
Compiler Techniques for Transformation Verification, Energy
Efficiency and Cache Modeling

DISSERTATION

Presented in Partial Fulfillment of the Requirements for the Degree Doctor
of Philosophy in the Graduate School of The Ohio State University

By

Wenlei Bao, M.S.

Graduate Program in Computer Science and Engineering

The Ohio State University

2018

Dissertation Committee:

Prof. P. Sadayappan, Advisor

Prof. Gagan Agrawal

Prof. Radu Teodorescu

Prof. Louis-Noel Pouchet

Dr. Sriram Krishnamoorthy



c⃝ Copyright by

Wenlei Bao

2018



ABSTRACT

Performance has been the focus of computer systems for decades, from past Moore law

to current parallel computers. Compiler optimizations are used to improve performance by

generating code to utilize hardware (e.g. cache)component efficiently. However, modern

systems such as large scale system require not only performance but also resilience and

energy efficiency. Increasing concern of system resilience and energy efficiency has been

shown in both industry and academia.

Errors within applications, especially those escape from detection and resulting in silent

data corruption, are extremely problematic. Thus, in order to improve the resilience of

applications, error detection and vulnerability characterization techniques are an important

step towards fault tolerant applications.

Compiler transformations, which restructure programs to improve performance by lever-

aging data locality and parallelism, are often complex and possibly involve bugs that leads

to errors in transformed programs. Thus it is essential to guarantee the correctness, how-

ever, current approaches suffers from various problems such as transformations supported

or space complexity etc. This dissertation presents a novel approach that performs dynamic

verification by inserting lightweight checker codes to detect errors of transformations. The

errors are exposed by the execution of checker-inserted transformed program if exist.

Energy efficiency is of increasingly importance in scenarios ranging from battery-operated

devices to data centers striving for lower energy costs. Dynamic voltage and frequency

ii



scaling (DVFS) adapts CPU power consumption by modifying processor frequency to im-

prove energy efficiency. Typical DVFS approaches involve default strategies such as react-

ing to the CPU runtime load to adapt frequency, which have inherent limitations because

of processor-specific and application-specific effects. This dissertation developed a novel

compile-time characterization to select frequency and number of CPU cores to use, which

providing significant additional benefits over the runtime approach.

Cache memory, as one of the most fundamental components of modern processors,

has a significant impact on the performance of current computer systems. Compiler op-

timizations on efficient use of cache to reduce data movement, are often based on very

approximate cost models due to the lack of precise modeling of hierarchical cache. The

challenge of accurately modeling cache misses has made trace-based simulation the current

method of choice. This dissertation takes a fundamentally different approach for polyhe-

dral programs, developed a closed-form solution for modeling of misses of set-associative

cache by leveraging the power of polyhedral analysis. This solution can enable program

transformation choice at compile time to optimize cache misses.

In sum, the dissertation makes contributions to advance compiler technology to achieve

program transformation verification, to reduce energy costs, and to effectively modeling

cache behaviors.

iii



To my parents and my girl friend, for their love and accompany.

iv



ACKNOWLEDGMENTS

The PhD experience will be one most unforgettable part of my life. This journey is full

of wonderful and contradiction moments: the joy of paper acceptances and the disappoint-

ment after paper rejects; the exciting for achievement and the exhausting for problems. I

am so glad and graceful that I am able to reach this stage. Many thanks to everyone that I

met during this wonderful journey, you are all part of my life and missing anyone will not

make it complete.

First and foremost, I want to express my gratitude for my advisor, Prof. Saday. Prof.

Saday is the best advisor I have ever met during my student life. Starting from his class to

the research work and publications, he influenced and educated me in many aspects. His

great passison in research motivate and encourage me. His critical insight and comments in

discussison help me with my research skills in depth. He also provides me with internship

opporitunies in both acamedia and industry to help with my research. My words cannot

express how grateful I am for his advisement and support.

I would like to gratefully thank Dr. Sriram Krishnamoorthy and Prof. Louis-Noël

Pouchet for the great research collabrations and their mentoring during my PhD. Dr. Sriram

is my mentor during internship at PNNL. Most of the papers become great publications

because of his brilliant ideas. His insightful advices improve the papers a lot and make them

successful. Prof. Louis-Noël educated me how to do research in many aspects, especially

in how to performing experimental evaluations in all my papers. I learn a lot from his

v



excellent suggestions in tuning the papers. I won’t have those great publications without

their help.

I also want to thank all the labmates at OSU for all the help! Thank you all guys and

We had a good time in the lab.

Last but not least, I want to thank my parents for their unselfish love and constant

support. I could not make it without their love and support. I hope I can support them well

in return in the coming furture. The accompanyship of my girlfriend helps me go through

the hard time, I do not know what it could be without her support. This dissertation also

belongs to them.

vi



VITA

Sep. 2006 – Jul. 2010 . . . . . . . . . . . . . . . . . . . . . . . Bachelor of Science, EE
Harbin Institute of Technology
Harbin, China.

Sep. 2010 – Jul. 2012 . . . . . . . . . . . . . . . . . . . . . . . Master of Science, EE
Harbin Institute of Technology
Harbin, China.

Sep. 2012 – Aug. 2014 . . . . . . . . . . . . . . . . . . . . . . Master of Science, ECE
The Ohio State University
Columbus, Ohio.

Sep. 2014 – Dec. 2016 . . . . . . . . . . . . . . . . . . . . . . Master of Science, CSE
The Ohio State University
Columbus, Ohio.

Aug. 2012 – Present . . . . . . . . . . . . . . . . . . . . . . . . . Graduate Research Assistant
The Ohio State University
Columbus, Ohio.

May. 2014 – Aug. 2014 . . . . . . . . . . . . . . . . . . . . . . Intern
Pacific Northwest National Laboratory
Richland, Washington.

May. 2015 – Jul. 2015 . . . . . . . . . . . . . . . . . . . . . . . Intern
Pacific Northwest National Laboratory
Richland, Washington.

May. 2017 – Dec. 2017 . . . . . . . . . . . . . . . . . . . . . . Intern
NVidia Corporation
Redmond, Washington.

PUBLICATIONS

Wenlei Bao, Sriram Krishnamoorthy, Louis-Noël Pouchet, P. Sadayappan
Analytical modeling of cache behavior for affine programs.
ACM SIGPLAN Symposium on Principles of Programming Languages (POPL), Jan. 2018.

vii



Wenlei Bao, Prashant Rawat, Martin Kong, Sriram Krishnamoorthy, Louis-Noël Pouchet,
P. Sadayappan
Efficient Cache Simulation for Affine Computations.
International Workshop on Languages and Compilers for Parallel Computing (LCPC), Oct.
2017.

Wenlei Bao, Changwan Hong, Sriram Krishnamoorthy, Louis-Noël Pouchet, P. Sadayap-
pan
Hybrid Static/Dynamic Frequency Scaling on Multicore CPUs.
ACM Transactions on Architecture and Code Optimization (TACO), Nov. 2017.

Changwan Hong, Wenlei Bao, Albert Cohen, Sriram Krishnamoorthy, Louis-Noël Pouchet,
J. Ramanujam, Fabrice Rastello, P. Sadayappan
Effective Padding of Multi-Dimensional Arrays to Avoid Cache Conflict Misses.
ACM SIGPLAN conference on Programming Language Design and Implementation (PLDI),
Jun. 2016.

Wenlei Bao, Louis-Noël Pouchet, Fabrice Rastello, P. Sadayappan
Polycheck: Dynamic verification of iteration space transformations on affine pro-
grams
ACM SIGPLAN Symposium on Principles of Programming Languages (POPL), Jan. 2016.

FIELDS OF STUDY

Major Field: Computer Science and Engineering

Studies in High Performance Computing: Prof. P. Sadayappan

viii



TABLE OF CONTENTS

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Chapters:

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Dynamic Verification of Iteration Space Transformations on Affine Programs . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Motivation and Overview . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Integer Sets Notation . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Polyhedral Dependences . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Verifying Transformations on Affine Programs . . . . . . . . . . . . . . 16
2.4.1 Algorithm A: A General Algorithm for all Affine Input Programs 17
2.4.2 Algorithm B: A Version-Number based Algorithm . . . . . . . . 23
2.4.3 Illustrative Example: Seidel . . . . . . . . . . . . . . . . . . . . 27
2.4.4 Time and Space Complexity . . . . . . . . . . . . . . . . . . . . 34

ix



2.5 Scope of Applicability, Enhancements, and Limitations . . . . . . . . . . 35
2.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.1 Evaluation Using the PoCC Polyhedral Compiler . . . . . . . . . 40
2.6.2 Evaluation Using Cilk and the Pochoir Stencil Compiler . . . . . 47
2.6.3 Identifying Bugs in PolyOpt/C . . . . . . . . . . . . . . . . . . 50
2.6.4 PolyCheck Overhead . . . . . . . . . . . . . . . . . . . . . . . 50

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3. Static and Dynamic Frequency Scaling on Multicore CPUs . . . . . . . . . . . 55

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Motivation and Overview . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3 Adaptive Runtime to Optimize Energy Efficiency . . . . . . . . . . . . . 61
3.4 Static Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.1 Approximating Operational Intensity . . . . . . . . . . . . . . . 65
3.4.2 Parallelism Features . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5 Processor Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5.1 One-Time Machine Profiling . . . . . . . . . . . . . . . . . . . 76
3.5.2 Decision Tree for Frequency/Core pair . . . . . . . . . . . . . . 77

3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.6.1 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . . . 78
3.6.2 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . 80
3.6.3 Comparison with Runtime DVFS . . . . . . . . . . . . . . . . . 83
3.6.4 Summary of Intel ICC and GNU GCC experiments . . . . . . . 85
3.6.5 Summary of Features . . . . . . . . . . . . . . . . . . . . . . . 87

3.7 Phase Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.7.1 Phase Characterization . . . . . . . . . . . . . . . . . . . . . . . 89
3.7.2 Possible Improvements . . . . . . . . . . . . . . . . . . . . . . 90

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4. Static Analysis of Hierarchical Set-Associative Cache Behavior for Affine Pro-
grams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2 Overview of Modeling Approach . . . . . . . . . . . . . . . . . . . . . 95
4.3 Program Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.1 Modeling Integer Tuples . . . . . . . . . . . . . . . . . . . . . . 101
4.3.2 Representing Programs . . . . . . . . . . . . . . . . . . . . . . 104

4.4 Single-Level Cache Analysis . . . . . . . . . . . . . . . . . . . . . . . . 106
4.4.1 Modeling Cache Accesses . . . . . . . . . . . . . . . . . . . . . 107
4.4.2 Miss Events in Set-Associative Caches . . . . . . . . . . . . . . 108
4.4.3 Algorithm for Miss Calculation . . . . . . . . . . . . . . . . . . 110

x



4.5 Cache Writing Policies and Hierarchical Caches . . . . . . . . . . . . . 110
4.6 Cache Modeling Across Program Phases . . . . . . . . . . . . . . . . . 114

4.6.1 Final Cache State . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.6.2 Initial Cache State . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.7 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 119
4.7.2 Evaluation of Hierarchical Set-Associative Cache . . . . . . . . 119
4.7.3 Evaluation of Write Policies . . . . . . . . . . . . . . . . . . . . 122
4.7.4 Evaluation of Loop Tiling . . . . . . . . . . . . . . . . . . . . . 124
4.7.5 Evaluation of Approximation Heuristics . . . . . . . . . . . . . 124

4.8 Time Complexity of PolyCache . . . . . . . . . . . . . . . . . . . . . . 128
4.9 Discussion and Pratical Uses . . . . . . . . . . . . . . . . . . . . . . . . 130
4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5. Cache Vulnerability Analysis for Affine Programs . . . . . . . . . . . . . . . . 137

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.2 Modeling Cache Vulnerability . . . . . . . . . . . . . . . . . . . . . . . 138

5.2.1 Cache Vulnerability . . . . . . . . . . . . . . . . . . . . . . . . 139
5.2.2 Modeling Vulnerability Intervals . . . . . . . . . . . . . . . . . 141
5.2.3 From Vulnerability Intervals to Vulnerability Metrics . . . . . . . 144

5.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.3.1 Implementation detail . . . . . . . . . . . . . . . . . . . . . . . 145
5.3.2 Time complexity Evaluation . . . . . . . . . . . . . . . . . . . . 146

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.1 Verification of Program Transformation . . . . . . . . . . . . . . . . . . 151
6.2 Energy Optimization through DVFS . . . . . . . . . . . . . . . . . . . . 152
6.3 Cache Behavior Modeling and Vulnerability Analysis . . . . . . . . . . 154

7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

xi



LIST OF FIGURES

Figure Page

2.1 Example input program (a) and transformed programs to be verified ((b)–
(f)). ISA can verify (b). Our approach can dynamically verify all trans-
formed versions against the input. . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Iterative Seidel example based on the language specification in Figure 2.3.
T and N are problem size parameters. . . . . . . . . . . . . . . . . . . . . 10

2.3 Language for affine loop programs. Indentation-based scoping (used for
readability) is not shown. fe is an expression of its arguments. . . . . . . . 13

2.4 Runtime procedure to check every operation encountered in the transformed
program for algorithm A. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Runtime procedure to check every operation encountered in the transformed
program for algorithm B. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Recursive implementation of Seidel. Invoked as seidel rec(0,1,3,1,3,2,4,A). 27

2.7 The checker code inserted by Algorithm A after line 4 in the recursive
Seidel implementation (Figure 2.6). Note that the compiler can optimize
away the first four assert statements. . . . . . . . . . . . . . . . . . . . . . 33

2.8 The checker code inserted by Algorithm B after line 4 in the recursive
Seidel implementation (Figure 2.6). . . . . . . . . . . . . . . . . . . . . . 34

2.9 Checker running time with fixed tiling. . . . . . . . . . . . . . . . . . . . . 52

2.10 Checker running time with parametric tiling. . . . . . . . . . . . . . . . . . 52

2.11 Checker running time across problem size (LU). . . . . . . . . . . . . . . . 53

xii



2.12 Checker running time across problem size (Reg detect). . . . . . . . . . . . 53

3.1 Energy for DGEMM/MKL (top row) and Jacobi 2D (bottom row) . . . . . 59

3.2 Comparison of energy savings for on-demand Linux governor and our pro-
posed runtime, versus powersave . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Jacobi 2D 5 point sweep . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Details of static approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.5 Summary of experimental results . . . . . . . . . . . . . . . . . . . . . . . 82

3.6 Energy savings versus runtime DVFS schemes . . . . . . . . . . . . . . . . 84

3.7 EDP savings versus runtime DVFS schemes . . . . . . . . . . . . . . . . . 84

3.8 Different types of phases on Haswell / 4 cores . . . . . . . . . . . . . . . . 90

4.1 Illustrative example of a 2-way set-associative cache . . . . . . . . . . . . 95

4.2 Triangular Matrix-Multiply . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xiii



LIST OF TABLES

Table Page

2.1 FirstWriter to array A in iterative Seidel . . . . . . . . . . . . . . . . . . . 27

2.2 Statement instances executed by iterative Seidel and related relations . . . . 30

2.3 Sequence of operations for recursive Seidel; “Sdw” abbreviates shadow in
the column headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Sample operations for recursive Seidel with error; “Sdw” abbreviates shadow
in the column headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Benchmarks in evaluation using PoCC . . . . . . . . . . . . . . . . . . . . 40

2.6 Summary of tool coverage (PoCC evaluation) . . . . . . . . . . . . . . . . 44

2.7 Summary of bugs tested (PoCC evaluation) . . . . . . . . . . . . . . . . . 45

2.8 Errors found in transformations by PolyOpt/C 0.2.0 . . . . . . . . . . . . . 48

2.9 Cilk and Pochoir benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.10 Summary of evaluation using Cilk and Pochoir benchmarks . . . . . . . . . 49

2.11 Overhead comparison with CodeThorn [109] . . . . . . . . . . . . . . . . 51

3.1 Processor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Energy efficiency summary . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3 Energy-Delay Product efficiency summary . . . . . . . . . . . . . . . . . 86

xiv



3.4 Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.5 Benchmark features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1 Handling of write operations by the different cache writing policies con-
sidered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.2 Summary of No-Write Allocate Write Back Cache . . . . . . . . . . . . . 123

4.3 Summary of Tiling (PolyCache is Poly. below) . . . . . . . . . . . . . . . 125

4.4 Summary of Set-0 Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.5 Per-operator Execution Time s: set, m: map, x: set or map, p: integer . . . 129

4.6 Benchmarks and Summary of Hierarchical Set-Associative Cache(a) . . . . 134

4.7 Benchmarks and Summary of Hierarchical Set-Associative Cache(b) . . . . 135

4.8 Summary of Per-Array Heuristic . . . . . . . . . . . . . . . . . . . . . . . 136

5.1 Lifetime Classification of Write-Back Cache . . . . . . . . . . . . . . . . . 140

5.2 Execution time experiments for problem size N=8 . . . . . . . . . . . . . . 147

5.3 Execution time experiments for problem size N=16 . . . . . . . . . . . . . 148

5.4 Execution time experiments for problem size N=32 . . . . . . . . . . . . . 149

xv



LIST OF ALGORITHMS

Algorithm Page

1 Runtime DVFS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2 EstimateCacheMisses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3 Estimate Operational Intensity . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Check Poor Parallel Scaling . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 SingleLevelMisses: Compute Misses for Single-level Cache . . . . . . . . 111

6 Compute Dirty Evictions: Writes To Next Cache Level For Write-Back
Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 FinalAccess(Refs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8 Determine Dirty Cache Lines In The Final Cache State For Write-Back
Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9 unACE-idle: Compute unACE idle component . . . . . . . . . . . . . . . . 142

10 Lifetime components unACE: read-to-write, read-to-evict, write-to-write
ACE: read-to-read, write-to-read, write-to-evict . . . . . . . . . . . . . . . 143

11 CVF: Compute vulnerability factor . . . . . . . . . . . . . . . . . . . . . . 144

xvi



CHAPTER 1

Introduction

Continuous technology scaling keeps enhancing the performance of computer systems

from increasing processor frequency to parallel processing units such as multi-core and

many-core processors. Higher performance has been the goal and thus developing focus

for few decades. However, problems such as system errors and energy consumption be-

come increasing concern along with the development. Thus, modern computer systems

such as large scale system demand not only performance but also resilience and energy

efficiency [22].

Therefore, developing automated compiler approaches to detect errors, improving the

fault tolerance and energy efficiency have become an crucial and urgent requirement for

both industry and academia.

Error Detection in Compiler Transformation. Optimizing programs via compiler trans-

formations such as loop tiling to gain performance benefits by improving data locality and

parallelization are critical techniques, however, often complex and possibly involve bugs

that leads to errors.

This dissertation addresses the problem by designing dynamic verification approach

that perform data-flow analysis on input affine program and generate lightweight checker

1



codes that inserted into transformed program (Chapter 2). With the execution of checker-

inserted program, any iteration reordering errors will be reported. This novel dynamic

approach attacked the problems of previous approaches including coverage of transforma-

tions, sensitivity to test datasets and space complexity. It could handle arbitrary iteration

reordering transformations even non-affine transformations. Experimental results assess

the correctness and effectiveness of proposed method and its increased coverage over pre-

vious approaches.

Improving Energy Efficiency. Energy consumption becomes an crucial concern in re-

cent years along with the increasing demands of high performance from mobile systems

to large scale systems. Dynamic voltage and frequency scaling (DVFS) as a classic mech-

anism in processors that enables a trade-off between performance and energy, has been

widely studied to improve energy efficiency by adapting power consumption. Previous

DVFS approaches dynamically adjust operated CPU frequency according to current work-

load. Although energy savings have been shown using these approaches, they suffer from

inherent limitations, such as not accounting for processor-specific impact of frequency

changes on energy for different workload types.

To tackle this problem, a lightweight runtime approach is first proposed to adapt the fre-

quency, and then show that further improvements can be achieved for affine programs using

a compile-time characterization instead of run-time monitoring to select the frequency and

number of CPU cores (Chapter 3). A one-time energy characterization of CPU-specific

DVFS profiles followed by a compile-time categorization of loop-based code segments in

application are combined to determine a priori frequency and number of cores to execute

2



so as to minimize energy or energy-delay product. Experimental evaluation on multiple

CPUs shows that proposed approach outperforms the dynamic approaches.

Analytical Cache Modeling and Vulnerability Analysis. Cache, as one of the most im-

portant part of modern processors, is used to bridge the speed gap between CPU computing

and memory access. The overheads of data movement between memory and cache hier-

archy have a significant impact on performance for current computer systems. In order to

achieve high performance, programs must exhibit efficient cache memory accesses. Trans-

formations of programs by optimizing compilers are often used to improve cache utilization

to get better performance. However, cache behaviors, especially cache misses, are difficult

to predict and estimate.

The current simulation approach is the practical choice for accurate modeling of cache

behaviors especially cache misses because of the significant challenge of exact modeling

of caches. The problem of simulation is that it requires time proportional to the dataset or

problem size as well as the number of distinct cache configurations to be evaluated.

Moreover, cache is also one of the most vulnerable components. But no compiler tech-

niques proposed to protect it from soft errors or even characterize the vulnerability, which

is the measure of failure rate, other than simulation.

Therefore developing analytical cache model and compiler approaches to estimate or

optimize vulnerability is of great interest in the sense of improving performance by study-

ing cache behavior and resilience via optimizing vulnerability.

This dissertation developed a closed-form modeling of misses of set-associative cache

by leveraging the polyhedral analysis and counting algorithms on polyhedral sets (Chapter

4). Experimental evaluation demonstrate exact match with trace-based cache simulation,

3



but with a time complexity essentially independent of the problem size. Moreover, the pro-

posed analytical cache model can be applied to many practical cases such as padding [68],

tiling and cache design analysis. Furthermore, we demonstrate in Chapter 5 how to extend

the cache model to characterize or even optimize the cache vulnerability of programs.

4



CHAPTER 2

Dynamic Verification of Iteration Space Transformations on Affine
Programs

2.1 Introduction

Optimized programs are often complex and rarely resemble the original source pro-

grams [18]. It is difficult, if not impossible, to verify the correctness of such programs

through visual inspection. Automated testing is part of the classical arsenal to find bugs

in compiler implementations, including production compilers [3, 6] and research compil-

ers [98]. However, a typical challenge occurs with the selection of a relevant dataset for

the program to expose a bug. If we limit testing to the bit-by-bit equivalence of outputs

produced by the original and transformed programs, what guarantees that a match implies

the lack of a bug? A simplistic example would entail testing a program multiplying two

matrices, where the input matrices are filled with zeros. For example, a buggy-transformed

program stripped of all computation would pass this test.

To address this problem, automatic equivalence checking techniques that prove two pro-

grams are equivalent have been developed. For instance, focusing on programs with static

affine control- and data-flow, prior approaches employ static verification by systematically

deriving one-to-one correspondence between the operations in the original and transformed

5



programs and ensuring they satisfy the same data dependences [127, 13, 74]. This has the

significant advantage of being independent of the input dataset, yet with the drawback of re-

quiring both the original and transformed programs to be affine programs. In other words,

any iteration reordering transformation that generates non-affine expressions in the trans-

formed program, such as parametric tiling or numerous abstract syntax tree (AST)-based

complementary optimizations, cannot be verified with such an approach.

for (i=0; i<N; i++)
/* S : */ A[i] = B[i];

(a) Original

i=0; do { // N and T are
coprime

A[i] = B[i];
i = (i+T)%N;

} while (i!=0);

(c) Round-robin

for (i=0; i<M; i++)
for(j=idx[i]; j<idx[i
+1]; j++)
A[j] = B[j];

// 0= idx [0]<= idx
[1] <=... <= idx [ M ]= N

(e) Irregular sectioning

for (i=0; i<N/32; i++)
for (j=0; j <32; j++)

A[i*32+j] = B[i*32+
j];

for(j=(N/32) *32; j<N; j
++)

A[j] = B[j];

(b) Constant sectioning

for (i=0; i<N/T; i++)
for (j=0; j<T; j++)

A[i*T+j] = B[i*T+j
];

for(j=(N/T)*T; j<N; j
++)

A[j] = B[j];

(d) Parametric sectioning

void fn( int lo , int hi)
{

if (lo >hi) return;
if (lo==hi) A[lo] = B
[lo];

else {
fn(lo , (lo+hi)/2);
fn((lo+hi)/2+1, hi)
; } }

/* Call fn */ fn(0,N-1);

(f) Recursion

Figure 2.1: Example input program (a) and transformed programs to be verified ((b)–(f)). ISA can
verify (b). Our approach can dynamically verify all transformed versions against the
input.

To date, all proposed solutions to the verification of iteration reordering transformations

suffer from at least one major limitation in the supported transformations (e.g., Integer Set

Analysis (ISA) [127]), sensitivity to the input dataset (e.g., output difference checking), or

space complexity (e.g., CodeThorn [109]), which is the space to store any state (arrays,

6



instruction traces, etc.). In this work, we develop a novel approach to assess the correct-

ness of arbitrary iteration reordering transformations on an affine program, including

non-affine transformations. The approach is robust to arbitrary input datasets of a given

size and only requires space proportional to the program’s data space. To achieve this,

we design an approach that employs polyhedral data-flow analysis on the affine input pro-

gram to generate lightweight checker codes that are embedded in the transformed program.

The check-equipped transformed code is then run, and information about any violated data

dependence or other iteration reordering errors is reported to the user. This enables conclu-

sions about the programs’ equivalence for the given input problem size.

We use our PolyCheck tool to verify the correctness of numerous polyhedral compiler

optimizations in the Polyhedral Compiler Collection (PoCC) research compiler [8], in-

cluding non-affine transformations such as parametric tiling and some affine AST-based

transformations that are not currently supported by the state-of-the-art affine checker tool

ISA [4]. Using PolyCheck, we also verify code generated by Pochoir [118], a DSL-based

stencil compiler, and serial execution of Cilk [31], a recursive programming system. By

comparing it with the results presented for CodeThorn by Schordan et al. [109], we show

that PolyCheck is much more efficient than trace-based equivalence checking schemes.

Finally, we demonstrate PolyCheck’s ability to identify bugs in the polyhedral compiler

PolyOpt/C 0.2.0 [95].

Our approach is orthogonal and complementary to other works that assess the correct-

ness of parallelism transformations (e.g., race detection tools [108, 50]) or out-of-bound

array access checks. With this research, we make the following contributions.

• We present the first dynamic bug checker for affine programs transformed by arbi-

trary iteration reordering transformations using polyhedral analysis at compile-time

7



to create a lightweight checking code to be executed along with the transformed pro-

gram.

• Our approach addresses the three main limitations of other iteration reordering check-

ers because it supports arbitrary loop (tiling, interchange, etc.) and non-affine trans-

formations (parametric tiling, etc.), is not sensitive to the input dataset values, and

only requires space proportional to that needed by the original program during its

execution.

• We demonstrate the effectiveness of our approach in asserting the correctness of

Pochoir and Cilk programs and through numerous passes of PoCC, a research poly-

hedral compiler that combines both affine and non-affine transformations.

• We show that PolyCheck can detect bugs in PolyOpt/C 0.2.0 [95] that were first

detected by CodeThorn and is much more efficient than CodeThorn’s trace-based

equivalence checker.

• We present and evaluate optimizations to the checker that exploit regularities in the

program dependence graph.

2.2 Motivation and Overview

To motivate the need for a verification approach that is robust to arbitrary iteration re-

ordering transformations, we initially use a simple example. We consider the code shown

in Figure 2.1(a), performing a copy from array B to array A. This code is an affine pro-

gram with static control- and data-flow. With affine programs, loop bounds, conditionals,

and array access expressions only involve affine expressions of the surrounding loop iter-

ators and program parameters [47]. Figures 2.1(a) through (f) show various transformed

8



versions of this program. Static verification tools checking equivalence between affine pro-

grams can verify that the version in Figure 2.1(b)—tiled with a constant tile size known at

code-generation time—is equivalent to the input program. However, they fail to verify the

remaining versions. Figure 2.1(d) shows a code snippet typically generated by paramet-

ric tiling techniques that do not require the tile size to be known at code-generation time.

Other versions may be manually or automatically generated. The version in Figure 2.1(e)

is non-affine, and its correctness depends on the values of the idx array. Recursive versions,

such as in Figure 2.1(f), can be generated for recursive parallelism or cache obliviousness.

The approach we present in this chapter can dynamically verify all versions shown

in Figure 2.1. In contrast to static equivalence, we require an instrumented program to

be executed. This makes our equivalence property hold for the problem size used when

running the checker, a restriction on the proof of equivalence achieved by static checkers.

On the other hand, this also enables us to verify arbitrary program transformations. In

this work, we support arbitrary iteration reordering transformations, irrespective of how

the code is generated to implement them. Specifically, we require the transformation to

not change the total number of dynamic instances (e.g., N in the figure) of each syntactic

statement (e.g., S) or the operations performed by the statement. This set of supported

transformations includes all loop transformations (e.g., loop tiling [131], index set splitting

[65], etc.). Yet, it also includes any possible syntax to implement the reordering, including

using non-affine expressions in the generated code, AST-based transformations, etc.

We achieve this by constructing a checker to rewrite each statement in the transformed

program by operations to check that statement instance. We illustrate the construction of

the checker using the iterative Seidel example shown in Figure 2.2. This example better

illustrates the approach than the simpler example in Figure 2.1(a).

9



1 for t = 0 to T-1:
2 for i = 1 to N-1:
3 for j = 1 to N-1:
4 S1: A[i][j]=A[i -1][j]+A[i][j-1]

Figure 2.2: Iterative Seidel example based on the language specification in Figure 2.3. T and N are
problem size parameters.

We first statically analyze the affine input (reference) program to determine the read-

after-write (true), write-after-read (anti), and write-after-write (output) dependences. Each

dependence can be represented as a function (or relation) that takes a statement instance as

input and returns the other statement instance associated with the dependence. For exam-

ple, in Figure 2.2, consider the statement instance S1<t=1,i=5,j=7> , denoting the instance

of statement S1 executed at the iteration (t=1,i=5,j=7) . This statement instance updates

the value previously written at A[5][7] by S1<t=0,i=5,j=7> (output dependence) and reads

values of A[4][7] and A[5][6] (input dependence).

Now consider the operation executed by an unknown statement in the transformed pro-

gram to be verified:
A[8][9] = A[7][9] + A[8][8]

We analyze the array locations accessed by an operation in the transformed program to

map it to a statement instance in the input program. The preceding operation instance can

be mapped to S1<t=0,i=8,j=9> , S1<t=1,i=8,j=9> , etc., in the input program. In general, an

operation encountered in the transformed program can possibly match multiple statement

instances in the input program. Given this relationship, we first try to map this operation to

a statement instance in the input program that has not already been mapped, and statement

instance induced by the mapping satisfies the input program’s dependences.

A transformed program is declared to be equivalent to an input program if (a) the state-

ment instances in the transformed program can be mapped in a bijective, or one-to-one,

10



fashion to statement instances in the input program, and (b) each statement instance in

such a bijection satisfies the same dependences as in the input program. For arbitrary pro-

gram transformations, there are numerous ways in which the statement instances of the

transformed program can be mapped to those of the input program. Enumerating each

mapping to check whether or not it constitutes a dependence-preserving reordering of the

statement instances in the input program is prohibitively expensive. We exploit the fact that

iteration reordering transformations only change the order in which the statement instances

are executed and not the variables written by a given statement instance. We also show that

this enables us to check just one mapping to statement instances in the input program.

We can track dependences through the data space in terms of the data elements accessed

by the statement instances. For each statement instance storing a value in a data element,

we use a shadow variable to store the identity of the corresponding input statement instance.

For example, if the preceding operation is mapped to S1<t=1,i=8,j=9> , the assignment to

A[8][9] is augmented with:
shadow(A[8][9]) = S1 <t=1,i=8,j=9>

This information can then be used to check the dependence as the program is executed.

The checker constructed for this particular statement instance is as follows:
assert shadow(A[8][9]) == S1 <t=0,i=8,j=9>
assert shadow(A[7][9]) == S1 <t=1,i=7,j=9>
assert shadow(A[8][8]) == S1 <t=1,i=8,j=8>
shadow(A[8][9]) = S1 <t=1,i=8,j=9>

where NIL is the initial value of all array locations and variables.

We leverage the fundamental property that if the input program is affine then these true

dependences and relationship between statement instances can be represented in a closed

form. Together with the shadow variables, this affords compact on-the-fly tracking of the

dependences that need to be satisfied. We embed the code to check the equivalence of traces

11



directly in the transformed program. This code can be emitted at compile time because of

the input program’s affine characteristics.

Note that we only perform static analysis on the input program. Beyond the constraint

that the transformed program is an iteration reordered version of the input program, we

do not constrain the transformed program. We do not need to perform any analysis on the

transformed program. Rather, we only inspect the operations executed by the transformed

program, irrespective of how they are generated. In this example, the operation A[8][9] =

A[7][9] + A[8][8] could have been generated from any code structure with the array input

expressions being complex non-affine operations that evaluate to the array index expres-

sions (8,9) , (7,9) , and (8,8) , respectively.

The determination of the one-to-one correspondence requires that the input program

statement instance can be computed from the information available in the operations exe-

cuted by the transformed program. Additional checks are required to detect errors in the

transformed program caused by omitted or duplicated statements or operations that do not

have a corresponding statement instance in the input program. We will discuss these details

and present optimizations to reduce the checking overhead.

2.3 Background

In this section, we present the basic notation that relates to analysis of affine programs

used in the rest of the chapter.

To clarify the notation and types of programs, we consider the language for affine pro-

grams defined in Figure 2.3. While we use this language for discussion, our implementa-

tion handles C programs that conform to this specification. Note that scalars can be treated

12



n ∈{M,N, , ..} [ProblemSizeParameters]

v ∈Z [Values]

l ∈{l1, l2, . . .} [LoopIndices]

A ∈{A1,A2, . . .} [ArrayNames]

a ∈ AffineExpr ::= v | l | v× l | a+a | a−a

i ∈ ArrayIndex ::= a(,a)∗
lb ∈ LowerBound ::= a | max(a(,a)+)

ub ∈ UpperBound ::= a | min(a(,a)+)

ac ∈ AffineCond ::= a > 0 | a < 0 | a == 0 | a! = 0
| ac and ac | ac or ac

s ∈ Stmts ::= A[i] = fe(v | A[i](,v | A[i])∗)
| s;s | if ac : s

| for l = lb to ub : s

p ∈ Programs ::= s

Figure 2.3: Language for affine loop programs. Indentation-based scoping (used for readability) is
not shown. fe is an expression of its arguments.

as one-dimensional arrays of size 1. One significant distinction is the use of a comma-

separated list of expressions to represent an array index.1

2.3.1 Integer Sets Notation

Programs with affine data-flow and static control-flow are called static control parts

(SCoP) [48, 63], roughly defined as a sequence of statements such that all loop bounds and

conditional expressions are affine functions of enclosing loop iterators and variables that

are constant during the SCoP execution (whose values may be unknown at compile time).

Affine programs are represented in this work using (a union of) convex sets of integer tuples

and (a union of) integer maps. Operations on these structures are readily available in the

1This representation of a tuple without surrounding parenthesis (‘()’ or ‘[]’) allows us to treat function
argument lists, array indices, and loop iterator values interchangeably.

13



ISCC calculator [125], which leverages the Integer Set Library [124] to provide operations

such as union, intersection, and relation application.

Integer Set The definition of an integer set s is:

s = [p1, ..., pp]→{[i1, ..., im] : c1 ∧ ...∧ cn}

Where i1, ..., im index the m dimensions of the set (noted i⃗); p1, ..., pp are invariant param-

eters (noted p⃗); and c1, ...,cn are n Presburger formulae, typically in the form of affine

inequalities defining constraints on the values of i⃗.

Integer sets are used to precisely capture the set of runtime instances of statements

in affine programs. Each statement S is associated with an iteration vector i⃗S with one

component per surrounding loop, and the values i⃗S can take are captured by defining its

iteration space IS. The iteration space of the statement S1 in Figure 2.2 is noted IS1 and is:

IS1 = [T,N]→{S1[t, i, j] : 0 ≤ t < T ∧0 ≤ i < N ∧0 ≤ j < N}

Relation The definition of an integer relation, or map, r : i⃗ 7→ j⃗ is:

r = [p1, ..., pp]→{[i1, ..., im] 7→ [ j1, ..., jn] : c1 ∧ ...∧ co}

Relations are used to describe the set of memory locations accessed by statements. In

polyhedral programs, array subscripts functions are affine expressions of the loop iterators

and parameters. We note them FA,i
S for the i-th access to an array A in a statement S. For

example, the statement instances of S1 that writes array A[i][ j] in Figure 2.2 has FA,1
S =(i, j)

and can be represented as:

RA1
S1

= {S1[t, i, j] 7→ A[i1, j1] : (i1 = i)∧ ( j1 = j)}

14



We note RAi
S for the i-th read reference map to array A in statement S, and W A

S as a write

reference map to A in S.

Applying relations to sets The apply operation is defined as:

(⃗x ∈ s′) ⇐⇒ (∃⃗y ∈ s∧ (⃗y 7→ x⃗) ∈ r)

where s′ is a new set produced by apply of relation r to set s, which can be denoted as

s′ = r(s).

For instance, the apply operation is used to compute the data space (set of all memory

locations accessed) in a loop nest. For example, the write data footprint for array A in

Figure 2.2 is RA1
S1
(IS1).

Program execution order A schedule is a relation used to specify the execution order

of all statement instances. It maps points in the iteration domain to those in an integer set

(the set of timestamps). As such, statement instances in the iteration domain are executed

following the lexicographic ordering ≺ of their associated timestamp. ≺ is defined as

(a1, . . . ,an)≺ (b1, . . . ,bm) iff there exists an integer 1 ≤ i ≤ min(n,m) s.t. (a1, . . . ,ai−1) =

(b1, . . . ,bi−1) and ai < bi.

