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Abstract

This research introduces and develops the new subfield of large-scale collective expert

networks (CEN) concerned with time-constrained triaging which has become critical to the

delivery of increasingly complex enterprise services. The main research contribution aug-

ments existing human-intensive interactions in the CEN with models that use ticket content

and transfer sequence histories to generate assistive recommendations. This is achieved

with a recommendation framework that improves the performance of CEN by: (1) resolv-

ing incidents to meet customer time constraints and satisfaction, (2) conforming to previous

transfer sequences that have already achieved their Service Levels; and additionally, (3) ad-

dressing trust to encourage adoption of recommendations. A novel basis of this research is

the exploration and discovery of resolution process patterns, and leveraging them towards

the construction of an assistive resolution recommendation framework. Additional inter-

esting new discoveries regarding CENs include existence of resolution workflows and their

frequent use to carry out service-level-effective resolution on regular content. In addition,

the ticket-specific expertise of the problem solvers and their dynamic ticket load were found

to be factors in the time taken to resolve an incoming ticket. Also, transfers were found to

reflect the experts’ local problem-solving intent with respect to the source and target nodes.

The network performs well if certain transfer intents (such as resolution and collective) are

exhibited more often than the others (such as mediation and exploratory).
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The assistive resolution recommendation framework incorporates appropriate strategies

for addressing the entire spectrum of incidents. This framework consists of a two-level

classifier with the following parts: (1) content tagger for routine/non-routine classification,

(2) A sequence classifier for resolution workflow recommendation, (3) Response time es-

timation based on learned dynamics of the CEN (i.e. Expertise, and ticket load), and (4)

transfer intent identification. Our solution makes reliable proactive recommendations only

in the case of adequate historical evidence thus helping to maintain a high level of trust

with the interacting users in the CEN. By separating well-established resolution workflows

from incidents that depend on experts’ experiential and ‘tribal’ knowledge for the reso-

lution, this research shows a 34% performance improvement over existing content-aware

greedy transfer model; it is also estimated that there will be a 10% reduction in the volume

of service-level breached tickets.

The contributions are shown to benefit the enterprise support and delivery services

by providing (1) lower decision and resolution latency, (2) lower likelihood of service-

level violations, and (3) higher workforce availability and effectiveness. More generally,

the contributions of this research are applicable to a broad class of problems where time-

constrained content-driven problem-solving by human experts is a necessity.
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Chapter 1: Introduction

Within a complex IT enterprise IT service orientation includes one or more of the fol-

lowing challenges: (1) multiple technology silos/departments/configuration items are in-

volved in the service delivery. (2) delivery of service is contingent upon completion of

multiple non-trivial processes. (3) processes rely considerably on human experts and their

collective knowledge. The dramatic rise of IT service complexity is a consequence of in-

creased business process automation, and accommodation to customer needs. This has

exposed a major pain point in IT support services. Providing technical expertise and sup-

port for complex service operations is disproportionately difficult to attain [17]. This has

created a vital need for low-overhead support services in complex enterprise operations,

in turn, demanding enhancement of traditional enterprise knowledge and expertise man-

agement. This demand is addressed in part by IT Service Management frameworks (ITIL

[50], MOF [53], etc.). At its core these are a set standard practices for a service life cycle

which entails service planning, delivery and operation [21]. In the following sections we

present our research related to these frameworks prior to discussing the contributions of

this research.
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1.1 Need for Enhancement within IT Service Support

An integral part of an IT service life cycle is a set of service operation processes. These

processes include but are not limited to event management, incident management, request

fulfillment, and problem management. A common theme among all service operation pro-

cesses is that they are dependent upon technical support staff and their expertise. Human

collaborations are essential since the needed expertise is often across multiple IT service

operation structures (data centers, cloud technology towers, network provisioning teams,

call centers, help desks, disaster recovery units, etc.). These structures are used to initiate,

report, and collaboratively resolve incidents arising from operational IT infrastructures.

This paradigm shift from a technology focus to a more complex service-oriented enterprise

has put a substantial burden on service operation structures and this has exposed a need for

augmentation of human collaborations towards greater effectiveness.

To be more specific about effectiveness, we need to discuss the notion of ‘cost of ser-

vice’ to the enterprise. Competitive business demands cost effective IT service delivery and

IT service support. Efficiency of support and delivery services can be achieved by reducing

the following costs: (1) cost for the enterprise to deliver a service, (2) cost for the customer

to exploit the service, and (3) cost for the enterprise to support that service. The business

goal of this research is to reduce the cost of service support (i.e. #3) by improving incident

resolution processes via augmentation of human collaborations.

Adding more infrastructure components (i.e Configuration Items (CIs)) is common

practice for service enhancement within typical IT operations environments. This is reg-

ularly performed because (1) there exists a desire for a more robust and fault-tolerant in-

frastructure, and (2) service functionality enhancement often requires dynamic provision-

ing (of both hardware and operating CIs). Thus, adding more infrastructure components

2



Figure 1.1: Research goal: support costs incurred due to complexity can be improved
through recommendations

helps reduce the service delivery cost, but it also adds to the complexity of the service and

thereby increases the service support cost. Figure 1.1 shows the relations between service

complexity and the cost of service delivery and service support.

This research does not directly address the cost of service delivery (i.e. dashed line in

Figure 1.1). On the other hand, it reduces the cost of service support and improves the

efficiency. This is by providing adequate augmentation for the underlying expert collabo-

rations, by addressing the incident resolution process. Therefore, our more specific goal is

to leverage the full collective potential of the experts’ knowledge and significantly reduce

the cost of service support in IT operations environments.

1.2 Significance of Research in Assisted Problem-Solving

Collaborative problem solving – where the capability of the sum is greater than its parts

– is leveraged today in a variety of ways. For instance, online question answering mi-

croblogs such as Stack Exchange (stack overflow , Cross validated, etc.) [64], Quora [54],

and WebMD [84] have focused on taking advantage of wisdom of the ‘qualified crowd’

3



in order to answer questions in respective domains. Going a step further, medical triage

and health tracking systems such as TriageLogic [73], and InXite [27] have focused on

resolving customers’ complex medical treatment cases through collaboration between care

providers. Software issue-tracking systems such as Bugzilla [9] and HP Quality Center

[26] have also opened up new ways for software engineers to coordinate, relate and resolve

program bugs. The field of IT Service Management has also resulted in an entire class of

specialized collaborative enterprise systems as discussed next.

IT Service Management as the problem domain of this research imposes unique restric-

tions on expert collaborations. These restrictions by and large arise due to (1) process/workflow-

driven dependencies, and (2) predetermined service delivery rules (i.e. Time Constraints in

Service Level Agreements (SLA)). This research improves procedural support for collabo-

rative problem solving that must meet both process dependencies and SLA time constraints.

The unique challenges that arise in this context from a research perspective are due to the

need for collaborative problem solving by a large number of individuals that must resolve

problems with very complex technology infrastructures, within strict time constraints.

Briefly, the process of extracting, understanding, recalling and applying information

obtained from heterogeneous sources is referred to as ‘knowledge acquisition’. Human

problem-solving expertise in a particular subject area gets developed through incremental

iterations of the knowledge acquisition process [83]. The process by its very nature is lim-

ited to the individual’s acquisition rate, cognitive load and memory capacity [69]. Even

though performance of individual experts on simple problems with static subject matters

is often reasonable, there are barriers to human cognition on more complex and dynamic

problems. Therefore, collaboration between experts is essential on more complex prob-

lems over dynamically evolving environments. ‘Collaborative intelligence’ is the term for
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retainable knowledge that emerges from collaboration of uniquely positioned individuals

in order to achieve complex task completions [85]. ‘Collective intelligence’ has been intro-

duced to identify the case where the individuals provide non-overlapping expertise to bear

on the problem.

Exploiting the full potential of collective intelligence to address the efficiency gap of

Figure 1.1 has become a critical subject for IT service organizations as they aim to re-

duce their workforce costs while delivering the needed technical expertise, dealing with

evermore-complex infrastructures. To address this problem, a deep understanding of the

individual’s skills and knowledge, and a robust task delegation scheme becomes important.

Thus the goal of this research is to perform process discovery and prediction using

machine learning and human computation combined in order to identify and recommend

most efficient ways of delivering collective expertise. At a high level, this research en-

hances ‘Collective Expert Networks’ or CEN (as a special case of Expert Networks in the

IT Service Management domain) by (1) developing a recommendation framework for effi-

cient collective problem solving, (2) extracting problem solving expertise for the resolution

process constituents, and (3) constructing a solution for resolution time estimation to offer

time-efficiency and compliance with the time-limit requirements of the resolution process.

In the rest of this chapter, we provide a general background on Expert Networks and

introduce more specific challenges and ways to improve on the existing methodology gap.

We will also provide an overview of our research contributions.

1.3 Expert Networks as a Framework for Problem-solving

This section provides the motivation for the use of expert networks as the underlying

framework for this research. Experts collaborate in order to complete complex tasks that
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are not entirely achievable with a single individual’s expertise. Therefore, interactions on

complex tasks are due to non-overlapping and yet complementary knowledge needed at

the time of the problem of solving. As a result, effective collaborations require experts to

be able to answer two types of questions. First, they need to know how to contribute to

the completion of the task. And second, they need to know who has the complementary

knowledge to contribute to the completion of the task. Maintaining and applying these two

types of knowledge – ‘contribution knowledge’ and ‘interaction knowledge’, respectively -

is crucial in the task completion process. For purposes of framework development we next

introduce a general and then a more specific type of network:

General Expert Networks (GEN) are constructed based on history of collaborations

and task-transfers between experts. GENs in essence are directed graphs with historical

interactions as edges between the expert nodes. Task completion is thus represented as a

walk on the network and requires interactions.

Collective Expert Networks (CEN) are a special case of GEN in the domain of IT

Service Management in which: (1) Experts provide the collective knowledge to resolve

service-related incidents; (2) underlying well-defined workflows exist for the service oper-

ations and incident resolution; and, (3) there is a notion of time constraint associated with

the resolution process.

In CENs, human experts are motivated to do as well as they are able (as we shall ex-

plain in Subsection 1.7.2), so this research aims to address the question of how machines

can further boost the human problem-solving capabilities to address the efficiency gap.

More specifically, how can we augment experts with recommendations to improve overall

CEN performance? This research mainly targets recommendations for CEN interactions to
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improve the expected time to resolve. We acknowledge that with some appropriate tuning

many of our proposed solutions are generalizable to GENs as the more general case.

1.4 Incident Management Problem Solving Context

An ‘incident’ is an event that could lead to loss or disruption to organization’s IT op-

erations and services. Incidents are generally captured as ‘tickets’ and their content can be

viewed as the ‘footprint’ of service inconsistencies. To achieve efficiency (Figure 1.1), it

is essential to resolve the incidents within minimum elapsed time using only the necessary

expert resources while meeting the Service Level Agreements. Service Level Agreements

include predetermined time constraints defined based on urgency and impact of the corre-

sponding service to the end-users. Experts are supposed to collectively problem-solve in

order to resolve incidents. Figure 1.2 concisely illustrates the incident resolution process

in IT Service Management, and the underlying model of a CEN, which represents experts

as nodes that problem-solve on a given incident. More specifically, the Figure 1.2 (see

corresponding labels) portrays:

1. Incident capturing procedure at IT Service Desk (ITSD); initiating ticket creation

2. Functional escalation to the CEN in case of unavailable pre-existing knowledge and

need for technical expertise.

3. An example of CEN structure as a directed graph, and three suboptimal Ticket Reso-

lution Sequences (TRS) as walks on the network leading to incident resolution. Note:

well-established TRSs are also referred to as ‘workflow’ throughout this document.

4. Time to Resolve (TTR) and Service Level (SL) status after achieving resolution cor-

responding to each presented TRS.
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Figure 1.2: CEN terminology and resolution process overview

5. Other important ticket attributes such as Ticket content/description, priority, etc.

It is important to note that Ticket Resolution Sequence (TRS) with respect to a specific

ticket is a sequence of transfers between the experts representing progressive discovery that

leads to resolution for the ticket. In addition, as illustrated in the same figure, some TRSs

help the ticket meet its SL goals while others do not. Here the objective is to minimize

the resolution latency (i.e. TTR) of the tickets by recommending an optimal TRS given

the history of tickets resolved by the experts in the CEN. This setting uniquely opens the

opportunity to introduce a framework that facilitates incident management platforms with

efficient ticket transfers between experts in any CEN.
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1.5 Analysis of Challenges and Methodology Gaps

Service support challenges specifically pertain to (1) the event monitoring and incident

capturing process and (2) the incident resolution process. Since the scope of this research

is the incident resolution process as introduced in Section 1.4, it leaves the challenges

related to incident capture as out of the scope. Also, fine-grained root cause identification

for incidents also requires fine-grained embedded sensing and monitoring within the IT

infrastructure and operations. Since IT Infrastructure and production operations are rarely

available for research, and neither were they available to us at the time of this research, that

too is out of scope. However, for completeness, in the following two subsections contextual

facts and problems are discussed related to both incident capturing and resolution phases.

In particular this helps us better discuss the problems that bound our research and proposed

solutions.

1.5.1 Incident Capture Problems

• Fact.1: Existing monitoring systems auto-generate tickets based on rules that detect

degradation of the vital signs against predefined thresholds in the operational event

management systems.

• Problem.1: The threshold-based rules in these systems typically cause substantial

volumes of false alerts (i.e. false positive events) that lead to resource misallocation

and overstaffing.

• Fact.2: Many abnormal events that cause service disruption are not detected by the

monitoring systems at the point of origin. Since an incident that is missed is not
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captured, these events are referred to as missing alerts (i.e. false negative events) and

these often lead to downstream user-reported incidents.

• Problem.2: Incidents originate from configuration items (or CIs) that are numerous

within a complex infrastructure. It is almost impossible to achieve an accurate inci-

dent capturing system with a set of general monitoring rules on all CIs since every

CI has its own configuration settings and environment specification. However, ‘blan-

ket’ monitoring rules are commonly utilized since the alternative is the costly manual

tuning of monitoring thresholds on each CI. Therefore, generally a large number of

both false negatives and false positive events exist. Note that modifying the monitor-

ing thresholds results in: (1) a trade-off between false negatives and false positives

(2) a trade-off between cost of extra-resources (to deal with redundant or unneces-

sary tickets) and cost of outage recovery (to deal with unnoticed customer-impacting

SLA violations)

• Other research related to problem.2: Recent work by Liang et al. [71] proposed

a monitoring framework for enhancing the accuracy of alerts in an IT infrastructure,

based on historically labelled data. Earlier work by Agrawal et al. [1] dealt with

anomaly detection of constraint violations on network usage data. Both of these

works are tailored to particular application domain and their deployed solution built

on top of a well-sensed environment.

• Fact.3: User generated incidents lack fine-grained structure and are noisy textual re-

ports about the observed behavior of the infrastructural defects and, not their causes.
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• Problem.3: In these cases there is a prolonged incident investigation phase which

could result in a SLA violation. Main contributing factors related to noisy user gener-

ated incidents are diverse user background knowledge and their linguistic variations,

as well as user’s partial view of the underlying problem.

1.5.2 Incident Resolution Problems and Research Approach

The problems identified in this section regarding incident resolution are the main focus

of this thesis. Here we present an overview of our research approach while discussing some

of the main challenges.

• Fact.1: Automated question answering and content-based recommendation systems

can assist the incident resolution process by avoiding wasteful interactions between

experts; based on a set of historically efficient interactions.

• Problem.1: Inference in these machine learning solutions is bounded by the oper-

ational logs where rare occurrence of the events, and scarcity among event features

are commonly observed. In addition, the resolution process for a fraction of incidents

heavily requires human engagement in order to perform investigation, diagnosis, and

resolution. Thus, these incidents requires both trial-and-error and user-probing by

human experts, none of which are recorded by the operational logs.

• Non-routine Classification (research approach.1): This requires a ‘non-routine’

incident handling system. We research our recommendation solution with a non-

routine incident classifier dedicated for this propose. We looked for effective meth-

ods to separate frequently occurring incidents that are associate with well-defined

resolution workflows from the rest of the incidents. The rare incidents that require
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human-intensive resolution process are thus labeled as non-routine. Also note that

we need to handle all incidents effectively due to the critical role of customer satis-

faction.

• Fact.2: Experts have local knowledge of neighboring collaborators, but do not know

the globally effective resolution paths. Thus they try to optimize the next interaction

but struggle to identify the overall optimal resolution path.

• Problem.2: Lack of process-knowledge discovery solutions that could leverage his-

torically resolved incidents to infer the entire global effective paths per incident con-

tent.

• Routine Classification (research approach.2): This would require a ‘routine’ in-

cident handling system. We introduce our solution by proposing a routine incident

classifier dedicated for this purpose.

• Fact.3: It is necessary for the business to ensure that the resolution process complies

with Service Level Target (SLT: a fixed pre-agreed target time determined based on

the priority of the incident).

• Problem.3: Resolution recommendations are not acceptable if SLTs are not guar-

anteed to be met. This relates to user trust - unreliable recommendations will slow

down adoption.

• Resolution Time Estimation (research approach.3): This requires a Time-to-resolve

estimation system, which reports an estimated time to resolve for every recommended

path. We developed resolution time estimation models leveraging dynamic charac-

teristics of the CEN (i.e. Expertise modeling, expected high priority workload, etc.)
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• Fact.4: IT Service Level Agreements are violated due to wasteful interactions be-

tween experts

• Problem.4: Absence of predictive measures for effectiveness of collaborative inter-

actions

• Transfer Intent Discovery (research approach.4): Need for explicit transfer intent

identification. We outline a solution for intent characterization and discovery for

ticket resolution paths.

• Fact.5: Organizational hierarchy is a meaningful representation of relationship be-

tween experts. This represents relationship between experts rather than ‘management

hierarchy’. Thus we call this: ‘enterprise taxonomy’.

• Problem.5: Enterprise taxonomy has not been leveraged for predictive incident trans-

fer models.

• Utilization of Enterprise Taxonomy (research approach.5): (1) Need for further

investigation about transfer localities on the enterprise taxonomy and its relationship

with regularity of transfers. (2) Need for a regularization scheme for transfer models

based on enterprise taxonomy, outlining a solution to battle the sparsity in the transfer

model using the enterprise taxonomy.

Simply stated, we want a solution that is as sensitive as possible to when the CENs do

well; and precisely identify and recommend those cases to augment the CEN when it is

struggling. Next we wish to show that with such recommendations, the CEN does better.
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Figure 1.3: The spectrum of expert problem solving

We use Figure 1.3 to illustrate the entire spectrum of expert problem solving in the

unassisted CEN as observed in the data. This ranges from human-centered (either non-

routine workflows or sequences of individual transfers), to established process-centered

(routine workflows leveraging collective routine knowledge).

Our unique research goal is to improve collective problem solving within enterprise op-

erations that also meets time and trust requirements. Thus these are three research parts

which together aim to integrate and improve both process-centric and human-centric res-

olution processes: (1) recommendations for transfer resolution sequences, (2) resolution

time estimation, and (3) transfer intent discovery.

1.6 Research Hypothesis and Method

The main research hypothesis based on the approach identified above is as follows:

Every incoming ticket can be processed either by machine recommendations, or flagged for
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human-in-the-loop processing, establishing a way to ensure adoption of the framework by

achieving service-level goals in enough cases to demonstrate compelling efficiency gains.

1.6.1 A Hybrid Method to Address Incident Resolution

The methods underlying the CEN recommendation framework take the content of an

incident to robustly recommend a sequence of experts needed to work on the ticket in or-

der to resolve it within the SL constraints. To achieve the goal, we present heuristics for

identifying recurring resolution workflows associated with regular content. Then we build

a classifier that is based on incident content and can distinguish whether the incident can be

resolved by the recurring resolution workflows. If it can, then the resolution trajectory of

the workflow on the CEN is recommended. Otherwise, human experts are required to fully

identify the issue, diagnose and assign resources, and finally resolve the incident. Given

a recommended resolution workflow, time to resolve estimation is critical for SL compli-

ance, and it can create early warnings when an incident is expected to breach its SL. In

order to provide an accurate resolution time estimation for a ticket on a recommended path,

resolution and transfer expertise are estimated on the ticket; also workload (i.e. count of

tickets in an expert’s queue) is estimated, and are used together as indicative features for

estimation of experts’ response time. To discover more about human-centric resolution pro-

cess, we propose a transfer intent discovery scheme in which we can identify the intention

of experts’ collaboration. This essentially helps to reduce unnecessary collaborations in

the human-centric resolution models. Thus we implicitly incorporate effective workforce

utilization.

Figure 1.4 is an overview to our resolution recommendation framework. As illustrated

in Figure 1.4, the goal is to predict the full resolution path over the CEN. As an input, a new
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Figure 1.4: Overview of the recommendation framework for ticket resolution paths

ticket description will be passed to the recommendation model. First a content classifier

identifies whether the content is routine. If it is, then a second level classifier determines

its routine resolution path. Then for this predicted routine resolution path an estimation

of the resolution time is provided. So the final output is either a recommendation of the

full resolution path over the CEN along with SL time estimation, or a reference to human

experts to find the resolution paths purely based on human problem solving. Next, the

research contributions are briefly discussed.

