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Abstract

A popular approach for relating correlated measurements of a non-Gaussian response

variable to a set of predictors is to introduce latent random variables and fit a generalized

linear mixed model. The conventional strategy for specifying such a model leads to pa-

rameter estimates that must be interpreted conditional on the latent variables. In many

cases, interest lies not in these conditional parameters, but rather in marginal parameters

that summarize the average effect of the predictors across the entire population. Due to the

structure of the generalized linear mixed model, the average effect across all individuals in

a population is generally not the same as the effect for an average individual. Further com-

plicating matters, obtaining marginal summaries from a generalized linear mixed model

often requires evaluation of an analytically intractable integral or use of an approximation.

Another popular approach in this setting is to fit a marginal model using generalized esti-

mating equations. This strategy is effective for estimating marginal parameters, but leaves

one without a formal model for the data with which to assess quality of fit or make predic-

tions for future observations. Thus, there exists a need for a better approach.

We define a class of marginally interpretable generalized linear mixed models that lead

to parameter estimates with a marginal interpretation while maintaining the desirable sta-

tistical properties of a conditionally specified model. The distinguishing feature of these

models is an additive adjustment that accounts for the curvature of the link function and

thereby preserves a specific form for the marginal mean after integrating out the latent
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random variables. We discuss the form and interpretation of marginally interpretable gen-

eralized linear mixed models under various common link functions and compare inferences

obtained from these models to those obtained from conventional generalized linear mixed

models, highlighting the advantages of the marginally interpretable formulation over the

conventional one. We also address computational issues associated with marginally inter-

pretable generalized linear mixed models in both a classical framework and a Bayesian

framework. Namely, we introduce an accurate and efficient method for evaluating the

logistic-normal integral that arises in logistic mixed effects models and, for the Bayesian

setting, we propose a modification of a standard Markov chain Monte Carlo algorithm that

allows for more efficient posterior simulation in models with many latent random variables.
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Chapter 1: Introduction

The generalized linear model (GLM) provides a framework for modeling a non-Gaussian

response variable as a function of a set of predictor variables. Given a response Y and a

corresponding set of p predictors x = (x0, . . . , xp−1)
T , such a model assumes that Y rep-

resents a draw from a distribution with mean µ and then relates µ to a linear combination

of x through a link function g(·). Specifically, one models

η = g(µ) = g(E[Y ]) = xTβ,

where β is a p-vector of unknown parameters and η is standard notation for the linear

predictor on the link scale. This mean function is also commonly written as

µ = E[Y ] = h(xTβ),

where h(·) = g−1(·) is the inverse link function. Table 1.1 lists several common link

functions and their corresponding inverse link functions. The normal-theory linear model

can be viewed as a GLM with an identity link for which the data are assumed to follow

a Gaussian distribution. Two popular classes of GLMs are log-linear models and logistic

regression models. The former employs a log link and a Poisson distribution for Y whereas

the latter uses a logit link and a binomial distribution. Additional details about GLMs can

be found in Nelder and Wedderburn (1972) and McCullagh and Nelder (1989).
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Table 1.1: Common link functions for GLMs and their inverses

Link Function g(µ) h(η)
identity µ η

natural logarithm log(µ) exp(η)

probita Φ−1(µ) Φ(η)

logit log
(

µ
1−µ

)
exp(η)

1+exp(η)
= 1

1+exp(−η)

complementary log-log log
(
− log(1− µ)

)
1− exp

(
− exp(η)

)
square rootb √

µ = µ1/2 η2

reciprocalb 1
µ

= µ−1 1
η

= η−1

aΦ(·) is the cumulative distribution function of a standard normal distribution
bTypically assume µ, η > 0

When fitting a GLM, one typically assumes that the data represent independent obser-

vations from some underlying distribution. This assumption may not be reasonable if, for

example, observations naturally fall into groups or clusters. In such a case, observations

from the same group or cluster are likely to be more similar than observations from differ-

ent groups or clusters. Dependence among observations can also arise from measurements

taken across time or space. Here, observations taken near one another are likely more

similar than observations taken farther apart. Regardless of its source, the presence of cor-

relation in the data renders independence assumptions invalid and is an aspect of the data

that must be accounted for to obtain reliable inference on the parameters in the model.

One might also find that the variation observed in the data exceeds that which is ex-

pected based on the distributional assumption for the data. Many non-Gaussian distri-

butions have a well-defined mean-variance relationship from which the variance can be

computed as a function of the mean. The data are said to be overdispersed if the observed
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variation in the data is greater than one would expect for a particular distribution with a

particular mean (see McCullagh and Nelder, 1989, Section 4.5). The presence of overdis-

persion typically indicates the existence of some underlying structure to the data that is

not captured by the standard independence assumption. For example, if the data are clus-

tered into groups, heterogeneity among the clusters could lead the data to exhibit greater

variability than would be expected if there were no clustering.

When the link function in a GLM is nonlinear, how one chooses to account for depen-

dence or overdispersion has a meaningful impact on the interpretation of the model and,

in turn, on the conclusions one can draw from the model. Two broadly defined modeling

strategies are conditional models, which assume that dependence arises from the presence

of unobserved latent random variables, and purely marginal models, which largely treat

the correlation among the observations as a nuisance. This dissertation discusses the im-

pact of modeling decisions related to GLMs for dependent data and proposes a modeling

framework that has many advantages over existing strategies.

1.1 Conditional Models

In the spirit of linear mixed models for normally distributed data (see, for example,

Henderson et al., 1959; Henderson, 1975; Laird and Ware, 1982; Verbeke and Molen-

berghs, 2000), one might account for dependence in a GLM by introducing latent random

variables known as random effects. Using this strategy, the correlation or overdispersion

present in the data is assumed to arise from an explainable source of variation that, unlike

the predictors x0, . . . , xp−1, is not of direct interest to the study. As an example, consider

a longitudinal study with repeated measurements taken on the same individuals over time.

Although the presence of different subjects is a known source of variation, the variability

3



in the response due to the predictor variables x0, . . . , xp−1 is of greater interest. Whereas

x0, . . . , xp−1 might represent specific treatment levels that one wants to compare, differ-

ences in the subjects are a consequence of the study design. Interest lies not in the specific

subjects that happened to be observed, but rather in understanding the heterogeneity in the

population of subjects and how it relates to the variability present in the data. The predictors

x0, . . . , xp−1 have specific, fixed values of interest and are therefore known as fixed effects.

The random effects, in contrast, are viewed as a random sample from a population of such

effects, and we would likely see different realizations of the random effects if we were to

repeat the study. A model that incorporates both fixed effects and random effects is known

as a mixed effects model or simply as a mixed model. A GLM that includes random effects

is therefore known as a generalized linear mixed model (GLMM). For more information

about the general form of a GLMM, see McCulloch et al. (2008).

Much like a GLM, a GLMM relates the mean of a response Y to a set of p predictors x

through a link function g(·). In addition to the fixed predictors x, the linear component of

a GLMM also includes q random effects U with q-variate density fU. Conditional on U,

one typically assumes the data are independent observations from a parametric distribution

with density fY |U and mean E[Y |U = u], and then models the conditional mean as

µ = E[Y |U = u] = h(xTβ + dTu),

where d is a q-vector of covariates associated with the random effects. This model is

hierarchical in structure and does not directly assume a marginal distribution for Y . Rather,

distributional assumptions are made for U and for Y given U, and one must integrate over

the random effects density fU to obtain the marginal distribution for Y . The GLMM is a

conditional model because the mean µ is conditioned on the random effects U. The fixed

effects parameters β have a subject-specific or cluster-specific interpretation, meaning each

4



element of β provides information about the effect of the corresponding predictor on the

response for a specific subject or cluster with a specific realization of the random effect.

This interpretation does not always make sense because some predictors, such as indicators

of race or sex, never change within a single subject.

Since one assumes an underlying distribution for the data, a GLMM is a fully specified,

probabilistic model and can be fit using maximum likelihood estimation. However, for

many choices of link function and random effects distribution, evaluation of the marginal

likelihood involves an analytically intractable integral. To overcome this issue, one could

use numerical integration or maximize an approximation of the marginal likelihood instead

of the true likelihood and thereby avoid the intractable integral. An alternative to maximum

likelihood estimation is to adopt a Bayesian framework and employ Markov chain Monte

Carlo (MCMC) to sample from the posterior distribution of the unknown parameters. De-

tails regarding popular strategies for fitting GLMMs are provided in Chapter 4.

1.2 Marginal Models

Interest often lies in marginal or population-averaged effects rather than subject-specific

effects. That is, one often wants to know the average effect of a particular covariate on

the response across the entire population instead of the corresponding effect for a spe-

cific individual in the population. Although one could obtain marginal predictions from

a GLMM, it is common to directly model the marginal mean using what is known as a

marginal model. Such a model involves specification of a mean structure, typically written

as µ = E[Y ] = h(xTβ), and a covariance structure, usually with no distributional form

explicitly assumed for the data.
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Estimation of β for this type of model is ordinarily accomplished using generalized

estimating equations (GEE). Introduced by Liang and Zeger (1986) and Zeger and Liang

(1986), GEE involves solving a set of score equations analogous to those used in estimation

of ordinary GLMs (see Green, 1984; McCullagh and Nelder, 1989, Section 2.5). The score

equations used in the GEE approach include a ”working” correlation matrix to account

for the dependence among the observations. Liang and Zeger (1986) showed that GEE

can yield consistent estimates of the fixed effects parameters β even when the assumed

covariance structure is incorrect, but these estimates can be inefficient if the “working”

correlation structure does not accurately represent the true correlation structure (see Fitz-

maurice, 1995; Mancl and Leroux, 1996). The parameters that characterize the correlation,

which we denote byα, are usually treated as nuisance parameters. For situations where the

correlation parameters α are also of interest, a related approach simultaneously estimates

both β andα (Prentice, 1988; Zhao and Prentice, 1990; Prentice and Zhao, 1991). This ex-

tension was termed GEE2 by Liang et al. (1992), who showed that, unlike GEE, it requires

correct specification of the correlation structure to obtain consistent parameter estimates.

Purely marginal models are popular because they yield parameters with a desirable,

population-averaged interpretation and are easy to fit via GEE. They are not, however,

satisfactory statistical models. Marginal models specified only in terms of the mean and

covariance of the data, with no assumption for the underlying distribution of the data, are

not generative and cannot easily be used to make predictions at the individual level. In

fact, it is possible that the score equations used in the GEE method do not correspond to

the gradient of any scalar function and therefore cannot be integrated to obtain a likelihood

function (McCullagh and Nelder, 1989, Section 9.3). Thus, a marginal model specified

only in terms of the first two moments of the data does not necessarily correspond to any
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probabilistic model (see Lindsey and Lambert, 1998). The absence of a likelihood function

in purely marginal models also makes it difficult to check and compare models.

1.3 Conditional Models Versus Marginal Models

The distinction between marginal and conditional models is important because the pa-

rameters in these two types of models are generally not the same when the link function

g(·) is nonlinear (see Zeger et al., 1988; Neuhaus et al., 1991; Neuhaus and Jewell, 1993;

Diggle et al., 2002; Ritz and Spiegelman, 2004). Specifically, the two modeling strategies

generally lead to different parameter estimates with different interpretations. The lack of

equivalence stems from the curvature of the link function and is a consequence of Jensen’s

inequality. Consider, for example, a GLMM with a single random effect, where the con-

ditional mean is given by E[Y |U ] = h(xTβ + U) and we assume E[U ] = 0. Using this

expression for E[Y |U ], we can express the marginal mean of Y as

E[Y ] = E
[
E[Y |U ]

]
= E[h(xTβ + U)].

In a marginal model, one directly models the marginal mean as E[Y ] = h(xTβ). Given a

random variable U with E[U ] = 0, we can express E[Y ] as

E[Y ] = h(xTβ) = h(xTβ + 0) = h(E[xTβ + U ]).

In order for these two expressions for E[Y ] to be equivalent, the operators E[·] and h(·)

must commute, but they only do so when h(·) is a linear function. Thus, when the link

function is nonlinear, the parameters β obtained from the two models must be different in

order for the two expressions for E[Y ] to be equal. For a linear model, which can be viewed

as a GLM with an identity link, the distinction between the two modeling strategies is not

important because the link function is linear. Here, the marginal and conditional model
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formulations are equivalent because E[h(xTβ+U)] = E[xTβ+U ] = xTβ = h(xTβ) and

the two expressions for the marginal mean E[Y ] are the same.

Given their general lack of equivalence, much has been written about the relative merits

of marginal models and GLMMs. Advocates of the conditional model balk at the absence

of a likelihood for the marginal model and also dislike that GEE largely treats the param-

eters characterizing the covariance structure as a nuisance. They point to the difficulty of

checking and comparing models without an underlying density for the data and feel that

restricting oneself to only marginal inferences limits, and possibly distorts, the informa-

tion that can be extracted from the data. Lindsey and Lambert (1998) provided examples

of Simpson’s paradox where conclusions about the population on average (marginal infer-

ences) differ from what is seen for each individual. Lee and Nelder (2004) argued that the

conditional model is ”fundamental” because marginal predictions can be made from it if

necessary, but individual-level predictions cannot be made from a purely marginal model.

Advocates of the marginal model point to the robustness of GEE to misspecification of

the covariance structure and argue against the usefulness of a subject-specific interpretation.

For instance, Hubbard et al. (2010) favor marginal models because they feel mixed effects

models depend too heavily on unverifiable assumptions about the random effects. Neuhaus

et al. (1991) commented on the awkwardness of interpreting subject-specific parameters

associated with covariates that do not vary within a subject. Heagerty (1999) pointed out

that these coefficients measure contrasts that are never directly observed, while Heagerty

and Zeger (2000) called such contrasts ”model-based extrapolations” and argued that they

are highly sensitive to model assumptions. As an example, Swihart et al. (2014) discussed a

model in which race (black or white) was used as a predictor and noted that the conditional

interpretation of the race coefficient describes the difference in the response between the
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same person as a black person and, counterfactually, as a white person. Since nobody in

the study was observed to change race, they argued that a marginal parameter comparing

the black population to the white population would be more sensible.

Diggle et al. (2002), among others, advocate catering one’s model to one’s objective.

That is, one should fit a marginal model if seeking to draw conclusions about the population

and should fit a conditional model if individual-level predictions are of interest. Nonethe-

less, considerable effort has been made to reconcile the differences between marginal and

conditional models, especially for modeling data with a binary response.

1.4 Attenuation Factors

A popular “solution” to the discrepancy between marginal and conditional models for

binary response data has been to to find a proportional relationship between the two types

of models. Neuhaus et al. (1991) showed that the parameters of the marginal model are

generally smaller in magnitude than those of the mixed effects model. That is, the marginal

model parameters are attenuated toward zero relative to the conditional model parameters.

Denoting the parameters from the marginal model as β∗, this relationship has led to efforts

to find an attenuation factor c (0 < c < 1) such that β∗ = cβ. More formally, attenuation

factors aim to identify a relationship in which the following equation holds:∫
h(xTβ + dTu)fU(u)du = h(c xTβ). (1.1)

For most combinations of random effects distribution fU and inverse link function h(·),

no attenuation factor c exists such that (1.1) holds exactly for all xTβ. In such cases, one

can only find an approximate attenuation factor, meaning that β∗ ≈ cβ or, more specifi-

cally, that (1.1) holds approximately for a range of values of xTβ. Zeger et al. (1988) and

Neuhaus et al. (1991) provided two competing formulas for the approximate attenuation
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factor in the case of a logit link. The method of Neuhaus et al. (1991), which is based on a

Taylor series expansion of an expression for the univariate marginal parameter β∗, can be

generalized to other link functions. For example, Jewell and Shiboski (1990) used a similar

approach to derive an approximate attenuation factor for a model with a complementary

log-log link.

Rather than resorting to approximate attenuation factors, one could specify a random

effects distribution such that (1.1) holds exactly for some constant c and all xTβ ∈ R.

Given an inverse link function h(·) and a model with a single random intercept, Wang and

Louis (2003) used Fourier transforms to derive what they call a bridge distribution, which

allows for an exact proportional relationship between the marginal and conditional param-

eters. Typically, when one integrates over the random effects in a GLMM, the resulting

model for the marginal mean has a different functional form than the model for the con-

ditional mean. The bridge distribution preserves the functional form after integration and

therefore yields the desired proportional relationship.

Wang and Louis (2003) focused on a model with a logit link and a single random inter-

cept. The bridge distribution in this case is symmetric and mound-shaped like a Gaussian

distribution, but has heavier tails. To justify use of a bridge distribution instead of the more

familiar Gaussian distribution, Wang and Louis (2003) noted that assumptions about the

random effects distribution are difficult to verify and cited earlier work (Neuhaus et al.,

1992; Heagerty and Kurland, 2001) claiming that coefficient estimates in GLMMs with

random intercepts are not very sensitive to misspecification of the shape of the random

effects distribution. They argued that replacing the standard assumption of a Gaussian dis-

tribution for the random effects with a bridge distribution should not have much impact on

inference for β, but is convenient for model interpretation.
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The argument that the assumed random effects distribution has little impact on inference

for the fixed effects parameters β is not unfounded. Neuhaus et al. (1992) argued that bias

in the fixed effects parameter estimates due to misspecifying the form of the random effects

distribution is generally small. Others (Agresti et al., 2004; Litière et al., 2007, 2008) have

claimed that substantial bias can occur in certain cases, but these are mostly extreme cases

and some of these results have been disputed (see Neuhaus et al., 2011). More recently,

Neuhaus et al. (2013) argued that the estimate of a covariate effect is severely biased due

to random effects misspecification only if the misspecified random effect is tied to the

covariate of interest. For an overview of findings related to random effects misspecification,

see McCulloch and Neuhaus (2011).

One can find a bridge distribution for almost any link function. For example, Wang

and Louis (2003) derived such a distribution for a complementary log-log link in addition

to a logit link. However, since a linear combination of bridge distributions is generally

not a bridge distribution, this strategy for dealing with the discrepancy between marginal

and conditional models cannot be applied to models with multivariate random effects or

random slopes. Nonetheless, recent work has used copulas to extend the idea of a bridge

distribution to models with multiple correlated random intercepts that arise in longitudinal

studies (Parzen et al., 2011) and in spatial applications (Boehm et al., 2013).

An alternative to choosing a random effects distribution that allows (1.1) to hold exactly

for a particular link function is to choose a link function that allows (1.1) to hold exactly

for a particular random effects distribution. With Gaussian random effects, a probit link

allows for the desired relationship. However, a model with a probit link is more difficult

to interpret than one with a logit link because a probit model does not have the conve-

nient odds-ratio interpretation associated with the logit. With this in mind, Caffo et al.
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(2007) characterized the link function as the inverse of a cumulative distribution function

and showed that the logit can be closely approximated by a mixture of five normal distri-

butions. This approximation maintains (at least approximately) the log-odds interpretation

of the logit link while also exhibiting proportionality between the marginal and conditional

models. Further, Caffo et al. (2007) demonstrated that expressing both the random effects

distribution and the link function as a mixture of normal distributions is convenient for

developing a Gibbs sampler to fit the model and thereby simplifies computation.

Although these proportionality-seeking strategies recognize the difference between con-

ditional and marginal models, they fail to provide a single model that both has parameters

with a marginal interpretation and allows one to easily make predictions at the individual

level. Instead, they provide a relationship that one could use to obtain parameters with an

alternative interpretation after a conditional or marginal model has been fit.

1.5 Marginalized Multilevel Models

Heagerty (1999) and Heagerty and Zeger (2000) took a different approach. They pro-

posed the marginalized multilevel model, which reparameterizes the conditional mean as

E[Y |U ] = h(∆ + U), where ∆ is a function of xTβ and fU that is defined implicitly by∫
h(∆ + u)fU(u)du = h(xTβ). (1.2)

This model yields parameters with a marginal interpretation, but is a conditionally spec-

ified, generative model and therefore avoids the pitfalls associated with the absence of a

likelihood in purely marginal models fit via GEE. The parameters β are marginal parame-

ters, but one is still able to make individual-level predictions through the implicitly defined

function ∆. Heagerty and Zeger (2000) argued that this parameterization allows one to sep-

arate the target of inference from the estimation procedure. Instead of relying on GEE for
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marginal inferences and either maximum likelihood estimation or a Bayesian approach for

subject-specific inferences, the marginalized multilevel model allows one to tackle either

type of question using a single model. Further, Heagerty and Kurland (2001) demonstrated

that estimates of the marginal fixed effects parameters in a marginalized multilevel model

are less sensitive to assumptions regarding the form of the random effects distribution than

estimates of the subject-specific fixed effects parameters in a conventional GLMM.

Several extensions of the marginalized multilevel model have been introduced in recent

years. Heagerty (2002) modified the dependence structure to allow for serial correlation in

what he called a marginalized transition model. Schildcrout and Heagerty (2007) took this

idea further to allow for both serial and long-range dependence. Miglioretti and Heagerty

(2004) presented a Bayesian approach to fitting marginalized multilevel models. Wang

and Louis (2004) proposed a marginalized multilevel model with a random intercept that

is assumed to follow a bridge distribution. This leads to a form for ∆ that is a simple

rescaling of the marginal mean structure. Finally, Swihart et al. (2014) related marginalized

multilevel models to copula models.

1.6 Marginally Interpretable Models

We focus on a class of conditionally specified models with a direct marginal interpreta-

tion for the parameters. We call these models marginally interpretable models and say that

a GLMM is marginally interpretable if and only if for all xTβ∫
h(xTβ + dTu)fU(u)du = h(xTβ), (1.3)

where fU is the joint density of the random effects. Such a model is defined so that the

marginal mean h(xTβ) is preserved after integrating out the random effects. This prop-

erty is sensible because if one had independent data and fit a fixed effects GLM, the mean
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structure would typically have the form E[Y ] = h(xTβ). When the data are not indepen-

dent, random effects are introduced to account for the dependence, but these random effects

should not alter the mean structure. Unfortunately, for many common choices of link func-

tion g(·) and random effects density fU, namely when mean-zero normal random effects

are paired with canonical link functions, the marginal mean h(xTβ) is not preserved after

integration over fU and (1.3) is generally not satisfied.

Beyond ensuring that the inclusion of random effects does not distort the marginal mean

structure, the motivation for marginally interpretable GLMMs is twofold. First, we view

a conditionally specified model as superior to a purely marginal one. Treatments act on

individuals, not on averages, and models should therefore be built on the individual level.

Unlike a purely marginal model, a GLMM is a fully specified model with a well-defined

density for the data that can be used for model comparison and for making individual-

level predictions. Second, to understand how certain factors impact a population, it is

ordinarily more informative to investigate the average effect of those factors across all

units in the population than to investigate the effect for a specific unit. Thus, marginal

parameters are often of greater interest than the subject-specific parameters that arise from

conventional GLMMs, and it is useful to construct a model to have parameters with a

population-averaged interpretation. Preserving the marginal mean results in parameters

with the desired marginal interpretation.

The marginalized multilevel model of Heagerty (1999) and Heagerty and Zeger (2000)

achieves these dual goals of a fully specified, generative model and parameters with a di-

rect marginal interpretation. Consequently, the marginally interpretable GLMM is closely

related to the marginalized multilevel model. The key distinction between the marginalized
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multilevel model and our marginally interpretable model is how we conceptualize the ran-

dom effects. Our model has the same basic structure as the marginalized multilevel model,

but we parameterize ∆ = xTβ+ dTa. We call the quantity dTa the adjustment and define

it such that an analogue of (1.2) holds, where we allow for multivariate random effects U.

The adjustment dTa potentially depends on the fixed portion of the model xTβ, the param-

eters characterizing the random effects distribution fU, and the random effects design d.

Despite being a deterministic piece of the model, dTa is viewed as a location shift of the

random effects distribution. As such, we cease to conceptualize each realization of a ran-

dom effect as a single value shared by all observations in the same group or cluster. Rather,

observations sharing the same random effect are viewed as having a value representing the

same quantile of a location family of distributions. Since the location of the random effects

distribution for a particular observation depends on the covariates for that observation, the

value associated with a specific realization of a random effect varies across observations

in the same group or cluster. An example of when different observations sharing the same

random effect could be associated with different values for the random effect is when there

are repeated measurements on an individual over time and the covariates vary with time.

We discuss this characterization of the random effects in greater detail in Chapter 2.

1.7 Organization of this Thesis

The remainder of this thesis is organized as follows. Chapter 2 formally introduces

marginally interpretable GLMMs. Further detail is provided regarding the interpretation

of the random effects in these models, and the form of the adjustment is given for several

common link functions. We also address issues associated with models that include ran-

dom slopes. Chapter 3 contrasts inference based on a marginally interpretable GLMM with
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inference based on a conventional GLMM, and argues that the properties of the marginally

interpretable model are preferred over those of the conventional GLMM. Inference is dis-

cussed in both a classical framework and a Bayesian framework. Topics include hypothesis

testing, reproducibility, and consistent estimation of the random effects variance. Exam-

ples using both empirical data and simulated data highlight advantages of marginally in-

terpretable GLMMs over conventional GLMMs. Chapter 4 describes popular techniques

for fitting GLMMs and explains how those methods can be adapted for fitting marginally

interpretable models. A novel algorithm for efficiently computing the logistic-normal in-

tegral is introduced that is directly applicable to fitting marginally interpretable binomial

GLMMs with Gaussian random effects, but could also be useful in other contexts. Both fre-

quentist and Bayesian approaches to model fitting are discussed. Chapter 5 summarizes the

findings of the preceding chapters, discusses implications of these findings, and suggests

avenues for future research. Appendix A contains the data used in the examples presented

in Chapters 2, 3, and 4.
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Chapter 2: Model Structure and Interpretation

Suppose one has N observations, indexed by i = 1, . . . , N , consisting of a response Yi

and a p-vector of predictors xi. Further, assume that each observation is associated with

q unobserved latent random variables. These random effects are expressed as a q-vector

Ui and have a corresponding design vector di. The elements of di are often a subset

of the elements of xi, but such a relationship is not required. We propose a marginally

interpretable GLMM that expresses the conditional mean of the response as

E[Yi|Ui = u] = h(xTi β + dTi u + dTi ai), i = 1, . . . , N. (2.1)

We assume that the Ui have joint density given by fU and, conditional on the Ui, that the

Yi are mutually independent with density fY |U for each i. The adjustment dTi ai, when it

exists, is defined implicitly by the equation

h(xTi β) =

∫
h(xTi β + dTi u + dTi ai)fU(u)du, (2.2)

and is included to ensure that the model is marginally interpretable as defined in (1.3).

Although it is written as a term in the conditional mean and potentially depends on the

fixed effects parameters, the adjustment dTi ai is viewed as a location shift of the random

effects distribution. The remainder of this chapter elaborates on this conceptualization of

the model, provides details regarding the form of the adjustment for specific link functions,

and discusses issues related to models with random slopes.
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In many applications of GLMMs, fU is assumed to be a Gaussian density. Several

results discussed in this chapter and succeeding chapters rely on the following proposition,

which allows one to reduce a q-dimensional integral to a univariate one when dealing with

multivariate normal random effects.

Proposition 2.1. For the case when Ui ∼ Nq(0,Σ), if the q-dimensional integral∫
Rq
h(κ+ dTu + a)

( 1

2π

) q
2 |Σ|−1/2 exp

(
− 1

2
uTΣ−1u

)
du

exists, then it can be expressed as a univariate integral of the form∫
R
h(κ+ v + a)

1√
2πτ 2

exp

(
− 1

2τ 2
v2
)
dv.

Proof of Proposition 2.1: Suppose for each i = 1, . . . , N we have Ui ∼ Nq(0,Σ) and

write Ui = Σ
1
2 Zi, where Σ

1
2 is a square root matrix for Σ and Zi ∼ Nq(0, Iq). We can

define a random variable V = dTΣ
1
2 Z such that V ∼ N(0, τ 2), where τ 2 = dTΣd. It is

also possible to define q− 1 additional random variables W = (W1, . . . ,Wq−1)
T that span

the orthogonal complement of V relative to Rq such that W follows a (q− 1)-dimensional

normal distribution with density fW. Given such a V and W, we have∫
Rq
h(κ+ dTu + a)

( 1

2π

) q
2 |Σ|−1/2 exp

(
− 1

2
uTΣ−1u

)
du

=

∫
Rq
h(κ+ dTΣ1/2z + a)

( 1

2π

) q
2

exp
(
− 1

2
zTz
)
dz

=

∫
Rq
h(κ+ v + a)

1√
2πτ 2

exp

(
− 1

2τ 2
v2
)
fW(w)dwdv

=

∫
R
h(κ+ v + a)

1√
2πτ 2

exp

(
− 1

2τ 2
v2
)
dv

∫
Rq−1

fW(w)dw

=

∫
R
h(κ+ v + a)

1√
2πτ 2

exp

(
− 1

2τ 2
v2
)
dv.
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2.1 Interpretation of Random Effects

As described in Section 1.1, random effects ordinarily represent sources of variation

that are not of direct interest to a study. To understand the variability in one’s data, it

is important to understand the heterogeneity among the random effects, but learning, for

example, that a specific subject has a greater inherent risk for a negative outcome than

another subject is not usually the focus of one’s analysis. Traditionally, each random effect

is viewed as a random variable with some underlying distribution and each observation

is associated with a specific realization of this random variable. The specific realizations

of the random effect are not important because interest lies primarily in understanding its

underlying distribution. Nonetheless, thinking about the random effect for a particular

observation as a specific realization of a random variable can be helpful.

Consider, for example, a random intercept model for data clustered into groups. Tak-

ing the viewpoint that each group of observations shares its own unique realization of the

random intercept, one can think of each realization of the random effect as a shift in the

mean response that applies to all units in the group of observations sharing that random

effect. Consequently, observations in one group might be systematically greater than ob-

servations in another group due to the random intercept taking a larger value in the former

group relative to the latter. As such, the random intercept accounts for additional variation

across groups and helps to model situations where observations within the same group are

generally more similar than observations in different groups. This idea is illustrated in Fig-

ure 2.1 for a random intercept model with a single continuous predictor x. Specifically, the

conditional mean has the form E[Y |U = u] = h(β0 +β1x+u), where β0 = β1 = 1 and the

random effects follow a standard normal distribution. The solid line represents β0 + β1x,

which is the linear predictor η on the link scale when U = 0. The dashed lines represent
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Figure 2.1: Illustration of a simple random intercept model, showing the linear predictor
on the link scale along with the distribution of the random effects

β0 + β1x + U when U = −0.7 and U = 1.3, which are the 25th percentile and the 90th

percentile of the standard normal distribution, respectively. Observations corresponding to

U = −0.7 will be systematically smaller than observations corresponding to U = 1.3, and

the difference between the two on the link scale is the same regardless of the value of x.

The normal densities overlaid on the plot emphasize that the random effects are assumed

to come from a normal distribution and that, in this conventional model, the random effects

distribution is always centered at β0 + β1x.

The idea of shifting all units sharing the same realization of a random effect by the

same amount is not always applicable in a marginally interpretable model. Marginally
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interpretable GLMMs are defined such that when one integrates over the random effects

distribution the marginal mean is preserved. When the link function is nonlinear, an adjust-

ment is required to account for the curvature of the link and preserve the marginal mean.

When the curvature of the link function is not uniform across the range of observed co-

variates, it is necessary to make different adjustments for different covariate values. That

is, one might need to shift each unit within the same group of observations by a different

amount in order to preserve the marginal mean.

We think of the adjustments made to preserve the marginal mean as shifts in the location

of the random effects distribution. Under this conceptualization, all units in the same group

are not necessarily associated with the same value for the random effect. Rather, all units

in a group share the same quantile of a location family of random effects distributions. The

location of the distribution for a particular unit could depend on the observed covariates,

and units sharing the same quantile will not necessarily share the same value of the random

effect if their covariates are not equal. Consequently, each realization of a random effect

does not represent a specific value by which to shift the observations sharing that random

effect, but instead represents a set of potential values with the specific value for a particular

observation determined by xTi β. By deviating from the traditional formulation of a random

effect, we are able to separate systematic variation in the population, captured by xTi β, from

individual-level variation, captured by dTi Ui + dTi ai.

