
 
 

An Adaptive Design Optimization Approach to Model-based Discrimination 

of Cognitive Control Mechanisms 

 

Thesis 

 

Presented in Partial Fulfillment of the Requirement for the Degree Master of Arts  

in the Graduate School of The Ohio State University 

 

By 

Sang Ho Lee, M.A. 

Graduate Program in Psychology 

 

The Ohio State University 

2017 

 

Thesis Committee: 

Jay I. Myung, Advisor 

Mark A. Pitt, Co-advisor 

Andrew B. Leber 

  



 
 

 

 

 

 

 

 

 

 

Copyright by 

Sang Ho Lee 

2017



ii 
 

Abstract 

Cognitive control refers to the ability to adjust our thoughts and behaviors in 

order to achieve internalized goals.  Experimental investigation of the underlying 

mechanisms often employs variations of the congruency task such as flanker, Stroop, and 

Simon tasks.  In the past, researchers have proposed several theories of cognitive control 

to account for the characteristic patterns of response times observed in the tasks (e.g. 

Botvinick, Braver, Barch, Carter, & Cohen, 2001; Yu & Cohen, 2009).  The goal of this 

study is to empirically discriminate two formal instantiations (models) of such theories, 

namely, the conflict-driven control model (M1) and the expectancy-based control model 

(M2).  Each model is defined in terms of its own design space that can be capitalized on 

experimentally.  This is the proportion of repetition for model M1 and the proportion 

congruency for model M2.  To compare those models, three flanker task experiments 

were conducted using different design selection methods.  The first experiment used the 

adaptive design optimization (ADO; Myung et al, 2013) to select a combination of the 

two design variables that optimizes model evaluation.  ADO is an algorithm-based 

experimentation method for adaptively selecting the values of designs and stimuli on the 

fly in each experimental stage.  The second and third experiments used pre-determined 

designs.  The model-based approach adopted in the three experiments was shown to be 

efficient in discriminating the competing theories of cognitive control.  Specifically, the 

present results indicate that each model had its own advantages in explaining individual 

behavior.  M1 was better at explaining a reversed congruency sequence effect (CSE), 
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whereas M2 showed better fit to the proportion congruency effect.  It suggests that there 

are diverse cognitive control mechanisms utilized to generate different response time 

patterns in the congruency task.  
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1. Introduction 

Cognitive control refers to the ability to adjust our thoughts and behaviors in 

order to achieve internal goals (Botvinick, Braver, Barch, Carter, & Cohen, 2001; Posner 

& DiGirolamo, 1998; Egner, 2007).  This flexible regulation is especially important in a 

task in which habitual responses have to be inhibited to enhance performance.  For 

example, in an arrow flanker task where only the central arrow (e.g., < in >><>>) should 

be responded to, cognitive control helps us suppress the urge to respond to the other 

irrelevant arrows outside the center.  This ability is crucial in everyday life because it 

allows us to focus our attention to a specific goal, in the world full of potential 

distractions.  However, despite the importance of cognitive control in goal-directed 

behaviors, its exact mechanism is not fully known. 

In order to investigate cognitive control processes, congruency tasks (e.g., 

flanker, Stroop, Simon task) are often used in experimental studies.  An important 

characteristic that is shared by all congruency tasks is that the stimuli in those tasks 

contain task-irrelevant information that potentially affect the task performance.  In the 

arrow flanker task, the stimuli are more quickly responded to when the task-irrelevant 

flanker arrows are the same with the task-relevant central arrow (e.g., >>>>>), than when 

they differ from each other (e.g., <<><<).  This difference in the response time between 

congruent and incongruent stimuli is called the congruency effect.  The activation of 

cognitive control is often measured by another phenomenon that is called the congruency 

sequence effect (CSE), which indicates a reduction of the congruency effect after an 



2 
 

incongruent trial (Gratton, Coles, & Donchin, 1992).  A typical response time pattern of 

the CSE is shown in Figure 1, in which the combinations of the previous and the current 

trial type are denoted by the combinations of c (previous congruent), i (previous 

incongruent), C (current congruent) and I (current incongruent).  For example, cI 

indicates an incongruent trial after a congruent one.  It is shown that the congruency 

effect after a congruent trial (cI – cC) is larger than that after an incongruent trial (iI – 

iC).  This sequential modulation of the congruency effect has been replicated in many 

studies that use congruency tasks (e.g., Kerns, Cohen, MacDonald, Cho, Stenger, & 

Carter, 2004; Stürmer, Leuthold, Soetens, Schröter, & Sommer, 2002). 

 

 

 

Figure 1. The congruency sequence effect (CSE). 
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        The conflict monitoring theory (Botvinick et al., 2001) provides a framework that 

accounts for the CSE, by suggesting that a conflict monitoring system in the anterior 

cingulate cortex (ACC) detects conflict and sends out a signal to the dorsolateral 

prefrontal cortex (DLPFC).  The top-down control signal from the DLPFC then activates 

cognitive control, allocating more attention to task-relevant information than to task-

irrelevant information.  Therefore, an elevated level of control after the detection of a 

high conflict trial (i.e., incongruent trial) enhances performance in the next trial, reducing 

the difference in response time between incongruent and congruent trials (i.e., the 

congruency effect).  This theory is supported by fMRI studies that show stronger ACC 

activation after incongruent trials than after congruent trials in flanker tasks (e.g., 

Botvinick, Nystrom, Fissell, Carter, & Cohen, 1999; Carter et al., 2000).  Due to its 

conceptual plausibility and neural evidence, the conflict monitoring theory has been one 

of the most influential frameworks for the study of control mechanisms.  However, it is 

still unclear whether the conflict-driven control is the only process that contributes to 

control-related phenomena (Egner, 2007). 

Gratton et al. (1992) that first reported the CSE supposed that the attentional 

biases causing this effect derive from the expectation of the upcoming trial 

type.  Expectancy affects response time in a way that expected stimuli are responded to 

faster than unexpected stimuli (Yu & Cohen, 2009).  The response to repeated stimuli 

(e.g., A after AAAA) are facilitated by repetition expectancy, and the response to 

alternated stimuli (e.g., B after BABA) benefit from alternation expectancy (Ayton, Hunt, 

& Wright, 1989; Lopes, 1982; Remington, 1969; Soetens, Boer, Hueting, 1985).  The 

CSE is generated with the repetition expectancy, with which the same trial type as the 
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previous one is expected.  This prior belief reduces the congruency effect after an 

incongruent trial, by allocating more attention to the task-relevant information in 

anticipation of another incongruent stimulus (Gratton et al., 1992). 

In addition to the CSE, expectancy-based control accounts for another key 

behavioral phenomenon, the proportion congruency effect.  The congruency effect is 

often modulated by a long-term probability of congruency (e.g., Bugg & Chanani, 2011; 

Bugg, McDaniel, Scullin, & Braver 2011; Hutchison, 2011; Kane & Engle, 2003; Logan 

& Zbrodoff, 1979; Tzelgov, Henik, & Berger, 1992).  For example, Tzelgov et al. (1992) 

observed that the congruency effect was larger when the trials were mostly congruent, 

than when they were mostly incongruent.  An example of this effect of list-wide 

proportion congruency (LWPC) is shown in Figure 2.   

 

 

 

Figure 2. The list-wide proportion congruency (LWPC) effect. 
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Expectancy-based control provides an explanation of this phenomenon, by 

assuming that people form explicit probabilistic expectancies for congruency (Logan & 

Zbrodoff, 1979; 1982).  In an experiment with mostly congruent trial, stimulus type is 

likely to be repeated after congruent trials, and alternated after incongruent trials.  This 

belief in favor of congruent stimuli would increase the congruency effect by weakening 

the attentional bias toward task-relevant information.  The LWPC effect is also consistent 

with Botvinick et al.’s (2001) conflict-driven account because the overall level of control 

would be low in mostly congruent condition where conflicts are seldom detected. 

One advantage of expectancy-based control over conflict-driven control is that 

the former accounts for the reversed congruency effect that is regarded as an anomaly in 

the latter (Logan & Zbrodoff, 1979, 1982; Stürmer et al., 2002).  For example, when a 

repetition of the trial type is strongly expected, the iI trial in Figure 1 can be responded to 

faster than the iC trial because the iI trial is boosted by the expectancy (e.g., Wendt, 

Kluwe, & Peters, 2006).  Conflict-driven control models (e.g., conflict monitoring model) 

would not explain such a reversal, because the suppression of task-irrelevant information 

in those models would at best eliminate the congruency effect.  In addition to the reversed 

congruency effect, expectancy-based control suggests a possibility of a reversed 

CSE.  For example, if an alternation of trial types is expected for most trials, a subject 

will expect a congruent trial after an incongruent trial, and expect an incongruent trial 

after a congruent trial.  The expectation of alternation leads to a stronger cognitive 

control and a smaller congruency effect after a congruent trial, as opposed to the 

CSE.  Consistent with this hypothesis, the CSE was observed only when the repetition of 

congruencies was expected, in the experiment where the subjects explicitly reported their 



6 
 

expectations of upcoming stimulus type (Duthoo, Wühr, & Notebaert, 2013).  However, 

it is not clear how the subjects in this study formed their expectation, while the proportion 

of trial-type repetition or alternation was 50% in the experiment.  In order to explicitly 

affect participants’ expectancies, Jiménez and Méndez (2013) manipulated the proportion 

of trial-type repetition.  For example, in the experiment with high proportion of 

repetition, 70% of the trials were repetition trials (i.e., cC and iI in Figure 1) and the 

remaining 30% of the trials were alternation trials (i.e., cI and iC in Figure 1).  The CSE 

was observed when the proportion of repetition was high (70%), but not when the 

probability was low (30%).  Jiménez and Méndez (2013) concluded that the effects of 

expectancies are not significant when considering second-order and third-order repetition 

trials (e.g., two or three congruent trials in a row before a trial),but it is still possible that 

the differences in the first-order CSE between the repetition expectancy and the 

alternation expectancy reflect expectancy-based control mechanisms. 

For a methodological standpoint, a possible limitation of the previous studies is 

that the majority of them relied on null hypothesis significance testing (NHST) to 

investigate the expectancy-based control effects.  NHST compares the averaged data 

from the limited number of qualitative conditions (e.g., congruent vs incongruent, 

previous congruent vs previous incongruent), but this method is not likely to capture 

precisely the gradual adaptation to conflict or gradual formulation of expectancies that 

are assumed by the models of cognitive control.  For example, repetition expectancy is 

updated based on the proportion of repetition in previous trials, getting closer to the 

actual probability as the information is accumulated (e.g., Yu & Cohen, 2009).  This 

continuous update of belief and its effect on response time should be included in the 
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analysis, in order to test the effect of expectancy.  Assuming that the belief of repetition is 

adjusted over time, it is possible that the difference in the response time between high and 

low proportion of repetition does not reach a significant level when we merely compare 

the averaged data using NHST. 

The present study aims to overcome this limitation by using formal mathematical 

models to discriminate between conflict-driven control and expectancy-based 

control.  The models that represent each account continuously calculate critical variables 

such as the level of conflict and the expected proportion of repetition, and predict the 

behavior based on those values.  Plausibility of such models and the corresponding 

theories would be tested by their fit to behavioral data, rather than by rejecting or failing 

to reject the null hypothesis.  We believe that this model-based approach can help capture 

the specific variances of behavior that reflect cognitive processes of interest. 

 To evaluate the models, it is essential to have a task that measures the behaviors 

that reflect cognitive control.  We will use a version of the flanker task (Eriksen & 

Eriksen, 1974), in which the participants are asked to distinguish the direction of the 

central arrow, while ignoring the other flanker arrows on the sides.  For example, the 

correct response is “right” for >>>>> or <<><<, and it is “left” for >><>> or 

<<<<<.  The stimuli are called incongruent when the target arrow and the flanker arrows 

are pointing to different directions (>><>> and <<><<), and are called congruent if all 

the arrows are the same (>>>>> and <<<<<).  Examples of experimental stimuli are 

shown in Figure 3.  The flanker task is very simple, yet feasible of manipulating the 

designs such as proportion congruency and proportion of repetition (e.g., Gratton et al., 
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1992).  Mathematical models’ predictions can depend upon the designs selected, so it is 

important to choose a design appropriate for the purpose of the study. 

 

 

 

Figure 3. Four possible experimental stimuli of an arrow flanker task. 

 

 

In discriminating between conflict-driven control and expectancy-based control, 

the optimal design is relatively straightforward because the overlap between the two 

accounts in predicting the CSE occurs only when the repetition expectancy is high, as 

discussed earlier.  Therefore, a low repetition rate that yields to different predictions 

between the two models would be appropriate for the discrimination.  However, designs 

useful for model discrimination may not necessarily help estimating model parameters 

(Myung, Cavagnaro, & Pitt, 2013).  Efficiency of parameter estimation should not be 

ignored because the parameter values often reflect critical characteristics of cognitive 
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control such as the sensitivity to conflict and the speed of learning the proportion of 

repetition.  Identifying the optimal design for parameter estimation is a non-trivial 

undertaking because the utility of a design could differ according to the posterior 

distribution of the parameters. 

A statistical method called the adaptive design optimization (ADO) resolves this 

problem by continuously adjusting experimental designs based on the posterior 

distributions updated during the experiment (Myung & Pitt, 2009).  However, this 

adjustment is complicated when there are multiple models to be compared and each 

model requires different design.  For example, estimation of conflict-driven control 

model and expectancy-based model respectively benefit from the manipulation of 

proportion congruency and proportion of repetition.  A reasonable solution that 

minimizes the loss of information would be to optimize the designs in favor of a model 

that is more likely to be true.  This goal can be achieved by a “hybrid” ADO that 

facilitates the discrimination of the models at the earlier stage of experiments, and then 

focuses on evaluating a favorable model at the later stage. 
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2. Model-based Discrimination of Cognitive Control Mechanisms 

 For the purpose of the present study, a model-based discrimination of cognitive 

control mechanisms, it is important to have decent mathematical models that represent 

each account.   The ADO that optimizes experimental designs also requires formal 

models that have explicit likelihood functions.  In this section, the details of the ADO and 

the models of cognitive control are introduced. 

 

2.1. Adaptive design optimization (ADO)  

ADO is a Bayesian statistical framework for optimally and adaptively selecting an 

experimental design (e.g., stimulus type, presentation time, sequence of stimuli) for each 

stage of experiments (Cavagnaro, Myung, Pitt, & Kujala, 2010; Myung et al., 

2013).  Due to its efficiency and flexibility, ADO has been popular in many fields of 

research.  For example, it has been applied to the estimation of visual psychometric 

functions (Gu et al., 2016; Kujala & Lukka, 2006; Lesmes et al., 2006), to the 

discrimination of decision making models (Cavagnaro, Gonzalez, Myung, & Pitt, 2013; 

Cavagnaro, Aranovich, McClure, Pitt, & Myung, 2016), and in clinical trials using 

experimental drugs (Haines, Perevozskaya, & Rosenberer, 2003; Ding, Rosner, & Müller, 

2008). 

