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Abstract

The first steps in defining a notion of spherical tropicalization were recently taken

by Tassos Vogiannou in his thesis and by Kiumars Kaveh and Christopher Manon

in a related paper. Broadly speaking, the classical notion of tropicalization concerns

itself with valuations on the function field of a toric variety that are invariant under

the action of the torus. Spherical tropicalization is similar, but considers instead

spherical G-varieties and G-invariant valuations.

The core idea of my dissertation is the construction of the extended tropicalization

of a spherical embedding. Vogiannou, Kaveh, and Manon only concern themselves

with subvarieties of a spherical homogeneous space G/H. My thesis describes how to

tropicalize a spherical embedding by tropicalizing the additional G-orbits of X and

adding them to the tropicalization of G/H as limit points. This generalizes work done

by Kajiwara and Payne for toric varieties and affords a means for understanding how

to tropicalize the compactification of a subvariety of G/H in X.

The extended tropicalization construction can be described from three different

perspectives. The first uses the polyhedral geometry of the colored fan and the second

extends the Gröbner theory definition given by Kaveh and Manon. The third method

works by embedding the spherical variety in a specially-constructed toric variety,

tropicalizing there with the standard theory, and then applying a particular piecewise-

projection map. This final perspective introduces a novel means for tropicalizing a
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homogeneous space that allows us to prove several statements about the structure of

a spherical tropicalization by transferring results from the toric world where more is

known.

We also suggest a definition for the tropicalization of subvarieties of a homoge-

neous space whose defining equations have coefficients with non-trivial valuation. All

the previous theory has been done in the constant coefficient case, i.e. when the

coefficients of the defining equations all have trivial valuation.
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Chapter 1: Introduction

This thesis extends some of the theory of tropical geometry from toric varieties to

the more general spherical varieties. In this introduction we give background on the

relevant theories: tropical geometry, toric varieties, and spherical varieties. Finally,

we describe previous work in spherical tropicalization and outline the content of the

remainder of the thesis.

1.1 Tropical Geometry

The aim of this section is to give a brief overview of the first principles of tropical

geometry, developing enough theory to state the Fundamental Theorem. We will also

say a few words regarding the Structure Theorem, which describes what objects can

be obtained as tropicalizations. A more detailed breakdown of the general theory

discussed here can be found in [21]. We note that in this thesis we work over Q

as opposed to R, which is much more standard for tropical geometry. We use Q

because this is the more widely-used convention in spherical geometry and spherical

tropicalization, our primary focus. The basic theory is not affected by this choice; Q

and R can be readily interchanged in the following.
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Let k be an algebraically closed field and write Q = Q∪{∞} with the convention

that x < ∞ for all x ∈ Q. Then let v : k → Q be a valuation, which by definition

satisfies:

1. v(x) =∞ if and only if x = 0;

2. v(xy) = v(x) + v(y); and

3. v(x+ y) ≥ min {v(x), v(y)}.

With these conditions, it is straightforward to check that v(x+ y) = min {v(x), v(y)}

if v(x) 6= v(y). For the remainder of this first section, we will only concern ourselves

with the restriction of v to k∗ = k \ {0}. We denote by T the algebraic torus (k∗)n.

Now we define the tropicalization of a polynomial. For u = (u1, . . . , un) ∈ Zn,

denote by xu the monomial xu1
1 · · ·xun

n ∈ k[x±1
1 , . . . , x±1

n ]. Then if f = ∑
u∈Zn auxu ∈

k[x±1
1 , . . . , x±1

n ] is a Laurent polynomial, define a function trop f : Qn → Q, called the

tropicalization of f , by:

tropT(f)(w) = min
au 6=0
{v(au) + u ·w} .

We call the set of w = (w1, . . . , wn) ∈ Qn where the minimum in trop f is achieved

more than once the tropical hypersurface associated to f and denote it by tropT(V (f)).

The subscript T in these definitions is not standard notation; we explain our use of

it here at the beginning of §1.4. This definition extends to an arbitrary subvariety of

(k∗)n by intersecting these tropical hypersurfaces. If I ⊆ k[x±1
1 , . . . , x±1

n ] is an ideal

and V (I) = {y ∈ (k∗)n | f(y) = 0 for all f ∈ I} is its variety in the algebraic torus,

then we call

tropT(V (I)) :=
⋂
f∈I

tropT(V (f)).
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the (toric) tropicalization of V (I).

It is worth noting that we have taken the intersection over every element of I; in

general just considering elements of a generating set won’t do. A finite generating set

B ∈ I is called a tropical basis if tropT(V (I)) = ⋂
f∈B tropT(V (f)), and every ideal in

the ring of Laurent polynomials has a finite tropical basis. If I = (f) is a principal

ideal, then {f} is a tropical basis for I, i.e. tropT(V (I)) = tropT(V (f)).

Before moving on, we’ll compute some examples.

Example 1.1.1. Let f = 3 + 2x1 + x1x
−1
2 − 7x2

2 ∈ C[x±1
1 , x±1

2 ], I = (f), and let

v : C∗ → Q be the trivial valuation with sends every nonzero element of C to 0.

Then tropT f(w1, w2) = min {0, w1, w1 − w2, 2w2} and tropT V (I) is the collection of

rays shown in Figure 1.1. The 2-dimensional regions are labeled with the expression

minimized in that region. The ray separating the “w1 − w2” and the “0” region has

slope 1 and the ray separating the “w1” and the “2w2” region has slope 2.

(0, 0)
0w1 − w2

w1 2w2

Figure 1.1: The tropicalization of V (3 + 2x1 + x1x
−1
2 − 7x2

2)

Example 1.1.2. We work over the field C{{t}} := ⋃
n∈NC((t1/n)), the field of Puiseux

series over C. Define a valuation v : C{{t}}∗ → Q by sending a polynomial to the
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lowest power of t with a nonzero coefficient in its expansion. Thus, if

f = 2t+ (t−1 + 3t3)x1 + (7− t1000)x2 − 6x2
1 + 4t−2x1x2,

we have that

tropT f(w1, w2) = min {1, w1 − 1, w2, 2w1, w1 + w2 − 2} ,

so the tropical hypersurface tropT V (f) is as pictured in Figure 1.2.

(−1, 1) (2, 1)
1w1 − 12w1

w1 + w2 − 2 w2

Figure 1.2: The tropicalization of V (2t+(t−1 +3t3)x1 +(7− t1000)x2−6x2
1 +4t−2x1x2)

The final concept we need to define before we can state the Fundamental Theorem

is that of initial forms. Let v : k∗ → Q be a fixed valuation. Additionally assume that

there exists a splitting ϕ : v(k∗) → k∗ such that (v ◦ ϕ)(w) = w. We will denote by

tw := ϕ(w) the image of w ∈ v(k∗) under ϕ. Then we have an associated valuation ring

R := {x ∈ k | v(x) ≥ 0}, which contains a maximal idealm := {x ∈ k | v(x) > 0}. We

also have the residue field k := R/m. Denote by x the image of x ∈ R under the

projection map R → k. Let f = ∑
u∈Zn auxu ∈ k[x±1

1 , . . . , x±1
n ] be a polynomial and

w = (w1, . . . , wn) ∈ Qn an arbitrary vector. We call w the weight vector. Write

W := tropT f(w) = min
au 6=0
{v(au) + u ·w} .
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Then we define the initial form inw(f) ∈ k[x±1
1 , . . . , x±1

n ] of f with respect to the

weight vector w as follows:

inw(f) =
∑

u∈Zn

v(au)+u·w=W

t−v(au)auxu = t−Wf(tw1x1, . . . , twnxn).

The second characterization here is only valid when w ∈ (v(k∗))n since otherwise the

twi are not defined. This can be a difficult definition to absorb, so we present a brief

example.

Example 1.1.3. Let 2t+(t−1+3t3)x1+(7−t1000)x2−6x2
1+4t−2x1x2 in C{{t}}[x±1

1 , x±1
2 ]

as in Example 1.1.2 so that trop f(w) = min {1, w1 − 1, w2, 2w1, w1 + w2 − 2}. If

w1 = (−2, 0), then W1 := trop f(w1) = −4 and this value is met at the monomials

−6x2
1 and 4t−2x1x2, so the initial form is as follows:

inw1(f) = t0(−6)x2
1 + t2(4t−2)x1x2 = −6x2

1 + 4x1x2.

Here we identify −6 = −6 and 4 = 4 with their images under the projection. If

instead we consider w2 = (0, 2), then W1 := trop f(w2) = −1 is met solely at the

monomial (t−1 + 3t3)x1. Thus, the initial form in this case is

inw2(f) = t(t−1 + 3t3)x1 = 1 + 3t4x1 = x1

Having defined initial forms of polynomials, we define the initial ideal of an ideal

I ⊆ k[x±1
1 , . . . , x±1

n ] with respect to w ∈ Qn to be

inw(I) := 〈inw(f) | f ∈ I〉.

The construction of initial ideals in similar in spirit to the theory of Gröbner bases

in a polynomial ring, but when we consider ideals of Laurent polynomials, any
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monomial is a unit in the ring. Thus, if inw(f) is a unit for any f ∈ I, then

inw(I) = k[x±1
1 , . . . , x±1

n ]. It is this consideration that concerns tropical geometry:

when is this initial ideal not the entire ring?

We can relate this question to tropicalization through the Fundamental Theorem

of Tropical Geometry, which gives multiple characterizations of the tropicalization of

an ideal. This theorem will also help us naturally generalize the concept of tropical-

ization to other settings. For example, in §2.2 we will define the tropicalization of a

subvariety of a spherical homogeneous space as the image of a valuation map rather

than thinking of it as an intersection of tropical hyperplanes.

Theorem 1.1.4. The Fundamental Theorem of Tropical Geometry. Let k be an

algebraically closed field with a nontrivial valuation v and let I ⊆ k[x±1
1 , . . . , x±1

n ]

be an ideal with associated variety V (I) = {x ∈ (k∗)n | f(x) = 0 for all f ∈ I} in

T = (k∗)n. Then the following sets coincide:

1. tropT V (I) := ⋂
f∈I tropT V (f);

2.
{
w ∈ Qn | inw(I) 6= k[x±1

1 , . . . , x±1
n ]
}
;

3. The closure in Qn of the set

v(V (I)) := {(v(x1), . . . , v(xn)) | (x1, . . . , xn) ∈ V (I)} .

We have in this theorem the hypothesis that v is nontrivial, but this is not par-

ticularly restrictive. In fact, if I is a subvariety of a torus (k∗)n and K is a valued

extension of k (which means vK |k = vk), then the tropicalization of I in (k∗)n is equal

to the tropicalization of I in (K∗)n. Indeed, we’ve already seen this in Examples 1.1.1

and 1.1.2. In Example 1.1.1, we considered the trivial valuation on C, but we just
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as easily could have considered our ideal being defined over the field C{{t}} instead,

and the valuation we defined there in Example 1.1.2 restricts to the trivial valuation

on C. It is also worth mentioning that the work we did in Example 1.1.3 agrees with

this theorem: the vector w1 = (−2, 0) lies on the tropical hyperplane and its initial

form is a binomial, while the vector w2 = (0, 2) does not and its initial form is a

monomial, which is a unit in k[x±1
1 , . . . , x±1

n ].

The next major result in tropical geometry is the Structure Theorem. We describe

this in detail in §5.1, but the main idea is that the tropicalization of a toric variety

is a polyhedral complex that exhibits a balancing condition at each codimension one

polyhedron. In essence, this balancing condition can be thought of as an evenly-

matched “tug of war” between the higher dimensional polyhedra.

We can illustrate this in the case of Example 1.1.2, shown in Figure 1.2. This

polyhedral complex is of dimension two with two dimension one polyhedra: the points

(−1, 1) and (2, 1). At each point, the sum of the vectors arrayed out from the point

is zero. That is, at (2, 1), the tropicalization locally consists of rays in the directions

(1, 0), (0, 1), (−1, 0), and (0,−1), which sum to zero. Similarly, at (−1, 1) are the rays

(1, 0), (0, 1), and (−1,−1), which also cancel each other out. In general, weights may

be needed on certain rays to achieve balancing; this is a case where the weights are all

one. Example 1.1.1 and Figure 1.1 show a situation where balancing is still possible,

but differing weights are needed on the rays to ensure their linear combination is zero.

1.2 Toric Varieties

A toric variety X is a variety carrying the action of a torus T such that X has

an open T-orbit. Toric varieties are widespread in algebraic geometry and provide a
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wealth of examples to build intuition and generate and test conjectures. Part of the

appeal of toric varieties is that they can be modeled by polyhedral objects called fans,

and this combinatorial structure has meaningful interplay with tropical geometry. We

give here a brief overview of toric geometry, with a bias toward the combinatorial side

of the theory. Refer to [9] or [11] for more background on toric varieties.

Let N be a finite-dimensional lattice and M := Hom(N,Z) its dual. Write NQ :=

N⊗ZQ andMQ := M⊗ZQ to denote the Q-vector spaces associated to these lattices.

The fan associated to a toric variety will lie in NQ.

We begin with a string of definitions from polyhedral geometry. Given a finite

subset S ⊆ NQ, the cone in NQ spanned by S is the set:

cone(S) :=
{∑
u∈S

λuu : λu ∈ Q≥0

}
.

A cone is necessarily convex, and it is additionally called strictly convex if it contains

no lines. The dual of a cone σ ∈ NQ is the set

σ∨ := {u ∈MQ : 〈u, v〉 ≥ 0 for all v ∈ σ} ,

where 〈·, ·〉 is the dot product. If σ ∈MQ, define σ∨ ∈ NQ similarly. Given a non-zero

vector u ∈ MQ, note Hu := u∨ is a half-space. If σ is a cone, we say that a cone τ is

a face of σ if there exists u ∈ σ∨ such that τ = Hu ∩ σ. This is denoted by τ � σ (or

τ ≺ σ if τ 6= σ). A fan Σ is a finite collection of strictly convex cones satisfying two

properties:

(i) If σ ∈ Σ, then every face of σ is in Σ.

(ii) If σ, τ ∈ Σ, then σ ∩ τ is a face of both σ and τ .
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The support supp(Σ) of Σ is ⋃σ∈Σ σ ⊆ NQ, i.e. the subset of the vector space covered

by cones in Σ.

The fundamental fact of toric geometry is that each fan is uniquely associated to

a normal, separated toric variety and each normal, separated toric variety induces a

fan. Each cone σ of the fan ΣX of a toric variety X corresponds to a torus-orbit O(σ)

of X. This correspondence is bijective and the polyhedral structure of the fan reflects

the geometry of the corresponding orbits in X.

Given a fan Σ, the associated toric variety is obtained as follows. A cone σ ∈ Σ

corresponds to the affine variety Spec (k [σ∨ ∩M ]). If σ, σ′ ∈ Σ share a face τ ∈ Σ,

then Spec (k [σ∨ ∩M ]) and Spec (k [(σ′)∨ ∩M ]) are glued together along their shared

copy of Spec (k [τ∨ ∩M ]). Then the variety XΣ associated to Σ is the gluing of each

of these affine varieties along shared torus orbits. The association of cones to orbits

in this way is described precisely in the following theorem:

Theorem 1.2.1. [9, Theorem 3.2.6] Let XΣ be the toric variety of the fan Σ in NQ.

Then:

(i) There is a bijective correspondence

{cones σ in Σ} ↔ {T-orbits in XΣ}

σ ↔ O(σ).

(ii) Let n = dimNQ. For each cone σ ∈ Σ, dimO(σ) = n− dim σ.

(iii) The affine open subset Spec (k [σ∨ ∩M ]) of XΣ is the union of torus orbits:

Spec (k [σ∨ ∩M ]) =
⋃
τ�σ

O(τ).
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(iv) τ � σ if and only if O(σ) ⊆ O(τ), and

O(τ) =
⋃
τ�σ

O(σ),

where O(τ) denotes the closure in both the classical and Zariski topologies.

Perhaps the most fundamental connection between toric varieties and tropical

geometry is given by Tevelev’s lemma:

Proposition 1.2.2. (Tevelev’s Lemma) [30, Lemma 2.2] Suppose Y ⊆ T is a closed

subvariety, XΣ is a toric variety for the torus T, and Y is the closure of Y in XΣ.

Then Y ∩O(σ) for σ ∈ Σ if and only if tropT(Y ) intersects the interior of σ.

This fact leads to the question of whether there exists a reasonable definition of

extended tropicalization that will record the points of the variety added on in torus

orbits. Such a theory was developed separately by Kajiwara in 2008 [16] and Payne

in 2009 [26].

This theory is described in detail in §2.3, where we develop a similar construction

for spherical varieties, but we give here a rough idea of how extended tropicalization

works for toric varieties. By definition, a subvariety of the torus is tropicalized by

taking the closure of the image of the piecewise valuation map (k∗)n → Qn. The

extended tropicalization of an affine variety is the same definition except that the

piecewise valuation map is extended to kn → (Q ∪ {∞})n, where 0 is mapped to ∞.

Tropicalization for general toric varieties is obtained by gluing together these affine

tropicalizations along intersections.

10



1.3 Spherical Varieties

Spherical varieties are generalizations of toric varieties that encompass a wider

class of objects, including flag varieties and symmetric varieties. In the same way

that toric varieties can be modeled by fans, spherical varieties can be modeled by

polyhedral objects called colored fans. This classification was introduced in 1983 by

Luna and Vust [20]. Similarly to Theorem 1.2.1, the colored fans record group orbits

of the spherical variety. A survey of spherical geometry would be incomplete without

this theory, but we delay describing the combinatorial data of a spherical variety

to §2.1 as it is somewhat technical. In this introduction, we will limit ourselves to

defining spherical varieties and giving some background about their characteristics.

There are a number of good references for spherical varieties, including [18], [25], [27],

and [32].

Let G be a connected reductive algebraic group and H ≤ G a closed subgroup. We

call G/H a spherical homogeneous space if a Borel subgroup B has an open (dense)

orbit under the left group action. We assume through that G/H is a normal variety.

A spherical variety or G/H-embedding is a normal G-variety X that is an equivariant

open embedding of G/H. Toric varieties are obtained when G = B = (k∗)n and H

is the trivial subgroup. Much of the difficulty in understanding spherical varieties

is in dealing with the gap between G and its Borel subgroup B, an issue that isn’t

present in the toric case. It is worth observing that a fixed variety X can potentially

be realized as a spherical variety under the action of multiple groups. For example,

the affine plane A2 is a toric variety under the action of the two-dimensional torus,

but it is also a spherical variety under the action of Gl2 or Sl2 (see Example 2.1.6).
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A spherical variety can be classified in a number of equivalent ways. For example,

any normal G-variety with finitely many B-orbits is spherical. Also, a homogeneous

space G/H is spherical if for any irreducible G-module A and any character χ of H,

we have

dim {a ∈ A : ha = χ(h)a for all h ∈ H} ≤ 1.

This last condition is called the multiplicity free property.

The first characterization of spherical varieties regarding the existence of an open

B-orbit can be further generalized. The complexity of a G-variety X is the minimal

codimension of a B-orbit in X. A spherical variety is therefore a normal G-variety of

complexity zero. Higher complexity G-varieties are less well understood. Timashev in

[31] (or [32], §3.16) develops a combinatorial description of G-varieties of complexity

one, but remarks that a similar classification will not hold for higher complexity.

To a normal G-variety of complexity one, he associates something he calls a colored

hyperfan, which is beyond the scope of this thesis to define.

An important example of a spherical variety is the Grassmannian Gr(k, n) of k-

dimensional subspaces of an n-dimensional vector space. The Grassmannian carries a

natural action of Gln, and this action makes Gr(k, n) a spherical homogeneous space

for G := Gln. Explicitly, let H ≤ G be the closed subgroup of upper block triangular

n× n matrices with blocks of size k and n− k; then G/H is isomorphic to Gr(k, n).

More generally, write F (d1, d2, . . . , dm) for the flag variety parametrizing nested

subspaces of dimension 0 < d1 < d2 < · · · < dm = n in an n-dimensional vector

space. Then F (d1, d2, . . . , dm) again carries an action of Gln and may be realized as

a spherical homogeneous space using the subgroup H ≤ G of upper block triangular

n× n matrices with blocks of size d1, d2− d1, d3− d2, . . . , dm− dm−1. In particular, if
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di+1 − di = 1 for 1 ≤ i ≤ n− 1, then we obtain the complete flag variety and H = B

is the subgroup of upper triangular matrices.

The Bruhat decomposition can be used to verify that that these homogeneous

spaces are in fact spherical. If T ≤ B is a maximal torus, then the associated Weyl

group is W := NG(T )/T . This is a finite group, and G can be decomposed into

finitely many pieces indexed by the elements of W :

Proposition 1.3.1 (Bruhat decomposition). G = ⊔
w∈W BwB, where we abuse no-

tation by identifying w ∈ W with a representative in G.

If P ≤ G contains B, then we call P parabolic, and from the Bruhat decomposition

we can see that G/P has finitely many B-orbits and is therefore spherical.

1.4 Spherical Tropicalization

Broadly speaking, classical tropical geometry is concerned with torus-invariant

valuations on the field of rational functions of a variety. The tropicalization procedure

eloquently records this information in polyhedral structures, the combinatorics of

which reflect the geometric structure of the variety. Spherical tropicalization is similar

in spirit. It extends the notion of tropicalization from toric varieties to spherical

varieties, which carry the action of a connected reductive group G as opposed to

an algebraic torus, and tropicalization for spherical varieties records valuations that

are G-invariant as opposed to torus-invariant. We notate this distinction by writing

the group G as a subscript in the tropicalization. Thus, if Y ⊆ G/H is a closed

subvariety, its spherical tropicalization is written tropG(Y ). This explains our use of

the notation tropT in the toric case discussed §1.1.
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The theory of spherical tropicalization was first developed by Tassos Vogiannou in

his 2015 thesis [33]. We delay giving his definition until §2.2 as it requires the theory

of §2.1 to fully appreciate. There are some as-yet undefined terms appearing in the

following; they will also be explained in §2.1.

The bulk of Vogiannou’s work is concerned with tropical compactifications, which

were introduced for toric varieties in [30]. The toric definition extends naturally to

the spherical setting:

Definition 1.4.1. If Y ⊆ G/H is a closed subvariety and Y ⊆ X is its closure in a

G/H-embedding X, then Y is called a tropical compactification if Y is complete and

the map

µY : G× Y → X, (g, x) 7→ gx

is faithfully flat.