A situation where this new formulation of a random effect might arise is in a multilevel

model where the covariates xi differ across individual units in the same group or cluster.

For example, students within the same class are liable to have different characteristics, or

measurements on the same subject in a longitudinal study might change over time. Depend-

ing on the choice of link function, the adjustment could be different for different units in
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Figure 2.2: Illustration of a simple marginally interpretable random intercept model on the
logit scale (in black), contrasted with a conventional random intercept model (in gray)

the same group. Thus, within a single group, the shift in the mean response associated with

the random effect for that group could vary with the measured covariates for the individual

units sharing that random effect.

This idea is illustrated in Figure 2.2, which depicts a model with the same basic struc-

ture as the model in Figure 2.1, but with an adjustment included. We now model the

conditional mean as the E[Y |U = u] = h(β0 + β1x+ u+ a), and assume a logit link func-

tion for computing a. The gray lines represent a conventional GLMM and are identical to

Figure 2.1. The black curves demonstrate how the model changes when we include the

adjustment. The solid black curve represents β0 + β1x + a, and the dashed black curves
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represent β0 + β1x + U + a when U is either the 25th percentile or the 90th percentile of

the random effects distribution. The normal densities are now centered at β0 + β1x + a,

where a depends on the value of x. The quantity U + a for a particular realization of the

random effect always correpsonds to the same quantile of the random effects distribution,

but its magnitude varies with x because the adjustment a varies with x.

2.2 The Form of the Adjustment

The adjustment is included in the proposed model to account for the curvature of the

inverse link function and ensure that the model is marginally interpretable as defined in

(1.3). The form of the adjustment is determined by the choice of link function and random

effects distribution, whereas its specific value typically depends on xTi β. Exceptions for

which dTi ai does not depend on xTi β are models with an identity link or a log link. For a

model with an identity link, (1.3) holds as long as E[Ui] = 0. Thus, a standard linear mixed

model is marginally interpretable without including an adjustment. Table 2.1 summarizes

the form and existence of dTi ai for several common choices of link function. Specifically,

this table describes the relationship between xTi β and dTi ai for various link functions and

random effects distributions, and also indicates whether or not there exists a closed-form

solution for dTi ai. The remainder of this section explores the interplay between h(·) and

fU in greater depth.

2.2.1 Log Link

Consider a GLMM with a log link. That is, let the link function be g(·) = log(·) with

the inverse link h(·) = exp(·). In this case, dTi ai is defined such that

exp(xTi β) =

∫
exp(xTi β + dTi u + dTi ai)fU(u)du. (2.3)
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Table 2.1: Form and existence of the adjustment for common link functions

Link Function Distribution of Ui Form of dTi ai Closed Form?
identity mean exists and equals zero zero yes

log exponential tails independent of xTi β yes
probit Gaussian linear in xTi β yes

non-Gaussian nonlinear in xTi β no
logit bridge distribution linear in xTi β yes

most other distributions nonlinear in xTi β no
complementary bridge distribution linear in xTi β yes

log-log most other distributions nonlinear in xTi β no
square root restrictions on domain nonlinear in xTi β yes
reciprocal E[1/(xTi β + dTi Ui)] exists see Section 2.2.3 see Section 2.2.3

Solving (2.3) for dTi ai leads to the following proposition:

Proposition 2.2. For h(·) = exp(·), a model of the form given by (2.1) and (2.2) is

marginally interpretable if and only if dTi ai = − log
(
MU(di)

)
, where MU(di) is the

moment-generating function of Ui evaluated at di and is given byMU(di)=E[exp(dTi Ui)].

Proof of Proposition 2.2: For each i = 1, . . . , N , dividing both sides of (2.3) by the

quantity exp(xTi β + dTi ai) and then taking the natural logarithm of both sides yields

−dTi ai = log

(∫
exp(dTi u)fU(u)du

)
.

The integral in this equation is equal to MU(di). Thus, multiplying both sides by −1, we

obtain dTi ai = − log
(
MU(di)

)
, as required.

From Proposition 2.2 we obtain the following corollary:

Corollary 2.2.1. For a GLMM with inverse link function h(·) = exp(·), an adjustment

dTi ai that makes the model marginally interpretable exists if and only if MU(di) exists.

Proof of Corollary 2.2.1: This result is an immediate consequence of Proposition 2.2. For

each i = 1, . . . , N , if dTi ai exists, then dTi ai = − log
(
MU(di)

)
, and MU(di) must exist.
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Conversely, if MU(di) exists, then dTi ai = − log
(
MU(di)

)
also exists because MU(di) is

strictly positive and therefore lies in the domain of log(·).

This result constrains the set of possible random effects distributions that can be used with

this model to those with exponential tails. A t-distribution, for example, is not a valid

random effects distribution for a marginally interpretable GLMM with a log link.

To better understand the role of the adjustment for a model with a log link, consider the

case of a single random intercept Ui ∼ N(0, σ2). In this case, di = 1 for all i = 1, . . . , N ,

and we express the adjustment as ai. From Proposition 2.2 we have the following result:

Corollary 2.2.2. A model for which E[Yi|Ui = u] = exp(xTi β+u+ai) and Ui ∼ N(0, σ2)

is marginally interpretable if and only if ai = −σ2/2 for all i = 1, . . . , N .

Proof of Corollary 2.2.2: For this model, di = 1 for all i = 1, . . . , N and the moment-

generating function of Ui is MU(t) = exp(σ2t2/2). Thus, for all i = 1, . . . , N , we have

ai = − log
(
MU(di)

)
= − log

(
MU(1)

)
= − log

(
exp(σ2/2)

)
= −σ2/2, as required.

As a consequence of Proposition 2.1, the same result applies for q-variate normal random

effects Ui ∼ Nq(0,Σ), where σ2 is replaced by dTi Σdi. For simplicity, we continue to

focus on a random intercept model with variance σ2 for the random effect.

It is evident from Corollary 2.2.2 that, in this situation, the adjustment depends only

on the random effects variance σ2 and is independent of the fixed effects. It is simply

an additive offset on the log scale that pulls the conditional mean E[Yi|Ui] down by the

same amount for every i = 1, . . . , N . This effectively shifts the location of the random

effects distribution in a manner that makes the model marginally interpretable by ensuring

that E[Yi] = exp(xTi β). A conventional GLMM would express the conditional mean as
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E[Yi|Ui] = exp(xTi β + Ui), and integrating over fU would yield

E[Yi] = E
[
E[Yi|Ui]

]
= E[exp(xTi β + Ui)] = E[exp(xTi β) exp(Ui)]

= exp(xTi β)E[exp(Ui)] = exp(xTi β)MU(1) = exp(xTi β) exp

(
σ2

2

)
,

where MU(1) = E[exp(Ui)] is the moment-generating function of a N(0, σ2) random vari-

able evaluated at t = 1. Thus, provided σ2 6= 0, this conditional model does not preserve

the marginal mean E[Yi] = exp(xTi β).

The failure of the conventional GLMM to preserve the marginal mean stems from the

nonlinearity of the link function. Since exp(·) is a convex function, differences between

positive random effects are amplified on the original scale of the data whereas differences

between negative random effects are reduced. That is, the impact of the inverse link trans-

formation is asymmetric. To illustrate this phenomenon, the black curves in Figure 2.3

represent a standard normal density and the same density when all the values on the hor-

izontal axis are transformed via the function exp(·). The transformation causes the sym-

metric distribution to become skewed right. As a consequence, even though the initial

distribution had mean zero, the mean after the transformation is not exp(0) = 1, but rather

exp(1/2) ≈ 1.65. Since an additive random effect on the log scale has a multiplicative

effect on the original scale of the data and E[exp(Ui)] > 1, the impact of a symmetric,

mean-zero random effect is not negligible on average on the original scale of the data de-

spite having no effect on average on the link scale.

It is to account for the asymmetry induced by the convexity of the inverse link function

that we introduce the adjustment. In this instance, the adjustment is an additive offset on

the log scale and is always negative to counteract the asymmetric pull of the convex inverse

link function illustrated in Figure 2.3. The adjustment serves to shift the distribution of

Ui so that its mean effect on the original scale, as opposed to its mean effect on the log
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Figure 2.3: Density of U1 ∼ N(0, 1) (in black) and U2 ∼ N(−1/2, 1) (in gray) on their
original scale and after being transformed via exp(·); each dot on the horizontal axis repre-
sents the mean of the corresponding distribution

scale, is negligible. The gray curves in Figure 2.3 are analogous to the black curves, but

for a N(−1/2, 1) distribution instead of a N(0, 1) distribution. By shifting the mean in

this manner we obtain a distribution that has mean one after transforming via exp(·). This

allows the marginal mean to be preserved after integration, as desired.

2.2.2 Links with Bounded Domain

Several common link functions, including the probit, logit, and complementary log-log,

are defined only on a bounded subset of the real line. In turn, the range of the corresponding

inverse link function h(·) is constrained to a bounded interval. For models with such a link

function, the following theorem applies:
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Theorem 2.1. Consider a model of the form given in (2.1) with h : R → [`, u]. Suppose

h(·) is increasing and continuous, h(η)→ ` as η → −∞, and h(η)→ u as η →∞. Then

an adjustment dTi ai that satisfies (2.2) exists for any choice of random effects distribution.

Proof of Theorem 2.1: To simplify notation, we suppress the subscript i. For any fU,

−∞ < ` = `

∫
fU(u)du ≤

∫
h(xTβ+dTu+dTa)fU(u)du ≤ u

∫
fU(u)du = u <∞.

Thus, the integral
∫
h(xTβ + dTu + dTa)fU(u)du exists. Further, this integral is a con-

tinuous function of dTa and, provided d 6= 0, the following two limits hold:

lim
dT a→−∞

∫
h(xTβ + dTu + dTa)fU(u)du = `,

lim
dT a→∞

∫
h(xTβ + dTu + dTa)fU(u)du = u.

Since ` ≤ h(xTβ) ≤ u, continuity implies that for any value of h(xTβ) there exists an

adjustment dTa such that (2.2) holds. When d = 0, h(xTβ + dTu + dTa) = h(xTβ) and

(2.2) trivially holds.

Thus, one can always construct a model to be marginally interpretable when the link func-

tion is defined only on a bounded interval. We now discuss link functions with this property.

Probit Link

Consider a model with a probit link. That is, let g(·) = Φ−1(·) and h(·) = Φ(·), where

Φ(·) is the cumulative distribution function of a standard normal distribution. The range of

the inverse link function h(·) is the bounded interval (0, 1). Therefore, Theorem 2.1 applies

and an adjustment dTi ai that makes the model marginally interpretable exists for any choice

of random effects distribution.

For a model with a probit link and normal random effects, dTi ai has a closed form.

Specifically, let Ui ∼ Nq(0,Σ), where Σ is a covariance matrix. One can show that with no
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adjustment this model satisfies a multivariate analogue to (1.1) with c = (1 + dTi Σdi)
−1/2

(see McCulloch et al., 2008, page 208). This leads to the following proposition:

Proposition 2.3. For h(·) = Φ(·) and Ui ∼ Nq(0,Σ), a model of the form given by (2.1)

and (2.2) is marginally interpretable if and only if dTi ai =
(
(1 + dTi Σdi)

1/2 − 1
)
xTi β.

Proof of Proposition 2.3: Let Ui ∼ Nq(0,Σ) and ε ∼ N(0, 1), and define W = ε−dTi Ui

so that W ∼ N(0, 1 + dTi Σdi). Then,∫
Φ(xTi β + dTi u + dTi ai)fU(u)du =

∫
P(ε ≤ xTi β + dTi u + dTi ai)fU(u)du

= P(ε ≤ xTi β + dTi Ui + dTi ai) = P(ε− dTi Ui ≤ xTi β + dTi ai)

= P(W ≤ xTi β + dTi ai) = Φ

(
xTi β + dTi ai

(1 + dTi Σdi)1/2

)
.

Consequently,

Φ(xTi β) =

∫
Φ(xTi β + dTi u + dTi ai)fU(u)du = Φ

(
xTi β + dTi ai

(1 + dTi Σdi)1/2

)
.

Applying Φ−1(·) to both sides yields xTi β = (xTi β + dTi ai)(1 + dTi Σdi)
−1/2. Solving for

dTi ai we obtain dTi ai =
(
(1 + dTi Σdi)

1/2 − 1
)
xTi β, as required.

Thus, dTi ai is a linear function of xTi β, which means there exists an exact proportional re-

lationship between the marginal parameters of the marginally interpretable model and the

cluster-specific parameters of the conventional model. Further, the computation required to

fit the model is fairly straightforward. Nonetheless, models with a probit link are generally

difficult to interpret because, in contrast to the logit link with its convenient log-odds inter-

pretation, the probit transformation does not represent an intuitive relationship between the

covariates and the response. We shall therefore focus on models with a logit link.
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Logit Link

Consider a GLMM with link function g(µ) = log
(
µ/(1−µ)

)
and inverse link function

h(η) = exp(η)/
(
1 + exp(η)

)
= 1/

(
1 + exp(−η)

)
. This function g(·) is known both as the

logit link and as the logistic link. The adjustment dTi ai for this model is defined such that

1

1 + e−xTi β
=

∫
1

1 + e−(x
T
i β+dTi u+dTi ai)

fU(u)du. (2.4)

Once again, the range of the inverse link function h(·) is the bounded interval (0, 1). Thus,

by Theorem 2.1, there are no restrictions on the choice of the random effects distribution.

However, for most choices of random effects distribution the integral on the right-hand side

of (2.4) is analytically intractable and there is no closed-form solution for dTi ai. One ex-

ception is the bridge distribution derived by Wang and Louis (2003). Provided the model

contains just a single random intercept, the bridge distribution leads to a closed-form solu-

tion for dTi ai that is linear as a function of xTi β.

For a model with a logit link, both the direction and magnitude of the adjustment depend

on xTi β. The direction of the adjustment is driven entirely by the convexity of the inverse

link function. The function h(η) is convex for η < 0 and concave for η > 0. Thus, the

adjustment is negative when xTi β < 0 and positive when xTi β > 0. The magnitude of dTi ai

is, for most choices of fU, a nonlinear function of xTi β. This is illustrated in Figure 2.4 for

the case of a single normal random intercept Ui ∼ N(0, σ2). In light of Proposition 2.1, the

same picture would apply for q normal random effects Ui ∼ Nq(0,Σ) if we were to replace

σ2 with dTi Σdi. It is evident from Figure 2.4 that the magnitude of dTi ai is increasing in

both σ2 and |xTi β|. Further, for very large xTi β we have the following result:
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Figure 2.4: Plot of the adjustment a as a function of the fixed portion of the model κ for
various values of σ in a model for which E[Y |U = u] = h(κ + u + a), h(·) is the inverse
logit function, and U ∼ N(0, σ2)

Proposition 2.4. For h(·) = logit−1(·) and Ui ∼ Nq(0,Σ), the value of dTi ai that allows

a model of the form given by (2.1) to satisfy (2.2) converges to 1
2
dTi Σdi × sign(xTi β) as

|xTi β| → ∞.

Proof of Proposition 2.4: We show the limit for xTi β → −∞; the limit for xTi β → ∞

follows from symmetry. Let κ = xTi β, a = dTi ai, and τ 2 = dTi Σdi. We want to satisfy

eκ

1 + eκ
=

∫
Rq

eκ+u+a

1 + eκ+u+a
fU(u)du.

Using Proposition 2.1, this simplifies to

eκ

1 + eκ
=

∫
R

eκ+v+a

1 + eκ+v+a
1√

2πτ 2
exp

(
− 1

2τ 2
v2
)
dv.

Dividing both sides by exp(κ) and taking the limit as κ→ −∞ we obtain

1 = ea
∫
R
ev

1√
2πτ 2

exp

(
− 1

2τ 2
v2
)
dv.
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Recognizing the integral on the right-hand side of this equation as the moment generat-

ing function of a N(0, τ 2) random variable evaluated with argument t = 1, we obtain

exp(−a) = exp(τ 2/2), which implies that a = −τ 2/2. Thus, dTi ai = −1
2
dTi Σdi for each

i = 1, . . . , N , as required.

Figure 2.4 also shows that, for a model with a logit link, observations that have different

values of the covariates xi also have different adjustments. This helps illustrate the point

from Section 2.1 that with a logit link, observations on units that share the same realization

of a random effect but have different measured covariates do not have their mean shifted

by the same amount. Rather, the magnitude of the shift associated with the random effect

for each observation is determined by the value of xTi β for that observation.

Complementary Log-Log Link

Consider a GLMM with a complementary log-log link. Here, g(µ) = log
(
−log(1−µ)

)
and h(η) = 1− exp

(
− exp(η)

)
. The adjustment dTi ai for this model is defined such that

exp
(
− exp(xTi β)

)
=

∫
exp

(
− exp(xTi β + dTi u + dTi ai)

)
fU(u)du. (2.5)

As with a logit link, there are no restrictions on the choice of the random effects distribu-

tion, but in most cases there is no closed-form solution for dTi ai. Wang and Louis (2003)

also derived a bridge distribution for this link function that leads to a closed-form adjust-

ment that is linear in xTi β. For more conventional choices of random effects distribution,

namely Gaussian random effects, one must use an approximation or numerical integration

to evaluate the integral in (2.5) when computing dTi ai. See Asmussen et al. (2016) for a

discussion of methods for approximating univariate integrals analogous to the integral in

(2.5) for which fU is a normal density. Since the complementary log-log link is used far

less frequently than the logit link, further computational details will not be provided here.
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2.2.3 Links with Range Restrictions

A number of common link functions map into a proper subset of the real line and

therefore require conditions on xTi β to ensure that the model is defined. For example,

the square root transformation is typically defined to have nonnegative range, and no real

number has a reciprocal of zero. Additive random effects with support on the entire real

line could lead to problems in models with these link functions because xTi β+dTi Ui could

fall outside the domain of the inverse link function h(·). Thus, special care must be taken

with these link functions, as described below.

Square Root Link

Consider a GLMM with the square root link function g(µ) = µ1/2 and inverse link

function h(η) = η2. For such a model one typically includes the restriction that xTi β ≥ 0.

Including the adjustment, we adopt the restriction that xTi β + dTi ai ≥ 0. The adjustment

is defined such that

(xTi β)2 =

∫
(xTi β + dTi u + dTi ai)

2fU(u)du. (2.6)

If we assume E[Ui] = 0, then (2.6) reduces to

(xTi β)2 = (xTi β + dTi ai)
2 + Var(dTi Ui), (2.7)

which is quadratic in dTi ai and leads to the following result:

Proposition 2.5. For h(η) = η2 and E[Ui] = 0, a model of the form given by (2.1) and

(2.2) subject to the restriction that xTi β+ dTi ai ≥ 0 is marginally interpretable if and only

if dTi ai = −xTi β +
(
(xTi β)2 − Var(dTi Ui)

)1/2.

Proof of Proposition 2.5: Expanding the square in (2.7) and then rearranging terms yields

(dTi ai)
2 + 2(xTi β)(dTi ai) + Var(dTi Ui) = 0.
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Application of the quadratic formula then leads to

dTi ai=
1

2

(
−2xTi β±

(
(2xTi β)2−4Var(dTi Ui)

)1/2)
=−xTi β±

(
(xTi β)2−Var(dTi Ui)

)1/2
.

Subject to the constraint xTi β + dTi ai ≥ 0, we use the greater of the two roots and obtain

dTi ai = −xTi β +
(
(xTi β)2 − Var(dTi Ui)

)1/2, as required.

Thus, for a model with a square root link, dTi ai is a nonlinear function of xTi β and is only

defined when xTi β ≥
(
Var(dTi Ui)

)1/2. If the random effects variance is too large, the

model cannot be fit.

Reciprocal Link

Finally, consider a model with a reciprocal link, for which g(µ) = h(µ) = 1/µ. For

a fixed effects model with this link one typically includes the restriction that xTi β > 0.

When a random intercept Ui is included in the model, the fact that h(·) tends to infinity as

its argument approaches zero forces us to also include restrictions on the distribution of Ui.

In particular, we want a model for which

1

xTi β
=

∫
1

xTi β + u
fU(u)du. (2.8)

Therefore, fU must be defined such that the integral in (2.8) exists. If we define Ui to have

positive support, then the integral exists because

0 ≤
∫

1

xTi β + u
fU(u)du ≤

∫
1

xTi β
fU(u)du =

1

xTi β
.

Rewriting (2.8) in the form given by (2.2), we have

1

xTi β
=

∫
1

xTi β + u+ ai
fU(u)du. (2.9)

Here, the inverse link function h(·) is convex, which means the adjustment ai is negative

and the distribution of Ui is shifted down. For the integral in (2.9) to be defined, we want
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Ui + ai > 0 for all i = 1, . . . , N . Thus, we require the support of Ui to be bounded below

by the maximum value of −ai across all i = 1, . . . , N . Although this restriction ensures

the existence of the integral in (2.9), it is an awkward restriction in that the support of fU

depends on the adjustment, which itself depends on the amount of variation in fU .

To avoid this circular argument, we move away from models of the form given by (2.1)

to obtain a marginally interpretable model with a reciprocal link. Rather than adjusting

the location of the random effect based on each unit’s observed covariates, we instead

alter the shape of the distribution of the random effect based on the observed covariates.

We still must satisfy (2.8), but we no longer use an additive offset to meet this condition.

The solution is to define a family of distributions for Ui such that some distribution in the

family satisfies (2.8). One option is to assume that Ui follows a shifted gamma distribution.

Specifically, let xTi β + Ui follow a gamma distribution with shape parameter αi and rate

parameter βi so that E[Ui] = αiβi − xTi β. Then the integral on the right-hand side of

(2.8) is equal to
(
βi(αi − 1)

)−1, and xTi β = βi(αi − 1). By placing additional conditions

on αi and βi one can determine the appropriate gamma distribution for Ui for each xTi β.

Alternatively, one could let xTi β+Ui follow an inverse gamma distribution with parameters

αi and βi, and be constrained by the relationship xTi β = (αiβi)
−1. In either case it is the

shape, not the location, of the random effects distribution that varies with xTi β in this

marginally interpretable model.

2.3 Models with Random Slopes

Up to this point, we have focused on the form of the adjustment dTi ai as a function of

the fixed portion of the model xTi β and the random effects density fU. How one defines di

also affects the adjustment. This is particularly important in models with random slopes.
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The notion of a random slope is most easily understood in the context of linear models. In

a simple linear model with continuous predictor x and mean function given by

E[Y ] = β0 + β1x,

the mean E[Y ] is represented as a linear function of x with slope β1. As such, β1 is known

as a slope parameter. Extending this concept to a linear mixed model, suppose we have

random effects U and V , and the conditional mean function is given by

E[Y |U, V ] = β0 + β1x+ U + V x = (β0 + U) + (β1 + V )x. (2.10)

Here, E[Y |U, V ] is represented as a linear function of x with slope β1 + V . Since V is a

random variable, β1 + V is a random quantity and is therefore known as a random slope.

In a GLMM, the notion of slope is distorted somewhat by the nonlinear link function, but

we still have a linear predictor on the link scale and therefore use the same terminology

whenever a continuous component of xi is contained in di. Grömping (1996) noted that

when di is a subset of xi, the corresponding components of β can be regarded as the

average of a distribution of individual effects. For instance, in the model given by (2.10)

each cluster of observations has its own realization of the random slope β1 + V . If V has

mean zero, then β1 represents the average of the distribution of β1 + V .

In any regression model, how the predictors xi are defined affects the model’s inter-

pretation. As an example, consider a model with a log link and two independent Gaussian

random effects: Ui ∼ N(0, σ2) and Vi ∼ N(0, τ 2). Using the subscript i to index clusters

of observations sharing the same realization of the random effects and the subscript j to

index observations within those clusters, we model the conditional mean as

E[Yij|Ui, Vi] = exp(β0 + β1xij + Ui + Vixij + dTijaij), (2.11)
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where dij = (1, xij)
T for each i and j. This is a marginally interpretable model of the

form given by (2.1) with Ui = (Ui, Vi)
T for each i. Defining the vector of predictors for

each observation as xij = (1, xij)
T , we interpret exp(β0) as the mean response across the

entire population when xij = 0. This only makes sense if zero is a reasonable value for

xij . One might instead choose to center the covariates xij about their grand sample mean

x̄ and define xij = (1, xij − x̄)T for each i and j. In this case, exp(β0) represents the

mean response across the entire population when the predictor xij is equal to its average

value in the population. Another option would be to center the covariates xij about their

cluster means x̄i· and to define xij = (1, xij − x̄i·)
T for each i and j. For this choice,

exp(β0) represents the mean response across the entire population when the predictor xij is

equal to its average value within cluster i. Since the value of x̄i· varies across clusters, this

definition of xij leads one to estimate greater variability in the random intercept because

β0 + Ui corresponds to a different value of xij for each cluster.

Due to the connection between the fixed predictors xij and the random effects Ui in a

GLMM for which dij = xij , the fit of the model, in addition to its interpretaion, is affected

by the definition of xij . The fact that centering the xij about their cluster means changes

one’s estimate of the variance of the random intercept is one example of how the choice

of covariate influences model fit. Additionally, the adjustment dTijaij explicitly depends

on dij and its magnitude is therefore driven by how one defines xij . For a model with

conditional mean given by (2.11), the adjustment, as a consequence of Proposition 2.2, is

dTijaij = −(σ2 + τ 2x2ij)/2. As such, inclusion of the adjustment takes an expression for

the conditional mean that was linear in xij on the log scale and makes it quadratic in xij on

the log scale. Thus, the form of a marginally interpretable GLMM as a function of xij is

fundamentally different from the form of a conventional GLMM in this context.
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More generally, in a marginally interpretable GLMM with log link and multivariate

normal random effects, we have the following proposition:

Proposition 2.6. Suppose h(·) = exp(·) and we have a marginally interpretable GLMM

of the form given by (2.1) and (2.2) for which Ui ∼ Nq(0,Σ) and di = xi. Then the

adjustment dTi ai is a quadratic form in both di and xi.

Proof of Proposition 2.6: By Proposition 2.2, for each i = 1, . . . , N the adjustment is

given by dTi ai = − log
(
MU(di)

)
. Since, Ui ∼ Nq(0,Σ), MU(di) = exp(dTi Σdi/2).

Thus, dTi ai = −dTi Σdi/2 = −xTi Σxi/2, where the final equality holds because di = xi.

Hence, dTi ai is a quadratic form in both di and xi, as required.

In this setting, because the adjustment is a quadratic form in xi, if the conditional mean

is written as a polynomial on the log scale, then inclusion of the adjustment doubles the

degree of the polynomial. This is stated formally in the following corollary:

Corollary 2.6.1. Suppose we have a model of the form described in Proposition 2.6 and

that the conditional mean, excluding the adjustment, is expressed as a polynomial of de-

gree r on the log scale. Then the expression for the conditional mean with the adjustment

included is a polynomial of degree 2r on the log scale.

Proof of Corollary 2.6.1: For each i = 1, . . . , N , let di = xi = (xi,1, . . . , xi,q)
T contain

xri and a subset of q − 1 elements of {1, xi, x2i , . . . , xr−1i }, where xi ∈ R. Additionally,

let β = (β0, . . . , βq−1)
T and Ui ∼ Nq(0,Σ), where the jth row and kth column of Σ is

given by σjk. Then xTi β + dTi Ui is a polynomial of degree r in xi. By Proposition 2.6,

the adjustment is dTi ai = −xTi Σxi/2 = −
∑q

j=1

∑q
k=1 xi,jxi,kσjk/2. Thus, dTi ai is also a

polynomial in xi. Further, since the maximum degree of xi,j for any j = 1, . . . , q is r, the

degree of dTi ai is 2r. Hence, xTi β + dTi Ui + dTi ai is a polynomial of degree 2r in xi.
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To illustrate Corollary 2.6.1, consider a marginally interpretable model with log link and

let xi = di = (1, xi, x
2
i , . . . , x

r
i )
T , β = (β0, . . . , βr)

T , and Ui = (Ui,0, . . . , Ui,r)
T , where

we assume the Ui,k are independent for k = 0, . . . , r and that Ui,k ∼ N(0, σ2
k). We express

the conditional mean of the data Yi as

E[Yi|Ui,0, . . . , Ui,r] = exp
(
(β0 + Ui,0) + (β1 + Ui,1)xi + · · ·+ (βr + Ui,r)x

r
i + dTi ai).

Without the adjustment, we have a polynomial of degree r on the log scale. The adjustment

for this model is given by dTi ai = −(σ2
0+σ2

1x
2
i+σ

2
2x

4
i+· · ·+σ2

rx
2r
i )/2. This is a polynomial

of degree 2r, which is double the original degree r.

For models with link functions other than the natural logarithm, the adjustment dTi ai

cannot typically be written as a quadratic form in di. However, if the random effects in a

GLMM are multivariate normal, then the adjustment often depends on a quadratic form of

di. For example, from Proposition 2.3, the expression for dTi ai for a model with a probit

link includes dTi Σdi. Also, the proof of Proposition 2.1 suggests that the adjustment is

always a function of dTi Σdi for models with multivariate normal random effects, regardless

of the choice of link function.

To demonstrate the impact of different definitions of xij on the parameter estimates and

overall fit of a GLMM with a random slope, we consider data related to roadway fatalities

in Scotland. These data were obtained from Scotland’s publicly available online database

of official statistics (statistics.gov.scot) and can be found in Tables A.1 and A.2

of Appendix A. We model the number of deaths per 1,000 people as a function of the

per capita fuel consumption measured in tonnes of petrol and diesel consumed per person.

The response Yij is the number of deaths on roadways in each of Scotland’s 29 mainland

council areas during each year from 2006 through 2011, where i = 1, . . . , 29 indexes the

council areas and j = 1, . . . , 6 indexes the years. The corresponding covariate xij is the

39



number of tonnes of petrol and diesel consumed per capita. For each council area and year,

we denote the population (in thousands of people) by zij .

We begin by fitting a model with a random intercept but no random slope. Specifically,

we model the expected number of deaths per thousand people as

E[Yij/zij|Ui] = exp(β0 + β1xij + Ui + aij),

where we assume Yij|Ui ∼ Poisson(E[Yij|Ui]) and Ui ∼ N(0, σ2). We could equivalently

express this conditional mean structure as

E[Yij|Ui] = exp
(

log(zij) + β0 + β1xij + Ui + aij
)
.

From Corollary 2.2.2, we have aij = −σ2/2 for all i and j. This model assumes that

there is variability in the roadway fatality rate across council areas, but that the relationship

between fuel consumption and the roadway fatality rate is constant across council areas.

We fit both this marginally interpretable model and an analogous model without the

adjustment via maximum likelihood estimation three times, replacing xij with xij − x̄ the

second time and with xij − x̄i· the third time. Details of the estimation procedure are

provided in Chapter 4 and the resulting parameter estimates are given in Table 2.2. Also

included in Table 2.2 is the Akaike Information Criterion (AIC) for each model, which

provides a measure of model fit subject to a penalty for model complexity (Akaike, 1973).