In the ADO framework, the most informative design is chosen for the next stage 

of the experiment using the computational models updated by preceding 

observations.  This process is repeated until the end of the experiment, as described in 
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Figure 4.  In design optimization phase, an experimental design for a mini-experiment is 

determined using the model.  This mini-experiment could be a trial, several trials, a block 

or more of trials.  The data is then collected from the mini-experiment using the design 

selected.   The data collected in the experiment phase subsequently updates the model so 

it can be used to choose the design for the next mini-experiment. 

 

 

 

Figure 4. The updating scheme of adaptive design optimization (ADO). 

 

 

Formally, the optimal design 𝑑∗ is identified as 

 𝑑∗ = argmax
𝑑

𝑈(𝑑), (1) 

where U(𝑑) is the utility function of the designs.  The criterion for the utility or the 

informativeness of designs is dependent on the specific goal of the study.  ADO is 

compatible with two goals of model-based experiments, which are parameter estimation 
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and model discrimination.  The parameter estimation, on the one hand, indicates finding 

accurate estimates of the model parameters, which can be achieved by updating the 

model using the data.  On the other hand, the model discrimination is to find the model 

that fits best to the data, by comparing multiple models.  

 When the purpose of the study is to estimate model parameters, the utility 

function is defined as 

 
𝑈(𝑑) = ∫ ∫ 𝑢(𝑑, 𝜃, 𝑦)𝑝(𝑦|𝜃, 𝑑)𝑝(𝜃)𝑑𝑦𝑑𝜃, (2) 

where 𝑦 is the outcome vector resulting from an experiment conducted with design 𝑑, 𝜃 

is the model parameter, 𝑝(𝑦|𝜃, 𝑑) is the model likelihood, and 𝑝(𝜃) is the parameter prior 

(Chanloner & Verdinelli, 1995).  The local utility function, 𝑢(𝑑, 𝜃, 𝑦), is the log ratio of 

posterior to prior distributions of the parameters, 

 
𝑢(𝑑, 𝜃, 𝑦) = 𝑙𝑛

𝑝(𝜃|𝑦, 𝑑)

𝑝(𝜃)
. (3) 

The basic idea here is to find the design that yields to the largest gain in 

information about the parameters under the possible outcome 𝑦, measured by the 

Shannon entropy. 

 For the purpose of model discrimination, the utility function 𝑈(𝑑) should be 

modified to consider multiple models, as follows: 

 
𝑈(𝑑) = ∑ 𝑝(𝑚)

𝑚

∫ ∫ 𝑢(𝑑, 𝜃𝑚, 𝑦𝑚)𝑝(𝑦𝑚|𝜃𝑚, 𝑑)𝑝(𝜃𝑚)𝑑𝑦𝑚𝑑𝜃𝑚, (4) 

where 𝑚 = {1, 2, ..., K} is one of K different models being considered, 𝑝(𝑚) is the prior 

probability that 𝑚 is the true model that generates behaviors, 𝑦𝑚 is the outcome vector in 

an experiment under design 𝑑 and model 𝑚, and 𝜃𝑚 is a parameter vector of model 𝑚.  
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The local utility function in the above equation reflects possible increase in certainty 

about model probability as follows: 

 
𝑢(𝑑, 𝜃𝑚, 𝑦𝑚) = 𝑙𝑛

𝑝(𝑚|𝑦, 𝑑)

𝑝(𝑚)
, (5) 

where 𝑝(𝑚|𝑦, 𝑑) is the posterior model probability of model 𝑚 updated by the outcome 𝑦 

under design 𝑑. 

 The model and parameter priors are updated by Bayes rule and Bayes factor, 

using the data observed from the previous stage of experiment: 

 
𝑝𝑠+1(𝑚) =

𝑝𝑠(𝑚)

∑ 𝑝𝑠(𝑘)𝐵𝐹(𝑘,𝑚)(𝑧𝑠|𝑑𝑠
∗)𝐾

𝑘=1

 (6) 

 
𝑝𝑠+1(𝜃𝑚) =

𝑝(𝑧𝑠|𝜃𝑚, 𝑑𝑠
∗)𝑝𝑠(𝜃𝑚)

∫ 𝑝(𝑧𝑠|𝜃𝑚, 𝑑𝑠
∗)𝑝𝑠(𝜃𝑚) 𝑑𝜃𝑚

 (7) 

where 𝑠 = {1, 2, …} denotes an ADO stage, 𝑚 = {1, 2, ..., K}, and 𝑧𝑠 is the outcome 

observed in the stage 𝑠.  An ADO stage could be a single trial or a sequence of trials, 

depending on how frequently the experimenter wishes to adjust the design.  The Bayes 

factor, 𝐵𝐹(𝑘,𝑚)(𝑧𝑠|𝑑𝑠
∗) in Equation (6) is defined as 

 
𝐵𝐹(𝑘,𝑚)(𝑧𝑠|𝑑𝑠

∗) =
∫ 𝑝(𝑧𝑠|𝜃𝑘, 𝑑𝑠

∗)𝑝𝑠(𝜃𝑘) 𝑑𝜃𝑘

∫ 𝑝(𝑧𝑠|𝜃𝑚, 𝑑𝑠
∗)𝑝𝑠(𝜃𝑚) 𝑑𝜃𝑚

, (8) 

The posteriors obtained in Equation (6) and (7) are then used as the priors to identify the 

optimal design 𝑑∗ for the next stage of the ADO experiment (See Myung et al., 2013 for 

more details). 

 

2.2. Formal models of cognitive control 

 Formal mathematical models are required for ADO-based experiments where the 

designs are chosen based on the model likelihood.  Since the purpose of our study is to 
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discriminate between the expectancy-based control and the conflict-driven control, it 

would be appropriate to use the models that reflect those two mechanisms.  There are 

various models of cognitive control that represent each control module (e.g., Blais, 

Robidoux, Risko, & Besner, 2007; Botvinick et al., 2001; Yu & Cohen, 2009; Verguts & 

Notebaert, 2008), but they usually do not explicitly provide a likelihood function that is 

required for the ADO implementation.  Therefore, we developed our own models that 

have an explicit expression of the likelihood function, based on the assumptions and 

structures of the models previously suggested by other researchers. 

 

2.2.1. Expectancy-based control model 

 The expectancy-based control model is built upon the model suggested by Yu and 

Cohen (2009) that explained sequential effects in congruency tasks as the effect of 

repetition expectancy.  There are two trial types in a congruency task, a congruent type 

and an incongruent type.  The trial types can be repeated or alternated over two 

consecutive trials.  Let 𝑋𝑡 be a set of binary observations (𝑥1,…, 𝑥𝑡), where 𝑥𝑡 = 1 if the 

congruencies are repeated, and 𝑥𝑡 = 0 if the congruencies are alternated in the 𝑡𝑡ℎ trial 

(see Table 1). 
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Table 1. Observable repetitions or alternations represented by 𝑥𝑡. 

(𝑡 − 1)𝑡ℎ trial type 𝑡𝑡ℎ trial type 𝑥𝑡 

Congruent Congruent 1 

Congruent Incongruent 0 

Incongruent Congruent 0 

Incongruent Incongruent 1 

 

 

It is assumed that subjects believe that there is a fixed probability 𝑢 of observing a 

repetition of either trial type (congruent or incongruent), that is, with 𝑢 being equal to 

p(𝑥𝑡 = 1).  The model assumes that 𝑢 is updated as, 

 𝑢 =  𝜆𝑢 + (1 − 𝜆)
𝑟𝑡

𝑡
 (9) 

where, 𝑟𝑡 denotes the observed number of repetitions of trial types (i.e., 𝑥𝑡=1 ) up to the 

𝑡𝑡ℎ trial in a trial block.  The initial belief 𝑢0 at trial 𝑡 = 0 is assumed to follow Normal 

(0.5, 0.1). 

Equation (9) can be approximated as 

 𝑢̂ ≈  𝜆𝑢 + (1 − 𝜆)𝑑𝑟 (10) 

where 𝑑𝑟 is a design variable representing the proportion of repetition in a block of trials.   

It is important to note that 𝑑𝑟 as a single design variable would not fully control the 

trial sequences in a block.  For example, a list of trials where the proportion of repetition 

is 30% for congruent trials and 70% for incongruent trials would show 50% 𝑑𝑟 as like a 

list of trials with 50% proportion of repetition for both the trial types, assuming that both 
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the lists have 50% proportion of congruency.  It would be problematic if the effects of 

repetition differ in the two lists above, because they are considered to have the same effect 

according to Equation (10).  To prevent these uncontrolled effects of repetition, we 

assumed separate 𝑑𝑟 and 𝑢 values, 

 𝑢̂𝑘 ≈  𝜆𝑢𝑘 + (1 − 𝜆)𝑑𝑟,𝑘 (11) 

where 𝑘 indicates the trial types, 𝑘 = {incongruent, congruent}. 

According to the model of Yu and Cohen (2009), the expectation about an 

upcoming stimulus has a linear relationship with the response time, in a way that expected 

stimuli are responded to faster than unexpected stimuli.  Incorporating this assumption to 

the present model, we assume that the belief p(𝑥𝑡|𝑋𝑡−1) about the 𝑡𝑡ℎ  trial is linearly 

transformed into the response time 𝑅𝑇𝑡 as follows: 

 𝑅𝑇𝑡(𝑥𝑡) = 𝛽0 + 𝛽1[1 − p(𝑥𝑡|𝑋𝑡−1)] + 𝛽2𝐼(𝑖𝑛𝑐𝑜𝑛𝑔) 

+𝛽3[1 − p(𝑥𝑡|𝑋𝑡−1)]𝐼(𝑖𝑛𝑐𝑜𝑛𝑔) + 𝜀 

(12) 

where 𝛽0 > 0, 𝛽1 > 0, 𝛽2 > 0, 𝛽3 > 0, 𝑥𝑡 = {0,1} , p(𝑥𝑡 = 1|𝑋𝑡−1) = 𝑢 , and p(𝑥𝑡 =

0|𝑋𝑡−1) = 1 − 𝑢. In this equation, 𝐼(𝑖𝑛𝑐𝑜𝑛𝑔) is equal to 1 for an incongruent trial, and 0 

for a congruent trial, and  𝜀 is a normal error distributed as Normal (0,𝜎2). 

Putting these together, the probability density function of the response time 𝑅𝑇𝑡 in 

trial 𝑡 is given by 

 
𝑓𝑅𝑇(𝑅𝑇𝑡|𝜇,𝜎) =  

1

√2𝜎2𝜋
𝑒

−
(𝑅𝑇𝑡−𝜇)2

2𝜎2  (13) 

where 𝜇 = 𝛽0 + 𝛽1[1 − p(𝑥𝑡|𝑋𝑡−1)] + 𝛽2𝐼(𝑖𝑛𝑐𝑜𝑛𝑔) + 𝛽3[1 − p(𝑥𝑡|𝑋𝑡−1)]𝐼(𝑖𝑛𝑐𝑜𝑛𝑔). 

The likelihood function given an observation 𝑦𝑡 = 𝑅𝑇𝑡 is then derived as follows: 

 L (𝑦𝑡  |𝜃 = (𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝜎, 𝑢0), 𝑡, 𝑛, 𝑑𝑟) = ∏ 𝑓𝑅𝑇(𝑅𝑇𝑡|𝜇,𝜎)𝑛
𝑡=1  (14) 
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2.2.2. Conflict-driven control model 

Botvinick et al. (2001) provides a representative model of conflict-driven control, 

but their model is not amenable to ADO, which requires an explicit expression of the 

likelihood function.  We therefore developed a new ADO compatible model as an 

implementation of the conflict monitoring theory, with the following assumptions 

described below.   

The level of conflict from the previous trial, 𝑐𝑡, is simplified to a binary value in 

the current model, as 𝑐𝑡 is 0 if the previous 𝑡 − 1𝑡ℎ trial was congruent, and 1 if it was 

incongruent.  The perceived level of conflict in the current trial is defined as 

 𝐶𝑡 =  𝜆𝑐𝑡 + (1 − 𝜆)(𝑐 + 𝑎) (15) 

where 𝑐 is the average of 𝑐𝑡  values up to the current trial, and 𝑎 is a scaling value that 

represents the base level of conflict. 

Equation (15) can be approximated as 

 𝐶𝑡̂ ≈  𝜆𝑐𝑡 + (1 − 𝜆)(𝑑𝑐 + 𝑎) (16) 

where 𝑑𝑐 is the proportion congruency in a block of trials. 

In the conflict monitoring model (Botvinick et al., 2001), a high level of conflict 

accelerates the response to an incongruent trial, and decelerates the response to a congruent 

trial, on average.  The response time 𝑅𝑇𝑡 in the current model follows the same concept: 

 𝑅𝑇𝑡= 𝛽0 + 𝛽1𝐶𝑡 + 𝛽2𝐼(𝑖𝑛𝑐𝑜𝑛𝑔)(1 − 𝛽3𝐶𝑡) + 𝜀 (17) 

where 𝛽0 > 0, 𝛽1 > 0, 𝛽2 > 0, 1 > 𝛽3 > 0,  and 1 > 𝐶𝑡 > 0.  As in the expectancy-

based model, 𝐼(𝑖𝑛𝑐𝑜𝑛𝑔) is 1 for an incongruent trial, and 0 for a congruent trial, and  𝜀 is 

a normal error following Normal (0,𝜎2). 
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 The probability density function and the likelihood function are then derived as, 

 
𝑓𝑅𝑇(𝑅𝑇𝑡|𝜇,𝜎) =  

1

√2𝜎2𝜋
𝑒

−
(𝑅𝑇𝑡−𝜇)2

2𝜎2  (18) 

 L (𝑦𝑡  |𝜃 = (𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝜎, 𝑎), 𝑡, 𝑛, 𝑑𝑐) = ∏ 𝑓𝑅𝑇(𝑅𝑇𝑡|𝜇,𝜎)𝑛
𝑡=1  (19) 

where 𝜇 = 𝛽0 + 𝛽1𝐶𝑡 + 𝛽2𝐼(𝑖𝑛𝑐𝑜𝑛𝑔)(1 − 𝛽3𝐶𝑡). 

  

 

2.3. Design variables to be optimized 

  Each of the two models above has a design variable, the proportion of repetition 

(D1) for the expectancy-based model (M1) and the proportion congruency (D2) for the 

conflict-driven model (M2).  To fully control the number of the four possible trial types 

(cC, cI, iC, and iI), D1 was separately manipulated for congruent and incongruent trials.  

The task of ADO is to select an optimal combination of the two design variables at each 

block of an experiment.  One issue is that some of the combinations are impossible 

because the two variables are not completely independent with each other (see Figure 5).  

