3. If two of them are equal, we say it has 

multiple roots, or say p has a degeneracy). When this occurs, two distinct eigen-vectors 

that are perpendicular to each other corresponding to the same eigen value need to be found.  

The previous modeling59 doesn’t take that into consideration and uses SVD (singular-value 

decomposition) method, which will return the same eigen-vector once the eigen-value is 

the same rather than a pair of two eigen-vectors that are perpendicular to each other. 
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Therefore, a better way to solve this issue is to go to the null space of D, which is not a full 

rank matrix. The built-in eig function in MATLAB is employed to solve this issue. 

 

After right eigen values of p and corresponding eigen-vectors are selected, the 

displacement can be expressed as the superposition of the three modes. But the weight of 

each mode is still unknown as expressed in Equation A.11. 

U̅l(kx, ky, z, ω) = ∑ ar

r

Al
r(kx, ky, ω)e−prz (A. 11) 

 

To evaluate the coefficients of ar of each mode, the boundary condition (A.2) is applied. 

After doing Fourier transform on Equation A.2,  

δ̅i3|z=0 = δi3 = (ikuCi3ul−prCi33l)Al
r ⋅ ar (A. 12) 

 

Exhibit the expression in a simple fashion 

Mir ⋅ ar = δi3, where Mir = (ikuCi3ul−prCi33l)Al
r (A. 13) 

 

As the eigen values of p and their corresponding eigen vectors are all known, the Mir is 

defined, thus the coefficients ar  are deterministic right away through linear algebra 

principle. 

 

The above solution is only on how to solve the displacement response by Fourier transform. 

To obtain SAW velocities, the solution is to remain in the Fourier transformed space. 

Spatial x is transformed to k while time t is transformed to ω . 𝑘/ω  is defined to be 
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slowness. It is more effective to remain in the slowness space and evaluate the variation of 

displacement directly to get the SAW velocity. 

 

The solution mentioned above corresponds to a point source stimulus, so intrinsically this 

solution is a Green’s function. The stimulus source in our measurement, however, is a 

circular laser spot with Gaussian distribution of intensity. To obtain the complete solution, 

it is necessary to convolute the real heating source profile with this Green’s function. We 

assume the heating laser spot is expressed in (A.14). 

S(x, y) = Ae
−

x2+y2

a2  (A. 14) 

  

Wherein, a is the radius of the spot. Then the convolution of the displacement with (A.14) 

is the real solution in the time-space domain. The multiplicity of (A.11) and Fourier 

transformed (A.14) is the real solution in the slowness space. 
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Appendix B: The Model for Bulk Acoustic Waves 
 

 

(This bulk acoustic wave model is mostly following the book by Rosenbaum38.) 

 

The bulk wave differs from the SAWs in that the third space component (the space variable 

normal to the sample surface) can also be sampled, which however, is a parameter to be 

determined in the surface wave modeling. 

 

The governing equation for bulk wave modeling is exactly the same as the surface wave 

modeling regardless of the infinity in the third dimension. In this case, there is no boundary 

condition confining the wave. 

Cijkl

∂2Ul

∂xj ∂xk
= ρ

∂2Ui

∂t2
 (B. 1) 

 

Assume the solution of displacement has such a form 

𝑈𝑖 = 𝐴𝑒−𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦+𝑘𝑧𝑧−𝜔𝑡) (B. 2) 

 

where A stands for amplitude, k the wave vector. The rest of variables are defined exactly 

as in SAW modeling.   
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Substitute Equation B.2 into Equation B.1, a homogeneous equation is obtained 

(Cijkl𝑘𝑗𝑘𝑘 − ρω2𝛿𝑖𝑙)𝑈𝑙 = 0 (B. 3) 

 

Introduction of direction cosine of the propagation and the relation between phase velocity 

and time and space frequencies yields 

(Cijkl𝑙𝑗𝑙𝑘 − ρv2𝛿𝑖𝑙)𝑈𝑙 = 0 (B. 4) 

 

Wherein, 𝑙 stands for the propagation direction cosine and 𝑣 the phase bulk wave velocity. 

To guarantee this equation has non-trivial solution of displacement, the determinant of the 

matrix must vanish 

det |Cijkl𝑙𝑗𝑙𝑘 − ρv2𝛿𝑖𝑙| = 0 (B. 5) 

 

By solving this equation, a bi-cubic equation with respect to v is obtained, and the three 

positive v solutions are the corresponding velocities of the three bulk waves. 

 

All the eigenvalues of v are substituted into Equation B.4 to solve the displacement. By 

comparing the polarization (displacement) vector with the propagation direction, 

corresponding velocity modes can be mapped out accordingly. 

 

In addition, our modeling also takes into account the piezoelectric effect. This effect is 

considered by modifying the expression of the elastic constants. 

𝐶′ = 𝐶𝐸 +
𝑒2

𝜖2
 (B. 6) 
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Wherein, 𝐶′is the modified elastic constants, also called stiffened elastic constants; 𝐶𝐸  is 

the normal elastic constants; 𝑒  is the piezoelectric stress matrix; 𝜖  is the piezoelectric 

matrix. To express them in terms of index notation 

 

𝐶𝐾𝐿
′ = 𝐶𝐾𝐿

𝐸 +
(𝑒𝐾𝑗𝑙𝑗)(𝑙𝑖𝑒𝑖𝐿)

𝑙𝑖𝜖𝑖𝑗𝑙𝑗
 , 𝐾, 𝐿 = 1,2,3,4,5,6;    𝑖, 𝑗 = 1,2,3 (B. 7) 

 

More detailed derivation of this relation can be found else where38. 
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Appendix C: The Determination of SAW Propagation 

Direction in Measurements 
 

 

As mentioned before, experimental measurements are referred to the sample coordinate 

system through the transverse direction (TD), rolling direction (RD) and normal direction 

(ND) while modeling calculations are referred to the crystalline principle coordinate 

system (reference direction for SAW velocity is [010]), the conversion of the coordinates 

between these two coordinate systems needs to be established.  

 

In addition, the reference direction in the sample coordinate system was chosen to be TD, 

but the actual direction was determined by the PDMS film. The grating vector (the direction 

perpendicular to the grating lines) determined the actual direction of SAW propagation. 

Typically, the PDMS film is not perfectly aligned along the TD direction, there was always 

some deviation from the reference direction that needs to be corrected. Moreover, in some 

cases, PDMS was rotated on purpose by different angles to increase the number of film 

orientations for distinct anisotropic SAW velocities. Thus, the deviation angle between 

PDMS grating vector and reference TD direction needs to be accurately measured to get 

SAW measurements right. As a result, the connection between the experimental coordinate 
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system and the coordinate system associated with PDMS grating vector needs to be 

established.  