The original program schedule is modeled using 2d + 1 timestamps, where d is the

maximal nesting depth in the program [63]. For example, the schedule of S1 in Figure 2.2

is:

SchedS1 = {S1[t, i, j] 7→ [0, t,0, i,0, j,0]}

where each odd dimension of the output space is a scalar dimension whose value denotes

the lexical AST ordering of the loops surrounding the statement. For statements surrounded

15



by less than d loops, the even schedule components associated with the missing loops is

set to 0. However, we use a special convention where the last component of the schedule

corresponds to a unique identification for the statement (e.g., 1 for S1) instead of the lexical

AST order of the statement in this loop nest.

2.3.2 Polyhedral Dependences

In the polyhedral model, dependences for affine computations (such as flow depen-

dence and output dependence) can be precisely calculated and expressed as relations from

a source iteration to a target iteration in the iteration space [58, 99, 100].

Polyhedral dependences can be obtained using tools such as ISL [5]. For example, one

flow dependence in the example code in Figure 2.2 is shown as follows:

Flow = [T,N]→{S1[t, i, j] 7→ S1[t, i,1+ j] :

0 ≤ t < T ∧1 ≤ i < N ∧1 ≤ j < N −1}

The flow relation shows that a flow dependence exists between iteration (t, i, j) and

(t, i, j+1) for statement S1. The value of A[i][ j] written by statement S1 at iteration (t, i, j)

is used later at iteration (t, i, j+1) within the iteration space.

Note that we only consider exact dependences, meaning we only consider the last write

of source iteration for any dependence pair from source to target in write-after-write (WAW

or output) and read-after-write (RAW or flow) dependences.

2.4 Verifying Transformations on Affine Programs

In this section, we present our approach for verifying that the transformed program has

been obtained by a valid reordering of the iterations of the input program. This involves

identifying a one-to-one correspondence between the statement instances in the input and

16



the transformed program, such that, for each statement instance in the input program, the

corresponding statement instance in the transformed program satisfies the same depen-

dences. In general, verifying equivalence requires comparing traces of the two programs to

derive a graph isomorphism—an expensive task. We show that transformations restricted

to iteration reordering can be verified at a much lower cost.

PolyCheck specification The affine specification of a transformed program, to be used

by PolyCheck is provided as follows:
/* @ polycheck start spec
< affine input program >

*/
<transformed program >
/* @ polycheck end
*/

Note that all operations reachable from the segment enclosed in the transformed pro-

gram are expected to be available at instrumentation time. In other words, any function that

could be transitively called from <transformed program> in the above code shall be instru-

mented.

2.4.1 Algorithm A: A General Algorithm for all Affine Input Pro-
grams

Our approach to verification combines two stages. First, we analyze the input affine

program to build a series of functions used to extract properties and assertion values from

an executed operation in the transformed program. Second, we instrument the transformed

program to call these functions for each executed operation, checking if the operation’s

runtime properties match the expected values computed by these functions. In a nutshell,

the process is as follows. Assume the transformed program so far is valid, and an opera-

tion o attempts to write to memory location l. The last valid iteration S<itrv> 2 that wrote

2Throughout the chapter, we use multi-character identifiers that end in v, e.g. itrv , to denote vectors.

17



l is stored in shadow(l) . From there, we can determine what should be S<itr2v> , the next

iteration writing to l, by evaluating a function we built via static analyis of the input pro-

gram that provides the NextWriter iteration. We can then determine what memory location

is accessed by S<itr2v> and using an analogous process what iteration S<itrXv> was the

producing iteration for each memory location accessed by S<itr2v> . This information is

then checked against the runtime information of o: the observed shadow value for all its

operands and the memory addresses accessed must all match with the values associated

with S<itr2v> . If any of these values do not match, then o is an invalid operation, and

the transformed program does not match the input program. If all operations o are valid

and every o was matched with exactly one iteration S<itrv> from the input program, the

transformed progam matches the input program.

In the following, we first define the various functions extracted via static analysis to

compute the FirstWriter, NextWriter, etc., instances for a memory location in Sec. 2.4.1,

before detailing the runtime checking algorithm in Sec. 2.4.1.

Compile-time analysis of the input program

The first stage of analysis involves producing functions that can be evaluated at runtime

in the tranformed code. These functions use various integer set/map operations, such as

union (∪), computing the lexicographic minimum (lexmin) and maximum (lexmax), and

application of a map to a set (M(S)).

FirstWriter The function t⃗ = FirstWriter(A, w⃗) computes which instance t⃗ is the first

one in the input program to write to a specific memory location w⃗ for array A. To compute

this function, we proceed by computing for each array A written in the program a function

that returns the timestamp of the first iteration writing to an arbitrary memory location.

18



We model an arbitrary memory location in array A as a parametric point in a set:

PointA = [W⃗ ]→{[w⃗] : w⃗ = W⃗}

where w⃗ and W⃗ have the same dimensionality as the array A (e.g., a 2D set for a two-

dimensional array). We then express the set of instances that write to A as a map from the

array index accessed to the iteration accessing it. For array A written by statement S it is:

MA
S = [P⃗]→{[w⃗] 7→ [⃗i] : W A

S (⃗i) = w⃗∧ i⃗ ∈ IS}

where P⃗ is the vector of program parameters. Therefore, the timestamp associated with the

instance writing to an arbitrary but unique memory location w⃗ is:

T = SchedS(MA
S (PointA))

Finally, given S the set of statements in the input program, one can build the first instance

across the whole program accessing a particular location w⃗: FirstWriter(A, w⃗) =

lexmin

(∪
S∈S

(
SchedS(MA

S (PointA)
))

We remark that the preceding sets and relations, including the lexmin operation, can

be seamlessly computed using, for instance, the ISCC calculator. The lexmin returned is

an expression (typically a tree of expressions, where leaves are possible lexmin values and

nodes in the tree are conditions on the numerical values of w⃗ and P⃗). To build the function

FirstWriter(A,w) , we simply translate this tree of expressions to C code. The process is

repeated for all written arrays in the program, and each is embedded in the function’s code

so the function selects the appropriate lexmin expression tree to evaluate as a function of

the array name considered.

19



NextWriter The function t⃗ = NextWriter(⃗tprev,A, w⃗) computes which is the instance t⃗ in

the input program writing to the location w⃗ of A executing immediately after t⃗prev wrote to

the same memory location w⃗. To build this function, we employ methods similar to those

for FirstWriter. We first model an arbitrary iteration of a program as a parametric point in

a set:

Iter1 = [T⃗ ]→{[⃗t] : t⃗ = T⃗}

where t⃗ and T⃗ have 2d + 1 components, the number of dimensions of a timestamp (i.e.,

output dimensions of scheduling functions). To capture an iteration t⃗ immediately follow-

ing another iteration t⃗prev, we use a slight extension of the definition of MA
S to add input

dimensions and capture t⃗prev as follows:

NA
S = [P⃗] → {[w⃗,⃗ tprev] 7→ [⃗i] : W A

S (⃗i) = w⃗ ∧ i⃗ ∈ IS1

∧ t⃗prev ≺ SchedS(⃗i)}

Finally NextWriter(⃗tprev,A, w⃗) is built using a similar expression as for FirstWriter(A,W⃗ ),

simply substituting MA, j
S by NA, j

S and PointA by (Iter1,PointA).

WriterBeforeRead t⃗ = WriterBeforeRead(⃗tread,A, w⃗) computes the instance t⃗ that last

wrote to a location w⃗ of array A read by iteration t⃗read in the input program. This is essen-

tial to make sure data dependences are preserved in the programs. Writes must all occur

in the input order, and read values must contain the same value as in the input program

when a particular instance executes. This function is computed in a manner analogous

to NextWriter, except instead of stating t⃗prev ≺ SchedS(⃗i) we state SchedS(⃗i) ≺ t⃗read , and

compute the lexmax of the problem instead of the lexmin to have the instance immedi-

ately preceding t⃗read writing to a location w⃗. Note that if A(w⃗) is an input location not yet

overwritten by any statement instance (e.g., it is live-in data), then t⃗ is set to Init<0> .

20



LastWriter The function t⃗ = LastWriter(A, w⃗) computes the instance t⃗ that is last to

write to a memory location w⃗ in the array A. This is simply the converse of the FirstWriter

function, which is formulated identically except the lexmax instead of the lexmin is used to

find t⃗.

WriteSet and InputSet We conclude by defining two convenience sets, namely the

WriteSet and InputSet , used to initialize the checking procedure.

The WriteSet is the set of array locations written to by the input program, we initialize

their shadow to NIL . This corresponds to the data space built from the union of the data

spaces induced by all write references in the program. Its expression, for an array A, is:

WriteSet(A) =
∪
S∈S

W A
S (IS)

The InputSet is the set of data being read before being written, or being read-only.

It is used to initialize the last writing instance to a default starting value Init<0> . It is

assembled by first building the set of all memory locations being read. For the array A, it

is: ReadSet(A) =
∪

S∈S

(∪
i RAi

S (IS)
)

, where i ranges to cover each read access function to

A in S.

We then prune this set from all the memory locations being written before being read,

which is obtained by applying WriterBeforeRead on each first-read instance per memory

location, keeping only locations where it returns Init<0> . The set of first-read instances is

computed in a manner analogous to the FirstWriter, except considering read access func-

tions.

21



Compile-time analysis of the transformed program

We present the notation used in the algorithm in a manner closer to the AST form that

occurs in program analysis. Each notation that follows can be associated to the notation

used in the previous section for the various functions. For example w⃗ in A is A[wv] .

Notations An array location is denoted by the array label and index vector (e.g., A[idxv] ),

where idxv is a tuple of length equal to the dimensionality of array A.

A statement instance is denoted by the statement label and the iteration vector (e.g.,

S<itrv> ).

Arrays are indexed using array reference functions. Given an iteration vector as input,

an array reference function returns the index vector to index into the array. The array

reference function to compute the array index written by statement S is denoted by S.w() .

The array index written by a statement instance S<itrv> is computed as S.w(itrv) .

The list of array reference functions to compute indices used in read array references

in statement S is denoted by S.r . The array indices read by a statement instance S<itrv> is

computed as S.r[0](itrv) , S.r[1](itrv) , etc.

The verification algorithm employs shadow state for every array location of interest.

The shadow state associated with location A[idxv] is denoted by shadow(A[idxv]) .

For every operation o in the transformed program, the arrays written and read by it are

noted by o.Aw and the list o.Ar , respectively. The array indices for the writes and reads are

denoted by o.wv and o.rv() .

Verification algorithm First, a simple static analysis of the transformed progam is per-

formed to identify each statement that can write to any array written by the input program.

22



Each operation performed by these statements is marked to generate runtime check op-

erations. We note ts(o) as the statement in the transformed program that generates this

operation o. The function CandidateInputStmts(ts) returns the set of all statements in the

input program whose syntactic structure matches that of ts . We then analyze and instru-

ment all code reachable from the transformed program segment to be analyzed.

Figure 2.4 depicts the runtime checking algorithm. For simplicity, we represent func-

tion arguments as an object that contains all of the necessary parameters to evaluate the

functions defined in Sec. 2.4.1. The WriterBeforeRead is noted RAW .

2.4.2 Algorithm B: A Version-Number based Algorithm

The algorithm in Figure 2.4 enables the verification of program transformations made

on arbitrary input affine programs. This generality comes at a runtime overhead cost. For

example, functions which need to be evaluated for each operation, especially NextWriter

and RAW , have been generated at compile time as a solution to a parametric lexicographic

minimum/maximum on a union of sets. In other words, possibly many if conditionals

necessarily need to be evaluated for each instance. Also, although the space overhead

remains linear in the input dataset size, storing multidimensional instance vectors in pro-

grams nested by d loops requires 2d+1 integer attributes per memory location accessed in

the input program. To overcome these limitations, we present a slightly different technique

that requires storing only a single integer per memory location and, in most cases, does not

require the evaluation of deep conditionals for each operation. We achieve this by restrict-

ing the class of affine programs handled to those where the iteration vector of an operation

can be computed by solving linear equations using the index value of the memory locations

23



1 @initialize:
2 // executed before starting execution of transformed program
3 for w in WriteSet:
4 shadow(w) = NIL
5 for i in InputSet:
6 shadow(i) = Init <0>
7
8 def input_statement_instance (o):
9 assert shadow(o.Aw[o.wv]) exists

10 if shadow(o.Aw[o.wv]) == NIL:
11 S<itrv > = FirstWriter(o.Aw[o.wv])
12 else:
13 S<itrv > = NextWriter(shadow(o.Aw[o.xv]),o.Aw[o.wv])
14 assert S<itrv > exists // valid iteration
15 assert S in CandidateInputStmts (ts(o))
16 return S<itrv >
17
18 @verify(o):
19 // executed for every operation encountered in the transformed

program
20 S<itrv > = input_statement_instance (o)
21 for i in 0 .. |S.r|-1:
22 assert S.r[i]( itrv) == o.rv[i]
23 assert RAW(S,i)(itrv) == shadow(o.Ar[i][o.rv[i]])
24 shadow(o.Aw[o.wv]) = S<itrv >
25
26 @terminate:
27 // executed after execution the transformed program
28 for w in WriteSet:
29 assert shadow(w) == LastWriter(w)
30 report SUCCESS

Figure 2.4: Runtime procedure to check every operation encountered in the transformed program
for algorithm A.

accessed by the operation. We also do not store the last instance that have written in this

location, but instead the number of instances which previously wrote to this location.

Compile-time analysis of the input program The analysis extracts the WriteSet and

InputSet similarly to the general approach, as well as LB(S) , the iteration domain of the

statement S (i.e., IS).

24



A VersionNumber(S) function is built such that, given a instance S<itrv> of statement S,

it computes how many instances previously wrote to this location in the input program and

returns this value+1. This is computed by forming the set of such an instance using similar

concepts as the general algorithm and building a counting polynomial for the resulting

parametric set. We use Barvinok’s techique [128] available in ISCC. The function RAWv(S,i)

returns the VersionNumber of RAW(S,i) .

The function NumWrites(w) returns the number of statement instances that write to array

location w in the input program by building the counting polynomial on WriteSet(w) .

The function LIN(S) produces a list of linear functions that consists of:

• Affine array reference functions S.w and each function in S.r

• For all i: RAWv(S,i) if RAWv(S,i) is affine

• VersionNumber(S) if VersionNumber(S) is affine.

We ensure that the matrix associated with LIN(S) is full rank (rank equal to loop nest depth

of statement S) for all S. If not, the version-number based scheme cannot be used. Instead,

the algorithm shown in Figure 2.4 must be employed.

Finally, the function RHS(S) returns a vector of loop indices, expressed in terms of array

indices and version numbers, that forms the right-hand side of the equation to solve for x

in LIN(S).xv = RHS(S) .

Verification algorithm The compile-time analysis of the transformed program is per-

formed in a manner identical to the general algorithm. Figure 2.5 gives the pseudocode

that instruments the transformed program for this scheme.

25



1 @initialize:
2 // executed before starting execution of transformed program
3 for w in WriteSet:
4 shadow(w) = 0
5 for i in InputSet:
6 shadow(i) = 0
7
8 def input_statement_instance (o):
9 assert shadow(o.Aw[o.wv]) exists #writing to a location in

WriteSet
10 for S in CandidateInputStmts (ts(o)):
11 Solve for x in LIN(S) . xv = RHS(S)(o.w, o.rv[1], ..) s.t. xv

in LB(S)
12 if xv is found:
13 // check below is redundant if VersionNumber ( S ) is a linear

function
14 if VersionNumber(S)(xv)== shadow(o.Aw[o.wv]):
15 return S<xv >
16 assert false // does not match any input statement instance
17
18 @verify(o):
19 // executed for every operation encountered in the transformed

program
20 S<itr > = input_statement_instance (o)
21 for i in 0 .. |S.r|-1:
22 if RAWv(S,i) not in LIN(S): // non - linear component
23 assert shadow(o.Ar[i][o.rv[i]]) exists
24 assert RAWv(S,i)(itr) == shadow(o.Ar[i][o.rv[i]])
25 shadow(o.Aw[o.wv]) += 1
26
27 @terminate:
28 // executed after execution the transformed program
29 for w in WriteSet:
30 assert shadow(w) == NumWrites(w)
31 report SUCCESS

Figure 2.5: Runtime procedure to check every operation encountered in the transformed program
for algorithm B.

Theorem 1. Algorithm A (resp. B) terminates without error if and only if the opera-

tions that were verified in the transformed program execution correspond to a dependence-

preserving reordering of the statement instances in the input program.

Proof. Proof is presented in [19].

26



1 seidel_rec(t,ilo ,ihi ,jlo ,jhi ,T,N,A[N][N]):
2 if ilo >ihi || jlo >jhi: return
3 if ilo==ihi && jlo==jhi:
4 A[ilo ,jlo] = A[ilo -1,jlo] + A[ilo ,jlo -1]
5 else:
6 seidel_rec(t,ilo , ⌊ ilo+ihi

2 ⌋,
7 jlo , ⌊ jlo+ jhi

2 ⌋,T,N,A) // Top - Left

8 seidel_rec(t,ilo , ⌊ ilo+ihi
2 ⌋,

9 ⌊ jlo+ jhi
2 ⌋+1,jhi ,T,N,A) // Top - Right

10 seidel_rec(t, ⌊ ilo+ihi
2 ⌋+1,ihi ,

11 jlo , ⌊ jlo+ jhi
2 ⌋,T,N,A) // Bottom - Left

12 seidel_rec(t, ⌊ ilo+ihi
2 ⌋+1,ihi ,

13 ⌊ jlo+ jhi
2 ⌋+1,jhi ,T,N,A) // Bottom - Right

14 if ilo ==1 && ihi==N-1 && jlo ==1 && jhi==N-1 && t<T:
15 seidel_rec(t+1,ilo ,ihi ,jlo ,jhi ,T,N,A) // Next time

step

Figure 2.6: Recursive implementation of Seidel. Invoked as seidel rec(0,1,3,1,3,2,4,A).

Table 2.1: FirstWriter to array A in iterative Seidel

0 1 2 3
0 – – – –
1 – S[0,1,1] S[0,1,2] S[0,1,3]
2 – S[0,2,1] S[0,2,2] S[0,2,3]
3 – S[0,3,1] S[0,3,2] S[0,3,3]

2.4.3 Illustrative Example: Seidel

We provide an intuition of the algorithms’ operation using the Seidel example. The key

idea behind the developed approach (common to both Algorithms A and B) is to perform

on-the-fly matching of each operation (executed statement instance) of the transformed

program being checked with some statement instance in the execution of the input affine

27



program. The test program uses a shadow variable for each data variable, and as each op-

eration of the tested program is successfully matched with a statement instance in the input

program, the information is stored in the shadow variable for the data element written by the

operation. The stored information either directly (Algorithm A) or indirectly (Algorithm B)

enables identification of the matched statement instance in the input program’s execution.

If the on-the-fly matching process succeeds, it essentially identifies a valid dependence-

preserving bijection between the input program’s statement instances and the sequence of

operations executed by the transformed program. In the dynamic matching process, if we

are unable to successfully match any operation of the transformed program being checked,

it means there is an error in the transformed program: its sequence of operations is provably

not equivalent to any dependence-preserving reordering of the input program’s statement

instances.

We use an example to illustrate the verification approach. Figure 2.2 shows code for

a 2D iterative stencil computation. The code sweeps through a 2D array A, row by row,

updating element A[i][j] using the values of two neighboring elements, A[i-1][j] and

A[i][j-1] (inner loops over i,j ). The sweep over the 2D array is repeated for multiple

time steps (outermost t loop). Figure 2.6 shows recursive code that performs the same

computation. It splits the spatial domain of the sweep into four quadrants and recursively

invokes sweeps on them, in the order top-left, top-right, bottom-left, and bottom-right. The

base case performs the stencil operation on a single element.

Table 2.2 shows the sequence of 18 statement instances for the execution of the iterative

Seidel code for N=4,T=2 . For each statement instance, we see the written element of A, the

two read elements of A, along with some additional information about data dependences

that can be computed in a straightforward way in a polyhedral compiler framework for any

28



affine program: 1) the latest preceding statement instance (PrevW) that wrote to any given

data element, 2) the earliest future statement instance (NextW) that will write to any given

data element. Shadow variables for input and output data elements before any assignment

are both shown as null (‘–’). Consider, for example, the two statement instances that write

to A[2][1] : S<0,2,1> and S<1,2,1> . In each of the two statement instances, the read data

elements are A[1][1] and A[2][0] . Of these two, A[2][0] is a boundary element that is not

written within the execution of the code. Therefore, the “previous writer” is null. However,

A[1][1] is modified in the code by statement instances S<0,1,1> and S<1,1,1> . The table row

for statement instance S<0,2,1> lists S<0,1,1> as the previous writer of the read data element

A[1][1] , while the row for S<1,2,1> lists S<1,1,1> as the previous writer of A[1][1] . The next

writer for the written data element A[2][1] is S<1,2,1> for statement instance S<0,2,1> and

null for statement instance S<1,2,1> . Table 2.1 displays the first statement instance that

writes into each element of array A. The top and left boundary elements are only read but

not written, so they have null as their “first writer.”

Table 2.3 shows the sequence of 18 operations executed by the checker for the recursive

Seidel code. The table entries include the read and written elements of A for each instance,

along with the values of the shadow variables associated with each data element. The

shadow variables are all initialized to null. Consider the first operation executed by the

recursive version: it writes into A[1][1] , whose shadow is currently null. The first writer of

A[1][1] in the input program is determined (shown in Table 2.1, but actually dynamically

generated, as shown later) to be S<0,1,1> . Thus, as long as the operands and their previous

writers also match, this operation can get matched with that statement instance of the input

program. The previous writers of the operands A[0][1] and A[1][0] for S<0,1,1> are both

null, matching the null shadow(A[0][1]) and shadow(A[1][0]) in the checker program for

29



Table 2.2: Statement instances executed by iterative Seidel and related relations

Stmt Write NextW Read1 PrevW Read2 PrevW
S<0,1,1> A[1,1] S<1,1,1> A[0,1] – A[1,0] –
S<0,1,2> A[1,2] S<1,1,2> A[0,2] – A[1,1] S<0,1,1>
S<0,1,3> A[1,3] S<1,1,3> A[0,3] – A[1,2] S<0,1,2>
S<0,2,1> A[2,1] S<1,2,1> A[1,1] S<0,1,1> A[2,0] –
S<0,2,2> A[2,2] S<1,2,2> A[1,2] S<0,1,2> A[2,1] S<0,2,1>
S<0,2,3> A[2,3] S<1,2,3> A[1,3] S<0,1,3> A[2,2] S<0,2,2>
S<0,3,1> A[3,1] S<1,3,1> A[2,1] S<0,2,1> A[3,0] –
S<0,3,2> A[3,2] S<1,3,2> A[2,2] S<0,2,2> A[3,1] S<0,3,1>
S<0,3,3> A[3,3] S<1,3,3> A[2,3] S<0,2,3> A[3,2] S<0,3,2>
S<1,1,1> A[1,1] – A[0,1] – A[1,0] –
S<1,1,2> A[1,2] – A[0,2] – A[1,1] S<1,1,1>
S<1,1,3> A[1,3] – A[0,3] – A[1,2] S<1,1,2>
S<1,2,1> A[2,1] – A[1,1] S<1,1,1> A[2,0] –
S<1,2,2> A[2,2] – A[1,2] S<1,1,2> A[2,1] S<1,2,1>
S<1,2,3> A[2,3] – A[1,3] S<1,1,3> A[2,2] S<1,2,2>
S<1,3,1> A[3,1] – A[2,1] S<1,2,1> A[3,0] –
S<1,3,2> A[3,2] – A[2,2] S<1,2,2> A[3,1] S<1,3,1>
S<1,3,3> A[3,3] – A[2,3] S<1,2,3> A[3,2] S<1,3,2>

the recursive version. Shadow(A[1][1]) is set to the successfully matched input program

statement instance S<0,1,1> . Next, consider the second operation in the execution of the

recursive version that writes into A[1][1] . To match this operation to a statement instance

of the input program, the shadow variable value S<0,1,1> is used, and the next-writer in

the input program is determined to be S<1,1,1> . The read data elements and their previous

writers (null) match the shadow variables in the executing checker program, implying a

match. In a similar manner, all operations in the recursive execution can be matched one-

to-one with a statement instance of the iterative version.

To illustrate the verification process further, consider what happens when the tested

program is not equivalent to the input program. For example, for the recursive Seidel

30



Table 2.3: Sequence of operations for recursive Seidel; “Sdw” abbreviates shadow in the column
headers

Write Sdw old Sdw new Read 1 Shadow Read 2 Shadow
/Match

A[1,1] – S<0,1,1> A[0,1] – A[1,0] –
A[1,2] – S<0,1,2> A[0,2] – A[1,1] S<0,1,1>
A[2,1] – S<0,2,1> A[1,1] S<0,1,1> A[2,0] –
A[2,2] – S<0,2,2> A[1,2] S<0,1,2> A[2,1] S<0,2,1>
A[1,3] – S<0,1,3> A[0,3] – A[1,2] S<0,1,2>
A[2,3] – S<0,2,3> A[1,3] S<0,1,3> A[2,2] S<0,2,2>
A[3,1] – S<0,3,1> A[2,1] S<0,2,1> A[3,0] –
A[3,2] – S<0,3,2> A[2,2] S<0,2,2> A[3,1] S<0,3,1>
A[3,3] – S<0,3,3> A[2,3] S<0,2,3> A[3,2] S<0,3,2>
A[1,1] S<0,1,1> S<1,1,1> A[0,1] – A[1,0] –
A[1,2] S<0,1,2> S<1,1,2> A[0,2] – A[1,1] S<1,1,1>
A[2,1] S<0,2,1> S<1,2,1> A[1,1] S<1,1,1> A[2,0] –
A[2,2] S<0,2,2> S<1,2,2> A[1,2] S<1,1,2> A[2,1] S<1,2,1>
A[1,3] S<0,1,3> S<1,1,3> A[0,3] – A[1,2] S<1,1,2>
A[2,3] S<0,2,3> S<1,2,3> A[1,3] S<1,1,3> A[2,2] S<1,2,2>
A[3,1] S<0,3,1> S<1,3,1> A[2,1] S<1,2,1> A[3,0] –
A[3,2] S<0,3,2> S<1,3,2> A[2,2] S<1,2,2> A[3,1] S<1,3,1>
A[3,3] S<0,3,3> S<1,3,3> A[2,3] S<1,2,3> A[3,2] S<1,3,2>

version, assume that the last two of the four recursive calls to top-left, top-right, bottom-left,

and bottom-right got swapped by mistake, i.e., the sequence of calls instead becomes top-

left, top-right, bottom-right, bottom-left. Table 2.4 shows the first few operations executed,

along with shadow variable information. The on-the-fly matching is successful for the first

two operations (writing into A[1][1] and A[1][2] , respectively) but will fail for the third

operation, which writes into A[2][2] . Because the shadow variable has a null value, the

matching process will use first-writer information for A[2][2] and attempt a match with

the iterative program’s statement instance S<0,2,2> . Of the two read data elements, we

get a match for A[1][2] (the previous writer in the iterative program statement instance,

31



Table 2.4: Sample operations for recursive Seidel with error; “Sdw” abbreviates shadow in the
column headers

Write Sdw old Sdw new Read 1 Shadow Read 2 Shadow
/Match

A[1,1] – S<0,1,1> A[0,1] – A[1,0] –
A[1,2] – S<0,1,2> A[0,2] – A[1,1] S<0,1,1>
A[2,2] – S<0,2,2> A[1,2] S<0,1,2> A[2,1] –
A[2,1] – S<0,2,1> A[1,1] S<0,1,1> A[2,0] –

S<0,1,2> , matches the shadow variable in the test program) but not for A[2][1]. The shadow

variable for A[2][1] is null as A[2][1] has not yet been written in the test program so far.

However, the previous writer for A[2][1] in the matched statement instance is S<0,2,1> .

This mismatch means the test program cannot be equivalent to the input program.

Figures 2.7 and 2.8 show the checker code generated for recursive Seidel code for using

Algorithms A and B, respectively. Figure 2.7 first shows initialization code that sets all

shadow variables to null followed by the verification code inserted after the statement in

line 4 of the recursive Seidel code (Figure 2.6)—the operation performed at the base case of

the recursion. The checker code encodes the previously described matching process using

the example traces. Finally, an epilog code verifies that all operations were performed by

the transformed program. This is done by ensuring the final shadow variables match the

analytically computable last writers for the input affine program.

Figure 2.8 shows the checker code for using the optimized approach of Algorithm B,

which is applicable for this example. Instead of keeping full details of matched statement

instances in shadow variables, a compact version counter is stored in each shadow vari-

able, and the matching process involves comparing the values in the version counters with

analytically computable write counts for each data element in the affine input program.

32



1 @initialize: // initialize shadow variables
2 for (i,j) in (0,0) to (N-1,N-1):
3 shadow(A[i][j]) = NIL
4 @verify: // inserted after line 4 in seidel_rec
5 i = ilo
6 j = jlo
7 assert i -1==ilo -1 // check 1 st index and
8 assert j==jlo // 2 nd index in A [ ilo -1][ jlo ]
9 assert i==ilo // check 1 st index and

10 assert j -1==jlo -1 // 2 nd index in A [ ilo ][ jlo -1]
11 if shadow(A[i][j])== NIL: // Write
12 assert FirstWriter(A[i][j])==S<t,i,j>
13 else:
14 assert shadow(A[i][j])==S<t-1,i,j>
15 if shadow(A[i -1][j])!= NIL: // Read
16 assert shadow(A[i -1][j])==S<t,i-1,j>
17 if shadow(A[i][j -1]) != NIL: // Read
18 assert shadow(A[i][j -1]) ==S<t,i,j-1>
19 shadow(A[i][j]) = S<t,i,j>
20 @terminate: // epilog to ensure completeness
21 for (i,j) in (1,1) to (N-1,N-1):
22 assert shadow(A[i][j]) == S<T-1,i,j>

Figure 2.7: The checker code inserted by Algorithm A after line 4 in the recursive Seidel imple-
mentation (Figure 2.6). Note that the compiler can optimize away the first four assert
statements.

33



1 @initialize: // initialize shadow variables
2 for (i,j) in (0,0) to (N-1,N-1):
3 shadow(A[i][j]) = 0
4 @verify: // inserted after line 4 in seidel_rec
5 Determine (t,i,j) that satisfy the following inequalities and

equalities:
6 0<=t<T and 0<j<N and 0<j<N // loop bounds
7 i-1=ilo -1 // check 1 st index and
8 j =jlo // 2 nd index in A [ ilo -1][ jlo ]
9 i =ilo // check 1 st index and

10 j-1=jlo -1 // 2 nd index in A [ ilo ][ jlo -1]
11 // shadow values
12 shadow(A[i][j]) =(i>0 && j>0) ? t : 0
13 shadow(A[i -1][j])=(i>1 && j>0) ? t+1 : 0
14 shadow(A[i][j -1]) =(i>0 && j>1) ? t+1 : 0
15 if no (t,i,j) found: report error
16 shadow(A[i][j]) += 1
17 @terminate: // epilog to ensure completeness
18 for (i,j) in (1,1) to (N-1,N-1):
19 assert shadow(A[i][j]) == T

Figure 2.8: The checker code inserted by Algorithm B after line 4 in the recursive Seidel imple-
mentation (Figure 2.6).

2.4.4 Time and Space Complexity

For each operation to be checked by the transformed program, the number of actions

taken by the checker is proportional to the number of array references and loop nesting

depth of each statement. Specifically, computing the corresponding statement instance re-

quires time proportional to the loop nesting depth. Checking each array reference requires

computing the array index from an iterator value with the cost proportional to that of com-

puting the array references in the input program. Note that LIN(S) is known when analyzing

the input affine program. Rather than solve the system of equations at runtime, we compute

the (pseudo-)inverse for LIN(S) at compile time and only perform a matrix-vector product

at runtime. In general, the cost of checking each operation using Algorithm A is propor-

tional to the loop nesting depth. Given the loop nesting depth is usually small, the checker

34



cost is on the same order as executing the input program. Algorithm B might undertake

several mappings for each operation—in the worst case, attempting a mapping with every

statement in the input program. Therefore, the worst case cost of checking each operation

using Algorithm B is proportional to the loop nesting depth times the number of statements

in the input program. We only employ Algorithm B when the number of candidate input

statements for any given statement in the transformed program is small.

The operations in the transformed program are processed in a streaming fashion as they

are generated with no storage of past operations. The only significant space required by the

checker is the shadow variable associated with each location read and written by the input

program. Each shadow variable holds a constant-sized object (statement instance object or

version number). Therefore, the algorithm’s total space complexity is the same as that of

the input affine program, and is independent of the number of statement instances executed

by the input or the transformed program.

2.5 Scope of Applicability, Enhancements, and Limitations

The following describes a few key performance enhancements for the PolyCheck im-

plementation.

Optimized checking of full tiles As discussed, we add several instructions for each state-

ment in the transformed program. This overhead can be significantly improved for a com-

mon class of transformed programs. Specifically, tiled programs group statement instances

into tiles to improve data locality. While the bounds for these tiles can be constants or

influenced by a tile-size parameter, the code within a tile itself is often an affine program.

In such scenarios, we employ index set splitting to isolate tiles that depend only on lin-

ear combinations of problem- and tile-size parameters. We outline such tiles and statically

35



analyze them to identify the incoming definitions—array locations last written elsewhere

in the program and read within this tile. Statements with these definitions are verified in

full. Other statements that only read array locations written by statement instances within

the same tile (intra-tile dependences) are statically verified. Each statement is replaced

with an increment of the version number of the array element written by that statement.

This ensures that version counts are still maintained to enable continued verification of the

remaining program.

Delayed detection and vectorization If the termination and error reporting criteria can

be relaxed, the verification performance can be improved. Checking and aborting on each

verification introduces several branches and leads to poor performance. Most checks com-

pare the expected version number for the input of a dependence with the version number

observed. Thus, we replace the check:

assert a==b with checksum |= (aˆb)

At the end of the program, we verify the checksum:

assert checksum==0

At the end of the iteration, a non-zero checksum value indicates detection of an error in

the transformed program. The bitwise or operation ensures that any error detected (using

the xor operation) results in a bit being set and never subsequently unset. Therefore, the

checksum is exact in that any error detected during the checker execution is eventually

reported. When the checks are enclosed in loops with statically known loop bounds in the

transformed code, we place the scalar checksum variable with an array to make the code

amenable to vectorization.

36



Localizing bugs In addition to detecting errors, PolyCheck strives to isolate the offend-

ing statement instance and report the reason for failed verification. For each offending

operation, we report the operation and information on the statement instance of the trans-

formed program. When a given operation cannot be mapped to a dependence-preserving

statement instance s in the input program that writes to the same location, we attempt to find

alternative possible mappings for the same operation to other non-dependence-preserving

statement instances. If the operation maps to a statement instance s′ that lexicographically

precedes s, we report the offending operation as a duplicate of an earlier operation gener-

ated by s. If the operation maps to a statement instance s′ that lexicographically follows s,

we report the offending operation as having executed too soon, violating a write-after-write

dependence. When no valid mapping can be found for any version number, we report it

as an invalid operation. When an operation is found to violate a dependence, we report

the observed and anticipated statement instances in the input program. This allows the

programmer to locate the offending statement instance in the transformed program, the

corresponding statements in the input program, and the cause for the failed verification.

Problem-size parameters When the array access functions depend on problem-size pa-

rameters, information about them must be extracted from the transformed program as well.

We support two approaches. First, the user can provide the problem size as a simple an-

notation to the verifier. This is expected to be one or a small number of annotations, one

per parameter, and is not an onerous requirement. Second, we can treat the parameters

as variables and solve for them as we solve for the loop indices. Assuming that there are

sufficient linearly independent constraints involving the parameter of interest, we compute

the parameters the first time they are encountered. In subsequent checks, the discovered

37



parameters are treated as constants. In general, problem-size parameters can be discovered

by relating properties of a full polyhedron—number of integer points, last write to a given

location, extremes on the array locations read/written, etc.—and relating them to the values

observed when running the transformed program.

While PolyCheck can handle numerous program variants, it is still restricted to iteration

reordering transformations. The scope of transformations and programs that PolyCheck

can handle is discussed further in the following.

Aliasing Affine dependence analysis assumes that two locations A1[itr1v] and A2[itr2v]

are identical (refer to the same location) only if A1=A2 and itr1v=itr2v . This imposes a

restriction on the input program’s analysis. Therefore, PolyCheck cannot be employed

when aliasing of arrays might occur.

Parallelization As described, PolyCheck assumes a sequential input program and ver-

ifies transformations that maintain dependences in this sequential order. However, if the

transformed code is a parallel data-race-free program, the checker augmented program is

also data-race-free and can be executed in parallel. Specifically, where the transformed

program accesses an array location, the checker accesses the location’s shadow. Verify-

ing a parallel program then translates to verifying the program meets PolyCheck’s check

and is data-race free. Note that data-race freedom might be schedule-specific [50, 108] or

schedule-independent [27, 101]. PolyCheck’s verification is only valid for the schedules

shown to be data-race free.

Data space transformations PolyCheck relies on the fact that iteration reordering trans-

formations still maintain the operation order with respect to the data space. Data space

38



transformations that change the array index expressions (e.g., row/column-major to blocked

or recursive storage) can lead to valid corresponding statement instances being flagged as

in error. However, data space transformations that do not alter the array index expressions

(e.g., padding) do not interfere with the checker.

Scalar transformations The current design of PolyCheck cannot handle scalar and basic-

block-level transformations. However, some transformations are more difficult than others.

Transformations such as common sub-expression elimination and register tiling potentially

can be handled by tracking the operation tree representing each assignment. The operation

tree represents the set of expressions on array locations in the InputSet and WriteSet that

produce the current value. When a value is assigned to an element in the WriteSet , the entire

operation tree is checked. Conversely, some transformations, such as constant propagation,

change the operations sufficiently to interfere with the construction of the bijection just by

tracking their data space effects.