For example, it is unviable to make a stimuli list with 30% D1 for congruent trials and 

70% D2.  At lease about 57% (40/70) of the congruent trials should be repeated when 

70% of the trials are congruent.  Such impossible designs were excluded from ADO.  A 

list of ADO-feasible designs used in the present study is shown in Table 2.  For 

computational simplicity, both D1 and D2 were discretized into a grid ranging from 30% 

to 70%, with 10% intervals.  The variables below 30% or above 70% were not used 

because they only made a limited number of design combinations that often result in 

seemingly “systematic” (e.g., easily predictable) sequences of trials. 
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Figure 5. A dependency between the proportion of repetition (D1) and the proportion 

congruency (D2).  The letters in the box show possible sequences of congruent (C) and incongruent (I) 

trials in a block of 10 trials.  a) When the proportion congruency is 50%, the maximum number of 

repetition (i.e., CC or II tirals) is 9, and the minimum is 0.  b) With 80% proportion congruency, the 

maximum is still 9, but the minimum is 4.  The range of possible proportion of repetition is dependent on 

the proportion congruency.  
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Table 2. The designs used in the ADO selection. 

Design D1 for congruent D1 for incongruent D2 

30-30-50 30% 30% 50% 

30-50-40 30% 50% 40% 

30-60-40 30% 60% 40% 

30-70-30 30% 70% 30% 

40-40-50 40% 40% 50% 

40-60-40 40% 60% 40% 

40-70-30 40% 70% 30% 

50-30-60 50% 30% 60% 

50-50-50 50% 50% 50% 

50-70-40 50% 70% 40% 

60-30-60 60% 30% 60% 

60-40-60 60% 40% 60% 

60-60-50 60% 60% 50% 

60-70-40 60% 70% 40% 

70-30-70 70% 30% 70% 

70-40-70 70% 40% 70% 

70-50-60 70% 50% 60% 

70-60-60 70% 60% 60% 

70-70-50 70% 70% 50% 
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2.4. Hybrid ADO 

The primary purpose of the present study is the comparison between conflict-

driven control and expectancy-based control in an ADO-based experimental study.  The 

ADO for model discrimination would satisfy this goal, but this method alone does not 

guarantee convergence of model parameter estimates, which is the secondary goal of the 

study.  To elaborate, fixing the proportion of repetition (D1) at a low level is likely to be 

advantageous for the discrimination, but it is necessary to manipulate that design variable 

during the experiment in order to estimate the learning rate parameter 𝜆 in the 

expectancy-based model.  As a way to find a balance between two possibly conflicting 

goals, we propose a method that combines model discrimination and parameter 

estimation in a judicious manner, dubbed “hybrid ADO”.  The basic idea of hybrid ADO 

is to use the designs that maximize the differences in prediction between the models at 

first over a certain number of experimental trials, and then switch to the optimization for 

parameter estimation once a model is decisively favored in some defined sense. An issue 

is then the timing of such transition.  If the model discrimination phase is too short, there 

would not be enough information for comparing the models.  If it is too long, the data 

collected after a certain point would be unnecessary.  In the hybrid ADO, the timing is 

determined by the posterior model probability (i.e., p(m) where m = M1 or M2) in the 

model discrimination ADO.  Once the p(m) of a model reaches the threshold (e.g., 0.95), 

the parameter estimation ADO begins with the selected model as the target.  The loss of 

information is minimized because the discrimination phase stops at the moment a model 

is proven to be superior to the others.  This efficiency is not achievable with experiments 
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with pre-determined designs, especially when it is unknown which model fits better with 

participants before we run the experiments (see Figure 6). 

 

 

 

Figure 6. Examples of a Hybrid ADO experiment and prescheduled non-ADO 

experiments.  The white area contains the experimental trials for model discrimination, and the grey area 

contains the trials for parameter estimation.  Vertical dotted line in the center indicates the timing that the 

models are sufficiently discriminated.  M1 and M2 indicate two models to be compared in the experiments.  

a) A hybrid ADO experiment switches from the model discrimination ADO to the parameter estimation 

ADO for M1 as soon as the model probability p(M1) reaches the threshold of 0.95.  b) A non-ADO 

experiment in favor of M1.  The predetermined number of trials in the model discrimination phase is longer 

than necessary in this experiment.  c)  A non-ADO experiment in favor of M2.  The length of model 

discrimination phase is too short in this case, leading to a premature transition to the parameter estimation 

for M2, which is inefficient because the data supports M1. 
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For a non-adaptive design experiment to be efficient, there should be a certain 

model generalizable to every participant behavior, along with reasonably good fixed 

designs to evaluate the model.  If a single model could account for the behavior of any 

individual, the hybrid ADO would not be necessary.   However, it is possible that there is 

a trait-like tendency for each individual to prefer a certain type of control strategy 

(Braver, 2012), among multiple strategies each represented by a model.  The hybrid ADO 

would reach its full potential in such situation, where there are significant individual 

differences so that different models are required for each participant. 



24 
 

3. Simulational Studies 

 We conducted simulations to demonstrate the efficiency of the hybrid ADO for 

discriminating between the two models of cognitive control.  The flanker task experiment 

that consisted of 6 blocks of 40 trials each was iteratively simulated.  The design 

variables were adaptively optimized after the completion of each block.  Having a small 

number of trials in each block was necessary for more frequent adaptation, but the 

number of trials had to be large enough to observe the response time data from all of the 

four possible trial types (cC, cI, iC, and iI) even when the design values are extremely 

large or small.  For example, when the proportion of congruency (D2) is 30% and the 

proportion of repetition (D1) is 30%, only about 9% of the trials are congruent trials that 

are repeated (cC).  With 40 trials in a block, we can observe such infrequent stimulus at 

least three times from every block.  Parameter updating could be problematic with a 

smaller number of trials since there would be just too few observations for some trial 

types. 

 The ADO simulations started with uninformative, uniform prior on parameters, 

except for 𝜆 about which we had explicit assumptions in the models.  The 𝜆 in the 

expectancy-based model (M1) indicates the rate with which the prior belief about D1 is 

maintained after an update.  In the conflict-driven model (M2), 𝜆 denotes relative 

influence of the current conflict and the average conflict on the perceived level of 

conflict.  We assumed that the belief in M1 is updated gradually rather than abruptly, and 

the 
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current and previous conflicts are equally important in M2.  Therefore, the prior 𝑝(𝜆) was 

set to be relatively high for M1, 𝑝(𝜆)𝑀1 ~ Beta(8, 3), and medium for M2, 𝑝(𝜆)𝑀2 ~ 

Beta(5, 5).  The prior distributions of the other parameters were 𝑝(𝛽1) ~ Uniform(0,150), 

𝑝(𝛽2) ~ Uniform(0,150), and 𝑝(𝛽3) ~ Uniform(0,150) for M1, and 𝑝(𝛽1) ~ 

Uniform(0,80), 𝑝(𝛽2) ~ Uniform(0,200), and 𝑝(𝛽3) ~ Uniform(0,1) for M2.  The 

parameters of less interest, 𝛽0 and 𝜎, were fixed as 𝛽0 = 450 and 𝜎 = 50 to reduce the 

computational load.  The initial model probability, 𝑝0(𝑚), was set to 0.5 for both the models.  

In the hybrid ADO, the initial, model-discrimination phase is switched to the parameter 

estimation phase once the model probability of either model exceeds 0.95.  To simplify 

the numerical computations required for ADO, the design space that includes parameter 

values, design variables, and response time was discretized into a finite grid consisting of 

equally spaced values for each dimension (Myung et al., 2013).  The utility U(d) in 

Equation (1) was estimated for each design in the discretized space, to find the design d* 

with the highest utility. 

The response time in the simulations were generated by either of the models using 

fixed parameter values.  The parameters of the data-generating model were set as 𝑢0 = 

0.6, 𝛽0 = 450, 𝛽1 = 60, 𝛽2 = 40, 𝛽3 = 40, 𝜆 = 0.8, and 𝜎 = 50 for M1, and as 𝑎 = 0.1,  𝛽0  

= 450, 𝛽1 = 60, 𝛽2 = 150, 𝛽3 = 0.7, 𝜆 = 0.7, and 𝜎 = 50 for M2.  These parameter values 

were chosen such that expected patterns are similar between the two models when D1 is 

high, but are clearly different when the probability is low.  The response time patterns 

predicted by those fixed models are depicted in Figure 7. 
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Figure 7. Expected response time patterns generated by the expectancy-based model 

(M1) and the conflict-driven model (M2).  a) is the patterns with 30% proportion of repetition.  b) 

is the patterns with 70% proportion of repetition.  The proportion congruency was fixed to 50%. 
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comparison ADO (M-ADO), and predetermined fixed designs.  The parameter estimation 

ADO was not separately simulated because it requires a specific target model to be 

estimated, while we assumed that the two models are equally probable at the initial stage 

of the simulations.  Instead of the parameter estimation ADO, two predetermined designs 

that focus on the effect of a target design variable were tested.  In the first fixed designs 

(F1), D1 that directly affect the model prediction of M1 was manipulated.  D1 was 30% 

in the first three blocks, and was 70% in the latter three blocks, for both congruent and 

incongruent trials.  D2 was fixed to 50%.  In the second fixed designs (F2), on the other 

hand, the effect of D2 was of our main interest.  The trials were 30% congruent in the 

first three blocks and were 70% congruent in the latter three.  D1 could not be fixed, 

because it is not independent from D2 (see Figure 5).  We set up D1 as 30% for 

congruent and 70% for incongruent in 30% congruent blocks, and as 70% for congruent 

and 30% for incongruent in 70% congruent blocks.  The resulting designs were similar to 

the prescheduled, balanced designs used in the previous studies that compare the 

behaviors from different conditions (e.g., Carter et al., 2000; Duthoo et al., 2013; Jiménez 

& Méndez, 2013).  By including the designs similar to those conventional ones, we 

expected to find from the simulations the difference in efficiency between the ADO and 

the predetermination. 

 

3.1. Simulation 1: Expectancy-based model 

A total of 150 independent simulation runs were performed for each of the three 

design selection methods described in the previous section, with the artificial data 

generated by the expectancy-based model (i.e., model M1) defined in Eq. (13).  The 
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parameter values of M1 that generated the data were as follows: 𝑢0 = 0.6,  𝛽0 = 450, 𝛽1 = 

60, 𝛽2 = 40, 𝛽3 = 40,  𝜆 = 0.8, and 𝜎 = 50.  

The frequency of design selections and the estimated posterior model probability, 

p(M1), in each of the six blocks are shown in Tables 3 and 4, for the hybrid ADO (H-

ADO) method and the model-discrimination ADO (M-ADO) method, respectively. The 

first thing to note from the results is that only four out of a total of 19 designs listed in 

Table 2 were chosen consistently and repeatedly by both H-ADO and M-ADO. In 

particular, in block 1, only one design (i.e., 30-30-50, see Table 2) with a low proportion 

of repetition (D1) was always selected under both design selection methods. This is 

probably because this particular combination of 30% D1 for both congruent and 

incongruent trials, and 50% proportion of congruency (D2) is the most informative one 

among the 19 designs for discriminating between the two models, M1 and M2, as 

discussed earlier (see Fig. 7).  After block 1, the designs with higher repetition 

probability were also selected by H-ADO, increasingly more so as the experiment moved 

from the model discrimination phase to the parameter estimation phase.  The most 

frequently selected design in the last block was the one with the highest D1 (i.e., 70-70-

50).  Apparently, a high D1 is good for parameter estimation of model M1, because 

response time differences between low and high D1 is essential in estimating the 𝜆 

parameter.  𝜆 in M1 indicates the learning rate for repetition expectancy, which can be 

estimated by manipulating D1 to see how quickly the behavior changes. 

The results for M-ADO in Table 4 depict a pattern somewhat different from that of H-

ADO. That is, only two out of the 19 possible were selected across the six blocks; most 

of the time, the 30-30-50 design with the lowest D1 and occasionally, the 30-70-30 
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design with the lowest D2.  The superiority of the 30-30-50 design in model 

discrimination was as observed with H-ADO, but the selection of the 30-70-30 design 

was not as expected.  The 30-70-30 design with 30% D2 mostly produces incongruent 

trials, while some of the parameters (i.e., 𝛽2, 𝛽3 in both M1 and M2) can only be updated 

by observing incongruent trials.  It seems that this design is preferred to the 30-30-50 

design according to the posterior parameter distributions. 

 

 

Table 3. Number of times each design was selected by the hybrid ADO (H-ADO) method 

in Simulation 1.  The combinations of the numbers in the first column indicate “D1 for congruent trial - 

D1 for incongruent trial - D2”.  For example, 30-30-50 design has 30% D1 for both congruent and 

incongruent trials, and 50% D2. 

 Block 

Design 1 2 3 4 5 6 

30-30-50 150 139 126 92 52 26 

30-70-30 0 10 17 20 20 20 

70-30-70 0 0 2 18 34 37 

70-70-50 0 1 5 20 44 67 

Mean p(M1) 0.50 0.41 0.58 0.74 0.84 0.91 
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Table 4. Number of times each design was selected by the model discrimination ADO 

(M-ADO) method in Simulation 1. 

 Block 

Design 1 2 3 4 5 6 

30-30-50 150 139 136 136 136 136 

30-70-30 0 11 14 14 14 14 

70-30-70 0 0 0 0 0 0 

70-70-50 0 0 0 0 0 0 

Mean p(M1) 0.50 0.38 0.55 0.71 0.85 0.93 

 

 

Figure 8 shows the posterior model probability of M1 as a function of trial block 

for each of the four methods of design selection. The model discrimination performance 

of H-ADO was similar to that of M-ADO. Apparently, the transition scheme from model 

discrimination to parameter estimation under H-ADO didn’t matter much, as far as model 

discrimination is concerned. As for the non-adaptive, F1 method of design selection, its 

model discrimination performance was virtually indistinguishable from those of H-ADO 

and M-ADO.  The model probabilities were especially similar among them in the first 

three blocks, where F1 method chose the 30-30-50 design as like H-ADO and M-ADO 

did in most of the early blocks.  Finally, the non-adaptive, F2 method that by construct is 

not utilizing the low D1 designs such as 30-30-50 fared the worst in model 

discrimination, especially in the mid-block regions (i.e., blocks 2-4). 
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Figure 8. Model probability of the target model (M1) in Simulation 1.  The vertical axis 

indicates the model probability of the expectancy-based model, p(m1).  The horizontal axis indicates the 

block number, which is 0 at the initial stage before the simulation.  The error bars represent one standard 

error at each block. 

 

 

 In addition to the model discrimination, estimating the model parameters as 

quickly and accurately as possible was an important goal of the design selection methods.  

The efficiency of parameter estimation for the target model M1 was compared in Figures 

9 and 10.   Figure 9 shows the root-mean-square error (RMSE) where the errors indicate 

the difference between the posterior mean of the parameter estimates and the true 

parameter values used for data generation.  The RMSE for each parameter was calculated 

every block as follows: 
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𝑅𝑀𝑆𝐸 =  √
∑ (𝜓̂𝑡 − 𝜓)2𝑛

𝑡=1

𝑛
 (20) 

where 𝜓̂𝑡 is the posterior mean of the parameter in 𝑡𝑡ℎ trial, 𝜓 is the true parameter value, 

and 𝑛 is the total number of trials in the block.  The estimates are considered more 

accurate if the errors are closer to zero.  The method with the highest RMSE overall was 

the F2 that focuses on observing the effect of D2.  The differences in the RMSE among 

the other methods were generally small.  A noticeable pattern was that the RMSE for 𝜆 

was reduced faster with H-ADO than M-ADO at the later blocks.  H-ADO is the same as 

M-ADO until the models are discriminated, so it is reasonable that the performance of the 

two methods differs only at the later blocks.  The manipulation of D1 that was done by 

H-ADO at the parameter estimation phase is critical for the estimation of 𝜆, because this 

parameter indicates the speed with which D1 is reflected to repetition expectancy.  It is 

probable that the utility of the designs and thus the design selections of H-ADO were 

largely influenced by the amount of information for 𝜆. 

