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Abstract

High-fidelity observations of non-linear dynamical systems that are of practical

interest lead to massive data sets which do not fit on a single computing node.

Therefore, modal decomposition techniques must be able to exploit the capability

of high-performance computing (HPC) facilities. Proper Orthogonal Decomposi-

tion and Sparse Coding are two of the commonly used modal decomposition tech-

niques to obtain reduced order models. The goal of the research is to parallelize

and implement these algorithms so that they can be used on high-performance

computing clusters in order to expedite the process of modal decomposition from

massive data sets. However, computation on various machines is associated with

high memory usage and significant communication cost. Moreover, the overall

computational cost is sensitive to the type of data set and various parameters of

the algorithm. Therefore, several strategies are discussed and implementations

are developed to address these constraints to perform expedient modal decompo-

sition. Furthermore, a systematic study is performed over multiple data sets to

assess the performance and scalability of the implementations.
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Chapter 1

Introduction

1.1 Problem Statement

The solution trajectories of complex physical systems are multi-dimensional, lead-

ing to massive observation data sets of statistical significance. Comprehending and

using data sets generated from such complex systems is a non-trivial and com-

putationally intensive task. Modal decomposition is an important step towards

analysis, compression and reduced order modeling of such dynamical systems.

Modal decomposition is a process of decomposing a large observation or data ma-

trix into a small set of basis vectors and corresponding coefficients. Such massive

data sets generated from physical systems generally do not fit on a single computer

and require large computing power to carry out modal decomposition. Recent ad-

vancement in computing hardware and development of parallel algorithms has

allowed taking a step further in making efficient and accurate predictions. There-

fore, modal decomposition techniques must be able to operate on large data sets by
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leveraging high-performance computing clusters. One of the widely used modal

decomposition techniques is Proper Orthogonal Decomposition (POD), or Prin-

cipal Components Analysis (PCA) [2] [8] [9]. The approach is based on identi-

fying and ordering principal components in observed data. Another promising

approach to obtain reduced order models is Sparse Coding [11] [12] which was

found to perform better for canonical problems [1]. However, a drawback of the

sparse coding approach is the significant increase in computational cost to decom-

pose large data sets [1]. This issue limits the usage of the existing algorithm of

sparse coding, to relatively simple, low-dimensional systems. Parallel implemen-

tation of these modal decomposition techniques are developed to leverage high-

performance computing hardware and expedite the process of obtaining reduced

order models. Several implementation strategies are proposed, assessed and dis-

cussed. Performance is characterized in terms of efficiency of execution, memory

consumed and communication cost incurred. Scalability of the algorithms is as-

sessed by varying the parameters of the algorithm.

1.2 Literature Review

Dimensionality reduction is a process converting a set of data having vast dimen-

sions into data with lesser dimensions ensuring that it conveys similar informa-

tion concisely. Proper Orthogonal Decomposition (POD) or Principal Component

Analysis(PCA) is one of the commonly used algorithms for dimensionality reduc-

2



tion. Principal Component Analysis is widely applied in fields such as Neuro-

science [15], Bioinformatics [16], E-Commerce [17], Data Mining [18], Image Pro-

cessing [25] and many more. To address the increasing computational costs and

memory requirements of scientific data analysis, a parallel and scalable solution is

necessary. There have been several attempts at performing PCA in parallel [21–24]

and many open source libraries and frameworks such as Hadoop [28], Spark [29],

R Statistical Package [30, 31], Mahout-PCA [26], MLlib-PCA [27], MatlabMPI [32]

that provide parallel implementation of PCA on large data sets. However, there

are several limitations in using these open source implementations. In-memory

capability can become a bottleneck with cost-efficient processing of large data sets

as in-memory is quite expensive. Memory consumption is very high and it is not

handled in a user-friendly way. Especially with Apache Spark which requires a

huge amount of RAM to execute in-memory, thus cost is high. Portability of code

on various HPC clusters becomes a challenge. These big data frameworks are usu-

ally associated with high startup overhead and latency for running several jobs

on large data sets. Therefore, developing our own framework provides flexibil-

ity in usage to perform certain steps in the algorithm differently to improve the

efficiency of execution for our problem.

One of the works provides a detailed analysis of the bottlenecks in scalability

of PCA in distributed environment [33] and provides good insight on choosing

the appropriate software library for executing PCA in parallel. It also stresses on

high communication cost incurred for PCA on big data sets and cubic complexity

3



of SVD operation. The study proposes sPCA [34] that uses Probabilistic PCA to

reduce communication complexity on matrices as large as 1.26B × 71.5K (96 GB

of non zeros) of Twitter data and 160M × 128 (82 GB) of image data apart from

others. However, their approach is different from the standard PCA which we use

and hence the output would be different. The study uses stochastic SVD that is

better suited for sparse matrices.

Another recent work [35] provides a novel Distributed PCA algorithm and a

good insight on its communication complexity with a well established formulation

for the lower-bound cost. The study proposes that distributing data in a column-

partition model, i.e. columns of the main matrix distributed, performs better in

terms of communication.

Trade-off using external libraries such as Apache Spark to perform linear al-

gebra operations over traditional C and MPI implementation on HPC platforms

are discussed in [36]. It emphasizes efficient parallel I/O as one of the critical

requirements for better performance of data analysis on a massive scale. PCA

is computed on massive data sets with dimensions, 26, 542, 080 × 81, 600 (16 TB),

6, 349, 676× 46, 715 (2.2 TB).

One of the more recent studies [14] performs expedient modal decomposition

on large data sets using parallel implementation of POD and serial implementation

of the sparse coding algorithm. The research presented in this thesis is an extension

to the work done in the paper [14]. The study performs POD on massive data sets

with dimensions, 500K × 10K (42 GB), 18M × 3000 (162 GB) and 57M × 810 (370

4



GB). This work uses 2D data distribution among processes which impacts the I/O

time severely. The study leverages HPC hardware to implement POD in parallel

while sparse coding is still computed in serial.

1.3 Objectives

The overall objective of this research is to parallelize modal decomposition algo-

rithms, perform a systematic characterization of various parallelization techniques

and assess the performance on various data sets. Carrying out modal decompo-

sition on massive data sets to obtain reduced order models is a memory inten-

sive operation. Therefore, load balancing, through efficient distribution of data

among nodes, is critical in order to ensure uniform memory usage and avoid over-

load. Several implementation strategies are carried out since decomposition of

such massive data sets is a computationally expensive operation. Since these al-

gorithms involve intensive I/O (input/output) operations, it is crucial to perform

the file reads and writes in parallel to avoid idle state of processors and wastage of

resources. Communication among processes to decompose large data sets involve

high latencies and implementation must ensure to minimize the overhead to ex-

pedite the modal decomposition process. Therefore, it is important to develop a

framework to carry out modal decomposition and address these challenges.

The specific objectives of the study are:

• Parallelize and implement the algorithms to perform expedient modal de-

5



composition of massive data sets on high-performance computing clusters.

• Demonstrate and assess the performance of parallelized algorithms on dif-

ferent data sets and hardware.

1.4 Key Contributions

• Developed a framework to carry out modal decomposition that is stable, ro-

bust and easy to maintain. The code performs efficient computation to obtain

reduced order models with high accuracy.

• The code developed is compatible with various high-performance clusters.

The code uses stable open source libraries to ensure portability of code on

various hardware with little or no changes at all.

6



Chapter 2

Modal Decomposition Algorithms

This chapter focuses on the description of two algorithms used in carrying out

modal decomposition to obtain reduced order models of discrete non-linear dy-

namical systems. Implementation of the algorithms are described by categorizing

each one into three phases, namely, preprocessing, base and postprocessing.

2.1 Proper Orthogonal Decomposition

As mentioned previously, Proper Orthogonal Decomposition or Principal Compo-

nent Analysis is a widely used technique in modal decomposition by identifying

or ordering principal components in observed data.

Preprocessing phase begins with the construction of initial snapshot matrix

Q = [q1q2 · · · qi · · · qm] by stacking system observations qi in columns.

Next, the fluctuating component q (x, t) is computed by subtracting the initial

7



snapshot matrix Q from the mean Ū(x) to center the data around origin.

q (x, t) = Q− Ū(x) (2.1)

Since the data is collected from discrete observations (in space and time) of a

non-linear dynamical system, quantities at each of the points in the fluctuating

component are multiplied by the corresponding mesh volume v̄. With this, pre-

processing phase is completed where the final snapshot matrix QF is:

QF = q (x, t)× v̄ (2.2)

Now, the algorithm proceeds to the base phase to extract a set of POD modes Φi

using the Method of snapshots [9] from the final snapshot matrix QF previously

computed.

