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Abstract 

Liver fibrosis, a common feature of many chronic liver diseases, is associated with an 

increase in liver stiffness. While biopsy is the clinical standard for staging fibrosis, this 

invasive procedure is prone to error and places the patient at risk for health 

complications. Magnetic resonance elastography (MRE) is a noninvasive clinical tool for 

staging liver fibrosis. However, MRE requires patients to perform lengthy breath holds 

exceeding 15 seconds for each slice in each encoding direction, which limits its clinical 

application. Therefore, we propose a new data acquisition and processing method to 

reduce MRE scan time. 

The proposed method, called Bayesian method for magnetic resonance Elastography 

using Approximate Message passing (BEAM) utilizes a combination of several features 

to accelerate reconstruction. Pseudorandom sampling of k-space promotes incoherent 

aliasing, which allows compressive recovery via enforcement of sparsity in wavelet 

domain. Additionally, a spatially varying magnitude constraint is applied across offsets 

and polarities to exploit structure unique to MRE. BEAM is validated using 



iii 

 

retrospectively downsampled phantom data and prospectively downsampled in vivo liver 

data (n = 86). 

Analysis of BEAM reconstructions demonstrate accurate quantification of mean liver 

stiffness up to an acceleration factor of R = 6. Bland Altman analysis indicates that 

BEAM (R = 6) has a bias of -0.04 kPa and limits of agreement of -0.36 – +0.28 kPa when 

compared to the clinical standard liver MRE technique with traditional GRAPPA (R = 

1.4). This study demonstrates that by exploiting spatial sparsity and magnitude 

consistency, it is feasible to reduce the scan time of liver MRE by an additional factor of 

4 while maintaining accurate mean stiffness quantification. This potentially enables 

collection of four liver slices, as per clinical protocol, within a single breath hold. 
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Chapter 1: Introduction 

Soft tissue stiffness serves as a biomarker for numerous pathological conditions, 

including hepatic, cardiac, breast, and skeletal muscle diseases. While invasive biopsy is 

the current gold standard for measurement of tissue mechanical properties, this procedure 

introduces the potential for a variety of complications. Thus, noninvasive alternatives are 

preferred. 

Magnetic resonance elastography (MRE) is a noninvasive procedure which estimates the 

shear modulus of soft tissue (1–10). MRE has demonstrated success in clinical diagnosis 

of hepatic fibrosis and cirrhosis. Oscillating mechanical waves are introduced to the 

anatomy of interest, while motion encoding gradients capture the resulting tissue motion. 

A series of MR images acquired at varying offsets between the motion encoding 

gradients and the mechanical waves are used to create a spatial map of shear stiffness, 

known as an elastogram. This procedure has demonstrated a high degree of accuracy in 

staging hepatic fibrosis (11,12). Yet even when parallel imaging techniques are applied, 

acquisition of this series of images requires prohibitively long breath holds. 
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In this work, we propose a new method, called Bayesian method for magnetic resonance 

Elastography using Approximate Message passing (BEAM). This method permits 

accelerated acquisition of MRE datasets by incorporating elements of parallel imaging 

and compressed sensing, and additionally through exploiting a structure unique to MRE 

by applying a magnitude constraint across offsets. Implementation of this constraint as a 

mixture density conditioned on a hidden indicator variable enables the algorithm to 

automatically segment the reconstructed image into regions of strong and weak 

magnitude consistency, applying the appropriately strong magnitude for each image 

pixel. This method is validated in retrospectively accelerated phantom data and 86 

prospectively accelerated in vivo datasets from 23 volunteers. 

The remainder of this thesis is structured as follows: 

 Chapter 2 explores the clinical motivation for MRE 

 Chapter 3 introduces technical considerations and limitations of MRE 

 Chapter 4 describes the various aspects of BEAM, including derivation of the 

method and identification of tuning parameters and simplifications 

 Chapter 5 describes the experimental methods used to validate BEAM in phantom 

and in vivo datasets 

 Chapter 6 presents experimental results 

 Chapter 7 provides discussion of the experimental results  
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 Chapter 8 summarizes the benefits and limitations of BEAM, and provides a 

conclusion 
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Chapter 2: Clinical Motivation 

Hepatic fibrosis is the accumulation of collagen in the liver (known to increase liver 

stiffness) caused by a variety of diseases and conditions, including chronic alcoholism, 

nonalcoholic fatty liver disease (NAFLD, depicted in Figure 1), and nonalcoholic 

steatohepatitis (NASH) (13–15). Late stage fibrosis, known as cirrhosis, is accompanied 

by distortion of the hepatic vasculature, impeding the ability of the liver to function and 

potentially leading to portal hypertension and hepatocellular carcinoma (shown in Figure 

2) (16). According to a 2014 report by the U.S. Department of Health and Human 

Services, chronic liver disease and cirrhosis comprised the 12
th

 leading cause of mortality 

in the United States, resulting in 38,170 deaths (17). Thus, substantial need exists for 

reliable early stage diagnosis to allow treatment and monitoring of disease progression. 