 Despite some differences in the RMSE, the posterior parameter distributions 

described in Figure 10 were in similar shape across the methods.  The parameter 

estimates are considered accurate if the posterior distributions peak near the true values 

marked by the vertical lines in the figure.  Overall, the parameter values were recovered 

accurately, except for one parameter, 𝛽3, of which the posterior distribution did not peak 

at the true value.  𝛽3 appeared to be the hardest one to estimate, as its influence on the 

response time was smaller than that of the other parameters given the parameter values 

used to generate the data. 
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Figure 9. The root-mean-square error (RMSE) of the parameters in the expectancy-based 

model. 
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Figure 10. Posterior distributions of the parameters in the expectancy-based model after 

the end of the simulations. The vertical axis indicates the probability density of the distribution. The 

horizontal axis indicates the parameter values within their range.  The vertical lines in the plots indicate the 

true values used to generate the data. 
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 In conclusion, the results of Simulation 1 showed that the two models are 

discriminable, as the posterior model probability for the data generating model (i.e., M1) 

was significantly higher than 50%.  H-ADO at the parameter estimation phase mostly 

manipulated D1, being consistent with the model structure of M1 where D1 is critical for 

the parameter estimation.  However, Simulation 1 used M1 exclusively as the data 

generating model, leaving the possibility that the data generated by M2 would not 

discriminate the models well enough for the H-ADO to move to the parameter estimation 

phase.  In order to confirm that the models are discriminable also with the data generated 

by M2, another set of simulations was required. This is done and described in the next 

section. 

 

3.2. Simulation 2: Conflict-driven model 

 The data in Simulation 2 was generated by M2, with all the other settings the 

same as Simulation 1.  The parameter values used for the data generation were as 

follows: 𝑎 = 0.1,  𝛽0  = 450, 𝛽1 = 60, 𝛽2 = 150, 𝛽3 = 0.7,  𝜆 = 0.7, and 𝜎 = 50. 

 Tables 5 and 6 show the frequency of the design selections and the posterior 

model probabilities in H-ADO and M-ADO simulations.  The general pattern of design 

selections for the model discrimination was much similar to that in Simulation 1, as 

shown in Table 6.  M-ADO chose either the 30-30-50 or the 30-70-30 design, suggesting 

that they are indeed the optimal designs no matter what the data generating model.  A 

difference from the previous simulation occurred with H-ADO, as it mostly selected the 

30-70-30 design at the later blocks where the model probability for M2 was high (see 

Table 5).  A design with lower D2 is likely to provide more information about 𝜆, 𝛽2, and 
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𝛽3 in M2, because conflict from incongruent trials is essential to estimate those 

parameters.  Hence, it was predictable that H-ADO would choose the design with 30% 

D2 in the parameter estimation phase. 

 

 

Table 5. Number of times each design was selected by the hybrid ADO (H-ADO) in 

Simulation 2. 

 Block 

Design 1 2 3 4 5 6 

30-30-50 150 112 15 5 2 0 

30-70-30 0 34 134 145 148 150 

70-30-70 0 1 1 0 0 0 

70-70-50 0 0 0 0 0 0 

Mean p(M2) 0.50 0.825 0.972 0.993 0.996 0.998 
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Table 6. Number of times each design was selected by the model discrimination ADO in 

Simulation 2. 

 Block 

Design 1 2 3 4 5 6 

30-30-50 150 145 144 141 139 135 

30-70-30 0 5 6 8 11 15 

70-30-70 0 0 0 1 0 0 

70-70-50 0 0 0 0 0 0 

Mean p(M2) 0.50 0.863 0.978 0.996 0.998 0.996 

 

 

 The design selections in H-ADO swiftly switched from the 30-30-50 for the 

model discrimination to the 30-70-30 for the parameter estimation, due to a rapid increase 

of the model probability for M2.  This increasing trend is illustrated in Figure 11 where 

the model probability is compared among the four methods.  The model probability for 

M2 reached nearly 100% on average after only three or four blocks of simulations, even 

with F2 method that again showed the worst performance.  This seemed quicker than the 

discrimination in Simulation 1 where M1 generated the data.  It suggested that there 

might be a bias in model probability toward M2, at least under the uniform prior 

distributions used in the simulations.  This bias was also observed in Figure 8, as the 

model probability for the true model went below the 50% baseline after the first block. 
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Figure 11. Model probability of the conflict-driven model (M2) in Simulation 2.  The 

vertical axis indicates the model probability of the conflict-driven model, p(M2).  The horizontal axis 

indicates the block number, which is 0 at the initial stage before the simulation.  The error bars represent 

one standard error at each block. 

 

 

 In spite of clear model discrimination, parameter estimation was somewhat 

problematic in Simulation 2.    The RMSE of the parameters plotted in Figure 12 

suggested that no method could accurately estimate the parameter 𝑎, as the RMSE of 𝑎 

increased over time.  The effect of this scaling parameter on the response time is 

relatively small, and is confounded with the effect of 𝜆.  The parameter 𝑎 is conceptually 

meaningful as it represents the base level of conflict, but its estimation from limited 

amount of response time data seems to be difficult, especially when the value of 𝜆 is 

large.  The inaccurate estimation of 𝑎 is also shown in the posterior parameter 
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distributions illustrated in Figure 13.  The posterior distributions of 𝑎 had high variance, 

and did not peak around the true value.  This was especially true for F2 method that 

showed the highest RMSE in Figure 12.  F2 was designed to manipulate D2, which is the 

design variable of M2, but the simulations suggest that the parameter estimation for M2 

does not benefit much from this prescheduled design.  A possible solution to the 

inaccuracy of parameter estimation is the use of informative prior for the parameter, 

instead of the uniform distribution used in the simulations.  However, since we aimed to 

use the models for human experiments, it was considered premature to set up an 

informative prior before we actually obtain the information from human subjects.  

Besides the parameter 𝑎, the other parameters relatively converged well around the true 

value with any design selection method. 
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Figure 12. The root-mean-square error (RMSE) of the parameters in the conflict-driven 

model. 
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Figure 13. Posterior distributions of the parameters in the conflict-driven model.  The 

vertical axis indicates the probability density of the distribution. The horizontal axis indicates the parameter 

values within their range.  The vertical lines in the plots indicate the true values used to generate the data. 
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To summarize, the results from Simulation 2 showed that the data generated by 

M2 could discriminate the models as well as the data from M1 did in Simulation 1.  The 

H-ADO did not show a clear advantage over the other methods in both the model 

discrimination and the parameter estimation, except for the F2 method that showed the 

worst performance.  The posterior distributions of M2 seemed to be relatively invariant to 

the design selection methods, showing little benefit of H-ADO.  However, it was still 

possible that H-ADO would perform better than the other methods in human 

experiments, because estimating the model parameters is likely to be more difficult with 

the data that is not generated by the model itself.  Selecting an optimal design would be 

more important when the discrimination and the estimation of the models are not easily 

achieved.   We therefore conducted human experiments to see how well the models could 

be discriminated using the design selection methods in the simulation.
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4. Experimental Studies 

The arrow flanker task described in Figure 3 was used for the experiments.  We 

assumed that the response time data from the flanker task could discriminate between the 

two models of cognitive control.  However, the model discrimination was likely to be 

slower than in simulations, because the data would not be completely consistent with the 

model predictions.  As in the simulations, the ADO experiments were compared to the 

experiments with predetermined designs.  A total of three experiments (Experiment 1, 2, 

& 3) were conducted using the same flanker task stimuli, but with different design 

selection methods.  Experiment 1 used the hybrid ADO, whereas Experiment 2 and 3 

used fixed designs that are appropriate to observe the effect of D1 and D2 on response 

time, respectively. 

 

4.1. Experiment 1 

 In the simulations, there was a clear distinction between the model probabilities of 

the two models because either of them generated the data.  H-ADO performed well under 

this condition where the model probability for the data generating model easily exceeds 

0.95 during the simulation.  However, it was not sure if the response time data observed 

from human subjects could clearly discriminate the models as in the simulations.  

Experiment 1 was conducted using H-ADO, in order to see if the participants show 

discriminable response time patterns that reflect the predictions of the computational 

models.
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4.1.1. Participants 

20 undergraduate students at the Ohio State University participated in the 

experiment (18 - 22 years old, 7 males and 13 females).  All subjects had normal or 

corrected-to-normal vision. 

 

4.1.2. Stimuli and procedure 

 Stimuli were controlled by PsychoPy (Peirce, 2007) module in Python.  The 

stimuli presented were similar to those in Figure 3.  At the beginning of each trial, a 

white fixation cross (+) was presented at the center of the screen for 800 ms.  White 

colored target stimulus appeared at the same location after 200 ms from the 

disappearance of the fixation cross, with white flanker arrows on the sides.  The arrows 

remained on the screen for 200 ms.  The next trial started after 2 seconds from the onset 

of the stimulus.  All stimuli were presented on a grey background on a LCD monitor.  

Subjects performed the experiment in a dimly lit, soundproof room.  They had to 

press the “x” key on the keyboard with their left index finger if the target arrow was 

pointing to the left, and the “.” key on the keyboard with their right index finger if the 

target arrow was pointing to the right.  They were instructed to focus on the location of 

the central fixation, and to make a response as quickly and as accurately as possible.  If 

they failed to respond within 1500 ms after the presentation of the stimuli, or if they 

made an incorrect response, they heard a beep sound indicating the error.  There was a 

practice block consisting of 20 trials, followed by 6 experimental blocks of 40 trials each.  

The practice block had 50% proportion of repetition (D1) and 50% proportion 

congruency (D2).  There was a one minute break between blocks, which could be 
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prolonged because participants could control when to proceed to the next block by 

pressing a key in the keyboard.  The design variables in each block were selected by the 

hybrid ADO algorithm used in the simulations. 

 

4.1.3. Technical details 

Computational settings of the hybrid ADO were basically the same as those in the 

simulations, but there were several differences.  The discretized grid for response time 

was equally spaced between 200 ms and 1,300 ms in the simulation.  However, because 

the models predict that the response time follows a normal distribution around a mean, 

the grid points far from the mean were less likely to be used.  For more accurate 

estimation of response time, we redistributed the grid points after each block, using the 

normal distribution with the mean and the variance of response time observed in the 

previous block.  The minimum 200 ms grid point was set as 0 percentile and the 

maximum 1300 ms was set as 100 th percentile.  The grid points were then allocated 

every 2 percentile interval (i.e., 2nd, 4th, 6th, ..., 98th percentile).  Therefore, the closer 

the grid points were to the mean, the higher their density was. 

Another difference is that the data from the previous block were also used to 

estimate 𝛽0 and 𝜎 that were fixed in the simulations. For the estimate of 𝜎, the pooled 

sample variance of the response time observed from the four possible trial types (i.e., cC, 

cI, iC, and iI) was used. 

 

𝜎̂ = 𝑆𝑝 =  √
(𝑛𝑐𝐶 − 1)𝑆𝑐𝐶

2 + (𝑛𝑐𝐼 − 1)𝑆𝑐𝐼
2 + (𝑛𝑖𝐶 − 1)𝑆𝑖𝐶

2 + (𝑛𝑖𝐼 − 1)𝑆𝑖𝐼
2

𝑛𝑐𝐶  + 𝑛𝑐𝐼 + 𝑛𝑖𝐶  + 𝑛𝑖𝐼 − 4
 (21) 
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𝛽0 was estimated using the sample mean 𝑦̅ and the posterior mean of 𝛽1.  We 

simplified the response time function of M1 in Equation (12) as, 

 𝑅𝑇𝑡(𝑥𝑡) =  𝛽0 + 𝛽1[1 − p(𝑥𝑡|𝑋𝑡−1)], (22) 

by excluding the response time for incongruent stimuli.  In this equation, the expected 

value of 𝛽0 given the data is, 

 E(𝛽0|𝑦)  =  𝑦̅(𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡) − 𝐸(𝛽1[1 − p(𝑥𝑡|𝑋𝑡−1)]|𝑦). (23) 

Because 1 − p(𝑥𝑡|𝑋𝑡−1) was either 𝑢 or 1- 𝑢, we assumed that 𝐸(1 − p(𝑥𝑡|𝑋𝑡−1)) is the 

average of 𝑢 and 1- 𝑢, which is 0.5.  Therefore, Equation (23) became  

 E(𝛽0|𝑦)  =  𝑦̅(𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡) − (∫ 𝛽1 𝑝(𝛽1|𝑦)𝑑𝛽1)/2, (24) 

using the posterior mean of 𝛽1 as the value of 𝐸(𝛽1). 

Applying the same procedure to M2, we obtained the same equation, 

 E(𝛽0|𝑦)  =  𝑦̅(𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡) − (∫ 𝛽1 𝑝(𝛽1|𝑦)𝑑𝛽1)/2, (25) 

for M2 as well, assuming that the expected level of conflict is 0.5. 

The expected value of 𝛽0 was used as the estimate of 𝛽0, 

 𝛽0̂ =  E(𝛽0|𝑦). (26) 

 

4.1.4. Results and discussion 

 Since the models used for ADO did not consider the accuracy of responses, trials 

with incorrect responses were excluded from analyses.  Further, the data from one 

participant who showed low accuracy rate (below 80%) was excluded from the study.  

The average accuracy rate of remaining 19 participants was 96.56%, which means that on 

average, they made less than two erroneous responses in each block of 40 trials. 
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 The primary goal of the H-ADO used in Experiment 1 was to discriminate the two 

models based on the response time data.  Therefore, the model probabilities that indicate 

the likelihood of each model were of our main interest.  We first used 0.95 model 

probability as an indicator of model discrimination, because that was the threshold value 

required for the H-ADO to switch from the M-ADO to the parameter estimation ADO (P-

ADO).  There were 9 participants who exceeded 0.95 model probability for M2 in at least 

one ADO stage, while only 2 participants reached 0.95 threshold for M1 during the entire 

course of the experiment (i.e., 6 blocks of 160 trials).  Those 11 participants switched 

from M-ADO to P-ADO once the threshold was met.  Among the other 8 participants that 

were not fully discriminated, 6 participants showed 0.8 or higher model probability at 

least once, three for M2 and the other three for M1.  The participants were grouped into 

three categories for detailed analyses, according to the model probabilities.  The 9 

participants with 𝑝(𝑀2) ≥ 0.95, and the 5 participants with 𝑝(𝑀1) ≥ 0.8 were categorized as 

the conflict-driven group (C-group) and the expectancy-based group (E-group), respectively.  The 

remaining 5 participants formed the neutral group (N-group).  The model probability criterion 

was set lower for the expectancy-based group than for the conflict-driven group because only a 

few participants showed 𝑝(𝑀1) being higher than the 0.95 threshold. 

