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Abstract

Bayesian nonparametric techniques provide a rich set of tools for modeling complex

probabilistic machine learning problems. However the richness comes at the cost of sig-

nificant complexity of learning and inference for large scale datasets, in addition to an

orthogonal set of challenges related to algorithm convergence and correctness. In this

dissertation we address these issues by developing a variety of novel methods using concepts

from established machine learning methodologies as well as fields like statistical physics

and differential geometry.

First, we develop fast inference algorithms for sequential models with Bayesian nonpara-

metric priors using small-variance asymptotics, an emerging technique for obtaining scalable

combinatorial algorithms from rich probabilistic models. We derive a “hard” inference

algorithm analogous to k-means for the standard hidden Markov model by making particular

variances in the model tend to zero, and extend the analysis to the Bayesian nonparametric

case, yielding a simple, scalable, and flexible algorithm for discrete-state sequence data with

a non-fixed number of states that is also very robust to suboptimal initializations.

We start the second section with a novel stick-breaking definition of a certain class of

Bayesian nonparametric priors called gamma processes (GP), using its characterization

as a completely random measure and attendant Poisson process machinery. We use it to

derive a variational inference algorithm for the infinite Gamma-Poisson model, a particular

Bayesian nonparametric latent structure formulation where the latent variables are drawn

from a GP prior with Poisson likelihoods. We present results on probabilistic matrix
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factorization (PMF) tasks on document corpora, and show that we compare favorably to

similar constructive methods from the literature.

In the third section, we use concepts from statistical physics to develop a robust Monte

Carlo sampler that efficiently traverses the parameter space. Built on the Hamiltonian Monte

Carlo framework, our sampler uses a modified Nosé-Poincaré Hamiltonian with a suitable

symplectic leapfrog integrator to ensure correct sampling from the canonical ensemble, with

structural cues from Riemannian preconditioning matrices. We follow it up with variant that

uses minibatched stochastic gradients, to handle real-life machine learning scenarios with

massive datasets, showing strong performance in the PMF scenario mentioned above.

We continue with an L-BFGS optimization algorithm on Riemannian manifolds that

uses stochastic variance reduction techniques for fast convergence with constant step sizes,

without resorting to standard linesearch methods, and provide a new convergence proof for

strongly convex functions without using curvature conditions on the manifold. Compared to

state-of-the-art Euclidean methods like VR-PCA and first-order Riemannian techniques, our

method performs strongly in computation of Karcher means for symmetric p.d. matrices

and leading eigenvalues of large data matrices.

We finish with a novel technique for learning the mass matrices in Monte Carlo samplers

obtained from discretized dynamics that preserve some energy function, by using existing

dynamics in the sampling step of a Monte Carlo EM framework, and learning the mass

matrices in the M step with a simple but effective online technique. Along with a novel

stochastic sampler based on Nosé-Poincaré dynamics, we use this framework with standard

Hamiltonian Monte Carlo as well as newer stochastic algorithms such as SGHMC and

SGNHT, achieving sampling accuracies comparable to existing adaptive samplers that use

Riemannian preconditioning techniques, while being significantly faster on a variety of

datasets.
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Chapter 1: Introduction

Modern machine learning leverages a variety of techniques from the statistical and

mathematical literature in the quest to extract meaningful patterns from large scale data

and to perform cogent inference based on them. One needs a rigorous set of tools to

mathematically model diverse types of data, as well as develop fast and efficient methods to

train and gather insights from these constructions. Probabilistic graphical models offer a

powerful way to model various types of data, by imposing complex, often high dimensional,

probability distributions on the data at hand. For small prototypical datasets this does not

pose too much of a challenge, but simple parametric models often fail to capture all the

nuances of very large data. A simple example with mixture models illustrates the point:

one can use a mixture of Gaussian distributions to model any set of clustered datapoints,

but correctly estimating the number of such clusters is a nontrivial problem and often

requires strong assumptions and/or domain knowledge. The lack of either of these can

lead to incorrectly specified models, rendering subsequent parameter estimates useless and

providing very few actionable insights into the data.

Nonparametric techniques drawn from the statistical literature offer a robust way to deal

with such issues, allowing one to create models with an unbounded number of parameters

that adapt to the data. Even then, one needs to address the question of uncertainty in the

model estimates, a task of arguably greater complexity in these situations as opposed to

simpler parametric cases. One extensively studied way to do this uses Bayesian techniques

1



to bake one’s background information and assumptions into “prior” probability distributions

in the model, and adaptively update these using the observed data in the learning phase.

This leads to a set of tools known as Bayesian nonparametrics, which have seen widespread

adoption in the machine learning community in recent times.

Once an appropriate model has been selected, the key challenge lies in devising efficient

methods to learn the various parameters associated with the model. This is a nontrivial

problem because: a) the number of such parameters can grow exponentially with the size of

the data, leading to significant challenges in applying promising prototypical techniques at

scale, and b) most real-life problems are best modeled by complex nonparametric models for

which closed-form learning and inference techniques are not known to exist. This therefore

requires one to develop approximate techniques for parameter estimation that should scale

well, while preserving as many of the theoretical guarantees of exact methods derived for

simpler models as possible, in order to acquire reasonably rigorous estimates of correctness.

1.1 Thesis Statement.

We posit that scalable learning and inference algorithms are necessary for expanding the

scope of Bayesian nonparametric probabilistic models to truly large-scale datasets. Doing

so requires developing scalable variants of analytic closed form learning methods that

preserve many of the theoretical niceties, from both algorithmic and underlying modeling

perspectives. To that end, we propose a set of methods using techniques such as stochastic

MCMC sampling, stochastic optimization in both Euclidean and Riemannian manifold

domains, variational inference and small-variance asymptotics, that can be applied to large

scale data modeled using rich Bayesian nonparametric paradigms, while scaling to large

datasets.
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1.2 Contributions and Organization of the Thesis.

In the rest of this thesis we discuss various novel techniques we have developed recently

for improving the robustness and scalability of the learning process for Bayesian nonpara-

metric models, and mention some interesting avenues of extending this work using novel

optimization techniques. We posit the small-variance asymptotic reduction of Bayesian non-

parametric hidden Markov models to significantly more scalable combinatorial optimization

problems, variational inference approaches derived from a novel constructive definition of

Gamma processes to the problem of nonparametric count-based topic modeling, and the

suitability of stochastic Hamiltonian Monte Carlo approaches with Riemannian precondi-

tioning to the problem of efficiently sampling from otherwise intractable high-dimensional

posterior distributions. We follow that up with fast quasi-Newton optimization techniques

on Riemannian manifolds, as well as another Monte Carlo sampler using a fast alternative

to learning the mass matrices using the Monte Carlo EM framework.

Small-Variance Asymptotics for Hidden Markov Models. Our first approach proposes a

new way of learning hidden Markov models with Bayesian nonparametric augmentations.

Parametric hidden Markov models are a venerable approach to modeling sequential data,

with wide applications in many fields of science. In the machine learning literature, attempts

to use Bayesian nonparametric ideas in conjunction with these have led to the development

of the infinite HMM, where one imposes a Dirichlet Process or hierarchical DP prior on

the transition matrix of the HMM, leading to a countable infinite state space, allowing the

model to dynamically learn the best number of hidden states and their transition dynamics

from the data. Inference for this problem however has proven to be challenging, with the

difficulties imposed by the sequential nature of the data combining with the nontrivialities

of learning DP-based mixture models to impose significant scalability issues on sampling-

based techniques. We attempt to mitigate this problem with the use of the recently proposed
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technique of small-variance asymptotics. This method is influence by the connection

between Gaussian mixture learning , in the parametric case, and K-means; in particular, if

one assumes a mixture of isotropic Gaussians and takes the limit of the update steps in the

EM algorithm with the common variance tending to zero, then the K-means algorithm is

obtained. Alternatively, the limit of the expected log-likelihood of the EM problem gives

rise to the objective function of the K-means algorithm. This idea has been applied to

remarkable effect in Bayesian nonparametric situations as well, where suitable formulation

of the probability distributions followed by the small-variance limit allows one to obtain hard-

assignment optimization problems from sampling-based algorithms or directly from the joint

log-likelihoods. We apply this technique to both parametric and Bayesian nonparametric

variants of hidden Markov models to arrive at, in the former case, the Viterbi re-estimation

problem, and a highly scalable approach to learning infinite HMM’s in the latter.

Variational Inference for a Novel Bayesian Nonparametric Construction. We propose

a new way of constructing certain Bayesian nonparametric priors, and derive a fast inference

algorithm for that class. The first such constructive definition of Bayesian nonparametric

priors started with Sethuraman’s formulation of the Dirichlet process as an infinite sum of

suitably drawn independent random variables. This construction has led to the creation of

multiple learning algorithms in machine learning, since DP’s are the Bayesian nonparametric

prior of choice in situations ranging from modeling the distribution of the mixture weights

in infinite Gaussian mixtures, forming the basis for hierarchical Dirichlet processes which

are extensively used in topic modeling in textual data, to the creation of dependent DP’s for

use with nonparametric sequence learning. This construction was recently used to derive

a definition of Beta processes, which form the basis for Indian Buffet Processes for use

with learning latent feature allocations, and subsequently to the development of variational

inference algorithms for IBP’s. We extend this line of work by deriving a new construction
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for Gamma processes, which are beginning to be used for count modeling situation, where

instead of learning binary feature assignment matrices, one attempts to model the counts

of features seen in observations, and builds models on top of that. Topic modeling using

Poisson matrix factorization is a straightforward application, where instead of using DP’s

and multinomial distributions to model the latent topic distributions and word assignments,

one attempts to factorize the observed counts of words in documents by fitting a Gamma

process prior on the latent topic distributions and independent Poissons on the likelihoods.

Till our contribution, only Monte Carlo-based algorithms had been applied to these problems,

with accompanying scalability issues. Our construction of the infinite Gamma process and a

variational inference algorithm provide an alternative way of learning these count matrices,

showing promising performance in topic modeling problems.

A New MCMC Sampling Algorithm with Riemannian Preconditioning. Our third tech-

nique proposes a new sampling method intended to exploit the geometry of the parameter

space for more efficient exploration, along with other tricks. The basic idea falls under the

umbrella of Monte Carlo sampling, a set of methods designed to streamline the process of

drawing samples from probability distributions. Such methods are almost indispensable in

Bayesian nonparametrics, since, as mentioned earlier, the process of obtaining uncertainty

estimates requires the use of complex probabilistic prior distributions, and the corresponding

data-driven closed-from posteriors do not usually admit tractable closed-form estimates.

Simple random walk-based methods derived as discretized versions of Wiener processes

were initially used for such problems, but their inefficiencies in traversing complicated

high-dimensional parameter spaces were soon exposed. This led to the development of

second-order techniques using ideas from statistical physics, called Hamiltonian Monte

Carlo. Till recently, such methods have been restricted to relatively small use-cases, pri-

marily due to the problem of correctly selecting the values of certain matrices essential
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to the estimation process, usually of size quadratic in the dimensionality, and the use of

Metropolis-Hastings-based rejection techniques for dropping unsuitable samples. The main

issue introduced by the latter is the use of the entire dataset to calculate the acceptance

probabilities, thereby limiting its use in large-data settings. Our work proposes a method that

addresses both of thee issues, by adaptively learning the all-important matrices mentioned

above using ideas from statistical physics and Riemannian geometry, in a stochastic setting

that only uses a small subset of the data at each step, and can be proved to converge correctly

even without performing the expensive acceptance ratio computations.

Stochastic Quasi-Newton Optimization on Riemannian Manifolds. Optimization algo-

rithms are a rich area of study in machine learning, and crop up in almost all learning

and inference problems. The variational inference techniques, for instance, are at their

heart optimization problems where one minimizes KL-divergences between probability

distributions. Application of small-variance asymptotics, as mentioned above, also gives

rise to combinatorial optimization problems. Therefore, solving such problems quickly is

a necessary step to attain desired scalability and efficiency targets. To this end, we aim

to investigate the use of recent approaches to solving constrained optimization problems

by casting them on suitable Riemann manifolds, and their applications in the algorithms

mentioned above. A simple example would be learning the leading eigenvectors in a PCA

setting, where one has unit-norm constraints on the solution vectors. This constraint restricts

the vectors to lie on a sphere, the surface of which is known to be a well-behaved Riemann

manifold. The problem can therefore be transformed into an unconstrained optimization on

the manifold, and indeed it has been shown that corresponding “Riemannian optimization”

algorithms rival and sometimes outperform state-of-the-art Euclidean optimizers for such

tasks. Another interesting example is the recent application of quasi-Newton methods

(L-BFGS) to the task of learning Gaussian mixtures, where a simple reparametrization leads
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to the casting of the nonconvex maximum likelihood problem into a convex optimization

problem on a product of Riemann manifolds, with the geodesics playing the role of distance

minimizing curves. Our contribution is along these lines; we propose a novel L-BFGS

algorithm on Riemannian manifolds that uses stochastic variance reduction techniques for

responsible convergence in a big-data setting, for both convex and nonconvex problems on

manifolds. We provide a novel proof of convergence for the convex case, without directly

porting the proofs of similar algorithms in the Euclidean domain. We also show strong

performance for the algorithm in synthetic experiments on computing the Karcher means of

positive definite matrices and learning the leading eigenvectors of large data matrices, two

problems that are quite common in machine learning applications, converging noticeably

faster than a state-of-the-art Euclidean algorithm as well as first-order Riemannian methods

with stochastic variance reduction augmentations.

Using Monte Carlo EM for Adaptive Sampling. Our final contribution attacks the prob-

lem of learning the “mass” matrices in certain Monte Carlo sampling algorithms. As alluded

to earlier, MCMC samplers form an integral part of the machine learning practitioner’s

toolkit, being the only way to draw samples of parameters from complex probability distri-

butions in a provably correct way. Hamiltonian Monte Carlo methods are a popular class

of methods in this general area, but tuning these optimally is a major challenge. Some

of the issues one has to be concerned with in these cases are: discretizing the differential

equations arising from these systems correctly, possibly applying correction terms to han-

dle stochastic noise arising minibatched gradients, selecting the step sizes and number of

“leapfrog” steps in the discretized system, and finally selecting correct values for the mass

matrix. While the stepsizes and leapfrog steps can be optimized via simple grid search

methods, selecting correct values for the mass is difficult, since it scales as the square of the

dimensionality of the parameters, thereby easily running into the thousands for moderately
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sized datasets. Other than setting these to the identity matrix, the primary way of dealing

with these parameters is via the Riemannian manifold formulation mentioned above, where

one formulates these matrices in terms of the parameters to be sampled, and implicitly

“learns” them as the sampler runs. While effective, this method often leads to significant

reformulations of the resulting samplers, as we describe later, and imposes heavy penalties

on the runtimes. This has led to such methods being restricted to low dimensional datasets,

where the tradeoff between the improved sampling efficiency and greatly increased runtimes

is tolerable. We circumvent this problem by proposing a completely new way of learning

these mass matrices, using the Monte Carlo EM framework from the statistics literature. As

we describe later, we can wrap any existing sampler in this framework, keeping the energy

function formulation and sampling dynamics unchanged. Put simply, we cast the problem

of learning the mass matrix into a maximum likelihood problem of learning the precision

of a certain Gaussian distribution that encodes the “kinetic energy” of such systems, using

samples collected from running the existing sampler as observations. We use this method to

develop adaptive variants of a number of existing samplers, without the expensive overhead

of a Riemannian reformulation. The resulting algorithms perform close to or better than

Riemannian samplers, while being an order of magnitude faster and notably more simpler to

implement and optimize.

The rest of this thesis is organized in the order mentioned above: Chapter 2 discusses our

inference algorithms for hidden Markov models, both standard and nonparametric, using

small-variance asymptotics. In Chapter 3 we describe our novel construction of the gamma

process using Poisson process machinery and “stick-breaking” ideas. Chapter 4 contains

our Monte Carlo sampling algorithms derived from the Nosé-Poincaré Hamiltonian with

Riemannian preconditioning. In Chapter 5 we discuss our stochastic L-BFGS algorithm

for Riemannian manifolds, and provide convergence proofs and synthetic experiments.
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Chapter 6 contains our second set of Monte Carlo samplers, this time using the Monte Carlo

EM framework to adaptively learn the mass matrices, as an alternative to the Riemannian

preconditioning methods discussed in Chapter 4. The material in these chapters is composed

of work published in [RJK13, RK15, RKP16, RP17a] and [RP17b]. We conclude this

dissertation in Chapter 7 with a summary and discussion of future directions.
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Chapter 2: Small-Variance Asymptotics for Hidden Markov Models

Large scale probabilistic models applied to modern “big-data” problems provide a unique

set of challenges for inference. Graphical models being the undisputed choice for building

rich probability distributions, scaling up existing sampling methods and variational inference

techniques is not feasible for certain classes of applications.

A recent line of work along these lines has been based on small-variance asymptotics

(SVA), which performs asymptotics on certain formulations of latent variables in probabilis-

tic graphical models, providing a mechanism of deriving scalable combinatorial optimization

algorithms from these models, while preserving their structural benefits. A canonical mo-

tivation would be the connection between Gaussian mixture models and K-Means: in the

limit as the common variance of the (spherical) Gaussian distributions goes to zero, the max-

imum likelihood problem for this graphical models turns into optimization of the K-Means

objective function; the EM method for the mixture model can be seen to approach Lloyd’s

algorithm as well. This basic idea has recently been applied to models beyond Gaussian

mixtures—to Dirichlet process mixtures and hierarchical Dirichlet processes [KJ12], to

Bayesian nonparametric mixtures of exponential family observations [JKJ12], and learning

latent features using the Beta process [BKJ13]. SVA allows one to derive straightforward

algorithms for these models, that are significantly more scalable than samplers or variational

inference approaches while preserving many of the benefits of the probabilistic models.
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Prior to this work, SVA had been applied only to Bayesian mixture models, both para-

metric and nonparametric, without any temporal properties. To the best of our knowledge,

there was no existing work applying these methods to Hidden Markov models (HMM)

or its Bayesian nonparametric counterpart, the infinite Hidden Markov model (iHMM).

HMMs are probably the most widely used graphical model for discrete sequence data, with

applications including DNA sequence analysis, natural language processing and speech

recognition [Bis06]. These models assume that the observations are independently generated

from discrete hidden states, which evolve according to Markov assumptions. The goal of

the learning algorithm is to estimate the transition and emission distributions given only the

observed data.

We begin our discussion of scalable algorithms for sequential probabilistic models by

applying SVA to the standard parametric HMM. Following a certain parametrization of

the latent variables, we get a penalized K-Means objective function in the limit as the

variance goes to zero, with the penalties being a function of the state transitions. As a special

case of this objective, we obtain the segmental K-Means of [Rab89]. For the Bayesian

nonparametric case, the iHMM, we obtain an objective that combines the asymptotics of the

parametric case with those of the Hierarchical Dirichlet Process from [KJ12]; in particular,

we derive a penalized K-Means objective with three penalties: one for state transitions, one

for the number of states reachable from each state, and one for the total number of states.

This allows us to use dynamic programming to optimize the objective, something one cannot

do for the standard sampler for the infinite HMM; we describe a simple algorithm that

monotonically decreases the objective function. We compare our non-probabilistic “hard”

algorithms to their probabilistic counterparts, using experiments on a number o real and

synthetic datasets.
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2.1 Related Work.

There are several algorithms for maximum likelihood estimation for the standard para-

metric HMM, such as the Baum-Welch algorithm (a special instance of EM), and the

segmental K-Means algorithm of [Rab89]. HMMs with an unbounded number of latent

states, known as infinite HMMs [BGR02, TJBB06] are Bayesian nonparametric extensions

of the parametric models with hierarchical Dirichlet process priors on the transition probabil-

ities, allowing a countably infinite state space. Exact inference in these models is intractable,

so one typically uses Markov chain Monte Carlo-based sampling methods. However Gibbs

sampling is known to be extremely slow to converge for this model [TJBB06], and is unable

to exploit the forward-backward structure of HMMs. [GSTG08] presents a method which

bypasses this obstacle via slice sampling, where only a finite number of hidden states are

considered in each iteration. Since it works in the non-collapsed space, it is still computa-

tionally expensive. Thus infinite-state HMMs, while desirable from a modeling perspective,

have been limited by their inability to scale to large data sets—this is precisely the situation

in which small-variance asymptotics has the potential to be beneficial.

Beyond the connection between Gaussian mixtures and K-Means discussed earlier, we

should note that similar connections between probabilistic PCA and standard PCA have been

studied in [TB99, Row98], while those between support vector machines and a restricted

Bayes optimal classifier have been discussed in [TK00].

2.2 Asymptotics of the finite-state HMM

As a warm-up, we begin with the simpler parametric (finite-state) hidden Markov model,

and show that small-variance asymptotics on the joint log-likelihood yields a penalized k-

means objective, and on the EM algorithm yields a generalized segmental k-means algorithm.
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The tools developed in this section will then be used for the more involved nonparametric

model.

2.2.1 The Model

The Hidden Markov Model assumes a hidden state sequence Z = {z1, . . . ,zN} drawn

from a finite discrete state space {1, . . . ,K}, coupled with the observation sequence X =

{xxx1, . . . ,xxxN}. The resulting generative model defines a probability distribution over the

hidden state sequence Z and the observation sequence X . Let T ∈ RK×K be the stationary

transition probability matrix of the hidden state sequence with Ti. = πππ i ∈ RK being a

distribution over the latent states. For clarity of presentation, we will use a binary 1-of-K

representation for the latent state assignments. That is, we will write the event of the latent

state at time step t being k as ztk = 1 and ztl = 0 ∀l = 1...K, l 6= k. Then the transition

probabilities can be written as Ti j = Pr(zt j = 1|zt−1,i = 1). The initial state distribution is

πππ0 ∈ RK . The Markov structure dictates that zt ∼Mult(πππzt−1), and the observations follow

xxxt ∼ Φ(θzt ). The observation density Φ is assumed invariant, and the Markov structure

induces conditional independence of the observations given the latent states.

In the following, we present the asymptotic treament for the finite HMM with Gaussian

emission densities Pr(xxxt |ztk = 1) = N (xxxt |µµµk,σ
2Id). Here θzt = µµµk, since the parameter

space Θ contains only the emission means. Generalization to exponential family emission

densities is straightforward[JKJ12]. At a high level, the connection we seek to establish can

be proven in two ways. The first approach is to examine small-variance asymptotics directly

on the the joint probability distribution of the HMM, as done in [BKJ13] for clustering and

feature learning problems. We will primarily focus on this approach, since our ideas can be

more clearly expressed by this technique, and it is independent of any inference algorithm.

The other approach is to analyze the behavior of the EM algorithm as the variance goes
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to zero. We will briefly discuss this approach as well, but for further details the interested

reader can consult the chapter appendix.

2.2.1.1 Exponential Family Transitions

Our main analysis relies on appropriate manipulation of the transition probabilities,

where we will use the bijection between exponential families and Bregman divergences

established in [BMDG05]. Since the conditional distribution of the latent state at any

time step is multinomial in the transition probabilities from the previous state, we use the

aforementioned bijection to refactor the transition probabilities in the joint distribution of

the HMM into a form than utilizes Bregman divergences. This, with an appropriate scaling

to enable small-variance asymptotics as mentioned in [JKJ12], allows us to combine the

emission and transition distributions into a simple objective function.

We denote Tjk = Pr(ztk = 1|zt−1, j = 1) as before, and the multinomial distribution for

the latent state at time step t as

Pr(zzzt |zt−1, j = 1) =
K

∏
k=1

T ztk
jk . (2.1)

In order to apply small-variance asymptotics, we must allow the variance in the transition

probabilities to go to zero in a reasonable way. Following the treatment in [BMDG05], we

can rewrite this distribution in a suitable exponential family notation, which we then express

in the following equivalent form:

Pr(zzzt |zt−1, j = 1) = exp(−dφ (zzzt ,mmm j))bφ (zzzt), (2.2)

where the Bregman divergence dφ (zzzt ,mmm j)=∑
K
k=1 ztk log(ztk/Tjk)=KL(zzzt ,mmm j), mmm j = {Tjk}K

k=1

and bφ (zzzt) = 1. See the notes in the appendix for derivation details. The prime motivation

for using this form is that we can appropriately scale the variance of the exponential family

distribution following Lemma 3.1 of [JKJ12]. In particular, if we introduce a new parameter
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β̂ , and generalize the transition probabilities to be

Pr(zzzt |zt−1, j = 1) = exp(−β̂dφ (zzzt ,mmm j))bφ̃
(zzzt),

where φ̃ = β̂ φ , then the mean of the distribution is the same in the scaled distribution

(namely, mmm j) while the variance is scaled. As β̂ → ∞, the variance goes to zero.

The next step is to link the emission and transition probabilities so that the variance is

scaled appropriately in both. In particular, we will define β = 1/2σ2 and then let β̂ = λβ

for some λ . The Gaussian emission densities can now be written as Pr(xxxt |ztk = 1) =

exp(−β‖xxxt−µµµk‖2
2) f (β ) and the transition probabilities as

Pr(zzzt |zt−1, j = 1) = exp(−λβdφ (zzzt ,mmm j))bφ̃
(zzzt). See [JKJ12] for further details about the

scaling operation.

2.2.1.2 Joint Probability Asymptotics

We now have all the background development required to perform small-variance

asymptotics on the HMM joint probability, and derive the segmental k-means algorithm.

Our parameters of interest are the Z = [zzz1, ...,zzzN ] vectors, the µµµ = [µµµ1, ...,µµµK] means, and

the transition parameter matrix T . We can write down the joint likelihood by taking a

product of all the probabilities in the model:

p(X ,Z ) = p(zzz1)
N

∏
t=2

p(zzzt |zzzt−1)
N

∏
t=1

N (xxxt |µµµzt
,σ2Id),

With some abuse of notation, let mmmzzzt−1 denote the mean transition vector given by the

assignment zzzt−1 (that is, if zt−1, j = 1 then mmmzzzt−1 = mmm j). The exp-family probabilities above

allow us to rewrite this joint likelihood as

p(X ,Z ) ∝ exp

[
−β

(
N

∑
t=1
‖xxxt−µµµzt

‖2
2 +λ

N

∑
t=2

KL(zzzt ,mmmzzzt−1)

)
+ log p(zzz1)

]
. (2.3)

To obtain the corresponding non-probabilistic objective from small-variance asymptotics,

we consider the MAP estimate obtained by maximizing the joint likelihood with respect to
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the parameters asymptotically as σ2 goes to zero (β goes to ∞). In our case, it is particularly

simple given the joint likelihood above. The log-likelihood easily yields the following

asymptotically:

max
Z,µµµ,T

−

(
N

∑
t=1
‖xxxt−µµµzt

‖2
2 +λ

N

∑
t=2

KL(zzzt ,mmmzzzt−1)

)
(2.4)

or equivalently,

min
Z,µµµ,T

(
N

∑
t=1
‖xxxt−µµµzt

‖2
2 +λ

N

∑
t=2

KL(zzzt ,mmmzzzt−1)

)
. (2.5)

Note that, as mentioned above, mmm j =
{

Tjk
}K

k=1. We can view the above objective function

as a “penalized" k-means problem, where the penalties are given by the transitions from

state to state.

One possible strategy to minimize (2.5) would be to iteratively minimize with respect

to each of the individual parameters (Z,µµµ,T ) keeping the other two fixed. When fixing

µµµ and T , and taking λ = 1, the solution for Z in (2.4) is identical to the MAP update

on the latent variables Z for this model, as in a standard HMM. When λ 6= 1, a simple

generalization of the standard forward-backward routine can be used to find the optimal

assignments. Keeping Z and T fixed, the update on µµµk is easily seen to be the equiweighted

average of the data points which have been assigned to latent state k in the MAP estimate

(it is the same minimization as in k-means for updating cluster means). Finally, since

KL(zzzt ,mmm j) ∝ −
K
∑

k=1
logTjk, minimization with respect to T simply yields the empirical

transition probabilities, that is Tjk,new = # of transitions from state j to k
# of transitions from state j , both counts from the

MAP path computed during maximization w.r.t Z. We observe that, when λ = 1, the

iterative minimization algorithm to solve (2.5) is exactly the segmental k-means algorithm,

also known as Viterbi re-estimation.
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2.2.1.3 EM algorithm asymptotics

We can reach the same algorithm alternatively by writing down the steps of the EM

algorithm and exploring the small-variance limit of these steps, analogous to the approach

of [KJ12] for a Dirichlet process mixture. Given space limitations (and the fact that the

resulting algorithm is identical, as expected), a more detailed discussion can be found in the

appendix for this chapter.

2.3 Asymptotics of the Infinite Hidden Markov Model

We now tackle the more complex nonparametric model. We will derive the objective

function directly as in the parametric case but, unlike the parametric version, we will

not apply asymptotics to the existing sampler algorithms. Instead, we will present a new

algorithm to optimize our derived objective function. By deriving an algorithm directly,

we ensure that our method takes advantage of dynamic programming, unlike the standard

sampler.

2.3.1 The Model

The iHMM, also known as the HDP-HMM [BGR02, TJBB06] is a nonparametric

Bayesian extension to the HMM, where an HDP prior is used to allow for an unspecified

number of states. The HDP is a set of Dirichlet Processes (DPs) with a shared base

distribution, that are themselves drawn from a Dirichlet process [TJBB06]. Formally, we

can write Gk ∼ DP(α,G0) with a shared base distribution G0 ∼ DP(γ,H), where H is the

global base distribution that permits sharing of probability mass across Gks. α and γ are the

concentration parameters for the Gk and G0 measures, respectively.

To apply HDPs to sequential data, the iHMM can be formulated as follows:

β ∼ GEM(γ), πππk|β ∼ DP(α,β ), θk ∼ H,
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zzzt |zzzt−1 ∼Mult(πππzzzt−1), xxxt ∼Φ(θzzzt ).

For a full Bayesian treatment, Gamma priors are placed on the concentration parameters

(though we will not employ such priors in our asymptotic analysis).

Following the discussion in the parametric case, our goal is to write down the full joint

likelihood in the above model. As discussed in [TJBB06], the Hierarchical Dirichlet Process

yields assignments that follow the Chinese Restaurant Franchise (CRF), and thus the iHMM

model additionally incorporates a term in the joint likelihood involving the prior probability

of a set of state assignments arising from the CRF. Suppose an assignment of observations

to states has K different states (i.e., number of restaurants in the franchise), si is the number

of states that can be reached from state i in one step (i.e., number of tables in each restaurant

i), and ni is the number observations in each state i (i.e., number of customers in each

restaurant). Then the probability of an assignment in the HDP can be written as (after

integrating out mixture weights [Ant74, Sud12], and if we only consider terms that would

not be constants after we do the asymptotic analysis [BKJ13]):

p(Z |α,γ,λ ) ∝ γ
K−1 Γ(γ +1)

Γ(γ +∑
K
k=1 sk)

K

∏
k=1

α
sk−1 Γ(α +1)

Γ(α +ni)
.

For the likelihood, we follow the same assumption as in the parametric case: the observation

densities are Gaussians with a shared covariance matrix σ2Id . Further, the means are drawn

independently from the prior N (0,ρ2Id), where ρ2 > 0 (this is needed, as the model is

fully Bayesian now). Therefore, p(µµµ1:K) = ∏
K
k=1 N (µµµk|0,ρ2Id), and

p(X ,Z ) ∝ p(Z |α,γ,λ ) · p(zzz1)
N

∏
t=2

p(zzzt |zzzt−1) ·
N

∏
t=1

N (xxxt |µµµzt
,σ2Id) · p(µµµ1:K).

Now, we can perform the small-variance analysis on the generative model. In order to

retain the impact of the hyperparameters α and γ in the asymptotics, we can choose some

constants λ1,λ2 > 0 such that

α = exp(−λ1β ), γ = exp(−λ2β ),
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where β = 1/(2σ2) as before. Note that, in this way, we have α → 0 and γ → 0 when

β → ∞.

We now can consider the objective function for maximizing the generative probability

as we let β → ∞. This gives p(X ,Z ) ∝

exp
[
−β

(
N

∑
t=1
‖xxxt−µµµzt

‖2 +λ

N

∑
t=2

KL(zzzt ,mmmzzzt−1)+λ1

K

∑
k=1

(sk−1)+λ2(K−1)

)
+ log(p(zzz1))

]
. (2.6)

Therefore, maximizing the generative probability is asymptotically equivalent to the follow-

ing optimization problem:

min
K,Z,µµµ,T

N

∑
t=1
‖xxxt−µµµzt

‖2 +λ

N

∑
t=2

KL(zzzt ,mmmzzzt−1)+λ1

K

∑
k=1

(sk−1)+λ2(K−1). (2.7)

In words, this objective seeks to minimize a penalized k-means objective, with three penalties.

The first is the same as in the parametric case—a penalty based on the transitions from

state to state. The second penalty penalizes the number of transitions out of each state,

and the third penalty penalizes the total number of states. Note this is similar to the

objective function derived in [KJ12] for the HDP, but here there is no dependence on any

particular samplers. This can also be considered as MAP estimation of the parameters, since

p(Z ,µµµ|X ) ∝ p(X |Z )p(Z )p(µµµ).