Our final research goal was to make contributions that are more broadly applicable to

problem-resolution environments (e.g. emergency response and triage, cloud-based service

desks, supply chain resilience, software bug tracking). In these environments complex

problems must be analyzed and solved within specific time constraints by networks of

experts in order to meet the business or the social needs of the community. While our

research in this thesis is based on a specific case of this general problem, the availability of

extensive and detailed real-world enterprise data related to IT Service Management (defined

by ISO 20,000 standard [50]) allowed us to develop a robust framework.
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1.7 Main Research Contributions

Using real-world IT operational data, a set experiments were conducted to summarize

our critical exploratory observations, and to evaluate our proposed resolution recommen-

dation framework. Our main research contributions are now discussed.

1.7.1 Exploratory Observations

During the course of this research we conducted different exploratory studies, these will

be provided in detail later (Chapter 3). An example is provided here to illustrates some of

the evidence related to collective problem solving.

Relation between Enterprise Taxonomy Proximity and Collective Patterns

Our experiments and consequent transfer analysis on the structure of the CEN and its

relation to the enterprise taxonomy resulted in the following findings: Transfers within

prominent collective problem solving units happen between experts that are structurally

close to each other on the enterprise taxonomy. As a case in point, experts in frequent

transfers (i.e. probability of transfer occurrence greater than 0.012) are on average 18%

closer on the enterprise taxonomy than the general-case transfers. This proves the fact

that structural proximity (according to the organizational design) is often considered to

leveraged collective problem solving by the CEN to achieve resolution. These findings

opened a new avenue of research in which merits of structurally-motivated transfers are

to be investigated. While in many cases we find it reassuring that the CEN dynamics for

the problem-solving conform to the structural design of the enterprise, it raises a question

of research: what structural changes can be made to the enterprise taxonomy to optimize
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the transfer effectiveness (for example diameter of collective units, and average transfer

elapsed time) to achieve collective problem solving?

1.7.2 Resolution Recommendation Framework

We created a two-level classification solution as shown in Figure 1.4 to address the en-

tire problem-solving spectrum. To construct and evaluate our solution the following con-

tributions were made. Further details of the framework and the experiments are provided

in Chapter 4.

Labeling Strategy

We defined paths as the unit of problem solving. Then we separated tickets that had

frequently-occurring content and were resolved by frequently occurring paths (i.e. routine

tickets) from the rest of the tickets (i.e. non-routine tickets). This separation was experi-

mentally done to maximize the distance of regularity of content for the routine tickets from

that of the non-routine tickets. By the end of this stage, our experiment showed non-routine

tickets are almost 4 times more likely to breach the SL targets. Thus the routine segment

showed less anomalies, a window of opportunity for machine generated resolution recom-

mendations.

R/NR Classification

We built a content tagger (routine/non-routine classifier) using a weight-normalized

complement Bayesian classifier. Our classifier accurately distinguishing routine resolvable

content from non-routine content: 80% precision is achieved on the routine class with a

reasonable 20% coverage of the dataset, where precision of the routine class was a key
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for the success of the framework. This played well into higher trust for adoption of the

recommendations.

Path Classification

We built a routine path classifier using a weight-normalized complement Bayesian clas-

sifier. By only classifying routine content related to well-established resolution workflows

we showed 34% performance improvement (based on R-precision) over existing content-

aware greedy transfer model. We also estimated that there will be a 10% reduction in the

volume of service-level breached tickets, and 7% reduction in the mean-time-to-resolve of

all the incidents.

These advancements in developing resolution recommendation framework open a new

avenue of research for studying human factors and their interactions with the augmented

CEN. Particularly the recommendation framework can come under further scrutiny where

usability evaluation, and improvement is taken into account with respect to human interac-

tions.

1.7.3 Estimated Resolution Time Recommendation

To ensure SL-compliance for an incoming ticket given its recommended sequence of

experts, there needs to be an accurate time-to-resolve (TTR) estimation. This percolates

down to response time estimation for each expert in the resolution sequence. Our contribu-

tions with respect to resolution time estimation are summarized below, and further details

are provided in Chapter 5.
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Inefficiency of Static Expectation Solutions

We constructed a framework for assessing resolution time estimations of state-of-the-

art static expectation model [80]. We assessed it as a baseline for time estimation modeling

using historical routing time data. We identified poor estimations and the need for better

Time to resolve modeling. We then used language modeling of the content and studied the

impact of anomalous content on the baseline estimation error. We found that baseline esti-

mation error increases too sharply when content gets more deviated from its recommended

path. Thus we concluded that design of a more rigorous content-aware time estimation

model is essential. Also, this is particularly important to engender trust in recommenda-

tions among the experts.

Expertise Modeling with Respect to the Ticket

Expertise on a ticket is evident based on whether the ticket is resolved or transferred,

and this critical critical for resolution time estimation. The question we answered was:

Given the history of tickets resolved vs transferred by an expert, how likely is that spe-

cific expert in resolving vs transferring a specific ticket? We showed that expertise can be

learned from the transactional log. We introduced an Expectation-Maximization algorithm

to learn log linear parameters and expertise vectors at the same time. Our results have

shown a 7% F-measure improvement over similarity-driven expertise extraction baselines.

As a result of our novel expertise modeling approach, we showed both low and high resolu-

tion expertise with respect to a ticket results in quicker response (i.e. Fast Resolution, Fast

Transfer). This contribution not only helps towards the integration of an important feature

(i.e. expertise) for a multivariate time-to-resolve estimation modeling, but also helps with
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resolution and transfer knowledge estimation which are in tern important parts of transfer

intent identification.

Additional features for multivariate time estimation are also studied. More importantly

novel methods for expected ticket load was formulated, thus opening up a new avenue of

research to statistically explore the dynamics of a CEN.

1.7.4 Novel Aspects for Framework Enhancement

By shifting our attention from the entire paths to the local dynamics related to expert

pairs at each transfer, we are able to identify for the first time new ways of characterizing

any expert’s problem-solving intent at the time of the transfer. Further details are provided

in Chapter 6.

Conceptualization of Transfer Intent Discovery

This is a new research focused on experts’ intent in problem solving that begins with

the following questions: Why do experts transfer tickets? And what kinds of transfers are

necessary for resolution? The new avenue for CEN dynamics research above provides the

methodological starting point for further understanding of experts’ behavior, thus introduc-

ing a new subfield of large-scale collective expert networks. For example, in Figure 1.5

a ticket resolution sequence (i.e. a resolution path) is presented. Our task is to label the

edges on the path with the appropriate transfer intent. We can now begin to identify four

possible transfer intents: (1) Resolution (R), (2) Mediation (M), (3) Exploratory (E), and

(4) Collective (C). Assuming that a model can now be developed to automatically label

edges with the transfer intents, then incremental contributions to the resolution process can

be discovered. In essence, this would lead to a rigorous solution to enhance human-centric

resolution paths by eliminating non-contributing constituents from the path.
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Figure 1.5: Intent discovery and resolution path reduction

1.8 Organization of the Rest of the Thesis

In subsequent chapters we provide details of related work, research and domain context,

preliminary analysis, the research progress made thus far, and the research plan from here

on out. This thesis is organized as follows:

Chapter 2 will introduce the broader area of research, and what all has been done by

other researchers. Chapter 3 describes the required background for IT Service Management

and provides our preliminary exploratory discoveries. Chapter 4 elaborates our muli-level

classification framework and its impact on an IT operational environment. Chapter 5 dis-

cusses our solution for time-effectiveness of the proposed path recommendations. Chap-

ter 6 summarizes our unique framework and discusses the future directions for this research,

and its significance. Lastly, Appendix A presents prototypes of graphical user interface for

the recommendation pilot in a live service management environment. Also, Appendix B

shares the github repositories with code developed in the course of this research.
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Chapter 2: Related Work

Conceptually related research is conducted under the broad areas of collaborative net-

works, expert finding, computer supported cooperative work, workflow process improve-

ment, service science, and factors related to trust and adoption. Each of these aforemen-

tioned areas are reviewed next with respect to current research objectives.

2.1 Collaborative Networks

In recent years, social networks have attracted a lot of attention. Main body of work

in Online Social Networks (OSN) focuses on social interactions and information exchange

among users in large-scale networks. In OSNs, information generated at a source spreads

by some growth factor into the network by users’ forwarding activities. These forwarding

activities diminish as the information loses its value [31, 86]. Also forwarding behaviors in

the OSNs is typically made to influence other users. Collaborative networks in contrast, are

dealing with information differently. Tasks are driving the information flow (i.e. resolution

flow) in the networks. There is no branching in the information flow since transitions act

as task handoffs. Task forwarding (transition) happens in order to find right experts to

collaboratively work on the problem to resolve it.

Recent work by Miao et al. [41] studied the structure of collaborative networks (on

two cases of developers network and service agents network), and presented that structure
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affects problem resolution efficiency. They proposed a simulation-based approach to alter

the network structure in order to achieve shorter routing sequences on the transformed

network. Two shortcomings of this approach are (1) they considered information routing

primarily as a stochastic process and (2) they ignored the real-world limits to reconstruction

of the entire network, and the overhead costs.

Other work by Sun et al. [67] attempts to provide analysis of expert behaviors by

defining expertise profile and expertise difference for transfers. They found that when task

transfers happen there is some overlap of knowledge between experts. Recently statistical

task routing has been researched in different domains, most related works are proposed in

IT case and service management [60, 68, 39, 40], and in bug tracking systems [41, 68].

In earlier work by Shao et al. [60] a methodology was proposed for ticket routing by

mining ticket resolution sequences without considering the ticket content. Then a Markov

model was developed to statistically capture the decisions that have been made towards

resolution. Later work by Sun et al. [68] enhanced the existing sequence-only approach

by further mining the text content of tickets. The improved model was assessed based on

reduction on Mean Steps To Resolve (MSTR).

Authors in [39, 40] decided to develop several generative models for ticket resolution

process. These latest works inspired our approach as compared to earlier work since they

decided to construct probabilistic models that can optimally generate the existing routing

sequences, given the set of tickets. The main breakthroughs were their proposed transfer

probability model and their greedy transfer model. Since we used a modification of their

greedy transfer model as a baseline in Chapter 4, more details here are noteworthy. They

modeled probability of a term given the CEN edges by using the Maximum Likelihood
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Estimate (MLE) and defined that to be as follows:

P (wk|eij) =
n(wk, Tij)∑

wl∈W n(wl, Tij)
(2.1)

Where wk refers to the kth word in the dictionary, and eij denotes the edge from expert

group gi to gj . Ti,j is the set of all the tickets transferred from gi to gj . This ratio of counts

can be interpreted as: count of occurrences of the word in all tickets that took that edge by

total count of tokens in all tickets that that took that edge. The greedy transfer model is

developed to infer the most probable resolver upon the next transfer. The probability that

ticket t is routed through the edge eij = gi → gj where gj ∈ G \ {gi}, is:

P (gj|t, gi) =
P (gj|gi)P (t|ei,j)∑
gl∈G P (gl|gi)P (t|ei,l)

=
P (gj|gi)

∏
wk∈t P (wk|ei,j)f(wk,t)∑

gl∈G P (gl|gi)
∏

wk∈t P (wk|ei,l)f(wk,t)
(2.2)

Where: P (t|ei,j) =
∏

wk∈t P (wk|ei,j)f(wk,t) and P (gj|gi) = |Tij|/|Ti|

|Tij| is the count of tickets transferred from group gi to gj , and |Ti| is the count of

tickets transferred from gi to any group. The expert group g∗ = argmaxgj∈GP (gj|t, gi) is

selected to be the next expert group to handle ticket t. If g∗ is the resolver, the algorithm

terminates. If not, the algorithm gathers the information of all previously visited expert

groups to make the next step routing decision. If a ticket t has gone through the expert

groups in R(t) and has not yet been resolved, the rank of the remaining expert groups in

G \R(t) is:Rank(gj) ∝ maxgi∈R(t)P (gj|t, gi)

Our baseline in Chapter 4 builds a path recommendation classifier based on consecu-

tive expert-wise recommendations that are generated from the greedy transfer model dis-

cussed above. The main shortcoming of all the above statistical ticket routing models is

the fact that they are assumed to work on any content based on probabilistic majority with
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no accommodation for outliers as the irregular that also carry high impact to the IT orga-

nization. Another shortcoming is the validation of the recommendations for resolution in

[60, 68, 39, 41, 40, 67]. Validation in all of the above work has been simplistically handled

by an aggregate measure, MSTR, which is not truly representative of the degree to which

the recommendation is resolution-achieving, especially when it comes to SL compliance.

Information diffusion and propagation, as a common user behavior in social networks, has

been widely studied, a few examples of which are [31, 12] on influence maximization, and

[22, 86] on diffusion patterns in Twitter. Collective Expert Networks focus on routing infor-

mation to the right experts (while minimizing the count of irrelevant hops and minimizing

the expected resolution time) which poses different research questions than those in infor-

mation diffusion and cascade models. In particular, deep domain knowledge of experts

and their hierarchical dependence make the CEN routing problem completely a different

research problem than information spread maximization problem.

Open issues: Models introduced above leave unanswered questions in terms of practi-

cality of the solutions in a live IT environment as well as question regarding validation at a

granularity of a single ticket. In a separate effort by Motahari and Bartolini [46] from HP

labs, authors developed and deployed a domain-specific similarity-based resolution rec-

ommendation model for IT case management in which a finite state machine (FSM) was

developed for possible steps in an IT problem case resolution process, and steps are pre-

dicted based on similarity of content to transitions on the FSM. The main advantage of

their work as compared to others is the deployment and testing of the model in a live IT

environment, but the downside is that their solution was domain-specific with a small-size
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network (50 nodes). A salient feature of our model which has not been addressed by re-

lated research is its capability of estimating the completion time of a ticket on the predicted

paths.

Online Social Networks vs General Expert Networks

Table 2.1: Comparison between OSN, GEN and CEN

OSN GEN CEN

Goal
Understanding
social communi-
cations

Problem solving
and knowledge
management

Problem solving
(service recov-
ery) within time
constraints

Network analysis
Network struc-
tures and content
extraction

Network struc-
tures, and content
extraction wrt
problem solving

Paths represent
workflow, time
constraints and
enabling human
computation

Network interpretation

Links are com-
munications
between individ-
uals or nodes

Links are interac-
tions on a task
and nodes repre-
sent experts

Links are ticket
transfers and
nodes represent
expert groups re-
quired for service
recovery

Application example
Placing personal-
ized ads

Expert finding
queries

Service transac-
tions and service
level satisfaction

In this subsection, we make a comparison between General Expert Networks (GENs),

CENs, and their prevailing counterpart, OSNs. This is also illustrated in Table 2.1. In the

area of network mining and social applications, OSNs are considered predominantly rich

entities for knowledge discovery as they carry large volumes of user related attributes, and

their communication content that can lead to valuable outcomes based on interactive user
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behavior mining, social anomaly detection, user evolution mining, and event correlations

with the network structure. The OSNs are primarily considered to be non-collaborative

networks. In other words users are taking part, not to propose or solve problems but to

share personal or common interests [31, 86]. The OSNs links between users exhibit shared

interests while links between experts in GENs represent collaborations/interaction. OSNs

have no problem-solving objective to be met by each of the users. On the other hand in

GENs, experts collectively have the responsibility to contribute to task completion and the

commitment to resolve the problem for the benefit of an end-user. In OSNs, network struc-

ture carries meaningful concepts (structural communities, roles, and proximity patterns).

On the other hand, in GENs, these very same structures have to be reinterpreted in terms of

the problem solving goals. For example, network flows reflect task completion workflows.

Open issues: Finally, and importantly, in the special case of CENs (as first introduced

in [13]), network flows represent potential incident resolution workflows that have time

constraints. In practice, there might be various analytical goals for OSN mining such

as efficient friend recommendations, social influence mining, or efficient personalized ad

placements. In contrast the analytical goal for GEN mining is often to eliminate the over-

heads and optimize human collaboration efficiency for task completion. In the special case

of CENs, the goal is to meet Service Level Agreement (SLA) or to minimizing Time-To-

Resolve (TTR) for the incoming incidents. Here we also acknowledge the fact that certain

graph mining applications such as frequent subgraph mining [19], and community detec-

tion [70] are fruitful to all of the above networks providing better understanding of the

underlying structural properties.
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2.2 Expert Finding

The expert finding problem is well-known in the information retrieval community. The

incident resolution problem is related to the expert finding problem. That is given a query,

find the most knowledgeable expert that can answer that query ([3, 20, 52]). Various ap-

proaches have been introduced to mine the information repositories in order to build per-

sonal expertise profile from experts’ associated documents. These expert finding solutions

have a common goal that is to propose algorithms that can accurately find the resolver of

a problem or a query. The methods mainly fall into two categories: profile-based methods

and document-based methods. For example, Balog et al. in [3] proposed two expert finding

models, namely candidate model, and document model. In the candidate model, a textual

representation is created to profile each expert’s knowledge according to the documents as-

sociated with the expert. Then the probability of the query topic is assessed to rank expert

candidates. The document model, on the other hand, ranks documents according to the

query and then determines how likely a candidate is to be the needed expert by considering

the set of documents associated. In a general case, profile-based methods [3, 20, 2, 37]

first build a term based expertise profile for each candidate, and rank the candidate experts

based on the relevance scores of their profiles for a given query topic by using traditional

ad hoc retrieval models. In document-based methods [3, 20, 52, 4], instead of creating such

term-based expertise profiles, the researchers use the supporting documents as a “bridge”

and rank the candidates based on the co-occurrences of topic and candidate mentions in the

supporting documents. These methods depend on rule-based methods to detect the candi-

date mentions in the supporting documents, to achieve reasonable retrieval accuracy. Most

recently, social aspects of microblogs were leveraged [88] to solve expert finding in the

context of enterprise social media.
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Open issues: A common assumption in expert finding literature is that the expertise

needed for the query can be found fully in an individual. In other words, although doc-

uments may be coauthored by multiple experts, the result of expert finding algorithms is

a list of individual candidates for resolution. This assumption which is generally true for

web and microblog documents makes the expert finding problem a narrow special case for

collective incident resolution problem in the CENs.

This research not only considers the general case for collective incident resolution, but

it incorporates a methodology for uncovering patterns of routing intents both of which are

not part of typical expert finding research.

2.3 Computer Supported Cooperative Work

In the fields of Computer Supported Cooperative Work and Social Networks, coordi-

nation mechanisms that address the increasing complexity of collaboration has been exten-

sively studied [10]. More recently the related concept of affordance that is ‘individual’,

‘collective’ and ‘shared’ has also been introduced and discussed extensively [29]. A rele-

vant notion here is the ‘collective’ network behavior when individuals collectively achieve

SL goals that they cannot achieve individually. Thus, it has been pointed out that shared

affordances are essential to the performance improvement. However, here statistical meth-

ods for mediating shared affordances have not been researched. Also the notion of Work as

a Service (WaaS) introduced in [49] proposes a hub to achieve responsiveness and address

unpredictability. Other approaches to enhancing knowledge management through commu-

nity aware strategies were provided in [29, 75]. In systems engineering, transitions are

shown to add inefficiencies. A framework for measurement, traceability and improvement

in service-oriented environments is presented in [55].

30



Open issues: In general, the design of statistical models to achieve SL has not been

much addressed. Also in highly dynamic situations, statically defined transitions soon

become obsolete. Thus the current research is complementary in that it uses probabilistic

methods where static traceability cannot be relied upon resulting in discovery – oriented

problem solving by CENs.

In addition to statistical research mentioned earlier analysis of human factors is critical

for CEN augmentation and framework development. In order to find scenarios in which

human errors are more likely to occur, analysis of these errors and mechanisms to prevent

those have been studied in [65, 61] where common high-impact human errors are identified

in the domain of service delivery. This is not limited to IT Services, and it is even more

critical in the medical domain where humans are pressured to deliver emergency triage

[7]. Similarly, human error identification, and preventive design were the cornerstones of

our research. More specifically, in our research we first analyzed tickets that were incor-

rectly transferred to identify reasons for misrouting behaviors. Then we designed a learning

framework to prevent expert from erroneous transfers.

2.4 Workflow Process Improvement

Workflows are designed to provide an infrastructure for execution, and monitoring of

a defined sequence of tasks. The concept of workflow is tied to improvement of a busi-

ness process during which information is passed around for action according to a set of

procedural rules [33]. Data-driven process discovery [38] is a useful technique for the

identification of the underlying workflows in a complex enterprise. The use of event logs

to reconstruct the process model has been thoroughly studied in [76, 79] under the topic of

process mining. The applications explored include process conformance checking [77] and
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data provenance [78]. Motivated by these, in our research we have followed a data-driven

approach where routine resolution worflows were first discovered and further exploited

to improve the overall performance of the CEN. In particular, process discovery enabled

prevention of anomalous problem-solving behavior on the routine content.

Open issues: Process time estimation has been commonly performed using aggregate

measures over historically similar processes in the transactional logs [80, 58]. In this re-

search, motivated by our earlier work [44], inefficiencies of the aggregate estimation meth-

ods, and lack of a context-aware time estimation model were assessed. Then a novel so-

lution was proposed for resolution time estimation by taking into account the dynamics of

the experts in the CEN (i.e. expertise on the ticket, and ticket load in queue).