 The C-group and the E-group were expected to show distinct response time patterns that 

correspond to the prediction of the models shown in Figure 7.  We compared the response time 

patterns between the two groups to clarify that the model probability reflects participants’ 

behavior as expected.  The response time pattern averaged over all the 19 participants is shown in 

Figure 14.  The congruency sequence effect (CSE) was not observed because the previous trial 

type did not affect the congruency effect.  The congruency effect was 83.4 ms after congruent, 

and 83.7ms after incongruent.  However, sequential effects were found when the response time 



48 
 

data was averaged separately by the E-group and the C-group (see Figure 15).  The results were 

similar to the model predictions in Figure 7-a, where the expectancy-based model predicted a 

reversed CSE under 30% proportion of repetition (D1).   This result suggests that the model 

probability in ADO successfully reflected the response time pattern expected by the models.  The 

similarity between the observed data and the model prediction under 30% D1 is reasonable 

because the ADO selected 30% D1 in most blocks for the E-group (see Table 7) in this 

experiment.  The two groups showed the patterns that cancel out each other, resulting in the 

averaged pattern in Figure 14 without a sequential effect. 

The differences between the E and C groups were also supported by a frequentist 

analysis.  A three way ANOVA analysis with the factors of current congruency (congruent vs 

incongruent), previous congruency (congruent vs incongruent), and group (expectancy based, 

conflict based, neutral) showed the main effect of current congruency (F(1, 16) = 150.437, p < 

0.001), and the three-way interaction of current congruency × previous congruency * group (F(2, 

16) = 4.843, p = 0.0227).  The F statistic of the interaction between current congruency and 

previous congruency was F(1, 16) = 0.273, p = 0.6083.  This two-way interaction that indicates a 

sequential effect (e.g., the CSE) was not significant, but the three-way interaction suggested that 

there are sequential effects modulated by the group factor.  The results from ANOVA is 

consistent with the interpretation of the response time patterns based on the model discrimination 

results, suggesting that the CSE differed among the groups discriminated by the model 

probabilities. 
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Figure 14. Response time pattern averaged over all participants in Experiment 1. 

 

 

 

Figure 15. Comparison of the response time patterns from the expectancy-based group 

(E-group) and the conflict-driven group (C-group) in Experiment 1. 
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Table 7. Number of times each design was selected by the expectancy-based group (E-

group) in Experiment 1. 

 Block 

Design 1 2 3 4 5 6 

30-30-50 5 4 4 4 4 4 

30-70-30 0 1 1 1 1 1 

70-30-70 0 0 0 0 0 0 

70-70-50 0 0 0 0 0 0 

Mean p(M1) 0.5 0.66 0.71 0.64 0.65 0.52 

 

 

 Although there was a clear difference in response time between the two groups, 

the model probability of the E-group was not highly discriminable on average.  As shown 

in Figure 16, the model probability tended to increase in earlier blocks, but decrease in 

later blocks.  This pattern implied that the participants who used expectancy-based 

control gradually switched to the conflict-driven control.  Such transition was more 

significant in the model probability of individual participants, than in the averaged data in 

Figure 16.  For example, participant 3 in Figure 17 exceeded 0.95 model probability by 

the third block, but the probability had constantly decreased from then.   The response 

time pattern in Figure 18 was also changed accordingly, showing the transition from a 

reversed to a normal CSE.  The other participants in the E-group showed similar 

switching patterns, except for participant 16 whose model probability constantly 

increased. 
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Figure 16. Model probability of the expectancy-based group (E-group) in Experiment 1. 
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Figure 17. Model probabilities of the individual participants in the expectancy-based 

group (E-group) in Experiment 1. 
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Figure 18. A transition pattern in the response time of Participant 3. 
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Figure 19. Model probability of the conflict-driven group (C-group) in Experiment 1. 
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 In summary, the results from Experiment 1 show that the models of cognitive 

control can be discriminated based on the response time data in the flanker task.  The 

model probabilities successfully reflected the response time patterns that are predicted by 

the models.  Also importantly, we observed significant individual differences in terms of 

model probability, implying that each participant has different preference on the types of 

cognitive control.  The H-ADO would be efficient in this case, where a single model is 

not generalizable to every participant. 

 

4.2. Experiment 2 

 Recall that Experiment 1 showed that the models are discriminable based on the 

response time data. However, the H-ADO in Experiment 1 did not choose the 70-70-50 

design for the E-group, unlike in Simulation 1 where the expectancy-based model (M1) 

generated the data.  Therefore, the response time patterns under low and high proportion 

of repetition (D1) were not directly compared with each other.  A low D1 would be 

sufficient for model discrimination because the predictions of the two models differ 

significantly when D1 is low (see Figure 7).  However, without comparing the response 

time patterns with low and high D1 values, it would not be possible to see if the 

congruency sequence effect (CSE) of each subject is actually influenced by D1.  For 

example, a participant who shows a reversed CSE with a low D1 would be classified as 

using expectancy-based control, but if he/she still shows the same pattern with a high D1, 

it would not be fully consistent with the prediction of M1.  Experiment 2 was conducted 

to fill this gap by explicitly manipulating D1.  The designs in Experiment 2 were the 

same as those in non-adaptive, fixed 1 (F1) method in the simulations, except that the 
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order of the blocks was counterbalanced across participants.  We used 30% D1 for 3 

blocks, and 70% D1 for the other three, to investigate the effect of D1 on the response 

time patterns.  According to the model predictions in Figure 7, we hypothesized that the 

participants with a high probability of M1 would show the congruency sequence effect 

(CSE) only when D1 is high.  The participants who are inclined to the conflict-driven 

model (M2) were expected to be insensitive to D1.  We aimed to observe these 

differences in response time patterns and then classify the participants according to the 

model fit. 

 

4.2.1. Participants 

12 undergraduate students at the Ohio State University participated in the 

experiment (18 - 22 years old, 5 males and 7 females).  All subjects had normal or 

corrected-to-normal vision. 

 

4.2.2. Stimuli and procedure 

 Experimental settings were identical to those in Experiment 1, except that the 

design variables to be used in the experimental blocks were predetermined.  For a half of 

the participants, the combinations of the design variables were 30-30-50 for the first three 

blocks, and 70-70-50 for the latter three.  To counterbalance the order of the 

combinations, the other half of the participants conducted the task in the reversed order 

(i.e., 70-70-50 before 30-30-50). 
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4.2.3. Results and discussion  

 The accuracy rate was 97.83% on average, without any participant excluded from 

the data.  The trials with a wrong response were excluded from the analysis as like in 

Experiment 1, because the models we used do not consider the accuracy of the response. 

 The purpose of Experiment 2 was to observe the effect of D1 on the response time 

patterns that were predicted differently by the two models (see Figure 7).  We assumed 

that the model probability would capture the response time patterns that fit well with the 

models, because the model probability successfully reflected participants’ behavior in 

Experiment 1.  For the comparison of the response time patterns based on the model 

probability, the participants were grouped using the same criteria as in Experiment 1.  

There were 3 participants in the expectancy-based group (E-group), and 3 participants in 

the conflict-driven group (C-group).  Two participants in the expectancy-based group 

showed higher than .95 model probability in an experimental block.  The remaining 6 

participants were categorized as the neutral group (N-group). 

 In spite of the fact that only half of the participants were included in either the E-

group or the C-group, those participants showed distinguishing model probabilities.  

Figure 20 describes the average model probability of the E-group after each block of 

trials.  There is an increasing trend without a clear transition pattern as in Experiment 1.  

Participant 5 was the only one who showed a decreasing model probability at the later 

blocks, whereas the other two participants each reached the highest probability at the end 

of the experiment.  The C-group was well-discriminated as well, showing the mean 

model probability increased to .98 for M2 by the end of the experiments (see Figure 22).  
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Given the high model probabilities, it was likely that the two groups would show distinct 

response time patterns that fit well with the model predictions. 

 

 

 

Figure 20. Model probability of the expectancy-based group (E-group) in Experiment 2. 
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Figure 21. Model probabilities of the individual participants in the expectancy-based 

group (E-group) in Experiment 2. 
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Figure 22. Model probability of the conflict-driven group (C-group) in Experiment 2. 
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groups discriminated by the model probability.  To see if the similar individual 

differences would be found in Experiment 2, we again compared the response time 

patterns of the E-group and the C-group. 

 

 

  

Figure 23. Averaged response time data in Experiment 2. 

 

 

350

370

390

410

430

450

470

490

510

530

550

previous congruent previous incongruent

R
es

p
o

n
se

 T
im

e 
(m

s)

  current congruent

  current incongruent



62 
 

 

Figure 24. Comparison of the response time data under different proportions of repetition 

(D1) in Experiment 2. 
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probabilities of the C-group were high for M2 (see Figure 22), but it was probably 

because of very low likelihood of M1, rather than a good fit of M2. 

  

 

 

Figure 25. Comparison of the response time data of the expectancy-based group (E-

group) in Experiment 2 under different proportions of repetition (D1). 
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Figure 26. Comparison of the response time data of the conflict-driven group (C-group) 

in Experiment 2 under different proportions of repetition (D1). 
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sample size, but the F-value for the four-way interaction was higher, F(1, 4) = 4.822, p = 

0.0931, if we exclude the neutral group from the analysis.  This result is in line with our 

finding that the two groups discriminated by the models show different dependencies 

between the design and the CSE (see Figure 25 & 26). 

To summarize, the results from the group comparison analysis in this experiment 

were inconclusive due to the small sample size and the high variance of the observed 

data, but the response time patterns of each group seemed similar to the predictions of a 

corresponding model.  The E-group and C-group showed different sequential effects 

especially with 30% D1, as predicted by the models (see Figure 7).  This result provides 

further support for the hypothesis that there are much individual differences in cognitive 

control mechanisms that are represented by the two models. 

 

4.3. Experiment 3 

 Experiment 1 and 2 showed the differences between the E-group and the C-group, 

but those differences were mostly derived from the manipulation of the proportion of 

repetition (D1).  Therefore, we could not collect enough data to reproduce the LWPC 

effect (see Figure 2).   This effect in which the congruency effect is larger with higher 

proportion congruency (D2) is predicted by both M1 and M2.  Given this, the 

discrimination between the models is not likely to be clear based on the manipulation of 

D2.  However, it would still be worthwhile to show that the models actually capture the 

effect of D2 from the data.  It was especially important for M1 because the LWPC effect 

was not usually explained by an expectancy-based account.  Thus, we conducted 

Experiment 3 to reproduce the LWPC effect, using non-adaptive designs comparable to 
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those in fixed 2 (F2) method in the simulations.  We expected that both E-group and C-

group would produce the LWPC effect because both M1 and M2 predict it.  However, 

there are some differences between the predictions because M1 explains the LWPC effect 

as an indirect effect of D1 that is constrained by D2.  It was possible that the model 

probability captures this subtle difference in the predicted response time patterns.  The 

result of model discrimination in this experiment was likely to indicate whether D2 

directly or indirectly affects the congruency effect. 

  

4.3.1. Participants 

Ten undergraduate students at the Ohio State University participated in the 

experiment (18 - 22 years old, 4 males and 6 females).  All subjects had normal or 

corrected-to-normal vision. 

 

4.3.2. Stimuli and procedure 

The designs were predetermined to manipulate the proportion congruency (D2).  

For a half of the participants, the combinations of the design variables were 30-70-30 for 

the first three blocks, and 70-30-70 for the latter three.  To counterbalance the order of 

the combinations, the other half of the participants conducted the task in the reversed 

order (i.e., 70-30-70 before 30-70-30).  Experimental stimuli for the flanker task were 

identical to those in Experiment 1 & 2. 

 

4.3.3. Results and discussion  
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 One participant whose accuracy rate was lower than 80% was excluded from the 

study.  The average accuracy rate of the other participants was 98.48%.  The trials with 

inaccurate responses were excluded from the analysis. 

 We hypothesized that the models would not be clearly discriminated in 

Experiment 3 because the two models both expected the LWPC effect we aimed to 

reproduce.  This hypothesis was tested by investigating the model probabilities of the 

participants.  Three participants satisfied the 0.80 model probability threshold for the E-

group, and four participants satisfied the 0.95 threshold for the C-group, in at least one 

block during the experiment.  However, there was an overlap between the two groups 

because there were two participants included in both groups.  Those two participants 

showed strong transition of model probability, from the expectancy-based model to the 

conflict-driven model.  Therefore, there were only 3 participants who were exclusively 

discriminated as either of the two groups.  The group discrimination was not as clear as in 

Experiment 1 and 2, presumably because the 30-30-50 combination of the designs that is 

optimal for the model discrimination was not used. 

 The transition pattern found from the participants is clearly shown in Figure 27 

that describes the model probability of the E-group.  The model probability for M1 tends 

to increase until the third block, but rapidly decrease at the later blocks.  This pattern was 

more obvious than the similar pattern observed from the E-group in Experiment 1, as the 

mean model probability for M1 reached 0.056 at the end in Experiment 3.  This result 

suggests that M2 was better than M1 when accounting for the effect of D2, considering 

that D2 was manipulated after the third block.  It actually seemed somewhat misleading 

to say that the E-group in Experiment 3 supports M1.  In contrast, the model probability 
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of the C-group shown in Figure 28 showed the pattern of constant decrease of the 

probability of M1. 

 

 

 

Figure 27. Model probability of the expectancy-based group (E-group) in Experiment 3. 

 

 

Figure 28. Model probability of the conflict-driven group (C-group) in Experiment 3. 
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 The participants were grouped based on the model probabilities, but we believed 

that the LWPC effect would be observed regardless of the group.  Figure 29 shows the 

effect of D2 on the congruency effect observed from all nine participants in Experiment 

3.  The LWPC effect seemed to be reproduced, as the congruency effect appeared to be 

larger with 70% D2 than with 30% D2.  Figure 30 shows this pattern more in detail, 

including the influence of the previous congruency.  The response time pattern with 70% 

D2 seemed to show the congruency sequence effect (CSE), but no sequential effect was 

observed with 30% D2.  A group comparison between the E-group and the C-group was 

required to interpret this result because the two models provide different predictions 

about sequential effects. 

 

 

  

Figure 29. Proportion congruency effect observed from all participants in Experiment 3. 
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Figure 30. Comparison of the response time data from all participants in Experiment 3 

under different proportion congruency (D2). 
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Figure 31. Comparison of the response time data of the expectancy-based group (E-

group) in Experiment 3 under different proportion congruency (D2). 
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Figure 32. Comparison of the response time data of the conflict-driven group (C-group) 

in Experiment 3 under different proportion congruency (D2). 
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Figure 33. Proportion congruency effect of the expectancy-based group (E-group) in 

Experiment 3. 