 

For any two Cartesian coordinate systems, any direction indicated by a normalized 3-digit 

vector in one coordinate system can be expressed in the other coordinate system through 

the transformation matrix as constructed as follows: 

 

 

 

Figure C.1. The old and new Cartesian coordinate systems and how each component of the 

transformation matrix is constructed. 
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In Figure C.1, x1, x2, x3  are assumed to represent the three axes of the old Cartesian 

coordinate system while x1′, x2′, x3′  represent the three axes of the new Cartesian 

coordinate system. Then the transformation matrix can be constructed as 

𝐴 = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

]                                                      (C. 1) 

Where aij stands for the cosine of the angle between the new i axis and old j axis. 

 

Euler Angles (α, β, γ, Bunge’s convention) stand for three consecutive rotations, starting 

from the rotation about z axis by α, followed by the rotation about new x axis by β and 

then followed by the rotation about the newest z axis by γ. Based on Equation C.1, the 

corresponding transformation matrix of the three consecutive rotations is expressed as 

follows: 

 

T1 = [
cos𝛾 sinγ 0

−sinγ cosγ 0
0 0 1

] [

1 0 0
0 cosβ 𝑠𝑖𝑛𝛽
0 −𝑠𝑖𝑛𝛽 cosβ

] [
cos𝛼 sinα 0

−sinα cosα 0
0 0 1

]                 (C. 2) 

 

In terms of the PDMS film orientation, a new coordinate system was established. Figure 

C.2 shows the general relation between the sample coordinate system and PDMS-based 

coordinate system. Here A1 and A2 stand for RD and TD directions in the sample 

coordinate system. The ND direction points out of paper. They formed the sample 

coordinate system. OP stands for the PDMS film grating line direction while OS stands for 

the direction of SAW propagation. OP and OS are perpendicular to each other. With a 
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virtue axis pointing out of paper, the PDMS orientation-based coordinate system was 

established. (Here a right-hand Cartesian coordinate system was guaranteed). Thus, the 

transformation matrix M connecting the PDMS coordinate system and sample coordinate 

system could be established, which rotated OP to A1 and OS to A2. The rotation angle (not 

the deviation angle) was defined to be the angle between OP and the direction antiparallel 

to A2. This provides the convenience when measuring the angle under a microscope. With 

the angle known, the transformation matrix was constructed as in Equation C.3. 

 

Figure C.2. Two coordinate systems correlating the PDMS film vector orientation with the 

EBSD orientation.  

 

T2 = [
cos(90 − 𝛿) cos(𝛿) 0

cos(180 − 𝛿) cos(90 − 𝛿) 0
0 0 1

]                                      (C. 3)  
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As a result, the actual SAW propagation direction OS was rotated to align with the TD 

direction in sample coordinate system, which was then transformed by rotations 

represented by Euler Angles to align with the [010] direction in the crystalline principle 

coordinate system. The complete coordinate transformation was in Equation C.4.  

 

T = [
cos𝛾 sinγ 0

−sinγ cosγ 0
0 0 1

] [

1 0 0
0 cosβ 𝑠𝑖𝑛𝛽
0 −𝑠𝑖𝑛𝛽 cosβ

] [
cos𝛼 sinα 0

−sinα cosα 0
0 0 1

] [
cos(90 − 𝛿) cos(𝛿) 0

cos(180 − 𝛿) cos(90 − 𝛿) 0
0 0 1

] (C. 4) 

Also, in order to express [010] in terms of the PDMS coordinate system, we can apply the 

transpose of the transformation matrix to [010], namely 

C = 𝑇′ [
0
1
0

] 
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Appendix D: MATLAB coding used in this dissertation 
 

 

1. Forward simulation 

clear 
clc 
tic 
ub=[800,300,300]'*1e9;%This is the upper bound for C11 C44 C12 for most 

metals and ceramics 
lb=[4,2,2]'*1e9;      %This is the lower bound for C11 C44 C12 for most 

metals and ceramics 
Num=[8,3,3];          %Attempt numbers of C11 C44 C12 

  
%Sampling the C11 C44 C12 values for initials values   
for i=1:3; 
Cset{i}=linspace(lb(i),ub(i),Num(i)+2); 
Cset{i}(1)=[]; 
Cset{i}(end)=[]; 
end 

  
% Find the terminal output with errors and iterations. Error minimum is 

the target  
for i=1:Num(1);  % C11 
    for j=1:Num(2);  %C44 
        for k=1:Num(3);  %C12 
            i 
            j 
            k 
    % Temp1 Temp2 and Temp3 are the initial C11 C44 C12 

values,respectively 
            Temp1=Cset{1}(i); 
            Temp2=Cset{2}(j); 
            Temp3=Cset{3}(k); 
            [Temp1,Temp2,Temp3] 
            [x,fval,exitflag,output] = 

fminsearchbnd(@Ni_fitting_three_value_3_11_16,[Temp1 Temp2 

Temp3],lb,ub); %***** 

            
            % fminsearchbnd returns the information between measured 

velocities and theoretically set velocities in the subroutine  
            C{i,j,k}=x; 
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            err(i,j,k)=fval; 
            iter(i,j,k)=output.iterations; 
        end 
    end 
end 
save('Ni_forward_simulation_XX_XX_XXXX') 

  
%Sort the differences among each local optimum 
[errmin, minind] = min(err(:)); 
[i, j, k] = ind2sub(size(err),minind); 
fprintf('The smallest error is %d\n',err(i,j,k)) 
fprintf('The corresponding Cij is C11:%.3dGPa C44:%.3dGPa 

C12:%.3dGPa\n',C{i,j,k}/1e9) 

  
%Display the differences and associated C values from smallest to 

largest 
disp('Display the entire Cij values and corresponding differences:') 
disp('         C11          C44          C12         err'); 
errSort=sort(err(:)); 
for i=1:length(err(:)); 
    Cindex=find(err==errSort(i)); 
   [a,b,c]=ind2sub(size(err),Cindex); 
   format shortg 
   disp([C{a,b,c}/1e9,err(a,b,c),2*C{a,b,c}(2)/(C{a,b,c}(1)-