Smaller values of AIC indicate better fit. Regardless of how we define the predictor in this

model, the adjustment has no impact on the fit of the model. In fact, the only difference be-

tween the marginally interpretable model and the conventional model for each of the three

choices of predictor is that the estimate of β0 is shifted up in the marginally interpretable

model relative to its value in the conventional model. We discuss the relationship between

the marginal and cluster-specific model parameterizations in greater detail in Section 3.1.
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Table 2.2: Parameter estimates for several random intercept Poisson GLMMs fit to the
Scottish roadway fatalities data

Marginally Interpretable Model
xij xij − x̄ xij − x̄i·

Point Standard Point Standard Point Standard
Parameter Estimate Error Estimate Error Estimate Error

intercept (β0) -4.60 0.27 -3.06 0.09 -3.04 0.10
fuel consumption (β1) 2.56 0.42 2.56 0.42 0.72 0.15
intercept variance (σ2) 0.20 — 0.20 — 0.22 —

AIC=913.1 AIC=913.1 AIC=927.7

Conventional Model
xij xij − x̄ xij − x̄i·

Point Standard Point Standard Point Standard
Parameter Estimate Error Estimate Error Estimate Error

intercept (β0) -4.71 0.28 -3.16 0.09 -3.16 0.09
fuel consumption (β1) 2.56 0.42 2.56 0.42 0.72 0.15
intercept variance (σ2) 0.20 — 0.20 — 0.22 —

AIC=913.1 AIC=913.1 AIC=927.7

Comparing different definitions of the predictor (xij , xij − x̄, and xij − x̄i·), the model

that centers the xij about their grand mean and the model with no centering fit equally

well, while the model that centers the xij about their cluster means does not fit as well as

the other two. Centering about the cluster means leads, as expected, to a larger estimate

of the random intercept variance σ2, and also has an impact on the estimate of the slope

parameter β1. Both types of centering for xij alter the estimate of the intercept parameter

β0 because β0 provides information about the expected death rate for a different value of

xij when the covariate is centered versus when it is not.

Adding a random slope to the model, we assume Yij|Ui, Vi ∼ Poisson(E[Yij|Ui, Vi]),

Ui ∼ N(0, σ2), and Vi ∼ N(0, τ 2), define dij =(1, xij)
T , and write the conditional mean as

E[Yij|Ui, Vi] = exp
(

log(zij) + β0 + β1xij + Ui + Vixij + dTijaij
)
.
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Table 2.3: Parameter estimates for several random intercept and slope Poisson GLMMs fit
to the Scottish roadway fatalities data

Marginally Interpretable Model
xij xij − x̄ xij − x̄i·

Point Standard Point Standard Point Standard
Parameter Estimate Error Estimate Error Estimate Error

intercept (β0) -5.08 0.30 -3.01 0.10 -3.06 0.10
fuel consumption(β1) 3.42 0.57 3.70 0.68 0.83 0.20
intercept variance (σ2) 0.001 — 0.15 — 0.21 —

slope variance (τ2) 0.51 — 2.92 — 0.16 —
AIC=905.8 AIC=906.4 AIC=928.7

Conventional Model
xij xij − x̄ xij − x̄i·

Point Standard Point Standard Point Standard
Parameter Estimate Error Estimate Error Estimate Error

intercept (β0) -4.98 0.29 -3.11 0.09 -3.18 0.09
fuel consumption (β1) 3.07 0.52 3.58 0.69 0.86 0.21
intercept variance (σ2) 0.001 — 0.15 — 0.21 —

slope variance (τ2) 0.50 — 3.39 — 0.23 —
AIC=906.3 AIC=907.7 AIC=927.8

In addition to assuming that there is variability across council areas in the roadway fatality

rate, this model assumes that the relationship between fuel consumption and the roadway

fatality rate also varies by council area.

As before, we fit both this marginally interpretable model and an analogous model

without the adjustment via maximum likelihood estimation three times, replacing xij with

xij−x̄ and xij−x̄i· the second and third times. The resulting parameter estimates along with

the corresponding AIC values are given in Table 2.3. Unlike the model with only a random

intercept, inclusion of the adjustment changes the fit of the model. The adjustment in this

case is quadratic in the predictor (be it xij , xij− x̄, or xij− x̄i·) and therefore fundamentally

changes the stucture of the model. We also see more variation in the parameter estimates

across the different definitions of the predictor than we did in the model with only a random
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intercept. This is especially true for the estimates of the random effects variances. Once

again, the largest estimate for the random intercept variance σ2 corresponds to the model

that centers the xij about their cluster means, but now there are differences among the

estimates of the random slope variance τ 2 and the fixed effects parameters β0 and β1 across

all three models. For these data, not centering the xij yields the best-fitting model in terms

of AIC, but this will not always be the case.

In this particular application, every model we fit suggests that there is a positive asso-

ciation between fuel consumption and roadway fatalities. However, the different models

suggest differing amounts of variation across council areas, both in the fatality rate and in

the relationship between the fatality rate and fuel consumption. Depending on the goals of

one’s analysis, these differences can have a meaningful impact on one’s conclusions. The

key takeaway from Table 2.3 is that for a model that includes a random slope it is critical

that one think carefully about how to parameterize the model and define the predictors;

these decisions have a bigger impact on the fit of a model with a random slope than they do

on the fit of a simpler model.
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Chapter 3: Inference

Whether conducting inference in a classical framework or a Bayesian framework, the

choice between a marginally interpretable GLMM and a conventional GLMM that fails

to preserve the marginal mean can have a sizable impact on one’s conclusions. In this

chapter, we compare and contrast inferences from a marginally interpretable GLMM and a

conventional GLMM. We identify situations wherein likelihood-based inference is identi-

cal under the two formulations, but show through simulations and examples that common

inferential procedures, such as Wald tests and confidence intervals, can lead to markedly

different results for the two model parameterizations. We argue that inference based on

population-averaged, marginal parameters is typically of greater interest than inference

based on cluster-specific, conditional parameters, and that marginal parameter estimates are

more stable across different samples from the same population than their cluster-specific

counterparts. We also address the consistency of parameter estimates in GLMMs.

In order to clearly distinguish between the two sets of parameters, in this chapter we

denote the marginal fixed effects parameters in the marginally interpretable model as β∗

while continuing to denote the cluster-specific fixed effects parameters in the conventional

model as β. Specifically, we write the conditional mean of Yi in a conventional GLMM as

µi = E[Yi|Ui = u] = h(xTi β + dTi u), (3.1)
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and the conditional mean of Yi in a marginally interpretable GLMM as

µ∗i = E[Yi|Ui = u] = h(xTi β
∗ + dTi u + dTi ai). (3.2)

The adjustment dTi ai is defined implicitly by the equation

h(xTi β
∗) =

∫
h(xTi β

∗ + dTi u + dTi ai)fU(u)du. (3.3)

Where convenient, we write the adjustment as dTi ai = a(xTi β
∗,α) to emphasize that it

is a function of the fixed effects portion of the model xTi β
∗ and the parameters α that

characterize the random effects density fU.

3.1 Equivalence Between GLMM Parameterizations

In some cases, a marginally interpretable GLMM with conditional mean (3.2) is equiv-

alent to a conventional GLMM with conditional mean (3.1) in the sense that the two models

provide equal fit to the data. We consider two models equivalent if the joint marginal den-

sity fY, also called the marginal likelihood, is the same for both models. A GLMM with

conditional density fY |U and random effects density fU has joint marginal density given by

fY(y) =
N∏
i=1

∫
fU(u)fY |U(yi|Ui = u)du.

If this quantity is the same for two models, then those models yield identical predictions

and identical likelihood-based inferences. For example, likelihood ratio tests would yield

the same results for two equivalent models and, in a Bayesian framework, the posterior

distribution of the marginal mean should be the same for both models as long as the prior

distributions are also the same. We will show in Section 3.2 that, even with identical

likelihoods, two models can yield markedly different inferences if the parameters on which

inference is being made do not match. In this section, we characterize situations wherein

the marginally interpretable and conventional GLMMs are, and are not, equivalent.
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If we assume the same fU for both a marginally interpretable GLMM and a conven-

tional GLMM, any differences in the marginal density fY must arise through differences

in the conditional density fY |U. Such differences are a consequence of the two models

having two distinct expressions for the conditional mean. In order for a marginally inter-

pretable GLMM and a conventional GLMM to be equivalent, the two expressions for the

conditional mean must be equal for all i = 1, . . . , N . That is, for all xi and di, we need

h(xTi β + dTi ui) = h(xTi β
∗ + dTi ui + dTi ai).

This equation reduces to

xTi β = xTi β
∗ + dTi ai. (3.4)

If, given the parameters that characterize fU, which we denote by α, the cluster-specific

parameters β can be written as a function of the marginal parameters β∗ such that (3.4)

is satisfied for all i = 1, . . . , N , then the two models are equivalent. In such a case, there

exists an isomorphism between the marginal parameters β∗ of the marginally interpretable

model and the cluster-specific parameters β of the conventional model. When this occurs,

the difference between xTi β and xTi β
∗ is exactly equal to the adjustment dTi ai, and is com-

pensated for with an appropriate shift in the location of the random effects distribution.

To determine if a marginally interpretable GLMM is equivalent to an analogous conven-

tional GLMM, we therefore seek to find a one-to-one correspondence between the marginal

parameters β∗ and the cluster-specific parameters β.

3.1.1 One-Way Layout

Experiments are often set up to have a one-way layout, meaning that the data are divided

into a finite number of distinct groups, and the model for the data includes a separate fixed

effects parameter for each group. Data of this form can be used to conduct a one-way
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analysis of variance (or analysis of deviance), and such a model is known as a saturated

model or cell means model. For a one-way layout, the following proposition applies:

Proposition 3.1. Consider two GLMMs, one with conditional mean given by

µk = E[Yk|Uk = u] = h(κk + δTku), (3.5)

and one with conditional mean given by

µ∗k = E[Yk|Uk = u] = h(κ∗k + δTku + δTkωk), (3.6)

where k = 1, . . . , p, the κk and κ∗k are fixed effects parameters, each δk is a q-vector of

covariates, and each δTkωk is an adjustment that makes the model marginally interpretable.

Suppose fU is the same for both models, fY |U is from the same family of distributions for

both models, and the parameters α characterizing fU are constant across k = 1, . . . , p.

Then, if the adjustment δTkωk exists for all k = 1, . . . , p, the two models are equivalent.

Proof of Proposition 3.1: For k = 1, . . . , p, each δTkωk = a(κ∗k,α) is a function of κ∗k

and α. Since the p groups are distinct, each a(κ∗k,α) is computed independently of the

other p − 1 adjustments, and we can write κk = κ∗k + a(κ∗k,α) for each k = 1, . . . , p for

which a(κ∗k,α) exists. This satisfies an analogue to (3.4) for every k = 1, . . . , p and the

two models are equivalent.

More generally, if a pair of GLMMs with conditional means given by (3.1) and (3.2)

can be reparameterized into a one-way layout, then Proposition 3.1 still applies. For this

to occur, xi must take p unique values and di must take at most p unique values, where

i = 1, . . . , N , each xi is a p-vector, and p ≤ N . Further, each index i = 1, . . . , N must

map to one of p groups indexed by k = 1, . . . , p such that each xTi β is equal to one of p

values κk and each xTi β
∗ is equal to one of p values κ∗k. Under these circumstances, (3.4)
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holds for all i = 1, . . . , N and a marginally interpretable version of the model is equivalent

to a conventional version. This is stated more formally in the following corollary:

Corollary 3.1.1. Consider two GLMMs, one with conditional mean given by (3.1) and

one with conditional mean given by (3.2), each with p fixed effects parameters, where

p ≤ N . If these two models can be reparameterized such that the all of the assumptions of

Proposition 3.1 are satisfied, then the two models are equivalent.

Proof of Corollary 3.1.1: By Proposition 3.1, given two models with conditional means

(3.5) and (3.6) we can write κk = κ∗k + δTkωk for each k = 1, . . . , p for which δTkωk exists.

If there exists a mapping between the indices i = 1, . . . , N and k = 1, . . . , p that allows

(3.1) to be written as (3.5) and (3.2) to be written as (3.6), then for every i = 1, . . . , N there

exists a k = 1, . . . , p such that κk = κ∗k + δTkωk translates to xTi β = xTi β
∗ + dTi ai. Thus,

(3.4) is satisfied for all i = 1, . . . , N and the two models are equivalent.

As an example of when this result applies, consider a model with a single random

intercept Ui ∼ N(0, σ2) and a single binary predictor. Let each xi = (1, zi)
T , where

zi ∈ {0, 1} for all i = 1, . . . , N . Then either xi = (1, 0)T or xi = (1, 1)T and, in the

notation of Proposition 3.1, we have κ1 = β0 and κ2 = β0 + β1. Also, the only parameter

needed to characterize the distribution of the random effects is σ2. To satisfy (3.4) we

require the following two conditions to be met:

1. β0 = β∗0 + a(β∗0 , σ
2);

2. β0 + β1 = β∗0 + β∗1 + a(β∗0 + β∗1 , σ
2).

The first condition provides an expression for β0 as a function of β∗0 . Given this β0, the

second condition leads to the following expression for β1:

β1 = β∗1 + a(β∗0 + β∗1 , σ
2)− a(β∗0 , σ

2).
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Thus, β can be expressed as a function of β∗ such that (3.4) is satisfied for all i = 1, . . . , N ,

and the marginally interpretable GLMM is equivalent to the conventional GLMM.

If we continue to assume a single Gaussian random intercept, but add a second binary

predictor and include the interaction between the two predictors in the model, we obtain a

model for which p = 4 and each xi = (1, zi, wi, zi × wi)T , where zi, wi ∈ {0, 1}. Here,

xi ∈ {(1, 0, 0, 0)T , (1, 1, 0, 0)T , (1, 0, 1, 0)T , (1, 1, 1, 1)T}. This set has cardinality four, and

we can define κ1 = β0, κ2 = β0 + β1, κ3 = β0 + β2, and κ4 = β0 + β1 + β2 + β3. For

equivalence to hold, the following conditions must all be satisfied:

1. β0 = β∗0 + a(β∗0 , σ
2);

2. β0 + β1 = β∗0 + β∗1 + a(β∗0 + β∗1 , σ
2);

3. β0 + β2 = β∗0 + β∗2 + a(β∗0 + β∗2 , σ
2);

4. β0 + β1 + β2 + β3 = β∗0 + β∗1 + β∗2 + β∗3 + a(β∗0 + β∗1 + β∗2 + β∗3 , σ
2).

Given the marginal parameters β∗0 , β∗1 , β∗2 , and β∗3 , we can write the cluster-specific param-

eters β0, β1, β2, and β3 as

1′. β0 = β∗0 + a(β∗0 , σ
2);

2′. β1 = β∗1 + a(β∗0 + β∗1 , σ
2)− a(β∗0 , σ

2);

3′. β2 = β∗2 + a(β∗0 + β∗2 , σ
2)− a(β∗0 , σ

2);

4′. β3 = β∗3 + a(β∗0 + β∗1 + β∗2 + β∗3 , σ
2)− a(β∗0 + β∗1 , σ

2)− a(β∗0 + β∗2 , σ
2) + a(β∗0 , σ

2).

Defining β0, β1, β2, and β3 as in 1′-4′ satisfies (3.4) for all i = 1, . . . , N , and the two

models are equivalent.
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When there are more than p unique values for xi, Corollary 3.1.1 no longer applies and

equivalence is not guaranteed. Take, for example, a model with a single random intercept

Ui ∼ N(0, σ2) and two binary predictors that does not include the interaction between the

two predictors. That is, each xi = (1, zi, wi)
T , where zi, wi ∈ {0, 1}. Thus, p = 3 but

xi ∈ {(1, 0, 0)T , (1, 1, 0)T , (1, 0, 1)T , (1, 1, 1)T}, which has cardinality four. The following

equations must all be satisfied for (3.4) to hold for all i = 1, . . . , N :

1. β0 = β∗0 + a(β∗0 , σ
2);

2. β0 + β1 = β∗0 + β∗1 + a(β∗0 + β∗1 , σ
2);

3. β0 + β2 = β∗0 + β∗2 + a(β∗0 + β∗2 , σ
2);

4. β0 + β1 + β2 = β∗0 + β∗1 + β∗2 + a(β∗0 + β∗1 + β∗2 , σ
2).

One implication of these equations is that

a(β∗0 + β∗1 + β∗2 , σ
2)− a(β∗0 + β∗1 , σ

2) = a(β∗0 + β∗2 , σ
2)− a(β∗0 , σ

2). (3.7)

If the adjustment a(·, σ2) were linear in its first argument, then the additivity property of

linear functions (f(x+ y) = f(x) + f(y) ∀x, y ∈ R) would imply that (3.7) is always true.

Since a(·, σ2) is not necessarily linear in its first argument, (3.7) does not hold in general.

An example of when this condition does not hold is a model with a logit link and a normal

random intercept. For such a model, a(·, σ2) is nonlinear in its first argument, and (3.7)

only holds in special cases, such as when either β∗1 = 0 or β∗2 = 0 and the model essentially

reduces to the case of a single binary predictor.

Corollary 3.1.1 also does not apply when a predictor is continuous. Consider the case

when p = 2 and each xi = (1, zi)
T , where zi ∈ R. Here, xi can take more than two values.
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For equivalence between the conventional model and the marginally interpretable model,

we require that the following two conditions be met for all i = 1, . . . , N :

1. β0 = β∗0 + a(β∗0 , σ
2);

2. β0 + β1zi = β∗0 + β∗1zi + a(β∗0 + β∗1zi, σ
2).

If a(·, σ2) is not linear in its first argument, then these conditions will generally not hold

for all values of zi, i = 1, . . . , N .

In the statement of Corollary 3.1.1, we assume that the parameters α that characterize

fU remain constant for all i = 1, . . . , N . This does not necessarily need to be true for

Corollary 3.1.1 to apply, as stated in the following corollary:

Corollary 3.1.2. Suppose all of the assumptions of Corollary 3.1.1 hold, except we allow

the random effects parameters αi to vary with i. If the αi map to the same p groups,

indexed by k = 1, . . . , p, as the xi and di, then the marginally interpretable GLMM and

conventional GLMM are still equivalent.

Proof of Corollary 3.1.2: Let each vector of variance components αi, i = 1, . . . , N , take

one of p values α′k, where k = 1, . . . , p. Since calculation of the adjustment a(κ∗k,α
′
k) for

each group k = 1, . . . , p depends only on the variance components α′k for that group, each

a(κ∗k,α
′
k) is still computed independently of the other p − 1 adjustments and we are able

to write κk = κ∗k + a(κ∗k,α
′
k) for each k = 1, . . . , p as long as a(κ∗k,α

′
k) exists. As before,

this translates to xTi β = xTi β
∗ + dTi ai for each i = 1, . . . , N . Thus, (3.4) is satisfied for

every i = 1, . . . , N and the two models are equivalent.

Consider a model with a single random intercept Ui ∼ N(0, σ2
i ) for which αi is simply

σ2
i . When a group of observations is allowed to have more than one variance, Corol-

lary 3.1.2 fails. Suppose, for example, one believes that a binary predictor has no impact

51



on the conditional mean, but that it does have an impact on the random effects variance. In

this case, p = 1 and xi = 1 for all i = 1, . . . , N , but σ2
i can take either of two possible

values. Such a model could alternatively be thought of as having two random intercept

terms with the random portion of the model expressed as dTi Ui, where Ui = (Ui, Vi)
T is a

two-dimensional random vector and di = (1, 0)T or di = (0, 1)T depending on the value

of the binary predictor. Using this approach, we write the conditional mean as

µ∗i = E[Yi|Ui = u, Vi = v] = h
(
β∗0 + ziu+ (1− zi)v + dTi ai

)
,

where zi ∈ {0, 1}, Ui ∼ N(0, σ2), and Vi ∼ N(0, τ 2). To satisfy (3.4) for all i = 1, . . . , N ,

we would need the following conditions to be satisfied:

1. β0 = β∗0 + a(β∗0 , σ
2);

2. β0 = β∗0 + a(β∗0 , τ
2).

Since the adjustment a(·, ·) is generally not constant in its second argument, these two

equations typically do not hold simultaneously unless the two variances, σ2 and τ 2, are

equal and the model corresponds to the constant variance case described earlier.

If, however, the binary predictor in the preceding example were also assumed to have

an impact on the conditional mean and the data were divided into two distinct groups with

two distinct variance parameters, then Corollary 3.1.2 would apply. We could write the

conditional mean of such a model as

µ∗i = E[Yi|Ui = u, Vi = v] = h
(
β∗0 + β∗1zi + ziu+ (1− zi)v + dTi ai

)
,

where zi ∈ {0, 1}, Ui ∼ N(0, σ2), and Vi ∼ N(0, τ 2). The adjustments for the two groups

in this model would be a(β∗0 , τ
2) and a(β∗0 + β∗1 , σ

2).
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3.1.2 Matching Functional Forms

When a GLMM cannot be reduced to a one-way layout, whether or not a marginally

interpretable GLMM is equivalent to an analogous conventional GLMM depends on the

form of the adjustment, which itself depends on the choice of link function and random

effects distribution. In general, if the functional form of dTi ai matches the form of the

linear fixed effects predictor xTi β, then (3.4) holds for all i = 1, . . . , N and the two models

are equivalent. This is stated more formally as follows:

Proposition 3.2. Consider two GLMMs, one with conditional mean given by (3.1) and one

with conditional mean given by (3.2), each with p fixed effects parameters and q random

effects. Assume the elements of the q-vector di are a subset of the elements of the p-vector

xi for all i = 1, . . . , N . Suppose that fU is characterized by the parameters α and is

the same for both models, and that fY |U is from the same family of distributions for both

models. If dTi ai exists for all i = 1, . . . , N and can be written as a linear form of some

subset of xi, then the two models are equivalent.

Proof of Proposition 3.2: The fixed effects portions xTi β and xTi β
∗ of the two models each

represent a linear combination of the p terms xi,0, . . . , xi,p−1. Suppose dTi ai can be written

as a linear combination of r terms zi,1, . . . , zi,r, where r ∈ {1, . . . , p} and {zi,1, . . . , zi,r} is

a subset of {xi,0, . . . , xi,p−1}. If we arrange the relevant subset of xi and the corresponding

subsets of β and β∗ into the r-vectors zi, γ, and γ∗, then for each j = 1, . . . , r we can

write the jth term of dTi ai as cjzi,jγ∗j for some constant cj . In turn, zi,jγ∗j plus the jth term

of dTi ai is equal to (1 + cj)zi,jγ
∗
j for each j = 1, . . . , r. For each k = 0, . . . , p− 1, we can

therefore write βk = (1 + ck)β
∗
k for some constant ck if βk is one of the r elements of β
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contained in γ, and βk = β∗k otherwise. Thus, we are able to write β as a function of β∗

such that (3.4) holds for all i = 1, . . . , N , and the two models are equivalent.

In some cases when the assumptions of Proposition 3.2 are not satisfied, it is possible to

reparameterize the model so that the proposition applies. Consider, for example, a model

with a log link, a single random intercept Ui ∼ N(0, σ2), and conditional mean given by

µ∗k = E[Yk|Uk = u] = exp(κ∗k + u+ ak),

where k = 1, 2. This mean could alternatively be expressed as

µ∗i = E[Yi|Ui = u] = exp(ziκ
∗
1 + (1− zi)κ∗2 + u+ ai) = exp(xTi κ

∗ + u+ ai),

where i = 1, . . . , N , κ∗ = (κ∗1, κ
∗
2)
T , xi = (zi, 1 − zi)T , and zi ∈ {0, 1}. Since we have

a single random intercept, di = 1 for all i = 1, . . . , N and is therefore not a subset of xi.

Further, from Corollary 2.2.2, ai = −σ2/2 for all i = 1, . . . , N and is therefore constant in

zi whereas xTi κ
∗ is linear in zi. Thus, Proposition 3.2 does not directly apply. Nonetheless,

this model could be reparameterized to have conditional mean

µ∗i = E[Yi|Ui = u] = exp(β∗0 + β∗1zi + u+ ai) = exp(xTi β
∗ + u+ ai),

where i = 1, . . . , N , β∗ = (β∗0 , β
∗
1)T , xi = (1, zi)

T , and zi ∈ {0, 1}. Now, di = 1 is in

fact a subset of xi, both ai and the β∗0 term in xTi β
∗ are constant is zi, and Proposition 3.2

is applicable. This leads to the following corollary:

Corollary 3.2.1. If two GLMMs can be reparameterized in such a manner that all of the

assumptions of Proposition 3.2 are satisfied, then the two models are equivalent.

Proof of Corollary 3.2.1: If two models can be shown by Proposition 3.2 to be equivalent,

then reparameterizations of those two equivalent models are also equivalent.
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Since the functional form of dTi ai depends on the choice of link function, we highlight

situations wherein Proposition 3.2 does and does not apply for a few popular links.

Log Link

First, consider the model from the previous example with a log link and a single random

intercept Ui ∼ N(0, σ2). Then, from Corollary 2.2.2, ai = −σ2/2 for all i = 1, . . . , N , and

(3.4) reduces to

xTi β = xTi β
∗ − σ2

2
.

Since the adjustment ai is constant as a function of xi, equivalence holds as long as xi

contains an element that is constant across all i = 1, . . . , N . Typically, the first element of

xi is always equal to one, representing a fixed intercept term. In such a case, we can satisfy

(3.4) for all i = 1, . . . , N by defining β0 = β∗0 − σ2/2 and βj = β∗j for j = 1, . . . , p− 1.

Now suppose a model with a log link contains q multivariate normal random effects

Ui ∼ Nq(0,Σ) for i = 1, . . . , N . Consider a model with a single continuous predictor

such that xi = (1, zi)
T for all i = 1, . . . , N , where zi ∈ R. Further, let di = xi. It was

shown in Section 2.3 that dTi ai = −dTi Σdi/2 is a quadratic form in di, which in this case

means it is also a quadratic form in xi. Consequently, xTi β
∗ + dTi ai does not generally

equal xTi β for all i = 1, . . . , N because one is linear in zi and the other is quadratic in zi.

The functional forms do not match and Proposition 3.2 does not apply.

It is, however, possible for a marginally interpretable GLMM with a log link and ran-

dom slope to be equivalent to an analogous conventional GLMM. Consider a situation iden-

tical to the one described in the preceding paragraph, except now xi = (1, zi, z
2
i )
T while

di = (1, zi)
T . In this case, xTi β, xTi β

∗, and dTi ai are all quadratic in zi, Proposition 3.2

applies, and the two models are equivalent.

55



Probit Link

Consider a model with a probit link and a normally distributed random intercept with

variance σ2. Proposition 2.3 tells us that ai =
(
(1+σ2)1/2−1

)
xTi β

∗. Here, Proposition 3.2

applies and, in the notation of the proof of Proposition 3.2, cj =
(
(1 + σ2)1/2 − 1

)
for all

j = 0, . . . , p − 1. Thus, xTi β
∗ + ai = (1 + σ2)1/2xTi β

∗ for all i = 1, . . . , N , and setting

βj = (1 + σ2)1/2β∗j for each j = 0, . . . , p− 1 satisfies (3.4) for every i = 1, . . . , N .

Now consider a probit model with multivariate normal random effects Ui ∼ Nq(0,Σ)

that include random slopes. Specifically, let di = xi. From Proposition 2.3, the adjustment

has the form dTi ai =
(
(1 + dTi Σdi)

1/2 − 1
)
xTi β

∗ =
(
(1 + xTi Σxi)

1/2 − 1
)
xTi β

∗, which

is not necessarily linear in xi. Consequently, Proposition 3.2 does not always apply for a

model with a probit link and normal random effects, and a marginally interpretable GLMM

is not necessarily equivalent to a conventional GLMM in this context.

To emphasize the need for the elements of di to be a subset of xi for all i = 1, . . . , N

in order for Proposition 3.2 to apply, continue to assume Ui ∼ Nq(0,Σ), but now suppose

xi = (1, zi)
T and di = (1, wi)

T , where zi, wi ∈ R and each wi is uncorrelated with each zi.

As in the preceding example, dTi ai =
(
(1 +dTi Σdi)

1/2−1
)
xTi β

∗, but since di is unrelated

to xi, the adjustment is now linear in xi. We cannot, however, write β = cβ∗ for any single

constant c. For each i = 1, . . . , N , the appropriate constant would be (1 + dTi Σdi)
1/2, but

this quantity varies with i and thereby prevents us from expressing β as a function of β∗ in

a manner that satisfies (3.4) for all i = 1, . . . , N .

Logit Link

When a GLMM has a logit link function and normal random effects, the adjustment

dTi ai is nonlinear in xi and Proposition 3.2 does not apply. The examples in Section 3.1.1
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of a model with two binary predictors but no interaction between the two, and of a model

with a single continuous predictor are two situations wherein equivalence fails to hold for

a logistic-normal model.

Considering the case of a single random intercept Ui, if Ui follows the bridge distribu-

tion of Wang and Louis (2003), then ai is linear in xi and Proposition 3.2 applies. This

situation is analogous to a model with a probit link and normal random intercept as there

exists a constant c ∈ R such that β = cβ∗ satisfies (3.4) for all i = 1, . . . , N .

Complementary Log-Log Link

Much like for models with a logit link, equivalence generally only exists between a

conventional model and a marginally interpretable model with a complementary log-log

link when fU is assumed to be the bridge density derived by Wang and Louis (2003).

3.2 Hypothesis Testing

In this section, we investigate the behavior of three classical large sample tests – the

likelihood ratio test, the Wald test, and the score test – in the context of GLMMs. When a

marginally interpretable GLMM and a conventional GLMM are equivalent (as defined in

the previous section) under both the null hypothesis and the alternative hypothesis, likeli-

hood ratio tests yield identical results under the two models. Wald tests and score tests,

however, can lead to markedly different conclusions between the two models if one is not

careful to focus the tests on the same quantity. Confidence intervals obtained from inverting

these tests, including intervals obtained from inverting the likelihood ratio test, can also be

discrepant in these situations, as will be shown through a few examples.

Suppose our model contains r parameters, denoted by the r-vector θ, and we want

to make inference on those parameters. Unless otherwise indicated, our null hypothesis
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is H0 : θ = θ0 and our alternative hypothesis is H1 : θ 6= θ0. We write the marginal

likelihood of the data, previously expressed as the joint marginal density fY, as LN(θ) to

emphasize that we are treating it as a function of the unknown parameters. The subscriptN

indicates that this likelihood is based on N observations. The natural logarithm of LN(θ)

is known as the log-likelihood and we denote it as `N(θ) or as `N(θ|Y1, . . . , YN). The latter

form is only used when it is convenient to emphasize the role of the data.

The likelihood ratio test (Neyman and Pearson, 1928a,b) is based on the ratio of the

maximum likelihood under the null and alternative models. If we restate the null hypothesis

as H0 : θ ∈ Θ0 and the alternative hypothesis as H1 : θ ∈ ΘC
0 , where Θ0 represents the

parameter space under the null model, and Θ = Θ0 ∪ ΘC
0 represents the unrestricted

parameter space, then the likelihood ratio is given by

λ =
supΘ0

LN(θ)

supΘ LN(θ)
=
LN(θ̂0)

LN(θ̂)
,

where θ̂0 is the maximum likelihood estimate of θ under the null hypothesis and θ̂ is the

unrestricted maximum likelihood estimate of θ. This leads to the test statistic

TL = −2 log(λ) = −2
(
`N(θ̂0)− `N(θ̂)

)
. (3.8)

For independent and identically distributed observations, the statistic TL asymptotically

(as N → ∞) follows a chi-squared distribution with r degrees of freedom under certain

conditions when the null hypothesis is true (Wilks, 1938). For testing a single parameter, a

likelihood ratio test rejects H0 : θ = θ0 in favor of H1 : θ 6= θ0 when TL > χ2
1,1−α, where

χ2
1,1−α is the 100× (1− α) percentile of a χ2

1 distribution and α is the level of the test.