While being on the subject of workflow improvement, it is noteworthy that existing

probabilistic task routing models in GENs [60, 39, 13] do not take workflows into account.

These models recommend the ‘most probable’ transfers between the experts by solving

the inference on P (transfer | task). They assume that the Markov property holds and

thus recommend transfers only based on the previous node. In [40], a fixed short look-

ahead subsequence was introduced to partially mitigate the memoryless modeling problem.

However, all these transfer-based models lack a full consideration of workflows. We dif-

ferentiate our own stream of research as ‘workflow-based’ models using P (TRS | ticket),

and will discuss the details and results in Chapter 4.

2.5 Service Science: Complex Enterprise Services

A related trend within the last decade has been the process-driven automation of customer-

related services. The applications can be in different sectors of the economy, from financial
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to the manufacturing and construction businesses. Service-oriented methods were devel-

oped to enable business processes with IT delivery processes [91]. Each delivery process

is constructed on top of a bundle of technology components (software, applications, net-

work, hardware, etc.) and maintained by specialized staff [50, 8]. A significant increase

in business process automation in conjunction with more complex customer needs (driven

by competitive markets) has resulted in an unprecedented increase in the prevalence of

enterprise complexity [34].

Open issues: A number of challenges typically arise within complex enterprise sup-

porting services. Here we present some of those challenges and the data-driven research

conducted to address them: (1) The impact of negotiated SLAs on delivery cost is not easy

to assess early in the service engagement process. A modeling approach is proposed [18]

to estimate the impact of SLAs before and during the service engagement. (2) a consider-

able amount of human effort is needed for ticket categorization in IT incident management.

Domain-specific classifiers are proposed [87, 90] to achieve accurate classification with

minimum human-intervention. (3) Repeating auto-generated events generate similar tick-

ets with similar resolutions. A scalable classification algorithm is proposed to recommend

resolution text for tickets with historical evidence [93]. (4) Ticket volume and backlogs are

critical to be monitored for proper resource allocation. Historical trends are leveraged to

build time series in order to forecast the volume of the tickets [35].

Our research belongs to the same category, in the sense that it performs data-driven

modeling to gain improvements on enterprise supporting services. However, our work

builds a unique framework to address user-perceived tickets on the resolution workflows

with a special consideration of SLs which has not been studied before.

33



Here we acknowledge the fact that other domains, such as medical triage [63], emer-

gency response [47], and software issue tracking [28] have commonalities with time-constrained

incident resolution which inspired the foundations of this work.

2.6 Recommendations and Trust

On-demand real time scoring and recommendation systems are becoming increasingly

popular within the subfield of ‘Decision Support Systems’. These systems are most ef-

fective where critical decisions are to be made in massive-scale within limited periods of

time, or otherwise would suffer heavily from constrained and error-prone performance of

humans. Their applications range from intelligent financial credit modeling [89], to auto-

mated response assessment [62]. In many of these applications there is a notion of trust

which plays an important role in the adoption of such systems.

Open issues: Reliability of recommendations can be ensured by model transparency

in addition to the accuracy. According to [57], although evaluation on annotated data is a

useful pipeline for many applications, it may not correspond to performance “in the wild”

and practitioners often overestimate the accuracy of their models.

In early stages of trust formation in a decision support system, knowledge-base and

interactive design are found to be important factors for reliability of the system [82]. As

suggested above, our research ensures trustworthy recommendations by (1) only acting on

routine content, and (2) only recommending when the system evaluates an acceptably high

confidence on its prediction.

34



Chapter 3: Background and Discovery of CEN Characteristics

In the first part of this chapter we present a detailed context for IT incident management,

that is, the scope of the problem that is to be solved by this research and the objectives.

Without understanding the supporting services in the IT enterprise, it is not feasible to

construct an effective knowledge discovery and recommendation framework. Therefore,

it is crucial to understand as-is enterprise-supporting services and the way operations are

managed through human agents.

In the second part of this chapter, in order to deal with challenges regarding CEN res-

olution introduced in chapter 1, preliminary analyses in the ITSM domain is presented.

These have guided the direction of this research and brought us to a better understanding

of the domain and helped us build our experimental hypotheses.

3.1 Service Management and the Incident Domain

An incident in general has a two-phase life cycle: (1) capturing phase and (2) reso-

lution phase. Capturing phase is the stage in which an issue is sensed and gets reported

as a ticket. Resolution phase is the stage in which the ticket is dealt by the experts who

collectively problem-solve. Also as we defined in Chapter 1, incidents can be captured via

two distinct ways. We called these ‘auto-generated’ tickets and ‘user-perceived’ tickets.
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Auto-generated tickets get captured through sensing with pre-defined monitoring condi-

tions. These tickets are generated when monitoring thresholds are violated (e.g. “Mem-

ory usage beyond 95% on the Mail Server OH44-East-SA”). Monitoring systems aim to

measure availability and performance on broad range of CIs such as servers, network com-

ponents, and applications. Hence, each auto-generated ticket is naturally reported with

its corresponding CI. On the other hand, these tickets can be mainly considered as noisy

signals for the actual underlying incidents.

In the capturing phase, monitoring systems may misidentify incidents: generating false

positive tickets (false incidents) and false negative events (unreported incidents). As dis-

cussed in section 1.5.1, this is a challenge which imposes overhead costs on the supporting

services. False incidents unnecessarily consume expertise, and unreported incidents cause

impactful infrastructure outages without notifications.

In the resolution phase, auto-generated tickets are not as problematic. In a typical

service-oriented IT enterprise, supporting expertise is built around CIs (i.e., applications,

servers, and network components). CIs are not necessarily indicative of the resolver ex-

perts; some experts resolve problems pertaining to certain CIs, while others deal with tick-

ets with variety of diagnosed CIs. Finding accountable experts for auto-generated tickets

which are already captured with their respective CIs, is not a challenging task and usually

follows a straightforward process [93]. The auto-generated domain was initially studied by

us but for the reasons mentioned earlier, we decided to shift our focus to user-perceived

incidents and address the challenge of effective collaborative problem solving.

User-perceived tickets are reported by the users and are captured at the IT service desk.

These incidents are communicated via phone calls and are immediately logged as a ticket

with mandatory incident description text. Human agents at the service desk have access
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Table 3.1: Incident management challenges

Incident types ↓ Phase→ Incident
Capturing

Incident
Resolution

Auto-generated
False incidents,

unreported
incidents

–

User-perceived

Partial user
knowledge,
Noisy user

report,
unidentified CI

Ticket routing on
the CEN

to a knowledge base of well-known problems along with their resolution instructions. If

neither knowledge base nor the tribal knowledge of the agent can solve the problem, it is

then escalated to the experts in CENs. The ratio of received issues to the escalated incidents

is often a measure for the effectiveness of the knowledge base and the technical expertise

of IT service desk agents. It is also important to note that the cost for an incident sharply

increases after escalation due to two main factors: (1) time that the ticket stays open, (2)

more expensive expertise that is required to spend time on the ticket. What makes the

capturing phase in the user-perceived case different from the auto-generated case is the fact

that incident descriptions are provided in natural language form and are directly reported

by the end-users. These unique properties of user-perceived tickets make it infeasible to

associate them automatically with their corresponding CIs. As a result of undefined CIs, in

the resolution phase, finding the appropriate expertise on the CEN is challenging and this

requires complex discovery-oriented collective effort by the experts in the CEN. Table 3.1,

summarizes typical incident management challenges in each phase with respect to different

incident types.
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Even though we explored the entire domain of incident management for a while, the

final scope of this research is focused on the resolution phase of user-perceived tickets,

which is concerned with the ticket routing problem and its SL compliance. Later in chapter

6, we will argue that ticket routing is not an isolated problem and can be improved by

automated text-enrichment recommendations for the incident capturing phase. But for now

the claim is that effective ticket routing on the CEN essentially results in substantial cost

reductions for the supporting services. These reductions occur due to (1) lower engagement

of unrelated expertise in the resolution process, and (2) lower likelihood of SL violation.

From this point forward, for the matter of simplicity and terminology consistency we refer

to ‘user-perceived incident’ and ‘user-perceived ticket’ simply as ‘incident’ and ‘ticket’

respectively. Expert nodes in the CEN are also referred as ‘expert groups’ or simply as

‘experts’.

3.1.1 Resolution Achievement in Unassisted CENs

When a ticket is escalated from the service desk to the CEN, the initial expert in the

CEN has to be identified. Typically the initial expert is determined at the service desk

through tribal knowledge of the agent, or certain locally maintained workflow routing list.

From there it is the job of CEN experts to provide collective problem solving in order to

resolve the ticket. A ticket at any given point of its life cycle is typically worked by a single

expert. Therefore, collective problem solving on a ticket can only be possible through ticket

transfers between the resolving parties. The last expert that ensures the problem is resolved

is the ‘resolver’. Thus, transfers create a Ticket Resolution Sequence (TRS) ending with the

resolver. At the end of the resolution process, several attributes of the incident will become
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Figure 3.1: An example of an inefficient ticket resolution

known: SL met or breached, culprit CIs, incident resolution description, service downtime,

ticket resolution time, impact to the users, etc.

As mentioned in the previous section, ticket transfers might cause wasteful interactions.

Figure 3.1, portrays an incident resolution scenario from start to finish. Also in this specific

scenario the ticket bounced around between several experts due to misidentification of the

problem. Ticket bouncing, and CI misidentification are prominent issues causing delays in

the resolution latency of the CENs.

Next we discuss the Service Levels (SL) and ticket priority. The holy grail of CEN prob-

lem solving is to meet the SL targets defined for each ticket. Breaching the SL target causes

an outage, which significantly impacts the customers and related lines of business. These

targets get defined based on ticket priority. For each incident, the priority is pre-determined

in collaboration with the customer. The priority level is set between P1 (significant impact)

to P4 (negligible impact) based on the severity and the urgency of the reported incident. In

other words, priority is unifying two critical measures of SL compliance: (1) Severity and

(2) Urgency. Severity signals the potential size of the impact to customers, and urgency

signals the criticality of the disrupted service. Figure 3.2a shows how severity and urgency

together produce the priorities for each ticket, and Figure 3.2b illustrates an example for SL
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(a) Urgency/severity matrix (b) SL Targets

Figure 3.2: Elements of service level agreement

target times per different priority classes. The SL clock runs per ticket, and time is shared

among all the experts along the TRS.

3.1.2 Embedding a Recommendation Framework in the Incident Res-
olution Process

In this section the integration of our designed framework in a typical incident manage-

ment environment is discussed. Our framework as black box, simply accepts an incoming

incident description in natural-language form, and outputs a sequence of experts (referred

as TRS, or resolution path). It estimates the expected time to resolve for the recommended

resolution path. This functionality is to be integrated with existing IT incident management

platforms (such as HP ServiceCenter [26]) enabling a new service available to IT service

desk agents and the experts in the CEN. The prototypes for user interface are given in Ap-

pendix A. The resolution recommendation service is to assist the agents and experts but is

not aiming to replace them. Agents/experts benefit from it, when uncertain about possible
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Figure 3.3: An example of ticket resolution augmentation using ‘Path Recommendation’
service

transfer options, to get an external confirmation on their transfer decisions and SL com-

pliance. Maximum benefit occurs when new agents/experts are hired and have not built

their tribal knowledge and are unfamiliar with routine resolution flows on the CEN. Figure

3.3 illustrates an incident resolution scenario from start to finish with the path recommen-

dation service available to the agents and experts. As can be seen, knowledge base and

tribal knowledge can still be used; in addition, path recommendation service is available to

provide assistance leveraging history of CEN dynamics.

This integration avoids incorrect/wasteful transfers delivering reliable and effective res-

olution process. Furthermore, it reduces experts’ decision time while enhancing capabili-

ties for learning historical tribal knowledge at a global level.

3.2 Domain Data

The data for all the experiments in this study has been drawn from daily interactions

within a large insurance company with an online business that serves over 18 million pol-

icyholders. This environment has more than 20 thousand staff members who interact with

the IT Service Desk to report their IT related issues. IT Service Desk receives more than a
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Table 3.2: Example of tickets and their important attributes
Incident Description Resolution Priority Time to SL CIID (P.K) Resolve Compliance

IM01616342

internet explorer -

P1 1200 Min Breached BROWSER
crashing intermittently Reconfiguring
and giving debug the host file
errors. It keeps fixed the problem.
shutting down.

IM01595817

Mail service will

P2 2880 Min Met
not oepn up, Replaced the LOTUS_NOTES
user is stuck on corrupt (IBM E-mail
the splash configuration file service)
screen.

million calls per year. Many of them get resolved at the Service Desk leaving around 110

thousand user-perceived tickets to be resolved by the CEN. These tickets are often esca-

lated because either (1) practical assistance is needed, (2) an unusual issue is reported that

the Service Desk has not dealt with in the past, or (3) a recurring issue is reported but the

resolution process is not defined explicitly in the knowledge base. The CEN in this envi-

ronment consists of 916 expert groups that include 2476 technical support staff members.

There are also more than 7400 Configured Items (CI) in the infrastructure. This research

was also privileged to maintain an unfettered access to 220 thousand user-perceived inci-

dents, with more than 380 thousand transfers, captured during a two year period (March

2014 to March 2016).

In this environment, incident management data is stored in a relational database. Some

of the important attributes are: (1) ticket descriptions (text), (2) transfer sequence (list of

nominals), (3) Configuration Item (nominal), (4) knowledgebase item (nominal), (5) ticket

resolution (text), (6) time to resolve (numerical), (7) ticket priority (ordinal), and (8) SL

Compliance (binary). All of our experiments were on the closed tickets where they were
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Table 3.3: Example of tickets and their transfer sequence
Incident ID Expert (P.K) Timestamp
IM01049073 NSC-PCT-NORTHEAST 1
IM01049073 NSC-PCT-INCIDENT-BLUE 2
IM01049073 NSC-PCT-INCIDENT-INDIGO 3
IM01049073 NSC-PCT-INCIDENT-BLUE 4
IM01360487 NF-AES-IPS-MF-AEM 1
IM01054133 NI-FUSION-DESKTOP-SUPPORT 1
IM01054133 NSC-ITSD-AGENCY 2
IM01054133 NI-FUSION-DESKTOP-SUPPORT 3

resolved and for which all the above attributes are already stored. The recommendation

model that is developed as a result of this research has to be used on the open tickets and in

real time. Table 3.2 shows examples of escalated incidents and other attributes. Also Table

3.3 is an example of tickets and their transfer sequences.

In addition to the data characteristics mentioned above we want to draw the readers’ at-

tention to the Figure 1.2 where other important attributes such as acknowledgement alerts,

and breach alerts are also introduced. This provided critical event data within the opera-

tional environment of the enterprise which is typically hard to attain. This data was essential

for understanding the CEN dynamics as introduced in this research.

The rest of this chapter is dedicated to the data exploration, and analysis. We systemati-

cally cover all observed aspects of current CEN performance, CEN behavior characteristics

with respect to content and transfers, and principles that guide beneficial assistance.

3.3 Exploratory Analysis of the CEN

Based on the direction of this research, in order to study the resolution process we par-

ticularly explore the TRS length (i.e. the number of experts used to achieve resolution) and
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its impact on the following properties of the tickets (1) priority distribution, (2) SL viola-

tion, (3) time-to-resolve. Also, towards the end of this section, we study the distributions

of time-to-resolve and time-to-acknowledge and compare them against their SL targets.

3.3.1 General Analysis of Escalated User-perceived Incident Tickets

In this subsection we will discuss our preliminary analyses of the environment and

our more insightful findings. These analyses have been conducted with a focus on the

resolution process. For this purpose we sampled 150 thousand tickets drawn from a time

period of 24 months. These tickets yield a total of 254 thousand transfers. (Expected

number of transfers per ticket = 1.7)

Priority of Tickets and Relation to TRS Length

Figure 3.4 demonstrates the distribution of prioritized tickets with respect to the length

of the resolution path (i.e. TRS length) in the sample. As the TRS length increases, the

ratio of P1 tickets to all decreases (Figure 3.4). This implies that experts try their best

to resolve their P1 tickets within shorter TRSs. For P1s, CEN exhibits the urgency of

resolving the tickets as soon as possible. In contrast, for looser SL targets (P2-P4) experts

are less constrained and therefore the CEN is showing a tendency to execute more transfers

on lower priorities.

We also discovered three types of transfer behaviors by the experts, happening when

CEN is given relaxed SL targets: (1) “progressive delegation” that is transferring to another

suitable expert to achieve effective progression towards resolution, (2) “evasive delegation”

that is transferring to avoid resolution commitment (happens more for P4s), and (3) “de-

layed action” that is holding the ticket in the queue until it gets very close to its SL target

(happens more for P4s). The cases 1 and 2 are more likely to cause SL violations. Also SL
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Figure 3.4: Distribution of ticket priorities over number of transfers

violations on single transfer P1s, are speculated to be due to initial misallocation which is

typically followed by the expert’s hesitation to transfer due to strict SL target.

Furthermore, Figure 3.5 shows cumulative distributions of prioritized tickets over the

number of transfers. This is to show within how many transfers what portion of P1s, P2s,

P3s, and P4s are expected to be resolved. From this cumulative plot it is concluded that

higher priority tickets are expected to be resolved within less number of transfers. As an

example, it is evident that experts are more freely transferring lower priority (especially P4)

tickets. 64% of P1s are resolved at the first expert, while that fraction is only 52% for P4.

In fact we generalize this observation as follows: The lower the ticket priority, the higher

the expected number of transfers on the ticket.
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Figure 3.5: Cumulative distribution of tickets over the TRS length

3.3.2 Relating TRS to SLs and MTTR

In this section we present the effect of TRS length on the SL and MTTR. Figure 3.6

portrays distribution of tickets over different TRS lengths and their SL breach ratio. An

exponential decay is observed on the volume of tickets as the TRS length increase. In the

next subsection, properties of this distribution has been discussed. Also as the TRS length

increases there is a linear growth on the expected probability of SL breach. TRS lengths

more than 5, can be considered as the tail of the ticket distribution. More drastic breach

ratios are associated with the tail of the distribution. Despite the fact that the tail hardly

contains any tickets, the high breach ratio makes the tail costly both in terms of resources

and business impact. In fact, 18% of tickets fall in the window of 3 to 10 hops where

according to our earlier study [43] they cause 38% of the total resource cost.
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Figure 3.6: Distribution of tickets and SLs over number of transfers

Next, Figure 3.7 shows how an increase in TRS length leads to a linear growth on

the Mean Time to Resolve (MTTR). Our sample was found not large enough to represent

MTTR of the TRSs where we had more than 10 experts. In other words, the law of large

numbers does not apply to the tail of our sample distribution. In order to estimate how

MTTR grows with the TRS length (also referred as ‘h’ for count of hops) linear regression

was used for the MTTR of the tickets with respect to number of hops. The R2 coefficient

is verifying the goodness of fit, and here came out to be 0.934. Linearity of MTTR can

be interpreted as follows: Each expert that is added to the resolution sequence will add

on average 45 minutes to the life-time of the ticket. This linear increase on the MTTR
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Figure 3.7: MTTR over number of transfers

is the cause of the increase on the probability of SL breach that is discussed above. It is

important to note that shorter TRSs do not necessarily imply shorter time-to-resolve, but

they are expected to do so. Therefore, at the level of individual instances we found that

MTTR estimation only based number of hops is an ineffective estimation model. This is

due to wide standard deviation of TTR values on different TRS lengths. In chapter 5, we

introduce a more rigorous notion for time to resolve estimation that is the expected time to

resolve on each specific resolution path.

3.3.3 Probability Distribution Fitting Based on Transfer Counts

As mentioned earlier, ticket mass has shown a sharp decline as the number hops in-

crease (Figure 3.6). Here we want to formalize this, and construct a probability distribution
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function as factor of number of hops. An interesting property has been observed in our

sample that can be formulated as follows:

∀h : Presolve(h) =
N∑

i=h+1

Presolve(i)± ε (3.1)

This is a recursive probability mass function for any number hops. Here Presolve(i)

denotes the probability of resolving a ticket in i hops, N denotes the maximum number

of hops in the sample (in this case N = 18 ), and ε in our experiment is a small number

less than 0.03. This means for any arbitrary h, the probability of tickets resolved in exact h

hops, is approximately equal to the sum of the probability of tickets resolved in more than

h hops. This is derived from the following inequality:

∀h : 0.52 ≤ Presolve(h|not resolved in previous h− 1 hops) ≤ 0.56 (3.2)

That is for any arbitrary h, given that a ticket has reached its hth hop (not resolved in the

previous h− 1), there is at least 0.52% and at most 0.56% chance of it being resolved right

there. This forms a special case of binomial distribution that is known as the geometric

distribution. Experts transfer until they resolve where ‘resolution’ represents success, and

‘making a transfer’ represents failure. A success will halt the trials, and failure brings on

another trial. Therefore, here is a non-recursive probability mass function:

Presolve(h) = 0.56× (0.44)h−1 ± ε ≈ 0.56× (0.44)h−1 (3.3)

This can be written in an exponential form as follows:

Presolve(h) = 0.56× e−0.82(h−1) (3.4)
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This represents the probability mass function found for the sample, and can also repre-

sent the frequency function as:

Fresolve(h) = 0.56× n× e−0.82(h−1) (3.5)

Where n is the total count of tickets in the sample. Thus the exponential decay which was

hypothesized earlier is found as in Equation 3.4. This implies that count (or probability) of

tickets with a particular TRS length can be estimated given the the size of the sample.

