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Abstract

Cluster randomized trials (CRTs) are designed to randomly allocate groups of

participants rather than individuals to either the intervention or the control. As an

increasingly popular type of CRT, the stepped wedge CRT (SW-CRT) is a one-way

crossover design where the intervention is provided sequentially to clusters whose

orders are randomly determined.

In this dissertation, we propose novel SW-CRTs for three-level data such as pa-

tients (observation level) within wards (unit level) within hospitals (cluster level).

The proposed designs differ in timing of allocating units within the same cluster to

different treatments. We evaluate the efficiency of each design under a variety of

underlying models generating three-level data. Impacts of misspecifying random unit

effects and ignoring contamination on inference about the intervention effect are also

evaluated via simulation studies.

We derive the closed-form expression for variance of the intervention effect esti-

mator under a standard three-level model incorporating constant random unit effect

across time. The formula is flexible and can accommodate a wide variety of three-level

CRTs. Using the variance formula, we compute and compare the efficiencies across

all of our proposed three-level SW-CRTs under various scenarios. Results show that

when there is no contamination, design 4 transferring units from the same cluster at

all time points is most efficient, and design 1 transferring units from the same cluster
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at a single time point is least efficient. We then extend the standard three-level model

by including varying random unit effects across time. Under the extended model, the

order of efficiency among the proposed designs does not change.

For our proposed designs, we study the impact of model misspecification on infer-

ence about the intervention effect. We fit the standard model to data generated from

the aforementioned extended model. Results show minimal influence on bias of the

treatment effect estimator, but potentially low coverage probabilities for the treat-

ment effect under all designs. Other studies we conduct include incorrectly assuming

a random unit effect when none are present and incorrectly omitting a random unit

effect when it truly exists. In these two cases, there is minimal impact on inference

about the intervention effect under all designs.

We also address the problem of contamination for the proposed three-level SW-

CRTs in which units from the same cluster may contaminate each other. Under each

design, we consider practical scenarios where contamination could occur, describe the

severity of contamination, and evaluate the impact of ignoring contamination when

modeling in the presence of contamination. Our numerical studies show that designs

2 and 3 transferring units from the same cluster within two steps can still provide

valid inference about the intervention effect in the presence of mild to moderate

contamination, and design 4 should not be preferred even when contamination is

mild.
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Chapter 1: Introduction

Cluster randomized trials (CRTs) are designed to randomly allocate groups of par-

ticipants rather than individuals to either the intervention or the control. They are

particularly useful when it is impossible or inappropriate to randomize on the indi-

vidual level (Bland, 2004). An important motivation of conducting CRTs is to avoid

contamination which, in clinical trials, means that individuals in the control arm are

exposed to the intervention although they are not supposed to, or vise versa. This

contamination can happen when participants from different trial arms are close in ge-

ographical areas or able to communicate. For example, nurses receiving new training

in the intervention arm may influence the behavior of nurses receiving standard train-

ing in the control arm in the same clinic by communication. To avoid contamination,

an increasing number of studies recommend conducting randomization at cluster level

rather than at individual-participant level. (Bland, 2004).

Among different cluster randomized trials, the stepped wedge cluster randomized

trial (SW-CRT) is increasingly popular for its practical merits. The SW-CRT is

essentially a one-way crossover design, where the intervention is provided sequentially

to the clusters whose orders are randomly determined (Brown and Lilford, 2006). The

stepped wedge design includes an initial phase where all of the clusters are assigned to

the control arm. In the second phase of the study, some of the participating clusters
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are randomly selected to transfer from the control arm to the intervention arm, while

the remaining clusters still receive the control. Then in the third phase, another batch

of clusters are randomly selected to transfer to the intervention, while clusters that

finished the transition in the second phase continue receiving the intervention. The

remaining clusters stay in the control arm. Following this procedure, all participating

clusters eventually complete the transition from the control to the intervention. This

feature serves as one of the most important advantages of stepped wedge designs,

especially when the intervention is more likely to be beneficial than harmful (Brown

and Lilford, 2006; Hemming et al., 2015a).

Traditional CRTs mainly deal with two-level data such as patients (observation

level) from hospitals (cluster level) (Doig et al., 2008; Wood et al., 2008; Scales et al.,

2016). Henceforth, we call them two-level CRTs. Over the past decade, practical

applications about CRTs for three-level data, henceforth three-level CRTs, have been

increasingly popular (Bruce et al., 2007; Marsteller et al., 2012; Juul et al., 2014).

To give an example of three-level CRTs, we consider a cluster randomized controlled

trial aiming at reducing the central line-associated bloodstream infection (Marsteller

et al., 2012). The study took place in 45 intensive care units (ICUs) from 35 hospitals.

The intervention were infection prevention practices that provided instructions to

clinicians who inserted lines. A CRT was conducted at the hospital level to avoid

contamination across different ICUs within the same hospital. Patient data such as

whether or not an infection has occurred were collected. In this example, a three-

level data structure was formed by patients (observation level), ICUs (unit level),

and hospitals (cluster level). Other examples include nurses within general practices,

wards within hospitals, and villages within geographical areas.
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This chapter reviews design and analysis of standard cluster randomized trials,

and problems of model misspecification and contamination in modeling data from

CRTs. In Section 1.1, we introduce design and sample size calculations for the par-

allel CRT, the crossover CRT, and the stepped wedge CRT. Common methods for

analyzing data collected from CRTs are also introduced. In Section 1.2, we summarize

different directions of study on misspecifying random effects in linear mixed models

and generalized linear mixed models. Section 1.3 provides important concepts and

current work about contamination in clinical trials.

1.1 Design and Analysis of Cluster Randomized Trials

In this section, we first introduce common methods used for analyzing data col-

lected from cluster randomized trials. Then we introduce standard designs in cluster

randomized trials: the parallel CRT, the crossover CRT, and the stepped wedge CRT.

For each standard CRT, we summarize its designs features, possible variations of the

design, applications, and results about power and sample size calculations.

1.1.1 Analysis of Cluster Randomized Trials

In current work about estimating the treatment effect, there are mainly two classes

of approaches: cluster-level analysis and model-based analysis. Cluster-level methods

summarize data for each cluster into a single measure which in return is treated as

raw data and used for later analysis (Matthews and Altman, 1990). For example, we

can compute the mean response of each cluster that receives either the intervention

or the control during each time period. Based on these cluster-level mean responses,

we can construct a summary measure that estimates the intervention effect. Cluster-

level analysis is simple and convenient. However, it does not allow for individual-level
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covariates and thus ignores individual variations. Moreover, in a longitudinal study,

cluster-level analysis may lead to bias in estimating the intervention effect if the

response variable has trends in time (Turner et al., 2007).

On the other hand, model-based analysis methods provide more complex but

potentially more efficient and unbiased estimators. These methods allow for relevant

subject level covariates and time effect by including these sources of variation into the

model. Common models used for clustered data analysis are the population average

model which typically uses the generalized estimation equation (GEE) (Liang and

Zeger, 1986) and the mixed model which usually uses likelihood-based approaches

(Laird and Ware, 1982) for model fitting.

To compare between the mixed model and the population average model, we first

consider an example which relates the length of walking per week to neighborhood

crime rate using a generalized linear mixed model (GLMM) proposed as follows (Hub-

bard et al., 2010).

log(
P (Yij = 1|Xij, αj)

1− P (Yij = 1|Xij, αj)
) = β0 + α0j + (β1 + α1j)Xij, (1.1)

where Yij is the response variable for the ith subject in the jth neighborhood. Yij = 1

if the subject walks more than 2 hours per week, and 0 otherwise. Xij is a continuous

measure of crime rate for neighborhood j which would be the same for each i within

j. In addition, αj = (α0j, α1j) is the random effects for neighborhood j, and αj ∼

MVN(0,Σ), with Σ being a covariance matrix. Under this model, the interpretation

of the nonintercept fixed effect is within the neighborhood level. Thus, given two

neighborhoods having the same random effect, β1 is the log odds ratio of walking for

more than two hours/week comparing one neighborhood with crime rate one percent

higher than the other neighborhood.
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One pitfall of using the mixed model is that the misspecification of the joint dis-

tribution of the random effects and the error may be misleading under the likelihood

estimation methods. Given model (1.1), consider the conditional density of Yij on

Xij:

L(Yij|Xij) =

∫
R

∫
R
f(Yij|Xij, α0j, α1j)h(α0j, α1j)(dα0j)(dα1j). (1.2)

There are an infinite number of combinations of f and h that can result in the same

density L. The random-effects model for the density is nonidentifiable, since only the

distribution of (Yij, Xij) can provide information about the fit of competing models

(Hubbard et al., 2010).

Under the population average model using generalized estimation equations (GEEs),

the coefficients describe changes in the population mean when covariates changes.

Unlike the mixed model, GEE does not require distributional assumptions, but only

needs a few assumptions such as the mean of the conditional distribution of the re-

sponse on covariates and the estimation function (Gardiner et al., 2009; Hubbard

et al., 2010). Accordingly, the likelihood approach cannot be used for estimation.

Robust or sandwich estimators have been proposed to estimate variance of the pa-

rameter estimators (Liang and Zeger, 1986). One advantage of these estimators is

that even though the working covariance is misspecified, the asymptotic variance of

the GEE estimator of model parameters is usually robust by using empirical estima-

tors (Diggle et al., 2002). However, the number of independent groups needs to be

sufficiently large so as to guarantee valid inference about parameter estimators. If

one has a small number of large-sized clusters, extra assumptions may be added onto

the working covariance (e.g., autoregressive, exchangeable, etc.) or more information

in these large-sized clusters (Hubbard et al., 2010). In practice, the choice between
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the marginal model (GEE) and the conditional model (mixed model) should depend

on the relevant questions of interest (Gardiner et al., 2009).

Compared to cluster-level analysis methods, one possible disadvantage of model-

based methods is that the derivation of statistical properties of the treatment effect

estimator may be challenging, especially under complex designs.

1.1.2 Parallel CRT: Design, Power and Sample Size calcula-
tions

Design

Parallel CRTs have been extensively applied to many areas such as primary care

and prevention studies (Simpson et al., 1995; Eldridgea et al., 2004; Pagoto et al.,

2009; Simunovic et al., 2008), community level randomized trials (for example Cilib-

erto et al., 2005; Gruber et al., 2013), education (for example Murray et al., 1992;

Bell et al., 1993; Kelly et al., 1991) and so on. Compared to other cluster designs,

the parallel CRT is relatively convenient to implement and easy to understand. In

addition, it does not require many repeated measurements on the same cluster, which

puts less burden on care givers and participants.

Figure 1.1 shows two possible parallel designs, one with a baseline period and one

without (Teenrenstra et al., 2012). Under the conventional parallel design (Figure

1.1(a)), clusters are assigned to either the intervention arm or the control arm. In

our example, clusters of participants are followed over two time periods and stay

in only one trial arm throughout the study. On the other hand, under the parallel

design with a baseline period (Figure 1.1(b)), all six clusters are in the control arm

during the baseline period. In the second time period, three clusters are randomly

chosen to make have a crossover to the intervention arm, while the other three stay
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in the control arm. An example of the parallel CRT with a baseline period can

be found in the public policy evaluation applied to the Mexican universal health

insurance program (King et al., 2007). In that study, all clusters were paired up so

that one receive the intervention, while the other one received the control. The design

with baseline measurements may yield more efficient parameter estimators than that

without baseline measurements, since within-cluster comparisons are used in data

analysis.

(a) Parallel CRT (b) Parallel CRT with a baseline
period

Figure 1.1: Examples of parallel CRT. In each cell, 0 means receiving the control, 1
means receiving the intervention, and "." means no data collected at the correspond-
ing time point.

A natural extension of two-level parallel CRTs are three-level parallel CRTs where

data contain the observation level, unit level and cluster level (Heo and Leon, 2008;

Teerenstra et al., 2008). Figure 1.2 shows the design scheme of a three-level parallel

CRT in which randomization is conducted at the cluster level. In this case, the design

is essentially the same as the two level parallel CRT shown in Figure 1.1(a) except

for the data structure.
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Figure 1.2: Three-level Parallel CRT. In each cell, 0 means receiving the control, 1
means receiving the intervention.

Power and Sample Size calculations

For the conventional two-arm parellel CRT with equal cluster sizes n and contin-

uous responses, to reach the prespecified power 1 − β given a sufficient number of

clusters, the number of individuals m per arm is

m = mI × [DE]

=
(zα/2 + zβ)22σ2

∆2
[1 + (n− 1)ρ],

(1.3)

wheremI is the required number of participants per arm for the individual randomized

trial, σ2 is the total variance of the response variable, and zγ is the upper γth quantile

of the standard Normal distribution (Donner et al. (1981); Shih (1997)). Assuming

equal cluster size n, the required number of clusters per arm is m/n.

When the number clusters is fixed, Hemming et al. (2011) proposed formulae to

determine the size of each cluster. For a fixed number k equally sized clusters in each
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arm, the required cluster size n to reach power 1− β is

n = dmI(1− ρ)

k −mIρ
e,

where mI is defined in (1.3). To make the above equation valid, we need the condition

k > mIρ. If the condition is not satisfied (infeasible design), we could either determine

the maximum available power to detect the pre-specified difference, or the minimum

detectable difference under the pre-specified power. Once we find a feasible design,

we can determine the required number of individuals n in each cluster using (1.1.2)

again.

For binary responses with equal trial arms, Donner et al. (1981) obtain the fol-

lowing expression of the number of individuals m per arm

m =
(zα/2 + zβ)2[π1(1− π1) + π2(1− π2)]

∆2
[1 + (n− 1)ρ], (1.4)

where π1 and π2 are the probabilities of the event of interest in the control arm and

the intervention arm, respectively. The other notations are the same as in (1.3).

For count outcomes with equal trial arms, Amatya et al. (2013) use a GEE ap-

proach to determine the number of participants m per group given fixed cluster size

m =
[zα/2
√

2 + zβ
√

1 + e−b̃]2

eβ0 b̃2
[1 + (n− 1)ρ],

where b̃ denotes the treatment effect, and β0 denotes the event rate in the control

arm.

For ordinal outcomes with equal trial arms, Kim et al. (2005) used the GEE

containing ordinal repeated measurements to compute the required sample size via

simulation studies. However, the performance of the method given a small number of

large-size clusters is unknown. Alternatively, Campbell and Walters (2014) extended
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the sample size calculation formula of Whitehead (1993) for ordered categorical data

in individual randomized trials. They assumed a mixed model in which the treatment

effect is evaluated by the log odds ratio. The required number of individuals m per

arm is

m =
6(zα/2 + zβ)2/[log(OR)]2

1−
∑I

i=1 πi
3

[1 + (n− 1)ρ],

where πi is the average expected proportion for the control and the intervention groups

in ordinal category i.

Besides using the ICC to determine the sample size, Hayes and Bennet (1999)

use the coefficient of variation (CV) and propose the sample size calculation formulae

for both continuous and binary outcomes. For other types of outcome like time-to-

event outcomes and rate outcomes, Rutterford et al. (2015) have provided a complete

summary regarding the sample size calculations.

In practice, it is most likely that cluster sizes are unequal. In this case, Donner

et al. (1981) computed the average cluster size to estimate the sample size needed:

DE = 1 + (n− 1)ρ, (1.5)

where n is the mean cluster size. However, Eldridge et al. (2006) argued that employ-

ing the average cluster size underestimates the true design effect. On the other hand,

using the maximum cluster size may be too conservative. They therefore proposed

the Maximum possible Inflation in sample Size (MIS) to estimate the required cluster

sizes by including the coefficient of variation of cluster size which is defined as the

standard deviation of the cluster size Sn divided by the average cluster size n. This

formula can be applied to both continuous and binary outcomes. In addition, they
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concluded that when the coefficient of variation is less than 0.23, one may ignore the

influence of adjustment for variable cluster size on sample size calculations.

Tokola et al. (2011) consider the test H0 : ∆ = 0. Under Assumptions 1 (distribu-

tional assumptions) and 3 (design assumption) in the paper, they conclude that the

distribution of the test statistic T = ∆̂
ˆV ar(∆̂)

converges in distribution to a noncentral

chi-square distribution given H1 : ∆ = ∆0√
N
, where N is the total number of subjects.

Thus, the approximate power function of the level α test is

P{χ2
1(δ2(N1, n1, N0, n0)) > χ2

1,1−α}, (1.6)

where δ2(N1, n1, N0, n0) =
∆2

1/σ
2

1−ρ
N1

+ ρ
n1

+ 1−ρ
N0

+ ρ
n0

; σ2 is the total variance of the response;

N0 and N1 are the number of subjects in the control and the treatment arm, respec-

tively; and n0, n1 are the number of clusters in the control and the treatment arm,

respectively.

Under parallel designs with baseline measurements (Figure 1.1 (b)), study planners

can carry out a cohort study or a cross-sectional study. In a cohort study, the same

participants from each cluster are measured before and after the intervention is given,

while in a cross-sectional design different participants from each cluster are measured

before and after the intervention. It is widely accepted that cohort designs yield a the-

oretically more efficient estimator of the treatment effect than cross-sectional designs

due to correlated responses being taken on the same participant over time. However,

Feldman and McKinlay (1994) pointed out that some pitfalls of cohort designs such

as follow-up cost and selection bias may outweigh its theoretical advantage, propos-

ing a unifying model that includes both types of studies. Another problem of cohort

designs is the aging of cohorts, which is more or less confounded with the change in

the response. Even if the confounding is independent of the intervention assignment,
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a change in the response variable in a cohort study cannot be directly compared with

that in a cross-sectional study. Hence, a cross-sectional designs may be preferred if

the question of interest is the difference in the response variable on the cluster level

rather than on the individual level (Cambell et al. (2007)).

The relative estimation efficiency of cohort and cross-sectional designs is (Feldman

and McKinlay (1994)):

V arcohort(∆̂)

V arcross−sectional(∆̂)
=
nM(1− ρc)σ2

c +M(1− ρs)σ2
s + σ2

e

nM(1− ρ2
c)σ

2
c +Mσ2

s + σ2
e

,

whereM is the number of replicate measurements per individual at each time point, ρc

is the cluster autocorrelation which indicates the constant correlation among discrete

time points, ρs is the subject autocorrelation which illustrates the correlation of a

subject’s responses among different time points, and σ2
c , σ2

s and σ2
e are the variance

components of the distribution of the random cluster effect, random subject effect

and random error, respectively.

For the three-level parallel CRT shown in Figure 1.2, Heo and Leon (2008) de-

rived an analytic form for power of the intervention effect based the Wald test under a

three-level model with both cluster and random unit effects. Sample size calculations

are then provided based on the power formula. However, their results are limited,

since the three-level model they considered fails to include time effects. In this case,

the GLS estimator of the intervention effect is simply the difference in mean responses

between the intervention arm and the control arm. Under another three-level model

for repeated measurements in parallel designs, Heo and Leon (2009) considered fixed

intervention effect, fixed time effect, and fixed intervention-by-time interaction effect

which is the parameter of interest. The interaction is estimated by taking the dif-

ference in the ML estimators of slope for the outcome between the intervention arm
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and the treatment arm. Based on the Wald test and the variance of the estimator

of the intervention-by time interaction, power and sample size calculations are then

derived. Under this special problem of interest, the estimator of the intervention-by

time interaction is again constructed from the mean response of each treatment arm.

It is left unknown how to estimate the main effect of intervention under this more

complex model with time effects.

1.1.3 Crossover CRT: Design, Power and Sample Size calcu-
lations

Design

While the development of parallel CRTs have been quite mature, the main chal-

lenge for the design is that the study groups should be balanced on relevant variables.

By incorporating a cross-over in the randomized CRT, we can limit the influence of

the imbalance of characteristics between the two arms, since all of the within-cluster

comparisons are employed (Reich and Milstone, 2014). Furthermore, the cross-over

CRT allows a limited number of clusters. Given the same number of participants, the

crossover CRT yields higher power than the parallel CRT does. By controlling the

within-cluster variation via the crossover CRT, we may obtain more efficient statis-

tical comparisons than in the parallel CRT (Reich et al., 2012; Reich and Milstone,

2014).