2.6 Experimental Evaluation

Implementation details PolyCheck first analyzes an input affine program to compute

the check codes. This stage was implemented using ISL-0.12 [5] (with barvinok-0.36 and

pet-0.04), an integer set library for the polyhedral model, and using the LLVM/Clang-3.4

compiler infrastructure [6]. ISL [124] performs dependence analysis of the source program

to generate dependency relations, and the algorithms described in previous sections are im-

plemented to calculate the correct checker for each dependency relation. Then PolyCheck

inserts the checker codes for each target statement by analyzing the transformed program

to check then performs code generation and outputs the checker-inserted program to enable

equivalence checking.

39



2.6.1 Evaluation Using the PoCC Polyhedral Compiler

The following is a detailed evaluation of PolyCheck, discussing the coverage and check-

ing of several compiler optimization passes from the PoCC polyhedral research compiler

[8].

Benchmarks PolyCheck currently requires the input program to have a static control-

flow and use only affine expressions of surrounding loop iterators and program parameters

in the loop bounds and array expressions. The PolyBench/C test suite gathers a collection

of programs meeting these requirements [9]. Table 2.5 displays the various computation

codes that were evaluated. We used the large dataset size provided.

Table 2.5: Benchmarks in evaluation using PoCC

Benchmark Description
gemm Matrix-multiply C=alpha.A.B+beta.C
gemver Vector Multiplication and Matrix Addition

lu LU decomposition
bicg BiCG Sub Kernel of BiCGStab Linear Solver

correlation Correlation matrix Computation
covariance Covariance matrix Computation

jacobi-2d-imper 2D Jacobi stencil computation
seidel-2d 2D Seidel stencil computation
fdtd-2d 2D Finite Different Time Domain Kernel

reg detect Edge detection
doitgen Multiresolution analysis kernel (MADNESS)

Tools and setup All benchmark transformations used in evaluation are performed by

PoCC-1.2 [8]. To perform comparison experiments with state of the art, we consider the

40



integer set analysis framework (ISA-0.13) [4], a static equivalence checking tool for affine

programs using a widening approach.

All running time experiments are performed on Intel Xeon E5-2650 processors at fre-

quency 2.60 GHz with 32 KB L1 cache. The programs are all compiled with GCC-4.8.1

compiler with -O3 optimization. The reported running time is the average of five runs.

Compiler Passes Considered

A polyhedral compiler contains numerous passes, including extracting the polyhedral

representation (scop extraction), performing array data-flow analysis (dependence compu-

tation), finding an optimized schedule for the program operations (scheduling), and imple-

menting the new schedule as a new C program (code generation). Each of these stages

involves several external libraries and possibly tens of thousands of lines of codes. In addi-

tion, for better performance numerous complementary AST-based transformations may be

performed after code generation, such as unrolling/register-tiling, loop bound optimization,

or full tile separation. PoCC [8] implements each of these, and we selected several critical

pass combinations to demonstrate our approach.

passthru This configuration performs only SCoP extraction (using the Clan [2] pass),

converts the program to its internal polyhedral representation (ScopLib), does not perform

any optimization, and generates back a loop-based code implementing the original schedule

(using the CLooG [25] pass) that is converted to PoCC’s AST representation (PAST) and

pretty-printed to a C program. The generated code is an affine program.

data locality This configuration includes all stages of passthru, adding polyhedral data

dependence analysis (using the Candl [47] pass) and computation of an optimized schedule

41



of operations to improve temporal data locality and coarse-grain parallelization (using the

Pluto algorithm [34]). The generated code is an affine program.

fixed tiling This configuration includes all stages of data locality, adding a modification

of the polyhedral representation of statements to implement iteration tiling (a.k.a. loop

blocking) whenever possible (using the Pluto [34] pass). Tile sizes are constants provided

to the compiler, and the code generation tool attempts to optimize the code structure using

the tile size information. The generated code is an affine program.

AST-based unrolling This configuration includes all stages of fixed tiling and unrolls all

innermost loops by four, generating an epilog loop to cope with parametric loop bounds

if they are not a perfect multiplier of the unroll factor. It stresses the PAST optimizers in

PoCC—the AST-based backend optimizers. While the generated code is semantically an

affine program, the generated code structure can challenge SCoP extractors in recovering

the entire program as a single affine region.

AST-based bound optimization This configuration includes all stages of fixed tiling and

performs aggressive loop bound hoisting and simplification, replacing the cascading min/-

max expressions generated by CLooG for conjunctions of inequalities by a tree of evalu-

ation [136]. While the generated code is still semantically an affine program, recovering

the loop bounds expressions roughly requires reverse engineering the optimizations in the

SCoP extractor.

parametric tiling This configuration includes all stages of data locality, adding the gen-

eration of iteration tiling using parametric tile sizes (using the Ptile [24] pass). That is,

42



the generated code supports arbitrary tile sizes and selecting the tile size at runtime. Be-

cause non-affine expressions involving iterators multiplied with parameters (tile sizes) are

needed, the generated code is not an affine program,

full tile separation This configuration includes all stages of parametric tiling, adding an

AST-based post-processing to separate partial tiles from full tiles in the code structure

(using the Ptile [24] pass). The generated code is not an affine program.

Results Overview

Table 2.6 compares the coverage of PolyCheck and ISA [127], the state-of-the-art

equivalence checker tool for affine programs. Logically ISA cannot handle transformed

programs that are not affine, such as the parametric tiling cases. ISA is not applicable

(N/A) for those. ISA uses the Polyhedral Extraction Tool (PET) to automatically detect

affine regions, implementing a powerful SCoP extractor on top of Clang. However, both

the AST-based transformations from PoCC evaluated were not handled by the current im-

plementation of the tool (reported as “not supported”, N/S). While we believe it is possible

to improve the implementation of ISA’s SCoP extractor to handle these cases as the gen-

erated code still is semantically an affine program, this behavior reinforces the need for

a verification tool that is agnostic to how the code has been transformed and generated.

PolyCheck fulfills this role and for all optimizations tested can successfully verify equiva-

lence (for correct optimizations) and find bugs (for bugs randomly inserted in the generated

code).

We have verified the optimizations applied using PoCC for all of the benchmarks listed

in Table 2.5. For all cases where ISA could be applied, both PolyCheck and ISA provide

the same positive answer regarding the equivalence between the original and transformed

43



Table 2.6: Summary of tool coverage (PoCC evaluation)

Optimization PolyCheck ISA 0.13
passthru

√ √

data locality
√ √

fixed tiling
√ √

AST-based unrolling
√

N/S
AST-based bound optimization

√
N/S

parametric tiling
√

N/A
full tile separation

√
N/A

codes. For all other cases where only PolyCheck could be applied, it also reported equiv-

alence between the original and transformed codes. In other words, we have shown the

absence of iteration reordering bugs for these test cases in the generated codes.

Finding Bugs in the Generated Codes

To further demonstrate the power of our approach, we emulated bugs in the software

by randomly introducing problems in the transformed code (shown in Table 2.7). Often,

bugs translate into an immediate effect of memory corruption (segmentation fault), which

usually has visible effects to the user. PoCC already implements a checker that encapsu-

lates all memory references in a wrapper function to detect out-of-bound memory accesses.

Here, we assume such a test has already passed. We designed pernicious bugs that do not

lead to segmentation fault and that could be easily missed by classical testing procedures

that check the bit-by-bit equivalence of the produced outputs by the reference and trans-

formed versions. Indeed, in this case, an open problem is to find datasets that will trigger

visible differences in the produced output. In contrast, our approach does not require any

reasoning on the input data because we track the satisfaction of data dependences and not

the result of the computation performed.

44



Table 2.7: Summary of bugs tested (PoCC evaluation)

Bug Description
loop bound decrease by 1 some loop upper bound

array access divide by 2 some array subscript
permutation interchange two non-permutable loops
code motion move around some loop nest

A bug has been introduced randomly in each transformed program, for all benchmarks,

for both loop bounds and array accesses. For the permutation and code motion, we manu-

ally modified the transformed program to introduce a change of semantics when applicable.

For some benchmarks, all loop permutations are valid (e.g., dgemm), so no loop permuta-

tion bug can be created.

Discussions

Verifying polyhedral transformations Loop transformations, especially iteration re-

ordering ones, are not exclusive to polyhedral compilers. Most compilers implementing

some loop transformations will support loop unrolling, interchange, fusion, distribution,

and tiling (when possible). When the generated code is a purely affine program, both Poly-

Check and ISA can successfully determine the correctness of the transformed program,

given the input one. However, the execution time of the two techniques can differ vastly.

For ISA, it can prove equivalence extremely quickly, especially on simple programs—in

much less than a second. On the other hand, it is at the mercy of polyhedral analysis com-

plexity, which is NP-complete in general. That is, some particular codes could end up

taking hours or GB of space to check [127]. In contrast, our approach has a sort of pre-

dictable time to terminate: on the order of the time needed for the transformed code to run

45



on a machine, irrespective of the transformation complexity.3 Still, this time depends on

the problem size used.

By definition, polyhedral programs considered have a static control-flow, so it is not

necessary to test various datasets of the same size to conclude equivalence with PolyCheck

for the scope of bugs it can find. This is in contrast to classical testing, where the output

produced by the transformed code is compared bit by bit to the output of a gold, original

version. In this case, even for polyhedral programs, the dataset has a fundamental impact

on the output values (think about testing dgemm by multiplying 0-filled matrices). We

claim PolyCheck is suited to accelerate and even replace such testing procedures because

of its insensitivity to dataset values.

Verifying polyhedral and AST transformations It is widely accepted that affine iter-

ation reordering transformations alone are not enough to achieve the best performance.

That is, practical polyhedral compilers must complement affine transformations with AST-

based transformations for best performance. Shirako et al. recently showed an example

of such integration in PoCC [110]. Our approach is robust to complementary transfor-

mations implemented at the AST level, as shown with the unrolling experiments. One

interesting observation was made in regard to ISA not being able to handle the unrolled

code. While the code is still semantically affine, the way it was syntactically generated

challenged the ISA SCoP extractor. Clearly, this is not indicative of a limitation of the ISA

algorithm/method, merely one of a tool to extract polyhedral representation. Nevertheless,

it shows the advantage in having a framework that operates independent of how the code is

actually generated. Notably, PolyCheck will not require any update or change for any new

optimization applied on affine codes.

3Assuming there is no infinite loop in the generated program.

46



Verifying non-affine transformations Non-affine transformations of affine programs

must be properly anticipated for. Existing optimizations, such as parametric tiling, al-

ready generate non-affine code and cannot be checked by tools such as ISA. PolyCheck

seamlessly handles such codes. The optimization on loop bounds has proven to be another

challenge for SCoP extraction in PET. However, this time, the optimization’s complexity

makes it nearly impossible to create a canonical affine representation of the code at SCoP

extraction time without actually reverse-engineering the optimization. To that extent, it

can almost be considered as a non-affine transformation, yet there is a compelling need to

verify its correctness. Going further, many other code transformations, such as recursive

decomposition for cache-oblivious algorithms, lead to non-affine programs, even if the in-

put is an affine program. We believe PolyCheck perfectly complements tools like ISA by

enabling seamless support of such transformations, and it offers a more practical alterna-

tive to trace-based checking (due to its much lower space complexity) or output difference

checking (based on its insensitivity to the dataset content).

2.6.2 Evaluation Using Cilk and the Pochoir Stencil Compiler

We further evaluate PolyCheck by verifying the correctness of Cilk and Pochoir imple-

mentations of affine programs.

Benchmarks and Setup Cilk [31, 32] is a programming model that supports fork/join

parallelism based on random work stealing [33]. Cilk programs recursively divide (fork)

the computation into sub-computations and combine their result (join) to produce the final

result. Cilk is a simple extension of the base C/C++ language with the serial elision prop-

erty: removing the Cilk keywords results in a sequential recursive program. We evaluated

the correctness of the single-threaded execution of the recursive Cilk implementations of

47



affine programs, distributed as part of MIT Cilk 5.4.6 [7]. For each benchmark, we wrote

the loop version as the input program specification to verify the Cilk implementation. Then,

the checker code was inserted into the Cilk implementation at each statement that generates

an operation to be checked.

Pochoir [118, 117] is a embedded domain-specific language for stencil computations.

The programmer specifies the computation in terms of a grid and the statements to com-

pute the value of a grid point in a multidimensional spatial grid at time t as a function of

neighboring grid points at times before t. Such a specification is compiled into C++ by the

Pochoir compiler to generate divide-and-conquer stencil codes [55, 56] based on cache-

oblivious algorithms [54, 97]. Note that the iterations or loop space are completely implicit

in the program and immediately not available to the programmer. Each benchmark in the

Pochoir distribution (version 0.5) includes a reference loop implementation used for test-

ing. We engaged these implementations as the input source program. The computation to

be performed at each grid point is a set of statements. We inserted a checker code to verify

each instance of these statements directly in the Pochoir program. The program is then

compiled through Pochoir and executed to verify the Pochoir compiler’s transformations.

Table 2.8: Errors found in transformations by PolyOpt/C 0.2.0

Benchmark Original Program (Pass) Transformed with tile 8 1 1(have errors)
cholesky A[1][0](1)=x(2)*p[0](1) A[1][0](1)=x(1)*p[0](1)

assert(x(2)==2) assert(x(1)==2) Fail
reg detect mean[0][0](1)=sum diff[0][0][15](1) mean[0][0](1)=sum diff[0][0][15](0)

assert(sum diff[0][0][15](1)==1) assert(sum diff[0][0][15](0)==0) Fail

48



Table 2.9 shows the Cilk and Pochoir benchmarks used in the evaluation. The default

dataset size was used for all benchmarks. All benchmarks were compiled with the ICC-

15.0.3 compiler with -O3 optimization.

Table 2.9: Cilk and Pochoir benchmarks

Benchmarks Description

Cilk

matmul Matrix-multiply C=A.B
rectmul Multiply two rectangualar matrizes

spacemul A dag-consistent Matrix Multiply
heat Heat diffusion

lu Martix LU decomposition

Pochoir

heat 2D heat equation on 2D grid
heat 2P heat equation on 2D torus

apop American put stock option pricing
3d7pt order-1 3D 7 point stencil

3d27pt order-1 3D 27-point stencil

Evaluation and results The evaluation of our approach on Cilk and Pochoir programs

is similar to Polybench/C test suite. To emulate bugs, we randomly introduce problems to

programs (shown in Table 2.10). As in the PoCC study, we ensure the bugs introduced do

not lead to segmentation violation.

Table 2.10: Summary of evaluation using Cilk and Pochoir benchmarks

Evaluation Description Detect

Cilk
no bug original Cilk program Pass

loop bound decrease some loop upper bound
√

array access decrease some array subscript
√

Pochoir
no bug original Pochoir program Pass

loop domain decrease some loop domain
√

array access decrease some array subscript
√

49



All bugs are introduced randomly for all transformed programs, loop bound, domain,

and array access. Of note, there are no explicit loops in the Pochoir program, but macro

functions specify the loop domain. Table 2.10 shows the results.

2.6.3 Identifying Bugs in PolyOpt/C

CodeThorn [109] identified two bugs in PolyOpt/C 0.2.0 [95] polyhedral compiler.

These bug results in incorrect code generated for the cholesky and reg detect benchmarks.

CodeThorn checks the transformed program for a given problem size by explicitly enu-

merating the trace of statement instances and performing a verification. Table 2.8 shows

these bugs, illustrating the array element following the version number (in parenthesis).

PolyCheck found both bugs efficiently. We also present performance comparisons with

CodeThorn below, which showcase how PolyCheck can be orders of magnitude faster than

CodeThorn.

2.6.4 PolyCheck Overhead

Runtime overhead We conclude our evaluation with a detailed reporting of the execu-

tion time of the transformed programs modified to integrate the checkers. To evaluate

the checker-only overhead, we replaced the actual computation with the checker’s actions.

Each program must be run to completion to provide verification information. Figure 2.9

reports the timing (normalized to the execution time of the transformed program) of the

fixed-tiling transformation, without and with checker optimization described earlier. Fig-

ure 2.10 shows the same but for the parametric-tiling transformation. We remark that for

reg detect, the checker code is initially slower than the transformed code. This is because

our checker code can disrupt SIMD vectorization optimizations, an effect exacerbated for

reg detect. In general, the checker’s execution time is proportional to the performance of

50



Table 2.11: Overhead comparison with CodeThorn [109]

Benchmark CodeThorn PolyCheck
covariance 1.56 secs 0.005 ms
covariance-tile-8-1-1 1.71 secs 0.030 ms
fdtd-2d 1.58 secs 0.047 ms
fdtd-2d-tile-8-1-1 3.14 secs 0.071 ms
jacobi-2d-imper 0.692 ms 0.027 ms
jacobi-2d-imper-tile-8-1-1 1.50 secs 0.037 ms
seidel-2d 1.05 secs 0.031 ms
seidel-2d-tile-8-1-1 2.51 secs 0.032 ms

the transformed program because it has almost identical memory traffic. The arithmetic op-

erations performed in the actual computation are replaced by checker instructions, which

can possibly represent more workload for the checker version. The checker optimization

dramatically reduces any such effect (shown in both Figures 2.9 and 2.10). The -Opt timing

is systematically lower than the transformed program, and there are cases, such as bicg and

lu, where the overhead becomes marginal. Nevertheless, as we always execute the program,

the execution time remains dependent on the problem size. In Figure 2.11, we show the

execution time to check fixed- and parametric-tiled versions of LU. It is evident that the

time to execute the checkers is significantly lower than the transformed program. This is

due to the use of optimized checking of full tiles. Figure 2.12 shows the execution time for

reg detect, where full tile optimization cannot applied.

Overhead Comparison We further evaluate PolyCheck’s runtime overhead by present-

ing a comparison experiment of CodeThorn, a trace-based tool by Schordan et al. [109].

Table 2.11 compares the two tools using benchmarks and problem sizes chosen from [109].

CodeThorn runtimes are directly from Schordan et al. [109], and we report the time of the

51



optimized runtime checking procedure only for PolyCheck (the static analysis time does

not depend on the problem size and needs to be done only once per input program). Poly-

Check can be orders of magnitude faster than codeThorn, thanks to very efficient runtime

checking by actual execution of the program, and limited space overhead. However Poly-

Check requires the input program to have a static/affine control-flow, while codeThorn can

handle programs with data-dependent control-flow.

gemver gemm bicg lu jacobi2d seidel fdtd2d cova. corr. reg. doitgen0

.5

1

1.5

N
o
rm
a
liz
e
d
ru
n
n
in
g
ti
m
e

Pluto

PolyCheck

PolyCheck Opt

Figure 2.9: Checker running time with fixed tiling.

gemver gemm bicg lu jacobi2d seidel fdtd2d cova. corr. reg. doitgen0

.5

1

1.5

N
o
rm
a
liz
e
d
ru
n
n
in
g
tim
e

Ptile

PolyCheck

PolyCheckOpt

Figure 2.10: Checker running time with parametric tiling.

52



1000 2000 4000 6000 8000 10000
0

50

100

150

200

250

300

350

400

450

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 s

e
c

 

 

Ptile

Pluto

Ptile−PolyCheck−Opt

Pluto−PolyCheck−Opt

Figure 2.11: Checker running time across problem size (LU).

100k 200k 400k 600k 800k 1000k
0

20

40

60

80

100

120

140

160

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 s

e
c

 

 

Ptile

Pluto

Ptile−PolyCheck−Opt

Pluto−PolyCheck−Opt

Figure 2.12: Checker running time across problem size (Reg detect).

2.7 Conclusions

Using compositions of loop transformations to restructure the program for improved

performance, optimizing compilers become increasingly complex and capable of generat-

ing transformed programs that are extremely far from the original code syntactically. It is

critical to assess the correctness of compiler-generated code as these compilation frame-

works themselves rely on millions of lines of code. In this chapter, we presented a new

approach that exploits the properties of affine programs to generate, at compile time, a

lightweight checking code. This checking code then is embedded into the transformed

program and run for equivalence checking. Our approach addresses the main drawbacks

53



of alternative solutions for finding bugs in iteration reordering transformation frameworks,

and its correctness and effectiveness have been extensively evaluated on several compila-

tion frameworks that combine numerous kinds of program transformations.

54



CHAPTER 3

Static and Dynamic Frequency Scaling on Multicore CPUs

3.1 Introduction

Energy efficiency is of increasing importance in a number of use cases ranging from

battery-operated devices to data centers striving to lower energy costs. DVFS (Dynamic

Voltage and Frequency Scaling) [17] is a fundamental control mechanism in processors

that enables a trade-off between performance and energy.

Typical DVFS approaches fall into two categories: schemes that employ specific fre-

quencies for default policies (e.g., powersave vs performance governors in Linux) or

schemes that observe the CPU execution and dynamically react to CPU load changes (e.g.,

the on-demand governor). Although energy savings have been demonstrated with these ap-

proaches [59, 69, 80, 72], we observe several limitations. First, as we show in this chapter,

the frequency/voltage that optimizes CPU energy can vary significantly across processors.

Even for the same compute-bound application, different processors have different energy-

minimizing frequencies. Second, optimizing energy for a parallel application is highly

dependent on its parallel scaling, which in turn depends on the operating frequency, an

aspect mostly ignored in previous work. Third, dynamic schemes remain constrained to

runtime inspection at specific time intervals, implying that short-running program phases

55



(e.g., a few times longer than the sampling interval) will not see all the benefits of dynamic

DVFS compared to using the best frequency for the phase from the start.

In this work, we propose to address these limitations using two complementary strate-

gies. First we present a simple lightweight runtime which throttles frequency based on pe-

riodic measurements of the energy efficiency of the application. This approach can exploit

the specific properties of the CPU power profile, and is applicable to arbitrary programs.

Then, we develop a compile-time approach to select the best frequency, but for program

regions that can be analyzed using the polyhedral model [48], which is typical of compute-

intensive kernels / library calls such as BLAS operations [91, 9] or image processing filters

[92, 9]. Specifically, we develop static analysis to approximate the operational intensity

(i.e., the ratio of operations executed per bytes of data transferred from the RAM) and the

parallel scaling (i.e., the execution time speedup as a function of the number of cores) of

a program region, in order to categorize a program region (e.g., compute-bound, memory-

bound, etc.). The frequency and number of cores to use for each program category are

chosen from the result of a one-time energy and energy-delay product profiling of the pro-

cessor using microbenchmarks representative of different workload categories. Our exten-

sive evaluation demonstrates significant energy and EDP savings over static (powersave )

and dynamic (on-demand ) schemes, validating our approach. We make the following con-

tributions.

• We demonstrate that limitations of purely load-based approaches to DVFS can be

addressed using a lightweight runtime approach we develop, optimizing CPU energy

efficiency.

56



• We develop a compilation framework for the automatic selection of the frequency and

number of cores to use for affine program regions, by categorizing a region based on

its approximated operational intensity and parallel scaling potential.

• We provide extensive evaluation of our approach using 60 benchmarks and 5 multi-

core CPUs, demonstrating average energy savings of 10% and EDP improvements

of 40% on average over the powersave Linux governor.

3.2 Motivation and Overview

Previous research has shown that the increase in execution time when throttling down

the frequency can be limited to a very small quantity by performing careful DVFS, leverag-

ing the fact that on bandwidth-bound applications, the processor stalls a lot waiting for data

transfer. Therefore, processor frequency could be reduced without significant wall-clock

time increase (if the latency of main memory operations is not affected by DVFS), resulting

in energy savings [59, 69].

Moreover, when considering the CPU energy alone (in isolation of the rest of the sys-

tem), it could be intuitive to think that the lower the frequency, the lower the energy con-

sumption: as power is often approximated to have a cubic relationship with frequency

(assuming frequency and voltage have a linear relationship), using the minimal frequency

(e.g., as with powersave ) is expected to increase execution time linearly but decrease

power in a nearly cubic way, thereby leading to the minimal CPU energy. We now show

that this is not always true.

Energy profiles of CPUs We now discuss in detail the energy profiles of four off-the-

shelf Intel x86 CPUs running on a Linux desktop. Table 3.1 outlines their key characteris-

tics. We report in Fig. 3.1 a series of plots obtained by actual power and time measurements

57



using hardware counters available with Intel PCM [71], on DGEMM/MKL [70] for the top

row. DGEMM/MKL is run on a large out-of-L3 problem size (reported to achieve near

peak compute performance on these machines), and its execution time scales nearly per-

fectly with the frequency and number of cores used: it captures a compute-bound scenario

exploiting fully all the processor capabilities. The data plotted is the measured CPU energy

for the computation, where only one benchmark is running (no co-execution) and where

Turbo-boost and other hardware DVFS mechanism have been turned off to obtain deter-

ministic data. Each frequency was set prior to benchmarking using the userspace gover-

nor using the cpuFreq package, implicitly changing voltage along with frequency change

as per the CPU specification.

Table 3.1: Processor characteristics

Intel CPU Microarch. Node Cores L1 L2 L3 Freq. GHz Voltage V
Core i7-2600K SandyBridge 32nm 4 32K 256K 8192K 1.6 ∼ 3.4 0.97 ∼ 1.25
Xeon E3-1275 IvyBridge 22nm 4 32K 256K 8192K 1.6 ∼ 3.5 0.97 ∼ 1.09
Xeon E5-2650 IvyBridge 22nm 8 32K 256K 20480K 1.2 ∼ 2.6 0.97 ∼ 1.09
Core i7-4770K Haswell 22nm 4 32K 256K 8192K 1.2 ∼ 3.5 0.76 ∼ 1.15

We make several key observations from this data. First, the optimal CPU energy is not

achieved for the minimal nor maximal frequency in most cases. Taking the case where all

cores are used, on SB-4 and HSW-4 minimal energy is achieved at 1.6GHz (the minimal

frequency for our SB setup), but it is achieved near the (but not at) maximal frequency for

the two Ivy Bridge processors. The reason relates to the voltages used, and in particular

to the ratio of voltage changes versus the ratio of frequency changes for each machine.

Table 3.1 shows that for the two Ivy Bridge processors, the voltage range is much smaller

58



0 

50 

100 

150 

200 

250 

300 

1.6 2 2.6 3 3.4 

E
ne

rg
y 

(J
) 

Frequency (GHz) 
1 core 2 cores 4 cores 

SandyBridge/4 cores

0 

50 

100 

150 

200 

250 

300 

1.6 2 2.5 3.1 3.5 

E
ne

rg
y 

(J
) 

Frequency (GHz) 
1 core 2 cores 4 cores 

IvyBridge / 4 cores

0 

50 

100 

150 

200 

250 

300 

1.2 1.6 2 2.4 2.6 

E
ne

rg
y 

(J
) 

Frequency (GHz) 
1 core 4 cores 8 cores 

IvyBridge / 8 cores

0 

20 

40 

60 

80 

100 

120 

1.2 1.6 2 2.5 3.1 3.5 

E
ne

rg
y 

(J
) 

Frequency (GHz) 
1 core 2 cores 4 cores 

Haswell / 4 cores

0 

50 

100 

150 

200 

250 

1.6 2 2.6 3 3.4 

E
ne

rg
y 

(J
) 

Frequency (GHz) 
1 core 2 cores 4 cores 

0 

20 

40 

60 

80 

100 

120 

140 

160 

1.6 2 2.5 3.1 3.5 

E
ne

rg
y 

(J
) 

Frequency (GHz) 
1 core 2 cores 4 cores 

0 

50 

100 

150 

200 

250 

1.2 1.6 2 2.4 2.6 

E
ne

rg
y 

(J
) 

Frequency (GHz) 
1 core 4 cores 8 cores 

0 

20 

40 

60 

80 

100 

120 

140 

160 

1.2 1.6 2 2.5 3.1 3.5 

E
ne

rg
y 

(J
) 

Frequency (GHz) 
1 core 2 cores 4 cores 

Figure 3.1: Energy for DGEMM/MKL (top row) and Jacobi 2D (bottom row)

than the other two (from 0.97V to 1.09V). Overly simplified power equations ignore key

effects such as the relation between leakage current and temperature, and frequency and

voltage relations. A more realistic power equation [114] captures the Poole-Frenkel effect,

which relates leakage to temperature, and careful derivation of the evolution of the power

equation as a function of changes in V, f and Temp demonstrates that the slope of increase

of voltage vs. frequency can influence what is the optimal frequency for energy efficiency.

De Vogeleer et al. [40] developed an analogous characterization on a mobile processor,

modeling the energy variation between frequency steps as a function of voltage and tem-

perature and obtaining a curve similar to our result for Haswell. They derived formulas

to characterize the convex shape of the CPU energy efficiency for a fixed workload, as a

function of CMOS characteristics including voltage and frequency increase relations. Here

we observe across four different x86 Intel processors four different cases for the most en-

ergy efficient frequencies, for compute-bound codes. A runtime approach focusing only

59



on workload properties (e.g., the lack of stall cycles) and not taking into account these

processor-specific effects would fail at selecting the optimal frequency for CPU energy

minimization. Second, the optimal CPU energy may be achieved at different frequencies

depending on the number of cores used. This is seen in particular on Haswell, where on 1

core 2GHz is the best frequency, but for 2- and 4-cores it is 1.6GHz. A similar situation

is observed on Sandy Bridge, albeit the difference is very small. On the other hand, this is

not observed for the Ivy Bridge cases.

To make the situation more complex, in practice the most energy efficient frequency

is also affected by how the execution time evolves as a function of frequency. When the

execution time decreases at a slower rate than the frequency increases (e.g., the expected

acceleration is not achieved) this shifts the optimal frequency towards lower values than

for the compute-bound cases like DGEMM/MKL. This is exemplified with a bandwidth-

bound benchmark, as shown in the bottom row of Fig. 3.1. J2D is a Jacobi 2D code from

PolyBench/C 3.2, which is parallelized naively among rows of the image, and uses out-

of-L3 data too. It represents a bandwidth-bound case which is more realistic (e.g., less

exacerbated) than the STREAM [86] benchmark.4 We see a systematic shift of the most

energy efficient frequency towards the left, that is lower frequencies. In addition, due to

bandwidth saturation effects, the code does not have good weak scaling: adding cores does

not decrease the execution time linearly. It leads to higher energy consumption increase for

the 4-core/8-core cases than for single-core, when the frequency increases. This motivates

the need for an approach that also considers the application characteristics to determine

its most energy efficient frequency.

4STREAM suffers from insufficient number of loads emitted at low frequencies on single-core: it did not
always saturate the bandwidth in our experiments.

60



Proposed approach Based on the observations above, we conclude that the best fre-

quency to use to minimize CPU energy is per-processor-per-workload specific: one cannot

limit to looking at the CPU load (e.g., using on-demand ) or using the minimal frequency

(e.g., using powersave ) to minimize CPU energy. We propose two approaches to ad-

dress this problem. (1) A lightweight runtime that adapts the frequency based on the CPU

energy changes, dynamically during the application execution, see Sec. 3.3. (2) A compile-

time approach for static selection of the ideal frequency for each affine computation kernel

within a full application, based on (a) a new static analysis of the program’s operational

intensity and its potential for weak scaling across cores, see Sec. 3.4; and (b) a character-

ization of the processor’s power profile for a handful of extreme scenarios (e.g., compute-

bound, bandwidth-bound, etc.), via micro-benchmarking of a processor, as described in

Sec. 3.5.

3.3 Adaptive Runtime to Optimize Energy Efficiency

We now describe our lightweight DVFS runtime approach. Its motivation is twofold.

First, we want to design a runtime algorithm that is able to find automatically a good fre-

quency to improve energy efficiency for any processor, in light the requirement for this

frequency to be potentially radically different for different processors as shown in the pre-

vious section. Second, we want an approach to energy savings that does not require analysis

of the source code nor profiling of the workload [69], in other words which can work on

arbitrary programs. This runtime serves as a baseline for our compile-time frequency/core

selection method, the core contribution, described in later Sec. 3.4. We will show how fur-

ther energy savings can be achieved for specific computation kernels that can be analyzed

with the polyhedral model in Sec. 3.6.

61



Algorithm 1 Runtime DVFS algorithm
Input: Sampling time interval: ∆t

Energy efficiency threshold: ∆Eff
OI threshold: ∆OI

1: Efflast = OIlast = 0
2: lastChange = increaseFreq
3: for each time quanta ∆t do
4: change = noChange
5: Eff = computeEnergyEfficiency()
6: OI = computeOI()
7: if Eff < Efflast +∆Eff then
8: if OI < OIlast −∆OI then
9: change = reduceFreq

10: else if |OI−OIlast|< ∆OI then
11: change = reverse(lastChange)
12: else if OI > OIlast +∆OI then
13: change = increaseFreq
14: end if
15: else if Eff > Efflast +∆Eff then
16: change = lastChange
17: end if
18: if change != noChange then
19: changeFrequency(change)
20: lastChange = change
21: end if
22: end for

Runtime algorithm The main idea of our runtime is to continuously inspect the changes

in energy efficiency, that is the energy consumption normalized by the number of instruc-

tions executed, and the changes in operational intensity (OI) of the application. A decision

to change frequency is made either because the OI has changed, indicating a change in the

nature of the computation being performed, or because the energy efficiency has decreased

compared to the last sample. Within a single phase, that is a time segment with similar OI,

we exploit the energy convexity rule: there is only one frequency maximizing energy effi-

ciency [40], as illustrated in the previous section. Consequently, our algorithm to find this

62



frequency simply performs a gradient descent in the space of frequencies. The algorithm is

shown on the right.

This algorithm has several parameters that can be tuned: the sampling interval ∆t, the

threshold for significant change in energy efficiency ∆E f f , and the threshold for signif-

icant change in OI ∆OI. We have implemented this approach using Intel Performance

Counter Monitor (PCM) [71] version 2.10, which provides counters to obtain the num-

ber of operations executed, the quantity of data transferred to/from RAM, and the average

CPU power in between two time points. We compute the OI and energy efficiency from

these counters. The runtime program is a separate thread implemented via Unix signals,

triggering the monitoring and frequency selection every ∆t time. We measured the time

overhead of the runtime approach to be well below 1% when using ∆t = 50ms. We chose

∆E f f = ∆OI = 5% in our experiments, and the runtime aggregates energy and OI metrics

for all CPU cores, using Intel PCM counters. Precisely, the OI is measured respective to the

RAM accesses and total number of CPU instructions executed, and the energy efficiency

is the energy consumed by the socket in the time elapsed normalized by the number of

total CPU instructions executed. Note that the possible frequencies the changeFrequency

function can output are part of a pre-determined list of frequencies, we selected 5 (6 for

Haswell) frequencies in between 1.6GHz and the maximal CPU frequency. Therefore the

algorithm always output a valid frequency.

Experimental results Fig. 3.2 shows the energy savings, compared to powersave , of

the on-demand Linux frequency governor, and of our runtime approach. We evaluate on

60 computation kernels as detailed in Sec. 3.6.1 to enable comparison with our compile-

time approach developed in later sections, using OpenMP parallelization and executing

63



on all cores of the target machines. We detail the two most interesting machines for this

experiment: a 8-core Ivy Bridge machine, where the lowest energy can be achieved for high

frequencies, and a 4-core Haswell where the minimal frequency is not always minimizing

energy, as shown in Sec. 5.1.

-40%
-30%
-20%
-10%
0%

10%
20%
30%
40%
50%
60%

2m
m
-p
ar

3m
m
-p
ar

ad
i-p

ar

at
ax
-p
ar

bi
cg
-p
ar

ch
ol
es
ky
-p
ar

co
rr
el
at
io
n-
pa
r

co
va
ria

nc
e-
pa
r

do
itg

en
-p
ar

du
rb
in
-p
ar

dy
np

ro
g-
pa
r

fd
td
-2
d-
pa
r

fd
td
-a
pm

l-p
ar

flo
yd
-w
ar
sh
al
l-p

ar

ge
m
m
-p
ar

ge
m
ve
r-p

ar

ge
su
m
m
v-
pa
r

gr
am

sc
hm

id
t-p

ar

j1
d-
pa
r

j2
d-
pa
r

lu
dc
m
p-
pa
r

lu
-p
ar

m
vt
-p
ar

re
g_
de
te
ct
-p
ar

se
id
el
-2
d-
pa
r

sy
m
m
-p
ar

sy
r2
k-
pa
r

sy
rk
-p
ar

tr
iso

lv
-p
ar

tr
m
m
-p
ar

Saving	in	% Xeon	E5-2650	 (IvyBridge-8)

On-Demand	vs.	Powersave
Runtime	vs.	Powersave

-160%
-140%
-120%
-100%
-80%
-60%
-40%
-20%
0%

20%
40%
60%

2m
m
-p
ar

2m
m
-p
ol
y

3m
m
-p
ar

3m
m
-p
ol
y

ad
i-p

ar
ad
i-p

ol
y

at
ax
-p
ar

at
ax
-p
ol
y

bi
cg
-p
ar

bi
cg
-p
ol
y

ch
ol
es
ky
-p
ar

ch
ol
es
ky
-p
ol
y

co
rr
el
at
io
n-
pa
r

co
rr
el
at
io
n-
po
ly

co
va
ria

nc
e-
pa
r

co
va
ria

nc
e-
po
ly

do
itg

en
-p
ar

do
itg

en
-p
ol
y

du
rb
in
-p
ar

du
rb
in
-p
ol
y

dy
np

ro
g-
pa
r

dy
np

ro
g-
po

ly
fd
td
-2
d-
pa
r

fd
td
-2
d-
po

ly
fd
td
-a
pm

l-p
ar

fd
td
-a
pm

l-p
ol
y

flo
yd
-w
ar
sh
al
l-p
ar

flo
yd
-w
ar
sh
al
l-p
ol
y

ge
m
m
-p
ar

ge
m
m
-p
ol
y

ge
m
ve
r-p

ar
ge
m
ve
r-p

ol
y

ge
su
m
m
v-
pa
r

ge
su
m
m
v-
po

ly
gr
am

sc
hm

id
t-p

ar
gr
am

sc
hm

id
t-p

ol
y

j1
d-
pa
r

j1
d-
po

ly
j2
d-
pa
r

j2
d-
po

ly
lu
dc
m
p-
pa
r

lu
dc
m
p-
po
ly

lu
-p
ar

lu
-p
ol
y

m
vt
-p
ar

m
vt
-p
ol
y

re
g_
de
te
ct
-p
ar

re
g_
de
te
ct
-p
ol
y

se
id
el
-2
d-
pa
r

se
id
el
-2
d-
po

ly
sy
m
m
-p
ar

sy
m
m
-p
ol
y

sy
r2
k-
pa
r

sy
r2
k-
po

ly
sy
rk
-p
ar

sy
rk
-p
ol
y

tr
iso

lv
-p
ar

tr
iso

lv
-p
ol
y

tr
m
m
-p
ar

tr
m
m
-p
ol
y

Saving	in	% Core	i7-4770k	(Haswell)

On-Demand	vs.	Powersave
Runtime	vs.	Powersave

Figure 3.2: Comparison of energy savings for on-demand Linux governor and our proposed run-
time, versus powersave

As expected, the on-demand governor can significantly improve energy consumption

on Ivy Bridge compared to powersave , but can also be highly detrimental in particular

for more bandwidth-bound benchmarks. For Haswell, on-demand is typically highly detri-

mental. In contrast, our proposed runtime approach is only rarely detrimental compared to

powersave but on average significantly boost energy savings for Ivy Bridge. It addresses

64



the deficiencies of the two Linux governors by looking at energy efficiency instead of sim-

ply CPU workload, and offers a viable one-size-fits-all algorithm despite the processor-

specific characteristics of the energy-minimizing frequency. Note also that as powersave

runs at the minimal frequency, our runtime approach can only equal or improve the overall

execution time.