C{a,b,c}(3))]); 
end 
toc 
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function [x,fval,exitflag,output] = 

fminsearchbnd(fun,x0,LB,UB,options,varargin) 
% FMINSEARCHBND: FMINSEARCH, but with bound constraints by 

transformation 
% usage: x=FMINSEARCHBND(fun,x0) 
% usage: x=FMINSEARCHBND(fun,x0,LB) 
% usage: x=FMINSEARCHBND(fun,x0,LB,UB) 
% usage: x=FMINSEARCHBND(fun,x0,LB,UB,options) 
% usage: x=FMINSEARCHBND(fun,x0,LB,UB,options,p1,p2,...) 
% usage: [x,fval,exitflag,output]=FMINSEARCHBND(fun,x0,...) 
%  
% arguments: 
%  fun, x0, options - see the help for FMINSEARCH 
% 
%  LB - lower bound vector or array, must be the same size as x0 
% 
%       If no lower bounds exist for one of the variables, then 
%       supply -inf for that variable. 
% 
%       If no lower bounds at all, then LB may be left empty. 
% 
%       Variables may be fixed in value by setting the corresponding 
%       lower and upper bounds to exactly the same value. 
% 
%  UB - upper bound vector or array, must be the same size as x0 
% 
%       If no upper bounds exist for one of the variables, then 
%       supply +inf for that variable. 
% 
%       If no upper bounds at all, then UB may be left empty. 
% 
%       Variables may be fixed in value by setting the corresponding 
%       lower and upper bounds to exactly the same value. 
% 
% Notes: 
% 
%  If options is supplied, then TolX will apply to the transformed 
%  variables. All other FMINSEARCH parameters should be unaffected. 
% 
%  Variables which are constrained by both a lower and an upper 
%  bound will use a sin transformation. Those constrained by 
%  only a lower or an upper bound will use a quadratic 
%  transformation, and unconstrained variables will be left alone. 
% 
%  Variables may be fixed by setting their respective bounds equal. 
%  In this case, the problem will be reduced in size for FMINSEARCH. 
% 
%  The bounds are inclusive inequalities, which admit the 
%  boundary values themselves, but will not permit ANY function 
%  evaluations outside the bounds. These constraints are strictly 
%  followed. 
% 
%  If your problem has an EXCLUSIVE (strict) constraint which will 
%  not admit evaluation at the bound itself, then you must provide 
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%  a slightly offset bound. An example of this is a function which 
%  contains the log of one of its parameters. If you constrain the 
%  variable to have a lower bound of zero, then FMINSEARCHBND may 
%  try to evaluate the function exactly at zero. 
% 
% 
% Example usage: 
% rosen = @(x) (1-x(1)).^2 + 105*(x(2)-x(1).^2).^2; 
% 
% fminsearch(rosen,[3 3])     % unconstrained 
% ans = 
%    1.0000    1.0000 
% 
% fminsearchbnd(rosen,[3 3],[2 2],[])     % constrained 
% ans = 
%    2.0000    4.0000 
% 
% See test_main.m for other examples of use. 
% 
% 
% See also: fminsearch, fminspleas 
% 
% 
% Author: John D'Errico 
% E-mail: woodchips@rochester.rr.com 
% Release: 4 
% Release date: 7/23/06 

  
% size checks 
xsize = size(x0); 
x0 = x0(:); 
n=length(x0); 

  
if (nargin<3) || isempty(LB) 
  LB = repmat(-inf,n,1); 
else 
  LB = LB(:); 
end 
if (nargin<4) || isempty(UB) 
  UB = repmat(inf,n,1); 
else 
  UB = UB(:); 
end 

  
if (n~=length(LB)) || (n~=length(UB)) 
  error 'x0 is incompatible in size with either LB or UB.' 
end 

  
% set default options if necessary 
if (nargin<5) || isempty(options) 
  options = optimset('fminsearch'); 
end 

  



133 

 

% stuff into a struct to pass around 
params.args = varargin; 
params.LB = LB; 
params.UB = UB; 
params.fun = fun; 
params.n = n; 
% note that the number of parameters may actually vary if  
% a user has chosen to fix one or more parameters 
params.xsize = xsize; 
params.OutputFcn = []; 

  
% 0 --> unconstrained variable 
% 1 --> lower bound only 
% 2 --> upper bound only 
% 3 --> dual finite bounds 
% 4 --> fixed variable 
params.BoundClass = zeros(n,1); 
for i=1:n 
  k = isfinite(LB(i)) + 2*isfinite(UB(i)); 
  params.BoundClass(i) = k; 
  if (k==3) && (LB(i)==UB(i)) 
    params.BoundClass(i) = 4; 
  end 
end 

  
% transform starting values into their unconstrained 
% surrogates. Check for infeasible starting guesses. 
x0u = x0; 
k=1; 
for i = 1:n 
  switch params.BoundClass(i) 
    case 1 
      % lower bound only 
      if x0(i)<=LB(i) 
        % infeasible starting value. Use bound. 
        x0u(k) = 0; 
      else 
        x0u(k) = sqrt(x0(i) - LB(i)); 
      end 

       
      % increment k 
      k=k+1; 
    case 2 
      % upper bound only 
      if x0(i)>=UB(i) 
        % infeasible starting value. use bound. 
        x0u(k) = 0; 
      else 
        x0u(k) = sqrt(UB(i) - x0(i)); 
      end 

       
      % increment k 
      k=k+1; 
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    case 3 
      % lower and upper bounds 
      if x0(i)<=LB(i) 
        % infeasible starting value 
        x0u(k) = -pi/2; 
      elseif x0(i)>=UB(i) 
        % infeasible starting value 
        x0u(k) = pi/2; 
      else 
        x0u(k) = 2*(x0(i) - LB(i))/(UB(i)-LB(i)) - 1; 
        % shift by 2*pi to avoid problems at zero in fminsearch 
        % otherwise, the initial simplex is vanishingly small 
        x0u(k) = 2*pi+asin(max(-1,min(1,x0u(k)))); 
      end 

       
      % increment k 
      k=k+1; 
    case 0 
      % unconstrained variable. x0u(i) is set. 
      x0u(k) = x0(i); 

       
      % increment k 
      k=k+1; 
    case 4 
      % fixed variable. drop it before fminsearch sees it. 
      % k is not incremented for this variable. 
  end 

   
end 
% if any of the unknowns were fixed, then we need to shorten 
% x0u now. 
if k<=n 
  x0u(k:n) = []; 
end 

  
% were all the variables fixed? 
if isempty(x0u) 
  % All variables were fixed. quit immediately, setting the 
  % appropriate parameters, then return. 