The Wald test (Wald, 1943) is based on the asymptotic normality of the maximum

likelihood estimator. The test statistic is given by

TW = (θ̂ − θ0)T IN(θ̂)(θ̂ − θ0), (3.9)
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where IN(θ̂) is the Fisher information matrix based on N observations. The ith row and

jth column of this matrix is defined as

− ∂2

∂θi∂θj
`N(θ)|θ=θ̂, (3.10)

for i, j = 1, . . . , r. For independent and identically distributed observations, the asymp-

totic distribution of TW (as N → ∞), like that of TL, is a chi-squared distribution with

r degrees of freedom (Wald, 1943). The Wald test is therefore asymptotically equivalent

to the likelihood ratio test. In the univariate case, with null hypothesis H0 : θ = θ0 and

alternative H1 : θ 6= θ0, the test statistic can be expressed as

ZW =
θ̂ − θ0
SE(θ̂)

, (3.11)

where θ̂ is the maximum likelihood estimate of θ and SE(θ̂) is its standard error. Here,

the standard error of θ̂ is equal to the square root of the inverse of the observed Fisher

information. That is, SE(θ̂) =
(
IN(θ̂)

)−1/2, where

IN(θ̂) = − ∂2

∂θ2
`N(θ)|θ=θ̂.

When a univariate θi (i = 1, . . . , r) is an element of an r-vector θ, SE(θ̂i) is equal to the

square root of the ith diagonal element of
(
IN(θ̂)

)−1, where the elements of IN(θ̂) are

defined as in (3.10). For independent and identically distributed observations, the statistic

ZW converges in distribution (as N →∞) to a standard normal distribution, and its square

is Z2
W = TW . One could also use the statistic ZW to conduct a one-sided test with null

hypothesis H0 : θ ≤ θ0 or H0 : θ ≥ θ0 by using the appropriate percentile of the standard

normal distribution as the cutoff for the rejection region.

The score test (Rao, 1948) is based on the notion that the derivative of the log-likelihood

is equal to zero at its maximum. Thus, the magnitude of the gradient of the log-likelihood

59



under the null model gives an indication as to the optimality of the null parameter values.

The test statistic is defined as

TS =
(
S(θ0)

)T (
IN(θ0)

)−1(
S(θ0)

)
, (3.12)

where S(θ0) is the score statistic with ith entry, i = 1, . . . , r, given by

∂

∂θi
`N(θ)|θ=θ0 , (3.13)

and IN(·) is defined as in (3.10). Just like TL and TW , the statistic TS asymptotically

(as N → ∞) follows a χ2
r distribution when the data are independent and identically

distributed (Rao, 1948). The score test therefore rejects H0 when TS > χ2
r,1−α, where

χ2
r,1−α is the 100× (1− α) percentile of a χ2

r distribution and α is the level of the test. For

the univariate hypotheses H0 : θ = θ0 and H1 : θ 6= θ0, the test statistic can be expressed as

ZS = S(θ0)
(
I(θ0)

)−1/2
, (3.14)

and a standard normal distribution is a suitable reference distribution for large samples.

To test a single element θi (i = 1, . . . , r) of θ, we use the ith element of S(θ0), given

by (3.13), and the square root of the ith diagonal element of
(
IN(θ0)

)−1 to compute ZS .

In some circles, namely the econometrics literature, the score test is better known as the

Lagrange multiplier test (see Aitchison and Silvey, 1958; Silvey, 1959).

Although the likelihood ratio test is intuitively appealing because it selects the model

for which the data are more plausible, it is also the most computationally intensive of these

three tests because it requires one to fit both the null model and the unconstrained model.

In contrast, the Wald test only requires one to fit the unconstrained model and the score

test only requires one to fit the null model. In the context of testing regression parameters

in a GLMM, the Wald test is most popular because it is customary to fit the unconstrained
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model and no additional estimation based on a constrained model is required to conduct a

Wald test. For a formal discussion of likelihood ratio, Wald, and score tests, see Casella and

Berger (2002, Section 10.3) and Lehmann and Romano (2005, Section 12.4). For intuition

regarding the motivation for these tests, see Buse (1982).

In a GLMM, the parameter vector θ consists of the fixed effects parameters β and the

parameters α that characterize the random effects distribution. We shall focus on inference

for individual components of β. In some cases, the procedures described here are also valid

for testing elements of α, but issues arise, for example, when testing whether a variance

component is equal to zero because zero lies on the boundary of the parameter space.

Results concerning the consistency and asymptotic normality of maximum likelihood

estimators have historically been derived for independent data. In GLMMs, observations

sharing the same realization of a random effect are correlated, and the data are not inde-

pendent. In Section 3.2.1 we show how the consistency and asymptotic normality results

derived for independent data extend to the GLMM context. In turn, we argue that the

asymptotic distributions for the test statistics stated above for the case of independent data

also apply when the model is a GLMM. In Section 3.2.2 we use simulated data to show

that Wald tests and score tests of the null hypothesis H0 : β = 0 or H0 : β∗ = 0 yield

similar conclusions in large samples under the two parameterizations, but tests for the re-

gression parameters in a conventional GLMM with a nonzero null value fail to hold their

nominal level. This stems from the lack of equality between β and β∗ when β∗ 6= 0. Ad-

ditionally, we show through simulation in Section 3.2.2 and through a series of examples

in Section 3.2.3 that Wald tests and score tests under the two parameterizations do not al-

ways match in the small sample setting. The examples in Section 3.2.3 also emphasize the

differences that arise in confidence intervals under the two model parameterizations.
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3.2.1 Asymptotics

The validity of the likelihood ratio, Wald, and score tests follows from the consistency

and asymptotic normality of the maximum likelihood estimator. Conditions for the consis-

tency of maximum likelihood estimators have been given by several authors for a variety

of situations. For example, Wald (1949) assumed that the model is correctly specified and

that all observations are independent and identically distributed, and gave conditions under

which the maximum likelihood estimator consistently estimates the true parameter value.

White (1982) relaxed the assumption that the model is correctly specified, and gave condi-

tions under which the maximum likelihood estimator consistently estimates the parameter

value that minimizes the Kullback-Leibler divergence (Kullback and Leibler, 1951) be-

tween the true model and the misspecified model. Here, misspecification means that the

true underlying distribution of the data is not contained in the family of distributions from

which the data are assumed to arise. For instance, if one assumes the data are normally

distributed with unknown mean and variance, but the data actually follow a t-distribution,

then the model is misspecified.

Neuhaus et al. (1994) extended the results of White (1982) to the case of mixed models

for binary matched-pairs data, providing conditions for consistent estimation of the fixed

effects parameters in such a model when the random effects distribution is misspecified in

a particular fashion. That is, when the family of distributions to which the random effects

distribution is assumed to belong does not contain the true random effects distribution. All

other parts of the model, namely the link function and the mean structure, are assumed to

be correctly specified; only the distribution of the random effects is incorrectly specified.

Litière et al. (2007) considered a broader class of GLMMs and argued that the maximum

likelihood estimator consistently estimates the fixed effects parameters when they are equal
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to zero, even when the random effects distribution is misspecified. This result relies on the

number of clusters of observations – and thus the number of realizations of the random

effects – going to infinity and only holds if the covariate associated with a random effect

with misspecified distribution is uncorrelated with the covariate associated with the fixed

effect being estimated. Neuhaus et al. (2013) showed that if correlation is present between

the covariate of a fixed effect and the covariate of a random effect for which the shape of

the distribution is misspecified, then the maximum likelihood estimator of the parameter

for that fixed effect is not necessarily consistent.

We show that results concerning the consistency and asymptotic normalilty of the max-

imum likelihood estimator that were derived for a one-sample problem under the assump-

tion of independent and identically distributed observations can be applied in the context

of a GLMM. To do this, we begin with a one-sample problem and add complexity to the

model until reaching a GLMM. Lehmann (1999, Chapter 7) considered a set of N random

variates Y1, . . . , YN , with density fY (y|θ) depending on the parameter vector θ of length r.

We denote the parameter space for θ by Θ and assume that fY (y|θ) is either continuous in

y or discrete with fY (y|θ) = P (Yi = y) for each i = 1, . . . , N . In this setting, Lehmann

(1999, Page 499) provided the following conditions for the existence of a consistent se-

quence of local maxima of the likelihood function LN(θ) =
∏N

i=1 fY (yi|θ), presented here

in a different order and with slightly different notation:

C1: There exists an open neighborhood of the true parameter value θ0 that lies completely

within the parameter space Θ;

C2: The observations Y1, . . . , YN are independent and identically distributed;

C3: The parameters θ are identifiable; that is, if fY (y|θ1) = fY (y|θ2) then θ1 = θ2;
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C4: The set A = {y : fY (y|θ) > 0} is independent of θ;

C5: For all y ∈ A, the partial derivatives ∂
∂θk
fY (y|θ) exist for k = 1, . . . , r;

C6: The partial derivatives of
∫
fY (y|θ)dy exist and can be obtained by differentiating

under the integral sign.

Theorem 7.5.2 of Lehmann (1999, Page 501) further states that the maximum likelihood

estimator θ̂, if it exists, is asymptotically normal. In addition to conditions C1-C4, this

theorem requires the following three conditions, the first of which implies C5 and C6:

C7: For all y ∈ A, the partial third derivatives ∂
∂θi∂θj∂θk

fY (y|θ) exist and are continuous

for i, j, k = 1, . . . , r, and the corresponding derivatives of
∫
fY (y|θ)dy exist and can

be obtained by differentiating under the integral sign;

C8: If θ0 = (θ0,1, . . . , θ0,r)
T denotes the true value of θ, then there exists a number c and

a function Bijk(y), both depending on θ0, such that | ∂3

∂θi∂θj∂θk
`N(θ)| ≤ Bijk(y) for

all θ with
∑r

k=1(θk − θ0,k)2 < c, where Eθ0 [Bijk(Y )] <∞ for all i, j, k = 1, . . . , r;

C9: The information matrix IN(θ) is positive definite and all of its elements are finite.

If conditions C1-C4 and C7-C9 are met, then

√
N(θ̂ − θ0)

D−→ Nr

(
0,
(
IN(θ0)

)−1)
as N →∞,

where the elements of the matrix IN(θ0) are defined as in (3.10).

It follows directly from the asymptotic normality of the maximum likelihood estimator

that the univariate Wald statistic ZW given in (3.11) has an asymptotic standard normal

distribution and that the multivariate Wald statistic TW given in (3.9) has an asymptotic

chi-squared distribution with r degrees of freedom. Conditions C1-C4 and C7-C9 are also
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sufficient to prove that the likelihood ratio test statistic TL given by (3.8) and the score

test statistic TS given by (3.12) have an asymptotic chi-squared distribution with r degrees

of freedom (Lehmann, 1999, Section 7.7). Further, the univariate score test statistic ZS

given by (3.14) has an asymptotic standard normal distribution. For independent observa-

tions Y1, . . . , YN and a single parameter θ, the argument that ZS is asymptotically standard

normal relies on the fact that S(θ0) = ∂
∂θ
`N(θ|Y1, . . . , YN)|θ=θ0 =

∑N
i=1

∂
∂θ
`1(θ|Yi)|θ=θ0 ,

where the ∂
∂θ
`1(θ|Yi)|θ=θ0 are independent and identically distributed with mean zero and

variance I1(θ0). Here, I1(θ0) represents the information contained in a single observation.

Thus, by the standard central limit theorem,

1√
N
S(θ0) =

√
N

1

N

N∑
i=1

∂

∂θ
`1(θ|Yi)|θ=θ0

D−→ N
(
0, I1(θ0)

)
as N →∞,

and S(θ0) has an approximate N
(
0, IN(θ0)

)
distribution for large N . The variance of this

distribution follows from the fact that the information contained in a set of independent

observations is the sum of the information contained in the individual components of the

set, which implies that NI1(θ0) = IN(θ0).

Moving from a one-sample problem to a fixed effects regression setting, suppose each

Yi, for i = 1, . . . , N , is associated with a set of p predictors Xi, which we assume to be

independent draws from a distribution with density fX. We treat fX as known, meaning

that this density does not depend on the unknown parameters θ. In this setting, we have

N independent and identically distributed draws of (Xi, Yi) with density fX,Y given by

fX,Y (x, y|θ) = fY |X(y|X = x,θ)fX(x), and we assume that E[Yi|Xi = x] = xTθ. To

extend the results concerning the maximum likelihood estimator to this situation, we must

replace Yi with (Xi, Yi) and fY (y|θ) with fX,Y (x, y|θ) in conditions C1-C9. Since θ is

only tied to the Yi and has no bearing on the Xi, the conditions on fX,Y (x, y|θ) simplify to

conditions on fY |X(y|X = x,θ). Thus, to check that the conditions hold for fX,Y (x, y|θ)
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we need only verify that they hold for fY |X(y|X = x,θ). For example, for checking C5,

∂

∂θk
fX,Y (x, y|θ) =

∂

∂θk
fY |X(y|X = x,θ)fX(x) = fX(x)

∂

∂θk
fY |X(y|X = x,θ).

Hence, if the partial derivatives of fY |X(y|X = x) exist, then the partial derivatives of

fX,Y (x, y|θ) also exist. Similarly, for checking C8,

∂

∂θk
`N(θ) =

∂

∂θk

N∑
i=1

log
(
fX,Y (x, yi|θ)

)
=

N∑
i=1

∂

∂θk
log
(
fY |X(yi|X = x,θ)fX(x)

)
=

N∑
i=1

∂

∂θk

(
log
(
fY |X(yi|X = x,θ)

)
+ log

(
fX(x)

))
=

N∑
i=1

∂

∂θk
log
(
fY |X(yi|X = x,θ)

)
.

Again, we need only check the condition for fY |X(y|X = x,θ) to ensure that it holds for

fX,Y (x, y|θ). Identifiability, required by C3, now relies on having a rich enough set of

Xi. For instance, if θ = (β0, β1)
T , Xi = (1, Xi)

T , and E[Yi|Xi = x] = β0 + β1x, the

parameters β0 and β1 are not identifiable if Xi has a degenerate distribution and assumes

the same value for all i = 1, . . . , N . A fixed effects GLM is included in this regression

setting. For a GLM, the mean structure is given by E[Yi|Xi = x] = h(xTθ) for inverse link

function h(·). A nonlinear link function could make it more difficult to check conditions

C1-C9, but the same basic results still apply.

Moving to a GLMM, continue to assume that we have observations Y1, . . . , YN with

corresponding covariates X1, . . . ,XN , but now suppose each observation is also associ-

ated with an independent realization Ui of a random effect with variance σ2. The mean

structure is now given by E[Yi|Xi = x, Ui = u] = h(xTβ + u), where β denotes the

fixed effects parameters. The vector θ of unknown parameters now consists of β and

σ2. For i = 1, . . . , N , we observe data (Xi, Yi) from density fX,Y |U , which we define as

fX,Y |U(x, y|U,θ) = fY |X,U(y|X = x, U,θ)fX(x). For maximum likelihood estimation,
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we maximize the marginal density fX,Y , which can be obtained by integrating the condi-

tional density fX,Y |U over the random effects density fU . Checking conditions C1-C9 pro-

ceeds in the same manner as described above for a fixed effects regression problem. Since

we only have one observation per realization of the random effect, the variance component

σ2 in this model is not identifiable. We discuss the importance of replication for consis-

tent estimation of a random effects variance in greater detail in Section 3.5. Nonetheless,

given a rich enough set of Xi the fixed effects parameters β are identifiable. Provided the

conditions C1-C9 are met after replacing fY (y|θ) with fY |X(y|X = x,θ), the maximum

likelihood estimator for β is consistent and asymptotically normal.

For the random effects variance to be identifiable we require replication. That is, there

must be realizations of the random effect that are tied to more than one observation. Sup-

pose we have N observations that are clustered into n groups, each with mi observations,

where the mi are independent draws from a distribution with probability mass function

fM . We denote these N observations by Yij , where i = 1, . . . , n and j = 1, . . . ,mi,

and assume that each Yij corresponds to a p-vector of predictors, denoted Xij . We as-

sume the Xij are independent draws from a distribution with density fX and that, given

the Ui, mi, and Xij , the Yij are conditionally independent with density fY|M,X,U and mean

E[Yij|mi,Xij = x, Ui = u] = h(xTβ + u). Observations Yij sharing the same realization

of the random effect Ui are not independent under this model. Thus, to satisfy condition

C2, we must collect the Yij into independent clusters of correlated observations. We use

Yi = (Yi1, . . . , Yimi)
T to denote the vector of mi observations in cluster i and Xi to denote

the mi × p matrix with rows Xi1, . . . ,Ximi . This leaves us with n independent and identi-

cally distributed units of the form (mi,Xi,Yi). The joint marginal density for mi, Xi, and
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Yi is denoted fM,X,Y, and can be obtained by integrating fM,X,Y|U over the distribution of

the random effects, where fM,X,Y|U is the product of fY|M,X,U , fX|M , and fM .

To extend the consistency and asymptotic normality results from earlier to this GLMM

setting, we restate the conditions C1-C9 below as C1′-C9′. Some of these conditions match

the earlier conditions exactly, while others require careful consideration of what constitutes

a single independent unit. The modified conditions are as follows:

C1′: There exists an open neighborhood of the true parameter value θ0 that lies completely

within the parameter space Θ;

C2′: Units (m1,X1,Y1), . . . , (mn,Xn,Yn) are independent and identically distributed;

C3′: The parameters θ are identifiable;

C4′: The set A = {y : fY|M,X(y|m,X,θ) > 0} is independent of θ;

C5′: For all y ∈ A, the partial derivatives ∂
∂θk
fY|M,X(y|m,X,θ) exist for k = 1, . . . , r;

C6′: The partial derivatives of
∫
fY|M,X(y|m,X,θ)dy exist and can be obtained by dif-

ferentiating under the integral sign.

C7′: For all y ∈ A, the partial third derivatives ∂
∂θi∂θj∂θk

fY|M,X(y|m,X,θ) exist and are

continuous, and the corresponding derivatives of
∫
fY|M,X(y|m,X,θ)dy exist and

can be obtained by differentiating under the integral sign (for i, j, k = 1, . . . , r);

C8′: If θ0 = (θ0,1, . . . , θ0,r)
T denotes the true value of θ, then there exists a number c and

a function Bijk(y), both depending on θ0, such that | ∂3

∂θi∂θj∂θk
`n(θ)| ≤ Bijk(y) for

all θ with
∑r

k=1(θk − θ0,k)2 < c, where Eθ0 [Bijk(Y)] <∞ for all i, j, k = 1, . . . , r;

C9′: The information matrix In(θ) is positive definite and all of its elements are finite.
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The log-likelihood in C8′ and the information matrix in C9′ are based on n clusters of

observations (mi,Xi,Yi) as opposed to N individual observations Yi as in C8 and C9.

In these conditions, we use the conditional density fY|M,X instead of the joint density

fM,X,Y because the parameters θ are only tied to the Yi for i = 1, . . . , n. Thus, just as we

conditioned on Xi in the fixed effects regression setting, we are able to condition on both

Xi and mi in this setting.

Analogous to the one-sample problem with independent observations, conditions C1′-

C6′ are sufficient for consistency of the maximum likelihood estimator θ̂ of the parameters

θ in a GLMM. Further, conditions C1′-C4′ along with C7′-C9′ are sufficient for asymptotic

normality of θ̂, for the test statistics TL, TW , and TS given by (3.8), (3.9), and (3.12) to have

an asymptotic chi-squared distribution with r degrees of freedom, and for the univariate

test statistics ZW and ZS given by (3.11) and (3.14) to have an asymptotic standard normal

distribution. The same arguments used by Lehmann (1999) apply in this context, except

we now have n independent and identically distributed clusters of observations instead of

N independent and identically distributed individual observations.

To see how one of these arguments extends from the one-sample problem to the GLMM,

suppose we have a GLMM with n independent and identically distributed clusters ofm > 1

observations. This is a special case of our more general formulation of the GLMM in which

all n clusters contain the same number of observations and the predictors xi1, . . . ,xim are

identical for all i = 1, . . . , n. If interest lies in a single parameter θ, then the same argument

used earlier for the asymptotic distribution of the unvariate score test statistic ZS shows that

1√
n
S(θ0) =

√
n

1

n

n∑
i=1

∂

∂θ
`1(θ|Yi)|θ=θ0

D−→ N
(
0, I1(θ0)

)
as n→∞.

The subscript “1” in `1(θ|Yi) and I1(θ0) now indicates that the log-likelihood and infor-

mation are based on a single cluster of observations instead of a single observation, and it
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is the number of clusters n that goes to infinity. It follows that S(θ0) has an approximate

N
(
0, In(θ0)

)
distribution because nI1(θ0) = In(θ0). Typically, a univariate θ represents the

ith element of an r-vector θ. In such a case, S(θ0) is the ith entry of S(θ0) and I1(θ0) is the

reciprocal of the ith diagonal element of the inverse information matrix
(
I1(θ0)

)−1.

In practice, In(θ), which is the large-sample variance of the score statistic S(θ), is

estimated using the Hessian of the negative log-likelihood −`n(θ). As the number of

clusters n increases, the mean of the sampling distribution of this estimator, which we

denote În(θ), should approach n times the expected information I1(θ) contained in a

single cluster. As further evidence that the asymptotic results of Lehmann (1999) ap-

ply in the context of GLMMs, we derive the expected Fisher information I1(θ) for a

specific GLMM and show that, on average, the Hessian of −`n(θ) approaches n times

this quantity as the number of clusters n grows large. Consider the case of n identi-

cally distributed pairs of observations Yij , where i = 1, . . . , n and j = 1, 2. We as-

sume Yij|Ui ∼ Bernoulli(pij) and Ui ∼ N(0, σ2), and express the conditional mean as

pij = E[Yij|Ui = u] = h(β0 + β1xij + u), with xi1 = 0 and xi2 = 1 for all i = 1, . . . , n.

Denoting η0 = β0 + u and η1 = β0 + β1 + u, the joint marginal density of Y is given as

fY(y) =
n∏
i=1

∫ (
h(η0)

)yi1(1− h(η0)
)1−yi1(h(η1)

)yi2(1− h(η1)
)1−yi2fU(u)du.

The marginal density for a single pair is

f1
(
(y1, y2)

T
)

=

∫ (
h(η0)

)y1(1− h(η0)
)1−y1(h(η1)

)y2(1− h(η1)
)1−y2fU(u)du,

where we drop the subscript i because the pairs are identically distributed. We express

the vector of unknown parameters as θ = (β0, β1, σ
2)T and denote the corresponding log-

likelihood as `1(θ) = log
(
f1(y|θ)

)
. A partial derivative of `1(θ) is given by

∂

∂θk
`1(θ) =

∂

∂θk
log
(
f1(y|θ)

)
=

∂
∂θk
f1(y|θ)

f1(y|θ)
,
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and a partial second derivative is given by

∂2

∂θk∂θj
`1(θ) =

∂

∂θk

∂
∂θj
f1(y|θ)

f1(y|θ)

=

(
f1(y|θ)

∂2

∂θk∂θj

(
f1(y|θ)

)
− ∂

∂θk

(
f1(y|θ)

) ∂
∂θj

(
f1(y|θ)

))
/
(
f1(y|θ)

)2
,

(3.15)

where k, j = 1, 2, 3 index the elements of θ.

Noting that (Y1, Y2)
T ∈ {(0, 0)T , (0, 1)T , (1, 0)T , (1, 1)T}, the four possible expressions

for the marginal density f1(y|θ) are

f1
(
(0, 0)T |θ

)
=

∫ (
1− h(η0)

)(
1− h(η1)

)
fU(u)du;

f1
(
(0, 1)T |θ

)
=

∫ (
1− h(η0)

)
h(η1)fU(u)du;

f1
(
(1, 0)T |θ

)
=

∫
h(η0)

(
1− h(η1)

)
fU(u)du;

f1
(
(1, 1)T |θ

)
=

∫
h(η0)h(η1)fU(u)du.

We shall show the form of the relevant first and second partial derivatives when y = (1, 1)T .

The form of these derivatives is similar for the other three possible values of (y1, y2)
T . For

all (y1, y2)
T , we are able to differentiate under the integral sign because the integrand of

f1(y|θ) is continuously differentiable with respect to β0, β1, and σ2 for all β0, β1 ∈ R and

σ2 > 0. Further, the integrand of f1(y|θ) converges to zero as u → ∞ and as u → −∞.

The partial first derivatives of f1(y|θ) are

∂

∂β0
f1
(
(1, 1)T |θ

)
=

∫ (
h′(η0)h(η1) + h(η0)h

′(η1)
)
fU(u)du;

∂

∂β1
f1
(
(1, 1)T |θ

)
=

∫
h(η0)h

′(η1)fU(u)du;

∂

∂σ2
f1
(
(1, 1)T |θ

)
=

∫
h(η0)h(η1)

(
u2

2σ4
− 1

2σ2

)
fU(u)du,
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and the partial second derivatives are

∂2

(∂β0)2
f1
(
(1, 1)T |θ

)
=

∫ (
h′′(η0)h(η1) + 2h′(η0)h

′(η1) + h(η0)h
′′(η1)

)
fU(u)du;

∂2

∂β0∂β1
f1
(
(1, 1)T |θ

)
=

∫ (
h′(η0)h

′(η1) + h(η0)h
′′(η1)

)
fU(u)du;

∂2

(∂β1)2
f1
(
(1, 1)T |θ

)
=

∫
h(η0)h

′′(η1)fU(u)du;

∂2

∂β0∂σ2
f1
(
(1, 1)T |θ

)
=

∫ (
h′(η0)h(η1) + h(η0)h

′(η1)
)( u2

2σ4
− 1

2σ2

)
fU(u)du;

∂2

∂β1∂σ2
f1
(
(1, 1)T |θ

)
=

∫
h(η0)h

′(η1)

(
u2

2σ4
− 1

2σ2

)
fU(u)du;

∂2

(∂σ2)2
f1
(
(1, 1)T |θ

)
=

∫
h(η0)h(η1)

(
u2

2σ4
− 1

2σ2
+

σ2 − 2u2

σ2(u2 − σ2)

)
fU(u)du,

where h′(·) and h′′(·) are the first two derivatives of h(·):

h′(η) =
exp(η)(

1 + exp(η)
)2 and h′′(η) =

exp(η)
(
1− exp(η)

)(
1 + exp(η)

)3 .

Inserting these expressions into (3.15) yields the second derivatives of `1(θ) that comprise

the information matrix I1(θ).

In Section 3.2.2 we describe a simulation study in which we generate data from a

marginally interpretable model analogous to the conventional GLMM under considera-

tion here, with β∗0 = logit(2/3) = 0.69 and σ2 = 5. This corresponds to β0 = 1.22

in our current parameterization. Plugging these values for σ2 and β0 into the expressions

given above, we can compute the expected information for a pair of observations. Table 3.1

shows the relevant second derivatives of `1(θ) under the null hypothesis H0 : β1 = 0. From

this table, we see that the expected information matrix for a single pair of observations is

I1(θ) =

 0.104 0.052 −0.008
0.052 0.090 −0.004
−0.008 −0.004 0.002

 . (3.16)

In our simulation study, we generate 10,000 datasets with each of n = 50, n = 100,

and n = 300 pairs of observations. For each dataset we estimate the information matrix

72



Table 3.1: Partial second derivatives of `1(θ) for a logistic-normal model with pairs of
correlated observations, a single binary predictor, β0 = 1.22, β1 = 0, and σ2 = 5

Response Pattern (y) Expected
Quantity (0, 0)T (0, 1)T (1, 0)T (1, 1)T Value
f1(y|θ) 0.205 0.128 0.128 0.538 —
∂2

(∂β0)2
`1(θ) -0.115 -0.128 -0.128 -0.089 -0.104

∂2

∂β0∂β1
`1(θ) -0.058 -0.064 -0.064 -0.044 -0.052

∂2

(∂β1)2
`1(θ) -0.103 -0.124 -0.124 -0.069 -0.090

∂2

∂β0∂σ2 `1(θ) 0.057 0.021 0.021 -0.018 0.008

∂2

∂β1∂σ2 `1(θ) 0.028 0.011 0.011 -0.009 0.004

∂2

(∂σ2)2
`1(θ) -0.021 0.005 0.005 0.002 -0.002

by computing the Hessian of −`n(θ). Across the 10,000 datasets for each sample size,

the average estimated information matrix În(θ) should be approximately equal to nI1(θ),

where I1(θ) is the expected information given in (3.16). Further, În(θ) and nI1(θ) should

be more similar for larger values of n. We obtain the following estimates for 1
n
În(θ):

1

50
Î50(θ) =

 0.112 0.056 −0.010
0.056 0.090 −0.005
−0.010 −0.005 0.016

 ;

1

100
Î100(θ) =

 0.108 0.054 −0.009
0.054 0.090 −0.004
−0.009 −0.004 0.003

 ;

1

300
Î300(θ) =

 0.106 0.053 −0.008
0.053 0.090 −0.004
−0.008 −0.004 0.002

 .
As expected, the Hessian of the negative log-likelihood based on n clusters provides an ac-

curate approximation of n times the information contained in a single pair of observations,

with the accuracy improving as the sample size increases.
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3.2.2 Simulation Study

To investigate the power of various testing procedures for the fixed effects parameters

in both a marginally interpretable and a conventional GLMM, we performed a simulation

study. In the results presented below, we simulated paired, binary outcome data with a sin-

gle binary predictor and a single random intercept. This is a context in which the marginally

interpretable and conventional GLMMs are equivalent. Further, it represents a low infor-

mation situation as there are only two binary responses available to learn about each cluster.

We simulated data from the marginally interpretable model with conditional mean

µ∗ij = E[Yij|Ui = u] = h(β∗0 + β∗1xij + u+ aij),

where i = 1, . . . , n, j = 1, 2, h(·) is the inverse logit function, xi1 = 0 for all i = 1, . . . , n,

and xi2 = 1 for all i = 1, . . . , n. We drew each Ui from a N(0, σ2) and each Yij given Ui

from a Bernoulli(µ∗ij). We set β∗0 = logit(2/3) = 0.69 and σ2 = 5 for all datasets, and

let n ∈ {50, 100, 300} and β∗1 ∈ {−0.5,−0.4, . . . , 0.5}. For each combination of n and

β∗1 we generated 10,000 datasets, and then fit both a marginally interpretable GLMM and a

conventional GLMM to each dataset. For conducting likelihood ratio and score tests with

null hypothesis H0 : β∗1 = 0 (or H0 : β1 = 0), we also fit both GLMMs excluding the

treatment effect, meaning that β∗0 (or β0) was the only fixed effect included in the model.

The models were fit via maximum likelihood estimation using techniques that will be

described in Section 4.3. For a few datasets the algorithm used to fit the model failed to

converge. When this occurred the dataset was discarded and a new one was generated to

replace it. This occurred more often in the smaller datasets, but for the results reported here

no more than three datasets were discarded for any simulation setting. Discarding three

datasets out of 10,000 should not have introduced any substantial bias to the results.

74



For each simulated dataset, each model parameterization, and each testing procedure

we conducted a hypothesis test with nominal level 0.05. For each simulation setting, we

then empirically computed the power of the test by calculating the proportion of the 10,000

datasets for which the test rejected the null hypothesis. An upper bound on the standard

error for this empirical power calculation, corresponding to an estimated power of 0.5, is

0.0071. Results are displayed as power curves as a function of the true parameter value β∗1 .

Our first set of results corresponds to tests of the null hypothesis H0 : β∗1 = 0 versus

the alternative hypothesis H1 : β∗1 6= 0. The left column of Figure 3.1 shows the empirical

power for Wald tests based on the marginal and cluster-specific parameterizations of the

model. For relatively small samples (n = 50 pairs of outcomes), the test based on the

marginal parameterization is clearly more powerful, and the test based on the conventional

parameterization fails to achieve its nominal level when the null hypothesis is true. As

the sample size increases, the power curves for the two Wald tests become more similar,

suggesting that the tests are equivalent in the large sample setting. Also included in each

panel of Figure 3.1 is the corresponding power curve for a likelihood ratio test. Only one

curve is drawn for each sample size because both the null and unconstrained model are

equivalent under the two parameterizations in this situation and the likelihood ratio test is

therefore the same for the two cases. Here, the likelihood ratio test corresponds closely to

the Wald test based on the marginal parameterization.