The main result of Vogiannou’s thesis concerns these tropical compactifications:

Theorem 1.4.2. [33, Theorem 1.2] Let Y be a closed subvariety of a spherical ho-

mogeneous space G/H. Then:

(i) Tropical compactifications of Y in toroidal spherical varieties exist.

(ii) If Y ⊆ X is a tropical compactification, where X is a spherical variety associated

to a colored fan Σ, then supp(Σ) = tropG(Y ).

Along with this, Vogiannou proves an extended version of Tevelev’s Lemma:

Proposition 1.4.3. [33, Proposition 4.5] Let X be a simple toroidal spherical variety

with closed G-orbit O, and let (σ,F) be the associated colored cone in NQ. Then
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tropG(Y ) intersects the relative interior of σ if and only if Y ⊆ X intersects the

closed orbit O.

We remark here that Tevelev’s Lemma and its generalization are both done in the

constant coefficient case, that is when the valuation is trivial on the coefficients of

the defining polynomials. We discuss how some of these ideas can be extended to the

non-constant coefficient case in §5.4.

The only other work in this area is due to Kaveh and Manon [17]. They develop a

Gröbner theory for spherical varieties and define the tropicalization of a subvariety of a

homogeneous space using this machinery. This construction agrees with Vogiannou’s

definition, which Kaveh and Manon prove in an extension of the fundamental theorem

of tropical geometry.

A particular section of their paper worth highlighting is their discussion of con-

nections between the spherical tropicalization and the Berkovich analytification of a

variety. The relation between tropical geometry and Berkovich theory is significant.

In [26], Payne proves that the Berkovich analytification of a toric variety is the inverse

limit its tropicalizations with respect to different toric embeddings. More recently,

Baker, Payne, and Rabinoff in [3] prove a number of theorems relating Berkovich

spaces and tropicalizations of curves, including that any finite subgraph embedded

in the Berkovich analytification of a curve maps isometrically onto its image in some

tropicalization of a toric variety in which the curve is embedded. Kaveh and Manon

add to this theory by demonstrating that there is a continuous map from the Berkovich

analytification of an affine spherical variety to its spherical tropicalization and that

this map commutes with the tropicalization map and the natural inclusion of the

variety into its Berkovich analytification.
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The principal contribution of this thesis is a description of the topological spaces

in which tropicalizations of tropical compactifications lie. We define and construct

an extended tropicalization for a spherical embedding X that adds on points to

tropG(G/H) in a natural way that respects the geometry of the embedding G/H ↪→

X. To be precise, the work that has come before has been restricted to consider-

ing subvarieties of a homogeneous space G/H. We extend the theory to allow for

subvarieties of embeddings as well.

This generalizes the tropicalization of toric varieties independently developed by

Kajiwara [16] and Payne [26] in 2008 and 2009, respectively. A diagrammatic repre-

sentation of how these theories follow from each other is shown in Figure 1.3.

Tropicalization of
algebraic tori

Tropicalization of
toric varieties

Kajiwara (‘08), Payne (‘09)

Tropicalization of
spherical homogeneous spaces

Vogiannou (‘15), Kaveh-Manon (‘17)

Tropicalization of
spherical embeddings

(this thesis)

Figure 1.3: Relations between spherical and toric tropicalization

Chapter 2 introduces the theory of spherical varieties and their tropicalizations.

We further describe the extended tropicalization construction in detail using the poly-

hedral geometry of the colored fan. In addition, we describe a means for tropicalizing
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equivariant morphisms between spherical embeddings. This theory is used later in

Chapter 5. In Chapter 3 we explain Kaveh and Manon’s Gröbner theory for spherical

varieties and how tropicalization works from this perspective. Then we extend their

definition to spherical embeddings and prove an extended fundamental theorem that

extended Gröbner tropicalization from Chapter 3 and extended tropicalization from

Chapter 2 coincide. These two chapters together cover the content of [23].

Chapter 4 describes a means for globally tropicalizing G/H-embeddings. That is,

the constructions described in Chapters 2 and 3 work by breaking a spherical variety

into simple spherical varieties, tropicalizing separately, and then gluing together. This

description only uses the tropicalization operation once. It works by embedding a

spherical variety in a toric variety, tropicalizing there, and then applying a piecewise

linear map that respects the interplay of the torus action and the action of G. There

is a means for globally tropicalizing a toric variety, so if the embedding has the A2-

property, we obtain global tropicalization for the spherical variety. In particular, this

is a new means for tropicalizing subvarieties of spherical homogeneous spaces.

There is a technical consideration that the embedding in a toric variety will not

work unless the spherical variety has the A2-property (Definition 4.4.1). This is not

a particularly restrictive condition. Moreover, a spherical embedding X without the

A2-property can be realized as a collection of spherical embeddings with the A2-

property that are glued together along shared orbits. It follows that even though

tropG(X) cannot be computed globally with this theory, it can still be recovered by

tropicalizing the subvarieties with the A2-property and gluing together.
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To finish the chapter, we use this theory to conclude that the spherical tropical-

ization procedure commutes with taking closures. This chapter covers the content of

[24].

In Chapter 5, we discuss the structure of spherical tropicalizations. The theory

from Chapter 4 gives some partial results since we can use the toric structure theorem

and then apply the piecewise linear map. However, a structure theorem for spherical

tropicalization similar to that for toric tropicalization seems more difficult. The bal-

ancing results in the toric case model the intersection theory of the toric variety, but

the intersection theory on the spherical variety is too subtle for the combinatorics of

the spherical tropicalization to pick up.

Finally, we suggest a definition for tropicalization with respect to non-constant

coefficients, which has not yet been considered by any of the previous research. To

justify the definition, we prove a result relating the non-constant tropicalization with

tropical compactifications, generalizing part (ii) of Theorem 1.4.2.

In an effort to aid readability, necessary portions of the background in this intro-

duction are repeated at the beginning of each chapter.
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Chapter 2: Tropicalizing Spherical Embeddings

Marrying algebraic geometric ideas and combinatorics is an active area of research.

In recent years, the notion of tropicalization has proven to be a fruitful such tool to

answer questions in algebraic geometry. Particularly, toric varieties have benefited

from tropical geometric methods meshing with their inherent combinatorial structure.

See for example Chapter 6 of [21] for an introduction to some examples of the utility

of tropical ideas in the toric world. Toric varieties are examples of spherical varieties,

which encompass a wider class of algebraic objects, among them flag varieties and

symmetric varieties. Spherical varieties also have combinatorial structure in the form

of colored fans, which directly generalize the well-known polyhedral fans of toric

geometry. This theory was developed by Luna and Vust [20] in 1983. It is a natural

idea to take advantage of the similar combinatorial structure and extend the theory

of tropicalization from toric varieties to the more general case.

The first steps in this direction were taken by Tassos Vogiannou in his thesis

[33]. Among other results, Vogiannou developed a definition for the tropicalization

of subvarieties of a spherical homogeneous space, which is the analogue of the dense

torus orbit present in a toric variety. In a forthcoming paper, Kiumars Kaveh and

Christopher Manon extend Vogiannou’s work by defining a theory of Gröbner bases

on spherical varieties and showing that their definition agrees with Vogiannou’s via a
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spherical fundamental theorem. They further consider a notion of spherical amoebas

and show, with an additional assumption, that this amoeba approaches the tropical-

ization.

The purpose of this chapter is to define the tropicalization of a general spherical

embedding. Our blueprint for this construction appeared separately in [16] and [26].

These papers define the tropicalization of a toric variety by extending the tropical-

ization of its dense torus. We will mimic their ideas using the shared polyhedral fan

structure of toric and spherical varieties.

The layout of this chapter is as follows. In §2.1, we review the basic theory of

spherical varieties, and §2.2 describes Vogiannou’s definition of tropicalizing spherical

homogeneous spaces. Our construction of the tropicalization of a spherical embedding

is explained in §2.3, and §2.4 contains examples. Finally, §2.5 describes a means for

tropicalizing morphisms between spherical embeddings.

2.1 The Combinatorics of Spherical Embeddings

There are a number of surveys on spherical varieties and their combinatorial struc-

ture. Refer for example to [20], [18], [25], or [27] for more details on the theory dis-

cussed in this section. There is occasionally a clash between symbols usually used

for toric varieties and their analogs in spherical varieties; whenever possible we have

favored the toric conventions as these are more widely known. We work throughout

over an algebraically closed field k. Let G be a connected reductive group with a

Borel subgroup B. Let H ≤ G be a closed subgroup such that the action of B on

G/H via the left action of G has an open orbit. In this case, we call G/H a spherical
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homogeneous space. A normal G-variety X that contains G/H as an open orbit of

the action of G is called a spherical embedding.

Let X denote the group of characters B → k∗. We consider the B semi-invariant

rational functions on G/H:

k(G/H)(B) := {f ∈ k(G/H)∗ : there exists χf ∈ X such that gf = χf (g)f for all g ∈ B} .

Here, the action of the Borel subgroup on k(G/H) is given by gf(x) = f(g−1x), so

gf is only defined on those x such that g−1x is in the domain of f . This affords us a

homomorphism k(G/H)(B) → X defined by f 7→ χf . Further, the kernel of this map

is the set of nonzero constant functions, which we write as k∗. Then denote by M or

M(G/H) the image of k(G/H)(B)/k∗ in X. The lattice M is finitely generated and

free, so we obtain a vector space NQ(G/H) := Hom(M,Q) ∼= Qm, simply denoted NQ

when the underlying homogeneous space is clear. The integer m is called the rank of

the G/H-embedding.

We must further define the valuation cone, which will lie inside NQ. We consider

G-invariant Q-valuations k(G/H) → Q that are trivial on k∗. By restricting such a

valuation to k(G/H)(B), we obtain an induced map k(G/H)(B)/k∗ → Q, so we can

identify it with a point in NQ. This identification yields a bijection between the set

of such G-invariant valuations and a rational convex cone in NQ which we call the

valuation cone, denoted by V(G/H) or V. We write D(G/H) or D for the (finite) set

of B-stable prime divisors in G/H. We refer to D(G/H) as the palette of G/H and

call its elements colors. Every color D induces a valuation νD on k(G/H) given by

a function’s order of vanishing along the divisor. We write ρ for the map defined by

D 7→ νD and note that ρ need not be injective.

21



To recap, given a spherical homogeneous space G/H, we associate a vector space

NQ containing the valuation cone V, the (finite) palette D, and a map ρ : D→ NQ.

Definition 2.1.1. Let σ ⊆ NQ be a cone and F ⊆ D. We call the pair (σ,F) a

colored cone if the following properties are satisfied:

1. σ is generated by ρ(F) and finitely many elements of V;

2. int(σ) ∩ V 6= ∅.

We say that (σ,F) is strictly convex if in addition σ is a strictly convex cone and

0 /∈ ρ(F).

Definition 2.1.2. A colored cone (τ,F′) is a (colored) face of a colored cone (σ,F)

if τ is a face of σ satisfying int(τ)∩V 6= ∅ such that F′ = F ∩ ρ−1(τ). In this case we

write (τ,F′) � (σ,F) or τ � σ if the colors are understood.

Definition 2.1.3. A colored fan is a finite collection Σ of colored cones such that the

following hold:

1. If (σ,F) ∈ Σ is a colored cone and (τ,F′) is a face of (σ,F), then (τ,F′) ∈ Σ.

2. Every v ∈ V is in the interior of at most one colored cone in Σ.

We say in addition that Σ is strictly convex if each of its colored cones is strictly

convex.

We also define here the support of a colored fan, though it will not come up again

until Chapter 5.

Definition 2.1.4. The support of a colored fan Σ is the following subset of V:

supp(Σ) :=
 ⋃

(σ,F)∈Σ
σ

 ∩ V.
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We emphasize that in this definition the second condition only applies to points of

V, so that colored cones of the colored fan are allowed to overlap nontrivially outside

the valuation cone. With these definitions in hand, we can describe the colored fan

associated to a G/H-embedding X. Note that if D is a B-stable prime divisor on X

that is not G-stable, then the intersection D ∩ G/H is a color of G/H. Conversely,

the closure in X of a color is a B-stable prime divisor D on X that is not G-stable.

Thus we can identify the palette with the set of all such divisors. For a closed G-orbit

O of X, let F ⊆ D consist of the B-stable prime divisors containing O that are not

G-stable. The colored cone (σ,F) associated to O is spanned by ρ(F) and the set of

G-stable prime divisors containing O. Taking these colored cones over every G-orbit

of X, we obtain a colored fan. If a G/H-embedding X has a single closed G-orbit and

hence a single maximal colored cone, we call X simple. A G/H-embedding consists of

some finite number of simple embeddings glued together along G-orbits; this structure

is reflected in the polyhedral geometry of the colored fan.

Theorem 2.1.5. [20, Prop. 8.10], [18, Thm. 3.3] There is a bijection between simple

G/H-embeddings and strictly convex colored cones in NQ, and there is a bijection

between G/H-embeddings and strictly convex colored fans in NQ.

Example 2.1.6. Let G = Sl2 with B the subgroup of upper triangular matrices and

H = {M ∈ G |M is upper triangular with 1’s on the diagonal} .

Then G/H = A2 \ {0} where the action of G is given by matrix multiplication of a

column vector [x y]T . Every character B → k∗ is of the form

χn :
(
a b
0 a−1

)
7→ an
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for some n ∈ Z, so X ∼= Z. Under the prescribed action of G, we can see that

k(G/H)(B)/k∗ = {yn | n ∈ Z} and that the character associated to yn is χn. It follows

that M ∼= Z and hence NQ ∼= Q.

We now turn to the valuation cone V. Consider the following two valuations of

k(G/H), which are G-invariant:

f

g
7→ mindeg f −mindeg g f

g
7→ deg g − deg f

Here, mindeg denotes the minimum degree of a monomial in a polynomial in k[x, y].

After restricting to k(G/H)(B), we see that the valuation on the left corresponds

to sending ym 7→ m (i.e. χ∗1) and the one on the right to ym 7→ −m (i.e. χ∗−1).

Thus, positive multiples of these valuations induce every possible element of NQ =

Hom(M,Q) and so V = NQ.

The only closed B-orbit contained in G/H is the divisor D := V (y), so the palette

D consists solely of D. This means that an embedding of G/H can have at most

one color, corresponding to the divisor where y vanishes. This divisor gives the ray

spanned by χ∗1.

We’ll finish by explicitly computing the fan associated to P2 with homogeneous

coordinates W , X, and Y . We can realize P2 as an embedding of A2 \ {0} via

[x y]T 7→ [1 : x : y]. There are three G-orbits in P2:

A2 \ {0} := {[1 : x : y] | x, y ∈ k not both zero}

V (W ) := {[0 : x : y] | x, y ∈ k not both zero}

O := {[1 : 0 : 0]} .

The latter two orbits are closed, so our fan will have two maximal cones. The orbit

V (W ) is itself a B-stable prime divisor. This divisor is G-stable, so we will have a

24



cone without color. The function y in k(A2 \ {0}) can be written as Y/W on P2.

On V (W ), Y/W has a pole of order 1, so the cone associated to this orbit is the ray

spanned by χ∗−1. The other closed orbit O is contained in one B-stable prime divisor

as well: V (Y ). This divisor is not G-stable, so the corresponding ray will have color.

Clearly y vanishes with order 1 on V (Y ), so this will give the cone spanned by χ∗1.

This example is drawn in Table 2.1 along with the other colored fans of A2 \ {0}.

This table also appears in [33] except for the final column, which will be explained in

Example 2.4.3. Note how the color is indicated by a bullseye.

Variety Closed G-orbits Colored Fan Tropicalization
A2 \ {0} A2 \ {0}

A2 {0}
Bl0(A2) E
P2 \ {0} V (W )

P2 V (W ), {0}
Bl0(P2) V (W ), E

Table 2.1: Colored fans and colored tropicalizations associated to A2 \ {0}. Here, E
denotes the exceptional divisor of the blowup.

2.2 Tropicalizing Homogeneous Spaces

In his thesis [33], Tassos Vogiannou defines the tropicalization of a subvariety of the

spherical homogeneous space G/H, extending the well-known theory of subvarieties

of a torus. We outline his construction here; more details and examples can be found

in his thesis. Suppose G/H is a spherical homogeneous space over k, let K := k((t))

denote the field of Laurent series, and let K := ⋃
n∈N k((t1/n)) denote the field of

Puiseux series. We use the valuation ν : K∗ → Q that gives the lowest power of t
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appearing with nonzero coefficient. Note that this restricts naturally to K∗ and is

trivial on k∗.

We will define a map G/H(K) → NQ. Let γ : SpecK → G/H be a K-point of

G/H. We will define a G-invariant discrete valuation νγ on k(G/H)∗ associated to γ.

To do this, we need to describe how νγ acts on rational functions, so let f ∈ k(G/H)∗

be arbitrary. The domain of f may not contain the image of γ, but we may find

g ∈ G such that the image of γ is in the domain of gf . There is a pullback map

γ∗ : k(G/H) → K given by evaluation at γ, so we consider γ∗(gf) ∈ K. Then we

write νγ(f) = ν(γ∗(gf)). This is not a priori well-defined since it may depend on g.

To overcome this, we take g so that ν(γ∗(gf)) is minimized; this minimum is achieved

on an open set of G and we call such g sufficiently general.

Thus we have a map G/H(K) → {G-invariant discrete valuations on k(G/H)∗}

given by γ 7→ νγ. As discussed, G-invariant discrete valuations on k(G/H)∗ determine

elements of V, so this is really a map G/H(K) → V. Further, we can extend this

map so it is defined over G/H(K). Indeed, suppose γ : SpecK → G/H is a K-point.

This induces a homomorphism of k-algebras γ∗ : A → K since the image of γ must

lie in some open affine SpecA ⊆ G/H. Since G/H is of finite type, A is finitely-

generated as a k-algebra, and so it follows that γ∗ factors through k((t1/n)) for some

sufficiently large n. Thus, γ factors as SpecK → Spec k((t1/n))→ G/H. We can think

of Spec k((t1/n)) as the spectrum of Laurent polynomials in an indeterminate variable

t1/n. This morphism induces a valuation by the work above; dividing this valuation

by n gives a valuation νγ, which we associate to γ. This extension in fact gives a

surjection val : G/H(K) � V, which allows us to finally define the tropicalization of

a subvariety of a homogeneous space.
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Definition 2.2.1. If Y ⊆ G/H is a subvariety, the tropicalization of Y is tropG(Y ) :=

val
(
Y
(
K
))

.

In particular, note that tropG(G/H) = V(G/H), a fact we will use in §2.3.

2.3 The Construction

Again let G/H be a spherical homogeneous space and let NQ and V ⊆ NQ be the

associated vector space and valuation cone. Let X be a simple G/H-embedding with

maximal colored cone (σ,F). We will show how to tropicalize X and then see how

the tropicalization of a general embedding can be obtained by tropicalizing simple

embeddings and gluing. Then we will describe how to tropicalize a subvariety.

Each colored face τ of σ corresponds to a G-orbit Oτ of X, and [18, Corollary 2.2]

says that each orbit is a spherical homogeneous G-variety with an open orbit of the

same Borel subgroup B. As a spherical homogeneous space, an orbit Oτ associated

to τ has a valuation cone Vτ := V (Oτ ) that lies in a Q-vector space NQ (Oτ ). Then

as a set, we define tropG(X) := ⊔
τ�σ Vτ . This is similar in spirit to the construction

of [16] and [26]; we break X up into orbits and tropicalize each of them separately.

It only remains to define a topology on this set.

Let Q := Q ∪ {∞}. We write

N(σ) := Hom
(
σ∨ ∩M,Q

)
,

where the homomorphisms in the set on the right are semigroup homomorphisms.

We will show that as sets ⊔τ�σ NQ(Oτ ) ⊆ NQ.

We fix our attention on a colored face τ � σ. There is a copy of NQ (Oτ ) in N(σ)

given by considering those semigroup homomorphisms ϕ : σ∨ ∩M → Q for which
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ϕ−1(Q) = τ⊥ ∩ (σ∨ ∩M). More explicitly,

Hom
(
τ⊥ ∩ (σ∨ ∩M) ,Q

) ∼= Hom
(
τ⊥ ∩M,Q

) ∼= NQ(Oτ ),

which we see as follows. We have that τ⊥ ∩M consists of those functions in M =

k(G/H)(B)/k∗ that do not have zeroes or poles along the orbit Oτ . These are precisely

the functions inM that can be restricted to B semi-invariant rational functions on Oτ .

Restriction thus gives a map τ⊥∩(σ∨ ∩M)→M (Oτ ). Theorem 6.3 of [18] shows that

this map is an isomorphism, so after dualizing we have Hom
(
τ⊥ ∩ (σ∨ ∩M) ,Q

) ∼=
NQ (Oτ ). Further, homomorphisms in Hom

(
τ⊥ ∩ (σ∨ ∩M) ,Q

)
extend uniquely to

homomorphisms in N(σ) by sending every character outside τ⊥ ∩M to ∞.

In the toric case, it now follows that ⊔τ�σ NQ (Oτ ) is in bijective correspondence

with N(σ). For a general spherical variety, this is not necessarily true. This is because

a colored cone may contain a subcone which is a face in the sense of polyhedral

geometry but which lies outside the valuation cone and therefore does not correspond

to an orbit in the spherical variety. To address this, we write NV(σ) to denote the

set of homomorphisms ϕ ∈ N(σ) such that ϕ−1(Q) = τ⊥∩ (σ∨ ∩M) for some colored

face τ � σ.

Now every homomorphism ϕ ∈ NV(σ) is realized as an extension of a homomor-

phism τ⊥ ∩ (σ∨ ∩M) → Q for some unique τ � σ where ϕ−1(Q) = τ⊥ ∩ (σ∨ ∩M).

Thus we have a bijective correspondence:

NV(σ)↔
⊔
τ�σ

NQ (Oτ ) .

Placing the topology on NV(σ) inherited from Qσ∨∩M, we obtain a topology on⊔
τ�σ NQ (Oτ ). Under this topology, ⊔τ�σ NQ (Oτ ) is isomorphic to a subspace of

Qm, where m is the rank of N.
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We still must see how ⊔
τ�σ Vτ lies in NV(σ) = ⊔

τ�σ NQ (Oτ ) under this topology.