3.3.4 Performance of the CEN with respect to TTR and TTA

Next is to measure how quickly the CEN deals with different priorities. As defined by

SLAs, there are two types of time measurements that are crucial for the incident manage-

ment process. Time To Acknowledge (TTA) that is the time taken by the CEN to identify

an expert to be held accountable with respect to a particular ticket, and Time to Resolve

(TTR) that is the time taken by the CEN to resolve a particular ticket. There are predefined

service level targets for both TTR, and TTA depending on the priority. Figure 3.8 repre-

sents the cumulative distribution function of tickets over their Normalized TTR (i.e. TTR

devided by target resolution time). Below are some of the key findings:

1. Cumulative curves for the resolution process as compared to the acknowledgement

process are less steep. This means the probability distribution of TTR for the tickets

is less skewed towards lower values (double digit minutes) as compared to TTA. This

also means that resolution process for a ticket is usually lengthier and not as straight-

forward as the acknowledgement process. In other words, quick acknowledgment on

most of the tickets is easy to achieve but quick resolution on most of the tickets is not

as much. Applying the same logic, it is easy to quickly acknowledge (solvability of)

a hard problem, but it is difficult to quickly resolve one.
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Figure 3.8: Cumulative distribution of time-to-resolve per priority

2. Low priority tickets (P3 and P4) are more likely to breach their resolution SL Target.

Patterns of rush and procrastination are observed: Within the first half of the SL

target time, P1 and P2 curves have steeper slope than P3, and P4 curves (experts are

more rushed to resolve high priority tickets, sacrificing low priorities). Within the

second half of the SL target time, P3 and P4 curves have sharper average slope than

the P1 curve. (in the second half of the SL target time, experts try to lift and resolve

more from the postponed P3s and P4s). More than 10% of P3s and P4s are breached.

This is due to (a) experts’ prioritization of P1s and P2s and (b) procrastination and

underestimation of effort for P3s and P4s.

3. Once P3s and P4s get breached still a high positive slope is maintained indicating

continuous resolution effort on low priority tickets (Experts act on these since these

tickets can be resolved with a little more effort which was not achieved earlier due to
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Figure 3.9: Distribution of TTR and TTA per priority

procrastination, or prioritization). On the other hand, once P1s, and P2s get breached,

there is very little growth to both curves, and the tail flattens out (experts act as much

to resolve these tickets since these are harder to be resolved given the fact that they

have already been given enough effort from early stages of ticket creation).

4. A steeper slope within SL target time interval of [0.9, 1.0] is observed for all priorities

as compared to its left neighborhood ([0.8, 0.9] and [0.7, 0.8]). This implies that the

experts try harder to resolve once they get alerted that an SL is about to get breached.

In addition, according to Figure 3.9, we compared the distribution of TTAs against the

distribution of TTRs. It is noticeable that acknowledgement is a quicker task as compared

to the resolution since acknowledgement distributions are skewed more towards zero.

Based on the TTR violin chart, P2s and P3s are handled regularly in-bound and are

shown to be well in control. P1s and P4s are showing more outliers, and a greater standard

deviation was observed. This is due to the fact that most of the regular services are priori-

tized as P2s and P3s. After outlier removal, P1 distribution is effectively ahead of P2, and
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P2 and P3 distributions are effectively ahead of P4, indicating experts’ ‘over-prioritization’

on the tickets where higher priority tickets are handled disproportionately quicker than

lower priority ones.

TTA data has shown more outliers. Acknowledgements have denser heads, and longer

tails. Indicating the fact that acknowledgements are less content-sensitive.

3.4 Discoveries Related to Collective Behavior

In this section, TRSs are further studied to discover the collective behavior of their

constituents. Particularly, proximity to the resolver, and expert repetition are explored in

the context of TRSs.

3.4.1 Proximity to the Resolver

Does proximity to the final resolver on the TRS, imply more contributions to the ticket?

To answer this question, we decided to compute the response time of experts on each and

every TRS (using the physical timestamps on the transfer logs). We utilized expert’s re-

sponse time as an implicit signal for the amount of work that the expert contributed to the

ticket. Figure 3.10 illustrates a key finding: as the distance from the resolver increases on

the TRS, the average normalized response time of experts on the ticket decreases. This

essentially supports the hypothesis that most of the contributions towards resolution are

often made by the last few experts in the TRS. The farther the experts from the resolver, the

more likely they are to make quick non-contributory transfers.

3.4.2 Repeating Experts: a Potential Signal for Collective Work

We observed that 58.07% of all executed TRSs with a minimum length of 3, contain a

repeated node. When the minimum length is increased to 7, almost all tickets are resolved
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Figure 3.10: Mean normalized response time of Experts’ vs. distance from the resolver

by TRSs containing repeated nodes. Also, we observed that 96.32% of executed TRSs that

contain repeated nodes, meet their SL targets. Therefore, it is evident that repeated nodes

are both common and fairly effective.

Also we decided to study the likelihood of repeated nodes in frequently executed TRSs

(i.e. workflows). Interestingly, our results in Figure 3.11 suggest that TRSs that are used

more often for problem solving happen to be more likely to have repeated experts in their

sequences. Workflow-driven problem solving is executed according to a set of routine es-

tablished processes. According to Figure 3.11, routine workflows are very likely to contain

repeated experts, and we believe experts in routine workflows that work on the ticket more

than once are the process owners who moderate the collective resolution process between

multiple parties.

In Chapter 4 we will return to routine workflows by claiming that routine workflows are

associated with frequently occurring content. Here, the fact that most routine workflows

contain collective behavior makes us conclude that there exist a sizable subset of tickets that

contain frequently occurring content, and collective behavior is utilized in resolving them.
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Figure 3.11: The relationship between TRS frequency and the probability of having a re-
peating expert

That subset will create a unique opportunity towards augmentation of the CEN. More about

that will be discussed in Chapter 4.

3.5 Discoveries Related to CEN Structure

In this section we present the terminology and formalism for the CEN, and the Enter-

prise Taxonomy. Then the relation between the two is studied in order to compare dynamic

problem-solving behavior to the static organizational design.
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3.5.1 CEN Terminology and Formalism

This formalism has been motivated by our analysis and insights of collective behaviors

that exist within the IT service support organization and can be captured by networks [14].

By presenting the conceptual model the insights can later be presented more succinctly.

To start with we define a Collective Expert Network (CEN ) on a set of resolved tickets

T as a directed graph where experts and transfers represent vertices and edges respectively:

CEN(T ) = (Experts, T ransfers) (3.6)

For a ticket t ∈ T a resolving sequence is t.rs:

t.rs =< e(1), e(2), ..., e(k) > (3.7)

Here e(i) is the ith expert which was working on t and received t from e(i−1), and trans-

ferred it to e(i+1) (<> denotes an ordered list). The last expert in the sequence achieved

resolution and is noted as the ‘resolver’ (t.resolver). Note that the above definition ac-

commodates duplicate elements in the sequence. Therefore, any resolving sequence is a

walk on the CEN. It is important to note that in network theory the definition of a path does

not entail duplicate vertices but here a resolving sequence does. So for simplicity we call

any resolving sequence a path even though it contains duplicate vertices. The Experts set

is defined by the union of experts that have worked on at least one ticket in T :

Experts =
⋃

t∈T ∧ ei ∈ t.rs

ei (3.8)

Transfers is the set of expert pairs of the form (a, b) which is a directed edge that

belongs to Transfers if there is at least one ticket transferred in T from expert a to expert

b. Formally:

(a, b) ∈ Transfers if ∃t ∈ T | < a, b >v t.rs (3.9)
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Here < a, b > denotes an ordered pair and v is the notation we use for a ‘contiguous

subsequence’. Also note that we explicitly add self-loops to indicate resolvers as follows:

(a, a) ∈ Transfers if ∃t ∈ T | t.resolver = a (3.10)

Considering only edges and vertices as a base definition for CEN, next we enhance the

directed graph to make it a weighted directed graph. Let the set of all tickets that got

transferred from a to b be denoted as Tab, then:

Tab =
⋃

t∈T ∧ <a,b>v t.rs

t (3.11)

Now we define a weight for each edge (a, b) as the count of tickets in T that got trans-

ferred along (a, b): wab = |Tab| Also a self-loop (a, a) is weighted as waa and evaluates to

the count of tickets resolved in a. In order to obtain insights about the CEN, we propose

a transformation on the weights introduced above. This transformation yields a Markov

Chain for the CEN which is a ‘memoryless’ probabilistic directed graph. The resulting

Markov chain is also atypical (compared with [60]) since it contains self loops character-

izing resolvers. w′ab is the probability that a ticket was transferred to b after that the ticket

was received at a. Formally that is evaluated as:

w′ab = P (b | a) =
wab∑

[c∈Experts ∧ (a,c)∈Transfers] wac

(3.12)

Also w′aa can be interpreted as the probability that a resolves a ticket after receiving

it. To illustrate the Markov representation of the CEN in our case, the Tarjan algorithm

[72] was used to obtain strongly connected components. Figure 3.12 illustrates a strongly

connected component of the CEN in which each vertex is reachable from any other vertex.

Note that low-frequency edges (wij < 60) were removed upfront to focus on dominant

transfer patterns. Some of the insights from this are: (1) the expert group ‘Queue’ almost
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Figure 3.12: A strongly connected component of the CEN within the enterprise with edge
weights as conditional transfer probabilities. Self-loops represent resolution

evenly distributes all of its tickets among ‘Connectivity’, ‘Personal Devices’, ‘Network’

and ‘Application’. (2) ‘Queue’ does not resolve any tickets. (3) ‘Application’ resolves more

than half (0.594) of all the tickets it receives, and transfers almost a third of its non-resolved

tickets (0.133) to ‘Personal Devices’ which is then more than 70% likely to get resolved

at ‘Personal Devices’. Thus the figure captures dynamics of workflows from resolving

sequences illustrating that the nodes of a CEN play specific roles in a more global context.

For example, ‘Depot’ does not resolve tickets, it appears to mediate among four other

experts. More detailed insights about roles are discussed next.

Enterprise Taxonomy (i.e. ET) is a view of the CEN constructed from transfer labels

obtained within the enterprise system. These labels were found to be related as a tree. Each

internal node of this tree represents a conceptual scope of responsibility (abstract role) and
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Figure 3.13: Enterprise taxonomy tree associated with the connected component in Figure
3.12

each leaf represents an expert group (concrete role in the CEN). In this structure, a child

is a subarea of its parent. In knowledge representation terms, if a child and its parent are

both internal nodes they have a ‘part-of’ relationship. Otherwise the child is a leaf and has

an ‘instance-of’ relationship. Figure 3.13 illustrates an ET corresponding to the CEN of

Figure 3.12.

Transfer distance: For each ticket twe define transfer distance t.tdwhich is the average

pairwise distance on the taxonomy tree between consecutive pairs of expert groups in t.rs.

Formally:

t.td =
1

| t.rs | −1

|t.rs|−1∑
j=1

dET (e(j), e(j+1)) (3.13)

where dET is the pairwise distance function on the ET. In the next subsection, the

transfer distance is used for further analysis.
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3.5.2 ET structure and a Semantic Representation for a Transfer

CEN transfer knowledge has semantic dependency associations: We found that there

are semantic association patterns in the ET of the CEN. To show this we contrast two CEN

views - the network view (Figure 3.12) and the taxonomy-based view (Figure 3.13). With

Figure 3.13 we found the ET tree labels identify expert groups based on semantics of the

knowledge that they possess related to: (1) a technology or application, (2) a region of

the physical facility, (3) a major enterprise project, (4) a mediator or resolution role, or

(5) a virtual node representing a collection of sub nodes. The labels have emerged over

time and are locally used by humans interacting with the workflow routing menu of the

enterprise system (without any assistance). The labels were found to form the ET tree

that makes explicit (in Figure 3.13) the knowledge associations that are not shown in the

view of Figure 3.12. With this ET tree as the basis we also found that as the TRS length

increases, the average t.td also increases as shown in Figure 3.14. This implies that tickets

with longer TRSs are more likely to have long-distance transfers on the ET and this signals

increased incident complexity due to expertise needed from distanced subtrees.

3.5.3 Relating CEN Execution to ET Structure

A research question to be addressed here is: “Is there any relation between the ET,

and the CEN problem-solving execution patterns?” This is an attempt to relate the IT

organizational design with the IT process execution. To address this research question first

we need to define metrics to map the CEN execution to ET structure and then use them to

evaluate the efficiency of the existing ET. This could further lead to a set of re-organization

recommendations to best suit the collective transfer patterns in the CEN.
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Figure 3.14: Average transfer distance on ET grouped by TRS length

Our solution is to (1) identify connected subgraphs in CEN such that each represents

a ‘collective problem-solving unit’, and for each collective unit (2) define a ‘diameter’ on

the ET. As a result of that, the relation between the ‘connectivity strength’ of the collective

units and their corresponding diameter on the ET is discovered.

Collective problem-solving units are obtained by computing Strongly Connected Com-

ponents (SCCs) on the CEN. Finding SCCs is performed using Tarjan’s algorithm [32].

Connectivity strength is ensured by using a minimum edge weight, that is by retaining only

the transfers in the CEN which satisfy the minimum edge frequency. Assuming that S is
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a strongly connected component in the CEN, we introduced the diameter of S on ET as

follows:

Diameter(S,ET ) = (card(edge_set(S)))−1
∑

∀(ei,ej)∈edge_set(S)

dET (ei, ej) (3.14)

where: edge_set(S) = {(a, b)|a ∈ S ∧ b ∈ S ∧ (a, b) ∈ Transfers}

A larger diameter value for a SCC implies that experts in that SCC are structurally

more scattered across the ET. In contrast, a smaller diameter value for a SCC means that

experts in that SCC are having a deeper closest common ancestor in the ET and thereby are

less scattered across the ET. Algorithm 1 is showing how to obtain a list of ET Diameters

corresponding to the SCCs of the CEN. Note that the algorithm takes a minimum frequency

for the edge weights to filter out the low frequency edges at the beginning, and returns a

list ET diameters corresponding to each collective unit (i.e. SCC) of the CEN.

Algorithm 1 Diameter_Generator
Input: Experts, Transfers, ET , min_freq
Output: diam_list
CEN = (Experts, T ransfers)
filtered_CEN = (Experts, {(a, b)|∀(a, b) ∈ Transfers, wab ≥ min_freq})
SCC_list = Tarjan(filtered_CEN)
for component in SCC_list do

if component.size 6= 1 then
diam_list.add(Diameter(component, ET ))

end
end
Return diam_list

Figure 3.15 illustrates that experts in strongly connected components of a higher-frequency-

threshold CEN have a lower average diameter on the ET. This implies that transfer in
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Figure 3.15: Average diameter of SCCs on the ET when varying the minimum transfer
frequency

prominent collective problem solving units occur between experts that are structurally very

close to each other. This finding clearly relates the CEN to the ET and addresses our earlier

research question. From this vantage point, it can be concluded that enterprise taxonomy

(ET) is designed in such a way to encourage collective problem solving between experts

that are close to one another (which is mostly being followed by the CEN).

These findings also open a new avenue of research about “recommending a re-organization

to the ET in order to reduce the collective problem solving cost on the CEN” where it can

be framed as an optimization problem for re-structuring the ET with an objective of mini-

mizing the average diameter of SCCs subject to structural constraints.
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Chapter 4: Recommendation Framework with Routine/Non-routine

Classification

As mentioned in the introduction, within today's complex cloud operations made up of

layers of technology and application services, customer-perceived incidents often arise in

the hundreds or thousands daily. These must be resolved by IT Service Management goals

that are critical parts of any service level (SL) agreement:

• Resolution Goal: the problem must be resolved by restoring service to the business

customer's satisfaction; and

• SLT Goal: the resolution process must meet time constraints set by Service Level

Targets (SLTs) agreed-to with the customer based on the priority of the ticket.

The Resolution Goal is addressed by logging incidents as tickets and then transferring

them to the knowledgeable experts (selected from among many) with skills to contribute to

the problem resolution. In the real world, SL is a time-and-satisfaction-based metric that

is defined for and contracted with customers of different lines of business.

Our technical goal is to develop a statistical learning framework that recommends the

best set of transfers to guide experts to collectively work on a ticket and meet SLTs. The

framework that is presented in this chapter is designed to be applicable to any service

support environment characterized by a small number of workflows that resolve a majority
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Table 4.1: Key terms

Term Description

Expert A technical support team with specialized knowledge
and particular set of skills, and responsibilities

Ticket t a ticket instance with content/attributes, T a ticket set
SLT Target resolution time defined for each t ∈ T

chosen according to a predetermined priority level.
TRS Ticket Resolving Sequence of experts for t.

R-TRS is a TRS that is labeled as ‘Routine’.
RecTRS is a recommended TRS (i.e routing recommendation)

TTR Time To Resolve (i.e. resolution time) of a ticket.
Only defined for the resolved tickets.

ETTR Expected Time To Resolve of a ticket.
Used for arriving tickets to estimate their TTR.

MTTR Mean Time To Resolve computed for T .
MSTR Mean Steps (i.e. transfers) To Resolve computed for T .

of the tickets. In other words, the proposed solution benefits any environment with an

observable Pareto distribution [48] of tickets over the resolution workflows.

The concept of ‘workflow’ is about specific experts that commonly work sequentially

on a ticket and transfer it along to achieve resolution. Given a ticket, the sequence that

results in the resolution of the ticket is referred to as a TRS for that ticket. A TRS of any

ticket can be reflected as a path on the CEN (identified in Section 1.4). We assume that the

TRSs captured in the historical incident-resolution database form a digital trace (i.e. the

set of transfer sequences) of the best efforts of the experts thus far. We will show, however,

these efforts often fail to meet service levels on longer transfer sequences. This leaves

opportunities for CEN improvement with automated recommendation assistance. In Table

4.1 we present the key terms and common abbreviations used throughout Chapters 4, and

5.
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In summary, in this chapter we establish that: (1) on frequent paths the SLs are very

likely to be met, and (2) the frequent ticket content is associated with frequent paths

(learned workflows) and therefore are also likely to successfully meet the SLs. Thus the

research method is to make explicit the global knowledge exhibited by the CEN on fre-

quent content and SL-achieving TRSs (i.e. paths that resolve) and use this to prevent ticket

misrouting on frequent content. This is accomplished by splitting the digital trace into: (1)

a trustworthy set which is used for probabilistic sequence learning and recommendations to

the human experts, and (2) the remaining unreliable set which is used to signal anomalies in

the content to draw early human attention within the resolution process. We implement this

with a two-level classification framework that is experimentally shown to: (1) improve the

precision of recommendations by 34% over existing content-aware sequence models; (2)

improve Mean-Time-To-Resolve by 7%; (3) reduce SLT breaches by 10%; and (4) main-

tain a high level of trust. The validation uses held-out data generated in the production

environment of the enterprise.

4.1 Analysis of the Unassisted CEN

In this section we add further details to pinpoint the causes for poor performance. Exist-

ing poor performance despite the enablement provided by current processes and enterprise

systems provides an understanding of the opportunities for improvement. Then we ex-

tract principles for recommendations that address specific causes in a manner consistent

with CENs own natural behaviors. With the data analysis below we systematically cover

all observed aspects of current CEN performance, CEN behavior characteristics with re-

spect to content and transfers, and principles that guide beneficial assistance and specific

experiments.
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Table 4.2: Priority of ticket related to the breach ratios
Priority Business Impact SLT % of all Breach Ratio%

1 Significant 14 hrs 10.8% 6.1%
2 Moderate 34.5 hrs 45.1% 7.6%
3 Minor 46 hrs 25.5% 8.1%
4 Negligible 115 hrs 18.6% 10.0%

4.1.1 Current CEN Performance

Incident Context and CENs Digital Trace: The digital trace of CEN problem solving

has 7250 distinct paths that resolved incidents that were generated from over 7400 Config-

ured Items (CIs) in the IT infrastructure. The operational data from the enterprise analyzed

here consisted of 149,000 user-perceived tickets reported over a period of 13-months and

resolved by 916 unique experts through 267,721 transfers.

The priority levels are set between P1 (highest priority and impact) to P4 (low priority

and impact). The SLT is more relaxed for lower priorities. If the SLT is not met the ticket is

said to ‘breach’ the SL. Table 4.2 depicts that the CEN more often resolves highest priority

tickets within SL targets, and SL breaches occur more with lower priority tickets.

Collective problem solving and performance: Longer TRSs cause more difficul-

ties in SL compliance. To prove this, our objective is to examine the TRS length of

the tickets against their breach ratio. Given our ticket set, Figure 4.1 demonstrates (1)

P (|t.rs| = TRS_length), that is the probability distribution of tickets on TRS lengths,

and (2) P (t.ttr > t.st
∣∣ |t.rs| = TRS_length), that is the breach ratio of tickets condi-

tioned on their TRS length. Please note that for a sample ticket t, t.rs denotes the TRS for

t, t.ttr denotes the time-to-resolve of t, and t.st denotes SLT for t.