The close correspondence between the power curves for the Wald tests under the two

parameterizations for large samples is consistent with earlier findings reported by Neuhaus

(1993) and Litière et al. (2007). Neuhaus (1993) studied regression parameters in con-

ventional GLMMs and marginal models fit via GEE for clustered binary data, and showed

that, asymptotically, the standard errors of the marginal parameters are attenuated by the
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Figure 3.1: Empirical power curves for tests of the null hypothesis H0 : β∗1 = 0; from
top to bottom, the rows correspond to data with n = 50, n = 100, and n = 300 pairs of
binary responses; Wald tests are shown in the left column, score tests are shown in the right
column, and likelihood ratio tests are shown in both
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same amount as the marginal parameters themselves when the true parameter value is zero.

Thus, a Wald test of the null hypothesis H0 : β1 = 0 versus the alternative H1 : β1 6= 0

should yield the same result in large samples under both a marginal and a cluster-specific

parameterization. Litière et al. (2007) studied the performance of Wald tests for regression

parameters in GLMMs with misspecified random effects distributions, and proved that a

Wald test of the null hypothesis H0 : β1 = 0 versus the alternative H1 : β1 6= 0 achieves

its nominal level in large samples, even if the random effects distribution is misspecified in

the sense that the family of distributions to which fU is assumed to belong does not contain

the true random effects distribution.

The right column of Figure 3.1 shows the empirical power for score tests conducted on

the same datasets. The same likelhood ratio test power curves shown in the left column are

included for reference. The discrepancy between the score tests based on the two different

model parameterizations follows a pattern very similar to the discrepancy between the Wald

tests. Namely, the test based on the marginal parameterization is noticeably more powerful

for smaller sample sizes, but as the sample size increases the two tests become more similar.

Also, the score tests are more powerful than the corresponding Wald tests when the number

of pairs is relatively small.

The next set of results corresponds to tests of the null hypothesis H0 : β∗1 ≤ 0.2 versus

the alternative hypothesis H1 : β∗1 > 0.2. Figure 3.2 shows the empirical power for Wald

tests based on the marginal and cluster-specific parameterizations of the model. In contrast

to the tests with null hypothesis H0 : β∗1 = 0 shown in Figure 3.1, the discrepancy between

the empirical power curves based on the marginally interpretable model and the conven-

tional model increases with sample size. Generally speaking, the test based on the marginal
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Figure 3.2: Empirical power curves for Wald tests of the null hypothesis H0 : β∗1 ≤ 0.2
corresponding to data with n = 50, n = 100, and n = 300 pairs of binary responses

parameterization holds its level near 0.05 whereas the test based on the cluster-specific pa-

rameterization is overpowered under the null hypothesis. The extent to which this test is

overpowered increases with the sample size. This is due to the fact that β1 6= β∗1 . When

β∗1 = 0.2, we have β1 = β∗1 + a, where the adjustment a is greater than zero. Thus, the

true value of β1 is greater than 0.2 when β∗1 = 0.2. The test based on the cluster-specific

parameter β1 ultimately tests the wrong set of hypotheses, because H0 : β∗1 ≤ 0.2 and

H0 : β1 ≤ 0.2 are not the same. In this instance, if interest lies in the marginal effect, using

a conventional GLMM leads to an inflated rate of Type I error (i.e., a greater likelihood of

rejecting the null hypothesis when it is in fact true) because the cluster-specific parameter is

pulled in the direction of the alternative hypothesis by the nonlinear inverse link function.

When the adjustment has the opposite sign and the cluster-specific parameter is pulled

toward the null hypothesis, the test based on the conventional model tends to be under-

powered. Consider, for example, testing the null hypothesis H0 : β∗1 ≤ −0.2 versus the

alternative hypothesis H1 : β∗1 > −0.2. We still have β1 = β∗1 + a, but now the adjust-

ment a is less than zero, which leads to fewer rejections of the null hypothesis when testing

H0 : β∗1 ≤ −0.2 using the the cluster-specific parameter β1. This is illustrated in Figure 3.3,
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Figure 3.3: Empirical power curves for Wald tests of the null hypothesis H0 : β∗1 ≤ −0.2
corresponding to data with n = 50, n = 100, and n = 300 pairs of binary responses

which shows the empirical power for Wald tests of these hypotheses based on both model

parameterizations. Once again, H0 : β1 ≤ −0.2 is the wrong null hypothesis if interest lies

in the marginal effect β∗1 .

3.2.3 Empirical Data Examples

The examples that follow demonstrate situations wherein a marginally interpretable

model leads to conclusions that differ substantially from those of a conventional model and

situations wherein the differences are relatively minor. Two key drivers of differences be-

tween the two model parameterizations are the heterogeneity in the population of interest

and the number of clusters in the sample. In the first example, a teratological experiment on

rats, the difference between the two sets of parameters is driven by the presence of a sepa-

rate random effects variance for each of the two treatment groups. In the second example, a

two-way crossover study of patients with cerebrovascular deficiency, the large discrepancy

between the two types of parameters stems from a high degree of subject-to-subject vari-

ability. In the third example, which deals with migration patterns of the Common Cuckoo,

we show that a discrepancy, albeit a more modest one, can arise even with a relatively small

random effects variance when the number of clusters is small. The fourth example, a study
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of seed germination, demonstrates that the two model parameterizations can yield similar

results when the random effects variance is small, and the fifth example, an investigation

of roundworm in pigs, shows what happens when the number of clusters is relatively large.

We also use these examples to emphasize that marginal inferences are typically of greater

interest than cluster-specific or subject-specific inferences.

In all of the examples in this section, we assume a normally distributed random intercept

and a logit link. All of the relevant data can be found in Appendix A. We fit the models

via maximum likelihood estimation, using Gauss-Hermite quadrature to approximate the

intractable integral in the marginal likelihood function. Computational details are provided

in Chapter 4. The likelihood ratio test statistic reported is TL as defined in (3.8) while the

Wald and score statistics reported are the univariate versions ZW and ZS given by (3.11)

and (3.14), respectively.

Rat Teratology

Weil (1970) fed one group of 16 pregnant rats, known as dams, a diet containing a

chemical agent during pregnancy and lactation, while feeding a second group of 16 dams

a control diet. We denote the number of pups in each of the 32 litters to survive four days

from birth bymi and the number of pups in each litter to survive the 21-day lactation period

by Yi, where i = 1, . . . , 32. Interest lies in the proportion pi = Yi/mi of pups to survive 21

days among those alive after four days. Specifically, we want to determine if the chemical

agent is associated with a lower (or higher) survival rate among the rat pups. The relevant

data are summarized in Table A.3.

One approach to investigating the relationship between the survival rate and the chem-

ical agent is to fit a logistic regression model that includes a fixed effect for treatment and

a random effect for litter. Such a model assumes that Yi|Ui ∼ Binomial(mi,E[pi|Ui]). A
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conventional model parameterizes E[pi|Ui = u] as

E[pi|Ui = u] = h(β0 + β1xi + u), (3.17)

where xi = 1 for litters exposed to the chemical agent, xi = 0 for litters whose dams

received the control diet, Ui ∼ N(0, σ2) is a random litter effect, and β0 and β1 are fixed

effects. Although standard, using this conventional approach is misguided. The parameter

β1 in this model is cluster-specific; it depends on the random litter effects and provides

information about the impact of the chemical agent on the survival rate for a specific litter.

Ordinarily, interest lies in learning about the entire population, and this situation is no

exception. Of greater interest in this study is the average impact of the chemical agent

on the survival rate across all litters in the population. This effect can be studied using a

marginally interpretable model that parameterizes E[pi|Ui = u] as

E[pi|Ui = u] = h(β∗0 + β∗1xi + u+ ai). (3.18)

For both of these models, we estimate the random effects variance σ2 to be 1.81. Fixed

effects parameter estimates are given in Table 3.2 along with 95% confidence intervals. The

point estimates for the cluster-specific model are larger in magnitude and the corresponding

confidence intervals are wider than for the marginally interpretable model. To determine if

exposure to the chemical agent has a significant impact on rat pup survival, a relevant test

would focus on the marginal parameter and test the null hypothesis H0 : β∗1 = 0 versus the

alternative hypothesisH1 : β∗1 6= 0. A more common, but less appropriate, test would focus

on the cluster-specific parameter and use the hypotheses H0 : β1 = 0 and H1 : β1 6= 0.

Table 3.2 also displays the results of a Wald test, likelihood ratio test, and score test for

these hypotheses. Despite the differences in the point estimates obtained from the two

models, all three tests yield similar results under each of the two parameterizations.
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Table 3.2: Parameter estimates and corresponding standard errors, tests, and 95% confi-
dence intervals for the fixed effects in the rat teratology study of Weil (1970) assuming a
common random effects variance across the two treatment groups

Marginally Interpretable Model
Point Standard

Parameter Estimate Error Test Statistic p-value 95% CI
intercept (β∗0) 2.03 0.39 Wald 5.16 <0.01 (1.26,2.80)
treatment (β∗1) -0.87 0.51 Wald -1.72 0.09 (-1.86,0.12)

LR 2.88 0.09 (-1.88,0.14)
Score -1.75 0.08 —

Cluster-Specific Model
Point Standard

Parameter Estimate Error Test Statistic p-value 95% CI
intercept (β0) 2.63 0.48 Wald 5.44 <0.01 (1.68,3.57)
treatment (β1) -1.08 0.63 Wald -1.73 0.08 (-2.31,0.15)

LR 2.88 0.09 (-2.42,0.18)
Score -1.91 0.06 —

Earlier analyses of these data (see Liang and Hanfelt, 1994; Heagerty and Zeger, 2000;

Wang and Louis, 2004) established that there is more between-litter heterogeneity in the

treatment group than in the control group. We therefore refit the models given by (3.17)

and (3.18) with a separate variance parameter for each of the two treatment groups to allow

the random effects variance to depend on xi. That is, we assume Ui ∼ N(0, σ2
xi

). For

both models, we estimate the variance components as σ̂2
0 = 0.20 and σ̂2

1 = 3.34. The fixed

effects parameter estimates are given in Table 3.3 along with corresponding hypothesis tests

and 95% confidence intervals. It is evident that the choice between a marginal and cluster-

specific parameterization of the model has a substantial impact on the results. Specifically,

using the conventional approach, one would likely conclude that the treatment does not

have a significant effect on rat pup survival. In contrast, using the marginally interpretable

model, we find that the overall survival rate is significantly lower in litters whose dams were
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Table 3.3: Parameter estimates and corresponding standard errors, tests, and 95% confi-
dence intervals for the fixed effects in the rat teratology study of Weil (1970) assuming a
different random effects variance for each of the two treatment groups

Marginally Interpretable Model
Point Standard

Parameter Estimate Error Test Statistic p-value 95% CI
intercept (β∗0) 2.18 0.29 Wald 7.59 <0.01 (1.61,2.74)
treatment (β∗1) -1.09 0.47 Wald -2.31 0.02 (-2.01,-0.17)

LR 5.13 0.02 (-2.03,-0.15)
Score -2.59 0.01 —

Cluster-Specific Model
Point Standard

Parameter Estimate Error Test Statistic p-value 95% CI
intercept (β0) 2.25 0.34 Wald 6.63 <0.01 (1.59,2.92)
treatment (β1) -0.58 0.65 Wald -0.88 0.38 (–1.85,0.70)

LR 0.72 0.39 (-1.90,0.89)
Score -0.91 0.36 —

exposed to the chemical agent than in litters whose dams were fed the control diet. Since

the effect of the chemical agent on the overall survival rate is of key interest here, the correct

statistical inference to draw is the population-based, marginal inference involving β∗1 . The

magnitude of the difference between the two parameterizations in this case is due in part

to the two treatment groups having different variances and, in turn, different adjustments

in the marginally interpretable model. The null model in this situation contains one group

but two variances and is therefore not equivalent under the two model parameterizations,

as described in the first example after Corollary 3.1.2 in Section 3.1.1. Consequently, the

likelihood ratio test differs between the two models in this case.

The Wald p-values and Wald confidence intervals reported in Table 3.3 are based on a

standard normal reference distribution, which is the asymptotic distribution of the univari-

ate Wald statistic used in this example. There is not, however, universal agreement that
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Table 3.4: Wald tests and 95% confidence intervals for the treatment effect in the rat
teratology study of Weil (1970) assuming a different random effects variance for each of the
two treatment groups; results are reported for both a N(0, 1) and a t30 reference distribution

N(0, 1) t30
Parameter p-value 95% CI p-value 95% CI

Marginal (β∗1) 0.02 (-2.01,-0.17) 0.03 (-2.04,-0.13)
Cluster-Specific (β1) 0.38 (-1.85,0.70) 0.39 (-1.91,0.76)

the standard normal is the appropriate distribution to use in the small sample setting (see

Bolker et al., 2009). Table 3.4 displays analogous p-values and confidence intervals based

on a t-distribution with 30 degrees of freedom. This alternative reference distribution is the

default behavior of the NLMIXED procedure of SAS 9.4 (SAS Institute, Cary, NC) in this

situation. Although the results are slightly different for the two distributions, the choice

of reference distribution is of relatively minor importance in comparison to the choice of

model parameterization (i.e., whether or not the model is marginally interpretable).

Two-Way Crossover Study

Jones and Kenward (1989) reported data from a two-way crossover study that included

patients suffering from cerebrovascular deficiency and involved two treatment periods. In

the first period, each patient was randomly assigned to receive either a placebo or an active

drug. In the second period, patients who received the placebo in the first period were

given the active drug and vice versa. At the end of each period, a cardiologist examined

an electrocardiogram for each patient and determined it to be either normal (Y = 1) or

abnormal (Y = 0). We focus on data, shown in Table A.4, for 67 subjects who were all

treated at the same medical center. Of these subjects, 34 received the drug in the first period

and the placebo in the second whereas the other 33 received the treatments in the opposite
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Table 3.5: Parameter estimates for the fixed effects in the two-way crossover study of
Jones and Kenward (1989), with corresponding standard errors, Wald tests, and 95% Wald
confidence intervals

Marginally Interpretable Model
Point Standard Wald test

Parameter Estimate Error Ratio p-value 95% CI
intercept (β∗0) 0.43 0.35 1.22 0.22 (-0.26,1.12)
treatment (β∗1) 1.15 0.58 2.00 0.05 (0.02,2.28)
period (β∗2) 0.17 0.51 0.34 0.74 (-0.82,1.16)
interaction (β∗3) -1.07 0.98 -1.10 0.27 (-2.99,0.85)

Subject-Specific Model
Point Standard Wald test

Parameter Estimate Error Ratio p-value 95% CI
intercept (β0) 1.40 1.24 1.13 0.26 (-1.03,3.84)
treatment (β1) 3.58 2.11 1.70 0.09 (-0.55,7.71)
period (β2) 0.55 1.64 0.33 0.74 (-2.67,3.77)
interaction (β3) -3.32 3.27 -1.02 0.31 (-9.73,3.09)

order. We let i = 1, . . . , 67 index the patients and j = 1, 2 index the periods. Predictors

included in the model are treatment (x1 = 0 for placebo, x1 = 1 for drug), period (x2 = 0

for period 1, x2 = 1 for period 2), and the interaction between treatment and period. Since

we have two observations for each subject, a random intercept for subject is included as

well. Our marginally interpretable model has conditional mean

µ∗ij = E[Yij|Ui = u] = h(β∗0 + β∗1x1,ij + β∗2x2,ij + β∗3x1,ijx2,ij + u+ aij),

where h(·) is the inverse logit function, Yij|Ui ∼ Bernoulli(µ∗ij), and Ui ∼ N(0, σ2).

The conventional model is analogous, but excludes the adjustment that makes the model

marginally interpretable. Under both parameterizations the estimate of the random effects

variance is σ̂2 = 24.15. The fixed effects parameter estimates, with corresponding standard

errors, Wald tests, and 95% confidence intervals, are given in Table 3.5.
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Table 3.6: Response groups in the crossover study of Jones and Kenward (1989), with
corresponding parameterization of the logit of the marginal probability that Y = 1

Group Treatment Period Logit of Marginal Probability
1 Placebo first β∗0
2 Placebo second β∗0 + β∗2
3 Active Drug first β∗0 + β∗1
4 Active Drug second β∗0 + β∗1 + β∗2 + β∗3

Note that there are four unique combinations of treatment and period, each with its

own corresponding probability estimate. These are summarized in Table 3.6. Of primary

interest in this study is whether the treatment has a significant effect on the probability of

a normal electrocardiogram. Due to the interaction between treatment and period, we must

average over the two periods to answer this question. In the first period, the treatment effect

is represented by (β∗0 + β∗1)− (β∗0) = β∗1 whereas in the second period it is represented by

(β∗0 +β∗1 +β∗2 +β∗3)− (β∗0 +β∗2) = β∗1 +β∗3 . The mean of these two quantities is β∗1 +β∗3/2.

Consequently, we test the following hypotheses:

H0 : β∗1 +
1

2
β∗3 = 0 vs. H1 : β∗1 +

1

2
β∗3 6= 0.

These hypotheses consider whether the treatment has a significant effect on average across

all subjects and periods. The analogous hypotheses from the conventional model,

H0 : β1 +
1

2
β3 = 0 vs. H1 : β1 +

1

2
β3 6= 0,

consider whether the treatment has a significant effect for a particular subject after con-

trolling for period. Hypothesis tests and 95% confidence intervals corresponding to the

quantities of interest are given in Table 3.7. Although one would likely conclude that the

treatment effect is significant regardless of the model used, there are sizable differences
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Table 3.7: Tests and 95% confidence intervals for the presence of a significant treatment
effect after controlling for period in the crossover study of Jones and Kenward (1989)

Point Standard
Parameterization Estimate Error Test Statistic p-value 95% CI

marginal 0.62 0.24 Wald 2.54 0.01 (0.14,1.09)
LR 6.78 0.01 (0.16,1.15)

Score 3.18 <0.01 —
subject-specific 1.92 0.95 Wald 2.02 0.04 (0.06,3.78)

LR 6.69 0.01 (0.40,4.79)
Score 2.43 0.02 —

between the two models in terms of the estimated effect size, the length of the correspond-

ing 95% confidence interval, and the strength of the evidence against the null hypothesis as

summarized by the p-value. The magnitude of the difference in this scenario is driven by

the large random effects variance (σ̂2 = 24.15).

To assess the efficacy of the drug across the entire target population, one should use the

marginal parameterization. In this setting, using the conventional, subject-specific param-

eters leads to overstating both the effect size and its uncertainty when interest lies in the

population-averaged, marginal effect. If the experiment were repeated on a different sam-

ple of subjects from the same population, the subject-specific parameter estimates would

likely show more deviation from their counterparts in the original study than would the

marginal parameter estimates. The subject-specific effects are, as the name suggests, tied

to specific subjects; the marginal effects are better suited for population-based inference.

Bird Migration

Hewson et al. (2016) studied migration patterns of the Common Cuckoo, tracking 56

autumn migrations among 42 birds over a four-year period. These birds migrated each fall
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from the United Kingdom to Africa, taking either an eastern route or a western route. Both

routes required the birds to cross the Sahara desert. Using trackers, Hewson et al. (2016)

determined whether each bird survived the Sahara crossing. To avoid repeated measure-

ments on the same birds, we consider only the first observed migration for each of the 42

Cuckoos in the sample. The observed migrations include 22 along the eastern route and 20

along the western route. The data are provided in Table A.5.

For studying the relationship between migration patterns and population decline, the

scientific question of interest is whether the choice of route has a significant impact on

the survival rate on average across all years. To answer this question, we fit a marginally

interpretable model in which the probability µ∗ij of surviving the Sahara (Y = 1 for survival,

Y = 0 otherwise) as a function of the route taken (x = 1 for western route, x = 0 for

eastern route) is given by

µ∗ij = E[Yij|Ui = u] = h(β∗0 + β∗1xij + u+ aij),

where h(·) is the inverse logit function, Yij|Ui ∼ Bernoulli(µ∗ij), Ui ∼ N(0, σ2) is a random

year effect, i = 1, 2, 3, 4 indexes the years, j = 1, . . . ,mi indexes bird within year, and

(m1,m2,m3,m4) = (5, 11, 13, 13). The Ui term in the model acknowledges that we expect

variability in the survival rate by year because the conditions could be more dangerous for

some years relative to others.

We estimate the random effects variance for this marginally interpretable model to be

σ̂2 = 0.50. The fixed effects parameter estimates are provided in Table 3.8 along with

corresponding 95% confidence intervals and tests of the null hypothesis H0 : β∗1 = 0

versus the alternative H1 : β∗1 6= 0. These hypotheses are appropriate here because they

target inference on the marginal parameter that is of interest to the study. Regardless of
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Table 3.8: Parameter estimates for the fixed effects in the bird migration study of Hewson
et al. (2016), with corresponding standard errors, tests, and 95% confidence intervals

Marginally Interpretable Model
Point Standard

Parameter Estimate Error Test Statistic p-value 95% CI
intercept (β∗0) 2.49 0.90 Wald 2.76 0.01 (0.72,4.25)

route (β∗1) -2.19 1.04 Wald -2.11 0.03 (-4.23,-0.16)
LR 6.11 0.01 (-4.61,-0.39)

Score -2.38 0.02 —

Cluster-Specific Model
Point Standard

Parameter Estimate Error Test Statistic p-value 95% CI
intercept (β0) 2.69 1.26 Wald 2.14 0.03 (0.23,5.15)

route (β1) -2.36 1.40 Wald -1.69 0.09 (-5.10,0.37)
LR 6.11 0.01 (-6.84,-0.39)

Score -2.38 0.02 —

the choice of test, we find a statistically significant effect of route upon the probability of

survival when using the marginally interpretable model.

An inappropriate analysis would be to fit a conventional model that excludes the adjust-

ment and does not have a marginal interpretation, and then focus inference on the cluster-

specific parameter β1. For example, one might test H0 : β1 = 0 versus H1 : β1 6= 0.

Table 3.8 shows that this misguided model and test result in a much higher p-value when

using the ubiquitous Wald test. Using this approach, we would falsely suggest that the

route is not associated with the probability of survival because our model and test would

not be calibrated to the marginal scientific question of interest.

Seed Germination

Crowder (1978) reported results from a 2 × 2 factorial experiment involving seed ger-

mination. Two types of seeds (O. aegyptiaco 73 and O. aegyptiaco 75) were covered in
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two different types of root extract (bean and cucumber). Each combination of seed type

and extract was applied to five plates, except for the combination of O. aegyptiaco 75 and

cucumber extract, which was applied to six plates. After a fixed duration, the number of

germinated seeds, Yi, and the total number of seeds, mi, on each plate were counted, where

i = 1, . . . , 21. These data can be found in Table A.6. We let x1,i = 1 for O. aegyptiaco 75,

x1,i = 0 for O. aegyptiaco 73, x2,i = 1 for cucumber extract, and x2,i = 0 for bean extract.

Defining pi = Yi/mi, we fit a marginally interpretable model of the form

E[pi|Ui = u] = h(β∗0 + β∗1x1,i + β∗2x2,i + β∗3x1,ix2,i + u+ ai),

where Ui ∼ N(0, σ2), Yi|Ui ∼ Binomial(mi,E[pi|Ui]), and h(·) is the inverse logit func-

tion. We also fit an analogous conventional GLMM that does not include the adjustment.

Fitting both models via maximum likelihood estimation, we estimate σ̂2 = 0.06. Pa-

rameter estimates for the fixed effects parameters are given in Table 3.9 along with corre-

sponding hypothesis tests and confidence intervals. Unlike in the preceding examples, the

two sets of estimates, tests, and intervals are virtually identical. The similarity between the

two parameterizations in this context is due to the small magnitude of the random effects

variance. As a consequence of the limited between-plate variability, the adjustment is also

small in magnitude and there is little difference between the two models. This is espe-

cially clear for the test of whether there is an interaction effect. Under the null hypothesis

H0 : β∗3 = 0, the marginally interpretable GLMM is not equivalent to the conventional

GLMM, and the likelihood ratio test is therefore not the same for the two parameteriza-

tions in this setting. However, the difference is so small that both the test statistic and the

resulting p-value match to the second decimal place. Although the parameterization has

little impact on estimation and inference, the marginal parameters, which focus on average
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Table 3.9: Parameter estimates for the fixed effects in the seed germination study of Crow-
der (1978), with corresponding standard errors, tests, and 95% confidence intervals

Marginally Interpretable Model
Point Standard

Parameter Estimate Error Test Statistic p-value 95% CI
intercept (β∗0) -0.45 0.22 Wald -2.04 0.04 (-0.87,-0.02)

seed (β∗1) -0.10 0.27 Wald -0.35 0.73 (-0.63,0.44)
extract (β∗2) 0.52 0.30 Wald 1.74 0.08 (-0.07,1.11)

interaction (β∗3) 0.80 0.38 Wald 2.11 0.04 (0.06,1.54)
LR 4.15 0.04 (0.03,1.59)

Score 2.38 0.02 —

Cluster-Specific Model
Point Standard

Parameter Estimate Error Test Statistic p-value 95% CI
intercept (β0) -0.45 0.22 Wald -2.03 0.04 (-0.89,-0.02)

seed (β1) -0.10 0.28 Wald -0.35 0.73 (-0.64,0.45)
extract (β2) 0.53 0.30 Wald 1.74 0.08 (-0.07,1.12)

interaction (β3) 0.81 0.39 Wald 2.10 0.04 (0.06,1.57)
LR 4.15 0.04 (0.03,1.63)

Score 2.44 0.01 —

seed and extract effects across all plates, have a more convenient interpretation than the

cluster-specific parameters, which focus on the seed and extract effects for a specific plate.

Swine Parasites

Larsen et al. (2000) reported data, which can be found in Table A.7, from a sample of

pigs collected by Roepstorff et al. (1998). Fecal samples of 1,016 pigs from 108 pigsties

were investigated to determine whether or not each pig was infected with roundworm. Of

the 108 pigsties used to collect samples, 72 were conventional whereas 36 were specific

pathogen free (SPF) and were therefore expected to be more sanitary. The goal of the study

was to determine if roundworm occurred at a lower rate in SPF pigsties than in conventional
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Table 3.10: Parameter estimates and corresponding standard errors, hypothesis tests, and
95% confidence intervals for the fixed effects in the pigsty data found in Larsen et al. (2000)
assuming a common random effects variance across the two types of pigsties

Marginally Interpretable Model
Point Standard

Parameter Estimate Error Test Statistic p-value 95% CI
intercept (β∗0) -1.87 0.19 Wald -9.65 <0.01 (-2.25,-1.49)

type (β∗1) -0.87 0.38 Wald -2.27 0.02 (-1.63,-0.12)
LR 5.43 0.02 (-1.66,-0.14)

Score -2.31 0.02 —

Cluster-Specific Model
Point Standard

Parameter Estimate Error Test Statistic p-value 95% CI
intercept (β0) -2.53 0.27 Wald -9.38 <0.01 (-3.06,-2.00)

type (β1) -1.06 0.46 Wald -2.31 0.02 (-1.96,-0.16)
LR 5.43 0.02 (-2.02,-0.17)

Score -2.50 0.01 —

pigsties. We let Yi be the number of infected pigs out of mi in each pigsty, indexed by

i = 1, . . . , 108, and let pi = Yi/mi be the proportion of infected pigs in each pigsty. We

include a fixed effect for the type of pigsty (xi = 1 for SPF, xi = 0 for conventional) and a

random pigsty effect, fitting a marginally interpretable model of the form

µ∗i = E[pi|Ui = u] = h(β∗0 + β∗1xi + u+ ai),

where h(·) is the inverse logit function, Ui ∼ N(0, σ2), and Yi|Ui ∼ Binomial(mi, µ
∗
i ).

We fit both this marginally interpretable model and an analogous conventional model

via maximum likelihood estimation, estimating σ̂2 = 2.19 in both cases. The fixed effects

parameter estimates are summarized in Table 3.10. The point estimates and confidence

intervals are strikingly different between the two parameterizations, but the hypothesis tests

lead to identical conclusions. The discrepancy associated with the point estimates and
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Table 3.11: Parameter estimates and corresponding standard errors, hypothesis tests, and
95% confidence intervals for the fixed effects in the pigsty data found in Larsen et al. (2000)
assuming a different random effects variance for each type of pigsty

Marginally Interpretable Model
Point Standard

Parameter Estimate Error Test Statistic p-value 95% CI
intercept (β∗0) -1.88 0.19 Wald -9.76 <0.01 (-2.26,-1.50)

type (β∗1) -0.82 0.42 Wald -1.94 0.05 (-1.65,0.01)
LR 3.49 0.06 (-1.64,0.04)

Score -1.92 0.06 —

Cluster-Specific Model
Point Standard

Parameter Estimate Error Test Statistic p-value 95% CI
intercept (β0) -2.50 0.27 Wald -9.21 <0.01 (-3.04,-1.97)

type (β1) -1.20 0.63 Wald -1.91 0.06 (-2.44,0.03)
LR 4.77 0.03 (-2.80,-0.12)

Score -2.18 0.03 —

confidence intervals stems from a random effects variance that is large in comparison to

the previous example. The tests, which have null value equal to zero, are expected to yield

similar results because the sample size is relatively large.

Although there is little evidence to suggest differing amounts of heterogeneity among

the two different types of pigsties, we also fit both a marginally interpretable model and a

conventional model for which each treatment group had its own random effects variance.

For both models, we estimated σ̂2
1 = 2.71 for the SPF pigsties and σ̂2

0 = 2.05 for the con-

ventional pigsties. The fixed effects parameter estimates are summarized in Table 3.11.

As in the single variance case, the point estimates and confidence intervals are strikingly

dissimilar, but the Wald tests yield nearly identical conclusions. In this case, the likelihood

ratio test differs between the two parameterizations because the null model (with β∗1 = 0)

is not equivalent under the marginally interpretable model and the conventional GLMM.
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Since interest lies in the average effect of pigsty type on roundworm incidence across all

pigsties, the estimates and tests based on the marginal parameterization are more appropri-

ate than those based on the cluster-specific parameterization.

3.3 Bayesian Inference

As an alternative to the classical procedures discussed in Section 3.2, one could instead

conduct inference within a Bayesian framework. In contrast to the frequentist perspective,

which treats each model parameter as a fixed but unknown value, the Bayesian perspective

treats each model parameter as a quantity that follows an unknown probability distribution.

Before observing data, one specifies a prior distribution with density πθ for the unknown

parameters θ. After observing data Y from the density fY|θ, Bayes’ Rule is used to update

the prior distribution and obtain a posterior distribution with density πθ|Y. Bayes’ Rule

states that

πθ|Y(θ|Y) =
fY|θ(Y|θ)πθ(θ)

fY(Y)
=

fY|θ(Y|θ)πθ(θ)∫
fY|θ(Y|θ)πθ(θ)dθ

.

Since the marginal density fY does not depend on the unknown parameters θ, the posterior

density of θ given Y is often expressed as

πθ|Y(θ|Y) ∝ fY|θ(Y|θ)πθ(θ).

The posterior distribution is the basis for inference in the Bayesian framework because

it can be used to make probabilistic statements about the parameters. For example, if inter-

ested in whether a univariate parameter θ is greater than some value θ0, one can determine

the posterior probability that θ > θ0 by computing the area under the posterior density

curve for θ that lies above θ0. That is,

P (θ > θ0|Y) =

∫ ∞
θ0

πθ|Y(θ|Y)dθ.
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This quantity is known as the tail area above θ0 or as a posterior predictive p-value (see,

for example, Gelman et al., 2004, Section 6.3), and is analogous to a one-sided p-value for

a classical test with null hypothesis H0 : θ ≥ θ0 and alternative hypothesis H1 : θ < θ0.

Given a sample from the posterior distribution of θ, one can calculate the tail area above θ0

by computing the proportion of values in the sample from πθ|Y that are greater than θ0.