First, the correlation matrix is computed as:

A = QT
FQF (2.3)

Next, eigen-decomposition of the correlation matrix A is carried out using Sin-

gular Value Decomposition (SVD) [2, 9]:

AV = ΛV (2.4)

8



where the entries of the correlation matrix A are ai,j = (qi, qj), and the rank of A

is r. The eigenvalues corresponding to the eigen vectors V are arranged on the

diagonal of Λ. As many POD modes as the rank of A can be computed. Eigen-

decomposition is performed on the correlation matrix A instead of the snapshot

matrix Q since it is computationally very expensive to perform decomposition on

a snapshot matrix that is tall(ng >> m) as the rank r can at max be m.

The set of r orthogonal POD modes Φi are given by:

Φi =
1√
λi

m∑
j=1

bijqj (2.5)

where λi are the eigenvalues of the correlation matrix A in descending order, λ1 ≥

λ2 ≥ · · · ≥ λr ≥ 0, and bij is the jth element of the ith eigen vector V i. The

singular value corresponding to a POD mode is directly proportional to the energy

contained in that mode [2] . Thus, the complete set of POD modes describes the

snapshot matrix in entirety [2]. Consequentially, if the snapshot matrix is assumed

to contain all the dimensions of the system, the complete set of POD modes will

also contain all the information. Dimensionality reduction using the POD modes

is obtained by truncating the POD set, such that the truncated set contains the

desired proportion of the total energy.

The last step in the base phase is to compute POD coefficients S given by:

Sj
i = (Φi, qj) (2.6)

9



Finally, the algorithm proceeds to the postprocessing phase where RMS error

is computed to measure the efficiency of decomposition and accuracy with which

the snapshot matrix can be reconstructed:

min
Φ,S

1

2
‖QF − ΦS‖2F (2.7)

where ‖·‖2F is the grid-independent square Frobenius norm of ‘·’. Equation 2.7

provides the error in the representation of the snapshot matrix by the modes Φ.

The process of computing the POD modes is summarized in Algorithm 1.

Algorithm 1: Proper Orthogonal Decomposition algorithm
Input : Snapshot matrix Q of size ng ×m, number of pod modes to be

compute (N )
Output: POD modes (Φ), POD coefficient matrix (S)

1 Compute fluctuating component by subtracting mean from snapshot matrix:
q (x, t) = Q− Ū

2 Compute final snapshot matrix by multiplying with mesh volume from grid:
QF = q (x, t)× v̄

3 Compute the correlation matrix A:
A = QT

FQF

4 Carry out the eigen-decomposition of the correlation matrix:
AV = ΛV

5 Compute the POD modes corresponding to the non-zero singular values (λ):

Φi =
1√
λi

m∑
j=1

bijqj

By default, the POD modes are arranged in the descending order of singular
values. Truncate the POD modes to a desired number.

6 Compute POD coefficients from POD modes and snapshot matrix:
Sj

i = (Φi, qj)

7 Compute RMS error to check accuracy with which snapshot matrix can be
reconstructed:

minΦ,S
1
2
‖Q − ΦS‖2F
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2.2 Sparse Coding

Sparse Coding is an alternate approach to POD for carrying out modal decompo-

sition. This approach generates a finite dictionary of modes in which only a subset

are active for a given time window. Sparse coding is associated with a high com-

putational cost. To overcome this, the dimensionality of the problem is reduced by

first factorizing the snapshot matrix into POD modes and POD coefficients [1].

Q = ΦPODSPOD (2.8)

where SPOD ∈ Rr×m is the POD coefficient matrix, and r denotes the rank of Q

and ΦPOD. The rank r is less than the number of snapshots m if the snapshot

matrix Q is rank-deficient. Here, all the POD modes are included to retain all the

features of the snapshot matrix. Now, a set of sparse modes X is solved for using

sparse coding.

Preprocessing phase begins with initializing the set of sparse modes X with

SPOD up to the input number of modes N that needs to be computed. This initial-

ization is done by summing over two consecutive columns of SPOD. This ensures

that X is not initialized randomly and same modes are not chosen to be active

during the Batch-OMP process, else erroneous values are produced. The sparse

modes X i are then normalized such that ‖X i‖ = 1.

Next, the algorithm proceeds to the base phase where sparse coding approach [1, 7]
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aims to solve:

min
S,Φ

‖Q−ΦS‖2F , subject to ∀i, ‖si‖0 ≤ L (2.9)

Here, the L0 norm ‖.‖0 counts the number of non-zero entries in si. By enforcing

‖si‖0 ≤ L in Eq. 2.9, the number of non-zero entries in si is constrained to be less

than or equal to a constant L. Sparsity is defined as:

Sparsity =
(N − L)×m

N ×m
× 100% = (1− L

N
)× 100% (2.10)

where L is the active number of basis vectors or modes, out of N input number of

sparse modes, in any given snapshot. Thus using Eq. 2.10, the sparsity and dimen-

sion is directly controlled by specifying L and N , respectively. Solving Eq. 2.9 is

challenging since its solution is non-convex. Instead it is alternatively minimized

following standard sparse coding procedures over matrices S and Φ:

min
si
‖qi −Φsi‖22 , subject to ∀i, ‖si‖0 ≤ L (2.11)

and

min
Φ
‖Q−ΦS‖2F , subject to ∀i, ‖Φi‖ ≤ 1 (2.12)

Equation 2.11 determines a sparse representation of the each snapshot based on

the current sparse modes. Greedy algorithm such as Batch-OMP [6] is used to

learn si. The Batch-OMP implementation uses Moore-Penrose pseudo-inverse [13]
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which in turn uses Singular Value Decomposition(SVD) [7]. Equation 2.12 is an

optimization over sparse modes across the whole snapshot matrix Q at once. It

is a constrained least-squares problem that is solved by K-SVD algorithm [7]. The

modes X and the corresponding coefficient matrix S are updated iteratively using

K-SVD algorithm. Next step clears the inactive modes using certain predefined

criteria. Thus, each convergence loop begins with solving for sparse coefficient

matrix and then updating the modes iteratively and finally clearing the inactive

modes. This process is finally stopped once the modes are converged, i.e.,

|fobj(i)− fobj(i− 1)| < ε (2.13)

where

fobj(i) =
∥∥SPOD −XS

∥∥2
F

(2.14)

Here, i denotes the ith iteration and ε is a pre-defined convergence criterion, set in

this work as ε = 10−3. The resulting sparse modes X are projected onto the vector

space of the snapshot matrix to obtain the final sparse modes:

Φ = ΦPODX (2.15)

Finally, the algorithm proceeds to the postprocessing phase where RMS error is

computed to test the accuracy of reconstruction using sparse modes Φ previously
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computed. First, corrected sparse coefficient matrix SSPC
corr is computed as:

SSPC
corr = pinv(Φ)Q (2.16)

where pinv is Moore-Penrose pseudo-inverse [13] function that uses SVD inter-

nally. Next, reconstructed snapshot matrix QREC is computed as:

QREC = ΦSSPC
corr (2.17)

where Φ is the sparse modes computed using Eq. 2.15 and SSPC
corr is the corrected

sparse coefficients using Eq. 2.16. Finally, RMS error is computed as:

min
1

2
‖Q−QREC‖

2
F (2.18)

where QREC is the reconstructed snapshot matrix using Eq. 2.17
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Algorithm 2: Greedy sparse coding algorithm using the L0 penalty (referred
to as SparseL0 algorithm)

Input : Snapshot matrix Q of size n×m, number of sparse modes to be
compute (N ), number of active modes per snapshot (L),
convergence criterion (εc)

Output: Sparse modes (Φ), sparse coefficient matrix (S)
1 Decompose the snapshot matrix Q into the POD modes and POD

coefficients:
Q = ΦPODSPOD

2 Initialize convergence criterion (εc):∑m
i=1

∑N
j=1 ‖S

POD
ij ‖2

3 Initialize the sparse modes X by summing up consecutive columns of SPOD

4 Normalize the computed sparse modes:

X i =
X i

‖X i‖2F
5 Iteration number, i = 1
6 while ε ≥ εc do
7 Solve for sparse coefficient matrix SSPC using batch-OMP:

min
S

∥∥SPOD −XS
∥∥2
F
, subject to ∀i, ‖si‖0 ≤ L

8 Update the sparse modes X of the POD coefficient matrix SPOD

iteratively using K-SVD algorithm
9 Clear inactive modes from dictionary by replacing with normalized

value of SPOD by finding the pos as:
Er =

∑m
k=1

1
2

(∥∥SPOD
k −XSk

∥∥2
F

)
where pos = max(Er) and resetting the value as Erpos = 0

10 Evaluate the objective function:
fobj(i) =

∥∥SPOD −XS
∥∥2
F

11 Check for convergence, ε = |fobj(i)− fobj(i− 1)|
12 Update iteration number i = i+ 1

13 end
14 Compute sparse modes for the snapshot matrix Q:

Φ = ΦPODX
15 Compute corrected sparse coefficient matrix:

SSPC
corr = pinv(Φ)Q

16 Compute reconstructed snapshot matrix:
QREC = ΦSSPC

corr

17 Compute RMS error as:
min 1

2
‖Q−QREC‖

2
F
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Chapter 3

Implementation

This chapter focuses on the implementation of Proper Orthogonal Decomposi-

tion(POD) and Sparse Coding algorithms in parallel. To implement the algorithms

in parallel, ScaLapack [4] library is used for linear algebra operations such as

matrix multiplication, singular value decomposition(SVD) and matrix transpose.