2.3.2 Algorithm

The algorithm presented in [KJ12] could be almost directly applied to (2.7) but it neglects

the sequential characteristics of the model. Instead, we present a new algorithm to directly

optimize (2.7). We follow the alternating minimization framework as in the parametric

case, with some slight tweaks. Specifically, given observations {xxx1, . . . ,xxxN},λ ,λ1,λ2, our

high-level algorithm proceeds as follows:
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1. Initialization: initialize with one hidden state. The parameters are therefore K =

1,µµµ1 =
1
N ∑

N
i=1 xxxi,T = 1.

2. Perform a forward-backward step (via approximate dynamic programming) to update

Z.

3. Update K,µµµ,T .

4. For each state i, (i = 1, . . . ,K), check if the set of observations to any state j that are

reached by transitioning out of i can form a new dedicated hidden state and lower the

objective function in the process. If there are several such moves, choose the one with

the maximum improvement in objective function.

5. Update K,µµµ,T .

6. Iterate steps (2)-(5) until convergence.

There are two key changes to the algorithm beyond the standard parametric case. In the

forward-backward routine (step 2), we compute the usual K×N matrix α , where α(c, t)

represents the minimum cost over paths of length t from the beginning of the sequence and

that reach state c at time step t. We use the term “cost" to refer to the sum of the distances

of points to state means, as well as the additive penalties incurred. However, to see why

it is difficult to compute the exact value of α in the nonparametric case, suppose we have

computed the minimum cost of paths up to step t− 1 and we would like to compute the

values of α for step t. The cost of a path that ends in state c is obtained by examining, for all

states i, the cost of a path that ends at i at step t−1 and then transitions to state c at step t.

Thus, we must consider the transition from i to c. If there are existing transitions from state

i to state c, then we proceed as in a standard forward-backward algorithm. However, we are

also interested in two other cases—one where there are no existing transitions from i to c but
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we consider this transition along with a penalty λ1, and another where an entirely new state

is formed and we pay a penalty λ2. In the first case, the standard forward-backward routine

faces an immediate problem, since when we try to compute the cost of the path given by

α(c, t), the cost will be infinite as there is a− log(0) term from the transition probability. We

must therefore alter the forward-backward routine, or there will never be new states created

nor transitions to an existing state which previously had no transitions. The main idea is

to derive and use bounds on how much the transition matrix can change under the above

scenarios. As long as we can show that the values we obtain for α are upper bounds, then

we can show that the objective function will decrease after the forward-backward routine, as

the existing sequence of states is also a valid path (with no new incurred penalties).

The second change (step 4) is that we adopt a “local move" analogous to that described

for the hard HDP in [KJ12]. This step determines if the objective will decrease if we create

a new global state in a certain fashion; in particular, for each existing state j, we compute

the change in objective that occurs when data points that transition from j to some state k

are given their own new global state. By construction this step decreases the objective.

Due to space constraints, full details of the algorithm, along with a local convergence

proof, are provided in the chapter appendix, §B.

2.4 Experiments

We conclude with a brief set of experiments designed to highlight the benefits of our

approach. In particular, our results show that the algorithms discussed above provide clear

advantages over existing parametric and non-parametric HMM algorithms in terms of speed

and accuracy.
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Synthetic Data. First we compare our nonparametric algorithm with the Beam Sampler for

the iHMM1. A sequence of length 3000 was generated over a varying number of hidden

states with the all-zeros transition matrix except that Ti,i+1 = 0.8 and Ti,i+2 = 0.2 (when

i+ 1 > K, the total number of states, we choose j = i+ 1 mod K and let Ti, j = 0.8, and

similarly for i+2). Observations were sampled from symmetric Gaussian distributions with

means of {3,6, . . . ,3K} and a variance of 0.9.

Figure 2.1: NMI and prediction error as a
function of the compensation parameter λ

We ran our nonparametric algorithm, the

asymp-iHMM and the Beam sampler on

this data, normalizing the sequence to have

zero mean. We selected parameter values

for the former using grid search over all

three penalty terms, setting the values using

a heuristic described in the appendix. For

the Beam sampling algorithm, we used the

following hyperparameter settings: gamma

hyperpriors (4,1) for α , (3,6) for γ , and a

zero mean normal distribution for the base

H with the variance equal to 10% of the empirical variance of the dataset. The number of

selected samples was varied among 10, 100, and 1000 for different numbers of states, with

5 iterations between two samples. (Note: there are no burn-in iterations and all samplers are

initialized with a randomly initialized 20-state labeling.)

We show the training accuracies and running times for the two algorithms in Figure 2.2

(best viewed in color). The accuracy of the Beam sampler is given by the highest among all

the samples selected. The accuracy is shown in terms of the normalized mutual information

1http://mloss.org/software/view/205/
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Figure 2.2: Our algorithm (asymp-iHMM) vs. the Beam Sampler on the synthetic Gaussian
hidden Markov model data. (Left) The training accuracy; (Right) The training time on a
log-scale.

(NMI) score (in the range of [0,1]), since the sampler may output different number of states

than the ground truth and NMI can handle this situation. We can see that, in all datasets, the

asymp-iHMM algorithm performs better than the sampling method in terms of accuracy,

but with running time similar to the sampler with only 10 samples. For these datasets, we

also observe that the EM algorithm for the standard HMM (not reported in the figure) can

easily output a smaller number of states than the ground truth, which yields a smaller NMI

score. We also observed that the Beam sampler is highly sensitive to the initialization of

hyperparameters. Putting flat priors over the hyperparameters can ameliorate the situation,

but also substantially increases the number of samples required.

Next we demonstrate the effect of the compensation parameter λ in the parametric

asymptotic model, along with comparisons to the standard HMM. We will call the general-

ized segmental k-means of Section 2.2 the ‘asymp-HMM’ algorithm, shortened to ‘AHMM’

as appropriate. For this experiment, we used univariate Gaussians with means at 3, 6, and
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10, and standard deviation of 2.9. In our ground-truth transition kernel, state i had an 80%

prob. of transitioning to state i+1, and 10% prob. of transitioning to each of the other states.

5000 datapoints were generated from this model. The first 40% of the data was used for

training, and the remaining 60% for prediction. The means in both the standard HMM and

the asymp-HMM were initialized by the centroids learned by k-means from the training

data. The transition kernels were initialized randomly. Each algorithm was run 50 times; the

averaged results are shown in Figure 2.1.

Figure 2.1 shows the effect of λ on accuracy as measured by NMI and scaled prediction

error. We see the expected tradeoff: for small λ , the problem essentially reduces to

standard k-means, whereas for large λ the observations are essentially ignored. For λ = 1,

corresponding to standard segmental k-means, we obtain results similar to the standard

HMM, which obtains an NMI of 0.57 and error of 1.16. Thus, the parametric method offers

some added flexibility via the new λ parameter.

Financial time-series prediction. Our next experiment illustrates the advantages of our

algorithms in a financial prediction problem. The sequence consists of 3668 values of the

Standard & Poor’s 500 index on consecutive trading days from Jan 02, 1998 to July 30,

20122. The index exhibited appreciable variability in this period, with both bull and bear

runs. The goal here was to predict the index value on a test sequence of trading days, and

compare the accuracies and runtimes of the algorithms.

To prevent overfitting, we used a training window of length 500. This window size was

empirically chosen to provide a balance between prediction accuracy and runtime. The

algorithms were trained on the sequence from index i to i+499, and then the i+500-th value

was predicted and compared with the actual recorded value at that point in the sequence. i

ranged from 1 to 3168. As before, the mixture means were initialized with k-means and the

2http://research.stlouisfed.org/fred2/series/SP500/downloaddata
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Figure 2.3: Predicted values of the S&P 500 index from 12/29/1999 to 07/30/2012
returned by the asymp-HMM, asymp-iHMM and the standard HMM algorithms, with the
true index values for that period (better in color); see text for details.

transition kernels were given random initial values. For the asymp-HMM and the standard

HMM, the number of latent states was empirically chosen to be 5. For the asymp-iHMM,

we tune the parameters to get also 5 states on average. For predicting observation T + 1

given observations up to step T , we used the weighted average of the learned state means,

weighted by the transition probabilities given by the state of the observation at time T .

We ran the standard HMM along with both the parametric and non-parametric asymptotic

algorithms on this data (the Beam sampler was too slow to run over this data, as each

individual prediction took on the order of minutes). The values predicted from time step

501 to 3668 are plotted with the true index values in that time range in Figure 2.3. Both

the parametric and non-parametric asymptotic algorithms perform noticably better than the

standard HMM; they are able to better approximate the actual curve across all kinds of

temporal fluctuations. Indeed, the difference is most stark in the areas of high-frequency

oscillations. While the standard HMM returns an averaged-out prediction, our algorithms
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latch onto the underlying behavior almost immediately and return noticably more accurate

predictions. Prediction accuracy has been measured using the mean absolute percentage

(MAP) error, which is the mean of the absolute differences of the predicted and true values

expressed as percentages of the true values. The MAP error for the HMM was 6.44%, that

for the asymp-HMM was 3.16%, and that for the asymp-iHMM was 2.78%. This confirms

our visual perception of the asymp-iHMM algorithm returning the best-fitted prediction in

Figure 2.3.

Additional Real-World Results. We also compared our methods on a well-log data set

that was used for testing the Beam sampler. Due to space constraints, further discussion of

these results is included in the appendix for this chapter.

2.5 Conclusion

In this chapter we discussed an asymptotic treatment of the HMM and iHMM, with the

goal of obtaining nonprobabilistic formulations from the hidden Markov model and friends,

thereby expanding the application of small-variance asymptotics to sequential probabilistic

models. The main contribution of this section would be the dynamic programming-based

algorithm for sequential models with a latent set of states of dynamic cardinality, derived by

applying SVA to the infinite HMM.
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2.6 Proof Details and Experimental Addenda

2.6.1 Parametric HMM Details

In this section we describe the derivation of equation (2.2) in section 2.2.1.1 in Chapter

2, and also discuss the asymptotic treatment of the EM algorithm for the finite-state HMM.

2.6.2 Bregman Divergence Transition Representation

First we recall the required equations from section 2.1.1. One can write the multinomial

distribution for the latent state at time t as

Pr(zzzt |zt−1, j = 1) =
K

∏
k=1

T ztk
jk .

After some algebra this can be re-written as

exp

[
K

∑
k=1

logT ztk
jk

]
= exp

[
K−1

∑
k=1

ztk · logTjk− ztK · log
1

TjK

]
.

Recall that, in our binary 1-of-K notation, ztK = 1−
K−1
∑

k=1
ztk. This allows us to write the

equation above as

exp

[
K

∑
k=1

logT ztk
jk

]
= exp

[
K−1

∑
k=1

ztk ·
logTjk

logTjK
− log

1
TjK

]
. (2.8)

To reparameterize this in exponential family notation, we denote

θθθ
−K
j = {log(Tjk/TjK)}K−1

k=1 . Then the summation in (2.8) is clearly the inner product of

zzz−K
t and θθθ

−K
j . This then allows us to re-write (2.8) as exp

(
〈zzz−K

t ,θθθ−K
j 〉−ψ(θθθ−K

j )
)
, where

the log-partition function ψ

(
θθθ
−K
j

)
= log(1/TjK).

Now we will show that the expectation parameter given by ∇ψ
(
θθθ
−K
j
)

is exactly the

transition probability distribution corresponding to state j. From this we will be able to show

the Legendre dual of the expectation parameter to be the negative entropy of the transition
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distribution of j. To see this, note that the log-partition function may be written as

ψ

(
θθθ
−K
j

)
= log

1
TjK

= log

TjK +
K−1
∑

k=1
Tjk

TjK

= log

(
1+

K−1

∑
k=1

eθ
−K
jk

)
.

We can therefore write the expectation parameter as

mmm j = ∇ψ
(
θθθ
−K
j
)
= ∇ log

(
1+

K−1

∑
k=1

eθ
−K
jk

)
=

{ eθ
−K
jk

1+∑
K−1
k=1 eθ

−K
jk

}K−1

k=1
=
{

Tjk

}K−1

k=1
.

Then the Legendre dual φ can be written as

φ(mmm j) = 〈mmm j,θθθ
−K
j 〉−ψ(θθθ−K

j ) =
K−1

∑
k=1

Tjk log
Tjk

TjK
+ logTjK =

K

∑
k=1

Tjk logTjk.

Note that this is exactly the negative entropy of the transition probability distribution

πππ j = Tj. =
{

Tjk

}K

k=1
.

The Bregman divergence derived from φ is therefore

dφ (zzzt ,mmm j) = φ(zzzt)−φ(mmm j)−〈zzzt−mmm j,∇φ(mmm j)〉

=
K

∑
k=1

ztk logztk−
K

∑
k=1

Tjk logTjk−
K

∑
k=1

(ztk−Tjk)
(
1+ logTjk

)
=

K

∑
k=1

ztk log
ztk

Tjk
= KL(zzzt ,mmm j),

since we have
K
∑

k=1
ztk = 1 and

K
∑

k=1
Tjk = 1.

Then, by the bijection established in Banerjee et al. [BMDG05], we can write the

distribution

Pr(zzzt |zt−1, j = 1) as

Pr(zzzt |zt−1, j = 1) = exp
(〈

zzz−K
t ,θθθ−K

j
〉
−ψ

(
θθθ
−K
j
))

= exp(−dφ (zzzt ,mmm j))bφ (zzzt),

where the mmm-independent function bφ (zzzt) is

bφ (zzzt) = exp(φ(zzzt)) = exp

(
K

∑
k=1

ztk logztk

)
= 1,
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where we have again used the binary 1-of-K representation of zzzt . This completes the

derivation of equation (2.2) in section 2.2.1.1 in Chapter 2.

We can now apply the recipe in [JKJ12], Lemma 3.1 to this Bregman divergence

representation. In particular, the variance on an exponential family distribution may be

scaled by appropriately scaling the partition function and the underlying natural parameter.

Stated simply, we can introduce a new parameter β̂ , as in Jiang et al., and use a scaled

version of the Bregman divergence representation, i.e., exp(−β̂dφ (zzzt ,mmm j))bβ̂ φ
(zzzt).

2.6.2.1 EM Algorithm Asymptotics

Next we discuss the application of small-variance asymptotics to the Baum-Welch /

EM algorithm for parametric hidden Markov models, and show its reduction to segmental

K-means.

The reduction of the E-step posterior marginal update to the MAP estimate is fairly

straightforward but involved. Let us define γ(ztk) as the probability of the value of the

tth hidden variable being k, given the observations, the means, and the T matrix. This

probability can be expressed as

γ(ztk) =
α(ztk)β (ztk)

K
∑

l=1
α(ztl)β (ztl)

=
1

1+
K
∑

l=1;l 6=k

α(ztl)β (ztl)

α(ztk),β (ztk)

(2.9)

where α(zzzt) = p(xxx1, ...,xxxt ,zzzt) and β (zzzt) = p(xxxt+1, ...,xxxN |zzzt); the γ probabilities are com-

puted in the E-step of the EM algorithm for the standard HMM. Asymptotically as σ2→ 0,

we find that this probability goes to zero for all states k except the one that falls on the MAP

path, which can be shown by expanding the ratios of α and β probabilities in the above

denominator. Thus in the E-step analogue of our algorithm, one would first find the MAP

path, and set the corresponding (temporal) posterior probability to 1 for each latent state

on that path, and that for the other states to 0. Note that the MAP path for the Z variables
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is obtained using a standard Viterbi dynamic programming algorithm with a forward and

backward pass.

To complete the derivation of segmental k-means, we now consider the updates to T and

µµµ in the M-step analog. Recall the expected log-likelihood equation used in the M-step (see,

e.g., Bishop [Bis06]):

Q(Θ,Θold) =
K

∑
k=1

γ(z1k)lnπk +
N

∑
n=1

K

∑
k=1

γ(znk)lnp(xn|µµµk)+
N

∑
n=2

K

∑
j=1

K

∑
k=1

ξ
(
zn−1, j,znk

)
logTjk.

Here ξ
(
zn−1, j,znk

)
is the joint posterior marginal of pairwise latent variables, and Θ and

Θold represent the new and existing values, respectively, of Z, µµµ and T . We first consider

maximizing Q(Θ,Θold) with respect to the transition probabilities.

It can be noted that since we have hard cluster assignments in the asymptotic E-step, the

joint posterior marginals will also be binary, and therefore ∑
N
n=1 ξ

(
zn−1, j,znk

)
represents the

total number of times the transitions from state j to state k has occurred in the entire chain.

Thus, for each state j, the maximization of the expected log-likelihood is a linear program

over the logTjks, with the solution being the empirical transition probabilities computed

from the MAP transition sequence.

The final step is the updates to the means. This is similar to the derivation of the k-means

cluster mean update as a limit of the M-step in a Gaussian mixture model, and can be

straightforwardly derived to be an update of the empirical means of all points assigned

to each state. This completes the derivation of segmental k-means as a small-variance

approximation of the EM algorithm in the presence of exponential family probabilities.

2.6.3 Algorithm for the infinite Hidden Markov Model

Here, we give the detailed description of the algorithm in Section 3.2. The optimization

problem we aim to solve is

min
K,z,µµµ,T

N

∑
t=1
‖xxxt−µµµzt

‖2−λ

N

∑
t=2

logTzt−1,zt +λ1

K

∑
k=1

(sk−1)+λ2(K−1), (2.10)
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where {xxx1, . . . ,xxxN} are the observations, {z1, . . . ,zN} is the hidden state sequence, K is the

total number of hidden states, T is the transition probability matrix with Ti, j = Pr(zt+1 =

j|zt = i), and si(i = 1, . . . ,K) is the number of states that can be reachable from state i. Note

that we are expressing the transition penalties here in terms of T as opposed to the KL

divergence, for ease of presentation.

To optimize (2.10), we follow an alternating minimization framework. We first determine

the sequence of states to optimize the objective when all but Z is fixed using a forward-

backward routine. Here, we cannot apply exact dynamic programming, due to the possible

creation of new states as well as the change in transition probabilities when either creating a

new state or paying a λ1 penalty. We then update the means of each state as the empirical

means based on the state assignments, and the transition matrix as the empirical transition

matrix. We further adopt a move analogous to that described for the hard HDP in [KJ12].

This step determines if the objective will decrease if we create a new hidden state in a certain

fashion; in particular, for each existing state j, we compute the change in objective that

occurs when observations that transition from state j to some state k are given their own

new hidden state.

Specifically, given observations {xxx1, . . . ,xxxN},λ ,λ1,λ2, our high-level algorithm pro-

ceeds as follows:

1. Initialization: initialize with one hidden state. The parameters are therefore K =

1,µµµ1 =
1
N ∑

N
i=1 xxxi,T = 1.

2. Perform a forward-backward step (via approximate dynamic programming) to update

Z.

3. Update K,µµµ,T .
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4. For each state i, (i = 1, . . . ,K), check if the set of observations to any state j that are

reached by transitioning out of i can form a new dedicated hidden state and lower the

objective function in the process. If there are several such moves, choose the one with

the maximum improvement in objective function.

5. Update K,µµµ,T .

6. Iterate steps (2)-(5) until convergence.

Note: Step (3) here is only for clearer presentation of step (4).

2.6.3.1 Forward-Backward Step

In the forward-backward step, we will compute a K×N matrix α , where α(c, t) repre-

sents the minimum cost over paths of length t from the beginning of the sequence and that

reach state c at time step t. We use the term “cost" to refer to the sum of the distances of

points to state means, as well as the additive penalties incurred. Since we are interested in

the possibility of potentially creating new states during this forward-backward process, and

the creation of new states will necessarily change the transition probabilities, it does not

appear that α can be computed exactly. We instead describe a procedure that computes an

upper bound for each value of α .

To give further intuition for why it is difficult to compute the exact value of α : suppose

we have computed the minimum cost of paths up to step t−1 and we would like to compute

the values of α for step t. The value of a path that ends in state c is obtained by examining,

for all states i, the cost of a path that ends at i at step t−1 and then transitions to state c at

step t. Thus, we must consider the transition from i to c. If there are existing transitions from

state i to state c, then we proceed as in a standard forward-backward algorithm. However, we

are also interested in two other cases—one where there are no existing transitions from i to

c but we consider this transition along with a penalty λ1, and another where an entirely new
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state is formed and we pay a penalty λ2. In the first case, the standard forward-backward

routine faces an immediate problem, since when we try to compute the cost of the path given

by α(c, t), the cost will be infinite as there is a − log(0) term from the transition probability.

We must therefore alter the forward-backward routine, or there will never be new states

created nor transitions to an existing state which previously had no transitions. The main idea

is to derive and use bounds on how much the transition matrix can change under the above

scenarios. As long as we can show that the values we obtain for α are upper bounds, then

we can show that the objective function will decrease after the forward-backward routine, as

the existing sequence of states is also a valid path (with no new incurred penalties). That is,

the cost we compute here is an upper bound of both the non-penalized objective function

value and newly-introduced penalties. If there is no new states created or no new transitions

happened, the upper bound for the newly-introduced penalties is zero as mentioned before.

Now we describe the algorithm in more detail. In the following description, old_K is

the number of states from the previous iteration, and K is the number of states before the

computation of α at time step t. Then, for each state 1≤ c≤ K,

1. If we are transitioning from a state i≤ old_K,

• Standard situation: If c≤ old_K and Ti,c 6= 0, we compute (as in the parametric

case):

d(i,c) = ‖xxxt−µµµc‖2−λ × log(Ti,c). (2.11)

• No existing transitions: Otherwise, we use the following upper bound when

transitioning to state c:

d(i,c) = ‖xxxt−µµµc‖2−λ × log
(

1
ni

)
+λ ×Ei +λ1, (2.12)

where,
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– ni is the total number of transitions out of state i.

– Ei is the upper bound of the possible change in one transition probability

from state i incurred by adding one state to the reachable pool of state i. We

compute the change of the maximum of ni j
ni

, and we have (assume j is the

largest one)

Ei = (ni j−1)×
(

log
ni j

ni
− log

ni j−1
ni

)
. (2.13)

– λ1 is the penalty incurred from transiting to a new state.

2. Entirely new state: Otherwise, we use the bound:

d(i,c) = ‖xxxt−µµµc‖2−λ × log
(

1
N−1

)
+λ1. (2.14)

where,

• 1
N−1 is an upper bound of the transition probability from state i to state c,

• 0 is the upper bound of possible change in the transition probabilities from state

k where the original transition occurred for this transition. Here, in this path

which involves transition from an entirely new state i to state c, we not only add

a new row to the transition matrix T , but also change another existing row of T .

That is, the transit-out probability of state k will be changed since it loses one

count of transition to state c.

• λ1 is the penalty incurred when adding this new state transition out of state i.

Empirically, we will use d(i,c) = ‖xt−µc‖2 +λ1 since it still decreases the objective

function value monotonically most of the time in practice and yields better results.

3. We compute the minimum among all states:

α(c, t) = min
1≤i≤K

α(i, t−1)+d(i,c) (2.15)

34



To check if this time step can be created as a new hidden state, we find

dmin = min
i,c

d(i,c). (2.16)

If dmin > λ1 +λ2, we create a new hidden state (this is the penalty incurred for transiting to

a new state and a new hidden state). We let K = K +1,

α(K, t) = min
1≤k≤K−1

α(k, t−1)+λ1 +λ2. (2.17)

This follows from the description of (II).

Now, we prove the correctness of the upper bounds. For the first bound, when we

consider transitioning from i to c such that Tic = 0, we are adding a new transition out of

state i, which then impacts the other transition probabilities out of state i. Thus, the Ei bound

determines how much the change in the other transition probabilities impacts the current

path cost.

Lemma 1. Ei is an upper bound of the possible change in the objective function value, in

terms of other transition probabilities from state i, incurred by adding one transition to a

new state in Step (I). Here, we assume the total number of transitions from state i is fixed.

Proof. Denote ni as the total number of transitions from state i, ni j as the total number of

transitions from state i to state j with ni j > 0. Thus, the possible change for other transitions

is

(ni j−1)×
(

log
ni j

ni
− log

ni j−1
ni

)
≥ 0.

Let f (x) = (x−1)(logx− log(x−1)),x≥ 2, we have

f ′(x) = logx− log(x−1)− 1
x

= logx− [logx+
−1
x
− 1

2x2 +o(
1

2x2 )]−
1
x

=
1

2x2 +o(
1

2x2 )> 0
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Thus, f (x) is increasing as x increases for x≥ 2. When x= 1, we have by definition f (1) = 0.

Therefore,

Ei = (nik−1)×
(

log
nik

ni
− log

nik−1
ni

)
= max

j
(ni j−1)×

(
log

ni j

ni
− log

ni j−1
ni

)
,

where k = argmax jni j.

The second bound deals with transitioning from an entirely new state. We are adding

one row to the transition matrix T , which then also changes another row of transition

probabilities out of state k where this transition previously is coming from state k.

Lemma 2. 0 is an upper bound of possible change in the objective function value in terms

of the transition probabilities from state k where the original transition occurred for this

transition in Step (II).

Proof. Denote nk the total number of transitions from state k, nk j the total number of

transitions from state k to state j with nk j > 0. Without loss of generality, we assume that

the lost transitions are all from nki and the number of lost transitions is x. Thus, the change

is

∑
j

nk j log
nk j

nk
−∑

j 6=i
nk j log

nk j

nk− x
− (nki− x) log

nki− x
nk− x

= ∑
j 6=i

nk j log
nk− x

nk
+nki

(
log

nki

nk
− log

nki− x
nk− x

)
+ x log

nki− x
nk− x

≤ 0,

since nki
nk
≤ 1, nk−x

nk
< 1, nki−x

nk−x ≤ 1, and nki
nk
≥ nki−x

nk−x .

From Lemma 1 and 2, we know that in each time step we compute an upper bound

of the minimum non-penalized objective function value. And since we add λ1 and λ2 in

α whenever we transition to a state where there was no existing transitions or we create

an entirely new state respectively, we also manage to upper-bound the newly-introduced

penalties. Combining these two together, we have the following:
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Proposition 1. The computation of α gives an upper bound of the minimum cost of every

possible path.

2.6.3.2 Local Move - Step 4

After finishing the forward-backward step and updating the means and transition matrix,

we check locally if we should create a new state by determining, for all i and k, if the

objective function is lowered when all data points in state k that reached state k via state i

are put into a new state. In particular, we determine and execute the single best such move.

In detail, for each state 1≤ i≤K, we consider all the time steps Ai that are one step from

a time step with state i. These time steps Ai can be grouped by their states: Ai(1), . . . ,Ai(K),

where Ai( j) indicates time steps belonging to state j. Then, for all states j with |Ai( j)|> 0,

we can compute the objective function contribution from these time steps. We have

old = ∑
t∈Ai( j)

{‖xxxt−µµµzt
‖2−λ × logTi,zt −λ × logTzt ,zt+1}. (2.18)

If we let Ai( j) be a new hidden state, the contribution would be

new = ∑
t∈Ai( j)

{‖xxxt− x̄xxt‖2−λ × logTi,zt −λ × logTK+1,zt+1}+λ1×Ki( j)+λ2, (2.19)

where

• x̄xxt =
1

|Ai( j)|∑t∈Ai( j) xxxt ;

• Let Bi( j) be the time steps which are one-step from those of Ai( j). TK+1,zt+1 is just

the empirical transition probability from time step t ∈ Ai( j) to the next time step

t +1 ∈ Bi( j).

• Ki( j) is the number of states in Bi( j).

• Since there is no change of λ1 penalty for state i, we do not need to consider this in

the “old” contribution.
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If new < old, then Ai( j) is considered as a candidate for a new hidden state.

After a whole pass of the states, we find the largest reduction

[i, j] ∈ argmaxi, j oldi( j)−newi( j), (2.20)

and create Ai( j) as a new hidden state.

In summary, in the forward-backward step, the cost we compute is an upper bound of

both the non-penalized objective function value and newly-introduced penalties. If there

is no new states created or no new transitions happened, the upper bound for the newly-

introduced penalties is zero. That is, we preserve the non-penalized objective function value

of any path from previous iteration, and upper-bound the non-penalized objective function

value and the newly-introduced penalties of any new path we find. In the local move step,

we further reduce the objective function value by considering locally for each state we get

in the forward-backward step. Therefore, we have

Proposition 2. The algorithm decreases the objective function value in each iteration.

Proof. We know that the best path old_P obtained from last iteration would be a possible

path in this iteration, and from the forward-backward step, it would preserve its cost from

the previous iteration. Thus, we have

α(new_P) = min
all possible P

α(P)≤ α(old_P).

From Proposition 1, we know α gives the upper bound of the additional incurred cost, thus

cost(new_P)≤ cost(old_P).

We also further decreases the cost from the local move, which preserves the inequality. That

is, we have

cost(new_P)≤ cost(old_P).
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2.6.4 Additional Experimental Details
2.6.4.1 Heuristic for Parameter Selection

In this section, we discuss a simple but empirically promising heuristic for parameter

selection. While performing a grid-search over candidate λ values, the number of learned

states does not collapse to the degenerate case with a uniform step size of 1; there is always

a gap between the trivial case of 1 hidden state, and the next higher count. We consider this

smallest number of states larger than 1 as the estimate of state count learned by our algorithm,

and select parameters that yield this number. For multiple parameter combinations that yield

the estimated number of states, we choose the one which gives the best fit, measured in

terms of the smallest non-penalized objective function value. We stress that this technique is

a heuristic, and do not claim any theoretical justification for it.

Figure 2.4: An example showing the trend of the number of states as a function of lambda.
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Figure 2.5: Visual display of the state assignments provided by the asymp-HMM algorithm
on the well-log data. Each color shows a different state (best viewed in color); see text for
details.

2.6.4.2 Well-log data

We provide some additional experimental results that illustrate the qualitative perfor-

mance of our algorithms on a changepoint detection problem. The data consists of 4050

noisy NMR measurements of rock strata obtained via lowering a probe through a bore-hole.

The data has been previously analyzed in [RF96] by eliminating the forty greatest outliers

and running a changepoint detection algorithm with a fixed number of changepoints. This

approach works well as this one-dimensional dataset can be inspected visually to make

a decision on whether to throw away datapoints and get a rough idea for the number of

changepoints. It has been noted in [RF96] that Gaussian mixtures seem to be a good model

for this data; in addition visual inspection of the data seems to suggest five clusters, at

five distinct depths. Thus we used a five-state Gaussian HMM to model this data. As in

our synthetic experiments, we first ran k-means for initialization of the mixture means and

randomly initialized the transition/pseudo-transition kernels.

The state sequence inferred by our algorithm is color-plotted in Figure 2.5. The algorithm

seems to have detected the changepoints accurately, with imperceptibly small noise. Relative

performance trends are similar to the synthetic case; the standard HMM took an average of

16 iterations to converge, with an average running time of 4.5s. Our algorithm converges in

9 iterations, with an average time of 1.7s with λ = 3.
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Chapter 3: Gamma Processes, Stick-Breaking, and Variational

Inference

The gamma process is a versatile pure-jump Lévy process with widespread applications

in various fields of science. Of late it is emerging as an increasingly popular prior in

the Bayesian nonparametric literature within the machine learning community; it has

recently been applied to exchangeable models of sparse graphs [CF13] as well as for

nonparametric ranking models [CTM13]. It also has been used as a prior for infinite-

dimensional latent indicator matrices [Tit08]. This latter application is one of the earliest

Bayesian nonparametric approaches to count modeling, and as such can be thought of as an

extension of the venerable Indian Buffet Process to modeling latent structures where each

feature can occur multiple times for a datapoint, instead of being simply binary.

The flexibility of gamma process models allows them to be applied in a wide variety of

Bayesian nonparametric settings, but their relative complexity makes principled inference

nontrivial. In particular, most direct applications of the gamma process in the Bayesian

nonparametric literature use Markov chain Monte Carlo samplers (typically Gibbs sampling)

for posterior inference, which often suffers from poor scalability. For other Bayesian non-

parametric models—in particular those involving the Dirichlet process or beta process—a

successful thread of research has considered variational alternatives to standard sampling

methods [BJ03, TKW07, WPB11]. One first derives an explicit construction of the underly-

ing “weights” of the atomic measure component of the random measures underlying the
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infinite priors; so-called “stick-breaking” processes for the Dirichlet and beta processes

yield such a construction. Then these weights are truncated and integrated into a mean-field

variational inference algorithm. For instance, stick-breaking was derived for the Dirichlet

process in the seminal paper by Sethuraman [Set94], which was in turn used for variational

inference in Dirichlet process models [BJ03]. Similar stick-breaking representations for a

special case of the Indian Buffet Process [TGG07] and the beta process [PZW+10] have

been constructed, and have naturally led to mean-field variational inference algorithms

for nonparametric models involving these priors [DVMGT09, PCB11]. Such variational

inference algorithms have been shown to be more scalable than the sampling-based infer-

ence techniques normally used; moreover they work with the full model posterior without

marginalizing out any variables.