   
  % undo the variable transformations into the original space 
  x = xtransform(x0u,params); 

   
  % final reshape 
  x = reshape(x,xsize); 

   

  % stuff fval with the final value 
  fval = feval(params.fun,x,params.args{:}); 

   
  % fminsearchbnd was not called 
  exitflag = 0; 
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  output.iterations = 0; 
  output.funcCount = 1; 
  output.algorithm = 'fminsearch'; 
  output.message = 'All variables were held fixed by the applied 

bounds'; 

   
  % return with no call at all to fminsearch 
  return 
end 

  
% Check for an outputfcn. If there is any, then substitute my 
% own wrapper function. 
if ~isempty(options.OutputFcn) 
  params.OutputFcn = options.OutputFcn; 
  options.OutputFcn = @outfun_wrapper; 
end 

  
% now we can call fminsearch, but with our own 
% intra-objective function. 
[xu,fval,exitflag,output] = fminsearch(@intrafun,x0u,options,params); 

  
% undo the variable transformations into the original space 
x = xtransform(xu,params); 

  
% final reshape to make sure the result has the proper shape 
x = reshape(x,xsize); 

  
% Use a nested function as the OutputFcn wrapper 
  function stop = outfun_wrapper(x,varargin); 
    % we need to transform x first 
    xtrans = xtransform(x,params); 

     
    % then call the user supplied OutputFcn 
    stop = params.OutputFcn(xtrans,varargin{1:(end-1)}); 

     
  end 

  
end % mainline end 

  
% ====================================== 
% ========= begin subfunctions ========= 
% ====================================== 
function fval = intrafun(x,params) 
% transform variables, then call original function 

  

% transform 
xtrans = xtransform(x,params); 

  
% and call fun 
fval = feval(params.fun,reshape(xtrans,params.xsize),params.args{:}); 
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end % sub function intrafun end 

  
% ====================================== 
function xtrans = xtransform(x,params) 
% converts unconstrained variables into their original domains 

  
xtrans = zeros(params.xsize); 
% k allows some variables to be fixed, thus dropped from the 
% optimization. 
k=1; 
for i = 1:params.n 
  switch params.BoundClass(i) 
    case 1 
      % lower bound only 
      xtrans(i) = params.LB(i) + x(k).^2; 

       
      k=k+1; 
    case 2 
      % upper bound only 
      xtrans(i) = params.UB(i) - x(k).^2; 

       
      k=k+1; 
    case 3 
      % lower and upper bounds 
      xtrans(i) = (sin(x(k))+1)/2; 
      xtrans(i) = xtrans(i)*(params.UB(i) - params.LB(i)) + 

params.LB(i); 
      % just in case of any floating point problems 
      xtrans(i) = max(params.LB(i),min(params.UB(i),xtrans(i))); 

       
      k=k+1; 
    case 4 
      % fixed variable, bounds are equal, set it at either bound 
      xtrans(i) = params.LB(i); 
    case 0 
      % unconstrained variable. 
      xtrans(i) = x(k); 

       
      k=k+1; 
  end 
end 

  
end % sub function xtransform end 
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2. SAW wave modeling 

function val=Ni_fitting_three_value_3_11_16(x)    %***** 

  
 %This function is used to calculate the difference between the 

experimental and calculated SAW velocities at given Cij values  

  
 %x: elastic constants [C11 C44 C12] 
 %val: the difference between experimental and calculated SAW 

velocities 

  
sampling=4000; 
rho=8.91*10^3;%kg/m^3 for Ni             %***** 
lambda=7*10^-6; %m 
k0=2*pi/lambda; 
T=20*10^-13;%s 
w0=2*pi/T; 
offset=0; 
w=w0+complex(0,0.000001*w0); 

  
C11=x(1); 
C44=x(2); 
C12=x(3); 

  
%vset values are velocities from experiment %***** 
vset1=2886.7; 
vset2=2396.0; 
vset3=2914.3; 
vset4=2612.7; 
vset5=2640.3; 
vset6=2812.3; 
vset7=2808.1; 
vset8=2897.3; 
vset9=2899.4; 

  
%Assembly 
vset=[vset1,vset2,vset3,vset4,vset5,vset6,vset7,vset8,vset9]; %***** 

  
EulerMatrix=[ 
    6.1857    2.2641    4.6373 
    4.3537    2.4559    5.6268 
    1.3703    1.5124    5.9412 
    4.9150    2.7210    0.9819 
    4.8803    2.7069    5.6597 
    1.8460    1.5427    0.1308 
    1.8413    1.5579    0.1312 
    1.3812    1.5116    5.9108 
    1.3606    1.5239    5.9416 
    ]; 

  
Number=length(vset); % Number of measurements for elastic constants 



138 

 

  
for flag=1:Number; 

     
% Preallocate 
F=zeros(3,3); 
B=zeros(3,3); 
M=zeros(3,3); 
N=zeros(3,3); 
POL=cell(3,3); 
pp=zeros(1,3); 
S=cell(1,3); 
x=zeros(1,3); 
y=zeros(1,3); 
z=zeros(1,3); 
A=zeros(3,3); 
R=zeros(3,3); 
I=zeros(3,3); 
a=zeros(1,3); 
G33=zeros(1,sampling); 

  
%Evaluate the Cij 
%C(3,3,3,3)=0; 
C=zeros(3,3,3,3); 
[C(1,1,1,1),C(2,2,2,2),C(3,3,3,3)]=deal(C11); 
[C(1,1,2,2),C(1,1,3,3),C(2,2,3,3)]=deal(C12); 
[C(2,3,2,3),C(1,3,1,3),C(1,2,1,2)]=deal(C44); 

  
for i=1:3; 
    for j=1:3; 
        for k=1:3; 
            for l=1:3; 
                if C(i,j,k,l)~=0; 
                    

[C(j,i,k,l),C(i,j,l,k),C(j,i,l,k),C(k,l,i,j)]=deal(C(i,j,k,l)); 
                end 
            end 
        end 
    end 
end 
deg=8;  %PDMS 

orientation                                                            

%***** 

  
MM=[cosd(90-deg) cosd(deg) 0;cosd(180-deg) cosd(90-deg) 0; 0 0 1]; %It 

brings PDMS orientation into Sample coordinate system 
%Euler angle plus MM brings PDMS coordinate system into coincidence 

with crystalline coordinate system 
C=C_modifi(C,(Euler2matrix(EulerMatrix(flag,1),EulerMatrix(flag,2),Eule

rMatrix(flag,3))*MM)'); 

  
%evaluate the initial k 
for nx=1; 
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    for ny=1:sampling; 

  
k(1)=nx*k0; 
k(2)=ny*k0; 

  
%evaluate the quadratic coefficient 
for i=1:3; 
    for j=1:3; 
        F(i,j)=C(i,3,3,j); 
    end 
end 

