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Abstract

The penetration level of Plug-in Electric Vehicles (PEVs) is projected to continue

to rise in the future, which will lead to significant stress to the power grid due to

frequent charging behaviors and their high power density requirements. While many

studies have demonstrated the static pressure caused by PEVs for specific scenarios,

there is no software platform available for the visualization of the PEVs’ dynamic

impacts at the distribution level of the power grid. This thesis presents a Distribution

Grid RespOnse Monitor (DGROM) that fills this gap. DGROM allows for easy

parameter definition, including driving habits, PEV types, and penetration levels. Its

back end allows fast integration and data processing for scattered PEV charging over

wide areas. DGROM also considers mitigation efforts by providing built-in algorithms

for coordinated charging and location planning of charging stations. By coordinating

PEV charging, we can flatten load spikes over time and space, and thus mitigate

PEV’s impact. This paper presents the optimization basis and algorithms for PEV

coordination. In addition to reducing distribution grids’ stress, these algorithms will

allow the maximization of end-user benefits under varying retail electricity prices.

DGROM is demonstrated on the IEEE 8500 node test case and power systems within

Columbus, OH ranging from 81 to 1230 nodes.
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Chapter 1: Introduction

1.1 Overview of Plug-in Electrical Vehicles (PEVs)

Since their introduction to the market, due to their various advantages in envi-

ronmental protection, PEV stock has continued to rise. It has almost tripled itself

between 2013 and 2016, growing from 171 to 564 thousand [2]. Recent trends indicate

that the size of the PEV fleet will keep increasing for the foreseeable future while au-

tomobile manufacturers continue to release new PEV models and efforts within many

countries incentivizing customers to purchase these models [2]. Not only are PEVs

consistently improved and introduced, so too are their charging levels. Currently,

the public charging station can provide DC level charging to PEVs, which has the

peak power of 96 kW. Residential charging can also require 19.2 kW power from the

distribution power grid, which equals the sum of using ten ovens together. However,

it still can’t satisfy the need of charging while a typical PEVs needs 30 minutes at the

public charging station before their car is charged at the moment. Thus, ultra-fast

charging under development, which is projected to consume upwards of 300kW per

vehicle [13]. Table 1.1 shows the comparison of the power demand between PEVs

and typical household appliance. Thus, the impact of this newly introduced load on

the power grid becomes an interesting topic.
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PEVs and typical appliance power consumption
Appliance Power(kW) PEV Charging Level Power(kW)

25” colour TV 0.15 AC Level 1 2
Hair Blow dryer 1.8 AC Level 2 19.2

Home Air Conditioner 1-4 DC Level 1 36
Toaster 1-2 DC Level 2 96
Oven 2 Ultrafast Charging 300

Table 1.1: Comparison of the power demand between PEV charging level and typical
home appliance.

1.2 Problem Background and Prior Work

As described in the previous section, the massive power consumption of PEVs

can cause overloading while many PEVs charge together. At the same time, different

from other steadily connected massive loads, e.g., factories, hospitals, and electric

railways, the connection time of PEVs is very flexible and stochastic, which let the

attempt to predict their charging behavior becomes hard. Thus, their massive power

consumption, paired with their load characteristics, which manifests as impulses [17],

can result in severe faults to the power grid, e.g., voltage deviations and power quality

reductions, both of which can cause blackouts [4]. Except for the short-term impact,

massive PEVs can also cause accelerated aging of distribution grid infrastructure in

the long term, which further results in the significant financial loss. Thus, it is likely

that the grid will become the bottleneck of the development of PEV.

Prior Work. Many past works have demonstrated the effects of PEV charging on the

grid. Mostly, these analyses are focused on long-term evaluation for grid planning

[25], where charging impacts are often presented concerning static time periods [12].
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These static methods, however, fail to capture the duration and frequency of grid

events caused by increasing levels of PEV charging. Simulation, which allows for

the visualization of the effects of PEV charging, has also been popular within the

literature, with many demonstrating these effects within real systems [8]. However,

the individual characteristic of each vehicle is ignored in most papers, instead choosing

to model all PEVs as a single entity [30]. This approach may be sufficient for a

general result, but a diverse fleet of PEVs should be considered for a realistic view of

the impacts. Further, these simulations often focus on one type of charging impact,

e.g., thermal loading [23], or voltage drops [8]. These individual scenarios do not

accurately characterize the wide range of impacts that PEVs can have on the grid.