However, as we show in the next sections, further gains can be attained by addressing

two inherent limitations of a runtime-based approach: (1) the “wasted” time to reach the

optimal frequency for a regular computation chunk (i.e., a phase in the program); and (2)

the inability to adapt the number of CPU cores allocated to the chunk, based on parallel

scaling. We show how these limitations can be efficiently addressed for affine kernels.

3.4 Static Analyses

A fundamental property of affine computations is to have only static control-flow and

data-flow, that is the code executed does not depend on the dataset value, but only on

the value of loop iterators and program constants. This regularity enables the design of

key static analyses for these program regions, for instance to characterize their operational

intensity. We aim to substitute our runtime approach based on runtime OI inspection by a

compile-time characterization of the program region, using novel analyses we now develop.

3.4.1 Approximating Operational Intensity

The operational intensity (OI) of a program, typically in FLOP per byte for scientific

codes, is the ratio of operations executed per data moved to execute these operations. The

OI may be computed during run-time using data movement count from the transfers from

RAM to the last-level cache, or another level of cache. In this work, we are interested in

categorizing a program region (i.e. a loop nest) as either memory-bound or compute-bound:

65



only a coarse approximation of the OI is needed. We also have the goal of developing a

very fast analysis that can be applied on large source codes. Indeed, the result of applying

polyhedral transformations to a program may lead to a code of thousands of lines from

an input loop nest of a few lines, as is the case for numerous benchmarks we evaluate in

Sec. 3.6.

We propose a fast static analysis, which can categorize a program region at compile-

time in less than one second for affine programs made of possibly thousands of lines of

code. Prior work on cache miss modeling for affine programs, such as the Cache Miss

Equations [62] or the work of Chatterjee et al. [39], can provide exact count of cache

misses but at the expense of a prohibitively costly static analysis which may take hours to

complete even for simple codes [39]. These are not suitable for our objectives. In this work

we trade off accuracy for analysis speed, as an approximation of the OI is sufficient for our

need of categorizing a program region. Our analysis takes an arbitrary C code as input,

automatically extracts affine regions, and for each approximates the OI. It does not perform

any transformation, and works in a stand-alone fashion.

Background on polyhedral program representation The polyhedral model is a flexi-

ble and expressive representation for imperfectly nested loops with statically predictable

control flow. Loop nests amenable to this algebraic representation are called static control

parts (SCoPs) [48, 63], roughly defined as a set of consecutive statements such that loop

bounds and conditionals involved are affine functions of the enclosing loop iterators and

variables that are invariant during the SCoP execution. Numerous scientific kernels exhibit

those properties; they can be found in image processing filters, linear algebra computations,

etc. [63]. We now describe the key data structures and objects to represent and manipulate

66



programs we need in this work. We illustrate the main ideas using the simple example in

Fig. 3.3 below, a single-sweep of a 2D stencil.

for (i = 1; i < height - 1; ++i)
for (j = 1; j < width - 1; ++j)

R: Out[i][j] = 4*In[i][j]-In[i -1][j]
-In[i+1][j]-In[i][j-1]-In[i][j+1];

Figure 3.3: Jacobi 2D 5 point sweep

Iteration domains For each textual statement in the program, the set of its run-time

instances is captured with an integer set bounded by affine inequalities, intersected with

an affine integer lattice [25], that is the iteration domain of the statement. Each point in

this set represents a unique dynamic instance of the statement, such that the coordinates of

the point corresponds to the value the surrounding loop iterators take when this instance is

executed. For instance for statement R in Fig. 3.3, its iteration domain DR is:

DR = {(i, j) ∈ Z2 | 1 ≤ i < height−1∧1 ≤ j < width−1}

We denote x⃗R ∈ DR as a point in the iteration domain.

Access functions They capture the location of the data accessed by the statement. In

static control parts, memory accesses are performed through array references (a variable

being a particular case of an array). We restrict ourselves to subscripts that are affine

expressions of surrounding loop counters and global parameters. For instance, the subscript

function of the fifth read reference to In in R, In[i][j+1] , surrounded by 2 loops i and

j is F In
5,R(i, j) = (i, j+1) and its values when evaluated for all pairs (i, j) ∈ DR capture the

set of addresses of A accessed by this reference.

67



Data space We first define the data space of an array A for a program, that is the set of

data accessed by all references to a specific array, during the entire program execution. The

data space is simply the union of the sets of data elements accessed through the various

access functions referencing this array, for each value of the surrounding loop iterators

where the reference is executed. The polyhedral program representation enables the use of

the image of a polyhedron (e.g., the iteration domain) by an affine function (e.g., the access

function) to capture data spaces. The image of a polyhedron D by an affine function F is

defined as the set {⃗y | ∀⃗x ∈ D, F (⃗x) = y⃗}.

Definition 1 (Data space). Given an array A, a collection of statements S , and the associ-

ated set of memory references FA
i,S with S ∈ S , the data space of A is the set of unique data

elements accessed during the execution of the statements. It is the union of the image of the

iteration domains by the i access functions in each statement:

DSA =
∪
S∈S

Image(FA
i,S,DS)

We remark that DSA is not necessarily a convex set, but can still be manipulated with

existing polyhedral libraries. For example, in Fig. 3.3 DSIn = {(x,y) | 0 ≤ x < height,0 ≤

y < width} and DSOut = {(x,y) | 1 ≤ x < height −1,1 ≤ y < width−1}.

Data space of a loop iteration It is very convenient to be able to restrict the data space

to a particular loop iteration, for instance compute the data space for one execution of the j

loop (i.e., one iteration of the i loop). We will use such a mechanism to approximate cache

misses below. A simple approach to achieve this is to compute a “slice” of interest of the

iteration domain, and use this sliced domain in the data space computation. A parametric

slice [96] along a set of dimensions (i.e., loops) is defined as follows. Given a loop nest

68



with a loop l of depth n surrounded by k− 1 loops, the parametric slice PS of loop l is a

subset of Zn defined as:

PSl,α = {(x1, . . . ,xn) ∈ Zn|x1 = p1, . . . ,xk−1 = pk−1,xk = pk +α}

where p1, . . . , pn are parametric constants unrestricted on Z, and α is an integer value.

For example, a slice of the first loop in line 1 of Figure 3.3 for statement S is: PSl,0 =

{(i, j) ∈ Z2|i = p1} This is a (parametric) set of 2D integer points with the first component

of each point always having the same (unknown yet constant) value. When intersecting a

slice with an iteration domain one fixes certain loops to a unique “generic” value which is

by construction in the set of possible values the loop iterators can take when the program

execute.

We can now adapt the definition of a data space to the subset of data which is accessed

by a loop iteration.

Definition 2 (Data space of a loop iteration). Given an array A, a collection of statements

S surrounded by a loop l and their associated set of memory references FA
i,S with S ∈ S , and

PSl,0 a PS for loop l, the data space of A is the set of unique data elements accessed during

one iteration of l:

DSA
PSl,0

=
∪
S∈S

Image
(

FA
i,S,
(
DS ∩PSl,0

))
The data spaces of loop iterations we manipulate are union of Z− polyhedra, and oper-

ations such as intersection (∩), union (∪), difference (\) and critically computing a count-

ing function (e.g., #DS(In) = height∗width) can be done at compile-time using specialized

libraries such as the Integer Set Library [124] and Barvinok [128].

69



Approximating Data Movement

The DL (Distinct Lines) model was designed originally to estimate the number of dis-

tinct cache lines, or TLB entries, accessed in a loop nest [106]. It essentially represents

the footprint of a computation in terms of cache lines accessed, thereby taking into account

spatial locality. DL formulas are typically used to analytically find values for the loop

bounds (e.g., tile sizes) to ensure the number of distinct lines accessed is below the cache

capacity, therefore ensuring the data reuse is implemented in cache.

When the DL of a loop nest is lower than the cache size, it is then a good approximation

of the number of cache misses: only cold misses will occur, one per line of cache accessed,

as the reuse will be fully implemented without any data being evicted. Conflict misses are

ignored here, and in the following we will assume they do not dominate the miss behavior,

e.g., arrays have been properly padded. On the other hand, when the DL is larger than the

cache size, DL does not allow to determine an estimate of the number of misses: it depends

on the schedule of operations, and in particular of the reuse distance between references to

the same array.

In this work, we propose to approximate the data movement between two levels of

memory by approximating the number of cache misses at a certain level. We achieve this

by (1) formulating DL in the polyhedral framework, using the concepts presented above;

(2) extending it to also capture the data reuse between consecutive loop iterations at any

loop level; and (3) designing an algorithm that approximates the number of misses when

the DL exceeds the cache size.

70



Computing DL using Polyhedra The data space definitions above are the essential

bricks to compute a polyhedral expression of the number of distinct lines: it already pro-

vides the set of distinct memory locations accessed by a (slice of the) program. The only

missing part is to translate this into distinct cache lines. This is simply done by first rep-

resenting the mapping from memory address to cache line of size ls (line size), using an

affine function of the same dimensionality as the array. For instance for a 2-dimensional

array and ls = 8 (e.g., A[N][M] ) we create the function linemap(i, j) = (i, j/8). Then, the

set of distinct lines for an array A is simply the image of DLA by the linemap function. For

example DLIn using ls = 8 is: DLIn = {(a,b) | 0 ≤ x < height,0 ≤ y < width,a = x,8∗b ≤

y < 8∗b+8}

In a manner analogous to data spaces, one can compute the DL of a particular loop

iteration by using parametric slices of the domain. Such case will be denoted DLA
PSl,α

for

array A and loop l with offset α.

Algorithm for Miss Estimation We are now equipped to build our procedure to estimate

the misses. The idea is the following: we will recursively compute the DL of a loop

(summing it for all arrays accessed by that loop), from the inner-most loops to the outer-

most loops. For each loop l, its number of misses is estimated as either the product of its

trip count and the number of misses of its loop body if the DL of this loop exceeds the

cache size, or its DL if it is smaller than the cache size. For inner-most loops bodies, we

set their number of misses to the DL of the loop body, whatever its value. Some additional

treatment is done to capture the data reuse between consecutive iterations of a loop body,

to adjust the number of misses. We optimistically assume if data is reused between two

iterations, then it corresponds to the part of the data that way loaded last at the previous

71



iteration, e.g., if this set is smaller than the cache size, it is not evicted from the cache by

other data of the previous iteration. Our algorithm is shown in Alg. 2. For simplicity we

assume the entire program is surrounded by a fake loop f k having a single iteration, and

we note that DL[] is a map, where DL[x] associates object x to an integer value.

Algorithm 2 EstimateCacheMisses
Input: Number of array elements per cache line: ls

cache size, in lines: C
Polyhedral program: P

Output: Estimate of misses
1: for all loops l do
2: Misses[l] = DLBase[l] = DLnext[l] = Processed[l] = 0
3: end for
4: for all Arrays A do
5: for all loops l do
6: DLbase[l] += #(DLA

PSl,0
)

7: DLnext[l] += #(DLA
PSl,0

\DLA
PSl,1

)
8: end for
9: end for

10: for all loops l in postfix AST order and Processed[l] == 0 do
11: if DLbase[l] < C then
12: Misses[l] = DLbase[l]
13: else
14: if l is inner-most loop then
15: Misses[l] = DLbase[l]
16: else
17: Miss = 0
18: for all loops ll immediately surrounded by l do
19: Miss += Misses[ll]
20: Processed[ll] = 1
21: end for
22: Misses[l] = Miss * TripCount(l)
23: if DLnext[l] < C then
24: Misses[l] -= DLnext[l]
25: end if
26: end if
27: end if
28: Processed[l] = 1
29: end for
30: return Misses[fk];

72



Alg. 2 uses the TripCount(l) function to compute the trip count of a loop. For affine

programs, this is always computable thanks to the static control-flow property. This func-

tion is implemented by first forming the union of the iteration domains of all statements

surrounded by the loop, then projecting this set onto the dimension corresponding to the

loop of interest.

A key remark about our algorithm is that it performs comparisons of expressions rep-

resenting the number of points in polyhedra. While techniques exist to create such expres-

sions as a function of the parameters of the program, this poses challenges when attempting

to compare two different parameters: given height and width without further information,

is height > width? Or height < width? In general, this problem is not decidable. To avoid

this issue, we require the algorithm to run on an instance of the polyhedral program where

the parameter values are known numerical constants, e.g., 1024. In practice, we extract the

polyhedral representation and compute data spaces using parametric representations, but

add a context information about the exact parameter value before estimating the size of the

polyhedra (the # operation).

Approximating FLOPs, and Getting OI

The last element needed to approximate the operational intensity is the number of op-

Algorithm 3 Estimate Operational Intensity
Input: Number of array elements per cache line: ls

cache size, in lines: C
Polyhedral program: P
Parameter values: n⃗

Output: Estimate of OI
1: P’ = attachContextInformation(⃗n, P)
2: Misses = EstimateCacheMisses(ls, C, P’)
3: Flops = countFlops(P’)
4: return Flops/Misses

73



erations executed in the program, so that we can divide it by the number of memory move-

ments (i.e., number of misses). This is straightforward in the polyhedral representation:

we inspect the AST of each statement body, collecting the number of operations not part

of an array subscript expression, and multiply it by the number of points in the iteration

domain of the statement. As the above process requires explicit values for the parameters,

we leverage the known values to obtain a numerical value for the FLOP count. The overall

process to compute OI is outlined in Alg. 3.

An interesting aspect of this compile-time approach is that it can be applied incremen-

tally on each loop (nest) of the program, to detect loop nests with significantly different

behaviors. That is, this algorithm can be used to detect compute-bound and memory-bound

application phases, allowing for individually fine-tuning the DVFS decision for each phase.

3.4.2 Parallelism Features

The parallelism features we extract are simple in comparison of the OI approximation,

yet critical in terms of the quality of the approach. We have focused our implementation to

cover the cases of automatic parallelization implemented by the PoCC polyhedral compiler

[8], that is if a code is parallel then it has at least one OpenMP for pragma in the code, and

no other type of OpenMP pragmas. This is reminiscent of loop parallelizing compilers.

The first feature we extract is whether the program is sequential or parallel. This is

simply done by checking if the program has any OpenMP pragma in it, if not then it is

sequential. The second feature attempts to capture poor scalability of the code, that is

the performance improvement does not scale with the number of cores. For this feature

we again rely on the assumption that there are only OpenMP for pragmas to model the

74



Algorithm 4 Check Poor Parallel Scaling
Input: Polyhedral program: P

Max. number of cores: c
Output: Compute parallel scaling

1: poorScaleWork = goodScaleWork = 0
2: for all parallel loops l in P do
3: l′ = stripMine(l, c)
4: pds = parametricSlice(l′.inner)
5: if countHasZeroIteration(pds,c) ≥ c/2 then
6: poorScaleWork += countFlops(l′)
7: else
8: goodScaleWork += countFlops(l′)
9: end if

10: end for
11: return poorScaleWork > goodScaleWork

parallelization. We analyze the AST to form an estimate of the regularity of the parallel

loop trip count, studying the parallel workload properties as detailed in Alg. 4.

Function stripMine performs a strip-mining of the loop so that the resulting outer loop

has as many iterations as the maximal number of cores c available on the target machine,

enabling to analyze its inner loop l′.inner that is the outer-most serial loop in a thread. We

then perform parametric slicing to reason on the different trip counts this loop can have,

e.g., for load-imbalanced cases this loop may iterate 0 times. Function countHasZeroIter-

ation counts the number of values of l′ for which the trip count of l′.inner can be equal to

0, if it can be for more than half of the available cores then this loop is considered having

poor scaling.

Interestingly, this feature has only limited use in our tested benchmarks, as the OI fea-

ture is actually a better discriminant for codes which do not scale due to bandwidth sat-

uration, which is the common case in our test suite. Here the poor scalability feature is

limited to capturing compute-bound codes with high load imbalance, as arises typically in

75



pipeline-parallel schedules with large startup and draining phases compared to the steady

state.

3.5 Processor Characterization

3.5.1 One-Time Machine Profiling

As shown in Sec. 5.1, the frequency / number of cores configuration needs to be adapted

as a function of the nature of the code executing. To find the best frequency/core config-

uration for a particular machine, we perform a profiling of four benchmarks on the target

machine, running them on all frequency steps and cores setup available, and collecting the

execution time and power using hardware counters. This enables us to build a profile of

the energy and energy-delay product curves for each benchmark, which are the two metrics

we optimize for. These benchmarks have been specifically built to exacerbate one of the

features that is computed by our static analysis.

Compute-bound code For this case, we use off-the-shelf DGEMM/MKL, in the same

setup as shown in Sec. 5.1. We observed the near perfect scaling of this code / problem

size across the architectures tested, and while being totally compute-bound by nature it is

an actual workload with heavy data traffic.

Bandwidth-bound code Bandwidth-bound programs are frequent, especially if no data

locality optimization has been performed on the original benchmark. For this case we

created a benchmark that implements both spatial and temporal locality via tiling, with

a low arithmetic intensity. It is inspired from an iterative stencil (e.g., Jacobi-2D). This

benchmark is bandwidth-bound, but with a relevant balance between computations and

communications.

76



Sequential code The sequential code we use as representative of sequential workloads

is a SIMD-vectorizable benchmark, with balanced arithmetic intensity, i.e., there is non-

negligible memory traffic. It was built from key code features of the durbin benchmark

from PolyBench/C.

Code with poor scalability The benchmark used here essentially consists of an OpenMP

parallelization of a triangular loop with low trip count, to ensure high load imbalance be-

tween threads. The computation performed in the loop body has balanced arithmetic inten-

sity, and is inspired from LU factorization.

3.5.2 Decision Tree for Frequency/Core pair

Finally we conclude by displaying our process to assign at compile-time a frequency

to an affine program region. A program is classified using its operational intensity and its

parallelism scaling features, to determine to which of the four above categories it is closest

to. In particular, we have found that ordering the decision by prioritizing the cases where

the dominant effect has the highest impact delivers the best results.

The decision process is identical whether we optimize for E or EDP, only the frequen-

cy/core configuration selected changes between E and EDP, using the best configuration

found by profiling for each metric independently. The decision process is as follows:

1) If the code is sequential, choose config sequential;

2) else if the code is bandwidth-bound (i.e., its is OI below threshold, found during

profiling), choose config bwbound

3) else if the code has poor scaling, choose config poorscale

4) else choose config computebound.

77



3.6 Experimental Results

3.6.1 Experimental Protocol

Benchmarks considered We use the PolyBench/C 3.2 benchmark suite [9], a popular

suite of 30 numerical computations written using affine loops and static control flow. It

spans computations in numerous domains such as image processing, linear algebra, etc.

For each benchmark, we considered two versions of the code: par was generated by apply-

ing a simple auto-parallelization without any code transformation. It amounts to inserting

OpenMP parallel for pragmas around the outer-most parallel loops in the code, and vector-

ization pragmas around the inner-most parallel loops. This can very substantially improve

the performance of the original codes, which are sequential by default, and substitute for

the auto-parallelization schemes of the C back-end compilers used. We used the PoCC

source-to-source polyhedral compiler [8] to generate the optimized C files. The second

variant, poly, is the result of a complex automatic program transformation stage aimed at

improving data locality via tiling, coarse-grain parallelism, and fine-grain parallelism. It

uses the Pluto algorithm [34] combined with several other optimizers of PoCC implement-

ing a model-driven pre-vectorization, unrolling, and parallelization. For these variants, the

operational intensity is typically significantly improved after transformation: temporal data

locality is improved via loop tiling whenever possible. These two versions form a total of

60 benchmarks we evaluated on. The static analysis was also implemented in the PoCC

compiler, in a fully automated way, to produce the features of the benchmark for its catego-

rization. Each 60 source code was separately analyzed, the analysis taking at most a couple

seconds to complete.

78



Each benchmark was compiled using GNU compiler GCC-4.8.1 with -O3 -fopenmp

optimization for the Intel CPUs, along with -m64 -mcpu=power8 -mtune=power8 for the

IBM POWER8.

Collecting energy and time To assess the quality of our framework we needed to com-

pute the optimal frequency / core configuration for each binary individually, by collecting

its energy and execution time for each frequency / core configuration evaluated on the tar-

get machine. This data was collected using Intel PCM [71] for the Intel chips, and IBM

AMESTER [51] for the POWER8. The instrumentation was inserted around each kernel of

interest. To obtain stable and sound energy measurement value, Turbo-boost was turned off

on the Intel chips. The following process was repeated as needed to achieve an execution

time of around one minute, and the average energy and time were obtained: (1) flush data

caches; (2) start instruments; (3) execute kernels; (4) stop and collect energy & execution

time

On each target machine we used the different frequencies made available by the Linux

OS running on these machines, Table 3.1 lists the frequency ranges. We used 5-6 frequency

steps per machine, spaced evenly in the frequency range. We tested three core counts: 1,

half, and all available. So a total of 78 configurations (15-18 per machine) was tested for

each of the 60 binaries. We empirically found the best configuration (frequency / core) to

optimize energy or energy-delay product for each benchmark, when using a fixed config-

uration for the entire kernel execution. In the following these are designated as the Best

configuration for a given benchmark and optimization metric.

79



-10%

0%

10%

20%

30%

40%

50%

60%

2m
m
-p
ar

3m
m
-p
ar

ad
i-p

ar

at
ax
-p
ar

bi
cg
-p
ar

ch
ol
es
ky
-p
ar

co
rr
el
at
io
n-
pa
r

co
va
ria

nc
e-
pa
r

do
itg

en
-p
ar

du
rb
in
-p
ar

dy
np

ro
g-
pa
r

fd
td
-2
d-
pa
r

fd
td
-a
pm

l-p
ar

flo
yd
-w
ar
sh
al
l-p

ar

ge
m
m
-p
ar

ge
m
ve
r-p

ar

ge
su
m
m
v-
pa
r

gr
am

sc
hm

id
t-p

ar

j1
d-
pa
r

j2
d-
pa
r

lu
dc
m
p-
pa
r

lu
-p
ar

m
vt
-p
ar

re
g_
de
te
ct
-p
ar

se
id
el
-2
d-
pa
r

sy
m
m
-p
ar

sy
r2
k-
pa
r

sy
rk
-p
ar

tr
iso

lv
-p
ar

tr
m
m
-p
ar

Saving	in	% Core	i7-2600K	 (SandyBridge)

Ours	VS	powersave

Best	VS	powersave

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

2m
m
-p
ar

3m
m
-p
ar

ad
i-p

ar

at
ax
-p
ar

bi
cg
-p
ar

ch
ol
es
ky
-p
ar

co
rr
el
at
io
n-
pa
r

co
va
ria

nc
e-
pa
r

do
itg

en
-p
ar

du
rb
in
-p
ar

dy
np

ro
g-
pa
r

fd
td
-2
d-
pa
r

fd
td
-a
pm

l-p
ar

flo
yd
-w
ar
sh
al
l-p

ar

ge
m
m
-p
ar

ge
m
ve
r-p

ar

ge
su
m
m
v-
pa
r

gr
am

sc
hm

id
t-p

ar

j1
d-
pa
r

j2
d-
pa
r

lu
dc
m
p-
pa
r

lu
-p
ar

m
vt
-p
ar

re
g_
de
te
ct
-p
ar

se
id
el
-2
d-
pa
r

sy
m
m
-p
ar

sy
r2
k-
pa
r

sy
rk
-p
ar

tr
iso

lv
-p
ar

tr
m
m
-p
ar

Saving	in	% Xeon	E3-1275	 (IvyBridge-4)

Ours	VS	powersave

Best	VS	powersave

-10%

0%

10%

20%

30%

40%

50%

60%

2m
m
-p
ar

3m
m
-p
ar

ad
i-p

ar

at
ax
-p
ar

bi
cg
-p
ar

ch
ol
es
ky
-p
ar

co
rr
el
at
io
n-
pa
r

co
va
ria

nc
e-
pa
r

do
itg

en
-p
ar

du
rb
in
-p
ar

dy
np

ro
g-
pa
r

fd
td
-2
d-
pa
r

fd
td
-a
pm

l-p
ar

flo
yd
-w
ar
sh
al
l-p

ar

ge
m
m
-p
ar

ge
m
ve
r-p

ar

ge
su
m
m
v-
pa
r

gr
am

sc
hm

id
t-p

ar

j1
d-
pa
r

j2
d-
pa
r

lu
dc
m
p-
pa
r

lu
-p
ar

m
vt
-p
ar

re
g_
de
te
ct
-p
ar

se
id
el
-2
d-
pa
r

sy
m
m
-p
ar

sy
r2
k-
pa
r

sy
rk
-p
ar

tr
iso

lv
-p
ar

tr
m
m
-p
ar

Saving	in	% Xeon	E5-2650	 (IvyBridge-8)

Ours	VS	powersave

Best	VS	powersave

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

2m
m
-p
ar

3m
m
-p
ar

ad
i-p

ar

at
ax
-p
ar

bi
cg
-p
ar

ch
ol
es
ky
-p
ar

co
rr
el
at
io
n-
pa
r

co
va
ria

nc
e-
pa
r

do
itg

en
-p
ar

du
rb
in
-p
ar

dy
np

ro
g-
pa
r

fd
td
-2
d-
pa
r

fd
td
-a
pm

l-p
ar

flo
yd
-w
ar
sh
al
l-p

ar

ge
m
m
-p
ar

ge
m
ve
r-p

ar

ge
su
m
m
v-
pa
r

gr
am

sc
hm

id
t-p

ar

j1
d-
pa
r

j2
d-
pa
r

lu
dc
m
p-
pa
r

lu
-p
ar

m
vt
-p
ar

re
g_
de
te
ct
-p
ar

se
id
el
-2
d-
pa
r

sy
m
m
-p
ar

sy
r2
k-
pa
r

sy
rk
-p
ar

tr
iso

lv
-p
ar

tr
m
m
-p
ar

Saving	in	% Core	i7-4770k	(Haswell)

Ours	VS	powersave

Best	VS	powersave

0%

10%

20%

30%

40%

50%

60%

2m
m
-p
ar

2m
m
-p
ol
y

3m
m
-p
ar

3m
m
-p
ol
y

ad
i-p

ar
ad
i-p

ol
y

at
ax
-p
ar

at
ax
-p
ol
y

bi
cg
-p
ar

bi
cg
-p
ol
y

ch
ol
es
ky
-p
ar

ch
ol
es
ky
-p
ol
y

co
rr
el
at
io
n-
pa
r

co
rr
el
at
io
n-
po
ly

co
va
ria

nc
e-
pa
r

co
va
ria

nc
e-
po
ly

do
itg

en
-p
ar

do
itg

en
-p
ol
y

du
rb
in
-p
ar

du
rb
in
-p
ol
y

dy
np

ro
g-
pa
r

dy
np

ro
g-
po

ly
fd
td
-2
d-
pa
r

fd
td
-2
d-
po

ly
fd
td
-a
pm

l-p
ar

fd
td
-a
pm

l-p
ol
y

flo
yd
-w
ar
sh
al
l-p
ar

flo
yd
-w
ar
sh
al
l-p
ol
y

ge
m
m
-p
ar

ge
m
m
-p
ol
y

ge
m
ve
r-p

ar
ge
m
ve
r-p

ol
y

ge
su
m
m
v-
pa
r

ge
su
m
m
v-
po

ly
gr
am

sc
hm

id
t-p

ar
gr
am

sc
hm

id
t-p

ol
y

j1
d-
pa
r

j1
d-
po

ly
j2
d-
pa
r

j2
d-
po

ly
lu
dc
m
p-
pa
r

lu
dc
m
p-
po
ly

lu
-p
ar

lu
-p
ol
y

m
vt
-p
ar

m
vt
-p
ol
y

re
g_
de
te
ct
-p
ar

re
g_
de
te
ct
-p
ol
y

se
id
el
-2
d-
pa
r

se
id
el
-2
d-
po

ly
sy
m
m
-p
ar

sy
m
m
-p
ol
y

sy
r2
k-
pa
r

sy
r2
k-
po

ly
sy
rk
-p
ar

sy
rk
-p
ol
y

tr
iso

lv
-p
ar

tr
iso

lv
-p
ol
y

tr
m
m
-p
ar

tr
m
m
-p
ol
y

Saving	in	% IBM	POWER8

Ours	VS	powersave

Best	VS	powersave

Figure 3.4: Details of static approach

3.6.2 Summary of Results

Fig. 3.4 summarize our performance results. The five bar charts provide the energy sav-

ings, on a per-benchmark basis, of our approach (Ours) compared to using the powersave

80



Linux governor, and the savings that can be achieved by using the Best frequency / core

configuration found empirically by testing all of them. Fig. 3.5 summarizes the average

energy savings E and energy-delay product EDP improvement across all 60 benchmarks,

compared to powersave , of the on-demand Linux governor, our implementation of the

CPUMiser5 run-time approach [59], Ours (static), and Best (static) empirically found.

Energy savings over powersave The powersave Linux governor uses all available cores

and sets the frequency to the minimal one. This principle takes idea in that a frequency in-

crease has a cubic effect on power increase, but a linear effect in execution time decrease, so

using the minimal frequency should minimize CPU energy. But as we have demonstrated in

Sec. 5.1, this may not lead to minimizing energy, by far. Furthermore, this approach essen-

tially ignores the rest of the system power consumption. In this work, we show how CPU

energy savings can be achieved by increasing the frequency, which in turn typically leads

to also reducing the kernel execution time compared to powersave . As a consequence, the

system energy consumption is further reduced with our approach compared to powersave ,

we however do not report it and focus solely on CPU energy reports.

For SandyBridge, we observe minimizing frequency is a viable way to minimize en-

ergy, and for numerous benchmarks our approach selects the minimal frequency (therefore

showing 0% savings over powersave ), which was also found to be the best scenario by

empirical evaluation of all frequency/core pairs (the Best bars). Still a significant improve-

ment is achieved using our approach for benchmarks which are either sequential or having

poor scalability, such as dynprog-par, where we select a reduced number of cores.

The benefits of our approach over powersave are highlighted with architectures where

the energy-minimizing frequency is not the minimal one, such as on Ivy Bridge and Haswell.

5Our IBM POWER8 setup does not allow for run-time DVFS, so CPUMiser results are omitted.

81



An average savings of 13% is achieved for the 8-core Ivy Bridge, coming from select-

ing higher frequencies to balance completion time and power consumed following the

processor-specific characteristics. For almost all kernels savings above 10% are achieved

with our static approach. We also expose savings comparable to the best possible ones for

the vast majority of cases, demonstrating the viability of our compile-time categorization

of codes. For cases with lower savings than Best, the frequency/core selected was typi-

cally one step above the best one (e.g., we used 1.6GHz instead of the ideal 1.2GHz) and

suggests further improvements may be achieved using more categories for the applications.

Energy and EDP improvements Fig. 3.5 summarizes the results for all architectures.

For Ivy Bridge and P8, the energy difference of on-demand over powersave is charac-

teristic to these machines, where actually maximal frequency leads to minimizing energy

for compute-bound codes. This is exacerbated by the fact that the poly version of the

benchmarks have been transformed for improved data locality, and for many have become

essentially compute-bound. Our static analysis seamlessly captured these changes, with for

instance gemm and seidel-2d moving from being categorized as memory-bound in their par

version to compute-bound in their poly version as the result of transformations for locality,

tiling and SIMD vectorization.

-60%

-40%

-20%

0%

20%

40%

60%

SandyBridge-E SandyBridge-EDP IvyBridge4-E IvyBridge4-EDP IvyBridge8-E IvyBridge8-EDP Haswell-E Haswell-EDP POWER8-E POWER8-EDP

Saving	in	% On-Demand	vs.	Powersave CPUmiser	vs.	Powersave OurStatic	vs.	Powersave Best	vs.	Powersave

Figure 3.5: Summary of experimental results

82



CPUMiser by Rong Ge et al. [59] is a run-time approach to adapt the frequency/volt-

age based on the measured cycle per instructions (CPI) achieved by the workload. We

have re-implemented it using exactly the same runtime harness as in Sec. 3.3, also using

Intel PCM to capture CPU behavior. CPUMiser is geared towards finding a frequency

which does not reduce the execution time beyond a threshold, in Fig. 3.5 we configured

CPUMiser to use 100ms sampling interval, and 10% maximum performance loss. More

comprehensive results are shown in Sec. 3.6.3. CPUMiser is able to work with arbitrary bi-

naries/programs, contrary to our static approach that is restricted to affine program regions.

But CPUMiser is unable to adapt the number of cores to use, leading to increased energy

usage compared to our technique for codes with poor scaling. In addition, CPUMiser does

not consider energy efficiency as the optimization objective, it only attempts to reduce fre-

quency while keeping CPI increase under a certain threshold. As we have shown in Sec. 5.1

the frequency that minimizes CPU energy may be below the maximal frequency, even for

compute-bound codes which would see a significant increase in CPI by using a lower-than-

maximal frequency. This is one of the reason why our approach outperforms CPUMiser,

this is particularly visible for Haswell.

Finally, when optimizing for EDP we observe consistent conclusions between the dif-

ferent schemes as when optimizing for energy, with our approach consistently outperform-

ing competing schemes and being close to the best achievable in our framework.

3.6.3 Comparison with Runtime DVFS

Fig. 3.6 presents a comparative study of the energy savings of various DVFS schemes.

We report the results of CPUMiser with different performance degradation parameters:

10%, 50% and 100% respectively. We also tuned the Linux on-demand (Od) and conservative

83



(Co) governors. They are both dynamic schemes based on CPU usage, and can be parame-

terized for different CPU loads. The conservative governor adapts the frequency grace-

fully, while on-demand goes to maximal frequency when the load threshold is reached. We

vary the CPU load threshold from 45% to 95% with step of 10% for both governors. We

also report Ours, the performance of our static approach as presented above, for compari-

son. Fig. 3.7 summarizes the energy-delay product savings over the powersave governor

for the same DVFS schemes.

-55%

-45%

-35%

-25%

-15%

-5%

5%

15%

Ours Miser10% Miser50% Miser100% Od95% Od85% Od75% Od65% Od55% Od45% Co95% Co85% Co75% Co65% Co55% Co45%

Saving	in	% SandyBridge-E IvyBridge4-E IvyBridge8-E Haswell-E

Figure 3.6: Energy savings versus runtime DVFS schemes

-5%

5%

15%

25%

35%

45%

55%

65%

Ours Miser10% Miser50% Miser100% Od95% Od85% Od75% Od65% Od55% Od45% Co95% Co85% Co75% Co65% Co55% Co45%

Saving	in	% SandyBridge-EDP IvyBridge4-EDP IvyBridge8-EDP Haswell-EDP

Figure 3.7: EDP savings versus runtime DVFS schemes

Given the nature of the workloads evaluated, both conservative and on-demand use

the maximal CPU frequency most of the time. Consequently, the CPU energy compared

to powersave increases on average, as for most benchmark maximal frequency is not the

way to minimize CPU energy especially for SandyBridge and Haswell. In contrast, for

Ivy Bridge where running at maximal frequency is often good for energy optimization, the

84



energy loss of these governors compared to powersave is very small . This analysis

holds true for EDP results in Fig. 3.7: significant EDP savings over powersave are achieved

by these governors, especially for Ivy Bridge. Note in all cases our static approach Ours

outperforms these governors, whether it was set to optimize CPU energy or to optimize

energy-delay product.

CPUMiser results show that by allowing for large performance degradation (e.g., 2x,

that is 100%) it is possible to reach good levels of CPU energy savings, as shown in Fig. 3.6,

although in turn it leads to limited EDP savings, as shown in Fig. 3.7. Our approach

significantly outperforms CPUMiser in terms of EDP savings, in fact we also evaluated

CPUMiser with 1% as the performance threshold and observed our static approach achieves

EDP savings 2x or more higher than CPUMiser for SandyBridge and Haswell.

3.6.4 Summary of Intel ICC and GNU GCC experiments

We conducted an extensive characterization of the energy and energy-delay product of

the same benchmarks as in the previous section, for a total of 60 benchmarks. Each was

compiled using GNU compiler/GCC-4.8.1 with -O3 optimization, and also Intel compiler/ICC-

2013-update5 compiler with -fast optimization, for a total of 120 different binaries evalu-

ated.

Summary of Results Table 3.2 reports the summary of experiments when optimizing

for CPU energy minimization. For each 60 benchmarks, the average energy savings (E)

compared to powersave is reported for three approaches. Best is the best frequency / core

configuration found by exhaustive search of all frequency/core configurations, individually

for each binary tested and each CPU tested. Perf. is the performance Linux governor, and

Ours is our static approach.