Figure 1.3 displays the design scheme of a standard cross-over CRT. During time

period 1, three clusters are randomized to the intervention arm and the other three are

randomized to the control arm. In the next time period, clusters 1–3 that previously

receive the intervention switch to the control arm, while clusters 4–6 that previously

receive the control switch to the intervention arm.
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Figure 1.3: Design scheme of standard cross-over CRT. In each cell, 0 means receiving
the control, and 1 means receiving the intervention.

Although cross-over CRTs may reduce the impact of imbalance on relevant covari-

ates and yield higher power than parallel CRTs, we still need to be cautious when

applying them to practical problems. To begin with, cross-over studies eliminate

confounding effects related to internal cluster features, but do not eliminate external

factors such as a time effect. Therefore, the length of time periods should be shorter

than anticipated changes in a cluster (Parienti and Kuss, 2007). Second, there exists

potential risk of cluster-level carry-over effect in a cross-over design. Study planners

need to choose an appropriate period length, or set a washout period whenever a

cross-over happens (Parienti and Kuss, 2007).

Like the parallel CRT, the cross-over CRT has been extensively applied in practice.

For example, to compare 10% povidone iodine aqueous solution with 5% PVP-I in

a 70% ethanol-based aqueous solution for prevention of catheter colonization and

catheter-related infection, researchers have conducted a cross-over CRT on two similar

units of 11-bed adult medical intensive care in a France hospital (Parienti et al., 2004).

The study lasted for 12 months, with every three months a cross-over happening
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within each unit, as shown in Figure 1.4. In this example, each unit had three cross-

overs and received both treatments for two time periods.

Figure 1.4: Design scheme of a more complex cross-over CRT. In each cell, 0 means
using the 10% povidone PVP-I protocol, and 1 means using the new alcoholic PVP-I
protocol.

Power and Sample Size calculations

Turner et al. (2007) compared several model-based and cluster-level approaches

in the analysis of cluster randomized cross-over trial data. In the model based ap-

proaches, one model includes random cluster effects and the other model includes

fixed cluster effects. Cluster-level analysis is based on within-cluster comparisons.

They considered unweighted analysis, analysis weighted by cluster sizes, and analysis

weighted by the combination of cluster sizes and estimated ICC. Via numerical ex-

amples, they compared these methods in empirical precision, coverage probabilities,

and practical considerations. The conclusion is that the model-based analysis incor-

porating random cluster effects and the two weighted cluster-level analysis methods

consistently perform well across all scenarios considered. Further, to choose between

a model-based approach and a cluster-level analysis method, study planners also need

to consider the extent of complexity in the analysis.

Giraudeau et al. (2008) proposed a within-cluster comparison approach for esti-

mating the treatment effect estimator in the crossover CRT, assuming a cross-sectional
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trial. Then derived the required number of clusters to reach power 1− β

m = 2
(zα/2 + zβ)2σ2

X{
1+(p0−1)ρ

p0
− η}

(µ(1) − µ(2))2
,

where σ2
X is the variance component of the distribution of the outcome, p0 is the

number of participants in each arm from each cluster, ρ is the intra-cluster correlation,

and µ(1), µ(2) are the mean responses of the two arms, respectively.

Unlike the parallel CRT, there has not been much theoretical work on power and

sample size calculations for crossover CRTs. Most work focuses on simulation-based

approaches to analyze the behavior of power and estimate required sample sizes. For

example, Reich et al. (2012) used a generalized linear mixed model (GLMM) with

Poisson outcomes to generate data under the cross-over CRT. They displayed a curve

showing that the power for detecting the intervention effect increases as the num-

ber of independent clusters increases while holding the total number of participants

constant. Given such curve, one may estimate the required number of clusters so as

to achieve a pre-specified power level. In addition, based on the numerical example,

one may obtain slightly higher power when the time effect is absent compared to the

case when time-varying prevalence exists. An R package clusterPower has also been

developed to calculate power for crossover CRTs using a simulation-based approach.

A few application studies also include power and sample size calculations for

crossover cluster randomized designs. For example, in a study about chest radiographs

for mechanically ventilated patients in intensive care units (ICUs) in 18 hospitals

in France, researchers wanted to compare routine daily chest radiographs and an

on-demand strategy in which chest radiographs are given only if warranted by the

patient’s clinical status (Hejblum et al., 2009). A crossover cluster randomized trial

was conducted, with 21 independent ICUs divided into two arms having 10 and 11
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units, respectively. The two trial arms used the routine or the on-demand strategy

for chest radiographs during the first treatment period, then used the alternative

strategy in the second period. As for sample size calculations, by simulation studies

they decided to recruit 20 patients per strategy and a total of 800 patients so as to

detect substantial differences in mortality or mean duration of mechanical ventilation.

With the type I error controlled at 5% and the power reached at 80%, the calculated

sample size should be able to detect a difference of 10% in mortality rate and a

difference of 3 days in mean duration of mechanical ventilation between the two trial

arms.

1.1.4 Stepped Wedge CRT: Design, Power and Sample Size
calculations

Design

Figure 1.5 displays the design scheme of a complete SW-CRT. The intervention is

rolled out sequentially to 6 clusters, each of which follow a different design pattern.

In the initial stage, all clusters are assigned to the control arm. During time period 2,

cluster 1 is selected to have a crossover to the intervention arm, while the other five

clusters remain in the control arm. Furthermore, cluster 1 stays in the intervention

arm towards the end of the study. In time period 3, cluster 2 switches to the interven-

tion arm, while clusters 3–6 remain in the control arm. Similar to cluster 1, cluster

2 stays in the intervention arm towards the last time period of the study. Following

this pattern, all clusters are eventually exposed to the intervention at the end of the

study. The “steps” in the design scheme are formed by clusters having their one-way

crossovers at different times.

17



Figure 1.5: The stepped wedge design for two-level data.In each cell, 0 means receiving
the control, and 1 means receiving the intervention.

The earliest known application of the SW-CRT can be found in a hepatitis B

(HBV) study (Gambia Hepatitis Study Group, 1987). The researchers in the study

conducted a phased randomized trial so as to introduce the HBV vaccination to

infants in Gambia. In this study, vaccination teams were treated as independent

clusters according to geographical areas. There were 17 vaccination teams in total,

in which a single team was randomized at each step of the trial. The duration of

each step was approximately 10 to 12 weeks such that complete national coverage

of the HBV vaccination should have been obtained within about 4 years. More

recent applications of the SW-CRT include HIV studies [e.g., Hughes et al. (2003);

Killama et al. (2010), patient safety intervention [e.g., Brown et al. (2008), children’s

malnutrition problems [e.g., Ciliberto et al. (2005) and many others. Two review

articles systematically describe the applications of the SW-CRT to various research

domains (Brown and Lilford, 2006; Mdege et al., 2011).

Stepped wedge designs have been increasingly employed for several reasons. First,

it may be unethical to withhold an intervention in a parallel design or withdraw

an intervention in a crossover design if previous evidence shows effectiveness of the

intervention (Brown and Lilford, 2006; Hemming et al., 2015a). In a stepped wedge
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design, every cluster will eventually receive the intervention. Second, the stepped

wedge design is particularly useful when financial or logistical constraints require the

intervention to be rolled out in stages (Cook and Campbell, 1979). For example,

consider that a medical team travels village by village in some country in Africa

to give HIV treatments to infected residents. It may not be feasible that the team

provides their service to two or more villages simultaneously due to labor constraints.

Besides the possible advantages, some potential pitfalls of the stepped wedge de-

sign should also be considered in practice. Multiple stages in a stepped wedge design

may lead to longer trial duration and higher data collection costs compared to many

other designs (Brown and Lilford, 2006; Hussey and Hughes, 2007; Brown et al.,

2008). Furthermore, a stepped wedge design may place a heavy burden on both par-

ticipants and researchers, especially in a cohort design where each participant needs

to be followed for multiple time periods. Accordingly, the quality of data collection

may be undermined (Lynn, 2009).

In addition to the conventional SW-CRT, several variations for the stepped wedge

design has been prposed by Hemming et al. (2015b). First, instead of conducting a

complete SW-CRT where all clusters are being measured throughout the study, an

incomplete trial can be conducted to reduce the data-collecting burden on researchers

and participants (Figure 1.6 (a) ). Under this design, each of the five clusters is

measured one time before the exposure to the intervention and two times after the

intervention. Second, there may be an implementation or transition phase of each

cluster when it is transferring from the control arm to the intervention arm as in

Figure 1.6 (b). Clusters during the transition periods can neither be considered in

the control arm nor fully exposed to the intervention. No data are collected on a
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cluster during its implementation phase. The third design is essentially a variation

on the parallel CRT where the randomization is staggered while the design is balanced

on time. In Figure 1.6 (c), at each of the three time points, two clusters are randomly

selected to be randomized to either the treatment or control. Although in this design

not all clusters complete the transition from the control to the intervention as in an

SW-CRT, it is pointed out that staggered parallel CRTs can also be considered under

the same framework as the stepped wedge design. Lastly, the three-level SW-CRT is

proposed for data that contain two layers of clustering. Figure 1.6 (d) provides the

design scheme for the three-level SW-CRT. In this case, the difference between the

three-level and the two-level SW-CRTs is minimal except for how observations are

clustered.
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(a) An incomplete SW-CRT with one before and two after measurements

(b) An incomplete SW-CRT with an implementation period

(c) Staggered parallel CRT with baseline measurements

(d) Three-level SW-CRT

Figure 1.6: Variations on SW-CRTs. In each cell, 0 means receiving the control, 1
means receiving the intervention, and "." means no data are collected at the corre-
sponding time point.
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Power and sample size calculations

Consider the following standard two-level model for SW-CRTs with continuous

outcomes (Hussey and Hughes, 2007).

Yijk = µ+ ai + δj +Xijθ + εijk, (1.7)

where i = 1, . . . , I, I being the number of clusters, j = 1, . . . , T , T being the number

of time points, and k = 1, . . . , N , N being the number of individuals measured in

each cluster at each step. Further, ai is the random cluster effect, δj is the fixed

time effect, and θ is the fixed treatment effect. The model assumes ai ∼ N(0, τ 2),

εijk ∼ N(0, σ2
e), and ai is independent of εijk. Xij is the indicator variable for the

treatment (1 if receiving treatment, and 0 otherwise). The intra-cluster correlation

(ICC) is defined to be ρ = τ2

τ2+σ2
e
, which is the correlation among individuals in the

same cluster.

Based on model (1.7), Hussey and Hughes (2007) derived the analytic form of

power for the test H0 : θ = θ0 versus Ha : θ 6= θ0. Test statistic Z = θ̂−θ0√
Var(θ̂)

is

used. As a key component in the derivation of power formula, the variance of the

GLS estimator of the intervention effect θ̂ is given by

Var(θ̂) =
Iσ2(σ2 + Tτ 2)

(IU −W )σ2 + (U2 + ITU − TW − IV )τ 2
, (1.8)

where U =
∑

i,j Xij, W =
∑

j(
∑

iXij)
2, V =

∑
i(
∑

j Xij)
2, and σ2 = σ2

e/N . In

practice, investigators are more interested how the ICC ρ affects the variance of

the intervention effect estimator. Thus, expressed in terms of ρ, the above variance

formula becomes

Var(θ̂) =
Iσ2

e [1 + (NT − 1)ρ]

(IU −W )N(1− ρ) + (U2 + ITU − TW − IV )N2ρ
.
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In addition, we take note that the treatment indicator Xij is general, and the above

variance formula works for any types of CRTs with two-level data under model (1.7).

Based on (1.8), Woertman et al. (2013) derived the design effect (DE) for the

stepped wedge design based on the relative efficiency of the parallel individual ran-

domized trial to the SW-CRT given the same number of individual observations

NI(b + tk). In the two-arm parallel individual randomized trial, the variance of the

intervention effect estimator θ̂z based on the two-sample Z-test is V ar(θ̂z) =
4σ2
y

NI(b+tk)
.

Thus, the design effect for the SW-CRT is

DE =
V ar(θ̂)

V ar(θ̂z)
=

1 + ρ(ktN + bN − 1)

1 + ρ(1
2
ktN + bN − 1)

6(1− ρ)

t(k − 1
k
)

σ2
y

Nik
/

4σ2
y

NI(b+ tk)
(1.9)

where k = T − 1 is the number of steps, t is the number of measurements after each

step, b is the number of baseline measurements, and i is the number of clusters making

the switch from the control to the intervention at each step.

Simulation-based methods have also been used for power and sample size calcula-

tions to satisfy more special and complex underlying models for SW-CRTs (Dimairo

et al., 2011; Baio et al., 2015). For example, Baio et al. (2015) compared sample size

requirements for the SW-CRT and the parallel CRT via simulation studies. Both

continuous and discrete outcomes are modeled under both cross-sectional design and

cohort design. Besides the standard model (1.7), another model they considered is

the standard model with added cluster-specific treatment random effect to account

for different treatment effects on different clusters. For each model and type of out-

comes, they studied the relations of power and the ICC and discussed sample size

calculations under both parallel and stepped wedge CRTs.
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1.2 Model Misspecification of Random Effects

One interesting question about model misspecification in mixed effects models is

the misspecification of random effects. As pointed out by Hubbard et al. (2010), there

are numerous possible choices for the distribution of random effects in a mixed model

leading to the same marginal specification. When random effects are misspecified in

a model, the interpretation of the fixed effects of the model is still unclear even if they

are correctly specified. In general, current work on consequences of misspecification

of random effects in mixed models can be divided into two directions: the choice of

distributions or shapes of random effects (Verbeke and Lesaffre, 1996, 1997; Heagerty

and Kurland, 2001; Agresti et al., 2004; Litiere et al., 2007; Huang, 2009; McCulloch

and Neuhaus, 2011; White, 1982) and the choice of covariance patterns of random

effects (Kwok et al., 2007; Ferron et al., 2002; Liu et al., 2012).

In the first category, the popular normality assumption of the random effects in

LMM or GLMM has been questioned and possible diagnostic methods have been

provided. In Verbeke and Lesaffre (1996), an underlying LMM with random effects

being a finite mixture of g normal distributions is considered. They generated data

using the underlying model and fitted the data with an LMM with the same fixed

effects but normal random effects. Their results show that the estimation of the

fixed effects, covariance matrix and the residual variance are not largely influenced.

Similarly, Verbeke and Lesaffre (1997) showed that misspecification of the distribution

of random effects in LMMs may hardly impact parameter estimation of fixed effects.

However, they also concluded that asymptotic properties of parameter estimators for

fixed effects may no longer hold when the inverse Fisher information matrix is used to

estimate their standard errors. Thus, valid inference about model parameters requires
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a corrected version of standard errors rather than the inverse Fisher information

matrix.

Other work has focused on random effects misspecification under the GLMM. Hea-

gerty and Kurland (2001) investigated the asymptotic relative bias when the random

effects are misspecified in logistic mixed models. They concluded that severe bias can

result in the ML estimator of fixed effects when the distribution of random effects

depends on covariates. Via simulation studies, Agresti et al. (2004) studied the fit of

two logit models assuming either normal random effects or using a nonparametric fit-

ting method, while the true distribution of the random effects is a two-point mixture

with a large variance. Their results show large bias and potentially dropped efficiency

in parameter estimation when the models are misspecified. Litiere et al. (2007) con-

cluded that the Type I error rate can be largely inflated when the distribution of

the random intercept in a logistic random-intercept model is misspecified. Moreover,

depending on the shape of the underlying distribution of the random intercept, power

can either be inflated or deflated.

Despite previous concerns about consequences of misspecifying distributions of

random effects in mixed models, McCulloch and Neuhaus (2011) argued that these

concerns may be misplaced. Reasons include that some previously studied situations

are unfairly extreme, and that sensitivity to misspecification had not been adequately

studied. Through their simulation studies based on logistic mixed models, they con-

cluded that a wide range of inferences is quite robust to misspecification of random

effects distributions, particularly for the estimation of within-cluster covariate effects

which are of great interest in longitudinal studies.
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The second direction of studies is on misspecification of covarianace patterns of

random effects. Ferron et al. (2002) considered the effects of overly simplifying the

covariance pattern of first-level random errors under multi-level model. The model is

proposed as follows. At the first level,

Yit = πi0 + πi1ait + εit,

where Yit is the tth outcome for subject i, ait is the time at which tth outcome on the

ith subject is taken, and εit is the first-level random error term. At the second level,

π0i = β00 + β01xi1 + r0i,

π1i = β10 + β11xi1 + r1i.

where xi1 is the predictor for the ith subject, β01 and β11 are respectively coefficients

of xi1 for π0i and π1i, and r0i and r1i are random error terms. In their numerical

study, the underlying covariance structure Σ of εit is assumed to be first-order au-

toregressive, and the assumed structure is simply a diagonal matrix (σ2I). Results

show unbiased estimates of the fixed effects β00, β01, β10, β11, but their estimated vari-

ances are systematically inflated. Kwok et al. (2007) provided more complete results

and systematically investigated the effects of different forms of misspecification of

the covariance matrix Σ of within-subject random errors under multi-level models for

longitudinal data. They concluded that both over-simplified and general misspecifi-

cation of Σ would lead to inflated estimation of variances of both fixed and random

effects.
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1.3 Contamination

In clinical trials, contamination is defined to be the process where participants in

the control (or intervention) arm unexpectedly receive the intervention (or control). In

most cases, contamination is referred in particular to the situation of control subjects

being exposed to at least some of the intervention. For example, an intervention is

designed to engage at-risk students with school and reduce dropout rates. At-risk

students who are given the intervention may interact with other at-risk students who

are not given the intervention within the same school. In this case, the at-risk students

in the control arm may also increase engagement with school due to their peers in

the intervention arm (Rhoads, 2011).

The most serious consequence of contamination is introducing bias in estimation

of the treatment effect. By making responses in the control arm more similar to

responses in the intervention arm, contamination dilutes the treatment effect and

causes underestimation of the treatment effect. As a result, the power of detecting

the intervention effect is reduced (Torgerson, 2001; Keogh-Brown et al., 2007).

In practice, cluster randomized trials are often used to avoid potential contamina-

tion. The ability of cluster randomized trials to minimize contamination by physically

separating participants in different trial arms is the main reason for preferring cluster

randomized designs to individual randomized trials (Rhoads, 2011). In the example

of decreasing dropout rate, the intervention could be delivered at the school level so

that all at-risk students within the same school are in the same trial arm. In this

case, contamination within the same school is avoided. However, disadvantages of

CRTs may be recruitment bias and reduced statistical efficiency. To alleviate these
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problems, Borm et al. (2005) proposed pseudo cluster randomized trials carrying fea-

tures of both cluster randomized designs and individual randomized designs . Pseudo

cluster randomization is done in a two-step procedure. First, all participating clusters

are divided into two groups. Second, within each group, individual participants are

randomly allocated to either the intervention or the control. The majority of partici-

pants in one group need to receive the intervention, and the majority of participants

in the other group need to receive the control. They concluded that pseudo cluster

randomized trials are more efficient than CRTs and individual randomized trials when

contamination is present.

1.4 Outline of the Dissertation

This dissertation focuses on the design and analysis of novel stepped wedge clus-

ter randomized trials for three-level data such as patients (observations) within wards

(units) within hospitals (clusters). Under a standard three-level model, we develop

flexible analytical results for power and sample size calculations that can be applied

to arbitrary CRTs. We propose a set of novel three-level SW-CRTs and study the

efficiencies of the proposed three-level SW-CRTs using the developed analytical re-

sults under the standard three-level model. We also extend the standard model to

more complex underlying models to generate data under each proposed design, and

evaluate consequences of misspecifying random effects and omitting contamination

when modeling data from three-level SW-CRTs.

In Chapter 2, we develop analytical results for power and sample size calculations

for three-level CRTs under a standard three-level model including random cluster

effects, random unit effects, and fixed time effects. Our results are flexible and can
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be applied to arbitrary types of three-level CRTs. We also review special cases of our

results on power calculations for both two-level and three-level CRTs.