Any homomorphism in Hom (τ⊥ ∩M,Q) that is induced by a G-invariant valuation is

the restriction of a G-variant valuation in V(G/H) ⊆ Hom (M,Q). Indeed, by Corol-

lary 1.5 in [18], any G-invariant valuation on k (Oτ ) can be lifted to a G-invariant val-

uation on k(G), which can then be restricted to k(G/H). Thus, the valuation cone Vτ

is the image of the valuation cone V under the map Hom (M,Q)→ Hom
(
τ⊥ ∩M,Q

)
induced by the inclusion τ⊥ ∩M ↪→ M. Thus tropG(X) = ⊔

τ�σ Vτ inherits the sub-

space topology from NV(σ).

To tropicalize a non-simple spherical embedding, we tropicalize the simple embed-

dings corresponding to each of its maximal cones and then glue these together along

the tropicalizations of their shared orbits. If Y ⊆ G/H is a closed subvariety and

Y ⊆ X its closure in X, then we define

tropG
(
Y
)

:=
⊔
τ�σ

tropG
(
Y ∩ Oτ

)
⊆
⊔
τ�σ

Vτ = tropG(X).

Here, tropG
(
Y ∩ Oτ

)
denotes the tropicalization as a subvariety of a homogeneous

space and we give tropG
(
Y
)
the subspace topology inherited from tropG(X).

Our construction as discussed thus far only recognizes the polyhedral structure

of the colored fan but ignores whether or not that fan has colors. We need this

information to completely classify all spherical embeddings, so it seems useful to

remember the presence of colors when we tropicalize. We address this as follows.

In a colored fan, we can think of our palette of colors as a collection of points in

NQ corresponding to B-stable prime divisors. If no colors appear in our fan, we

call the spherical variety toroidal. If a color appears, it will lie in some number

of colored cones, which is to say the associated prime divisor contains the orbits

corresponding to those cones. Each such orbit gives a cone in the stratification of
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the tropicalization; we simply record whether the color appears in the colored fan by

labeling its associated valuation cone with that color. We show in Example 2.4.3 two

different spherical embeddings of the same homogeneous space that have different

colored tropicalizations; if color is ignored the tropicalizations become the same.

Before proceeding to examples, we prove a result showing that the extended trop-

icalization reflects whether or not the variety is complete. The proof requires the

following result:

Theorem 2.3.1. (cf. [20, Prop. 8.10]) A G/H-embedding X with colored fan Σ is

complete if and only if supp(Σ) = V(G/H).

To state our result cleanly, we also must work over R rather than Q. That is,

we proceed as before with the construction, but start with Hom (σ∨ ∩M,R ∪ {∞})

rather than Hom
(
σ∨ ∩M,Q

)
. In other words, tropG(X) as we have defined it lies

in a stratification of Q-vector spaces, and for the following result we tensor each

of those vector spaces with R. The combinatorial structure of the tropicalization is

unchanged; this technical point is only necessary because R is a complete metric space

with respect to the Euclidean metric and Q is not.

Theorem 2.3.2. A G/H-embedding X is complete if and only if tropG(X) (taken

with respect to R, not Q) is a compact topological space.

Proof. Let X be a complete G/H-embedding with colored fan Σ and let U be a

covering of tropG(X) by open sets. The tropicalization tropG(X) is a stratification

of (finitely-many) valuation cones lying in R-vector spaces. Each full-dimensional

colored cone (σ,F) ∈ Σ tropicalizes to a 0-dimensional vector space Vσ in tropG(X).

For each such σ, choose U(σ) ∈ U that contains the point Vσ.
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Now let τ be a codimension one colored cone in Σ. Because X is complete, Σ

covers V(G/H), and so τ either lies between two full-dimensional colored cones or

lies on the boundary of V(G/H) and is the face of a full-dimensional colored cone. In

either case, Vτ \
(⋃

σ�τ U(σ)
)
is a closed bounded subset of Vτ under the topology on

tropG(X). This subset is compact, so it can it be covered by finitely-many elements

{Ui(τ)} ⊆ U. As τ was arbitrary, we may do this for every codimension one cone in

Σ.

For each codimension two cone, the associated valuation cone is similarly closed

and bounded upon removal of the U(σ)’s and Ui(τ)’s, so it can be covered by finitely-

many elements of U. Proceeding in this way through cones of higher and higher

codimension generates a finite sub-covering of tropG(X), as needed.

Conversely, this process will fail precisely when supp(Σ) 6= V(G/H) as it will run

into unbounded valuation cones that cannot necessarily be covered by finitely many

open sets.

2.4 Examples

Example 2.4.1. In the toric case, G = T n is a torus of dimension n, H is trivial, and

B = G, so there are no colors. The B semi-invariant rational functions are precisely

the monomials in the variables {x1, . . . , xn}, so NQ ∼= Qn, spanned by cocharacters

χ∗i defined as follows:

χ∗i (xj) =
{

1 i = j
0 otherwise.

We can also see that the valuation cone V is all of NQ. Indeed, consider the valuations

f

g
7→ mindegi(f)−mindegi(g) f

g
7→ degi(g)− degi(f),
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where degi and mindegi respectively denote the degree and minimum degree in xi.

These valuations are G-invariant and induce the cocharacters χ∗i and −χ∗i , so V = NQ.

Having realized the torus as a spherical homogeneous space, the colored fan asso-

ciated to a toric variety when viewed as a spherical embedding is the same as the fan

coming from the theory of toric geometry. Our definition of the tropicalization only

relies on the polyhedral structure of this fan and is identical to the process described

in [16] and [26].

Example 2.4.2. A flag variety is a spherical homogeneous space G/P where P is a

parabolic subgroup, one which contains a Borel subgroup. Such a homogenous space

has a trivial valuation cone, so the tropicalization of a flag variety is a point under

this theory.

Example 2.4.3. We return now to the example and notation of A2 \{0} discussed in

Example 2.1.6. In Bl0(P2), there are three G-orbits: G/H, V (W ), and the exceptional

divisor E. We have already seen that the valuation cone of G/H is a copy of Q, so we

move on to V (W ) and E. Both of these are copies of P1 and the action of G = Sl2 on

both of them is given by matrix multiplication. In this case G/B ∼= P1, so the closed

orbits are flag varieties and our discussion in Example 2.4.2 tells us the tropicalizations

are trivial. Let us show this explicitly. The rational functions k(G/B) = k(P1) are

quotients of two homogeneous polynomials of the same degree in the variables X and

Y . The action of the Borel subgroup B on these functions is the same as it is on

k(G/H), so the only B semi-invariant rational functions on k(G/B) are powers of Y .

The only power of Y in k(P1) is the constant function, so k(P1)(B) is trivial and hence

so are the associated M, NQ, and V.

32



Thus, ⊔τ V (Oτ ) in this case consists of a copy of Q and two points. The two points

attach to Q by thinking of them as ∞ and −∞. We can think of Bl0(P2) as the two

simple spherical varieties Bl0(A2) and P2 \ {0} glued together along G/H = A2 \ {0}.

In Bl0(A2), we add in limit points over 0, which correspond to extended valuations

taking y ∈ k(G/H)(B) to∞, giving a copy of Q. In P2 \{0}, we add in limit points at

infinity, which similarly correspond to extended valuations and we again get Q. We

finally glue these copies of Q along their shared copy of Q by identifying a number

in one copy of Q with its reciprocal in the other copy. This is illustrated in Figure

2.1. The gluing is reminiscent of the tropicalization of P1 viewed as a toric variety,

as described in [21, §6.2].

∼

Figure 2.1: The colored tropicalization of Bl0(P2)

If instead we consider the G/H-embedding P2, the simple spherical varieties are

P2 \ {0} and A2. The former can be tropicalized as before, but A2 has a G-fixed

point [1 : 0 : 0] whose associated cone has color. The point has a trivial valuation

cone, just like the effective divisor in Bl0(P2). The gluing operation works the same

as with Bl0(P2), so topologically we again obtain a line segment. This is shown in

Figure 2.2; the colored point associated to [1 : 0 : 0] is on the right. The other

Figure 2.2: The colored tropicalization of P2
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embeddings of A2 \ {0} are obtained from Bl0 (P2) or P2 by omitting certain orbits.

Thus, their tropicalizations omit the corresponding pieces, and we obtain the other

results depicted in Table 2.1.

Example 2.4.4. This example extends [33, §5.3]. Our group is G = Gl2×Gl2 and

the subgroup H is the diagonal, so that G/H ∼= Gl2. the action of G on G/H is given

by (g, h) ·X = gXh−1 and the Borel subgroup is

B = {(U,L) | U is upper triangular and L is lower triangular} .

The Borel subgroup has an open orbit {(xij) ∈ Gl2 | x22 6= 0}, so this is a spherical

homogeneous space. We will embed G/H into Bl0(A4) by sending X = (xij) to its

image in the principal open subset D(x11x22 − x12x21) ⊂ A4 \ {0}. Viewing Bl0(A4)

as a subvariety of A4 × P3, we give P3 the coordinates yij and denote elements by

((xij), [yij]), so that the blowup is cut out by the equations xijyk` = xk`yij. The action

of G on Bl0(A4) is then given by matrix multiplication in both components:

(g, h) · ((xij), [yij]) = (g(xij)h−1, g[yij]h−1), (g, h) ∈ G, ((xij), [yij]) ∈ Bl0(A4).

In this case, the lattice of B semi-invariant rational functions M = k(G/H)(B)/k∗ on

G/H is spanned by f1 := (x11x22 − x12x21)/x22 and f2 := x22. We choose these par-

ticular generators because the associated cocharacters are cleaner for computations.

The palette D in this case consists of one B-stable prime divisor: V (x22). The vector

space NQ of cocharacters is two-dimensional, spanned by χ∗1 and χ∗2 defined as follows:

χ∗i (fj) =
{

1 if i = j
0 otherwise .

The valuation cone V associated to G/H is {α1χ
∗
1 + α2χ

∗
2 | α1 ≥ α2}. The valuation

cone and palette of G/H are shown in Figure 2.3.
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Let us now determine the colored fan associated to Bl0 (A4) as a Gl2-embedding.

Under the prescribed action of G, there are four G-orbits:

Gl2 := {((xij), [yij]) | (xij) ∈ Gl2}

R1 := {((xij), [yij]) | (xij) has rank 1}

P(Gl2) := {(0, [yij]) | (yij) ∈ Gl2}

P(R1) := {(0, [yij]) | (yij) has rank 1}

Only one of these orbits is closed: P(R1), so we will have one maximal colored cone.

There are three B-stable prime divisors of Bl0 (A4): the exceptional divisor E,

V (y11y22 − y12y21) = V (det(yij)), and the color V (x22). The only B-stable prime

divisors containing P(R1) are E and V (det(yij)). Both of these are also G-stable, so

our fan will have no colors. Along E, f2 clearly vanishes with order 1 and f1 can be

written in the form f1 = f2 ·(y11y22−y12y21)/y2
22, so it also vanishes with order 1 along

E. Thus we obtain a ray σ1,1 in the direction (1, 1). Along V (det(yij)), f1 vanishes

with order 1 and f2 doesn’t vanish, so we obtain a ray σ1,0 in the direction (1, 0).

Together σ1,0 and σ1,1 span a single two-dimensional cone σ. Figure 2.4 exhibits the

colored cone associated to Bl0(A4).

Now we apply our construction. We start with ⊔NQ(Oi), where the disjoint union

is over four separate colored cones corresponding to the four G-orbits in Bl0(A4).

There is one colored cone of dimension zero (Gl2), two colored cones of dimension

one (R1 and P(Gl2)), and one colored cone of dimension two (P(R1)), so ⊔NQ(Oi)

consists of one copy of Q2, two copies of Q1, and one zero-dimensional vector space.

They are shown in Figure 2.5. The vertical line corresponds to the orbit R1 and the

slanted line to P(Gl2).
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α1

α2

Figure 2.3: The valuation cone and
palette of Gl2

α1

α2

Figure 2.4: The colored cone of Bl0(A4).

Figure 2.5: ⊔NQ(Oi)

Now we consider the valuation cone V of each orbit. We have already seen that

the valuation cone of Gl2 is given by {(α1, α2) | α1 ≥ α2} and the valuation cone of

P(R1) is necessarily trivial. The orbit R1 is a spherical homogeneous space isomorphic

to V (x11x22 − x12x21) ⊂ A4 \ {0}. The B semi-invariant rational functions k(R1)(B)

are just the powers of f2 since f1 vanishes along R1. We can define valuations that

consider the degree of a rational function similarly to Example 2.1.6, so the valua-

tion cone V(R1) is a copy of Q. Alternatively, V(R1) is the image of V(Gl2) under

the projection map NQ(Gl2) → NQ(R1). This map is defined by taking a product
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fα1
1 fα2

2 ∈ k(Gl2)(B)/k∗ to fα2
2 ∈ k(R1)(B)/k∗. The image of V(Gl2) is all of NQ(R1),

so V(R1) = NQ(R1).

Finally, the orbit P(Gl2) is D(y11y22−y12y21) ⊂ P3. The B semi-invariant rational

functions k(P(Gl2))(B) are spanned by (y11y22 − y12y21)/y2
22 since they must have

the same degree in the numerator and denominator. Since ν(f1) ≥ ν(f2) for any

G-invariant valuation ν on M(Gl2), we have ν((y11y22 − y12y21)/y2
22) ≥ 0 for any G-

invariant valuation ν on M(P(Gl2)). Thus, V(P(Gl2)) is a ray in NQ(P(Gl2)). The

union of the valuation cones and their gluing is illustrated in Figure 2.6. In Table 2.2

we exhibit several other embeddings of Gl2 along with their associated colored cones

and colored tropicalizations.

Figure 2.6: ⊔Vi and the tropicalization of Bl0(A4)

2.5 Tropicalizing Morphisms

In this section, we describe how a morphism between spherical varieties induces

a morphism between their tropicalizations. This theory is somewhat independent of

the rest of the chapter, but it will be an important part of Chapter 4. We include

it here rather than Chapter 4 because there we work over C and this section holds
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Variety Colored Fan Colored
Tropicalization

Gl2

A4 \ {0}

A4

Bl0(A4)

P4 \ {0}

P4

Bl0(P4)

Table 2.2: Colored fans and colored tropicalizations of Gl2-embeddings
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in the generality of k an arbitrary algebraically-closed field. Our main result is that

these tropicalized morphisms commute with tropicalization (Proposition 2.5.2), which

extends [21, Corollary 6.2.17].

Let X and X ′ respectively be a G/H-embedding and a G/H ′-embedding. If Φ :

X → X ′ is a G-morphism induced by a surjective G-equivariant morphism G/H →

G/H ′, then there is an induced continuous map trop(Φ) : trop(X)→ trop(X ′).

Before describing the map, we collect some facts about morphisms between spher-

ical varieties as stated in [18, §4]. First, a G-equivariant dominant morphism Φ :

G/H → G/H ′ between spherical homogeneous spaces induces an injection Φ∗ :

M(G/H ′) ↪→M(G/H). This in turn induces a surjection Φ∗ : NQ(G/H)→ NQ(G/H ′),

which restricts to Φ∗ : V(G/H) → V(G/H ′). Note that Φ∗ is defined by f 7→ f ◦ Φ

and Φ∗ is defined by µ 7→ µ ◦ Φ∗.

Let Oi ⊆ X be a G-orbit with valuation cone Vi. Because Φ is G-equivariant,

it takes orbits of X to orbits of X ′, so Φ(Oi) ⊆ O′i for some orbit O′i of X ′. Let V′i

denote the valuation cone of O′i. By restriction, we have a map Oi → O′i and hence an

induced map V(Oi)→ V(O′i). Since this holds for each G-orbit of X, we can define a

map trop(Φ) : ⊔i Vi → ⊔
j V
′
j by taking the disjoint union of the pushforwards.

Suppose that we have a morphism Φ : G/H → G′/H ′ of spherical homogeneous

spaces that is equivariant with respect to some surjective homomorphism of algebraic

groups ϕ : G → G′. We would like to define the tropicalization of Φ in this setting

where G is not necessarily equal to G′. The homomorphism ϕ gives an action of G

on G′/H ′; we show that this action makes G′/H ′ a spherical homogeneous space with

respect to G.
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By choosing an appropriate basepoint, we may assume that Φ(H) = H ′. Equiv-

ariance then implies that for any g ∈ G, Φ(gH) = ϕ(g)H ′. Note that we also have

φ(H) ≤ H ′. Indeed, if h ∈ H, we have H ′ = Φ(H) = Φ(hH) = ϕ(h)H ′, so ϕ(h) ∈ H ′.

Then Φ can be factored as the natural projection G/H → G/ϕ−1(H ′) followed by

ϕ : G/ϕ−1(H ′) → G′/H ′ given by gϕ−1(H ′) 7→ ϕ(g)H ′. By Zariski’s Main Theorem

(see for example [22, §III.9]), G/ϕ−1(H ′) ∼= G′/H ′ as varieties as G′/H ′ is normal,

so Φ : G/H → G′/H ′ may be realized as the projection G/H → G/ϕ−1(H ′), and we

may define trop(Φ) : tropG (G/H)→ tropG (G/ϕ−1(H ′)) as we did when G′ = G and

ϕ was the identity. This makes G′/H ′ a spherical homogeneous space with respect to

the action of G.

Proposition 2.5.1. Let X and X ′ be a G/H-embedding and a G′/H ′-embedding,

respectively. Suppose Φ : X → X ′ is a dominant morphism equivariant with respect

to a surjective homomorphism ϕ : G→ G′. Then trop(Φ) is continuous.

Proof. By the argument preceding the proposition, we may assume that G = G′ and

ϕ is the identity map.

Let µ ∈ tropG(O) where O is aG-orbit inX and let theG-orbit Φ(O) correspond to

a colored cone (σ′,F′). Then there is a sequence {µ`}∞`=1 ⊂ tropG(G/H) of valuations

such that lim`→∞ µ` = µ in the topology on tropG(X). Let f ∈ (σ′)∨ ∩M′ be an

arbitrary B semi-invariant rational function on the orbit Φ(O). Then:

lim
`→∞

(trop(Φ)(µ`))(f) = lim
`→∞

(µ` ◦ Φ∗)(f)

= lim
`→∞

µ` ◦ (f ◦ Φ)

= µ ◦ (f ◦ Φ)

= (trop(Φ)(µ))(f).
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It follows that trop(Φ)(µ`)→ trop(Φ)(µ) as `→∞, and the claim follows.

Proposition 2.5.2. Let X and X ′ be spherical embeddings with respect to groups

G and G′, respectively. Let Φ : X → X ′ be a dominant morphism equivariant with

respect to a surjective homomorphism ϕ : G → G′ such that G/ϕ−1(H) ∼= G′/H ′ as

varieties. Then if Y ⊆ X is a subvariety, tropG′(Φ(Y )) = trop(Φ)(tropG(Y )).

Proof. As before, we may assume that G = G′ and ϕ is the identity map.

Let O ⊆ X be an arbitrary G-orbit of X and consider the restriction of trop(Φ) to

the valuation cone V(O) associated to O. By definition of trop(Φ), the image of V(O)

lies in the valuation cone V(O′) of some orbit O′ ⊆ X ′. We will prove the statement

in the case that Y ⊆ O is a subvariety of the spherical homogeneous space O. The full

statement follows directly by considering the individual intersections of a subvariety

with each orbit.

Let γ : SpecK → Y be a K-point of Y . Then Φ ◦ γ is a K-point of Φ(Y ) and all

K-points of Φ(Y ) arise in this way. This is because Φ : O → O′ is surjective as it is

G-equivariant with respect to the surjective map ϕ. Thus, tropG(Φ(Y )) is defined as

follows:

tropG(Φ(Y )) :=
{

k(Φ(Y ))(B) → Q
f 7→ ν((Φ ◦ γ)∗(gf)) : γ ∈ Y

(
K
)}

,

where g is chosen to be sufficiently general for a given f . The tropicalization of Y is

tropG(Y ) :=
{

k(Y )(B) → Q
f 7→ ν(γ∗(gf)) : γ ∈ Y

(
K
)}

,

again for sufficiently general g. Applying trop(Φ) means taking νγ 7→ νγ ◦Φ∗, so this

gives us trop(Φ)(tropG(Y )):

trop(Φ)(tropG(Y )) :=
{

k(Φ(Y ))(B) → Q
f 7→ ν(γ∗(gΦ∗(f))) : γ ∈ Y

(
K
)}

.
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To prove the proposition, we need to show that ν((Φ ◦ γ)∗(gf)) = ν(γ∗(gΦ∗(f))) for

all f ∈ k(Φ(Y ))(B) where g is chosen to be sufficiently general for both f and Φ∗(f).

Note that (Φ ◦ γ)∗ = γ∗ ◦ Φ∗, so it will be sufficient to show that Φ∗(gf) = gΦ∗(f).

For x ∈ Y we have the following, using the fact that Φ is G-equivariant:

Φ∗(gf)(x) = (gf ◦ Φ)(x) = f(g−1Φ(x)) = (f ◦ Φ)(g−1x) = g(f ◦ Φ)(x) = gΦ∗(f)(x).

Thus, Φ∗(gf) = gΦ∗(f) and so the proposition holds.
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Chapter 3: An Extended Fundamental Theorem

Along with Vogiannou’s work, Kaveh and Manon in [17] give an alternate means

for tropicalizing subvarieties of spherical homogeneous spaces. Their approach uses

a Gröbner theory for spherical varieties that they develop. Ultimately, they prove

via a fundamental theorem that the two constructions coincide. In this chapter, we

describe how their construction can be extended to spherical embeddings and show

that this notion of extended spherical tropicalization coincides with that described in

§2.3. We retain the conventions and notation used previously.

In §3.1, we recall the Fundamental Theorem of Tropical Geometry from the toric

case and its extension to toric varieties. Then §3.2 discusses Gröbner tropicalization

of spherical homogeneous spaces and §3.3 shows how this can be extended to spherical

embeddings.

3.1 The Fundamental Theorem

We begin by outlining the Fundamental Theorem of Tropical Geometry in the

toric case (cf. [28, Theorem 2.1] or [21, Theorem 3.2.3]). As in Chapter 1, we work

over Q as this is the standard convention in spherical geometry; our results can be

modified by tensoring with R to no ill effect.
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Let v : k → Q be a valuation with a splitting ϕ : v(k∗) → k∗ such that (v ◦

ϕ)(w) = w; we write tw := ϕ(w). The valuation v has an associated valuation ring

R := {x ∈ k | v(x) ≥ 0} with maximal ideal m := {x ∈ k | v(x) > 0}. Denote by x

the image of x ∈ R under the projection map R→ k := R/m. Let f = ∑
u∈Zn auxu ∈

k[x±1
1 , . . . , x±1

m ] and let w = (w1, . . . , wm) ∈ Qm be an arbitrary vector. We call w

the weight vector. Write

W := trop f(w) = min
au 6=0
{v(au) + u ·w} .