85



Microarchitecture Compiler E save Best vs
powersave

E save Perf. vs
powersave

E save Ours vs
powersave

Haswell
GCC 12.95% -28.84% 11.27%
ICC 11.84% -35.33% 10.43%

IvyBridge-4
GCC 12.83% -6.48% 11.35%
ICC 11.69% -9.11% 10.71%

IvyBridge-8
GCC 14.38% 5.78% 13.11%
ICC 13.39% 5.30% 12.15%

SandyBridge
GCC 4.59% -49.71% 4.17%
ICC 3.75% -51.11% 3.06%

Table 3.2: Energy efficiency summary

A similar table is shown in Table 3.3, where we compare the same three approaches.

Note the Best approach here is the result of empirical search for the best frequency / core

configuration that maximizes EDP. We additionally report the average wall-clock execution

time increase using our predicted configuration versus using performance.

Microarchitecture Compiler EDP save
Best vs
powersave

EDP save
Perf. vs
powersave

EDP save
Ours vs
powersave

Time loss
Ours vs Perf.

Haswell
GCC 50.52% 35.24% 45.16% 11.64%
ICC 47.57% 31.32% 43.26% 11.08%

IvyBridge-4
GCC 46.10% 37.14% 43.14% 6.87%
ICC 44.70% 35.46% 42.00% 3.94%

IvyBridge-8
GCC 51.17% 48.44% 49.50% 0.17%
ICC 51.22% 48.49% 50.03% 1.92%

SandyBridge
GCC 28.41% 4.87% 22.61% 8.05%
ICC 25.46% 5.67% 20.77% 9.04%

Table 3.3: Energy-Delay Product efficiency summary

We observe that on average, our approach vastly outperforms performance and power-

save in terms of both energy savings and EDP improvements: we are in fact very close to

the optimal situation for energy, with our approach being within 102% or less (i.e., less than

86



2% worse) of the truly minimal energy that can be achieved using the best configuration

found individually for each binary tested and each processor. This result is even further

exacerbated for EDP, where our EDP savings can be up to 50% than using the performance

governor. Our predictor approach achieves always within less than 10% of the optimal EDP.

The penalty in execution times is also very good: the codes are slowed down on average

compared to their maximal speed by at most 11.6%, and for the Ivy Bridge machines where

performance is the best configuration for energy efficiency for compute-bound benchmarks,

our execution time increase is significantly smaller than our EDP improvement over per-

formance. In fact, such execution times degradation can be so small that even if the system

power is large compared to the CPU power, our DVFS approach still leads to significant

overall energy savings.

3.6.5 Summary of Features

We conclude our experimental evaluation with Table 3.4 which reports how many

benchmark belong to each category. This classification is done per binary, and is inde-

pendent of the target platform or compiler used. A benchmark may have more than one

characteristic features, which is why we use a decision tree to prioritize them as described

in Sec. 3.5

We see that for the simple parallelized version, many codes are bandwidth-bound, and

this decreases when using program transformations to improve data locality. Our static

analysis is capable of adapting to the characteristics of the implementation of the bench-

mark, i.e., is robust to loop transformations applied to it. This is confirmed by Table 3.5

which zooms into a few benchmarks, displaying how their feature change depending on the

structure of the code implementing the algorithm in the original benchmark.

87



In particular, as tiling improves the operational intensity, we see gemm move from being

memory-bound (no tiling) to compute-bound (after tiling). On the other hand, for Jacobi-

2D, tiling by itself did not improve the OI enough to make it go beyond our cut-off point,

and it was expected as the best frequency / core configuration for this optimized kernel is

indeed the best frequency for the bandwidth-bound codes: the program still suffers from

bandwidth contention, even after the tiling we applied.

Benchmarks seq/par bw-bound poor scale comp-bound
polybench-parrallel 12/18 27 4 1

polybench-poly 5/25 15 1 10

Table 3.4: Summary of Features

Benchmarks version seq bw-bound poor scale comp-bound

correlation
par "

poly "

gemm
par "

poly "

jacobi-2d
par ! "

poly "

seidel-2d
par " !

poly !

Table 3.5: Benchmark features

3.7 Phase Analysis

We now discuss the occurences of phases in the programs we evaluated, via a sepa-

rate set of experiments conducted using the runtime algorithm described in Sec. 3.3. The

88



objective is to show that thanks to the stability of most affine kernels we evaluated, i.e.,

they contain only one phase, a purely static approach where we select a single frequency /

core configuration for the entire kernel duration can achieve near-optimal results. We then

discuss cases where phases occur, and point to future work on using Alg. 2 to detect those

phases analytically to enable the selection of different frequency / core configurations for

different phases of the program.

3.7.1 Phase Characterization

We plot in Fig. 3.8 the output of our adaptive runtime on several kernels. To better

visualize phases, if any, we used a very low threshold for frequency change: as soon as

there is a 1% energy efficiency difference between two time quanta (set to 50ms), the

runtime is allowed to increase/decrease frequency. Benchmarks were set to using a very

large problem size, for better illustration. There is one point per time quanta, and we report

both the current frequency (in green), and the “instantaneous” power for the quanta (in

purple). We have conducted this study on all 60 benchmarks on Haswell, using 4 cores,

and isolated the most representative cases.

The top charts show typical power trace examples for single-phase kernels: the power

consumption is mostly stable, and the frequency typically oscillate between two of the

frequency points, e.g., 1.2GHz or 1.6GHz, indicating the optimal frequency may be in

between these points. We conducted this characterization for all 60 benchmarks, and for 46

of them there is a single phase. These includes gemm and trmm for example. The bottom

charts illustrate cases of multiple phases in the program. A total of 14 benchmarks show 2

or more phases (up to 5), visualized as a stable change for a part of the program execution

of the frequency used. The effect of program transformations to improve data locality can

89



 0

 10

 20

 30

 40

 50

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

P
o

w
e

r 
(W

a
tt

)

F
re

q
u

e
n

c
y
 (

G
H

z
)

jacobi-2d-imper (par)

P
F

 0

 10

 20

 30

 40

 50

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

P
o

w
e

r 
(W

a
tt

)

F
re

q
u

e
n

c
y
 (

G
H

z
)

mvt (poly)

P
F

 0

 10

 20

 30

 40

 50

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

P
o

w
e

r 
(W

a
tt

)

F
re

q
u

e
n

c
y
 (

G
H

z
)

covariance (par)

P
F

 0

 10

 20

 30

 40

 50

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

P
o

w
e

r 
(W

a
tt

)

F
re

q
u

e
n

c
y
 (

G
H

z
)

covariance (poly)

P
F

Figure 3.8: Different types of phases on Haswell / 4 cores

be visualized here: phases are not identical between both plots, in particular since data

locality was changed by the polyhedral code transformation and therefore the operational

intensity was modified.

3.7.2 Possible Improvements

As illustrated in Fig. 3.8, there can be cases with stable phases in the computation,

necessitating ideally different frequency / core configurations for ideal energy savings. Al-

gorithm 2 can be applied on any sub-part of the program, in particular, it can be applied

on different loop nests to obtain the estimated operational intensity for different program

regions. If this intensity differs, then the classification of the region using the decision tree

from Sec. 3.5.2 may also change, leading to using different frequencies within the same

90



program, better suited to exploit its phases. As future work we will investigate how to

embed such mechanism in our static analysis to detect at compile-time program phases.

3.8 Conclusion

Dynamic Voltage and Frequency Scaling (DVFS) is a well-known technique to adapt

the power consumption based on the application demands and hardware state, by modi-

fying the frequency (and the associated voltage) at which a processor operates. Previous

works have focused on two aspects: how to reduce frequency without much wall-clock

time penalty, to reduce power and energy used by a computation; and how to increase

the frequency on demand to improve completion time and minimize overall energy-delay

product.

In this work, we have demonstrated that there are inherent limitations to existing dy-

namic DVFS approaches, due to processor-specific and application-specific effects. We

demonstrated that for a class of computations, namely affine programs, we can develop a

compile-time categorization of programs by approximating their operational intensity and

parallel scaling. It allows to automatically select at compile-time the best frequency and

number of cores to use to optimize energy or energy-delay product, without needing any

application profiling or runtime monitoring. Our evaluation on 60 benchmarks and 5 multi-

core CPUs validated our approach, obtaining energy savings of 10% and EDP improve-

ments of 40% on average over the powersave Linux governor.

91



CHAPTER 4

Static Analysis of Hierarchical Set-Associative Cache Behavior for
Affine Programs

4.1 Introduction

Optimizing compilers currently use simplified cost models to select the composition of

loop transformations applied to programs. For example, Bondhugula et al. maximized ide-

alized measures of data locality [34], Kong et al. maximized data locality under single in-

struction/multiple data (SIMD) constraints [78], and other works have examined combined

objectives for parallelization and data locality (e.g., [48, 83]). While useful in practice,

the major drawback of these approaches is that they are limited to abstract performance

models, such as “maximizing parallelism” or “minimizing reuse distance,” which are only

indirectly related to concrete performance metrics, such as data cache misses.

Addressing these limitations requires several challenges to be addressed. First, ap-

proaches to accurately model cache behavior typically employ actual execution or simula-

tion to measure or analyze the program’s execution on the target device. These approaches

can be expensive, with cost proportional to the number of instructions the program exe-

cutes. For example, running the DineroIV [43] cache simulator on a simple matrix-multiply

code for 1024×1024 matrices can take hours. Most importantly, these approaches do not

92



provide an exact model of cache behavior for use at compile time. Second, nearly all practi-

cal modern systems use cache hierarchies. A small, first-level (L1) cache is complemented

with a larger second-level (L2) cache, and so on – the Intel Haswell CPU may contain up to

four levels of caches. To accurately model the accesses to main memory, which are much

slower than any cache accesses and can significantly influence program performance, the

full hierarchy of caches must be modeled, where accesses to level L+1 are derived from the

misses at level L. Third, most practical caches are set-associative rather than fully associa-

tive, where multiple virtual memory addresses may map to a specific set of physical cache

lines, requiring accurate models of conflict misses.

In the quest for an approach that would enable compile-time analysis of runtime cache

behavior, we need to: (1) model the cache hierarchy; (2) accurately model cold, capacity,

and conflict misses of set-associative caches at each level; and (3) achieve an analysis time

that is essentially independent of problem size and cache size. In this work, we achieve all

of these goals by focusing specifically on the class of affine programs, where key properties

of the control and data flows afford accurate capture of runtime cache behavior. We also

propose a novel and purely static analysis to accurately compute cache behavior at compile

time, without the need for execution or simulation.

Compile-time cache modeling (e.g., avoiding simulation) for affine programs has been

studied in the past. For example, tile size selection has been investigated by approximating

capacity misses for regular/affine data tiles, such as the distinct line model [107] and its

generalization with the minimum line model [111]. Ghosh et al. [62, 61] proposed Cache

Miss Equations (CME) to capture situations when a cache miss occurs in perfectly nested

loop programs with uniform references. It handles set-associative caches, but only for

single-level caches. However, a major limitation of the approach is the difficulty to translate

93



these equations into a cache miss count, which requires actually solving the CMEs (i.e.,

determining whether or not they have valid solutions) for a multitude of cases. Furthermore,

translating a miss count at the first-level cache into a set of cache access for the next level is

impractical. Thus, this approach is not suitable for effectively modeling hierarchical caches

that are ubiquitous in practical systems.

Chatterjee et al. [39] made a significant advance by providing an exact closed-form so-

lution for polyhedral programs for direct-mapped caches using Presburger formulae, which

s partially generalized to model a set-associative single-level cache. However, none of these

prior formulations of the cache miss problem are suited for modeling hierarchical caches.

There is a fundamental difference between simply counting cache misses, as in prior work,

and modeling the set of accesses that lead to a cache miss, as developed in this work. Such

a set of events should be exactly modeled to compute misses in cache hierarchies because

only the subset of accesses to L1 that misses in L1 form the set of accesses to L2 [20].

We make the following contributions:

• We present a closed-form solution to the problem of modeling cache behavior for

arbitrary polyhedral programs executing on processors with set-associative virtually-

indexed hierarchical caches under a variety of write policies.

• We develop a tool that computes the number of misses at each cache level for set-

associative caches, from an input C source file containing affine program(s).

• We perform extensive evaluation of our cache miss analysis and validate it against

a simulator with identical hardware assumptions, and present several approximation

heuristics.

94



double	A[3][4];
for	(i =	0;	i <	2;	++i)
for	(j	=	0;	j	<	3;	++j)
A[i][j] =	A[i][j+1] +	A[i+1][j];

(a)

0													1												i

j

2

1

0

(b)

0												1											2		

3

2

1

0

(c)
Hit Miss

Read A[0,1] L1,S1 X
Read A[1,0] L4,S0 X
Write A[0,0] L0,S0 X
Read A[0,2] L2,S0 X
Read A[1,1] L5,S1 X
Write A[0,1] L1,S1 X
Read A[0,3] L3,S1 X
Read A[1,2] L6,S0 X
Write A[0,2] L2,S0 X
Read A[1,1] L5,S1 X
Read A[2,0] L8,S0 X
Write A[1,0] L4,S0 X
Read A[1,2] L6,S0 X
Read A[2,1] L9,S1 X
Write A[1,1] L5,S1 X
Read A[1,3] L7,S1 X
Read A[2,2] L10,S0 X
Write A[1,2] L6,S0 X

(d) (e)

0													1												i

j

2

1

0

(f)

0												1											2		

3

2

1

0

(g)

0													1												i

j

2

1

0

(h)

Figure 4.1: Illustrative example of a 2-way set-associative cache

4.2 Overview of Modeling Approach

Fig. 4.1 outlines the key steps in computing cache misses for a sample program (shown

in Fig. 4.1(a)). Fig. 4.1(d) shows the execution trace of the various read/writes for execution

of the program. The following includes a walk-through for computing the set of memory

accesses that lead to cache misses in a simple 2-way set-associative cache.

95



A K-way set-associative cache is partitioned into cache sets, each of which can store K

cache lines. A cache line stores B bytes of data. For a cache of size n bytes, the total number

of cache lines, nblines, is given by n/B, and the total number S of cache sets is (n/B)/K.

To determine the specific cache set that a memory address maps to, a classical and typical

approach is to use the least significant bits of the memory address: a virtual memory address

addr maps to cache set (addr/B)%S. Since the cache is K-way associative, up to K lines

mapping to the same cache set can co-exist simultaneously in the cache. We illustrate this

in Fig. 4.1(d) for a simple 2-way associative cache of size 32 bytes with 4 cache lines:

B = 8, K = 2, and S = 2, that is each cache line stores a single element of A . The trace

of accesses in Fig. 4.1(d) is typical of input traces provided to cache simulators, such as

DineroIV [43]. First, the (annotated) program is executed to build the trace of accesses.

Then, the simulator reads this trace in sequential order, one reference at a time. For each

address accessed, it computes the mapped cache set and maintains an internal data structure

representing the cache state (i.e., what data is currently in cache). When the accessed data

item is not currently in cache, a cache miss occurs, possibly leading to the eviction of

a cache line previously stored in this cache set, and the loading of the data into a line

in this set from a copy in a later level cache (or main memory). Conversely, when the

accessed data is already in cache, a cache hit occurs. Fig. 4.1(d) shows the cache line

and cache set to which each address maps. The “virtual cache line” is computed by Lid =

addr/B and the cache set by SLid = (addr/B)%S. We remark that SLid = (addr/B)%S =

((addr/B)%nblines)%S because we have nblines = K ∗S, K ≥ 1. That is, L1,S1 is read as

Lid = 1,SLid = 1 for this reference. Fig. 4.1(e) shows whether each access is a hit or miss

for this cache configuration.

96



Consider a cache line Lid to be accessed. This access is a miss if it is the first time

Lid is accessed or K distinct cache lines that map to the same set have been accessed more

recently than Lid . Otherwise, it is a cache hit. Indeed, in a set-associative cache, each

line maps to a specific set with K slots. A cold miss (an unavoidable miss even in an

infinite cache) occurs the first time Lid is accessed. A capacity/conflict miss (one that can

be avoided in an infinite cache) occurs if K different lines mapping to the same set have

been accessed prior to (re)accessing Lid . In other words, for a particular cache set, all K+1

distinct accessed lines mapping to this set will lead to a cache miss.

Focusing on Set 1 in the 2-way set-associative cache, Fig. 4.1(d) shows that first A[0,1]

and then A[1,1] are loaded in Set 1 (they are both cold misses), and A[0,1] then is ac-

cessed again (it is a hit: no line has been evicted from Set 1 yet). When A[0,3] is loaded,

Set 1 is already full, and the least recently used (LRU) line is evicted. A[1,1] is deleted,

and A[0,3] is stored in the cache. A cache simulator such as DineroIV operates exactly

the same way. Following the sequence order in the program trace, it determines where a

reference maps, using Lid and SLid , and keeps track of the current cache state to determine if

an access is a hit or a miss, performing evictions as needed, e.g., based on the LRU policy.

The total number of misses is reported, and, for hierarchical caches, accesses that lead to a

miss in L1 cache are used as accesses to L2 cache, etc.

In this chapter, we describe a compile-time analysis intended to produce the same out-

put as a cache simulation, i.e., the set of accesses that lead to cache misses, without actually

generating the program trace or simulating cache state. We achieve this by restricting the

class of modeled programs to polyhedral programs (defined in Sec. 4.3). In a nutshell, for

polyhedral programs, the exact ordered set of all accessed memory locations can be de-

scribed in a compact form using integer sets and relations, as presented in Sec. 4.3. From

97



this example, we observe that the following are needed for such an analysis: (1) the ordered

set of memory accesses (capturing the same information as the trace in Fig. 4.1(d)), (2) a

mechanism to determine which line and set an address is mapped to (modeling exactly

Fig. 4.1(d)’s mapping), and (3) the ability to determine sequences of accesses to K+1 dis-

tinct lines mapping to the same set. Item (1) above is a direct consequence of polyhedral

programs. The exact ordered set of accesses can always be built for these programs. For

(2), the Lid and SLid expressions can be modeled as Presburger formulae if n, B and S are

known at compile time, as [39] showed. Achieving (3) is a core contribution of this chapter

(Sec. 4.4).

We illustrate the approach with Fig. 4.1(f)-(h), using the previously described code

and cache configuration. First, a polyhedral representation of the program is generated.

The set of executions of the statement is captured by a polyhedron, Fig. 4.1(b) plots this

iteration domain of the program. Each dot corresponds to an execution of the associated

color-coded reference, and the coordinates of the dot capture the value of the corresponding

loop iterators. The program execution order (the schedule) can always be determined. In

Fig. 4.1(b), it corresponds to the lexicographic ordering.

For each array reference (e.g., A[i][j+1] ), an access function from each iteration point

to the accessed memory cell is built (e.g., FA : {[i, j]→[i, j+1]}). Fig. 4.1(c) displays the

set of memory cells from the array double A[3][4] that are accessed by this program.

Fig. 4.1(c) is obtained from Fig. 4.1(b) by applying the access functions to the iteration

domain.

Fig. 4.1(g) corresponds to the subset of cells from A that map to Set 1. This can be ob-

tained by adding constraints so that only accesses with SLid = 1 are kept, i.e. (addr/4)%2==

1, where addr is the accessed memory address. addr is obtained from FA by linearizing

98



the access function. We do require the array sizes to be known and constant, to obtain

{[i, j]→[A+ i ∗ 4+ j+ 1]}. We remark that because the hit/miss pattern of a cache set is

not impacted by the accesses to other cache sets, we can model accesses to each cache set

independently and aggregate the results for all cache sets at the end. Fig. 4.1(f) displays

the same subset of references that map only to Set 1, by showing the subset of points in the

iteration domain that correspond to these references. This pruned iteration domain forms

the (ordered) set of references to Set 1 only, obtained in a manner similar to how Fig. 4.1(g)

is built, but reasoning on iteration points instead.

The last and most critical step is to obtain Fig. 4.1(h), the subset of only the accesses

that lead to a miss (cold and capacity/conflict). This is built in two stages. First, we

determine the subset corresponding to cold misses, which is computed as the first access to

a unique cache line (unique Lid). Given a function IterToLine that maps iteration points

to the virtual cache line Lid they access (as defined in Sec. 4.4), the first access to each Lid

is computed by taking the lexicographically first (with respect to the program schedule)

iteration accessing Lid , i.e., the preimage of lexmin(IterToLine). This can be computed

analytically for polyhedral programs. In Fig. 4.1(h), these accesses correspond to the dots

not inside a square.

Second, we must determine the ordered sequence of virtual lines Lid accessed by the

program, where for a particular set SLid , every K + 1-th accessed line mapping to that

set will incur a cache miss, and thus must be captured. In Fig. 4.1(h), it corresponds to

the dot inside the square. We solve this problem by building several functions, typically

from an iteration point to another (set of) iteration point(s) with some specific proper-

ties. For example, the composition SameSet = IterToSet ◦ IterToSet−1 maps an iteration

point i⃗ to the other iteration points { j⃗} accessing the same cache set, some of which will

99



be miss events. We successively refine SameSet to end up with only the iterations { j⃗}

which do incur a cache miss. Iterations mapping to the same virtual line are computed

as SameLine = IterToLine ◦ IterToLine−1. We can combine SameSet and SameLine

to keep only the iterations that correspond to accesses to distinct cache lines within a set.

For a K-way associative cache, we then successively remove the second, third, ..., K-th

unique line accessed mapping to the same cache set and retain only the K +1-th ones, i.e.,

the collection of miss events. This is achieved by building a function from a point in an

iteration domain to the immediately next executed point in this domain. This function can

be composed with others to get the immediately next relevant iteration for our analysis,

e.g., the next iteration accessing the same cache set and a different cache line. We proceed

by successively removing such next iterations, K times, to end up with only the iterations

incurring a miss, as detailed in Sec. 4.4.

The resulting set (e.g., Fig. 4.1(h)) has two fundamental properties: it can be counted to

obtain the number of cache misses, and be used to model accesses to the next level cache,

since misses at L1 form the set of accesses at L2. By composing this process, we can

seamlessly reason on hierarchical set-associative caches and produce per-level cache miss

count, paving the way for simulation-free compile-time analysis and optimization of cache

behavior for polyhedral programs (discussed in Sec. 4.9).

4.3 Program Representation

In this work, we target the compile-time analysis of polyhedral program regions [48,

63], also called affine programs. A program region is polyhedral if the only control-flow

structures are for loops and if conditionals; the iteration set of each syntactic statement

100



can be described by static analysis using affine inequalities of the surrounding loop iter-

ators and program region parameters (unknown but constant values for one execution of

the region); the access functions of arrays are multidimensional affine functions of the sur-

rounding loop iterators and parameters; each for loop has loop-invariant loop bounds, a

constant scalar stride, and the exit value of the loop iterator is not read outside the loop;

and syntactic statements may contain a data-dependent conditional (e.g., using a ternary

operator in C), but both the true and false branch will be assumed to be always taken in the

analysis.

Polyhedral programs have essential properties that we rely on to build our static analy-

sis (Sec. 4.3.2). This program class covers a wide spectrum of compute- and data-intensive

processing kernels typically found in linear algebra methods, image processing, or physics

simulation [63, 18, 17] where high performance is a must and, consequently, exploiting

cache hierarchies effectively is highly desired. We first describe the key mathematical

objects manipulated in this work and their operations. We follow with presenting the rep-

resentation of affine programs using these structures.

4.3.1 Modeling Integer Tuples

All mathematical structures and operations used in this work involve modeling integer

tuples using Presburger formulae to model sets and relations among them. Operations on

these structures are readily available in the Integer Set Library (ISL) [124], including more

advanced operations, such as counting the number of points in a set or relation [128]. All

structures and operations are briefly surveyed in this work. As integer sets are manipulated,

the worst-case complexity of most operations is NP-hard. However, in practice, quasi-

polynomial time is often achieved.

101



Integer tuple A point in a set is a multidimensional integer vector, or integer tuple. Its n

components take value in Z: iii ∈ Zn.

Integer sets A set S of integer tuples is a subset of Zn defined as:

S = [p1, ..., pp]→{[i1, ..., in] : c1 ∧ ...∧ cm}

where i1, ..., in index the n dimensions of the set (noted i⃗); p1, ..., pp are invariant param-

eters (noted p⃗); and c1, ...,cm are m Presburger formulae typically in the form of affine

inequalities defining constraints on the values of i⃗. Presburger formulae in this work in-

volve existential quantifiers, modulo operations, integer division, and ceil/floor.

Integer sets are not polyhedra. They can contain “holes,” i.e., they can model the inter-

section of a polyhedron with an integer lattice, for example, to model a subset containing

only some even integers.

Relation A relation R maps points Zn→Zm and is defined as:

R = [p1, ..., pp]→{[i1, ..., in]→[ j1, ..., jm] : c1 ∧ ...∧ co}

where i⃗ are the input dimensions and j⃗ the output dimensions. Similarly to sets, Presburger

formulae are used to express a relation between points in two sets of possibly different

dimensions but also to express constraints on the input and output sets.

Domain and range of a relation To retrieve the set of points where a relation can be

applied (its domain) and the set of points that may be produced (its range), use:

domain(R) = {[i1, ..., im] : iii s.t. ∃ jjj, jjj = R(iii)}

and:
range(R) = {[ j1, ..., jn] : jjj s.t. ∃iii, jjj = R(iii)}

102



Composition Two relations R1 : Zn→Zm and R2 : Zm→Zo can be composed to form a

new relation:

R1 ◦ R2 = {[i1, ..., in]→[k1, ...,ko] : ∃iii ∈ domain(R1), ∃kkk ∈ range(R2) : kkk = R2(R1(iii))}

Inverse A relation can be inversed or reversed, i.e., the input and output dimensions are

reversed. For a relation R as defined previously, its inverse is:

R−1 = [p1, ..., pp]→{[ j1, ..., jn]→[i1, ..., im] : c1 ∧ ...∧ co}

Application A relation can be applied to a set, which results in a set of points that are the

image of the input set S by the relation R:

SR = R(S) = {xxx ∈ S : (∃yyy ∈ S∧ (yyy→xxx) ∈ R)}

Union and intersection We manipulate union, intersection, and difference of sets and

relations. These binary operations are written ∪ for union, ∩ for the intersection, and

− for the difference.

Counting Finally, an essential operation we extensively rely on is the ability to build a

counting formula for an integer set (or relation). This formula takes the form of an Ehrhart

quasi-polynomial and can be computed using the Barvinok algorithm implementation in

ISL [128, 1]. We note this operation #S for the cardinality of a set S.

103



4.3.2 Representing Programs

Programs with affine data flow and static control flow are called static control parts

(SCoP) [48, 63]. Polyhedral programs are represented in this work using (a union of)

integer sets and integer relations. Three key structures are needed in this work to define a

program. For all statements in the program, we capture its iteration domain, data access

relations, and schedule of iterations. We use the illustrative example in Fig. 4.2.

for (i = 0; i < M; i++)
for (j = 0; j < N; j++) {

for (k = i+1; k < M; k++)
R: B[i][j] += A[k][i] * B[k][j];
S: B[i][j] = alpha * B[i][j];

}

Figure 4.2: Triangular Matrix-Multiply

Iteration domains Iteration domains capture the set of runtime executions of a statement.

Because programs are polyhedral, this set can be exactly captured using integer sets where

the loop bounds are used to constrain the number of points in the set. Each statement R is

associated with an iteration vector i⃗R with one component per surrounding loop, and the

values i⃗R can take are captured by defining its iteration space DR. For example, the iteration

domain of R in Fig. 4.2 is:

DR = [M,N]→{R[i, j,k] : 0 ≤ i < M∧0 ≤ j < N ∧ i+1 ≤ k < M}

It is possible to count the number of points in this set with:

#DR = (−1/2∗M+1/2∗M2)∗N, with M ≥ 2∧N > 0.

We note ProgDomain the union of all per-statement iteration domains, i.e., the set of all

iteration domains for the entire program.

104



Data access functions An essential part of our analysis is based on representing the data

accessed by each program iteration. For polyhedral programs, the function that maps a

statement instance to the array cell being accessed is, by definition, an affine relation, in-

volving surrounding loop iterators and parameters. We will distinguish the read and write

references, and the access relation maps an iteration domain to the multidimensional array

index being accessed. For example, the function that relates the iterations of R with the

location read in array A for the reference A[k][i] in Fig. 4.2 is:

ReadA
R = {R[i, j,k] 7→ A[i1, j1] : (i1 = k)∧ ( j1 = i)}

We note Write for the write references, and the set of all read and/or write access functions

for the program is obtained by building the union of the per-statement data access relations.

Furthermore, it also is possible to build the relation restricted to the set of iterations of R

by computing R = ReadA
R ∩ DR, i.e., embed the constraints on the possible values for

R[i, j,k] directly in the relation. The set of R iterations then can be recovered by computing

domain(R) or the set of array cells accessed by computing range(R).

Finally, we note ReadRefs, the union of all Read access relations for the program;

WriteRefs, the union of all Write relations in the program; and the union of all access

relations for the program ProgRefs = ReadRefs ∪ WriteRefs.

Program execution order A schedule is a relation used to specify the execution order

of all statement instances. It maps points in the iteration domain to those in an integer set

(the set of timestamps). As such, statement instances in the iteration domain are executed

following the lexicographic ordering ≺ of their associated timestamp. ≺ is defined as

(a1, . . . ,an)≺ (b1, . . . ,bm) iff there exists an integer 1 ≤ i ≤ min(n,m) s.t. (a1, . . . ,ai−1) =

(b1, . . . ,bi−1) and ai < bi.

105



The original program schedule is modeled using 2d + 1 timestamps, where d is the

maximal nesting depth in the program [63]. For example, the schedules of R and S in

Fig. 4.2 are:

SchedR = {R[i, j,k] 7→ [0, i,0, j,0,k,0]}
SchedS = {S[i, j] 7→ [0, i,0, j,1,0,0]}

where each odd dimension of the output space is a scalar dimension whose value denotes

the lexical abstract syntax tree (AST) ordering of the loops surrounding the statement.

For statements surrounded by less than d loops, the even schedule components associated

with the missing loops is set to 0. This approach seamlessly models imperfectly nested

loops. A schedule can be constrained by the iteration domain of its statement, e.g., via

SchedR ∩ DR. Consequently, the set of all distinct statement iterations in the program

can be built by making the union of all schedules constrained by their respective statement

iteration domain. Sched denotes this union.

4.4 Single-Level Cache Analysis

We begin in this section by modeling accesses to a single-level set-associative cache and

then extend to hierarchical caches in Sec. 4.5. For a set-associative cache with associativity

K and S sets, for each data read/write executed in the program, we represent the specific set

in the cache to which the corresponding cache line L is mapped. If it is the first time L is

accessed, the access is a miss. It is also a miss if K distinct cache lines that map to the same

set have been accessed more recently than L. Otherwise, the access is a cache hit. Indeed,

in a set-associative cache, each cache line maps to a specific set, which contains K slots.

By reasoning on the sequence of events (i.e., data read/write events in the program) that

lead to access of distinct cache lines mapping to the same set, we can build the set of events

106



corresponding to the K +1 distinct line accessed for a set, i.e., the set of events leading to

a cache miss. This information can be built in a closed-form for affine programs.

4.4.1 Modeling Cache Accesses

To model events corresponding to accessing different cache lines, we must first translate

array indices given by access relations into unique cache line indices and their associated

set in the cache. We assume least-recently-used (LRU) replacement policy and define a

cache and the mapping of virtual memory address to cache elements as follows.

Definition 3 (Set-associative cache). A set-associative cache C with associativity K, cache

line (i.e., block) size of B bytes, and size n bytes contains S sets, with S = n/B/K. A virtual

memory address addr maps to a unique line index Lid = floor(addr/B), and the line maps

to a unique set SLid = Lid%S.

We now assume that all array accesses have been linearized. This is always possible if

the array extents are known at compile time. For example, the linearization transformation

from a two-dimensional access relation RA for 2D array A with size sz along the fastest

varying dimension (i.e., number of columns of A for row-major linearization as used in C)

and startA as its starting address is:

Linearize = {[i, j]−> [m] : m = startA + i∗ sz+ j}

Generalizing to n-dimensional arrays is straightforward.

The value of B and K are assumed to be known at compile time, which means the value

of S also is a numerical constant. Given a virtual memory address, the unique cache line

index is given by applying the relation:

MemToLineId = {[m]−> [lid] : lid = floor(m/B)}

107



The set to which a cache line maps is given by the relation:

LineIdToCacheSet = {[lid]−> [cset] : cset = lid % S}

It follows the definition of the relation from an array access function to a cache set.

Definition 4 (Array to Cache set index). Given an access function FA to array A of size s⃗z

and starting address startA for a cache as defined in Def. 3, the associated cache line in C

is identified by AccessToLine as:

AccessToLine = FA ◦ Linearize(s⃗z,startA) ◦ MemToLineId

The associated cache set in C is identified by AccessToSet as:

AccessToSet = AccessToLine ◦ LineIdToCacheSet

With these relations, we can now reason in the cache space used by the program. For

example, the set of distinct cache lines accessed in the program is modeled as:

Clines = range(Sched−1 ◦ (ProgRefs ◦ AccessToLine))

and can be counted immediately with #Clines. This expression corresponds exactly to

computing, in a general form and for arbitrary affine programs, the Distinct Line (DL)

expression used in prior work for tile size selection [107, 111]. Notably, it is significantly

simpler than the original DL formulation, with no loss of accuracy.

4.4.2 Miss Events in Set-Associative Caches

Equipped with the ability to reason on cache lines and cache sets being accessed, we can

now model if a particular access is a cache miss by reasoning on the sequence of accesses

to distinct lines mapping to the same set.

Modeling the next iteration Intuitively, we want to model consecutive (in terms of pro-

gram execution order) accesses to the same cache set. Thus, we need to model a notion of

108



sequencing in program execution by using the program schedule Sched. Specifically, we

want to capture the point(s) jjj of the program iteration domain that is executed immediately

after point iii such that iii and jjj have some properties, such as accessing the same cache set

but a different cache line. Given an iteration iii1, iii2 is consecutive to iii1 if there is no itera-

tion iii3 in between. The non-existence of such point iii3 can be equivalently expressed using

relations and set/relation differences.

The relation LexSucc maps a point to all points that are executed after it. We have:

LexSucc = {[i1, ..., in]→[ j1, ..., jn] : ( jjj) s.t.

∃iii, jjj ∈ ProgDomain∧Sched(iii)≺ Sched( jjj)}

Similarly, we build LexSuccEq, the relation that generates points that are executed after an

input point, including it; and LexPrec, the relation that generates points executed prior to

an input point. Note these relations are each specifically built with respect to the particular

program we are analyzing.

Modeling iterations accessing the same line/set To model cache misses, we start by

modeling a relation from the iteration domain to the cache line indices and cache sets:

IterToLine = (Sched∩ProgDomain)−1 ◦ ProgRefs ◦ AccessToLine
IterToSet = IterToLine ◦ LineIdToCacheSet

These relations associate to each point of the iteration space the set of cache lines (and

cache sets) it accesses. To reason about iterations accessing the same lines or sets, we use

the relation inversion to build a map from iterations to iterations accessing the same cache

line/set, i.e.:

SameLine = IterToLine ◦ IterToLine−1

109



Modeling sets of relevant iterations Relations such as LexSucc are meant to be inter-

sected with other relations/sets that encode specific properties. For example, one can model

the relation from an iteration iii to all iterations accessing the same set that are executed af-

ter iii as:

SameLineSuc = SameLine∩ lexPrec

A complete procedure is built by assembling the set of iterations that access different

cache lines for each different set, retaining only the ones leading to the K+1th distinct line

accessed in a particular set, as this incurs a miss, as described below.

4.4.3 Algorithm for Miss Calculation

Algorithm 5 provides the complete procedure to obtain the set of iterations incurring in

a cache miss event for a set-associative cache, as well as the count of these events.

Set specialization Notably, building a formulation for all cache sets at once is unnec-

essary. To manipulate simpler systems, it is possible to embed an additional constraint,

e.g., in LineIdToCacheSet, where the set is fixed to a constant value, e.g., cset = x, where

x ∈ N is a known constant. Then, an iterative algorithm can be built, specializing Sin-

gleLevelMisses for each set value Si : [0,S] and forming the union of all Missi sets to form

the complete set of all misses for all cache sets.

4.5 Cache Writing Policies and Hierarchical Caches

In the preceding section, we modeled accesses to cache sets of a single-level cache from

read and write operations in an affine program. To model a multi-level cache, we need to

determine the read and write operations that are performed on the next level of the cache.

110



Algorithm 5 SingleLevelMisses: Compute Misses for Single-level Cache
Input: Program: ProgRefs, ProgDomain, Sched

Array parameters: (s⃗zArray,startArray) ∀ Array
Cache parameters: B, S, K

Output: Set of iterations incurring a cache miss
miss count
// Apply schedule to iteration domain.

1: Prog = Sched ∩ ProgDomain
// Iterations to cache line indices:

2: IterToLine = Prog−1 ◦ ProgRefs ◦ AccessToLine
// Iterations to cache sets:

3: IterToSet = IterToLine ◦ LineIdToCacheSet
// Compute cold misses, i.e., first access to a line.

4: coldmiss = range (lexmin (IterToLine) ◦ Sched−1)
// Iterations to iterations accessing the same cache line:

5: SameLine = IterToLine ◦ IterToLine−1

// Keep only output iterations lexicographically after the input iteration:
6: SameLineSuc = SameLine ∩ lexPrec

// Keep only output iterations lexicographically equal or after to the input iteration:
7: SameLineSucEq = SameLine ∩ lexSuccEq

// Iterations to iterations accessing the same cache set:
8: SameSet = IterToSet ◦ IterToSet−1

// Keep only output iterations lexicographically after the input iteration:
9: SameSetSuc = SameSet ∩ lexPrec

// Starting relation: all accesses to a cache set:
10: Miss = SameSetSuc − (SameLineSuc ◦ lexSuccEq)
11: for all assoc in 2, K do
12: Next = Miss − (Miss ◦ lexPrec)

// Build the next iteration relation:
13: Miss = Miss − Next ◦ SameLineSucEq
14: end for
15: Misses = coldmiss ∪ range(Miss)
16: return (Misses, #Misses)

111



Table 4.1: Handling of write operations by the different cache writing policies considered

Write-through Write-back

Write allocate
All writes are cached. All writes are cached.
No dirty evictions. All writes lead to dirty evictions.
All writes forwarded to Only dirty evictions are seen as writes at
next cache level. next cache level.