In Chapter 3, we propose a set of SW-CRTs for three-level data. The proposed

SW-CRTs differ in timing of allocating different units from the same cluster to the

intervention. We give four examples of our proposed designs and provide their de-

sign schemes along with practical usefulness. Using the developed analytical results

from Chapter 2, we compare the efficiencies of the four designs using variance of the

intervention effect estimator under the standard model introduced in Chapter 2. Il-

lustrating patterns in variance of the intervention effect estimator as within-cluster

correlations change, we also identify three different types of comparisons between the

treatment group and the control group for estimating the treatment effect.

In Chapter 4, we extend the standard three-level model to one with varying ran-

dom unit effects across time points. We choose a Toeplitz covariance pattern as the

underlying covariance pattern of the random unit effects across time points. When

the underlying model is correctly specified, we study how variance of the treatment

effect estimator change with varying within-cluster correlations. In addition, we study

the consequences of incorrectly specifying random unit effects to be constant across

all times, while data is generated from the extended model with varying random unit

effects across time points.

In Chapter 5, we study the consequences of omitting contamination when control

units are contaminated by intervention units within the same cluster under our pro-

posed designs. For each design, we illustrate practical scenarios where contamination

could occur, describe severity of contamination, and evaluate the impact of ignoring

contamination when modeling data in the presence of contamination. We consider
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alternative models to generate data from three-level SW-CRTs with or without con-

tamination. In addition, we provide simulation studies to evaluate consequences of

wrongly adding or omitting random effects in these alternative three-level models.

Chapter 6 provides a summary of this dissertation and some future directions of

our research. We will extend our proposed designs to incomplete designs where no

data collection on some participants is needed during certain time periods. We also

include alternative underlying models generating data from SW-CRTs, and discuss

cohort designs that also fit into the framework of SW-CRTs.
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Chapter 2: A General Formula for Power and Sample Size

Calculations for Arbitrary Cluster Randomized Trials

In this chapter, we focus on power and sample size calculations for cluster ran-

domized controlled trials for three-level data. We derive the closed-form expression

for power of testing the intervention effect under a standard three-level model in-

corporating time effects, as most trials last a long time and patients outcome may

change over time. Our power formula is flexible and can be applied to a wide vari-

ety of three-level CRTs. The results also include previous related results as special

cases. We show that the derived power formula for testing the intervention effect

based on its GLS estimator under our standard three-level model can be simplified to

the power formula under the standard two-level model in Hussey and Hughes (2007).

Also, the three-level model that we consider includes the model for the three-level

parallel CRT considered in Heo and Leon (2008) as a special case. We show that

their power formula can be directly recovered by our result in the special case of the

parallel design with a single time period.

The rest of this chapter is organized as follows. In Section 2.1, we introduce a

standard three-level model incorporating time effects. In Section 2.2, we derive the

closed-form expression for the variance of the GLS estimator of the intervention effect

under the three-level model and provide the power formula under arbitrary designs for
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three-level data. We also review special cases of our results about power calculations

for three-level CRTs. Sample size calculations are then introduced. In Section 2.3, we

illustrate possible applications of our power formula to sample size calculations using

a real-world example. Our conclusion appears in Section 2.4.

The following notations are used hereafter. Let 0n and 1n denote n × 1 vectors

of all 0s and all 1s, respectively. Let In be the n × n identity matrix and Jn be the

n × n matrix of all 1s. Use ⊗ to denote the Kronecker product of matrices. Using

Kronecker product, we express a block diagonal matrix with all m diagonal blocks

being the same matrix A as Im ⊗ A.

2.1 The Model

Let us consider a linear mixed effects model that describes data collected from an

arbitrary three-level cluster randomized controlled trial

Yijtk = δt + Zijtθ + ai + bij + εijtk, (2.1)

where i = 1, · · · , I is the index for independent clusters, j = 1, · · · , J is the index for

units nested within the same cluster, t = 1, · · · , T is the index for time points, and

k = 1, · · · , K is the index for observations from the same unit within a cluster at the

same time. Accordingly, Yijtk denotes the kth observation from the jth unit nested

in the ith cluster at time t. Zijt is the binary intervention indicator for the jth unit

within the ith cluster at time t. Zijt takes value of 1 if the intervention is received,

and 0 if the control is received. The fixed time effect at time t is denoted by δt. The

intervention effect is denoted by θ. The cluster-level random effects ai, i = 1, · · · , I

are independently drawn from N(0, σ2
a). Within the same cluster i, the random unit

effects bij, j = 1, · · · , J are independently drawn from N(0, σ2
b ). The random errors
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εijtk are independently drawn from N(0, σ2
e). Furthermore, the random effects ai, bij,

and the error εijtk are mutually independent. A similar model has been proposed by

Hemming et al. (2015b) under a stepped wedge design. However, we note that our

work is not limited to stepped wedge designs. Throughout this chapter, we focus on

cross-sectional studies where the observations Yijtk are collected from IJTK different

participants.

One feature of model (2.1) worth noting is that it allows randomization to be at

the unit level, not merely at the cluster level. Specifically, Zijt gives the assignment

of the intervention to the jth unit within the ith cluster at time t. For participants

from different units within the same cluster, their assignments of the intervention

or the control are allowed to be different. In other words, model (2.1) allows that

Zijt 6= Zij′t,∀j 6= j′.

2.2 Derivation of the flexible power formula for three-level
CRTs

In this section, we derive the closed-form expression for power of testing the in-

tervention effect under our three-level model (2.1). The test is based on the GLS

estimator of the intervention effect. The main difficulty lies in deriving the variance

formula for the GLS estimator of the intervention effect.

Without loss of generality, we take the cell mean over the K observations for ease

of derivation. This yields the following cell-mean model

Y ijt· = δt + Zijtθ + ai + bij + εijt·, (2.2)

where Y ijt· :=
∑K

k=1 Yijtk/K, εijt· :=
∑K

k=1 εijtk/K. Thus, εijt· is normal with mean 0

and variance σ2 := σ2
e/K.
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2.2.1 Preliminaries

Let us consider the following general normal linear model in matrix form

y = Xβ + ε, (2.3)

where y ∈ Rn, X ∈ Rn×p, β = (β1, · · · , βp)T ∈ Rp, ε ∼ Nn(0, V ), and V ∈ Rn×n is

a symmetric positive definite matrix. We start with deriving a general formula for

the variance of a single component in the GLS estimator β̂ of β under model (2.3).

Without loss of generality, let the single component of interest be the last entry βp of

β, since one can always permute the the component of interest to the last entry of β

and permute the columns of X accordingly.

Theorem 1. The variance of the GLS estimator β̂p of βp in (2.3) is

Var(β̂p) =
1

xT2 V
−1x2 − xT2 V −1X1(XT

1 V
−1X1)−1XT

1 V
−1x2

,

where X = (X1, x2) is partitioned into the first p− 1 columns X1 ∈ Rn×(p−1) and the

last column x2 ∈ Rn.

The proof is provided in Appendix A.

2.2.2 Variance of the intervention effect estimator under three-
level CRTs

In order to apply Theorem 1 when deriving the variance of the GLS estimator of

the intervention effect θ̂, we write the cell-mean model (2.2) in matrix form. Due to the

normality of the random effects and the error terms and their mutual independence,

the cell-mean model (2.2) can be written as a general normal linear model taking the

34



exact form of (2.3), where

y := (Y 111·, · · · , Y 11T ·, · · · , Y 1J1·, · · · , Y 1JT ·,

Y 211·, · · · , Y 21T ·, · · · , Y 2J1·, · · · , Y 2JT ·,

· · · , Y I11·, · · · , Y I1T ·, · · · , Y IJ1·, · · · , Y IJT ·)
T ∈ RIJT ,

β := (δ1, δ2, · · · , δT , θ)T ∈ RT+1.

In addition, we partition the design matrix X into (X1, z), where X1 and z are formed

by the first T columns and the last column of X, respectively. Specifically,

X1 := 1IJ ⊗ IT ,

z := (Z111, · · · , Z11T , · · · , Z1J1, · · · , Z1JT ,

Z211, · · · , Z21T , · · · , Z2J1, · · · , Z2JT ,

· · · , ZI11, · · · , ZI1T , · · · , ZIJ1, · · · , ZIJT )T ∈ RIJT .

Under our model, X1 is the design for the time effect and z is the vector of the

treatment indicators. The error vector ε ∼ NIJT (0, V ), where V := II ⊗ W and

W := IJ ⊗ (σ2IT + σ2
bJT ) + σ2

aJJT .

Using Theorem 1, we can derive the closed-form expression for the variance of the

GLS estimator of the intervention effect, Var(θ̂).

Theorem 2. The variance of the GLS estimator of θ in model (2.1) can be expressed

in terms of the vector of the treatment indicators z:

Var(θ̂) =
1

f(z)
, where

f(z) := p

I∑
i=1

J∑
j=1

T∑
t=1

Z2
ijt − pq

I∑
i=1

J∑
j=1

(
T∑
t=1

Zijt)
2 − r

I∑
i=1

(
J∑
j=1

T∑
t=1

Zijt)
2

− p

IJ

T∑
t=1

(
I∑
i=1

J∑
j=1

Zijt)
2 +

pq + rJ

IJ
(
I∑
i=1

J∑
j=1

T∑
t=1

Zijt)
2,

(2.4)
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and p := 1
σ2 , q :=

σ2
b

σ2+Tσ2
b
, r := σ2

a

(σ2+Tσ2
b+JTσ2

a)(σ2+Tσ2
b )
.

Proof Sketch. According to Theorem 1, we have

Var(θ̂) =
1

zTV −1z − zTV −1X1(XT
1 V

−1X1)−1XT
1 V

−1z
,

where X1 = 1IJ⊗IT , V = II⊗W , andW = IJ⊗(σ2IT +σ2
bJT )+σ2

aJJT . The claimed

result follows by deriving the closed-form expressions for V −1 and (XT
1 V

−1X1)−1. We

leave the detailed proof to Appendix A.

The variance formula for the GLS estimator θ̂ presented in Theorem 2 is flexible

to design. The vector of treatment indicators z can accommodate a wide variety of

designs for three-level data. This includes not only standard designs, but also hybrid

designs that may carry features of standard designs.

Our results also include several previous results of power and sample size calcula-

tions for CRTs as special cases.

• The formula for Var(θ̂) in Theorem 2 under the standard three-level model

(2.1) can be simplified to the variance formula for the GLS estimator of the

intervention effect under the standard two-level model in Hussey and Hughes

(2007). In fact, if we let the random unit effect bij = 0, the number of units

J = 1, and remove the redundant unit index j, then a cluster is equivalent

to a unit. In this case, our model (2.1) simplifies to a two-level model with I

independent clusters, within which there are K observations collected at each of

the T time points, which gives exactly the same two-level model (1.7) considered

in Hussey and Hughes (2007). Accordingly, as for the form of Var(θ̂), in (2.4)

we set σb = 0, J = 1, and drop the unit index j as well as any summation over

j. This gives the variance formula (1.8) for arbitrary two-level CRTs.

36



• Our formula can be simplified to be the variance formula for the GLS estimator

of the intervention effect under the three-level model for the parallel CRT with

a single time period in Heo and Leon (2008). Our formula for Var(θ̂) accounts

for the time effect, since our model incorporates the fixed time effect that leads

to the first block X1 in the design matrix representing an one-way ANOVA

design. If we consider the balanced parallel design with a single time period

that assigns half of the clusters to the intervention arm and the other half to the

control arm assuming that the number of clusters is an even number, then model

(2.1) describes the three-level parallel CRT discussed in Heo and Leon (2008).

In this case, X1 reduces to an all-1s vector corresponding to the fixed intercept,

and we can recover their result about the variance of the GLS estimator of θ

from our formula (2.4) by setting T = 1, dropping the time index t in Zijt

as well as any summation over t, and letting the vector of treatment indicator

z = (1TIJ/2,0
T
IJ/2)T . The resulting formula is

Var(θ̂) =
4

IJK
{σ2

y +K(J − 1)σ2
a + (K − 1)(σ2

a + σ2
b )} (2.5)

(equation (11) in Heo and Leon, 2008).

2.2.3 Power and sample size calculations

To perform the following test of the intervention effect H0 : θ = θ0 versus Ha : θ 6=

θ0, the test statistic Z = θ̂−θ0√
Var(θ̂)

is used when the variance components σ2
a, σ2

b and σ2
e

are known. For any alternative θa, the approximate power of the test at significance

level α is

Pθa(Reject H0) = Φ(
|θa − θ0|√

Var(θ̂)
− zα/2), (2.6)
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where Var(θ̂) is shown in Theorem 2, Φ and α/2 are the cumulative density func-

tion and the upper α/2th quantile of the standard normal distribution, respectively

(Casella and Berger, 2001). We note that the power formula is a function of Var(θ̂).

Following our discussion about the simplification of the variance formula (2.4) to the

cases of arbitrary two-level CRTs in Hussey and Hughes (2007) and the three-level

parallel CRT in Heo and Leon (2008), our power formula includes their works as

special cases.

In practice, if the variance components are unknown, their ML estimators σ̂2
a,

σ̂2
b and σ̂2

e can be substituted into the test statistic Z. In this case, we arrive at

the Wald test statistic W = θ̂−θ0√
V̂ar(θ̂)

, which follows the standard normal distribution

asymptotically under H0. The approximate power under θa can then be obtained by

replacing Var(θ̂) with V̂ar(θ̂) in (2.6).

In clinical research, it is usually more interesting to relate power to correlations

among observations than to variance components. Thus, we introduce two concepts

related to correlations defined under our model (2.1). The first quantity is called

the intra-cluster correlation (ICC), ρ :=
σ2
a+σ2

b

σ2
a+σ2

b+σ2
e
(Heo and Leon, 2008). It is the

correlation between two observations from the same unit within a cluster. The second

quantity is η := σ2
a

σ2
a+σ2

b
(Hemming et al., 2015b), which is the ratio of the correlation

between two observations from two different units within the same cluster to that

from the same unit within a cluster. Next, let σ2
y = σ2

a + σ2
b + σ2

e denote the variance

of the outcome Yijtk. To re-express the power formula in (2.6) in terms of ρ, η, σ2
y

instead of σ2
a, σ

2
b , σ

2
e , we rewrite Var(θ̂) in (2.4) in terms of the former three quantities
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using the relation

p =
K

(1− ρ)σ2
y

,

q =
K(1− η)ρ

1− ρ+ TK(1− η)ρ
,

r =
K2ηρ

[1− ρ+ TK(1− η)ρ+KJTηρ][1− ρ+ TK(1− η)ρ]σ2
y

.

(2.7)

Before a trial can be carried out, it is necessary to determine the number of

participants to be recruited. Here, we briefly introduce the sample size calculations

for arbitrary three-level CRTs based on the power formula (2.6). Given a clinically

meaningful effect size θa−θ0, the study planners would like to achieve a desired power

π for rejecting the null hypothesis. By rearranging terms in (2.6), this criterion yields

Var(θ̂) = (
θa − θ0

z1−π + zα/2
)2,

where z1−π and zα/2 are the upper 1 − π and α/2 quantiles of the standard normal

distribution, respectively. Assuming that reliable estimates of ρ, η and σ2
y can be

provided for a specific design Zijt, investigators may set the expression of Var(θ̂) in

(2.4) (with p, q, r expressed in (2.7)) equal to ( θa−θ0
z1−π+zα/2

)2, and solve for one of the four

sizes I, J, T,K while having the other three prespecified. Following this procedure, we

are able to determine the size of interest, I, J, T or K. In practice, common methods

of estimating the ICC ρ and the ratio of between-unit to within-unit correlations η

include referring to previous trials, conducting pilot studies, using baseline data, and

carrying out interim analysis (Eldridge and Kerry, 2012).

2.3 Application

A stepped wedge study is planned to provide a newly designed training course to

general practice nurses in type 2 diabetes care. Nurses who have received the new
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training course are expected to provide better care and help reduce patients’ total

cholesterol level more than nurses who have not received the training. Following the

balanced stepped wedge design shown in Figure 1.6 (d), the new training is delivered

sequentially to general practices whose orders are randomly determined. The study

consists of T = 16 phases, including an initial phase when nurses from all participating

general practices deliver the regular care to their patients. After the initial phase of

the study, it is planned that a fixed number of general practices transfer from the

control arm to the intervention arm in each following phase. In addition, it is expected

that J = 3 nurses are recruited from each general practice, and K = 25 patients can

be recruited from each general practice at each phase. Patients’ total cholesterol

levels are collected two months after they receive either the regular care or the new

care. Based on previous small studies, the estimated correlation ρ between patient

observations from the same nurse is 0.05, and the estimated ratio η of between-nurse

to within-nurse correlations is 0.3. Furthermore, the standard deviation of patients’

total cholesterol is estimated to be 1.2 mmol/l. To detect a clinically important

reduction 0.05 mmol/l in total cholesterol with 80% power, we can use the general

power formula (2.6) with the above stepped wedge design plugged in. We have

I∑
i=1

J∑
j=1

T∑
t=1

Z2
ijt =

I∑
i=1

J∑
j=1

T∑
t=1

Zijt =
IJT

2
,

I∑
i=1

J∑
j=1

(
T∑
t=1

Zijt)
2 =

IJT (2T − 1)

6
,

I∑
i=1

(
J∑
j=1

T∑
t=1

Zijt)
2 =

IJ2T (2T − 1)

6
,

T∑
t=1

(
I∑
i=1

J∑
j=1

Zijt)
2 =

I2J2T (2T − 1)

6(T − 1)
.
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Substituting J = 3, T = 16, K = 25, ρ = 0.05, η = 0.3 and σy = 1.2 mmol/l into

the variance formula (2.4) and power formula (2.6), we obtain the desired number of

general practices I. It turns out that at least 45 general practices are needed in this

SW-CRT. Specifically, during each of the 15 phases with switch of treatment arms,

3 general practices should be randomly chosen to transfer from the control to the

intervention.

Suppose investigators would also like to know how many general practices would be

needed if a two-arm parallel CRT were to be carried out, assuming all other conditions

being same as above. In this case, we substitute the corresponding treatment indicator

Zijt into the variance formula (2.4). Assuming the parallel design with a single time

period (T = 1), we have
I∑
i=1

J∑
j=1

T∑
t=1

Z2
ijt =

I∑
i=1

J∑
j=1

T∑
t=1

Zijt =
I∑
i=1

J∑
j=1

Zij =
IJ

2
,

I∑
i=1

J∑
j=1

(
T∑
t=1

Zijt)
2 =

I∑
i=1

J∑
j=1

Z2
ij =

IJ

2
,

I∑
i=1

(
J∑
j=1

T∑
t=1

Zijt)
2 =

I∑
i=1

(
J∑
j=1

Zij)
2 =

IJ2

2
,

T∑
t=1

(
I∑
i=1

J∑
j=1

Zijt)
2 = (

I∑
i=1

J∑
j=1

Zij)
2 = (

IJ

2
)2.

The resulting formula of Var(θ̂) is given in (2.5). Using the power formula (2.6), we de-

cide the required number of clusters I plugging in the same values of J, T,K, ρ, η, σy, α

and the clinically important reduction amount. It turns out that at least I = 712

general practices would be needed so that power achieves 80%. This number is sub-

stantially larger than the number of required general practices under a stepped wedge

design. In fact, if only 46 general practice were to be recruited in a balanced parallel

CRT, the power would only achieve 0.11.
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2.4 Discussion

In clinical research, three-level data that include units nested within clusters are

commonly observed. Examples include ICUs within hospitals, nurses within general

practices, and villages within geographical areas. Model (2.1) including both cluster

and random unit effects serves as a standard model to describe three-level CRTs.

However, deriving the closed-form expression for the variance of the GLS estimator

of the intervention effect and the corresponding power formula under model (2.1) is a

nontrivial task because of the additional complexity in the covariance structure due

to the random unit effect. The main contribution of this chapter – a closed-form

expression for power of testing the intervention effect based on its GLS estimator

under the standard three-level model (2.1) for arbitrary designs – is a significant leap

forward on power and sample size calculations for three-level CRTs.