 

 

  

Figure 34. Proportion congruency effect of the conflict-driven group (C-group) in 

Experiment 3. 
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We also conducted a three-way ANOVA analysis with the factors of current congruency 

(congruent vs incongruent), previous congruency (congruent vs incongruent), and design (30% vs 

70% D2).  The group factor was excluded because of the overlap between the expectancy-based 

group and the conflict-driven group.  The proportion congruency effect was supported by the 

interaction effect of current congruency × design, F(1, 8) = 29, p < 0.0001.  The F-statistic 

was F(1, 8) = 3.602,  p = 0.0943 for current congruency × previous congruency 

interaction, and F(1, 8) = 2.123, p = 0.183  for the three-way interaction of current 

congruency × previous congruency × design.  The results suggested that D2 affected the 

congruency effect, but not the interaction between the current and the previous trial types.  

This is consistent with our finding that the LWPC effect is significant with any group, 

while the effects of D2 on the sequential effects are unclear. 

To summarize, in Experiment 3, by manipulating D2, we reproduced the LWPC 

effect that is predicted by both models.  In addition to the LWPC, the sequential effects in 

response time seemed to be modulated by D2, although they were only partially 

interpreted by the models.  A notable finding was that the participants in the E-group 

showed a strong transition pattern toward high model probability for M2 after the 

manipulation of D2, suggesting that the effect of D2 is better explained by M2 than M1. 
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5. General Discussion 

The main purpose of the present study was to discriminate between the 

expectancy-based control and the conflict-driven control using the response time data 

from the flanker task.  Those two control mechanisms were usually considered as 

different ways to explain control related effects such as the congruency sequence effect 

(CSE) and the list-wide proportion congruency (LWPC) effect.  Discriminating those 

control mechanisms has been challenging because they often lead to similar predictions 

of behavior, despite theoretical differences in internal processes.  Hence we deliberately 

manipulated experimental designs to investigate the circumstances in which the 

predictions of the two theories differ from each other.  The two competing theories were 

directly compared using the mathematical models that represent each theory, rather than 

relying on null hypothesis significance testing (NHST) that test hypotheses in an indirect 

manner.  This model-based approach also allowed us to adaptively optimize experimental 

designs in order to speed up the evaluation of the models. 

To compare the two models with human data, three types of an arrow flanker 

experiment were conducted using different design selection methods.  Experiment 1 used 

hybrid ADO (H-ADO) that selects an optimal design either for model discrimination or 

for parameter estimation, mainly to group the participants according to their fit to the two 

models of cognitive control.   Experiment 1 successfully classified the participants, but it 

was not sufficient to investigate the effect of the design variables to the full extent.  For 

example, the ADO design selection did not yield a within-participant comparison of the 
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response time patterns under 30% and 70% design variables.  Experiment 2 was 

conducted to compare the behaviors under 30% and 70% proportion of repetition (D1) in 

a balanced design.   The participants in the group with a high probability of the 

expectancy-based model showed the interaction between D1 and the sequential effects in 

response time, as predicted by the model.  Experiment 3 compared the response time 

patterns in the blocks with 30% and 70% proportion congruency (D2).   Both the 

expectancy-based model (M1) and the conflict-driven model (M2) predict the effect of 

D2, but the observed list-wide proportion congruency (LWPC) effect was better 

explained by M2.  Taken together, the results from the three experiments suggest that the 

model-based flanker task experiment is efficient in discriminating between the two 

theories of cognitive control.  To elaborate, the main findings from those experiments can 

be summarized in terms of the following three phrases: model discrimination, transition 

pattern, and individual differences. 

 

5.1. Model discrimination 

The present study used the two models of which the relative likelihood was 

reflected by the model probability.  A major benefit of this model-based study was that 

we could directly compare the competing theories represented by the models.  The most 

useful design for model discrimination was the one with the lowest D1.  H-ADO in 

Experiment 1 usually selected this design until the models were fully discriminated, 

resulting in the highest proportion of the participants classified into the two groups that 

correspond to the two models.  The 74% of the participants were classified as either the 
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expectancy-based group (E-group) or the conflict-driven group (C-group) in Experiment 

1, while the proportion was 50% and 56% for Experiment 2 and 3, respectively. 

One difficulty in model discrimination was that the model probability of the 

expectancy-based model rarely exceeded the 0.95 threshold for H-ADO to switch to the 

parameter estimation.  The inclination toward the conflict-driven model was also found in 

Simulation 1, although the data was generated by the expectancy-based model.  A 

possible solution to this problem is the use of informative priors that are closer to the 

posterior distributions updated by the participants.  Using more realistic priors instead of 

the uniform priors used in the present study is likely to enhance the model discrimination 

by reducing the trials required for estimating the models.  However, there was another 

reason for the low model probability for the expectancy-based model, which is a 

transition pattern frequently observed from the participants in the E-group.   

 

5.2. Transition pattern 

Many of the participants who initially exhibited a high model probability for M1, 

p(M1), showed a rapid increase of p(M2) at the later blocks.  This transition pattern was 

somewhat unexpected, but there is a possible explanation for such observation.  The 

expectancy-based control model assumes that participants maintain and update their 

repetition expectancy, and expect the upcoming trial to control their attention.  The 

conflict-driven control is relatively effortless because the participants just respond to the 

stimuli given the level of conflict.  The distinction between the two control processes 

resembles the differences between automatic and strategic control processes.  Automatic 

control is effortless and unintentional (Logan, 1988; Wells & Matthews, 2014), while 
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strategic control is intentional, effortful, and fully conscious (McNally, 1995; Sternberg, 

1996).  According to this description, the conflict-driven control is relatively automatic, 

and the expectancy-based control is relatively strategic.  A notable aspect of this 

distinction is that the control for a task tends to move from the strategic to the automatic 

processes through practice (Beck & Clark, 1997; Sternberg & Sternberg, 2016).  In short, 

the participants who showed the transition pattern may have learned to use an automatic, 

conflict-driven control as they became accustomed to the task. 

 

 

5.3. Individual differences 

 The results of model discrimination showed that there are individual differences 

in the preference for the cognitive control strategies, at least at the earlier blocks where 

the task is new to the participants.  The participants in E-group and C-group were 

assumed to prefer the expectancy-based control and the conflict-driven control, 

respectively.  This distinction was also shown in the response time patterns that reflect 

the prediction of the models.  The two patterns of our interest were the congruency 

sequence effect (CSE) and the list-wide proportion congruency (LWPC) effect. 

 There appeared to be a significant difference in the CSE between the two groups, 

mainly with a low proportion of repetition (D1).  In Experiment 1 where 30-30-50 design 

was frequently used, the E-group showed a reversed CSE, while the C-group showed the 

CSE.  The average response time data showed no CSE (see Figure 14), because the two 

groups cancelled out each other’s sequential effects.  This result provides another possible 

interpretation of the data that do not show the CSE.  For example, Duthoo et al. (2013) observed 

no CSE when participants expected alternations, but it is possible that the participants who 
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exploit expectancy-based control cancelled out the sequential effect of the other conflict-driven 

participants.  A model comparison is advantageous to acknowledge this kind of variance in 

the data because an ANOVA analysis does not usually capture the individual differences 

that generate different effects unless the participants were arbitrarily grouped in advance.  

The studies of sequential effects in congruency tasks usually report the response time 

averaged over every participant (e.g., Duthoo et al., 2013; Jiménez and Méndez, 2013; 

Kim, Lee, & Cho, 2015), but it might be advantageous to focus more on individual 

differences.  

 The LWPC effect, on the other hand, did not show much difference between the 

two groups.  More importantly, the participants in the E-group showed strong transition 

patterns toward M2, suggesting that M2 is better than M1 at explaining the effect of D2.  

This suggests that people prefer to use conflict-driven control when they experience a 

significant change in the D2 that is correlated with the average level of conflict.  

However, this result should be considered inconclusive at this point, primarily because of 

the small sample size, as discussed in a later section. 

 

5.4. Implications 

The findings in the present study are inconclusive, but they still may have 

important implications for the nature of cognitive control.  Among the various theories of 

cognitive control mechanisms, the conflict monitoring theory (Botvinick et al., 2001) has 

been supported by numerous empirical studies.  However, most of those studies relied on 

ANOVA as an evidence to support their hypotheses, comparing the aggregated response 

time data from different conditions (Akçay & Hazeltine, 2007; Hazeltine, Akçay, & 
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Mordkoff, 2011; Kerns et al., 2004; Notebaert, Gevers, Verbruggen, & Liefooghe, 2006; 

Ullsperger, Bylsma, & Botvinick, 2005). 

Null hypothesis significance testing (NHST) such as ANOVA is an indirect way 

to compare competing theories or models, because it merely tests whether the data shows 

significant differences from the null hypothesis that usually assumes no difference among 

different conditions.  For the purpose of model discrimination, evaluating “how” the data 

differ from the null hypothesis is more important than knowing whether there is a 

difference or not.  The model-based approach in the present study, on the other hand, 

directly compares the two theories using the quantitative models that predict specific 

response time patterns assumed by the theories.  Instead of rejecting or failing to reject a 

null hypothesis, this approach tests which model fits better with observed data by 

calculating Bayes factors.  Although there are various models of cognitive control 

mechanisms (e.g., Botvinick et al, 2001; Blais et al., 2007; Verguts & Notebaert, 2008; 

Yu & Cohen, 2009), those models were not frequently compared in experimental studies. 

The results in the present study were in some sense consistent with the previous 

studies that support the conflict monitoring theory, as the majority of participants tended 

to show higher model probability for the conflict-driven model (M2) as the experiment 

proceeds.  However, there still were some participants who seemed to exploit 

expectancy-based control.  They showed a reversed congruency sequence effect (CSE) 

when the proportion of repetition (D1) is low, as expected by the expectancy-based 

model (M1).  This reversal of the CSE would not be seen in the average response time 

pattern because of the larger number of participants who showed normal CSE.  In the 

ANOVA, the participants with the reversed CSE might be considered as meaningless 
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outliers as long as the interaction between the current and the previous congruency is 

significant in the aggregated data (see the ANOVA results in Experiment 2).  It implies 

that the experimental studies using NHST may ignore meaningful individual differences 

that reflect distinct cognitive control mechanisms. 

 

5.5. Limitations 

 There are two major limitations of the present study that make some results 

inconclusive at this time.  One is the small sample size, especially for Experiment 2 and 

Experiment 3.  There were only five or six participants that were classified into either E-

group or C-group in those two experiments.  Each group had only three or four 

participants, so the comparison between the groups was problematic.  It was mainly 

because we could not recruit more participants in time.  In addition, the proportion of 

participants who showed a high model probability was smaller in Experiment 2 and 3 

than in Experiment 1.  The lack of data could simply be resolved by collecting more 

participant data. 

 Another limitation is the limited grid size for the ADO calculation.  The size and 

the range of the response time grid and the parameter grid had to be small enough so that 

all the calculations could be completed within the limited time between the trial blocks.  

We used dynamic grid for the response time, and the point estimates for some parameters 

to improve the grid resolution for the other parameters as much as possible, but the shape 

of the posterior parameter distributions was still not smooth (see Figures 10 and 13).  

Therefore, the accuracy of parameter estimates was constrained by the grid resolution.  

This is a non-trivial problem because the model probability and the utility of the designs 
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are also influenced by the posterior parameter distribution.  However, given limited 

computational capacity, there would not be a straightforward solution to this problem.  

This will need to be considered in future studies that implement the ADO. 

 Besides the technical limitations, there is an inherent limitation of model-based 

studies, which is the plausibility of the models.  We assumed that either of the models 

would reflect the cognitive control mechanism of the participants, but it is possible that 

there is another model that better captures their behaviors.  This suggests that the neutral 

groups that were not discriminated by the two models in the present experiments might 

have been explained better by a third model.  This problem would be found in any model-

based study because it would not be possible to have a model that perfectly reflects 

human cognition.  A realistic solution would be to thoroughly test the models to see if 

they fit well enough to the data.  If there is a model that possibly account for the data 

better than the models we used, it would be worthwhile to evaluate the additional model 

in future studies. 

 

5.6. Future studies 

 We compared only two models of cognitive control in the present study, but there 

are other theories that provide alternative interpretations of the CSE or the LWPC effect 

(e.g., Hommel, Proctor, & Vu, 2004; Mayr, Awh, & Laurey, 2003; Schmidt, 2013).  The 

models based on those theories could be evaluated in future studies using the ADO.  For 

example, a repetition priming account provides an alternative explanation for the 

congruency sequence effect, based on item-specific priming (Mayr et al., 2003).  This 

account assumes that a response is enhanced when the stimulus features are completely 
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repeated, resulting in faster responses when a trial type (i.e., congruent or incongruent) is 

repeated than when it is alternated.  This resembles the expectancy-based control account 

with repetition expectancy in some sense.  The distinction between the effects of priming 

and expectancy has not been clear in theory, but a model comparison between a priming-

based model and the expectancy-base model would help distinguish between those theories. 

In addition, there are models that predict a new response time pattern, the item-

specific proportion congruency (ISPC) effect, by considering item-specific control (Blais 

et al., 2007; Verguts & Notebaert, 2008).  The ISPC effect is similar to the LWPC effect, 

except that it occurs at an item level (Jacoby, Lindsay, & Hessels, 2003; Trainham, 

Lindsay, & Jacoby, 1997).  That is, if the items in a congruency task (e.g., central arrows 

> and < in the flanker task) have separate proportions of congruent trials, the congruency 

effect for each specific item is modulated by its own proportion congruency.  The models 

in the present study do not reproduce the ISPC effect because they assume that the 

control is imposed on a task as a whole, rather than on individual items.  Future studies 

might investigate the distinction between the list-wide control and the item-specific 

control, by a model comparison that includes the models of item-specific control. 
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6. Conclusion 

 In the present study, the two models of cognitive control were compared 

using the arrow flanker task.  The most important finding was that none of the models 

turned out to be strongly favored over the other in accounting for the data patterns 

observed in the present experiments.  The expectancy-based model (M1) had advantage 

in explaining the reversed congruency sequence effect (CSE), whereas the conflict-driven 

model (M2) performed better when there was the list-wide proportion congruency 

(LWPC) effect.  This result suggests that there may be multiple control mechanisms that 

operate in different contexts.  Previous studies have made extensive efforts to develop a 

generalizable model of cognitive control, but it would also be beneficial to emphasize the 

diversity of cognitive control.  In conclusion, we believe that the model-based approach 

of the present study in which that computational instantiations of theoretical hypotheses 

were compared directly using an adaptive experimentation algorithm (i.e., ADO) could 

help identify and determine the roles of the underlying control mechanisms. 
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Appendix 

Python Module for the Simulations 

This appendix includes the Python module that generated the simulation results in 

Figures 8-13. 