In this chapter we propose a variational inference framework for gamma process priors

using a novel stick-breaking construction of the process. We use the characterization of the

gamma process as a completely random measure (CRM), which allows us to leverage Poisson

process properties to arrive at a simple derivation of the rate measure of our stick-breaking

construction, and show that it is indeed equal to the Lévy measure of the gamma process.

We also use the Poisson process formulation to derive a bound on the error of the truncated

version compared to the full process, analogous to the bounds derived for the Dirichlet

process [IJ01], the Indian Buffet Process [DVMGT09] and the beta process [PCB11]. We

then, as a particular example, focus on the infinite Gamma-Poisson model of [Tit08] (note

that variational inference need not be limited to this model). This model is a prior on

infinitely wide latent indicator matrices with non-negative integer-valued entries; each

column has an associated parameter independently drawn from a gamma distribution, and

the matrix values are independently drawn from Poisson distributions with these parameters

as means. We develop a mean-field variational technique using a truncated version of our

42



stick-breaking construction, and a sampling algorithm that uses Monte Carlo integration

for parameter marginalization, similar to [PZW+10], as a baseline inference algorithm for

comparison. We also derive a variational algorithm based on the naïve construction of

the gamma process. Finally we compare these with variational algorithms based on Beta-

Bernoulli priors on a non-negative matrix factorization task involving the Psychological

Review, NIPS, KOS and New York Times document corpora, and show that the variational

algorithm based on our construction performs and scales better than all the others.

Related Work. To our knowledge this is the first explicit “stick-breaking”-like construction

of the gamma CRM, apart from the naïve approach of denormalizing the construction of the

DP with a suitable gamma random variable [Mil11], [GRRB14]; moreover, as mentioned

above, we develop a variational inference algorithm using the naïve construction (see 3.4.1)

and show that it performs worse than our main algorithm on both synthetic and real datasets.

The very general inverse Lévy measure algorithm of [WI98] requires inversion of the

exponential integral, as does the generalized CRM construction technique of [OW12] when

applied to the gamma process; since the closed form solution of the inverse of an exponential

integral is not known, these techniques do not give us an analytic construction of the weights,

and hence cannot be adapted to variational techniques in a straightforward manner. Other

constructive definitions of the gamma process include [Thi08], who discusses a sampling-

based scheme for the weights of a gamma process by sampling from a Poisson process.

As an alternative to gamma process-based models for count modeling, recent research has

examined the negative binomial-beta process and its variants [ZC12, ZHDC12, BMPJ14];

the stick-breaking construction of [PZW+10] readily extends to such models since they have

beta process priors. The beta stick-breaking construction has also been used for variational

inference in beta-Bernoulli process priors [PCB11], though they have scalability issues
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when applied to the count modeling problems addressed in this work, as we show in the

experimental section.

3.1 Background

3.1.1 Completely random measures

A completely random measure [Kin67, Jor10] G on a space (Ω,F ) is defined as a

stochastic process on F such that for any two disjoint Borel subsets A1 and A2 in F , the

random variables G(A1) and G(A2) are independent. The canonical way of constructing a

completely random measure G is to first take a σ -finite product measure H on Ω⊗R+, then

draw a countable set of points {(ωk, pk)} from a Poisson process on a Borel σ -algebra on

Ω⊗R+ with H as the rate measure. Then the CRM is constructed as G=∑
∞
k=0 pkδωk , where

the measure given to a measurable Borel set B⊂Ω is G(B) = ∑
k:ωk∈B

pk. In this notation pk

are referred to as weights and the ωk as atoms.

If the rate measure is defined on Ω⊗ [0,1] as H(dω,d p) = cp−1(1− p)c−1B0(dω)d p,

where B0 is an arbitrary finite continuous measure on Ω and c is some constant (or function

of ω), then the corresponding CRM constructed as above is known as a beta process. If

the rate measure is defined as H(dω,d p) = cp−1e−cpG0(dω)d p, with the same restrictions

on c and G0, then the corresponding CRM constructed as above is known as the gamma

process. The total mass of the gamma process G,G(Ω), is distributed as Gamma(cG0(Ω),c).

The improper distributions in these rate measures integrate to infinity over their respective

domains, ensuring a countably infinite set of points in a draw from the Poisson process.

For the beta process, the weights pk are in [0,1], whereas for the gamma process they

are in [0,∞). In both cases however the sum of the weights is finite, as can be seen from

Campbell’s theorem [Kin67], and is governed by c and the total mass of the base measure

on Ω. For completeness we note that completely random measures as defined in [Kin67]
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have three components: a set of fixed atoms, a deterministic measure (usually assumed

absent), and a random discrete measure. It is this third component that is explicitly generated

using a Poisson process, though the fixed component can be readily incorporated into this

construction [Kin93].

If we create an atomic measure by normalizing the weights {pk} from the gamma process,

i.e. D = ∑
∞
k=0 πkδωk where πk = pk/∑

∞
i=0 pi, then D is known as a Dirichlet process [Fer73],

denoted as D ∼ DP(α0,H0) where α0 = G0(Ω) and H0 = G0/α0. It is not a CRM as the

random variables induced on disjoint sets lack independence because of the normalization; it

belongs to the class of normalized random measures with independent increments (NRMIs).

3.1.2 Stick-breaking for the Dirichlet and Beta Processes

A recursive way to generate the weights of random measures is given by stick-breaking,

where a unit interval is subdivided into fragments based on draws from suitably chosen

distributions. For example, the stick-breaking construction of the Dirichlet process [Set94]

is given by

D =
∞

∑
i=1

Vi

i−1

∏
j=1

(1−Vj)δωi,

where Vi
iid∼ Beta(1,α), ωi

iid∼ H0. Here the length of the first break from a unit-length stick

is given by V1. In the next round, a fraction V2 of the remaining stick of length 1−V1 is

broken off, and we are left with a piece of length (1−V2)(1−V1). The length of the piece

in the next round is therefore given by V3(1−V2)(1−V1), and so on. Note that the weights

belong to (0,1), and since this is a normalized measure, the weights sum to 1 almost surely.

This is consistent with the use of the Dirichlet process as a prior on probability distributions.

This construction was generalized in [PZW+10] to yield stick-breaking for the beta

process:

B =
∞

∑
i=1

Ci

∑
j=1

V (i)
i j

i−1

∏
l=1

(1−V (l)
i j )δωi j , (3.1)
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where V (i)
i j

iid∼ Beta(1,α), Ci
iid∼ Poisson(γ), ωi j

iid∼ 1
γ
B0. We use this representation as

the basis for our stick breaking-like construction of the Gamma CRM, and use Poisson

process-based proof techniques similar to [PBJ12] to derive the rate measure.

3.2 The Stick-breaking Construction of the Gamma Process

3.2.1 Constructions and proof of correctness

We propose a simple recursive construction of the gamma process CRM, based on

the stick-breaking construction for the beta process proposed in [PZW+10, PBJ12]. In

particular, we augment (or ‘mark’) a slightly modified stick-breaking beta process with an

independent gamma-distributed random measure and show that the resultant Poisson process

has the rate measure H(dω,d p) = cp−1e−cpG0(dω)d p as defined above. We show this by

directly deriving the rate measure of the marked Poisson process using product distribution

formulae. Our proposed stick-breaking construction is as follows:

G =
∞

∑
i=1

Ci

∑
j=1

G(i)
i j V (i)

i j

i

∏
l=1

(1−V (l)
i j )δωi j , (3.2)

where G(i)
i j

iid∼ Gamma(α +1,c), V (i)
i j

iid∼ Beta(1,α), Ci
iid∼ Poisson(γ), ωi j

iid∼ 1
γ
H0. As

with the beta process stick-breaking construction, the product of beta random variables

allows us to interpret each j as corresponding to a stick that is being broken into an infinite

number of pieces. Note that the expected weight on an atom in round i is α i/c(1+α)i. The

parameter c can therefore be used to control the weight decay cadence along with α .

The above representation provides the clearest view of the construction, but is somewhat

cumbersome to deal with in practice, mostly due to the introduction of the additional gamma

random variable. We reduce the number of random variables by noting that the product of

a Beta(1,α) and a Gamma(α +1,c) random variable has an Exp(c) distribution; we also
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perform a change of variables on the product of the (1−Vi j)s to arrive at the following

equivalent construction, for which we now prove its correctness:

Theorem 1. A gamma CRM with positive concentration parameters α and c and finite base

measure H0 may be constructed as

G =
∞

∑
i=1

Ci

∑
j=1

Ei je−Ti jδωi j , (3.3)

where Ei j
iid∼ Exp(c), Ti j

ind∼ Gamma(i,α), Ci
iid∼ Poisson(γ), ωi j

iid∼ 1
γ
H0.

Proof. Note that, by construction, in each round i in (3.3), each set of weighted atoms

{
(
ωi j,Ei je−Ti j

)
}Ci

j=1 forms a Poisson point process since the Ci are drawn from a Poisson(γ)

distribution. In particular, each of these sets is a marked Poisson process [Kin93], where

the atoms ωi j of the Poisson process on Ω are marked with the random variables Ei je−Ti j

that have a probability measure on (0,∞). The superposition theorem of [Kin93] tells us

that the countable union of Poisson process is itself a Poisson process on the same measure

space; therefore denoting Gi =
Ci

∑
j=1

Ei je−Ti jδωi j , we can say G =
∞⋃

i=1

Gi is a Poisson process

on Ω× [0,∞). We show below that the rate measure of this process equals that of the Gamma

CRM.

Now, we note that the random variable Ei je−Ti j has a probability measure on [0,∞);

denote this by qi j. We are going to mark the underlying Poisson process with this measure.

The density corresponding to this measure can be readily derived using product distribution

formulae. To that end, ignoring indices, if we denote W = exp(−T ), then we can derive its

distribution by a change of variable. Then, denoting Q = E×W where E ∼ Exp(c), we can

use the product distribution formula to write the density of Q as

fQ(q) =
1∫

0

α i

Γ(i)
(− logw)i−1 wα−2ce−c q

w dw,
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where T ∼ Gamma(i,α). Formally speaking, this is the Radon-Nikodym density corre-

sponding to the measure q, since it is absolutely continuous with respect to the Lebesgue

measure on [0,∞) and σ -finite by virtue of being a probability measure. Furthermore, these

conditions hold for all the measures that we have in our union of marked Poisson processes;

this allows us to write the density of the combined measure as

f (p) =
∞

∑
i=1

1∫
0

α i

Γ(i)
(− logw)i−1 wα−2ce−c p

w dw

=

1∫
0

∞

∑
i=1

α i

Γ(i)
(− logw)i−1 wα−2ce−c p

w dw

=

1∫
0

αw−2ce−c p
w dw

= α p−1e−cp

= cp−1e−cp α

c
,

where we have used monotone convergence to get the Taylor expansion of exp(−α logw)

inside the integral. Note that the measure defined on B([0,∞)) by the “improper” gamma

distribution p−1e−cp is σ -finite, in the sense that we can decompose [0,∞) into the countable

union of disjoint intervals [1/k,1/(k−1)), k = 1,2, . . .∞, each of which has finite measure.

In particular, the measure of the interval [1,∞) is given by the exponential integral.

Therefore the rate measure of the process G as constructed here is G(dω,d p) =

cp−1e−cpG0(dω)d p where G0 is the same as H0 up to the multiplicative constant α

c , and

therefore satisfies the finiteness assumption imposed on H0.

We use the form specified in the theorem above in our variational inference algorithm

since the variational distributions on almost all the parameters and variables in this con-

struction lend themselves to simple closed-form exponential family updates. As an aside,

we note that the random variables (1−Vi j) have a Beta(α,1) distribution; therefore if we
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denote Ui j = 1−Vi j then the construction in (3.2) is equivalent to

G =
∞

∑
i=1

Ci

∑
j=1

E(i)
i j

i

∏
l=1

U (l)
i j δωi j ,

where E(i)
i j

iid∼ Exp(c), U (i)
i j

iid∼ Beta(α,1), Ci
iid∼ Poisson(γ), ωi j

iid∼ 1
γ
H0. This notation

therefore relates our construction to the stick-breaking construction of the Indian Buffet

Process [TGG07], where the Bernoulli probabilities πk are generated as products of iid

Beta(α,1) random variables : π1 = ν1, πk =
k
∏
i=1

νi where νi
iid∼ Beta(α,1). In particular,

we can view our construction as a generalization of the IBP stick-breaking, where the

stick-breaking weights are multiplied with independent Exp(c) random variables, with the

summation over j providing an explicit Poissonization.

3.2.2 Truncation analysis

The variational algorithm requires a truncation level for the number of atoms for tractabil-

ity. Therefore we need to analyze the closeness between the marginal distributions of the

data drawn from the full prior and the truncated prior, with the stick-breaking prior weights

integrated out. Our construction leads to a simpler truncation analysis if we truncate the

number of rounds (indexed by i in the outer sum), which automatically truncates the atoms to

a finite number. For this analysis, we will use the stick-breaking gamma process as the base

measure of a Poisson likelihood process, which we denote by PP; this is precisely the model

for which we develop variational inference in the next section. If we denote the gamma

process as G = ∑
∞
k=0 gkδωk , with gk as the recursively constructed weights, then PP can

be written as PP = ∑
∞
k=0 pkδωk where pk = Poisson(gk). Under this model, we can obtain

the following result, which is analogous to error bounds derived for other nonparametric

models [IJ01, DVMGT09, PCB11] in the literature.
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Theorem 2. Let N samples X = (X1, ..,XN) be drawn from PP(G). If G ∼ ΓP(c,G0), the

full gamma process, then denote the marginal density of X as m∞(X). If G is a gamma

process truncated after R rounds, denote the marginal density of X as mR(X). Then

1
4

∫
|m∞(X)−mR(X)|dX≤ 1− exp

{
−Nγ

α

c

(
α

1+α

)R
}
.

Proof. The starting intuition is that if we truncate the process after R rounds, then the error

in the marginal distribution of the data will depend on the probability of positive indicator

values appearing for atoms after the Rth round in the infinite version. Combining this with

ideas analogous to those in [IJ00] and [IJ01], we get the following bound for the difference

between the marginal distributions:

1
4

∫
|m∞(X)−mR(X)|dX≤ P

{
∃(k, j),k >

R

∑
r=1

Cr,1≤ n≤ N s.t. Xn(ωk j)> 0

}
.

Since we have a Poisson likelihood on the underlying gamma process, this probability can

be written as

P(·) = 1−E

E

(

∞

∏
r=R+1

Cr

∏
j=1

e−πr j

)N ∣∣∣∣∣Cr


 ,

where πr j = G(r)
r j V (r)

r j ∏
r
l=1(1−V (l)

r j ). We may then use Jensen’s inequality to bound it as

follows:

P(·)≤ 1− exp

[
N

∞

∑
r=R+1

E

{
Cr

∑
j=1

log(e−πr j)

}]

= 1− exp

[
Nγ

1
c

∞

∑
r=R+1

(
α

1+α

)r
]

= 1− exp

{
−Nγ

α

c

(
α

1+α

)R
}
.
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3.3 Variational Inference

As discussed in Section 3.2.2, we will focus on the infinite Gamma-Poisson model,

where a gamma process prior is used in conjunction with a Poisson likelihood function.

When integrating out the weights of the gamma process, this process is known to yield a

nonparametric prior for sparse, infinite count matrices [Tit08]. We note that our approach

should easily be applicable to other models involving gamma process priors.

3.3.1 The Model

To effectively perform variational inference, we re-write G as a single sum of weighted

atoms, using indicator variables {dk} for the rounds in which the atoms occur, similar to

[PZW+10]:

G =
∞

∑
k=1

Eke−Tkδωk , (3.4)

where Ek
iid∼ Exp(c), Tk

ind∼ Gamma(dk,α),
∞

∑
k=1

1(dk=r)
iid∼ Poisson(γ), ωk

iid∼ 1
γ
H0. We

also place gamma priors on α,γ and c : α ∼ Gamma(a1,a2),γ ∼ Gamma(b1,b2), c ∼

Gamma(c1,c2). Denoting the data, the latent prior variables and the model hyperpa-

rameters by D ,Π and Λ respectively, the full likelihood may be written as P(D ,Π|Λ) =

P(D ,Π−G|ΠG,Λ) · P(ΠG|Λ) where P(ΠG|Λ) = P(α) · P(γ) · P(c) · P(d|γ) ·
K
∏

k=1
P(Ek|c) ·

P(Tk|dk,α) ·
N
∏

n=1
P(znk|Ek,Tk). We truncate the infinite gamma process to K atoms, and take

N to be the total number of datapoints. Π−G denotes the set of the latent variables excluding

those from the Poisson-Gamma prior; for instance, in factor analysis for topic models, this

contains the Dirichlet-distributed factor variables (or topics).

From the Poisson likelihood, we have znk|Ek,Tk ∼ Poisson(Eke−Tk), independently for

each n. The distributions of Tk and d involve the indicator functions on the round indicator
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variables dk:

P(Tk|dk,α) =
ανk(0)

∏
r≥1

Γ(r)1(dk=r)
T νk(1)

k e−αTk ,

where νk(s) = ∑
r≥1

(r− s)1(dk=r). We use the same weighting factors in our distribution on

d as [PCB11]. See [PCB11] for a discussions on how to approximate these factors in the

variational algorithm.

3.3.2 The Variational Prior Distribution

Mean-field variational inference involves minimizing the KL divergence between the

model posterior, and a suitably constructed variational distribution which is used as a

more tractable alternative to the actual posterior distribution. To that end, we propose a

fully-factorized variational distribution on the Poisson-Gamma prior as follows:

Q = q(α) ·q(γ) ·q(c) ·
K

∏
k=1

q(Ek) ·q(Tk) ·q(dk) ·
N

∏
n=1

q(znk),

where q(Ek)∼ Gamma(ξ́k, έk), q(Tk)∼ Gamma(úk, ύk), q(α)∼ Gamma(κ1,κ2),

q(γ)∼ Gamma(τ1,τ2), q(c)∼ Gamma(ρ1,ρ2), q(znk)∼ Poisson(λnk), with

q(dk) ∼ Mult(ϕk). Instead of working with the actual KL divergence between the full

posterior and the factorized proxy distribution, variational inference maximizes what is

canonically known as the evidence lower bound (ELBO), a function that is the same as the

KL divergence up to a constant. In our case it may be written as L = EQ logP(D ,Π|Λ)−

EQ logQ. We omit the full representation here for brevity.

3.3.3 The Variational Parameter Updates

Since we are using exponential family variational distributions, we leverage the closed

form variational updates for exponential families wherever we can, and perform gradient

ascent on the ELBO for the parameters of those distributions which do not have closed form
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updates. We list the updates on the distributions of the prior below. The closed-form updates

for the hyperparameters in q(Ek),q(α),q(c) and q(γ) are as follows:

ξ́k =
N

∑
n=1

EQ(znk)+1, έk = E(c)+N×EQ
[
e−Tk

]
,

κ1 =
K

∑
k=1

∑
r≥1

rϕk(r)+a1, κ2 =
K

∑
k=1

EQ(Tk)+a2,

ρ1 = c1 +K, ρ2 =
K

∑
k=1

EQ(Ek)+ c2,

τ1 = b1 +K, τ2 = ∑
r≥1

{
1−

K

∏
k=1

r−1

∑
ŕ=1

ϕk(ŕ)

}
+b2.

The updates for the multinomial probabilities in q(dk) are given by:

ϕk(r) ∝ exp{rEQ(logα)− logΓ(r)+(r−1)EQ(logTk)−ζ ·∑
i6=k

ϕi(r)

−EQ(γ)
r

∑
j=2

∏
k′ 6=k

j−1

∑
r′=1

ϕk′ (r
′
)}.

The variational distribution q(Tk) does not lend itself to closed-form analytical updates,

so we perform gradient ascent on the evidence lower bound. The variational updates

for q(znk) and for the variational distributions on the latent variables in Π−G are model

dependent, and require some approximations for the factor analysis case. See [RK15] for

details.

3.4 Other Algorithms

Here we briefly describe the two primary competing algorithms we developed based

on constructions of the Gamma process: a variational inference algorithm from the naïve

construction, and a Markov chain Monte Carlo sampler based on our construction.
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3.4.1 Naïve Variational Inference

We derive a variational inference algorithm from a simpler construction of the Gamma

process, where we multiply the stick-breaking construction of the Dirichlet process by a

Gamma random variable. The construction can be written as:

G = G0

∞

∑
i=1

Vi

i−1

∏
j=1

(1−Vj)δωi,

where G0 ∼ Gamma(α,c), Vi
iid∼ Beta(1,α), ωi

iid∼ H0.

We use an equivalent form of the construction that is similar to the one used above :

G = G0

∞

∑
k=1

Vke−Tkδωk ,

where G0 ∼ Gamma(α,c), Vk
iid∼ Beta(1,α), Tk

ind∼ Gamma(k−1,α), ωi
iid∼ H0.

As before, we place gamma priors on α and c : α ∼Gamma(a1,a2),c∼Gamma(c1,c2).

The closed-form coordinate ascent updates for G0,α and c and the gradient ascent updates

for {Vk,Tk} are detailed in the supplementary.

3.4.2 The MCMC Sampler

As a baseline, we also derive and compare the variational algorithm with a standard

MCMC sampler for this model. We use the construction in (3.4) for sampling from the

model. To avoid inferring the latent variables in all the atom weights of the Poisson-Gamma

prior, we use Monte Carlo techniques to integrate them out, as in [PZW+10]. This affects

posterior inference for the indicators znk, the round indicators d and the hyperparameters

c and α . The posterior distribution for γ is closed form, as are those for the likelihood latent

variables in Π−G. The complete updates are described in the supplementary.
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3.5 Evaluation

In our experiments we focus on the problem of learning latent topics in document corpora.

Given an observed set of counts of vocabulary words in a set of documents, represented by

say a V ×N count matrix, where V is the vocabulary size and N the number of documents,

we aim to learn K latent factors and their vocabulary realizations using Poisson factor

analysis. In particular, we model the observed corpus count matrix D as D∼ Poi(ΦI), where

the V ×K matrix Φ models the factor loadings, and the K×N matrix I models the actual

factor counts in the documents.

We implemented and analyzed the performance of three variational algorithms corre-

sponding to four different priors on I: the Poisson-gamma process prior from this chapter

(abbreviated hereafter as VGP), a Poisson-gamma prior using the naïve construction of the

gamma process (VnGP), the Bernoulli-beta prior from [PCB11] (VBP) and the IBP prior

from [DVMGT09] (VIBP), along with the MCMC sampler mentioned above (SGP). For the

Bernoulli-beta priors we modeled I as I =W ◦Z as in [PCB11], where the nonparametric

priors are put on Z and a vague Gamma prior is put on W . For the VGP and SGP models we

set I = Z. In addition, for all four algorithms, we put a symmetric Dirichlet(β1, . . . ,βV ) prior

on the columns of Φ. We added corresponding variational distributions for the variables in

the collection denoted as Π−G above. We use held-out per-word test log-likelihoods and

times required to update all variables in Π in each iteration as our comparison metrics, with

80% of the data used for training. We used the same likelihood metric as [ZC12], with the

samples replaced by the expectations of the variational distributions.

Synthetic Data. As a warm-up, we consider the performances of VGP and SGP on

some synthetic data generated from this model. We generate 200 weighted atoms from

the gamma prior using the stick-breaking construction, and use the Poisson likelihood

to generate 3000 values for each atom to yield the indicator matrix Z. We simulated a
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vocabulary of 200 terms, generated a 200×200 factor-loading matrix Φ using symmetric

Dirichlet priors, and then generated D = Poi(ΦZ). For the VGP and VnGP, we measure

the test likelihood after every iteration and average the results across 10 random restarts.

These measurements are plotted in fig.3.1a. As shown, VGP’s measured heldout likelihood

converges within 10 iterations. The SGP traceplot shows the first thirty heldout likelihoods

measured after burn-in. Per-iteration times were 15 seconds and 2.36 minutes for VGP (with

K = 125) and SGP respectively. The SGP learned K online, with values oscillating around

50. SNBP refers to the Poisson-Gamma mixture (“NB process”) sampler from [ZC12]. Its

traceplot shows the first 30 likelihoods measured after 1000 burn-in iterations. We see that

it performed similarly to our algorithms, though slightly worse.

Real data. We used a similar framework to model the count data from the KOS3, NIPS4,

Psychological Review (PsyRev)5, and New York Times3 corpora. The vocabulary sizes

are 2566, 13649, 6906 and 100872 respectively, while the document counts are 1281, 1740,

3430 and 300000 respectively. For each dataset, we ran all three variational algorithms with

10 random restarts each, measuring the held-out log-likelihoods and per-iteration runtimes

for different values of the truncation factor K. The learning rates for gradient ascent updates

were kept on the order of 10−4 for both VGP and VBP, with 5 gradient steps per iteration. A

representative subset of results is shown in figs.3.1b through 3.1f.

We used vague gamma priors on the hyperparameters α,γ and c in the variational

algorithms, and improper (1) priors for the sampler. We found the test likelihoods to

be independent of these initializations. The results for the variational algorithms were

dependent on the Dirichlet prior β on Φ, as noted in fig.3.1b. We therefore used the

learned test likelihood after 100 iterations as a heuristic to select β . We found the three

3https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
4http://www.stats.ox.ac.uk/ teh/data.html
5http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: Plots of held-out test likelihoods and per-iteration running times (best viewed in
color). Plots (d), (e) and (f) are for PsyRev, KOS, and NYT respectively. Plots (b) and (c)
are for the PsyRev dataset. Algorithm trace colors are common to plots. See text for full
details.

variational algorithms to attain very similar test likelihoods across all four datasets after a

few hours of CPU time, with the VGP and VBP having a slight edge over the VIBP. The

sampler somewhat unexpectedly did not attain a competitive score for any dataset, unlike the

synthetic case. For instance, as shown in fig.3.1c, it oscillated around −7.45 for the PsyRev

dataset, whereas the variational algorithms attained −7.23. For comparison, the NB process

sampler from [ZC12] attains −7.25 each iteration after 1000 iterations of burn-in. VnGP

was the worst performer, with stable log-likelihood of −7.85. Also as seen in fig.3.1c, VGP

was faster to convergence (in less than 10 iterations in ∼5 seconds) than VIBP and VBP

(∼ 50 iterations each). The test log-likelihoods after a few hours of runtime were largely
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independent of the truncation K for the three variational algorithms. Behavior for the other

datasets was similar.

Among the three variational algorithms, the VIBP scaled best for small to medium

datasets as a function of the truncation factor due to all updates being closed-form, in spite

of having to learn the additional weight matrix W . The VGP running times were competitive

for small values of K for these datasets. However, in the large NYT dataset, VGP was orders

of magnitude faster than the Bernoulli-beta algorithms (note the log-scale in fig.3.1f). For

example, with a truncation of 100 atoms, VGP took around 45 seconds per iteration, whereas

both VIBP and VBP took more than 3 minutes. The VBP scaled poorly for all datasets, as

seen in figs.3.1d through 3.1f. The reason for this is three-fold: learning the parameters for

the additional matrix W which is directly affected by dimensionality (also the reason for

VIBP being slow for NYT dataset), gradient updates for two variables (as opposed to one

for VGP) and a Taylor approximation required for these gradient updates (see [PCB11]).

The sampler SGP required around 7 minutes per iteration for the small datasets and an hour

and 40 minutes on average for NYT.

To summarize, we found the VGP to post running times that are competitive with the

fastest algorithm (VIBP) in small to medium datasets, and outperform the other methods

completely in the large NYT dataset, all the while providing similar accuracy compared

to the other variational algorithms, as measured by held-out likelihood. It was also the

fastest to converge, typically taking less than 15 iterations. Compared with SGP, our

variational method is substantially faster (particularly on large-scale data) and produces

higher likelihood scores on real data.
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3.6 Conclusion

We have described a novel stick-breaking representation for gamma processes and used

it to derive a variational inference algorithm. This algorithm has been shown to be far

more scalable for large datasets than related variational algorithms, while attaining similar

accuracy and outperforming sampling-based methods. We expect that recent improvements

to variational techniques can also be applied to our algorithm, potentially yielding even

further scalability.
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3.7 Proof Details

3.7.1 Variational inference details

To effectively perform variational inference, we re-write G as a single sum of weighted

atoms, using indicator variables {dk} for the rounds in which the atoms occur, similar to

[PZW+10]. We re-state our construction of the gamma CRM that we use for the inference

algorithms:

G =
∞

∑
k=1

Eke−Tkδωk , (3.5)

where Ek
iid∼ Exp(c), Tk

ind∼ Gamma(dk,α),
∞

∑
k=1

1(dk=r)
iid∼ Poisson(γ), ωk

iid∼ 1
γ
H0. Here

dk denotes the round in which atom k appears, and may be defined as

dk
∆
= 1+

∞

∑
i=1

I

{
i

∑
j=1

C j < k

}
. Conversely, given the round indicators d = {dk}, we can

recover the round-specific atom counts as Ci =
∞

∑
k=1

I(dk = i).

We place gamma priors on α,γ and c : α ∼ Gamma(a1,a2),γ ∼ Gamma(b1,b2),c ∼

Gamma(c1,c2). Denoting the data, the latent prior variables and the model hyperparameters

by D ,Π and Λ respectively, the full likelihood may be written as P(D ,Π|Λ) =

P(D ,Π−G|ΠG,Λ) ·P(α) ·P(γ) ·P(c) ·P(d|γ) ·
K

∏
k=1

P(Ek|c) ·P(Tk|dk,α) ·
N

∏
n=1

P(znk|Ek,Tk),

with Π−G denoting the set of the latent variables excluding those from the Poisson-Gamma

prior. The distribution of d is given by P(d|γ) =
∞

∏
r=1

γ
∑k1(dk=r)(

∑k1(dk=r)
)
!
· exp

{
−γI

(
∞

∑
r′=r

∞

∑
k=1

1(dk=r′) > 0

)}
.

See [PCB11] for discussions on how to approximate some of these factors in the variational

algorithm.

3.7.1.1 The Variational Prior Distribution

Mean-field variational inference involves minimizing the KL divergence between the

model posterior, and a suitably constructed variational distribution which is used as a
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more tractable alternative to the actual posterior distribution. To that end, we propose a

fully-factorized variational distribution on the Poisson-Gamma prior as follows:

Q = q(α) ·q(γ) ·q(c) ·
K

∏
k=1

q(Ek) ·q(Tk) ·q(dk) ·
N

∏
n=1

q(znk),

where q(Ek)∼ Gamma(ξ́k, έk), q(Tk)∼ Gamma(úk, ύk), q(α)∼ Gamma(κ1,κ2),

q(γ)∼ Gamma(τ1,τ2), q(c)∼ Gamma(ρ1,ρ2), q(znk)∼ Poisson(λnk),

while q(dk)∼Mult(ϕk). The evidence lower bound (ELBO) may therefore be written as

L = EQ logP(D ,Π|Λ)−EQ logQ, with the relevant distributions described above.

3.7.1.2 Variational parameter updates

We first re-state the closed form updates for the variational distributions on the prior

variables. The updates for the hyperparameters in q(Ek),q(α),q(c) and q(γ) are as follows:

ξ́k =
N

∑
n=1

EQ(znk)+1, έk = E(c)+N×EQ
[
e−Tk

]
,

κ1 =
K

∑
k=1

∑
r≥1

rϕk(r)+a1, κ2 =
K

∑
k=1

EQ(Tk)+a2,

ρ1 = c1 +K, ρ2 =
K

∑
k=1

EQ(Ek)+ c2,

τ1 = b1 +K, τ2 = ∑
r≥1

{
1−

K

∏
k=1

r−1

∑
ŕ=1

ϕk(ŕ)

}
+b2.

The updates for the multinomial probabilities in q(dk) are given by:

ϕk(r) ∝ exp{rEQ(logα)− logΓ(r)+(r−1)EQ(logTk)−ζ ·∑
i6=k

ϕi(r)

−EQ(γ)
r

∑
j=2

∏
k′ 6=k

j−1

∑
r′=1

ϕk′ (r
′
)}.

61



Next we describe the gradient ascent updates on q(Tk) and the updates on q(Π−G) and q(znk).

The gradients for the two variational parameters in q(Tk) are:

∂L

∂ úk
= ∑

r≥1
(r−1)ϕk(r)ψ

′
(úk)−

EQ(α)

ύk
−

N

∑
n=1

EQ(Ek)

(
ύk

ύk +1

)úk

· log
(

ύk

ύk +1

)
−

N

∑
n=1

EQ(znk)
1
ύk
− (úk−1)ψ

′
(úk)−1,

∂L

∂ ύk
=−∑

r≥1
(r−1)ϕk(r)

1
ύk

+EQ(α)
úk

(ύk)
2 −

N

∑
n=1

EQ(Ek)úk
ύk

úk−1

(ύk +1)úk+1

+
N

∑
n=1

EQ(znk)
úk

(ύk)
2 −

1
ύk

.