As a key component in obtaining our power formula, the derived closed-form

expression for the variance of the GLS estimator θ̂ in (2.4) can lead to other analytic

work. One important and interesting topic is to compute the relative efficiency of

a design A to another design B, which is defined to be the ratio of the variance of

the intervention effect estimator under design B to that under design A. Hence, our

flexible variance formula will allow practitioners more flexibility in trial design and

make easier to compare efficiencies of candidate designs.
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Chapter 3: A Novel Set of Three-Level Stepped Wedge

Cluster Randomized Trials

In this chapter, we propose a novel set of stepped wedge cluster randomized trials

for three-level data such as patients (observations) within wards (units) within hos-

pitals (clusters). The proposed SW-CRTs differ in timing of allocating different units

from the same cluster to the intervention. Following our design concept, we provide

four paradigms of three-level SW-CRTs, discuss their practical usage, and compare

their efficiencies using the precision of the intervention effect estimator under the

standard three-level model (2.1).

3.1 Stepped Wedge Designs for Three-Level Data

In traditional three-level SW-CRTs (as proposed by Hemming et al. (2015b)), clus-

ters such as hospitals serve as the units of randomization. That is, all units (wards)

from the same cluster (hospital) are supposed to complete the transition from the

control to the intervention at the same time to avoid contamination between the

units. However, when contamination is not a large concern, we can consider alterna-

tive ways of allocating the units within the same cluster. In the example of wards

within hospitals, study planners could initially let only a few participating wards be

exposed to the intervention. As the study proceeds, more and more wards make the
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transition from the control to the intervention, and the time points when different

wards within the same hospital switch to the intervention arm may be different.

Following the above idea of stepped wedge designs, we provide four paradigms

of three-level SW-CRTs in Figure 3.1. Assume that we have 6 clusters (hospitals)

and 6 units (wards) within each cluster. We focus on cross-sectional studies where a

different set of patients are recruited in each unit at each time point.

• Design 1 (All units transfer at a single time point). Proposed by Hem-

ming et al. (2015b), this traditional stepped wedge design make all units from

the same cluster complete the transition from the control to the intervention

within a single time period. In Figure 3.1 (a), at each time point one of the 6

clusters is chosen to transfer to the intervention arm, leading to a study that

lasts for 7 time periods and includes 6 steps of transitions. This type of design

is most suitable when there is limitation on the number of practitioners and

thus the intervention cannot be provided to too many clusters simultaneously.

• Design 2 (Units transfer at two adjacent time points). In this design,

units within the same cluster transfer from the control to the intervention at two

separate and adjacent time points. In Figure 3.1 (b), 3 units (numbered 1–3)

from each of clusters 1 and 2 complete the transition to the intervention at time

point 2. Then the rest of the units (numbered 4–6) from the same two clusters

complete the transition at time point 3. Following this procedure, units from

clusters 3–6 have crossovers to the intervention arm at later time points so that

eventually all participating clusters are exposed to the intervention. Compared

to design 1, design 2 may require more practitioners, since the intervention is

delivered to more clusters simultaneously.
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• Design 3 (Units transfer at two nonadjacent time points). Same as in

design 2, each participating cluster completes the transition to the intervention

in two separate time points. The difference is that the two time point when

crossovers happen within the same cluster are not adjacent. In Figure 3.1 (c), 3

units (numbered 1–3) respectively selected from clusters 1 and 2 have crossovers

to the intervention at time point 2. The rest of the units (numbered 4–6) from

the two clusters are not exposed to the intervention until three periods after

(time point 5). Same with clusters 1 and 2, clusters 3–6 complete the one-way

crossover to the intervention in two nonadjacent time points. We note that

the first three steps of the design among the 6 clusters is in fact a smaller-scale

stepped wedge design. In this small-scale design, there are 6 clusters and 3 units

within each cluster. Interim analysis could potentially be carried out in the

middle of the study with sufficient number of independent clusters. Depending

on whether the intervention turns out to be beneficial or harmful, investigators

can decide to continue the study or terminate it earlier than planned.

• Design 4 (Units transfer at all of the time points). In this design, study

planners let all participating clusters have crossovers at all steps. Specifically, in

Figure 3.1 (d), one unit from each cluster is selected to take the initial crossover

to the intervention at time point 2. In time point 3, another unit from each of

the cluster is selected and completes the transition. In this fashion, a cluster

is not fully exposed to the intervention until the last time point. In this case,

a mini stepped wedge design is planned for each participating cluster. Given

adequate labor, a team can be divided into multiple groups, each of which work

within a cluster until all units within the cluster are exposed to the intervention.
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The advantage is that these small research groups do not need to travel among

clusters, especially when traveling is difficult or costly.

The above four designs are fully balanced in the sense that each cluster contains

the same number of units and the number of clusters making the crossover is the

same at all steps. In other scenarios, such balance may not be maintained. For

example, let us consider an unbalanced version of design 2, shown in Figure 3.2. At

the initial stage of the design, three clusters (numbered 1–3) are selected from cluster

1 and make the transition to the intervention at time point 2. The rest of the units

in cluster 1 (numbered 4–6), together with units 1–3 from cluster 2, are designed to

transfer at time point 3. At time point 4, units 4–6 from cluster 2 and units 1–3

from cluster 3 are scheduled to make the transition to the intervention. Following

this pattern, all participating clusters are exposed to the intervention at time point 8,

where units 4–6 from the last cluster, cluster 6, finish the transition. This unbalanced

version of design 2 is one period longer than the balanced version in Figure 3.1 due

to the initial stage where only one cluster participates in the transition process. This

unbalanced design provides more flexibility and ease to investigators, since it allows

fewer participating clusters to transfer to the intervention at the initial stage of a

study.
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(a) Design 1: All units in the same cluster transfer at a single step

(b) Design 2: Units in the same cluster transfer within two adjacent steps

(c) Design 3: Units in the same cluster transfer in two nonadjacent steps

(d) Design 4: Units in the same cluster transfer at all of the steps

Figure 3.1: Examples of complete SW-CRTs. In each cell, 0 means receiving the
control, and 1 means receiving the intervention. Clusters are numbered from 1 to 6.
Units within each cluster are also numbered 1–6. The (cluster, unit) pair indicates
which unit from which cluster. For example, (2, 1-3) means units 1–3 from the second
cluster, and (1-6, 1) means the first unit from each of the six clusters.

47



Figure 3.2: An unbalanced version of design 2. In each cell, 0 means receiving the
control, and 1 means receiving the intervention.

3.2 Efficiencies of Proposed Designs under the Standard Model

We compare the variances of the intervention effect estimator θ̂ for designs 1 to 4

in Figure 3.1 under the standard three-level model (2.1) to investigate the efficiencies

of these designs. Recall that model (2.1) is

Yijtk = δk + Zijtθ + ai + bij + εijtk,

where i = 1, · · · , I is the index for independent clusters, j = 1, · · · , J is the index

for units nested within the same cluster, t = 1, · · · , T is the index for time points,

and K = 1, · · · , K is the index for observations from the same unit within a cluster

at the same time. Zijt is the binary intervention indicator for the jth unit within

the ith cluster at time t, taking the value of 1 if the intervention is assigned, and 0

otherwise. δt and θ denote the fixed time effect at time t and the intervention effect,

respectively. The cluster random effects ai, i = 1, · · · , I are independently drawn

from N(0, σ2
a). Within the same cluster i, the random unit effects bij, j = 1, · · · , J

are independently drawn from N(0, σ2
b ). The random errors εijtk are independently

drawn from N(0, σ2
e).
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Based on model (2.1), recall that the two concepts related to the correlations

are defined. First, the intra-cluster correlation (ICC) is defined to be ρ :=
σ2
a+σ2

b

σ2
a+σ2

b+σ2
e

(Heo and Leon, 2008). It is simply the correlation between two observations from

the same unit within a cluster. Second, the ratio of the between-cluster to within-

cluster correlations is η := σ2
a

σ2
a+σ2

b
(Hemming et al., 2015b). It represents the relative

contribution of the clusters to the correlation between two observations within the

same unit in a cluster.

3.2.1 Study Setup

Assume that there are I = 18 participating clusters, with J = 6 units in each

cluster. For each of the four designs, the length of the study is T = 7 time periods.

We follow a fully balanced design. Hence, under design 1, there are 3 clusters included

in each transition step. Under designs 2 and 3, there are 6 clusters included in each

transition step. Under design 4, all 18 clusters are included in each transition step.

The number of observations taken from each unit within a cluster at each time point

is K = 20. The variance of Yijtk is assumed to be 5.

Using the formula of Var(θ̂) in Theorem 2, we compare the variances of the inter-

vention effect estimator θ̂ across different designs and study the pattern in Var(θ̂) as

ρ or η varies. When η increases from 0 to 1, ρ is fixed at 0.001, 0.01, 0.1, and 0.2,

respectively. On the other hand, when ρ increases from 0 to 0.6, η is fixed at 0, 0.3,

0.7, and 1, respectively.
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3.2.2 Different Types of Comparisons

Before introducing the results of the study, we would like to pause and introduce

three different possible comparisons between the intervention arm and the control

arm under model (2.1):

1. Within-unit Between-time comparisons. These are comparisons of observations

from the same unit within the same cluster between different time points. We

expect this type of comparisons to be most efficient when the correlation ρ

of observations within the same unit is large. This situation is analogous to

crossover trials, where each cluster serves as its own control.

2. Between-unit within-cluster comparisons. These are comparisons of observa-

tions from different units within the same cluster.We expect this type of com-

parisons to be most efficient when η is large for fixed ρ and σ2
y. In that case,

units from the same cluster are more similar and thus more able to serve as

controls for each other. This type of comparison may include both comparisons

at the same time point and comparisons at two different time points. Note that

the comparisons at the same time point only contribute to the estimation of θ

in designs 2, 3 and 4.

3. Between-cluster comparisons. These are comparisons of observations from dif-

ferent clusters receiving different treatments. We expect this type of compar-

isons to be most efficient when both ρ and η are small. In that case, obser-

vations from the same cluster are close to being independent, and this type of

comparison is close to the comparison made between two treatment arms in an
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Table 3.1: Change in efficiencies of different comparisons for different values of ρ and
η under model (2.1)

hhhhhhhhhhhhhhhhhhConditions
Comparisons Within-unit Between-unit Between-clusterBetween-time Within-cluster

η constant, ρ increases increase increase decrease
ρ constant, η increases same increase decrease

individually randomized trial. In addition, this type of comparison may include

both comparisons at the same time and those at two different time points.

Table 3.1 summarizes different contributions of the three types of comparisons to

the precision of the treatment effect estimator θ̂ under the standard three-level model

(2.1) when either ρ or η varies.

3.2.3 Results

When η is held fixed and ρ increases from 0 to a small threshold, one tends to lose

precision of θ̂ due to worsening effects of between-cluster comparisons (type 3) that

outweigh positive effects of within-cluster comparisons (types 1 and 2) (Figure 3.3).

When ρ passes through some threshold, the effects of the within-cluster comparisons

become stronger than the between-cluster comparisons. Thus, the precision of θ̂ is

gradually improved, and the variance of θ̂ (Var(θ̂)) decreases. Hence, in each panel of

Figure 3.3, the theoretical variance Var(θ̂) first increases as ρ increases within some

threshold, and then decreases after ρ passing the threshold.

It is also worth noticing that when ρ is fixed and constant, the difference in Var(θ̂)

among the four designs becomes larger and larger as η increases (Figure 3.3). This
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difference can be explained by the between-unit within-cluster within-time compar-

isons. Since designs 2, 3, and 4 contain this type of comparisons in estimating θ, they

accumulate precision faster than design 1 as η increases. Furthermore, design 4 gains

the highest precision due to having the most between-unit within-cluster comparisons

at the same time point. We also note that when η = 0, the four designs are equivalent,

since all participating units are now independent and serve as independent "clusters".

Thus, the four lines completely overlap with one another in Figure 3.3 (a).

As another way to consider the impact of η, we provide plots with ρ fixed and η in-

creasing, shown in Figure 3.4. In this scenario, the effect of within-unit between-time

comparisons (comparison 1) is constant, while the effects of the other two comparisons

depend on the magnitude of η. As η increases, the precision of θ̂ can either increase or

decrease. With increasing η, the precision of the between-unit within-cluster compar-

isons (type 2) improve precision and the precision of the between-cluster comparisons

(type 3) decrease. Thus, because of the difference in the number of between-unit

within-cluster comparisons across designs, the theoretical variance show quite differ-

ent patterns under designs 1–4 with increasing η.
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(a) η = 0 (b) η = 0.3

(c) η = 0.7 (d) η = 1

Figure 3.3: Var(θ̂) vs. ρ. In each of the four panels, η is fixed at 0, 0.4, 0.7, and 1,
respectively.
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(a) ρ = 0.001 (b) ρ = 0.01

(c) ρ = 0.1 (d) ρ = 0.2

Figure 3.4: Var(θ̂) vs. η. In each of the four panels, ρ is fixed at 0.001, 0.01, 0.1, and
0.2, respectively.
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There is an issue with residual degrees of freedom when the number of clusters I

is small and the correlation ρ between individuals from the same unit in a cluster is

big. While large values of ρ and η lower the precision of between-cluster comparisons

(type 3) and thus may require larger sample size, the one-way crossover within each

unit/cluster improves the precision via within-cluster comparisons (types 1 and 2).

Hence, the degrees of freedom should not be a large concern under the proposed three-

level SW-CRTs. We conducted a small simulation study to compute the denominator

degrees of freedom in the t test for H0 : θ = 0 for all designs. We set ρ = 0.99,

η = 0.3, I = 6, J = 6, T = 7, and K = 5. We also assumed θ = 0.4, σy = 5

and no time effects, so δ1 = · · · = δT = 50. We generated 100 datasets using the

standard three-level model (2.1) under each design. When fitting the data using the

same model, we employed Kenward-Roger degrees of freedom approximation. For

designs 1–4, we obtained the denominator degrees of freedom 1217, 1206, 1204 and

1204, respectively. Hence, in the cases of three-level SW-CRTs, denominator degrees

of freedom may not be a large concern even when correlations among observations

within the same cluster or unit are large.

3.3 Discussion

In this chapter, we proposed a set of novel SW-CRTs for three-level data such

as patients within wards within hospitals. The designs mainly differ in timing of

assigning different units within the same cluster to the intervention. We provided

schemes of three-level SW-CRTs to illustrate this idea and discussed the practical

implications of the proposed designs. By comparing the theoretical variances under

the four designs given various combinations of ρ and η, we conclude that design 1 is
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the least efficient, and design 4 is the most efficient. Thus, a stepped wedge design

that spreads units within the same cluster over steps would yield the highest precision

in the estimation of the intervention effect, assuming no contamination.

The four proposed designs may be employed under different scenarios. Design 1

has simplest form among the four designs. Thus, it can be more easily understood

and implemented. It requires fewer investigators but potentially higher traveling cost,

since a research team needs to travel from cluster to cluster to roll out the intervention.

Design 2 is useful when study planners prefer that the rest of the units within a cluster

need to crossover to the intervention soon after the first few units take the crossover.

In community-based CRTs, this design may be chosen for political reasons. It would

be easier to encourage communities to participate if the intervention is promised

to deliver sooner within one community. Design 2 requires an adequate number of

practitioners and traveling expenses, since there should be multiple research teams

at each transition step. In design 3, each cluster completes the crossover within two

non-adjacent steps. It yields a small-scale SW-CRT in the first half of the design.

This design would allow interim analysis. In addition, design 3 require a moderate

amount of labor and traveling expenses. Finally, design 4 requires the highest amount

of labor but the least amount of traveling. This is because the number of research

teams is required to be equal to the number of clusters, but practitioners do not need

to travel among clusters.
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Chapter 4: Model Misspecification under Three-Level

SW-CRTs

In Chapters 2 and 3, we modeled three-level CRTs using the standard three-level

model (2.1) where the random unit effect bij is constant across all time points, as

might be true if the unit effects are related to factors that do not change with time.

However, this may not always be true for real-world data collected from SW-CRTs

that typically last for long periods of time. In this chapter, we consider an underlying

three-level model to generate data with random unit effects varying across time points.

In the example of nurses within general practices provided in Section 2.3, the effect of

a nurse on an outcome variable at one time point may not be the same as the effect of

the same nurse at a different time point. For example, patient-nurse interaction may

change as time evolves, which in turn may affect patients responses over time. For

the jth nurse from the ith general practice, the nurse random effect at time t, bijt,

may not be equal to that at time t′, bijt′ , t 6= t′. The underlying model to generate

data incorporates correlated random unit effects bijt, t = 1, · · · , T .

This chapter is organized as follows. In Section 4.1, we introduce the underly-

ing model with covariance pattern of bijt specified as Toeplitz. In Section 4.2, we

consider the autoregressive covariance pattern as a special case of the Toeplitz co-

variance pattern. Given that the standard model (2.1) is a popular modeling choice,
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we evaluate the impact of misspecifying the random unit effects bijt, t = 1, · · · , T to

be constant across time. Also, to better understand this more complex underlying

model, we study the precision of the treatment effect estimator when the model is

correctly specified under each design. In Section 4.3, we consider general Toeplitz

covariance patterns. As with Section 4.2, this section studies the precision of the

treatment effect estimator when the data-generating model is correctly specified and

examines the consequence of misspecifying random unit effects to be constant across

time under designs 1–4. Section 4.4 includes discussion of this chapter.

4.1 The Model

Let us consider the following mixed effects model

Yijtk = δt + Zijtθ + ai + bijt + εijtk, (4.1)

where the notations follow from the standard three-level model (2.1). The index

i = 1, · · · , I is for independent clusters, index j = 1, · · · , J is for units nested within

the same cluster, index t = 1, · · · , T is for time points, and index k = 1, · · · , K is

for observations from the same unit within a cluster at the same time. Accordingly,

Yijtk denotes the kth observation from the jth unit nested in the ith cluster at time

t. Zijt is the binary intervention indicator for the jth unit within the ith cluster

at time t. It takes value of 1 if the intervention is received, and 0 if the control is

received. δt and θ denote the fixed time effect at time t and the intervention effect,

respectively. The random cluster effects ai, i = 1, · · · , I are independently drawn

from N(0, σ2
a), and the random errors εijtk are independently drawn from N(0, σ2

e).

The difference between model (4.1) and the standard model (2.1) is the random

unit effects. In the standard model, the random unit effects bij, j = 1, · · · , J are
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independently drawn from N(0, σ2
b ). Here in model (4.1), we define the random

vector bij := (bij1, · · · , bijT )T ∈ RT to be the random effects of unit j from cluster i.

They are independently and identically drawn from a NT (0, Vb) distribution, where

Vb is a symmetric positive definite matrix. Note that ai, bij, and εijtk are mutually

independent. As with previous sections, we focus on cross sectional studies where the

observations are taken on IJTK different participants.

We model the covariance of bij using the Toeplitz matrix which assumes constant

variance σ2
b across different times, and Corr(bijt, bijt′) = φb,|t−t′| for any t 6= t′, t, t′ =

1, · · · , T and φb,l ∈ [0, 1]. That is,

Vb = Vb(σ
2
b , φb,1, · · · , φb,T−1) = σ2

b


1 φb,1 φb,2 · · · φb,T−1

φb,1 1 φb,1 · · · φb,T−2

φb,2 φb,1 1 · · · φb,T−3
...

...
... . . . ...

φb,T−1 φb,T−2 φb,T−3 · · · 1

 . (4.2)

Since the correlation between any two adjacent terms is assumed to be φb,1, it

requires that the time points at which observations are collected be equally spaced

(Fitzmaurice et al., 2011), which is a reasonable assumption under the stepped wedge

design.