  
%evaluate the linear coefficient 
for i=1:3; 
    for l=1:3; 
        B(i,l)=0; 
    end 
end 

  
for i=1:3; 
    for l=1:3; 
        for u=1:2; 
            B(i,l)=B(i,l)-k(u)*C(i,u,3,l); 
        end 
            for v=1:2; 
                B(i,l)=B(i,l)-k(v)*C(i,3,v,l); 

         
            end 

         
        M(i,l)=B(i,l)*complex(0,1); 
    end 
end 

  
% Evaluate the constant coefficient 

  
for i=1:3; 
    for l=1:3; 
        N(i,l)=0; 
    end 
end 

  
for i=1:3; 
    for l=1:3; 
        N(i,l)=N(i,l)+rho*w^2*deltaij(i,l); 
        for u=1:2; 
            for v=1:2 
                N(i,l)=N(i,l)-C(i,u,v,l)*k(u)*k(v); 
            end 
        end 
    end 
end 
% Get the final expression 
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for i=1:3; 
    for j=1:3; 
POL{i,j}=[F(i,j) M(i,j) N(i,j)]; 
    end 
end 
Poly=conv(conv(POL{1,1},POL{2,2}),POL{3,3})+conv(conv(POL{1,2},POL{2,3}

),POL{3,1})+conv(conv(POL{1,3},POL{2,1}),POL{3,2})-

conv(conv(POL{1,1},POL{2,3}),POL{3,2})-

conv(conv(POL{1,2},POL{2,1}),POL{3,3})-

conv(conv(POL{1,3},POL{2,2}),POL{3,1}); 
ppC=roots(Poly); 
cont=0; 
for i=1:length(ppC); 
    if real(ppC(i)>0) 
        cont=cont+1; 
pp(cont)=ppC(i); 
    end 
end 

     
% keep useful p values 
%pp=[pp(1) pp(2) pp(3)]; 

  
% Solve to get A;;;;Notice imaginary number 
for i=1:3; 
     S{i}=F*pp(i)^2+M*pp(i)+N; 
     temp=S{i}; 

  
      [NA,NB,NC]=svd(temp); 
      Sol=NC(:,end); 
      x(i)=Sol(1); 
      y(i)=Sol(2); 
      z(i)=Sol(3); 

  
end 

  
% %Choose the first set as the solution of A; First index: the number 

of set; 
% %Second: the order of the components 

  
 for i=1:3; 
     A(i,1)=x(i); 
     A(i,2)=y(i); 
     A(i,3)=z(i); 
 end 

          
 if(nx==0)&&(ny==0); 
     A=eye(3); 
 end 

  
%boundary conditions to determine a 
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for i=1:3; 
    for r=1:3; 
        R(i,r)=0; 
        I(i,r)=0; 
    end 
end 

  
%determine the coefficients of each a 
for i=1:3; 
    for r=1:3; 
        for l=1:3; 
            R(i,r)=R(i,r)+C(i,3,3,l)*pp(r)*A(r,l); 
            for u=1:2; 
                I(i,r)=I(i,r)+C(i,3,u,l)*k(u)*A(r,l); 
            end 
        end 
    end 
end 
Comb=-R+I*complex(0,1); 
del=[0 0 1]'; 

  
% Solve a by using determinant operatios 
for r=1:3; 
    Aug=Comb; 
    Aug(:,r)=del; 
    a(r)=det(Aug)/det(Comb); 
end 

  
%get G value 
    G33(nx+offset,ny+offset)=0; 
    for r=1:3; 
        G33(nx+offset,ny+offset)=G33(nx+offset,ny+offset)+a(r)*A(r,3); 
    end 
    end 
end 

  
inc=1; 
xx=1:sampling; 
yy=real(G33(1,:)); 
xnew=1:inc:sampling; 
ynew=spline(xx,yy,xnew); 
YYnew=H_L_Peak_Ni(ynew,inc);                        %***** 
Numer=1+inc*YYnew; 
slownessnew=Numer*k0/real(w); 
velocitynew=1./slownessnew; 
%vel(flag)=velocitynew; 
%velSet(flag)=velocitynew 
%err(flag)=(velocity-vset(flag))/vset(flag); 
%diff(flag)=abs(velocitynew-vset(flag))/vset(flag);     
end 
val=sum(diff); 
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function y=H_L_Peak_Ni(var,inc) 

%This function is to return the RW peak location considering the case 

when 
%maximum and minimum are so close 
%y: RW peak slowness 
%var: displacement 
%inc: slowness 

 
PeakTotal=find((diff(ynew))<0); 
 dif=diff(ynew);  
 MaxI=find(diff(sign(dif))==-2)+1; %Get the maximum indices 
 MinI=find(diff(sign(dif))==2)+1;  %Get the mininum indices 
 if length(MaxI)<2 || length(MinI)<2;  %If there is only one Peak, use 

it as SAW 
     y=(PeakTotal(end)); 
 elseif abs(xnew(MaxI(end-1))-xnew(MinI(end-1)))<1e-

5&&abs((ynew(MaxI(end-1))-ynew(MinI(end-1))))>1e-19; %difference 

between Max and Min is larger and closer enough, count it as a peak  
     y=(MaxI(end-1)+MinI(end-1))/2; 
     if y*2.8571e-07<3.4e-4;  %If the slowness peak is too small, count 

it as some useless fluctuation 
         y=(PeakTotal(end)); 
     end 
 elseif length(PeakTotal)==0; 
    y=0; 
else 
y=(PeakTotal(end)); 
end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



143 

 

function M=Euler2matrix(a,b,r) 
%This program is to convert the Euler angle set to matrix 

multiplication 
%M: transformation matrix 
%a,b,r: Input the Euler angles(radian) in order with the intrinsic 

convention (Bunge's convention) z-x'-z''  
%It brings the sample coordinate frame into coincidence with the 

crystalline coordinate frame 

  
Rza=[cos(a) sin(a) 0 
    -sin(a) cos(a) 0 
    0 0 1]; 

  
Rxb=[1 0 0 
    0 cos(b) sin(b) 
    0 -sin(b) cos(b)]; 

  
Rzr=[cos(r) sin(r) 0 
    -sin(r) cos(r) 0 
    0 0 1]; 

  
M=Rzr*Rxb*Rza; 
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function newC=C_modifi(C,a) 
%This function is used to transform C in the new coordinate frame based 

on transformation matrix a 
% C: input elastic constants; 
% a: transformation matrix 

  
newC=zeros(3,3,3,3); 
for ip=1:3; 
    for jp=1:3; 
        for kp=1:3; 
            for lp=1:3; 
                for i=1:3; 
                    for j=1:3; 
                        for k=1:3; 
                            for l=1:3; 
                                

newC(ip,jp,kp,lp)=newC(ip,jp,kp,lp)+a(ip,i)*a(jp,j)*a(kp,k)*a(lp,l)*C(i

,j,k,l); 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 

 

 

 

 

 

 

 

 

 

 

 



145 

 