For the topic modeling problems, we model the observed vocabulary-vs-document

corpus count matrix D as D ∼ Poi(ΦZ), where the V ×K matrix Φ models the factor

loadings, and the K×N matrix Z models the actual factor counts in the documents. We put

the K−truncated Poisson-Gamma prior on Z, and put a Dirichlet(β1, . . . ,βV ) prior on the

columns of Φ.

The variational distribution Q consequently gets a Dirichlet(Φ|{b}k) distribution multi-

plied to it, where b = (b1, . . . ,bV ) are the variational Dirichlet hyperparameters. This setup

does not immediately lend itself to closed form updates for the b-s, so we resort to gradient

ascent. The gradient of the ELBO with respect to each variational hyperparameter is

∂L

∂bvk
=−EQ(znk) ·

∑v bvk−bvk

(∑v bvk)
2 +ψ

′
(bvk) ·

(
βv−bvk +∑

n
dvn

)
+ψ

′
(∑

v
bvk)×(

∑
v

bvk−V −βv−∑
n

dvn +1
)
.

In practice however we found a closed-form update facilitated by a simple lower bound on

the ELBO to converge faster. We describe the update here. First note that the part of the

ELBO relevant to a potential closed form variational update of φvk can be written as

L =−φvk ·∑
n
EQ(znk)+∑

n
dvn · logφvk + · · · ,
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which can then be lower bounded as

L ≥ logφvk ·
(
−∑

n
EQ(znk)+∑

n
dvn

)
+ · · · .

This allows us to analytically update bvk as bvk =−∑nEQ(znk)+∑n dvn +βv. This frees us

from having to choose appropriate corpus-specific initializations and learning rates for the

Φs.

A similar lower bound on the ELBO allows us to update the variational parameters of

q(znk) as λnk =−1−∑v dvn +EQ(logEk)+EQ(Tk).

3.7.2 Variational inference using denormalized DP construction

We describe our algorithm derived from the simpler construction of the Gamma process

by multiplying the stick-breaking construction of the Dirichlet process by a Gamma random

variable. The construction can be written as:

G = G0

∞

∑
i=1

Vi

i−1

∏
j=1

(1−Vj)δωi,

where G0 ∼ Gamma(α,c), Vi
iid∼ Beta(1,α), ωi

iid∼ H0.

We use an equivalent form of the construction that is similar to the one used above :

G = G0

∞

∑
k=1

Vke−Tkδωk ,

where G0 ∼ Gamma(α,c), Vk
iid∼ Beta(1,α), Tk

ind∼ Gamma(k−1,α), ωi
iid∼ H0.

As before, we place gamma priors on α and c : α ∼ Gamma(a1,a2),c∼ Gamma(c1,c2).

Our variational distribution for this prior is as follows:

Q = q(G0) ·q(α) ·q(c) ·
K

∏
k=1

q(Vk) ·q(Tk) ·
N

∏
n=1

q(znk),

where q(G0)∼ Gamma(g1,g2), q(Vk)∼ Beta(νk1,νk2), q(Tk)∼ Gamma(tk1, tk2),

q(α)∼ Gamma(κ1,κ2), q(c)∼ Gamma(ρ1,ρ2), q(znk)∼ Poisson(λnk).
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The closed form updates for the variational hyperparameters for α,G0, and c are as

follows:

κ1 = a1, κ2 = a2−EQ(logG0)−∑
k
EQ(log(1−Vk)+∑

k
EQ(Tk),

g1 = α +
N

∑
n=1

∑
k
EQ(znk), g2 = N ·∑

k
EQ(Vke−Tk),

ρ1 = c1, ρ2 = c2 +EQ(G0).

The updates for q(Vk) and q(Tk) are not closed form, necessitating gradient ascent steps;

the gradients for the variational parameters in q(Vk) are:

∂L

∂νk1
= ψ

′
(νk1 +νk2)

[
νk1 +νk2−α−

N

∑
n=1

EQ(znk)−1

]

+ψ
′
(νk1) ·

[
N

∑
n=1

EQ(znk)−νk1 +1

]
−N ·EQ

(
G0e−Tk

) νk2

νk1 +νk2
,

∂L

∂νk2
= ψ

′
(νk1 +νk2)

[
νk1 +νk2−α−

N

∑
n=1

EQ(znk)−1

]
−N ·EQ

(
G0e−Tk

) νk1

νk1 +νk2
+ψ

′
(νk2) · [α−νk2] .

The gradients for the variational parameters in q(Tk) are:

∂L

∂ tk1
= 1+ψ

′
(tk1) · (k− tk1−1)− log tk2−

1
tk2

(
α +

N

∑
n=1

EQ(znk)

)

−N ·EQ(G0Vk) ·
∂

∂ tk1

(
tk2

tk2 +1

)tk1

,

∂L

∂ tk2
=

tk1

t2
k2
(α +

N

∑
n=1

EQ(znk))−
1

tk2
(k−1)−N ·EQ(G0Vk) ·

∂

∂ tk2

(
tk2

tk2 +1

)tk1

.

3.7.3 Markov chain Monte Carlo sampling details

We re-write the construction of the Poisson-Gamma prior:

G =
∞

∑
k=1

Eke−Tkδωk ,
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Ek
iid∼ Exp(c), Tk

ind∼ Gamma(dk,α),
∞

∑
k=1

1(dk=r)
iid∼ Pois(γ), ωk

iid∼ 1
γ
H0. We put im-

proper priors on α and c, and a noninformative Gamma prior on γ . The indicator counts are

given by Znk ∼ Pois(gk), where gk =Eke−Tk . To avoid sampling the atom weights Ek and Tk,

we integrate them out using Monte Carlo techniques in the sampling steps for the prior.

3.7.3.1 Sampling the round indicators

The conditional posterior for the round indicators d = {dk}K
k=1 can be written as

p
(

dk = i|{dl}k−1
l=1 ,{Znk}N

n=1,α,c,γ
)

∝ p
(
{Znk}N

n=1|dk = i,α,c
)

p
(

dk = i|{dl}k−1
l=1

)
.

For the first factor, we collapse out the stick-breaking weights and approximate the

resulting integral using Monte-Carlo techniques as follows:

p
(
{Znk}N

n=1|dk = i,α,c
)
=
∫
[0,∞]i

N

∏
n=1

Pois(Znk|gk)dG

≈ 1
S

S

∑
s=1

N

∏
n=1

Pois(Znk|g
(s)
k ),

where g(s)k = E(s)
k e−T (s)

k
d
=V (s)

k,dk
∏

dk
l=1(1−V (s)

kl ). Here S is the number of simulated samples

from the integral over the stick-breaking weights. We take S = 1000 in our experiments.

The second factor is the same as [PZW+10]:

p(dk = d|γ,{dl}k−1
l=1 ) =

0 if d < dk−1
1−∑

Dk−1
t=1 Pois(t|γ)

1−∑
Dk−1−1
t=1 Pois(t|γ)

if d = dk−1(
1− 1−∑

Dk−1
t=1 Pois(t|γ)

1−∑
Dk−1−1
t=1 Pois(t|γ)

)
(1−Pois(0|γ))Pois(0|γ)h−1

if d = dk−1 +h

Here Dk
∆
=

k
∑
j=1

I(d j = dk). Normalizing the product of these two factors over all i is infeasible,

so we evaluate this product for increasing i till it drops below 10−2, and normalize over the

gathered values.
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3.7.3.2 Sampling the factor variables

Here we consider the Poisson factor modeling scenario that we use to model vocabulary-

document count matrices. Recall that a V ×N count matrix D is modeled as D = Poi(ΦZ),

where the V ×K matrix Φ models the factor loadings, and the K×N matrix Z models

the actual factor counts in the documents.. We put the Poisson-Gamma prior on Z and

symmetric Dirichlet(β1, . . . ,βV ) priors on the columns of Φ. The sampling steps for Φ and

Z are described next. Sampling Φ.

First note that the elements of the count matrix are modeled as dvn = Poi
(
∑

K
k=1 φvkzkn

)
,

which can be equivalently written as dvn = ∑
K
k=1 dvkn, dvkn = Poi(φvkzkn). Standard

manipulations then allow us to sample the dvkn’s from Mult(dvn; pv1n, . . . , pvKn) where

pvkn = φvkzkn/∑
K
k φvkzkn.

Now we have φk ∼ Dirichlet(β1, . . . ,βV ). Using standard relationships between Pois-

son and multinomial distributions, we can derive the posterior distribution of the φk’s as

Dirichlet(β1 +d1k, . . . ,βV +dV k), where dvk = ∑
N
n=1 dvkn. Sampling Z.

In our algorithm we sample each znk conditioned on all the other variables in the model;

therefore the conditional posterior distribution can be written as

p(znk|D,Φ,Zn,−k,d,α,c,γ)

= p(D|Zn,Φ)p(znk|d,α,c,Zn,−k)

=
V

∏
v=1

Poi

(
dvn|

K

∑
k=1

φvkzkn

)
p(Zn|d,α,c)

p(Zn,−k|d,α,c)
.

The distributions in both the numerator and denominator of the second factor can be sampled

from using the Monte Carlo techniques described above, by integrating out the stick-breaking

weights.
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3.7.3.3 Sampling hyperparameters

As mentioned above, we put a noninformative Gamma prior on γ and improper (1) priors

on α and c. The posterior sampling steps are described below: Sampling γ .

Given the round indicators d = {dk}, we can recover the round-specific atom counts

as described above. Then the conjugacy between the Gamma prior on γ and the Poisson

distribution of Ci gives us a closed form posterior distribution for γ: p(γ|d,Z,α,c) =

Gamma(γ|a+∑
K
i=1Ci,b+dK). Sampling α .

The conditional posterior distribution of α may be written as:

p(α|Z,d,c) ∝ p(α)
N

∏
n=1

K

∏
k=1

p(Z|d,α,c).

We calculate the posterior distribution of Z using Monte Carlo techniques as described above.

Then we discretize the search space for α around its current values as (αcur + t∆α)Ut=L, where

the lower and upper bounds L and U are chosen so that the unnormalized posterior falls

below 10−2. The search space is also clipped below at 0. α is then drawn from a multinomial

distribution on the search values after normalization. Sampling c.

We sample c in exactly the same way as α . We first write the conditional posterior as

p(c|Z,d,α) ∝ p(c)
N

∏
n=1

K

∏
k=1

p(Z|d,α,c).

The search space (c > 0) is then discretized using appropriate upper and lower bounds as

above, and Z is sampled using Monte Carlo techniques. c is then drawn from a multinomial

distribution on the search values after normalization.
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Chapter 4: Robust Monte Carlo Sampling using Riemannian

Nosé-Poincaré Hamiltonian Dynamics

Bayesian inference in high dimensional models often requires one to draw samples

from posterior distributions of variables which cannot be computed in closed form. Monte

Carlo techniques are the primary tool in one’s arsenal for this purpose; they allow one to

draw samples from a sequence of probability distributions that form a Markov chain with

the target distribution as its stationary distribution. The Hamiltonian Monte Carlo (HMC)

technique, first proposed in [DKPR87] as “Hybrid Monte Carlo”, improves on this by using

ideas from statistical physics to avoid the random walk behavior that normally arises in these

Markov chains. HMC sets the target distribution as the “potential energy” of the simulated

system, and uses auxiliary “momentum” variables to augment the potential with a kinetic

energy term. Hamiltonian dynamics are then used to create a sampler that conserves this

quantity, and the samples generated by this technique are provably less correlated among

themselves which leads to faster convergence to the target distribution. The dynamics are

usually specified with a set of differential equations which then have to be discretized;

however one can derive discrete-time numeric integrators [Nea10, LR05], usually called

“leapfrog” methods, that preserve the detailed balance and time reversibility properties of

the continuous-time formulations.

In the statistical physics literature, dynamics-based techniques are used to sample from a

canonical ensemble, where the possible states of the system remain at a constant temperature.
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One technique that has been used for this purpose uses the Nosé Hamiltonian [Nos84], which

generates sequence of states from the canonical ensemble under the standard ergodicity

assumptions. However, as noted in [BLL99], one has to rescale the time variable in this

system in order to derive evenly spaced out samples. The Nosé-Hoover system [Hoo85]

proposes a change of variables that allows one to derive evenly spaced samples from the

canonical ensemble, however the resulting system is not Hamiltonian. In particular, the

numeric integrator one uses to solve the system of differential equations for this formulation

is not symplectic, in that it does not preserve the symplectic geometry of the original

manifold defined by the Hamiltonian system. Symplecticness being in general a stronger

property than volume preservation, [BLL99] proposed a Hamiltonian which can be used to

derive a numeric integrator that samples from a fixed temperature canonical ensemble, and

is also symplectic and time-reversible.

Although Monte Carlo techniques constructed from these formulations can be used to

sample from Markov chains that converge to the desired target distributions, a difficulty

arises when working with very large-scale datasets. Here, due to computational limitations,

one often cannot compute the gradient of the target likelihood (potential energy) over the

entire dataset in a reasonable amount of time. Instead, at every iteration one computes a

stochastic gradient, which is the gradient evaluated over a randomly selected “mini-batch”

of data [RM51, WT11]. This allows the algorithms to scale to massive datasets commonly

seen in machine learning, while preserving the desired theoretical properties. Recent work

in this vein includes stochastic gradient Langevin dynamics [WT11], stochastic gradient

Hamiltonian Monte Carlo [CCG14], and other variants and extensions [DFB+14, PT13].

First order Langevin dynamics methods are inherently random-walk based, whereas the

HMC methods exploit the exploration efficiencies of Hamiltonian systems to derive more

robust samplers in a stochastic setting. However, the samples are not automatically drawn
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from the canonical ensemble, an issue that was addressed in [DFB+14], where the SGNHT

algorithm was proposed. The authors do show the efficacy of the sampler in the face of

stochastic noise; but as mentioned above, the Nosé-Hoover system is not Hamiltonian,

which can have adverse effects on the exploration efficiency and convergence speed of any

MCMC algorithm derived using its dynamics.

Therefore one would want a technique that samples from the canonical ensemble, without

sacrificing the advantages of Hamiltonian trajectories. Furthermore, one would also want a

stochastic version that would scale to large datasets. To that end, we propose the stochastic

gradient Nosé-Poincare Hamiltonian Monte Carlo sampler, which uses a variant of the

Hamiltonian proposed in [BLL99] that leverages Riemannian preconditioning and corrects

for the random noise from the stochastic gradients while preserving the desired properties

mentioned above. The basic idea of Riemannian adaptations, first proposed in [GC11], is

to define a Riemannian metric tensor on the parameter space and use structural cues from

the resulting manifold while traversing the Hamiltonian trajectories. This technique was

exploited in the context of sampling from a high dimensional probability simplex [PT13],

where the geometric information allows the sampler to improve upon the slow mixing

behavior exhibited by the first order Langevin dynamics on parameter spaces with a high

degree of correlation. Another advantage of locally-adaptive preconditioning is that one does

not have to worry about selecting optimal values for the “mass” matrices in Hamiltonian

samplers, an aspect such samplers tend to be highly sensitive to [GC11, BLL99]. In our

algorithm, we use Riemann tensors on the original parameter space to precondition the

momenta of both the real and extended position variables in the Nosé Hamiltonian, and show

that the resulting system samples from the canonical ensemble. We then add correction

terms to account for noise when the full gradient is replaced by the stochastic gradient, and

use the Fokker-Planck equation to prove that the dynamics conserve the desired energy.
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Finally, we apply our algorithm to parameter estimation in synthetic settings and a high

dimensional topic modeling scenario using the Poisson factor analysis framework [ZC15]

and the exact Gamma process construction of [RK15].

4.1 Preliminaries

4.1.1 Monte Carlo using Hamiltonian Dynamics

Let us denote the model parameters by θθθ . Suppose we want to generate samples from

the posterior distribution of θθθ given data X, p(θθθ |X). In a Hamiltonian setting, we take the

joint log likelihood of the data and the parameters, L (θθθ) = log p(X|θθθ)+ log p(θθθ), and add

to it a term involving auxiliary “momentum” variables p , to get the Hamiltonian

H(θθθ ,p) =−L (θθθ)+
1
2

pT M−1p. (4.1)

The quantity can be interpreted in a physical sense as the sum of the potential energy L (θθθ)

and the kinetic energy 1
2pT M−1p, where M−1 acts as the canonical mass matrix. The joint

distribution of θθθ and p is then defined as p(θθθ ,p) ∝ exp(−H(θθθ ,p)). It is easily seen that

we can integrate out p from p(θθθ ,p) to get the desired posterior distribution on θθθ .

The dynamics of this system are governed by Hamilton’s equations of motion

θ̇ =
∂

∂p
H(θθθ ,p), ṗ =− ∂

∂θθθ
H(θθθ ,p),

where we have denoted the time derivatives with the dot accent, i.e. θ̇ = dθθθ/dt. In our

formulation the dynamics are

θ̇ = M−1p, ṗ = ∇L (θθθ).

These equations are time-reversible, and the dynamics conserve the total energy and are

symplectic as well. These continuous-time equations are discretized to give “leapfrog”

algorithms which are used for Monte Carlo simulations along with Metropolis-Hastings

correction steps. For details see [Nea10, LR05].
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4.1.2 Riemann Adjusted Hamiltonian Monte Carlo

The scaling issues associated with standard Hamiltonian Monte Carlo algorithms can be

partially alleviated using Riemannian preconditioning. We first define the Hamiltonian on a

Riemann manifold defined by a positive definite metric G(θθθ). Trajectories incorporating

information from this manifold can be simulated by simply defining the kinetic energy in

terms of the metric tensor [GC11], which leads to the following Hamiltonian:

Hgc(θθθ ,p) =−L (θθθ)+
1
2

pT G(θθθ)−1p+
1
2

log
{
(2π)D|G(θθθ)|

}
(4.2)

where D is the dimensionality of the parameter space. The log term ensures that the

momentum variable p can be integrated out to recover the desired marginal density of θθθ .

The equations of motion in this system therefore are

θ̇ = G(θθθ)−1p, ṗ = ∇L (θθθ)− 1
2

tr
(
G(θθθ)−1

∇G(θθθ)
)
+

1
2

pT G(θθθ)−1
∇G(θθθ)G(θθθ)−1p.

To discretize this system of equations, we use the generalized leapfrog algorithm, where

a first order symplectic integrator is composed with its adjoint; the resultant second order

integrator can be shown to be both time-reversible and symplectic [LR05]. We use this

integrator to derive discretized samplers from our Nosé-Poincaré Hamiltonians in §6.2.

4.1.3 Stochastic Gradient Dynamics

For moderate datasets, the gradient of the log-likelihood in the dynamics above can be

evaluated over the entire dataset. However, for large datasets, doing so in every iteration

becomes prohibitively expensive. The most common way around this problem is to replace

the full gradient by one evaluated over a random “mini-batch” of the dataset, a technique

inspired by [RM51]. The approximate gradient of the log-likelihood can be written as

∇L̃ (θθθ) =
|N|
|Ñ| ∑x∈Ñ

∇ log p(x|θθθ)+∇ log p(θθθ),
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where N denotes the entire dataset, and Ñ denotes a random mini-batch. Monte Carlo

samplers using stochastic gradients have been proposed for first order Langevin dynamics

[WT11, PT13], as well as for Hamiltonian systems using second order Langevin dynamics

[CCG14].

Another feature of these algorithms is the removal of a Metropolis-Hastings correction

step, as that would require very expensive computations over the entire dataset. Instead, a

decaying sequence of stepsizes {εt} satisfying ∑
t

εt = ∞ and ∑
t

ε2
t < ∞ is used, for which

the Markov chain of distributions can be proved to have the desired target as its equilibrium

distribution.

4.2 Riemannian Nosé-Poincaré Dynamics

4.2.1 The Deterministic Case

The Nosé-Poincaré Hamiltonian proposed in [BLL99] can be written as

H(θθθ ,p,s,q) = s
(
−L (θθθ)+

1
2

(p
s

)T
M−1 p

s
+

q2

2Q
+gkT logs−H0

)
. (4.3)

Here k is Boltzmann’s constant, T is the system temperature, g is equal to the number

of degrees of freedom of the system. s is an extended position variable with momentum

q and associated mass Q, as introduced by [Nos84]. s acts as the time-scaling function

in a Poincaré transformation, which allows us to preserve the dynamics of the original

Hamiltonian upto the time transformation.

4.2.1.1 The Riemann augmentation

As mentioned previously, the dynamics of Hamiltonian systems are highly sensitive to

the values of the mass matrices, in this case M and Q. To take advantage of locally-adaptive

walks on the Riemann manifold, we replace the mass matrices in (4.3) by a metric tensor
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G(θθθ) as follows:

H(θθθ ,p,s,q) = s
(
−L (θθθ)+

1
2

(p
s

)T
G(θθθ)−1 p

s
+

1
2
|G(θθθ)|−1q2

+
1+ kT

2
log
{
(2π)D|G(θθθ)|

}
+gkT logs−H0

)
.

(4.4)

The log term ensures that we can integrate out the extended momentum term q to get back

the Hamiltonian (6.2), or for that matter the one in (6.1), if one treats the curvature of the

metric-defined manifold as a constant. Note that the only constant one needs to choose in

this system is the value for T . In Bayesian inference we usually take kT = 1, though use of

this Hamiltonian is not restricted to that specific choice.

Theorem 1. The Riemannian Nosé-Poincaré Hamiltonian defined in (4.4) generates samples

from the canonical ensemble.

Proof. We will show that we can integrate out s,q from p(θθθ ,p,s,q) ∝ exp(−H(θθθ ,p,s,q))

to get p(θθθ ,p) ∝ exp(−Hgc(θθθ ,p)/kT ). The integration of s essentially follows [BLL99],

so we detail that in §A of the supplementary. With s integrated out, we are left with

p(θθθ ,p,q)∝ exp(−Hgc(θθθ ,p)/kT )exp
[
− 1

2kT |G(θθθ)|−1q2− 1
2 log

{
(2π)D|G(θθθ)|

}]
. We can

easily integrate out q from the second exponential term on the right to get the desired form

for p(θθθ ,p).

The dynamics for this system are given by

θ̇ =
(p

s

)T
G(θθθ)−1

ṗ = s
1
2

(p
s

)T
G(θθθ)−1

∇G(θθθ)G(θθθ)−1
(p

s

)
+ s

1
2

q2|G(θθθ)|−1tr
(
G(θθθ)−1

∇G(θθθ)
)

− s
2
(1+ kT )tr

(
G(θθθ)−1

∇G(θθθ)
)
+ s∇L (θθθ)

ṡ = sq|G(θθθ)|−1, q̇ =−gkT +
(p

s

)T
G(θθθ)−1 p

s
−Hinner

(4.5)

where Hinner =

(
−L (θθθ)+ 1

2

(p
s

)T G(θθθ)−1 p
s +

1
2 |G(θθθ)|−1q2 + 1+kT

2 log
{
(2π)D|G(θθθ)|

}
+gkT logs−H0

)
.
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Since we derived these equations following Hamiltonian’s laws of motion, the dynamics

are time-reversible and symplectic. Moreover, as shown above, the samples are drawn from

the fixed temperature canonical ensemble, and the use of Riemann metric tensors allows

us to exploit the geometry of the manifold. We can see that if the manifold is assumed to

have a constant curvature. i.e. ∇G(θθθ) = 0, then the dynamics above reduce to those of the

standard Nosé-Poincaré system in [BLL99].

We can also see that the Hamiltonian (4.4) is not a simple generalization of (6.2); the

only way to recover (6.2) is to set the extended position variable s = 1, q = 0 (effectively

assuming that the particles are not changing position in the extended phase space), as well

as setting T = 0. This is problematic in a physical sense, since particles do not move at

absolute zero.

4.2.1.2 The Discretized Dynamics

For Monte Carlo sampling we need to discretize this system, and to do so we use

the generalized leapfrog algorithm of [LR05]. The generalized leapfrog algorithm can

be shown to be both time-reversible and symplectic. However, since our Hamiltonian is

not separable due to the coupling of the momenta terms with the position variable θθθ , the

leapfrog equations are implicitly defined, necessitating the use of fixed point techniques or

Newton-like iterations to solve them. Let us denote ∇θiH(θθθ ,s,p,q)

=
ε

2

[
− 1

2
s
(p

s

)T
G(θθθ)−1

(
∂

∂θi
G(θθθ)

)
G(θθθ)−1

(p
s

)
+

s
2
(1+ kT )tr

{
G(θθθ)−1 ∂

∂θi
G(θθθ)

}
− s

∂

∂θi
L (θθθ)− s

q2

2
|G(θθθ)|−1tr

{
G(θθθ)−1 ∂

∂θi
G(θθθ)

}]
.
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Then, can apply this algorithm to the dynamics (4.5) to get the following discrete update

equations:

p(t+ε/2)
i = p(t)i −

ε

2
∇θiH

(
θθθ
(t),s(t),p(t+ε/2),q(t+ε/2)

)
q(t+ε/2) = q(t)− ε

2

Hinner +gkT −

(
p(t+ε/2)

s(t)

)T

G(θθθ (t))−1

(
p(t+ε/2)

s(t)

)
θ
(t+ε

i = θ
(t)
i +

ε

2

(p(t+ε/2)

s(t)

)T

G(θθθ (t))−1 +

(
p(t+ε/2)

s(t+ε)

)T

G(θθθ (t+ε))−1


i

s(t+ε) = s(t)+
ε

2

[
s(t)q(t+ε/2)|G(θθθ (t))|−1 + s(t+ε)q(t+ε/2)|G(θθθ (t+ε))|−1

]
p(t+ε)

i = p(t+ε/2)
i − ε

2
∇θ H

(
θθθ
(t+ε),s(t+ε),p(t+ε/2),q(t+ε/2)

)
q(t+ε) = q(t+ε/2)− ε

2

Hinner +gkT −

(
p(t+ε/2)

s(t+ε)

)T

G(θθθ (t+ε))−1

(
p(t+ε/2)

s(t+ε)

) .

(4.6)

The half-step (t+ε/2) updates equations for the momenta p and q are implicitly defined,

as are those for the θθθ ,s pair. The full step (t + ε) updates for p and q are explicit, since they

depend only on the half-step values of p and q and the full step ones for θθθ ,s. The overall

procedure is outlined in Algorithm 1.

In [GC11] the authors mention using fixed point iterations for solving a similar set

of equations. However, in our experiments with real datasets, fixed point updates led to

unstable mixing at even moderate learning rates. One reason for this could be the fact that

the Jacobians of the implicit equations are large (implying “stiff” domains) for these datasets

and this specific formulation. Therefore, for strictly positive parameters we resort to using

diagonal metric tensors, and using Newton’s method for solving the implicit systems. For

instance, using the tensor G(θθθ) = diag(θθθ)−1, (assuming G(θθθ)� 0), the implicit system for

pt+ε/2 and qt+ε/2 reduces to the following quadratic system:

ε

4
p2

i

s(t)
+ pi− p(t)i −

ε

2
s(t)
[

1

θ
(t)
i

(
1+ kT −|G(θθθ (t))|−1 q2

2

)
+

∂

∂θ
(t)
i

L (θθθ (t))

]
= 0
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Algorithm 1 Riemann Nosé-Poincaré HMC
Input: θθθ ,ε,kT
Initialize θθθ ,s
repeat
· Sample p(t) ∼ N(0,G(θθθ)),q(t) ∼ N(0, |G(θθθ)|)
·Perform leapfrog dynamics (6.14)
to get ((θθθ (t),s(t),p(t),q(t)) :
for i = 1 to leap f rog_iterations do
· Perform implicit Newton updates to get
p(t+ε/2),q(t+ε/2),θθθ (t+ε),q(t+ε)

· Perform explicit updates to get p(t+ε),q(t+ε)

end for
·(θθθ

′
,s
′
,p′,q′)← ((θθθ (t+ε),s(t+ε),p(t+ε),q(t+ε))

· Set ((θθθ (t+1),s(t+1),p(t+1),q(t+1))
using Metropolis-Hastings

until forever

ε

4
|G(θθθ (t))|−1q2 +q−q(t)+

ε

2

[
−L (θθθ (t))+gkT (1+ logs)+

1+ kT
2

log
{
(2π)D|G(θθθ)|

}
− 1

2

[
p

s(t)

]T

G(θθθ (t))−1
[

p
s(t)

]]
= 0

where we have omitted the t + ε/2 superscripts for clarity (i.e. pi = p(t+ε/2)
i ).

4.2.2 The Stochastic Case

Typically when working with large datasets, computing the gradient of the log-likelihood

over the entire dataset is very expensive. Therefore we resort to evaluating the gradients on

a mini-batch of the data. The stochastic gradient of the log-likelihood can be written as

∇L̃ (θθθ) =
|N|
|Ñ| ∑x∈Ñ

∇ log p(x|θθθ)+∇ log p(θθθ),

where N denotes the entire dataset, and Ñ denotes a random mini-batch.

From the dynamics in the deterministic case (4.5), we can see that there are two sources

of stochastic noise in the minibatch setting from the two momenta terms: one in the equation
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for ṗ, where we have the extended position variable s multiplied by the gradient of the log-

likelihood, and the second in the equation for q̇, where we have the full log-likelihood term

in Hinner. Note that the additive noise in the update for q is purely a function of θθθ , whereas

the noise arising from the stochastic gradient in ṗ is multiplied by the extended position

variable s. Therefore, following convention, if we write the stochastic terms (likelihood

as well as gradient) as the corresponding full terms plus random noise, then we have the

following expressions for the momenta dynamics in the stochastic setting:

˜̇q = q̇+N(0,2A(θθθ)), ˜̇p = ṗ+N(0,2
√

sB(θθθ)).

This therefore turns the deterministic dynamics of (4.5) into a Langevin diffusion, with

A(θθθ) and
√

sB(θθθ) acting as diffusion coefficients of standard Wiener processes.

As one might imagine, using these noisy terms in the dynamics without any correction

leads to non-conservation of the total system energy; indeed, [CCG14] showed that under

certain conditions the entropy of such a system would strictly increase with time. Therefore,

one needs to introduce additional terms in the dynamics if the Hamiltonian (4.4) is to be

conserved in the stochastic setting. To do so, we turn to the Fokker-Planck equation.

The Fokker-Planck corrections

The Fokker-Planck equation describes the evolution of the probability distribution of the

parameters of a differential equation under stochastic forces. For a stochastic differential

equation with diffusion coefficient D(θθθ), written as θ̇θθ = f (θθθ)+N(0,2D(θθθ)), with the

distribution of θθθ being p(θθθ), the Fokker-Planck equation can be written as

∂

∂ t
ppp(((θθθ) =− ∂

∂θθθ
[ f (θθθ)p(θθθ)]+

∂ 2

∂θθθ
2 [D(θθθ)p(θθθ)] , (4.7)

where the notation ∂ 2

∂θθθ
2 denotes ∑

i, j

∂

∂θi

∂

∂θ j
.
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Using this equation, we can derive the corrective terms for the stochastic noise in the

dynamics (4.5). We propose the following corrected dynamics:

θ̇ =
(p

s

)T
G(θθθ)−1

ṗ = s
1
2

(p
s

)T
G(θθθ)−1

∇G(θθθ)G(θθθ)−1
(p

s

)
+ s

1
2

q2|G(θθθ)|−1tr
(
G(θθθ)−1

∇G(θθθ)
)

−
√

sB(θθθ)
(p

s

)T
G(θθθ)−1− s

2
(1+ kT )tr

(
G(θθθ)−1

∇G(θθθ)
)
+ s∇L̃ (θθθ)

ṡ = sq|G(θθθ)|−1, q̇ =−gkT +
(p

s

)T
G(θθθ)−1 p

s
− H̃inner−A(θθθ)sqG(θθθ)−1.

(4.8)

Note that the correction terms consist of the Hamiltonian equations for the position

variables with suitable multiplicative terms to cancel out the diffusion noise. This choice

can be justified using the Fokker-Planck equation, as we prove below.

Theorem 2. The dynamics defined in (4.8) leave the probability distribution defined by

p(θθθ ,p,s,q) ∝ exp(−H(θθθ ,p,s,q)) invariant.

Proof. Let us start with the deterministic Hamiltonian dynamics, and replace the log-

likelihood terms therein with their stochastic versions, without any corrections. Following

the notation of [YA06], the dynamics can be represented in the following format:
θ̇

ṗ
ṡ
q̇

=−


0 0 0 −I
0 0 I 0
0 −I 0 0
I 0 0 0




∂

∂ sH(θθθ ,p,s,q)
∂

∂qH(θθθ ,p,s,q)
∂

∂θθθ
H(θθθ ,p,s,q)

∂

∂pH(θθθ ,p,s,q)

+NNN (4.9)

where NNN = [0,N(0,2
√

sB(θθθ)),0,N(0,2A(θθθ))]T . Let us denote the anti-symmetric ma-

trix above by X . Then, denoting ∇ = [∂/∂θθθ ;∂/∂p;∂/∂ s;∂/∂q], it is easy to see that

tr
{

∇T ∇Xy
}
= 0 for any y(θθθ ,p,s,q).