Thus, it is necessary to allow for robust analysis, consisting of a simulation that

allows for the visualization of various impact metrics a system will experience under

increased PEV charging.

On the other side, the mitigation of the impact of PEV charging on the distribution

power grid is also a wide-discussed topic. Mainly, the whole process of mitigation can

be described as an optimization problem to determine when and how PEVs should

charge. which will be detailed discussed in chapter 3.

Based on the description above, plenty of commercial software has been devel-

oped to analyze the status of the power grid. However, existing commercial software

packages for distribution systems (Alstom, GridlabD, OpenDss, etc.) only allow for

the estimation of static load impact, which ignores the inter-temporal change of load.

Visualization and evaluation of dynamic load impact are only available in the software

at the transmission level (CYME, PSS/E, PSAT, etc.). However, these results are not
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applicable to the distribution level, where the discreteness of impulsive loads’ charac-

teristics and grid switch-gears’ response is magnified. At the same time, no software

offers methods of mitigating the impact of impulsive loads on the power grid (e.g.,

The charging of PEV). However, such methods are essential because it can reduce

the stress on the power grid, providing more time for the utility to prepare through

the grid reinforcement. It is also important for reducing the capital investment by

prolonging the life cycles of grid assets (e.g., transformers, voltage regulators) The

mitigation effort can also improve grid efficiency, power quality, and reliability by re-

ducing the possibility of coincidental overloading which can lead to electricity supply

interruptions.

1.3 Distribution Grid Response Monitor (DGROM)

To overcome the deficiencies mentioned before, we have invented Distribution Grid

RespOnse Monitor (DGROM) that can monitor, assess, visualize and mitigate the

impact of PEVs on the distribution power grid. In this software, time-series power

flow is employed to allow for the consideration of both the frequency and duration of

PEV impacts, helping to obtain both long- and short-term impact analysis. Further,

DGROM is compatible with all power systems in the format of distribution power

system simulator. Thus, utilities and grid planners can use this software to obtain

insight into the impact PEVs will have within their systems, allowing them to pre-

pare via grid reinforcement. To achieve realistic results, DGROM models each PEV

within the system as an individual, instead of aggregating them, and allows users to

easily obtain various impact indices, including voltage unbalance and line loading.

A coordinated charging algorithm is also implemented, illuminating the value of this
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mitigation effort. Currently, DGROM can also perform charging station planning,

enabling the automatic selection of the optimal charging station locations based on

traffic flow within a geographical region. In conclusion, DGROM is uniquely posi-

tioned as a way to simulate generic cases of PEV penetration levels within a system of

the users choice, while also presenting these impacts regarding various impact indices,

resulting in a more holistic view.

1.4 Organization of this Thesis

The rest of this thesis is organized as follows.

Chapter 2 introduces the architecture of DGROM, and the function and technical

details for all modules embedded in DGROM.

Chapter 3 detailed introduces the attempt to mitigate the impact of PEVs on the

distribution power grid.

Chapter 4 summarizes the results of the thesis and gives pointers to future research

that can be based on this exemplary work.
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Chapter 2: Architecture of the DGROM

The architecture of this software can be viewed in Fig. 2.1. In DGROM, several

MATLAB modules were coded to integrate, transmit, and analyze the data input

by the user through the GUI, which is detailed in Fig.2.2. However, except for the

external definition, the internal data integration effort is essential. DGROM creates

a set of searching algorithms based on the alphabetic string analysis of imported

files. Once the integration process is completed, the PEV load profile is generated

and transmitted to perform time-series power flow analyses where currently OpenDSS

was employed as its solver. The result is then integrated with the selection of the per-

formance indices to show the visualization result of the system. A detailed description

of the various customizable modules of DGROM is provided below.

2.1 Input Circuit Requirement

The most fundamental component within DGROM is the system under study.