3.  Bulk wave modeling: 

clear; 
clc; 
close all; 
%Define the plane you have interest. The two axes must be perpendicular 
 Xaxis=[1,0,0]; 
 Yaxis=[0,1,0]; 

  
run material_parameters; 
L=1;%Longitudinal mode; 
SV=2;%Shear mode vibrating in sagital plane 
SH=3;%Shear mode (Lame mode) 
%Get basic information of the material 
[CIJ,dens,name,DIJ,PIJ]=parameter(Ni); 
%Solve the eigen problems 
[vphase,slowness,angle]=Christoffel_directEig_piezo(CIJ,Xaxis,Yaxis,den

s,DIJ,PIJ,'non-piezo'); 
%[vphaseNonPiezo,slownessNonPiezo,angle2]=Christoffel_directEig_piezo(C

IJ,Xaxis,Yaxis,dens,DIJ,PIJ,'non-piezo'); 

  

  
for i=1:length(vphase) 
vpx(i,:)=vphase(i,:)*cos(angle(i)); 
vpy(i,:)=vphase(i,:)*sin(angle(i)); 
sx(i,:)=slowness(i,:)*cos(angle(i)); 
sy(i,:)=slowness(i,:)*sin(angle(i)); 
end 

  
%This is to draw the phase velocity 
figure(1) 
plot(vpx,vpy) 
legend('(Quasi)L','(Quasi)SV','(Quasi)SH') 
xlabel('phase velocity in km/s') 
title([name ,'  surface ','x: [',num2str(Xaxis),']   y: 

[',num2str(Yaxis),']']) 
grid on 
axis tight 
axis equal 

  
%This is to draw the slowness space 
figure(2) 
plot(sx/1000,sy/1000,'o') 
legend('(Quasi)L','(Quasi)SV','(Quasi)SH','Location','NorthEast') 
xlabel('slowness in s/m') 
% xlim([-4,4]*1e-4); 
% ylim=([-4,4]*1e-4); 
title(['  slowness surface ','x: [',num2str(Xaxis),']   y: 

[',num2str(Yaxis),']']) 

  
grid on 
axis tight 
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axis equal 

  
%This is to draw the power flow angle in degree, which is the angle 

between the propagation vector and energy velocity vector  
for i=1:length(slowness) 
 [Sbrch1(i,1),Sbrch1(i,2)]=P2C(slowness(i,1),angle(i)); 
 [Sbrch2(i,1),Sbrch2(i,2)]=P2C(slowness(i,2),angle(i)); 
 [Sbrch3(i,1),Sbrch3(i,2)]=P2C(slowness(i,3),angle(i)); 
end 

  
for i=1:length(slowness) 

     
    if i==length(slowness) 
        [Vgdir1(:,i),phi1(i)]=PowerFlowAngle(Sbrch1(i,:),Sbrch1(1,:)); 
        [Vgdir2(:,i),phi2(i)]=PowerFlowAngle(Sbrch2(i,:),Sbrch2(1,:)); 
        [Vgdir3(:,i),phi3(i)]=PowerFlowAngle(Sbrch3(i,:),Sbrch3(1,:)); 
    else 
        

[Vgdir1(:,i),phi1(i)]=PowerFlowAngle(Sbrch1(i,:),Sbrch1(i+1,:)); 
        

[Vgdir2(:,i),phi2(i)]=PowerFlowAngle(Sbrch2(i,:),Sbrch2(i+1,:)); 
        

[Vgdir3(:,i),phi3(i)]=PowerFlowAngle(Sbrch3(i,:),Sbrch3(i+1,:)); 
    end 
end 

  
figure(3) 
plot(angle*180/pi,phi1,'b',angle*180/pi,phi2,'r',angle*180/pi,phi3,'k',

'Markersize',3) 
xlim([0,180]) 
legend('(Quasi)L','(Quasi)SV','(Quasi)SH') 
xlabel('Power Flow Angle in degree') 
title([name ,'  surface ','x: [',num2str(Xaxis),']   y: 

[',num2str(Yaxis),']']) 
grid on 

  
%This is to draw the ray surface 
vgroup(:,1)=vphase(:,1)./(cosd(phi1')); 
vgroup(:,2)=vphase(:,2)./(cosd(phi2')); 
vgroup(:,3)=vphase(:,3)./(cosd(phi3')); 

     
vgx(:,1)=vgroup(:,1).*Vgdir1(1,:)'; 
vgy(:,1)=vgroup(:,1).*Vgdir1(2,:)'; 
vgx(:,2)=vgroup(:,2).*Vgdir2(1,:)'; 
vgy(:,2)=vgroup(:,2).*Vgdir2(2,:)'; 
vgx(:,3)=vgroup(:,3).*Vgdir3(1,:)'; 
vgy(:,3)=vgroup(:,3).*Vgdir3(2,:)'; 

  
figure(4) 
plot(vgx,vgy) 
legend('(Quasi)L','(Quasi)SV','(Quasi)SH') 
xlabel('Ray surface') 
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title([name ,'  surface ','x: [',num2str(Xaxis),']   y: 

[',num2str(Yaxis),']']) 
grid on 
axis tight 
axis equal 

  
%This is to get and draw electro-mechanical coupling constant 
Ksquare=(vphase-vphaseNonPiezo).^2./(vphase.^2); 
ktsquare=Ksquare./(Ksquare+1); 
kt=sqrt(ktsquare); 
figure(5) 
plot(angle*180/pi,kt(:,1),'b',angle*180/pi,kt(:,2),'r',angle*180/pi,kt(

:,3),'k') 
legend('(Quasi)L','(Quasi)SV','(Quasi)SH') 
xlabel('Angle of acoustic propagation vector') 
ylabel('coupling constant') 
xlim([0,180]) 
title([name ,'  surface ','x: [',num2str(Xaxis),']   y: 

[',num2str(Yaxis),']']) 
grid on 

  
figure(6) 
for i=1:length(vphase) 
sxNon(i,:)=slownessNonPiezo(i,:)*cos(angle(i)); 
syNon(i,:)=slownessNonPiezo(i,:)*sin(angle(i)); 
end 
plot(sxNon(:,1),syNon(:,1),'b',sx(:,1),sy(:,1),'r') 
legend('non-piezo','piezo') 
xlabel('Slowness') 
title([name ,'  surface ','x: [',num2str(Xaxis),']   y: 

[',num2str(Yaxis),']']) 
grid on 
axis tight 
axis equal 

  
figure(7) 
plot(angle*180/pi,vphase) 
legend('(Quasi)L','(Quasi)SV','(Quasi)SH') 
xlabel('angle') 
ylabel('velosity') 
title([name ,'  surface ','x: [',num2str(Xaxis),']   y: 

[',num2str(Yaxis),']']) 
grid on 
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function [CIJ,dens,name,DIJ,PIJ]=parameter(mat) 
%This function is to get material properties from the data base 

  
CIJ=CIJassign(mat.indepC,mat.class) 
dens=mat.density 
name=mat.fomular 

  
if isfield(mat,'indepD')  
    %isfield is used to check whether an item in a structure exists. 