ScaLapack library internally uses Message Passing Interface(MPI) [3] for commu-

nication between processes. The processes used in computation are represented as

a two-dimensional rectangular grid, or process grid [4]. The process grid has prow

process rows and pcol process columns, where the total number of processes, p,

involved in computation is equal to prow×pcol and each process in the grid is refer-

enced as P prow,pcol . If the process distribution is represented as an array, similar to a

single row or column in the two-dimensional grid, it is called as one-dimensional

process distribution. All global matrices must be distributed among process in

one-dimensional(1D) or two-dimensional(2D) process grid fashion prior to the in-

vocation of ScaLapack routines. To distribute the global snapshot matrix among
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processes in 2D process grid, a single process (master process) needs to read the

snapshots and distribute the data to other processes using ScaLapack communica-

tion routines. Since there can be several thousand snapshots and millions of data

points in each snapshot, this kind of distribution is not scalable for our purpose

as most of the processes are inactive or idle while master process reads the data

from the snapshots. Moreover, a high communication cost is associated with dis-

tributing the global snapshot matrix with the master process communicating the

data to every other process in the 2D process grid. In contrast, 1D process distri-

bution allows each process to read the snapshots independent of other processes.

This ensures that no process is inactive while reading the snapshots and zero com-

munication cost is associated with the distribution of the snapshot matrix. Hence,

for our parallel implementation, 1D process distribution is chosen over 2D process

grid to distribute the data from global matrices.

3.1 Parallelizing POD

As mentioned earlier, parallel implementation of POD is necessary for decompos-

ing massive data sets which cannot be fit on a single process or a node in a high

performance computing cluster. There are three implementations of POD namely,

PODColCyclic, PODRowCyclic and PODColCyclicTransposed. Each implemen-

tation differs in data distribution of the global snapshot matrix. Furthermore,

global matrices generated during the base phase follows the same data distribu-
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tion. Therefore, only the preprocessing phase is described and its complexity and

communication cost is tabulated corresponding to each implementation.

The first step in the preprocessing phase is the same for all implementations

where the master process (rank 0 in MPI) reads the grid or mesh file and computes

the mesh volume that will be used later.

3.1.1 PODColCyclic Implementation

In this implementation, processes are distributed across the columns of the process

grid in a cyclic manner where data points in each column belong to a single process

as shown in Fig. 3.1. The number of processes across the row and column of the

process grid is given by:

pcol = p and prow = 1

where, p is the total number of processes used in computation.

Each process initially identifies the number of snapshots it has to read based on

a simple formula:

mp = m/p

remainder = m%p

if(prank < remainder) mp+ = 1

(3.1)

where, mp is the number of snapshots in each process, m is the total number of

snapshots, prank is the rank of the process which ranges from 0 to p - 1.
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For example, let the total number of snapshots, m = 5 and the total number of

processes, p = 3. Initially, the snapshots would be distributed among 3 processes

equally with 1 snapshot per process and remainder would be computed as 2. The

remainder of 2 is then distributed among all the processes whose MPI rank is less

than the remainder. There are 2 processes with rank prank, 0 and 1 which are less

than the remainder. Therefore the final distribution would be:

m0 = 2 m1 = 2 m2 = 1

where, m0, m1 and m2 are the number of snapshots in rank 0, 1 and 2 respec-

tively.

The snapshots are read in a cyclic order, i.e. there is a difference of a number of pro-

cesses, p, between consecutive snapshots read by the same process as illustrated

in Fig. 3.1:

Figure 3.1: PODColCyclic data distribution among processes.

where, Qj
i is jth data point in ith snapshot.

Next, mean of the snapshot matrix is computed in following steps:
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Table 3.1: Analysis of preprocessing phase in PODColCyclic implementation

Operation
Order of

Complexity (O)
Communication

cost
Memory per

process

Compute Ū (m ∗ n+ n) ts log p+ twn(p− 1) n
q (x, t) = Q− Ū (m ∗ n) - mp × n
QF = q (x, t)× v̄ (m ∗ n) (ts + ntw) log p mp × n

1. Sum of the data points in the local snapshot matrix is computed within each

process as:

Ū =
∑mp

i=1

∑n
j=1Q

j
i

2. MPI Allreduce is performed to obtain the sum of all the data points along the

row in the snapshot matrix within each process.

3. The sum computed must be divided by the total number of snapshots m to

obtain the final mean Ū .

Ū = ∀i Ūi/m

Fluctuating component is then computed by subtracting the mean from the

local snapshot matrix in each processor as shown in Eq. 2.1.

Mesh volume computed at the start by the master process is then distributed to all

the processes using MPI Broadcast operation, MPIBcast(v̄).

Next, mesh volume at each process is multiplied by the fluctuating component at

each process to obtain the final snapshot matrix as shown in Eq. 2.2.
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Advantages

1. Reading of the snapshots is fairly trivial as each process would know exactly

which snapshot to read and how many snapshots to read.

2. Writing POD modes and coefficients to files can be performed in parallel as

each process would have all the necessary data.

Disadvantages

1. The maximum number of processes used in the preprocessing phase is equal

to the total number of snapshots i.e. pmax = m − 1, in which case each

snapshot is read by 1 process.

2. The maximum number of data points in a snapshot is limited by the size of

an integer, approximately 2.14 billion, since ScaLapack subroutines take in-

teger as a parameter for number of rows and columns in the global snapshot

matrix, else an integer overflow error is encountered.

Since the memory of a single snapshot used in PODColCyclic is limited by ap-

proximately 8.5 GB (2.14 billion data points × 4 bytes), current implementation

does not possess the ability to decompose the snapshot matrix of any given size.

Hence, an alternate implementation was developed that is described next.
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3.1.2 PODRowCyclic Implementation

In this implementation, processes are distributed across the rows of the process

grid in a cyclic manner where data points in each row belong to a single process

as shown in Fig. 3.1. Such a distribution allows decomposition of large snapshots

with the number of data points greater than the size of an integer (approximately

2.14 billion). The number of processes across the row and column of the process

grid is given by:

prow = p and pcol = 1

where, p is the total number of processes used in the computation.

Each process initially identifies the number of data points in a snapshot it has

to read based on a simple formula:

np = n/p

remainder = n%p

if(prank < remainder) np+ = 1

(3.2)

where, np is the number of data points from a single snapshot in each process, n is

the total number of data points in a snapshot, prank is the rank of the process that

ranges from 0 to p - 1.

For example, let the total number of snapshots, m = 5 and the total number

of processes, p = 3. Let the total number of data points in each snapshot, n = 8.

Initially, the data points in each snapshot would be distributed among 3 processes
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equally with 2 data points per process and remainder would be computed as 2.

The remainder of 2 is then distributed among all the processes whose MPI rank is

less than the remainder. There are two processes with rank prank 0 and 1 which are

less than the remainder. Therefore the final distribution would be:

n0 = 3, n1 = 3, n2 = 2,

where, n0, n1 and n2 are the number of data points of a snapshot in MPI rank

0, 1, and 2 respectively.

The data points in a snapshot are read in a cyclic order, i.e. there is a difference

of number of processes, p, between two consecutive data points read by the same

process. This is better illustrated in Fig. 3.2:

Figure 3.2: PODRowCyclic data distribution among processes.

where, Qj
i is jth data point in ith snapshot.

Next, mean of the snapshot matrix is computed in following steps:

1. Since each process has a part of every snapshot, all corresponding data points

of every snapshot can be summed up to obtain the local sum corresponding

23



Table 3.2: Analysis of preprocessing phase in PODRowCyclic implementation

Operation
Order of

Complexity (O)
Communication

cost
Memory per

process

Compute Ū (m ∗ n+ n) - n
q (x, t) = Q− Ū (m ∗ n) - np ×m
QF = q (x, t)× v̄ (m ∗ n) (ts + ntw) log p np ×m

to the data point.

Ū =
∑m

i=1

∑np

j=1Q
j
i

2. The local sum computed must the be divided by the total number of snap-

shots m to obtain the final mean Ū .

Ū = ∀i Ūi/m

Fluctuating component is then computed by subtracting the mean from the

local snapshot matrix in each process as shown in Eq. 2.1.