Under some special conditions of φb,1, · · · , φb,T−1, model (4.1) simplifies to some

other models. First, when φb,1 = · · · = φb,T−1 = 1, model (4.1) is essentially equivalent

to the standard three-level model (2.1). On the other hand, when φb,1 = · · · =

φb,T−1 = 0, observations from the same unit within a cluster at different time points

are correlated as closely as those from different units within the same cluster; there is

only increased similarity of observations from the same unit taken at the same time.
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Let us take a close look at the covariance matrix V of the vector of outcome y :=

(Y1111, · · · , Y111K , Y1121, · · · , Y11TK , Y1211, · · · , Y1JTK , Y2111, · · · , YIJTK)T ∈ RIJTK un-

der model (4.1). According to the distributions of the random effects ai, bijt and the

random error eijtk, we have the following:

• Variance of the outcome Var(Yijtk) = σ2
a + σ2

b + σ2
e .

• Covariance between outcomes within the same cluster, same unit and same time

Cov(Yijtk, Yijtk′) = σ2
a + σ2

b , k 6= k′.

• Covariance between outcomes from the same cluster, same unit, and different

times Cov(Yijtk, Yijt′k′) = σ2
a + σ2

bφb,|t−t′|, t 6= t′, k 6= k′.

• Covariance between outcomes from the same cluster and different units

Cov(Yijtk, Yij′tk′) = Cov(Yijtk, Yij′t′k′) = σ2
a, j 6= j′, t 6= t′, k 6= k′.

• Covariance of outcomes between different clusters

Cov(Yijtk, Yi′j′tk′) = Cov(Yijtk, Yi′j′t′k′) = 0, i 6= i′, j 6= j′, t 6= t′, k 6= k′.

Thus, the covariance matrix of the vector of outcome y is V = II ⊗W , where W ∈

RJTN×JTN denotes the covariance matrix of the outcome Yijtk for any fixed cluster

i. For easy explanation, Figure 4.1 provides a visualization of W . In the figure, we

assumed that J = 3 units are nested within each cluster, T = 4 time periods are

covered by the study, and K = 5 observations are collected from each unit during

each time period. The black diagonal entries denote the value of Var(Yijtk) that are

largest among all the entries, the darkest gray diagonal blocks of size 5 × 5 denote

entries of Cov(Yijtk, Yijtk′), k 6= k′, the lighter gray blocks of size 5×5 denote entries of

Cov(Yijtk, Yijt′k′), t 6= t′, k 6= k′, and the lightest gray entries in the off-diagonal blocks
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indicate Cov(Yijtk, Yij′tk′) and Cov(Yijtk, Yij′t′k′), j 6= j′, k 6= k′, which are smallest

among all the entries in W .

Based on model (4.1), we retain the two important concepts introduced under the

standard three-level model (2.1) with minimal modification. First, the ICC among

observations within the same unit of a cluster at the same time point is ρ =
σ2
a+σ2

b

σ2
a+σ2

b+σ2
e
.

Second, the ratio of the between-unit to within-unit within-time correlations is η =

σ2
a

σ2
a+σ2

b
.

Figure 4.1: Visualization of covariance matrix W

4.2 Correlated random unit effects with the Autoregressive
Covariance Pattern

As a special case of the Toeplitz covariance pattern, the autoregressive model

for the covariance matrix assumes constant variance σ2
b across different times points
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and Corr(bijt, bijt′) = φ
|t−t′|
b for t, t′ = 1, · · · , T, t 6= t′ and φb ∈ [0, 1]. Compared to

the general Toeplitz covariance pattern, the autoregressive covariance pattern is more

parsimonious and only contains 2 parameters regardless of the number of time points.

The explicit form of the autoregressive model for the covariance of bij, t = 1, · · · , T

is

Vb = Vb(σ
2
b , φb) = σ2

b


1 φb φ2

b · · · φT−1
b

φb 1 φb · · · φT−2
b

φ2
b φb 1 · · · φT−3

b
...

...
... . . . ...

φT−1
b φT−2

b φT−3
b · · · 1

 . (4.3)

Hence, for two observations from the same unit within a cluster and different times,

the covariance is Cov(Yijtk, Yijt′k′) = σ2
a + σ2

bφ
|t−t′|
b for any t 6= t′, t, t′ = 1, · · · , T .

4.2.1 Variance of the Intervention Effect Estimator under the
Correct Model

In this section, we study the patterns of the variance of the GLS estimator of the

intervention effect θ with different combinations of ρ, η and φb when model (4.1) is

correctly specified. The GLS estimator of θ is obtained by computing (XTV −1X)−1,

where X and V are the design matrix and the covariance matrix of the outcome under

model (4.1), respectively.

Study Setup

As before, we let the number of clusters I = 18, the number of units within each

cluster J = 6, the number of time points T = 7, and the cell size K = 20. The size of

the intervention effect is assumed to be θ = 0.3 so that the power of detecting such

effect size achieves 80% when ρ = 0 under design 1. To simplify interpretation of

results, we did not include any time effect in this study and let δ1 = . . . = δ7 = 50 in

model (4.1). In addition, we let the total variation of the outcome Yijtk be σy = 5.
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The GLS estimator θ̂ under the correct model (4.1) is computed numerically using R

software package (R Core Team, 2016).

The three quantities ρ, η and φb vary from 0 to 1 while the other two are held

constant. We considered three scenarios as follows.

• When ρ increases, η varies among 0.01, 0.3, 0.6, 0.9 for each fixed φb; φb varies

among 0.01, 0.2, 0.5, 0.8, 0.99 for each fixed η.

• When η increases, ρ varies among 0.01, 0.1, 0.2, 0.4 for each fixed φb; φb varies

among 0.01, 0.2, 0.5, 0.8, 0.99 for each fixed ρ.

• When φb increases, ρ varies among 0.01, 0.1, 0.2, 0.4 for each fixed η; η varies

among 0.01, 0.3, 0.6, 0.9 for each fixed ρ.

Different types of comparisons

As with the standard three-level model (2.1) in Chapter 3, the treatment effect is

composed of three possible comparisons under model (4.1).

1. Within-unit between-time comparisons. These are comparisons of observations

from the same unit within the same cluster between different times. We expect

this type of comparison to be most beneficial when both the correlation ρ of

observations within the same unit and the correlation φb between two adjacent

random unit effects are large. Furthermore, when ρ is fixed, φb serves as a tun-

ing parameter for how closely observations from the same unit between different

times are correlated. Large values of φb yield large within-unit between-time

correlations. In this case, each cluster serves as its own control, which is analo-

gous to crossover trials.
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2. Between-unit within-cluster comparisons. These are comparisons of observa-

tions from different units within the same cluster. We expect this type of com-

parisons to be most efficient when η is large for fixed ρ and σ2
y. In that case,

units from the same cluster are more similar and thus more able to serve as

controls for each other. This type of comparison may include both comparisons

at the same time point and comparisons at two different time points. Note that

the comparisons at the same time point only contribute to the estimation of θ

in designs 2, 3 and 4. In addition, the impact of φb on precision is minimal via

these between-unit within-cluster comparisons.

3. Between-cluster comparisons. These are comparisons of observations from dif-

ferent clusters receiving different treatments. We expect this type of compar-

isons to be most efficient when ρ, η and φb are all small. In that case, obser-

vations from the same cluster are close to being independent, and this type of

comparison is close to the comparison made between two treatment arms in an

individually randomized trial. In addition, this type of comparison may include

both comparisons at the same time and those at two different time points.

Table 4.1 summarizes different contributions of the three types of comparisons to

the precision of the treatment effect estimator θ̂ under model (4.1) when one of ρ, η

and φb varies and the other two are fixed.

Results

Our results contain three parts based on the scenarios considered. First, Figures

4.2 and 4.3 display the variance of the ML estimator θ̂ under model (4.1) for varying

ρ and fixed η, φb. Second, Figures 4.4 and 4.5 display the variance of θ̂ under model
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Table 4.1: Change in efficiencies of different comparisons for different values of ρ, η
and φb under model (4.1)

hhhhhhhhhhhhhhhhhhConditions
Comparisons Within-unit Between-unit Between-clusterBetween-time Within-cluster

η, φb constant, ρ increases increase increase decrease
ρ, φb constant, η increases same increase decrease
ρ, η constant, φb increases increase same decrease

(4.1) for varying η and fixed ρ, φb. Third, Figures 4.6 and 4.7 display the variance

of θ̂ under model (4.1) for varying φb and fixed ρ, η. For ease of illustration, we

hereby only show results under more extreme conditions. Results under less extreme

conditions are in Appendix B.

We begin with the relation between Var(θ̂) and ρ. When ρ increases for fixed η

and φb, one can either lose or gain precision of θ̂ depending on the magnitudes of η

and φb (Figures 4.2 and 4.3). When φb is fixed at 0.99, as mentioned before, model

(4.1) is nearly equivalent to the standard three-level model (2.1), since the random

unit effects bijt, t = 1, · · · , T are highly correlated. We can follow similar reasoning

for what we observed in Figure 3.3 in the previous chapter. As ρ increases from 0 to

some small threshold, the variance of θ̂ increases due to worsening effects of between-

cluster comparisons (type 3). Then, as ρ passes through the threshold, one tends to

gain precision due to stronger effects of within-cluster comparisons (types 1 and 2),

and thus the variance of θ̂ decreases. On the other hand, when φb is extremely small

(0.01), the effect of within-unit between-time comparisons (type 1) depends primarily

on the magnitude of η instead of ρ, and the effects of between-cluster comparisons
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(type 3) keeps lowering the precision as ρ increases. Hence, in all the four panels in

Figure 4.2, the variances are monotonically increasing as ρ increases.

Now let us investigate the relation between Var(θ̂) and η. As with the case when

ρ varies, one can either lose or gain precision of θ̂ given varying η, depending on

the magnitudes of φb and ρ. Figure 4.4 provides the scenario when φb is extremely

small (0.01), and ρ is fixed at 0.01, 0.1, 0.2, 0.4, respectively. When both φb and ρ are

small (panel (a)), observations from the same cluster are close to being independent

and η does not have much effect on precision. Hence, we observe almost flat curves.

As ρ is fixed at larger values (panels (b)–(d)), situations are different. Since the

tuning parameter φb for the within-cluster between-time correlation is small, the

within-unit between-time comparisons (type 1) would be most beneficial given large

values of η for a fixed ICC ρ. When η increases from 0 to some small threshold,

one tends to lose precision under designs 1 and 2 due to worsening effects of between-

cluster comparisons (type 3). As η passes through some threshold, the variance begins

to decrease and thus the precision increases due to stronger effect of within-cluster

comparisons (types 1 and 2) under designs 1 and 2. Since designs 3 and 4 have more

between-unit within-time comparisons (included in type 2 comparisons), they never

lose (and keeps accumulating) precision as η increases.

Providing another extreme scenario, Figure 4.5 shows results when φb is large

(0.99). In this case, model (4.1) is nearly equivalent to the standard three-level

model (2.1). Thus, similar reasoning as in Section 3.2 can be applied here. Given

large values of η, precision increases through between-unit within-cluster comparisons

(type 2). In addition, as η increases, designs 3 and 4 accumulate precision much faster
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than designs 1 and 2, since they contain more between-unit within-time comparisons

(included in type 2 comparisons).

The last set of scenarios that we consider is to vary φb while keeping ρ and η fixed.

When both ρ and η are small (Figure 4.6 (a)), observations within the same cluster

are close to independent. In that case, varying φb does not yield large differences in

estimation precision. As the ICC ρ is fixed at larger values, an increasing value of φb

together with the large ICC ρ would make the within-unit between-time comparisons

(type 1) more and more beneficial. Within a threshold of φb, the worsening effects

of between-cluster comparisons (type 3) are dominating as φb increases. Beyond the

threshold, the effect of within-unit between-time comparisons (type 1) gradually im-

proves and is instead dominating. Thus, we observe upside-down U-shaped patterns

in the variance of θ̂ in Figure 4.6 (b)–(d). Note that in this scenario, the effects of

between-unit within-cluster comparisons (type 2) are small due to the small value of

η in this case.

Lastly, we consider a large value of η while varying φb. When the ICC ρ is

extremely small, even a large value of φb may not make the within-unit between-

time comparisons (type 1) very beneficial. Thus, we observe nearly flat curves in

Figure 4.7 (a), where designs 3 and 4 are still more efficient due to more between-unit

within-time comparisons (included in type 2 comparisons) given the large magnitude

of η. In the other three panels in Figure 4.7, the worsening effects of between-cluster

comparisons (type 3) are dominating within a threshold of φb and lead to increase in

Var(θ̂), and the beneficial effects of within-cluster comparisons (types 1 and 2) are

dominating beyond the threshold and lead to decrease in Var(θ̂). With a large value
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of η, the precision increases very fast due to beneficial impact of the between-unit

within-cluster comparisons (type 2).
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(d) η = 0.9

Figure 4.2: Var(θ̂) vs. ρ (φb = 0.01) when model (4.1) is correctly specified
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(d) η = 0.9

Figure 4.3: Var(θ̂) vs. ρ (φb = 0.99) when model (4.1) is correctly specified
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(a) ρ = 0.01
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(b) ρ = 0.1
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(c) ρ = 0.2
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(d) ρ = 0.4

Figure 4.4: Var(θ̂) vs. η (φb = 0.01) when model (4.1) is correctly specified
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(b) ρ = 0.1
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(c) ρ = 0.2
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(d) ρ = 0.4

Figure 4.5: Var(θ̂) vs. η (φb = 0.99) when model (4.1) is correctly specified
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(b) ρ = 0.1
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(c) ρ = 0.2
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(d) ρ = 0.4

Figure 4.6: Var(θ̂) vs. φb (η = 0.01) when model (4.1) is correctly specified
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(c) ρ = 0.2
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(d) ρ = 0.4

Figure 4.7: Var(θ̂) vs. φb (η = 0.9) when model (4.1) is correctly specified
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4.2.2 Model Misspecification

In practice, the standard model (2.1) is frequently used to fit three-level data

due to its simplicity. This use naturally raises the question about its performance

in estimating the intervention effect θ when assumptions of this model are not met.

We answer this question by examining the bias and coverage probability of the ML

estimator of θ when fitting the standard three-level model (2.1) to data generated

from model (4.1) that incorporates correlated random unit effects bijt, t = 1, · · · , T

with autoregressive covariance pattern. Various scenarios are considered under each

design.

Study Setup

We kept the same setup for I, J, T,K, δt(t = 1, · · · , T ), θ and σ2
y as in Section 4.2.1

for all of the four designs. We set ρ = 0.05 and η = 0.4 to describe data collected

from SW-CRTs. We varied the value of φb among 0.4, 0.6, 0.85, 0.95, 0.99.

For each of the scenarios considered, we generated 10, 000 datasets from the under-

lying model (4.1) so that the Monte Carlo error allowed in estimating 95% confidence

interval coverage probabilities is
√

0.95(1− 0.95)/10000, approximately 0.0022. We

then fit the data using the standard three-level model (2.1). For each dataset, we

obtained the ML estimate as well as the 95% confidence interval for the treatment

effect θ, and the ML estimates of the variance components σ2
a, σ

2
b , σ

2
e . The coverage

probability was computed by the proportion of the 10, 000 confidence intervals that

include the true value of θ, 0.3. The model fitting of the three-level standard model

was performed using R software package (R Core Team, 2016) with the lme4 library

(Bates et al., 2015).
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Results

We show coverage probabilities for θ under all designs in Table 4.2. Empirical

biases in θ̂ and estimators of the variance components σ2
a, σ

2
b , σ

2
e are given in Figure 4.8.

Since the performance of the estimates of θ and the variance components are quite

similar across the four designs, we only display them for design 1.

For a fixed design, the coverage probability for θ cannot even reach 0.9 when φb is

as small as 0.4 and is close to the nominal coverage probability 0.95 as φb approaches

1 (Table 4.2). Given a small φb, the correlation between observations from the same

unit at different times σ2
a+σ2

bφ
|t−t′|
b

σ2
a+σ2

b+σ2
e
, t 6= t′ is not much stronger than the correlation

between observations from different units within the same cluster σ2
a

σ2
a+σ2

b+σ2
e
. However,

under the standard model (2.1), the former correlation becomes σ̂2
a+σ̂2

b

σ̂2
a+σ̂2

b+σ̂2
e
and the

latter correlation becomes σ̂2
a

σ̂2
a+σ̂2

b+σ̂2
e
. Wrongly fitting the standard model would yield

anticonservative results about θ. On the other hand, when φb is close to 1, the

consequence of model misspecification is less serious due to the two models being

almost equivalent. In addition, despite model misspecification, we note that the ML

estimator θ̂ of the treatment effect is unbiased at all values of φb under all designs

(Figure 4.8).

As for the estimates of the variance components σ2
a, σ

2
b and σ2

e under the incorrect

model (2.1), they cannot provide unbiased estimates for the variance components

under the correct model (4.1) (Figure 4.8). In fact, the interpretations of the variance

components under these two models are different. Thus, it makes more sense to

compare the estimated within-unit correlation under the incorrect model (2.1) to the

underlying average within-unit correlation across time under the true model (4.1) for
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a given φb. To compute the true average within-unit correlation under model (4.1),

we followed the three steps as below (Corey et al., 1998).

1. For each within-unit correlation Corr(Yijtk, Yij(t+l)k′) =
σ2
a+σ2

bφ
|t−t′|
b

σ2
a+σ2

b+σ2
e
, t = 1, · · · , T ; l =

0, · · · , T − 1, we computed its Fisher’s z-transformation (Fisher, 1958)

zl =
1

2
ln(

1 + Corr(Yijtk, Yij(t+l)k′)

1− Corr(Yijtk, Yij(t+l)k′)
). (4.4)

2. Compute the weighted average of these Fisher’s z’s transformed from the within-

unit correlations under model (4.1).

z̄ =

∑T−1
l=0 wlzl∑T−1
l=0 wl

,

where wl takes the value of (T − l)K2 when l = 1, · · · , T −1 and (TK2−TK)/2

when l = 0. The weight was chosen based on the number of repeated within-unit

correlations for a given time difference l in the within-unit correlation matrix.

3. Using (4.4), transform the average Fisher’s z back on the correlation scale to

obtain the average within-unit correlation

Corr(Yijtk, Yij(t+l)k′) =
e2z̄ − 1

e2z̄ + 1
.

To obtain the estimated within-unit correlation under the incorrect model (2.1), we

computed σ̂2
a+σ̂2

b

σ̂2
a+σ̂2

b+σ̂2
e
for each of the 10, 000 dataset, then computed their average.

For a fixed φb, the true and the estimated average within-unit correlations are close

(Table 4.3). Hence, if the standard three-level model (2.1) is used to fit data generated

from model (4.1) with varying random unit effects across time, we tend to obtain an

estimate of overall within-unit correlation across time.
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Table 4.2: Coverage probabilities for θ given different values of φb under designs 1–4
when data from model (4.1) is misspecified to be from the standard model (2.1)

φb
0.4 0.6 0.85 0.95 0.99

Design 1 0.8748 0.8898 0.9239 0.9406 0.9422
Design 2 0.8798 0.8938 0.9257 0.9371 0.9456
Design 3 0.882 0.9017 0.9209 0.9341 0.9435
Design 4 0.8868 0.8965 0.921 0.9418 0.9459

Figure 4.8: Boxplots of θ̂, σ̂a, σ̂b, and σ̂e from 10000 repetitions under design 1 when
data from model (4.1) is misspecified to be from the standard model (2.1). Red
dashed lines denote true values of θ, σa, σb and σe, respectively.
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Table 4.3: Average within-unit correlations under the true model (4.1) and the incor-
rectly fitted model (2.1) with the Autoregressive covariance pattern for random unit
effects across time

φb
True average Estimated

within-unit correlation within-unit correlation
0.4 0.0285 0.0271
0.6 0.0326 0.0313
0.85 0.0414 0.0399
0.95 0.0468 0.0453
0.99 0.0493 0.0477

4.3 Correlated random unit effects with the Toeplitz Covari-
ance Pattern

In this section, we generalize to the Toeplitz covariance pattern for pairs of random

unit effects (bijt, bijt′), t 6= t′ under model (4.1). The relations between the theoretical

variance of the intervention effect estimator and model parameters are examined in

Section 4.3.1 when model (4.1) is correctly specified. In Section 4.3.2, we discuss con-

sequences of fitting the simplified standard three-level model (2.1) to data generated

from the underlying model (4.1).