Currently, DGROM is compatible with all systems in the format of OpenDSS, which

is capable of doing time-series power flow analysis. The ability to perform time-series

power flow is of critical importance for users interested in studying both dynamic

short- and long-term impacts. This part is shown in part 1 of Figure 2.2.

6



Figure 2.1: Architecture of the software

Figure 2.2: Dashboard of DGROM
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However, merely inputting the system files is not enough for adequate analysis;

when the simulation is performed the data conversion effort is substantial. Due to the

concern of compatibility, and the fact that there’s never a specific rule of how different

users name their components. A comprehensive string analysis algorithm is essential

to link every component together. In DGROM, we have created a set of string analyze

algorithms. The example of an alphabetic string analysis of imported files is shown

in Part B of fig.2.3. In this example, we extract the identical part of the name of each

component components. The sorting label is then added to the remaining different

part based on their geographical location. This algorithm allows us to divide the

whole system based on the different labels, decreasing the range of searching for each

component, resulting in a 75% reduction of searching time. Afterward, we can run

time-series power flow analysis based on the searching result. The power flow result

is then plotted onto the system diagram.

2.2 Load Creator (LC)

The primary load we concerned in DGROM is PEV. Thus, the design of the

parameter of PEV is of critically important. In DGROM, we use Load Creator

(LC) to define the parameters of PEVs, which can be divided into the electrical

characteristic, the temporal characteristic, and the geographical characteristic. Thus,

the connection time, duration, location and power demand can be fully defined via

LC. At the same time, all parameters in LC allowed customization, which will enable

users to create a system that entirely under control.

8



Figure 2.3: Overview of a running process of the software: Part A shows how the
residential range is selected in this software, with the typical load profile of baseline
load shown in the inset. Part B describes the mapping process of a certain compo-
nent onto the coordination, where the coordination was divided into several parts to
enhance the searching speed up to 75%. Part C shows the power on-line result for
the Oakland Power system in Columbus, OH.
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2.2.1 Electrical Characteristic Hub of Load (ECHL)

The electrical characteristic of PEVs (e.g., the power demand) is defined in DGROM

via ECHL, as shown in block 2 of Figure 2.2. In DGROM, PEVs are defined by dif-

ferent models which contains description of battery and charging level, which can

define the maximum charging rate and maximum energy. These two characteristics,

together, allow for DGROM to determine each PEVs power draw from the grid, en-

abling representation of the charging load. In DGROM, the model of PEVs can be

defined in two ways: a built-in model for specific PEVs or a user-definable section, in

which users can represent any PEV under study. This individual representation for

each PEV and the multiple charging levels within the system results in a simulation

that accurately depicts the effect of varying charge levels coinciding. The range of

each PEV allows for the determination of SOC based on distance traveled, allow-

ing for a more complex representation of each PEV’s electrical needs at the time of

their charge. In the future, real-time traffic flow data representing travel within a

geographical area will be enabled, which will increase the critical importance of the

definition range, i.e., when the trip distance is known, SOC at each charging station

is more accurately represented.

This model does not consider the characteristics of the charge event itself, i.e., the

ramp up and down rates of charge because it is negligible while the minimum step

size of DGROM is 15 minutes. However, the ramp up and down rates is helpful to

show the discreteness of the PEV loads. Thus, this behavior will be included in future

iterations of this software based on the interpolation algorithm to provide solutions

with higher time-resolution.
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2.2.2 Temporal Characteristic Hub of Load (TCHL)

Except for the power demand we have from ECHL, we still need the charging

time and duration of every PEV. Thus, we create Temporal Characteristic Hub of

Load (TCHL) to define these temporal characteristics. In reality, two PEVs of the

same model can have different charging scenario based on its daily routine. Thus, it

is necessary to consider individual differences between PEVs stochastically, not only

regarding their charging parameters but also concerning different daily usage patterns.

Stochastic charging behaviors are thus integrated within the TCHL, within block 3

of Fig. 2.2. PEVs are divided into three types of DGROM: Private Commuter, Ride

Service, and Emergency Vehicle.