Mesh volume computed at the start by the master process is then distributed to all

the processes using MPI Broadcast operation, MPIBcast(v̄).

Next, mesh volume at each process in multiplied by the fluctuating component at

each process to obtain the final snapshot matrix as shown in Eq. 2.2.

Advantages

1. The maximum number of processes used, pmax = n, is equal to total number

of data points in the snapshot. Thus, very large snapshots can be decom-
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posed using ScaLapack routines by just increasing the number of processes

in computation which addresses the limitation of the previous implementa-

tion.

Disadvantages

1. Poor caching is achieved while reading snapshots since the data points are

not consecutive. This would result in a large number of cache misses and

effectively increases I/O read time.

2. Writing POD modes and coefficients to output is difficult since each column

of the global matrix is distributed among the processes. Thus, a transpose of

the global matrix is required to ensure an entire column is in a single process

before writing it to a file.

3.1.3 PODColCyclicTransposed Implementation

To address the limitations of the maximum size of a snapshot that can be used

in PODColCyclic, 3.1.3, and poor caching of data in PODRowCyclic implemen-

tation, 3.1.2, PODColCyclicTransposed implementation was developed. In this

implementation, processes are distributed across the columns of the 1D process

grid with distribution as:

pcol = p and prow = 1

where, p is the total number of processes used in computation.
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This is the same as the distribution used in PODColCyclic, 3.1.3. Therefore, the

number of snapshots read by a process is identified by the Eq. 3.1.

For example, let the total number of snapshots, m = 3 and the total number

of processes, p = 3. Initially, 1 snapshot would be distributed among 3 processes

and remainder would be computed as 0. There is no snapshot left to be distributed

further and the final distribution would be:

m0 = 1 m1 = 1 m2 = 1

where, m0, m1 and m2 are the number of snapshots in rank 0, 1 and 2 respec-

tively.

The snapshots are read in cyclic order, i.e. there is a difference of number of pro-

cesses, p, between consecutive snapshots read by the same process as in Fig. 3.3:

Figure 3.3: PODColCyclicTransposed data distribution in preprocessing phase

where, Qj
i is the jth data point in ith snapshot and the processes p3, p4 and p5

are inactive. Hence, if more processes than m are used in computation, then those

processes are inactive until the snapshots are read.
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The mean of the snapshot matrix is computed in the same way as computed in

PODColCyclic, 3.1.3. Therefore, analysis of the preprocessing phase is same as the

one described in Table 3.1.

The preprocessing phase until here is similar to that of PODColCyclic men-

tioned in 3.1.3. Next, transpose(pstran) operation is performed on the global snap-

shot matrix to distribute the data to the inactive processes. This is illustrated in Fig.

3.4:

Figure 3.4: PODColCyclicTransposed data distribution during base phase

The size of the original snapshot matrix is Q8x3 and that of the transposed snap-

shot matrix is QT
3x8. Table 3.3 shows the local distribution of the snapshot matrix

before and after the transpose operation.

All the processes have a part of the global snapshot matrix after the transpose

operation is performed.

Advantages

1. Reading of the snapshots is fairly trivial as each process would exactly know

which snapshot to read and how many snapshots to read.
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Table 3.3: Analysis of preprocessing phase in PODColCyclic implementation

Process
Local rows in

Q
Local cols in

Q
Local rows in

QT
Local cols in

QT

p0 8 1 3 2
p1 8 1 3 2
p2 8 1 3 2
p3 - - 3 1
p4 - - 3 1
p5 - - 3 1

Disadvantages

1. Writing POD modes and coefficients to output is difficult since each column

of the global matrix is distributed among processes. Thus, a transpose of the

global matrix is required to ensure an entire column is in a single process

before writing it to a file.

3.2 Parallelizing Sparse Coding

As discussed in the beginning of this chapter, data distribution of 1D process is

simpler to implement over 2D process grid with no communication cost while

reading the snapshots. Moreover, most of the sparse coding algorithm requires a

complete column to be present in one process. A single coefficient file correspond-

ing to a snapshot is read by one process. Therefore, processes are distributed across

the columns of 1D process grid with distribution as:

pcol = p and prow = 1
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where, p is the total number of processes used in the computation.

Sparse modes are initialized using coefficients generated from running POD

using one of the previously mentioned implementations. Since the number of POD

coefficient files generated is the same as the number of snapshots, distribution of

the coefficients across processes is done in the same manner as in Eq. 3.1.

For example, let the total number of snapshots, m = 5 and the total number of

processes, p = 3. The final distribution of POD coefficients would be:

S0 = 2 S1 = 2 S2 = 1

where, S0, S1 and S2 are POD coefficients in rank 0, 1 and 2 respectively.

Figure 3.5: POD coefficients distributed among processes.

where, Sj
i is jth data point in ith coefficient.

As mentioned in Algo. 2, sparse modes X is initialized by summing over two

consecutive columns of SPOD. In addition to reading the POD coefficients accord-

ing to Fig. 3.5, coefficients must also be read in the way as shown in Fig. 3.6 where

the first process starts reading from the 2nd coefficient S2 and proceeds in the same
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cyclic manner as before. The respective columns of the POD coefficients read in the

two matrices are summed up as shown in 3.7 to initialize sparse modes.

Figure 3.6: POD coefficients distributed among processes.

Figure 3.7: Initializing sparse modes using POD coefficients.

Since Batch-OMP and KSVD are two major components in Sparse Coding, par-

allelization of these two algorithms are described with the pseudo code.

Parallelizing Batch OMP

Batch-OMP is executed in two loops as shown in Algo. 3. The outer loop iterates

from 1 to the number of snapshots, m. In each iteration, a matrix-vector multipli-

cation is performed to compute y using a single POD coefficient. The vector x is a
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column of the POD coefficient and it is already established from the data distribu-

tion in Fig. 3.5 that each column is present in a different process. The vector y, used

in the inner loop, is independent of the value computed in the previous iteration.

Since computation of y in each iteration can be done independently, outer loop can

be parallelized. This is achieved by replacing the outer for loop that iterates from

1 to the number of snapshots, m, with the loop that iterates from 1 to the number

of snapshots per process, mp. Matrix-vector multiplication is replaced by matrix-

matrix multiplication of sparse modes X and POD coefficients SPOD such that y

needed for each iteration is present in its respective process and is independent of

the y in other processes. The parallelized version of Batch-OMP is shown in Algo.

4.

Thus, each process will execute the outer for loop in as many iterations as the

number of snapshots in that process by distributing work among the processes.

As with the outer for loop, inner for loop cannot be parallelized in its current

form. To achieve parallelization, processes must run the loop independent of other

processes. However, the ”Update y” step in the inner for loop requires data points

from G that are present in different processes. Moreover, the data points required

in each iteration are different and it is associated with several calls to MPI subrou-

tines to communicate the data. Hence, it would slow down the process and an

alternate solution employed is to maintain copies of the global matrix G in each

process to facilitate independent execution. This solution is used, however it is not

scalable and feasible to maintain large matrices of G in every process.
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Algorithm 3: Batch OMP algorithm

Input : Sparse modes X , POD coefficients SPOD, Number of active modes L
Output: Sparse coefficient matrix (SSPC)

1 Init: G = XTX , index = zeros(L)

2 for i = 1...m do

3 x = SPOD
i

4 y
′
= XTx

5 y = y
′

6 for j = 1...L do
7 Get the position of max value in y

pos = max(abs(y))
8 Store the value of pos in index

index(j) = pos
9 Update y

y = G(: index(1 : j) ∗ pinv(G(index(1 : j) : index(1 : j))
y = y ∗ y′

(index(1 : j))− y′

10 Initialize values in y to 0 such that same active modes are not chosen
y(index(1 : j)) = 0

end
11 a = pinv(X(:, index(1 : L))) ∗ x
12 SSPC(index(1 : j), i) = a

end

Algorithm 4: Parallelized Batch OMP algorithm

Input : Sparse modes X , POD coefficients SPOD, Number of active modes L
Output: Sparse coefficient matrix (SSPC)

1 Init: G = XTX , index = zeros(L)

2 Y = XTSPOD

3 for i = 1...mp do
4 y = Y i

5 for j = 1...L do
Continue ...

end
6 a = pinv(X(:, index(1 : L))) ∗ x
7 SSPC(index(1 : j), i) = a
end
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Parallelizing KSVD

Unlike Batch-OMP in Algo. 3, KSVD is entirely executed in parallel. In contrast

with breaking down the for loop in Batch-OMP, all the processes involved in the

computation enter the loop at the same time and each process iterates until the

user provided input number of modes.