4.3.1 Variance of the Intervention Effect Estimator under the
Correct Model

Under the autoregressive covariance pattern (4.3) of (bijt, bijt′), t 6= t′, we showed

that the theoretical variance of the GLS estimator of θ is affected by different values

of ρ, η and φb when model (4.1) is correctly specified. Similarly, for model (4.1) with

the Toeplitz covariance pattern (4.2) of (bijt, bijt′), t 6= t′, we are interested in how

ρ, η and different speeds and ranges of decay in Corr(bijt, bijt′) affect the theoretical

78



variance of θ̂ when the model is correctly specified. The above question of interest

will be discussed under designs 1–4.

Study Setup

In order to generate Toeplitz correlation matrices, we considered a typical type

of hub correlations where the correlations of the 1st observation and all the other

observations are known, and the correlation between the 1st observation and the jth

observation decays as j increases (Hardin et al., 2013). Suppose that the first row of

a T × T correlation matrix P consists of the following values

P11 = 1, P1j = ρmax − (ρmax − ρmin)(
j − 2

T − 2
)γ, (4.5)

where j = 2, · · · , T and P1j is the (1, j)th entry of matrix P . Note that with this

specification, P1j decreases from ρmax to ρmin as j increases from 2 to T . Furthermore,

the parameter γ is a tuning parameter for the speed of decay in the correlations. In

the special case of γ = 1, the correlations decay in a linear pattern. Based on the

hub correlations, Toeplitz correlation matrices can be formed.

We considered two possible ranges of decay in Corr(bijt, bijt′) as |t− t′| increases.

First, we set ρmax to be 0.85 and ρmin to be 0.2. Although unlikely in reality, this

large range can provide insights about the performance of Var(θ̂) when model (4.1)

is correctly specified. Second, we considered a more realistic scenario and set ρmax

to be 0.95 and ρmin to be 0.7. Given a fixed range of decay, the speed of decay can

be different. In light of this, we chose γ to be 2, 1, 0.7, which yields quadratic, linear

and 0.7-degree decay, respectively. Figure 4.9 displays different decay speeds when

decay ranges are large and small, respectively. Note that the 0.7-degree decay speed
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is similar to the decay speed in the autoregressive covariance pattern where the speed

is fast initially and slows down gradually.

We kept the same setup for I, J, T,K, δt(t = 1, · · · , T ), θ and σ2
y as in Section 4.2.1

for all of the four designs. For fixed range and speed of decay in Corr(bijt, bijt′) as

|t− t′| increases, the ICC ρ varies among 0.01, 0.1, 0.2 when we studied the relations

between Var(θ̂) and η, and η varies among 0.1, 0.5, 0.9 when we studied the relations

between Var(θ̂) and ρ. Lastly, the GLS estimator of θ was obtained by computing

(XTV −1X)−1, where X and V are the design matrix and the covariance matrix of

the outcome under model (4.1), respectively.

(a) Large decay range (b) Small decay range

Figure 4.9: Different speeds of decay in Corr(bijt, bijt′) as time difference |t − t′|
increases.
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Results

We consider the case of a large decay range, increasing ρ and fixed η (Figure 4.10)

to explain how different speeds of decay in Corr(bijt, bijt′), t 6= t′, affect the perfor-

mance of Var(θ̂). When η is fixed at 0.1 (left column in Figure 4.10), the patterns

in the theoretical variance are substantially different under designs 1–4 depending on

the speed of decay in Corr(bijt, bijt′), t 6= t′. For the quadratic decay (γ = 2), the

theoretical variance first increases and then decreases under all designs with the gap

between designs 1, 2 and designs 3, 4 widening as ρ increases. For the linear decay

(γ = 1), the theoretical variance monotonically increases under all designs and there

are minimal differences among the designs. Lastly, for the 0.7-degree decay (γ = 0.7),

the theoretical variance first increases when ρ increases from 0 to 0.8 and then has a

slight decrease as ρ approaches 1. Same with the case of linear decay, the differences

among the four designs are minimal.

Revisiting the three types of comparisons discussed in Section 4.2, we have two

competing sets of comparisons – within-cluster comparisons (types 1 and 2) and

between-cluster comparisons (type 3) under model (4.1). When ρ increases and η

is fixed, the effects of within-cluster comparisons are improving and the effects of

between-cluster comparisons are worsening. For the quadratic decay (γ = 2), the

worsening effects of between-cluster comparisons are dominating at small values of ρ.

After ρ passes through some threshold (around 0.2), the improving effects of within-

cluster comparisons are dominating and thus increase the precision. Meanwhile, the

effect of between-unit within-time comparisons (included in type 2 comparisons) is

most beneficial to designs 3 and 4, which leads to different theoretical variances

among the four designs. Following a similar argument, we can explain the patterns
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of the theoretical variance for the case of 0.7-degree decay. However, in this case the

threshold of ρ is much larger and close to 0.8. Also, the effect of between-unit within-

time comparisons does not seem to play an important role in improving precision,

since all designs yield minimal difference in theoretical variance of θ̂. Lastly, under

the linear decay (γ = 1) the worsening effects of between-cluster comparisons are

dominating at all values of ρ, which leads to monotonically increasing variance under

all designs. Although less sharp, the contrast in theoretical variance between different

decay speeds when η is fixed at a larger value can still be easily detected (right two

column in Figure 4.10).

When the decay range is small and η is fixed at 0.1, different patterns in the

theoretical variance are again observed for the three decay speeds (left column in

Figure 4.11). In this scenario, the maximum correlation between (bijt, bijt′), t 6= t′ is

0.95 and the minimum correlation is 0.7. These high correlations contribute to both

improving effects of within-cluster comparisons (types 1 and 2) and worsening effects

of between-cluster comparisons (type 3). Depending on the magnitude of ρ, either

one of the two competing sets of comparisons would dominate the other. Under each

decay speed and each design, the theoretical variance of θ̂ increases at small values of

ρ and decreases when ρ exceeds some threshold. When γ is fixed at 2, 1 and 0.7, the

threshold of ρ is around 0.2, 0.6 and 0.5, respectively, under all designs. As observed,

when the range of decay in the correlation between Corr(bijt, bijt′), t 6= t′ is small, the

patterns in Var(θ̂) are not as dramatically different as when the range is large across

the three decay speeds.

When ρ is fixed and η is increasing, fanning patterns among the four designs are

observed regardless of the range or speed of decay in Corr(bijt, bijt′), t 6= t′ (Figures
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4.12 and 4.13). The gap between design 1, 2 and designs 3, 4 increases with η. Given

constant ρ, between-unit within-cluster comparisons (type 2) have improving effects

and between-cluster comparisons (type 3) have worsening effects on the precision of

θ̂ when η increases. For example, given the small decay range and small ρ (0.01),

between-cluster comparisons and within-cluster comparisons dominate at all values

of η under designs 1, 2 and 3, 4, respectively. This dominance holds for all considered

decay speeds. The decay speeds, on the other hand, mainly affect the overall magni-

tude of the variance of θ̂ under each design. Compared to the case of increasing ρ for

fixed η (Figures 4.10 and 4.11), different ranges and speeds of decay in the correlation

of Corr(bijt, bijt′), t 6= t′ do not yield sharp contrast when increasing η for fixed ρ.
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Figure 4.10: Var(θ̂) vs. ρ given the large decay range when model (4.1) is correctly
specified.
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Figure 4.11: Var(θ̂) vs. ρ given the small decay range when model (4.1) is correctly
specified.
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Figure 4.12: Var(θ̂) vs. η given the large decay range when model (4.1) is correctly
specified.
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Figure 4.13: Var(θ̂) vs. η given the small decay range when model (4.1) is correctly
specified.
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4.3.2 Model Misspecification

As in Section 4.2.2, we study the bias and coverage probability of the ML estimator

of θ when the standard three-level model (2.1) is fit to data generated from model (4.1)

incorporating correlated random unit effects bijt, t = 1, · · · , T . The effect of range

and speed of decay in Corr(bijt, bijt′), t 6= t′ on model misspecification is considered.

We also discuss the performance of the estimators of the variance components σ2
a, σ

2
b

and σ2
e .

Study Setup

We followed from the setup for the ranges and speeds of decay in Corr(bijt, bijt′), t 6=

t′ in our previous subsection, and kept the same setup for I, J, T,K, δt(t = 1, · · · , T ), θ

and σ2
y as in Section 4.2.1 for all four designs. In addition, the ICC ρ was fixed at

0.05, and the ratio of between-unit to within-unit correlations η at 0.4.

For each of the scenarios considered, we generated 10, 000 datasets from the under-

lying model (4.1) so that the Monte Carlo error allowed in estimating 95% confidence

interval coverage probabilities is
√

0.95(1− 0.95)/10000, approximately 0.0022. We

then fit each dataset using the standard three-level model (2.1). For each dataset, we

obtained the ML estimate of the treatment effect θ, the ML estimate of the variance

components σ2
a, σ

2
b , σ

2
e , and a 95% confidence interval for θ. The coverage probability

was computed by the proportion of the confidence intervals that include the true value

of θ, 0.3. The model fitting of the three-level standard model was performed using R

software package (R Core Team, 2016) with the lme4 library (Bates et al., 2015).
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Results

We show coverage probabilities for θ under all designs in Table 4.4. Empirical

biases in θ̂ and estimators of the variance components σ2
a, σ

2
b , σ

2
e are given in Fig-

ure 4.14. Since the performance of the estimates of θ and the variance components

are quite similar across the four designs, we only display them for design 1.

Under all designs, empirical coverage probabilities of the 95% confidence inter-

val for θ are lower than the nominal coverage probability (Table 4.4). The highest

coverage probabilities occur in the case of small decay range and quadratic decay

speed (γ = 2). In addition, for the same design and same decay range, the quadratic

decay speed leads to the highest coverage probability among the three decay speeds.

The table also shows that for the same design and same decay speed, the small de-

cay range yields higher coverage probability than the large decay range. Hence, the

coverage probability is close to the pursued level 0.95 if the correlations between

(bijt, bijt′), t 6= t′ are on average close to the assumed correlation 1 under the standard

three-level model.

When data are generated from model (4.1) with the Toeplitz covariance pattern in

Corr(bijt, bijt′), t 6= t′, fitting the standard model (2.1) does not bias the ML estimator

of the intervention effect θ regardless of the speed or range of decay in the Toeplitz

covariance matrix (Figure 4.14).

Figure 4.14 also shows that fitting the incorrect model (2.1) cannot provide unbi-

ased estimates of the variance components σ2
a, σ

2
b and σ2

e under the correct model (4.1),

as variance components in these two models have different interpretations. Hence, we

compared the estimated within-unit correlation under the incorrect model and the

underlying average within-unit correlation across time for a given speed and decay
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of Corr(bijt, bijt′), t 6= t′. We followed the same methods as in Section 4.2.2 to com-

pute the true and the estimated average within-unit correlations. For a fixed decay

range and speed, the true and the estimated average within-unit correlations are close

(Table 4.5). Hence, when we fit the incorrect model (2.1) assuming constant within-

unit correlation to data generated from model (4.1) with varying random unit effects

across time, we may actually obtain an estimate of the overall within-unit correlation

across time.

Table 4.4: Coverage probabilities under designs 1–4 and two possible types of decay
of correlations

Large decay range Small decay range
γ = 2 γ = 1 γ = 0.7 γ = 2 γ = 1 γ = 0.7

Design 1 0.9308 0.9195 0.9156 0.9383 0.9402 0.9386
Design 2 0.9365 0.92 0.9174 0.9457 0.9403 0.9392
Design 3 0.9317 0.9218 0.9111 0.9418 0.9391 0.9372
Design 4 0.9318 0.9184 0.9098 0.9438 0.9383 0.9377

Table 4.5: Average within-unit correlations under the true model (4.1) and the incor-
rectly fitted model (2.1) with the Toeplitz covariance pattern for random unit effects
across time

Decay range Decay speed True average Estimated
within-unit correlation within-unit correlation

Large
Quadratic 0.0427 0.0413
Linear 0.0405 0.0391

0.7-degree 0.0393 0.0378

Small
Quadratic 0.0474 0.0459
Linear 0.0465 0.0451

0.7-degree 0.0461 0.0445
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Figure 4.14: Boxplots of θ̂, σ̂a, σ̂b, and σ̂e from 10000 repetitions under design 1
when data from model (4.1) is misspecified to be from the standard model (2.1). Red
dashed lines denote true values of θ, σa, σb and σe, respectively.

4.4 Discussion

In this chapter, we extended the three-level standard model (2.1) to a model with

changing unit effects across time points to generate data from three-level SW-CRTs .

Unlike the standard model where the random unit effect bij is identical across all time

points, the proposed model incorporates varying random unit effects bijt, t = 1, · · · , T

for T time points. While it provides practical usefulness, it is unclear how the model

parameters impact the precision of the ML estimator of the intervention effect θ. We

considered the autoregressive and the general Toeplitz covariance patterns as typical
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examples to model the correlation between the pairs (bijt, bijt′), t 6= t′, t = 1, · · ·T .

By referring to the three types of comparisons, we thoroughly studied the relations

between the variance of θ̂ and the parameters ρ, η, φb (under the AR covariance

pattern), and φb,t, t = 1, · · · , T − 1, (under the Toeplitz covariance pattern).

Our results for model misspecification cast some doubt on the popular practice

of using the standard three-level model for three-level SW-CRTs without considering

possibly different random unit effects over time. Both Section 4.2 and Section 4.3

show that when the standard model (2.1) is fit to data generated from the underlying

model (4.1), the ML estimator of the intervention effect θ is still unbiased. However,

such model misspecification would lower the empirical coverage probabilities for the

intervention effect. We also note that when incorrectly fitting the standard model

assuming constant within-unit correlation across time to data generated from the

underlying model (4.1) assuming varying within-unit correlation across time, we are

actually estimating the average within-unit correlation across time. In practice, if

investigators believe that unit effects are likely to change with time, then models like

(4.1) including varying random unit effects may be preferred over the standard model

(2.1) with constant random unit effect.
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Chapter 5: Contamination under Three-level SW-CRTs

When randomization is conducted at the individual level for nested data, a key

issue that may arise is control group contamination as information may leak from

the intervention group to the control group (Donner and Klar, 1994). Analogously,

our proposed three-level SW-CRTs randomizing units within clusters (designs 2–4)

may yield the same contamination problem for participants assigned to the control

units. Using the example of patients within wards (units) within hospitals (clusters),

if patients from intervention wards share information about the intervention with

patients from control wards, control wards may be under the risk of contamination.

Contamination is commonly described in terms of two aspects, rate and intensity

(Keogh-Brown et al., 2007). Contamination rate is defined to be the proportion of

subjects in the control arm being exposed to the intervention. Contamination inten-

sity is the proportion of the intervention effect on participants who are contaminated.

Typically, if the underlying effect of the intervention on subjects in the intervention

arm is θ, then the effect of the intervention on subjects from the control arm is c · θ

where c ∈ [0, 1] indicates the intensity of contamination.

Throughout this chapter, we assume that no contamination can happen under

design 1. Following the scheme of design 1, the units of randomization are clusters.

Within each cluster, all participating units follow the same assignment and receive
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either the control or the intervention at the same time. Hence, units are assumed to

have minimal risk of contamination, and clusters are assumed to share little infor-

mation about the intervention with one another. For example, hospitals may not be

able to share information due to long geographical distance.

In this chapter, we consider two scenarios where contamination could occur in SW-

CRTs. In Section 5.1, we introduce how contamination can occur under each of designs

2–4. Consequences of contamination are then discussed for each design. In Section 5.2,

we consider a crossed allocation of nurses to wards within a hospital. Under each

design, we study the impact of contamination of control wards due to shared nurses

with intervention wards, and the impact of ignoring the nurse effect in modeling data

from trials with randomization being conducted at ward level. Section 5.3 includes a

discussion of this chapter.

5.1 Contamination and Model Misspecification for Assuming
Ward Effects When None Are Present

We consider a scenario where contamination happens between units assigned to

two different treatments within the same cluster due to highly shared treatment re-

sources. For example, patients from different wards may share many of the same

doctors or nurses. This shared medical resource may lead to correlated patients from

different wards and minimal difference among patients from different wards. In some

cases, it may even lead to contamination when the same doctor or nurse simultane-

ously gives new care to intervention patients and standard care to control patients.

In this case, contamination may happen to control patients if their doctor or nurse

changes behavior based on the intervention. In addition, minimal variation among
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different wards may lead to model misspecification by wrongly assuming a ward ran-

dom effect.

In this section, we consider the above scenario and investigate the consequence of

contamination induced by allocation of wards within the same hospital to different

treatments. Severity of contamination of control wards is discussed under different

stepped wedge designs. We use numerical examples to study the impact of ignoring

contamination on inference about the intervention effect. We also show results of

fitting models that incorrectly include a ward effect while the underlying model to

generate the data from these trials does not contain the ward random effect.

5.1.1 The Model

When the unit effect does not exist in data collected from three-level CRTs, the

standard three-level model reduces to a two level model where the random unit effect

is eliminated. Consider the following two-level model

Yijtk = δt + θQijtk + ai + εijtk, (5.1)

where i = 1, · · · , I is the index for independent clusters, j = 1, · · · , J is the index

for units nested within the same cluster, t = 1, · · · , T is the index for time points,

and k = 1, · · · , K is the index for observations from the same unit within a cluster

at the same time. Accordingly, Yijtk denotes the kth observation from the jth unit

nested in the ith cluster at time t. The random cluster effects ai, i = 1, · · · , I are

independently drawn from N(0, σ2
a). The random errors εijtk are independently drawn

from N(0, σ2
e). Furthermore, the random effects ai and the error εijtk are mutually

independent. The fixed effect of time t is denoted by δt. The intervention effect is

denoted by θ.
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The variable Qijtk is equal to 1 if patient k from ward j within hospital i is

assigned to the intervention at time t, 0 if the patient is assigned to the control and

not contaminated at time t, and a value between 0 and 1 if the patient is assigned

to the control but subject to contamination at time t. A value of Qijtk between 0

and 1 represents the proportion of intervention received by the contaminated control

participant. A large value of Qijtk indicates high contamination intensity.

5.1.2 Problem Setup and Contamination under Each Design

Under designs 2–4, contamination happens at different times and lasts for different

lengths of time. Under design 2, one step after the first half of a cluster switches to the

intervention, the second half switches to the intervention. In this case, contamination

may be mild. Figure 5.1 provides visualization of contamination of control units in

each cluster. In design 2, there are three different moments of possible contamination

depending on when each cluster start and finish the crossover to the intervention.

In clusters 1 and 2, units 4–6 may have contamination at time 2. In clusters 3 and

4, units 4–6 may have contamination at time 4. In clusters 5 and 6, units 4–6 may

have contamination at time 6. Similarly, under design 3, units 4–6 in clusters 1 and

2 may be contaminated during time 2 and time 4, units 4–6 in clusters 3 and 4

may be contaminated during time 3 and 5, and units 4–6 in clusters 5 and 6 may

be contaminated during time 4 and 6 (Figure 5.2). Lastly, under design 4 where a

small-scale stepped wedge study is conducted within each cluster, units 2–6 in each

cluster can potentially be exposed to the intervention during time 2, 2–3, 2–4, 2–5

and 2–6, respectively (Figure 5.3).
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As before, we considered 18 independent clusters, 6 units within each cluster, and

20 subjects recruited in each unit at each time. The duration of each trial was 7

time periods, where subject data are collected at each time point. The total variation

of the outcome was σy = 5. Under the two-level model (5.1), we set ρ = 0.1. The

intervention effect θ was 0.4 so that the power of detecting θ = 0.4 achieved 80% under

model (5.1) with c = 0 for all control subjects. For ease of analysis, we assumed no

time effects and thus δ1 = · · · = δT = 50.