Definition 3.1.1. The initial form inw(f) ∈ k[x±1
1 , . . . , x±1

m ] of f := ∑
u∈Zm auxu

with respect to the weight vector w is:

inw(f) :=
∑

u∈Zm

v(au)+u·w=W

t−v(au)auxu = t−Wf(tw1x1, . . . , twmxm).

The second characterization here is only valid when w ∈ (v(k∗))m since otherwise the

twi are not defined.

Definition 3.1.2. The initial ideal of an ideal I ⊆ k[x±1
1 , . . . , x±1

m ] with respect to

w ∈ Qm is

inw(I) := 〈inw(f) | f ∈ I〉.

We can now recall the Fundamental Theorem from Chapter 1:

Theorem 3.1.3. Fundamental Theorem of Tropical Geometry. Let k be an alge-

braically closed field with a nontrivial valuation v and let I ⊆ k[x±1
1 , . . . , x±1

m ] be an

ideal with associated variety V (I) = {x ∈ (k∗)m | f(x) = 0 for all f ∈ I} in (k∗)m.

Then the following subsets of Qm coincide:

1. tropV (I) := ⋂
f∈I tropV (f);
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2.
{
w ∈ Qm | inw(I) 6= k[x±1

1 , . . . , x±1
m ]
}
;

3. The closure in Qm of the set

v(V (I)) := {(v(x1), . . . , v(xm)) | (x1, . . . , xm) ∈ V (I)} .

We now describe how Theorem 3.1.3 can be extended to the tropicalization of

toric varieties in the spirit of [16] and [26].

If f = ∑
cux

u ∈ k[x1, . . . , xm] and w ∈ Qm, we define

trop(f)(w) := min {v(cu) + w · u : u ∈ (N ∪ {0})m}

with the convention that if wi = ∞, then wi · ui = ∞ when ui 6= 0 and wi · ui = 0

when ui = 0. When trop(f)(w) <∞, then we define the initial form inw(f) exactly

as in Definition 3.1.1. If trop(f)(w) = ∞, then we define inw(f) = 0. The ideal

inw(I) = 〈inw(f) : f ∈ I〉 ∈ k[x1, . . . , xm] is defined as before.

We establish one final piece of notation before stating the theorem. If σ ⊆

{1, 2, . . . , n} and w ∈ Qm−|σ| is indexed by {i : i /∈ σ}, then we write w×∞σ ∈ Qm to

be the vector that is wi when the coordinate i /∈ σ and ∞ otherwise. If Σ ⊆ Qm−|σ|,

then Σ×∞σ := {w×∞σ : w ∈ Σ}. Now we can state the theorem:

Theorem 3.1.4. [21, Theorem 6.2.15] Let Y be a subvariety of Am, and let I ⊆

k[x1, . . . , xm] be its ideal. Then the following subsets of Qm = trop(Am) coincide:

1. ⋂f∈I trop(V (f));

2. the set of vectors w ∈ Qm for which inw(I) ⊆ k[x1, . . . , xm] does not contain a

monomial; and
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3. the set ⋃
σ⊆{1,...,m}

trop(Y ∩Oσ)×∞σ,

where Oσ = {x ∈ Am : xi = 0 for i ∈ σ, and xj 6= 0 for j /∈ σ}.

This statement is restricted to subvarieties of affine space, but it can be extended

to arbitrary toric varieties by tropicalizing a quotient of a subvariety of the Cox ring

of the variety. This is described explicitly in [21, Corollary 6.2.16].

3.2 Spherical Gröbner tropicalization

We now describe the Kaveh-Manon notion of the tropicalization of a spherical

homogeneous space. We will give an overview of the relevant points of [17, §4], which

is relatively self-contained. There is a great deal of general theory on this subject

from [17] that will be omitted.

Let G/H be a spherical homogeneous space and let B ≤ G be a Borel subgroup

with associated palette D. We denote the open orbit of B in G/H by (G/H)B, and

it is given as follows:

(G/H)B = (G/H) \
⋃
D∈D

D.

For fixed v ∈ V and a ∈ Q, define k [(G/H)B]v≥a := {f ∈ k [(G/H)B] : v(f) ≥ a}

and similarly k [(G/H)B]v>a. We define a graded algebra grv(k [(G/H)B]) as follows:

grv (k [(G/H)B]) =
⊕
a∈Q

k [(G/H)B]v≥a /k [(G/H)B]v>a . (3.1)

(We note that there is an oversight in [17] as to this definition: the direct sum

is taken over Q≥0 rather than Q; Q is the correct notion.) Let f ∈ k [(G/H)B]

and v ∈ V and write v(f) = a. Then we define inv(f) to be the quotient of f in

46



k [(G/H)B]v≥a /k [(G/H)B]v>a. If JB ⊆ k [(G/H)B] is an ideal, we define

inv(JB) := 〈inv(f) : f ∈ JB〉 ⊆ grv (k [(G/H)B]) .

We write VB(JB) to denote the set of v ∈ V such that inv(JB) 6= grv (k [(G/H)B]).

Definition 3.2.1. Let Y ⊆ G/H be a closed subvariety defined by an ideal J ⊆

k[G/H]. For each Borel subgroup B ≤ G, let JB ⊆ k [(G/H)B] denote the ideal

that defines Y ∩ (G/H)B as a subvariety of (G/H)B. Then we define the Gröbner

tropicalization of Y to be

tropgr
G (Y ) :=

⋃
B

VB (JB) ,

where the union is indexed over all Borel subgroups B of G.

Kaveh and Manon show ([17, Proposition 4.10]) that in fact we need only take

the union over a finite number of Borel subgroups of G. The following theorem

and example illustrate the necessity of taking a union of multiple Borel subgroups.

Ultimately, we want to show that Gröbner tropicalization agrees with Vogiannou’s

tropicalization, and valuations lying in Vogiannou’s tropicalization can be missed if

not enough Borel subgroups are used.

Theorem 3.2.2. [17, Theorem 4.6] Let Y ⊆ (G/H)B be a subvariety defined by an

ideal J ⊆ k [(G/H)B]. Let v ∈ V be a valuation, let X be the G/H-embedding whose

colored fan consists of the ray spanned by v, and let O be the closed G-orbit in X.

Then v lies in VB(J) if and only if the closure of Y in X intersects the open B-orbit

of O.

Example 3.2.3. (cf. [14, Example 4.3]) Let G = Sl2, H be the diagonal torus, and

B be the upper triangular matrices. Then G/H ∼= (P1 × P1) \ O, where O denotes
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the diagonal and G acts naturally on each copy of P1. The map G → (P1 × P1) \ O

is given as follows; its kernel is H:(
x11 x12
x21 x22

)
7→
([

x11
x21

]
,

[
x12
x22

])
.

Then the palette D consists of two colors: V (x21) and V (x22). The B semi-invariant

rational functions are integer powers of g := (x11x22 − x12x21)/x21x22 and the lattice

N is isomorphic to Z. We claim V is the ray generated by the G-invariant valuation

f 7→ order of vanishing of f along O.

Note that g 7→ 1 under this valuation. We show that no valuation sending g to a

negative number can be G-invariant. Note first that(
0 1
−1 0

)
· x22

x12
= −x12

x22
and

(
0 1
−1 0

)
· x21

x11
= −x11

x21

This implies any G-invariant valuation must take both x12
x22

and x11
x21

to 0. Thus, if v is

a G-invariant valuation, we have that

v(g) = v
(
x11x22 − x12x21

x21x22

)
= v

(
x11

x21
− x12

x22

)
≥ min

{
v
(
x11

x21

)
, v
(
x12

x22

)}
= 0.

Therefore, any G-invariant valuation must take g to a non-negative number.

Both colors map to the same point outside the valuation cone and the only G/H-

embedding is X ∼= P1 × P1, whose colored fan is the ray V. The data from the

homogeneous space is shown in Figure 3.1.

Figure 3.1: Spherical data for (P1 × P1) \O; V is the ray to the right and both colors
lie on the left
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We have that

(G/H)B = (G/H) \ {V (x21), V (x22)}

= {([x11 : x21], [x12 : x22]) : x21, x22, x11x22 − x12x21 6= 0}

= {([x11 : 1], [x12 : 1]) : x11 6= x12}

∼= A2 \∆.

Here, ∆ represents the diagonal of A2. This tells us that:

k [(G/H)B] ∼= k[x11, x12, (x11 − x12)±].

Let us consider J = (x21) and the corresponding subvariety Y := V (x21) ⊂ G/H.

The closure of Y in X intersects O in the point ([1 : 0], [1 : 0]), which does not lie

in the open B-orbit of O. Thus, Theorem 3.2.2 tells us grB(JB) consists solely of the

trivial valuation since it can contain no other valuation along the ray V.

If instead we had used the Borel subgroup B′ of lower triangular matrices, then

the resulting palette D′ would consist of V (x11) and V (x12) and we would still have

(G/H)B′ ∼= A2 \∆. The important difference is that in this case we have:

(G/H)B′ = {([1 : x21], [1 : x22]) : x21 6= x22} .

The subvariety Y still intersects the closed G-orbit of X in the point ([1 : 0], [1 : 0]),

but this point lies in the open B′-orbit. Thus, grB′(JB′) consists of the valuation cone

V, which is the tropicalization of V (x21). In general, if Y ⊆ G/H is cut out by an

ideal J , we have tropgr
G (Y ) = VB(JB) ∪ VB′(JB′).

This notion of spherical tropicalization via Gröbner theory agrees with Vogian-

nou’s tropicalization:
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Theorem 3.2.4. [17, Theorem 5.15] Let Y ⊆ G/H be a closed subvariety. Then

Gröbner tropicalization coincides with spherical tropicalization:

tropG(Y ) = tropgr
G (Y ).

3.3 Extended Gröbner tropicalization

In this section we extend Gröbner tropicalization to encompass spherical embed-

dings. Let X be a simple spherical embedding defined by a colored cone (σ,F). Write

O for the unique closed G-orbit of X, write D(X) for the set of B-stable prime di-

visors of X, and write DO(X) for the B-stable prime divisors of X that contain O.

There is a B-stable subset XB of X defined by:

XB := X \
⋃

D∈D(X)\DO(X)
D,

in other words by throwing out the B-stable prime divisors not containing O. Note

that this is consistent with the earlier notation (G/H)B and that (G/H)B = XB ∩

(G/H). This theory appears with more detail in [18, §2], where the notation X0 is

used rather than XB. The following is a straightforward extension of [17, Theorem

4.1].

Theorem 3.3.1. Let X be a simple G/H-embedding with closed orbit O. The subset

XB is open and affine, and O ∩ XB is a B-orbit. Further, the regular functions on

XB can be described as follows:

k [XB] = {f ∈ k [(G/H)B] : νD(f) ≥ 0 for all D ∈ DO(X)} .

Proof. The first claims are from [18, Theorem 2.1]. Turning to the regular functions,

note that because (G/H)B is open in XB, we can identify a function in k [XB] with
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its restriction to (G/H)B. The functions in k [(G/H)B] that are restrictions in this

way are precisely those that do not have poles when evaluated at points in XB \

(G/H)B. In other words, they are the functions f such that νD(f) ≥ 0 for all

D ∈ DO(X). Conversely, if we have a function in k [(G/H)B], it extends (uniquely)

to k [XB] precisely when it does not have poles along any D ∈ DO(X).

The orbit O is a spherical homogeneous space under the action of G with open

B-orbit O ∩XB. It follows that D(O) = {D ∩ O : D ∈ D(X) \DO(X)}.

Now denote by V (XB) the extended G-invariant Q-valuations on k [(G/H)B] that

are finite on k [XB]:

V (XB) :=
{
v : k [(G/H)B]→ Q : k [XB] ⊆ v−1(Q)

}
.

Observe that V (XB) can be identified with a subset of NV(σ). Indeed, a G-invariant

Q-valuation on k [(G/H)B] induces a semigroup homomorphism σ∨ ∩M→ Q in the

same way a G-invariant Q-valuation on k [G/H] does. The only difference is that

valuations on k [(G/H)B] cannot take infinite values on functions cutting out the

B-stable divisors because these functions are invertible in k [(G/H)B].

For any v ∈ V (XB), we define grv (k [XB]) as follows (cf. Equation (3.1)).

grv (k [XB]) = k [(G/H)B]v=∞ ⊕
⊕
a∈Q

k [(G/H)B]v≥a /k [(G/H)B]v>a , (3.2)

where k [(G/H)B]v=∞ := {f ∈ k [(G/H)B] : v(f) =∞}. If we further assert that

k [(G/H)B]v>∞ := {0}, then we may write

grv (k [XB]) =
⊕
a∈Q

k [(G/H)B]v≥a /k [(G/H)B]v>a .

Note that if v ∈ V, the first summand of Equation (3.2) vanishes and grv (k [XB]) =

grv (k [G/HB]). For f ∈ k [XB], J ⊆ k [XB], and v ∈ V(XB), we define inv(f)
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and inv(J) as before. Similarly, VB(J) is the set of v ∈ V(XB) such that inv(J) 6=

grv (k [XB]). Now we can define the extended Gröbner tropicalization of a subvariety

of a spherical embedding:

Definition 3.3.2. Let X be a simple G/H-embedding associated to a colored cone

(σ,F) and Y ⊆ G/H a closed subvariety defined by an ideal J ⊆ k[G/H]. Let Y ⊆ X

denote the closure of Y in X. For each Borel subgroup B ≤ G, let JB ⊆ k [XB]

denote the ideal that defines Y ∩ XB as a subvariety of XB. The extended Gröbner

tropicalization of Y in NV(σ) is:

tropgr
G

(
Y
)

:=
⋃
B

VB
(
JB
)
.

In particular, if Y = G/H, then

tropgr
G (X) =

⋃
B

VB(0).

IfX is a non-simple G/H-embedding, we define tropgr
G

(
Y
)
as follows. For each simple

G/H-embedding X ′ ⊆ X, compute tropgr
G

(
Y ∩X ′

)
⊆ tropgr

G (X ′) and glue together

along shared valuations.

We finally prove an extended fundamental theorem equating our two notions of ex-

tended spherical tropicalization. We first prove the statement for simple embeddings

and then deduce the full result as a corollary.

Theorem 3.3.3. Let X be a simple G/H-embedding and Y ⊆ G/H be a closed

subvariety. Then

tropG(Y ) = tropgr
G (Y )

as subspaces of NV(σ), where the closure Y is taken in X.
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Proof. We first show that tropG(X) = tropgr
G (X). Let (σ,F) be the colored cone

associated to X and let O be the G-orbit associated to a colored face τ � σ. If

B ≤ G is a Borel subgroup, denote by DO(X) ⊆ D(X) the set of B-stable divisors of

X that contain O. Write

XB(O) := X \
⋃

D∈D(X)\DO(X)
D ⊆ XB

and note that XB(O) = XB when O is the unique closed orbit of X. We can charac-

terize the regular functions on XB(O) as we did in Theorem 3.3.1:

k [XB(O)] = {f ∈ k [(G/H)B] : νD(f) ≥ 0 for all D ∈ DO(X)} .

Now consider the following subset:

{
v : k [(G/H)B]→ Q : k [XB(O)] = v−1(Q)

}
⊆ V (XB) ⊆ NV(σ).

The condition that k [XB(O)] = v−1(Q) is the same as the condition that v satisfies

v−1(Q) = τ⊥ ∩ (σ∨ ∩M), with the additional requirement that functions vanishing

along the B-stable prime divisors aren’t sent to ∞. Taking the union over all Borel

subgroups thus gives a copy of V(O) ⊆ Hom
(
τ⊥ ∩ (σ∨ ∩M) ,Q

)
in tropgr

G (X). This

holds for all G-orbits O, so tropgr
G (X) = tropG(X).

Now if Y ⊆ G/H is a closed variety, suppose Y ∩O 6= ∅ for some G-orbit O. Then

Theorem 3.2.4 ensures that tropG
(
Y ∩ O

)
= tropgr

G

(
Y ∩ O

)
in V(O) ⊆ NV(σ). As

this holds for every orbit O, the statement follows.

Corollary 3.3.4. Let X be a G/H-embedding and Y ⊆ G/H a closed subvariety.

Then

tropG(Y ) ∼= tropgr
G (Y ),

where the closure Y is taken in X.
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Proof. Theorem 3.3.3 proves this for simple embeddings. The gluing operation be-

tween tropicalizations of simple embeddings is identical for both constructions, so the

result follows.
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Chapter 4: Global Spherical Tropicalization via Toric

Embeddings

In his thesis [33], Tassos Vogiannou introduces a notion of spherical tropicalization

for a spherical homogeneous space G/H. Broadly speaking, this operation records

the G-invariant divisors on the field of rational functions while the standard toric

tropicalization instead records torus-invariant divisors. Kaveh and Manon in [17]

recover this construction using a Gröbner theory for spherical varieties that they

develop. In Chapters 2 and 3, we proposed a means for tropicalizing embeddings of

spherical homogeneous spaces. There we define two constructions—one that mimics

the theory for toric varieties developed by Kajiwara [16] and Payne [26] and one that

extends the Gröbner theory definition of Kaveh and Manon—and show that they

coincide.

In this chapter, we give a third method for obtaining the tropicalization of a

spherical embedding. This method is global, by which we mean the tropicalization

operation need only be applied once to a single object. It is possible to globally

tropicalize a toric variety by tropicalizing the quotient construction of a toric variety

via the Cox ring. See [26, Remark 3.5] or [21, §6.2] for a description of this. For details

on the quotient construction, refer to [7] and [8] and for a comprehensive overview

of Cox rings in general, see [2]. Our aim is to mimic this construction for spherical
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varieties. This is noteworthy because in the constructions of spherical tropicalization

from Chapters 2 and 3, the spherical variety is divided into simple G/H-embeddings,

these are tropicalized separately, and then the tropicalizations are glued together.

The construction follows Gagliardi’s work in [14], where he describes the Cox

ring of a spherical embedding using its combinatorial data (see also [5]). We begin

by embedding the spherical variety in a toric variety, which is an example of the

embedding of a Mori dream space into a toric variety described by Hu and Keel [15].

Once embedded in the toric variety, we can tropicalize there using the standard toric

theory. Then applying a particular piecewise projection map will deliver the spherical

tropicalization.

This process does not work for all spherical varieties. When the spherical variety

does not have the A2-property (Definition 4.4.1), embedding into a toric variety is

not possible. The tropicalization of a spherical variety without the A2-property can

still be described using this theory, but it cannot be done globally.

The layout of this chapter is as follows. In §4.1, we review some of the theory of

spherical varieties and their tropicalization. We explain a novel means of tropicalizing

subvarieties of a spherical homogeneous spaces using toric embeddings in §4.2. The-

orems 4.2.2 and 4.2.5 prove that this new method coincides with the original theory

of [33]. In §4.3 we show how to embed toroidal spherical varieties in toric varieties

and in §4.4 we extend this to spherical embeddings with color. Finally, §4.5 shows

how to recover the extended tropicalization of an embedding by using the toric trop-

icalization. We also show in this section that taking the closure commutes with the

tropicalization operation.
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In this chapter we work over the complex numbers C rather than an arbitrary

algebraically closed field k as in Chapters 2 and 3. Some of the results we cite in this

chapter are given over C, so we restrict ourselves to this setting to ensure accuracy.

4.1 Background

We review some of the theory of spherical varieties. Throughout this chapter,

we work over C. For additional background, refer to [20], [18], [25], or [27]. If G

is a connected reductive group and H ≤ G is a closed subgroup, then the quotient

G/H is a (spherical) homogeneous space if it is a normal variety containing a dense

orbit of a Borel subgroup B. A spherical embedding X is a normal G-variety with

an open equivariant embedding G/H ↪→ X. We will also call X a spherical variety

or a G/H-embedding if we wish to highlight the underlying homogeneous space. A

spherical variety X is modeled by a combinatorial object called a colored fan. We

recall the outline of the theory here; refer to the cited papers for further details.

Denote by X the group of characters B → C∗ on B. The set C(G/H)(B) of B

semi-invariant rational functions on G/H is defined by

C(G/H)(B) := {f ∈ C(G/H)∗ : there exists χf ∈ X such that gf = χf (g)f for all g ∈ B} ,

where the action of g on f is given by gf(x) := f (g−1x) for x ∈ G/H. The subset

M ⊆ X of characters χf associated to f ∈ C(G/H)(B)/C∗ is a lattice. We write

N := Hom(M,Z) to denote its dual. Further, MQ := M⊗Z Q and NQ := N⊗Z Q are

the associated Q-vector spaces. We write V(G/H) to denote the set of G-invariant

valuations on C(G/H)∗ that are trivial when restricted to C∗. A given v ∈ V(G/H)

induces a homomorphism C(G/H)(B)/C∗ → Q, namely f 7→ v(f). Because f can be

associated to a character χf , this homomorphism induces an element of NQ. Thus,
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we obtain a map V(G/H) → NQ, which is an inclusion ([20, Proposition 7.4]). We

will identify V(G/H) with its image in NQ, which is a convex polyhedral cone. We

call V(G/H) the valuation cone of G/H and write it as V when G/H is understood.

We also obtain a palette D of colors associated to G/H. These are the prime

divisors of G/H that are B-stable but not G-stable. Each D ∈ D induces a valuation

vD given by vanishing along D. Thus, we obtain a map ρ : D→ N given by D 7→ vD;

it need not be injective. We now have enough background to define colored cones and

colored fans:

Definition 4.1.1. A colored cone (σ,F) consists of a cone σ ⊆ NQ and a subset

F ⊆ D such that:

(i) σ is generated by ρ(F) and finitely many elements of V;

(ii) int(σ) ∩ V 6= ∅,

where int(σ) denotes the relative interior of σ. We call (σ,F) strictly convex if in

addition σ is strictly convex and 0 /∈ ρ(F).

Definition 4.1.2. A colored cone (τ,F′) is a face of a colored cone (σ,F) if τ is a

face of σ and F′ = F ∩ ρ−1(τ). We write τ � σ in this case.