Private Commuter

PEVs, same as other vehicles, are most commonly used as daily commute vehicles,

which will tend to charge at home overnight. Thus it is important to characterize the

times at which they arrive at and leave their homes, as well as their SOC upon arrival.

According to [31], a normal distribution, with an average commuting duration of 25.4

minutes and a variance of 7.34 minutes can be used to present the random variable

describing the daily commute time. Combining with the traditional working time in

the U.S., from 9:00 am to 5:00 pm, the actual period of arrival is thus defined. Based

on the commute data from the Bureau of Transportation, a normal distribution with

mean 15 miles and variance 5 miles is used represent their commute distance [20].

By assuming that each PEV needs to start their commutation at full charge, the

final SOC can thus be calculated using the range of their vehicles and their driving

distance.

11



In DGROM, these private commuters will charge under two scenarios: (i) they

charge via residential charging level after having arrived home after a workday or (ii)

they charge via public charging level while their SOC is below their pre-determined

SOC threshold during their commuting process. In DGROM, such SOC threshold at

which drivers choose to charge is dependent on personal preference, random variables

according to a normal distribution, with mean 0.35 and variation 0.15 is used to

represent such behavior. It is set to a value of 0.05 if the generated value is less than

0. Thus, this random variable allows DGROM to determine the SOC threshold for

each PEV. The optimal charging algorithm, detailed in chapter 3 is applied here to

minimize the owners’ cost or the impact on the power grid and determine the actual

period during which charging occurs.

Ride Service

Ride service vehicles are another common kind of electric vehicle, especially in

large metropolitan areas. Currently, many cities worldwide, e.g., London [9] and

Montreal [18], have introduced PEV cabs. A distinguishing characteristic of these

vehicles is that they are for on the road for long periods. Thus, they tend to use the

public charging stations with the charging level based on their model to achieve faster-

charging speeds. Different from the strategy defining the characteristic of private

commuters, we cannot use average trip distance while ride service vehicles drive all

the day. Speed is instead used to allow for the determination of when a ride service

vehicle will be charged. This platform using an average driving speed of 27 mph,

which is also customizable [19]. Their start driving time are earlier than commuters’

because many people use cabs to commute, so is their end driving time. Ride Service

vehicles will charge while their SOC falls below their pre-determined SOC threshold,
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which is defined as same as the one in Private Commuter. They will continue to

provide ride service after charging in the public charging station until they are out

of charge again. Thus, their charging time dan duration can be defined. DGROM is

embedded with the charging station planning algorithm, which enables the vehicle to

charge at specific charging station based on its current location, which will be detailed

described in later sections. In DGROM, TCHL generates the temporal characteristic

of commuters and ride service vehicles using the same code, which is shown in Figure

2.4.

Emergency Vehicles

The final type of PEV, defined regarding its driving characteristics, consists of

electric emergency vehicles. Currently, no electrical emergency vehicles are running on

the road, but several have been introduced. BMW has introduced electrical emergency

vehicles with ranges of 100 miles or more [6]. Ford has also been actively researching

and creating concepts of electrical ambulance [32]. Thus, within the promotion of

smart cities, it is reasonable to assume emergency vehicles will be electrified in the

future. Within the platform, fleets of emergency vehicles can consist of all types

of cars, with different charge levels. When simulating the driving behavior of such

vehicles, routines relating to arrival time and distance no longer apply due to the

stochastic behavior of emergency vehicles. Thus, in DGROM, a probability model

is used to describe the emergency vehicles’ behavior, regarding the probability of an

emergency vehicle leaving the station to perform its duty, wherein each vehicle has a

5% chance of leaving the station. Emergency vehicles should never run out of charge

during their trips, so there’s no optimized charging sequence within the road network

for vehicles of this type. The average driving speed of 67 mph, with a variation of 23

13



Figure 2.4: Flowchart of how DGROM Create Temporal Characteristic for Com-
muters and Ride Service Vehicles
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mph, and an average trip time of 8 min, with variation 4.3 min, are used together to

determine SOC upon return.