Algorithm 5: Parallelized KSVD algorithm

Input : Sparse modes X , POD coefficients SPOD

Output: Sparse coefficient matrix (SSPC), Sparse modes X

1 for i = 1...k do

2 Find data indices whose values are non− zero along row i in SSPC

non− zero− indices = find(SSPC(i, :))
3 If there are no non− zero values, replace the non active mode with

column of SPOD

4 S
′
= SSPC(:, non− zero− indices)

5 E = SPOD(:, non− zero− indices)−XSSPC

6 updated−modes, singular − value, β = function : eigen− power(E)

7 SSPC(i, non− zero− indices) = singular − value ∗ β
8 X i = updated−modes
end

Since, non − zero − indices is obtained from SSPC for ith row in each iteration,

this statement is executed by the process that has the data corresponding to ith row.

Next, a temporary coefficient matrix, S
′
, is constructed using only the columns

corresponding to the non− zero− indices. To ensure all the processes are involved

in computation in this step, a transposed form of the coefficient matrix, SSPC , is

used. The error, E, is computed as shown in Algo. 5 and is used as an input to

the eigen − power function, which returns the updated −modes upon completion.
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The resulting updated−modes replaces the ith column of the sparse modes matrix.

Therefore, only the process that has the ith column of the sparse modes matrix

performs this operation.

Thus, the for loop is executed as many times as the number of user-defined

modes, k. Hence, complexity of the KSVD algorithm is directly dependent on k.
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Chapter 4

Experimental Results and Analysis

This chapter illustrates the results obtained for Proper Orthogonal Decomposition

and Sparse Coding on various data sets. ”Total memory consumed” and ”Total

time taken” are the two major metrics of performance analyzed in the results.

4.1 Proper Orthogonal Decomposition

Performance of all three implementations discussed previously i.e. PODColCyclic,

PODRowCyclic and PODColCyclicTransposed is assessed by varying parameters

such as:

• Number of snapshots

• Number of data points in each snapshot

• Number of POD modes

• Number of computational nodes

35



4.1.1 Complexity analysis and Memory requirement for POD

Before the results are illustrated, complexity analysis and memory allocated ex-

plicitly by the program are tabulated:

Table 4.1: Complexity analysis and Memory allocated for POD

Operation Order of
Complexity (O)

Memory for
all processes

Snapshot matrix, Q - n×m
Truncated grid, v̄ - p× n

Mean, Ū (mn+ n) p× n
q (x, t) = Q− Ū (mn) -
QF = q (x, t)× v̄ (mn) -

A = QT
FQF (nm2 + nm) m2

AV = ΛV (m3) 2m2 + p×m
Φ = QV (nmk) n× k
S = ΦTQ (knm+ nk) k ×m
E = ΦS (nkm) n×m

where, m is the number of snapshots, n is the number of points in a single

snapshot, p is the total number of processes and k is the user-defined number of

POD modes.

The total computational complexity of POD algorithm is given by the sum of

all the terms in the 2nd column:

Complexity = O(m3 + nm2 + 3knm+ 3nm+ nk + n) (4.1)

Equation 4.1 suggests that complexity of POD is more sensitive to the number
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of snapshots. Thus, a quadratic increase in time can be expected with increase in

m.

Similarly, adding up all the values in the 3rd column gives us the total memory

allocated for the data used in POD, which is given by:

Memory = (3m2 + 2(n×m) + 2(p× n) + k(n+m) + p×m) (4.2)

Equation 4.2 suggests that memory allocated for the data used in the algorithm

varies in the order of m2. Moreover, the number of processes, p, present in the

equation indicates that memory is expected to increase with the increase in num-

ber of processes. The number of modes, k, can go up to m if 100 percent modes

are chosen for computation in which case memory required will increase further.

Although all these parameters including the size of each snapshot n influence the

memory requirement in a way, memory is more sensitive to the total number of

snapshots, m, which is similar to the observation in the complexity equation as

well.

4.1.2 Strong Scaling

In strong scaling experiment, computational resources are varied by keeping the

data constant. The questions posed in such an experiment are:

• How does the performance vary by keeping the amount of work constant,

but by increasing the computational resources?
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• Is it possible to see a reduction in the total time taken for the algorithm as the

number of processes is increased? If so, is it possible to always expect faster

execution of the algorithm by just increasing the computing resources?

This experiment is conducted as per the data listed in Table 4.2:

Table 4.2: Data used for strong scaling experiment
Number of
data points

Number of
snapshots

Number of
modes

100M 100 40
1M 5000 2000
1K 10000 4000

Three data sets are used to conduct the strong scaling experiment. The data

set that has a snapshot matrix of dimensions 100 million points × 100 snapshots

is considered as a tall snapshot matrix since n >> m. Similarly, the data set with

dimensions 1 million points × 5000 snapshots is considered as a moderately tall

snapshot matrix with n > m and the one with the dimensions 1 thousand points ×

10000 snapshots is considered as a fat snapshot matrix with m >> n. These data

sets were chosen for experimental purpose as they are comparable in dimensions

to the data sets used in practice.

For each of the above data set, the number of snapshots and modes is kept

constant. However, results are obtained by doubling the number of nodes from

2 to 16. Each node uses 28 processes for computation. Thus the total number of

processes, p, is the number of nodes × 28.
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4.1.2.1 Issues with I/O Time

I/O Time for reading snapshots (100M points, 100 snapshots)
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Figure 4.1: Time taken for reading snapshots (100M points, 100 snapshots)

It is important to consider the implication of I/O time to read snapshots for

various implementations before delving into the analysis of the results. It is al-

ready discussed in the implementation that PODRowCyclic will end up spending

a significant amount of time in reading snapshots due to poor caching. The differ-

ence in the amount of time taken by PODRowCyclic to read the snapshots when

compared to PODColCyclic and PODColCyclicTransposed is seen in Fig. 4.1.

As the number of processes increases, time to read the snapshots must decrease

since fewer data points are read by each process. However, a constant decrease

in time is not seen for any of the implementations. Thus, it can be expected to see
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slight inconsistencies in the results that involve I/O time for reading the snapshots.

Therefore, a tolerance of 5 to 10 percent difference for total time taken between con-

secutive execution of the same data set is acceptable.

4.1.2.2 Comparison of Computation, MPI and I/O Time

Since, algebraic operations such as Matrix Multiplication, Matrix Transpose and

Singular Value Decomposition(SVD) are performed in parallel using a large num-

ber of processes, the time required for communication of data among processes is

a major factor in the consideration of total time taken. Since, Message Passsing In-

terface(MPI) is used implicitly by ScaLapack and explicitly by the application for

communicating data among processes, rest of the results that refer to MPI Time is

the overall time spent for communication in the execution of the program. By tun-

ing the performance parameters such as the number of snapshots, the number of

modes and the number of nodes it is seen thatMPI Time varies differently for dif-

ferent implementations. The graphs, 4.2, 4.3, 4.4 illustrate the comparison of I/O

Time, Computation T ime and MPI Time by varying computational resources.

MPI time increases with increase in the number of nodes. Although the data

used for computation is constant, it is distributed among further number of pro-

cesses with an increase in number of nodes. Thus, collective communication time

increases to perform the same number of operations. Since computational com-

plexity of the algorithms in a parallel environment is represented as a function of

the number of processes, complexity not only depends on the size of data but also
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Total Time Split (100M points, 100 snapshots)
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Figure 4.2: (a) Computation, MPI and I/O Time Comparison (b) Computation
Time for (100M points, 100 snapshots)

on the number of processes used in computation.

Computation time decreases with an increase in number of nodes. This is due

to the fact that with a fewer number of nodes, computational load falls on fewer

processes and, as a result work done per process is high. However, as the number
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Total Time Split (1M points, 5000 snapshots)
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Figure 4.3: (a) Computation, MPI and I/O Time Comparison (b) Computation
Time for (1M points, 5000 snapshots)

of nodes increases, work is distributed among more processes, reducing the load

on each process significantly and enables processes to perform better. The results

indicate the same and uphold the fact that better parallelism is achieved by in-

creasing the computational resources, however, at the cost of increasing total time
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Total Time Split (1K points, 10000 snapshots)
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Figure 4.4: (a) Computation, MPI and I/O Time Comparison (b) Computation
Time for (1K points, 10000 snapshots)

due to increase in time required for communication.

Depending on the type of the data set and implementation used, there is always

an optimum number of nodes on which the performance is better. It is important

to note that increasing the computational resources further would only allow MPI
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time to dominate the Total time required for completion of the algorithm.

4.1.2.3 Data Transfer

This section illustrates the amount of data transfer that takes place with differ-

ent implementations for different snapshot matrices with the increase in computa-

tional resources.

Prior to demonstrating the trend with respect to Data Transfer, it is important

to visualize how matrix multiplication works in parallel with PODColCyclic and

PODRowCyclic implementations.