For variable existance, use the function exist. 

     
    DIJ=DIJassign(mat.indepD,mat.subclass); 
else 
    DIJ=[]; 
end 

  
if isfield(mat,'indepP')  
    %isfield is used to check whether an item in a structure exists. 

For variable existance, use the function exist. 

     
    PIJ=PIJassign(mat.indepP,mat.class); 
else 
    PIJ=[]; 
end 
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function 

[vphase,slowness,angle]=Christoffel_directEig_piezo(CIJ,Xaxis,Yaxis,den

s,DIJ,PIJ,varargin) 

  
%preallocate 
L36=zeros(3,6); 
L63=zeros(6,3); 
Chris=zeros(3,3);%Christoffel matrix 
vphase=zeros(1,3); 
slowness=zeros(1,3); 

  

  
%Construct space 
if dot(Xaxis,Yaxis)>1e-3 
    error('The axes are not perpendicular') 
end 
xaxis=Xaxis/norm(Xaxis); 
yaxis=Yaxis/norm(Yaxis); 
% make sure x and y axis are perpendicular 
zaxis=cross(xaxis,yaxis); 
R1=[xaxis;yaxis;zaxis]; 

  
increment=pi/180; 
for theta=0:increment:2*pi-increment;  %***** 
    SS=[cos(theta),sin(theta),0]; 
    L13=SS*R1;%This is used to get the direction cosine 

     

     
%Construct divergence matrix operator 
dirx=L13(1,1); 
diry=L13(1,2); 
dirz=L13(1,3); 

  
L36(1,1)=dirx; 
L36(1,5)=dirz; 
L36(1,6)=diry; 
L36(2,2)=diry; 
L36(2,4)=dirz; 
L36(2,6)=dirx; 
L36(3,3)=dirz; 
L36(3,4)=diry; 
L36(3,5)=dirx;  

  
%Construct Christoffel matrix 
if (nargin<7)|(strcmp(varargin{1},'non-piezo')); 
   Chris=L36*CIJ*L36'; 

  
elseif (strcmp(varargin{1},'piezo')) 

  
    if isempty(DIJ); 
        vphase=0; 
        slowness=0; 
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        angle=0; 
        return; 
    else %This if structure is used to avoid the interference of piezo 

parameters requirement on non-piezoelectric materials 

         
 e=CIJ*DIJ'*1e9;%This is the definition of e (called piezoelectric 

stress matrix), which is 6X3 
 assignin('base','e',e)%this is to display the local variable e into 

the workspace. It's particulaly useful in debugging 
 %(C unit: MPa; e unit: C/m^2; DIJ (called piezoelectric strain matrix 

unit: C/N) 
 %Multiply by 1e9 is to convert MPa to Pa (N/m^2) 
    numerator=(e*L13')*(e*L13')'; 
    denomenator=L13*PIJ*L13'; 
    CIJs=CIJ+numerator/denomenator/1e9; 
    Chris=L36*CIJs*L36'; 
    end 
else  
    disp('Include piezoelectricity: piezo') 
    disp('Do not include piezoelectricity: default or non-piezo') 
    error('Input the type again') 
end 

  

  
[vector value]=eig(Chris,'vector'); %Get eigenvectors and eigenvalues 
%Assign each eigenvalue to its eigenvector 
valueSort=ModeMatch(vector,value,zaxis,L13);%The order: L,SV,SH 
velocity=sqrt(valueSort/dens); 
vphase=[vphase;velocity]; 
velX=velocity*cos(theta); 
velY=velocity*sin(theta); 

  
end 
% hold off 
% axis tight 
% axis equal 
% grid on 
vphase(1,:)=[]; 
slowness=1./vphase; 
angle=0:increment:2*pi-increment;  %***** 
angle=angle'; 
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function CIJ=CIJassign(indepC,varargin) 
% This function is used to construct the CIJ matrix.  
% Format: CIJassign(indepC,varargin), where indepC stands for the 

independent elastic constants. Numbering is from 
% lowest to the highest, like C11,C12,C13...C16, C21,C22 
% varargin is used to specify the class type (cubic by default) 
if nargin<2|(strcmp(varargin{1},'cubic')) 
    if length(indepC)~=3 
        error('The number of independent elastic constants don''t match 

this class') 
    end 
C11=indepC(1); 
C12=indepC(2); 
C44=indepC(3); 
CIJ=zeros(6,6); 
[CIJ(1,1),CIJ(2,2),CIJ(3,3)]=deal(C11); 
[CIJ(1,2),CIJ(1,3),CIJ(2,3)]=deal(C12); 
[CIJ(4,4),CIJ(5,5),CIJ(6,6)]=deal(C44); 

  
elseif (strcmp(varargin{1},'isotropic')) 
    if length(indepC)==2 
        disp('Make sure you input C11 and C12 in GPa') 

     
        C11=indepC(1); 
        C12=indepC(2); 
        C44=(C11-C12)/2; 
    elseif length(indepC)==3 
        C11=indepC(1); 
        C12=indepC(2); 
        C44=indepC(3); 
    else 
        error('The number of independent elastic constants don''t match 

this class') 
    end 

     
CIJ=zeros(6,6); 
[CIJ(1,1),CIJ(2,2),CIJ(3,3)]=deal(C11); 
[CIJ(1,2),CIJ(1,3),CIJ(2,3)]=deal(C12); 
[CIJ(4,4),CIJ(5,5),CIJ(6,6)]=deal(C44); 

  
elseif (strcmp(varargin{1},'tetragonal')) 
    if length(indepC)~=7 
        error('The number of independent elastic constants don''t match 

this class') 
    end 
C11=indepC(1); 
C12=indepC(2); 
C13=indepC(3); 
C16=indepC(4); 
C33=indepC(5); 
C44=indepC(6); 
C66=indepC(7); 
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CIJ=zeros(6,6); 
[CIJ(1,1),CIJ(2,2)]=deal(C11); 
[CIJ(1,2)]=deal(C12); 
[CIJ(1,3),CIJ(2,3)]=deal(C13); 
[CIJ(1,6)]=deal(C16); 
[CIJ(2,6)]=-deal(C16); 
[CIJ(3,3)]=deal(C33); 
[CIJ(4,4),CIJ(5,5)]=deal(C44); 
[CIJ(6,6)]=deal(C66); 

  
elseif (strcmp(varargin{1},'orthorhombic')) 
    if length(indepC)~=9 
        error('The number of independent elastic constants don''t match 

this class') 
    end 
C11=indepC(1); 
C12=indepC(2); 
C13=indepC(3); 
C22=indepC(4); 
C23=indepC(5); 
C33=indepC(6); 
C44=indepC(7); 
C55=indepC(8); 
C66=indepC(9); 