Observations: (1) The CEN is able to resolve most of its tickets via short TRSs that is

P (1 6 |t.rs| 6 4) = 0.79. More generally, Figure 4.1 illustrates an exponential decay in
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Figure 4.1: Distribution of tickets on TRS length, and breach ratio of tickets per TRS length

the volume of tickets as the TRS length increases. In other words, a transfer chosen by the

CEN to be executed on a ticket is highly expected (with the probability greater than 0.5) to

resolve that ticket. This establishes a power law [66] distribution. As mentioned in Section

3.3.3, we experimentally found the power law function that represents the probability of a

ticket being resolved by a TRS in h hops where h ∈ N:

Presolve(|t.rs| = h) = 0.56 e(−0.82(h−1)) (4.1)

(2) Also per Figure 4.1 as the TRS length increases, the probability of the tickets breach-

ing their SLT increases. Although longer TRSs are unlikely to occur, they are highly likely

to breach their SLT. This presents an opportunity for improvement by avoiding wrong trans-

fers which are the leading cause of longer resolving sequences, thus saving many tickets

from inevitable SLT violations.
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Also our earlier observations in Section 3.5.3 showed as the TRS length decreases the

average transfer distance on the ET also decreases. Thus transfers on more frequent and

shorter TRSs (where SLTs are met more often) are more likely to be aligned to the ET tree

structure (i.e. low average transfer distance). In other words, more frequent TRSs are (1)

shorter, (2) less likely to breach SLTs, and (3) better conforming to the ET structure. This

provides the motivation for conditional conceptualization of the entire TRS as a collective

problem-solving unit with global workflow characteristics.

4.1.2 Digital Trace Characteristics – Content & Transfer Knowledge

In the previous subsection we established that the CEN could better benefit the business

from recommendation assistance on longer transfer sequences that are (1) more likely to

breach SL goals, and (2) that the entire sequence has global associations that are tacit and

also difficult for the CEN to exhibit. Given the observations, the next related questions

are: (1) Is there machine learnable regularity exhibited in the paths of the CEN; (2) How

are the content and the paths related? and (3) How do we ensure that the CEN trusts the

recommendations?

Regularity of the paths: Many of the paths are very common reflecting the fact that

the CEN’s digital trace of collective problem solving is not erratic. The related analysis is

in Figure 4.2. This figure also shows that the Pareto Principle holds: 5.5% of paths resolve

80% of the tickets. This skewed distribution of the tickets over the paths helps identify

the subset of the paths that overcomes the challenge of data sparsity, leading to effective

machine learning on that subset. Next we found that frequent content was also associated

with frequent paths that are more successful.
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Figure 4.2: Normalized frequency of paths – pareto chart

Observations: Regularity of global network knowledge is exhibited by frequent paths

(refer to as ‘Routine’ paths) that mainly resolve certain frequent content. From the machine

learning standpoint, the goal is to choose a subset of all the paths, which contains fre-

quent and well-separated paths (classes) for a multiclass classification algorithm resulting

in a generalizable trustworthy classifier. From the standpoint of benefiting the CEN practi-

cally, the goal is to provide recommendations of routine paths that contain high-performing

global patterns and thus prevent tickets with frequent content from taking suboptimal ‘non-

routine’ paths.
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4.2 Machine Learning Framework Goals: Trustworthy Recommen-
dations

With the potential for beneficial assistance established above along with the business

motivation, we next formulate the machine learning research problem to address the obser-

vations immediately above.

The goal is to develop assistive recommendations where the machine itself (1) deter-

mines the conditions under which it can learn and recommend based on some trustworthi-

ness criteria; (2) learns the global network knowledge in terms of TRSs that can assist the

CEN to meet SL; and finally (3) flags where trustworthy recommendations are not possible

and in these cases increases the reliance on human problem solving (i.e. without recom-

mendations) and put effort into dynamic knowledge creation. Thus this approach requires

the machine to differentiate between the Routine (R) problem solving where it learns and

recommends to meet SLs more effectively; from the Non-routine (NR) where the human

experts do better to achieve SL and recommendations are not trustworthy.

Next, in Section 4.3 we will show that the breach ratio of the R-TRS class is found to

be almost one-fourth of the NR-TRS class (2.26% to 8.25%). That is if a recommendation

correctly saves a ticket from a non-routine path by recommending a R-TRS then there is

72% reduction in its likelihood to breach. In our study, 14% of all the tickets had regular

content that got misrouted to a NR-TRS and the recommendation system could save these

cases. This leads us to the conclusion that the expected breach ratio reduction overall

through beneficial recommendation is 14%× 72% = 10%.
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4.3 Labeling Strategy – Regularity of Content vs Regularity of TRS

We first establish the critical hypothesis that the more likely inputs of the CEN are asso-

ciated with the more likely outputs. To do this we first develop functions that independently

quantify the regularity of the content (input) and of TRS (output). Note that if content can

signal for strong association with frequent TRSs then predicting only among frequent TRSs

leads to a more accurate classification outcome as opposed to predicting among all TRSs in

the first place. This solution is particularly favored where a small portion of distinct TRSs

are used to resolve majority of the tickets in the history. This is discussed further next.

4.3.1 High Likely Content is associated with Routine TRS

Here we first define routineness measures for content and distinct TRSs separately.

Then we demarcate R-TRSs from NR-TRSs through the following labeling strategy: we

attempt to find a subset of distinct TRSs that their content likelihood distribution is in max-

imum distance from that of their complement set. Then members of the set with higher

average content likelihood are labeled as R-TRS, and members of its complement are la-

beled as NR-TRS. To avoid trivial solutions, the aforementioned objective is subject to a

constraint that enforces minimum ticket coverage on both subsets.

Routineness of TRS (discrete metric):We characterized regularity of a distinct TRS

as the frequency of tickets resolved by that distinct TRS in the training set. The more fre-

quent a distinct TRS is used, the larger its routineness value becomes. Our data illustrates

the skewed distribution of tickets over distinct TRSs (Figure 4.2). This graph is a Pareto

chart that represents normalized frequency distribution of distinct TRSs in descending or-

der along with cumulative percentage of tickets. In the figure the top 5.5% of the most

frequent distinct TRSs (400 distinct resolution sequences out of 7,250) are depicted which

72



are used as resolving paths for 81% of tickets. The other 19% of tickets use 94.5% of

remaining less frequent distict TRSs. This follows the well-known Pareto principle that

implies most of the ticket probability mass is accumulated on a small portion of TRSs. The

Pareto principle is an inherent property of CENs. Also it is acknowledged in the Machine

Learning community that more number of classes in a multiclass setup inevitably leads to

higher misclassification rate [16]. Here the Pareto principle is leveraged to build a multi-

class classifier that only trains on a small portion of distinct TRSs denoted as R-TRSs, and

can precisely recommend on a large portion of tickets.

Routineness of content (continuous metric): To characterize the input content of

the CEN we treat it as meaningful word sequences with a log-likelihood metric that mea-

sures the probability of the word sequence in the content of a ticket as Content Log-

Likelihood(CLL):

CLL(t;λ) =
1

|t|
∑
wi∈t

log P̂ (wi | wi−1;λ) (4.2)

where:

P̂ (wi = b | wi−1 = a;λ) =
#(ab) + λ

#(a∗) + λ |V |
(4.3)

Here wi is the ith word token in a ticket t, and λ is a smoothing parameter. Normal-

ization (i.e. division by |t|) is needed to establish a fair measurement for significance of

words regardless of the number of word tokens in a ticket. Next, the probability of a word

wi in the context of wi−1 is computed. We use a bigram language model [11] where ‘#’

represents a function that computes the frequency of the given word phrase in the ticket

corpus, and ∗ represents any word in the corpus dictionary. |V | is the size of the corpus

dictionary. In our data set, the CLL values of different tickets range from −4 to −14, with

−4 signifying the most likely content.
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Figure 4.3: Projected tickets in CLL-TRS_frequency space – high density of tickets in the
center right area means tickets with more frequent TRSs are very likely to have regular
occurring content.

Figure 4.3 projects each ticket into a two dimensional space with the log likelihood of

content (y-axis) and the TRS frequency (x-axis which is also on a log scale to accommodate

the sparse tail of TRS distribution). As can be seen, there are considerable number of

tickets that are having a highly likely content and are resolved by a highly frequent distinct

TRS. Therefore, we can now look for an α-split on the x-axis that maximizes the distance

between (1) CLL distribution of the tickets that have a TRS frequency less than α (to be

labeled as NR) and (2) CLL distribution of the tickets that have a TRS frequency more than

α (to be labeled as R). For simplicity, we define distance between two CLL distributions as

the difference between the mode values of the two distributions.
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Figure 4.4: α = 670 allows us to separate R from NR effectively.

Figure 4.4 illustrates the strategy to identify the optimal α by sliding the α–cut from

low-to-high TRS frequencies on Figure 4.3. In Figure 4.4 we plot the mode difference of

CLL distributions generated by different α–cuts. As we move α from left to right, generally

the mode differences increase.

Viewed simply, the mode difference is maximized when α reaches maximum TRS fre-

quency which is a trivial solution. However even though the largest α maximizes the mode

difference between R and NR, the volume of R tickets is minimized at that point which is

undesirable. This constitutes a trade-off between the ratio of R_tickets/all_tickets and

the mode difference of the two CLL distributions. We selected the value of α = 670 to

address this trade-off, and with this the R tickets are 30% of the full data set, where this α

has the mode difference of 0.6 between R and NR.

Establishing the main hypothesis: In Figure 4.5, for this α = 670, we depict the cor-

responding left and right CLL distributions that are now labeled as NR-TRS and R-TRS
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Figure 4.5: α = 670 yielding optimal cut, two CLL distributions as NR-TRS (left) and
R-TRS (right)

respectively. Note that R-TRS distribution is denser in the higher log-likelihood area as

compared to NR-TRS.

Part (i): This establishes the hypothesis that a considerable number of tickets with fre-

quent content (higher log-likelihood) are resolved by frequent TRSs. This also identifies

the desired α supporting causality between frequent content and R-TRS and allows us to

proceed with our two-level classification. Essentially, what we did in this step has intro-

duced heuristics to label a subset of distinct TRSs as R-TRSs and the complement set as

NR-TRSs. Later all of the distinct TRSs will be used to train the top-level R/NR classifier,

and R-TRSs will be used to train the second level muliclass classifier.

Part (ii): Furthermore, we tie this optimal R/NR split with SL by calculating the SL

breach percentage. As shown in 4.5, the breach ratio of the R-TRS class was found to

be a fourth of the NR-TRS class (2.26% to 8.25%). This supports the hypothesis that
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R tickets are more likely to meet their SL. Also, if R-TRSs are recommended then the

recommendations are 97.74% likely to meet enterprise SL goals.

4.4 Enterprise CEN Deployment

The two-level framework is illustrated in Figure 4.6. The model developed is divided

into offline training (left), and on-demand recommendations (right). Offline training in-

cludes computationally intensive operations and they lead to construction of the classifica-

tion models. Formal details of training are in Section 4.5. On-demand recommendations

apply the classifiers on the unlabeled data and recommend actions for achieving SL goal.

Formalization details of recommendations and their validation are given in Section 4.6.

Offline Operations – Top Level Training: Here we use a Bayesian binary classi-

fier that takes Natural Language (NL) content, and identifies whether it is associated with

highly frequent paths (marked as Routine). As shown in Figure 4.6, NL features are ex-

tracted from training tickets and then used along with their R/NR annotations to perform

Bayesian inference. Thus the top-level R/NR classifier is constructed for on-demand use.

Offline Operations – Second Level Training: Next we use a Bayesian multiclass

classifier that takes NL content and identifies a Routine path that is most likely to resolve

the incident. Here Bayesian inference is only performed for tickets with routine resolv-

ing sequences. NL features are extracted from content of those tickets and are annotated

with their associated TRSs. Thus the second-level R-TRS classifier is constructed for on-

demand use. We will discuss and address the underlying challenges of dealing with skewed

class distribution in Section 4.5.

On-demand Operations: On the right of Figure 4.6 we show the two-level application

of the method on an unlabeled ticket. First we determine if the NL content of the ticket
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is associated with either R or NR using the top level R/NR classifier. Second, if it is

associated with R then the second level R-TRS classifier is applied to provide the path

recommendation for the CEN. Also SL estimation is performed for the recommended path.

If the content is associated with NR class then it is flagged and turned over to the CEN for

resolving without assistance. In Figure 4.6 within the on-demand operations box, all of the

dotted boxes are denoting predicted values. In Section 4.6 we discuss the validation and

SL advantages of the framework.

4.5 Experiments Using the Two-level Classification Framework

Based on the existence of a strong relationship between frequent content and routine

paths, we proceeded to build the classifiers. The learning algorithm we leveraged is the

Transformed Weight-normalized Complement Naïve Bayes (TWCNB) [56] for both top

and second level classifiers of the Framework introduced in Figure 4.6. This algorithm is

designed to perform on skewed training data, and it incorporates effective weight normal-

ization and feature transformations. Further rationale for selecting this method follows.

4.5.1 Training and Classification (R/NR and TRS Recommendation)

We modified TWCNB for path (R-TRS) classification as follows. Let:

1. ~t be the training set of routine tickets that previously got resolved by an R-TRS:

~t = (~t1, ~t2, ..., ~tn) and tij is the frequency of the j_th word of the dictionary in ticket

~ti.

2. ~RS = ( ~rs1, ~rs2, ..., ~rsn) be the resolving sequences (i.e. TRS) corresponding to each

of the training tickets.

3. C = {C1, C2, ..., Cs} be the set of distinct paths.
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4. ~test = (f1, f2, ..., fm) be a test ticket where fj is the frequency of the j_th word of

the dictionary in the test ticket.

Then train and predict:

ω = R-TRS_Training(~t, ~RS) (4.4)

Predicted_label( ~test) = arg min
c∈C

m∑
j=1

fj · ω(j | c) (4.5)

Algorithm 2 R-TRS_Training
Input: ~t, ~RS
Output: ω

1 for j = 1 to m do
2 IDFj = log

n∑n
k=1 δkj

3 for i = 1 to n do
4 TFij = log(tij + 1)
5 end
6 end
7 for j = 1 to m do
8 for i = 1 to n do

9 NCij =
TFij · IDFj√∑m
k=1(TFik · IDFk)2

10 end
11 end
12 for j = 1 to m do
13 for h = 1 to s do

14 P̂ (j | Ch) =
λ+

∑n
k:rsk 6=ch

NCkj

mλ+
∑n

k:rsk 6=ch

∑m
p=1NCkp

15 ω(j | Ch) =
log P̂ (j | Ch)∑m
k=1 log P̂ (k | Ch)

16 end
17 end
18 Return ω
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The function call R-TRS_Training(~t, ~RS) is elaborated by Algorithm 2 which per-

forms the training. It uses a set of transforms for term frequencies adapted from [56].

These transforms resolve different poor modeling assumptions of Naïve Bayes classifier

including skewed word and class distribution. ω is the transformed weighted normalization

function over P (j | c) where j can be the index of any word in the corpus dictionary, and

c can be complement of any class in the data set (distinct paths in this case). Some details

of Algorithm 2 are: Line 2 constructs inverse document frequency transformation where

δkj = 1 if the j_th word of the dictionary is in ticket ~tk, otherwise δkj = 0. Line 3: n is

the number of tickets in the training set. Line 4: constructs term frequency transformation.

Line 9: provides the length norm, wherem is the size of the corpus dictionary. Line 13: s is

the cardinality of the set C. Line 14: builds a smoothed probability function that estimates

the probability of j_th word of the dictionary not in the class Ch. Line 15: is the log weight

normalization of P̂ (j | Ch).

Experimental Process Overview

For both classifiers in Figure 4.6 we extracted features from the NL content and the

text was first transformed to vectors with weighted normalized values as discussed in the

‘dampening the effect of skewed data bias’ section 4.5. We dropped the stop words and

removed low-frequency words, thus reducing the dimensions of our feature vectors to 4623.

Next we randomly sampled 80% of <content, TRS> tuples (i.e. 119200 tickets) for end-

to-end model training and 20%(i.e. 29800 tickets) for validation. That 80% was used to

train the top level R/NR classifier, and the routine portion of it (i.e. 35776 tickets or 24% of

all tickets) was used to train the second level R-TRS classifier. The training on each level

was validated by 10-fold cross validation (i.e. rotation on 90%, 10% splits). After tuning

parameters of each of the classifiers separately, we observed significant performance by
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both classifiers in isolation. Then we measured the overall performance of the sequentially

combined classifiers by using the 20% validation set.

4.5.2 Framework Evaluation Measure

Given our goal of achieving trustworthy recommendations we opted to increase the

reliability at the expense of reducing the number of tickets for which assistive recommen-

dations were presented. Assume the ground truth labels, actual-R and actual-NR. The

human experts are capable to handle (1) all actual-NR tickets, and (2) actual-R tickets

that got misclassified as NR. On the other hand, it is unfavorable for trust if an actual-

NR ticket is misclassified as R, and is further recommended with an R-TRS. Therefore,

in this application domain the precision of the top-level classifier and the accuracy of the

second-level classifier are more important for the overall performance than the coverage.

In particular from a SL achievement perspective, it is notable that the recall of the top level

classifier is not as important as its precision since false negatives (misclassified routine

tickets) will nevertheless get routed through the CEN and addressed directly by human ex-

perts (i.e. without recommendations). The performance of our two-level recommendation

framework is evaluated by measuring the proportion of tickets that their TRS got correctly

recommended, to all tickets that got recommended as R. Formally:

Overall R− Precision =
#(TRS correctly classified)

#(tickets predicted as R)
(4.6)

4.5.3 Evaluating the R/NR Labeling Strategy

This is an unsupervised method that finds a non-trivial optimal cut that bifurcates the

ticket set such that the distance between the two content distributions is maximized. The

content distribution with the higher average log likelihood is then labeled as R and the other
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distribution is labeled as NR. A path is labeled as R if and only if majority of the tickets

that it has resolved in the history fall within the R content distribution. Otherwise that path

is labeled as NR.

The above strategy in our experiments labeled most of the TRSs as NR (77.4%), which

favorably conforms to our machine learning goal proposed in Subsection 4.2. Thus we

called this labeling strategy as ‘Low-rate Routine labeling’ (LRL). To evaluate the optimal

bifurcation strategy, we chose two alternative labeling strategies as baselines: (1) ‘Balanced

labeling’ (BL) where the most frequent paths are labeled as R in such a way that these

paths together resolve 50% of all tickets, and the rest are labeled as NR. (2) ‘High-rate

Routine labeling’ (HRL) where the most frequent paths are labeled as R such that these

paths together resolve 75% of all tickets, and the rest are labeled as NR.

Per each labeling strategy we constructed a top level R/NR classifier (using the TWCNB

learning algorithm). Our goal here was to find the classifier that consistently outperforms

the other two. Figure 4.7 presents the Receiver Operating Characteristic (ROC) curves

corresponding to different labeling strategies. The concept of ROC was first introduced

in [25] and it generally aims to show performance of a binary classifier as its decision

threshold varies. In the context of this study the true positive rate (TPR) (i.e. recall) is the

fraction of actual-R tickets that also got classified as R. The false positive rate (FPR) is

the fraction of actual-NR tickets that unfavorably got classified as R. The perfect case is

to have TPR at 1 and the FPR at 0. The ROC curves in Figure 4.7 are drawn as a result

of varying classifiers’ decision thresholds from 0 to 1. Performance of these classifiers are

evaluated by the area under the ROC curve (AUROC). Observably our adapted optimal cut

strategy (i.e. LRL) outperforms both of the baselines. To be precise, AUROC for LRL,
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Figure 4.7: ROC curves for three variations of R/NR classifier

BL, and HRL are respectively 0.86, 0.83, and 79. Thus we continued to use the optimal cut

strategy in construction of our top level classifier.

4.5.4 Tuning the Precision/Recall Trade-off for R/NR Classification

In this application domain, increasing the precision of the R class can significantly

improve the SL performance overall. Therefore the goal here is to find an effective decision

threshold which favors precision a bit more over recall. Based on equation 4.5 the decision

threshold is used to classify a ticket as R based on: P̂ (C = ‘R’ | τ) > θ

Here P̂ is the inferred probability for a test ticket τ to be classified as R. θ is the decision

threshold acting as the minimum acceptable probability value to classify a ticket as R. We

used the LRL ROC curve from Figure 4.7 to pinpoint an effective decision threshold. After

examination of the coverage of candidate decision thresholds we arrived at a point on the
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ROC curve which yeilds a resonable high precision (through a low FPR) with an accept-

able recall and coverage. More specifics of this sweet spot are as follows: recall=0.553,

FPR=0.073, precision=0.802, and Routine Coverage=0.202. The decision threshold corre-

sponding to this point found to be θ = 0.650. Thus clearly resulting in a more conservative

routine calls by the top level classifier.

4.6 Performance Evaluation on Variations of the Model and Baselines

By applying the same enterprise data, we compared two variations of the proposed

framework, Strict model and Flexible model, against an existing sequence recommendation

model called Generative greedy model taken from [39].