Definition 4.1.3. A colored fan Σ is a collection of colored cones such that:

(i) If (σ,F) ∈ Σ, the every face of (σ,F) is in Σ;

(ii) For every v ∈ V, there is at most one (σ,F) ∈ Σ with v ∈ int(σ).

We say Σ is strictly convex if in addition every colored cone in Σ is strictly convex.
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Note that the relative interiors of two colored cones in a colored fan may inter-

sect nontrivially outside V; we present an instance of this in Example 4.4.5. There

is a bijective correspondence between G/H-embeddings and strictly convex colored

fans. The colored cones in a strictly convex colored fan represent the G-orbits of an

embedding X. Strictly convex colored cones correspond to simple G/H-embeddings,

which have one closed G-orbit. If the colored fan associated to a spherical variety has

no colors, we say that the embedding is toroidal.

Throughout this paper, we denote by ν : C{{t}} → Q the valuation that takes

a Puiseux series to the lowest power of t appearing with nonzero coefficient. Given

a closed subvariety Y ⊆ G/H, we define its spherical tropicalization as follows. For

each C{{t}}-point γ ∈ Y (C{{t}}), we obtain the following associated valuation νγ :

C(G/H)∗ → Q in V:

f 7→ ν (γ∗(gf)) for f ∈ C(G/H)∗ and g ∈ G sufficiently general.

We must explain what we mean by sufficiently general g. For g in an open subset U

of G, the image of γ is in the domain of gf . Furthermore, the minimum of ν (γ∗(gf))

over all g ∈ G is met on an open subset W . A sufficiently general g lies in U ∩W .

The tropicalization tropG(Y ) ⊆ V is the collection of νγ for all γ ∈ Y (C{{t}}). Note

that the subscript G records which group action we are tropicalizing with respect to

and observe that tropG(G/H) = V(G/H).

We briefly describe the extended tropicalization construction for spherical embed-

dings from [23]. If X is a G/H-embedding and O ⊆ X is a G-orbit, then O is itself

a homogeneous space with respect to the action of G. Thus, O has a valuation cone
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V(O). As a set, the spherical tropicalization is

tropG(X) :=
⊔

O⊆X
V(O).

Note that the subscript G is used to record which group action we are considering.

The subset V(O) ∈ tropG(X) can be thought of as extended valuations on C[G/H],

i.e. semigroup homomorphisms C[G/H] → Q ∪ {∞}. Which elements of C[G/H]

that are allowed to be sent to ∞ is determined by which functions in C[G/H] vanish

along O. The topology on tropG(X) in essence adds on these extended valuations

by considering them as limit points of finitely-valued Q-valuations. If Y ⊆ X is a

closed subvariety, we obtain its tropicalization tropG(Y ) by separately tropicalizing

its intersection Y ∩ O with each G-orbit O of X. We define

tropG(Y ) :=
⊔

O⊆X
tropG(Y ∩ O) ⊆ tropG(X)

and apply the subspace topology inherited from tropG(X).

We can identify the tropicalization of a simple G/H-embedding consisting of one

maximal colored cone (σ,F) with a set of semigroup homomorphisms HomV(σ∨ ∩

M,Q) ⊆ Hom(σ∨ ∩M,Q). This set consists of all semigroup homomorphisms µ ∈

Hom(σ∨ ∩M,Q) such that µ−1(Q) = τ⊥ ∩ σ∨ ∩M where (τ,F′) is a face of (σ,F).

We establish some notational conventions. Throughout, X denotes a spherical

embedding, Y ⊆ G/H denotes a closed subvariety of a homogeneous space, and Z

denotes a toric variety. The combinatorial data associated to spherical varieties is

written in non-calligraphic font when referring to toric varieties. That is, a toric

variety has the lattices M and N rather than M and N. Finally, we write Q :=

Q ∪ {∞}.
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4.2 Tropicalizing Homogeneous Spaces via Toric Embeddings

In [14], Gagliardi proves a theorem relating the valuation cone of G/H to trop-

icalization. Inspired by his result, we find an alternate means for tropicalizing a

subvariety of a spherical homogeneous space. The purpose of this section is to set up

Gagliardi’s theory and show how to recover from it Vogiannou’s spherical tropicaliza-

tion (Theorem 4.2.2).

Throughout, we will always assume that G is of simply connected type, which

means that G = Gss×C where Gss is semi-simple simply connected and C is a torus.

Every connected reductive group G has a finite covering p : G′ → G by a group G′

of simply connected type and G/H is isomorphic to the spherical homogeneous space

G′/p−1(H), so this is not a restrictive assumption.

We work initially over a spherical homogeneous space G/H with trivial divisor

class group, which implies that G/H is quasi-affine and C[G/H] is a unique factor-

ization domain. The case of non-trivial divisor class group will be handled later. We

will describe how to associate a toric variety Z0 to G/H. Each color in the palette of

G/H is a prime divisor Di = V (fi). The orbit of fi in C[G/H] under the action of G

spans a G-module of some rank si. We choose a basis {fi1 := fi, fi2, . . . , fisi
} ⊆ G · fi

for this G-module. Further, Γ
(
G/H,O∗G/H

)
/C∗ is a finitely generated free abelian

group with basis {gk}mk=1. The characters associated to fi and gk span the lattice M of

characters of B semi-invariant rational functions k(G/H)(B). Denote these characters

by v∗i and w∗k, respectively. Define a toric variety

Z0 := (Cs1 \ {0})× · · · × (Csr \ {0})× (C∗)m.
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with coordinates fij and gk, matching the basis of M. Denote the lattice of cochar-

acters of Z0 by N ∼= Zs1+···+sr+m with basis {v11, v12, . . . , vrsr , w1, . . . , wm}. Write

T ∼= (C∗)s1+···+sr+m for the dense torus in Z0. The inclusion ι : G/H ↪→ Z0 defined

by x 7→ (fij(x))i,j × (gk(x))k is a closed embedding. This induces a natural action

of G on Z0 commuting with ι. The coordinate ring of Z0 has coordinates Sij for

1 ≤ i ≤ r and 1 ≤ j ≤ si and Tk for 1 ≤ k ≤ m. The inclusion ι is dual to the

map Ψ : C[Z0] → C[G/H] defined by Sij 7→ fij and Tk 7→ gk. Let p denote the

kernel of Ψ so that C[Z0]/p ∼= C[G/H]. Finally, the lattice N dual to M has basis

{v1, . . . , vr, w1, . . . , wm} and we define an inclusion N ↪→ N by vi 7→ vi1 + · · · + visi

and wk 7→ wk.

Theorem 4.2.1 shows how the embedding G/H ↪→ Z0 can be related to the valu-

ation cone of G/H:

Theorem 4.2.1. [14, Theorem 1.7] V(G/H) = tropT(G/H ∩ T) ∩NQ.

We can also write this as tropG(G/H) = tropT(G/H ∩ T) ∩ NQ. In fact, be-

cause NQ ⊆ NQ = tropT(T), we may write tropG(G/H) = tropT(G/H) ∩ NQ. Note

that tropT(G/H) is potentially ill-defined if one does not have a notion of extended

tropicalization since G/H is not necessarily contained in T.

Theorem 4.2.1 does not extend to subvarieties Y ⊆ G/H. That is, tropG(Y ) 6=

tropT(Y ) ∩NQ in general. Ultimately, accounting for subvarieties of G/H requires a

new result independent of Theorem 4.2.1, which we describe now. Note that

tropT(Z0) =
(
Qs1 \ {∞}

)
× · · · ×

(
Qsr \ {∞}

)
×Qm
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and define a map ψ : tropT(Z0)→ NQ as follows:

ψ : tropT(Z0)→ NQ

(a11, . . . , a1s1 , a21, . . . , arsr , b1, . . . , bm) 7→
(

min
1≤j≤s1

{a1j} , . . . , min
1≤j≤sr

{arj} , b1, . . . , bm

)
.

The following theorem is the core idea of this chapter. The further work ultimately

simply expands on this result.

Theorem 4.2.2. If Y ⊆ G/H is a closed subvariety and G/H has trivial divisor

class group, then tropG(Y ) = ψ (tropT(Y )).

Proof. We first consider the left-to-right inclusion. Let γ be a C{{t}}-point of Y ⊆

G/H. Vogiannou’s definition gives us a G-invariant valuation νγ ∈ tropG(Y ) ⊆ NQ

defined by f 7→ ν(γ∗(gf)) for sufficiently general g ∈ G. The dual lattice M to N

is spanned by characters associated to the fi’s and gk’s, so we only need to know

how νγ behaves on these functions to completely determine it as an element of NQ.

Consider νγ(fi) for some i, suppose that g ∈ G is sufficiently general so that νγ(fi) =

ν(γ∗(gfi)), and write gfi = ∑si
j=1 ajfij where aj ∈ C. Generically, the minimum

minj {ν(ajfij(γ))} is met at only one monomial, so we may write νγ(fi) = ν(ajfij(γ))

for some j. Note that ajfij(γ) 6= 0 as otherwise fi would be zero on all of G/H.

Further, observe that by this argument νγ(fij) = νγ(fik) for all j and k as νγ is

G-invariant and fij and fik lie in the same G-orbit. Thus, tropG(Y ) ⊆ NQ ⊆ NQ.

Applying ψ to the T-invariant valuation induced by γ gives νγ, defined by fi 7→

ν(ajfij(γ)).

By [19, Proposition 1.3], the gk are all G eigenvectors, so it follows that the T-

invariant and G-invariant valuations induced by γ act identically on the gk. This

implies the first inclusion.
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Conversely, suppose that γ is a C{{t}}-point of Y ⊆ Z0 and consider ψ (ν̃γ),

where ν̃γ is the T-invariant valuation induced by γ. For fixed i, choose some k such

that minj {ν(fij(γ))} = ν(fik(γ)). Note that by definition of Z0 we cannot have

fij(γ) = 0 for all j, so the minimum is finite and thus the image of Y under ψ is

contained in NQ. For generic g ∈ G, gfi has a nonzero coefficient aik on fik, so it

follows that νγ(fi) = ν(aikfik(γ)) = ψ(ν̃γ)(fi), where νγ is the G-invariant valuation

induced by γ. Because the gk are G-eigenvectors, ν̃γ(gk) = νγ(gk) for all k and so

ψ (ν̃γ) = νγ ∈ tropG(Y ).

Example 4.2.3. Let G = Gl2 and H be the subgroup of upper triangular matrices

with ones on the diagonal. Then G/H ∼= C2 \ {0} where the action of G is given by

matrix multiplication on a vector (x y)T . The Borel subgroup B of upper triangular

matrices has an open orbit D(y), the principal open set where y doesn’t vanish. There

is one color V (y) ⊂ G/H and V = NQ ∼= Q.

In this setting, m = 0, r = 1, s1 = 2, and we may write f11 := y and f12 := x.

The lattice N is spanned by a single ray v1. The left-hand side of Figure 4.1 shows

the vectors v1, v11, and v12. Then Z0 ∼= C2 \ {0} and the inclusion G/H ↪→ Z0 is

an isomorphism given by switching coordinates: (a, b) 7→ (b, a). The tropicalization

tropT(G/H) is Q2 \ {∞} and the inclusion NQ ↪→ NQ is the diagonal map Q ↪→ Q2.

Figure 4.1 illustrates Theorem 4.2.2 in the case where Y = G/H. In the figure,

tropG(G/H) = V appears as a dotted line and we conclude that V = NQ since

tropT(C2 \ {0}) surjects onto NQ via ψ.
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v11

v12

v1

Figure 4.1: The vectors v1, v11, and v12 of Example 4.2.3 (left) and the tropicalization
of the punctured plane with NQ embedded as a dotted line (right)

This result allows us to recover a description due to Vogiannou of the tropicaliza-

tion of subvarieties of G/H in this setting ([33, Example 3.10]). Vogiannou considers

a curve C in G/H = C2 \{0} given by a polynomial f(x, y). He shows that tropG(C)

is a ray oriented to the left in V ∼= Q when the constant term of f is nonzero and

is all of V when the constant term is zero. The condition that the constant term of

f(x, y) is zero is equivalent to saying that the zero vector is contained in the closure

of C in C2. By [21, Proposition 6.3.5], this occurs if and only if tropT(C) intersects

the interior of the first quadrant. In this case, tropT(C) projects onto the right-hand

ray of V under the map ψ, so we conclude that tropG(C) = V.

Example 4.2.4. Let G := Sl2× Sl2, H be the diagonal subgroup, and B consist

of ordered pairs of upper and lower triangular matrices. Then G/H ∼= Sl2 with

coordinates xij for i, j = 1, 2 and the action of G is (g, h) · (xij) = g(xij)h−1. The only

B semi-invariant rational function is f1 := x22 with associated character χ : B → C∗

defined by ((aij), (bij)) 7→ a−1
22 b22. The orbit of x22 under the action of G is

G · x22 = {−g21h12x11 + g21h11x12 − g22h12x21 + g22h11x22 : (gij), (hij) ∈ Sl2}
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It follows that G · f1 has rank four and we may choose as our basis f11 := f1 = x22,

f12 := x21, f13 := x12, and f14 := x11. Finally, Γ
(
G/H,O∗G/H

)
/C∗ is trivial, so

Z0 ∼= C4 \ {0}. The inclusion G/H ↪→ Z0 is then given by (xij) 7→ (x22, x21, x12, x11).

The image of G/H in Z0 is V (f11f14 − f12f13 − 1). The tropicalization of this

variety is the set of extended valuations µ such that the minimum

min {µ(f11) + µ(f14), µ(f12) + µ(f13), 0}

is met more than once. This forces µ(f1j) ≤ 0 for some j. Applying ψ therefore takes

us to the ray in NQ ∼= Q spanned by the valuation f1 7→ −1, so V is a half-space.

We must still consider the case that the spherical homogeneous space has non-

trivial divisor class group. Following [14], we will use bold-faced characters G and

H when the spherical homogeneous space G/H does not have trivial divisor class

group. In general, the spherical data associated to G/H is notated as with G/H but

bold-faced. We still assume that G = Gss×C is of semisimple type. For each Di in

the palette D := {D1, . . . ,Dr}, we consider the pullback of Di under the projection

map G→ G/H . By results in [5], there is a unique fi ∈ C[G] such that V (fi) cuts

out the pre-image of Di, fi is C-invariant, and fi(1) = 1. Then H acts from the

right on fi with character χi ∈ X(H). We will come back to these fi in §4.4.

Gagliardi defines G := G× (C∗)D and

H := {(h,χ1(h), . . . ,χr(h)) : h ∈H} .

The Borel subgroup is B := B × (C∗)D. There is a natural isomorphism H ∼= H

given by projection to the first coordinate and a natural morphism π : G/H → G/H

with the induced surjective map π∗ : NQ → NQ. The B-stable prime divisors in

66



the palette D of G/H are precisely the pullbacks under π of the colors in D. The

character group of (C∗)D is isomorphic to ZD, and we denote its basis by {η1, . . . , ηr}.

Gagliardi shows that G/H has trivial divisor class group ([14, Corollary 3.2]) and that

V = π−1
∗ (V) ([14, Proposition 3.3]).

Theorem 4.2.2 can now be easily generalized using the theory of §2.5:

Theorem 4.2.5. If Y ⊆ G/H is a closed subvariety, then

tropG(Y ) = (trop(π) ◦ ψ)
(
tropT

(
π−1 (Y )

))
.

Proof. By Theorem 4.2.2, this is equivalent to proving

tropG(Y ) = trop(π)
(
tropG

(
π−1(Y )

))
,

which follows directly from Proposition 2.5.2.

Example 4.2.6. Suppose G = Sl2, H is the diagonal torus, and B is the upper

triangular matrices. Then G/H ∼= P1 × P1 \∆, where ∆ is the diagonal and G acts

on each component on the left by matrix multiplication. The homogeneous space

P1 × P1 \∆ has divisor class group Z2. The palette D consists of two colors: V (x21)

and V (x22). The associated characters are both defined by (hij) 7→ h22; call this

character χ. The vector space NQ associated to G/H is one-dimensional, V is ray,

and both colors lie outside of the valuation cone.

Now G ∼= G × (C∗)D and H := {((hij), h22, h22) : (hij) ∈H}. Then G acts on

C2 × C2 × C∗. In this action, G acts by left matrix multiplication on the copies of

C2 and trivially on C∗ and (C∗)D respectively acts with weights −η1 and −η2 on the

first and second copy of C2 and with weight −η1− η2 on C∗. If the coordinates of the

copies of C2 are respectively given by S11, S21 and S12, S22 and the coordinate of C∗
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is T , then

G/H = V (S11S22 − S12S21 − T ) ⊂ C2 × C2 × C∗.

The map π : G/H → G/H is then defined by

((S11, S21), (S12, S22), T ) 7→ [S11 : S21]× [S12 : S22] ⊂ P1 × P1 \∆.

Consider Y = G/H ; we will recover V as tropG(G/H) using Theorem 4.2.5.

The colors of G/H are given by V (S21) and V (S22) and we may set f1 = f11 := S21

and f2 = f21 := S22. Further, s1 = s2 = 2 and f12 = S11 and f22 = S12, so the toric

variety Z0 associated to G/H is (C2 \ {0})× (C2 \ {0})×C∗ with these coordinates.

The pre-image π−1(G/H) is G/H = V (S11S22 − S12S21 − T ). The tropicalization

tropT(G/H) is the set of points

(a11, a12, a21, a22, b1) ∈ tropT(Z0) ∼=
(
Q2 \ {∞}

)
×
(
Q2 \ {∞}

)
×Q

such that the minimum min {a11 + a22, a12 + a21, b1} is met at least twice. It follows

that the image of tropT(G/H) under the map ψ is the set of ordered triples (a1, a2, b1)

such that a1 + a2 ≤ b1.

The B semi-invariant rational functions on G/H are one-dimensional, given by

integer powers of f := S11S22−S12S21
S12S22

. The lattice N is spanned by the G-invariant

valuation f 7→ 1. Under trop(π), an element (a1, a2, b1) ∈ tropG(G/H) is mapped

to the valuation (f 7→ b1 − a1 − a2) ∈ tropG(G/H). Because a1 + a2 ≤ b1 on

ψ (tropG(G/H)), it follows that this valuation is always non-negative on f and so we

recover the fact that V = tropG(G/H) is a ray in the positive direction.
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4.3 Embedding Toroidal Varieties in Toric Varieties

In [14], Gagliardi considers spherical embeddings X of G/H whose associated

colored fans only include rays without color and exclude all higher-dimensional cones.

He does this because he is interested in computing the Cox ring and this is the only

information needed to do that. Given such an embedding, he finds an explicit toric

variety Z in which G/H embeds such that G/H = X in Z. He restricts himself to

such embeddings because to compute the Cox ring of a spherical embedding, only

information about the G-stable prime divisors is needed, i.e. rays without color.

In this section we extend his construction to arbitrary toroidal spherical embed-

dings, whose colored fans consist of rays with colors and potentially higher dimen-

sional cones spanned by them. We maintain the notation and conventions estab-

lished in §4.2. In particular, we start in the case where G/H has trivial divisor class

group. Let X be a G/H-embedding given by a fan Σ whose one-dimensional cones

are {u1, . . . , un} ⊆ V. For each colored cone (σ, ∅) ∈ Σ, write σ(1) ⊆ {u1, . . . , un} to

denote the set of one-dimensional (non-colored) faces of a σ. Define

A := {a ⊂ {vij} : for each i there is at least one j with vij /∈ a} .

We note that A is defined slightly differently in [14], where the phrase “at least one”

is replaced by “exactly one”. For each σ and each a ∈ A, we define

σa := cone (a ∪ σ(1)) ⊂ NQ.

The dimension of the cone σa is dim σa = |a|+ dim σ. This follows because for every

i at least one vij is absent from a, which means each ray of σ is linearly independent

of the rays in a. Then we define the fan ΣZ to be the set of cones σa for all (σ, ∅) ∈ Σ
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and a ∈ A:

ΣZ := {σa : (σ, ∅) ∈ Σ, a ∈ A} .

That ΣZ is well-defined is a corollary of Proposition 4.4.6, which we state and prove

later. Let Z be the toric variety associated to the fan ΣZ . Note that Z0 ⊆ Z since the

fan for Z0 can be obtained from the definition by taking σ to be the trivial cone and

letting a range over A. We claim that the closure of G/H in Z is isomorphic to X.

The argument mimics the procedure in [14]; many of the proofs proceed essentially

identically. This claim is proved in Proposition 4.4.7; we delay the proof until §4.4,

where we simultaneously consider non-toroidal varieties.

We now show that the action of G on Z0 extends to Z. Define N̂ := N⊕Zn where

Zn is given the basis {e1, . . . , en}. For each σa ∈ ΣZ , define the cone

σ̂a := cone
a ∪ ⋃

uk∈σ(1)
{ek}

 ⊆ N̂Q

and let

Σ
Ẑ

:= fan (σ̂a : σa ∈ ΣZ) .

In essence, the difference between σa and σ̂a is that the rays of σa in σ(1) are not

necessarily orthogonal. In σ̂a, each uk is replaced with a vector ek that is orthogonal

to every vector in a and every other e`.

If Ẑ is the associated toric variety with torus T̂ := T× (C∗)n, then

Ẑ ∼= Cs1+···+sr × (C∗)m × Cn \ Ŝ,

where Ŝ is a closed set of codimension at least two. We revisit this theory in more

detail in §4.5. There is a natural toric morphism p : Ẑ → Z induced by the map

N̂ → N defined by vij 7→ vij, wk 7→ wk, and e` 7→ u`. By [29, Theorem 4.1], p is
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a good quotient. In fact, it is a geometric quotient (cf. [1, Proposition 3.2]). The

quotient is with respect to a subtorus Γ ∼= (C∗)n of T×Cn, which is parametrized as

follows:

Γ :=
{(∏n

`=1 t
−〈u`,v∗

11〉
`

, . . . ,
∏n

`=1 t
−〈u`,v∗

rsr
〉

`
,
∏n

`=1 t
−〈u`,w∗

1 〉
`

, . . . ,
∏n

`=1 t
−〈u`,w∗

k
〉

`
, t1, . . . , tn

)
: t` ∈ C∗

}
.