  
CIJ=zeros(6,6); 
[CIJ(1,1)]=deal(C11); 
[CIJ(1,2)]=deal(C12); 
[CIJ(1,3)]=deal(C13); 
[CIJ(2,2)]=deal(C22); 
[CIJ(2,3)]=deal(C23); 
[CIJ(3,3)]=deal(C33); 
[CIJ(4,4)]=deal(C44); 
[CIJ(5,5)]=deal(C55); 
[CIJ(6,6)]=deal(C66); 

  
elseif (strcmp(varargin{1},'trigonal')) 
    if length(indepC)~=6 
        error('The number of independent elastic constants don''t match 

this class') 
    end 
C11=indepC(1); 
C12=indepC(2); 
C13=indepC(3); 
C14=indepC(4); 
C33=indepC(5); 
C44=indepC(6); 

  

  
CIJ=zeros(6,6); 
[CIJ(1,1), CIJ(2,2)]=deal(C11); 
[CIJ(1,2)]=deal(C12); 
[CIJ(1,3),CIJ(2,3)]=deal(C13); 
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[CIJ(1,4),CIJ(5,6)]=deal(C14); 
[CIJ(2,4)]=-deal(C14); 
[CIJ(3,3)]=deal(C33); 
[CIJ(4,4),CIJ(5,5)]=deal(C44); 
[CIJ(6,6)]=(C11-C12)/2; 

  
elseif (strcmp(varargin{1},'monoclinic')) 
    if length(indepC)~=13 
        error('The number of independent elastic constants don''t match 

this class') 
    end 

     
 C11=indepC(1); 
 C22=indepC(2); 
 C33=indepC(3); 
 C44=indepC(4); 
 C55=indepC(5); 
 C66=indepC(6); 
 C12=indepC(7); 
 C13=indepC(8); 
 C23=indepC(9); 
 C15=indepC(10); 
 C25=indepC(11); 
 C35=indepC(12); 
 C46=indepC(13); 

    
 CIJ=zeros(6,6); 
[CIJ(1,1)]=deal(C11); 
[CIJ(2,2)]=deal(C22); 
[CIJ(3,3)]=deal(C33); 
[CIJ(4,4)]=deal(C44); 
[CIJ(5,5)]=deal(C55); 
[CIJ(6,6)]=deal(C66); 
[CIJ(1,2)]=deal(C12); 
[CIJ(1,3)]=deal(C13); 
[CIJ(2,3)]=deal(C23); 
[CIJ(1,5)]=deal(C15); 
[CIJ(2,5)]=deal(C25); 
[CIJ(3,5)]=deal(C35); 
[CIJ(4,6)]=deal(C46);    

     
else 
    error('Check spelling of class type or class is missing here') 
end 

  
for I=1:6; 
    for J=I:6; 
        CIJ(J,I)=deal(CIJ(I,J)); 

                 
    end 
end 
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function DIJ=DIJassign(indepD,varargin) 
% This function is used to construct the CIJ matrix.  
% Format: CIJassign(indepC,varargin), where indepC stands for the 

independent elastic constants. Numbering is from 
% lowest to the highest, like C11,C12,C13...C16, C21,C22 
% varargin is used to specify the class type (cubic by default) 
if nargin<2|(strcmp(varargin{1},'cubic')) 
    disp('Only valid for 4bar3m and 23') 
    if length(indepD)~=1 
        error('The number of independent piezoelectric constants don''t 

match this situation') 
    end 
D14=indepD(1); 
DIJ=zeros(3,6); 
[DIJ(1,4),DIJ(2,5),DIJ(3,6)]=deal(D14); 

  

  
elseif (strcmp(varargin{1},'tetragonal')) 
    if length(indepD)~=7 
        error('The number of independent elastic constants don''t match 

this class') 
    end 
D11=indepD(1); 
C12=indepD(2); 
C13=indepD(3); 
C16=indepD(4); 
C33=indepD(5); 
C44=indepD(6); 
C66=indepD(7); 

  
DIJ=zeros(6,6); 
[DIJ(1,1),DIJ(2,2)]=deal(D11); 
[DIJ(1,2)]=deal(C12); 
[DIJ(1,3),DIJ(2,3)]=deal(C13); 
[DIJ(1,6)]=deal(C16); 
[DIJ(2,6)]=-deal(C16); 
[DIJ(3,3)]=deal(C33); 
[DIJ(4,4),DIJ(5,5)]=deal(C44); 
[DIJ(6,6)]=deal(C66); 

  
elseif (strcmp(varargin{1},'orthorhombic')) 
    if length(indepD)~=9 
        error('The number of independent elastic constants don''t match 

this class') 
    end 
D11=indepD(1); 
C12=indepD(2); 
C13=indepD(3); 
C22=indepD(4); 
C23=indepD(5); 
C33=indepD(6); 
C44=indepD(7); 
C55=indepD(8); 
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C66=indepD(9); 

  
DIJ=zeros(6,6); 
[DIJ(1,1)]=deal(D11); 
[DIJ(1,2)]=deal(C12); 
[DIJ(1,3)]=deal(C13); 
[DIJ(2,2)]=deal(C22); 
[DIJ(2,3)]=deal(C23); 
[DIJ(3,3)]=deal(C33); 
[DIJ(4,4)]=deal(C44); 
[DIJ(5,5)]=deal(C55); 
[DIJ(6,6)]=deal(C66); 

  
elseif (strcmp(varargin{1},'3m m x1')) 
    if length(indepD)~=4 
        error('The number of independent piezoelectric constants don''t 

match this situation') 
    end 
D15=indepD(1); 
D16=indepD(2); 
D31=indepD(3); 
D33=indepD(4); 

  
DIJ=zeros(3,6); 
[DIJ(1,5), DIJ(2,4)]=deal(D15); 
[DIJ(1,6)]=deal(D16); 
[DIJ(2,1)]=deal(D16)/2; 
[DIJ(2,2)]=-deal(D16)/2; 
[DIJ(3,1),DIJ(3,2)]=deal(D31); 
[DIJ(3,3)]=deal(D33); 

  

  
else 
    %error('Check spelling of class type or class is missing here') 
    DIJ=[]; 
end 
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