Therefore the right hand side of the Fokker-Planck equation (4.7) can be written as

tr∇T {p(θθθ ,p,s,q)X∇H}+ tr
{

∇
T D∇p(θθθ ,p,s,q)

}
=tr∇T {p(θθθ ,p,s,q)X∇H}+ tr

{
(D+X)∇T

∇p(θθθ ,p,s,q)
}
.
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Here we have used the shorthand ∇H to refer to the second matrix on the right hand side

of equation (4.9), and D contains the diffusion terms from the stochastic noise (see §C of

the supplementary for the exact formulation).

Note that ∇p = −p∇H, since p ∝ exp(−H). Therefore, if we simply replace X with

D+X in (4.9), the right hand side of the Fokker-Plank equation reduces to zero. Using

D+X in (4.9) is equivalent to the dynamics (4.8).

As mentioned before, we use the generalized leapfrog algorithm to discretize the contin-

uous differential equations of motion. The generalized leapfrog algorithm is a composition

of a symplectic first-order Euler integrator with its adjoint. We describe the discretized

version of the dynamics (4.8) in §B of the supplementary.

4.3 Experiments

4.3.1 Estimation of 1D Gaussian Distribution

We start off with a synthetic experiment on learning the parameters of a one-dimensional

Gaussian distribution. We generate 5000 points from a standard normal distribution, and

attempt to learn the mean and the variance using the discretized stochastic algorithm based

on the dynamics (4.8). We call this algorithm stochastic gradient Riemann Nosé-Poincaré

Hamiltonian Monte Carlo (SGR-NPHMC). We compare it to the SG-NHT algorithm of

[DFB+14]. Extensive comparisons of SG-NHT with related techniques like stochastic

gradient Hamiltonian Monte Carlo and Langevin Dynamics have already been performed in

the literature, hence we do not conduct comparisons with those methods here.

For both SGR-NPHMC and SG-NHT, we use normal-Wishart priors on the mean and

precision; the posterior distribution is proportional to p(µ,τ|X) ∝ N(X|µ,τ)W (τ|1,1),

where τ denotes the precision, and W denotes the Wishart distribution. We run both algo-

rithms for 105 iterations and discard the first 5000 “burn-in” iterations. For our Riemannian
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algorithm we use the observed Fisher information plus the negative Hessian of the prior

as the metric tensor, and perform one fixed point iteration to solve the implicit system of

equations. For both algorithms we use 10 leapfrog iterations. Learning rates are fixed to

1e-3 and batchsizes to 100 for both algorithms.

In Figure 4.1 we demonstrate the sensitivity of the algorithms to different values of

the stochastic noise correction terms. The post-burnin samples of µ generated by both

algorithms for various values of these terms are plotted in Figures 4.1a and 4.1b. 4.1c.

Figure 4.1c shows the corresponding precision samples. We can see that SGR-NPHMC is

as robust to stochastic noise as SG-NHT, and both algorithms generate aceptable samples of

µ and τ post-burnin.

However the sampling trajectories in Figures 4.2a and 4.2b tell a different story. We see

that SG-NHT overshoots the target value of µ by a large margin, as well as having a higher

spread of the post-burnin samples. In contrast, SGR-NPHMC follows a more direct path

to the target, and generates a tighter set of samples. This behavior can be attributed to the

Riemann geometry cues and the resulting implicit system of update equations.

The higher variance in the samples shows up in the RMSE for the parameters. We show

these numbers along with the autocorrelation times for both algorithms in Tables 4.1 and

4.2. As seen in the qualitative sample trajectories, the SGR-NPHMC generates samples with

lower RMSE for all values of the noise corrector terms.

4.3.2 Parameter Estimation in Bayesian Logistic Regression

Our next experiment is on learning the parameters in a synthetic two-dimensional

Bayesian logistic regression task. In this experiment we first generate 5000 datapoints from

two bivariate normal distributions with means at [1,−1] and [−1,1] and unit covariances,

and then use a linear classifier with weights (w1,w2) = [1,−1] to bag the points into two
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(a) (b) (c)

Figure 4.1: Density plots for the mean (µ) and precision (τ) samples obtained from SGR-
NPHMC and SG-NHT runs on the synthetic Gaussian dataset. Plots (a) and (b) show the
sample densities of µ for SGR-NPHMC and SG-NHT respectively. Plot (c) shows the
sample densities of τ for both algorithms. The true values were µ = 0,τ = 1. See the text
for experimental details.

Table 4.1: RMSE and auto-correlation times of the sampled means, precisions from SGR-
NPHMC runs on synthetic Gaussian data.

{A,B} RMSE (µ ) RMSE (τ ) A.T. (µ )
0.01 0.0240 0.0328 14.8999
0.001 0.0244 0.0466 13.6332
0.0001 0.0289 0.0433 2.5899

classes. We then estimate the classifier weights using Bayesian logistic regression. As with

the previous experiment, we compare SGR-NPHMC and SG-NHT in terms of accuracy

and autocorrelation time. We run both algorithms for 105 iterations, discard the first 5000

samples and use the rest to compute these metrics. SGR-NPHMC achieves lower RMSE

for the parameters in this case as well, as seen in the corresponding tables provided in

§D.1 of the supplementary. The sample trajectories shown in Figures 4.3a and 4.3b paint a

similar picture to that of the previous section; SG-NHT overshoots by a wide margin before

82



(a) (b)

Figure 4.2: Samples trajectories for µ and τ from (a) SGR-NPHMC and (b) SG-NHT runs
on the synthetic Gaussian dataset. Both algorithms were initialized with µ0 = 0.3,τ0 = 3.
For the former we used {A,B} = 0.001, and for the latter we had A = 1. The true values
were µ = 0,τ = 1. Note the convergence patterns and sample spread of the two algorithms.

converging, and has higher sample variance as well. SGR-NPHMC follows a more efficient

path to convergence, and post-convergence sample variance is lower as well.

4.3.3 Topic Modeling using Hierarchical Gamma Processes

For this experiment we compare the algorithms in a high-dimensional topic modeling

scenario using hierarchical Gamma processes. In particular, we use the Poisson factor

analysis framework of [ZC15]. We model the observed counts of V vocabulary terms in

N documents as DV×N = Poi(ΦΦΦΘΘΘ), where ΦΦΦV×K is the factor load matrix that encodes the

relative importance of the vocabulary terms in the K latent topics, and ΘΘΘK×N models the

counts of the topics in the documents.
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Table 4.2: RMSE and auto-correlation times of the sampled means and precisions from
SG-NHT runs on synthetic Gaussian data.

{A} RMSE (µ ) RMSE (τ ) A.T. (µ )
0.1 0.0364 0.0386 13.5715
1 0.0375 0.0471 17.2241
10 0.0365 0.0416 13.5715

Table 4.3: Test perplexities on 20-Newsgroups and Reuters datasets.

METHOD MODEL 20-NEWSGROUPS REUTERS

GIBBS γNB 763 -
GIBBS NB-LDA 788 -
SG-NHT γGP 758 929
SGR-NPHMC γNB 752 930
SGR-NPHMC γGP 723 904

We put a Dirichlet prior on the columns of ΦΦΦ using normalized Gamma variables: φv,k =

γv
∑v γv

, with γv ∼ Γ(α,1). Then we have θn,k ∼ Γ(rk,
p j

1−p j
), where the document-specific

mixing probabilities p j have β (a0,b0) priors. Next, we use two different formulations of

rk: (a) we set rks to the weights of a discrete Gamma process with equal atom weights, as

in [ZC15]; and (b) we set rks to the atom weights generated by the constructive Gamma

process definition of [RK15]. See the respective papers for the details of the constructions.

We call these two formulations γNB, and γGP respectively.

We use two public datasets for this experiment, the 20-Newsgroups and Reuters Corpus

Volume 1 corpora from [SSH13]. The first has a vocabulary of 2,000 words spread over

18,845 documents. The second has 804,414 documents and a vocabulary of size 10,000. We

use the same training/validation/test split as [GCH+15], where the 20 Newsgroups dataset is
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(a) (b)

Figure 4.3: Samples trajectories for w1 and w2 from (a) SGR-NPHMC and (b) SG-NHT
runs on the synthetic Bayesian logistic regression dataset. Both algorithms were initialized
with w1 = 2,w2 = 1. For the former we used {A,B} = 0.001, and for the latter we had
A = 1. The true values were w1 = 1,w2 = −1. Note the convergence patterns of the two
algorithms, and the spread of the samples thereafter.

split chronologically into 11,314 training and 7,531 test documents, and the Reuters dataset

into 794,414 training and 10,000 test documents. After training the stochastic algorithms,

following standard methodology we learn document-specific parameters from 80% of the

words in the test set, and calculate test perplexities on the remaining 20%. The perplexity

formulation is detailed in §D.2 of the supplementary.

For SGR-NPHMC and SG-NHT on the γGP model, we run three parallel NPHMC

chains; one each for the two constituent parameters of the atom weights (Eks and Tks) and

one for the hyperparameters (α,γ and c). See §4.1 of [RK15] for the exact formulation. We

estimate the φs using Riemann Hamiltonian Monte Carlo updates [GC11], as we found it

to mix better than Gibbs sampling for the stochastic algorithms. For all Riemannian HMC

chains we use the diagonal metric tensor G(θθθ) = diag(θθθ)−1, as first studied in [PT13] (see

§4.2.1.2 for the resulting dynamics). We used K = 200 latent topics for all algorithms. For

SGR-NPHMC we set the learning rates of all three NPHMC chains to 1e-4, and for SG-NHT

85



Figure 4.4: Test perplexities as a function of post-burnin iterations for the 20-Newsgroups
dataset.

we use a stable learning rate of 1e-6. Batchsize was set to 100 for both algorithms. We used

2,000 iterations for burn-in and collected samples for test perplexity evaluation thereafter.

Figure 6.1 shows the perplexities evaluated on the 20-Newsgroups dataset. The perplex-

ities at the end of the test runs for both 20-Newsgroups and Reuters are shown in Table

??. We can see the SGR-NPHMC algorithms for both γNB and γGP models outperform-

ing SG-NHT for γGP on 20-newsgroups. For the larger Reuters dataset, the γGP-based

SGR-NPHMC performs best, followed by SG-NHT and the γNB-based SGR-NPHMC.

4.4 Conclusion

We have proposed a novel Hamiltonian MCMC algorithm using a modified Nosé-

Poincaré Hamiltonian augmented with Riemann preconditioning for both real and extended
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momenta, as well as correction terms arising from the Fokker-Planck equations to ensure

sampling from the canonical ensemble in the presence of stochastic noise. We have derived

a discretized sampler using the generalized leapfrog algorithm, and have shown robust

performance in synthetic and high dimensional real-world datasets.
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4.5 Proof Details and Experimental Addenda

4.5.1 Proof of Theorem 1

The Riemann-augmented Nosé-Poincaré Hamiltonian can be written as

H(θθθ ,p,s,q) = s
(
−L (θθθ)+

1
2

(p
s

)T
G(θθθ)−1 p

s

+
1
2
|G(θθθ)|−1q2 +

1+ kT
2

log
{
(2π)D|G(θθθ)|

}
+gkT logs−H0

)
.

(4.10)

We need to prove the following about this Hamiltonian:

Theorem 1. The Riemannian Nosé-Poincaré Hamiltonian defined in (4.10) generates sam-

ples from the canonical ensemble.

Proof. First we denote Hgc(θθθ ,p) =−L (θθθ)+ 1
2pT G(θθθ)−1p.

We will show that we can integrate out s,q from p(θθθ ,p,s,q) ∝ exp(−H(θθθ ,p,s,q)) to

get p(θθθ ,p) ∝ exp(−Hgc(θθθ ,p)/kT ). The integration of s essentially follows [BLL99].

The probability of any (θθθ ,p,s,q) can be written as

p(θθθ ,p,s,q) ∝ δ [H−H0]

∝ δ

[
s
(
Hgc

(
θθθ ,
(p

s

))
+

1
2
|G(θθθ)|−1q2 +

1+ kT
2

log
{
(2π)D|G(θθθ)|

}
+gkT logs−H0

)]
∝ sN f δ

[
s
(
Hgc +

1
2
|G(θθθ)|−1q2 +

1+ kT
2

log
{
(2π)D|G(θθθ)|

}
+gkT logs−H0

)]
.

See [LR05] for the details of the last step.

First we integrate out s. The argument of the δ -function has a root at s0 = exp
[
−

1
gkT

(
Hgc+

1
2 |G(θθθ)|−1q2+ kT

2 log
{
(2π)D|G(θθθ)|

}
−H0

)]
. Therefore, we have p(θθθ ,p,s,q)

∝
sN f

gkT
δ

[
s− exp

(
− 1

gkT

(
Hgc +

1
2
|G(θθθ)|−1q2 +

kT
2

log
{
(2π)D|G(θθθ)|

}
−H0

))]
∝ exp

(
N f H0

gkT

)
exp
(
−

N f

gkT

(
Hgc +

1
2
|G(θθθ)|−1q2 +

kT
2

log
{
(2π)D|G(θθθ)|

}))
∝ exp

(
− 1

kT

(
Hgc +

1
2
|G(θθθ)|−1q2 +

kT
2

log
{
(2π)D|G(θθθ)|

}))
, using g = N f .
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See [LR05] for the details of the first step. With s integrated out, we are left with

p(θθθ ,p,q) ∝ exp(−Hgc/kT )exp
[
− 1

2kT
|G(θθθ)|−1q2− 1

2
log
{
(2π)D|G(θθθ)|

}]
.

We can easily integrate out q from the second exponential term on the right to get the desired

form for p(θθθ ,p).

4.5.2 Discretized Dynamics
4.5.2.1 Generalized Leapfrog in the Stochastic case

We propose the following dynamics to incorporate stochastic noise correction terms into

the deterministic updates:

θ̇ =
(p

s

)T
G(θθθ)−1

ṗ = s
1
2

(p
s

)T
G(θθθ)−1

∇G(θθθ)G(θθθ)−1
(p

s

)
+ s∇L̃ (θθθ)

+ s
1
2

q2G(θθθ)−1
∇G(θθθ)G(θθθ)−1−

√
sB(θθθ)

(p
s

)T
G(θθθ)−1

− s
2
(1+ kT )tr

(
G(θθθ)−1

∇G(θθθ)
)

ṡ = sqG(θθθ)−1

q̇ =−gkT +
(p

s

)T
G(θθθ)−1 p

s
− H̃inner−A(θθθ)sqG(θθθ)−1.

(4.11)

As mentioned in the main chapter, we use the generalized leapfrog algorithm to discretize

the continuous differential equations. The generalized leapfrog algorithm is a composition

of a symplectic first-order Euler integrator with its adjoint. For the dynamics (4.11), the
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update equations can be written as

p(t+ε/2)
i = p(t)i −

ε

2
∇θiH

(
θθθ
(t),s(t),p(t+ε/2),q(t+ε/2)

)
q(t+ε/2) = q(t)− ε

2

[
As(t)q(t)G(θθθ (t))−1 + H̃inner +gkT

−

(
p(t+ε/2)

s(t)

)T

G(θθθ (t))−1

(
p(t+ε/2)

s(t)

)]

θ
(t+ε

i = θ
(t)
i +

ε

2

[(
p(t+ε/2)

s(t)

)T

G(θθθ (t))−1 +

(
p(t+ε/2)

s(t+ε)

)T

G(θθθ (t+ε))−1
]

i

s(t+ε) = s(t)+
ε

2

[
s(t)q(t+ε/2)|G(θθθ (t))|−1 + s(t+ε)q(t+ε/2)|G(θθθ (t+ε))|−1

]
p(t+ε)

i = p(t+ε/2)
i − ε

2
∇θ H

(
θθθ
(t+ε),s(t+ε),p(t+ε/2),q(t+ε/2)

)
q(t+ε) = q(t+ε/2)− ε

2

[
As(t+ε)q(t+ε/2)G(θθθ (t+ε))−1 + H̃inner +gkT

−

(
p(t+ε/2)

s(t+ε)

)T

G(θθθ (t+ε))−1

(
p(t+ε/2)

s(t+ε)

)]

(4.12)

where ∇θiH(θθθ ,s,p,q)

=
ε

2

[
− 1

2
s
(p

s

)T
G(θθθ)−1

(
∂

∂θi
G(θθθ)

)
G(θθθ)−1

(p
s

)
− s

q2

2
|G(θθθ)|−1tr

{
G(θθθ)−1 ∂

∂θi
G(θθθ)

}
+
√

sB
(p

s

)T
G(θθθ)−1 +

s
2
(1+ kT )tr

{
G(θθθ)−1 ∂

∂θi
G(θθθ)

}
− s

∂

∂θi
L̃ (θθθ)

]
.

4.5.3 Proof of Theorem 2

The Fokker-Planck equation describes the evolution of the probability distribution of the

parameters of a differential equation under stochastic forces. For a stochastic differential

equation with diffusion coefficient D(θθθ), written as θ̇θθ = f (θθθ)+N(0,2D(θθθ)), with the

distribution of θθθ being p(θθθ), the Fokker-Planck equation can be written as

∂

∂ t
ppp(((θθθ) =− ∂

∂θθθ
[ f (θθθ)p(θθθ)]+

∂ 2

∂θθθ
2 [D(θθθ)p(θθθ)] , (4.13)

where the notation ∂ 2

∂θθθ
2 denotes ∑

i, j

∂

∂θi

∂

∂θ j
.

Theorem 2. The dynamics defined in (4.11) leave the probability distribution defined by

p(θθθ ,p,s,q) ∝ exp(−H(θθθ ,p,s,q)) invariant.
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Proof. Let us start with the deterministic Hamiltonian dynamics, and replace the log-

likelihood terms therein with their stochastic versions, without any corrections. Following

the notation of [YA06], the dynamics can be represented in the following format:
θ̇

ṗ
ṡ
q̇

=−


0 0 0 −I
0 0 I 0
0 −I 0 0
I 0 0 0




∂

∂ sH(θθθ ,p,s,q)
∂

∂qH(θθθ ,p,s,q)
∂

∂θθθ
H(θθθ ,p,s,q)

∂

∂pH(θθθ ,p,s,q)

+NNN (4.14)

where NNN = [0,N(0,2
√

sB(θθθ)),0,N(0,2A(θθθ))]T . Let us denote the anti-symmetric ma-

trix above by X . Then, denoting ∇ = [∂/∂θθθ ;∂/∂p;∂/∂ s;∂/∂q], it is easy to see that

tr
{

∇T ∇Xy
}
= 0 for any y(θθθ ,p,s,q).

Therefore the right hand side of the Fokker-Planck equation (4.13) can be written as

− tr∇T {p(θθθ ,p,s,q)X∇H}+ tr
{

∇
T D∇p(θθθ ,p,s,q)

}
=− tr∇T {p(θθθ ,p,s,q)X∇H}+ tr

{
(D+X)∇T

∇p(θθθ ,p,s,q)
}
.

Here we have used the shorthand ∇H to refer to the second matrix on the right hand side

of equation (4.14), and

D =


0 0 0 0
0 0 0

√
sB(θθθ)

0 0 0 0
0 A(θθθ) 0 0

 .
Note that ∇p = −p∇H, since p ∝ exp(−H). Therefore, if we simply replace X with

D+X in (4.14), the right hand side of the Fokker-Plank equation reduces to zero. Using

D+X in (4.14) is equivalent to the dynamics (4.11).

As an aside, one can intuitively see that it is possible to incorporate any arbitrary

dynamics into this formulation, by making appropriate assumptions about the diffusion

terms in the noise and making corresponding corrections to the deterministic dynamics.

Indeed, this fact has been investigated more thoroughly in [MCF15].
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4.5.4 Additional Experimental Details
4.5.4.1 Parameter Estimation in Bayesian Logistic Regression

Tables 4.4 and 4.5 show the RMSE for the two parameters w1 and w2 for the synthetic

Bayesian logistic regression experiment, for SGR-NPHMC and SG-NHT respectively.

Table 4.4: RMSE and auto-correlation times of the parameter samples from SGR-NPHMC
runs on the synthetic Bayesian logistic regression dataset.

{A,B} RMSE (w1) RMSE (w2)
0.01 0.2684 0.1833
0.001 0.1927 0.1932
0.0001 0.1965 0.2125

Table 4.5: RMSE and auto-correlation times of the parameter samples from SG-NHT runs
on the synthetic Bayesian logistic regression dataset.

{A} RMSE (w1) RMSE (w2)
0.1 0.2071 0.1884
1 0.2023 0.1850
10 0.2151 0.1907

4.5.4.2 Perplexity for Topic Modeling

We use the perplexity metric from [ZC15], where it is defined as

Perplexity = exp

(
− 1

y··

Ntest

∑
n=1

V

∑
v=1

ynv logmnv

)

where ynv =the count of vocabulary term v in held-out test document n, and y·· =
Ntest
∑

n=1

V
∑

v=1
ynv.
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mnv is the mean of the collected samples of ΘΘΘ×ΦΦΦ normalized over the vocabulary,

defined as

mnv =
S

∑
s=1

K

∑
k=1

φ
(s)
vk θ

(s)
kn

/ V

∑
v=1

S

∑
s=1

K

∑
k=1

φ
(s)
vk θ

(s)
kn .

Here s and k index the samples and latent topics respectively.
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Chapter 5: Stochastic Quasi-Newton Optimization on Riemannian

Manifolds

Optimization algorithms are a mainstay in machine learning research, underpinning

solvers for a wide swath of problems ranging from linear regression and SVMs to deep

learning. Consequently, scaling such algorithms to large scale datasets while preserving

theoretical guarantees is of paramount importance. An important challenge in this field

is designing scalable algorithms for optimization problems in the presence of constraints

on the search space, a situation all too often encountered in real life. One approach to

handling such constrained optimization problems on vector spaces is to reformulate them

as optimization tasks on a suitable Riemannian manifold, with the constraints acting as

manifold parametrization. Often, the problems can be shown to possess desirable geometric

properties like convexity with respect to distance-minimizing geodesics on the manifold,

leading to provably efficient optimization algorithms [AMS08, ZS16, SH15, RW12]. These

ideas can then be combined with stochastic optimization techniques influenced by [RM51],

to deal with large datasets with theoretical convergence guarantees. See [Bon13, ZRS16]

for recent examples. For instance, we can consider the problem of computing leading

eigenvectors in the PCA setting [Sha15] with unit-norm constraints. Projection-based

strategies are normally used for this kind of problems [Oja92], but alternating between

solving and projecting can be prohibitively expensive in high dimensions. However, the

unit-norm constraint can be used to cast the eigenvector problem into an unconstrained
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optimization scenario on the unit sphere, which happens to be one of the most well-behaved

Riemannian manifolds.

Once the problems have been cast onto manifolds, one would want fast optimization

algorithms that potentially use stochastic minibatches to deal with very large datasets. Such

algorithms operating in Euclidean space have been widely researched in the optimization

literature, but their development for Riemannian manifolds has been limited so far. In

particular, one should note that the convergence speed limitations of unconstrained stochastic

algorithms in the Euclidean case apply to manifold optimization as well; for instance a

straightforward port of stochastic gradient descent to Riemannian manifolds [ZS16] attains

the same sublinear convergence seen in Euclidean space. There has been extensive work in

the Euclidean domain using variance-reduced gradients to address this issue, with the aim

of improving convergence rates by explicitly reducing the variance of stochastic gradients

with suitably spaced full-gradient evaluations [Sha15, JZ13]. Another nice advantage of this

technique is the removal of the need for decaying learning rates for proving convergence,

thereby solving the sublinearity issue as well sidestepping the nontrivial task of selecting

an appropriate decay rate for SGD-like algorithms in large-scale optimization scenarios.

Researchers have begun porting these methods to the manifold optimization domain, with

a stochastic first-order variance reduced technique [ZRS16] showing robust convergence

guarantees for both convex and nonconvex problems on geodesically complete manifolds.

Another complementary approach to improving convergence rates is of course using

second-order updates for the iterates. In the Euclidean setting, one can show quadratic

convergence rates for convex problems using Newton iterations, but these tend to be pro-

hibitively expensive in high-dimensional big-data settings due to the need to store and invert

the Hessian matrix. This limitation has led to the development of quasi-Newton methods,

most notably L-BFGS [LN89], which uses lower-order terms to approximate the inverse
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Hessian. The curvature information provided by the Hessian estimate allows superlinear

convergence in ideal settings [NW06]. While widely used for small-to-medium scale prob-

lems, adoption of these methods for big data problems has been limited, since the second

order updates can be prohibitively expensive to compute in these situations. However, most

optimization algorithms in the literature that use stochastic minibatching techniques to deal

with large datasets are modifications of first order gradient-descent [BL04, Bot10] with

relatively slower convergence in practical situations. This has recently begun to be addressed,

with researchers devising stochastic variants of the L-BFGS technique [BHNS14], with

straightforward convergence analyses. This has also been combined with variance reduction

techniques and shown to have a linear convergence rate for convex problems in Euclidean

space [MNJ16]. Our work in this paper is in a similar vein: we study quasi-Newton L-

BFGS updates with stochastic variance reduction techniques for optimization problems on

Riemannian manifolds, and analyze their convergence behavior for convex and nonconvex

functions.

On the topic of connecting the algorithm in this chapter to the thesis statement, one

can consider applying it to a variety of constrained optimization problems that appear in

Bayesian methods, both parametric and nonparametric. As an example of a parametric

application, it is known that an asymptotic analysis of probabilistic principal component

analysis [TB99] yields standard PCA; and as we will show in the experimental section

of this chapter, the Riemannian L-BFGS method converges quickly, in terms of number

of data passes, for leading eigenvector computations with unit norm constrains, which is

unconstrained on the sphere manifold as mentioned earlier. This opens up probabilistic

PCA on very large datasets as an application area for our algorithm. Our method also

applies to cases where PCA has been used for dimensionality reduction in DP-based

nonparametric classification models [SN09]. As another example, one can apply these

96



methods to spectral relaxations of the DP-means objective function [KJ12]; recall that

DP-means is an extension of K-means with an unbounded number of clusters, derived from

a small-variance asymptotic analysis of Dirichlet Process mixture of Gaussians. Similar to

the spectral relaxation of K-means [ZHD+01], one clusters the top eigenvectors of the kernel

matrix with eigenvalues larger than the DP-means penalty term, as discussed in §5.1 of

[KJ12]; the leading eigenvectors can of course be identified by the algorithm discussed next.

As a third example, one could envision learning the spectral decomposition of the covariance

matrices in a Gaussian process. Recall that the Gaussian process is uniquely identified by

a mean function and a covariance function, and serves as a robust nonparametric prior in

function space (for a regression setting); the covariance matrix is the instantiation of the

covariance function for the observed set of datapoints, and is usually given by a kernel

function. Efficient computation of leading eigenvectors of these matrices is a challenge

in the Gaussian process setting, and could potentially be an application area for fast and

accurate Riemannian optimization algorithms like the one proposed here.

Contributions: The main contributions of the work in this chapter may be summarized as

follows:

1. We propose a stochastic L-BFGS method for Riemannian manifolds using stochas-

tic variance reduction techniques for the first-order gradient estimates, and analyze the

convergence for both convex and nonconvex functions under standard assumptions.

2. Our proof for strongly convex functions is different from those of recently proposed

stochastic L-BFGS algorithms using variance-reduced gradients in Euclidean space [MNJ16]

due to different bounds on the stochastic gradients. We do not use sectional curvature bounds

in our proof for the convex case, making it structurally different from that of Riemannian

SVRG [ZRS16].
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3. We show strong experimental results on Karcher mean computations and calculation

of leading eigenvalues, with noticeably better performance than Riemannian SVRG and

VR-PCA; the latter is one of the best performing Euclidean algorithms for the finding

dominant eigenvalues, that also uses stochastic variance-reduced gradients.

5.1 Preliminaries

5.1.1 Riemannian geometry

We begin with a brief overview of the differential geometric concepts we use in this work.

We consider C∞ (smooth) manifolds that are locally homeomorphic to open subsets of RD,

in the sense that the neighborhood of each point can be assigned a system of coordinates of

appropriate dimensionality. Formally, this is defined with the notion of a chart c : U → RD

at each x ∈M , where U ⊂M is an open subspace containing x. Smooth manifolds are

ones with covering collections of differentiable (C∞) charts. A Riemannian metric g(·, ·) is a

bilinear C∞ tensor field of type
(0

2

)
, that is also symmetric and positive definite. A manifold

endowed with such a metric is called a Riemannian manifold. The tangent space TxM at

every x ∈M is a vector space, with the Riemannian metric g : TxM ×TxM → R as the

attendant metric. g then induces a norm for vectors in the tangent space , which we denote

by ‖ · ‖.

Riemannian manifolds are endowed with the Levi-Civita connection, which induces the

notion of parallel transport of vectors from one tangent space to another along a geodesic, in

a metric preserving way. That is, we have an operator Γγ : TxM → TyM where, informally

speaking, γ joins x and y, and for any u,ν ∈ TxM , we have g(u,ν) = g(Γ(u),Γ(ν)) . The

parallel transport can be shown to be an isometry.

For every smooth curve γ : [0,1]→M lying in M , we denote its velocity vector as

γ̇(t) ∈ TxM for each t ∈ [0,1], with the “speed” given by ‖γ̇(t)‖. The length of such a curve
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is usually measured as L(γ) =
1∫
0
‖γ̇(t)‖dt. Denoting the covariant derivative along γ of some

ν ∈ TxM , with respect to the Riemannian (Levi-Civita) connection by Aν , we call Aγ̇ the

acceleration of the curve. Curves with constant velocities (Aγ̇ ≡ 0) are called geodesics,

and can be shown to generalize the notion of Euclidean straight lines. We assume that every

pair x,y ∈M can be connected by a geodesic γ s.t. γ(0) = x and γ(1) = y. Immediately we

have the notion of “distance” between any x,y ∈M as the minimum length of all geodesics

connecting x and y, assuming the manifolds are geodesically complete as mentioned above,

in that every countable decreasing sequence of lengths of geodesics connecting a pair of

points has a well-defined limit.

The geodesic induces a useful operator called the exponential map, defined as Expx :

TxM →M s.t. Expx(ν) = γ(1) where γ(0) = x,γ(1) = y and γ̇(0) = ν . If there is a unique

geodesic connecting x and y, then the exponential map has an inverse, denoted by Exp−1
x (y).

The length of this geodesic can therefore be seen to be ‖Exp−1
x (y)‖.

The derivative D of a differentiable function is defined using the Riemannian connection

by the following equivalence: D f (x)ν = ν f , where ν ∈ TxM . Then, by the Riesz representa-

tion theorem, there exists a gradient ∇ f (x) ∈ TxM s.t. ∀ν ∈ TxM , D f (x)ν = gx(∇ f (x),ν).

Similarly, we can denote the Hessian as follows: D2 f (x)(·, ·) : TxM × TxM → R. We

denote the mapping from ν ∈ TxM to the Riesz representation of D2 f (x)(ν , ·) by ∇2 f (x).

One can consult standard textbooks on differential geometry [Lee97, Boo86] for more

details.

5.1.2 Convexity and Lipschitz smoothness on manifolds

Similar to [ZS16, SH15, ZRS16], we define manifold (or geodesic) convexity concepts

analogous to the Euclidean baselines, as follows : a set U ⊂M is convex on the manifold

if ∀x,y ∈U there exists a geodesic γ connecting x,y that completely lies in U , i.e. γ(0) =
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x,γ(1) = y. Then, a function can be defined as convex w.r.t. geodesics if ∀x,y ∈U where ∃γ

connecting x,y on the manifold, we have:

f (γ(t))≤ t f (x)+(1− t) f (y)∀t ∈ [0,1].

We can also define a notion of strong convexity as follows: a function f is called

S−strongly convex if for any x,y ∈U and (sub)gradient ∇x, we have

f (y)≥ f (x)+gx(∇x,Exp−1
x (y))+

S
2
‖Exp−1

x (y)‖2. (5.1)

We define Lipschitz smoothness of a function f by imposing Lipschitz continuity on the

gradients, as follows: ∀x,y ∈U,

‖∇(x)−Γγ∇(y)‖ ≤ L‖Exp−1
x (y)‖,

where L is the smoothness parameter. Analogous to the Euclidean case, this property can

also be formulated as::

f (y)≤ f (x)+gx(∇x,Exp−1
x (y))+

L
2
‖Exp−1

x (y)‖2. (5.2)

5.2 Stochastic Riemannian L-BFGS

In this section we present our stochastic variance-reduced L-BFGS algorithm on Rie-

mannian manifolds and analyze the convergence behavior for convex and nonconvex differ-

entiable functions on Riemannian manifolds. We assume these manifolds to be L-Lipschitz

smooth, as defined above, with existence of unique distance-minimizing geodesics between

every two points, i.e. our manifolds are geodesically complete; this allows us to have a

well-defined inverse exponential map that encodes the distance between a pair of points on

the manifold. For the convergence analysis, we also assume f to have a unique minimum at

x∗ ∈U , where U is a compact convex subset of the manifold.
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5.2.1 The Algorithm

The pseudocode is shown in Algorithm 2. We provide a brief discussion of the salient

properties, and compare it to similar algorithms in the Euclidean domain, for example

[BHNS14, MNJ16], as well as those on Riemannian manifolds, for example [SH15]. To

begin, note that ∇ denotes the Riesz representation of the gradient D, as defined in §5.1.1.