We may extend the natural action of G on Cs1+···+sr × (C∗)m to Ẑ by having G

act trivially on the additional Cn summand. Then the action of G on Ẑ commutes

with the action of Γ. As a result, we obtain an action of G on Z. More explicitly,

because p is a good quotient, [9, Proposition 5.0.7] says that for any point x ∈ X,

the preimage p−1(x) contains a unique closed Γ-orbit. If g ∈ G and z ∈ Z, we define

g · z := p(g · ẑ), where ẑ is an element of the unique closed Γ-orbit in p−1(z). Because

the actions of G and Γ commute, g takes the closed orbit of p−1(z) to another Γ-orbit.

Since p is constant on orbits, p(g · ẑ) does not depend on the choice of ẑ.

Further, the inclusion N ↪→ N̂ induces a morphism Z0 → Ẑ that commutes with

p : Ẑ → Z to give the inclusion Z0 ↪→ Z, so the described action of G on Z extends

that of G on Z0.

Example 4.3.1. We again consider Example 4.2.3 and in particular the embedding

of C2\{0} in P2\{0}. The corresponding colored cone has one ray u1 spanned by −v1

in NQ and Z = P2 \ {0}. The variety Ẑ = (C2 × C) \ ({0} × C) = (C2 \ {0}) × C is

given by adding one C summand for the cone −v1 and removing the subvariety where

both of the first two coordinates vanish. The morphism p : Ẑ → Z = P2 \ {0} is then

given by (x, y, z) 7→ [x : y : z]. In Figure 4.2, we illustrate the compatible map of

fans between Σ
Ẑ
and ΣZ that induces p. The preimage of a point [a : b : c] ∈ P2 \ {0}
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is {(at, bt, ct) : a, b, c ∈ C, t ∈ C∗}, so p is a geometric quotient by the action of the

torus Γ := {(t, t, t) : t ∈ C∗}.

e1

v12

v11

u1

v11

v12

Figure 4.2: The compatible map of fans induced by N̂Q → NQ for the embedding
P2 \ {0}.

If instead we consider Bl0(C2) ⊂ C2 × P1 with one ray spanned by v1, we get the

same Ẑ and the map Ẑ → Z = Bl0(C2) is given by (x, y, z) 7→ (xz, yz)× [x : y]. The

preimage of a point (ac, bc) × [a : b] ∈ Bl0(C2) is {(at−1, bt−1, ct) : t ∈ C∗}, so it is a

geometric quotient by the torus Γ := {(t−1, t−1, t) : t ∈ C∗}.

We have not yet discussed the case of a G/H-embedding X where the homo-

geneous space G/H has nontrivial divisor class group. Given such a homogeneous

space, we earlier defined an associated homogeneous space G/H with trivial divisor

class group along with a map π : G/H → G/H . Gagliardi shows ([14, Proposition

3.4]) that the pushforward π∗ : NQ → NQ is an isomorphism when restricted to the

subspace (NT )Q := span {w1, . . . , wm}.

If Σ is the colored fan associated to a toroidal embedding X, we define a G/H-

embedding X by considering the fan Σ, which is the preimage of Σ under π∗|(NT )Q .

Let Z be the toric variety associated to X as constructed earlier in this section.
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There is a good geometric quotient of Z by the torus (C∗)D, so we may extend π

to π : Z → Z, where Z is a toric variety. Refer again to the theory in [29], as well as

[1, Proposition 3.2]. By Proposition 4.4.7, the spherical variety X associated to the

fan Σ is the closure of G/H in Z. Then π takes X to the closure of G/H in Z (cf.

[9, Definition 5.0.5] and [9, Theorem 5.0.6]). By the construction of the colored fan,

the image of X under π is X and hence X is the closure of G/H in Z. We collect

these facts later in Proposition 4.4.8 where we also consider the possibility of colors.

4.4 The Problem of Colors

The methods of §4.3 are illustrations of [15, Proposition 2.11], which says that any

Mori dream space can be embedded in a projective toric variety. Projective spherical

varieties are Mori dream spaces, but not every spherical embedding is a Mori dream

space. This issue is addressed in [13], another paper of Gagliardi.

Definition 4.4.1. A normal variety X is said to have the A2-property if any two

points in X lie in some affine open subset of X.

Definition 4.4.2. A colored fan Σ is polyhedral if the relative interiors of any two

colored cones in Σ have empty intersection.

Theorem 4.4.3. [13, Theorem 1.5] Let Σ be a colored fan with associated spherical

embedding G/H ↪→ X. Then X has the A2-property if and only if Σ is polyhedral.

Finally, we make use of the following theorem of Włodarczyk, which Gagliardi

cites in [13]:

Theorem 4.4.4 ([34]). A normal variety X has the A2-property if and only if it

admits a closed embedding X ↪→ Z into a toric variety Z.
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All of this serves to tell us that the spherical varieties that cannot be embedded in

a toric variety are those whose cones are not polyhedral. Intuitively, this is reflected

by the fact that a spherical embedding with a non-polyhedral colored fan will be

associated by the process described in §4.3 to a toric variety with a non-polyhedral

fan, which is an impossibility. A colored fan can only exhibit non-polyhedral behavior

outside of the valuation cone. We illustrate this in the following extended example.

Example 4.4.5. Let G = Sl3 and H = Sl2 embedded in G as the lower right entries.

Then G has an action on C3 × C3 given by

g · (x, y) =
(
gx,

(
g−1

)∗
y
)
,

where ∗ indicates taking the conjugate transpose. Under this action, the point

((1, 0, 0), (1, 0, 0)) has isotropy group H. If the coordinates of C3 × C3 are given

as ((x1, x2, x3), (y1, y2, y3)), then the orbit of this point is V (x1y1 +x2y2 +x3y3− 1) =

G/H. Taking the Borel group B consisting of the upper triangular matrices, G/H is

a spherical homogeneous space.

There are two colors: V (x3) and V (y1), and Γ(G/H,O∗G/H) is trivial. Thus, N

is two-dimensional, spanned by valuations v1 and v2 respectively associated to the

colors V (x3) and V (y1). The G-modules G · x3 and G · y1 both have rank three and

we may define an embedding as follows:

V (x1y1 + x2y2 + x3y3 − 1) = G/H ↪→ Z0 :=
(
C3 \ {0}

)
×
(
C3 \ {0}

)
((x1, x2, x3), (y1, y2, y3)) 7→ (x3, x2, x1, y1, y2, y3)

The tropicalization tropT(G/H) of G/H in Z0 is the set of extended valuations µ

where the minimum

min {µ(x1) + µ(y1), µ(x2) + µ(y2), µ(x3) + µ(y3), 0}
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is met at least twice. By Theorem 4.2.1, V = tropT(G/H) ∩ NQ. On NQ, µ(x1) =

µ(x2) = µ(x3) and µ(y1) = µ(y2) = µ(y3), and so for the above minimum to be met

twice, we must have µ(x3) + µ(y1) ≤ 0. Thus, V = {v1 + v2 ≤ 0}. Figure 4.3 shows

the valuation cone and palette of this homogeneous space.

v1

v2

ρ(V (x3))

ρ(V (y1))

Figure 4.3: The valuation cone and palette of V (x1y1 + x2y2 + x3y3 − 1).

The interest here is that there are two colors that lie outside the valuation cone, so

there is potential for valid colored cones that are not polyhedral. Indeed, we may

have a simple G/H-embedding corresponding to the colored cone spanned by the

color ρ(V (x3)) and −2v1 + v2 since the interior of this cone intersects the valuation

cone. This is illustrated by the red cone in Figure 4.4. Similarly, there exists an

embedding whose colored cone is spanned by ρ(V (y1)) and v1− 2v2, the blue cone in

Figure 4.4. The union of these cones is a valid colored fan and thus corresponds to a

G/H-embedding. Even though this fan is not polyhedral, it is a colored fan because

the intersection is outside the valuation cone.
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v1

v2

v1

v2

v1

v2

Figure 4.4: Colored cones corresponding to three spherical embeddings. The embed-
ding on the far right is the gluing of the other two along G/H; it has two maximal
colored cones that overlap in the first quadrant.

Throughout this section we therefore only consider colored fans that are polyhe-

dral. As before, we assume for the moment that G/H has trivial divisor class group.

Let X be a G/H-embedding with colored fan Σ and let Z0 be the toric variety as-

sociated to G/H defined in §4.3. Let (σ,F) ∈ Σ be a colored cone. Then write

σ(1) := {u1, . . . , un} for the set of one-dimensional non-colored faces of σ and define

A(F) := {a ⊆ {vij} : for each i such that Di /∈ F, there is at least one j with vij /∈ a} .

Note that A(∅) is the same as A, as defined at the beginning of §4.3. The set A(F)

simply extends A by allowing the entire set {vij}j to be present when the color Di

lies in F. For a given a ∈ A(F), we define a cone in NQ as follows:

σa := cone (a ∪ σ(1)) ⊂ NQ.

The fan ΣZ is defined similarly to before:

ΣZ := fan ({σa : (σ,F) ∈ Σ, a ∈ A(F)}) .
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If Σ has no colors, then ΣZ is consistent with the object we described in §4.3. By

a similar argument to the toroidal case, we can see that the action of G on Z0 also

extends to Z in this setting.

Proposition 4.4.6. If X is a G/H-embedding whose associated colored fan Σ is

polyhedral, then the fan ΣZ is well-defined.

Proof. We must check that ΣZ is closed under taking faces and that the intersection

of any two cones in ΣZ is a face of each. If σa is a cone in ΣZ , then its faces are

precisely those σ′a′ such that a′ ⊆ a and σ′ � σ in Σ. Such a cone σ′a′ is in ΣZ , as

needed. Suppose σa, σ′a′ ∈ ΣZ are two cones. Then because Σ is a polyhedral fan, the

intersection of σ and σ′ is a colored cone (σ′′,F′′) ∈ Σ that is a colored face of each.

The intersection σa ∩ σ′a′ then equals σ′′a∩a′ , which is in ΣZ .

The following proposition is what this section has been working towards. It is an

extension of [14, Lemma 2.13] and [14, Proposition 2.14], and the proof owes much

of its structure to those two results.

Proposition 4.4.7. (cf. [14, Proposition 2.14]) Suppose G/H has trivial divisor

class group and X is a G/H-embedding corresponding to a colored fan Σ. Then X is

isomorphic to the closure G/H of G/H in the associated toric variety Z.

Proof. The claim is proved in [14, Proposition 2.14] when Σ consists solely of non-

colored rays. If Σ consists of a single ray σ spanned by the color Di, then on every

additional G-orbit of Z outside of Z0, fi vanishes and fj and gk do not for every j 6= i

and k. Thus, this embedding corresponds to a ray in the direction of σ. Moreover,

this ray must have color since the fij may vanish with different multiplicities along

the orbits added. After gluing together along shared orbits, we conclude that the
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statement of the proposition holds when Σ consists solely of rays, both colored and

not.

We now turn to proving the full claim. It will be sufficient to prove it for simple

embeddings since they can then be glued together along shared orbits. Let Σ consist

of a single colored cone (σ,F) with non-colored rays u1, . . . , un ∈ σ(1).

Let the maximal cone in ΣZ spanned by the sets σ(1) and ⋃
Di∈F {vij}

si

j=1 be

denoted τ . The cone τ corresponds to an affine variety Uτ . For each ray u` ∈ σ(1),

there is an open affine subset U` of Uτ with two torus orbits. Similarly, for each

Di ∈ F and each 1 ≤ j ≤ si, there is an open affine subset Uij corresponding to the

ray vij. Let π` ∈ C[Uτ ] for 1 ≤ ` ≤ n denote prime elements that cut out the closures

of the U` in Uτ . Similarly choose prime elements πij ∈ C[Uτ ] that cut out the Uij.

Then we have the following commutative diagram:

C[Uτ ] (C[S11, . . . , Srsr , T1, . . . , Tm])p

C[Uτ ]/(p ∩ C[Uτ ]) R1 R2 (C[S11, . . . , Srsr , T1, . . . , Tm])p/p ∼= C(G/H)R L

In the diagram, R is normalization and L is localization. For each π` and each

πij, there are respectively prime elements π̃`, π̃ij ∈ R2 such that V (π`) = V (π̃`) and

V (πij) = V (π̃ij) in SpecR2. Now L ∈ {Sij, Tk} can be written in the form

L = c ·
n∏
`=1

(
π
d`,1
` /π

d`,2
`

)
·

∏
Di∈F,1≤j≤si

(
π
dij,1
ij /π

dij,2
ij

)
for d`, di,j ∈ Z≥0 and c ∈ C[Uτ ]∗. We may further write

L = c̃ ·
n∏
`=1

(
π̃
e`d`,1
` /π̃

e`d`,2
`

)
·

∏
Di∈F,1≤j≤si

(
π̃
eijdij,1
ij /π̃

eijdij,2
ij

)
where e`, eij ∈ Z≥0 and c̃ ∈ R∗2.

The valuations in the colored cone (σ,F) are positive Q-linear combinations of

the u` and the valuations induced by the colors Di ∈ F. It follows from the above
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argument that every such valuation is induced by a torus invariant one in Z. This

proves the claim for simple spherical embeddings. Gluing together along shared orbits

gives the full result.

It still remains to consider when the homogeneous space G/H has nontrivial

divisor class group. Recall that the colors D1, . . . , Dr of the associated homogeneous

space G/H are precisely the pullbacks of the colors D1, . . . ,Dr of G/H . For each

Di, Gagliardi defines fi ∈ Γ(G/H,OG/H) such that V (fi) = Di. There is an inclusion

from the character lattice of (C∗)D to C[G]∗ that takes a character χ to a monomial

εχ ∈ C
[
(C∗)D

]
⊂ C[G]∗. Then we may write fi := fiε

−ηi , where ηi is the character

that is trivial on every coordinate not equal to i. The function fi is invariant under

the action of H from the right and V (fi) = Di. Note that as a result (C∗)D has a

nontrivial action on fi for all i.

Then let X be a G/H-embedding with polyhedral colored fan Σ. For each color

Di appearing in Σ, include in Σ a colored ray corresponding to Di. For each ray

without color, take the preimage of this ray under π∗|(NT )Q as we did for toroidal

embeddings. Then add in higher-dimensional cones between these rays in NQ if they

exist in Σ. As in the toroidal case, there is a good geometric quotient π : Z → Z that

extends π : G/H → G/H . We obtain the following result, similarly to the toroidal

case:

Proposition 4.4.8. Let G/H ↪→X be a spherical embedding with associated spher-

ical embedding G/H ↪→ X where G/H has trivial divisor class group. Then G/H ∼=

X, where the closure is taken in Z.
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4.5 Extended (Global) Tropicalization

This section finally gives a global construction for the tropicalization of a spherical

embedding. Because of the issues raised in §4.4, this construction can only work for

a certain class of spherical embeddings, namely those that have the A2-property. For

many homogeneous spaces, this consideration will not raise any issues. For example,

if G/H is horospherical or if it has fewer than two colors lying outside the valuation

cone, the global tropicalization will always go through without issue.

As before, we begin discussing the case when G/H has trivial divisor class group

and we maintain the notation introduced previously. Let X be a G/H-embedding

with the associated toric varieties Z and Ẑ and morphism p : Ẑ → Z. Our methodol-

ogy will be to work in the toric world with Ẑ and Z where results are known. Then we

will apply an extension of the map ψ. The general theory in the following discussion

can be found in more generality in [21, §6.1]; also refer to [9, §5.1].

There is a short exact sequence

0→ N ↪→ N̂ → An−1
(
Ẑ
)
→ 0,

where An−1
(
Ẑ
)
is the cokernel of the natural inclusion N ↪→ N̂ . Applying the functor

Hom(−,C∗), we obtain the following exact sequence:

Hom(N,C∗)← Hom
(
N̂ ,C∗

)
←↩ Q← 0,

where Q := Hom
(
An−1

(
Ẑ
)
,C∗

)
. Let E` denote the coordinate in C

[
Ẑ
]
correspond-

ing to the ray e` so that

C
[
Ẑ
]

= C[S11, . . . , Srsr , T1, . . . , Tm, E1, . . . , En].
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Then the irrelevant ideal in C
[
Ẑ
]
is

F :=
〈 ∏
vij /∈σ

Sij ·
∏
wk /∈σ

Tk ·
∏
e` /∈σ

E` : σ ∈ Σ
Ẑ

〉

and

Ẑ ∼= Cs1+···+sr+m+n \ V (F ) ∼= Cs1+···+sr × (C∗)m × Cn \ Ŝ

for some Ŝ of codimension at least two. Finally, we have that

Z ∼= (Cs1+···+sr+m+n \ V (F ))/Q.

This quotient construction of Z tropicalizes in the following sense (see [21, Proposition

6.2.6] and [21, Corollary 6.2.16]):

Proposition 4.5.1. Suppose G/H has trivial divisor class group and suppose Y ⊆

G/H is a closed subvariety. Let X be a G/H-embedding with the A2-property with

associated toric varieties Z and Ẑ and let Y be the closure of Y in Z. Then

tropT

(
Y
) ∼= (

Qs1+···+sr+m+n \ tropT̂(V (F ))
)
/ tropT̂(Q).

This result provides a means for globally tropicalizing a toric variety. That is to

say, we do not need to consider any separate pieces and then glue together, we may

simply tropicalize a single toric variety and take an appropriate quotient. To obtain

a universal tropicalization for spherical embeddings, it will be sufficient to describe

how to recover tropG
(
Y
)
from tropT

(
Y
)
. When Y is replaced by Y , we described

this in Theorem 4.2.2 using the piecewise projection map ψ:

ψ : tropT(Z0)→ NQ

(a11, . . . , a1s1 , a21, . . . , arsr , b1, . . . , bm) 7→
(

min
1≤j≤s1

{a1j} , . . . , min
1≤j≤sr

{arj} , b1, . . . , bm

)
.
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We now define an extension ψ : tropT(Z) → tropG(X) of ψ that takes extended

T-invariant valuations to extended G-invariant valuations. Applying this map to

the global toric tropicalization above will afford a global spherical tropicalization.

Let (σ,F) be a colored cone in the colored fan of the G/H-embedding X and let

a ∈ A(F). In the extended tropicalization of the spherical variety, tropicalizing

the orbit corresponding to the colored cone (σ,F) corresponds to adding in semi-

group homomorphisms in HomV
(
σ∨ ∩M,Q

)
and viewing them as limit points of

tropG(G/H) := V ⊆ Hom(M,Q).

Before proceeding, we deal with a slight clash of notation that comes up here.

Thought of as a valuation, µ ∈ Hom (σ∨a ∩M,Q) acts on a lattice of torus semi-

invariant rational functions, where the group action is multiplicative. As an element

of Hom (σ∨a ∩M,Q), however, µ acts on the additive semigroup σ∨a ∩M . This can be

addressed by identifying an element (a11, . . . , arsr , b1, . . . , bm) ∈ σ∨a ∩M with the func-

tion fa11
11 · · · farsr

rsr
gb1

1 · · · gbm
m . Similarly, (a1, . . . , ar, b1, . . . , bm) ∈ σ∨ ∩M is identified

with fa1
1 · · · f sr

r g
b1
1 · · · gbm

m .

The extension ψ will take a valuation µ ∈ Hom (σ∨a ∩M,Q) to HomV (σ∨ ∩M,Q).

Suppose µ ∈ tropT(O) where O corresponds to the cone σa. Further let (σ,F) be the

associated colored cone corresponding to a G-orbit O. Define a set Ω ⊂ Zr as follows:

Ω := {ω ∈ Zr : 1 ≤ ω(i) ≤ si for all 1 ≤ i ≤ r} .

Then for any µ ∈ Hom
(
σ∨a ∩M,Q

)
, we define ψ(µ) ∈ HomV

(
σ∨ ∩M,Q

)
to be

infinite on (σ∨ \ σ⊥) ∩M and to act on fa1
1 · · · far

r g
b1
1 · · · gbm

m ∈ σ⊥ ∩M as follows:

ψ(µ)
(
fa1

1 · · · far
r g

b1
1 · · · gbm

m

)
= min

{
µ
(
fa1

1ω(1) · · · f
ar

rω(r)g
b1
1 · · · gbm

m

)
: ω ∈ Ω

}
.
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Remark 4.5.2. There is a tacit assumption here that we only consider ω ∈ Ω such

that

fa1
1ω(1) · · · f

ar

rω(r)g
b1
1 · · · gbm

m ∈ σ∨a ∩M

to ensure that µ is well-defined. When µ = νγ is induced by a C{{t}}-point γ, then

the minimum may be taken over the entirety of Ω. An explanation of this appears in

the proof of Theorem 4.5.5.

Example 4.5.3. We will extend Example 4.2.3. Recall that in this setting r = 1,

f11 = y, and f12 = x. Consider the embedding Bl0 (C2) of G/H = C2 \ {0} given by

a single non-colored ray in the direction of v1, which we call σ. The associated toric

variety Z is also Bl0 (C2), given by the fan shown in Figure 4.5.

σ

v12

v11

σ

Figure 4.5: Fans for Bl0 (C2) as a spherical embedding (left) and a toric embedding
(right)

In the vector space NQ corresponding to the toric variety, σ is the ray in the fan of

Bl0 (C2) corresponding to the exceptional divisor. There are three possibilities for a:

a = ∅, {v11}, or {v12}. These respectively correspond to three cones σa: the diagonal

ray σ, the two-dimensional cone spanned by σ and v11, and the two-dimensional cone

spanned by σ and v12.

The spherical tropicalization of Bl0(C2) is isomorphic to Q, where the tropicaliza-

tion of the exceptional divisor is the point∞. In other words, σ⊥∩M is the origin in
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N and corresponds to the map µ ∈ Hom
(
σ∨ ∩M,Q

)
sending every non-zero element

of σ∨ ∩M to ∞, i.e. the extended G-invariant map C[x, y] → Q that is ∞ on all

non-constant functions.

Therefore, if µ ∈ σ∨a ∩M for some choice of a, then it must by definition of ψ be sent

to∞ in Q. This can be viewed as collapsing the diagonally-oriented one-dimensional

vector space and the two zero-dimensional vector spaces in tropT (Bl0 (C2)) to a point.

See Figure 4.6 for reference.

tropT (Bl0 (C2)) Action of ψ tropG (Bl0 (C2))

Figure 4.6: ψ (tropT (Bl0 (C2))) = tropG (Bl0 (C2))

In the previous example we saw that ψ takes the extended toric tropicalization

to the extended spherical tropicalization. Our goal now is to prove that this holds in

general. To accomplish this, we need an additional theorem:

Theorem 4.5.4. [21, Theorem 6.2.18] Let Y ⊆ T, and let Y be the closure of Y in

a toric variety Z. Then

tropT

(
Y
)

= tropT(Y ).