Strict and Flexible models: For the validation of path recommendations we define two

different ways of claiming successful classification on a test ticket: (1) strict TRS matching:

a ticket is called correctly classified if its predicted R-TRS matches exactly with its actual

TRS. (2) flexible TRS matching: a ticket is called correctly classified if its predicted R-TRS

is within the congruence set of its actual TRS.

The congruence set of a certain path like P consists other paths that are equally eligi-

ble to resolve same tickets that historically got resolved by P. Such replications exist by

design among some of the routine paths in order to (1) balance the regular workload over

more nodes in the network to improve the network throughput, and (2) make the network

more tolerant against unavailability of certain nodes. Here for each of the routine paths in

our domain, subject matter experts established a handcrafted congruence set representing

corresponding qualified alternative paths, which we used for the flexible matching.
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Baseline model - Generative Greedy: The Generative Greedy is considered a robust

transfer prediction model [39]. This model is designed to make one-step transfer predic-

tions and select the most probable resolver next. In our experiment Generative Greedy has

shown effectiveness in predicting the final expert in the sequence for actual-NR tickets with

long TRSs. To be able to compare the results, we re-defined the ‘Overall R-Precision’ for

Generative Greedy: for any test ticket predicted as R, we let the Generative Greedy also

predict n transfers at once where n is the length of the actual TRS. If the Generative Greedy

matches the actual TRS, we consider it as correctly classified. The ratio of correctly classi-

fied TRSs divided by total number of predictions is considered as Overall R-Precision for

this method.

Figure 4.8 shows the overall R-precision of the developed sequence models as the size

of the training set grows. All three models converge to a stable precision before reaching

to 60% of the size the training set. Many of the misclassified TRSs in the strict model

are found to be within the congruence set of the actual TRS. Therefore as can be seen we

achieved 17% improvement over strict model by allowing misclassification within congru-

ence sets. Also the flexible model outperforms the baseline by 34%. (flexible:77%, strict:

60%, generative: 43%).

4.7 SL and TTR Estimation for Classified Tickets

For the fraction of test tickets that R-TRSs are recommended, we developed a simple

expectation model to further estimate their TTR and SL compliance (SL Estimation in Fig-

ure 4.6). Let TP,RP be a subset of the training set that includes all tickets with priority

P that were resolved by a particular routine path RP . For a test ticket τ with priority P
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Figure 4.8: Overall R-Precision of flexible, strict, and greedy models.

(i.e. τ.p = P ) and recommended path RP the Expected Time to Resolve (ETTR) is esti-

mated as the mean TTR of all tickets in TP,RP . Formally:

τ.ettr =
1

| TP,PR |
∑

t∈TP,PR

t.ttr (4.7)

For ETTR evaluation, a held-out test set was used from which 1636 routine tickets

eventually received recommended R-TRSs from the two-level classifier. Figure 4.9 illus-

trates a scatter plot of these tickets which compares ETTR of tickets against their actual

time to resolve (ATTR). In order to present different ticket priorities within a unified scale

we normalized all ETTR and ATTR values by their service time, thus generating NETTR

and NATTR values. As a result of normalization any NETTR or NATTR value greater than

1 signals a SL breach. Also the diagonal line represents the identity relation between ETTR

and ATTR. Tickets above the diagonal line imply ETTR > ATTR, and ticket below it imply
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Table 4.3: Evaluation of expected time to resolve
Region# ETTR ATTR ETTR>ATTR? % of test tickets

1 Met Met TRUE 65.9% [1078]
2 Breached Met TRUE 0.2% [3]
3 Met Met FALSE 31.8% [521]
4 Met Breached FALSE 1.9% [31]
5 Breached Breached FALSE 0.2% [3]
6 Breached Breached TRUE 0.0% [0]

ETTR < ATTR. Therefore, there will be six regions on the scatter plot subject to further

analysis.

In Table 4.3 the common SL and TTR properties of tickets in each region is presented.

Also the last column reports the probability (and frequency) distribution of tickets over

different regions.

The key insights reported in Figure 4.9 and Table 4.3 are as follows: (1) Almost all

routine tickets that actually met their SL were also estimated to meet their SL based on

their recommended R-TRS with an exception of tickets in region 2 (SL Recall = 0.998). (2)

Most of the routine tickets that were estimated to meet their SL were also found to actually

meet their SL with an exception of tickets in region 4 (SL Precision = 0.980). This confirms

the fact that estimated SL compliance is a true indicator of the actual SL compliance. (3)

Most of the tickets that actually breached their SL were estimated to meet their SL with

an exception of tickets in region 5 (SL false positive rate = 0.911). Despite the common

intuition that FPR is an error measure and has to be minimized, here a high FPR is a

point of strength for our estimation model. The reason for high FPR is that in the absence

of recommendations, human decision anomalies cause a fraction of routine tickets to take

NR-TRSs. Our data has shown that 87% of all routine breached tickets were actually routed

through NR-TRSs. However, nearly all of these tickets could have met their SL had they
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Figure 4.9: ETTR vs ATTR for tickets with a recommended R-TRS (refer to Table 4.3 for
description of the regions)

taken their correct R-TRSs through recommendations. That is why ETTR is significantly

lower than ATTR for most of the tickets in regions 4 and 5. This clearly confirms the

contribution of our statistical learning approach in reducing the negative impact of human

decision anomalies. (4) Based on ETTRs calculated above, recommendations significantly

reduced the MTTR of the routine tickets by 34%. Viewing the system as a whole, the

two-level classification method reduces the MTTR of all tickets by an average of 7%.

4.8 Configuration Items and Relation to Routineness

As discussed in Chapters 1 and 3, once an incident is captured at the IT service desk,

an initial investigation results in an early speculation to identify the culprit CI. Here we

explored the relationship between the change in the speculated CI, and classification label
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Figure 4.10: Change in a speculated CI represents non-Routine content

of incident content (routine/non-routine). In order to perform our analysis, we leveraged

tickets in the test set that were correctly classified by the top-level classifier (R/NR), and

we mapped the change in speculated CI against the incidents class (routine/non-routine) of

content. According to Figure 4.10, it is observable that change in CI happens more with

the non-routine content than with the routine one. On the other hand, fixed CIs happen

more with routine tickets than than with the non-routine one. Here is another way of

interpreting: when the content is routine, it is only 7% likely that the speculated CI gets

changed during the resolution process, while in case of non-routine content, it is 20%

likely that the speculated CI gets changed. A clear insight here is that resolution context

mis-identification happens more when the initial content is unusual (i.e. non-routine) to the

CEN.
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4.9 Principles for Achieving SL Improvement and Summary

Since the real-world enterprise deployment goal (that is meeting SL) is particularly

overlooked we next summarize the overall application logic from a business perspective.

The analysis in the previous subsections has established the following principles and re-

search goals:

1. Business performance is related to improved MTTR: That is, in contrast to MSTR of

previous research, MTTR is a critical customer-facing measure and needed for ITSM.

This is addressed with an objective function maximizing likelihood of meeting SLTs in

Section 4.3.

2. Assistive recommendations must be consistent with previous CEN behaviors along the

entire TRS: We note that R-TRS’s are well-defined workflows throughout which in-

cremental contributions are made in the context of achieving SLs. Thus the machine

learning and recommendations are on the entire TRS. (i.e. No conditional independence

assumption.)

3. Trust is not achieved by noisy transfers: Noisy transfer sequences with low probabilities

for achieving SL goals are not to be used for machine learning and are to be filtered out

through the R/NR classification. This is achieved with a first level for Routine (R)/Non-

Routine(NR) inference and the second level for actual path recommendation to improve

resolution within SLs.

4. Trustworthiness of recommendations must be considered: At the User Interface, the

presentation of the specific recommendations is followed by the percentage of times it

led their colleagues to successful resolution on that content (Appendix A). The human
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is also notified when a trustworthy recommendation is not available and the knowledge

base must be improved.

5. Experiments must demonstrate improvement where the CEN struggles with content: The

CEN is actually performing as well as it can on frequent and high priority tickets and

the SLs are being met. Thus experiments explicitly show that there is enough other

opportunity to improve SL related to lower priorities or the longer TRSs due to (1) poor

transfer knowledge, (2) content that is truly complex or new and the transfer knowledge

is not explicit, and (3) lack of resources or training [67].

The related aspects of analysis above point towards and an opportunity for the assistive

model to help with tickets that could be potentially misrouted tickets and where the SL

breaches occur. We have established that there are enough such cases and there is adequate

performance improvement. The business rationale provided is in the form of potential

improvement in performance versus resources needed to achieve that improvement. The

performance improvement metrics identified were: (1) improved Mean-Time-To-Resolve;

(2) reduced SL breaches; (3) reduced number of transfers for specific priorities; and (4)

maintaining a high level of trust to ensure the system is used and the investment is benefi-

cial.

The recommendation framework improves performance by the Collective Expert Net-

work in applications like the service desk within the enterprise. If a routine path on the

CEN has historically achieved the SL by resolving the tickets within service time then

it has met the time and customer satisfaction goals. Using this and other principles ex-

hibited by the CEN in its digital trace, we developed the two-level framework suited for

enterprise deployment. The path recommendation results are promising as they indicate

77% R-precision for the end-to-end model. The recommended R-TRSs are more than 96%
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likely to meet the SL goals. The overall two-level classification model has also shown 10%

reduction in average SL violation rate mainly by preventing frequent content from getting

misrouted by the CEN.

Also there are three main contributions towards successful deployment within the en-

terprise ITSD. (1) The detailed analysis of extensive operational data to motivate the CEN

conceptual model appropriate for time-constrained problem solving by expert networks as

elaborated in Section 4.1. (2) Using CEN behavior insights obtained from the analysis

to develop the principles that must be met by assistive and trustworthy recommendations

in a two-level framework as explained in Section 4.4. And (3) The supervised learning

model that meets the principles along with the experimental setup that show performance

improvement as presented in Sections 4.5 and 4.6.
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Chapter 5: Enhanced Framework: Recommendation with Rigorous

Time Estimation

In this chapter we answer the following key technical questions:

• Can we improve the performance of CEN with respect to resolution time by consid-

ering TRS workflows globally rather than just local transfers?

• Can we achieve a rigorous resolution time estimation model for recommended TRSs

at the prediction time in order to improve users’ trust in the recommendations?

The research reported in the previous chapter only partially answered the first ques-

tion. Validation found that while resolution accuracy increases by recommending R-TRSs

(workflows), the TTR estimates (ETTR) are deviated from actual TTRs (ATTR) resulting

in high time estimation errors. This discrepancy warrants further research addressed in

chapter for the following two reasons:

• A discrepancy between ETTR and ATTR for ticket t could be desirable! Particularly,

if ETTR is less than ATTR, that could signal an improvement resulted from taking a

RecTRS (i.e. a notation for recommended TRS) that is more efficient. This is signif-

icant because currently SLTs are relaxed to accommodate worst case scenarios. By

providing methods to improve the resolution time for individual recommendations,

we also help improve the SLT goal setting and manage resources.
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• When deploying a recommendation system within IT operations, the trustworthiness

of the RecTRSs should be achieved by precisely estimating TTRs. We show that the

results of the previous chapter have aggregate-level time estimation causing higher

error, thus making the recommendations inaccurate with respect to TTR. This was

identified therefore as a less trustworthy framework because the professionals whose

performance is measured by meeting time constraints would not accept inaccurate

recommendations.

To address this, Sections 5.1 and 5.2 present the integration of our previous and the

above concerns into a more complete ‘training, testing and assessment’ framework as il-

lustrated in Figure 5.1. By applying this enhanced framework we show (1) that for certain

resolved tickets, their TTR is deviated from ETTR of their SLT-preserving RecTRS, and

(2) that if this discrepancy is better understood it can provide opportunities for improving

not only TTR, but also SL compliance in aggregate. To do this, the assessment method

presented in Section 5.2 also analyzes the error of ETTRs and causes for estimation errors.

This motivates the need for a more rigorous resolution time estimation modeling.

The next research step here is to understand the reaction of the experts to ticket content

that is ‘surprising’ and consequent increases in resolution time. This is achieved by building

a language model for each R-TRSs during training, and measuring the cross-entropy of a

test ticket with respect to its RecTRS's language model. We show this allows us to verify

whether high time estimation error is correlated with content that is deviated from the

inherent language model of RecTRS.

Results in Section 5.3 show that tickets with high cross-entropy or ‘surprising’ content

are strongly correlated with the high ETTR errors. This actually means we need a better

estimation model that captures not only the dynamics of surprise, but also all other factors
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Figure 5.1: Enhanced framework: time-optimal TRS recommendations

contributing to the dynamic reaction of the experts leading to high estimation errors. Using

this result as a basis, the rigorous resolution time estimation and its core components are

presented in Section 5.4 and subsequent sections by considering the experts’ dynamics.

5.1 Analysis of CEN Achievement of SLT Goals

Through exploratory analysis it was found that 24% of all the TRSs have three or more

experts (sometimes repeated more than once) to provide add-on and contributory knowl-

edge. We have identified this type of problem solving detected as collective problem solv-

ing [43]. As a reminder, the CEN is defined as a directed graph on a set of resolved tickets

T where experts and transfers in T are represented by nodes and edges, respectively.
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5.1.1 Summary of Developed Recommendation Framework and En-
hancement

In an enterprise with the service desk as the first node that sets the clock, our research

[43] discussed in Chapter 4, found that the CEN works hard at meeting SLTs and is more

successful on routine or frequent ticket content. We discovered an important pattern that

frequent ticket content is ‘highly relevant’ to certain frequent TRSs. Furthermore, of those

frequent TRSs approx. 98% met their associated SLTs. This provided the basis for the

enhanced framework in Figure 5.1:

Recommendations based on content classification: Incoming ticket is classified us-

ing a two-level classification framework introduced by our prior research in [45]. The

top-level classifier labels the ticket content as Routine or Non-Routine (Figure 5.1 Box A).

If the content is labeled as ‘Non-Routine’ then it is not used for further recommendations,

but flagged for unassisted expert-driven resolution process. This helps retain only those

tickets for which there is solid classification evidence ensuring greater accuracy to promote

trust in the recommendations. If the ticket gets labeled as Routine, it will be followed by a

second level classification which recommends a ranked list of TRSs based on the classifi-

cation confidence for the incoming ticket (Figure 5.1 Box B).

Meeting the Resolution Goal: By recommending the Routine TRSs on frequent con-

tent, research in Chapter 4 established a 34% improvement in the accuracy of the recom-

mendations when compared to the greedy baseline. In addition, it was found that the two-

level TRS classification model has high precision (77%) when TRSs are recommended.

Thus, establishing that RecTRS is an existing resolving sequence with a high likelihood to

meet its SLT.
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Meeting the SL Goal: Next there are two factors related to evaluating a proposed TRS:

(1) SLT and (2) ETTR. However, our research in Chapter 4 was limited ourselves to SLT

evaluation and found that 99.8% of the tickets in the history that achieved their SLT are also

expected to achieve their SLT after taking RecTRS (i.e. SLT Recall = 0.998). This firmly

established that the TRS recommendations are reliable and meet SLTs.

Moving to current research, we wish to identify opportunities to improve on, and not

simply meet SLTs. Thus, also improving the aggregate SLT performance of CEN on T . This

requires us to examine ETTR vs ATTR for RecTRSs. Previous time estimation models for

ETTR are very approximate. The goal is to have better methods for time estimation for

RecTRSs in Figure 5.1 Box C. Furthermore, since research in Chapter 4 does not well-

address recommendation and validation against time-constraints, it thus became important

to first conduct research into an error assessment framework for TTR estimation. This is

reported next.

5.2 Understanding ETTR to Improve Resolution Time Estimation

We first show that by developing and using a method for assessment (leveraged in

Figure 5.1 Box C) we can motivate the design of better features for time estimation for

Box C which can then in turn be used for the selection of an SLT-optimal RecTRS (Circle

F). This expands prior work by taking into consideration not only SLT achievement, but

also the estimated time performance of recommendations validated over actual resolution

time. For developing this assessment, a held-out test set of 3,560 tickets were used from

which 1,636 tickets received recommended TRSs from box B in Figure 5.1 (the remaining

1,924 were flagged as Non-Routine). The performance of resulting recommended TRSs is
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Table 5.1: Assessment of RecTRSs - ETTR vs ATTR
Assessment ETTR?ATTR Proposed Actual % test tickets

Investigate 1: > SLT Met SLT Met 65.9% [1078]
Ignore 2: > Breached SLT Met 0.2% [3]
Better 3: <= SLT Met SLT Met 31.8% [521]
Better 4: <= SLT Met Breached 1.9% [31]
Human 5: <= Breached Breached 0.2% [3]
Human 6: > Breached Breached 0.0% [0]

assessed and summarized in Table 5.1. Note that this table provides further assessment on

our earlier evaluation in Table 4.3. Specific steps underlying this analysis are as follows:

• For the fraction of test tickets for which the TRSs are recommended, we used an ex-

pectation model to further estimate their TTR. We used TP,R−TRS to denote a subset

of the training set that includes all tickets with priority P that were resolved by a par-

ticular routine TRS R − TRS. For a test ticket τ with priority P and recommended

path RecTRS the ETTR is estimated as the mean TTR of all tickets in TP,RecTRS ,

formally:

τ.ettr =
1

| TP,RecTRS |
∑

t∈TP,RecTRS

t.ttr (5.1)

• In order to compare ticket with different priorities within a unified scale we nor-

malized all ETTR and ATTR values by their corresponding SLTs, thus generating

NETTR and NATTR values. As a result of normalization if NETTR>1 then recom-

mended TRS is estimated to breach its SLT, and if NATTR>1 then its actual SLT was

breached according to the ground truth.

• For a test ticket τ we define estimation error (squared error) as: (τ.nettr − τ.nattr)2.
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The resulting six regions are next subject to causal analysis that leads to design of better

estimation models. To achieve a deeper understanding, Table 5.1 presents SLT, ATTR

and ETTR properties of tickets within each region and an assessment in the first column.

Note the last column reports the probability (and frequency) distribution of test tickets over

different regions.

• Region 1: While meeting SLTs, t.ETTR > t.ATTR. This needs to be investigated

due to the fact that the higher ETTR estimates could be due to inaccurate (means

based on history) estimation method. This motivates the further analysis and poten-

tially considering the CEN's dynamic features in the next section, and thus designing

improved methods for Box D of Figure 5.1. The output of this can then be more

accurate, resulting in reliable SLT achieving recommendations that take less time.

• Region 2: Here the proposed RecTRSs are not appropriate for recommendation and

thus not investigated further.

• Region 3: Here the proposed RecTRSs are actually improving the TTR and used as

RecTRSs utilized in final selection circle F in Figure 5.1.

• Region 4: Here the proposed TRSs are actually benefiting the business contractually

by avoiding breaches and used as RecTRSs in final selection circle F of Figure 5.1.

• Region 5: Not used for recommendation, flagged and sent directly to humans in Box

A of Figure 5.1.

• Region 6: Not used for recommendation, flagged and sent directly to humans Box A

of Figure 5.1.
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Using the assessment of the ETTRs in Table 5.1, our next goal is to further ‘Investigate’

TTR estimation methods for Box C of Figure 5.1 to gain insights and identify features that

can yield more precise TTR estimation and thus improve the RecTRS selection process in

Box D. This motivates the design of more rigorous ETTR models.

5.3 Evidences of Dynamic CEN Behaviors

Note that the ‘Investigation’ of tickets in Region 1 (motivated above) requires investi-

gation of external features for new estimation models which will improve the framework

of Figure 5.1 Boxes C, D, and F by selecting from high-confidence RecTRSs using reliably

low TTRs. Thus, the result is a new TRS recommendation model which proposes a pareto-

optimal TRS that is characterized by the optimal combination of high recommendation

confidence (i.e. P (TRS|t.content)) and low t.ETTR.

5.3.1 Refined Hypothesis to Include CEN Dynamics

The estimation model in Section 5.2 leverages the Mean TTR of the RecTRS for a given

priority, and thus lacks explicit consideration of dynamics of the experts in the CEN. We

therefore ask: Could this be a cause for inaccurate estimation?

5.3.2 Content Deviation vs ETTR Error

Path-Priority Language Models: For each test ticket τ with priority P , and recom-

mended path RecTRS, we aim to relate the language used in τ.content to the language

of all tickets in the history (training data) which had priority P and got resolved by τ 's

RecTRS. The idea here is to measure how surprising the incoming content is to the

RecTRS. Here we need a reliable model for the linguistic state of (Priority,TRS) pairs.

Therefore, we define a path-priority language model for each (Priority,TRS) pair in the
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training set. This is constructed using Bigram language models with Katz back-off smooth-

ing [30].