To formally test hypotheses in a Bayesian context, one could use Bayes factors. A Bayes

factor represents a ratio of likelihoods under two models, and measures the multiplicative

change from the prior odds to the posterior odds given the data. For a test of the simple

hypotheses H0 : θ = θ0 and H1 : θ = θ1, we define the Bayes factor as

B =
fY|θ(Y|θ0)
fY|θ(Y|θ1)

=
πθ|Y(θ0|Y)/πθ|Y(θ1|Y)

πθ(θ0)/πθ(θ1)
.

This is simply a likelihood ratio; large values of B favor H0 whereas small values of B

favor H1. For a test of the null hypothesis H0 : θ = θ0 versus the alternative hypothesis

H1 : θ 6= θ0, the Bayes factor can be computed using the Savage-Dickey density ratio,

B = πθ|Y(θ0|Y)/πθ(θ0) (see Dickey, 1971; Verdinelli and Wasserman, 1995). As in the

case with simple hypotheses, large values of B favor the null hypothesis and small values

of B favor the alternative.

To illustrate inference in a Bayesian framework and show that model parameterization

can influence one’s conclusions in this setting as well, we revisit the rat teratology data of

Weil (1970) that we introduced in Section 3.2.3. We again model the conditional mean as

a function of a fixed treatment effect and a random litter effect, and allow the variance of

the random litter effect to depend on the treatment. Indexing the litters by i = 1, . . . , 32,

we assume Ui
ind∼ N(0, σ2

xi
) and Yi|β, Ui

ind∼ Binomial(mi,E[pi|β, Ui]), and model

E[pi|β∗, Ui] = h(β∗0 + β∗1xi + Ui + ai)

95



for the marginally interpretable GLMM and

E[pi|β, Ui] = h(β0 + β1xi + Ui)

for the conventional GLMM. Here, h(·) is the inverse logit function. One change from our

earlier model for these data is that we code xi = 1 for exposure to the chemical agent and

xi = −1 (as opposed to xi = 0) for the control diet. Since β∗0 and β∗1 are now treated as

random quantities, it is more natural for the marginal means for the two treatment groups

to be h(β∗0 − β∗1) and h(β∗0 + β∗1) rather than h(β∗0) and h(β∗0 + β∗1). When xi = −1 for the

control group, these two means are on an equal footing in terms of variance, whereas when

xi = 0 for the control group, the mean for the treatment group is inherently more variable.

Our prior distributions for β0, β1, log(σ2
0), and log(σ2

1) are N(0, 2), N(0, 1), N(−1/2, 1),

and N(−1/2, 1), respectively. Here, σ2
0 is the variance parameter for the control group and

σ2
1 is the variance parameter for the treatment group. These priors were chosen such that

the prior distribution for the expected survival rate for each of the two treatment groups is

approximately uniform over the interval (0, 1).

We sample from the posterior distribution of the unknown parameters, including the

latent random variables Ui, using an MCMC algorithm that iteratively updates blocks of

parameters using Metropolis steps. We first update β = (β0, β1)
T , then α = (σ2

0, σ
2
1)T ,

and finally U = (U1, . . . , U32)
T . A general description of this computational strategy is

provided in Section 4.4. We executed our MCMC algorithm both with the adjustment

included in the model and without it. Each chain was run for 1,010,000 steps, with the

first 10,000 steps discarded as burn-in and every 100th step thereafter retained for the final

sample. This resulted in 10,000 draws from the posterior distribution for each model.

Table 3.12 displays posterior means and standard deviations for the parameters in both

the marginally interpretable GLMM and the conventional GLMM. Differences between
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Table 3.12: Posterior means of the unknown parameters in the model for the rat teratology
data of Weil (1970) (with corresponding posterior standard deviations in parentheses)

Parameter Marginally Interpretable GLMM Conventional GLMM
β0 1.62 (0.24) 1.92 (0.30)
β1 -0.49 (0.23) -0.38 (0.29)
σ0 0.74 (0.30) 0.72 (0.28)
σ1 1.55 (0.42) 1.58 (0.42)

these posterior means and the maximum likelihood estimates reported in Table 3.3 stem

from the alternative coding of the treatment effect and from the prior distributions placed on

the parameters. Figure 3.4 displays kernel density estimates based on the posterior samples

for the two models. The tail area above zero for β∗1 in the marginally interpretable model,

which corresponds to the marginal treatment effect, is 0.016. This is considerably less than

the tail area of 0.088 for the cluster-specific treatment effect β1 in the conventional GLMM.

Thus, many would draw different conclusions about the importance of the treatment effect

using the two different models. Indeed, Bayes factors for a test of no treatment effect

(H0 : β1 = 0 versus H1 : β1 6= 0), computed using the Savage-Dickey density ratio, come

in at 0.45 for the marginally interpretable model and 1.37 for the conventional GLMM.

This confirms the disparity, as the Bayes factor for the conventional model favors the null

hypothesis whereas the Bayes factor for the marginally interpretable model does not.

Another approach for investigating the treatment effect is to compare the expected 21-

day survival rates between the two treatment groups. For the marginally interpretable

model, the expected proportion of rat pups to survive 21 days among those alive after four

days (omitting the subscript i) is E[p|β∗,α, x = 1] = h(β∗0 + β∗1) for the treatment group

and E[p|β∗,α, x = −1] = h(β∗0 − β∗1) for the control group. For the conventional GLMM

the same expectation is E[p|β,α, x = 1] =
∫
h(β0 + β1 + u)fU(u)du for the treatment

group and E[p|β,α, x = −1] =
∫
h(β0− β1 + u)fU(u)du for the control group. Note that
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Figure 3.4: Kernel density estimates of the posterior densities for the unknown parame-
ters in the model for the rat teratology data of Weil (1970); estimates obtained from the
marginally interpretable model are in gray while those obtained from the conventional
GLMM are in black

the parameters α enter this expression through the random effects distribution fU . Interest

lies in whether or not the quantity E[p|β,α, x = 1] − E[p|β,α, x = −1] (or the same

quantity with β∗ replacing β) is nonzero. Kernel density estimates of the posterior density

for this quantity under the two models are shown in Figure 3.5. The integral evaluation

required for the conventional GLMM was accomplished using Monte Carlo integration.

These densities are similar because the marginally interpretable and conventional models

are equivalent in this setting as described in Section 3.1. Under both models, most of the

posterior mass is below zero. The tail area above zero for the marginally interpretable

model is 0.016, matching the tail area for β∗1 . The tail area above zero for the conventional

GLMM is 0.014. This is close to the tail area for the marginally interpretable model, but

contrasts sharply with the tail area of 0.088 for β1. This demonstrates that the marginal

parameter β∗1 targets inference on the quantity of interest, which is the difference between

the two group means, whereas the cluster-specific parameter β1 does not.
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Figure 3.5: Kernel density estimates of the posterior density of the difference in the ex-
pected 21-day survival rate between the two treatment groups in the rat teratology study
of Weil (1970) based on the marginally interpretable model (gray) and the conventional
GLMM (black)

3.4 Stability of Fixed Effects Parameter Estimates

A fixed effect, as its name suggests, is a quantity that has a fixed value across an entire

population. Whereas one might observe different realizations of a random effect in two

samples from the same population, estimates of a fixed effect based on those two samples

should be roughly the same. Due to differences among samples, some variation in the fixed

effects parameter estimates is to be expected, especially if the sample size is small. For

sufficiently large samples, estimates of a fixed effect should be fairly stable across different

samples from the same population. Further, changes in the random effects distribution

should not affect the magnitude of a fixed effect (provided the fixed effect is independent

of the random effect). The extent to which this is true depends on the parameterization of

the model. The marginal effects in a marginally interpretable GLMM represent population-

level quantities whereas the cluster-specific effects in a conventional GLMM depend on the

random effects, which could change from one sample to another. Estimates of the marginal
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Figure 3.6: Boxplots and histograms showing the distributions of β̂∗1 and β̂1 across 10,000
simulated datasets with β∗1 = 0.2; the vertical black line in each histogram shows the true
value of β∗1 while the vertical gray line shows the mean of the 10,000 estimates used to
produce the histogram

parameters are therefore more stable across different samples from the same population

than estimates of corresponding cluster-specific parameters.

To emphasize the relative stability of the marginal parameters in comparison to the

cluster-specific parameters, we revisit the simulation study from Section 3.2.2. Figure 3.6

shows boxplots and histograms for the 10,000 estimates of β1 and β∗1 obtained from the

10,000 datasets generated with 100 pairs of binary observations, σ2 = 5, β∗0 = logit(2/3),

and β∗1 = 0.2. Each dataset can be viewed as an independent sample from a population

with the same underlying parameter values. As expected, both β̂∗1 and β̂1 vary from dataset

to dataset, but the estimates for β1 exhibit greater variability than those for β∗1 . This sug-

gests that cluster-specific parameter estimates are more sensitive to the differences among

multiple samples from the same population than marginal parameter estimates. Figure 3.6

also shows that the mean of the 10,000 estimates for β1 is 0.36 while the mean of the 10,000
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estimates for β∗1 is 0.20, which matches the true underlying parameter value. The amount

by which the mean for β̂1 deviates from 0.2 is driven by the random effects variance σ2.

If we were to run the simulation again with a different value for σ2, the distribution of β̂1

would be shifted, whereas the distribution for β̂∗1 would remain centered at 0.2.

The additional variability in the cluster-specific parameter estimates is due in part to

the dependence of β1 on both σ2 and β∗0 . Since different samples have different amounts

of heterogeneity among clusters and different prevalences of Y = 1, estimates of σ2 and

β∗0 are likely to vary from sample to sample. Changes in these values alter the expected

value of β1, which adds to the variability in β̂1 across samples. Consider, for example,

a drug trial conducted across several different clinics for which the response variable is a

binary indicator of whether or not each patient’s condition improved over the course of the

study. The analysis involves fitting a logistic regression model for which the clinic effect is

included as a random effect. If the study shows that the drug has a positive effect (relative

to a control), an effort might be made to replicate the study at another set of clinics. If

these clinics exhibit greater variability than the clinics in the original trial, then the cluster-

specific parameter estimate, which is conditional on clinic, will suggest a different effect

size even if the effect size for the population on average is the same for both trials.

Instability of the cluster-specific parameters across samples also occurs if there is a dif-

ferent underlying prevalence of a positive outcome for each of the two samples. Returning

to the drug trial example, suppose that in the first trial 10% of patients see improvement in

their condition whereas in the second 30% do. Even if the average effect of the drug (rel-

ative to the control) is the same for both samples, the estimated cluster-specific effect will

be different. This phenomenon stems from the fact that the curvature of the logit function

is not uniform over its domain and therefore has greater impact in some regions of the unit
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Figure 3.7: Plots depicting how β1 varies with σ2 (left panel, for β∗0 = logit(0.3)) and β∗0
(right panel, for σ2 = 1); the solid line in each panel shows that β∗1 = 1 while the dashed
curve shows how β1 varies

interval than others. Thus, the shift from 0.1 in the first trial to 0.3 in the second trial leads

to different estimates of β1.

Figure 3.7 demonstrates how the value of β1 varies with σ2 and β∗0 when β∗1 remains

unchanged. To produce this figure, we considered a model with a logit link, a normal

random intercept U ∼ N(0, σ2), and a single predictor x ∈ {0, 1} representing the presence

or absence of a treatment. The true value of the marginal parameter β∗1 is 1. Thus, on

average, the treatment x = 1 corresponds to a multiplicative increase by a factor of 2.72 in

the odds that Y = 1. In the left panel of Figure 3.7, we set β∗0 = logit(0.3) and see that

β1 increases with σ2 while β∗1 remains equal to one. In the right panel of Figure 3.7, we

set σ2 = 1 and see how β1 varies with logit−1(β∗0). Ultimately, regardless of the overall

prevalence of Y = 1 and the variance of the random effects, the estimate of the marginal

parameter β∗1 should be near one, whereas the estimate of the cluster-specific parameter
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β1 is more sensitive to changes in the underlying prevalence of Y = 1 and in the random

effects variance σ2 that arise from sample to sample.

In summary, the effect size for a cluster-specific effect varies from one sample to an-

other based on the characteristics of those samples. As such, one might observe a smaller

effect in a follow-up study after observing a large effect in an initial study even if the true

underlying effect is the same. Such a difference might be construed as a failure to replicate

the initial result, but in actuality is driven by the structure of the GLMM. A marginal effect

should not change as much as a cluster-specific effect from one sample to another provided

the samples are taken from the same population with the same true underlying effect size.

Hence, marginal effects might be viewed as more reproducible than cluster-specific effects.

3.5 Consistent Estimation of the Random Effects Variance

Thus far, we have focused on inference for the fixed effects parameters in a GLMM.

One can also conduct inference on the parameters that characterize the random effects

distribution. Random effects are included in a mixed model as a means of introducing de-

pendence and overdispersion into the model. For example, repeated measures on a subject

may be systematically large, or count data may show extra-Poisson variation. The degree of

dependence and overdispersion, at least in simple models, is determined by the distribution

of the random effects, with the variance of this distribution being of particular importance.

In order to consistently estimate the random effects variance, it is natural that one would

require replication of the random effects. If each realization of a random effect is asso-

ciated with just one observation, then there is no way to separate the variability in that

random effect from the other variability in the data. As an example, consider the following
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hierarchical model:

Zi ∼ Fσ2 ;

Yi|Zi = zi ∼ Bernoulli(zi),

where i = 1, . . . , N and Fσ2 is an arbitrary distribution on (0, 1) with mean µ and variance

σ2. To obtain a marginal model for Yi, one must integrate over Zi. Regardless of the value

of σ2, the resulting marginal distribution for Yi is Bernoulli(µ). No matter how many of

these Bernoullis are collected, there is no replication tied to a single random effect and no

information is obtained about σ2. Hence, σ2 cannot be estimated consistently.

Despite this intuition that the random effects variance cannot be estimated consistently

in the absence of replication, Kim and Kim (2011) proved a surprising result for a conven-

tional Bernoulli GLMM. Namely, they showed that the maximum likelihood estimator is

strongly consistent for the random effects variance σ2, even when there is no replication.

We call this result the Kim Paradox and state it below in a form that, for simplicity of

presentation, is not as general as the form presented in Kim and Kim (2011).

The Kim Paradox: With no replication, one can estimate σ2 consistently. Let param-

eters β0, β1 6= 0, and τ 2 > 0 be fixed and known, and also let Xi ∼ N(0, τ 2) and

Ui ∼ Uniform(−c, c) (c > 0, i = 1, 2, . . . ), be independent sequences of random vari-

ables. Furthermore, let h(·) = logit−1(·), and define the conditionally independent se-

quence Yi|Xi = xi, Ui = ui ∼ Bernoulli
(
h(β0 + β1xi + ui)

)
for i = 1, 2, . . . . Then σ̂2,

the maximum likelihood estimator of the random effects variance σ2, is consistent.

Noting that the marginal mean E[Yi] = E[h(β0 + β1xi + Ui)] is the expectation of

the conditional mean, the Kim Paradox arises from the fact that the marginal mean in a

conventional GLMM is distorted by the random effects in such a fashion that there is a
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one-to-one mapping between E[Yi] and the random effects variance σ2. That is, for fixed

values of β0 and β1, any E[Yi] = E[h(β0 + β1xi + Ui)] corresponds to a specific value of

σ2. This one-to-one mapping, along with a rich enough set of xi, ensures that the marginal

mean functions are identifiable and consistency of σ2 follows.

A marginally interpretable Bernoulli GLMM of the form given by (3.2) and (3.3) re-

solves the Kim Paradox because the marginal mean in such a model is unaffected by

changes in σ2. Consequently, without replication the data contain no information about

the random effects variance, and one cannot obtain a consistent estimator of σ2. Thus, un-

like with a conventional Bernoulli GLMM, one does not obtain a nonsensical consistency

result with a marginally interpretable Bernoulli GLMM. This is stated more formally in the

following proposition:

Proposition 3.3. If Yi|Ui folllows a Bernoulli distribution and we have a marginally inter-

pretable GLMM of the form given by (3.2) and (3.3) for which the random intercepts Ui,

i = 1, . . . , N , are independently distributed (i.e., each Yi has its own unique Ui), then the

marginal density of Yi does not depend in any way on the distribution of Ui.

Proof of Proposition 3.3: The marginal likelihood for each Yi, i = 1, . . . , N , is

fY (Yi) =

∫
fY |U(Yi|Ui = u)fU(u)du

=

∫
E[Yi|Ui = u]Yi(1− E[Yi|Ui = u])1−YifU(u)du

=

∫
h(xTi β

∗ + u+ ai)
Yi
(
1− h(xTi β

∗ + u+ ai)
)1−YifU(u)du.

Because the model satisfies (3.3), if Yi = 1 we have

fY (Yi) =

∫
h(xTi β

∗ + u+ ai)fU(u)du = h(xTi β
∗),
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whereas if Yi = 0 we have

fY (Yi) =

∫ (
1− h(xTi β

∗ + u+ ai)
)
fU(u)du = 1− h(xTi β

∗).

Since Yi ∈ {0, 1}, we can therefore write

fY (Yi) = h(xTi β
∗)Yi
(
1− h(xTi β

∗)
)1−Yi ,

and fY is completely independent of σ2, as required.

106



Chapter 4: Computation

Parameter estimates for GLMMs have traditionally been obtained in a classical frame-

work through maximum likelihood estimation. In many cases, the expression for the

marginal likelihood includes an analytically intractable integral, which presents a compu-

tational challenge. This integral must be evaluated numerically or avoided by maximizing

an analytical approximation of the likelihood instead of the true likelihood. Numerical in-

tegration techniques work well for models that have only one or two random effects associ-

ated with each observation, but become impracticable when the number of random effects

is large. Methods that maximize an approximation of the likelihood work with higher-

dimensional random effects, but do not always yield satisfactory parameter estimates. More

recently, Bayesian approaches have been used to sample from the posterior distribution of

the unknown parameters in GLMMs. These strategies typically carry a greater computa-

tional burden than corresponding frequentist approaches for simple models, but are more

easily extended to models with many random effects. Bayesian GLMMs also provide a

more natural measure of uncertainty for the parameters than the classical approach because

one obtains a posterior distribution for the parameters and need not rely on the asymptotic

properties of the maximum likelihood estimator to estimate standard errors based on the

Fisher information.

107



The methodology used to fit a conventional GLMM can easily be adapted to fit a

marginally interpretable GLMM. When evaluating the likelihood function, be it as part

of an optimization procedure in a frequentist approach or for sampling from the posterior

in a Bayesian approach, one must simply include the adjustment in the calculation. The ex-

pression for the adjustment, like the expression for the marginal likelihood, might involve

an analytically intractable integral. In this chapter, we discuss numerical techniques for

evaluating such integrals, and present an algorithm for accurately and efficiently comput-

ing the adjustment in a model with a logit link and normal random effects. We then review

strategies for fitting GLMMs in both a classical framework and a Bayesian framework, and

show how to incorporate the adjustment into these techniques to produce marginal parame-

ter estimates. For the Bayesian setting, we introduce a method for improving mixing in an

MCMC algorithm when the model includes a large number of latent random variables and

present an example that demonstrates this technique.

4.1 Integral Approximations

When an integral cannot be evaluated analytically, one must resort to an approximation

or a numerical integration technique. Common approaches include Laplace approxima-

tions, Monte Carlo integration, Gaussian quadrature, and adaptive quadrature. There also

exist a number of algorithms tailored specifically to evaluating the logistic-normal integral,

which arises when one has a model with a logit link and Gaussian random effects. This

section provides an overview of these techniques.

4.1.1 Laplace Approximation

The Laplace approximation is an application of Laplace’s method for integrals (e.g.

de Bruijn, 1961, Chapter 4), which uses an asymptotic expansion of the integrand to obtain
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an analytical approximation of the integral. We define the Laplace approximation as∫
f(x)dx =

√
2πσf(µ), (4.1)

where µ is the value at which f(·) attains its maximum and σ = ξ−1/2 with ξ given by

ξ = − ∂2

∂x2
log
(
f(x)

)∣∣∣∣
x=µ

. (4.2)

Denoting `(·) = log
(
f(·)

)
, the approximation (4.1) arises from a second-order Taylor

series expansion of `(·) about µ. Specifically, one approximates

`(x) ≈ `(µ) + `′(µ)(x− µ) +
1

2
`′′(µ)(x− µ)2, (4.3)

where `′(·) and `′′(·) are the first two derivatives of `(·). If µmaximizes `(·), then `′(µ) = 0

and the second term on the right-hand side of (4.3) disappears. We then approximate∫
exp

(
`(x)

)
dx ≈

∫
exp

(
`(µ) +

1

2
`′′(µ)(x− µ)2

)
dx.

This quantity can be written as

exp
(
`(µ)

) √
2π√
−`′′(µ)

∫
1√

2π
(
− `′′(µ)

)−1 exp

(
− 1

2
(
− `′′(µ)

)−1 (x− µ)2
)
dx,

where the integral is equal to one because its integrand is a Gaussian probability density

function. Thus, the approximation is∫
f(x)dx =

∫
exp

(
`(x)

)
dx ≈ exp

(
`(µ)

) √
2π√
−`′′(µ)

,

which is exactly (4.1) with σ =
(
− `′′(µ)

)−1/2
= ξ−1/2, where ξ is defined as in (4.2).

Laplace approximations were popularized by Tierney and Kadane (1986) and Tierney

et al. (1989) for approximating posterior moments and marginal densities in a Bayesian

context. The Laplace approximation also plays an important role in popular approximate
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likelihood methods for fitting GLMMs in a classical framework, which will be discussed

in Section 4.3. More recently, Rue et al. (2009) proposed a method known as integrated

nested Laplace approximations (INLA) that incorporates multiple Laplace approximations

to obtain accurate approximations of posterior densities in Bayesian models with latent

Gaussian processes.

The objective of INLA is to approximate the posterior marginal densities πU |Y(Ui|Y)

of the latent variables and πθ|Y(θj|Y) of the model parameters, where i and j index the

latent variables Ui and model parameters θj , respectively. We express these posteriors as

πU |Y(Ui|Y) =

∫
πU |θ,Y(Ui|θ,Y)πθ|Y(θ|Y)dθ;

πθ|Y(θj|Y) =

∫
πθ|Y(θ|Y)dθ−j,

where θ−j is the vector of all elements of θ except θj . INLA uses Laplace approxima-

tions equivalent to those used by Tierney and Kadane (1986) to approximate πθ|Y(θ|Y)

as π̃θ|Y(θ|Y) and πU |θ,Y(Ui|θ,Y) as π̃U |θ,Y(Ui|θ,Y). The approximation π̃θ|Y(θ|Y) is

then used to determine suitable evaluation points and weights for numerical evaluation of

πU |Y(Ui|Y) and πθ|Y(θj|Y). For example, πU |Y(Ui|Y) is approximated by

π̃U |Y(Ui|Y) =
∑
k

π̃U |θ,Y(Ui|θk,Y)π̃θ|Y(θk|Y)∆k,

where k indexes the values of θ at which π̃U |θ,Y(Ui|θ,Y)π̃θ|Y(θ|Y) is evaluated and the

∆k represent the corresponding weights. Rue et al. (2009) also discussed alternative ap-

proximations for πU |θ,Y(Ui|θ,Y) that are more computationally efficient than the Laplace

approximation but lead to approximations of πU |Y(Ui|Y) that are less accurate.
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4.1.2 Monte Carlo Integration

Rather than employing an analytical approximation, one could instead use a numerical

procedure to evaluate an intractable integral. One such approach, introduced by Metropolis

and Ulam (1949) and discussed in detail by Robert and Casella (2004, Chapter 3), is Monte

Carlo integration. This strategy involves collecting many random draws of the integrand

and computing their average. For an arbitrary function p(·) and a density function f(·), the

classical Monte Carlo estimator approximates∫
p(x)f(x)dx ≈ 1

n

n∑
i=1

p(Xi),

where X1, . . . , Xn represent n independent draws from the density f . By the strong law

of large numbers, this estimator of the integral is unbiased and has variance Var
(
p(X)

)
/n,

where X is a random variable with density f . Increasing the number of random draws n

from the density f results in a more precise estimator, but due to the stochastic nature of

the estimator one can only compute probabilistic bounds for its error.

Several related methods exist for obtaining a more precise estimator. These variance

reduction techniques for Monte Carlo integration are discussed, for example, by Givens

and Hoeting (2013, Section 6.4). One popular approach is importance sampling, which

rewrites the integral as ∫
p(x)f(x)dx =

∫
p(x)f(x)

q(x)
q(x)dx,

where q(·) is a density function. The density q should be easy to sample from and should

ideally put higher density than f on “important” values of X . The corresponding impor-

tance sampling estimator, based on a sample X1, . . . , Xn drawn from q, is∫
p(x)f(x)dx =

∫
p(x)f(x)

q(x)
q(x)dx ≈ 1

n

n∑
i=1

p(Xi)f(Xi)

q(Xi)
.
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Provided that q appropriately weights values in the support of X , the importance sampling

estimator is more precise than the classical Monte Carlo estimator based on the same num-

ber of random draws. Other variance reduction strategies include using antithetic variables,

which are identically distributed but negatively correlated; using a control variate, which is

a variable correlated with X that has known mean; and using the Rao-Blackwell theorem

to condition on a sufficient statistic.

For multidimensional integrals, Monte Carlo integration requires one to draw random

variates X1, . . . ,Xn from a higher-dimensional space. Accurate estimation of the inte-

gral requires draws from across this entire space. Completely random draws might fill the

space inefficiently, and the number of draws required to accurately evaluate the integral

grows quickly with the dimension of the integral. An alternative to the random draws that

characterize Monte Carlo integration is to instead use deterministic draws that efficiently

cover the space of interest. Such methods are known as quasi-Monte Carlo and can achieve

comparable precision to standard Monte Carlo techniques with fewer draws from the den-

sity f (see Niederreiter, 1992, and the references therein). For a comparison of quasi-Monte

Carlo, classical Monte Carlo, and Gauss-Hermite quadrature, see González et al. (2006).

4.1.3 Gaussian Quadrature

Another popular numerical integration technique, known as Gaussian quadrature, re-

quires one to evaluate the integrand at a set of nodes x1, . . . , xn known as quadrature points

or abscissas and then compute a weighted average of the function evaluations. The nodes

and their correspoding weights, which are collectively known as a quadrature rule, are de-

rived from the roots of orthogonal polynomials. We focus on Gauss-Hermite quadrature
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rules, which are derived from Hermite polynomials and are convenient for evaluating in-

tegrals that contain a normal density function. For a set of nodes x1, . . . , xn and weights

w1, . . . , wn, Gauss-Hermite quadrature approximates∫
f(x) exp(−x2)dx ≈

n∑
i=1

wif(xi). (4.4)

Appropriate quadrature points and weights can be found in a mathematical handbook such

as Abramowitz and Stegun (1972) or can be computed with a formula (e.g. Golub and

Welsch, 1969). Pinheiro and Bates (1995) characterize this form of Gaussian quadrature as

a deterministic version of Monte Carlo integration because the integral is approximated by

evaluating its integrand at a fixed number of points and then computing an average of those

function evaluations. Unlike Monte Carlo integration, the points at which the integrand is

evaluated are predetermined values as opposed to random draws from a distribution.

An alternative to traditional Gaussian quadrature is adaptive quadrature, which approx-

imates the integral more efficiently by focusing the quadrature on an appropriate region of

the integrand. This is accomplished by shifting and scaling the quadrature points. Sup-

pose a function f(·) can be written as the product of a function f ∗(·) and a normal density

function. Adaptive Gauss-Hermite quadrature uses the fact that an integral of the form∫
f(x)dx =

∫
f ∗(x)

1√
2πσ2

exp

(
− 1

2σ2
(x− µ)2

)
dx

can be written in the form given in (4.4) as∫
1√
π
f ∗(µ+

√
2σx) exp(−x2)dx ≈

n∑
i=1

wi
1√
π
f ∗(µ+

√
2σxi)

=
√

2σ
n∑
i=1

wi exp(x2i )f(µ+
√

2σxi),

where the wi and xi (i = 1, . . . , n) are the nodes and weights for traditional Gauss-Hermite

quadrature (see Naylor and Smith, 1982). Thus, by selecting appropriate values for µ and
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σ, one can transform the traditional quadrature points to ensure that the abscissas used for

the approximation are located in a region of interest for the integrand f(·). Assuming f ∗(·)

is a density function, Naylor and Smith (1982) suggest choosing µ and σ to be estimates

of the mean and standard deviation of f ∗(·), while Liu and Pierce (1994) suggest choosing

µ to be the mode of f ∗(·) and σ to be ξ−1/2, where ξ is defined as in (4.2) for a Laplace

approximation. Pinheiro and Bates (1995) describe this approach as a deterministic ver-

sion of importance sampling because, like importance sampling, it aims to evaluate the

integrand at “important” values of x and then approximate the integral by computing an

average of those function evaluations. Although adaptive Gauss-Hermite quadrature can

achieve comparable accuracy to traditional Gauss-Hermite quadrature with fewer quadra-

ture points, the gain in computational efficiency is tempered by the need to determine an

appropriate transformation of the abscissas. If calculating µ and σ is nontrivial, the tradi-

tional approach could be more efficient than an adaptive approach. For further discussion

of adaptive quadrature, see Rabe-Hesketh et al. (2002) and Pinheiro and Chao (2006).

When one uses Gauss-Hermite quadrature with a single quadrature point, the relevant

node is x1 = 0 and the corresponding weight is w1 =
√
π. Thus, the adaptive quadrature

approximation in this case is ∫
f(x)dx ≈

√
2πσf(µ).

Using the approach of Liu and Pierce (1994), this approximation is equivalent to the

Laplace approximation given by (4.1). As such, Gauss-Hermite quadrature can be viewed

as a generalization of the Laplace approximation that is both more accurate and more

computationally intensive. One can achieve an arbitrary level of accuracy with Gaussian

quadrature by adding more quadrature points to the rule, but additional abscissas require

additional function evaluations and come with additional computational expense.
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As with Monte Carlo integration, Gaussian quadrature can become impracticable for

high-dimensional integrals. If p integrals are nested within one another and n quadrature

points are used to evaluate each integral, then a total of np function evaluations are required.

For example, in two dimensions we have an inner integral and an outer integral. For each of

the n quadrature points used to evaluate the outer integral, we must use n-point quadrature

to evaluate the inner integral. Further, care must be taken to ensure that the inner integral

is approximated accurately, as any error present in the evaluation of the inner integral will

propagate to evaluation of the outer integral. Ultimately, Gauss-Hermite quadrature may be

suitable for evaluating the marginal likelihood of a GLMM with only one or two random

effects per observation, but for models with higher-dimensional random effects it is best to

pursue other options.

4.1.4 Evaluating the Logistic-Normal Integral

A popular GLMM for binary response data assumes a logit link function and specifies

the random effects distribution as a Gaussian distribution. Consequently, there is consider-

able interest in accurately and efficiently evaluating the logistic-normal integral. This is a

typically intractable integral of the form∫
1

1 + e−z
1√

2πσ2
exp

(
− 1

2σ2
(z − µ)2

)
dz. (4.5)

All of the techniques described earlier in this section could be used to evaluate the logistic-

normal integral. There also exist several methods tailored specifically to solving (4.5).

For example, Crouch and Spiegelman (1990) proposed a trapezoidal quadrature rule that

is more accurate than a corresponding Gauss-Hermite quadrature rule for evaluating (4.5).