We denote full gradients by ∇ and stochastic gradients by ∇̃. Similar to other stochastic

algorithms with variance-reduction, we use two loops: each iteration of the inner loop

corresponds to drawing one minibatch from the data and performing the stochastic gradient

computations (Steps 10, 11), whereas each outer loop iteration corresponds to two passes

over the full dataset, once to compute the full gradient (Step 6) and the other to make

multiple minibatch runs (Steps 8 through 30). Compared to the Euclidean setting, note that

the computation of the variance-reduced gradient in Step 11 involves an extra step: the

gradients (∇ f (x)-s) reside in the tangent spaces of the respective iterates, therefore we have

to perform parallel transport to bring them to the same tangent space before performing

linear combinations.

To avoid memory issues and complications arising from Hessian-vector computations in

the Riemann setting, we chose to update the second correction variable yr using a simple

difference of gradients approximation: yr = ∇̃ f (ur)−Γγ∇̃ f (ur−1). We should note here

that the parallel transport parametrization should be clear from the context; Γγ here denotes

transporting the vector ∇̃ f (ur−1) ∈ Tur−1M to TurM along the connecting geodesic γ . We

omit any relevant annotations from the transport symbol to prevent notational overload. We

calculate the first correction pair zr in one of two ways: (a) as zr = Γγ (η2ρt−1), or (b) as

zr = Γγ

(
−η1νprev

)
. We denote these by Option 1 and Option 2 respectively in Alg. 2.

Note that in both cases, Γγ denotes the parallel transport of the argument to the tangent space

at xs+1
t . In our experiments, we noticed faster convergence for the strongly convex centroid
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computation problem with Option 1, along with computation of the correction pairs every

iteration and a low memory pool. For calculating dominating eigenvalues on the unit-radius

sphere, Option 2 yielded better results. Once the corrections pairs zr,yr have been computed,

we compute the descent step in Step 21 using the standard two-loop recursion formula given

in [NW06], using the M correction pairs stored in memory. Note that we use fixed stepsize

in the update steps and in computing the correction pairs, and do not impose or perform

calculations designed to have them satisfy Armijo or Wolfe conditions.

Compared to the Euclidean algorithms [BHNS14, MNJ16], Alg.2 has some key differ-

ences: 1) we did not notice any significant advantage from using separate minibatches in

Steps 10 and 18, therefore we use the same minibatch to compute the VR gradient and the

correction elements yr; 2) we do not keep a running average of the iterates for computing

the correction element zr (Steps 15 through 17); 3) we use constant stepsizes throughout the

whole process, in contrast to [BHNS14] that uses a decaying sequence. Note that, as seen in

Step 24, we use the first-order VR gradient to update the iterates for the first 2R iterations;

this is because we calculate correction pairs every R steps and evaluate the gradient-inverse

Hessian product (Step 26) once at least two pairs have been collected. Similar to [NW06],

we drop the oldest pair to maintain the memory depth M. Compared to the algorithms in

[SH15, HS15], ours uses stochastic VR gradients, with all the attendant modifications and

advantages, and does not use linesearch techniques to satisfy Wolfe conditions.

5.2.2 Analysis of convergence

In this section we provide the main convergence results of the algorithm. We analyze

convergence for finite-sum empirical risk minimization problems of the following form:

min
x∈M

f (x) =
1
N

N

∑
i=1

fi(x), (5.3)
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where the Riemannian manifold is denoted by M . Note that the iterates are updated in

Algorithm 2 by taking the exponential map of the descent step multiplied by the stepsize,

with the descent step computed as the product of the inverse Hessian estimate and the

stochastic variance-reduced gradient using the standard two-loop recursion formula. Thus,

to bound the optimization error using the iterates, we will need bounds on both the stochastic

gradients and the inverse Hessians. As mentioned in [ZRS16], the methods used to derive

the former bounds for Euclidean algorithms cannot be ported directly to manifolds due to

metric nonlinearities; see the proof of Proposition 1 for details. For the latter, we follow the

standard template for L-BFGS algorithms in the literature [RW12, NW06, BHNS14]. To

begin, we make the following assumptions:

Assumption 1. The function f in (5.3) is strongly convex on the manifold, whereas the

fis are individually convex.

Assumption 2. There exist λ ,Λ ∈ (0,∞), λ < Λ s.t. λ‖ν‖2
x ≤ D2 f ≤ Λ‖ν‖2

x ∀ν ∈

TxM .

These two assumptions allow us to (a) guarantee that f has a unique minimizer x∗ in the

convex sublevel set U , and (b) derive bounds on the inverse Hessian updates using BFGS

update formulae for the Hessian approximations. Similar to the Euclidean case, these can be

written as follows:

B̂r = Γγ

[
B̂r−1−

Br−1(sr−1, ·)B̂r−1sr−1

Br−1(sr−1,sr−1)

]
Γ
−1
γ , (5.4)

and by the Sherman-Morrison-Woodbury lemma, that of the inverse:

Hr = Γγ

[
G−1Hr−1G+

gxr−1(sr−1, ·)sr−1

yr−1sr−1

]
Γ
−1
γ ,

where G = I− gxr−1(sr−1,·)ŷr−1
yr−1sr−1

, and B̂r is the Lax-Milgram representation of the Hessian.

Details on these constructs can be found in [RW12], in addition to [Lee97, Boo86].
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5.2.2.1 Trace and determinant bounds

To start off our convergence discussions for both convex and nonconvex cases, we derive

bounds for the trace and determinants of the Hessian approximations, followed by those

for their inverses. The techniques used to do so are straightforward ports of the Euclidean

originals [NW06], with some minor modifications to account for differential geometric

technicalities. Using the assumptions above, we can prove the following bounds [RW12]:

Lemma 1. Let Bs+1
r =

(
Hs+1

r
)−1 be the approximation of the Hessian generated by Algo-

rithm 2, and B̂s+1
r and Ĥs+1

r be the corresponding Lax-Milgram representations. Let M, the

memory parameter, be the number of correction pairs used to update the inverse Hessian

approximation. Then, under Assumptions 1 and 2, we have:

tr(B̂s+1
r )≤ tr(B̂s+1

0 )+MΛ, det(B̂s+1
r )≥ det(B̂s+1

0 )
λ M

(tr(B̂s+1
0 )+ΛM)M

.

Also, γI � Ĥs+1
r � ΓI, for some Γ≥ γ > 0.

From a notational perspective, recall that our notation for the parallel transport operator

is Γγ , with the subscript denoting the geodesic. The symbols γ and Γ in Lemma 1 above are

unrelated to these geometric concepts, merely being the derived bounds on the eigenvalues of

inverse Hessian approximations. The proof is given in the supplementary for completeness.

5.2.2.2 Convergence result for strongly convex functions

Our convergence result for strongly convex functions on the manifold can be stated as

follows:

Proposition 1. Let the Assumptions 1 and 2 hold. Further, let the f (·) in (5.3) be S-strongly

convex, and each of the fi be L-smooth, as defined earlier. Define the following constants:

p=
[
LS−1 +2η2S−1{2ηL3Γ2−Sκγ

}]
, and q′= 6η2L3Γ2S−1. Denote the global optimum
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by x∗. Then the iterate xT+1 obtained after T outer loop iterations will satisfy the following

condition:

E
[

f (xT+1)− f (x∗)
]
≤ LS−1

β
TE
[

f (x0)− f (x∗)
]
,

where the constants are chosen to satisfy β = (1− p)−1 (q′+ pT (1− p−q′)
)
< 1 for linear

convergence.

For proving this statement, we will use the L-smoothness (5.2) and S-strong convexity

(5.1) conditions mentioned earlier. As in the Euclidean case [JZ13, MNJ16], we will also

require a bound on the stochastic variance-reduced gradients. These can be bounded using

triangle inequalities and L-smoothness on Riemannian manifolds, as shown in [ZRS16].

This alternative is necessary since the Euclidean bound first derived in [JZ13], using the

difference of the objective function at the iterates, cannot be ported directly to manifolds

due to metric nonlinearities. Thus we take a different approach in our proof compared to the

Euclidean case of [MNJ16], using the interpoint distances defined with the norms of inverse

exponential maps. We do not use trigonometric distance inequalities [SH15, Bon13] for

the convex case either, making the overall structure different from the proof of Riemannian

SVRG as well. The details are deferred to the supplementary due to space limitations.

However we do use the trigonometric inequality along with assumed lower bounds on

sectional curvature for showing convergence for nonconvex functions, as described next.

5.2.2.3 Convergence for the nonconvex case

Here we provide a convergence result for nonconvex functions satisfying the following

condition: f (xt)− f (x∗)≤ κ−1‖∇ f (xt)‖2, which automatically holds for strongly convex

functions. We assume this to hold even if f is nonconvex, since it allows us to show

convergence of the iterates using ‖∇ f (xt)‖2. Further, similar to [ZS16, ZRS16] we assume

that the sectional curvature of the manifold is lower bounded by cδ . This allows us to derive
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a trigonometric inequality analogous to the Euclidean case, where the sides of the “triangle”

are geodesics [Bon13]. The details are given in the supplementary. Additionally, we assume

that the eigenvalues of the inverse Hessian are bounded by (γ,Γ) within some suitable region

around an optimum. The main result of this section may be stated as follows:

Proposition 2. Let the sectional curvature of the manifold be bounded below by cδ , and

the fi be L-smooth. Let x∗ be an optimum of f (·) in (5.3). Assume the eigenvalues of

the inverse Hessian estimates are bounded. Set η2 = µ0/(ΓLnα1ηα2), K = mT , and m =

bn
3α1

2 /
(
3µ0ζ 1−2α2

)
c, where α1 ∈ (0,1] and α2 ∈ [0,2]. Then, for suitable choices of the

inverse Hessian bounds γ,Γ, we can find values for the constants µ0 > 0 and ε > 0 so that

the following holds:

E‖∇ f (xT )‖2 ≤ (Kε)−1Lη
α1
2 ζ

α2
(

f (x0)− f (x∗)
)
.

ζ is defined as ζ =
(

tanh
(

d
√
|cδ |
))−1

d
√
|cδ | if cδ < 0, and 0 otherwise; d is an

upper bound on the diameter of the set U mentioned earlier, containing an optimum x∗. The

proof is inspired by similar results from both Euclidean [RHS+16] and Riemannian [ZRS16]

analyses, and is given in the supplementary. One way to deal with negative curvature in

Hessians in Euclidean space is by adding some suitable positive α to the diagonal, ensuring

bounds on the eigenvalues. Investigation of such “damping” methods in the Riemannian

context could be an interesting area of future work.
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Algorithm 2 Riemannian Stochastic VR L-BFGS

1: Input: Initial value x0, parameters M and R, learning rates η1,η2, minibatch size mb.
2: Initialize c = 1;
3: Set r = 0;
4: Initialize H0;
5: for t = 0,1, . . . do
6: Set xt+1

0 = xs;
7: Compute full gradient gt+1 = N−1

∑
N
i=1 ∇ fi(xt);

8: for i = 0,1, . . .m−1 do
9: Sample minibatch Ii,mb ⊂ 1, . . . ,N;

10: Compute ∇̃ f (xi+1
i ) and ∇̃ f (xi) using Ii,mb;

11: Set ν
t+1
i = ∇̃ f (xt+1

i )−Γγ(∇̃ f (xt)−gt+1);
12: if c≡ 0 mod R then
13: Set r = r+1;
14: if r ≥ 2 then
15: Set ut+1

r = xt+1
i ;

16: Option 1: Compute zt+1
r = Γγ

(
η2ρ

t+1
i−1

)
;

17: Option 2: Compute zt+1
r = Γγ

(
−η1νprev

)
;

18: Compute yt+1
r = ∇̃ f (ut+1

r )−Γγ∇̃ f (ut+1
i−1) using Ii,mb;

19: Store correction pairs zt+1
r and yt+1

r , using r to maintain memory depth M;
20: end if
21: Set xprev = xt+1

i , νprev = ν
t+1
i ;

22: end if
23: if c < 2R then
24: Set xt+1

i+1 = Expxt+1
i
(−η1ν

t+1
i );

25: else
26: Compute ρ

t+1
i = Ht+1

r ν
t+1
i , as mentioned in the text;

27: Set xt+1
i+1 = Expxt+1

i
(η2ρ

t+1
i );

28: end if
29: Set c = c+1;
30: end for
31: Set xt+1 = xt+1

m ;
32: end for
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5.3 Experiments

5.3.1 Karcher mean computation for PD matrices

We begin with a synthetic experiment on learning the Karcher mean (centroid) [Bha07]

of positive definite matrices. For a collection of matrices {Wi}N
i=1, the optimization problem

can be stated as follows:

argmin
W�0

{
N

∑
i=1
‖ log

(
W− 1

2WiW−
1
2

)
‖2

F

}
.

We compare our minibatched implementation of the Riemannian SVRG algorithm from

[ZRS16], denoted as rSVRG, with the stochastic variance-reduced L-BFGS procedure from

Algorithm 2, denoted rSV-LBFGS. We implemented both algorithms using the Manopt

[BMAS14] and Mixest [HM15] toolkits. We generated three sets of random positive definite

matrices, each of size 100×100, with condition numbers 10,1e2, and 1e3, and computed

the ground truths using code from [BI13]. Matrix counts were 100 for condition number

1e−2, and 1000 for the rest. Both algorithms used equal batchsizes of 50 for the first and

third datasets, and 5 for the second, and were initialized identically. Both used learning

rates satisfying their convergence conditions. In general we found rSV-LBFGS to perform

better with frequent correction pair calculations and a low retention rate, ostensibly due to

the strong convexity; therefore we used R = 1, M = 2 for all three datasets. As mentioned

earlier, the zr correction pair was calculated using Option 1: zr = Γγ (η2ρt) where ρt is

calculated using the two-loop recursion. We used standard retractions to approximate the

exponential maps. The retraction formulae for both symmetric PD and sphere manifolds

used in the next section are given in the supplementary.

We calculated the error of iterate W as ‖W−W∗‖2
F , with W∗ being the ground truth. The

log errors are plotted vs the number of data passes in Fig.5.1. Comparing convergence speed

in terms of # data passes is often the preferred approach for benchmarking ML algorithms
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(a) (b) (c)

Figure 5.1: Error decay plots for rSV-LBFGS and rSVRG obtained from the three synthetic
Karcher mean computation experiments. Figures (a), (b) and (c) show the log-errors for
datasets with condition numbers 1e3,1e2 and 10 respectively, plotted against number of
passes over full dataset for each algorithm. See text for full details.

since it is an implementation-agnostic evaluation and focuses on the key bottleneck (I/O)

for big data problems. Comparisons of rSVRG with Riemannian gradient descent methods,

both batch and stochastic, can be found in [ZRS16]. From Fig.5.1, we find rSV-LBFGS to

converge faster than rSVRG for all three datasets.

5.3.2 Leading eigenvalue computation

Next we conduct a synthetic experiment on calculating the leading eigenvalue of matrices.

This of course is a common problem in machine learning, and as such is a unit-norm

constrained nonconvex optimization problem in Euclidean space. It can be written as:

min
z∈Rd :zT z=1

−zT

(
1
N

N

∑
i=1

didT
i

)
z,

where Dd×N is the data matrix, and di are its columns. We can transform this into an

unconstrained manifold optimization problem on the sphere defined by the norm constraint.

To that end, we generated four sets of datapoints, for eigengaps 0.005, 0.05, 0.01 and

0.1, using the techniques described in [Sha15]. Each dataset contains 100,000 vectors of

dimension 1000. We used a minibatch size of 100 for the two Riemannian algorithms.

As before, learning rates for rSVRG were chosen according to the bounds in [ZRS16].
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(a) (b)

(c) (d)

Figure 5.2: Error decay plots for rSV-LBFGS, rSVRG and VR-PCA obtained for dominating
eigenvalue computation on four synthetic data matrices. Eigengaps were 0.005, 0.05, 0.01
and 0.1 for (a), (b), (c) and (d) respectively. See text for experimental details.

Selecting appropriate values for the four parameters in rSV-LBFGS (the first and second-

order learning rates, L and M) was a nontrivial task; after careful grid searches within the

bounds defined by the convergence conditions, we chose η1 = 0.001,η2 = 0.1, and M = 10

for all four datasets. L was set to 5 for the dataset with eigengap 0.005, and 10 for the

rest. The zr correction pair was calculated using Option 2: zr = Γγ

(
−η1νprev

)
. We plot

the performance of rSV-LBFGS, rSVRG and VR-PCA in Fig.5.2. Extensive comparisons

of VR-PCA with other Euclidean algorithms have been conducted in [Sha15]; we do not
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repeat them here. We computed the error of iterate z as 1− (Ne∗)−1 ‖DT z‖2
2, e∗ being the

ground truth obtained from Matlab’s eigs.

The VR-PCA algorithm is faster in terms of wall-clock time than our implementations

of the Riemannian algorithms: average per-epoch times were 1.04 seconds, 2.723 seconds

and 3.211 seconds for VR-PCA, rSVRG, and rSV-LBFGS respectively. However in terms

of the number of data passes, we see that the rSV-LBFGS method performs well on all four

datasets, reaching errors of the order of 1e−15 well before VR-PCA and rSVRG in the last

three cases. The performance delta relative to VR-PCA is particularly noticeable in each of

the four cases; we consider this to be a noteworthy result for fixed-stepsize algorithms on

Riemannian manifolds.

5.4 Conclusion

We propose a novel L-BFGS algorithm on Riemannian manifolds with variance reduced

stochastic gradients, and provide theoretical analyses for strongly convex functions on

manifolds. We conduct experiments on computing Riemannian centroids for symmetric

positive definite matrices, and calculation of leading eigenvalues, both using large scale

datasets. Our algorithm outperforms other Riemannian optimization algorithms with fixed

stepsizes in both cases, and performs noticeably better than one of the fastest stochastic

algorithms in Euclidean space, VR-PCA, for the latter case.
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5.5 Proof Details

We present the convergence results from Propositions 1 and 2 in the main text in this

section.

5.5.1 Convexity and Lipschitz smoothness on manifolds

We begin by recalling the convexity and smoothness definitions on the manifold. Similar

to [ZS16, SH15, ZRS16], we define manifold (or geodesic) convexity concepts analogous

to the Euclidean baselines, as follows : a set U ⊂M is convex on the manifold if ∀x,y ∈U

there exists a geodesic γ connecting x,y that completely lies in U , i.e. γ(0) = x,γ(1) = y.

Then, a function can be defined as convex w.r.t. geodesics if ∀x,y ∈U where ∃γ connecting

x,y on the manifold, we have:

f (γ(t))≤ t f (x)+(1− t) f (y)∀t ∈ [0,1].

We can also define a notion of strong convexity as follows: a function f is called

S−strongly convex if for any x,y ∈U and (sub)gradient ∇x, we have

f (y)≥ f (x)+gx(∇x,Exp−1
x (y))+

S
2
‖Exp−1

x (y)‖2. (5.5)

We define Lipschitz smoothness of a function f by imposing Lipschitz continuity on the

gradients, as follows: ∀x,y ∈U,

‖∇(x)−Γγ∇(y)| ≤ L‖Exp−1
x (y)‖,

where L is the smoothness parameter. Analogous to the Euclidean case, this property can

also be formulated as::

f (y)≤ f (x)+gx(∇x,Exp−1
x (y))+

L
2
‖Exp−1

x (y)‖2. (5.6)
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5.5.2 Analysis of convergence

We analyze convergence for finite-sum empirical risk minimization problems of the

following form:

min
x∈M

f (x) =
1
N

N

∑
i=1

fi(x), (5.7)

where the Riemannian manifold is denoted by M . Note that the iterates are updated in

Algorithm 2 by taking the exponential map of the descent step multiplied by the stepsize,

with the descent step computed as the product of the inverse Hessian estimate and the

stochastic variance-reduced gradient using the standard two-loop recursion formula. Thus,

to bound the optimization error using the iterates, we will need bounds on both the stochastic

gradients and the inverse Hessians. As mentioned in [ZRS16], the methods used to derive

the former bounds for Euclidean algorithms cannot be ported directly to manifolds due to

metric nonlinearities; see the proof of Proposition 1 for details. For the latter, we follow the

standard template for L-BFGS algorithms in the literature [RW12, NW06, BHNS14]. To

begin, we make the following assumptions:

Assumption 1. The function f in (5.7) is strongly convex on the manifold, whereas the

fis are individually convex.

Assumption 2. There exist λ ,Λ ∈ (0,∞), λ < Λ s.t. λ‖ν‖2
x ≤ D2 f ≤ Λ‖ν‖2

x ∀ν ∈

TxM .

These two assumptions allow us to (a) guarantee that f has a unique minimizer x∗ in the

convex sublevel set U , and (b) derive bounds on the inverse Hessian updates using BFGS

update formulae for the Hessian approximations. Similar to the Euclidean case, these can be

written as follows:

B̂r = Γγ

[
B̂r−1−

Br−1(sr−1, ·)B̂r−1sr−1

Br−1(sr−1,sr−1)

]
Γ
−1
γ , (5.8)
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and by the Sherman-Morrison-Woodbury lemma, that of the inverse:

Hr = Γγ

[
G−1Hr−1G+

gxr−1(sr−1, ·)sr−1

yr−1sr−1

]
Γ
−1
γ ,

where G = I− gxr−1(sr−1,·)ŷr−1
yr−1sr−1

. The B̂r is the Lax-Milgram representation of the Hessian

[RW12].

5.5.2.1 Trace and determinant bounds

To start off our convergence discussions for both convex and nonconvex cases, we derive

bounds for the trace and determinants of the Hessian approximations, followed by those

for their inverses. The techniques used to do so are straightforward ports of the Euclidean

originals [NW06], with some minor modifications to account for differential geometric

technicalities. Using the assumptions above, we can prove the following bounds [RW12]:

Lemma 1. Let Bs+1
r =

(
Hs+1

r
)−1 be the approximation of the Hessian generated by Algo-

rithm 2, and B̂s+1
r and Ĥs+1

r be the corresponding Lax-Milgram representations. Let M, the

memory parameter, be the number of correction pairs used to update the inverse Hessian

approximation. Then, under Assumptions 1 and 2, we have:

tr(B̂s+1
r )≤ tr(B̂s+1

0 )+MΛ, det(B̂s+1
r )≥ det(B̂s+1

0 )
λ M

(tr(B̂s+1
0 )+ΛM)M

.

Also, γI � Ĥs+1
r � ΓI, for some Γ≥ γ > 0.

Proof. For brevity of notation we temporarily drop the (s+ 1) superscript. The proof

for the Euclidean case [BHNS14] can be generalized to the Riemannian scenario in a

straightforward way, as follows. Define the average Hessian Gr by

Gr(·, ·) =
1∫

0

D2[ f (tzr)](·, ·)dt,

114



such that yr = Gr(zr, ·). Then, it can be easily shown that Gr satisfies the bounds in

Assumption 2. Furthermore, we have the following useful inequalities

yrzr

‖zr‖2 =
Gr(sr,sr)

‖zr‖2 ≥ λ ,
‖yr‖2

yrzr
≤ Λ. (5.9)

Let ŷr be the Riesz representation of yr. Recall that parallel transport is an isometry along the

unique geodesics, which implies invariance of the trace operator. Then using the L-BFGS

update (5.8) and (5.9), we can bound the trace of the Lax-Milgram representation of the

Hessian approximations as follows:

tr(B̂r) = tr(Γγ B̂r−1Γ
−1
γ )−

‖Γγ
ˆBr−1sr−1‖2

Br−1(sr−1,sr−1)
+
‖Γγ ŷr−1‖2

yr−1sr−1

≤ tr(Γγ B̂r−1Γ
−1
γ )+

‖Γγ ŷr−1‖2

yr−1sr−1

≤ tr(B0)+MΛ.

This therefore proves boundedness of the largest eigenvalue of the B̂r estimates.

Similarly, to get a lower bound for the minimum eigenvalue, we bound the determinant

as follows:

det(B̂r) = det(ΓγBr−1Γ
−1
γ ) ·det

(
I− B̂r−1sr−1sr−1

Br−1(sr−1,sr−1)
+ B̂−1

r−1
yr−1yr−1

yr−1sr−1

)
= det(ΓγBr−1Γ

−1
γ )

yr−1sr−1

Br−1(sr−1,sr−1)

= det(ΓγBr−1Γ
−1
γ )

yr−1sr−1

‖sr−1‖2 ·
‖sr−1‖2

Br−1(sr−1,sr−1)

≥ det(ΓγBr−1Γ
−1
γ )

λ

λmax(Br−1)
,

where we use λmax to denote the maximum eigenvalue of Br−1, and use (5.9). Since λmax is

bounded above by the trace of (B̂r), we can telescope the inequality above to get

det(B̂r)≥ det(B0)
λ M

(tr(B0)+MΛ)M .

The bounds on the maximum and minimum eigenvalues of Br thus derived allows us to infer

corresponding bounds for those of Hr as well, since by definition Hr = B̂−1
r .
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5.5.2.2 Convergence results for the strongly convex case

Next we provide a brief overview of the bounds necessary to prove our convergence

result. First, note the following bound implied by the Lipschitz continuity of the gradients:

f (xs+1
t+1)≤ f (xs+1

t )+g(∇ f (xs+1
t ),Exp−1

xs+1
t

(xs+1
t+1))+

L
2
‖Exp−1

xs+1
t

(xs+1
t+1)‖

2.

Note the update step fom line 11 of Algorithm 2: xs+1
t+1 = Expxs+1

t
(−ηHs+1

r ν
s+1
t ). We

can replace the inverse exponential map in the inner product above by the quantity in the

parentheses. In order to replace Hs+1
r by the eigen-bounds from Lemma 1, we invoke the

following result (Lemma 5.8 from [Lee97]:

Lemma 2. For any D ∈ TxM and c, t ∈ R, γcD(t) = γD(ct),

where ν is the “speed” of the geodesic. This allows us to write Expx(cν) = γν(c) =

γcν(1). Recall that for Riemann geodesics we have ‖ ˙γ(t)‖= s̄ for all t ∈ [0,1], a constant.

Proposition 1. Let the Assumptions 1 and 2 hold. Further, let the f (·) in (5.7) be S-strongly

convex, and each of the fi be L-smooth, as defined earlier. Define the following constants:

p=
[
LS−1 +2η2S−1{2ηL3Γ2−Sκγ

}]
, and q′= 6η2L3Γ2S−1. Denote the global optimum

by x∗. Then the iterate xT+1 obtained after T outer loop iterations will satisfy the following

condition:

E
[

f (xT+1)− f (x∗)
]
≤ LS−1

β
TE
[

f (x0)− f (x∗)
]
,

where the constants are chosen to satisfy β = (1− p)−1 (q′+ pT (1− p−q′)
)
< 1 for linear

convergence.

Proof. From the L-smoothness condition (5.6), we have the following:

f (xt+1
i+1)≤ f (xt+1

i )+g
(

∇ f (xt+1
i ) ·Exp−1

xt+1
i

(xt+1
i+1)

)
+

L
2
‖Exp−1

xt+1
i

(xt+1
i+1)‖

2

= f (xt+1
i )−η2 ·g

(
∇ f (xt+1

i ),Ht+1
r ν

t+1
i
)
+

Lη2
2

2
‖Ht+1

r ν
t+1
i ‖2,
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where we have omitted subscripts from the metric. Taking expectations, and using the

bounds on the inverse Hessian estimates derived in Lemma 1, we have the following:

E f (xt+1
i+1)≤ E f (xt+1

i )−η2γ‖∇ f (xt+1
i )‖2 +η

2
2 L3

Γ
2
[

2‖Exp−1
xt+1

i
(x∗)‖2 +3‖Exp−1

xt (x∗)‖2
]
,

(5.10)

where we have used the following bound on the stochastic variance-reduced gradients

derived in [ZRS16]:

E‖ν t+1
i ‖2 ≤ 4L2‖Exp−1

xt+1
i

(x∗)‖2 +6L2‖Exp−1
xt (x∗)‖2.

This can be derived using triangle inequalities and the L-smoothness assumption. Note that

the bound is different from the Euclidean case [JZ13], due to technicalities introduced by

the Riemannian metric not being linear in general.

Now, recall the condition f (xt)− f (x∗)≤ 2κ)−1‖∇ f (xt)‖2, which follows from strong

convexity. Using this, we can derive a bound on the ∇ term in (5.10) as follows:

‖∇ f (xt+1
i )‖2 ≥ 2κ

(
f (xt+1

i )− f (x∗)
)
≥ Sκ‖Exp−1

xt+1
i

(x∗)‖2,

where the second inequality follows from S-strong convexity (5.5), since ∇ f (x∗) = 0.

Plugging this into (5.10), we have the following:

E f (xt+1
i+1)≤ f (xt+1

i )+η2
[
2ηL3

Γ
2−Sκγ

]
‖Exp−1

xt+1
i

(x∗)‖2

+3η
2
2 L3

Γ
2‖Exp−1

xt (x∗)‖2.
(5.11)

Now, note that S-strong convexity allows us to write the following:

S
2
‖Exp−1

xt+1
i+1

(x∗)‖2 ≤ f (xt+1
i+1)− f (x∗)

=
[

f (xt+1
i+1)− f (xt+1

i )
]
+
[

f (xt+1
i )− f (x∗)

]
≤
[

f (xt+1
i+1)− f (xt+1

i )
]
+

L
2
‖Exp−1

xt+1
i

(x∗)‖2,
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where the last step follows from L-smoothness. Taking expectations of both sides, and using

(5.11) for the first component on the right, we have

E‖Exp−1
xt+1

i+1
(x∗)‖2 ≤

[
L
S
+

2η2

S

{
2ηL3

Γ
2−Sκγ

}]
‖Exp−1

xt+1
i+1

(x∗)‖2

+
6η2

2 L3Γ2

S
‖Exp−1

xt (x∗)‖2.

(5.12)

Now, we denote p =
[

L
S +

2η2
S

{
2ηL3Γ2−Sκγ

}]
, and q′ = 6η2

2 L3Γ2

S . Then, taking expecta-

tions over the sigma algebra of all the random variables till minibatch m, and some algebra,

it can be shown that:

E‖Exp−1
xt+1

m
(x∗)‖2−qE‖Exp−1

xt+1
0

(x∗)‖2 ≤ pm (1−q)‖Exp−1
xt+1

0
(x∗)‖2,

where q = (1− p)−1q′. Note that this provides a bound on the iterate at the end of the inner

minibatch loop. Telescoping further, we have the bound

E‖Exp−1
xT+1(x

∗)‖2 ≤ β
TE‖Exp−1

x0 (x∗)‖2,

where β = q′+pT (1−p−q′)
1−p . Then, using this result with a final appeal to the L-Lipschitz and

S-strong convexity conditions, we have the bounds

E
[

f (xT+1)− f (x∗)
]
≤ L

2
E‖Exp−1

xT+1(x
∗)‖2

≤ L
S

β
T [ f (x0)− f (x∗)

]
,

thereby completing the proof.

5.5.2.3 Convergence results for the nonconvex case

We begin with the following inequality involving the side lengths of a geodesic “triangle”

[SH15, Bon13]:

Lemma 3. Let the sectional curvature of a Riemannian manifold be bounded below by cδ .

Let A be the angle between sides of length b and c in a triangle on the manifold, with the
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third side of length a, as usual. Then the following holds:

a2 ≤
c
√
|cδ |

tanh
(

c
√
|cδ |
)b2 + c2−2bccosA.

The cosine is defined using inner products, as in the Euclidean case, and the distances

using inverse exponential maps, as seen above. The following sequence of results and proofs

are inspired by the basic structure of [RHS+16], with suitable modifications involving the

inverse Hessian estimates from the L-BFGS updates.

Lemma 4. Let the assumptions of Proposition 2 hold. Define the following functions:

ci = ci+1
(
1+βη2Γ+2ζ L2

η
2
2 Γ

2)+L3
η

2
2 Γ

2,

δi = η2γ− ci+1η2Γ

β
−Lη

2
2 Γ−2ci+1ζ η

2
2 Γ

2 > 0,

where ci,ci+1,β ,η2 > 0. Further, for 0≤ t ≤ T −1, define the Lyapunov function Rt+1
i =

E
[

f (xt+1
i )+ ci‖Exp−1

xt (xt+1
i )‖2]. Then we have the following bound:

E‖∇ f (xt+1
i )‖2 ≤

Rt+1
i −Rt+1

i+1

δi
.