Cross Entropy of Content: Next for a test ticket τ , we quantify its content deviation

w.r.t. its corresponding language model for (P ,RecTRS), using cross-entropy computa-

tion:
H(τ, LM(P,RecTRS)) = − 1

N

N∑
i=1

logPLM(P,RecTRS)
(bi) (5.2)

Here there areN bigrams in τ , represented as bis and PLM(P,RecTRS)
(bi) is the probability

of the bigram bi under the language model for (P ,RecTRS). This measure is motivated

by [15] where authors used a similar measure to quantify the difference between a user’s

language and that of the community in online discussion forums. Here a higher cross

entropy for a ticket implies more deviation from the linguistic state of its RecTRS. For each

test ticket τ we compared its min-max normalized cross entropy (NCE) against its time

estimation squared error (SE). For training, we used the content of 41,800 natural language

tickets to build 118 unique language models. Then 3,200 test tickets were carefully sampled

for experimentation where each was ensured to receive accurate RecTRS (that is, matching

its actual TRS). Analysis reveals insights:

• In the condition where there is a large estimation error for a ticket (SE>5), the nor-

malized cross entropy also happens to be large. The correlation analysis for this

case resulted in R2 = 0.5156 which signifies strong positive correlation between

time estimation error and normalized cross entropy. In other words, when the res-

olution time is mis-estimated by a large margin, ticket content is largely deviated

from its RecTRSs' language models. With no conditions on the estimation error the

normalized cross entropy is only weakly correlated with the estimation error. The

positive correlations are shown in Figure 5.2 to illustrate the existence of a linear
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Figure 5.2: Squared error of NETTR vs normalized cross entropy (per each test ticket)

relationship between SE and NCE (regression line summarizes the relationship as

NCE = 0.0443SE + 0.2903 with R2 = 0.1194). This relationship is demonstrated

more transparently on the aggregate level in Figure 5.3, where larger NCE results

in higher Normalized Mean Squared Error. However, the unconditioned relationship

here is not as strong as the relationship where SE>5, due to the fact that a consid-

erable fraction of tickets (26.4%) with low estimation error (SE<1) happen to have

high normalized cross entropy (NCE>0.3). This indicates that not all tickets with

high linguistic deviation are inherently complex for the CEN. This also means the

linguistic models of historical TRSs alone cannot capture factors contributing to time

estimation.
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Figure 5.3: Normalized cross entropy vs. breach ratio, and vs. normalized mean squared
error (aggregate level)

• High estimation errors mainly result from tickets with breached SLTs. 97.8% of

tickets with SE>1 are breached (Figure 5.2). This uncovers a major pain point for

path-based ETTR model in which 96.9% of tickets with an actual breached SLT will

get estimated as meeting their SLTs. Therefore path-based ETTR model is incapable

of (1) detecting such anomalous tickets, and (2) accurately estimating on them.

• SLT Breach ratio (likelihood to breach) increases as the NCE increases as shown in

Figure 5.3. Thus, a dissimilarity metric between ticket content and the expertise of a

TRS (such as NCE) qualifies as an important metric for better TTR estimation. This
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is in conformance with [92], which suggests that a breach in SLT generally happens

due to unusual, complex or ambiguous content.

These insights lead us to requirements for a better TTR estimation model that must

leverage dynamic features available early in the resolution process to detect anomalies

(such as surprising content) and use them in the estimation process.

5.4 Rigorous Response Time Estimation Modeling

In previous sections we identified the weakness of aggregate resolution time estima-

tion model, in particular; we showed that more content deviation from the TRS language

model results in higher mean squared error for time estimation. Here we decided to move

beyond aggregate estimation measures by introducing a response time estimation model

based on dynamic features of the CEN. Motivated by the above analysis, our next step was

to achieve lower estimation errors using an ensemble multivariate regression model defined

at an expert-level.

Note that this is opening up new opportunities by shifting to a consideration of CEN

dynamics (in terms of load in queue, expertise, etc.) in order to estimate each expert’s local

contributions and its effect on resolution time of a potential TRS.

In our new approach that follows ETTR for a ticket is modeled as the sum of expected

contribution time (ECT) in each intermediate TRS node, plus the expected resolution time

(ERT) at the last node. Formally, for an arbitrary ticket τ that is recommended with a TRS

P = 〈e(1), e(2), ..., e(n)〉, The expected time to resolve is defined as:

ETTR(τ, P ) =
n−1∑
i=1

ECT (e(i), τ) + ERT (e(n), τ) (5.3)

Figure 5.4 illustrates a rigorous process for time-to-resolve estimation armed with po-

tential features that could capture the dynamics of CEN. To approximate ECT and ERT
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Time-to-Resolve Estimation:
Incoming 

Ticket: t

Recommended 

TRS:

TRS_J

E_1

E_2

. . .

E_n

ECT/ERT

 Prediction

Expected 

Time To 

Resolve:

T_J

Train

For each expert E:

Extract features from θ, and 

the dynamic environment 

only in the context of E: 

f_1, f_2, …, f_N

Target variable:

Actual Time spent at node E 

dealing with ticket θ 

For each ticket θ:

Figure 5.4: Time-to-resolve estimation, detailed expansion for Box C of Figure 5.1

functions for each expert, a multivariate regression model has to be constructed. The pre-

liminary task for such regression modeling is to identify a set of explicit and inferable

features that could affect each expert's response time. Below is a set of features that we

introduced that are intuitively causal to experts’ response time:

Features for TTR Estimation – considering dynamics of CEN :

• e(i)’s transfer/resolution expertise on τ ; This requires transfer/resolution profile
extraction for each expert.

• e(i)’s expected queue load when dealing with τ . This is to be obtained from the
ticket queue which requires load estimation for each expert at any given point of
time.

• Time elapsed divided by the SLT when the ticket is considered to be received by
e(i).

• e(i)’s mean time to respond on the speculated CI

• Other explicit features: priority, acknowledgement time divided by ACK target,
SLT-breach alerts, etc.
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5.5 Load Estimation Function

Here we introduce an estimation function that evaluates the expected number tickets

queued at a particular expert using the transfer transactional log; we refer to it as Higher

Priority Workload (HPWL) function. More formally, given the time interval that τ was at

e(i), HPWL computes the expected number of tickets that were at e(i) (at least partially)

during the same interval with sooner or equal SL deadlines:

HPWL(e(i), τ) =

∑
t∈T

Length(I(t, e(i)) ∩ I(τ, e(i)))

Length(I(τ, e(i)))
(5.4)

Where I(t, e(i)) ∩ I(τ, e(i)) 6= ∅ and t.TLTB ≤ τ.TLTB. Here I(τ, e(i)) represents

the time interval that ticket τ was at e(i). TLTB is a timer on each ticket reporting the

remaining time left until the SLT deadline.

The impact of workload on response time had to be studied, as a result of which work-

load can be deemed useful or bogus for response time estimation. Leveraging the HPWL

function, we measured the ticket load at all possible intervals in the history, and reported

the average time to respond with respect to higher priority incident load (Figure 5.5). We

summarize our findings as follows: The larger the volume of higher priority incidents at an

expert, the slower the experts’ response. Therefore, Load can work as a useful signal for

response time estimation.

5.6 Expertise Modeling

Expertise modeling has been a subject of different studies in different application do-

mains. For example in applications such as matching best reviewers for professional arti-

cles and proposals, a reviewer’s expertise is modeled using the documents that were written

by that reviewer, and the extracted expertise was then used for pairing the reviewer with
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Figure 5.5: An increase in incident load results in an increase in response time

unassigned documents [36, 42]. Expertise has also been a prevailing research topic in ques-

tion answering microblogs, for instance Zhou et al. [94] modeled expertise using language

models based on the questions that a user contributes to. The subject has recently been

worked in the social media domain where for social users’ expertise is inferred based on

structural links, and content [23, 81].

As introduced in Section 5.4, the problem that we aim to solve is: Given the history of

tickets resolved/transferred by an expert, how likely is that expert in resolving/transferring

a new ticket? Our goal thus is to (1) estimate transfer/resolution expertise for each expert
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based on the tickets they historically worked on, and (2) report proximity of a new incom-

ing ticket to a targeted expert’s transfer/resolution expertise. As motivated by [24], we will

leverage the fact that our goal can be achieved by framing the problem as a soft binary

classification problem where given an expert, and a ticket, the goal is to estimate the prob-

ability that the expert resolves the ticket, or transfers it. In the rest of this subsection, we

modeled and compare expertise extracted using several baselines, a related research, and

our new approach.

5.6.1 Expertise Modeling – Baselines

To achieve the previous goal we extract the transfer and resolution expertise for any

arbitrary expert e and report their proximity to any arbitrary ticket t. We define several

baselines for expertise extraction and proximity calculation against which to compare our

new approach.

Cosine TF-IDF: Here all tickets are transformed to TF-IDF word vector representa-

tion (first defined by Salton et al.[59]). Then for each expert e we constructed two word

vectors, e(Trans) to represent the transfer knowledge, and e(Res) to represent the resolution

knowledge. e(Trans) is computed as the average vector of all word vectors corresponding

to tickets that historically got transferred by e. Similarly, e(Res) is computed as an average

vector of all word vectors corresponding to tickets historically resolved by e. For a new

incoming ticket t, the proximity of t to e(Trans) (or e(Res)) is denoted as Sim(e(Trans), t)

(or Sim(e(Res), t)) and is evaluated using the Cosine similarity between e(Trans) (or e(Res))

and t vectors.
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Since in this application resolution is considered the flip-side of transfer, we decided to

combine our proximity measurements, constructing a probability function:

Pcos(e ∈ Resolver|t, e) =
Sim(e(Res), t)

Sim(e(Res), t) + Sim(e(Trans), t)
(5.5)

Pcos(e ∈ Transferer|t, e) = 1− Pcos(e ∈ Resolver|t, e) (5.6)

Here Pcos(e ∈ Resolver|t) denotes the estimated probability that e resolves t. By

definition if e is estimated as highly likely to be a resolver, it is highly unlikely for e to be a

transferer (i.e. classes are mutually exclusive). This probabilistic setting makes it easy for

us to validate the accuracy of expertise extraction on a hold-out transfer set.

Language Modeling: For this baseline, for each expert e we construct two bigram

language models. Resolution Language Model, denoted as e(RLM), is constructed based on

tickets resolved by e in the history log, and Transfer Language Model, denoted as e(TLM),

is constructed based on tickets transferred by e in the history log. For a sample ticket t, we

measure its language deviation from e(RLM) using the following cross entropy measure:

H(t, e(RLM)) = − 1

N

N∑
i=1

logPe(RLM)(bi) (5.7)

Here there are N bigrams in t, represented as bis and Pe(LRM)(bi) is the probability of

the bigram bi under the resolution language model of e. Similarly, by substituting all occur-

rences of e(RLM) with e(TLM), the language deviation of t from e(TLM) can be computed.

To handle rare terms in the tickets, we used additive smoothing as suggested by Charniak
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in [11]. Here we constructed a posterior probability function using these language models

as follows:

PLM(e ∈ Resolver|t, e) =
exp(H(t, e(RLM)))

exp(H(t, e(RLM))) + exp(H(t, e(TLM)))
(5.8)

PLM(e ∈ Transferer|t, e) = 1− PLM(e ∈ Resolver|t, e) (5.9)

Here PLM(e ∈ Resolver|t) denotes the estimated probability that e resolves t using

our language modeling baseline.

High-confidence ensemble: In an attempt to improve the quality of the binary Trans-

ferer/Resolver predictions, we defined a high-confidence ensemble which effectively switches

between the two baselines to achieve the highest spread on the posterior distribution for

each unlabeled ticket. Formally:

Pensemble(e ∈ Resolver|t, e) = (5.10)

{
Pcos(e ∈ Resolver|t, e) if |Pcos(e ∈ Resolver|t, e)− 1

2
| > |PLM(e ∈ Resolver|t, e)− 1

2
|

PLM(e ∈ Resolver|t, e) o.w.

Pensemble(e ∈ Transferer|t, e) = 1− Pensemble(e ∈ Resolver|t, e) (5.11)

Log linear: For comparison purposes, we also implemented a related solution intro-

duced by Sun et al. to perform expertise estimation in task completion networks [67].

They used a classic Log-linear model [6] which takes an expert’s expertise vector and a

task’s (i.e. ticket in our case) word vector as input, and outputs the expert’s capability to
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solve (i.e. resolve) the task. In Log-linear model, the probability for expert e to resolve

ticket t equals to:

PLog−Linear(e ∈ Resolver|t, e) =
1

1 + exp(−(W1t+W2Φe + b))
(5.12)

Φe represents the expertise vector of e and is estimated as: Φe = e(Res) � (e(Res) + e(Trans)),

where � represents element-wise vector division. In plain words, expertise of an expert

e is estimated as the average word vector of historical tickets resolved by e divided by

average word vector of all historical tickets received by e. Here W1 (vector), W2 (vec-

tor), and b (scalar) are parameters that need to be learned globally in the training phase.

Note that to generate training labels when framing the problem as a classification task,

P ∗Log−Linear(e ∈ Resolver|t, e) = 0 when e transfers t, and P ∗Log−Linear(e ∈ Resolver|t, e) = 1

when e resolves t (P ∗ represents a training label). This is clearly providing some flexibility

to the model (higher variance, lower bias) which should lead to more accurate classification

since there are parameters that are learned to maximize the likelihood of the data. The lo-

gistic function introduced in equation 5.12 can be considered as a quasi-similarity function

between a ticket and an expertise vector.

5.6.2 Expectation-maximization for Expertise Modeling

The key idea here is that expertise can be inferred from training instances of transfer

and resolution actions of experts. That is we estimate expertise vectors such that the cross

entropy error on the training data is minimized yielding better results than using aggregated

estimation methods.

We next introduce this improvement over the log linear expertise modeling, by learning

expertise vectors in addition to the global parameters. We are using a two-step iterative

approach. In step 1 (M-step), we learn the global parameters that maximize the likelihood
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of the training data, and in step 2 (E-step), we using the learned parameters to estimate

the expertise of all experts while maximizing the likelihood of the training data. We keep

iterating until all expertise vectors converge to fixed sets of values. Our learning algorithm

in details is provided below:

Iterative Expertise Extraction:

• Step 0: Initialize the the expertise matrix: ΦE = [Φe1Φe2 ...ΦeM ] where for any arbitrary
expert ei we have Φei = e

(Res)
i � (e

(Res)
i + e

(Trans)
i )

• Step 1: Given ΦE , use Stochastic Gradient Descent (SGD) [74] to globally learn W1,W2,
and b while minimizing the cost function for log linear model (cross-entropy function) on
all training points:

argmin
W1,W2,b

∑
∀ei,tk:<ei,tk>∈<E,T>

[−L(tk, ei)logP (R|tk, ei;W, b)− (1−L(tk, ei))log(1−P (R|tk, ei;W, b))]

(5.13)

Note that in this cost function,< E, T > is the set of all (expert, ticket) training pairs. Also,
P (R|tk, ei;W, b) is a short hand notation for PLog−Linear(e ∈ Resolver|tk, ei) parametrized
by W s, and b, and L(tk, ei) is a short hand notation for P ∗Log−Linear(e ∈ Resolver|t, e)
which is the function that generates the training labels (0 for transfer in log, 1 for resolution
in log).

• Step 2: Given learned parametersW1,W2,b, for each expert ei, locally estimate its expertise
vector, Φei:

argmin
Φei

∑
∀tk:<ei,tk>∈<E,T>

[−L(tk, ei)logP (R|tk, ei; Φei)− (1− L(tk, ei))log(1− P (R|tk, ei; Φei))]

(5.14)

Note that here PLog−Linear(e ∈ Resolver|tk, ei) is parametrized by Φei , and parameter es-
timation is separately performed by SGD for each expert.

• Step 3: if
∑|E|

i=1

∥∥∥ Φ
(k)
ei − Φ

(k+1)
ei

∥∥∥ > ε then go to Step 1.

Here ‖~v‖ is notation to show L2 norm of ~v.

• Step 4: Return ΦE and W1, W2, b.
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Figure 5.6: Perceptron representation of the E-M approach for expertise modeling

The EM algorithm that we laid out above can simply be captured in neural networks

terms. Figure 5.6 is representing our EM algorithm using two perceptrons with logistic

activation functions; The first one is the global perceptron running on the entire data set to

estimate the global parameters (M-step), and the second one is the local perceptron defined

for each expert on the training data corresponding to that expert to estimate his/her expertise

(E-step). Algorithm 3 is illustrating the details of the M-step required to train the global

perceptron, and algorithm 4 is portraying the details of the E-step required to train the local

perceptrons. In both of these algorithms the function TrainNetwork takes features, and

parameters as input, and runs the update rule of the SGD algorithm, and return the updated

parameters, and the error value.

The advantage of this algorithm over classic log-linear model is that the expertise vec-

tors are now learned in accordance with the training data, this provides enough flexibility to

the model which helps to get the most out of the training data and avoid under-fitting. Also

a lower in-sample error is expected with this iterative approach. A disadvantage could be

the running time of our E-M algorithm, since it runs SGD for as many times as the number
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Algorithm 3 Maximization Step
Input: E, T ,ΦE , b, W1, W2, ε
Output: W1, W2, b
error←∞
while error > ε do

for e ∈ E do
for t ∈ T do

Ŵ1 ← W1, Ŵ2 ← W2

if e resolved t then
〈Ŵ1, Ŵ2, b̂, error〉 ← TrainNetwork(t,Φe,W1,W2, b, 1)

end
else if e transferred t then
〈Ŵ1, Ŵ2, b̂, error〉 ← TrainNetwork(t,Φe,W1,W2, b, 0)

end
W1 ← Ŵ1, W2 ← Ŵ2, b← b̂

end
end

end

Algorithm 4 Expectation Step
Input: e, Te, b, W1, W2, ε
Output: updated Φe

error←∞
while error > ε do

for t ∈ Te do
if e resolved t then
〈nil, Φ̂e, nil, error〉 ← TrainNetwork(nil,W2, nil,Φe, t.W

T
1 + b, 1)

end
else if e transferred t then
〈nil, Φ̂e, nil, error〉 ← TrainNetwork(nil,W2, nil,Φe, t.W

T
1 + b, 0)

end
Φe ← Φ̂e

end
end
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Table 5.2: Characteristics of the data sets for experimentation

Data Set # of Tickets
# of Transfer

(P1,P2,P3,P4)
Breach Avg. Resolution

per ticket Ratio Time by SLT
Training

121,184 1.644
(12.04%,44.14%,

9.46% 0.714
& CV set 24.34%,19.48%)

Test set 30,036 1.651
(12.07%,43.72%,

9.14% 0.723
25.05%,19.16%)

of experts per iteration. As far as the running time, since we are only concerned with the

training for once, we do not consider it a major drawback.

5.6.3 Expertise Modeling – Experiments and Results

In this subsection we provide more details about our experiments with regard to ex-

pertise modeling. We used a set of 151,220 tickets for our expertise-related experiments,

80% of which was randomly chosen for training and cross validation (CV) purposes (10-

fold), and the other 20% of the data was used for testing, and performance measurement

purposes. The details of our datasets, i.e., the number of tickets, the number of transfers

per resolved ticket, the distribution of ticket priorities, breach ratio and average resolution

time by SLT are provided in Table 5.2. As can be seen both data sets are portraying similar

statistics; in other words, the training and cross validation (i.e. tuning) is performed on a

set that is from the same distribution as the test set, making the final model not suffer from

data inconsistency.

We considered 90% of the training & CV set as the training set. For all models we first

needed to perform expertise estimation. In order to do so, we only considered experts in the

training set that had transferred at least 100 tickets, and resolved at least 100 tickets, calling

them ‘solid experts’. This was because expertise estimation was practically infeasible (due

to insufficient data) for experts with very few historically resolved/transferred tickets. At
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the training phase, for solid experts we used content of their tickets and actions on tickets to

extract resolution expertise (i.e. e(Res), e(RLM), and Φe) and transfer expertise (i.e. e(Trans),

and e(TLM)).

Tuning set is considered as 10% of the training & CV set and is used for in-sample

validation and parameter tuning (i.e. decision threshold and regularization parameter). The

test set is used for out-of-sample validation and final performance evaluation of the tuned

model. In both tuning and testing phases, unseen data is used for model validation. Specif-

ically, for each action (i.e. transfer/resolution) performed by a solid expert, we computed

P (e ∈ Resolver|t, e) through different models to represent the probability that e would

resolve t, and used the actual action label in the log to validate the estimated probability.

Since all our models were probabilistic, the outputs of the introduced models were

probability distributions over possible outcomes. To be able to leverage certain validation

measures (Precision, Recall, ROC, etc.) we needed to predict a class as a final output

based on the posterior distribution; therefore, we decided to tune the decision threshold

(i.e. cut-off on resolution probability) to best classify the actions in the tuning set. To

measure classification performance, we used F1 measure computed as a harmonic mean

of precision and recall. Figure 5.7 is showing how F1 varies for different models as a

result of changing the decision threshold. Triangles on the figure are showing where F1 is

maximized per each model (Cosine:0.47, LM:0.48, Ensemble:0.46, Log-Linear:0.47, EM

Log-Linear:0.48). We used these decision thresholds to move forward with tuned models

and evaluate the performance on the test set.