An alternative method, due to Monahan and Stefanski (1992), involves approximating the
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inverse logit function h(·) with a weighted mixture of normal distributions

h∗k(z) =
k∑
i=1

pk,iΦ(zsk,i),

where Φ(·) is the cumulative distribution function of a standard normal distribution and

the weights pk,i and sk,i are chosen to minimize the maximum approximation error over all

values of z. This leads to to the integral approximation∫
h(z)

1

σ
φ

(
z − µ
σ

)
dz ≈

∫
h∗k(z)

1

σ
φ

(
z − µ
σ

)
dz =

k∑
i=1

pk,iΦ

(
µsk,i

(1 + σ2s2k,i)
1/2

)
. (4.6)

Monahan and Stefanski (1992) provided values for the weights pk,i and sk,i up to k = 8

and demonstrated that when k = 8 the approximation (4.6) is within 2.1× 10−9 of the true

value of the integral for all µ and σ. One could use fewer than eight mixture weights to

improve computational efficiency, but the increase in speed from using fewer weights is

small relative to the corresponding loss of accuracy; we therefore recommend using k = 8.

More recently, Pirjol (2013) developed a recursive formula that provides an exact solu-

tion to the logistic-normal integral on a specific evenly spaced grid. Pirjol (2013) demon-

strated that the integral

ϕ(µ, σ2) =

∫
1

1 + ew
1√

2πσ2
exp

(
− 1

2σ2
(w − µ)2

)
dw (4.7)

satisfies the recursion

ϕ(µ+ σ2, σ2) = e−µ−
σ2

2

(
1− ϕ(µ, σ2)

)
, (4.8)

where ϕ(0, σ2) = 1/2. Note that since

1

1 + ew
+

1

1 + e−w
= 1, (4.9)
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the quantity 1− ϕ(µ, σ2) is a logistic-normal integral. To see this, observe that

1− ϕ(µ, σ2) = 1−
∫

1

1 + ew
1√

2πσ2
exp

(
− 1

2σ2
(w − µ)2

)
dw

=

∫
1

1 + e−w
1√

2πσ2
exp

(
− 1

2σ2
(w − µ)2

)
dw,

which is the form given by (4.5). It also follows from (4.9) that 1−ϕ(µ, σ2) = ϕ(−µ, σ2).

We exploit the recursive result of Pirjol (2013) and combine it with the approximation

of Monahan and Stefanski (1992) to develop a novel, hybrid approach for approximating

the logistic-normal integral. To approximate the integral 1 − ϕ(µ, σ2) when µ > 0, we

first write µ = µ∗ + tσ2, where µ∗ ∈ [0, σ2) and t is a nonnegative integer. We then

approximate 1−ϕ(µ∗, σ2) using (4.6) with k = 8 mixture weights and apply the recursion

(4.8) t times to obtain an approximation for 1 − ϕ(µ, σ2). When µ < 0, the integral of

interest is 1 − ϕ(µ, σ2) = ϕ(|µ|, σ2), and the approximation can still be handled as if the

first argument of ϕ(·, ·) were positive. Denoting our approximation of ϕ(µ, σ2) as ϕ̃(µ, σ2),

we define the error associated with this approximation as

ε(µ, σ2) = ϕ(µ, σ2)− ϕ̃(µ, σ2).

Pirjol (2013) showed that the error ε(µ, σ2) is bounded by

|ε(µ, σ2)| ≤ exp

(
− 1

2σ2
µ2 +

1

8
σ2

)
sup

z∈[0,σ2)

|ε(z, σ2)|,

which means that ϕ̃(µ, σ2) is generally more accurate for larger values of µ and that the

error associated with ϕ̃(µ, σ2) is never worse than the maximum error of the Monahan-

Stefanski approximation (4.6) over the range [0, σ2).

To assess the speed and accuracy of our hybrid approach we compared it to both 30-

point Gauss-Hermite quadrature and to a direct application of (4.6). Specifically, for each

of the 80 values of σ in the set {0.05, 0.10, . . . , 4.00} we evaluated the integral 1−ϕ(µ, σ2)
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for 1,000 values of µ in each of the four intervals [0, σ2], [σ2, 2σ2], [2σ2, 3σ2], and [3σ2, 4σ2]

using the hybrid approach, the Monahan-Stefanski approximation, 30-point Gauss-Hermite

quadrature, and 1,000-point Gauss-Hermite quadrature. This required 4,000 integral eval-

uations for each of the 80 values of σ and each method. These evaluations were completed

on a Dual Quad Core Xeon 2.66 E5430 computer with 32 gigabytes of RAM. To ensure a

fair comparison of speed, all four approaches were implemented using the Rcpp package

in R (R Core Team, 2015; Eddelbuettel and François, 2011; Eddelbuettel, 2013). Gauss-

Hermite quadrature with 1,000 quadrature points was treated as the gold standard to which

the other three methods were compared to assess accuracy.

For each of the competing methods and each value of σ we computed the maximum

“error” relative to 1,000-point quadrature within each of the four intervals for µ. Figure 4.1

summarizes the results of this accuracy assessment. Although 30-point Gauss-Hermite

quadrature is the most accurate for small values of σ, the hybrid approach is the most

accurate in the majority of cases. Notably, the hybrid approach, which combines the re-

cursion of Pirjol (2013) with the approximation of Monahan and Stefanski (1992), clearly

outperforms a direct application of the Monahan-Stefanski approximation.

The 320,000 integral evaluations required for the accuracy assessment took 2.1 seconds

for the hybrid approach compared to 2.1 seconds for the direct application of the Monahan-

Stefanski approximation, 2.2 seconds for 30-point Gauss-Hermite quadrature, and 19.4

seconds for 1,000-point Gauss-Hermite quadrature. Thus, the efficiency of the hybrid ap-

proach is comparable to that of the Monahan-Stefanski approach and slightly better than

that of 30-point Gauss-Hermite quadrature. Further, 1,000-point quadrature is considerably

less efficient than the other three methods. We therefore conclude that the hybrid approach

offers the best tradeoff between accuracy and efficiency among the competing methods.
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Figure 4.1: Maximum error relative to 1,000-point Gauss-Hermite quadrature for various
approximations of the logistic-normal integral with µ in [0, σ2], [σ2, 2σ2], [2σ2, 3σ2], or
[3σ2, 4σ2]; machine accuracy is approximately 10−16, accounting for the floor in the plots

4.2 Computing the Adjustment

To compute the adjustment in a marginally interpretable GLMM, one must solve (2.2)

for dTi ai. The adjustment is a deterministic function of xTi β and the parameters charac-

terizing fU, which we denote by α. When fitting a marginally interpretable GLMM, the
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adjustment must be included in the calculation of the likelihood. Many model-fitting al-

gorithms are iterative in nature, and at the point in the algorithm at which the adjustment

must be included current estimates for α and β will be available to plug into (2.2) to solve

for dTi ai. When the adjustment can be written in closed form, such as when the model has

a probit link and Gaussian random effects or when the model has a log link, computing

dTi ai is straightforward and has little impact on the amount of computation required to fit

the model. When the integral in (2.2) is analytically intractable and the adjustment does

not have a closed form, computing dTi ai is considerably more challenging and can add

substantial computational expense to fitting the model.

The most common situation without a closed-form solution is a model with a logit link

and Gaussian random effects. We now introduce an algorithm for accurate and efficient

computation of dTi ai in such a model. We present the algorithm for the case of a univariate

normal random intercept, but as a consequence of Proposition 2.1, the strategy described

here also applies to a model with multivariate normal random effects. To simplify notation

we denote κ = xTi β and a = dTi ai, and use ϕ(·, ·) as defined in (4.7). Further, suppose

g(·) = logit(·) and Ui ∼ N(0, σ2). In this situation, (2.2) reduces to (2.4) and we can

express the right-hand side of (2.4) as 1−ϕ(κ+ a, σ2). Thus, given κ and σ2, the equation

we must solve for a is

h(κ) = 1− ϕ(κ+ a, σ2). (4.10)

Due to the symmetry of the problem, we need only consider the case of κ > 0. When

κ < 0 the adjustment has the same magnitude but opposite sign as if κ = |κ|.

Several different techniques, such as binary segmentation or a Newton-Raphson al-

gorithm, can be used to solve (4.10) for a. Any such technique requires evaluation of

ϕ(κ + a∗, σ2) for several potential values a∗ of the adjustment a. Although we can use
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the recursion (4.8) to calculate ϕ(tσ2, σ2) exactly for any integer t, it is unlikely that the

desired a will be such that κ + a is an integer multiple of σ2. Thus, we have need of an

approximate numerical integration procedure. Since the function ϕ(·, ·) is decreasing in its

first argument, we can use the recursion (4.8) to quickly identify an interval of length σ2

in which κ + a must reside. By narrowing our search for the correct value of a to such an

interval we reduce the required number of evaluations of ϕ(κ+ a∗, σ2).

Our algorithm for solving (4.10) includes the following steps. We start with t = 0

and increment t by one until 1 − ϕ(tσ2, σ2) ≤ h(κ) < 1 − ϕ((t + 1)σ2, σ2). We use

t∗ to denote the value of t for which this inequality holds, and note that the value of a

satisfying (4.10) must lie in the interval [t∗σ2− κ, (t∗+ 1)σ2− κ). We then employ binary

segmentation, implemented using the the uniroot function in R (R Core Team, 2015),

to search within this interval for the appropriate value of a. To evaluate ϕ(κ + a∗, σ2) for

κ + a∗ ∈ [t∗σ2, (t∗ + 1)σ2) we use the hybrid approach introduced in Section 4.1.4 that

combines the approximation of Monahan and Stefanski (1992) with the recursive result of

Pirjol (2013). Specifically, we use (4.6) to compute ϕ(κ + a∗ − t∗σ2, σ2) and then apply

(4.8) t∗ times to obtain ϕ(κ+ a∗, σ2).

4.3 Frequentist Approaches to Model Fitting

In a classical framework, estimates for the unknown parameters in a GLMM are ob-

tained through maximization of the marginal likelihood. We denote the vector of un-

known parameters as θ = (β,α)T , with β representing the fixed effects parameters and

α representing the parameters that characterize the random effects distribution. Given data

Y = (Y1, . . . , YN)T , the quantity we seek to maximize as a function of θ is

fY(Y) =

∫
fY|U(Y|U = u)fU(u)du, (4.11)

121



where fU depends on α and fY|U depends on β. When the link function is nonlinear,

the integral in (4.11) is often analytically intractable and maximum likelihood estimation

requires some sort of approximation.

A natural approach to maximizing the likelihood when the integral in (4.11) is in-

tractable is to numerically evaluate the integral using one of the strategies described in Sec-

tion 4.1 and then employ a numerical optimization technique; for example, a quasi-Newton

method. While this approach can yield a high degree of accuracy, it can also be compu-

tationally expensive, especially when there are many random effects and the integration

is over many dimensions. An alternative maximization strategy is to use the expectation-

maximization (EM) algorithm (Dempster et al., 1977). The EM algorithm assumes we have

observed data Y and latent variables U, which can be viewed as missing data, and finds

optimal values of the unknown parameters θ by iteratively performing two steps: an E-step

and an M-step. In the E-step, one computes the expectation (with respect to U) of the joint

log-likelihood of Y and U given the observed data Y. That is, one computes

Q(θ|θ(t)) = E
[

log
(
fY,U(Y,U|θ)

)
|Y = y,θ = θ(t)

]
,

where θ(t) is the current value for θ. In the M-step, one maximizesQ(θ|θ(t)) with respect to

θ and sets the appropriate value of θ as θ(t+1) before returning to the E-step. This algorithm

is often used for maximum likelihood estimation in linear mixed models, where the latent

variables U represent the random effects. Unfortunately, for many GLMMs the quantity

Q(θ|θ(t)) in the E-step is intractable. Wei and Tanner (1990) proposed an extension of

the EM algorithm, called Monte Carlo EM (MCEM), that uses Monte Carlo integration

to approximate Q(θ|θ(t)) in the E-step. McCulloch (1997) and Booth and Hobert (1999)

introduced versions of MCEM that are directly applicable to GLMMs, each with a different

approach for numerically approximating Q(θ|θ(t)).
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Rather than numerically approximating the integral in (4.11), one might instead choose

to analytically approximate its integrand. This approximation serves to get the model into a

form that allows one to use iterative procedures originally developed for linear mixed mod-

els to maximize the “likelihood” of the approximate model. Several related approaches em-

ploy this strategy. The most popular is arguably penalized quasi-likelihood (PQL), which

is due to Breslow and Clayton (1993) and builds upon earlier approaches introduced by Sti-

ratelli et al. (1984) and Green (1987). Breslow and Clayton (1993) use Laplace’s method

for integrals to approximate the log-likelihood of a GLMM and reduce the model to a form

for which parameter estimation can be achieved using a Fisher scoring algorithm. An-

other widely used approach, known as pseudo-likelihood estimation, is due to Wolfinger

and O’Connell (1993). This technique uses a first-order Taylor series expansion of the

conditional mean to express the nonlinear mean structure h(xTβ + dTU) as a linear func-

tion of β and U, and yields parameter estimates similar to those obtained using PQL. Other

closely related strategies are described by Schall (1991), Wolfinger (1993), and McGilchrist

(1994). These approaches do not always yield satisfactory estimates. For instance, Bres-

low and Lin (1995) showed that PQL tends to yield biased estimates for binomial data with

small cluster sizes, and that the bias tends to be larger when there is greater variability in the

random effects. Several strategies have been introduced for correcting the bias that arises

from these methods (e.g. Breslow and Lin, 1995; Kuk, 1995; Lin and Breslow, 1996).

Whereas the point estimates θ̂ for the unknown parameters θ in a classical GLMM

are obtained via maximum likelihood estimation, corresponding standard errors are com-

puted using the Fisher information matrix IN(θ̂) as defined in (3.10). As discussed in Sec-

tion 3.2.1, under certain conditions the maximum likelihood estimator of the parameters

θ in a GLMM are asymptotically normal with asymptotic covariance equal to the inverse
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of the Fisher information matrix. This matrix can be estimated by calculating the Hessian

of the negative log-likelihood. To estimate the standard error of a particular element of θ̂,

one computes the square root of the appropriate diagonal element of
(
IN(θ̂)

)−1. Estimat-

ing the standard errors in this manner relies on the asymptotic efficiency of the maximum

likelihood estimator and on the accuracy of the Hessian of the negative log-likelihood as

an approximation of the expected Fisher information.

Frequentist methods for fitting GLMMs have been implemented in widely available

software. The GLIMMIX procedure in SAS 9.4 (SAS Institute, Cary, NC) uses the pseudo-

likelihood approach of Wolfinger and O’Connell (1993) by default, but the user is also

able to obtain estimates based on approximating the integral in (4.11) using a Laplace ap-

proximation or adaptive Gauss-Hermite quadrature. The NLMIXED procedure in SAS 9.4

also allows one to fit a GLMM by using adaptive Gauss-Hermite quadrature to evaluate the

likelihood. In R (R Core Team, 2015), there are numerous packages for fitting GLMMs.

One popular package used for this purpose is lme4 (Bates et al., 2015). The glmer func-

tion in this package uses a Laplace approximation for the integral in (4.11) by default,

but includes adaptive Gauss-Hermite quadrature as an option. PQL is implemented in the

glmmPQL function of the MASS package (Venables and Ripley, 2002). For the simulation

study in Section 3.2.2 and the examples in Sections 2.3 and 3.2.3, we approximated the

integral in (4.11) using Gauss-Hermite quadrature and then maximized the marginal likeli-

hood using a quasi-Newton optimization technique implemented in the optim function of

R (R Core Team, 2015).
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4.4 Bayesian Approaches to Model Fitting

Rather than adopting a frequentist perspective and fitting GLMMs via maximum like-

lihood estimation, one might instead adopt a Bayesian perspective. As described in Sec-

tion 3.3, Bayesian modeling focuses on estimation of the posterior distribution of the un-

known parameters given the data. Starting with a prior density πθ, one observes data Y

from density fY|θ and then uses Bayes’ Rule to obtain a posterior density πθ|Y, where

πθ|Y(θ|Y) ∝ fY|θ(Y|θ)πθ(θ). The posterior distribution is central to Bayesian inference

because it allows one to make probabilistic statements about the model parameters. In par-

ticular, the posterior distribution provides a natural concept of parameter uncertainty that is

absent from most frequentist methods.

It is ordinarily difficult, or even impossible, to write the posterior density πθ|Y in closed

form. One option is to approximate the posterior density using a technique such as INLA.

More commonly, MCMC is used to generate samples from the posterior distribution. The

basic premise of MCMC is to sample from πθ|Y by constructing a Markov chain that has

this posterior as its limiting distribution. Thus, if one runs the Markov chain long enough,

each step of the chain can be viewed as a sample from the target posterior. Common ap-

proaches to constructing such a Markov chain are the Gibbs sampler (Geman and Geman,

1984; Gelfand and Smith, 1990) and the Metropolis-Hastings algorithm (Metropolis et al.,

1953; Hastings, 1970). For a parameter vector θ of length r, the Gibbs sampler involves

iteratively updating each component θk (k = 1, . . . , r) of θ by drawing a value from the

full conditional distribution of θk given θ−k and Y, where θ−k is the vector of the r − 1

components of θ besides θk. The Metropolis-Hastings algorithm provides an alternative ap-

proach when these full conditional distributions are difficult to sample from. For a Markov
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chain currently in state θ(t) this algorithm involves proposing a new state θ∗ from a tran-

sition density q(θ∗|θ(t)) and then deciding whether to accept or reject the proposal. The

acceptance probability for each proposal is

min

(
1,
πθ|Y(θ∗|Y)q(θ(t)|θ∗)
πθ|Y(θ(t)|Y)q(θ∗|θ(t))

)
= min

(
1,

fY|θ(Y|θ∗)πθ(θ∗)q(θ(t)|θ∗)
fY|θ(Y|θ(t))πθ(θ(t))q(θ∗|θ(t))

)
. (4.12)

If the proposal is accepted one sets θ(t+1) = θ∗ and otherwise sets θ(t+1) = θ(t). This

process of proposing a new state and either accepting or rejecting the proposal is then

repeated, but with the current state now θ(t+1). We refer to each update of θ from θ(t)

to θ(t+1) as a Metropolis step and note that if the proposal density q is symmetric then

q(θ(t)|θ∗) = q(θ∗|θ(t)) and the acceptance probability reduces to

min

(
1,
πθ|Y(θ∗|Y)

πθ|Y(θ(t)|Y)

)
= min

(
1,

fY|θ(Y|θ∗)πθ(θ∗)
fY|θ(Y|θ(t))πθ(θ(t))

)
.

For further discussion of these MCMC algorithms and other strategies for posterior sim-

ulation, see Gelman et al. (2004). In the context of GLMMs, Zeger and Karim (1991)

introduced a Gibbs sampling algorithm and Gamerman (1997) proposed a more general

Metropolis-Hastings approach.

For posterior simulation of a GLMM, the latent random variables U are treated as un-

known parameters. Thus, in a GLMM we have θ = (β,α,U)T , where β is the vector of

fixed effects parameters, α is the vector of parameters characterizing the random effects

distribution, and U is a vector containing every realization of each random effect in the

model. Even when each observation corresponds to just one random effect, U is a vector

and each element of U represents the realization of the random variable for a particular

cluster of observations. If the data contain many clusters, then the random effects take on

many different values and U is high-dimensional. In turn, the parameter vector θ is high-

dimensional. This presents a challenge for posterior simulation and will be addressed in
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Section 4.4.1. For a marginally interpretable GLMM, evaluation of fY|θ requires calcula-

tion of the adjustment dTa. Within each update of θ, the proposals β∗ andα∗ or the current

values β(t) and α(t) can be used along with x and d, which are treated as fixed and known,

to compute the adjustment dTa, which can in turn be included in evaluation of fY|θ.

4.4.1 Improving Mixing in the Presence of Many Random Effects

A challenge associated with using MCMC to sample from a high-dimensional posterior

density is poor mixing. Due to the large number of unknown parameters, the only proposals

that tend to get accepted are those representing relatively small steps from the current state

of the Markov chain. Consequently, there is substantial autocorrelation in the Markov

chain and it is necesssary to run the algorithm for an exceedingly long time to generate a

representative sample from the target posterior. One way to improve mixing is to sample

the parameters in blocks, but this may not always be enough. In a GLMM, when there are

many realizations of the random effects, the latent random variables U can dominate the

likelihood and cause very few proposed β∗ to be accepted. Specifically, since the model’s

mean structure is typically given by h(xTβ+dTU), if xTβ is large then dTU will generally

be small, and vice versa. Thus, if the current state U(t) of the latent variables is compatible

with the current state β(t) of the fixed effects parameters, it is difficult to find a proposal β∗

that yields a greater value of the likelihood given U(t). Thus, few β∗ tend to get accepted,

those β∗ that do get accepted tend to represent small steps from the current state β(t), and

the chain mixes slowly. This is a common problem for fitting mixed models in a Bayesian

framework (see, for example, Gelfand et al., 1995; Dunson and Herring, 2005).

To overcome the problem with slow mixing, we suggest the following solution. Along

with each proposed β∗, simultaneously propose random effects U∗ that are consistent with
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the proposed β∗. That is, given a proposal β∗ for the fixed effects parameters, also propose

random effects U∗ in such a manner that the mean structure h(xTβ + dTU) is unaffected

and there is no net impact on the likelihood. If β∗ is such that xTβ∗ > xTβ(t), then define

U∗ such that dTU∗ < dTU(t), whereas if β∗ is such that xTβ∗ < xTβ(t), then define U∗

such that dTU∗ > dTU(t). Either way, ensure that xTβ∗ + dTU∗ = xTβ(t) + dTU(t).

The decision to accept or reject the proposed β∗ and U∗ is then based entirely on the prior

distribution for β and the random effects distribution assumed for U. A formal update of

U is still required after this simultaneous update of β and U, but this strategy improves the

acceptance rate for β and thereby facilitates faster mixing. We demonstrate this technique

in the example that follows.

4.4.2 Epileptic Seizures Example

We illustrate the use of MCMC to sample from the posterior distribution of a GLMM,

and the advantage of the strategy described in Section 4.4.1, with an application to data

reported by Thall and Vail (1990) from a clinical trial of 59 epileptics conducted by Leppik

et al. (1987). Each subject received either a placebo or the drug progabide and then made

four successive follow-up visits to the clinic during which they reported the number of

partial seizures they had suffered in the two-week period immediately preceding the visit.

We denote these reported counts by Yij , where i = 1, . . . , 59 indexes the subjects and

j = 1, 2, 3, 4 indexes the visits. The relevant data can be found in Table A.8.

Thall and Vail (1990) used GEE to fit a marginal model to these data. They included

as predictors the natural logarithm of one-fourth of the baseline count of partial seizures

suffered by each patient in the eight-week period prior to treatment (denoted BASEi), a

treatment indicator (1 if progabide, 0 if placebo, denoted TRTi), the interaction between

128



BASEi and TRTi, the natural logarithm of the subject’s age in years (denoted AGEi), and

a fourth-visit indicator (1 for the subject’s fourth post-treatment visit, 0 otherwise, denoted

VISIT4j). Breslow and Clayton (1993) and Gamerman (1997) fit a GLMM to these data

with the same fixed effects and also two independent random effects, specifying the condi-

tional mean of Yij as

E[Yij|β, γi, δij] = exp
(
β0 + β1 × (BASEi) + β2 × (TRTi) + β3 × (BASEi ∗ TRTi)+

β4 × (AGEi) + β5 × (VISIT4j) + γi + δij
)
,

(4.13)

where β = (β0, . . . , β5)
T is the vector of fixed effects parameters, the γi

ind∼ N(0, σ2) are

random subject effects, and the δij
ind∼ N(0, τ 2) are random effects for visit within subject.

Further, conditional on the random effects γi and δij , the reported seizure counts Yij are

assumed to be independent observations from a Poisson(E[Yij|β, γi, δij]).

We adopt a Bayesian approach and sample from a mixed model analogous to (4.13),

but include an adjustment to ensure that the model is marginally interpretable. In light of

the discussion in Section 2.2.1, the adjustment is simply aij = −σ2/2−τ 2/2 for all i and j.

We also code the treatment effect as TRTi = 1 for progabide and as TRTi = −1 for placebo

to ensure that the two treatment groups are on the same footing in terms of variance. We

assume a priori that β, σ2, and τ 2 are independent of one another, and place N6(0, 4I6),

N(−1, 2), and N(−1, 2) prior distributions on β, log(σ2), and log(τ 2), respectively. The

priors on the variance components reflect our belief that there is little subject-to-subject

and visit-to-visit variation, whereas the priors on the fixed effects parameters are meant to

be noninformative while also not putting too much mass on unreasonably large values for

the expected seizure count. We sample from the target posterior via MCMC by iteratively

updating the parameter vector θ = (β,α,γ, δ)T , where β is the vector of fixed effects
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parameters, α = (σ2, τ 2)T includes the parameters characterizing the random effects dis-

tribution, γ = (γ1, . . . , γ59)
T includes the 59 latent variables associated with the subject

random effect, and δ = (δ1,1, . . . , δ59,4)
T includes the 236 latent variables associated with

the visit random effect. Our target posterior is

πθ|Y(θ|Y) ∝ fY|θ(Y|β,α,γ, δ)fγ(γ|σ2)fδ(δ|τ 2)πβ(β)πσ(σ2)πτ (τ
2),

where fY|θ(Y|β,α,γ, δ) is a product of Poisson densities given by

fY|θ(Y|β,α,γ, δ) =
59∏
i=1

4∏
j=1

fY |θ(Yij|β, σ2, τ 2, γi, δij)

=
59∏
i=1

4∏
j=1

1

Yij!
e−
(

xTijβ+γi+δij−
σ2

2
− τ

2

2

)(
xTijβ + γi + δij −

σ2

2
− τ 2

2

)Yij
,

fγ(γ|σ2) is a product of normal densities given by

fγ(γ|σ2) =
59∏
i=1

fγ(γi|σ2) =
59∏
i=1

1√
2πσ2

e−
1

2σ2
γ2i ,

fδ(δ|τ 2) is a product of normal densities given by

fδ(δ|τ 2) =
59∏
i=1

4∏
j=1

fδ(δij|τ 2) =
59∏
i=1

4∏
j=1

1√
2πτ 2

e−
1

2τ2
δ2ij ,

and πβ, πσ, and πτ are the prior densities for β, σ2, and τ 2, respectively.

A standard approach for sampling from this posterior involves using Metropolis steps to

iteratively produce draws from the full conditional distributions of the unknown parameters.

The conditional posterior of α = (σ2, τ 2)T given β, γ, δ, and Y is proportional to

fY|θ(Y|β,α,γ, δ)fγ(γ|σ2)fδ(δ|τ 2)πσ(σ2)πτ (τ
2),

and the conditional posterior of β given α, γ, δ, and Y is proportional to

fY|θ(Y|β,α,γ, δ)πβ(β).
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Further, for each i = 1, . . . , 59, if we define γ−i as all elements of γ except γi, then the

conditional posterior of γi given β, α, γ−i, δ, and Y is proportional to

fγ(γi|σ2)
4∏
j=1

fY |θ(Yij|β, σ2, τ 2, γi, δij),

Since the γi are conditionally independent, γ−i does not enter this expression for the full

conditional of γi. Finally, for each i = 1, . . . , 59 and j = 1, 2, 3, 4 the conditional posterior

of δij given β, α, γ, δ−(ij), and Y is proportional to

fY |θ(Yij|β, σ2, τ 2, γi, δij)fδ(δij|τ 2),

where δ−(ij) represents all elements of δ except δij . Since the δij are conditionally in-

dependent, δ−(ij) does not enter this expression for the full conditional of δij . These full

conditional distributions lead naturally to an MCMC algorithm that iteratively performs the

following steps:

Basic MCMC Algorithm

1. Propose α∗ given β(t), γ(t), and δ(t). With probability

min

(
1,

fY|θ(Y|β(t),α∗,γ(t), δ(t))fγ(γ(t)|σ2∗)fδ(δ
(t)|τ 2∗)πσ(σ2∗)πτ (τ

2∗)

fY|θ(Y|β(t),α(t),γ(t), δ(t))fγ(γ(t)|σ2
(t))fδ(δ

(t)|τ 2(t))πσ(σ2
(t))πτ (τ

2
(t))

)
set α(t+1) = α∗. Otherwise, set α(t+1) = α(t);

2. Propose β∗ given α(t+1),γ(t), δ(t). With probability

min

(
1,

fY|θ(Y|β∗,α(t+1),γ(t), δ(t))πβ(β∗)

fY|θ(Y|β(t),α(t+1),γ(t), δ(t))πβ(β(t))

)
set β(t+1) = β∗. Otherwise, set β(t+1) = β(t);

3. For i = 1, . . . , 59, propose γ∗i given β(t+1), α(t+1), and δ(t). With probability

min

(
1,

fγ(γ
∗
i |σ2

(t+1))
∏4

j=1 fY |θ(Yij|β
(t+1),α(t+1), γ∗i , δ

(t)
ij )

fγ(γ
(t)
i |σ2

(t+1))
∏4

j=1 fY |θ(Yij|β
(t+1),α(t+1), γ

(t)
i , δ

(t)
ij )

)
set γ(t+1)

i = γ∗i . Otherwise, set γ(t+1)
i = γ

(t)
i ;
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4. For i = 1, . . . , 59 and j = 1, 2, 3, 4, propose δ∗ij given β(t+1), α(t+1), and γ(t+1).

With probability

min

(
1,

fY |θ(Yij|β(t+1),α(t+1), γ
(t+1)
i , δ∗ij)fδ(δ

∗
ij|τ 2(t+1))

fY |θ(Yij|β(t+1),α(t+1), γ
(t+1)
i , δ

(t)
ij )fδ(δ

(t)
ij |τ 2(t+1))

)

set δ(t+1)
ij = δ∗ij . Otherwise, set δ(t+1)

ij = δ
(t)
ij .

For each step in this algorithm, we propose new values for the parameters given their

current values. The proposed values are random draws from the following distributions:

β∗ ∼ N6(β
(t),V);

log(σ2∗) ∼ N
(

log(σ2
(t)), 0.16

)
; log(τ 2∗) ∼ N

(
log(τ 2(t)), 0.0625

)
;

γ∗i ∼ N(γ
(t)
i , 0.25); δ∗ij ∼ N(δ

(t)
ij , 0.25).

The covariance matrix V for proposing β∗ is calculated using the weight matrix obtained

from fitting an analogous fixed effects model with iteratively reweighted least squares.

Specifically, we define

V =


0.1735 −0.0061 0.0068 −0.0041 −0.0476 −0.0007
−0.0061 0.0010 −0.0002 0.0001 0.0011 0.0000
0.0068 −0.0002 0.0061 −0.0024 −0.0019 0.0000
−0.0041 0.0001 −0.0024 0.0010 0.0012 0.0000
−0.0476 0.0011 −0.0019 0.0012 0.0136 0.0000
−0.0007 0.0000 0.0000 0.0000 0.0000 0.0030

 .

The general form of the acceptance probability for each set of proposals is given by (4.12),

but since all of the proposal distributions are symmetric none of the acceptance probabilities

are influenced by the proposal densities. Rather, the acceptance probability in each case

reduces to a ratio of the full conditional with the proposed parameter values to the full

conditional with the current parameter values.
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Since our model includes 295 latent variables, this basic MCMC algorithm is plagued

by the issues with slow mixing discussed in Section 4.4.1. We ran this algorithm for

2,100,000 steps, discarding the first 100,000 steps as burn-in. Only 12.9% of the proposals

for β were accepted, and there is a high degree of autocorrelation in the Markov chains for

the fixed effects parameters. Autocorrelation plots for β0, . . . , β5 are shown in Figure 4.2.