2.2.3 Geographical Characteristic Hub of Load (GCHL)

With the definition of PEV charge parameters and power requirements, along

with knowledge of when charging will occur, the software must be able to determine

where the charge event interacts with the grid. Thus, selection of charging station

locations in the software, shown in part 4 of Fig. 2.2 is critically important. In

this software, we use Geographical Characteristic Hub of Load (GCHL) to define the

locations of charging stations. In GCHL, all charging locations are divided into resi-

dential charging locations, which are designed for private commuters, and the public

charging stations, which are designed for ride service vehicles. Currently, in DGROM,

the location of residential charging locations are user-defined by dragging ideal area

on a 2-D plot of the system, shown in part A of Fig. 2.3. This allows us to accurately

depict the impacts of charging based on residential charging level. However, when it

comes to the selection of public charging station, the planning of the location of it

becomes critical. The core problem of public charging station planning is a mixed-

integer problem, with an indicator variable corresponding to the decision to build or

not [10, 36]. In this software, such mix-integer optimization algorithm for charging

station planning is adopted [34].

In DGROM, we made assume the distance we need to travel between two nodes

equals to their linear length due to the consideration that we only have the coordi-

nation data with distinct, independent nodes. For each ride service vehicles, which

15



is designed to charge at the public charging station. We have developed one specific

trip chain for each of them. The trap chain data is defined by the following steps:

1. Define a start node and steps, which is a Gaussian distributed variable with

an average step of 12 [7] and a variation of 3. Each step means the driver has

completed a ride.

2. For each step, the next destination is randomly chosen in all nodes within certain

range, which is a Gaussian distributed variable with an average mileage of 10

miles [7] and a variation of 5.

3. Follow this process until all steps are completed. This depicts a complete trip

chain for a ride service vehicle per day.

We consider all nodes are candidate location of public charging station. Thus, this

problem can be formed as a mix-integer problem:

max
x,y

∑
q∈Q

yq (2.1)

s.t.
∑

k∈Nq

xk≤ yq∑
k∈K

xk≤M

xk ∈ {0, 1},∀k ∈ K
yq ∈ {0, 1},∀q ∈ Q

(2.2)

In the function above, M is the maximum possible number of charging station, which

is input by the user. Q is the set of trip chains we defined previously. K is the set

of all nodes. Nq is the set of candidate charging station locations that are capable of

capturing EVs traveling on trip chains q. Here, this ”capture” has two requirements.

The first one is the route will pass the node within a range of 1 mile [34]. The second

one is the PEV is in need to charge while it passes the node. Thus, we can define the
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Figure 2.5: Nodes selected for Oakland power system in Columbus, Ohio.

decision variables in equations above: xk is a binary variable that only equals to one

when the station is placed at node k; yq is a binary variable that only equals to one

when the PEV on route q is ”captured” by a charging station; An example result of

the automatic node selection is shown in Figure 2.5 when the system needs 7 public

charging stations.

2.3 Performance Indices

The ultimate goal of this software is the ability to visualize key impacts to the

distribution grid caused by the defined PEV parameters, charge behavior, and charg-

ing stations. This platform is created in a way such that various impacts can be

simulated, as shown in Block 5 of Fig. 2.2.
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2.3.1 Voltage

PEV charging behaviors have a direct impact on the voltage profile within the

system, regarding both under- and over-voltage [8]. System overloading will cause

voltage drops at the end of feeders, tripping the circuit breaker and causing blackouts.

This will directly impact the customers and can cause huge loss. For example, outages

in the brokerage operations industry can lead to costs over $6 million [22]. Costs

corresponding to outages can outrage customers and lead to consequences for critical

infrastructures, such as hospitals that must switch to back-ups. The voltage tolerance

of ±5% at the furthest end, based on the ANSI standard, is built-in [26]. DGROM

will run the simulation and help users see this effect via a 3-D plot indicating the

node voltage, shown in Fig. 2.6. Different colors are used to show the status of the

node voltage. Results can also show the differences in system performance before and

after PEV addition.