We considered three possible contamination rates and five possible levels of con-

tamination intensity. When a fixed proportion of control patients within a ward is

contaminated, the intensity c varies among 0.2, 0.4, 0.6, 0.8 and 1. When contamina-

tion intensity c is fixed, the rate varies among 0.3, 0.6 and 1. A rate of 1 indicates

all control patients from a ward being contaminated. In addition, we also considered

the scenario of no contamination by setting either rate or intensity to 0.

For each of the scenarios considered, we generated 10, 000 datasets from the un-

derlying model (5.1). In this case, the Monte Carlo error allowed in estimating 95%

confidence interval coverage probabilities is
√

0.95(1− 0.95)/10000, approximately

0.0022.

Our analysis includes four parts. First, we fit the true data-generating model (5.1)

as a reference. Second, we fit a model that correctly incorporates contamination rate

and intensity of control subjects, but wrongly assumes the existence of random unit

effect. We used model

Yijtk = δt + θQijtk + ai + bij + εijtk,

where bij is random unit effect and other notations are the same as in the true model

(5.1). Third, we fit a model that correctly specifies the random effects, but fails
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to acknowledge contamination happened to control subjects. In other words, the

standard two-level model (1.7) was used to fit the data. Lastly, we fit a model both

misspecifying the random unit effect and disregarding contamination. In this case,

the standard three-level model (2.1) was used to fit the data.

(a) Design 2: Units transfer within two adjacent steps

(b) Contamination in clusters 1–2

(c) Contamination in clusters 3–4

(d) Contamination in clusters 5–6

Figure 5.1: Contamination under design 2. Units marked with dashed lines are under
the risk of contamination.
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(a) Design 3: Units transfer in two nonadjacent steps

(b) Contamination in clusters 1–2

(c) Contamination in clusters 3–4

(d) Contamination in clusters 5–6

Figure 5.2: Contamination under design 3. Units marked with dashed lines are under
the risk of contamination.
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(a) Design 4: Units transfer at all of the steps

(b) Contamination in each cluster

Figure 5.3: Contamination under design 4. Units marked with dashed lines are under
the risk of contamination.

5.1.3 Results

Figures 5.4–5.7 provides boxplots of the ML estimator of the intervention effect

θ when the above four models are fit to data generated from the underlying model

(5.1). Note that since contamination is not assumed to occur under design 1, results

for design 1 are shown only for fitting the correct model and the model with mis-

specification of the random unit effect. In addition, when contamination rate is 1,

there are not enough comparisons between treatment groups under design 4 when

the model correctly accounts for contamination. Hence, results cannot be shown for

design 4 when contamination rate is 1 (Figures 5.4 and 5.5). Tables 5.1–5.3 display

coverage probabilities of 95% confidence intervals for θ given various values of con-

tamination rate and intensity when fitting the above four models under designs 2, 3,

and 4, respectively.
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Under design 1 with no contamination, we have that the empirical coverage prob-

abilities when fitting the correct model and the model with misspecification of the

random unit effect are the same (0.9490).

When a model correctly accounts for contamination but wrongly assumes data to

be three level, there is minimal influence to bias and precision of the ML estimator of

the intervention effect θ. Given that contamination is correctly accounted for, the ML

estimator of θ is unbiased regardless of contamination rate or intensity (Figure 5.5).

Also, the precision of θ̂ is quite close to the precision when fitting the underlying

model (Figure 5.4). As for the coverage probability of 95% confidence intervals for

θ, the second column in Tables 5.1–5.3 shows that nominal coverage is achieved for

each considered scenario and each design.

However, when contamination is not accounted for in model fitting, fitting the

standard two-level model (1.7) leads to biased estimation of θ. In extreme cases when

contamination rate or intensity is close to 1, severe bias can occur (Figure 5.6). As

a result, the coverage probability of 95% confidence intervals for θ can be quite low

(Tables 5.1–5.3). In worst case scenarios, the coverage probability is 0.1213 under

design 3 and 0.0309 under design 4 when both contamination rate and intensity are

1. Severity of contamination is much higher in design 4 than in designs 2 and 3.

Thus, even when contamination rate and intensity are low, the 95% nominal coverage

probability under design 4 may not be achieved. On the other hand, in mild conditions

of contamination (low rate and low intensity), the nominal coverage probability can

be achieved under designs 2 and 3. Even when contamination rate is 1, the coverage

probability can still be achieved under design 2 at low intensity. In this case, even

when all control patients from the same ward are subject to contamination, mild
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contamination intensity is allowed and inference for the intervention effect may still

be valid.

Similar results are obtained when the standard three-level model is used to fit data

generated from the underlying model, wrongly adding the random unit effect and

not accounting for contamination. Hence, the impact of omitting contamination on

inference about the intervention effect is often large, while the impact of misspecifying

two-level data to be three-level is almost negligible in the setup of our problem.

Lastly, we note that given contamination rate 1 and high intensities, design 3 no

longer has higher efficiency than design 2 when contamination is correctly accounted

for (Figures 5.4 and 5.5) due to not enough comparisons between the two treatment

groups under design 3. Situations are worsened under design 4, since no estimation

of θ was produced in this case.
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Figure 5.4: Boxplots of θ̂ when fitting the correct model. In the first two panels,
results are shown for designs 2, 3 and 4 at all contamination intensities, and for
design 1 only when intensity is 0. In the last panel, results are shown for designs
2 and 3 at all contamination intensities and for design 1 only when intensity is 0.
No results are shown for design 4 in this case. This figure appears in color in the
electronic version of this dissertation.
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Figure 5.5: Boxplots of θ̂ when fitting model misspecifying the random unit effects.
In the first two panels, results are shown for designs 2, 3 and 4 at all contamination
intensities, and for design 1 only when intensity is 0. In the last panel, results are
shown for designs 2 and 3 at all contamination intensities and for design 1 only when
intensity is 0. No results are shown for design 4 in this case. This figure appears in
color in the electronic version of this dissertation.
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Figure 5.6: Boxplots of θ̂ when fitting model not accounting for contamination. Re-
sults are shown for designs 2, 3 and 4 in all panels. No results are shown for design
1. This figure appears in color in the electronic version of this dissertation.
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Figure 5.7: Boxplots of θ̂ when fitting the standard three-level model. Results are
shown for designs 2, 3 and 4 in all panels. No results are shown for design 1. This
figure appears in color in the electronic version of this dissertation.
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Table 5.1: Coverage probabilities under design 2

Rate Intensity Correct model Random effects Contamination Standard
misspecified not considered three-level model

0 0 0.9495 0.9497 – –

0.3

0.2 0.9522 0.9522 0.9507 0.9510
0.4 0.9497 0.9501 0.9454 0.9456
0.6 0.9483 0.9487 0.9416 0.9417
0.8 0.9515 0.9515 0.9405 0.9405
1 0.9507 0.9507 0.9308 0.9315

0.6

0.2 0.9513 0.9517 0.9503 0.9506
0.4 0.9496 0.9495 0.9368 0.9375
0.6 0.9483 0.9486 0.9236 0.9246
0.8 0.9509 0.9511 0.9064 0.9074
1 0.9470 0.9470 0.8786 0.8789

1

0.2 0.9511 0.9510 0.9450 0.9455
0.4 0.9498 0.9498 0.9163 0.9171
0.6 0.9476 0.9477 0.8780 0.8787
0.8 0.9528 0.9526 0.8268 0.8283
1 0.9488 0.9488 0.7546 0.7567

Table 5.2: Coverage probabilities under design 3

Rate Intensity Correct model Random effects Contamination Standard
misspecified not considered three-level model

0 0 0.9505 0.9516 – –

0.3

0.2 0.9515 0.9529 0.9459 0.9482
0.4 0.9515 0.9528 0.9344 0.9363
0.6 0.9521 0.9537 0.9150 0.9185
0.8 0.9494 0.9505 0.8798 0.8825
1 0.9480 0.9487 0.8448 0.8491

0.6

0.2 0.9512 0.9529 0.9328 0.9349
0.4 0.9526 0.9536 0.8850 0.8880
0.6 0.9512 0.9520 0.7956 0.8005
0.8 0.9504 0.9515 0.6771 0.6851
1 0.9500 0.9500 0.5315 0.5414

1

0.2 0.9510 0.9528 0.9028 0.9059
0.4 0.9507 0.9516 0.7614 0.7682
0.6 0.9510 0.9515 0.5336 0.5428
0.8 0.9498 0.9505 0.2904 0.3007
1 0.9508 0.9508 0.1213 0.1277
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Table 5.3: Coverage probabilities under design 4

Rate Intensity Correct model Random effects Contamination Standard
misspecified not considered three-level model

0 0 0.9513 0.9531 – –

0.3

0.2 0.9494 0.9514 0.9416 0.9444
0.4 0.9512 0.9528 0.9240 0.9272
0.6 0.9518 0.9532 0.8927 0.8965
0.8 0.9480 0.9495 0.8477 0.8528
1 0.9500 0.9503 0.7880 0.7926

0.6

0.2 0.9496 0.9519 0.9226 0.9250
0.4 0.9507 0.9521 0.8450 0.8495
0.6 0.9508 0.9522 0.7123 0.7197
0.8 0.9506 0.9517 0.5433 0.5521
1 0.9526 0.9527 0.3603 0.3674

1

0.2 – – 0.8765 0.8794
0.4 – – 0.6595 0.6675
0.6 – – 0.3580 0.3663
0.8 – – 0.1304 0.1359
1 – – 0.0309 0.0326

5.2 Contamination and Model Misspecification by Omitting
the Nurse Effect

We consider a scenario where a three-level SW-CRT is conducted to provide im-

proved care to patients. Wards within a hospital are units of randomization. Each

nurse may be responsible for caring for over half of patients in a ward and a few pa-

tients in other wards. Patients from the same ward may be under the care of different

nurses. When a ward of patients is selected to have the crossover to the intervention,

all nurses giving care to patients in the ward need to be trained to provide the new

care. In this case, the crossed allocation of nurses and wards may inadvertently expose

control patients to the intervention. A nurse who cares for patients in intervention
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wards may provide care based on the intervention to patients in control wards. Fur-

thermore, investigators may fit the incorrect mixed model that includes the effects of

hospitals and wards, omits the nurse effect, and thus omits the corresponding nurse

random effect when fitting the model.

In this section, we consider the above scenario and study the influence of con-

tamination induced by crossed allocation of nurses and wards within hospitals while

wards are units of randomization. Severity of contamination of control units is dis-

cussed under different stepped wedge designs. We use numerical examples to study

the impact of omitting contamination on inference about the intervention effect. We

also show results of fitting models ignoring the nurse effect while data are clustered

at both ward level and nurse level.

5.2.1 The Model

We consider the following model that describes data collected from three-level

CRTs with crossed ward and nurse random effects.

Yijstk = δt + θQijstk + ai + bj(i) + cs(i) + εijstk, (5.2)

where i = 1, · · · , I is the index for independent hospitals, j = 1, · · · , J is the index

for wards nested within the same hospital, s = 1, · · · , S is the index for nurses within

each hospital, t = 1, · · · , T is the index for time points, and k = 1, · · · , Kjs(i) is the

index for patients observations collected from the jth ward and the sth nurse within

the ith hospital at each time point. Accordingly, Yijstk denotes the kth observation

within the jth ward and sth nurse nested in the ith cluster at time t. δt and θ

denote the fixed time effect at time t and the intervention effect, respectively. As
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with previous chapters, we focus on cross-sectional studies where the observations

Yijtk are collected from IJTK different participants.

The variableQijstk is equal to 1 if patient k from ward j and nurse s within hospital

i is assigned to the intervention at time t, 0 if the patient is assigned to the control

and not contaminated at time t, and a value between 0 and 1 if the patient is assigned

to the control but subject to contamination at time t. A value of Qijstk between 0

and 1 represents the proportion of intervention received by the contaminated control

participant. A large value of Qijstk indicates high contamination intensity.

The hospital random effects ai, i = 1, · · · , I are independently drawn fromN(0, σ2
a).

Within the same hospital i, the ward random effects bj(i), j = 1, · · · , J are indepen-

dently drawn from N(0, σ2
b ), and the nurse random effect cs(i), s = 1, · · · , S are in-

dependently drawn from N(0, σ2
c ). The random errors εijtk are independently drawn

from N(0, σ2
e). Lastly, the random effects ai, bj(i), cs(i) and the error εijtk are mutually

independent. Hence, we have

• For each observation, the variance is Var(Yijstk) = σ2
a + σ2

b + σ2
c + σ2

e .

• For two observations from the same ward j and same nurse s within hospital i,

Cov(Yijstk, Yijstk′) = Cov(Yijstk, Yijst′k′) = σ2
a + σ2

b + σ2
c , k 6= k′, t 6= t′.

• For two observations from the same ward j but two different nurses s and s′

within hospital i, Cov(Yijstk, Yijs′tk′) = Cov(Yijstk, Yijs′t′k′) = σ2
a +σ2

b , s 6= s′, k 6=

k′, t 6= t′.

• For two observations from different wards j and j′ but same nurse s within

hospital i, Cov(Yijstk, Yij′stk′) = Cov(Yijstk, Yij′st′k′) = σ2
a + σ2

c , j 6= j′, k 6= k′, t 6=

t′.
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• For two observations not sharing the same ward or nurse within hospital i,

Cov(Yijstk, Yij′s′tk′) = Cov(Yijstk, Yij′s′t′k′) = σ2
a, j 6= j′, s 6= s′, k 6= k′, t 6= t′.

We define three important concepts based on model (5.2). First, the intra-cluster

correlation (ICC) among patient observations within the same ward and same nurse

within a hospital ρ :=
σ2
a+σ2

b+σ2
c

σ2
a+σ2

b+σ2
c+σ2

e
. Second, the ratio of the correlation between

observations not sharing wards or nurses within the same hospital to the ICC, ηa :=

σ2
a

σ2
a+σ2

b+σ2
c
; it essentially describes the relative contribution of hospitals to the ICC.

Third, the relative contribution of wards within a hospital to the ICC, ηb :=
σ2
b

σ2
a+σ2

b+σ2
c
.

We also have 1 − ηa − ηb = σ2
c

σ2
a+σ2

b+σ2
c
describing the contribution of nurses within a

hospital to the ICC.

We define the variance of Yijtsk to be σ2
y := V ar(Yijstk) = σ2

a + σ2
b + σ2

c + σ2
e . In

this case, the variance components σ2
a, σ

2
b , σ

2
c and σ2

e can be uniquely determined by

the total variation σ2
y in the data and the three important quantities ρ, ηa and ηb.

5.2.2 Problem Setup and Contamination under Each Design

We considered 18 participating hospitals, 6 wards selected within each hospital,

and 20 patients recruited in each ward at each phase. Each study was assumed to last

for 7 time periods, and patients data were generated during each time period. For

each hospital, 6 nurses have varying responsibilities for different wards. We designed

a crossed allocation of nurses to wards such that each nurse is responsible for half of

patients within a specific ward and fewer patients from other wards. Figure 5.8 shows

a possible allocation following our idea. Each of the 6 nurses cares for 10 patients

from a certain ward and 2 patients from each of the other 5 wards. With such allo-

cation of nurses to wards, contamination may happen to patients in the control ward
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cared for by nurses who also provide intervention care to patients in the intervention

ward. This situation yields essentially the same contamination mechanism as in the

previous section (Figures 5.1–5.3). Previously, we assumed that all contaminated

control patients within the same ward receive the same contamination intensity. In

this section, contaminated control patients within the same ward may or may not

receive the same contamination intensity depending on which nurse is providing care.

Under designs 2 and 3, wards 4–6 from each hospital have the risk of contamination

when wards 1–3 have the crossover to the intervention (Figures 5.1 and 5.2). The

intervention is delivered by nurses who have received the new training program. In our

problem setup, all six nurses from each hospital receive the new training and deliver

intervention care to patients in wards 1–3. Among them, nurses 1–3 have the most

intensive interaction with patients within the first three wards, since each of them

care for 10 patients in each of the wards. On the other hand, nurses 4–6 have less

interaction with patients from wards 1–3. Hence, we assumed that control patients

cared for by nurses more intensively interacting with intervention patients are under

more severe contamination, and those cared by nurses less intensively interacting with

intervention patients are under less severe contamination. Figure 5.9 (a) provides

graphic illustration of contamination of control patients from wards 4–6. Patients in

wards 4–6 cared for by nurses 1–3 have severe contamination, while patients in wards

4–6 cared for by nurses 4–6 have mild contamination.

Under design 4, contamination intensity of patients in control wards may be dif-

ferent across different times. For example, during time period 2 when ward 1 crosses

over to the intervention, patients cared for by nurse 1 in the other wards may have

intense contamination, while patients cared for by nurses 2–6 in these wards have
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less intense contamination (Figure 5.9 (b)). During time period 3, both ward 1 and

ward 2 are in the intervention arm. In this case, patients in wards 3–6 cared for by

nurses 1 and 2 have more intense contamination, while patients cared for by nurses 1

and 2 in these wards have less intense contamination (Figure 5.9 (c)). Following this

idea, contamination intensity of patients in control wards at time 4, 5, and 6 can also

be obtained. Throughout this section, we assumed the contamination rate to be 1,

meaning that all control patients are contaminated if they share the same nurse as

patients in other wards receiving the intervention.

Figure 5.8: Scheme of nurse responsibilities across wards within each hospital

We let the total variation of the outcome to be σy = 5. With the underlying

model (5.2), we set ρ to be 0.05, ηa to be 0.4, and ηb to be 0.2. The underlying

intervention effect θ was determined as 0.4 in order to achieve 80% power of detecting

the intervention effect when fitting the correct model (5.2) with the above setup under

design 1. For ease of analysis, we assumed no time effects and thus δ1 = · · · = δT = 50.

To generate data with contamination, we assumed the high intensity to be c = 0.5

and the low intensity to be c = 0.1. This gives us the ratio of 5 to 1 based on each

nurse’s high and low contributions to wards. Hence, contaminated control patients

may experience an intervention effect as high as 50% and as low as 10%.
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(a) Contamination under designs 2 and 3 at time points when contamination is possible.

(b) Contamination under design 4 at time point 2.

(c) Contamination under design 4 at time point 3.

Figure 5.9: Contamination under designs 2–4. Cells filled with dark gray means
corresponding patients have more intense contamination. Cells filled with light gray
means corresponding patients have less intense contamination.

Under each of designs 1–4, we generated 10, 000 datasets from the underlying

model (5.2). In this case, the Monte Carlo error allowed in estimating 95% confidence

interval coverage probabilities is
√

0.95(1− 0.95)/10000, approximately 0.0022.

As with the previous section, our analysis includes four steps. First, we fit the

data-generating model (5.2) as a reference. Second, we fit a model that correctly

incorporates contamination rate and intensity of control subjects, but wrongly ignores
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the nurse random effect cs(i), using

Yijstk = δt + θQijstk + ai + bj(i) + εijstk,

where all notations follow from the true model. Third, we fit a model that correctly

specifies the random effects, but fails to acknowledge contamination happened to

control subjects, using

Yijstk = δt + Zijtθ + ai + bj(i) + cs(i) + εijstk,

where the treatment indicator Zijt follows from the original study design. Lastly,

we fit a model both ignoring the nurse random effect and failing to acknowledge

contamination, using

Yijstk = δt + Zijtθ + ai + bj(i) + εijstk,

where Zijt follows from the original study design and all notations follow from the

underlying model (5.2).

5.2.3 Results

When fitting the true data-generating model, unbiased estimation of θ and the

95% coverage probability is achieved under all designs as expected (Tables 5.4 and

5.5). On the other hand, when contamination is not accounted for, bias and low

coverage probability of the 95% confidence intervals for θ occur under designs 2–4.

Although the estimation of θ is biased under design 2, the coverage probability is only

slightly under 0.95. On the contrary, designs 3 and 4 yield more biased estimation

and lower coverage probability for θ even though they are more efficient in this case.