Theorem 4.5.5. If G/H has trivial divisor class group, Y ⊆ G/H is a subvariety,

and X is a G/H-embedding with the A2-property, then

ψ
(
tropT

(
Y
))

= tropG
(
Y
)
,

where the closure on the left is taken in Z and the closure on the right is taken in X.
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Proof. Let γ : SpecC{{t}} → Y be a C{{t}}-point of Y and suppose ν̃γ and νγ are

respectively the T-invariant and G-invariant extended valuations induced by γ. Then

γ lies in a G-orbit corresponding to a colored cone (σ,F) and a T-orbit corresponding

to a cone σa. We will show that ψ (ν̃γ) = νγ.

Let fa1
1 · · · far

r g
b1
1 · · · gbm

m ∈ σ⊥ ∩M. Then a sufficiently general element of G takes

this B semi-invariant rational function to a function of the form

(c11f11 + · · ·+ c1s1f1s1)a1 · · · (cr1fr1 + · · ·+ crsrfrsr)ar · cgb1
1 · · · gbm

m

for c, cij ∈ C∗. Generically, this is a non-zero rational function on the G-orbit cor-

responding to (σ,F) that is defined at γ, so the valuation ν̃γ takes it to a rational

number. By Theorem 4.5.4, ν̃γ lies in the closure of tropT(Y ), so there exists a se-

quence {ν`}∞`=1 of T-invariant valuations associated to C{{t}}-points γ` of Y such that

lim`→∞ ν` = ν̃γ in the topology on tropT(Z). Then we have the following, which

verifies the claim:

νγ
(
fa1

1 · · · far
r g

b1
1 · · · gbm

m

)
= ν̃γ

(
(c11f11 + · · ·+ c1s1f1s1)a1 · · · (cr1fr1 + · · ·+ crsrfrsr)ar · cgb1

1 · · · gbm
m

)
= lim

`→∞
ν`
(
(c11f11 + · · ·+ c1s1f1s1)a1 · · · (cr1fr1 + · · ·+ crsrfrsr)ar · cgb1

1 · · · gbm
m

)
= lim

`→∞

r∑
i=1

ai min
j
{ν`(fij)}+

m∑
k=1

bkν`(gk)

= lim
`→∞

min
{
ν`
(
fa1

1ω(1) · · · f
ar

rω(r)g
b1
1 · · · gbm

m

)
: ω ∈ Ω

}
= min

{
ν̃γ
(
fa1

1ω(1) · · · f
ar

rω(r)g
b1
1 · · · gbm

m

)
: ω ∈ Ω

}
= ψ (ν̃γ)

(
fa1

1 · · · far
r g

b1
1 · · · gbm

m

)

Pursuant to Remark 4.5.2, note that the minimum here is indexed over the entirety

of the set Ω since every cij is nonzero.
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Having established the result when the homogeneous space has trivial divisor

class group, we turn to the case of non-trivial divisor class group. As before, we write

G/H to denote a homogeneous space with non-trivial divisor class group and write

G/H for the homogeneous space with trivial divisor class group and dominant map

π : G/H → G/H . If X is the G/H-embedding associated to a G/H-embedding

X, then the extended map π : X → X is equivariant with respect to the natural

surjection G→ G. We can therefore extend Theorem 4.2.5 to spherical embeddings

of homogeneous spaces with non-trivial divisor class group; the proof proceeds almost

identically.

Theorem 4.5.6. Let G/H ↪→X be a spherical embedding with associated spherical

embedding G/H ↪→ X where G/H has trivial divisor class group. If Y ⊆ G/H is a

closed subvariety and X is a G/H-embedding, then

tropG

(
Y
)

=
(
trop(π) ◦ ψ

) (
tropT

(
π−1

(
Y
)))

,

where the closures are taken in X.

Proof. By Theorem 4.5.5, this is equivalent to showing

tropG

(
Y
)

= trop(π)
(
tropG

(
π−1

(
Y
)))

.

Because π is equivariant with respect to the surjective group homomorphism G→ G,

the statement follows from Proposition 2.5.2.

Developing the interplay between spherical tropicalization and toric tropicalization

has the potential to give insight into the structure of spherical tropicalizations by

translating known results from the toric world. As an example, we can generalize

Theorem 4.5.4 to spherical varieties:
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Theorem 4.5.7. If Y ⊆ G/H is a closed subvariety and X is a G/H-embedding,

then

tropG
(
Y
)

= tropG(Y ),

where the closure on the left is taken in X and the closure on the right is taken in

tropG(X).

Proof. We prove the theorem when X is a simple G/H-embedding because X always

has the A2-property in this setting. If X is not simple, we may break it up into simple

G/H-embeddings, where the result holds, and then glue together along shared orbits.

Note that this will work even if X does not have the A2-property.

We suppose first that G/H has trivial divisor class group. Let νγ ∈ tropG
(
Y
)
\

tropG(Y ) be an extended G-invariant valuation corresponding to a C{{t}}-point γ.

Then γ induces a T-invariant valuation ν̃γ in tropT

(
Y
)
. By Theorem 4.5.4, there

exists a sequence of C{{t}}-points γ` ∈ Y (C{{t}}) with associated T-invariant val-

uations ν̃` such that lim`→∞ ν̃` = ν̃γ in the topology on tropT(Z). We claim that

lim`→∞ ψ (ν̃`) = νγ. Suppose γ lies in a G-orbit corresponding to a colored cone

(σ,F) and a T-orbit corresponding to σa and let fa1
1 · · · far

r g
b1
1 · · · gbm

m ∈ σ⊥∩M be ar-

bitrary. Then we have the following, recalling from Remark 4.5.2 that the minimums

are indexed over all of Ω:

lim
`→∞

ψ(ν`)
(
fa1

1 · · · far
r g

b1
1 · · · gbm

m

)
= lim

`→∞
min

{
ν̃`
(
fa1

1ω(1) · · · f
ar

rω(r)g
b1
1 · · · gbm

m

)
: ω ∈ Ω

}
= min

{
ν̃γ
(
fa1

1ω(1) · · · f
ar

rω(r)g
b1
1 · · · gbm

m

)
: ω ∈ Ω

}
= ψ (ν̃γ)

(
fa1

1 · · · far
r g

b1
1 · · · gbm

m

)
= νγ

(
fa1

1 · · · far
r g

b1
1 · · · gbm

m

)
.
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The last equality here follows from the proof of Theorem 4.5.5. It follows that νγ is

the limit of the sequence
{
ψ (ν̃`)

}∞
`=1

. Hence, νγ ∈ tropG(Y ) and the first inclusion

follows.

Conversely, suppose that µ ∈ tropG(Y ) and let {γ`}∞`=1 be a sequence of C{{t}}-

points of Y such that the G-invariant valuations µ` := νγ`
satisfy lim`→∞ µ` = µ in

the topology on tropG(X). Each γ` induces a T-invariant valuation µ̃`. By possibly

replacing {µ`}∞`=1 with a subsequence, there is µ̃ ∈ tropT (Y ) with µ̃ = lim`→∞ µ̃`. By

Theorem 4.5.4, µ̃ is induced by a C{{t}}-point γ of Y . We claim that µ = ψ (µ̃) ∈

tropG
(
Y
)
. Let fa1

1 · · · far
r g

b1
1 · · · gbm

m ∈ σ⊥ ∩M be arbitrary, where σ corresponds to

the G-orbit in whose tropicalization µ lies. Then the equality

µ
(
fa1

1 · · · far
r g

b1
1 · · · gbm

m

)
= ψ (µ̃)

(
fa1

1 · · · far
r g

b1
1 · · · gbm

m

)
follows from an argument similar to the previous inclusion. Hence, µ is induced by γ

and so µ ∈ tropG
(
Y
)
.

Now suppose G/H has nontrivial divisor class group and let G/H be the associ-

ated spherical homogeneous space with trivial divisor class group. Then we have the

following string of inclusions and equalities:

tropG (Y ) = trop(π) (tropG (π−1 (Y )))

⊇ trop(π)
(
tropG (π−1 (Y ))

)
= trop(π)

(
tropG

(
π−1 (Y )

))
⊆ trop(π)

(
tropG

(
π−1

(
Y
)))

= tropG

(
Y
)

From top to bottom, these containments and equalities respectively follow from The-

orem 4.2.5, Proposition 2.5.1, the first half of this proof, the continuity of π, and
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Theorem 4.5.6. Completing the proof now comes down to showing that the two

containments are equalities.

For the first containment, suppose that µ ∈ trop(π)(W ), where we write W :=

tropG (π−1 (Y )). Then there exists a sequence {µ`}∞`=1 of valuations in trop(π) (W )

such that lim`→∞ µ` = µ. For each `, choose an element µ` ∈ trop(π)−1(µ`). The set

{µ`}∞`=1 contains a convergent subsequence in W . This subsequence converges to an

extended valuation µ̃ ∈ W , which necessarily maps to µ under trop(π). Thus, the

first inclusion is equality.

Now we consider the second inclusion. We will show that tropT

(
π−1 (Y )

)
⊇

tropT

(
π−1

(
Y
))

since applying the map trop(π)◦ψ will deliver the needed inclusion

by Theorem 4.5.6. Theorem 4.5.4 says that tropT (π−1 (Y )) = tropT

(
π−1 (Y )

)
,

and the proof in [21] only uses the fact that π−1 (Y ) is a closed set in Z whose

intersection with T is the variety π−1 (Y ) ∩ T. Because π−1
(
Y
)

satisfies these

properties, we can conclude that tropT (π−1 (Y )) = tropT

(
π−1

(
Y
))

and hence the

equality tropT

(
π−1 (Y )

)
= tropT

(
π−1

(
Y
))

. This completes the second inclusion

and the proof.
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Chapter 5: Toward A Structure Theorem

Beyond the fundamental theorem, the next significant result in classical tropical

geometry is the structure theorem. This describes what types of objects we obtain

upon tropicalizing a subvariety of an algebraic torus. In the toric setting, tropical-

izations take the form of balanced polyhedral complexes. In the spherical case, they

do not exhibit such consistent behavior, so it is unclear whether a similarly concise

classification is possible. This section is devoted to the first partial steps in that

direction, with some commentary on where the theory collapses when moving from

the toric case to the spherical case.

This chapter is organized as follows. In §5.1, we describe the structure theorem in

the toric case. In §5.2, we use the theory of Chapter 4 to obtain some partial results

on the structure of tropical spherical varieties. Then §5.3 gives some background

on the intersection theory of spherical varieties and how this theory informs the

balancing condition when restricted to toric varieties. Finally, §5.4 proposes a means

for spherical tropicalization when the ideals are defined over the field of Puiseux series

rather than the base field and §5.5 has examples. We work throughout over C with

torus T = (C∗)n.
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5.1 The Structure Theorem for Tropical Toric Varieties

Theorem 5.1.1 is the structure theorem for toric varieties. The remainder of this

section defines and explains the terminology used in the theorem. All of this theory

can be found in more detail in [21].

Theorem 5.1.1. [21, Theorem 3.3.5] Let Y be an irreducible d-dimensional subvariety

of (C{{t}}∗)n. Then tropT(Y ) is the support of a balanced weighted rational polyhedral

complex pure of dimension d. Moreover, that polyhedral complex is connected through

codimension one.

A rational polyhedron P is a subset of Qn of the form

P = {x ∈ Qn : Ax ≤ b}

where A is a d × n matrix and b is a vector, both with entries in Q. A polyhedral

complex is a collection Σ of polyhedra such that P,Q ∈ Σ implies P ∩Q ⊆ P,Q is a

face of each and P ∩Q ∈ Σ. Further, a polyhedral complex Σ is pure of dimension d

if the maximal polyhedra in Σ all have dimension d.

We now turn to the balancing condition. Let Σ be a fan in Qn that is pure of

dimension d. For each cone σ ∈ Σ of dimension d, fix a weight w(σ). Let τ ∈ Σ be a

cone of dimension d−1 and denote by L the subspace spanned by τ . Then (σ+L)/L

is a ray in Qn/L; let vσ be the first lattice point on this ray. We say that Σ is balanced

at τ if: ∑
τ�σ

w(σ)vσ = 0.

The fan Σ is called balanced if it is balanced at each (d− 1)-dimensional cone τ ∈ Σ.
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If a polyhedral complex Σ is pure of dimension d, we can place weights on polyhe-

dra of maximal dimension and define a notion of balancing by considering the local

structure of the polyhedral complex, which we make precise below.

If σ is a polyhedron in Σ, then starΣ(σ) is a fan with a cone τ for each τ ∈ Σ

containing σ as a face:

τ := {λ(x− y) : λ ≥ 0,x ∈ τ,y ∈ σ} .

If Σ is a polyhedral complex regular of dimension d, we say it is balanced if starΣ(σ)

is balanced for all σ ∈ Σ of dimension d− 1.

Finally, if Σ is a polyhedral complex that is pure of dimension d, then it is con-

nected through codimension one if for any two d-dimensional cells P, P ′ ∈ Σ, there

is a chain P = P1, P2, . . . , Ps = P ′ for which Pi and Pi+1 share a common face of

dimension d− 1.

5.2 Partial Balancing Results

In this section we state some simple balancing results on spherical tropicalizations.

Before proving these, we remark that in [17], the authors give a first basic structure

result:

Proposition 5.2.1. [17, Corollary 4.19] The tropicalization tropG(Y ) is the support

of a fan with convex rational polyhedral cones.

We will expand on this by giving a slightly finer description of what fans are

possible under spherical tropicalization.

Our methodology will be to consider the tropicalization in a toric variety as we

did in Chapter 4. We recall our notation from that chapter. We write N for the
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lattice of the torus T whose basis consists of the vectors vij’s and wk’s and N for the

lattice of G/H whose basis consists of the vectors vi’s and wk’s. The tropicalization

tropT(Z0) is isomorphic to

(
Qs1 \ {∞}

)
× · · · ×

(
Qsr \ {∞}

)
×Qm

and contains NQ as a copy of Qs1+···+sr+m. The map ψ : tropT(Z0) → NQ is then

defined by

(a11, . . . , a1s1 , a21, . . . , arsr , b1, . . . , bm) 7→
(

min
1≤j≤s1

{a1j} , . . . , min
1≤j≤sr

{arj} , b1, . . . , bm

)
.

We now describe how polyhedral complexes behave under projections. Let p :

N → N be a homomorphism of lattices given by a matrix A; by an abuse of notation,

we will use the same notation for the extension to p : NQ → NQ. Let Σ be a

polyhedral complex in NQ. After refining Σ if necessary, we may assume that p(Σ) :=

{p(σ) : σ ∈ Σ} forms a polyhedral complex in NQ. We note here that a refinement

of a pure balanced polyhedral complex in Qn is also balanced ([21, Lemma 3.6.2]).

The polyhedral complex p(Σ) may not be pure, however, so a meaningful notion of

balancing cannot be applied directly. Given Σ and p, denote by Σp the subset of

p(Σ) containing only cones of maximal dimension and their faces. Then Σp inherits

a balancing condition from Σ:

Lemma 5.2.2. [21, Lemma 3.6.3] If Σ is a balanced fan, then Σp is also balanced.

Furthermore, the balancing is given by placing the following weight on a maximal

cell σ′ ∈ Σp:

w(σ′) :=
∑

σ∈Σ, p(σ)=σ′
w(σ) · [Nσ′ : p (Nσ)] .
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Here, w(σ) for σ ∈ Σ is a weight on σ in a balancing of Σ and [Nσ′ : p (Nσ)] is the

greatest common divisor of the maximal minors of the matrix AV , where the columns

of V form a basis for Nσ, the sublattice spanned by σ.

We will concern ourselves with the following homomorphisms of lattices. Let

pT : N → N and pG : N → N be the coordinate projections to span {w1, . . . , wm} in

their respective lattices. Let piT : N → N similarly be projection to span {vi1, . . . , visi
}

and let piG : N→ N be projection to span {vi}.

Remark 5.2.3. We also note that for an arbitrary closed subvariety Y ⊆ G/H,

ψ (tropT(Y )) = ψ (tropT(Y ) ∩NQ). This is because points in tropT(Y )\NQ are limits

of points in tropT(Y )∩NQ. Thus, their images under ψ are limits of points in tropG(Y )

and hence appear in tropG(Y ) as it is closed in NQ.

Then we have the following results:

Theorem 5.2.4. If Y ⊆ G/H is a subvariety of a spherical homogeneous space G/H

with trivial divisor class group, then the projection of tropG(Y ) to span(w1, . . . , wm)

is the support of a balanced fan upon removal of maximal cones not of maximum

dimension.

Proof. Note that ψ ◦pT = pG ◦ψ : NQ → NQ. Then using Theorem 4.2.2 and Remark

5.2.3, this gives:

pG (tropG(Y )) = (pG ◦ ψ) (tropT(Y ))

= (pG ◦ ψ) (tropT(Y ) ∩NQ)

= (ψ ◦ pT) (tropT(Y ) ∩NQ)

= pT (tropT(Y ) ∩NQ) .
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The last equality follows because ψ is the identity when restricted to span(w1, . . . , wm).

By Lemma 5.2.2, pT (tropT(Y ) ∩NQ) is the support of a balanced fan upon removal

of maximal cones not of maximum dimension.

Theorem 5.2.5. Suppose G/H is a spherical homogeneous space with trivial divisor

class group, Y ⊆ G/H, and Di ∈ D is a color of G/H. Then the image of the

projection of tropG(Y ) to the subspace spanned by vi cannot be a single ray in the

direction of vi.

Proof. Similarly to the proof of Theorem 5.2.4, we have that ψ ◦ piT = piG ◦ψ : NQ →

NQ, which gives:

piG (tropG(Y )) = (piG ◦ ψ) (tropT(Y ) ∩NQ) = (ψ ◦ piT) (tropT(Y ) ∩NQ) .

Thus, for piG (tropG(Y )) to consist of a single ray in the direction of vi, the im-

age piT (tropT(Y ) ∩NQ) must be contained in the first quadrant of span(vi1, . . . , visi
).

That is, the coefficient on vij must be positive for all j. This follows because ψ

acts on span(vi1, . . . , visi
) by taking the minimum of these coefficients. By Lemma

5.2.2, piT (tropT(Y ) ∩NQ) is the support of a balanced fan upon removal of lower-

dimensional cones. Therefore, if piT (tropT(Y ) ∩NQ) is contained in the first quadrant

of span(vi1, . . . , visi
), then to be balanced it must consist solely of the origin, which

will not map to a ray.

It is worth noting that any other set of rays is possible after projection to span(vi):

there may be a ray in the direction of −vi, there may be rays in both directions, and

the result may just be the origin.
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5.3 Intersection Theory

In the toric setting, the weights that balance a tropical variety can be recovered

from intersection theory. In this section we discuss how this theory translates and

breaks down when we attempt to extend from the toric case to the spherical case.

Ultimately, the problem is the gap between the action of the group G and the action

of a Borel subgroup B. Intersection theory on toric varieties is discussed in [12] and

the theory is extended to spherical varieties in [10].

Theorem 5.3.1. [10, Theorem 3] If a connected solvable linear algebraic group acts

on a complete scheme X with only finitely many orbits, then the Kronecker duality

map Ak(X)→ Hom(AkX,Z) is an isomorphism.

In a spherical variety X, the Borel subgroup satisfies all the hypotheses of this

theorem. Denote by Σ the set of B-orbits and Σ(k) the set of k-dimensional orbits.

Write Vσ for the orbit closure of σ ∈ Σ and τ ≺ σ whenever Vτ ⊂ Vσ. Then Theorem

5.3.1 says a cohomology class in Ak(X) can be identified with a map w : Σ(k) → Z.

The map w is balanced in the following sense. Given τ ∈ Σ(k+1) and a B-eigenfunction

f on Vτ ,

Σσ≺τ ordσ(f)w(σ) = 0,

where ordσ(f) denotes the order of vanishing of f along Vσ.

The balancing condition on the tropicalization of toric varieties reflects a deeper

balancing condition on cohomology classes of a tropical compactification of the variety.

Explicitly:

Theorem 5.3.2. [21, Theorem 6.7.7] Let Y be a subvariety of the torus, and let

Y be any tropical compactification in a toric variety X associated to a fan Σ. The
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balanced fan associated to Y after taking a completion of Σ, has support trop(Y ),

and its weights agree with the multiplicities on trop(Y ). If X is smooth and the

compactification Y is tropical, then the weight on V (σ) in the balancing is given by

Y · V (σ) for any maximal cone σ ∈ Σ. Thus the tropicalization of Y determines the

class
[
Y
]
∈ A∗(X).

The operative sentence of this theorem is the last one: the tropicalization models

the cohomology class. In the toric case, Σ can be modeled by the fan of the toric

variety and the intersection theory can be read of from the polyhedral geometry of the

fan. In the spherical case, the colored fan does not necessarily exhibit this balancing

behavior. There are essentially two reasons for this. First, the colored fan records

data at the level of G-orbits and therefore does not always see the granularity of the

B-orbits, which is where the balancing of cohomology classes occurs. Second, in the

toric case the balancing can be modeled by the associated fan in part because the

dimension of a cone is directly related to the dimension of the corresponding orbit.

That is, if a toric variety has a d-dimensional torus orbit, this orbit corresponds to

an (m− d)-dimensional cone, where m is the dimension of the vector space NQ.

For toric varieties, m is both the dimension of NQ and the dimension of the

associated toric variety. This is not the case in the spherical world, where we need

two separate notions: the dimension ofG/H and the dimension ofNQ. To differentiate

the two, we call the latter the rank of G/H and denote it by rk(G/H). The dimension

and rank are related by work of Brion [4], which Knop explains in [18].

For each D ∈ D, write PD ≤ G for the stabilizer of D. Note that PD is a parabolic

subgroup of G, as our notation suggests. If F ⊆ D is a subset of the palette, then we

write PF := ⋂
D∈F PD.
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Theorem 5.3.3. [18, Theorem 6.6] Let X be a simple G/H-embedding defined by a

colored cone (σ,F) with unique closed orbit O. Then:

dimO = rk(G/H)− dim σ + dimG/PD\F,

where dim indicates either the dimension as a variety or dimension as a polyhedral

cone.