2.3.2 Voltage Unbalance Index

Voltage impacts can also be visualized according to a Voltage Unbalance Index

(VUI). Load unbalance will cause under-voltage in the overloading phase and over-

voltage in other phases, both of which are detrimental to grid operation. AC Levels

I and II can cause voltage unbalance due to their single-phase charging, making it

critical to conduct this simulation in areas where charging at these levels occur, as

selected in the home range portion of the dashboard. In this paper, we use the voltage

unbalance index (VUI) which defines the degree of unbalance present as

V UI =
MAX(VA, VB, VC)

(VA + VB + VC)/3
,

18



where VA, VB, VC are the voltage for each phase for a three-phase node. Within

DGROM, the tolerance of the UVI within the system is defined according to ANSI

Standards to be ±3% [26]. The results are presented in the form of a 3-D plot

indicating the VUI at each node using various colors.

2.3.3 Load Power

Impacts relating to load power can also impact power quality, with overloading

leading to blackouts, brownouts, and frequency deviations. These impacts result in

costs to users, and frequency deviations can impact devices connected to the grid, even

devices as small as clocks [37]. In the long-term, load power can shorten the lifetime of

grid assets, such as the transformer, and replace them can lead to costs over $ 20,000

for one transformer [17]. This software addresses this impact by demonstrating the

load power within the system. Load values connected to each node are also considered,

enabling the user to identify where overloading occurs. Visually, the platform will

produce a 3-D plot indicating the amount of load. The color of the line will change

when the load power at a specific node exceeds the user-defined power threshold.

2.3.4 Loading On-Line

Overloading, as described above, can also be seen via the loading on line. All

conductors within the grid have their operation limits concerning current [1]. If

the current on a line exceeds its defined limit, there is an overcurrent fault, which

can cause overheating, fire damage, and increased losses of power. This platform

considers loading on-line, creating a 2-D plot indicating the power flow through each

line, wherein the thickness of the line shows the amount of power. Part C in Fig. 2.3

shows an example of this visualization index.
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Figure 2.6: Result of Voltage Index simulation. The red areas indicate under-voltage.

2.4 Visualization Result

Figure 2.6 shows the voltage condition of Oakland Power System in Columbus,

Ohio. 1000 Tesla Model S is connected to the system using the public fast-charging

charger. We can see from the figure that the voltage of far end has dropped below

0.95, which is prohibited by the power grid. Thus, the increment of the penetration

level of PEVs can cause serious problems.

Figure 2.7 shows the power status of Oakland Power System in Columbus, Ohio.

300 Tesla Model S is connected to the system using the public fast-charging charger.

We can see from the figure that the power demand on some nodes exceeds 100kW,

which will cause serious overload problem.

Figure 2.8 shows the comparison of the voltage between original system and PEV

added system of Oakland Power System in Columbus, Ohio. 500 Tesla Model S is

connected to the system using the public fast-charging charger. We can see from the

figure that the PEVs affect the voltage of far end severely.
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Figure 2.7: The result of Power Index simulation. Blue areas indicate the load con-
nected to this node is more than 100kW.

Figure 2.8: The result of the comparison of the voltage between original system and
PEV added system.
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Chapter 3: Mitigating PEV’s Impact on Distribution Power

Grids

In previous chapters, we discussed the negative impact of PEV charging on distri-

bution power grid. Several performance indices are employed to help users visualize

the negative impacts of PEV charging. However, the negative impact of PEV charg-

ing can be reduced while they are properly guided, e.g., if PEVs are guided to charge

at off-peak hours, then they can act as a ”valley filler.” This whole process can be de-

scribed as an optimization problem to determine when and how PEVs should charge.

Load coordination has been well studied in literature of demand-engaged elec-

tricity markets [21] and frequency control [27] in transmission systems. However,

these results cannot be migrated to the distribution level, at which the discreteness

of PEV’s charging profile and grid switch-gears’ response are magnified. When it

comes to specific PEV load control, the charge optimization framework has been well

studied through both convex and non-convex problems. The Non-convex problem,

which includes Mixed-Integer Programs (MIP) with indicator variables [14] and dy-

namic programs [24] are widely used. However, in DGROM, convex optimization is

chosen to solve coordinating charging problem for many reasons. First, their rela-

tively simple solution algorithms help to reduce computational costs when simulating

large-scale systems. Secondly, the system itself can be described as a convex problem.
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Though some studies [3,11,14,29], use MIPs with integer status variables to build up

the problem, which can, in fact, be replaced with a continuous variable representing

transmitted power. Game theory is also employed by some papers [15, 27, 33, 38] by

describing the problem into a non-cooperative, zero-sum game. However, the system

that is suitable to perform game theoretical approach is limited to the small-scale

system while the process of solving a game can be increasing in exponential. [38].