No-write allocate
Write hits are cached. Write hits are cached.
No dirty evictions. Write hits can lead to subsequent dirty evictions.
All writes forwarded to n Write misses and dirty evictions forwarded to
ext cache level. next cache level.

The reads and writes that arrive at a cache at level L+1 depend on the policies employed

by the cache at level L.

Thus far, we have modeled caches that manage reads and writes in a symmetric fashion.

In this section, we model caching approaches that employ alternative strategies to manage

the write operations. When a cache encounters a write operation, it can: (a) Write-through:

immediately forward the write to the next cache level, or (b) Write-back: write to the cache

and forward to the next level only if the cache line is evicted.

In addition, a write to a line not in the cache (a write miss) can be handled in two ways:

(a) Write allocate: allocate a line in the cache, read in the current contents of that cache

line, and then perform the write in cache, or (b) No-write allocate: do not allocate a line

but forward the write operation to the next cache level.

These policies change the cache contents at any point in time, impacting the cache hits,

misses, dirty cache lines, and action taken on evictions. Table 4.1 describes the various

scenarios.

112



Write-allocate write-through policy The cache miss model for this policy is exactly the

same as that described in Algorithm 5. All misses at cache level L with write-allocate,

write-through policy become reads to the cache at level L+1. All writes to such a cache,

irrespective of whether they hit or miss in the cache at level L, become writes to the next

cache level.

Write-allocate write-back policy The cache miss model for this policy is exactly the

same as that discussed in Algorithm 5. All misses at cache level L with write-allocate,

write-back policy become reads to the cache at level L+ 1. Evictions of dirty cache lines

become writes to the next cache level. This is illustrated in Algorithm 6. The algorithm

takes as input the Miss relation computed in line 13 of Algorithm 5, the relation from the

iteration that allocates a cache line to the nearest following iteration that evicts it.

Algorithm 6 Compute Dirty Evictions: Writes To Next Cache Level For Write-Back
Caches
Output: Dirty evictions

//evictions to writes that follow the immediate preceding allocation in execution order
1: SameLineWriteSuccEq = (IterToLine ◦ WriteIterToLine−1) ∩ lexSuccEq
2: A = Miss−1 ◦ SameLineWriteSuccEq

//miss iteration to all iterations that causally follow it
3: B = (range Miss) ∩ lexSuccEq

//dirty evictions to writes that made them dirty
4: C = A − B

//dirty evictions to last write to before the eviction
5: D = lexmax C

//iteration of dirty eviction to the evicted cach line
6: return (D ◦ IterToLine)

No-write-allocate write-through policy A cache with this policy caches all read oper-

ations and only the write operations that result in a cache hit. In particular, while write

113



misses do not affect the cache state, a write hit updates a cache line’s priority, affecting

subsequent evictions under LRU replacement policy. Therefore, modeling the misses for a

no-write-allocate cache requires that we first model the write hits, and thus, in turn, write

misses. To overcome this challenge, we present an approximate solution. We employ a

cache miss formulation that is the same as in Algorithm 5, except that only the read refer-

ences (ReadRefs) are used in formulating the cache misses. All read misses at cache level

L become reads to the cache at level L+1. All writes to a no-write-allocate write-through

cache become writes to the next cache level.

No-write-allocate write-back policy We approximate the cache misses using the same

strategy as with a no-write-allocate write-through cache. We compute the read misses

using only ReadRefs. All read misses at cache level L become reads to the cache at level

L+1. Write miss operations are forwarded to the next cache level. We compute the write

misses using the Algorithm 5 but instead to compute K distinct reads between a write

and its immediately preceding read. Specifically, to compute the write misses, line 5 in

Algorithm 5 is changed to:

SameLine = IterToLine ◦ WriteIterToLine−1

where WriteIterToLine considers only iterations involving write operations. Evictions of

dirty cache lines (Algorithm 6) and write misses become writes to the next cache level.

4.6 Cache Modeling Across Program Phases

We have presented an analysis of cache misses for an affine program executed with an

initial cold cache (all cache lines are invalid). Programs can consist of affine and non-affine

phases. Our modeling approach can be used in the context of a whole program analysis

114



framework for the affine program phases, with a conventional trace-based simulation being

used for the non-affine phases. To enable such a “hybrid” analysis, we need to adapt our

modeling approach to produce the actual final state of the cache at the end of an affine

phase, so that it can be provided to a conventional cache simulator to model the subsequent

non-affine program phase.

4.6.1 Final Cache State

The final cache state is defined by the set of cache lines in the cache, with information

on whether or not they are dirty, and the recency order among the lines in each set. This

information about the final cache state after the affine phase is needed to ensure correct

simulation for cache accesses in the subsequent non-affine phase using standard cache sim-

ulation. Given a cache of associativity K, the cache lines resident in the set S in the final

cache state can be computed as the last K distinct accessed cache lines that map to S.

Cache lines in final cache state Algorithm 7 shows the steps involved in computing this

information for a write-allocate cache.

It starts with computing the last iteration (A0) that accesses each cache set using the

lexicographic maximum operation. Then, all iterations that access the same cache line as

this last iteration are removed from the set of all program iterations. This procedure is

repeated until K iterations are computed. The union of all these cache lines (identified in

terms of the iterations that access them) defines the cache lines in the final cache state. Note

that this procedure works even if fewer than K distinct cache lines are accessed for some

cache sets. Write-allocate caches allocate cache lines for both read and write accesses.

Thus, the algorithm is invoked with the set of all program references (ProgRefs) to compute

the final state.

115



Algorithm 7 FinalAccess(Refs)
Input: Program: Refs, ProgDomain, Sched

Array parameters: (s⃗zArray,startArray) ∀ Array
Cache parameters: B, S, K

Output: For each cache set S, compute the references in Refs (identified by their schedule time)
that access the last K distinct cache lines mapping to S
// Apply schedule to iteration domain

1: Prog = Sched ∩ ProgDomain
// Iteration to cache line:

2: IterToLine = Prog−1 ◦ Refs ◦ AccessToLine
// Iteration to cache set:

3: IterToSet = IterToLine ◦ LineIdToCacheSet
//Cache set to all iterations that access that set

4: SetToIter = IterToSet−1

//Iteration i to all iterations that access the same cache line as i
5: SameLine = IterToLine ◦ IterToLine−1

6: tmp = SetToIter
7: for assoc in 1, K-1 do
8: Aassoc = lexmax tmp //Compute the last assoc-th access to each cache set

//Remove the assoc-th access from the list of accesses to be considered
9: tmp = tmp − (Aassoc ◦ SameLine)

10: end for
11: AK = lexmax (tmp)

//Relation from each cache set to the iterations that access the last K distinct cache lines
12: FinalAccess = (

∪K
i=1 Ai)

13: return FinalAccess

116



Given the relation returned by the algorithm, the actual lines in the cache are given by:

FinalCacheLines = range(FinalAccess ◦ IterToLine)

Dirty cache lines In the case of write-through caches, no cache lines need to be marked

as dirty because all write operations are also reflected in the next cache level. In the case

of write-back caches, cache lines that were written to after they were allocated in the cache

for the last time need to be marked as being dirty in the final cache state. This computation

is performed as shown in Algorithm 8.

Algorithm 8 Determine Dirty Cache Lines In The Final Cache State For Write-Back
Caches
Output: Set of dirty cache lines in the final cache state

//Determine the Misses associated with each cache line
1: LineToMisses = (IterToLine)−1 ∩ Misses

//Determine the last miss for each line in the final cache state
2: FinalAllocations = lexmax (LineToMisses ∩ FinalCacheLines)

//Compute all write iterations that follow a given iteration
3: SameLineWriteSuccEq = (ItertoLine ◦ (WriteIterToLine−1)) ∩ lexSuccEq

//Compute the domain of relation that compute all final misses that have a following write
4: DirtyCacheLines = domain (FinalAllocations ◦ SameLineWriteSuccEq)
5: return DirtyCacheLines

We now have the collection of dirty and non-dirty cache lines in the final cache state.

The program’s schedule gives us the last iteration that accesses each line in the final cache

state. Accessing the cache lines in the final cache state—reading (writing) non-dirty (dirty)

cache lines—will reproduce the final cache accesses in program order, preserving the LRU

characteristics.

Together, the cache lines, dirty markers, and recency information in the cache final state

mirror those that would be observed in an actual program execution.

117



4.6.2 Initial Cache State

The cache behavior of an affine program phase is dependent on the initial cache state

when starting the phase. The cache state at any point can be encoded with an affine program

that, if executed, would lead to such cache state. When composing two affine program

phases, The final cache state of the first phase can be represented as an affine program to be

executed before the second affine phase. This will correctly evaluate the cache behavior.

For arbitrary initial cache states, this program representation can be as large as the cache

and expensive to manipulate in the form of integer sets. In this scenario, the first K distinct

cache lines to be accessed in each set can be computed analogous to computing the final

cache state. We enumerate each such access to check if it is a hit or a cold miss. The

remaining accesses are modeled as presented in preceding sections.

The overall procedure to combine simulation of arbitrary program phases and the affine

program phase involves the following steps:

1. Formulate a model of the first access to K distinct cache lines to each set in the affine

phase.

2. For each such initial access, determine if it is a hit or a miss based on the initial cache

state.

3. Model the affine phase using the integer set formulation.

4. Reconstruct the final cache state (Sec. 4.6.1).

We note that while the affine phase is modeled in a problem- and cache-size independent

fashion, the interface between the affine and non-affine phases incurs costs proportional to

the cache size.

118



4.7 Experimental Evaluation

We now perform extensive evaluation of our framework, and present comparison with

a trace-based simulator for validation purpose.

4.7.1 Experimental Setup

The presented approach to cache modeling has been implemented in the PolyCache

tool, which takes as input a C program and information about the cache parameters and

size and starting address of arrays. PolyCache outputs the cache miss count of the program,

and was used to generate all results presented in this chapter. It is implemented using ISL-

0.17 [5] (with barvinok-0.38 and pet-0.07), an integer set library for the polyhedral model.

The Polyhedral Extraction Tool (PET) [126], a powerful SCoP extractor on top of Clang,

detects affine regions and extracts the polyhedral model from C source code. ISL [124]

is used to perform the operations in the algorithms described in previous section. We use

the set-specialization approach discussed in Sec. 4.4.3 to compute the analysis for each set

independently, and then accumulate the results as appropriate. These computations are run

in parallel, using one process per set in the cache, since each set’s behavior is independent

of the others.

4.7.2 Evaluation of Hierarchical Set-Associative Cache

Benchmarks We evaluate PolyCache’s performance with the PolyBench/C benchmark-

ing suite [9], which contains key numerical kernels and programs written as SCoPs. We

also select some scientific computing benchmark kernels from HPGMG [10], which is

a representative high-performance computing benchmark based on geometric multigrid

methods, and CCSD(T) kernels from the computational chemistry suite NWChem [119].

119



Table 4.6 and 4.7 shows the various codes (64 in total) that were evaluated. We em-

ployed the standard dataset size provided for PolyBench/C, which typically leads to a data

footprint exceeding 1 MB. The number of data access operations range from millions to

billions. These benchmarks provide a variety of challenges, including out-of-cache dataset

sizes, multiple arrays, imperfectly nested loops, triangular loops, non-uniform reuse dis-

tance, etc.

Tools and setup As a comparison point for both correctness and performance of Poly-

Cache, we used the DineroIV simulator [43], a uniprocessor cache simulator that can han-

dle hierarchical set-associative caches, as well as numerous replacement and write poli-

cies. All experiments were performed on a cluster of Intel Xeon E5640 processors running

at 2.67 GHz with 32 KB L1 cache. The programs were all compiled using a GCC-6.1.0

compiler with -O3 optimization. We parallelized the PolyCache computation across sets,

as mentioned above, using as many processes as sets in the cache and report the time to

completion.

Evaluation The first experiment aims to validate the correctness of the framework against

a trace-based simulator for a real-life complex scenario: a 2-Level cache memory hierarchy

with 32 KB 4-way set-associative L1 cache and 256 KB 4-way set-associative L2 cache,

both implementing a write-allocate write-back policy. Both caches have 64-byte cache line

size. Table 4.6 and 4.7 compare the cache accesses/misses computed by DineroIV with the

accesses/misses obtained with PolyCache, as well as the execution time (in seconds) for

both systems. The number of data read/writes issued by the program is not reported herein.

Instead, we focus solely on the cache access/miss count.

120



A key observation is that for all situations, there is a perfect match between DineroIV

and PolyCache. We performed this validation for all experiments reported in this chapter,

we always obtained an exact match in the number of accesses/misses reported by DineroIV

and PolyCache for the non-approximated schemes.

To illustrate the intricacy of the situations modeled by our analytical framework, we

detail results for the Floyd-Warshall benchmark. Of note, the total number of misses in L2

is actually slightly higher than the number of misses in L1, 64,000 higher exactly. This is

the expected result, but it results from a complicated effect. First, cold misses are the same

for L1 and L2. Capacity misses are also the same. Floyd-Warshall uses a matrix of size

1024 × 1024, and the reuse distance between two iterations of the outer loop is larger than

both the 32- and the 256-KB cache. Moreover, there is nearly no conflict miss either in L1

or L2 for this experiment due to the large number of capacity misses. Thus, cache misses

for L1 and L2 are expected to be mostly the same, yet there are 64,000 more misses in L2.

In the 2-level cache hierarchy with write-back policy implemented for both L1 and L2, a

line evicted from L1 is written to L2 to maintain coherency between the caches, and a line

evicted from L2 is written back to memory. Writing a line evicted from L1 in L2 is a cache

hit (write hit) only if the line is already in L2. Otherwise, it will generate an L2 miss (write

miss). Furthermore, it may lead to evicting a line in L2 if the set to which this line maps to

in L2 is already full with other lines. Therefore, events in L1, such as dirty line eviction,

may result in a cache miss in L2. In fact, there are 64,000 lines written in Floyd-Warshall

(using a matrix of size 1024 × 1024), which corresponds exactly to the additional 64,000

misses in L2.

We note that there is significant variability in execution time across benchmarks and

methods. As expected, for a trace-driven simulator, the DineroIV time is proportional to

121



the trace size. For example, the 2mm benchmark comprised of a sequence of two gemm

matrix multiplication takes about twice as much time to simulate than gemm (there are

about a billion operations in gemm). Our analytical approach is much faster, up to 365×

faster in this case. However, there exists some cases (2 over 64, shown in bold in Table 4.6

and 4.7) where the compile-time approach is slower than the simulation. Unfortunately,

predicting a priori the execution time of PolyCache is infeasible. By design, we operate on

integer linear programs, where even a simple polyhedron emptiness test is NP. However,

for many typical cases the observed complexity is polynomial in practice. This issue is

addressed in greater detail in Sec. 4.8.

4.7.3 Evaluation of Write Policies

As discussed in Sec. 4.5, the framework is capable of handling exactly various write-

allocate policies. In PolyCache, we have implemented the write-allocate write-back policy

used in Table 4.6, and evaluate below our implementation for the no-write-allocate write-

back policy. Table 4.2 compares the cache misses computed by PolyCache (L1 and L2

columns) with DineroIV (% diff. columns, -0.1% means PolyCache under-approximated

the misses by 0.1%). We use L1 and L2 caches of same size and associativity as in Ta-

ble 4.6, but both using instead the no-write-allocate-write-back policy.

We make three observations. First, as the formulation is significantly more complex

for this write policy, the execution time of PolyCache significantly increases compared

to Table 4.6. In fact, 8 benchmarks (2mm, cholesky, durbin, fdtd-apml, lu, reg-detect,

symm and trmm) timed out, that is PolyCache did not complete the calculation within 120

minutes, our timeout for this experiment. Second, for most benchmarks in our experimental

setup, there is 0% difference in the cache miss count computed by PolyCache compared

122



Table 4.2: Summary of No-Write Allocate Write Back Cache

Benchmark Cache Misses Time (sec)
L1 L1 %diff L2 L2%diff Dinero PolyCache

3mm 3224954880 0% 3225139200 0% 8663 16
adi 39376448 0% 39066432 0% 633 107
atax 4194560 0% 1049600 0% 54 8
bicg 3523070 0% 1049856 0% 57 3
correlation 2097280 0% 2097408 0% 5 199
covariance 1067548736 0% 1067582080 0% 2024 34
doitgen 270828544 0% 263168 0% 525 8
dynprog 71540106 0% 60921211 0% 737 4
fdtd-2d 22928000 0% 22928000 0% 299 30
floyd-warshall 67107968 0% 67104232 -0.1% 2823 583
gemm 1074984960 0% 1075046400 0% 2869 2
gemver 21736183 0% 18882296 0% 209 41
gesummv 3645950 0% 2097920 0% 56 18
gramschmidt 268706560 0% 268706248 -0.003% 465 171
jacobi-1d 2124600 0% 11248 0% 2 26
jacobi-2d 44398240 0% 44398240 0% 79 4
ludcmp 371409006 0% 365825035 0% 592 318
mvt 17844214 0% 17832188 0% 170 14
seidel-2d 1310720 0% 1310720 0% 73 2
syr2k 166298694 0% 134468056 -0.1% 3487 7720
syrk 67173444 0% 67169874 0% 1685 764
trisolv 530944 0% 527488 0% 12 2
chebyshev 409900120 0% 409900120 0% 1003 3135
heat 630612960 0% 630612960 0% 2573 324
minigmg 659660352 0% 659660352 0% 803 776
poisson 630874080 0% 630874080 0% 4650 3650
j3d7pt 630612960 0% 630612960 0% 1953 208
j3d13pt 3179606544 0% 3179606544 0% 3780 1664
j3d27pt 630874080 0% 630874080 0% 5986 4749
ccsd d1 1 269549568 0% 2531989 0% 438 3
ccsd d1 6 286261248 0% 1798021 0% 534 4
ccsd d2 1 2162688 0% 1444382 0% 398 3
ccsd d2 9 17845248 0% 2466976 0% 405 3
ccsd s1 1 1114128 0% 1114128 0% 27 2
ccsd s1 9 1052688 0% 1052688 0% 27 2

to DineroIV’s output. That is, for these experiments, approximating the no-write-allocate

by only considering read references does not change the miss count at either L1 or L2.

123



This highlights that ignoring write-hits on LRU in these experiments does not change the

miss count. Third, only three benchmarks (shown in bold) shows differences between

our approximation and DineroIV: PolyCache under-approximates the miss count by less

than 0.1%. Note all CCSD benchmarks showed 0% difference between PolyCache and

DineroIV, we only display representative ones.

4.7.4 Evaluation of Loop Tiling

We now report cache miss data when loop tiling is applied to the programs. We process

all 30 Polybench benchmarks with the PoCC compiler [8], using the Pluto algorithm [34]

to automatically compute a complex sequence of loop transformation to make loop tiling

legal and then apply loop tiling wherever valid, using a tile size of 32. This transformation

can dramatically increase the code size with up to hundreds of syntactic statements and

tens of loop nests in the generated code. Table 4.3 reports the number of misses without

and with this tile size selection for a single-level 32 KB, 4-way set-associative L1 cache.

All of the cache miss numbers were validated for correctness against DineroIV.

In two cases (Table 4.3, in bold) the execution times are longer than simulation, for

example, fdtd-apml, where it takes almost 1 hour to complete. The reason is the same as

explained earlier. Due to the inherent difficulty of predicting when this analytical formalism

will lead to prohibitive execution time, we advocate a timeout-based approach. Users may

set the timeout to a few minutes. If no answer is provided, users can, for example, fall back

to use of approximation heuristics (refer to Sec. 4.7.5).

4.7.5 Evaluation of Approximation Heuristics

Here, we discuss possible acceleration techniques with the goal of reducing static anal-

ysis time, while allowing for an approximate result. Thus, the methods presented in this

124



Table 4.3: Summary of Tiling (PolyCache is Poly. below)

Benchmark L1 Cache Misses Time (sec)
No tiling Naive tiling Dinero Poly.

2mm 2149969920 4362076160 4184 60
3mm 3224954880 519479636 6195 485
adi 39376448 454822592 663 385
atax 4194560 4194560 57 3
bicg 3523070 18530940 67 20
cholesy 11495238 11495301 161 11
correlation 2097280 4100 982 38
covariance 1067548735 539130944 983 19
doitgen 270828544 1327104 463 80
durbin 34089213 34152702 102 91
dynprog 46880104 47070106 746 10
fdtd-2d 22928000 15187943 333 436
fdtd-apml 5481573 250113688 741 3403
floyd-warshall 67107968 99645071 3123 176
gemm 1074984960 71303168 2000 6
gemver 21621493 22011647 121 50
gesummv 3645950 33604605 70 13
gramschmidt 268706048 268713488 288 52
jacobi-1D 250000 5000 20 16
jacobi-2D 5235200 4198090 350 330
lu 22647007 370408773 766 72
ludcmp 370932158 34195872 656 83
mvt 17844214 18531068 68 23
reg-detect 300 300 4 2
seidel 1310720 2152592 77 14
symm 1607465303 1607465299 3858 148
syr2k 166298694 2161626400 3875 219
syrk 67173444 1077905600 1879 62
trisolv 530688 535167 13 13
trmm 34110526 49805889 872 318

section do not guarantee exact miss count, is in contrast to the results presented earlier that

are exact by definition.

Per-array analysis We have developed a simple heuristic that analyzes only the refer-

ences to a single array in the program at a time, and the process is repeated for all arrays.

125



In other words, we only capture self-interference in this process. Table 4.8 reports the

number of misses computed for each array in the program, where for programs with more

than four arrays, we have summed the number of misses obtained for all subsequent arrays.

We compare the sum obtained by approximation of misses in the program based solely

on self-interference, versus the exact number of misses in the full program, as well as the

execution time of both this heuristic and the full program analysis with PolyCache. The

average speedup of the analysis time is 8x, and, in many situations, there are no cross-

interference misses between the various arrays in the benchmark.

However, for benchmarks such as bicg, only considering self-interference is not a valid

approach. In this case, we compute capacity misses because some arrays can fit into the

cache separately but not all together, resulting in the difference in cache miss numbers.

Sampling cache sets We also evaluate another heuristic based on the key observation

that there is often a high similarity between the misses across different sets, especially for

regular applications. Table 4.4 summarizes our set-0 heuristic. This heuristic is limited to

computing the misses for the cache set-0 and estimates the total misses by multiplying the

resulting value by the number of sets (128 in this experiment). We show several metrics

on the number of misses for all of the sets, such as the minimum, maximum, average, and

standard deviation, and report the miss count error (% difference) and execution time of

the heuristic compared to the execution time of PolyCache. Note an essential difference

in the setups between the set-0 heuristic and full program analysis. For the set-0 heuristic,

we compute only one set, meaning PolyCache is executed on a single core without any

parallelism. In contrast, for “Time all sets,” the time reported is the time for PolyCache to

complete when using S-way parallelism, i.e., using S cores.

126



Table 4.4: Summary of Set-0 Heuristic

Benchmark Min Max Avg. Stdev Set-0
Approx. % diff. Set-0 All

Sets
2mm 16795648 16796672 16796640 179 2149842944 0% 7 8
3mm 25193472 25195008 25194960 268 3224764416 0% 6 6
adi 306803 358054 307629 6375 39270784 0% 56 57
atax 32770 32770 32770 0 4194560 0% 4 4
bicg 27522 27524 27524 0 3523072 0% 3 3
cholesy 552 262641 89807 79529 33618048 192% 6 7
correlation 12602 20168 16385 2225 2581504 23% 16 19
covariance 8336440 8344009 8340224 2225 1068033152 0% 7 11
doitgen 2115584 2116608 2115848 450 270794752 0% 4 4
durbin 134303 396386 266322 77049 17190784 -50% 14 33
dynprog 4 650001 366251 188950 23040000 -51% 4 4
fdtd-2d 179100 179150 179125 25 22931200 0% 6 10
fdtd-apml 32832 68796 42825 10183 5197312 -5% 318 2657
floyd-warshall 524281 524281 524281 0 67107968 0% 15 22
gemm 8397824 8398336 8398320 89 1074921472 0% 1 1
gemver 168910 168918 168918 1 21621120 0% 23 23
gesummv 28482 28484 28484 0 3645696 0% 2 3
gramschmidt 2099204 2099328 2099266 37 268698112 0% 11 18
jacobi-1D 1800 2000 1953 85 256000 2% 1 1
jacobi-2D 40900 40900 40900 0 5235200 0% 3 3
lu 8128 262639 176930 77374 1040384 -95% 3 5
ludcmp 323544 4202981 2897907 1166399 536934272 45% 54 70
mvt 139403 139408 139408 1 17843584 0% 3 4
reg-detect 0 4 2 1 512 71% 0 1
seidel 10240 10240 10240 0 1310720 0% 1 1
symm 4280917 20824324 12558323 4859581 550904576 -66% 50 83
syr2k 1298961 1299472 1299209 256 166267008 0% 12 17
syrk 524792 524794 524793 1 67173504 0% 2 3
trisolv 2114 6178 4146 1187 790784 49% 2 3
trmm 8441 524535 266488 151925 67140352 97% 4 5

First, we observe a variety of benchmarks where the set-0 heuristic provides actually

near-exact results. These illustrate regular cache access patterns. Conversely, the approach

may dramatically fail, such as for LU, where the number of misses is under-approximated

by 20x. Yet, these result show a surprisingly good approximation can be obtained very

quickly. For all but two (LU and symm), the cache misses are off by a factor of 2 or less

127



with 18/30 benchmarks giving nearly exact value. We believe these results pave the way

for additional focused experimental studies of the regularity of cache accesses for affine

programs with the goal of determining when the cache behavior may be approximated

effectively by the behavior of a single (or few) set(s). As future work, we will investigate

sampling heuristics, computing the value of a few randomly chosen sets and using their

average miss instead of remaining limited to set-0.

4.8 Time Complexity of PolyCache

Table 4.6 shows very large execution time variation across benchmarks for PolyCache.

The explanation is simple to state but the execution time is infeasible to characterize a

priori. In this chapter, we rely extensively on manipulating sets modeled by Presburger

formulae, in particular, on counting the number of points in these sets. This computation is

NP-hard. As such, we obviously see situations where a much more complex system (i.e.,

miss set) is generated and counting takes a very long time, despite an excellent implementa-

tion from the Barvinok library [128, 1] integrated in ISL. To the best of our understanding,

it is impossible to predict a priori the execution time of PolyCache because it relates to the

irregularities in the generated cache miss set, not to simple input program features, such as

the number of loops or problem size.

In this section, we provide details on two representative cases, Gemm and Symm. While

both have roughly similar numbers of cache misses and similar DineroIV execution times

(shown in Table 4.6), for Symm, PolyCache is 150× slower to compute the solution than

for Gemm. For each operator type invoked by PolyCache, Table 4.5 details the number of

times this operator is used (Nb Ops) and the total time to execute the Nb Ops calls.

128



Table 4.5: Per-operator Execution Time
s: set, m: map, x: set or map, p: integer

Operator Syntax Execution time (sec)
Gemm No. Ops Symm No. Ops

Domain s := domain m 0.005 3 0.080 3
Range s := range m 0.000 4 0.001 4
Composition m3 := m1 ◦ m2 0.206 28 7.657 28
Inverse m2 := m1−1 0.058 6 0.132 6
Application s2 := m(s1) 0.001 1 0.024 1
Union x3 := x1 ∪ x2 0.005 2 0.021 2
Intersection x3 := x1 ∩ x2 0.062 6 1.697 6
Difference x3 := x1− x2 1.136 16 113.030 16
Coalesce s2 := coalesce s1 0.717 12 218.142 12
Counting p := card x 0.081 2 1.518 2
Total time 2.273 342.303

For both computations, the operators are called exactly the same number of times. This

is expected, given that it follows Algorithm 5 using the same cache configuration, but it

highlights the fact that the number of operator calls does not determine execution time.

Interestingly, we see that the time taken for set difference explodes for Symm. This is due

to the shape of the sets being subtracted. The result is not a convex set but a union of

small, distinct convex sets (pieces). For Symm, the number of pieces explodes, indicating

high irregularity in the Miss set. The coalesce operation similarly explodes. Coalescing

is a form of simplification of the representation, and tries to combine smaller pieces into a

larger convex piece. It is invoked prior to counting (the final operation of our algorithm),

i.e., on the result of the difference operation. Intuitively, the execution time appears to

be driven by how complicated the intermediate polyhedral sets we manipulate are, which

itself strongly depends on the cache configuration being modeled. Because predicting when

129



PolyCache’s execution time will be very high is impractical, the approximation techniques

outlined herein can prove critical to quickly compute a solution.

4.9 Discussion and Pratical Uses

Discussion and limitation We have presented a closed-form formulation of the cache

behavior for hierarchical set-associative caches. The formulation is independent of the

problem and cache sizes. However, the formulation is influenced by the associativity of the

cache being modeled. The integer set formulation has an exponential worst-case complex-

ity [93]. As observed in the preceding sections, this can occasionally result in very high

evaluation costs.

A study of exact cache behavior requires mapping the array addresses to linearized

memory addresses. While polyhedral approaches can deal with parametric problem sizes,

this linearization requirement forces the use of constant array sizes. Therefore, similar to

all prior work addressing this problem, the exact set of misses must be computed for each

constant array size.

In addition to linearized memory addresses, our formulation requires that the function

mapping an address to a cache line be affine. This restricts it to virtually indexed caches.

Several architectures (e.g., SPARC, PowerPC, ARM) employ virtually indexed caches for

portions of their cache hierarchy, enabling direct use of our formulation.

Even with physically indexed caches where the virtual-to-physical mapping is deter-

mined at runtime, our approach can be useful when applications employ huge pages (e.g.,

1 GB pages). This mapping, obtained after executing the program, can be extracted as a

trace. Given the small number of virtual and physical pages when using huge pages, tracing

this mapping is much cheaper than tracing every cache miss. Given a mapping extracted

130



from a run, one can construct the virtual address to cache set mapping using piece-wise

affine functions (one per huge page) and reconstruct the cache behavior for that run using

our formulation.

Cache vulnerability analysis Cache vulnerability factor (CVF), the probability that soft

errors (e.g. bit flips) impacting the cache get propagated to other hardware components,

was introduced by Zhang et al. [135] to evaluate the reliability of the cache hierarchy. Its

calculation involves tracking, for each bit, the fraction of program execution time during

which a bit flip may escape the cache into an architecturally visible state (registers or mem-

ory). For example, corruption of a dirty cache line that is written back to memory leads to

an escaping error, whereas a non-dirty cache line that is just replaced can mask bit flips.

Vulnerability calculation requires exact information about the operations on each data word

of the cache—reads, writes, misses, evictions—throughout program execution, including

the time when each event occurs. This is typically achieved using expensive simulations,

where the lifetime of cache lines can be precisely monitored via hooks in the simulator.

However, it is usually too expensive for practical use in design space exploration to opti-

mize vulnerability. Instead, our formulation can be extended to perform detailed lifetime

analysis of each cache line so as to characterize vulnerability of the entire cache hierarchy

at compile time.

Array padding Inter-array padding has been shown to impact cross-interference, or, con-

flict misses between arrays, and can be impact by the padding between arrays (e.g., [104,

68]). The inter-array offset can be cast as a linear parameter that needs to be determined to

minimize the cache misses.

131



Cache design analysis Our formulation enables two optimizations when exploring cache

configurations by varying its associativity (cache lines per set) and number of sets, for a

given input program. First, as seen in Algorithm 5, an analysis of an input program for a

K-way cache with a given number of sets incorporates an analysis of caches with the same

number of sets but with lower associativity. Therefore, only the max-associativity for a

given number of sets needs to be evaluated. On the other hand, a simulation may have to

consider all combinations of associativity and number of sets. Second, given configuration

for a cache at level L, our approach can present the reads and writes that reach the cache

at level L+ 1. This affords reuse of the cache evaluation at level L to explore the choice

of cache configurations at level L+ 1. Together, these can significantly reduce the cost to

explore the space of possible cache configurations.

Bounding worst-case execution time The execution time of programs executing on real-

time systems is bounded to guaranteed response times [16]. Cache-based systems compli-

cate this analysis by introducing unpredictable data access latencies [14]. Our exact analy-

sis of cache misses can assist in more accurate determination of cache miss costs and, thus,

better bounds on the execution times.

4.10 Conclusion

Cache behavior analysis is an essential tool for program optimization. Optimizing the

data traffic for cache-equipped processors has been investigated both via software transfor-

mations and hardware cache design space exploration. However, the current state of prac-

tice to analyze cache behavior is limited to actual execution and/or cache simulation, both

with time complexity proportional to the number of executed operations, making compile-

time optimization of cache behaviors difficult.

132



In this chapter, we proposed a fully compile-time approach to static analysis of cache

behavior for hierarchical set-associative virtually-indexed caches for the class of affine

(polyhedral) programs. The framework was validated by implementation of a tool to an-

alyze affine C programs to compute cache misses at any level, producing cache statistics

equivalent to trace-based cache simulators.

Since the framework makes extensive use of complex polyhedral operations with NP-

hard worst-case complexity, long analysis times remain possible. As future work, we plan

to investigate additional acceleration schemes for the formulations, as well as the develop-

ment of compiler analyses and optimizations driven by cache miss estimations.

133



Ta
bl

e
4.

6:
B

en
ch

m
ar

ks
an

d
Su

m
m

ar
y

of
H

ie
ra

rc
hi

ca
lS

et
-A

ss
oc

ia
tiv

e
C

ac
he

(a
)

B
en

ch
m

ar
k

D
es

cr
ip

tio
n

C
ac

he
A

cc
es

se
s

C
ac

he
M

is
se

s
Ti

m
e

(s
ec

)
L

1
L

2
L

1
L

2
D

in
er

o
Po

ly
C

ac
he

2m
m

2
M

at
ri

x
M

ul
tip

lic
at

io
ns

85
89

93
45

92
21

50
10

09
92

21
49

96
99

20
21

50
09

28
00

57
80

16
3m

m
3

M
at

ri
x

M
ul

tip
lic

at
io

ns
12

88
49

01
88

8
32

25
15

14
88

32
24

95
48

80
32

25
13

92
00

86
33

27
ad

i
A

lte
rn

at
in

g
D

ir
ec

tio
n

Im
pl

ic
it

so
lv

er
15

71
12

32
00

59
06

30
40

39
37

64
48

39
06

64
32

63
9

78
at

ax
M

at
ri

x
Tr

an
sp

os
e

V
ec

to
rM

ul
tip

ly
13

42
17

72
8

52
43

39
2

41
94

56
0

10
49

60
0

54
4

bi
cg

B
iC

G
St

ab
L

in
ea

rS
ol

ve
rK

er
ne

l
13

42
17

72
8

45
71

90
2

35
23

07
0

10
49

85
6

56
3

ch
ol

es
y

C
ho

le
sk

y
D

ec
om

po
si

tio
n

35
94

86
97

6
12

01
90

59
11

49
52

38
11

33
99

77
15

3
52

co
rr

el
at

io
n

C
or

re
la

tio
n

C
om

pu
ta

tio
n

94
37

18
4

20
97

40
8

20
97

28
0

20
97

40
8

13
13

co
va

ri
an

ce
C

ov
ar

ia
nc

e
C

om
pu

ta
tio

n
21

56
92

18
56

10
68

17
13

90
10

67
54

87
35

10
67

58
20

79
20

96
38

do
itg

en
M

ul
tir

es
ol

ut
io

n
ke

rn
el

(M
A

D
N

E
SS

)
10

77
93

61
28

27
10

90
68

8
27

08
28

54
4

26
31

68
52

7
4

du
rb

in
To

ep
lit

z
sy

st
em

so
lv

er
67

14
98

12
50

87
89

69
34

08
92

13
34

01
09

18
18

2
12

8
dy

np
ro

g
D

yn
am

ic
pr

og
ra

m
m

in
g

(2
D

)
17

27
04

00
00

91
00

01
72

46
88

01
04

36
36

11
99

72
9

9
fd

td
-2

d
2-

D
Fi

ni
te

D
iff

er
en

tT
im

e
D

om
ai

n
73

29
79

50
0

32
75

20
00

22
92

80
00

22
92

80
00

30
2

25
fd

td
-a

pm
l

A
ni

so
tr

op
ic

Pe
rf

ec
tly

M
at

ch
ed

L
ay

er
76

57
34

40
0

82
51

74
1

54
81

57
3

42
41

21
5

38
2

28
59

flo
yd

-w
ar

sh
al

l
Sh

or
te

st
pa

th
s

fo
rw

ei
gh

te
d

gr
ap

h
75

16
19

27
68

13
42

15
93

6
67

10
79

68
67

16
63

36
28

29
64

ge
m

m
M

at
ri

x-
m

ul
tip

ly
C

=a
.A

.B
+b

.C
42

94
96

72
96

10
75

05
04

96
10

74
98

49
60

10
75

04
64

00
29

05
2

ge
m

ve
r

V
ec

to
rM

ul
tip

ly
&

M
at

ri
x

A
dd

iti
on

23
48

93
31

2
22

79
37

16
21

62
14

93
18

88
17

87
21

0
38

ge
su

m
m

v
Sc

al
ar

,V
ec

to
r&

M
at

ri
x

M
ul

tip
ly

13
42

30
01

6
39

00
41

2
36

45
95

0
20

97
92

0
57

7
gr

am
sc

hm
id

t
G

ra
m

-S
ch

m
id

td
ec

om
po

si
tio

n
53

71
33

56
8

33
59

54
43

2
26

87
06

04
8

26
87

14
49

6
50

2
29

ja
co

bi
-1

D
1-

D
Ja

co
bi

st
en

ci
lc

om
pu

ta
tio

n
59

98
80

0
37

50
00

25
00

00
12

50
2

1
ja

co
bi

-2
D

2-
D

Ja
co

bi
st

en
ci

lc
om

pu
ta

tio
n

16
71

17
44

0
78

51
52

0
52

35
20

0
52

35
20

0
70

4
lu

L
U

de
co

m
po

si
tio

n
14

31
13

06
24

45
26

16
95

22
64

70
07

22
67

14
92

56
2

5
lu

dc
m

p
L

U
de

co
m

po
si

tio
n

71
94

98
75

0
37

19
73

11
8

37
09

32
15

8
36

53
99

67
5

57
7

22
9

m
vt

M
at

ri
x

V
ec

to
rP

ro
du

ct
&

Tr
an

sp
os

e
13

42
17

72
8

17
84

47
26

17
84

42
14

17
83

21
88

18
8

6
re

g-
de

te
ct

2-
D

Im
ag

e
pr

oc
es

si
ng

11
65

60
00

59
6

30
0

30
0

4
2

se
id

el
2-

D
Se

id
el

st
en

ci
lc

om
pu

ta
tio

n
20

88
96

80
0

26
18

88
0

13
10

72
0

13
10

72
0

75
1

sy
m

m
Sy

m
m

et
ri

c
m

at
ri

x-
m

ul
tip

ly
32

15
98

87
36

21
43

79
46

34
16

07
46

53
03

16
03

22
21

55
34

63
32

3
sy

r2
k

Sy
m

m
et

ri
c

ra
nk

-2
k

op
er

at
io

ns
85

92
03

17
44

16
64

29
76

6
16

62
98

69
4

13
45

37
93

6
34

98
15

1
sy

rk
Sy

m
m

et
ri

c
ra

nk
-k

op
er

at
io

ns
42

94
96

72
96

67
23

89
80

67
17

34
44

67
16

98
74

16
77

39
tr

is
ol

v
Tr

ia
ng

ul
ar

so
lv

er
33

56
67

20
53

09
44

53
06

88
52

71
04

13
3

tr
m

m
Tr

ia
ng

ul
ar

m
at

ri
x-

m
ul

tip
ly

21
45

38
64

96
34

17
59

98
34

11
05

26
34

10
63

57
83

8
36

134



Ta
bl

e
4.