Matrix Multiplication in PODColCyclic Implementation

For the purpose of demonstration, matrix multiplication performed during the

computation of POD modes is used. In Fig. 4.5, Qj
i is jth data point in ith snap-

shot and V j
i is jth data point in ith singular vector. Φj

i is the jth data point in ith

POD mode. Φ1
1 and Φ2

2 must be computed as:

Φ1
1 = Q1

1V
1
1 +Q1

2V
2
1 +Q1

3V
3
1 +Q1

4V
4
1 +Q1

5V
5
1

Φ2
2 = Q2

1V
1
2 +Q2

2V
2
2 +Q2

3V
3
2 +Q2

4V
4
2 +Q2

5V
5
2

To compute Φ1
1 at P0, entire column of V1 is required and similarly to compute

Φ1
1, entire column of V2 is required. With respect to PODColCyclic implementa-

tion, entire column of the global matrix is present in a single process. Thus, there

is no data transfer associated with the global matrix, V . However, entire row of

Q is required from Q1
1 to Q1

5. This is distributed among the processes along the
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Figure 4.5: PODColCyclic Matrix Multiplication

row as seen from Fig. 4.5. Thus the first row of Q has to be communicated to P0.

Since, Q1
1 and Q1

4 are already present in P0, only the rest of the values in the row

have to be sent to P0. In a similar way, to compute Φ2
2 at P1, entire column of V2 is

required which is already present in P1. However, it requires values from 2nd row

of Q which are not present in P1. This extends to all other processes as well. As

a result, by the end of matrix multiplication, entire Q matrix would be distributed

to P0, P1 and so on. Although it is not always feasible for each process to hold the

entire Q matrix, a temporary buffer is created in every process and necessary data

is transferred to it as and when required.
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Matrix Multiplication in PODRowCyclic Implementation

Figure 4.6: PODRowCyclic Matrix Multiplication

Matrix multiplication with PODRowCyclic is computed similarly to that of

PODColCyclic implementation. However, it differs in the way data is transferred.

To compute Φ1
1, first row of Q and first column of V is needed. Previously with

PODColCyclic, first column of V was present in P0, but with PODRowCyclic first

row of Q is present in P0. Thus to compute Φ1
1, first column of V is needed that

is not already present in P0. This extends to all other processes as well and as a

result, by the end of matrix multiplication, entire V matrix would be transferred to

P0, P1 and so on as and when it is required.
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Data Transfer (100M points, 100 snapshots)
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Figure 4.7: (a) Computation, MPI and I/O Time Comparison (b) Computation
Time for (1M points, 5000 snapshots)

Data Transfer (1M points, 5000 snapshots)
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Figure 4.8: (a) Computation, MPI and I/O Time Comparison (b) Computation
Time for (1M points, 5000 snapshots)

In the sections 4.1.2.3 and 4.1.2.3, it was established that entire matrix present

on the left-hand side of the matrix multiplication equation is transferred in case of
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Data Transfer (1K points, 10000 snapshots)
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Figure 4.9: (a) Computation, MPI and I/O Time Comparison (b) Computation
Time for (1M points, 5000 snapshots)

PODColCyclic implementation and entire matrix present on the right-hand side

of the matrix multiplication equation is transferred in the case of PODRowCyclic

implementation. Thus, high data transfers are observed for PODColCyclic im-

plementation with tall snapshot matrices as seen in Fig. 4.7 and PODRowCyclic

implementation with fat snapshot matrices as seen in Fig. 4.9. In addition to

this, if PODColCyclic uses only as many processes as the number of snapshots to

read snapshots, rest of the processes do not have any data present in them. Thus

PODColCyclic is associated with high data transfer to ensure rest of the processes

are also involved in the computation.

Although data transfers are in the order of thousands of Giga Bytes(GB), total

memory consumed is still a small fraction of that number. This is because pro-

cesses allocate temporary buffers needed for intermediate communication. More-
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over, MPI Time is proportional to the data transfer. Therefore, high data transfers

indicate that MPI time takes a significant proportion of the total time required for

computation.

Another important observation is that amount of data transfer increases with

increase in computational resources. This is because increase in computational re-

sources require more processes to communicate with each other to perform linear

algebraic computations that are communication intensive.

4.1.2.4 Total Memory Consumed

Total Memory (100M points, 100 snapshots)
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Figure 4.10: Total Memory (100M points and 100 snapshots)

It has already been established from the previous section of Data Transfer, 4.1.2.3,

that increase in computational resources increases the number of processes used in

computation and thus temporary memory allocated for computation by these pro-
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Total Memory (1M points, 5000 snapshots)

M
em

or
y 

(G
B)

27.5

55

82.5

110

Nodes
2 4 8 16

PODRowCyclic PODColCyclic PODColCyclicTransposed

Figure 4.11: Total Memory (1M points and 5000 snapshots)

Total Memory (1K points, 10000 snapshots)
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Figure 4.12: Total Memory (1K points and 10000 snapshots)

cesses would add up to the total memory. This is the reason for the linear increase

in memory as observed in the graphs, 4.10, 4.11 and 4.12.

The disparity in memory consumed with different implementations is due to
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the difference in temporary buffers allocated by ScaLapack for matrix multiplica-

tion operations.

4.1.2.5 Inference on Strong Scaling

Increase in computational resources increases MPI Time and thus it is beneficial

to perform POD on a fewer number of nodes to ensure that all the data is accom-

modated and around 40 to 50 percent of the memory is left for the allocation of

temporary buffers by ScaLapack.

Better parallelism is achieved by using more computational resources but it

quickly gets overwhelmed by the communication cost.

PODColCyclic appears to be the best among implementations with better exe-

cution time for various snapshot sizes and marginally more memory is consumed.

However, it is still well within the user available limit on a node and the difference

in memory usage is not high.

4.1.3 Weak Scaling

In weak scaling experiment, computational resources and data are varied propor-

tionally. The questions posed in such an experiment are:

• Do we see a constant ratio of work done per process as we double the data

and the computational resources? Do the implementations scale well?

• How does the memory vary by proportionally varying the parameters such
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as the number of snapshots or the number of modes. Does memory increase

at all? If yes, do we know which parameter is memory more sensitive to?

With weak scaling, two experiments are performed, namely, changing the num-

ber of snapshots and the number of modes in proportion to the number of nodes.

4.1.4 Varying Snapshots

This experiment is conducted as per the data listed in Table 4.3:

Table 4.3: Data used for weak scaling - Varying number of snapshots

Number of
data points

Number of
modes

(Nodes,
Snap-
shots)

(Nodes,
Snap-
shots)

(Nodes,
Snap-
shots)

(Nodes,
Snap-
shots)

100M 40 (2, 50) (4, 100) (8, 200) (16, 400)
1M 2000 (2, 5000) (4, 10000) (8, 20000) (16, 40000)
1K 4000 (2, 10000) (4, 20000) (8, 40000) (16, 80000)

4.1.4.1 Comparison of Computation, MPI and I/O Time

It is to be noted that as the number of snapshots increases, computational com-

plexity increases as shown in Eq. 4.1.

In Fig. 4.13, increase in MPI time is not proportional to increase in snapshots

for PODColCyclicTransposed. It can be seen that MPI Time is very high at more

than 2 hours for as low as 400 snapshots. Since it is required to decompose in
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Figure 4.13: Computation, MPI, I/O Time Comparison (100M points, 20 modes)
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Figure 4.14: Computation, MPI, I/O Time Comparison (1M points, 2000 modes)

the order of thousands of snapshots, PODColCyclicTransposed is not suitable for

computation of tall snapshot matrices and does not scale well.

There is a huge increase in I/O time for reading snapshots with PODRowCyclic

53



Total Time Split (1K points, 4000 modes)
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Figure 4.15: Computation, MPI, I/O Time Comparison (1K points, 4000 modes)

as seen in Fig. 4.14 and Fig. 4.15. This results in PODRowCyclic taking 4 to 5 times

more time than the other two implementations. Thus, PODRowCyclic is highly

I/O intensive and does not scale well with the increase in number of snapshots

because each process reads a part of every snapshot which would result in a heavy

load on I/O coupled with poor caching ability.

A substantial increase in computation time as seen in Fig. 4.15 for 80K snap-

shots is due to the time taken for SVD operation as shown in Fig. 4.16.

PODColCyclicTransposed has an advantage over PODColCyclic implementa-

tion for the data set (1M points, 2000 modes), as seen in Fig. 4.14, because it takes

less time for computing reconstructed snapshot matrix. This operation is required

only when reconstruction error for POD is to be computed to verify the accuracy

with which decomposition is performed. However, the difference is not too signif-
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Computation Time for SVD (1K points, 4000 modes)
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Figure 4.16: SVD Time (1K points, 4000 modes)

icant to infer that PODColCyclicTransposed performs better than PODColCyclic.