To overcome the deficiencies mentioned before and the real need of DGROM, we

propose a suite of algorithms based on convex and nonlinear optimization methods.

While the convex-based algorithms present fast convergence, the nonlinear-based al-

gorithms promise consistent optimization performance over increasing system scales.

The algorithms consist three parts: TCHL, optimization formulations, and Solver

Selector.

3.1 Temporal Characteristic Hub of Load (TCHL)

In chapter 2, we have introduced that TCHL is capable of generating the temporal

characteristic of PEVs including charging time and duration as shown in Figure 2.4.

These parameters are essential for coordinate charging. Thus, the data from TCHL

will be imported and further edited by TCHL while the coordinate charging function

is enabled in DGROM. TCHL also includes a time-dependent electricity price model

when the user needs to concern about the price of charge a PEV. A typical price

function embedded is [5, 28]

f(Q) = α(
Q

C
)k, (3.1)
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where α and k are constants, C is the total load of the whole grid, and Q is the power

absorbed by the PEV. This function can be edited, improved, or replaced by the user

to achieve a better result.

3.2 Formulation

As described in previous chapters, commuters and ride service vehicles have dif-

ferent routines and charging locations. In DGROM, every vehicle needs to report

its current status [SOC,CAP, t1, t2] to the system before charging, where SOC is the

remaining battery energy, CAP is the capacity, and [t1, t2] is the charging start and

end time. For commuters, t2 is their time to leave home. For shuttle service vehicles,

t2 is defined by:

t2 = rand× (1− SOC)× CAP
pnmax

+ t1, (3.2)

where 1 ≤ rand ≤ 3 is a uniformly distributed random variable referring to the

charging priority, pnmax is the maximum charging rate based on charging level. The

default step size of optimization is 15 min, and the length of simulation is 24 hours,

resulting in 96 time periods corresponding to charge start and end times. For exam-

ple, assume a PEV is leaving at 8 a.m in the morning and arrives home at 9 p.m. We

have t1 = 21 × 4 = 84; t2 = 8 × 4 + 96 = 128. Thus, the time period corresponding

to this PEVs charge time is [t1, t2] = [84, 128].

For PEV owner, who are particularly interested in his benefit, a price-minimizing

objective function is designed. Previous day’s load data is used to calculate the

electricity price curve for the next day. Thus, the objective function minimizing
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owner’s charging cost is:

min
pn

t2−1∑
n=t1

∫ n+1

n

f(pn)dpn, (3.3)

where pn is the charging power at the nth slot.

For utility, an objective function minimizing the load variance is designed.

min
pn

Var [Cn +
K∑
i=1

pi,n], (3.4)

where Cn is the base load at the nth slot, K is the total number of PEVs.

This algorithm offers series of system constraints. From owner’s perspective, they

want their vehicles are ready when they need to leave. Thus,

t2−1∑
n=t1

pn × 0.25 = (1− SOC)× CAP, (3.5)

From the utility’s perspective, a limitation of the system’s total power is necessary

[35]:

Cn +
K∑
i=1

Qi,n ≤ L, (3.6)

where L is the maximum value of the total load. The node voltage needs to be

constrained to prevent overloading [29]:

VN,k = V1,k −
N−1∑
i=1

[Pi(i+1),kRi,i+1 +Qi(i+1),kXi,i+1] ≥ Vmin, (3.7)

where Pi(i+1),k and Qi(i+1),k are the active and reactive power flow from busi to busi+1

in period k Ri,i+1 and Xi,i+1 are the resistance and reactance from busi to busi+1.