As a result of this theorem, colored cones of the same dimension may correspond

to orbits of differing dimensions. The combinatorial data of the colored fan alone is

therefore not sufficient to give us information about the relationship of the dimension

and rank. As such, it is not clear how to identify which colored cones correspond to

orbits of a particular dimension.

The holdup here is the colors, specifically the term dimG/PD\F in Theorem 5.3.3.

Proposition 5.3.4 illustrates a case where this term is equal for two separate G-orbits.

Under the given hypotheses, the relationship between the dimensions of two G-orbits

is modeled by the dimensions of the associated colored cones in the same way as it is

in the toric case:

Proposition 5.3.4. [18, Lemma 6.4] Let (σ,F) be a colored cone and (σ′,F′) one

of its colored faces with F = F′. Let O and O′ respectively denote the unique closed

G-orbit in the spherical embeddings corresponding to σ and σ′. Then:

dimO′ − dimO = dim σ − dim σ′.

Essentially, the colored cones and their faces can give the difference in dimension

of the associated G-orbits, but only when every color in the colored cone is present in

its face. In general, these dimensions will not be so well-behaved and so the colored
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fan does not obviously model the balancing of cohomology classes. In short, even if

the issue of the gap between B-orbits and G-orbits can be overcome, the balancing of

cohomology classes concerns the dimension of the orbits and any balancing condition

on the colored fan must be done with regard to the dimension of their associated

cones. Because these dimensions can disagree, the tropicalization seems inadequate

to model the balancing induced by cohomology classes.

5.4 Non-Constant Coefficients

Write K := C{{t}}. Throughout this thesis, we have only concerned ourselves

with tropicalizing varieties defined over C[G/H], but it is natural to consider ideals

defined over K[G/H]. We distinguish these situations by calling them respectively

the constant coefficient and non-constant coefficient case. This convention is justified

by the fact that ν : K → Q is trivial when restricted to C, so the coefficients add no

extra information when tropicalizing. In both [33] and [17], the authors only consider

the case of constant coefficients.

Despite this, Vogiannou’s original definition for the constant coefficient case can

just as easily be applied to the non-constant coefficient case. That is, if I ∈ K[G/H]

is an ideal, then we can define the tropicalization of Y := V (I) as before:

tropG(Y ) :=
{
νγ : γ ∈ Y

(
K
)}
,

where νγ(f) := ν(γ∗(gf)) for sufficiently general g ∈ G. We note here that to properly

extend this definition, we must work with the original group G with coefficients in C

rather than K. For example, if G = Gl2(C), we should use this group rather than

G = Gl2
(
K
)
even in the non-constant coefficient case.
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Vogiannou justifies his definition by showing that it has an appropriate theory with

respect to compactifications. Explicitly, in Theorem 1.4.2 he shows that in a tropical

compactification, the tropicalization equals the support of the colored fan of the G/H-

embedding. The purpose of this section is to show that tropicalization with respect

to non-constant coefficients also has nice behavior with respect to compactifications.

Further, we will show that spherical tropicalizations with non-constant coefficients

are polyhedral complexes in V. We first note that Theorem 4.2.2 extends to the

non-constant coefficient definition; the proof goes through identically. We recall the

statement here:

Theorem 4.2.2. If Y ⊆ G/H is a closed subvariety and G/H has trivial divisor class

group, then tropG(Y ) = ψ (tropT(Y )).

Using this, we can then use the toric structure theorem to deduce the structure of

the spherical tropicalization. Before proceeding to results, we note some properties

of the map π : G/H → G/H we discussed in Chapter 4. We will consider the

induced map trop(π) := π∗ : NQ → NQ. Recall that NT ⊆ N is the sublattice

span(w1, . . . , wm) and

π∗|(NT )Q : (NT )Q → NQ

is an isomorphism by [14, Proposition 3.4]. Further, the pullbacks of the colors in

D are precisely the colors in D. Thus, the map π∗ takes vi ∈ NQ corresponding to

Di ∈ D to the vector in NQ that measures vanishing along the color Di ∈ D. In

particular, the map π∗ : NQ → NQ is a linear transformation.

Theorem 5.4.1. If Y ⊆ G/H is a closed subvariety, then tropG(Y ) is the support of

a polyhedral complex.
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Proof. Suppose first that G/H has trivial divisor class group. By Theorem 5.1.1,

tropT

(
Y ∩

(
K
∗)n) is the support of a polyhedral complex in NQ. The map ψ re-

stricted to NQ is a piecewise projection over finitely many regions R` ⊆ NQ. Then

the image of tropT(Y )∩R` for each ` is the projection of the support of a polyhedral

complex and hence is the support of a polyhedral complex after potentially refining.

The image of tropT

(
Y ∩

(
K
∗)n) under ψ is thus a finite union of polyhedral com-

plexes. Repeating this argument on tropT (Y ∩O) for each T-orbit O, we conclude

that ψ (tropT(Y )) is a finite union of polyhedral complexes. After possibly refining

this finite union, we obtain the statement of the theorem.

Now we show that tropG(Y ) is the support of a polyhedral complex when Y ⊆

G/H and G/H does not have trivial divisor class group. Let π : G/H → G/H

be the associated projection from a homogeneous space G/H with trivial divisor

class group. By the first paragraph of the proof, tropG (π−1(Y )) is the support of

a polyhedral complex. By Theorem 4.2.5, tropG(Y ) = π∗ (tropG (π−1(Y ))) and so

because tropG (π−1(Y )) is the support of a polyhedral complex and π∗ is a linear

transformation, tropG(Y ) is also the support of a polyhedral complex.

We finally describe how the structure of this polyhedral complex is related to the

fan associated to the constant coefficient case. Note that a polyhedron P ⊆ Qn can

be written as

P = {x ∈ Qn : Ax ≤ b} ,

where A ∈ Qm×n is a matrix and b ∈ Qn is a vector. The ≤ symbol signifies that

(Ax)i ≤ bi for each component i.
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Definition 5.4.2. The recession fan of a polyhedron P = {x ∈ Qn : Ax ≤ b} ⊆ Qm

is

rec(P ) := {x ∈ Qn : Ax ≤ 0} .

If Σ is a polyhedral complex in Qn, then its recession fan is

rec(Σ) :=
⋃
P∈Σ

rec(P ).

Despite its name, the recession fan does not have a canonical fan structure, but it

is the support of a fan. As such, we understand rec(Σ) to signify the union of the

rec(P ) as a set, independent of fan structure.

An alternative way to define rec(P ) is

rec(P ) := {x ∈ Qn : P + x ⊆ P} .

See [6] and [21] for further details on recession fans and polyhedral geometry.

Throughout the remainder, we let Y ⊆ G/H be a closed subvariety whose defining

equations have coefficients in K. We denote by troptriv
G (Y ) the tropicalization of Y

where we pass to the field K := K{{s}} of Puiseux series over K and use the valuation

ν that takes the smallest power of s appearing with nonzero coefficient. In other

words, we take the trivial valuation on K and extend to the field of Puiseux series

over it, just as we did when we passed from C to K in Chapter 4. Given a K-point

γ of Y , we similarly obtain a G-invariant valuation νγ as follows:

νγ(f) := ν (γ∗ (gf)) ,

where f is a rational function and g is sufficiently general for f . We define

troptriv
G (Y ) := {νγ : γ ∈ Y (K)} .
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Note that if Y is given by equations with coefficients in C, then troptriv
G (Y ) =

tropG(Y ). Note also that Theorems 4.2.2 and 4.2.5 also apply to tropicalization

with respect to the trivial valuation. That is,

ψ
(
troptriv

T (Y )
)

= troptriv
G (Y );

(trop(π) ◦ ψ)
(
troptriv

T

(
π−1 (Y )

))
= troptriv

G (Y ) .

In the toric case, the polyhedral complex tropG(Y ) is related to troptriv
G (Y ) in the

following way:

Theorem 5.4.3. [21, Theorem 3.5.6] Let Y ⊆ Tn be a closed subvariety. Then as

subsets of NQ:

troptriv
T (Y ) = rec (tropT(Y )) .

We can directly extend this theorem to the spherical case, which requires us to

first prove a lemma.

Lemma 5.4.4. If P ⊆ Qn is a polyhedron and π : Qn → Qm is a linear transforma-

tion, then

rec(π(P )) = π(rec(P )).

Proof. Because π is linear, if P + x ⊆ P for some x ∈ Qn, then π(P ) + π(x) ⊆ π(P ).

It follows that rec(π(P )) ⊇ π(rec(P )).

Conversely, suppose y ∈ rec(π(P )). Note that π(Qn) is a subspace of Qm, so

because π(P ) + y ⊆ π(P ), y must lie in this subspace. Thus, y ∈ π(Qn) and so

π−1(y) is an affine linear subspace of Qn. We may write π−1(y) = x+ker(π) for some

x ∈ Qn. Then we have π(P+x) = π(P )+y ⊆ π(P ). Because π−1(π(P )) = P+ker(π),

this implies that P + x ⊆ P + ker(π). Thus, there exists some z ∈ ker(π) such that

P + x− z ⊆ P . Because π(x− z) = y, it follows that rec(π(P )) ⊆ π(rec(P )).
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Theorem 5.4.5. Let Y ⊆ G/H be a closed subvariety. Then:

troptriv
G (Y ) = rec(tropG(Y )).

Proof. Suppose first that G/H has trivial divisor class group. Then after taking a

refinement of tropT(Y ), we may assume that ψ acts as a projection ψ|P`
: P` → NQ

when restricted to each polyhedron P` ∈ tropT(Y ). Chaining the equalities from

Lemma 5.4.4, Theorem 5.4.3, and Theorem 4.2.2, we obtain:

rec(tropG(Y )) =
⋃
`

rec (ψ|P`
(P`)) =

⋃
`

ψ|P`
(rec (P`)) = ψ

(
troptriv

T (Y )
)

= troptriv
G (Y ).

Now suppose that G/H has nontrivial divisor class group. Then if G/H is the

associated homogeneous space with trivial divisor class group, the first paragraph of

this proof applies to tropG (π−1(Y )). Hence, we have the following:

rec (tropG(Y )) = rec
(
trop(π)

(
tropG

(
π−1 (Y )

)))
Theorem 4.2.5

= trop(π)
(
rec

(
tropG

(
π−1 (Y )

)))
Lemma 5.4.4

= trop(π)
(
troptriv

G

(
π−1 (Y )

))
= troptriv

G (Y ) Theorem 4.2.5.

Finally, we can generalize part (ii) of Theorem 1.4.2, which says that if a closed

subvariety Y ⊆ G/H has a tropical compactification in a G/H-embedding X, then

the support of the colored fan of X equals troptriv
G (Y ). Recall the definition of support

from §2.1 (Definition 2.1.4).

Corollary 5.4.6. Let Y ⊆ G/H be a closed subvariety. If Y ⊆ X is a tropical

compactification in a G/H-embedding X with colored fan ΣX , then:

supp(ΣX) = rec(tropG(Y )).
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Proof. By part (ii) of Theorem 1.4.2, supp(ΣX) = troptriv
G (Y ) under the hypotheses

given. Theorem 5.4.5 then tells us that supp(ΣX) = rec(tropG(Y )), as claimed.

5.5 Examples

Example 5.5.1. We first consider G/H = A2 \ {0} as in Example 2.1.6. Let

f ∈ K [G/H] be an arbitrary polynomial. Then we claim tropG (V (f)) is either

the entirety of NQ or is a ray oriented to the left with vertex at some point a ∈ Q.

Suppose first that f has a non-zero constant term c with ν(c) = a ∈ Q and write

f0 := f − c. We assume f0 6= 0 since the variety V (f) is trivial otherwise. Then for

any K-point γ and sufficiently general g ∈ G,

ν(γ∗(gf)) = ν(γ∗(gf0) + c) = min {ν(γ∗(gf0)), a} ≤ a.

Thus, tropG (V (f)) is a ray to the left with vertex at a.

If f ∈ K [G/H] has constant term zero, then there is no such restriction on

ν(γ∗(gf)) and hence the tropicalization is all of NQ.

For more interesting higher-dimensional examples, we consider G = Gl2×Gl2 and

G/H ∼= Gl2 as in Example 2.4.4. In his thesis, Vogiannou describes a way to compute

the tropicalization of a subvariety of G/H in this case:

Theorem 5.5.2. [33, Theorem 1.3] Let Y be a closed subvariety of Gln, defined

by some ideal I ⊆ C[Gln]. Then tropG(Y ) consists of the n-tuples (α1, . . . , αn) of

invariant factors (in decreasing order) of invertible matrices with entries in K, that

satisfy the equations of I.

Vogiannou proves this for the constant coefficient case, but his proof also applies

to the non-constant coefficient case as we have described it since the definitions are
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α1

α2

α1

α2

Figure 5.1: The subset of tropG(V (x11 − 1, x21 − x2
12)) with ν(z(t)) 6= ν(y(t)3) (left)

and tropG(V (x11 − 1, x21 − x2
12)) (right)

the same. We will consider the particular case of Gl2. Suppose we have a matrix

(xij) ∈ Gl2 with coefficients in K that satisfies the equations of some ideal I. Then

the invariant factors of (xij) are α2 = mini,j {ν(xij)} and α1 = ν(x11x22−x12x21)−α2.

We illustrate this by building on [33, Example 5.4], which has an oversight we explain

below.

Example 5.5.3. Consider the ideal I := (x11 − 1, x21 − x2
12). This ideal can be

parametrized as follows:
(

1 y(t)
y(t)2 z(t)

)
, y(t), z(t) ∈ K.

If one assumes that ν(z(t)) 6= ν(y(t)3), then the possible ordered pairs (α1, α2) of in-

variant factors are shown in Figure 5.1 on the left; the ray pointing down and to the left

has primitive vector (−1,−2). Vogiannou claims this is tropG (V (x11 − 1, x21 − x2
12))

([33, Example 5.4]); we show that this is incorrect.
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We claim that tropG (V (x11 − 1, x21 − x2
12)) also contains the entirety of the fourth

quadrant. That is, any point (α1, α2) = (a, b) with b ≤ 0 ≤ a lies in the tropicalization

as well. These points occur when ν(z(t)) = ν(y(t)3), i.e. when the valuation of the

determinant may be arbitrarily large. Consider the following K-point that lies in

V (I): (
1 tb/3

t2b/3 tb + ta+b

)
, b ≤ 0 ≤ a.

Note that the determinant of this matrix is ta+b. Then α2 = min {0, b/3, 2b/3, b} =

b and α1 = ν(ta+b) − α2 = (a + b) − b = a. Thus, (α1, α2) = (a, b) lies in the

tropicalization and so we get the entirety of the fourth quadrant as well. This is

shown on the right in Figure 5.1.

Example 5.5.4. In this example, we give a twist on Example 5.5.3 by including

nonconstant coefficients. Consider the ideal I := (x11 − 1, t2x21 − x2
12). This ideal

can be parametrized as follows:
(

1 ty(t)
y(t)2 z(t)

)
, y(t), z(t) ∈ K.

For simplicity of notation, we write yν := ν(y(t)) and zν := ν(z(t)). Then The-

orem 5.5.2 tells us that tropG(V (I)) consists of tuples (α1, α2) such that α2 =

min {0, 1 + yν , 2yν , zν} and α1 = ν(z(t) − ty(t)3) − α2. Let us assume first that

zν 6= 3yν + 1 so that α1 = min {zν , 3yν + 1} − α2. Then there are eight cases to

consider because there are four possibilities for min {0, 1 + yν , 2yν , zν} and two pos-

sibilities for min {zν , 3yν + 1}. The cases where the first minimum is met at yν + 1

cannot occur because yν + 1 ≤ 2yν only when yν ≥ 1, so 0 would be the minimum

in this case. The six other cases can occur and we consider them in turn below; the

resulting polyhedral object is shown in Figure 5.2.
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1. Minimums met at 0, zν .

In this case, α2 = 0 and α1 = zν − 0 for zν ≥ 0, so we obtain a ray on the

α1-axis starting at the origin oriented in the positive direction.

2. Minimums met at 0, 3yν + 1.

Now α2 = 0 and α1 = 3yν + 1, the only restriction being that yν ≥ 0. Thus, we

obtain the ray starting at the point (α1, α2) = (1, 0) oriented in the direction

(1, 0).

3. Minimums met at zν , zν .

Here α2 = zν and α1 = 0 for zν ≤ 0, so we have the ray starting at the origin

in the direction (0,−1).

4. Minimums met at zν , 3yν + 1.

Again α2 = zν but now α1 = 3yν + 1− zν . The set where the given minimums

are met is cut out by the inequalities 3yν + 1 ≤ zν ≤ 0, yν + 1, 2yν , which

gives a two-dimensional cone in the yνzν-plane with vertex (−1,−2) spanned

by rays in the directions (−1,−2) and (−1,−3). The image of this cone under

the linear transformation from the yνzν-plane to the α1α2-plane defined by

(yν , zν) 7→ (3yν + 1− zν , zν) is the cone with vertex (0,−2) spanned by rays in

the directions (0,−1) and (−1,−2).

5. Minimums met at 2yν , zν .

In this case, α2 = 2yν and α1 = z − 2yν . The minimums are met when the

inequalities 2yν ≤ 0, zν and zν ≤ 3yν + 1 are met. These cut out the triangle

in the yνzν-plane with vertices (0, 0), (−1,−2), and (0, 1). Under (yν , zν) 7→
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α1

α2

(0,−2)

(1, 0)

Figure 5.2: Valuations in tropG(V (x11 − 1, t2x21 − x2
12)) with zν 6= 3yν + 1

(zν−2yν , 2yν), this set is mapped to the triangle in the α1α2-plane with vertices

(0, 0), (0,−2), and (1, 0).

6. Minimums met at 2yν , 3yν + 1.

Now α2 = 2yν and α1 = yν + 1. Thus, we obtain points in the α1α2-plane of the

form (yν + 1, 2yν) where yν ≤ 0. This is a ray with vertex (1, 0) in the direction

of (−1,−2).

Now we consider when zν = 3yν + 1. In this setting, α1 ≥ zν −α2 = 3yν + 1−α2.

There are three subcases: when α2 = min {0, 1 + yν , 2yν , zν} is 0, 2yν , or zν . The

resulting tropicalization is shown in Figure 5.3. The added regions not present in

Figure 5.2 are labeled by where the minimum min {0, yν + 1, 2yν , zν} is met.

(i) If α2 = 0, then α1 ≥ 3yν + 1 ≥ 1 and we get the ray starting at (1, 0) in the

direction (1, 0).
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α1

α2

(0,−2)

(1, 0)

α2 = 2yν

α2 = zν

Figure 5.3: tropG(V (x11 − 1, t2x21 − x2
12))

(ii) If α2 = 2yν , then 2yν ≤ 0 and 2yν ≤ zν = 3yν + 1. These inequalities force

−1 ≤ yν ≤ 0. We also have that α1 ≥ (3yν + 1) − 2yν = yν + 1. The ordered

pairs (α1, α2) that satisfy these conditions are those such that −2 ≤ α2 ≤ 0 and

α1 ≥ 1
2α2 + 1.

(iii) If α2 = zν , then zν ≤ 2yν and so 3yν + 1 ≤ 2yν , which implies yν ≤ −1 and

hence α2 ≤ −2. Further, α1 ≥ zν − zν = 0. This gives the points in the fourth

quadrant such that α2 ≤ −2.

Example 5.5.5. Consider the ideal I := (x22−t) in Gl2. We will recover tropG(V (I))

using the three methods discussed in this thesis. This tropicalization appears in Figure

5.4.

1. Vogiannou tropicalization.
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α1

α2

(1, 1)

Figure 5.4: tropG(V (x22 − t))

Using Theorem 5.5.2, tropG(V (I)) consists of the ordered pairs (α1, α2) such

that α2 = min {1, ν(x11), ν(x12), ν(x21)} and α1 = ν(tx11 − x12x21) − α2 for

all x11, x12, x21 ∈ K such that tx11 6= x12x21. Thus, α2 ≤ 1 and α1 can vary

arbitrarily as long as (α1, α2) remains in the valuation cone. This recovers the

tropicalization in Figure 5.4.

2. Gröbner tropicalization.

Let v be a G-invariant valuation. There are three cases to consider: v(x22) > 1,

v(x22) = 1, and v(x22) < 1. If v(x22) > 1, then inv(x22 − t) = t, which is a unit

in grv (K [(G/H)B]), and so v doesn’t lie in the tropicalization.

If v(x22) = 1, then inv(x22− t) = x22− t, which is not a unit, so these valuations

lie in the tropicalization.

Finally, suppose v(x22) < 1 so that inv(x22 − t) = x22. The Borel subgroup B

we’ve been working with is the group of ordered pairs (U,L) where U is upper

111



triangular and L is lower triangular. In this setting, the divisor V (x22) is B-

stable and so x22 is a unit in grv (K [(G/H)B]). If we instead work with the

group B′ of ordered pairs (L,U), then the only B′-stable divisor is V (x11). Thus,

inv(x22− t) = x22 is not a unit in grv (K [(G/H)B′ ]), and so these valuations are

included in the tropicalization.

There is no restriction on the valuation of the determinant, so the tropicalization

must consist of every element in the valuation cone such that α2 ≤ 1, which

matches Figure 5.4.

3. Toric Embedding Tropicalization.

This is similar to Example 4.2.4. We have that V (x22) is the only B-stable

prime divisor and the G-module spanned by G · x22 has as a basis x22, x21,

x12, and x11. In keeping with the notation of Chapter 4.5, we write f11 := x22,

f12 := x21, f13 := x12, and f14 := x11. The only rational functions on Gl2 are

constant multiples of powers of the determinant g1 := x11x22 − x12x21.

Then the toric variety Z0 associated to Gl2 is the subvariety of
(
K

4 \ {0}
)
×K∗

cut out by the equations f11 − t and f11f14 − f12f13 − g1.

The image of tropT(V (f11 − t)) under the map ψ : tropT(Z0) → NQ consists

of those valuations that are less than or equal to 1 on x22. This is because for

v ∈ tropT (V (f11 − t)), we have:

ψ(v)(x22) = min {v(f11), v(f12), v(f13), v(f14)} = min {v(t), v(f12), v(f13), v(f14)}

= min {1, v(f12), v(f13), v(f14)} ≤ 1.
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Under ψ, tropT(V (f11f14−f12f13−g1)) is simply the valuation cone, so we again

conclude that tropG(V (I)) is as shown in Figure 5.4.
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