After tuning the models, we tested the performance of the expertise models using tra-

ditional classification measures (F1, ROC curve, precision and recall) on the tickets of the

test set. Here we summarized the performance results of all baselines and our novel EM
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Figure 5.7: Tuning the decision threshold against F1

Log-Linear in Table 5.3. It is observable that our proposed solution (EM Log Linear) is

achieving the highest F1 in predicting the experts’ action labels. Precision in this appli-

cation means how often is the model correct when it is predicting an expert’s action to

be ‘resolution’. Recall in this application means how often is the model correct when an

expert’s actual action is ‘resolution’. Results show that EM Log Linear is outperforming

others in precision. One reason we found for low precision but higher recall on all classi-

fiers is that models are somewhat aggressive in predicting resolution over transfer which is

due to a relative resolution bias (Resolution prior probability is at 0.6 while transfer prior

probability is at 0.4) in the training set. It is interesting to see that the Cosine baseline is

achieving the highest Recall, but after error analysis we observed that the Coisne model
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Table 5.3: Performance of expertise extraction models
Model F1 Precision Recall

(1) TFIDF + Cosine 0.677 0.559 0.858
(2) BigramLM + CrossEntropy 0.706 0.607 0.843

(3) Ensemble (1)+(2) 0.700 0.598 0.843
(4) Log Linear 0.716 0.631 0.828

(5) EM Log Linear 0.731 0.645 0.803

is producing resolution-skewed predictions due to relatively higher inverse document fre-

quencies in the TFIDF vectors for resolution expertise (i.e. more specific vocabulary used

for resolution than transfer). It is also note-worthy that the Ensemble classifier did not per-

form better than the language modeling classifier mainly because most (i.e. 86.3%) of the

misclassified actions under the language model happened to be misclassified by Cosine;

therefore finding the highest confidence between the two did not help in classification; in

fact, in some cases the language modeling classifier has correctly classified an action, but

cosine overruled it with an incorrect label just due to having a higher confidence.

Figure 5.8 is showing the ROC curve as a result of classifiers evaluation on the test

set. Modifying the decision threshold on the posterior probabilities from 0 to 1 makes the

classifiers go from the most conservative resolution labeling (i.e. bottom left corner) to the

most aggressive resolution labeling (i.e. top right corner). Visibly, the largest area under

the curve is produced by EM log linear model; this shows that EM Log Linear generalized

well, and outperformed other models. Something to note here is that the EM log linear

model does not top the other models when the decision threshold is too small, or too large.

However, what matters the most is that within a reasonable neighborhood (i.e. ±0.2) of the

tuned decision thresholds, the EM log linear model surpasses the other alternatives.
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Figure 5.8: Validation of expertise modeling: true positive rate vs false positive rate

Another way of validation is to consider the estimated resolution probabilities as the

outcome of the learning algorithm. The idea is to map the estimated resolution probability

of the test tickets against their actual resolution ratio. Figure 5.9 is illustrating the distri-

bution of the fraction of resolution actions to all in the test set (i.e. empirical probability

of resolution according to the actual labels) over the estimated probability of resolution

defined by each learning algorithm. This is effectively a validation for the estimated res-

olution probability using the empirical resolution probability. Ideally, the diagonal line

(y = x) should represent perfect resolution estimation. As can be seen in the figure, EM

Log Linear is the closest model to the diagonal line throughout all estimated resolution

probability intervals. According to our EM Log Linear model, 90% of the estimated reso-

lution probabilities are between 0.20 to 0.85, which indicates that even though tails (transfer
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Figure 5.9: Validation of expertise modeling: empirical probability of resolution in log vs.
estimated resolution probability

tail on the left, and resolution tail on the right) are higher certainty areas, most of the action

population is carried elsewhere.

Next, to study the separation between the action classes, we used the test set to plot

relative frequency distribution of transfers, and relative frequency distribution of resolu-

tions over the estimated EM log linear resolution probability. Figure 5.10 is showing two

well-separated distributions where all actions are mapped to their estimated EM log linear

resolution probability. This separation signals for the fact that the EM log linear parameters

are learned properly, and the model generalizes well on the test set. The figure also por-

trays where the two action distributions interfere resulting in a high-mass low confidence

intersection area (0.4 < PEM(e ∈ Resolver|t, e) < 0.6).
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Figure 5.10: Resolution expertise clearly separating transfer actions from resolution actions
in the log

Another insight based on this figure is that the resolution actions are having a larger

spread as compared to the transfer actions; we believe this is due to the ‘expert-training’

phenomena, where tickets similar to those that have been transferred by experts in the

history (i.e. training set) happen to to get resolved by the same experts after some period

of time (i.e. in the test set).

So far we have shown that resolution/transfer expertise can be learned accurately from

historical data. In order to tie this concept of resolution expertise to the resolution time

estimation, we needed to study the impact of resolution expertise (i.e. estimated probability

of resolution) on the response time of the experts. To conduct that study, for each action

in the test data set we computed the estimated probability of resolution, and mapped it
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Figure 5.11: The impact of resolution expertise on the response time

against the response time of the expert for taking that action. Figure 5.11 is illustrating the

average time to respond per each interval of the the resolution expertise. We discovered

two interesting findings: (1) Up until a certain resolution expertise (i.e. P = 0.85) as the

estimated probability of resolution increases on the tickets, the average time to respond on

those tickets also increases. This indicates that the the less knowledgeable the expert on

the ticket, the quicker the action on the ticket. Here, actions are predominantly transfers

since for the most part the estimated resolution probabilities are less than 0.46. (2) After

a certain resolution expertise (i.e. P = 0.85) as the estimated probability of resolution

increases on the tickets, the average time to respond on those tickets sharply decreases.

This indicates that the the highest degrees of resolution knowledge by an expert on a ticket
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results in quicker action on the ticket. Here actions are predominantly resolutions since

the estimated resolution probabilities are greater than 0.46. Therefore, we conclude that

estimated resolution expertise with respect to the ticket content could work as a useful

signal (feature) for response time estimation.

5.7 Putting it All Together: Enhanced Framework with Response Time
Estimation

Finally, we wish to discuss how the response time estimation model will be used in

the enhanced framework. The research presented in this section thus far establishes that

(1) dynamic features of the CEN are detectable (due to the trends observed in Figures 5.5

and 5.11, and (2) dynamic features of the CEN are detectable are critical ticket-specific

indicators for reduction of time estimation error for resolution.

These key results established the research hypothesis and in addition a basis for the re-

maining research and methods necessary to complete the rigorous TTR estimation frame-

work (Figure 5.4). The approach is summarized below:

• Methods of this chapter (i.e. Load estimation and expertise extraction), applied for

inferring/estimating additional features that affect the experts’ response times. Per

each expert, these features will feed into that expert’s ECT/ERT model.

• ECT and ERT functions approximated for each expert, using a multivariate regres-

sion tree designed to use the following specific features:

1. expert’s transfer/resolution expertise on the ticket.

2. expert’s expected queue load when receiving the ticket.

3. Time elapsed divided by the SLT when the ticket is received.
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4. expert’s mean-time-to-respond on the speculated CI.

5. Other explicit features: priority, acknowledgement time divided by ACK target,

SLT-breach alerts.

It is important to note that the above features were initially identified by domain experts

as essential factors in experts’ response time. These features then got further studied by

this research providing experimental observations to believe existence of relations between

them and the target variable.
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Chapter 6: Conclusions and Future Research in Time-constrained

Problem-solving Networks

This chapter focuses on what this research has accomplished, and future research po-

tential from this point onward. In Section 6.1 we briefly summarize our contributions, then

in Subsections 6.2.1, 6.2.2, and 6.2.3 we provide descriptions about transfer recommenda-

tion enhancement, transfer intent discovery, and framework measurements in production as

the immediate future directions for current contributions. Also in Subsection 6.2.4 we dis-

cuss use of data-driven analytical solutions in a broader domain to further benefit quality of

supporting services in IT Service Management. Lastly, in Subsection 6.2.5 we present the

implications of IT process discovery practices in order to assist educators and practitioners

to systematically construct their service improvement cycles.

6.1 Establishing the Value of Recommendations for Time-constrained
Problem-solving

Research results of this thesis establish the hypothesis by showing that every incoming

ticket can benefit from machine recommendations achieving a 10% reduction in the vol-

ume of SL breach ratio. By flagging each incoming ticket for recommendation-assisted

processing or for human-in-the-loop processing, the research ensures better adoption of the
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framework by achieving service-level goals in enough cases to demonstrate compelling ef-

ficiency gains. The significance of flagging is to ensure that experts have greater confidence

that recommendations will meet SL goals. This is important to promote trust and improve

adoption.

The novelty of the research approach lies in the fact that the two-level recommendation

framework is based on routine workflows. This allows us to achieve a 34% improvement

over existing greedy transfer-centric models.

From a methodological perspective this research has the following contributions:

• Introduced Ticket Resolution Sequence (TRS) as a unit of problem solving; discov-

ered most influential TRSs containing collective transfer patterns to resolve routine

content.

• Built a content tagger (R/NR classifier) accurately distinguishing routine resolvable

content from non-routine content. Resulted in higher trust in adoption of the recom-

mendations.

• Built a path classifier resulted in early problem identification, resolution recommen-

dation and shorter time to resolve.

While these contributions where shown to achieve an improvement over the baseline

methods from the perspective of gaining the trust of users we found that the precision of

resolution time estimation were unsatisfactory. This is because from a trust and adoption

perspective, experts are looking for more precise SL compliance guarantees associated with

recommendations. This led to the following contributions:

• Provided a solution to involve dynamics of CEN (i.e. Expertise, and ticket load) for

a rigorous resolution time estimation to comply with Service level targets
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• Introduced a novel expertise modeling approach to extract transfer and resolution

knowledge at each expert, also introduced an expectation model to estimate the ticket

load from the transactional logs

Thus these contributions established our research hypothesis aimed at benefiting the

enterprise service support and delivery services by providing (1) lower decision and res-

olution latency, (2) lower likelihood of service level violations, and (3) higher workforce

availability and effectiveness.

Even though our contributions where aimed towards continual improvement in IT Ser-

vice Management, they can clearly have a broader impact. Some of our core contributions

can be considered as reusable solutions for different application domains: Expertise ex-

traction can be useful in information routing networks such task completion networks and

question answering microblogs; estimation of higher priority workload can be useful in

medical triaging applications, and emergency response management; Response time esti-

mation based on workload and expected quality of action can benefit many downstream

applications such as business process improvement, and optimized task allocation in cloud

computing.

6.2 Towards Future Research in Time-constrained Problem-solving

Another value of the research presented here is a novel methodology for new learning

models using intrinsic ticket properties as well as extrinsic dynamic properties of the CEN

by uniquely combining these with supervised learning and regression methods. In this

section we briefly discuss possible future research building on the existing contributions.
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Figure 6.1: Transfer-enhanced resolution recommendation framework

6.2.1 Transfer-enhanced Resolution Recommendation Using Enterprise
Taxonomy

Local transfer recommendations have been studied recently in task completion net-

works [60, 40]; some of the main shortcomings of those studies are: they do not accom-

modate SLTs in transfer recommendations; they do not consider mechanisms to battle poor

recommendation accuracy on experts with sparse transfer history, and they do not deal

with process-driven problem solving as a separate problem. As future work, in Figure

6.1 we outlined our enhanced CEN resolution recommendation framework in which the

TRS recommendation framework is only a part of the overall solution. The enhancement

is particularly about transfer recommendations which are triggered in one of the following
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situations: (1) When the ticket content is predicted not to be associated with any established

problem-solving workflow (i.e. Non-routine). (2) When an expert on a recommended rou-

tine TRS realizes that the rest of the experts on the recommended TRS are not going to

help the resolution process, and seeks for local transfers to provide an ad hoc resolution.

The novelty and the rigor of our enhanced solution is achieved by (1) augmenting ex-

perts with sparse transfer history by leveraging enterprise taxonomy to perform regular-

ization on rare and unseen transfers (2) response time estimation to help better reach SL

compliance (3) enrichment of the transfer training data by removing non-contributing ex-

perts from historical transfers (using transfer intent identification). Here, response time

estimation for transfers will be adopted from our earlier contribution presented in Section

5.6. Also transfer history enrichment will be discussed as part of our transfer intent discov-

ery initiative in section 6.2.2. Thus, in the rest of this subsection we discuss our proposed

regularization model to address the transfer sparisity challenge.

We discovered that it is fairly likely to miss many rare-transfers (from the long tail of

transfers’ frequency distribution) when sampling to build our training set. So we conducted

a quick experiment in which five iterations of 80-20 splits for train and test got assessed.

We observed an average of 18% unseen transfers in test data. Thus we found it essential to

define a smoothing scheme that takes advantage of an external information source. If there

is no transfer from expert A to expert B on the training set with the content ω then P (A→

B|ω) = 0. This is problematic causing misclassification when there is unseen content. The

general data sparsity problem happens when there is not enough training data to observe all

possible events for at least a reasonable number of times. Our smoothing scheme leverages

organizational neighborhood on the enterprise taxonomy in order to smoothen the transfer
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probabilities. Formally:

P̂
(
A→ B|ω

)
=
(
1− λ

)
P
(
A→ B|ω

)
+
λ

2

(
P
(
N(A)→ B|ω

)
+ P

(
A→ N(B)|ω

))
(6.1)

whereN(x) denotes neighbors (siblings) of expert x on the enterprise taxonomy. Of course

the above smoothing technique has broad implications towards re-modeling the probabilis-

tic transfer models. This can be considered as regularization (to avoid overfitting to the

training data) which could now percolate down from ticket conditionals to word (bigram)

conditionals. It is expected to significantly change the effectiveness of transfer models

introduced earlier such as Equation 2.2. The proof of the merits and the significance of

smoothed transfer modeling is yet to be determined after thorough experimentation on

CENs with long tail transfer distribution.

6.2.2 Transfer Intent Discovery

Understanding CEN intentions for ticket transfers helps to (1) measure contribution of

each expert in the resolution process (2) discover redundancies, and deficiencies in dealing

with particular content shedding light on patterns of collaboration and problem solving

behavior (3) enrich TRS and transfer training data by removing non-contributing experts to

better achieve SLs by shortening the resolution sequences.

As discussed in the introduction, tickets not having a content associated with R-TRSs

found to require human-centric resolution. Intent identification could mostly benefit the

analysis of the non-routine tickets. Here the direction would be to discover more about the

human-centric resolution process in the absence of routine workflows. More specifically, a

transfer intent discovery model should target identifying intentions of experts’ for collab-

oration. Note that intent is a property of a transfer which is the result of the knowledge
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Figure 6.2: Intent characterization based on transfer and resolution knowledge

applied on content. Same edge between the same two nodes in the CEN may take different

intents depending on the content of passing tickets. Figure 6.2 characterizes different types

of intent identified based on the transfer and resolution knowledge at source and target ex-

perts. Please note that transfer knowledge and resolution knowledge on the ticket can be

assessed by our language modeling solution introduced earlier in Section 5.6. Here the goal

should be to build an intent tagger given the source, target and the transferred ticket. Con-

struction of such a tagger helps (1) identify inefficient transfer behavior as they take place,

(2) recognize the least efficient experts based on their historical transfer intent distribution,

and (3) enrich the data for transfer recommendations by removing mediation/exploration

intents from the training set.
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6.2.3 Framework Measurements in Production

Thus far we have presented the qualifications of our resolution recommendation frame-

work in terms of recommendations accuracy against the historical labeled data. The inter-

active use of a model exposes important aspects of that model that are not captured when

only considering accuracy, most notably the computational cost of the features used by

the model [51]. Thus, prediction accuracy is not enough to guarantee the adaptability of

the recommendations. We believe deploying the framework as a pilot can enable valuable

measurements on the users interaction with the system.

As future work we propose user feedback utilization after deployment. Particularly

user feedback can help with usability evaluation, usability improvement, and content en-

richment:

1. Usability evaluation: below we are introducing a set of cascading conditional mea-

sures which will help to analyze users’ feedback:

• Tendency to use: How often do the users make request for recommendations?

• Recommendation rate on request: When a request is made, how often does the frame-

work make a TRS recommendation?

• Adoption rate: When a TRS is recommended, how often is the TRS completely

followed by the experts?

• Success rate after adoption (accuracy and R-precision in practice): When a recom-

mendation is adopted, how often does it result in a resolution?

2. Usability improvement: For model improvement based on feedback measures a

detailed error analysis on the untaken recommendations is required. Also user request data
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can help us to target improvement in areas for which there are most number of requests,

thus the recommendation framework can be re-engineered towards experts’ needs. Here

usability measures could lead to construction of user-content models aiming to maximize

the overlap between (1) existence of statistical evidence for the content and (2) prevalence

of demand for resolution assistance on the content. More details about the interface through

which the feedback can be collected is provided in Appendix A. Figures A.1 and A.2 are

presenting the prototypes of the pilot run interface and user feedback collection.

3. Automated follow up: content enrichment at the Service Desk: Tickets are being

capture at the IT service desk and are summarized according to the calls received from ser-

vice customers. It has been observed that many of the tickets do not contain TRS-indicative

content. In other words, there is low confidence for any TRS given the content. Not sur-

prisingly, these tickets are found to be the most puzzling ones for the agents at the time of

the calls at IT service desk, where they are unable to link the content with any CI or any

knowledge item at the first place before escalation. Part of this problem is due to customers’

limited knowledge when reporting the problem. These tickets are also going to be costly

for the CEN to resolve as the content is too general to be indicative of any resolution. Here

there is a need for an on-demand real-time text-enrichment recommendations prompting

agents with possible tags to append to the ticket in order to reduce the routing uncertainty.

The question to be answered here would be: Given a non-indicative content, what tags can

be added to increase the certainty in future routing? These tags will only get attached to the

ticket if (1) they significantly increase the path prediction certainty and (2) the agent agrees

to add them to the ticket. Here, advanced text-enrichment and domain-aided summarization

methodologies should be studied. Solving the content quality challenges at the source of

ticket generation can immensely reduce the misclassification error reported by the TRS and
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Transfer recommendations. Also in term of benefits to the enterprise, it has direct impact

on time-to-resolve improvement (and SL compliance), and on related knowledge retrieval

and CI identification.

6.2.4 Towards Comprehensive Enterprise Decision Support

This work has entirely focused on augmenting CEN with respect to service levels, while

delivering structural innovation to traditional human-intensive incident management. Fi-

nally, here we would like to briefly acknowledge some of the unexplored and open-ended

avenues of research in IT Service Management; the following domains if provided with suf-

ficient operational data can expand our current framework towards a more comprehensive

enterprise decision support system:

• Service Operations Upstream:

– Demand management – demand patterns discovery, and congestion prevention

– Change and release management – risk assessment, incident prevention

– Knowledge management – knowledge linking (dynamic to static) , automated

request for knowledge creation/modification

• Service Operations Downstream

– Problem and root cause – automated RCA recommendations using incident data

– Incident management – supporting queue scheduling system to optimize ex-

perts’ queue management

Lastly, we want to acknowledge the fact that new industry practices for software devel-

opment and integration such as DevOps [5] can significantly alter the way in which change
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and release management processes are being governed today. This could positively result

in a more transparent operational data for incident management, and in turn boost the per-

formance of data-driven recommendation frameworks (such as this work) across the entire

spectrum of incidents.

6.2.5 Implications for Practice

To serve the community of practice and educators in the broad field of IT Service Man-

agement we provide here the process of knowledge discovery that was applied to Collective

Expert Networks and is an important research process. We believe lessons learned in these

learnings could enable other practitioners follow a similar set of practices to achieve service

improvement and higher compliance and satisfaction guarantees at the time of delivery.

Critical Contextual Exploration of the IT Service Support Environment

• Learn the critical factors for contracted customers (i.e. associate cost against com-

pliance).

• Determine primary target areas for improvement, they should portray significant im-

pact on customers.

• For those target areas, identify the gaps in people, processes, and technologies. Study

the limitations of the existing workforce. Find the areas that the human factors are

deficient.

• Quantify the deficiencies with appropriate measures.

• Extract the process models using both (1) workflow documentation in the knowledge

base and (2) process discovery tools based on the enterprise event data.
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• Use process conformance checking to see if business-critical processes are being

dealt by the staff as expected.

• If human errors exist, then targeted workforce re-training should be implemented.

• If process automation gaps are found, identify whether relying on machine learning

and event log mining helps. If yes, proceed with the knowledge discovery pipeline

below.

Construction of a knowledge discovery pipeline:

• Collect all the relevant event data from appropriate enterprise data marts (data iden-

tification and selection).

• Remove unnecessary attributes, estimate missing/unavailable data. (data preprocessing.)

• Perform data transformation and mapping (i.e. sessionize (ex. sort and group) and

scale (ex. normalize) ) to make it usable by the downstream units (data wrangling).

• Identify and count patterns, construct general rules from the data (model construction).

• Evaluate the extracted rules using standard measures. If acceptable, then process new

data for interpretations. (model validation)

• If needed, re-iterate from data preprocessing step until the model passes the desired

quality.

• Deploy the model as a pilot and collect users’ feedback. Determine conditions under

which the user will trust the results.

• Re-iterate from data selection step until reaching satisfactory feedback from users.
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• Deploy the model to the production environment, and update periodically.

We believe the above steps with adequate resources for solution development, testing,

and deployment can serve the IT service support and delivery ecosystem very well.
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Appendix A: Prototypes of Resolution Recommendation Interface

Figure A.1: At the service desk while capturing the ticket
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Figure A.2: At the expert groups after escalation
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Appendix B: Code Repositories

All code repositories pertaining to the main contributions of this research are publicly

available on GitHub: https://github.com/Kayhangamma/AugmentedCEN

For more information contact the author via: moharreri.1@osu.edu
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