With the exception of β5, all of these plots indicate a correlation greater than 0.1 at a lag of

200. To address this problem, we simultaneously propose γ∗ and δ∗ to be consistent with

each proposed β∗. Specifically, for each β∗ we also propose the following γ∗i and δ∗ij for

each i = 1, . . . , 59 and j = 1, 2, 3, 4:

γ∗i = γ
(t)
i + xTi1(β

(t) − β∗), (4.14)

δ∗i4 = δ
(t)
i4 + (xTi4 − xTi1)(β

(t) − β∗), and δ∗ij = δ
(t)
ij for j = 1, 2, 3. (4.15)

This simultaneous proposal of β∗, γ∗, and δ∗ has no net impact on the likelihood. To make

this clear, the conditional density of Yij given µij is Poisson(µij), where

µij = E[Yij|β, γi, δij] = exp(xTijβ + γi + δij + a).

Further, xi1 = xi2 = xi3 because only the fourth-visit indicator varies within a subject.

Defining γ∗i and δ∗ij as in (4.14) and (4.15), for j = 1, 2, 3

xTijβ
∗ + γ∗i + δ∗ij + a

= xTijβ
∗ +

(
γ
(t)
i + xTij(β

(t) − β∗)
)

+ δ
(t)
ij + a

= xTijβ
∗ − xTijβ

∗ + xTijβ
(t) + γ

(t)
i + δ

(t)
ij + a

= xTijβ
(t) + γ

(t)
i + δ

(t)
ij + a,
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Figure 4.2: Autocorrelation plots for β0, . . . , β5 for a basic MCMC algorithm for the
epileptic seizures data found in Thall and Vail (1990)
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Figure 4.3: Autocorrelation plots for β0, . . . , β5 for the modified MCMC algorithm for the
epileptic seizures data found in Thall and Vail (1990)
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and for j = 4

xTijβ
∗ + γ∗i + δ∗ij + a

= xTijβ
∗ +

(
γ
(t)
i + xTi1(β

(t) − β∗)
)

+
(
δ
(t)
ij + (xTij − xTi1)(β

(t) − β∗)
)

+ a

= xTijβ
∗ + xTi1(β

(t) − β∗)− xTi1(β
(t) − β∗) + xTij(β

(t) − β∗) + γ
(t)
i + δ

(t)
ij + a

= xTijβ
∗ − xTijβ

∗ + xTijβ
(t) + γ

(t)
i + δ

(t)
ij + a

= xTijβ
(t) + γ

(t)
i + δ

(t)
ij + a.

Consequently, the conditional mean E[Yij|β, γi, δij] is the same for both the current state

and the proposed state. In turn, the conditional density fY|θ is also the same for both states.

Noting that the conditional posterior of (β,γ, δ)T given α and Y is proportional to

fY|θ(Y|β,α,γ, δ)fγ(γ|σ2)fδ(δ|τ 2)πβ(β),

the acceptance probability for (β∗,γ∗, δ∗)T depends entirely on πβ, fγ , and fδ because

fY|θ(Y|β∗,α(t+1),γ∗, δ∗) = fY|θ(Y|β(t),α(t+1),γ(t), δ(t)). This joint proposal scheme

leads to the following modified MCMC algorithm:

Modified MCMC Algorithm

1. Propose α∗ given β(t), γ(t), and δ(t). With probability

min

(
1,

fY|θ(Y|β(t),α∗,γ(t), δ(t))fγ(γ(t)|σ2∗)fδ(δ
(t)|τ 2∗)πσ(σ2∗)πτ (τ

2∗)

fY|θ(Y|β(t),α(t),γ(t), δ(t))fγ(γ(t)|σ2
(t))fδ(δ

(t)|τ 2(t))πσ(σ2
(t))πτ (τ

2
(t))

)
set α(t+1) = α∗. Else, set α(t+1) = α(t);

2. Propose (β∗,γ∗, δ∗)T givenα(t+1), with β∗ being drawn from a proposal distribution

and γ∗ and δ∗ defined as in (4.14) and (4.15). With probability

min

(
1,

fγ(γ∗|σ2
(t+1))fδ(δ

∗|τ 2(t+1))πβ(β∗)

fγ(γ(t)|σ2
(t+1))fδ(δ

(t)|τ 2(t+1))πβ(β(t))

)
set β(t+1) =β∗, γ ′=γ∗, and δ′=δ∗. Else, set β(t+1) =β(t), γ ′=γ(t), and δ′=δ(t);
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3. For i = 1, . . . , 59, propose γ∗i given β(t+1), α(t+1), and δ′. With probability

min

(
1,
fγ(γ

∗
i |σ2

(t+1))
∏4

j=1 fY |θ(Yij|β
(t+1),α(t+1), γ∗i , δ

′
ij)

fγ(γ′i|σ2
(t+1))

∏4
j=1 fY |θ(Yij|β

(t+1),α(t+1), γ′i, δ
′
ij)

)

set γ(t+1)
i = γ∗i . Else, set γ(t+1)

i = γ′i;

4. For i = 1, . . . , 59 and j = 1, 2, 3, 4, propose δ∗ij given β(t+1), α(t+1), and γ(t+1).

With probability

min

(
1,
fY |θ(Yij|β(t+1),α(t+1), γ

(t+1)
i , δ∗ij)fδ(δ

∗
ij|τ 2(t+1))

fY |θ(Yij|β(t+1),α(t+1), γ
(t+1)
i , δ′ij)fδ(δ

′
ij|τ 2(t+1))

)

set δ(t+1)
ij = δ∗ij . Else, set δ(t+1)

ij = δ′ij .

The key difference between this modified algorithm and the basic algorithm is in Step 2.

Here, in addition to updating β(t) to β(t+1), we update γ(t) and δ(t) to the intermediate

states γ ′ and δ′. Steps 3 and 4 then update γ ′ and δ′ to γ(t+1) and δ(t+1) in a manner

similar to Steps 3 and 4 in the basic MCMC algorithm.

Using the modified MCMC algorithm instead of the basic MCMC algorithm increases

the acceptance rate for β from 12.9% to 50.7%. It also decreases the integrated autocor-

relation times for the fixed effects parameters, as summarized in Table 4.1. The integrated

autocorrelation time of a parameter provides a measure of the average number of itera-

tions required to obtain approximately independent draws from the posterior distribution

of that parameter. For β0, . . . , β4, this quantity is more than three times larger using the

basic MCMC algorithm versus using the modified MCMC algorithm. Thus, the strategy

described in Section 4.4.1 successfully reduces the autocorrelation and allows us to obtain

a representative sample from the target posterior with fewer steps of the Markov chain.

As further illustration of the improved mixing, Figure 4.3 (displayed below Figure 4.2 for
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Table 4.1: Integrated autocorrelation times (before thinning) for the fixed effects parame-
ters in the marginally interpretable model for the epileptic seizures data found in Thall and
Vail (1990) for both the basic MCMC algorithm and the modified MCMC algorithm

Parameter Basic MCMC Modified MCMC Ratio
β0 205.3 62.8 3.27
β1 642.7 161.9 3.97
β2 355.2 105.0 3.38
β3 565.6 168.0 3.37
β4 204.2 65.6 3.11
β5 71.5 51.0 1.40

comparison) shows autocorrelation plots for β0, . . . , β5 using the modified MCMC algo-

rithm. Although some autocorrelation remains, even at a lag of 200, it is not as strong as

the autocorrelation observed in Figure 4.2 for the basic MCMC algorithm.

We carried out the modified MCMC algorithm both for a marginally interpretable

GLMM and a conventional GLMM with a conditional mean structure resembling (4.13).

We ran each chain for 2,100,000 steps, discarding the first 100,000 steps as burn-in and

retaining every 200th step thereafter to obtain a final sample of 10,000 draws from the

posterior distribution for each model. Table 4.2 displays posterior means and standard de-

viations for the unknown parameters in both the marginally interpretable model and the

conventional GLMM. With the exception of the intercept β0, the two sets of parameter

estimates are virtually identical. These results are consistent with the discussion in Sec-

tion 3.1.2 regarding the relationship between the marginal and subject-specific parameters

for a model with a log link. They are also consistent with the claims of Breslow and Clay-

ton (1993) and Ritz and Spiegelman (2004) that the slope parameters in this model, and

any other model with a log link and a random intercept that is independent of the covariates

in the model, have both a marginal and subject-specific interpretation. The intercept β0 is
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Table 4.2: Posterior means of the unknown parameters in the model for the epileptic
seizures data found in Thall and Vail (1990) (with corresponding posterior standard devia-
tions in parentheses)

Parameter Marginally Interpretable GLMM Conventional GLMM
β0 -1.15 (1.09) -1.29 (1.08)
β1 1.04 (0.10) 1.04 (0.11)
β2 -0.45 (0.21) -0.45 (0.21)
β3 0.16 (0.11) 0.16 (0.10)
β4 0.33 (0.31) 0.32 (0.31)
β5 -0.10 (0.09) -0.10 (0.09)
σ 0.50 (0.07) 0.50 (0.07)
τ 0.37 (0.04) 0.37 (0.04)

greater for the marginally interpretable GLMM than for the conventional GLMM due to

the tendency of the convex inverse link function to pull the marginal mean up.

Ultimately, we are able to obtain draws from the posterior distribution of the unknown

parameters in our model, and can use these draws to make inference on the unknown pa-

rameters as described in Section 3.3. A challenge is presented by the poor mixing that

results from the inclusion of many latent variables, but we are able to overcome this dif-

ficulty by modifying our proposal scheme using the strategy described in Section 4.4.1.

Note that this challenge stems from the model being a GLMM, not from the model being

marginally interpretable. Incorporating an adjustment to make the model marginally inter-

pretable is not computationally difficult, and is advisable if one wants to make inference on

population-level quantities.
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Chapter 5: Discussion

We have defined a class of marginally interpretable GLMMs for which the marginal

mean has a specific form after integration over the random effects distribution. Specifying

a GLMM in this form yields fixed effects parameters that can be interpreted as the average

effect of a covariate across the entire population. This is in contrast to a conventional

GLMM, which yields fixed effects parameters that must be interpreted conditional on a

specific realization of the random effects. The distinction here is between the average effect

across the entire population and the effect for an average individual in the population. Due

to Jensen’s inequality, these two effects are not the same when the link function is nonlinear.

By introducing an additive adjustment to the model that effectively shifts the location of

the random effects distribution, we are able to counteract the curvature of the inverse link

function and ensure that the marginal mean has the desired form.

Marginally interpretable GLMMs can be fit using techniques designed for conventional

GLMMs with only minor modifications. Basically, one needs to include an appropriate

adjustment in the expression for the conditional mean when evaluating the likelihood func-

tion. In some cases, the adjustment simply reparameterizes the model, meaning that the

fixed effects parameters change but the fit of the model does not. In other cases, the adjust-

ment fundamentally changes the structure of the model. We have derived the form of the
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adjustment for several popular link functions and have also provided an efficient algorithm

for computing the adjustment in the commonly used logistic-normal model.

We have shown through several examples that inferences obtained from the two param-

eterizations of the GLMM (marginally interpretable and conventional) can be markedly

different, even when the two versions of the model provide equal fit to the data. We ar-

gue that marginal effects are often of greater interest than cluster-specific effects, but ac-

knowledge that cluster-specific effects could be useful in some settings. It is therefore

advantageous to obtain marginal parameter estimates through a fully specified GLMM as

opposed to a purely marginal model that only specifies the first two moments of the data.

Unlike marginal models fit via GEE, marginally interpretable GLMMs have an underly-

ing probabilistic model that can be used to make individual-level predictions in addition

to marginal inferences. The likelihood function associated with a marginally interpretable

GLMM also allows for model checking and model comparisons that are not possible with

purely marginal models.

When the marginally interpretable and conventional formulations of the model are

equivalent, as defined in Section 3.1, we note that there is only a discrepancy between

hypothesis tests for the two models if one uses a Wald test or a score test. In these sit-

uations, a likelihood ratio test yields the same result whether a marginally interpretable

GLMM or a conventional GLMM is fit. This reflects earlier findings in the literature (e.g.

Jennings, 1986), which state that likelihood-based inferences are invariant under one-to-

one transformations of the parameters. For the specific case of logistic regression, others

(e.g. Hauck and Donner, 1977) have noted aberrant behavior by the Wald test under certain

conditions and have suggested use of the likelihood ratio test instead. Thus, the fact that it
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is possible to conduct a likelihood ratio test in a GLMM framework is another advantage

of using a fully specified model rather than a purely marginal model.

Marginally interpretable GLMMs can be used in many settings. One possible appli-

cation is to meta-analysis. The objective of meta-analysis is to combine the results of

several related studies into a single integrated analysis that provides information about the

average effect of a treatment across all studies. A natural approach is to fit a model that

includes random effects for the individual studies to account for heterogeneity across stud-

ies. Linear mixed models for meta-analysis are discussed, for example, by DerSimonian

and Laird (1986), Berkey et al. (1995), and Stram (1996). These models often require a

transformation of the response to satisfy (at least approximately) an underlying assump-

tion of normality. An alternative approach is to perform a meta-analysis using a GLMM

(e.g. Aitkin, 1999b; Platt et al., 1999; Turner et al., 2000). A conventional GLMM would

yield parameter estimates that pertain to the fixed effects for a specific study, but such es-

timates of these effects are already available from the individual studies comprising the

meta-analysis. The purpose of a meta-analysis is to investigate the average magnitude of

an effect across a collection of studies. Marginally interpretable GLMMs focus on such

population-averaged effects are therefore well-suited for this purpose.

Many of the examples we have provided relate to models with Gaussian random effects,

in large part because it is common to assume that random effects follow a Gaussian distribu-

tion. However, a marginally interpretable GLMM does not require normal random effects

and the techniques for fitting these models apply to a wide array of random effects distribu-

tions. One interesting class of random effects distributions consists of mixtures of normal

distributions. Mixed models that represent the random effects distribution as a mixture of

normals (see Magder and Zeger, 1996; Caffo et al., 2007; Komárek and Lesaffre, 2008)

141



allow considerable flexibility in the shape of the random effects distribution and could be

incorporated fairly easily into the framework of a marginally interpretable GLMM.

Whereas a mixture of normals can be viewed as a semiparametric distribution, even

more flexible random effects distributions can be obtained in a nonparametric setting. There

is an extensive literature devoted to GLMMs for which the random effects distribution is

estimated in a nonparametric manner. These approaches aim to mitigate bias in the fixed

effects parameter estimates that might arise from misspecification of the random effects

distribution. As examples of this strategy, Follmann and Lambert (1989), Butler and Louis

(1992), and Aitkin (1999a) treated the random effects distribution as a discrete mixture

following the nonparametric maximum likelihood estimation approach of Laird (1978),

whereas Chen et al. (2002) and Ghosh et al. (2007) assumed that the random effects dis-

tribution has a smooth density and used the semi-nonparametric maximum likelihood ap-

proach of Gallant and Nychka (1987). Additionally, Kleinman and Ibrahim (1998) and

Antonelli et al. (2016), among others, used a Dirichlet process prior for the random effects

distribution to fit GLMMs in a nonparametric Bayesian framework.

Fitting a marginally interpretable model with a nonparametric random effects distribu-

tion would require careful consideration of the computational strategy. The adjustment in

such a model would not have a closed form, but could conceivably be calculated by placing

appropriate constraints on the model’s marginal mean. That being said, such nonparametric

specification of the random effects distribution may not be necessary in a marginally inter-

pretable GLMM. First, as discussed in Section 1.4, several studies have shown that bias

in the fixed effects parameters due to misspecification of the random effects distribution

is typically small. Further, by focusing on population-averaged effects instead of effects
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that are conditioned on the latent random variables, the marginally interpretable model re-

duces the dependence of the fixed effects parameters on the random effects distribution.

This was demonstrated by Heagerty and Kurland (2001) for the closely related marginal-

ized multilevel model. Thus, even though one could feasibly fit a marginally interpretable

GLMM with a flexible, nonparametric random effects distribution, it may not necessarily

be beneficial to do so.

Our focus has been on marginally interpretable models for which correlation is intro-

duced through latent random variables. This corresponds to situations wherein dependence

among the observations arises from the presence of groups or clusters in the data. An ob-

vious extension is to more complex dependence structures; for example, time series data.

Cox (1981) classified models for time series data into two categories, observation driven

models and parameter driven models, which are separated by how correlation is introduced

into the model. Observation driven models introduce dependence by conditioning on ear-

lier observations and are referred to by Diggle et al. (2002) as transition models. We use

Yit to denote the response at time t for unit i, which is observed over time. A transition

model relates the response Yit to a set of covariates xit conditional on all of the previously

observed responses Yi,1, . . . , Yi,t−1 (and also possibly the previously observed covariates

xi,1, . . . ,xi,t−1) for that unit. In contrast, parameter driven models resemble GLMMs, but

the latent random variables are assumed to comprise a random process and have a specific

type of correlation structure.

Observation driven models for time series data are discussed, for example, by Zeger and

Qaqish (1988) and Davis et al. (2003). The most common transition models are Markov

models that assume the current response Yit for unit i depends only on the most recent q
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responses Yi,t−q, . . . , Yi,t−1. For example, a first-order Markov model expresses the condi-

tional mean of Yit given the previously observed responses Yi,1, . . . , Yi,t−1 as

E[Yit|Yi,1, . . . , Yi,t−1] = E[Yit|Yi,t−1] = h(xTitβ + γitYi,t−1),

where h(·) is an inverse link function, β is a vector of fixed effects parameters, and each

γit is a parameter characterizing the relationship between Yit and Yi,t−1. Much like in a

mixed model, the parameters β in this Markov model are not equivalent to the parameters

in a corresponding marginal model; they must be interpreted conditional on the value of the

previous response. To obtain marginal parameters from a Markov model, Zeger and Qaqish

(1988) suggested using an estimating equations approach. Azzalini (1994) proposed a ver-

sion of a first-order Markov model with marginal parameters that can be fit using maximum

likelihood estimation. Heagerty and Zeger (2000) called the model of Azzalini (1994) a

marginalized transition model and Heagerty (2002) extended it to higher-order Markov

models. For first-order Markov dependence, the model of Heagerty (2002) expresses the

conditional mean as

E[Yit|Yi,t−1] = h(∆it + γitYi,t−1),

where ∆it is defined implicitly such that the marginal mean satisifies E[Yit] = h(xTitβ).

This model is analogous to the marginalized multilevel model of Heagerty (1999) and Hea-

gerty and Zeger (2000), and fits our definition of a marginally interpretable model. Hea-

gerty (2002) showed that β and the γit are orthogonal to one another in this model, meaning

that assumptions made about the dependence structure have no impact on estimation of the

fixed effects parameters. Heagerty (2002) also provided details of a Newton-Raphson al-

gorithm for fitting marginalized transition models via maximum likelihood estimation.
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Parameter driven models for time series data more closely resemble the GLMMs that

have been the focus of this dissertation. For a discussion of models of this type see Davis

and Wu (2009) and the references therein. The conditional mean for such a model might

be expressed as

E[Yit|Ut] = h(xTitβ + Ut),

where the Ut comprise a first-order autoregressive process for which Ut = γUt−1+εt. Here,

γ is an unknown parameter and, if we have an autoregressive Gaussian process, the εt are

independent Gaussian random variables. Maximum likelihood approaches that employ

MCEM have been used to fit this type of model to count data (Chan and Ledolter, 1995)

and to binary outcome data (Klingenberg, 2008). Due to the conditioning on the latent

random process, the parameters β in these models do not have a marginal interpretation.

Zeger (1988) proposed fitting parameter driven models for time series count data using an

estimating equations approach to model the marginal mean E[Yit] = h(xTitβ). This is essen-

tially a marginal model fit via GEE and, although it yields population-averaged parameter

estimates, it is lacking as a formal statistical model because only the first two moments of

the data are specified. The computational strategies described in Chapter 4 could be used

to fit a marginally interpretable model in this context, but the dependence among the latent

random variables adds complexity to the integration required to compute both the marginal

likelihood and the adjustment. Nonetheless, a strategy could be developed, possibly using

MCEM, that incorporates an adjustment into the expression for the conditional mean and

thereby leads to parameters that have the desired marginal interpretation.

Another form of dependence to which the notion of a marginally interpretable model

could be extended is spatial dependence. Much like data correlated in time, data corre-

lated in space can be modeled using either an observation driven or a parameter driven
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approach. The observation driven approach includes autoregressive models such as those

discussed by Besag (1974). Here, instead of conditioning on the most recent observations

as in the time series setting, one conditions on observations that fall within a neighbor-

hood of the observation of interest. The neighborhood could be defined based on distance,

shared boundaries, or some other criterion. The marginalized transition model developed

by Heagerty (2002) could conceivably be extended to this setting. A more natural exten-

sion of the marginally interpretable GLMM is to parameter driven models, which assume

the correlation in the data arises from a latent spatial random process. Clayton and Kaldor

(1987) and Diggle et al. (1998) introduced spatial models with latent random processes,

but the parameters in their models have a conditional interpretation. Albert and McShane

(1995) and McShane et al. (1997) discussed a GEE approach to obtaining marginal param-

eters from such models, while Yasui and Lele (1997) and Gotway and Wolfinger (2003)

compared marginal and conditional approaches. As with time series data, the methods we

developed to preserve the marginal mean in models with latent random variables should

extend to models for spatial data with latent random processes. The correlation structure is

even more complicated in the spatial setting, and the increase in computational complexity

is nontrivial. For a spatial GLMM in which the latent process is a Gaussian process, INLA

is a potential strategy for overcoming the computational challenges associated with fitting

a marginally interpretable version of the model.

Our definition of a marginally interpretable GLMM requires a specific relationship be-

tween the conditional mean and the marginal mean such that the marginal mean is preserved

after integrating out the random effects. Acknowledging that the marginal mean may not

always be of interest, we can define marginally interpretable models in other mixed model

settings. For example, in mixed effects quantile regression models (see Koenker, 2004;
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Geraci and Bottai, 2014) or when modeling extremes (see Coles, 2001; Stephenson and

Tawn, 2004) we can consider a definition for a marginally interpretable model based on

relating certain conditional quantiles to corresponding marginal quantiles. Further research

is needed to understand the form of the adjustments that arise in these settings.

In conclusion, marginally interpretable models have many desirable properties and also

potentially wide applicability. Extending the notion of a marginally interpretable model

beyond the GLMM framework that was focused on here is certainly possible and is an

area for future research. The guiding principle of a marginally interpretable model is that

components of the model that are included to account for correlation among observations

(such as latent random variables) should not substantively change other parts of the model

(namely the mean structure). Preserving the form of these other parts of the model is a

sensible thing to do, and leads to more robust inferences that focus on quantities that are

ordinarily of interest to the researcher.
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Table A.1: Data on roadway fatalities and fuel consumption (in kilotonnes of petrol and
diesel) in each of Scotland’s 29 mainland council areas between 2006 and 2011; retrieved
from statistics.gov.scot on May 6, 2017

Council Fatalities Fuel Consumption
Area ‘06 ‘07 ‘08 ‘09 ‘10 ‘11 ‘06 ‘07 ‘08 ‘09 ‘10 ‘11

1 8 5 3 4 7 7 94 92 92 87 85 83
2 46 25 26 22 26 11 190 190 188 182 177 172
3 11 13 13 7 6 5 75 75 75 73 72 70
4 10 14 13 5 15 5 60 60 59 58 56 55
5 13 5 13 7 4 10 214 216 212 209 203 199
6 4 1 2 3 2 2 19 20 20 20 19 19
7 25 12 10 10 5 9 169 176 176 167 165 162
8 0 2 4 5 5 2 60 62 61 59 58 57
9 5 7 8 5 5 4 76 76 75 73 71 69
10 1 3 2 2 4 0 37 38 38 37 36 35
11 4 5 3 8 3 1 62 63 61 58 57 56
12 1 4 1 2 1 2 49 50 51 50 49 47
13 5 2 4 3 1 1 110 112 111 108 105 104
14 19 14 14 6 13 11 185 188 186 181 176 172
15 26 14 15 18 11 13 244 244 245 237 232 228
16 26 34 34 28 26 21 173 175 174 173 170 167
17 0 3 2 2 1 1 36 36 35 34 33 32
18 4 4 3 3 1 3 45 45 45 44 43 42
19 8 7 6 5 4 4 48 49 49 48 47 46
20 4 6 6 4 5 4 52 52 52 50 49 48
21 12 12 13 10 2 11 222 224 225 218 214 206
22 10 20 14 9 19 18 176 178 175 170 165 164
23 7 7 9 2 2 7 97 97 98 94 92 90
24 10 16 9 13 9 6 80 81 80 78 77 75
25 10 9 6 3 10 3 67 68 67 66 65 63
26 16 14 17 18 12 11 200 203 202 197 192 188
27 10 5 6 5 4 6 83 84 83 80 78 76
28 4 2 2 1 1 4 41 40 40 40 39 39
29 11 11 9 6 1 2 115 117 117 114 112 109
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Table A.2: Population estimates for each of Scotland’s 29 mainland council areas between
2006 and 2011; retrieved from statistics.gov.scot on May 8, 2017

Council Population
Area 2006 2007 2008 2009 2010 2011

1 209,620 212,460 214,020 217,020 219,730 222,460
2 241,180 244,390 246,840 249,020 251,430 253,650
3 112,500 113,540 114,490 114,830 115,410 116,200
4 90,870 90,790 89,910 89,450 88,620 88,930
5 452,060 456,040 458,520 463,240 469,940 477,940
6 49,540 50,600 51,190 51,290 51,330 51,500
7 149,780 150,370 151,010 151,160 151,100 151,410
8 143,370 143,700 144,290 145,170 146,060 147,200
9 120,450 120,950 121,590 122,110 122,410 122,690

10 105,590 105,050 104,940 104,960 104,920 105,000
11 93,850 95,560 97,470 98,340 99,140 99,920
12 89,750 89,840 89,870 89,980 90,410 90,810
13 151,090 152,320 153,290 154,210 155,140 156,250
14 357,260 358,750 360,050 361,410 362,610 365,300
15 568,480 571,760 576,200 581,620 586,500 593,060
16 220,780 224,000 226,980 228,750 230,730 232,730
17 82,320 82,110 82,000 81,670 81,510 81,220
18 80,000 80,370 81,540 81,900 82,360 83,450
19 90,780 91,440 92,830 93,170 93,690 93,470
20 136,790 137,420 137,910 137,830 137,790 138,090
21 328,740 331,170 333,290 335,160 336,280 337,720
22 139,390 141,140 143,130 144,370 145,600 146,850
23 171,270 171,860 172,640 173,020 173,700 174,700
24 110,860 112,200 113,360 113,590 113,690 113,880
25 112,100 112,380 112,610 112,490 112,600 112,980
26 308,450 310,380 311,320 312,180 313,180 313,900
27 88,090 88,430 88,540 88,690 89,550 90,330
28 91,420 91,370 91,190 91,080 90,800 90,610
29 167,110 169,470 171,380 173,040 174,090 175,300

161



Table A.3: Data from the rat teratology study of Weil (1970); each fraction represents the
number of pups in a litter to survive 21 days out of those alive after four days

Control Diet
13/13 12/12 9/9 9/9 8/8 8/8 12/13 11/12
9/10 9/10 8/9 11/13 4/5 5/7 7/10 7/10

Treatment Diet
12/12 11/11 10/10 9/9 10/11 9/10 9/10 8/9
8/9 4/5 7/9 4/7 5/10 3/6 3/10 0/7

Table A.4: Data from the two-way crossover study reported by Jones and Kenward (1989);
each cell displays the number of patients with the corresponding treatment sequence and
response pattern

Response Pattern
Treatment Sequence (1,1) (0,1) (1,0) (0,0) Total

Active Drug then Placebo 22 0 6 6 34
Placebo then Active Drug 18 4 2 9 33

Table A.5: Data from the bird migration study of Hewson et al. (2016); each cell displays
the number of birds to survive the Sahara crossing as a fraction of the number of birds to
take the corresponding route during the corresponding year

Year
Route 2011 2012 2013 2014 Total
East 3/3 7/9 5/5 5/5 20/22
West 2/2 0/2 5/8 5/8 12/20
Total 5/5 7/11 10/13 10/13 32/42
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Table A.6: Data from the seed germination study of Crowder (1978)

Seed Counts
Plate Seed Extract Germinated Total

1 O75 Bean 10 39
2 O75 Bean 23 62
3 O75 Bean 23 81
4 O75 Bean 26 51
5 O75 Bean 17 39
6 O73 Bean 8 16
7 O73 Bean 10 30
8 O73 Bean 8 28
9 O73 Bean 23 45

10 O73 Bean 0 4
11 O75 Cucumber 5 6
12 O75 Cucumber 53 74
13 O75 Cucumber 55 72
14 O75 Cucumber 32 51
15 O75 Cucumber 46 79
16 O75 Cucumber 10 13
17 O73 Cucumber 3 12
18 O73 Cucumber 22 41
19 O73 Cucumber 15 30
20 O73 Cucumber 32 51
21 O73 Cucumber 3 7

Table A.7: Pigsty data found in Larsen et al. (2000); each fraction represents the number
of pigs infected with roundworm out of all of the pigs in a pigsty

Specific Pathogen Free Pigsties
0/16 0/15 0/15 0/15 0/15 0/15 0/15 1/15 2/15 0/14 0/14 0/12
0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 1/10 1/10 2/10 2/10
0/9 1/7 1/7 0/5 0/5 0/5 0/5 1/5 1/5 4/5 1/3 0/1

Conventional Pigsties
0/15 0/15 0/15 0/15 0/15 1/15 1/15 1/15 1/15 2/15 3/15 3/15
3/15 4/15 4/15 6/15 2/11 0/10 0/10 0/10 0/10 0/10 0/10 0/10
0/10 0/10 0/10 0/10 1/10 1/10 1/10 1/10 3/10 3/10 4/10 0/9
0/9 0/9 0/9 1/9 2/9 5/9 9/9 0/8 0/8 2/8 3/8 0/7
1/7 1/7 1/7 1/7 2/7 3/7 0/6 0/6 0/6 0/5 0/5 0/5
1/5 1/5 1/5 1/5 0/4 0/4 3/4 0/3 0/2 0/2 0/1 1/1
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Table A.8: Epileptic seizures data found in Thall and Vail (1990); each count represents
the number of partial seizures reported by a patient during one of the post-treatment visits

Control Group Progabide Group
Post-Treatment Visit Post-Treatment Visit

Age Baseline 1st 2nd 3rd 4th Age Baseline 1st 2nd 3rd 4th
31 11 5 3 3 3 20 19 0 4 3 0
30 11 3 5 3 3 30 10 3 6 1 3
25 6 2 4 0 5 18 19 2 6 7 4
36 8 4 4 1 4 24 24 4 3 1 3
22 66 7 18 9 21 30 31 22 17 19 16
29 27 5 2 8 7 35 14 5 4 7 4
31 12 6 4 0 2 27 11 2 4 0 4
42 52 40 20 23 12 20 67 3 7 7 7
37 23 5 6 6 5 22 41 4 18 2 5
28 10 14 13 6 0 28 7 2 1 1 0
36 52 26 12 6 22 23 22 0 2 4 0
24 33 12 6 8 4 40 13 5 4 0 3
23 18 4 4 6 2 33 46 11 14 25 15
36 42 7 9 12 14 21 36 10 5 3 8
26 87 16 24 10 9 35 38 19 7 6 7
26 50 11 0 0 5 25 7 1 1 2 3
28 18 0 0 3 3 26 36 6 10 8 8
31 111 37 29 28 29 25 11 2 1 0 0
32 18 3 5 2 5 22 151 102 65 72 63
21 20 3 0 6 7 32 22 4 3 2 4
29 12 3 4 3 4 25 41 8 6 5 7
21 9 3 4 3 4 35 32 1 3 1 5
32 17 2 3 3 5 21 56 18 11 28 13
25 28 8 12 2 8 41 24 6 3 4 0
30 55 18 24 76 25 32 16 3 5 4 3
40 9 2 1 2 1 26 22 1 23 19 8
19 10 3 1 4 2 21 25 2 3 0 1
22 47 13 15 13 12 36 13 0 0 0 0

18 76 11 14 9 8
37 12 1 4 3 2
32 38 8 7 9 4
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