4.1.4.2 Total Memory Consumed

Total memory consumed is similar irrespective of the type of data set or implemen-

tation used. Thus, each implementation scales similarly with respect to memory

and there is no particular advantage of using one implementation over another.

Memory consumed is more sensitive to the number of snapshots, m, because

memory allocated is proportional to m2 as stated in Eq. 4.2. Thus, increase in

memory for fat snapshot matrices is observed as seen in Fig. 4.19.

Memory allocated using Eq. 4.2 is plotted as the dotted line. It is observed

that memory allocated by the program is comparable to memory consumed for

tall snapshot matrices, however, margin of error in prediction increases with the
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Total Memory (100M snapshots, 20 modes)
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Figure 4.17: Total Memory Consumed (100M points, 20 modes)

Total Memory (1M snapshots, 2000 modes)
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Figure 4.18: Total Memory Consumed (1M points, 2000 modes)

increase in number of snapshots. Thus, Eq. 4.2 provides a way to predict the mem-

ory required to choose the number of computational resources needed to execute

POD in parallel.
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Total Memory (1K snapshots, 4000 modes)
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Figure 4.19: Total Memory Consumed (1K points, 4000 modes)

4.1.5 Varying Modes

This experiment is conducted as per the data listed in Table 4.4:

Table 4.4: Data used for weak scaling - Varying number of modes

Number of
data points

Number of
snapshots

(Nodes,
POD

modes)

(Nodes,
POD

modes)

(Nodes,
POD

modes)

(Nodes,
POD

modes)

100M 100 (2, 10) (4, 20) (8, 40) (16, 80)
1M 5000 (2, 500) (4, 1000) (8, 2000) (16, 4000)
1K 10000 (2, 1000) (4, 2000) (8, 4000) (16, 8000)

4.1.5.1 Comparison of Computation, MPI and I/O Time

As the number of modes increases, computational complexity increases as shown

in Eq. 4.1. However, the effect of increase in the number of modes, k, is quite less
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Total Time Split (100M points, 100 snapshots)
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Figure 4.20: Computation, MPI, I/O Time Comparison (100M points, 100 snap-
shots)
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Figure 4.21: Computation, MPI, I/O Time Comparison (1M points, 5000 snapshots)

as compared to the increase in snapshot size, n, or the number of snapshots, m.

Thus, increase in work does not substantiate a proportional increase in nodes. As a

result, computation time reduces quickly, however, MPI time reaches a minimum,
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 Total Time Split (1K points, 10000 snapshots)
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Figure 4.22: Computation, MPI, I/O Time Comparison (1K points, 10000 snap-
shots)

post which it starts increasing to an extent of dominating the overall time as shown

in Fig. 4.20, 4.21 and 4.22.

4.1.5.2 Total Memory Consumed

Total memory consumed follows a similar pattern as compared to varying the

number of snapshots in Sec. 4.1.4.2. Since memory, is more sensitive to the num-

ber of snapshots, m, than the number of modes, k, lesser increase in memory was

observed. However, as with the previous case, there is no benefit of one imple-

mentation over another when it comes to consumption of memory.

59



4.1.6 Inference on Weak Scaling

Results for PODColCyclic suggest that the implementation is scalable with respect

to doubling the number of snapshots. Total time taken for cases using the largest

number of snapshots with each data set varies from under 30 minutes for 100M

points and 400 snapshots to just over an hour for 1K points and 80000 snapshots.

There is no spike observed with respect to the total time taken or memory con-

sumed for PODColCyclic implementation. Thus, it is possible to conclude from

these results that larger data sets can be decomposed within a reasonable amount

of time and also consume memory well within the user available limits of each

node.

A spike in MPI time for PODColCyclicTransposed implementation for 100M

points and 400 snapshots case suggests that transpose of a global matrix is a com-

munication heavy operation and consumes most of the time. Similarly, I/O time

for reading snapshots in the case for PODRowCyclic increases substantially with

the increase in the number of snapshots. Thus, these implementations would not

necessarily scale well with respect to tall and fat snapshot matrices respectively.

4.1.7 Experiments with Fixed Computational Resources

Three experiments are performed by varying shape of the snapshot matrix, num-

ber of snapshots and number of pod modes by keeping computational resources

fixed at 8 nodes. The questions posed in such an experiment are:
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• How does the performance change by varying just one of the parameters and

keeping the others fixed? This is important to eliminate the non-linearity

with respect to change of multiple parameters simultaneously.

• By keeping the total memory of the snapshot matrix constant and by varying

the shape of the matrix, how does the performance change?

• Is the performance dependent on the total number of points used in the snap-

shot matrix or on the dimensions of the matrix, namely, size of each snapshot

and the number of snapshots?

4.1.8 Change of shape of snapshot matrix

This experiment is conducted as per the data listed in Table 4.5:

Table 4.5: Data used for change of shape of snapshot matrix
Number of
data points

Number of
snapshots

Number of
modes

1M 50 20
100K 500 200
10K 5000 2000
1K 50000 20000

4.1.8.1 Comparison of Computation, MPI and I/O Time

Increase in the total time and computational time is seen in Fig. 4.23 by reducing

n by a factor of 10 and increasing m and k by a factor of 10 and keeping the total
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Figure 4.23: Computation, MPI, I/O Time Comparison (Change of shape of snap-
shot matrix)

number of data points to be constant. A steep increase in the total time for de-

composing the data set (1K points, 50000 snapshots) is due to the time taken for

SVD operation as shown in Fig. 4.24. This is because complexity of SVD is affected

only by m since SVD is performed on co-variance matrix of size m × m as men-

tioned in Algo. 1. Therefore, an overall increase in computational complexity can

be attributed to change in m as per Eq. 4.1.

SVD operation performed using ScaLapack is computationally expensive as

seen in Fig.4.24. Thus, it becomes a major factor in computational time while de-

composing large number of snapshots. Since m >> n for a fat snapshot matrix, by

computing the co-variance matrix as QQT reduces the size of matrix to n × n in-

stead ofm×m. Thus, it would be possible to reduce the computational complexity

and memory required by a large extent for a fat snapshot matrix.
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SVD Time (change of shape of snapshot matrix)
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Figure 4.24: Time for SVD (Change of shape of snapshot matrix)

4.1.8.2 Total Memory Consumed
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Figure 4.25: Total Memory (Change of shape of snapshot matrix)

As memory is more sensitive to change in m than n as per Eq. 4.2, a steep

increase in total memory is observed as the number of snapshots is increased.
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4.1.9 Varying Snapshots

This experiment is conducted as per the data listed in Table 4.6:

Table 4.6: Data used for varying number of snapshots

Number of
data points

Number of
modes

Number
of

snapshots

Number
of

snapshots

Number
of

snapshots

Number
of

snapshots

100M 40 50 100 200 400
1M 2000 5000 10000 20000 40000
1K 4000 10000 20000 40000 80000

4.1.9.1 Comparison of Computation, MPI and I/O Time

Total Time Split (100M points, 20 modes)
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Figure 4.26: Computation, MPI, I/O Time Comparison (100M points, 100 snap-
shots)

Although, the scale for each of Figures in 4.26, 4.27, 4.28 differ from that in
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Total Time Split (1M points, 2000 modes)
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Figure 4.27: Computation, MPI, I/O Time Comparison (1M points, 5000 snapshots)

Total Time Split (1K points, 4000 modes)

Ti
m

e 
(s

ec
s)

0

2500

5000

7500

10000

10K snapshots       20K snapshots       40K snapshots        80K snapshots 
Row Col Trans Row Col Trans Row Col Trans Row Col Trans

I/O Time MPI Time Computation Time

Figure 4.28: Computation, MPI, I/O Time Comparison (1K points, 10000 snap-
shots)

Sec. 4.1.4.1, pattern observed is still the same. Total time for each implementation

almost doubles by doubling the number of snapshots. This suggests that decom-

posing snapshots using current implementations is scalable, however, time taken
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for each implementation varies depending on the type of data set. Increase in MPI

time is high for the first data set using PODColCyclicTransposed and so is the

I/O time for the second data set using PODRowCyclic implementation. Thus,

the total time for completion would exceed by many times when compared to

PODColCyclic implementation, which would make PODColCyclic a preferred

choice for all the data sets.