When contamination intensities are correctly specified, the order of efficiency

among the four designs is design 1 > design 2 > design 3 > design 4 (Figure 5.4
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and Figure 5.5). As control patients are contaminated, their responses may become

similar to responses of intervention patients. Accordingly, under designs 2–4, com-

parisons of responses across uncontaminated control patients, contaminated control

patients, and intervention patients may no longer be sharp. In worse case scenarios

when both contamination rate and intensity are high, little information can be used

for estimating the intervention effect under these three designs. On the contrary, de-

sign 1 provides sharp contrast in patients responses between the two trial arms, since

all comparisons are “0–1” (between uncontaminated control patients and intervention

patients).

Similar results are obtained from fitting the model that correctly accounts for

contamination but omits the nurse random effect. The estimation of θ is unbiased

under each of the four designs, with lowest precision under design 4 and highest

precision under design 1. The impact of random effect misspecification is minimal,

especially for designs 1–3. Under design 4, the coverage probability is slightly below

0.95 due to high standard error of the ML estimator θ̂ (0.162).

Comparing the last two columns in Tables 5.4 and 5.5, we again find that ignoring

the nurse random effect has minimal impact on inference of θ. Only slight increase in

the standard error of θ̂ is noticed under design 4, which in turn affects the coverage

probability for θ.
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Table 5.4: Empirical means and standard errors of θ̂

Correct model Random effects Contamination Standard
misspecified not considered three-level model

Design 1 0.4012(0.137) 0.4012(0.137 ) – –
Design 2 0.4047(0.145) 0.4046(0.146) 0.3691(0.137) 0.3697(0.138)
Design 3 0.4010(0.147) 0.4008(0.154) 0.3254(0.128) 0.3299(0.130)
Design 4 0.3974(0.152) 0.3975(0.162) 0.3045(0.125) 0.3097(0.127)

Table 5.5: Coverage probabilities for θ

Correct model Random effects Contamination Standard
misspecified not considered three-level model

Design 1 0.9531 0.9544 – –
Design 2 0.9478 0.9463 0.9424 0.9441
Design 3 0.9490 0.9392 0.9034 0.9144
Design 4 0.9470 0.9316 0.8769 0.8906

5.3 Discussion

In this chapter, we have investigated two interesting scenarios that could po-

tentially lead to contamination under designs 2–4. We have varied the severity of

contamination in terms of rate and intensity. Section 5.1 comprehensively investi-

gated consequences of not correctly accounting for contamination for various levels of

contamination severity. In conditions of low contamination rate and intensity, designs

2 and 3 can still retain the 95% nominal coverage probability even when the model

being fitted does not account for contamination. Our finding is consistent with the

conclusion in Schochet (2008) stating designs that randomize within clusters are ap-

propriate when spillover effects are expected to be small. On the other hand, design 4

can not maintain the nominal coverage probability when contamination was present.
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Section 5.2 considered crossed allocation of nurses to wards leading to potential con-

tamination of patients in control wards. All control patients cared for by nurses who

also give care to intervention patients were assumed to be contaminated (contami-

nation rate equal to 1). For fixed nurse contributions to each ward, contamination

rates, and intensities, only design 2 almost retains the 95% coverage probability when

contamination is not accounted for. Under-coverage happens in designs 3 and 4 in

this case.

Our results also show that in the presence of contamination, study designs ran-

domizing wards within hospitals are still promising. If investigators believe that

contamination between wards within the same hospital is mild, study designs 2 and

3 can be carried out and provide intervention effect estimates with high efficiency

and 95% coverage probability of confidence intervals. When contamination is mild to

moderate, design 2 may still be chosen for retaining the 95% coverage probability.

We have also studied the consequence of misspecifying the random effects in mod-

els (5.1) and (5.2). Results show that neither wrongly adding the random unit effect

in model (5.1) nor omitting the nurse random effect in model (5.2) has noticeable

impact on inference of θ. Our results agree with the conclusions in McCulloch and

Neuhaus (2011).

Our analyses can be improved in several aspects. First, we may also examine

the power of detecting the intervention effect when contamination causes dilution of

the effect size (Torgerson, 2001; Rhoads, 2011). As discussed before, contamination

severity and design efficiency varies under different designs. Design 1 has lowest risk

of contamination and lowest efficiency, and design 4 has highest risk of contamination

and highest efficiency. When there is risk of contamination, power of detecting the
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intervention effect depends on both severity of contamination and design efficiency.

Second, it would be interesting to consider other possible allocation of nurses’ con-

tributions to wards. In Section 5.2, we assumed that each of the six nurses within

a hospital contributes 50% to one ward and 10% to each of the other five wards.

Alternatively, a nurse may devote 80% of the total contribution to a single ward, and

20% to another ward. In this case, the risk of contamination may be lowered when

wards are units of randomization. Last, it may also be interesting to study the conse-

quences of accounting for contamination but in a wrong way. For example, robustness

of inference about the intervention effect can be studied when contamination rate is

inaccurately estimated.
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Chapter 6: Summary and Future Work

6.1 Summary

In this dissertation, we proposed novel stepped wedge cluster randomized trials for

three-level data. The proposed designs differ in timing of allocating units within the

same cluster to different treatments. We evaluated the efficiency of each design under

a variety of underlying models generating three-level data. Impacts of misspecifying

random unit effects and omitting contamination on inference about the intervention

effect were also evaluated via simulation studies.

We derived the closed-form expression for power of testing the intervention effect

under the standard three-level model (2.1) incorporating time effects. Our power

formula is flexible and can be applied to arbitrary types of three-level CRTs. A key

component in obtaining the power formula is to derive the closed-form expression for

the variance of the GLS estimator θ̂ for the intervention effect. This expression also

enables researchers to analyze the precision in estimating the intervention effect for

both routine and non-routine three-level CRTs without the need for simulation.

Our proposed three-level SW-CRTs differ in timing of allocating units within the

same cluster to different treatments. In design 1, all units from the same cluster
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transfer at a single time point. In designs 2 and 3, units from the same cluster trans-

fer at two adjacent time points and two nonadjacent time points, respectively. In

design 4, units from the same cluster transfer at all time points when the one-way

crossover happens. Using the derived variance formula under the standard three-level

model in Chapter 2, we computed and compared the efficiency of the four designs

given varying ICC ρ and the ratio of between-unit to within-unit correlations η. To

explain the patterns in variance of the treatment effect under different scenarios,

we identified three types of comparisons involved in estimating the treatment ef-

fect under the standard three-level model. Large correlations between observations

within the same unit/cluster improve the precision of intervention effect estimates via

within-unit/within-cluster comparisons (types 1 and 2), and decrease the precision

of intervention effect estimates via between-cluster comparisons (type 3). For fixed

values of ρ and η, the order in efficiency of the four designs is design 4 > design 3 >

design 2 > design 1, as design 4 has the most between-unit within-time comparisons

(included in type 2 comparisons) and design 1 has no such comparisons.

We considered alternative underlying models to generate data from three-level

SW-CRTs. One extended model includes varying random unit effects across time

points. Motivated by the example of nurses within hospitals, we believed that the

effect of a nurse on a patients outcome variable at one time point may not be the same

as the effect of the same nurse at a different time point. We chose Toeplitz covariance

pattern for the correlated random unit effects bijt, t = 1, · · · , T to generate data from

this model. The order in efficiency of the four designs remained the same as that

under the standard model. However, patterns in variance of the intervention effect

estimator for varying correlations can be quite different depending on how close the
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extended model is to the standard model. In addition, we studied the performance

of the standard model in this setting. Our numerical studies show that the empirical

coverage probability of 95% confidence intervals for θ retains the nominal coverage

probability when the wrongly specified model is close to the data-generating model.

This finding is true for all designs. On the other hand, when the two models are

not close, the nominal coverage probability cannot be retained under any design.

However, the estimation of θ remains unbiased in all scenarios considered in this

study.

Other ways of misspecifying random effects in three-level models were also con-

sidered. These studies include wrongly assuming a random unit effect when none are

present, and omitting a random unit effect when it exists. These misspecifications

had minimal impact on inference about the intervention effect.

Finally, we addressed the problem of contamination, which could occur in our pro-

posed stepped wedge designs because units from the same cluster crossover at different

times. We described severity of contamination using rate (proportion of participants

receiving the control that are exposed to the intervention) and intensity (proportion

of the intervention effect received by contaminated control participants). In general,

design 1 may not induce any contamination between units within the same cluster,

and designs 2, 3, and 4 may have minimal, moderate and severe contamination, re-

spectively. Our simulation studies showed that in the presence of mild to moderate

contamination, designs 2 and 3 can still be carried out to provide flexibility to study

planners while retaining the nominal coverage probability for the treatment effect.

On the other hand, design 4 is not an appropriate choice even when contamination is
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mild, as it has low empirical performance in maintaining nominal coverage probability

for the treatment effect.

6.2 Future Directions

We briefly introduce several interesting future directions beyond this dissertation.

First, we consider incomplete three-level SW-CRTs that are extensions of our pro-

posed designs. Second, we discuss several modeling alternatives that may also be

underlying models generating real-world data from SW-CRTs. Third, we speculate

on cohort designs that may also fit into the framework of SW-CRTs.

6.2.1 Incomplete Three-level SW-CRTs

We introduce two incomplete designs to illustrate how our work can be extended

to the incomplete SW-CRT. In a complete SW-CRT, the duration of the trial is the

same for each participating units and clusters – from the beginning of the trial to

the end of the trial. A potential pitfall is that such long duration of trials may place

heavy burden on investigators and care givers, which in turn may negatively influence

quality of data (Friedman et al., 2010). Alternatively, some authors (Hemming et al.,

2015b) have suggested incomplete SW-CRTs where for each cluster or unit, there is

at least one time period when data collection is not needed.

Recall that in design 2, units from the same cluster have the one-way crossover

to the intervention at two adjacent time points (Figure 3.1 (b)). For two units in

the same cluster with different schedules of treatment transition, there are still mul-

tiple overlapping time periods when they receive the same treatment. To ease data

collection, we may reduce the number of such overlapping time periods while not

123



reducing the number of within-cluster comparisons. Figure 6.1 shows a possible in-

complete stepped wedge design. For each participating unit, data collection lasts for

three time periods, including one period when the control is provided and two periods

when the intervention is provided. For two units in the same cluster following differ-

ent schedules (for example, unit 1 and unit 4 in cluster 1), there is one overlapping

period when different treatments are provided and one overlapping period when the

intervention is provided to both units.

Following the same idea, we may extend design 3 to incomplete stepped wedge

designs (Figures 6.2 and 6.3). In Figure 6.2, data collection lasts for four time peri-

ods in each participating unit. For two units in the same cluster following different

schedules (for example, unit 1 and unit 4 in cluster 1), there are three overlapping pe-

riods when different treatments are provided and no overlapping time periods when

the same treatment is provided to both units. This design is beneficial when η is

large so that the between-unit within-cluster comparison (type 2) is most efficient.

On the other hand, in cases when η is small, we may reduce the number of overlap-

ping periods between units in the same cluster receiving different treatments, as the

between-unit within-cluster comparison (type 2) may no longer be very efficient. In

doing so, we may be able to further reduce the duration of data collection in each

unit, placing less burden on care givers and investigators. Figure 6.3 gives an example

illustrating the above idea. In this design scheme, data collection only lasts for three

time periods in each participating unit. For two units in the same cluster following

different schedules (for example, unit 1 and unit 4 in cluster 1), there is only one

overlapping period when different treatments are provided.
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Figure 6.1: Incomplete designs extended from design 2. In each cell, 0 means receiving
the control, and 1 means receiving the intervention.

Figure 6.2: Incomplete designs extended from design 3 with each unit lasting for
4 periods. In each cell, 0 means receiving the control, and 1 means receiving the
intervention.

Figure 6.3: Incomplete designs extended from design 3 with each unit lasting for
3 periods. In each cell, 0 means receiving the control, and 1 means receiving the
intervention.
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6.2.2 Other directions

There are other data-generating models worth considering, such as treatment by

time interactions. In practice, it is very likely that treatment effect is different across

time points, especially for stepped wedge trials typically lasting for a long time.

Second, there may be heterogeneous treatment effect across clusters (Rhoads, 2011).

In this case, we may consider treatment by cluster interactions as random effects.

Third, other information such as patient-level covariates may also be used.

Finally, we have focused on cross-sectional studies where each patient is measured

once, as is typically true for SW-CRTs. However, cohort studies where each patient

is followed for multiple times can also fit in the framework of stepped wedge designs

(Bennett et al., 2013; Barker et al., 2016). In this case, data may even be four-level

due to repeated measurements on the same individual.
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Appendix A: Proofs of Theorem 1 and Theorem 2

A.1 Preliminaries

We first introduce the following lemmas that will be used in our proofs.

Lemma 1. (Theorem 8.5.11 in Harville, 2012) Let

A =

(
A11 A12

A21 A22

)
represent a partitioned n × n matrix whose blocks are A11 ∈ Rn1×n1 , A12 ∈ Rn1×n2 ,

A21 ∈ Rn2×n1 , and A22 ∈ Rn2×n2 . Suppose that A11 is nonsingular. Then, A is

invertible if and only if the Schur complement A22 − A21A
−1
11 A12 of A11 is invertible,

and

A−1 =

(
A−1

11 + A−1
11 A12(A22 − A21A

−1
11 A12)−1A21A

−1
11 −A−1

11 A12(A22 − A21A
−1
11 A12)−1

−(A22 − A21A
−1
11 A12)−1A21A

−1
11 (A22 − A21A

−1
11 A12)−1

)
(A.1)

Lemma 2. (3.2.4 in Petersen and Pedersen, 2012) Let A ∈ Rn×n, and b, c ∈ Rn.

Assume that A is invertible, and that 1n + cTA−1b 6= 0. Then, we have

(A+ bcT )−1 = A−1 − A−1bcTA−1

1 + cTA−1b
.

Lemma 3. Let a, b ∈ R. Assume that a 6= 0 and a + nb 6= 0. Then, the inverse of

aIn + bJn is
1

a
(In −

b

a+ nb
Jn).
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A.2 Proof of Theorem 1

Proof. Given the partitioned design matrix X = (X1, x2), we have

XTV −1X =

(
XT

1 V
−1X1 XT

1 V
−1x2

xT2 V
−1X1 xT2 V

−1x2

)
.

Note that xT2 V −1x2 is a scalar. Define A11 := XT
1 V

−1X1, A12 := XT
1 V

−1x2, A21 :=

xT2 V
−1X1, and A22 := xT2 V

−1x2. We directly apply Lemma 1 to compute the (2, 2)th

entry of matrix (XTV −1X)−1 in partitioned form, which yields the expression of

Var(β̂p) provided in Theorem 1.

A.3 Proof of Theorem 2

Proof. First, we derive the closed form of the covariance matrix V under model (2.2).

Since V = II ⊗W is block diagonal, it suffices to derive the inverse of W . Recall that

W := IJ ⊗ (σ2IT + σ2
bJT ) + σ2

aJJT

= IJ ⊗ (σ2IT + σ2
bJT ) + (σa1JT )(σa1JT )T .

(A.2)

Define A := IJ ⊗ (σ2IT + σ2
bJT ), b = c = σa1JT . We can compute the inverse of

W using Lemma 2:

W−1 = A−1 − σ2
aA
−11JT1

T
JTA

−1

1 + σ2
a1

T
JTA

−11JT
. (A.3)

By Lemma 3, we have

A−1 = IJ ⊗ (σ2IT + σ2
bJT )−1

= IJ ⊗
1

σ2
(IT −

σ2
b

σ2 + Tσ2
b

JT )

= IJ ⊗ p(IT − qJT ),

(A.4)

where p := 1
σ2 , q :=

σ2
b

σ2+Tσ2
b
, as defined in Theorem 2. Hence,

σ2
aA
−11JT1

T
JTA

−1

1 + σ2
a1

T
JTA

−11JT
=

σ2
a

(σ2 + Tσ2
b + JTσ2

a)(σ
2 + Tσ2

b )
JJT

= rJJT ,

(A.5)
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where r := σ2
a

(σ2+Tσ2
b+JTσ2

a)(σ2+Tσ2
b )
, as defined in Theorem 2.

Substituting (A.4) and (A.5) into (A.3) yields

W−1 = pIJT − pqIJ ⊗ JT − rJJT .

Thus, the inverse of V is

V −1 = II ⊗ (pIJT − pqIJ ⊗ JT − rJJT )

= pIIJT − pqIIJ ⊗ JT − rII ⊗ JJT .
(A.6)

Second, we derive the closed form of the inverse of XT
1 V

−1X1. Recall that X1 =

1IJ ⊗ IT and the form of V is in (A.6). We have

XT
1 V

−1X1 = IJ(pIT − (pq + rJ)JT ),

where p, q and r are defined as in Theorem 2. Applying Lemma 3 again, we have

(XT
1 V

−1X1)−1 =
1

IJp
(IT +

pq + rJ

p− T (pq + rJ)
JT ). (A.7)

Third, we derive the closed form expression for the variance of θ̂ under model

(2.2). By Theorem 1, we have

Var(θ̂) =
1

zTV −1z − zTV −1X1(XT
1 V

−1X1)−1XT
1 V

−1z
. (A.8)

Based on the derived expressions of V −1 in (A.6) and (XT
1 V

−1X1)−1 in (A.7), it is

easy to compute zTV −1z and zTV −1X1(XT
1 V

−1X1)−1XT
1 V

−1z. Thus, we have

zTV −1z = p

I∑
i=1

J∑
j=1

T∑
t=1

Z2
ijt − pq

I∑
i=1

J∑
j=1

(
T∑
t=1

Zijt)
2 − r

I∑
i=1

(
J∑
j=1

T∑
t=1

Zijt)
2. (A.9)

and

zTV −1X1(XT
1 V

−1X1)−1XT
1 V

−1z =
p

IJ

T∑
t=1

(
I∑
i=1

J∑
j=1

Zijt)
2 − pq + rJ

IJ
(
I∑
i=1

J∑
j=1

T∑
t=1

Zijt)
2

(A.10)

We then substitute (A.9) and (A.10) into (A.8). This completes the proof.
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Appendix B: Patterns in Theoretical Variance of Estimator of

Intervention Effect When Model (4.1) is Correctly Specified
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(d) η = 0.9

Figure B.1: Var(θ̂) vs. ρ (φb = 0.2) when model (4.1) is correctly specified.
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Figure B.2: Var(θ̂) vs. ρ (φb = 0.5) when model (4.1) is correctly specified.
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Figure B.3: Var(θ̂) vs. ρ (φb = 0.8) when model (4.1) is correctly specified.
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Figure B.4: Var(θ̂) vs. η (φb = 0.2) when model (4.1) is correctly specified.
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Figure B.5: Var(θ̂) vs. η (φb = 0.5) when model (4.1) is correctly specified.
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Figure B.6: Var(θ̂) vs. η (φb = 0.8) when model (4.1) is correctly specified.
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(d) ρ = 0.4

Figure B.7: Var(θ̂) vs. φb (η = 0.3) when model (4.1) is correctly specified.

137



0.0 0.2 0.4 0.6 0.8 1.0

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

rho=0.01, eta=0.6

φb

T
he

or
et

ic
al

 v
ar

ia
nc

e

design1
design2
design3
design4

(a) ρ = 0.01

0.0 0.2 0.4 0.6 0.8 1.0

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

rho=0.1, eta=0.6

φb

T
he

or
et

ic
al

 v
ar

ia
nc

e

(b) ρ = 0.1

0.0 0.2 0.4 0.6 0.8 1.0

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

rho=0.2, eta=0.6

φb

T
he

or
et

ic
al

 v
ar

ia
nc

e

(c) ρ = 0.2

0.0 0.2 0.4 0.6 0.8 1.0

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

rho=0.4, eta=0.6

φb

T
he

or
et

ic
al

 v
ar

ia
nc

e

(d) ρ = 0.4

Figure B.8: Var(θ̂) vs. φb (η = 0.6) when model (4.1) is correctly specified.
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