 

#########################################################

# ADO_sim.py (Spring 2017)              # 

# Python code for ADO/non-ADO simulation for a congruency task        # 

# Author: Sang Ho Lee (Ohio State University), lee.7285@osu.edu          # 

######################################################### 
 

def ADO_full_module32(simulType, targetModel, simDesign_joint, 

numTarget, numDistract, include, trueSigma_m2, trueBeta3_m2, 

trueBeta2_m2, trueBeta1_m2, trueBeta0_m2, trueLamb_m2, 

trueSigma_m1, trueBeta3_m1, trueBeta2_m1, trueBeta1_m1, 

trueBeta0_m1, trueLamb_m1, trueA_m1, pre_joint, pre_joint2, 

numTrial, numSim, numBlock, lambda_m1, a, b, beta1_m1, interval, 

simDesign, lambda_m2, beta1_m2, sigma, beta2_m1, beta2_m2, 

beta3_m1, beta3_m2, pre_rtGrid, simDesign2): 

 

    import random 

    import math 

    import numpy as np 

 

    from compute import preCompute_conflict_full32, 

preCompute_conflict_full32_single, preCompute_full32, 

preCompute_full32_single 

    from makeList import makeList 

    from datetime import datetime     

    import pickle 

    import matplotlib.pyplot as plt 

 

    rtGrid = pre_rtGrid.copy() 

 

    design_hist = np.zeros((numBlock, numSim)) 

    design_hist2 = np.zeros((numBlock, numSim)) 

 

    modelProb_hist = np.zeros((numBlock+1, numSim)) + 0.5 
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    #initial plot matrices 

    post_a = post_beta1_m1 = post_beta2_m1 = post_beta3_m1 = 

post_lamb_m1 = 0 

    post_b = post_beta1_m2 = post_beta2_m2 = post_beta3_m2 = 

post_lamb_m2 = 0#np.zeros(numSim).tolist() 

 

    plotError_a = plotError_lamb_m1 = plotError_beta1_m1 = 

plotError_beta2_m1 = plotError_beta3_m1 = plotError_sigma_m1 = 

0 

    plotError_lamb_m2 = plotError_b = plotError_beta1_m2 = 

plotError_beta2_m2 = plotError_beta3_m2 = plotError_sigma_m2 = 

0 

 

    # preCompute the likelihoods (model 1) 

    beta0_m1 = trueBeta0_m1 

    beta0_m2 = trueBeta0_m2 

    trueB_m2 = 0.1 

 

    repMatrix = np.zeros((len(simDesign_joint),2)) 

    repMatrix[:,0] = np.floor(simDesign_joint/100)/100 #repRate_c 

    repMatrix[:,1] = (simDesign - (np.floor(simDesign_joint/100) 

*100))/100 #repRate_i 

 

    uMatrix = repMatrix.copy() 

 

    repMatrix = np.add.outer(np.zeros(len(a)),repMatrix) 

     

    u = 0.5 + a[None,:,None,None] + 

np.zeros((len(lambda_m1),len(simDesign), 2))[:,None,:,:] 

#lambda*a*design*cong 

 

    update_interval = np.ceil(numTrial/interval)-1 # number of update per 

interval : update_interval/interval = probability of update 

    lambda2 = np.multiply(np.true_divide(1-

pow(lambda_m1,update_interval),1-lambda_m1),1-lambda_m1) # 

update multiplier 

 

    baseTrial = interval*(np.ceil(numTrial/interval)-1) 

    post_dist, u = 

preCompute_full32(lambda_m1,u,a,beta1_m1,sigma,beta0_m1,beta2
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_m1,beta3_m1,rtGrid,baseTrial,repMatrix,update_interval)  

#interval -> update_interval 

    update_interval = 1 # for one interval calculation during the trials 

 

    # preCompute model 2 

    average_c = 1-simDesign2  # initial average conflict 

    divisor_c = 0 

    sum_c = 0 

 

    post_dist2= preCompute_conflict_full32(average_c, b, lambda_m2, 

beta1_m2, sigma, beta0_m2, beta2_m2, beta3_m2, rtGrid, 

simDesign2) 

 

    #initial utility 

    post_dist = post_dist * pre_joint[:, :, :, :, :, None, None, None, None]  # 

p(paramIy,d) 

    post_dist2 = post_dist2 * pre_joint2[:, :, :, :, :, None, None, None, 

None]  # p(paramIy,d) 

 

    like_Y = np.sum(post_dist, axis=(0,1,2,3,4)) # p(yId) 

    like_Y2 = np.sum(post_dist2, axis=(0,1,2,3,4)) 

 

    # rarely occurs 

    if np.sum(like_Y < 1e-45) != 0: 

        print "low like 1" 

        like_Y[like_Y < 1e-45] = 1e-45 # remove 0 to prevent infinite/NaN 

bayes factor (rarely occurs) 

 

    if np.sum(like_Y2 < 1e-45) != 0: 

        print "low like 2" 

        like_Y2[like_Y2 < 1e-45] = 1e-45 # 1e-323 in float64 

 

    # convert like_Y2 to joint design space 

    tempLike = np.zeros(like_Y.shape) #d1*rep*cong*RT 

    tempJoint = np.subtract(simDesign_joint,simDesign) #congRate 

     

    for i in range(len(simDesign_joint)): 

 

        loc = np.argmin(abs(simDesign2 - tempJoint[i])) 

        tempLike[i,:,:,:] = like_Y2[loc,:,:,:] 
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    like_Y2 = tempLike 

    del tempLike 

 

    # weight the likelihood 

    modelProb = 0.5 # initial p(m) 

 

    reshape_Y2 = np.zeros(like_Y2.shape)  #transform conflict dimension to 

the rep dimension 

    reshape_Y2[:,:,0,:] = like_Y2[:,:,0,:].copy() 

    reshape_Y2[:,0,1,:] = like_Y2[:,1,1,:].copy() 

    reshape_Y2[:,1,1,:] = like_Y2[:,0,1,:].copy() 

 

    reshape_Y = np.zeros(like_Y.shape)  #transform rep dimension to the 

conflict dimension 

    reshape_Y[:,:,0,:] = like_Y[:,:,0,:].copy() 

    reshape_Y[:,0,1,:] = like_Y[:,1,1,:].copy() 

    reshape_Y[:,1,1,:] = like_Y[:,0,1,:].copy() 

 

    utility = np.multiply(like_Y, -np.log(modelProb + ((1-modelProb) * 

np.true_divide(reshape_Y2, like_Y)))) 

    utility2 = np.multiply(like_Y2, -np.log((1-modelProb) + (modelProb * 

np.true_divide(reshape_Y, like_Y2)))) 

 

    utility = np.sum(utility, axis=(1, 2, 3)) # d1 * d2 

    utility2 = np.sum(utility2, axis=(1, 2, 3)) 

 

    pre_utility_joint = (modelProb * utility) + ((1 - modelProb) * utility2) 

 

    del utility, utility2, like_Y, like_Y2, post_dist, post_dist2, reshape_Y, 

reshape_Y2 

 

    # start simulation 

    for iSimul in range(numSim): 

 

        u = 0.5 + a[None,:,None,None] + 

np.zeros((len(lambda_m1),len(simDesign), 2))[:,None,:,:] 

#lambda*a*design*cong 

 

        average_c = 1-simDesign2  # initial average conflict 

        divisor_c = 0 

        sum_c = 0 
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        prior_joint = pre_joint 

        prior_joint2 = pre_joint2 

        utility_joint = pre_utility_joint 

        rtGrid = pre_rtGrid.copy() 

 

        cong = np.zeros((numTrial,numBlock)) 

        bayes_like = np.zeros((numTrial,2)) 

 

        obsList = np.zeros((numTrial, numBlock)) 

 

        # initialize SSE matrices 

        SSElog_a = np.zeros(numBlock+1) 

        SSElog_a[0] = pow(np.sum(np.sum(prior_joint, axis = (0, 1, 2, 

3))*a)-trueA_m1, 2) 

        SSElog_lamb_m1 = np.zeros(numBlock+1) 

        SSElog_lamb_m1[0] = pow(np.sum(np.sum(prior_joint, axis = (0, 1, 2, 

4))*lambda_m1)-trueLamb_m1, 2) 

        SSElog_beta1_m1 = np.zeros(numBlock+1) 

        SSElog_beta1_m1[0] = pow(np.sum(np.sum(prior_joint, axis = (1, 2, 

3, 4))*beta1_m1)-trueBeta1_m1, 2) 

        SSElog_beta2_m1 = np.zeros(numBlock+1) 

        SSElog_beta2_m1[0] = pow(np.sum(np.sum(prior_joint, axis = (0, 2, 

3, 4))*beta2_m1)-trueBeta2_m1, 2) 

        SSElog_beta3_m1 = np.zeros(numBlock+1) 

        SSElog_beta3_m1[0] = pow(np.sum(np.sum(prior_joint, axis = (0, 1, 

3, 4))*beta3_m1)-trueBeta3_m1, 2) 

 

        SSElog_lamb_m2 = np.zeros(numBlock+1) 

        SSElog_lamb_m2[0] = pow(np.sum(np.sum(prior_joint2, axis = (0, 1, 

2, 4))*lambda_m2)-trueLamb_m2, 2) 

        SSElog_b = np.zeros(numBlock+1) 

        SSElog_b[0] = pow(np.sum(np.sum(prior_joint2, axis = (0, 1, 2, 

3))*b)-trueB_m2, 2) 

        SSElog_beta1_m2 = np.zeros(numBlock+1) 

        SSElog_beta1_m2[0] = pow(np.sum(np.sum(prior_joint2, axis = (1, 2, 

3, 4))*beta1_m2)-trueBeta1_m2, 2) 

        SSElog_beta2_m2 = np.zeros(numBlock+1) 

        SSElog_beta2_m2[0] = pow(np.sum(np.sum(prior_joint2, axis = (0, 2, 

3, 4))*beta2_m2)-trueBeta2_m2, 2) 

        SSElog_beta3_m2 = np.zeros(numBlock+1) 
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        SSElog_beta3_m2[0] = pow(np.sum(np.sum(prior_joint2, axis = (0, 1, 

3, 4))*beta3_m2)-trueBeta3_m2, 2) 

 

        # initialize prior distribution history 

        modelProb = 0.5 # initial p(m) 

 

        prior_hist = np.zeros(numBlock+1).tolist() 

        prior_hist[0] = prior_joint 

 

        prior_hist2 = np.zeros(numBlock+1).tolist() 

        prior_hist2[0] = prior_joint2 

         

        # Start simulations #### 

        designList = np.array([3070.3,3070.3,3070.3,7030.7,7030.7,7030.7]) 

#for pre-determined design: F2 

         

        for iBlock in range(numBlock): 

 

            print 'simulation %d block %d, %s' % (iSimul+1, iBlock+1, 

datetime.now().strftime('%H:%M:%S'))  # '%Y-%m-%d %H:%M:%S' 

 

            if simulType == 3: 

                designPick_joint = designList[iBlock] 

            else: 

                designPick_joint = simDesign_joint[np.argmax(utility_joint)] 

 

            stringDesign = str(int(designPick_joint*100)) 

            repRate = np.float32(stringDesign[0:4]) 

            congRate = np.float32(stringDesign[4:6])/100 

 

            design_hist[iBlock,iSimul] = repRate 

            design_hist2[iBlock,iSimul] = congRate 

 

            designPick1 = np.argmin(abs(simDesign - repRate)) 

            designPick2 = np.argmin(abs(simDesign2 - congRate)) 

 

            iterThreshold = 1000000 

            stimList = makeList(designPick_joint, numTrial, iterThreshold) 

 

            rep = 1  # no rep at the first trial 

            conflict = 0  # no conflict 
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            prev_indicator = -1 

            numCorrect = 0 #start update after the first correct response 

(ignore the first one) 

 

            for iTrial in range(numTrial): 

 

                if stimList[iTrial][2] == 1:  # identify congruency 

                    cong[iTrial, iBlock] = 0  # 0 if congruent 

                    currentCong = 0 

                else: 

                    cong[iTrial, iBlock] = 1 

                    currentCong = 1 

 

                if iTrial > 0:  # ignore the first trial (no repetition) 

                    if cong[iTrial-1, iBlock] == cong[iTrial, iBlock]: 

                        rep = 0  # rep 

                    else: 

                        rep = 1  # non-rep 

 

                if iTrial > 0: 

                    if cong[iTrial-1, iBlock] == 1:  # incongruent 

                        conflict = 1  # conflict 

                    else: 

                        conflict = 0 

                         

                if targetModel == 1: 

                    # model 1 mu 

                    trueU = u[np.argmax(lambda_m1 == trueLamb_m1), 

np.argmax(a >= trueA_m1), designPick1, currentCong] 

 

                    if cong[iTrial-1,iBlock] == cong[iTrial,iBlock]: 

                        truePX = trueU 

                    else: 

                        truePX = 1-trueU 

 

                    mu = trueBeta0_m1 + (trueBeta1_m1 * (1-truePX)) + 

(trueBeta2_m1 * cong[iTrial,iBlock]) + (trueBeta3_m1 * (1-

truePX) * cong[iTrial,iBlock])  # true mu 

                    # pick obs 
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                    pdf_RT = 

np.multiply((float(1)/math.sqrt(2*pow(trueSigma_m1, 2)*math.pi)), 

                                         np.exp(-

np.true_divide(np.power(np.subtract(rtGrid, mu), 2), 

2*pow(trueSigma_m1, 2))))  # probability of observing RT 

                elif targetModel == 2: 

                    # model 2 mu 

                    trueC = (trueLamb_m2 * conflict) + ((1-trueLamb_m2) * 

average_c[designPick2]) 

                    mu = trueBeta0_m2 + (trueBeta1_m2 * trueC) + 

(trueBeta2_m2 * cong[iTrial, iBlock]) + (-trueBeta3_m2 * 

trueBeta2_m2 * cong[iTrial, iBlock] * trueC)  # true mu 

 

                    pdf_RT = 

np.multiply((float(1)/math.sqrt(2*pow(trueSigma_m2, 2)*math.pi)), 

                                         np.exp(-

np.true_divide(np.power(np.subtract(rtGrid, mu), 2), 

2*pow(trueSigma_m2, 2))))  # probability of observing RT 

 

                pdf_RT = np.true_divide(pdf_RT, np.sum(pdf_RT))  # normalize 

the pdf 

 

                obs = np.argmax(np.cumsum(pdf_RT)>random.random())  # 

location of the observation in the rtGrid 

 

                obsList[iTrial, iBlock] = rtGrid[obs] 

 

                list_indicator = int(np.floor(iTrial/interval)) 

 

                if list_indicator != prev_indicator: 

 

                    prev_indicator = list_indicator 

                     

                    baseTrial = interval*list_indicator 

                    preList, u = 

preCompute_full32_single(designPick1,lambda_m1,u,a,beta1_m1,sig

ma,beta0_m1,beta2_m1,beta3_m1,rtGrid,baseTrial,repMatrix,update

_interval)  #interval -> update_interval 

 



100 
 

                    preList2 = preCompute_conflict_full32_single(designPick2, 

average_c, b, lambda_m2, beta1_m2, sigma, beta0_m2, beta2_m2, 

beta3_m2, rtGrid, simDesign2) 

                     

                    divisor_c = divisor_c + interval 

                    sum_c = sum_c + (interval * (1-simDesign2)) 

                    average_c = sum_c/divisor_c 

 