Proof. As with the proof of Proposition 1, we begin with the following bound derived from

L-smoothness:

E f (xt+1
i+1)≤ E

[
f (xt+1

i )−η2γ‖∇ f (xt+1
i )‖2 +

Lη2
2 Γ2

2
‖ν t+1

i ‖2
]
,

where we have bound the bounds on the inverse Hessian derived earlier. Then using Lemma

3 above, we have:

E‖Exp−1
xt (xt+1

i+1)‖
2 ≤ E‖Exp−1

xt (xt+1
i )‖2 +ζ‖Exp−1

xt+1
i

(xt+1
i+1)‖

2

−2g
(

Exp−1
xt+1

i
(xt+1

i+1),Exp−1
xt+1

i
(x∗)

)
≤ E

[
‖Exp−1

xt (xt+1
i )‖2 +ζ η

2
2 Γ

2‖ν t+1
i ‖2]

+2η2Γ

[
(2β )−1‖∇ f (xt+1

i )‖2 +
β

2
‖Exp−1

xt (xt+1
i )‖2

]
,
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where we have used g(a,b) ≤ 1
2β
‖a‖2 + β

2 ‖b‖
2. Note that we have used the norm of the

inverse exponential maps as the side lengths in Lemma 3. Using these last two results, we

can derive the following bound for the Lyapunov functions Rt+1
i+1:

Rt+1
i+1 ≤ E

[
f (xt+1

i )−
{

η2γ− ci+1η2Γ

β

}
‖∇ f (xt+1

i )‖2
]
+Γ

2
{

ci+1ζ η
2
2 +

Lη2
2

2

}
E‖ν t+1

i ‖2

+ ci+1 {1+η2Γβ}E‖Exp−1
xt (xt+1

i )‖2.

The norm of the stochastic variance reduced gradient can be bounded as follows [ZRS16,

RHS+16]:

E‖ν t+1
i ‖2 ≤ 2L2E‖Exp−1

xt (xt+1
i )‖2 +2E‖∇ f (xt+1

i )‖2.

This allows us to bound the Lyapunov function above as:

Rt+1
i+1 ≤ Rt+1

i −
{

η2γ− ci+1η2Γ

β
−Lη

2
2 Γ

2−2ci+1ζ η
2
2 Γ

2
}
E‖∇ f (xt+1

i )‖2,

which completes the proof.

Next we present a bound on ‖∇ f (·)‖2 using the δi’s defined above (Thm 6 of [ZRS16]):

Lemma 5. Let the conditions of Lemma 4 hold, and define the quantities therein. Let δi > 0

∀i ∈ [0,m], and cm = 0. Let δδ = mini δi, and K = mT . Then if we randomly return one of

the iterates
{

xt+1
i
}m

i=1 as xt+1, then:

E‖∇ f (xt)‖2 ≤ f (x0)− f (x∗)
Kδδ

.

This result can be shown by telescoping the bound derived in the previous lemma for the

Lyapunov functions, using cm = 0.

Proposition 2. Let the sectional curvature of the manifold be bounded below by cδ , and

the fi be L-smooth. Let x∗ be an optimum of f (·) in (5.7). Assume the eigenvalues of

the inverse Hessian estimates are bounded. Set η2 = µ0/(ΓLnα1ηα2), K = mT , and m =
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bn
3α1

2 /
(
3µ0ζ 1−2α2

)
c, where α1 ∈ (0,1] and α2 ∈ [0,2]. Then, for suitable choices of the

inverse Hessian bounds γ,Γ, we can find values for the constants µ0 > 0 and ε > 0 so that

the following holds:

E‖∇ f (xT )‖2 ≤ (Kε)−1Lη
α1
2 ζ

α2
(

f (x0)− f (x∗)
)
.

Proof. We define β = Lζ 1−α2/
(

n
α1
2 Γ

)
. Also, as mentioned in the proposition, η2 =

µ0/(ΓLnα1ηα2), with appropriate α1, α2. Note that we need a bound for δδ to plug in the

denominator of the bound in Lemma 5 above. This quantity can be lower bounded as follow:

δδ = min
i

δi

= min
i

{
η2γ− ci+1η2Γ

β
−Lη

2
2 Γ

2−2ci+1ζ
2
η

2
2 Γ

2
}

≥
{

η2γ− c0η2Γ

β
−Lη

2
Γ

2−2c0ζ η
2
2 Γ

2
}
.

Now we need to bound c0. To that end, telescoping the ci+1 function defined in Lemma 4

above with cm = 0, and denoting θ = η2βΓ+2ζ η2
2 L2Γ2, we get the following:

c0 =
Lµ2

0 {(1+θ)m−1}
n2α1ζ 2α2θ

.

Using the definitions of η2 and β above, we note that θ < 1/m, implying c0 ≤ Lµ0

ζ n
α1
2
(e−1).

Plugging this in the bound above, we posit that δδ can be bounded below as follows:

δδ ≥ η2

{
γ− µ0Γ(e−1)

ζ 2−α2
− µ0

nα2ζ α2
−

2µ2
0 (e−1)

n
3α1

2 ζ α2

}
≥ ε

Lnα1ζ α2
,

for some sufficiently small ε , and suitable choices of the inverse Hessian bounds γ,Γ and

the rest of the parameters. Using this bound in the denominator of the right hand side of

Lemma 5 above completes the proof.
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5.5.3 Retractions

We approximated the exponential maps with retractions from the Manopt [BMAS14]

toolbox. We used the following formulae: Rx(ηρ) = xcos‖ηρ‖F +
ηρ

‖ηρ‖F
sin‖ηρ‖F for the

sphere manifold, and Rx(ηρ) = x ·Mx(x\ηρ) for the manifold of symmetric PD matrices,

where Mx denotes the matrix exponential, and \ is matrix division. Here x ∈M is some

point on the manifold, ρ ∈ TxM is some descent step evaluated at x, and η is the stepsize.
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Chapter 6: Adaptive Bayesian Sampling with Monte Carlo EM

Markov Chain Monte Carlo sampling is a well-known set of techniques for learning

complex Bayesian probabilistic models that arise in machine learning. Typically used in

cases where computing the posterior distributions of parameters in closed form is not feasible,

MCMC techniques that converge reliably to the target distributions offer a provably correct

way (in an asymptotic sense) to draw samples of target parameters from arbitrarily complex

probability distributions. A recently proposed method in this domain is Hamiltonian Monte

Carlo (HMC) [Nea10, DKPR87], that formulates the target density as an “energy function”

augmented with auxiliary “momentum” parameters, and uses discretized Hamiltonian

dynamics to sample the parameters while preserving the energy function. The resulting

samplers perform noticeably better than random walk-based methods in terms of sampling

efficiency and accuracy [Nea10, GC11]. For use in stochastic settings, where one uses

random minibatches of the data to calculate the gradients of likelihoods for better scalability,

researchers have used Fokker-Planck correction steps to preserve the energy in the face of

stochastic noise [CCG14], as well as used auxiliary “thermostat” variables to control the

effect of this noise on the momentum terms [DFB+14, RKP16]. As with the batch setting,

these methods have exploited energy-preserving dynamics to sample more efficiently than

random walk-based stochastic samplers [CCG14, WT11, PT13].

A primary (hyper-)parameter of interest in these augmented energy function-based

samplers in the “mass” matrix of the kinetic energy term; as noted by various researchers
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[Nea10, GC11, RKP16, PT13, BLL99], this matrix plays an important role in the trajectories

taken by the samplers in the parameter space of interest, thereby affecting the overall

efficiency. While prior efforts have set this to the identity matrix or some other pre-

calculated value [CCG14, DFB+14, WT11], recent work has shown that there are significant

gains to be had in efficiency as well as convergent accuracy by reformulating the mass in

terms of the target parameters to be sampled [GC11, RKP16, PT13], thereby making the

sampler sensitive to the underlying geometry. This is done by imposing a positive definite

constraint on the adaptive mass, and using it as the metric of the Riemannian manifold of

probability distributions parametrized by the target parameters. This constraint also satisfies

the condition that the momenta be sampled from a Gaussian with the mass as the covariance.

Often called Riemannian preconditioning, this idea has been applied in both batch [GC11]

as well as stochastic settings [RKP16, PT13] to derive HMC-based samplers that adaptively

learn the critically important mass matrix from the data.

Although robust, these reformulations often lead to significant complexities in the

resultant dynamics; one can end up solving an implicit system of equations in each half-step

of the leapfrog dynamics [GC11, RKP16], along with inverting large
(
O(D2)

)
matrices.

This is sometimes sidestepped by performing fixed point updates at the cost of additional

error, or restricting oneself to simpler formulations that honor the symmetric positive definite

constraint, such as a diagonal matrix [PT13]. While this latter choice ameliorates a lot of

the added complexity, it is clearly suboptimal in the context of adapting to the underlying

geometry of the parameter space. Thus we would ideally need a mechanism to robustly

learn this critical mass hyperparameter from the data without significantly adding to the

computational burden.

We address this issue in this work with the Monte Carlo EM (MCEM) [WT90, BH99,

McC97, LC01] framework. An alternative to the venerable EM technique, MCEM is used
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to locally optimize maximum likelihood problems where the posterior probabilities required

in the E step of EM cannot be computed in closed form. In this work, we perform existing

dynamics derived from energy functions in the Monte Carlo E step while holding the mass

fixed, and use the stored samples of the momentum term to learn the mass in the M step. We

address the important issue of selecting appropriate E-step sampling iterations, using error

estimates to gradually increase the sample sizes as the Markov chain progresses towards

convergence. Combined with an online method to update the mass using sample covariance

estimates in the M step, this gives a clean and scalable adaptive sampling algorithm that

performs favorably compared to the Riemannian samplers. In both our synthetic experiments

and a high dimensional topic modeling problem with a complex Bayesian nonparametric

construction [RK15], our samplers match or beat the Riemannian variants in sampling

efficiency and accuracy, while being close to an order of magnitude faster.

6.1 Preliminaries

6.1.1 MCMC with Energy-Preserving Dynamics

In Hamiltonian Monte Carlo, the energy function is written as

H(θθθ ,p) =−L (θθθ)+
1
2

pT M−1p. (6.1)

Here X is the observed data, and θθθ denotes the model parameters. L (θθθ) = log p(X|θθθ)+

log p(θθθ) denotes the log likelihood of the data given the parameters along with the Bayesian

prior, and p denotes the auxiliary “momentum” mentioned above. Note that the second term

in the energy function, the kinetic energy, is simply the kernel of a Gaussian with the mass

matrix M acting as covariance. Hamilton’s equations of motions are then applied to this

energy function to derive the following differential equations, with the dot accent denoting a
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time derivative:

θ̇ = M−1p, ṗ = ∇L (θθθ).

These are discretized using the generalized leapfrog algorithm [Nea10, LR05] to create

a sampler that is both symplectic and time-reversible, upto a discretization error that is

quadratic in the stepsize.

Machine learning applications typically see the use of very large datasets for which

computing the gradients of the likelihoods in every leapfrog step followed by a Metropolis-

Hastings correction ratio is prohibitively expensive. To address this, one uses random

“minibatches” of the dataset in each iteration [RM51], allowing some stochastic noise

for improved scalability, and removes the Metropolis-Hastings (M-H) correction steps

[CCG14, WT11]. To preserve the system energy in this context one has to additionally apply

Fokker-Planck corrections to the dynamics [YA06]. The stochastic sampler in [CCG14]

uses these techniques to preserve the canonical Gibbs energy above (6.1). Researchers

have also used the notion of “thermostats” from the molecular dynamics literature [BLL99,

FS01, LM15, Hoo85] to further control the behavior of the momentum terms in the face of

stochastic noise; the resulting algorithm [DFB+14] preserves an energy of its own [JL11] as

well.

6.1.2 Adaptive MCMC using Riemannian Manifolds

As mentioned above, learning the mass matrices in these MCMC systems is an important

challenge. Researchers have traditionally used Riemannian manifold refomulations to

address this, and integrate the updating of the mass into the sampling steps. In [GC11] the

authors use this approach to derive adaptive variants of first-order Langevin dynamics as

well as HMC. For the latter the reformulated energy function can be written as:

Hgc(θθθ ,p) =−L (θθθ)+
1
2

pT G(θθθ)−1p+
1
2

log
{
(2π)D|G(θθθ)|

}
, (6.2)
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where D is the dimensionality of the parameter space. Note that the momentum variable p

can be integrated out to recover the desired marginal density of θθθ , in spite of the covariance

being a function of θθθ . In the machine learning literature, the authors of [PT13] used a

diagonal G(θθθ) to produce an adaptive variant of the algorithm in [WT11], whereas the

authors in [RKP16] derived deterministic and stochastic algorithms from a Riemannian vari-

ant of the Nosé-Poincaré energy [BLL99], with the resulting adaptive samplers preserving

symplecticness as well as canonical system temperature.

6.1.3 Monte Carlo EM

The EM algorithm [DLR77] is widely used to learn maximum likelihood parameter

estimates for complex probabilistic models. In cases where the expectations of the likeli-

hoods required in the E step are not tractable, one can use Monte Carlo simulations of the

posterior instead. The resulting Monte Carlo EM (MCEM) framework [WT90] has been

widely studied in the statistics literature, with various techniques developed to efficiently

draw samples and estimate Monte Carlo errors in the E step [BH99, McC97, LC01]. For

instance, the expected log-likelihood is usually replaced with the following Monte Carlo

approximation: Q(θθθ |θθθ t) = 1
m

m
∑

l=1
log p(X,ut

l|θθθ), where u represents the latent augmentation

variables used in EM, and m is the number of samples taken in the E step. While applying

this framework, one typically has to carefully tune the number of samples gathered in the E

step, since the potential distance from the stationary distribution in the early phases would

necessitate drawing relatively fewer samples, and progressively more as the sampler nears

convergence.

In this work we leverage this MCEM framework to learn M in (6.1) and similar energies

using samples of p; the discretized dynamics constitute the E step of the MCEM framework,

with suitable updates to M performed in the corresponding M step. We also use a novel
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mechanism to dynamically adjust the sample count by using sampling errors estimated from

the gathered samples, as described next.

6.2 Mass-Adaptive Sampling with Monte Carlo EM

6.2.1 The Basic Framework

Riemannian samplers start off by reformulating the energy function, making the mass a

function of θθθ and adding suitable terms to ensure constancy of the marginal distributions.

Our approach is fundamentally different: we cast the task of learning the mass as a maximum

likelihood problem over the space of symmetric positive definite matrices. For instance, we

can construct the following problem for standard HMC:

max
M�0

L (θθθ)− 1
2

pT M−1p− 1
2

log |M|. (6.3)

Recall that the joint likelihood is p(θθθ ,p) ∝ exp(−H(θθθ ,p)), H(·, ·) being the energy from

(6.1). Then, we use correct samplers that preserve the desired densities in the E step

of a Monte Carlo EM (MCEM) framework, and use the obtained samples of p in the

corresponding M step to perform suitable updates for the mass M. Specifically, to wrap the

standard HMC sampler in our framework, we perform the generalized leapfrog steps [Nea10,

LR05] to obtain proposal updates for θθθ ,p followed by Metropolis-Hastings corrections in

the E step, and use the obtained p values in the M step. The resultant adaptive sampling

method is shown in Alg. 3.

Note that this framework can also be applied to stochastic samplers that preserve the

energy, upto standard discretization errors. We can wrap the SGHMC sampler [CCG14] in

our framework as well, since it uses Fokker-Planck corrections to approximately preserve the

energy (6.1) in the presence of stochastic noise. We call the resulting method SGHMC-EM,

and specify it in Alg. 3 in the supplementary.
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As another example, the SGNHT sampler [DFB+14] is known to preserve a modified

Gibbs energy [JL11]; therefore we can propose the following max-likelihood problem for

learning the mass:

max
M�0

L (θθθ)− 1
2

pT M−1p− 1
2

log |M|+µ(ξ − ξ̄ )2/2, (6.4)

where ξ is the thermostat variable, and µ , ξ̄ are constants chosen to preserve correct

marginals. The SGNHT dynamics can used in the E step to maintain the above energy, and

we can use the collected p samples in the M step as before. We call the resultant method

SGNHT-EM, as shown in Alg. 4. Note that, unlike standard HMC above, we do not perform

Metropolis-Hastings corrections steps on the gathered samples for these cases. As shown

in the algorithms, we collect one set of momenta samples per epoch, after the leapfrog

iterations. We use S_count to denote the number of such samples collected before running

an M-step update.

The advantage of this MCEM approach over the parameter-dependent Riemannian

variants is twofold:

1. The existing Riemannian adaptive algorithms in the literature [GC11, RKP16, PT13]

all start by modifying the energy function, whereas our framework does not have any such

requirement. As long as one uses a sampling mechanism that preserves some energy with

correct marginals for θθθ , in a stochastic sense or otherwise, it can be used in the E step of our

framework.

2. The primary disadvantage of the Riemannian algorithms is the added complexity

in the dynamics derived from the modified energy functions. One typically ends up using

generalized leapfrog dynamics [GC11, RKP16], which can lead to implicit systems of

equations; to solve these one either has to use standard solvers that have complexity at least

cubic in the dimensionality [Dix82, EGG+06], with scalability issues in high dimensional

datasets, or use fixed point updates with worsened error guarantees. An alternative approach
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is to use diagonal covariance matrices, as mentioned earlier, which ignores the coordinate

correlations. Our MCEM approach sidesteps all these issues by keeping the existing

dynamics of the desired E step sampler unchanged. As shown in the experiments, we can

match or beat the Riemannian samplers in accuracy and efficiency by using suitable sample

sizes and M step updates, with significantly improved sampling complexities and runtimes.

6.2.2 Dynamic Updates for the E-step Sample Size

Algorithm 3 HMC-EM

Input: θθθ
(0),ε,LP_S,S_count

· Initialize M;
repeat
· Sample p(t) ∼ N(0,M);
for i = 1 to LP_S do
· p(i)← p(i+ε−1), θθθ

(i)← θθθ
(i+ε−1);

· p(i+ ε

2 )← p(i)− ε

2∇θθθ H(θθθ (i),p(i));
· θθθ (i+ε)← θθθ

(i)+ ε

2∇pH(θθθ (i),p(i+ ε

2 ));
· p(i+ε)← p(i+ ε

2 )− ε

2∇θθθ H(θθθ (i+ε),p(i+ ε

2 ));
end for
· Set

(
θθθ
(t+1),p(t+1)

)
from

(
θθθ

LP_S+ε ,pLP_S+ε

)
using Metropolis-Hastings
· Store MC-EM sample p(t+1);
if (t +1) mod S_count = 0 then
· Update M using MC-EM samples;

end if
· Update S_count as described in the text;

until forever

We now turn our attention to

the task of learning the sample

size in the E step from the data.

The nontriviality of this issue is

due to the following reasons: first,

we cannot let the sampling dynam-

ics run to convergence in each E

step without making the whole pro-

cess prohibitively slow; second,

we have to account for the corre-

lation among successive samples,

especially early on in the process

when the Markov chain is far from

convergence, possibly with “thin-

ning” techniques; and third, we may want to increase the sample count as the chain matures

and gets closer to the stationary distribution, and use relatively fewer samples early on.

To this end, we leverage techniques derived from the MCEM literature in statistics

[BH99, LC01, RRT99] to first evaluate a suitable “test” function of the target parameters
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at certain subsampled steps, using the gathered samples and current M step estimates. We

then use confidence intervals created around these evaluations to gauge the relative effect

of successive MCEM estimates over the Monte Carlo error. If the updated values of these

functions using newer M-step estimates lie in these intervals, we increase the number of

samples collected in the next MCEM loop.

Specifically, similar to [LC01], we start off with the following test function for HMC-EM

(Alg. 3): q(·) =
[
M−1p,∇L (θθθ)

]
. We then subsample some timesteps as mentioned below,

evaluate q at those steps, and create confidence intervals using sample means and variances:

mS =
1
S

S

∑
s=1

qs, vS =
1
S

S

∑
s=1

q2
s −m2

S, CS := mS± z 1−α

2
vS,

where S denotes the subsample count, z 1−α

2
is the (1−α) critical value of a standard

Gaussian, and CS the confidence interval mentioned earlier. For SGNHT-EM (Alg. 4), we

use the following test function: q(·) =
[
M−1p,∇L (θθθ)+ξ M−1p,pT M−1p

]
, derived from

the SGNHT dynamics.

One can adopt the following method described in [RRT99]: choose the subsampling

offsets {t1 . . . tS} as ts = ∑
s
i=1 xi, where xi−1 ∼ Poisson(ν id), with suitably chosen ν ≥ 1

and d > 0. We found both this and a fixed set of S offsets to work well in our experiments.

With the subsamples collected using this mechanism, we calculate the confidence

intervals as described earlier. The assumption is that this interval provides an estimate of

the spread of q due to the Monte Carlo error. We then perform the M-step, and evaluate q

using the updated M-step estimates. If this value lies in the previously calculated confidence

bound, we increase S as S = S+S/SI in the following iteration to overcome the Monte Carlo

noise. See [BH99, LC01] for details on these procedures. Values for the constants ν , α , d,

SI , as well as initial estimates for S are given in the supplementary. Running values for S are

denoted S_count hereafter.
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6.2.3 An Online Update for the M-Step

Algorithm 4 SGNHT-EM

Input: θθθ
(0),ε,A,LP_S,S_count

· Initialize ξ (0), p(0) and M;
repeat

for i = 1 to LP_S do
· p(i+1)← p(i)− εξ (i)M−1p(i)− ε∇̃L (θθθ (i))+√

2AN (0,ε);
· θθθ (i+1)← θθθ

(i)+ εM−1p(i+1);
· ξ (i+1)← ξ (i)+ ε

[
1
Dp(i+1)T M−1p(i+1)−1

]
;

end for
· Set

(
θθθ
(t+1),p(t+1),ξ (t+1)

)
=(

θθθ
(LP_S+1),p(LP_S+1),ξ (LP_S+1)

)
;

· Store MC-EM sample p(t+1);
if (t +1) mod S_count = 0 then
· Update M using MC-EM samples;

end if
· Update S_count as described in the text;

until forever

Next we turn our attention to

the task of updating the mass ma-

trices using the collected momenta

samples. As shown in the en-

ergy functions above, the momenta

are sampled from zero-mean nor-

mal distributions, enabling us to

use standard covariance estima-

tion techniques from the literature.

However, since we are using dis-

cretized MCMC to obtain these

samples, we have to address the

variance arising from the Monte

Carlo error, especially during the

burn-in phase. To that end, we found a running average of the updates to work well in our

experiments; in particular, we updated the inverse mass matrix, denoted as MI , at the kth

M-step as:

M(k)
I = (1−κ

(k))M(k−1)
I +κ

(k)M(k,est)
I , (6.5)

where M(k,est)
I is a suitable estimate computed from the gathered samples in the kth M-step,

and
{

κ(k)
}

is a step sequence satisfying some standard assumptions, as described below.

Note that the MIs correspond to the precision matrix of the Gaussian distribution of the

momenta; updating this during the M-step also removes the need to invert the mass matrices
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during the leapfrog iterations. Curiously, we found the inverse of the empirical covariance

matrix to work quite well as M(k,est)
I in our experiments.

These updates also induce a fresh perspective on the convergence of the overall MCEM

procedure. Existing convergence analyses in the statistics literature fall into three broad

categories: a) the almost sure convergence presented in [FM03] as t→ ∞ with increasing

sample sizes, b) the asymptotic angle presented in [CL95], where the sequence of MCEM

updates are analyzed as an approximation to the standard EM sequence as the sample size,

referred to as S_count above, tends to infinity, and c) the asymptotic consistency results

obtained from multiple Gibbs chains in [SHD99], by letting the chain counts and iterations

tend to ∞. Our analysis differs from all of these, by focusing on the maximum likelihood

situations noted above as convex optimization problems, and using SGD convergence

techniques [Bot98] for the sequence of iterates M(k)
I .

Proposition 1. Assume the M(k,est)
I ’s provide an unbiased estimate of ∇J, and have bounded

eigenvalues. Let inf‖MI−M∗I ‖2>ε ∇J(MI) > 0 ∀ε > 0. Further, let the sequence
{

κ(k)
}

satisfy ∑k κ(k) = ∞, ∑k

(
κ(k)

)2
< ∞. Then the sequence

{
M(k)

I

}
converges to the MLE of

the precision almost surely.

Recall that the (negative) precision is a natural parameter of the normal distribution

written in exponential family notation, and that the log-likelihood is a concave function of

the natural parameters for this family; this makes max-likelihood a convex optimization

problem over the precision, even in the presence of linear constraints [Uhl12, Dem72].

Therefore, this implies that the problems (6.3), (6.4) have a unique maximum, denoted by

M∗I above. Also note that the update (6.8) corresponds to a first order update on the iterates

with an L2-regularized objective, with unit regularization parameter; this is denoted by

J(MI) in the proposition. That is, J is the energy preserved by our sampler(s), as a function

of the mass (precision), augmented with an L2 regularization term. The resultant strongly
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convex optimization problem can be analyzed using SGD techniques under the assumptions

noted above; we provide a proof in the supplementary for completeness.

We should note here that the “stochasticity” in the proof does not refer to the stochastic

gradients of L (θθθ) used in the leapfrog dynamics of Algorithms 4 through 5; instead we

think of the collected momenta samples as a stochastic minibatch used to compute the

gradient of the regularized energy, as a function of the covariance (mass), allowing us to deal

with the Monte Carlo error indirectly. Also note that our assumption on the unbiasedness

of the M(k,est)
I estimates is similar to [FM03], and distinct from assuming that the MCEM

samples of θθθ are unbiased; indeed, it would be difficult to make this latter claim, since

stochastic samplers in general are known to have a convergent bias.

6.2.4 Nosé-Poincaré Variants

We next develop a stochastic version of the dynamics derived from the Nosé-Poincaré

Hamiltonian, followed by an MCEM variant. This allows for a direct comparison of the

Riemann manifold formulation and our MCEM framework for learning the kinetic masses, in

a stochastic setting with thermostat controls on the momentum terms and desired properties

like reversibility and symplecticness provided by generalized leapfrog discretizations. The

Nosé-Poincaré energy function can be written as [RKP16, BLL99]:

HNP = s
[
−L (θθθ)+

1
2

(p
s

)
M−1

(p
s

)
+

q2

2Q
+gkT logs−H0

]
, (6.6)

where L (θθθ) is the joint log-likelihood, s is the thermostat control, p and q the momentum

terms corresponding to θθθ and s respectively, and M and Q the respective mass terms. See

[RKP16, BLL99] for descriptions of the other constants. Our goal is to learn both M and Q

using the MCEM framework, as opposed to [RKP16], where both were formulated in terms
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of θθθ . To that end, we propose the following system of equations for the stochastic scenario:

pt+ ε

2 = p+
ε

2

[
s∇̃L (θθθ)− B(θθθ)√

s
M−1pt+ ε

2

]
,

ε

4Q
(qt+ ε

2 )2 +

[
1+

A(θθθ)sε

2Q

]
qt+ ε

2

−

[
q+

ε

2

[
−gkT (1+ logs)+

1
2

(
pt+ ε

2

s

)
M−1

(
pt+ ε

2

s

)
+ L̃ (θθθ)+H0

]]
= 0,

st+ε = s+ ε

[
qt+ ε

2

Q

(
s+ st+ ε

2

)]
, θθθ

t+ε = θθθ + εM−1p
[

1
s
+

1
st+ε

]
,

pt+ε = pt+ ε

2 +
ε

2

[
st+ε

∇̃L (θθθ t+ε)− B(θθθ t+ε)√
st+ε

M−1pt+ ε

2

]
, qt+ε = qt+ ε

2 +
ε

2

[
H0 + L̃ (θθθ t+ε)

−gkT (1+ logst+ε)+
1
2

(
pt+ ε

2

st+ε

)
M−1

(
pt+ ε

2

st+ε

)
− A(θθθ)st+ε

2Q
qt+ ε

2 −

(
qt+ ε

2

)2

2Q

]
,

(6.7)

where t + ε

2 denotes the half-step dynamics, ˜ signifies noisy stochastic estimates, and A(θθθ)

and B(θθθ) denote the stochastic noise terms, necessary for the Fokker-Planck corrections

[RKP16]. Note that we only have to solve a quadratic equation for qt+ ε

2 with the other

updates also being closed-form, as opposed to the implicit system of equations in [RKP16].

Proposition 2. The dynamics (6.7) preserve the Nosé-Poincaré energy (6.6).

The proof is a straightforward application of the Fokker-Planck corrections for stochastic

noise to the Hamiltonian dynamics derived from (6.6), and is provided in the supplementary.

With these dynamics, we first develop the SG-NPHMC algorithm (Alg. 4 in the supplemen-

tary) as a counterpart to SGHMC and SGNHT, and wrap it in our MCEM framework to

create SG-NPHMC-EM (Alg. 5 in the supplementary). As we shall demonstrate shortly, this

EM variant performs comparably to SGR-NPHMC from [RKP16], while being significantly

faster.

6.3 Experiments

In this section we compare the performance of the MCEM-augmented variants of HMC,

SGHMC as well as SGNHT with their standard counterparts, where the mass matrices are
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set to the identity matrix. We call these augmented versions HMC-EM, SGHMC-EM, and

SGNHT-EM respectively. As baselines for the synthetic experiments, in addition to the

standard samplers mentioned above, we also evaluate RHMC [GC11] and SGR-NPHMC

[RKP16], two recent algorithms based on dynamic Riemann manifold formulations for

learning the mass matrices. In the topic modeling experiment, for scalability reasons we

evaluate only the stochastic algorithms, including the recently proposed SGR-NPHMC,

and omit HMC, HMC-EM and RHMC. Since we restrict the discussions in this paper to

samplers with second-order dynamics, we do not compare our methods with SGLD [WT11]

or SGRLD [PT13].

6.3.1 Parameter Estimation of a 1D Standard Normal Distribution

In this experiment we aim to learn the parameters of a unidimensional standard normal

distribution in both batch and stochastic settings, using 5,000 data points generated from

N (0,1), analyzing the impact of our MC-EM framework on the way. We compare all the

algorithms mentioned so far: HMC, HMC-EM, SGHMC, SGHMC-EM, SGNHT, SGNHT-

EM, SG-NPHMC, SG-NPHMC-EM along with RHMC and SGR-NPHMC. The generative

model consists of normal-Wishart priors on the mean µ and precision τ , with posterior

distribution p(µ,τ|X) ∝ N(X|µ,τ)W (τ|1,1), where W denotes the Wishart distribution.

We run all the algorithms for the same number of iterations, discarding the first 5,000 as

“burn-in”. Batch sizes were fixed to 100 for all the stochastic algorithms, along with 10

leapfrog iterations across the board. For SGR-NPHMC and RHMC, we used the observed

Fisher information plus the negative Hessian of the prior as the tensor, with one fixed point

iteration on the implicit system of equations arising from the dynamics of both. For HMC

we used a fairly high learning rate of 1e−2. For SGHMC and SGNHT we used A = 10 and

A = 1 respectively. For SGR-NPHMC we used A,B = 0.01.
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METHOD RMSE (µ ) RMSE (τ ) TIME

HMC 0.0196 0.0197 0.417MS

HMC-EM 0.0115 0.0104 0.423MS

RHMC 0.0111 0.0089 5.748MS

SGHMC 0.1590 0.1646 0.133MS

SGHMC-EM 0.0713 0.2243 0.132MS

SG-NPHMC 0.0326 0.0433 0.514MS

SG-NPHMC-EM 0.0274 0.0354 0.498MS

SGR-NPHMC 0.0240 0.0308 3.145MS

SGNHT 0.0344 0.0335 0.148MS

SGNHT-EM 0.0317 0.0289 0.148MS

Table 6.1: RMSE of the sampled means, precisions and per-
iteration runtimes (in milliseconds) from runs on synthetic
Gaussian data.

We show the RMSE num-

bers collected from post-burn-

in samples as well as per-

iteration runtimes in Table 1.

An “iteration” here refers to a

complete E step, with the full

quota of leapfrog jumps. The

improvements afforded by our

MCEM framework are imme-

diately noticeable; HMC-EM

matches the errors obtained from RHMC, in effect matching the sample distribution, while

being much faster (an order of magnitude) per iteration. The stochastic MCEM algorithms

show markedly better performance as well; SGNHT-EM in particular beats SGR-NPHMC

in RMSE-τ while being significantly faster due to simpler updates for the mass matrices.

Accuracy improvements are particularly noticeable for the high learning rate regimes for

HMC, SGHMC and SG-NPHMC.

6.3.2 Parameter Estimation in 2D Bayesian Logistic Regression

Next we present some results obtained from a Bayesian logistic regression experi-

ment, using both synthetic and real datasets. For the synthetic case, we used the same

methodology as [RKP16]; we generated 2,000 observations from a mixture of two nor-

mal distributions with means at [1,−1] and [−1,1], with mixing weights set to (0.5,0.5)

and the covariance set to I. We then classify these points using a linear classifier with

weights {W0,W1} = [1,−1], and attempt to learn these weights using our samplers. We

put N (0,10I) priors on the weights, and used the metric tensor described in §7 of [GC11]
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for the Riemannian samplers. In the (generalized) leapfrog steps of the Riemannian

samplers, we opted to use 2 or 3 fixed point iterations to approximate the solutions

to the implicit equations. Along with this synthetic setup, we also fit a Bayesian LR

model to the Australian Credit and Heart regression datasets from the UCI database,

for additional runtime comparisons. The Australian credit dataset contains 690 data-

points of dimensionality 14, and the Heart dataset has 270 13-dimensional datapoints.