The implementation of this algorithm is currently limited to day-ahead pricing

within DGROM. In the future, real-time pricing will be integrated to allow for de-

cision making with respect to changing prices in real-time. Public charging will also
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Figure 3.1: This flow chart shows how DGROM select the solver. Here, both solvers
are selected, and a comparison is provided. However, such comparison is not manda-
tory. DGROM will ask for change a solver when: 1. The heuristic solver has solved
the problem. 2. The Traditional solver takes more than 10 minutes to solve.

be considered from the perspective of the station itself, with an aggregator seeking

to maximize their profit considering an unexpected ending of charge event by the

user. Bidirectional power flow will also be considered, allowing for the simulation of

ancillary services provided by PEVs.
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Figure 3.2: The effect of coordinated charging within a test system.

3.3 Solver Selector

DGROM supports both mathematical solvers and heuristic solvers. Mathematical

solvers, e.g, interior points method and active set methods, provide global optimal so-

lution when the problem is convex. However, As the optimization framework becomes

more complex, mathematical solvers may fail to deliver results within a reasonable

time, while heuristic methods can result in over 75% reductions of CPU time [16].

Among different heuristic methods, Genetic Algorithms work well with highly non-

linear formulations and an expanded optimization framework will take non-linear

forms. Particle Swarm Optimization works best for task scheduling, a form of the

problem being addressed. Further, DGROM allows for the comparison of optimal

results obtained from different solvers. The flowchart of how solver selector select

between different solvers is shown in Figure 3.1.
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Figure 3.3: The price reduction when focusing on minimizing charging cost.

3.4 Results

The coordinated charging algorithm performed well. A numerical example using

interior-point method with the objective function (3.3) and constraints (3.5)-(3.7) are

shown in Figure 3.2.

Figure 3.3 shows the charging strategy for a commuter and corresponding electric-

ity power price. From the figure, we can find that DGROM can reduce the charging

cost by 23% when we choose to minimize the charging cost. When the coordinated

charging algorithms applied, comparing to the original charging process, the charging

power reduced while charging time increases. More generically, most of the vehicles

in this case is daily commuters, who tend to charge at home using residential level.

From the figure, we can see that massive charging of PEV can have huge effect on

the price curve. Thus, it is likely to predict that the public charging can save more

money while it needs more power from the power grid. In the future, more cases
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discussion the charging cost and public charging station and residential charging will

be provided.
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Chapter 4: Conclusion and Future Works

As PEVs continue to become a larger portion of fleets on the road, the ability to

visualize impacts to the grid caused by their charging becomes more important. In

this paper, a software platform, DGROM, was presented to address the deficiencies

present in past works, which focus on static impact analysis for specific test cases.

DGROM’s graphical user interface allows for easy parameter definition, including

driving habits, PEV types, and penetration patterns. Its back end allows fast inte-

gration and processing of data for scattered PEV charging over wide areas through the

improvement of commercial solvers. This software also considers mitigation efforts by

providing built-in algorithms for coordinated charging, presenting the optimization

basis and algorithms for PEV coordination. Distinct from studies of PEV coordina-

tion at the transmission level, the proposed algorithms embrace the discreteness of

PEV charging profile and grid asset response, allowing accurate estimation of coor-

dination’s cost-effectiveness. In addition to reducing distribution grids’ stress, these

algorithms allow the maximization of end-user benefits under varying retail electric-

ity prices. The proposed PEV coordination algorithms are integrated with DGROM,

which analyzes and visualizes the dynamic load response of distribution grids.

In the future, the update and improvement of DGROM will focused on following

parts.
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1. Better coding structure. Currently, the coding structure is constrained by the

communication between MATLAB and OpenDSS while the parallel computing

function embedded, which can greatly increase simulation speed, is not avail-

able. Thus, the efficiency of the code can be improved while we use other

distribution grid simulator, especially these embedded in MATLAB.

2. In the future, DGROM will provide more analyses about asset depreciation,

which greatly enhance the ability for DGROM to analyses the long-term impact

of charging and corresponding countermeasure.

3. In the future, users can import their coordination charging algorithms or charg-

ing station planning algorithms. At the same time, DGROM will provide
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