                ## pre_RT = (beta0,beta1,beta2,lambda,a,rep,cong,rt) likelihood 

                post_dist = preList[:, :, :, :, :, rep, currentCong, obs] * 

prior_joint # p(paramIy,d) 

                post_dist2 = preList2[:, :, :, :, :, conflict, currentCong, obs] * 

prior_joint2 

 

                like_Y = np.sum(post_dist) # p(yId) 

                like_Y2 = np.sum(post_dist2) 

 

                if like_Y < 1e-45:  # remove 0 to prevent infinite/NaN bayes 

factor (rarely occurs) 

                    like_Y = 1e-45  # 1e-323 in float64 

                elif like_Y2 < 1e-45: 

                    like_Y2 = 1e-45 

 

                bayes_like[iTrial,:] = np.log(np.array([like_Y2, like_Y])) 

 

                ##updatd prior                    

                prior_joint = post_dist # posterior update given obs,design 

                prior_joint2 = post_dist2 # posterior update given obs,design 

 

                prior_joint = np.true_divide(prior_joint,np.sum(prior_joint)) 

#normalize the prior 

 

                prior_joint2 = np.true_divide(prior_joint2,np.sum(prior_joint2)) 

#normalize the prior 

 

 

            prior_hist[iBlock+1] = prior_joint 

            prior_hist2[iBlock+1] = prior_joint2 

 

            del preList, preList2 
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            # update SSE 

            SSElog_a[iBlock+1] = pow(np.sum(np.sum(prior_joint, axis = (0, 

1, 2, 3))*a)-trueA_m1, 2) 

            SSElog_lamb_m1[iBlock+1] = pow(np.sum(np.sum(prior_joint, 

axis = (0, 1, 2, 4))*lambda_m1)-trueLamb_m1, 2) 

            SSElog_beta1_m1[iBlock+1] = pow(np.sum(np.sum(prior_joint, 

axis = (1, 2, 3, 4))*beta1_m1)-trueBeta1_m1, 2) 

            SSElog_beta2_m1[iBlock+1] = pow(np.sum(np.sum(prior_joint, 

axis = (0, 2, 3, 4))*beta2_m1)-trueBeta2_m1, 2) 

            SSElog_beta3_m1[iBlock+1] = pow(np.sum(np.sum(prior_joint, 

axis = (0, 1, 3, 4))*beta3_m1)-trueBeta3_m1, 2) 

 

            SSElog_lamb_m2[iBlock+1] = pow(np.sum(np.sum(prior_joint2, 

axis = (0, 1, 2, 4))*lambda_m2)-trueLamb_m2, 2) 

            SSElog_b[iBlock+1] = pow(np.sum(np.sum(prior_joint2, axis = (0, 

1, 2, 3))*b)-trueB_m2, 2) 

            SSElog_beta1_m2[iBlock+1] = pow(np.sum(np.sum(prior_joint2, 

axis = (1, 2, 3, 4))*beta1_m2)-trueBeta1_m2, 2) 

            SSElog_beta2_m2[iBlock+1] = pow(np.sum(np.sum(prior_joint2, 

axis = (0, 2, 3, 4))*beta2_m2)-trueBeta2_m2, 2) 

            SSElog_beta3_m2[iBlock+1] = pow(np.sum(np.sum(prior_joint2, 

axis = (0, 1, 3, 4))*beta3_m2)-trueBeta3_m2, 2) 

 

            #utility  - use updated prior, re-calculate the likelihood 

             

            #re-calculate the likelihood (m1) 

            lambda2 = np.multiply(np.true_divide(1-

pow(lambda_m1,update_interval),1-lambda_m1),1-lambda_m1) # 

update multiplier 

 

            u = 

np.float32(np.multiply(pow(lambda_m1,update_interval)[:,None,Non

e,None], u) + np.multiply.outer(lambda2, repMatrix)) # update u 

for the last interval 

            u = u[:,:,designPick1,:][:,:,None,:] + 

np.zeros(len(simDesign))[None,None,:,None] # fix u to the current 

design 

 

            update_interval = np.ceil(numTrial/interval)-1  # update multiple 

times to the last interval 

            baseTrial = interval*(np.ceil(numTrial/interval)-1) 
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            post_dist, _ = 

preCompute_full32(lambda_m1,u,a,beta1_m1,sigma,beta0_m1,beta2

_m1,beta3_m1,rtGrid,baseTrial,repMatrix,update_interval)  

#interval -> update_interval 

 

            update_interval = 1 #reset the interval 

 

            average_c = ((average_c[designPick2] * divisor_c) + ((numTrial - 

interval) * (1-simDesign2)))/(divisor_c + numTrial - interval) # 

update to the last interval 

 

            post_dist2 = preCompute_conflict_full32(average_c, b, lambda_m2, 

beta1_m2, sigma, beta0_m2, beta2_m2, beta3_m2, rtGrid, 

simDesign2) 

 

            sum_c = sum_c[designPick2] 

            average_c = np.add.outer(sum_c/divisor_c, 

np.zeros(len(simDesign2))) #fix average c to the current design 

 

            ##re-calculate the likelihood (m2) 

            post_dist = post_dist * prior_joint[:, :, :, :, :, None, None, None, 

None]  # p(paramIy,d) 

            post_dist2 = post_dist2 * prior_joint2[:, :, :, :, :, None, None, 

None, None] 

 

            like_Y = np.sum(post_dist, axis=(0,1,2,3,4)) # p(yId) 

            like_Y2 = np.sum(post_dist2, axis=(0,1,2,3,4)) 

 

            bayes_factor = np.sum(bayes_like,axis=0) 

            bayes_factor = np.exp(bayes_factor[0] - bayes_factor[1]) 

            modelProb = modelProb/((1-

modelProb)*bayes_factor+modelProb) 

 

            print modelProb 

 

            switch = 0 

 

            if modelProb > 0.95: 

                switch = 1 

            elif modelProb < 0.05: 

                switch = 1 
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            if modelProb > 0.999: 

                modelProb = 0.999 

            elif modelProb < 0.001: 

                modelProb = 0.001 

                 

            modelProb_hist[iBlock+1,iSimul] = modelProb 

 

            if simulType == 1 and switch == 1: 

 

                post_dist[post_dist == 0] = 1 #log(1) = 0, 1*log(1) = 0 

                post_dist2[post_dist2 == 0] = 1 #log(1) = 0, 1*log(1) = 0 

                 

                post_dist = -np.sum(np.multiply(post_dist, np.log(post_dist)), 

axis=(0, 1, 2, 3, 4))  # H 

 

                utility = -np.multiply(like_Y,post_dist)  # HY 

                utility = np.sum(utility, axis = (1, 2, 3)) 

 

                post_dist2 = -np.sum(np.multiply(post_dist2, 

np.log(post_dist2)), axis=(0, 1, 2, 3, 4))  # H 

 

                utility2 = -np.multiply(like_Y2,post_dist2)  # HY 

                utility2 = np.sum(utility2, axis = (1, 2, 3)) 

 

                tempUtil = np.zeros(len(simDesign_joint)) 

                tempJoint = np.subtract(simDesign_joint,simDesign) #congRate 

                 

                for i in range(len(simDesign_joint)): 

 

                    loc = np.argmin(abs(simDesign2 - tempJoint[i])) 

                    tempUtil[i] = utility2[loc] 

 

                utility2 = tempUtil 

 

            else: 

 

                # rarely occurs 

                if np.sum(like_Y < 1e-45) != 0: 

                    print "low like 1" 
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                    like_Y[like_Y < 1e-45] = 1e-45 # remove 0 to prevent 

infinite/NaN bayes factor (rarely occurs) 

 

                if np.sum(like_Y2 < 1e-45) != 0: 

                    print "low like 2" 

                    like_Y2[like_Y2 < 1e-45] = 1e-45 # 1e-323 in float64 

 

                # convert like_Y2 to joint design space 

                tempLike = np.zeros(like_Y.shape) #d1*rep*cong*RT 

                tempJoint = np.subtract(simDesign_joint,simDesign) #congRate 

 

                for i in range(len(simDesign_joint)): 

 

                    loc = np.argmin(abs(simDesign2 - tempJoint[i])) 

                    tempLike[i,:,:,:] = like_Y2[loc,:,:,:] 

 

                like_Y2 = tempLike 

                del tempLike 

 

                reshape_Y2 = np.zeros(like_Y2.shape)  #transform conflict 

dimension to the rep dimension 

                reshape_Y2[:,:,0,:] = like_Y2[:,:,0,:].copy() 

                reshape_Y2[:,0,1,:] = like_Y2[:,1,1,:].copy() 

                reshape_Y2[:,1,1,:] = like_Y2[:,0,1,:].copy() 

 

                reshape_Y = np.zeros(like_Y.shape)  #transform rep dimension 

to the conflict dimension 

                reshape_Y[:,:,0,:] = like_Y[:,:,0,:].copy() 

                reshape_Y[:,0,1,:] = like_Y[:,1,1,:].copy() 

                reshape_Y[:,1,1,:] = like_Y[:,0,1,:].copy() 

 

                utility = np.multiply(like_Y, -np.log(modelProb + ((1-

modelProb) * np.true_divide(reshape_Y2, like_Y)))) 

                utility2 = np.multiply(like_Y2, -np.log((1-modelProb) + 

(modelProb * np.true_divide(reshape_Y, like_Y2)))) 

 

                utility = np.sum(utility, axis=(1, 2, 3)) # d1 * d2 

                utility2 = np.sum(utility2, axis=(1, 2, 3)) 

 

                del reshape_Y, reshape_Y2 
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            utility_joint = (modelProb * utility) + ((1 - modelProb) * utility2) 

 

            del like_Y, like_Y2, post_dist, post_dist2 

 

        # store SSE every simulation 

        plotError_a = np.add(plotError_a,SSElog_a) 

        plotError_lamb_m1 = np.add(plotError_lamb_m1,SSElog_lamb_m1) 

        plotError_beta1_m1 = np.add(plotError_beta1_m1,SSElog_beta1_m1) 

        plotError_beta2_m1 = np.add(plotError_beta2_m1,SSElog_beta2_m1) 

        plotError_beta3_m1 = np.add(plotError_beta3_m1,SSElog_beta3_m1) 

 

        plotError_lamb_m2 = np.add(plotError_lamb_m2,SSElog_lamb_m2) 

        plotError_b = np.add(plotError_b,SSElog_b) 

        plotError_beta1_m2 = np.add(plotError_beta1_m2,SSElog_beta1_m2) 

        plotError_beta2_m2 = np.add(plotError_beta2_m2,SSElog_beta2_m2) 

        plotError_beta3_m2 = np.add(plotError_beta3_m2,SSElog_beta3_m2) 

 

        post_a = np.add(post_a, np.sum(prior_joint, axis = (0, 1, 2, 3))) 

        post_lamb_m1 = np.add(post_lamb_m1, np.sum(prior_joint, axis = (0, 

1, 2, 4))) 

        post_beta1_m1 = np.add(post_beta1_m1, np.sum(prior_joint, axis = 

(1, 2, 3, 4))) 

        post_beta2_m1 = np.add(post_beta2_m1, np.sum(prior_joint, axis = 

(0, 2, 3, 4))) 

        post_beta3_m1 = np.add(post_beta3_m1, np.sum(prior_joint, axis = 

(0, 1, 3, 4))) 

 

        post_lamb_m2 = np.add(post_lamb_m2, np.sum(prior_joint2, axis = (0, 

1, 2, 4))) 

        post_b = np.add(post_b, np.sum(prior_joint2, axis = (0, 1, 2, 3))) 

        post_beta1_m2 = np.add(post_beta1_m2, np.sum(prior_joint2, axis = 

(1, 2, 3, 4))) 

        post_beta2_m2 = np.add(post_beta2_m2, np.sum(prior_joint2, axis = 

(0, 2, 3, 4))) 

        post_beta3_m2 = np.add(post_beta3_m2, np.sum(prior_joint2, axis = 

(0, 1, 3, 4))) 

 

    # average SSE over simulations 

    plotError_a = np.sqrt(np.true_divide(plotError_a, numSim * numTrial)) 

    plotError_lamb_m1 = np.sqrt(np.true_divide(plotError_lamb_m1, numSim 

* numTrial)) 
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    plotError_beta1_m1 = np.sqrt(np.true_divide(plotError_beta1_m1, 

numSim * numTrial)) 

    plotError_beta2_m1 = np.sqrt(np.true_divide(plotError_beta2_m1, 

numSim * numTrial)) 

    plotError_beta3_m1 = np.sqrt(np.true_divide(plotError_beta3_m1, 

numSim * numTrial)) 

    plotError_sigma_m1 = 0 

 

    plotError_lamb_m2 = np.sqrt(np.true_divide(plotError_lamb_m2, numSim 

* numTrial)) 

    plotError_b = np.sqrt(np.true_divide(plotError_b, numSim * numTrial)) 

    plotError_beta1_m2 = np.sqrt(np.true_divide(plotError_beta1_m2, 

numSim * numTrial)) 

    plotError_beta2_m2 = np.sqrt(np.true_divide(plotError_beta2_m2, 

numSim * numTrial)) 

    plotError_beta3_m2 = np.sqrt(np.true_divide(plotError_beta3_m2, 

numSim * numTrial)) 

    plotError_sigma_m2 = 0 

 

    post_a = np.true_divide(post_a, numSim) 

    post_lamb_m1 = np.true_divide(post_lamb_m1, numSim) 

    post_beta1_m1 = np.true_divide(post_beta1_m1, numSim) 

    post_beta2_m1 = np.true_divide(post_beta2_m1, numSim) 

    post_beta3_m1 = np.true_divide(post_beta3_m1, numSim) 

 

    post_lamb_m2 = np.true_divide(post_lamb_m2, numSim) 

    post_b = np.true_divide(post_b, numSim) 

    post_beta1_m2 = np.true_divide(post_beta1_m2, numSim) 

    post_beta2_m2 = np.true_divide(post_beta2_m2, numSim) 

    post_beta3_m2 = np.true_divide(post_beta3_m2, numSim) 

 

    if targetModel == 1: 

        return design_hist, design_hist2, modelProb_hist, plotError_a, 

plotError_lamb_m1, plotError_beta1_m1, plotError_beta2_m1, 

plotError_beta3_m1, plotError_sigma_m1, post_a, post_lamb_m1, 

post_beta1_m1, post_beta2_m1, post_beta3_m1, post_lamb_m2, 

post_b, post_beta1_m2, post_beta2_m2, post_beta3_m2 

 

    elif targetModel == 2: 

        return design_hist, design_hist2, modelProb_hist, plotError_lamb_m2, 

plotError_b, plotError_beta1_m2, plotError_beta2_m2, 
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plotError_beta3_m2, plotError_sigma_m2, post_a, post_lamb_m1, 

post_beta1_m1, post_beta2_m1, post_beta3_m1, post_lamb_m2, 

post_b, post_beta1_m2, post_beta2_m2, post_beta3_m2 

 

 