METHOD RMSE (W0) RMSE (W1)
HMC 0.0456 0.1290
HMC-EM 0.0145 0.0851
RHMC 0.0091 0.0574
SGHMC 0.2812 0.2717
SGHMC-EM 0.2804 0.2583
SG-NPHMC 0.4945 0.4263
SG-NPHMC-EM 0.0990 0.4229
SGR-NPHMC 0.1901 0.1925
SGNHT 0.2035 0.1921
SGNHT-EM 0.1983 0.1729

Table 6.2: RMSE of the two regression parame-
ters, for the synthetic Bayesian logistic regression
experiment. See text for details.

For the synthetic case, we dis-

card the first 10,000 samples as burn-

in, and calculate RMSE values from

the remaining samples. Learning

rates were chosen from {1e− 2,1e−

4,1e− 6}, and values of the stochas-

tic noise terms were selected from

{0.001,0.01,0.1,1,10}. Leapfrog

steps were chosen from {10,20,30}.

For the stochastic algorithms we used

a batchsize of 100.

The RMSE numbers for the synthetic dataset are shown in Table 2, and the per-iteration

runtimes for all the datasets are shown in Table 3. We used initialized S_count to 300 for

HMC-EM, SGHMC-EM, and SGNHT-EM, and 200 for SG-NPHMC-EM. The MCEM

framework noticeably improves the accuracy in almost all cases, with no computational

overhead. Note the improvement for SG-NPHMC in terms of RMSE for W0. For the

runtime calculations, we set all samplers to 10 leapfrog steps, and fixed S_count to the

values mentioned above.
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METHOD TIME (SYNTH) TIME (AUS) TIME (HEART)
HMC 1.435MS 0.987MS 0.791MS

HMC-EM 1.428MS 0.970MS 0.799MS

RHMC 1550MS 367MS 209MS

SGHMC 0.200MS 0.136MS 0.112MS

SGHMC-EM 0.203MS 0.141MS 0.131MS

SG-NPHMC 0.731MS 0.512MS 0.403MS

SG-NPHMC-EM 0.803MS 0.525MS 0.426MS

SGR-NPHMC 6.720MS 4.568MS 3.676MS

SGNHT 0.302MS 0.270MS 0.166MS

SGNHT-EM 0.306MS 0.251MS 0.175MS

Table 6.3: Per-iteration runtimes (in milliseconds) for Bayesian logis-
tic regression experiments, on both synthetic and real datasets.

The comparisons

with the Riemannian

algorithms tell a clear

story: though we do

get somewhat better

accuracy with these

samplers, they are

orders of magnitude

slower. In our syn-

thetic case, for in-

stance, each iteration of RHMC (consisting of all the leapfrog steps and the M-H ratio

calculation) takes more than a second, using 10 leapfrog steps and 2 fixed point iterations

for the implicit leapfrog equations, whereas both HMC and HMC-EM are simpler and

much faster. Also note that the M-step calculations for our MCEM framework involve a

single-step closed form update for the precision matrix, using the collected samples of p

once every S_count sampling steps; thus we can amortize the cost of the M-step over the

previous S_count iterations, leading to negligible changes to the per-sample runtimes.

6.3.3 Topic Modeling using a Nonparametric Gamma Process Con-
struction

Next we turn our attention to a high-dimensional topic modeling experiment using a

nonparametric Gamma process construction. We elect to follow the experimental setup

described in [RKP16]. Specifically, we use the Poisson factor analysis framework of [ZC15].

Denoting the vocabulary as V , and the documents in the corpus as D, we model the observed

counts of the vocabulary terms as DV×N = Poi(ΦΦΦΘΘΘ), where ΘΘΘK×N models the counts of K

latent topics in the documents, and ΦΦΦV×K denotes the factor load matrix, that encodes the
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(a) (b)

Figure 6.1: Test perplexities plotted against (a) post-burnin iterations and (b) wall-clock
time for the 20-Newsgroups dataset. See text for experimental details.

relative importance of the vocabulary terms in the latent topics. Following standard Bayesian

convention, we put model the columns of ΦΦΦ as φ·,k∼Dirichlet(α), using normalized Gamma

variables: φv,k =
γv

∑v γv
, with γv ∼ Γ(α,1). Then we have θn,k ∼ Γ(rk,

p j
1−p j

); we put β (a0,b0)

priors on the document-specific mixing probabilities p j. We then set the rks to the atom

weights generated by the constructive Gamma process definition of [RK15]; we refer the

reader to that paper for the details of the formulation. It leads to a rich nonparametric

construction of this Poisson factor analysis model for which closed-form Gibbs updates are

infeasible, thereby providing a testing application area for the stochastic MCMC algorithms.

We omit the Metropolis Hastings correction-based HMC and RHMC samplers in this

evaluation due to poor scalability.

We use count matrices from the 20-Newsgroups and Reuters Corpus Volume 1 corpora

[SSH13]. The former has 2,000 words and 18,845 documents, while the second has a

vocabulary of size 10,000 over 804,414 documents. We used a chronological 60− 40

train-test split for both datasets. Following standard convention for stochastic algorithms,

following each minibatch we learn document-specific parameters from 80% of the test set,
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and calculate test perplexities on the remaining 20%. Test perplexity, a commonly used

measure for such evaluations, is detailed in the supplementary.

As noted in [RK15], the atom weights have three sets of components: the Eks, Tks and

the hyperparameters α,γ and c. As in [RKP16], we ran three parallel chains for these

parameters, collecting samples of the momenta from the Tk and hyperparameter chains for

the MCEM mass updates. We kept the mass of the Ek chain fixed to IK , and chose K = 100

as number of latent topics. We initialized S_count, the E-step sample size in our algorithms,

to 50 for NPHMC-EM and 100 for the rest. Increasing S_count over time yielded fairly

minor improvements, hence we kept it fixed to the values above for simplicity. Additional

details on batch sizes, learning rates, stochastic noise estimates, leapfrog iterations etc are

provided in the supplementary. For the 20-Newsgroups dataset we ran all algorithms for

1,500 burn-in iterations, and collected samples for the next 1,500 steps thereafter, with a

stride of 100, for perplexity calculations. For the Reuters dataset we used 2,500 burn-in

iterations. Note that for all these algorithms, an “iteration” corresponds to a full E-step with

a stochastic minibatch.

METHOD 20-NEWS REUTERS TIME(20-NEWS)
SGHMC 759 996 0.047S

SGHMC-EM 738 972 0.047S

SGNHT 757 979 0.045S

SGNHT-EM 719 968 0.045S

SGR-NPHMC 723 952 0.410S

SG-NPHMC 714 958 0.049S

SG-NPHMC-EM 712 947 0.049S

Table 6.4: Test perplexities and per-iteration runtimes on 20-
Newsgroups and Reuters datasets.

The numbers obtained

at the end of the runs are

shown in Table 2, along

with per-iteration run-

times. The post-burnin

perplexity-vs-iteration plots

from the 20-Newsgroups

dataset are shown in Fig-

ure 6.1. We can see sig-

nificant improvements from the MCEM framework for all samplers, with that of SGNHT
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being highly pronounced (719 vs 757); indeed, the SG-NPHMC samplers have lower per-

plexities (712) than those obtained by SGR-NPHMC (723), while being close to an order of

magnitude faster per iteration for 20-Newsgroups even when the latter used diagonalized

metric tensors, ostensibly by avoiding implicit systems of equations in the leapfrog steps

to learn the kinetic masses. The framework yields nontrivial improvements for the Reuters

dataset as well.

6.4 Conclusion

We propose a new theoretically grounded approach to learning the mass matrices in

Hamiltonian-based samplers, including both standard HMC and stochastic variants, using

a Monte Carlo EM framework. In addition to a newly proposed stochastic sampler, we

augment certain existing samplers with this technique to devise a set of new algorithms

that learn the kinetic masses dynamically from the data in a flexible and scalable fashion.

Experiments conducted on synthetic and real datasets demonstrate the efficacy and efficiency

of our framework, when compared to existing Riemannian manifold-based samplers.
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6.5 Proof Details and Experimental Addenda

6.5.1 Proposition 1: Convergence Discussion

We propose the following update for the precision / inverse mass matrix, denoted as MI ,

at the kth M-step:

M(k)
I = (1−κ

(k))M(k−1)
I +κ

(k)M(k,est)
I , (6.8)

where M(k,est)
I is the estimate computed from the gathered samples in the kth M-step, and{

κ(k)
}

is a step sequence satisfying some standard assumptions, as described below.

Proposition 1. Assume the M(k,est)
I ’s provide an unbiased estimate of ∇J, and have bounded

eigenvalues. Let inf‖MI−M∗I ‖2>ε ∇J(MI) > 0 ∀ε > 0. Further, let the sequence
{

κ(k)
}

satisfy ∑k κ(k) = ∞, ∑k

(
κ(k)

)2
< ∞. Then the sequence

{
M(k)

I

}
converges to the MLE of

the precision almost surely.

Proof. The proof follows the basic outline laid out in [Bot98]. With a slight abuse of

notation, we use Mk to denote the iterates, M̄k to denote M(k,est)
I , and replace the κ(k)s with

κk. Then, as mentioned in the main text, the update (6.8) can be written in the following

first-order form:

Mk = Mk−1 +κk∇J(Mk),

where J(·) is the L2-regularized energy mentioned in the main text, as a function of the

precision, and we assume EzM̄k(z) = ∇J(Mk), z being a random variable codifying the

stochasticity in the estimate M̄k. As mentioned in the main paper, this stochasticity can be

thought of as a surrogate for the Monte Carlo error in the collected momenta samples. Now

define the Lyapunov function:

h(Mk) = ‖Mk−M∗‖2,
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where M∗ is the unique maximizer of the regularized objective function; as mentioned earlier,

this exists because the precision is a natural parameter of the normal written in exponential

family form, and the log likelihood of the latter is concave in the natural parameters. Then

we can write the difference in Lyapunov errors for successive iterates as

h(Mk+1)−h(Mk) =−2κk (Mk−M∗)T M̄k(zk)+κ
2
k ‖M̄k(zk)‖2.

Denoting the σ -algebra of all the z variables seen till the kth step by Fk, and using conditional

independences of the expectations given this information, we can write the expectation of

the quantity above as:

E(h(Mk+1)−h(Mk)|Fk) =−2κk (Mk−M∗)T
∇J(Mk)+κ

2
kE‖M̄k(zk)‖2. (6.9)

Now, since we assumed the M̄k’s to have bounded eigenvalues, we can bound the expectation

on the right above as follows:

E‖M̄k(zk)‖2 ≤ A+B‖Mk−M∗‖2,

for sufficiently large values of A,B≥ 0. This allows to write 6.9 as follows:

E
(
h(Mk+1)− (1−κ

2
k B)h(Mk)|Fk

)
≤−2κk (Mk−M∗)T

∇J(Mk)+κ
2
k A. (6.10)

Now we define two sequences as follows:

µk =
k

∏
i=1

1
1−κ2

k B
, h′k = µkh(Mk). (6.11)

The sequence {µk} can be seen to converge based on our assumptions on κ2
k . Then we can

bound the positive variations of h′k-s as:

E
[
E(h′k+1−h′k)

+
]
|Fk ≤ κ

2
k µkA.

This proves h′k to be a quasi-martingale. By the convergence theorem for quasi-martingales

[Fis65], we know that these converge almost surely. Since {µk} converge as well, we have
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almost sure convergence of the h(Mk)’s. Combined with the assumption that ∑k κk = ∞

and eqn. (6.10), we have almost sure convergence of (Mk−M∗)T
∇J(Mk) to 0. The final

assumption of the proposition allows us to use this result to prove that Mk→M∗ almost

surely.

6.5.2 Stochastic samplers with MCEM augmentations

In this section we present the MCEM variant of the SGHMC algorithm [CCG14],

followed by the SG-NPHMC algorithm using stochastic dynamics derived from the Nosé-

Poincaré Hamiltonian. This is then given the MCEM treatment, leading to the SG-NPHMC-

EM method.

6.5.2.1 SGHMC-EM

The MCEM variant of the SGHMC algorithm, which we denote SGHMC-EM, is given

in Alg. (3). We simply take the standard HMC dynamics, add Fokker-Planck correction

terms to handle the stochastic noise, and use the MCEM framework from the main paper to

collect appropriate number of samples of p, and use them to update the mass M. C and B̂

are user-specified estimates of the noise in the stochastic gradients.
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Algorithm 3 SGHMC-EM

Input: θθθ
(0),ε,A,LP_S,S_count

· Initialize ξ (0), p(0) and M;
repeat
· Sample p(t) ∼ N(0,M);
for i = 1 to LP_S do
· p(i+1)← p(i)− εCM−1p(i)− ε∇̃L (θθθ (i))+

√
2(C− B̂)N (0,ε);

· θθθ (i+1)← θθθ
(i)+ εM−1p(i+1);

end for
· Set

(
θθθ
(t+1),p(t+1)

)
=
(

θθθ
(LP_S+1),p(LP_S+1)

)
;

· Store MC-EM sample p(t+1);
if (t +1) mod S_count = 0 then
· Update M using MC-EM samples;

end if
· Update S_count as described in the text;

until forever

6.5.2.2 SG-NPHMC

As mentioned in the main paper, the Nosé-Poincaré energy function can be written as

follows [RKP16, BLL99]:

HNP = s
[
−L (θθθ)+

1
2

(p
s

)
M−1

(p
s

)
+

q2

2Q
+gkT logs−H0

]
, (6.12)

where L (θθθ) is the joint log-likelihood, s is the thermostat control, p and q the momentum

terms corresponding to θθθ and s respectively, and M and Q the respective mass terms. See

[RKP16, BLL99] for descriptions of the other constants. Our goal is to learn both M and Q

using the MCEM framework, as opposed to [RKP16], where both were formulated in terms
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of θθθ . To that end, we propose the following system of equations for the stochastic scenario:

pt+ ε

2 = p+
ε

2

[
s∇̃L (θθθ)− B(θθθ)√

s
M−1pt+ ε

2

]
,

ε

4Q
(qt+ ε

2 )2 +

[
1+

A(θθθ)sε

2Q

]
qt+ ε

2

−
[

q+
ε

2

[
−gkT (1+ logs)+

1
2

(
pt+ ε

2

s

)
M−1

(
pt+ ε

2

s

)
+ L̃ (θθθ)+H0

]]
= 0,

st+ε = s+ ε

[
qt+ ε

2

Q

(
s+ st+ ε

2

)]
, θθθ

t+ε = θθθ + εM−1p
[

1
s
+

1
st+ε

]
,

pt+ε = pt+ ε

2 +
ε

2

[
st+ε

∇̃L (θθθ t+ε)− B(θθθ t+ε)√
st+ε

M−1pt+ ε

2

]
, qt+ε = qt+ ε

2 +
ε

2

[
H0

+ L̃ (θθθ t+ε)−gkT (1+ logst+ε)+
1
2

(
pt+ ε

2

st+ε

)
M−1

(
pt+ ε

2

st+ε

)
− A(θθθ)st+ε

2Q
qt+ ε

2 −

(
qt+ ε

2

)2

2Q

]
(6.13)

where t + ε

2 denotes the half-step dynamics, ˜ signifies noisy stochastic estimates, and A(θθθ)

and B(θθθ) denote the stochastic noise terms, necessary for the Fokker-Planck corrections

[RKP16].

Proposition 2. The dynamics (6.13) preserve the Nosé-Poincaré energy (6.12).

Proof. We start off with the basic dynamics derived from the Nosé-Poincaré Hamiltonian:

θ̇θθ = M−1 p
s

ṗ = s∇L (θθθ)

ṡ =
q
Q

s

q̇ = L (θθθ)+
1
2

(p
s

)T
M−1

(p
s

)
−gkT (1+ logs)− q2

2Q
+H0,

(6.14)

where the dot notation denotes the time derivatives. Following the notation of [YA06], this

can be expressed as: 
θ̇θθ

ṗ
ṡ
q̇

=−


0 0 0 −I
0 0 I 0
0 −I 0 0
I 0 0 0




∂

s HNP
∂

q HNP
∂

θθθ
HNP

∂

p HNP

+N, (6.15)
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where N = [0,N (0,2
√

sB(θθθ)),0,N (0,2B(θθθ))] would be the stochastic noise from the

minibatch estimates of ∇L (θθθ) and L (θθθ) respectively. Denoting the first matrix on the right

by D and the second by ∇HNP, we can see that tr
{

∇T ∇Dy
}
= 0 for any y = y(θθθ ,p,s,q).

Recall that the joint distribution of interest, p(θθθ ,p,s,q)∝ exp(−HNP); thus ∇p(θθθ ,p,s,q)=

−p∇HNP.

Now, for any stochastic differential equation written as θ̇θθ = f (θθθ)+N (0,2Q(θθθ)), the

Fokker-Planck equation can be written as:

∂

∂ t
p(θθθ) =− ∂

∂θθθ
[ f (θθθ)p(θθθ)]+

∂ 2

∂θθθ
2 [Q(θθθ)p(θθθ)],

where p(θθθ) denotes the distribution of θθθ , and ∂ 2

∂θθθ
2 = ∑i, j

∂

∂θi

∂

∂θ j
. For our Nosé-Poincaré

case, the right hand side can be written as:

tr
{

∇
T X∇p(θθθ ,p,s,q)

}
+ tr∇T {p(θθθ ,p,s,q)D∇HNP}

= tr
{
(X +D)∇T

∇p(θθθ ,p,s,q)
}
+ tr∇T {p(θθθ ,p,s,q)D∇HNP} ,

where the diffusion noise matrix

X =


0 0 0 0
0 0 0

√
sB(θθθ)

0 0 0 0
0 A(θθθ) 0 0

 .
Thus replacing D by X +D in (6.15) would make the RHS zero. This transformation would

add correction terms to the dynamics 6.14 to yield the following:

θ̇θθ = M−1 p
s

ṗ = s∇L (θθθ)−
√

sB(θθθ)M−1 p
s

ṡ =
q
Q

s

q̇ = L (θθθ)+
1
2

(p
s

)T
M−1

(p
s

)
−gkT (1+ logs)− q2

2Q
−A(θθθ)

q
Q

s+H0.

Discretizing this system using the generalized leapfrog technique gives rise to the dynamics

6.7.
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The dynamics 6.13 therefore induce the SG-NPHMC algorithm, shown in Alg. (4).

Algorithm 4 SG-NPHMC

Input: θθθ
(0),ε,A,LP_S,S_count

· Initialize p(0), M, Q;
repeat
· Sample p(t) ∼ N(0,M), q∼ N(0,Q);
for i = 1 to LP_S do
· Perform generalized leapfrog dynamics (6.13) to get p(i+ε),θθθ (i+ε),s(i+ε),q(i+ε);

end for
· Set

(
θθθ
(t+1),p(t+1),ξ (t+1)

)
=
(

θθθ
(LP_S+ε),p(LP_S+ε),s(LP_S+ε),q(LP_S+ε)

)
;

until forever

6.5.2.3 SG-NPHMC-EM

In this section we add the MCEM framework to Alg. (4) above. This allows us to learn M

adaptively while preserving the thermostat controls and symplecticness of the SG-NPHMC

sampler.

Algorithm 5 SG-NPHMC-EM

Input: θθθ
(0),ε,A,B,LP_S,S_count

· Initialize s(0), p(0), q(0), M and Q;
repeat

for i = 1 to LP_S do
· Perform generalized leapfrog dynamics (6.13) to get p(i+ε),θθθ (i+ε),s(i+ε),q(i+ε);

end for
· Set

(
θθθ
(t+1),p(t+1),s(t+1),q(t+1)

)
=
(

θθθ
(LP_S+ε),p(LP_S+ε),s(LP_S+ε),q(LP_S+ε)

)
;

· Store MC-EM samples p(t+1) and q(t+1);
if (t +1) mod S_count = 0 then
· Update M, Q using MC-EM samples of p and q respectively;

end if
· Update S_count as described in the text;

until forever
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6.5.3 Additional Experimental Details

For the topic modeling case, we used the following perplexity measure, as defined as

[ZC15]:

Perplexity = exp

(
− 1

Y

Ntest

∑
n=1

V

∑
v=1

ynv logmnv

)
,

where ynv refers to the count of vocabulary item v in held-out test document n, Y =
Ntest
∑

n=1

V
∑

v=1
ynv,

and mnv =
S
∑

s=1

K
∑

k=1
φ
(s)
vk θ

(s)
kn /

V
∑

v=1

S
∑

s=1

K
∑

k=1
φ
(s)
vk θ

(s)
kn , where we collect S samples of θ ,φ , and have

K latent topics. For the 20-Newsgroups dataset, we used learning tates of 1e−7 for the Tk

chain, 1e−6 for the hyperparameter chain, for all the samplers. Stochastic noise estimates

were of the order of 1e−2 for SGHMC, SGNHT and their EM variants, and of the order

of 1e−1 for SG-NPHMC and its EM version. We used minibatches of size 100, and 10

leapfrog iterations for all algorithms. The document-level θ ,φ were learnt using 20 leapfrog

iterations of RHMC [GC11], which we found to mix slightly better than Gibbs.

For the sample size updates, we used ν = 1, α = 1, d = 2, SI = 10. We initialized

S_count to 50 for the topic modeling experiments with SG-NPHMC-EM, 100 for all other

cases. All experiments were run on a Macbook pro with a 2.5Ghz core i7 processor and

16GB ram.

150



Chapter 7: Conclusion and Future Work

We conclude with a brief summary of the various algorithms discussed above, as well as

the avenues for future work we consider to be promising in this context.

7.1 Contributions.

We begin by restating our thesis statement: We posit that scalable learning and inference

algorithms are necessary for expanding the scope of Bayesian nonparametric probabilistic

models to truly large-scale datasets. Doing so requires developing scalable variants of

analytic closed form learning methods that preserve many of the theoretical niceties, from

both algorithmic and underlying modeling perspectives. To that end, we propose a set

of methods using techniques such as stochastic MCMC sampling, stochastic optimization

in both Euclidean and Riemannian manifold domains, variational inference and small-

variance asymptotics, that can be applied to large scale data modeled using rich Bayesian

nonparametric paradigms, while scaling to large datasets.

In the preceding chapters, we have discussed the following approaches to addressing the

problem of robust and scalable inference in Bayesian nonparametric machine learning:

• We have proposed a novel Hamiltonian Monte Carlo technique consisting of a Rie-

mann preconditioning approach for adaptive learning of the mass matrices of the

momenta, applied to Nosé-Poincaré Hamiltonians. We have also converted the re-

sultant dynamics into a form suitable for the stochastic setting using Fokker-Planck
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updates to account for random noise. Discretized samplers have been derived for both

deterministic and stochastic cases, with robust performance shown in both synthetic

and high-dimensional real-world datasets.

• We have proposed a novel construction of the infinite Gamma process without using

Dirichlet process denormalization, and derived a variational inference algorithm that

has been shown to be more scalable than competing Beta-Bernoulli-based approaches

for large-scale topic modeling scenarios. This technique can be improved by augment-

ing it with recent developments in the approximate inference community, as well as

adapted to online and asynchronous settings.

• We have discussed an asymptotic derivation of non-probabilistic inference algorithms

for Bayesian hidden Markov models, in both parametric and nonparametric cases.

This work extended the use of small-variance asymptotic techniques to sequential

nonparametric models, and in the process derived a novel algorithm with dynamic

programming-based ideas for infinite hidden Markov models, removing the need for

dependence on sampling-based methods for dealing with such problems.

• We have proposed the use of variance reduction techniques to devise fast quasi-Newton

optimization methods on Riemannian manifolds, as an alternative to constrained op-

timization in Euclidean space that is the de-facto choice in most machine learning

problems. Our stochastic Riemannian L-BFGS algorithm with variance reduction

techniques performs strongly in certain common machine learning tasks, compared

to state-of-the-art Euclidean methods and first-order Riemannian optimization algo-

rithms, thereby providing important additions to the machine learning practitioner’s

toolkit.

152



• We have provided a completely new approach to developing adaptive Monte Carlo

sampling algorithms for large scale machine learning applications, as an alternative

to recently proposed Riemannian preconditioning methods for implicitly learning

the mass matrices in such samplers. The resulting framework can be applied to

most existing Hamiltonian samplers in the machine learning literature, stochastic or

otherwise, yielding uniform sampling improvements without compromising runtime

complexity.

7.2 Future Work.

To motivate this section, we first present some of the limitations of the work in this

thesis:

• We proposed a batch variational inference algorithm for our gamma process con-

struction in Chapter 3, which is does not scale particularly well for large high di-

mensional datasets. One would ideally use stochastic variational inference (SVI)

techniques [HBWP13, HB11] to address this issue. Applications of such methods

to Bayesian nonparametric models based on completely random measures are in a

nascent state of exploration; thus an SVI algorithm for the model we have developed,

in addition to being necessary for effective use of our model for very large datasets,

would be a useful addition to the ML practitioner’s toolkit.

• In the stochastic MCMC sampler based on Nosé-Poincaré dynamics that we discussed

in Chapter 4, we did not provide a robust model for the stochastic noise that these

samplers generate. There are two noise terms in the dynamics of the sampler, that

we denoted by A(θθθ) and B(θθθ), that we set to constant scalars in our experiments.

Such a naive noise model imposes clear limitations on the robustness of the sampler;

indeed, selecting appropriate values for these turned out to be nontrivial part of the
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experimental evaluation. Addressing this limitation is likely to improve the stochastic

performance of the sampler, in addition to being an interesting research area in its

own right.

• As we mentioned in Chapter 5, exponential maps are but one way to approximate the

more general concept of a retraction on Riemannian manifolds; there could be many

smooth mappings that satisfy the homeomorphic formulation of a retraction. In this

work we restrict ourselves to exponential maps due to their straightforward connections

with geodesics, whereas ideally one would want a more detailed treatment of such

manifold optimization methods for a range of retraction implementations. Another

limitation of this work would be our convergence discussion for nonconvex functions

on the manifold, where we assumed the eigenvalues of the Hessian approximations

generated by our algorithm to be bounded away from zero in some local neighborhood

of a local optimum. While this simplifying assumption allowed us to use existing

proof techniques from the literature, it sidesteps the issues the multitude of Hessian-

based issues that arise in nonconvex scenarios, for example saddle points in Euclidean

domains. As mentioned in the Chapter, one usually deals with this in the Euclidean

setting by adding some positive scalar to ensure that the eigenvalues remain bounded

away from zero, however such “damping” techniques have not been studied properly

in the Riemannian setting.

• For the Monte Carlo EM-based framework we proposed in Chapter 6 for learning

the mass matrices in HMC-based samplers, we used a direct closed-form expression

for covariance estimation in the M-step of our samplers. While the experimental

results suggest this to be a reasonable approach for low to moderate dimensional

problems, we did not use any high dimensional covariance estimation tricks in our
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implementations, leaving open the possibility that the samplers will not perform to

their full potential in very high dimensional problems. Note that the work in this

Chapter proposes a new framework for learning the mass matrices using Monte Carlo

EM; we do not impose any restrictions on the kind of optimization algorithms one

would want to use with the gathered momentum samples in the M step. Thus one

would ideally want to use robust techniques in these M steps, possibly leveraging

the sparsity structure of the intermediate mass matrices to efficiently handle high

dimensional parameter spaces.

This leads us to a discussion on certain straightforward ways one can extend and improve

upon the work in this thesis; the first of the following sections addresses one of the limitations

mentioned above, while the rest discuss ideas that are directly related to the work in this

thesis and could potentially be useful additions to the machine learning literature.

7.2.1 Robust modeling of Stochastic Noise Terms in MCMC samplers.

Recall the sampling algorithm from Chapter 4, where we proposed both batch and

stochastic versions of a Riemannian Monte Carlo sampler using dynamics derived from a

modified Nosé-Poincaré Hamiltonian. As mentioned in section 4.2.2, we introduce noise

terms A(θθθ) and B(θθθ) to model the stochastic noise arising from the minibatch estimates

of the likelihood and the log-likelihood in the discretized dynamics. However, in the

experiments we set these to constant values for simplicity. This imposes an independence

assumption on the stochastic noise, in addition to introducing the problem of selecting

appropriate values for these terms. One would ideally use a more rigorous approach to

modeling the stochastic noise; a zero-mean Gaussian model on the noise would be more

reasonable, as well as being in line with other areas of research where such “white noise”

assumptions are common. One could then use the expected Fisher information as the
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covariance, making the term sensitive to the parameter values as well. Such approaches

have seen some use in recent literature on stochastic sampling in the ML context [AKW12,

SZLS15]: in the former the authors propose a modifications of the stochastic gradient

Langevin dynamics algorithm of [WT11] to improve its mixing rate, constructing a Markov

chain that samples from a normal surrogate to the true posterior, with covariance given by

the empirical Fisher information derived from the stochastic gradients; they appeal to the

Bernstein-von-Mises theorem [Cam86] to prove asymptotic correctness. In [SZLS15] the

authors used the empirical Fisher information of the gradients to update the Fokker-Planck

noise correction term in stochastic gradient Nosé-Hoover dynamics [DFB+14], and showed

improved sampling efficiency and mixing rates for discriminative Boltzmann machines

[LB08], among other applications. Such methods could be applied to our case as well, and

we expect to see improved robustness to stochastic noise as a result.

7.2.2 Coresets for Faster Metropolis-Hastings Corrections.

Another way to improve scalability with reasonable correctness guarantees would be

to develop faster ways to perform Metropolis-Hastings correction steps, instead of simply

omitting them from the pipeline as is currently done in the stochastic samplers; recall that

doing so introduces biases in the convergent distributions. Prior work along these line would

include [KCW14] and [BDH14]. where the authors perform sequential hypothesis tests to

determine the exact subsample of datapoints to be used for calculating the M-H ratio. We

believe that coresets could potentially be used for this purpose. A technique popularized

in the computational geometry [AHPV05] and CS theory [HPM04] communities, coresets

are beginning to see increased usage in the machine learning literature for designing im-

provements to clustering algorithms, both for parametric cases like k-means [FMS07, FL11]

as well as objective functions like DP-Means derived from Dirichlet process mixture of
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Gaussians [BLK15], which happens to be a popular Bayesian nonparametric construct. One

way to construct coresets in a clustering context is by using importance sampling on a distri-

bution computed using an approximation to the optimal solution [FL11, BLK15, LS10]; the

approximation is computed using problem-specific techniques, and the importance sampling

weights are proportional to the sensitivities of the datapoints. The sensitivity in this case is a

bound on the relative contribution of the datapoint to the cost vs the average contribution of

all points. In addition to the importance sampling estimator being unbiased, this scheme can

be used to bound the variance of the estimator as well [LS10]. In the sampling scenario, one

could potentially develop sequential coreset construction methods aimed at approximating

the M-H acceptance ratios upto some specified error, without processing the entire dataset;

the biases arising from removing the M-H step altogether could therefore be handled in a

methodical way, with suitable complexity trade-offs.

7.2.3 Mixing Rate Analyses.

One could also conduct a thorough analysis of the mixing rates of these stochastic

MCMC samplers, along the lines of [LPW08]. There has been some recent work looking

at mixing rates of Gibbs samplers for discrete distributions [SOR16], where the authors

analyze both mixing time and bias for asynchronous (Hogwild!) Gibbs samplers. Similar

rigorous analyses for MCMC samplers for distributions with continuous support would be

an interesting contribution to the literature, and would provide sound convergence bounds

for these samplers, as opposed to heuristically obtained “burn-in” times.

7.2.4 Parallelization Frameworks for HMC-based samplers.

Lastly, one could investigate ways to parallelize the samplers proposed here; doing

so for the Riemannian sampler, for instance, would be nontrivial due to the coordinate

dependencies induced by certain formulations of the metric tensor in terms of the parameters.
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A robust parallelization framework, with possibly an asynchronous version of these samplers

and accompanying theoretical bounds, combined with the techniques for stochastic domains

developed here and elsewhere would go a long way towards improving the practical applica-

bility of such algorithms. Insights gained here may also enable practitioners to efficiently

run these algorithms on dedicated computer hardware like graphics processing units, which

would usher in a new era of rich probabilistic models and algorithms.

To conclude, we hope that the techniques discussed herein will contribute useful tech-

niques to the arsenal of machine learning tools aimed at the problem of scalable parameter

estimation and inference in Bayesian nonparametric settings. Given the deluge of data in

machine learning contexts, often from increasingly heterogeneous sources, we expect to see

an increase in required model complexity to find suitable representations in cases where

simple parametric constructions or decades-old heuristics may become a limiting factor in

acquiring useful insights. Theoretically grounded probabilistic models such as the ones

discussed in this dissertation are likely to see increased usage and adoption in the near future,

in which case the algorithms and techniques we develop herein will prove integral to the

discerning machine learning researcher’s quest to solve scalable inference problems.
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