4.1.9.2 Total Memory

Total Memory (100M snapshots, 20 modes)
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Figure 4.29: Total Memory (100M points, 100 snapshots)

As with previous results illustrated for Total Memory by varying the number of

snapshots in Weak Scaling, 4.1.4.2, here too there is not much difference between

implementations for various data sets. Thus, there is no advantage of choosing

one implementation over another. Moreover, the dotted line plotted using Eq. 4.2
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Total Memory (1M snapshots, 2000 modes)
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Figure 4.30: Total Memory (1M points, 5000 snapshots)
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Figure 4.31: Total Memory (1K points, 10000 snapshots)

provides a good estimate of memory that would be consumed.
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4.1.10 Varying Modes

This experiment is conducted as per the data listed in Table 4.7:

Table 4.7: Data used for varying number of modes

Number of
data points

Number of
snapshots

Number
of

modes

Number
of

modes

Number
of

modes

Number
of

modes

100M 100 10 20 40 80
1M 5000 500 1000 2000 4000
1K 10000 1000 2000 4000 8000

With this experiment, we see a similar trend with respect to Total Time and

Total Memory Consumed. However, an increase in memory or time is not so sub-

stantial since, the number of modes k has least effect on Complexity in Eq. 4.1 or

Memory in Eq. 4.2 functions. Thus, implementation that is best for least number

of modes would still perform the best for highest number of modes which turns

out to be PODColCyclic implementation as described in the Sec. 4.1.5.

4.1.11 Inference on Experiments with Fixed Computational Re-

sources

With the benefit of I/O time for reading snapshots and avoiding the overhead

on performing transpose operation, PODColCyclic has turned out to be the best

performing implementation. Moreover, PODColCyclic also scales well by varying

any of the parameters chosen to test the performance thus far.
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Since the total memory consumed is same for all implementations regardless

of the parameters varied, there is no gain achieved in memory consumption with

any implementation.

The ability of PODColCyclic to complete the execution in a reasonable amount

of time suggests that it is the most preferred implementation to perform modal

decomposition using POD.

4.2 Sparse Coding

There are three implementations that are currently available to compute Sparse

Coding. Two of them are serial implementations in which computation of KSVD

is done using either dense or sparse matrix. Better performance can be achieved

with sparse implementation by using matrix multiplication routines specially de-

signed for sparse matrices if the sparsity of the coefficient matrix, SSPC , is quite

low. In addition to this, there is also a parallel implementation. However, results

are not illustrated for each one of them since the algorithm is currently not scalable.

Parameters that affect the performance are:

• Number of snapshots

• Number of sparse modes

• sparsity

This experiment is conducted by varying the number of snapshots as 100, 200,
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400 and 800. The number of modes are varied as 10, 20 and 40. For each one of

these combinations, results are obtained by varying sparsity as 0.25, 0.50 and 0.75.

4.2.1 Comparison of Time for Batch-OMP and KSVD

As described earlier in Algo. 2, Batch-OMP and KSVD are two major algorithms

executed under the convergence function for generating sparse modes and these

two result in almost entire time taken for every iteration. Since, the number of

iterations required for convergence of sparse coding algorithm can vary and each

iteration takes almost the same amount of time, results illustrated consider only a

single iteration of the sparse coding algorithm. Also, the scale used for measuring

time is different for each of the results illustrated.
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Figure 4.32: Batch-OMP and KSVD Time Comparison (10 modes)

Time taken for Batch-OMP forms a significant portion as compared to KSVD

for two reasons:
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Total Time Split - Batch OMP and KSVD (20 modes)
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Figure 4.33: Batch-OMP and KSVD Time Comparison (20 modes)
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Figure 4.34: Batch-OMP and KSVD Time Comparison (40 modes)

1. Inner loop of Batch-OMP is not parallel as described in Algo. 2

2. pseudo − inverse function is called for every iteration in the inner loop of

Batch-OMP which in turn calls SVD. However, it is already established in the

previous Sec. 4.1 that time taken for SVD increases exponentially, resulting
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in exponential increase in time taken per iteration.

Increase in the number of snapshots, m, increases the time for Batch-OMP be-

cause its outer loop runs until the number of snapshots.

Inner loop of Batch-OMP iterates until the number of active modes which is

computed as:

active modes = (1− ceil(sparsity)) ∗ sparsemodes

Thus, decrease in sparsity increases the number of active modes used in com-

putation and hence the inner loop of Batch-OMP runs for more iterations in turn

increasing the time.

As the number of modes increases, time taken for Batch-OMP increases too,

because global matrix, G, in Algo. 2 is of size k × k. As the size of matrix G

increases, time taken for SVD increases and hence the difference in time between

different modes.

Therefore, Batch-OMP is affected by all the parameters. Complexity increases

with increase in the number of snapshots or modes and decrease in sparsity. Also,

the effect of time taken for KSVD decreases with increase in time taken for Batch-

OMP. Thus, using a sparse or a dense matrix for SSPC would not benefit in any

way as the fraction of time required for KSVD is quite small.

Hence, current implementation of Sparse Coding is computationally very in-

tensive and does not scale well. Since, the inner loop of Batch-OMP is not paral-

lelized, there is no benefit gained from parallel implementation as well.
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4.2.2 Total Memory

Total Memory (10 modes)
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Figure 4.35: Total Memory Consumed (10 modes)

Unlike POD, memory consumed is quite less in case of sparse coding. As seen

from Figures, 4.35, 4.36 and 4.37, only a few MB is consumed even for 800 snap-

shots. Unless, sparse coding is computed for as high as 100K snapshots, it is pre-

ferred to use serial execution than parallel since there is no gain in parallel im-

plementation currently with exponential time required for Batch-OMP algorithm.

Since the two matrices that impact the use of memory, namely, POD coefficients

and sparse modes, are dependent on the number of snapshots and number of

modes, increasing one of them increases the total memory consumed.
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Total Memory (20 modes)
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Figure 4.36: Total Memory Consumed (20 modes)

Total Memory (40 modes)
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Figure 4.37: Total Memory Consumed (40 modes)
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Chapter 5

Conclusions

A systematic characterization of various parallel implementations of Proper Or-

thogonal Decomposition(POD) was done and based on the inferences from vari-

ous experiments performed, PODColCyclic implementation shows good promise

in terms of memory consumed and time taken to decompose large data sets. How-

ever, PODColCyclic can be used only when the number of data points in a single

snapshot is less than the size of an interger. In that case, PODRowCyclic imple-

mentation becomes the preferred choice compared to PODColCyclicTransposed

since transpose operation is quite expensive for tall snapshot matrices. Hence,

PODColCyclic is a preferred choice for all other cases when it comes to achieving

scalability. Issues related to PODRowCyclic and PODColCyclicTransposed are

emphasized with its usage limited to only certain types of data sets.

Another important factor to consider is the computational resources that must

be utilized. Since decomposition using POD is communication intensive, using

more resources than required to decompose the data sets could prove counter pro-
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ductive. From various experiments, it is established that POD can be executed once

the total memory allocated in the code occupies half the user available memory in

nodes leaving the rest for computational purposes for ScaLapack.

Sparse Coding on the other hand is seen a computationally intensive than being

memory intensive. Current state of the algorithm, most importantly Batch-OMP,

does not allow the algorithm to scale well since time taken for computation of each

iteration increases exponentially with increase in snapshots.

Thus, for performing modal decomposition of massive snapshots, POD is cur-

rently a viable option leaving room for improvement of the sparse coding algo-

rithm.
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Chapter 6

Recommendations for Future Work

6.1 Proper Orthogonal Decomposition

Since, POD consists of several steps that include linear algebraic operations such

as Matrix Multiplications, Matrix Transpose and SVD (Singular value decomposi-

tion), each step being sensitive to performance parameters in a different way, it is

highly difficult to find the overall benefits of a particular implementation. It was

observed that PODRowCyclic implementation would perform better for comput-

ing the reconstruction error, however, PODColCyclic implementation for compu-

tation of POD modes. Moreover, this trend will not hold true for any type of data

set, as the computations for a particular step might outperform for one of the im-

plementations but at the same time perform worse for a different sized data set.

Given that there are multiple implementations, it is important to evaluate each im-

plementation not only as a whole as done in the current research but also for each

step of the algorithm by executing strong and weak scaling experiments.
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It is beneficial to come up with a complexity function that selects the best im-

plementation, given a certain set of parameters. This could be integrated with the

code and the best performing implementation is executed without the need for the

user to decide. In addition to this, having the code to output optimum number

of processes to be executed with would be very productive since it is already ob-

served from the strong scaling experiments that increasing computing resources

keeping the data fixed would degrade the performance after an optimum level is

reached owing to increase in MPI time.

6.2 Sparse Coding

Currently, pseudo − inverse(pinv) is a major roadblock to the scalability of sparse

coding algorithm. This is due to the fact that it internally uses SVD which does

not scale well with the increase in number of snapshots. Thus, it is imperative to

come up with an alternative approach of performing pseudo−inverse to run sparse

coding on larger data sets.

Currently, Batch-OMP takes the majority of time in executing the algorithm as

it has not been fully parallelized. By allowing each process to independently run

a part of this algorithm without any inter-dependencies would make it scalable by

distributing work among the processes.
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