7:
B

en
ch

m
ar

ks
an

d
Su

m
m

ar
y

of
H

ie
ra

rc
hi

ca
lS

et
-A

ss
oc

ia
tiv

e
C

ac
he

(b
)

B
en

ch
m

ar
k

D
es

cr
ip

tio
n

C
ac

he
A

cc
es

se
s

C
ac

he
M

is
se

s
Ti

m
e

(s
ec

)
L

1
L

2
L

1
L

2
D

in
er

o
Po

ly
C

ac
he

ch
eb

ys
he

v
C

he
by

sh
ev

sm
oo

th
er

in
H

PG
M

G
22

28
64

07
04

53
68

67
60

8
47

13
19

35
2

47
13

19
35

2
10

18
28

61
he

at
2-

D
he

at
eq

ua
tio

n
st

en
ci

l
58

36
64

40
00

16
65

94
56

0
13

33
01

76
0

13
33

01
76

0
25

07
29

8
m

in
ig

m
g

C
om

pa
ct

G
eo

m
et

ri
c

M
ul

tig
ri

d
73

41
40

46
72

37
03

99
25

92
72

10
79

58
4

78
24

98
81

6
82

0
71

0
po

is
so

n
Po

is
so

n
so

lv
er

st
en

ci
lc

om
pu

ta
tio

n
14

85
69

12
00

0
16

68
55

68
0

13
35

62
88

0
13

35
62

88
0

45
77

18
90

j3
d7

pt
3-

D
Ja

co
bi

st
en

ci
lw

ith
7

po
in

ts
42

44
83

20
00

16
65

94
56

0
13

33
01

76
0

13
33

01
76

0
19

01
19

5
j3

d1
3p

t
3-

D
Ja

co
bi

st
en

ci
lw

ith
13

po
in

ts
15

73
15

81
44

78
66

27
84

0
31

79
60

65
44

31
79

60
65

44
37

31
39

0
j3

d2
7p

t
3-

D
Ja

co
bi

st
en

ci
lw

ith
27

po
in

ts
10

61
20

80
00

0
16

68
55

68
0

13
35

62
88

0
13

35
62

88
0

58
44

96
3

cc
sd

d1
1

N
W

ch
em

te
ns

or
co

nt
ra

ct
io

n
ke

rn
el

1
10

73
74

18
24

27
05

98
14

4
26

95
49

56
8

27
77

76
5

44
4

2
cc

sd
d1

2
N

W
ch

em
te

ns
or

co
nt

ra
ct

io
n

ke
rn

el
2

10
73

74
18

24
27

15
81

18
4

27
05

32
60

8
22

63
97

0
43

9
2

cc
sd

d1
3

N
W

ch
em

te
ns

or
co

nt
ra

ct
io

n
ke

rn
el

3
10

73
74

18
24

28
73

09
82

4
28

62
61

24
8

25
87

67
3

44
9

2
cc

sd
d1

4
N

W
ch

em
te

ns
or

co
nt

ra
ct

io
n

ke
rn

el
4

10
73

74
18

24
27

05
98

14
4

26
95

49
56

8
17

23
45

5
53

7
2

cc
sd

d1
5

N
W

ch
em

te
ns

or
co

nt
ra

ct
io

n
ke

rn
el

5
10

73
74

18
24

27
15

81
18

4
27

05
32

60
8

15
05

95
8

52
9

2
cc

sd
d1

6
N

W
ch

em
te

ns
or

co
nt

ra
ct

io
n

ke
rn

el
6

10
73

74
18

24
28

73
09

82
4

28
62

61
24

8
18

30
62

2
53

4
2

cc
sd

d1
7

N
W

ch
em

te
ns

or
co

nt
ra

ct
io

n
ke

rn
el

7
10

73
74

18
24

27
05

98
14

4
26

95
49

56
8

17
84

86
5

49
4

2
cc

sd
d1

8
N

W
ch

em
te

ns
or

co
nt

ra
ct

io
n

ke
rn

el
8

10
73

74
18

24
27

15
81

18
4

27
05

32
60

8
15

52
53

3
48

4
2

cc
sd

d1
9

N
W

ch
em

te
ns

or
co

nt
ra

ct
io

n
ke

rn
el

9
10

73
74

18
24

28
73

09
82

4
28

62
61

24
8

18
77

19
7

49
1

2
cc

sd
d2

1
N

W
ch

em
te

ns
or

co
nt

ra
ct

io
n

ke
rn

el
10

10
73

74
18

24
32

11
26

4
21

62
68

8
14

44
38

2
39

7
2

cc
sd

d2
2

N
W

ch
em

te
ns

or
co

nt
ra

ct
io

n
ke

rn
el

11
10

73
74

18
24

18
93

99
04

17
89

13
28

14
47

44
1

41
8

2
cc

sd
d2

3
N

W
ch

em
te

ns
or

co
nt

ra
ct

io
n

ke
rn

el
12

10
73

74
18

24
18

95
43

04
17

90
57

28
17

54
04

0
41

5
2

cc
sd

d2
4

N
W

ch
em

te
ns

or
co

nt
ra

ct
io

n
ke

rn
el

13
10

73
74

18
24

32
11

26
4

21
62

68
8

14
89

16
4

39
7

2
cc

sd
d2

5
N

W
ch

em
te

ns
or

co
nt

ra
ct

io
n

ke
rn

el
14

10
73

74
18

24
18

93
99

04
17

89
13

28
15

08
60

8
41

8
2

cc
sd

d2
6

N
W

ch
em

te
ns

or
co

nt
ra

ct
io

n
ke

rn
el

15
10

73
74

18
24

18
95

43
04

17
90

57
28

18
13

50
8

40
7

2
cc

sd
d2

7
N

W
ch

em
te

ns
or

co
nt

ra
ct

io
n

ke
rn

el
16

10
73

74
18

24
31

49
82

4
21

01
24

8
21

01
24

8
39

9
2

cc
sd

d2
8

N
W

ch
em

te
ns

or
co

nt
ra

ct
io

n
ke

rn
el

17
10

73
74

18
24

18
88

61
44

17
83

75
68

24
64

14
0

41
1

2
cc

sd
d2

9
N

W
ch

em
te

ns
or

co
nt

ra
ct

io
n

ke
rn

el
18

10
73

74
18

24
18

89
38

24
17

84
52

48
27

08
67

2
41

0
2

cc
sd

s1
1

N
W

ch
em

te
ns

or
co

nt
ra

ct
io

n
ke

rn
el

19
67

10
88

64
21

62
70

4
11

14
12

8
11

14
12

8
28

1
cc

sd
s1

2
N

W
ch

em
te

ns
or

co
nt

ra
ct

io
n

ke
rn

el
20

67
10

88
64

21
62

70
4

11
14

12
8

11
14

12
8

27
1

cc
sd

s1
3

N
W

ch
em

te
ns

or
co

nt
ra

ct
io

n
ke

rn
el

21
67

10
88

64
21

62
70

4
11

14
12

8
11

14
12

8
27

1
cc

sd
s1

4
N

W
ch

em
te

ns
or

co
nt

ra
ct

io
n

ke
rn

el
22

67
10

88
64

21
62

70
4

11
14

12
8

11
14

12
8

27
1

cc
sd

s1
5

N
W

ch
em

te
ns

or
co

nt
ra

ct
io

n
ke

rn
el

23
67

10
88

64
21

62
70

4
11

14
12

8
11

14
12

8
28

1
cc

sd
s1

6
N

W
ch

em
te

ns
or

co
nt

ra
ct

io
n

ke
rn

el
24

67
10

88
64

21
62

70
4

11
14

12
8

11
14

12
8

28
1

cc
sd

s1
7

N
W

ch
em

te
ns

or
co

nt
ra

ct
io

n
ke

rn
el

25
67

10
88

64
21

01
26

4
10

52
68

8
10

52
68

8
27

1
cc

sd
s1

8
N

W
ch

em
te

ns
or

co
nt

ra
ct

io
n

ke
rn

el
26

67
10

88
64

21
01

26
4

10
52

68
8

10
52

68
8

27
1

cc
sd

s1
9

N
W

ch
em

te
ns

or
co

nt
ra

ct
io

n
ke

rn
el

27
67

10
88

64
21

01
26

4
10

52
68

8
10

52
68

8
28

1

135



Ta
bl

e
4.

8:
Su

m
m

ar
y

of
Pe

r-
A

rr
ay

H
eu

ri
st

ic

B
en

ch
m

ar
k

N
um

be
r

of
C

ac
he

M
is

se
s

Ti
m

e
(s

ec
)

Sp
ee

du
p

A
rr

ay
1

A
rr

ay
2

A
rr

ay
3-

...
Su

m
A

ct
ua

l
%

di
ff

.
Su

m
Fu

ll
3m

m
65

53
6

10
73

74
18

24
21

47
81

13
27

32
21

61
86

88
32

24
95

48
80

0%
1

6
5.

3×
ad

i
13

05
33

12
13

10
76

48
13

10
77

12
39

26
86

72
39

37
64

48
0%

17
57

3.
4×

bi
cg

10
48

57
6

25
6

76
8

10
49

60
0

35
23

07
0

-7
0%

0
3

10
.9
×

co
va

ri
an

ce
10

66
99

16
16

64
55

70
23

10
67

54
87

03
10

67
54

87
35

0%
3

11
4.

1×
dy

np
ro

g
15

6
44

80
00

00
15

6
44

80
03

12
46

88
01

04
-4

%
1

4
3.

8×
ge

m
m

65
53

6
10

73
74

18
24

65
53

6
10

73
87

28
96

10
74

98
49

60
0%

0
1

2.
9×

ge
m

ve
r

18
87

43
68

25
6

17
92

18
87

64
16

21
62

14
93

-1
3%

1
23

17
.3
×

ja
co

bi
-2

d
26

18
88

0
26

16
32

0
52

35
20

0
52

35
20

0
0%

1
3

3.
1×

lu
dc

m
p

37
09

31
70

9
64

12
8

37
09

31
90

1
37

09
32

15
8

0%
17

70
4.

1×
tr

is
ol

v
52

63
36

25
6

25
6

52
68

48
53

06
88

-1
%

0
3

5.
8×

136



CHAPTER 5

Cache Vulnerability Analysis for Affine Programs

5.1 Introduction

Soft errors becomes more and more important due to the exponential growth rate along

with the development of technology. Among all the hardware components within pro-

cessor, memory is the one that most vulnerable to soft errors because of the number of

transistors and large area [88]. Moreover, memory at lower level can be protected via Error

Correcting Code (ECC). However, for higher level memory, which are close to CPU, it

will result in much higher overhead if protecting using ECC. Therefore, cache, as one of

the most vulnerable components to soft errors, has been widely studied to characterize and

reduce its vulnerability.

The typical approaches to determine the cache vulnerability is through actual execution

or cycle accurate simulation to measure or analyze the program execution and cache behav-

iors on the target platform. However, these approaches are expensive as the cost scales with

problem size and also cycle accurate simulations is very slow, only few kilo instructions

per second [35].

In this chapter, we focus on the analysis of vulnerability of a program to soft errors

in cache. To compute the cache vulnerability, it requires tracking for each bit the ratio of

137



program execution time during which a bit flip will escape from cache become visible in

other architectures such as registers or memory. For example, written back a dirty cache,

which contains corrupted data, will lead to an soft error become visible. The computation

of vulnerability requires exact information of the operations performed on each data of the

cache through the program execution including reads, writes, misses, evictions etc.

Typically, simulation is the way the perform this analysis as the lifetime of cache lines

can be precisely monitored in the simulator. However, the simulation time could up to

hours and days even for a simple program and cache configuration [112].

Therefore, we propose a novel purely static analysis to compute vulnerability metrics

at compile-time based on the analytical cache modeling in previous chapter. This opens

the way for software optimization of vulnerability via choosing program transformation

automatically.

We achieve this goal by focusing on a specific class of computations, namely affine pro-

grams [48, 63], which have a static control- and data-flow that can be exactly represented at

compile-time using mathematical structures such as polyhedra of integer tuples and affine

relations. Affine programs occur frequently in several scientific computing patterns, such

as dense linear algebra [63, 34].

5.2 Modeling Cache Vulnerability

Modeling cache vulnerability requires the ability to reason the lifetime of each data

stored in cache lines. However, typical cache modeling approach, which only produce

number of cache misses, cannot be used to compute cache vulnerability. Compared to

these models, our analytical cache model from previous chapter could generate ordered set

of cache events, which could be used to analyze the lifetime of cache lines. Therefore,

138



this section introduce the way to extend the cache behavior model to perform the cache

vulnerability analysis.

Note that the program representation for affine program used in this chapter are the

same with previous chapter.

5.2.1 Cache Vulnerability

The concept of architectural vulnerability factor (AVF) proposed by Mukherjee et al.

in [89] is the probability that faults in processor architectures results in visible output errors.

The AVF provides the insight of reliability of various hardware components by estimating

the architecture soft error rate. Similarly, the concept of cache vulnerability factor (CVF),

which is the probability that soft errors happened in cache memory got propagated to other

hardware components, is introduced [135] to estimate the reliability of cache memory.

It can be calculated as the ratio of the time during which a cache line is vulnerable, i.e.

susceptible to soft errors, divided by the lifetime of the cache line, for all cache lines as

shown as the following equation.

CacheVunerabilityFactor =
∑N

i=1VulnerableTimei

∑N
i=1 Li f eTimei

Where VulnerableTimei is the time interval that cache line i is susceptible to soft errors,

and Li f etimei represents the lifetime of cache line i from loading the data to the end, and

N is the number of lines in cache.

Architecturally correct execution (ACE) is introduced in [89] to calculate the AVF by

performing the lifetime analysis, which divides up a bit’s lifetime during execution into

ACE and un-ACE intervals. Within unACE interval, any bit value change will not affect

the program final outcome, in other words, not vulnerable to soft errors. And if the time

139



interval cannot be proven to be unACE, it will be assumed to be ACE, which is vulnerable

interval that susceptible to soft errors.

Therefore, to characterize the CVF, we have to count all the ACE and unACE intervals

to compute the ratio of vulnerable ones, which make the equation above into the following.

CV F =
∑N

i=1 ACEi

∑N
i=1(ACEi +unACEi)

Where ACEi is the ACE interval while unACEi is the unACE interval for cache line i.

The lifetime analysis in [30] divides lifetime into several non-overlapping intervals such

as idle, read-to-write, write-to-write, read-to-evict etc and classify each of these compo-

nents into ACE or unACE interval. Table 5.1 shows the detailed classification for write-

back data cache, where in bold we display each of the intervals we model analytically in

our framework work. Write-to-Write is the “time” interval from a cache line write event to

the next write event to the same cache line; Read-to-Evict is the interval from a read event

to the following eviction event of that cache line; etc. (details can be found in [30]). Note

that our model is also applicable to write-through cache, but we only focus on write-back

caches since the vulnerability of write-through caches is really marginal and not the main

focus.

Table 5.1: Lifetime Classification of Write-Back Cache

unACE Component ACE Component
Idle,Write-to-Write Write-to-End,Write-to-Evict
Fill-to-Evict,Read-to-Evict Evict-to-Fill,Read-to-Read
Read-to-Write,Fill-to-Write Write-to-Read

140



In order to compute the CVF, it is needed to determine the lifetime of the data in each

cache line. For example, the data in a cache line is vulnerable in between the time it was

loaded for the first time (i.e., the first miss leading to loading the line) and the last time the

cache line is accessed prior to its eviction. The typical approach to perform this analysis is

to rely on precise cache simulation, where events such as miss, accesses, eviction, etc. are

recorded. More precisely, system simulators like GEM5 are the typical method of choice,

because in addition to being able to record events such as misses and evictions, they provide

the number of cycles elapsed in between such events, i.e., the lifetime information. To avoid

the need for simulation, an exact compile-time modeling of all cache events is needed, to

determine all ACE and unACE intervals, as developed in the following.

5.2.2 Modeling Vulnerability Intervals

We now show how we compute the various event intervals for ACE and unACE com-

ponents, before presenting the overall algorithm in Sec. 5.2.3. We build on the formalism

presented in prior sections, and in particular on Alg. 5 which computes the relation Miss

from the iteration making the first access to a cache line to the iteration when this line

is first evicted. We first estimate these intervals in terms of iteration space, that is by

representing an interval via its start iteration (a point in the iteration domain) and its end

iteration.

First, we assume the cache is invalid at the start of the program, and then the Idle

component is the interval between the start of the program region analyzed and the time

at which the cache line gets filled. To compute the Idle time, Alg. 9 computes the first K

distinct lines that maps to a cache set, where K is the associativity of the cache.

141



Algorithm 9 unACE-idle: Compute unACE idle component
Output: unACE Idle component

1: A = IterToSet−1

2: SameSet = IterToSet ◦ IterToSet−1

3: Idle = /0
// Compute first K distinct lines that maps to an index

4: for all assoc in 1, K do
5: B = A − (A ◦ SameSet)
6: A = A − B
7: Idle = Idle ∪ B
8: end for

// Return Idle in terms of cache lines
9: return Idle

We then show in Alg. 10 how to compute the other types of interval. The output of

this algorithm is 6 relations, that each represents sets of intervals, defined by the relation

from the start iteration to the end iteration, thereby defining the interval. By virtue of our

formalism, Alg. 10 reasons on all cache lines at once, that is the intervals produced are in

fact sets of intervals, for the various cache lines. The algorithm takes as input the program

description and other necessary modeling parameters, and the Miss relation computed in

Alg. 5, the relation from the iteration allocating the cache line for a memory reference to

the iteration where this same line get evicted.

Line 1 to 4 of the algorithm collect all the lifetime events. Line 5 compute OO, the

relation from an operation to the nearest following one since all components are non-

overlapped. Then Line 6 to 11 calculate all possible combinations for each particular

lifetime component. For example, domain(RA) contains all read references, its Cartesian

product (noted ×) with itself produces all possible combinations of relations from one read

operation to another and we only need those immediate next one, which can be obtained

by intersecting with relation OO.

142



Algorithm 10 Lifetime components
unACE: read-to-write, read-to-evict, write-to-write
ACE: read-to-read, write-to-read, write-to-evict
Input: Program: WriteRefs, ReadRefs, Sched

Array: (s⃗zArray,startArray) ∀ Array,Linearize
Cache: Miss(cache miss formulation from Alg.1)

Output: ACE: RtoR, WtoR, WtoE
unACE: RtoW, RtoE, WtoW
// Memory address written at a given time

1: WA = Sched−1 ◦ WriteRefs ◦ Linearize
// Memory address read at a given time

2: RA = Sched−1 ◦ ReadRefs ◦ Linearize
// Memory address evicted at a given time

3: EA = Miss−1 ◦ Sched−1 ◦ (ReadRefs ∪ WriteRefs) ◦ Linearize
// All Memory Operations at a given time

4: OA = WA ∪ RA ∪ EA
// From each operation to its immediate next operation

5: OO = lexmin ((OA ◦ OA−1) ∩ lexPrec)
// Calculate each lifetime component
// ACE:

6: RtoR = OO ∩ (domain (RA) × domain (RA))
7: WtoR = OO ∩ (domain (WA) × domain (RA))
8: WtoE = OO ∩ (domain (WA) × domain (EA))

// unACE:
9: RtoW = OO ∩ (domain (RA) × domain (WA))

10: RtoE = OO ∩ (domain (RA) × domain (EA))
11: WtoW = OO ∩ (domain (WA) × domain (WA))

// Return all lifetime components
12: return RtoR,WtoR,WtoE,RtoW,RtoE,WtoW

143



We compute all necessary time intervals from Alg. 10. Technically, some intervals

cannot be modeled through static analysis, but in practice these components account for a

very small portion of the execution, for example Evict-to-Fill is not modeled but a cache line

fill after eviction takes typically only a few cycles for L1 cache.

5.2.3 From Vulnerability Intervals to Vulnerability Metrics

The final stage is to compute a vulnerability metric, from the various intervals we gen-

erated. Algorithm 11 puts together all the relations computed by the previous algorithm

to form the set of intervals in the ACE and unACE components. We then enumerate these

intervals to compute an approximation of the time elapsed in this interval. For simplicity, in

Alg. 11 we assume each operation (be it a cache miss or a floating point computation) takes

one cycle. In practice, this is refined within the implementation of computeIntervalTime()

where one can assign weights to different operations as desired.

Algorithm 11 CVF: Compute vulnerability factor
Input: ACE = RtoR ∪ WtoR ∪ WtoE

unACE = Idle ∪ RtoW ∪ RtoE ∪ WtoW
Output: CVF: cache vulnerability factor

1: unace = ace = 0
2: for each (⃗x → y⃗) in unACE do
3: unace += computeIntervalTime(⃗x, y⃗)
4: end for
5: for each (⃗x → y⃗) in ACE do
6: ace += computeIntervalTime(⃗x, y⃗)
7: end for

// Return the CVF
8: return ace/(unace+ace)

144



We remark that as the entire formulation stays within the boudary of integer sets as

defined in Sec. 4.3, enumerating all points (pairs) in a relation is achieved simply by per-

forming polyhedral code generation to create a C code scanning all and only points in the

relation. In practice, we call the codegen method of the ISL library, which produces a loop

nest visiting each pair (⃗x → y⃗) in the relation. The estimation of the time elapsed between

x⃗ and y⃗, two iterations in the program, is obtained by restricting the iteration domain of the

program such that we only keep iterations i⃗ such that x⃗ ⪯ i⃗ ⪯ y⃗, and counting the number

of points in this restricted domain.

The above model of time is approximate, that is assuming one cycle per operation is

not an exact model for the lifetime, but integrating refinements such as specifying a latency

(number of cycles) for a cache miss is straightforward within computeIntervalTime.

5.3 Experimental Evaluation

5.3.1 Implementation detail

The tool to perform the cache vulnerability analysis is named as PolyVul. It was imple-

mented using ISL-0.17 [5] (with barvinok-0.38 and pet-0.07), an integer set library for the

polyhedral model. The Polyhedral Extraction Tool (PET) [126], a powerful SCoP extractor

on top of Clang, detects affine regions and extracts the polyhedral model from C source

code. ISL [124] performs the algorithms described in previous section on the extracted

model to compute and output the cache vulnerability based on cache behavior metrics for

the input program and cache configuration.

PolyVul takes three different kinds of information as input: 1) Input C affine program,

2) Cache configurations including cache size, block size, associativity and 3) Memory base

address to calculate the cache vulnerability.

145



We use the set-specialization approach discussed in Sec. 4.4.3, that is we compute the

analysis for each set independently, and then sum the results as appropriate. These compu-

tations are run in parallel, using one process per set in the cache, as each set’s behavior is

independent of the others.

5.3.2 Time complexity Evaluation

Since the cache vulnerability analysis is based on the cache modeling from previous

chapter, it again extensively rely on manipulating sets by Presburger formulae, which mean-

ing the computation in worst cast is NP-hard.

As we observe that the execution time of cache modeling for cache misses is fast in

practice for most of the cases. However, vulnerability modeling is much more complex

than cache miss modeling as we introduced previously. Thus, in this section, we perform

scaling experiments to validate the time complexity on three representative cases, Gemm,

Symm and Trmm.

Table 5.2, 5.3 and 5.4 details time cost for each operator used and the total time to for

different problem size and cache configurations.

First column lists the benchmarks and second column lists the operators used in the

approach such as composition. CVF denotes the cache vulnerablity factor obtained from

the analysis. PolyCache meaning the time takes to compute the cache misses for this cache

configuration, and similar for PolyVul. Column 3 to 6 show the execution time in second

for 1-way set associative cache with cache size varied from 2K to 16K, here C denotes

cache size. Column 7 to 9 show the execution time for cache associativity ranged from

1-way to 4-way but with cache size fixed at 2K. In table 5.4, N/T meaning not terminate

after 24 hours execution. Hence, no time breakdown for the operators.

146



Table 5.2: Execution time experiments for problem size N=8

Benchmark Operation
Problem Size N=8

Associativity 1-way Cache Size 2K
C=2K C=4K C=8K C=16K 1-way 2-way 4-way

Dgemm

composition 0.04 0.05 0.05 0.05 0.05 0.05 0.05
difference 0.53 0.54 0.54 0.54 0.53 0.54 0.37
coalsecing 0.62 0.63 0.64 0.63 0.62 0.63 0.63
cardinality 0.01 0.01 0.01 0.01 0.01 0.01 0.01
lexmin 0.01 0.01 0.01 0.01 0.01 0.01 0.01
polycache 0.07 0.07 0.07 0.07 0.07 0.07 0.11
polyvul 1.33 1.31 1.32 1.31 1.29 1.31 1.15
CVF 0.80 0.80 0.80 0.80 0.80 0.80 0.80

Symm

composition 4.64 4.53 4.63 4.60 4.54 4.55 5.42
difference 22.10 21.46 20.86 21.29 20.86 20.76 36.09
coalsecing 201.51 195.99 197.47 195.78 194.15 197.69 203.76
cardinality 0.02 0.02 0.02 0.02 0.02 0.02 0.02
lexmin 0.17 0.17 0.17 0.17 0.17 0.17 0.17
polycache 0.90 0.90 0.90 0.90 0.90 0.90 2.71
polyvul 234.29 227.26 228.91 227.57 225.46 228.90 251.66
CVF 0.93 0.93 0.93 0.93 0.93 0.93 0.93

Trmm

composition 0.03 0.03 0.03 0.03 0.03 0.03 0.03
difference 0.04 0.04 0.04 0.04 0.04 0.04 0.04
coalsecing 0.65 0.65 0.65 0.66 0.66 0.66 0.66
cardinality 0.01 0.01 0.01 0.01 0.01 0.01 0.01
lexmin 0.01 0.01 0.01 0.01 0.01 0.01 0.01
polycache 0.69 0.69 0.69 0.69 0.69 0.69 0.69
polyvul 0.82 0.80 0.80 0.80 0.80 0.80 0.80
CVF 1.00 1.00 1.00 1.00 1.00 1.00 1.00

We make several observations from compare the numbers within these tables. First, the

relative size between cache and program will affect the execution time. For problem size

N=8 and N=16, cache size 2K and 3K can hold all the date within the program. The main

cache misses will be cold misses, thus PolyCache time is marginal. Therefore, there will

be less cache events such as evictions, and then ACE/unACE interval calculation will be

much easier. However, when problem size N=32, only cache size 16K can hold all the data.

147



Table 5.3: Execution time experiments for problem size N=16

Benchmark Operation
Problem Size N=16

Associativity 1-way Cache Size 2K
C=2K C=4K C=8K C=16K 1-way 2-way 4-way

Dgemm

composition 0.03 0.03 0.03 0.03 0.03 0.05 0.16
difference 0.01 0.00 0.00 0.00 0.01 0.04 1.00
coalsecing 0.22 0.17 0.17 0.17 0.22 0.50 0.40
cardinality 0.01 0.01 0.01 0.01 0.01 0.03 0.01
lexmin 0.01 0.01 0.01 0.01 0.01 0.02 0.01
polycache 0.07 0.06 0.06 0.06 0.07 0.12 1.43
polyvul 0.38 0.25 0.25 0.25 0.32 0.73 1.67
CVF 0.59 0.80 0.80 0.80 0.85 0.58 0.68

Symm

composition 2.51 2.20 2.20 2.19 2.48 3.21 13.13
difference 0.82 0.50 0.49 0.49 0.81 1.82 999.10
coalsecing 19.42 14.48 14.27 13.88 19.04 19.74 48.42
cardinality 0.06 0.01 0.01 0.01 0.06 0.07 0.09
lexmin 0.33 0.16 0.16 0.16 0.33 0.42 0.66
polycache 0.87 0.54 0.55 0.54 0.87 2.22 84.56
polyvul 31.48 23.90 23.69 23.27 31.04 33.21 1075.54
CVF 0.52 0.97 0.97 0.97 0.64 0.64 0.71

Trmm

composition 0.02 0.02 0.02 0.02 0.02 0.02 0.08
difference 0.00 0.00 0.00 0.00 0.00 0.01 0.56
coalsecing 0.19 0.20 0.19 0.20 0.20 0.23 0.27
cardinality 0.01 0.01 0.01 0.01 0.01 0.01 0.01
lexmin 0.01 0.01 0.01 0.01 0.01 0.01 0.01
polycache 0.16 0.16 0.16 0.16 0.16 0.21 0.87
polyvul 0.27 0.26 0.26 0.26 0.26 0.31 0.97
CVF 1.00 1.00 1.00 1.00 1.00 1.00 1.00

So we can observe the long execution time for cache size less than 16K and also along with

many N/T cases.

Second, higher set associativity will result in longer execution time. This can be ob-

served more obviously from benchmark Symm. We can see that the time takes for operator

difference is much longer for higher associativity. This is because the difference operation

148



Table 5.4: Execution time experiments for problem size N=32

Benchmark Operation
Problem Size N=32

Associativity 1-way Cache Size 2K
C=2K C=4K C=8K C=16K 1-way 2-way 4-way

Dgemm

composition N/T 0.11 0.55 0.03 N/T N/T N/T
difference N/T 0.31 0.06 0.09 N/T N/T N/T
coalsecing N/T 5.10 0.90 0.36 N/T N/T N/T
cardinality N/T 6.47 0.05 0.01 N/T N/T N/T
lexmin N/T 0.82 0.10 0.01 N/T N/T N/T
polycache 1.63 0.37 0.15 0.08 1.63 13.34 125.96
polyvul N/T 13.13 1.35 0.57 N/T N/T N/T
CVF N/T 0.69 0.85 0.80 N/T N/T N/T

Symm

composition 19.95 N/T 4.20 3.33 19.95 N/T N/T
difference 251.09 N/T 7.84 5.40 251.09 N/T N/T
coalsecing 2657.81 N/T 139.48 109.73 2657.81 N/T N/T
cardinality 2295.82 N/T 0.38 0.01 2295.82 N/T N/T
lexmin 539.34 N/T 7.33 4.98 539.34 N/T N/T
polycache 200.85 72.37 68.54 102.34 200.85 756.94 17498.48
polyvul 6008.27 N/T 173.15 129.31 6008.27 N/T N/T
CVF 0.57 N/T 0.65 0.98 0.57 N/T N/T

Trmm

composition 0.58 0.13 0.03 0.03 0.58 N/T N/T
difference 3.87 0.12 0.03 0.03 3.87 N/T N/T
coalsecing 564.25 133.96 0.69 0.64 564.25 N/T N/T
cardinality 1512.54 0.58 0.01 0.01 1512.54 N/T N/T
lexmin 372.38 78.32 0.02 0.02 372.38 N/T N/T
polycache 2.14 0.81 0.71 0.67 2.14 25.06 162.72
polyvul 2459.05 214.18 0.81 0.77 2459.05 N/T N/T
CVF 0.67 0.55 1.00 1.00 0.67 N/T N/T

for set will performed more times and each time it could potentially generate more complex

and irregular sets, which result in longer time cost of these sets even for other operators.

Moreover, we can also observe the difference between PolyCache and PolyVul. The

time difference could be up to 1000x times as we see the execution time for Trmm. The

difference comes from the operator cardinality and lexmin. This is because we need to

149



manipulate and counting of the vulnerable intervals to compute the vulnerability as we

introduced in the Algorithm 10.

5.4 Conclusion

Computing cache vulnerability of programs involves tracking the fraction of program

execution time during which a cache line is being accessed. Typical approaches to compute

vulnerability rely on time-consuming simulation, making the approaches unsuitable for

compile-time optimization of vulnerability.

In this chapter, we proposed the first fully analytical simulation-free framework to com-

pute the program cache vulnerability factor (CVF) for arbitrary polyhedral programs. It re-

quires modeling ordered set of cache events for affine programs in previous section. How-

ever, it still suffers the time complexity problem as we showed in the experiments through

scaling experiments. Thus, as future work, we will investigate approaches to reduce the

time cost for the vulnerability modeling. Also, we will investigate efficient exploration of

the space of possible program transformations to optimize cache vulnerability.

150



CHAPTER 6

Related Work

This section is a brief discussion of the related work: Section 6.1 introduces the related

work in context of Chapter 2, Section 6.2 provides the related work in context of Chapters

3, and Section 6.3 discusses the related work in context of Chapters 4 and 5.

6.1 Verification of Program Transformation

Verdoolaege et al. proposed a fully automatic technique to prove equivalence between

two affine programs [127]. Leveraging polyhedral data-flow analysis, they developed

widening/narrowing operators to properly handle non-uniform recurrences. It is imple-

mented in the ISA tool [4]. However, in contrast to our approach, it is limited to verifying

affine program transformations. Basupalli et al. developed ompVerify, to find OpenMP

parallelization errors in affine programs [26]; and Alias et al. [13, 23] have developed other

techniques to recognize algorithm templates in programs. These approaches are restricted

to static/affine transformed programs. Karfa et al. also designed a method that works for a

subset of affine programs using array data dependence graphs (ADDGs) to represent input

and transforming behaviors. Operator-level equivalence checking provides the capability

to normalize expressions and establish matching relations under algebraic transformations

[74].

151



Recently, Schordan et al. proposed a trace-based framework to verify if two programs

(one possibly being a transformed variant of the other) are semantically equivalent. Their

method combines the computation of a state transition graph with a rewrite system to trans-

form floating point computations and array update operations of one program to match them

as terms with those of the other program [109]. In contrast to our approach, which only

requires the same space as the input program’s working dataset size, the space complexity

in their approach is a function of the total number of dynamic instances of operations.

Other related works include Mansky and Gunter, who used the TRANS language [73]

to represent transformations. The correctness proof implemented in the verification frame-

work [85] is verified by the Isabelle [94] proof assistant. Regression verification has been

considered to support recursion, but it actually requires loops to be converted to recursion

first [64]. Other works also include translation validation [79, 90].

6.2 Energy Optimization through DVFS

DVFS technology, which originated in real-time and embedded system community [46],

is widely applied nowadays since energy/power have become the primary optimization

metric on the entire spectrum of computing, from handheld devices [46] to desktops [84]

and to clusters [134].

CPU MISER by Rong Ge et al. [59] is a run-time approach to adapt the frequency/-

voltage based on the measured cycle per instructions achieved by phases of the running

workload. This approach works on arbitrary binaries, however it is geared towards finding

the smallest frequency which does not degrade performance.

Hsu and Kremer [69] developed a compiler-assisted technique to change the operating

voltage for specific regions of the program, attempting to control execution time penalty,

152



but they require an actual profiling of each application to be run, while we rely solely on

computing compile-time characteristics for new applications. Saputra et al. studied the

impact of loop transformations on static and dynamic voltage strategies to reduce power

[105]. Jimborean et al. proposed a decoupled access/execute (DAE) model using an access

phase generation as a speculative prefetch to make the execute tasks effectively compute

bound, so that the DVFS could adjust frequency accordingly [72]. Our compile-time ap-

proach to DVFS could be employed on top of both approaches, to further improve energy

savings.

Yuki and Rajopadhye [134] studied with attention the race-to-sleep scenario, especially

for current supercomputers. Using simplified power equations for the CPU, and looking

at the ratio between CPU power vs. the power of the rest of the system, they analytically

determined that massive DVFS may not be overall profitable in a race-to-sleep scenario

where the entire system goes to sleep when the computation ends. While our results do

not contradict theirs, when evaluating using actual programs we observe the execution

time penalty may be minimal, leading to overall energy savings as demonstrated in other

works [59]. In addition, the race-to-sleep scenario is not always applicable: very often, the

operating system (and the entire node) keeps running when a code/kernel completed, so

there is still large potential benefits in exploiting CPU DVFS for program segments.

Power modeling methodologies have been also studied [41, 15], to study analytically

the evolution of the processor power as a function of voltage, frequency, and temperature.

[114] in particular studied the role of temperature on leakage, leading to a more realistic

power equation. Recently, De Vogeleer et al. [40] used measurements in a control envi-

ronment on a mobile CPU to confirm a realistic power/energy equation for CPU power.

They showed the existence of an energy/frequency convexity rule, that is the existence of

153



a unique optimum frequency for energy efficiency for a fixed workload. Interestingly, our

data in Sec. 5.1 illustrates exactly their point, showing different optimal frequencies across

four Intel x86/64 desktop processors. Note however this principle does not necessarily hold

in the case of co-execution of different workloads on the same CPU core(s).

Power and performance adaption based on DVFS is also applied for thread-level paral-

lelism. Li and Martinez [80] proposed a low-overhead heuristics DVFS algorithm to obtain

optimal power savings. Similar studies of DVFS to improve energy efficiency also have

been applied for GPUs [87, 60, 133], Mei et al. [87] performed a measurement study to

explore the efficiency of GPU DVFS on system energy consumption. Ge et al. [60] pro-

posed the GPU DVFS study of performance and energy efficiency on Nvidia K20c Kepler

GPU and compared with CPU DVFS. Our proposed compile-time characterization of the

operational intensity could help improving these works to make a better DVFS decision.

6.3 Cache Behavior Modeling and Vulnerability Analysis

Cache simulation Simulators such as Dinero [43] and Sniper [36] characterize an ap-

plication’s cache behavior with varying degrees of fidelity. Also, approaches have been

developed to simulate multiple levels of associativity simultaneously [67]. In general, sim-

ulation cost is proportional to the number of executed operations, with the approaches either

executing the program or manipulating large memory reference traces [129, 21]. Moreover,

besides cache behavior analysis, previous vulnerability analysis works are mainly depend

on simulations to characterize the vulnerability. However, these approaches do not provide

a closed-form model that can be used by compile-time optimizers.

154



Approximate analysis of cache behavior Approximate metrics, such as reuse distance,

have been used as an approximate measure of cache reuse by compile-time optimiza-

tion techniques [83, 34, 12, 37, 75]. Ferrante et al. [49] estimate the number of distinct

cache lines accessed by a loop nest. Similar analyses have been developed to predict

cache miss ratios for set-associative and fully associative caches [11, 113, 66]. Other ap-

proaches to estimate cache misses include probabilistic estimation of an array reference

incurring a miss [52, 53] and sampling the iteration to approximate the absolute miss ratio

for each static array reference [122], dynamic memory reference [28], and individual in-

structions [45, 44]. These techniques provide inexact cache behavior analysis while being

potentially applicable to a larger class of programs.

Frumkin and Van der Wijngaart [57] developed bounds on cache misses for stencil

operations on rectangular grids. Our approach can generate exact cache miss information

for a larger class of programs that includes such stencil codes.

Exact analysis of cache misses Cascaval et al. [38] estimate cache misses using stack

distances to construct a stack histogram. The model is accurate for fully associative caches

with LRU replacement policy and provides approximate solutions for set-associative caches.

This work is restricted to perfectly nested loops and dependence characterized as distance

vectors. Beyls and D’Hollander [29] develop a compile-time analysis of cache misses for

fully associative caches by analytical modeling of reuse distances, defined as the number

of other distinct cache lines accessed between two successive references to a particular

cache line. By identifying cache misses and hits in certain parts of the program, Alt et

al. [14] and [22] model cache behavior using abstract interpretation to improve worst-case

execution time bounds.

155



Ghosh et al. [62, 61] present cache miss equations (CMEs), an approach to counting

the exact number of cache misses in perfectly nested loop nests in the form of the num-

ber of solutions to a set of affine equations. The number of solutions to the cache miss

equations gives an exact count of the set of misses in direct-mapped and set-associative

caches. The CMEs have been extended for use in a variety of contexts, including bound-

ing worst-case data cache behavior and execution time for real-time systems [102]Solving

cache miss equations is expensive [123, 121], motivating the design of approximate count-

ing strategies [62, 120]. Vera et al.[123, 132] extend the use of CMEs to count cache

misses in programs consisting of imperfectly nested loops and non-recursive subroutine

calls using abstract inlining and loop normalization, sinking with if-conditionals. CMEs

and approaches that build on them are restricted to handling dependences characterized as

distance vectors.

Chatterjee et al. present an exact solution for direct-mapped caches using Presburger

formulae [39]. Their formulation for set-associative caches is limited to interior misses,

but it appears extensible to boundary misses. But unlike our approach, such formulation

cannot be used to build the ordered set of events needed for hierarchical caches.

Cache vulnerability analysis Typical approaches to perform vulnerability analysis in-

volves characterizing state as required to correct for architecture correct execution (ACE vs

un-ACE) [89, 130]. Specifically, particular state for a bit is said to un-ACE if an incorrect

value for that bit is masked or overwritten and does not get propagated to other architectures

such as registers or memory and become visible.

These approaches analyze cache vulnerability through simulations [115, 77, 103, 76].

Li et al. employ a probabilistic error propagation model to determine the mean time to

156



failure for a program executing on a given architecture [81]. While precisely capturing

micro-architectural features, these simulations can be expensive, especially when carried

out to evaluate a space of possible choices such cache organization, compiler optimizations

and effectiveness of cache resilience techniques. This has motivated several approaches to

accelerate the AVF calculations. Sridharan et al. [116] accelerate AVF calculations through

the use of program vulnerability factors. Li et al. presented an approach to estimate AVF

online using hardware support [82].

Approaches to approximate the computation of AVF includes the determination perfor-

mance metrics that correlate well with vulnerability factors [42]. These approaches execute

the program on the target hardware to observe performance events such as cache misses to

estimate vulnerability.

Shrivastava et al. [112] presented a static analysis approach to characterize cache vul-

nerability based on previously introduced CMEs. However, the model is limited to: per-

fectly nested loops, direct-mapped caches, and single-level caches. Although CMEs are

exact in counting cache misses, they are less accurate in computing vulnerability compare

to our approach because reuse vectors are not inexact in representing data access and thus

the cache behavior.

157



CHAPTER 7

Conclusion

7.1 Conclusion

Program transformations are classic optimizations to improve performance and better

use current hardware components such as cache. However, the implementation of complex

transformation are often buggy and results in errors in transformed programs that are diffi-

cult to find. Current approaches suffers various problems and there are no efficient approach

to tackle this program. Similarly, current compiler optimizations to improve performance

are performed based on very approximate cost model rather than accurate model of cache.

Simulation based approaches suffers complexity problem and current cache modeling have

various limitations for practical use. Moreover, the growth of power cost problems require

the optimizations not only for performance but also consider reducing energy consump-

tions.

This dissertation proposed new compiler approaches to solve above problems. It presents

a dynamic verification approach to check the program transformation automatically and in

light weight way, a static cache modeling to provide accurate cost model for cache mem-

ory and its vulnerability characterization, and a compile-time analysis to determine best

frequency and core pair choice for program to reduce energy cost.

158



BIBLIOGRAPHY

[1] Barvinok, a library for counting the number of integer points in parametric and non-
parametric polytopes. http://barvinok.gforgeinria.fr.

[2] Clan, the Chunky Loop Analyzer. http://icps.u-strasbg.fr/ bastoul.

[3] GNU GCC. http://gcc.gnu.org.

[4] ISA 0.13. http://repo.or.cz/w/isa.git.

[5] ISL, the Integer Set Library. http://repo.or.cz/w/isl.git.

[6] LLVM. http://llvm.org.

[7] MIT Cilk. http://supertech.csail.mit.edu/cilk.

[8] PoCC, the Polyhedral Compiler Collection 1.3. http://pocc.sourceforge.net.

[9] PolyBench/C 3.2. http://polybench.sourceforge.net.

[10] ADAMS, M. Hpgmg: a benchmark for ranking high performance computing sys-
tems.

[11] AGARWAL, A., HENNESSY, J., AND HOROWITZ, M. An analytical cache model.
ACM Trans. Comput. Syst. 7, 2 (May 1989), 184–215.

[12] AHMED, N., MATEEV, N., AND PINGALI, K. Synthesizing transformations for lo-
cality enhancement of imperfectly-nested loop nests. International Journal of Par-
allel Programming 29, 5 (2001), 493–544.

[13] ALIAS, C., AND BARTHOU, D. On the recognition of algorithm templates. Elec-
tronic Notes in Theoretical Computer Science 82, 2 (2004), 395–409.

[14] ALT, M., FERDINAND, C., MARTIN, F., AND WILHELM, R. Cache behavior
prediction by abstract interpretation. In International Static Analysis Symposium
(1996), Springer, pp. 52–66.

159



[15] AUSTIN, B., AND WRIGHT, N. J. Measurement and interpretation of micro-
benchmark and application energy use on the Cray XC30. In E2SC (2014), pp. 51–
59.

[16] BAO, W. Power aware wcet analysis, 2014.

[17] BAO, W., HONG, C., CHUNDURI, S., KRISHNAMOORTHY, S., POUCHET, N.,
RASTELLO, F., AND SADAYAPPAN, P. Static and dynamic frequency scaling on
multicore cpus. ACM Transactions on Architecture and Code Optimization (2016),
1–26.

[18] BAO, W., KRISHNAMOORTHY, S., POUCHET, L., RASTELLO, F., AND SADAYAP-
PAN, P. Polycheck: Dynamic verification of iteration space transformations on affine
programs. ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL’16) (2016), 539–554.

[19] BAO, W., KRISHNAMOORTHY, S., POUCHET, L.-N., RASTELLO, F., AND SA-
DAYAPPAN, P. Polycheck: Dynamic verification of iteration space transformations
on affine programs. Tech. rep., OSU/PNNL/INRIA, Nov. 2015. OSU-CISRC-11/15-
TR21.

[20] BAO, W., KRISHNAMOORTHY, S., POUCHET, L.-N., AND SADAYAPPAN, P. Ana-
lytical modeling of cache behavior for affine programs. Proceedings of the ACM on
Programming Languages 2, POPL (2017), 32.

[21] BAO, W., RAWAT, P., KONG, M., KRISHNAMOORTHY, S., POUCHET, L., AND

SADAYAPPAN, P. Efficient cache simulation for affine computations. In Interna-
tional Workshop on Languages and Compilers for Parallel Computing (LCPC’17)
(2017).

[22] BAO, W., TAVARAGERI, S., OZGUNER, F., AND SADAYAPPAN, P. Pwcet: Power-
aware worst case execution time analysis. In 43rd International Conference on Par-
allel Processing Workshops (2014), pp. 439–447.

[23] BARTHOU, D., FEAUTRIER, P., AND REDON, X. On the equivalence of two sys-
tems of affine recurrence equations. In Euro-Par 2002 Parallel Processing. 2002.

[24] BASKARAN, M. M., HARTONO, A., TAVARAGERI, S., HENRETTY, T., RAMANU-
JAM, J., AND SADAYAPPAN, P. Parameterized tiling revisited. In Proc. of the 8th
annual IEEE/ACM international symposium on Code generation and optimization
(2010), ACM.

[25] BASTOUL, C. Code generation in the polyhedral model is easier than you think. In
Proc. of the 13th International Conference on Parallel Architectures and Compila-
tion Techniques (2004), IEEE.

160



[26] BASUPALLI, V., YUKI, T., RAJOPADHYE, S., MORVAN, A., DERRIEN, S., QUIN-
TON, P., AND WONNACOTT, D. ompVerify: polyhedral analysis for the OpenMP
programmer. In OpenMP in the Petascale Era. Springer, 2011, pp. 37–53.

[27] BENDER, M. A., FINEMAN, J. T., GILBERT, S., AND LEISERSON, C. E. On-the-
fly maintenance of series-parallel relationships in fork-join multithreaded programs.
In Proc. of the 16th Annual ACM Symposium on Parallelism in Algorithms and Ar-
chitectures (SPAA’04) (2004), ACM.

[28] BERG, E., AND HAGERSTEN, E. Statcache: a probabilistic approach to efficient and
accurate data locality analysis. In Performance Analysis of Systems and Software,
2004 IEEE International Symposium on-ISPASS (2004), IEEE, pp. 20–27.

[29] BEYLS, K., AND D’HOLLANDER, E. H. Generating cache hints for improved
program efficiency. Journal of Systems Architecture 51, 4 (2005), 223 – 250.

[30] BISWAS, A., RACUNAS, P., CHEVERESAN, R., EMER, J., MUKHERJEE, S. S.,
AND RANGAN, R. Computing architectural vulnerability factors for address-based
structures. In 32nd International Symposium on Computer Architecture (ISCA’05)
(2005), IEEE, pp. 532–543.

[31] BLUMOFE, R. D., JOERG, C. F., KUSZMAUL, B. C., LEISERSON, C. E., RAN-
DALL, K. H., AND ZHOU, Y. Cilk: an efficient multithreaded runtime system. In
Proc. of the 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (1995), ACM.

[32] BLUMOFE, R. D., JOERG, C. F., KUSZMAUL, B. C., LEISERSON, C. E., RAN-
DALL, K. H., AND ZHOU, Y. Cilk: An efficient multithreaded runtime system,
vol. 30. ACM, 1995.

[33] BLUMOFE, R. D., AND LEISERSON, C. E. Scheduling multithreaded computations
by work stealing. Journal of the ACM (JACM) 46, 5 (1999), 720–748.

[34] BONDHUGULA, U., HARTONO, A., RAMANUJAM, J., AND SADAYAPPAN, P. A
practical automatic polyhedral program optimization system. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (2008), ACM.

[35] BURGER, D., AND AUSTIN, T. M. The simplescalar tool set, version 2.0. ACM
SIGARCH computer architecture news 25, 3 (1997), 13–25.

[36] CARLSON, T. E., HEIRMAN, W., EYERMAN, S., HUR, I., AND EECKHOUT, L.
An evaluation of high-level mechanistic core models. ACM Transactions on Archi-
tecture and Code Optimization (TACO) (2014).

161



[37] CARR, S., MCKINLEY, K. S., AND TSENG, C.-W. Compiler optimizations for
improving data locality. In Proceedings of the Sixth International Conference on
Architectural Support for Programming Languages and Operating Systems (New
York, NY, USA, 1994), ASPLOS VI, ACM, pp. 252–262.

[38] CASCAVAL, C., AND PADUA, D. A. Estimating cache misses and locality using
stack distances. In Proceedings of the 17th annual international conference on Su-
percomputing (2003), ACM, pp. 150–159.

[39] CHATTERJEE, S., PARKER, E., HANLON, P. J., AND LEBECK, A. R. Exact anal-
ysis of the cache behavior of nested loops. ACM SIGPLAN Notices 36, 5 (2001),
286–297.

[40] DE VOGELEER, K., MEMMI, G., JOUVELOT, P., AND COELHO, F. The ener-
gy/frequency convexity rule: Modeling and experimental validation on mobile de-
vices. In Parallel Processing and Applied Mathematics, vol. 8384. Springer Berlin
Heidelberg, 2014, pp. 793–803.

[41] DIOP, T., JERGER, N. E., AND ANDERSON, J. Power modeling for heteroge-
neous processors. In Proceedings of Workshop on General Purpose Processing Us-
ing GPUs (2014), p. 90.

[42] DUAN, L., LI, B., AND PENG, L. Versatile prediction and fast estimation of ar-
chitectural vulnerability factor from processor performance metrics. In 2009 IEEE
15th International Symposium on High Performance Computer Architecture (2009),
IEEE, pp. 129–140.

[43] EDLER, J., AND HILL, M. Dinero IV Trace-Driven Uniprocessor Cache Simulator.
http://pages.cs.wisc.edu/markhill/DineroIV, 1999.

[44] FANG, C., CAN, S., ONDER, S., AND WANG, Z. Instruction based memory dis-
tance analysis and its application to optimization. In 14th International Conference
on Parallel Architectures and Compilation Techniques (PACT’05) (2005), IEEE,
pp. 27–37.

[45] FANG, C., CARR, S., ÖNDER, S., AND WANG, Z. Reuse-distance-based miss-
rate prediction on a per instruction basis. In Proceedings of the 2004 workshop on
Memory system performance (2004), ACM, pp. 60–68.

[46] FARKAS, K. I., FLINN, J., BACK, G., GRUNWALD, D., AND ANDERSON, J. M.
Quantifying the energy consumption of a pocket computer and a Java virtual ma-
chine. ACM SIGMETRICS Performance Evaluation Review 28, 1 (2000), 252–263.

[47] FEAUTRIER, P. Dataflow analysis of array and scalar references. International
Journal of Parallel Programming 20, 1 (1991), 23–53.

162



[48] FEAUTRIER, P. Some efficient solutions to the affine scheduling problem, part II:
multidimensional time. International Journal of Parallel Programming 21, 6 (1992),
389–420.

[49] FERRANTE, J., SARKAR, V., AND THRASH, W. On estimating and enhancing
cache effectiveness. In International Workshop on Languages and Compilers for
Parallel Computing (1991), Springer, pp. 328–343.

[50] FLANAGAN, C., AND FREUND, S. N. Fasttrack: Efficient and precise dynamic
race detection. In Proc. of the 2009 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’09) (2009), ACM.

[51] FLOYD, M., BROCK, B., WARE, M., RAJAMANI, K., DRAKE, A., LEFURGY, C.,
AND PESANTEZ, L. Harnessing the adaptive energy management features of the
power7 chip. HOT Chips 2010 (2010).

[52] FRAGUELA, B. B., DOALLO, R., AND ZAPATA, E. L. Automatic analytical mod-
eling for the estimation of cache misses. In Parallel Architectures and Compilation
Techniques, 1999. Proceedings. 1999 International Conference on (1999), IEEE,
pp. 221–231.

[53] FRAGUELA, B. B., DOALLO, R., AND ZAPATA, E. L. Probabilistic miss equations:
Evaluating memory hierarchy performance. IEEE Transactions on Computers 52, 3
(2003), 321–336.

[54] FRIGO, M., LEISERSON, C. E., PROKOP, H., AND RAMACHANDRAN, S. Cache-
oblivious algorithms. In Proc. of the 40th Annual Symposium on Foundations of
Computer Science (1999), IEEE.

[55] FRIGO, M., AND STRUMPEN, V. Cache oblivious stencil computations. In Proc. of
the 19th annual international conference on Supercomputing (2005), ACM.

[56] FRIGO, M., AND STRUMPEN, V. The cache complexity of multithreaded cache
oblivious algorithms. Theory of Computing Systems 45, 2 (2009), 203–233.

[57] FRUMKIN, M. A., AND VAN DER WIJNGAART, R. F. Tight bounds on cache use
for stencil operations on rectangular grids. Journal of the ACM (JACM) 49, 3 (2002),
434–453.

[58] GACHET, P., MAURAS, C., QUINTON, P., AND SAOUTER, Y. Alpha du centaur:
a prototype environment for the design of parallel regular alorithms. In Proc. of the
3rd international conference on Supercomputing (1989), ACM.

[59] GE, R., FENG, X., FENG, W.-C., AND CAMERON, K. W. Cpu miser: A
performance-directed, run-time system for power-aware clusters. In ICPP (2007),
pp. 18–18.

163



[60] GE, R., VOGT, R., MAJUMDER, J., ALAM, A., BURTSCHER, M., AND ZONG, Z.
Effects of dynamic voltage and frequency scaling on a K20 GPU. In ICPP (2013),
pp. 826–833.

[61] GHOSH, S., MARTONOSI, M., AND MALIK, S. Precise miss analysis for program
transformations with caches of arbitrary associativity. In Proceedings of the Eighth
International Conference on Architectural Support for Programming Languages and
Operating Systems (New York, NY, USA, 1998), ASPLOS VIII, ACM, pp. 228–239.

[62] GHOSH, S., MARTONOSI, M., AND MALIK, S. Cache miss equations: a com-
piler framework for analyzing and tuning memory behavior. ACM Transactions on
Programming Languages and Systems (TOPLAS) 21, 4 (1999), 703–746.

[63] GIRBAL, S., VASILACHE, N., BASTOUL, C., COHEN, A., PARELLO, D., SIGLER,
M., AND TEMAM, O. Semi-automatic composition of loop transformations. Inter-
national Journal of Parallel Programming 34, 3 (June 2006), 261–317.

[64] GODLIN, B., AND STRICHMAN, O. Inference rules for proving the equivalence of
recursive procedures. Acta Informatica 45, 6 (2008), 403–439.

[65] GRIEBL, M., FEAUTRIER, P., AND LENGAUER, C. Index set splitting. Interna-
tional Journal of Parallel Programming 28, 6 (2000), 607–631.

[66] HARPER, J. S., KERBYSON, D. J., AND NUDD, G. R. Analytical modeling of
set-associative cache behavior. IEEE Transactions on Computers 48, 10 (1999),
1009–1024.

[67] HILL, M. D., AND SMITH, A. J. Evaluating associativity in cpu caches. IEEE
Transactions on Computers 38, 12 (1989), 1612–1630.

[68] HONG, C., BAO, W., COHEN, A., KRISHNAMOORTHY, S., POUCHET, L.,
RASTELLO, F., RAMANUJAM, J., AND SADAYAPPAN, P. Effective padding of mul-
tidimensional arrays to avoid cache conflict misses. ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’16) (2016), 129–144.

[69] HSU, C.-H., AND KREMER, U. The design, implementation, and evaluation of a
compiler algorithm for CPU energy reduction. In ACM SIGPLAN Notices (2003),
vol. 38, pp. 38–48.

[70] INTEL. Intel Math Kernel Library (Intel MKL). https://software.intel.com/en-
us/intel-mkl.

[71] INTEL. Intel performance counter monitor. www.intel.com/software/pcm.

164



[72] JIMBOREAN, A., KOUKOS, K., SPILIOPOULOS, V., BLACK-SCHAFFER, D., AND

KAXIRAS, S. Fix the code. don’t tweak the hardware: A new compiler approach
to voltage-frequency scaling. In Proceedings of Annual IEEE/ACM International
Symposium on Code Generation and Optimization (2014), ACM, p. 262.

[73] KALVALA, S., WARBURTON, R., AND LACEY, D. Program transformations us-
ing temporal logic side conditions. ACM Trans. on Programming Languages and
Systems (TOPLAS) 31, 4 (2009), 14.

[74] KARFA, C., BANERJEE, K., SARKAR, D., AND MANDAL, C. Verification of
loop and arithmetic transformations of array-intensive behaviors. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems 32, 11 (2013), 1787–
1800.

[75] KELLY, W., AND PUGH, W. A framework for unifying reordering transformations.
Tech. rep., College Park, MD, USA, 1993.

[76] KIM, S., AND SOMANI, A. K. Area efficient architectures for information integrity
in cache memories. ACM SIGARCH Computer Architecture News 27, 2 (1999),
246–255.

[77] KIM, S., AND SOMANI, A. K. Soft error sensitivity characterization for micropro-
cessor dependability enhancement strategy. In Dependable Systems and Networks,
2002. DSN 2002. Proceedings. International Conference on (2002), IEEE, pp. 416–
425.

[78] KONG, M., VERAS, R., STOCK, K., FRANCHETTI, F., POUCHET, L.-N., AND

SADAYAPPAN, P. When polyhedral transformations meet simd code generation. In
ACM SIGPLAN Notices (2013), vol. 48, ACM, pp. 127–138.

[79] KUNDU, S., TATLOCK, Z., AND LERNER, S. Proving optimizations correct using
parameterized program equivalence. ACM SIGPLAN Notices 44, 6 (2009), 327–337.

[80] LI, J., AND MARTINEZ, J. F. Dynamic power-performance adaptation of parallel
computation on chip multiprocessors. In HPCA (2006), pp. 77–87.

[81] LI, X., ADVE, S. V., BOSE, P., AND RIVERS, J. A. Softarch: an architecture-level
tool for modeling and analyzing soft errors. In 2005 International Conference on
Dependable Systems and Networks (DSN’05) (2005), IEEE, pp. 496–505.

[82] LI, X., ADVE, S. V., BOSE, P., AND RIVERS, J. A. Online estimation of architec-
tural vulnerability factor for soft errors. In Computer Architecture, 2008. ISCA’08.
35th International Symposium on (2008), IEEE, pp. 341–352.

165



[83] LIM, A. W., AND LAM, M. S. Maximizing parallelism and minimizing synchro-
nization with affine transforms. In Proceedings of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (New York, NY, USA, 1997),
POPL ’97, ACM, pp. 201–214.

[84] LORCH, J. R., AND SMITH, A. J. Improving dynamic voltage scaling algorithms
with pace. In ACM SIGMETRICS Performance Evaluation Review (2001), vol. 29,
ACM, pp. 50–61.

[85] MANSKY, W., AND GUNTER, E. A framework for formal verification of compiler
optimizations. In Interactive Theorem Proving. Springer, 2010.

[86] MCCALPIN, J. D. Stream: Sustainable memory bandwidth in high performance
computers. Tech. rep., University of Virginia, Charlottesville, Virginia, 1991-2007.
A continually updated technical report. http://www.cs.virginia.edu/stream/.

[87] MEI, X., YUNG, L. S., ZHAO, K., AND CHU, X. A measurement study of GPU
DVFS on energy conservation. In Proceedings of the Workshop on Power-Aware
Computing and Systems (2013), p. 10.

[88] MITRA, S., SEIFERT, N., ZHANG, M., SHI, Q., AND KIM, K. S. Robust system
design with built-in soft-error resilience. Computer 38, 2 (2005), 43–52.

[89] MUKHERJEE, S. S., WEAVER, C., EMER, J., REINHARDT, S. K., AND AUSTIN,
T. A systematic methodology to compute the architectural vulnerability factors for a
high-performance microprocessor. In Proceedings of the 36th annual IEEE/ACM In-
ternational Symposium on Microarchitecture (2003), IEEE Computer Society, p. 29.

[90] NECULA, G. C. Translation validation for an optimizing compiler. ACM SIGPLAN
Notices 35, 5 (2000), 83–94.

[91] NETLIB. Netlib blas. http://www.netlib.org/blas/index.html.

[92] OPENCV. Opencv: Open source computer vision library. http://opencv.org.

[93] OPPEN, D. C. A 222pn
upper bound on the complexity of presburger arithmetic.

Journal of Computer and System Sciences 16, 3 (1978), 323–332.

[94] PAULSON, L. C. Isabelle Page. https://www.cl.cam.ac.uk/research/hvg/Isabelle.

[95] POUCHET, L. Polyopt/C: A polyhedral optimizer for the rose compiler, 2011.

[96] POUCHET, L.-N., ZHANG, P., SADAYAPPAN, P., AND CONG, J. Polyhedral-based
data reuse optimization for configurable computing. In FPGA (2013).

[97] PROKOP, H. Cache-oblivious algorithms. PhD thesis, Massachusetts Institute of
Technology, 1999.

166



[98] QUINLAN, D., LIAO, C., MATZKE, R., SCHORDAN, M., PANAS, T., VUDUC, R.,
AND YI, Q. ROSE Web Page. http://www.rosecompiler.org, 2014.

[99] QUINTON, P., AND VAN DONGEN, V. The mapping of linear recurrence equations
on regular arrays. Journal of VLSI signal processing systems for signal, image and
video technology 1, 2 (1989), 95–113.

[100] RAJOPADHYE, S. V., PURUSHOTHAMAN, S., AND FUJIMOTO, R. M. On synthe-
sizing systolic arrays from recurrence equations with linear dependencies. In Proc.
of the 16th annual conference on Foundations of Software Technology and Theoret-
ical Computer Science (1986), Springer.

[101] RAMAN, R., ZHAO, J., SARKAR, V., VECHEV, M. T., AND YAHAV, E. Scalable
and precise dynamic datarace detection for structured parallelism. In Proc. of the
2012 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI’12) (2012), ACM.

[102] RAMAPRASAD, H., AND MUELLER, F. Bounding worst-case data cache behavior
by analytically deriving cache reference patterns. In 11th ieee real time and embed-
ded technology and applications symposium (2005), IEEE, pp. 148–157.

[103] REBAUDENGO, M., SONZA REORDA, M., AND VIOLANTE, M. An accurate anal-
ysis of the effects of soft errors in the instruction and data caches of a pipelined
microprocessor. In Proceedings of the conference on Design, Automation and Test
in Europe-Volume 1 (2003), IEEE Computer Society, p. 10602.

[104] RIVERA, G., AND TSENG, C.-W. Data transformations for eliminating conflict
misses. SIGPLAN Not. 33, 5 (May 1998), 38–49.

[105] SAPUTRA, H., KANDEMIR, M., ET AL. Energy-conscious compilation based on
voltage scaling. In In Proc. ACM SIGPLAN Joint Conference on Languages, Com-
pilers, and Tools for Embedded Systems & Software and Compilers for Embedded
Systems (2002), Citeseer.

[106] SARKAR, V. Automatic selection of high order transformations in the IBM XL
Fortran compilers. IBM J. Res. & Dev. 41, 3 (May 1997).

[107] SARKAR, V., AND MEGIDDO, N. An analytical model for loop tiling and its solu-
tion. In Performance Analysis of Systems and Software, 2000. ISPASS. 2000 IEEE
International Symposium on (2000), IEEE, pp. 146–153.

[108] SAVAGE, S., BURROWS, M., NELSON, G., SOBALVARRO, P., AND ANDERSON,
T. Eraser: A dynamic data race detector for multithreaded programs. ACM Trans.
on Computer Systems (TOCS) 15, 4 (1997), 391–411.

167



[109] SCHORDAN, M., LIN, P.-H., QUINLAN, D., AND POUCHET, L.-N. Verification
of polyhedral optimizations with constant loop bounds in finite state space compu-
tations. In Proc. of the 6th International Symposium On Leveraging Applications of
Formal Methods, Verification and Validation. Springer, 2014.

[110] SHIRAKO, J., POUCHET, L.-N., AND SARKAR, V. Oil and water can mix: Recon-
ciling polyhedral and ast transformations. In IEEE/ACM Conference on Supercom-
puting (SC’14) (2014), IEEE.

[111] SHIRAKO, J., SHARMA, K., FAUZIA, N., POUCHET, L.-N., RAMANUJAM, J.,
SADAYAPPAN, P., AND SARKAR, V. Analytical bounds for optimal tile size se-
lection. In International Conference on Compiler Construction (2012), Springer,
pp. 101–121.

[112] SHRIVASTAVA, A., LEE, J., AND JEYAPAUL, R. Cache vulnerability equations for
protecting data in embedded processor caches from soft errors. In ACM SIGPLAN
Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES’10)
(2010), pp. 143–152.

[113] SINGH, J. P., STONE, H. S., AND THIEBAUT, D. F. A model of workloads and
its use in miss-rate prediction for fully associative caches. IEEE transactions on
computers 41, 7 (1992), 811–825.

[114] SKADRON, K., STAN, M. R., SANKARANARAYANAN, K., HUANG, W.,
VELUSAMY, S., AND TARJAN, D. Temperature-aware microarchitecture: Modeling
and implementation. ACM Trans. Archit. Code Optim. 1, 1 (Mar. 2004), 94–125.

[115] SRIDHARAN, V., ASADI, H., TAHOORI, M. B., AND KAELI, D. Reducing data
cache susceptibility to soft errors. IEEE Transactions on Dependable and Secure
Computing 3, 4 (2006), 353–364.

[116] SRIDHARAN, V., AND KAELI, D. R. Using pvf traces to accelerate avf modeling. In
Proceedings of the IEEE workshop on silicon errors in logic-system effects (2010),
pp. 23–24.

[117] TANG, Y., CHOWDHURY, R., LUK, C.-K., AND LEISERSON, C. E. Coding stencil
computations using the pochoir stencil-specification language. In Poster session
presented at the 3rd USENIX Workshop on Hot Topics in Parallelism (2011).

[118] TANG, Y., CHOWDHURY, R. A., KUSZMAUL, B. C., LUK, C.-K., AND LEIS-
ERSON, C. E. The pochoir stencil compiler. In Proc. of the 32rd annual ACM
symposium on Parallelism in algorithms and architectures (2011), ACM.

[119] VALIEV, M., BYLASKA, J., GOVIND, N., KOWALSKI, K., STRAATSMA, T. P.,
VAN D., H. J. J., WANG, D., NIEPLOCHA, J., APRA, E., WINDUS, L., ET AL.

168



Nwchem: a comprehensive and scalable open-source solution for large scale molec-
ular simulations. Computer Physics Communications (2010), 1477–1489.

[120] VERA, X., ABELLA, J., GONZÁLEZ, A., AND LLOSA, J. Optimizing program lo-
cality through cmes and gas. In Parallel Architectures and Compilation Techniques,
2003. PACT 2003. Proceedings. 12th International Conference on (2003), IEEE,
pp. 68–78.

[121] VERA, X., ABELLA, J., LLOSA, J., AND GONZÁLEZ, A. An accurate cost model
for guiding data locality transformations. ACM Trans. Program. Lang. Syst. 27, 5
(Sept. 2005), 946–987.

[122] VERA, X., BERMUDO, N., LLOSA, J., AND GONZÁLEZ, A. A fast and accurate
framework to analyze and optimize cache memory behavior. ACM Transactions on
Programming Languages and Systems (TOPLAS) 26, 2 (2004), 263–300.

[123] VERA, X., AND XUE, J. Let’s study whole-program cache behaviour analytically.
In High-Performance Computer Architecture, 2002. Proceedings. Eighth Interna-
tional Symposium on (2002), IEEE, pp. 175–186.

[124] VERDOOLAEGE, S. isl: An integer set library for the polyhedral model. In The 3rd
International Congress on Mathematical Software (ICMS’10). Springer, 2010.

[125] VERDOOLAEGE, S. Counting affine calculator and applications. In The 1st Inter-
national Workshop on Polyhedral Compilation Techniques (IMPACT’11) (2011).

[126] VERDOOLAEGE, S., AND GROSSER, T. Polyhedral extraction tool. In Second
International Workshop on Polyhedral Compilation Techniques (IMPACT12), Paris,
France (2012).

[127] VERDOOLAEGE, S., JANSSENS, G., AND BRUYNOOGHE, M. Equivalence check-
ing of static affine programs using widening to handle recurrences. ACM Trans. on
Programming Languages and Systems (TOPLAS) 34, 3 (2012), 11.

[128] VERDOOLAEGE, S., SEGHIR, R., BEYLS, K., LOECHNER, V., AND

BRUYNOOGHE, M. Counting integer points in parametric polytopes using Barvi-
nok’s rational functions. Algorithmica 48, 1 (June 2007), 37–66.

[129] WANG, W.-H., AND BAER, J.-L. Efficient trace-driven simulation method for
cache performance analysis. In Proceedings of the 1990 ACM SIGMETRICS Con-
ference on Measurement and Modeling of Computer Systems (New York, NY, USA,
1990), SIGMETRICS ’90, ACM, pp. 27–36.

[130] WEAVER, C., EMER, J., MUKHERJEE, S. S., AND REINHARDT, S. K. Tech-
niques to reduce the soft error rate of a high-performance microprocessor. In ACM

169



SIGARCH Computer Architecture News (2004), vol. 32, IEEE Computer Society,
p. 264.

[131] WOLFE, M. High Performance Compilers for Parallel Computing. Addison-
Wesley, 1996.

[132] XUE, J., AND VERA, X. Efficient and accurate analytical modeling of whole-
program data cache behavior. IEEE Transactions on Computers 53, 5 (2004), 547–
566.

[133] YOU, D., AND CHUNG, K.-S. Dynamic voltage and frequency scaling framework
for low-power embedded GPUs. Electronics letters 48, 21 (2012), 1333–1334.

[134] YUKI, T., AND RAJOPADHYE, S. Folklore confirmed: Compiling for speed = com-
piling for energy. In LCPC (2014), pp. 169–184.

[135] ZHANG, W. Computing cache vulnerability to transient errors and its implication.
In IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems
(DFT’05) (2005), pp. 427–435.

[136] ZUO, W., LI, P., CHEN, D., POUCHET, L.-N., ZHONG, S., AND CONG, J. Im-
proving polyhedral code generation for high-level synthesis. In IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS’13) (2013), IEEE.

170


	Abstract
	Dedication
	Acknowledgments
	Vita
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Dynamic Verification of Iteration Space Transformations on Affine Programs
	Introduction
	Motivation and Overview
	Background
	Integer Sets Notation
	Polyhedral Dependences

	Verifying Transformations on Affine Programs
	Algorithm A: A General Algorithm for all Affine Input Programs
	Algorithm B: A Version-Number based Algorithm
	Illustrative Example: Seidel
	Time and Space Complexity

	Scope of Applicability, Enhancements, and Limitations
	Experimental Evaluation
	Evaluation Using the PoCC Polyhedral Compiler
	Evaluation Using Cilk and the Pochoir Stencil Compiler
	Identifying Bugs in PolyOpt/C
	PolyCheck Overhead

	Conclusions

	Static and Dynamic Frequency Scaling on Multicore CPUs
	Introduction
	Motivation and Overview
	Adaptive Runtime to Optimize Energy Efficiency
	Static Analyses
	Approximating Operational Intensity
	Parallelism Features

	Processor Characterization
	One-Time Machine Profiling
	Decision Tree for Frequency/Core pair

	Experimental Results
	Experimental Protocol
	Summary of Results
	Comparison with Runtime DVFS
	Summary of Intel ICC and GNU GCC experiments
	Summary of Features

	Phase Analysis
	Phase Characterization
	Possible Improvements

	Conclusion

	Static Analysis of Hierarchical Set-Associative Cache Behavior for Affine Programs
	Introduction
	Overview of Modeling Approach
	Program Representation
	Modeling Integer Tuples
	Representing Programs

	Single-Level Cache Analysis
	Modeling Cache Accesses
	Miss Events in Set-Associative Caches
	Algorithm for Miss Calculation

	Cache Writing Policies and Hierarchical Caches
	Cache Modeling Across Program Phases
	Final Cache State
	Initial Cache State

	Experimental Evaluation
	Experimental Setup
	Evaluation of Hierarchical Set-Associative Cache
	Evaluation of Write Policies
	Evaluation of Loop Tiling
	Evaluation of Approximation Heuristics

	Time Complexity of PolyCache
	Discussion and Pratical Uses
	Conclusion

	Cache Vulnerability Analysis for Affine Programs
	Introduction
	Modeling Cache Vulnerability
	Cache Vulnerability
	Modeling Vulnerability Intervals
	From Vulnerability Intervals to Vulnerability Metrics

	Experimental Evaluation
	Implementation detail
	Time complexity Evaluation

	Conclusion

	Related Work
	Verification of Program Transformation
	Energy Optimization through DVFS
	Cache Behavior Modeling and Vulnerability Analysis

	Conclusion
	Conclusion

	Bibliography