Liver Biopsy 

Currently, biopsy is the gold standard in assessing liver fibrosis. Despite its widespread 

acceptance, numerous factors limit the efficacy of this invasive procedure. A 
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percutaneous liver biopsy samples 1/50,000 of the liver, or 0.002% of the liver (18). 

However, fibrosis is heterogeneously distributed in the liver. As a result, sampling errors 

of between 25% to 40% have been reported (19–21). Additionally, variation between the 

interpretation of biopsy results yield staging errors as high as 20% (19). The procedure 

has been demonstrated to cause transient pain in approximately 30% of all patients, with 

severe complications occurring in 3%, and mortality occurring in 0.03% of all patients 

(22). In addition to significant direct costs, patients experience indirect costs due to loss 

of productivity during recovery, with extended hospital stays required for 1-5% of 

patients (18). 

 

Figure 1: Micrograph of liver with NAFLD. Prominent macrovesicular steatosis (white 

oval spaces) and mild fibrosis (green) is present. © Michael Bonert, shared per CC-BY-

SA-3.0. 
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Figure 2: Micrograph of liver with hepatocellular carcinoma. End stage cirrhosis (green) 

and inflammation around the hepatic portal (lower portion) are shown. © Michael Bonert, 

shared per CC-BY-SA-3.0. 

Noninvasive Techniques 

Several noninvasive methods exist for staging liver fibrosis and cirrhosis, including 

methods which utilize the ultrasound and magnetic resonance imaging modalities. 
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Ultrasound 

A variety of techniques exist which utilize ultrasound to stage liver fibrosis. Ultrasound 

imaging can be used to provide insight into morphological changes in the liver associated 

with advanced liver fibrosis. Hepatic vein wall morphology and liver surface nodularity 

have both demonstrated success as indicators of cirrhosis (23,24). However, a number of 

challenges limit the accuracy of morphological staging of fibrosis. Liver parenchymal 

texture is a subjective measure, yielding a low sensitivity and specificity. Optimal 

evaluation requires the presence of ascites to provide a fluid-tissue interface. This implies 

the fibrosis has reached an advanced stage, reducing the ability of morphological imaging 

to diagnose early-stage fibrosis  

In addition to morphological grading, ultrasound elastography can estimate the stiffness 

of the liver. Several variations of ultrasound elastography exist, including transient 

elastography (TE), which relies on an external transducer to introduce mechanical shear 

waves into the region of interest, while ultrasound is used to measure the propagation 

velocity of the shear waves, yielding the stiffness of the tissue (25). A pooled meta-

analysis of TE studies by Friedrich-Rust et al. (26) yielded a mean area under the receiver 

operating characteristic curve (AUROC) of 0.84 (95% confidence interval [CI] 0.82-

0.86) for significant fibrosis, 0.89 (95% CI 0.88-0.91) for severe fibrosis, and 0.94 (95% 

CI 0.93-0.95) for cirrhosis. Alternatively, acoustic force radiation impulse (ARFI) utilizes 

a short duration ultrasound pulse to displace tissue before monitoring the propagation of 
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the resulting shear wave (23). A meta-analysis of ARFI studies by Friedrich-Rust et al. in 

(27) yielded an AUROC of 0.87 (95% CI 0.83-0.92) for significant fibrosis, 0.91 (95% 

CI 0.86-0.96) for severe fibrosis, and 0.93 (95% CI 0.89-0.97) for cirrhosis. 

While ultrasound-based methods provide a low cost alternative to invasive biopsy, these 

methods suffer from a number of disadvantages. Ultrasound imaging suffers from limited 

acoustic wave penetration due to signal attenuation in tissue, and thus is unable to image 

structures located deep within a patient. This poses a particular challenge in imaging 

obese patients. Furthermore, ultrasound is user dependent, requiring technicians to 

undergo extensive training. Additionally, the ultrasound elastography systems produced 

by different vendors yield varying results, and thus establishment of threshold values for 

staging fibrosis has been difficult (28). Finally, ultrasound elastography exhibits less 

accuracy than magnetic resonance elastography, as discussed below. 

Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) is a powerful imaging modality that addresses a 

number of the shortcomings of ultrasound, including access to structures located deep 

within patients. As with ultrasound imaging, MRI can be used to assess liver 

morphology. MRI additionally permits encoding of alternative tissue features. For 

example, MRI-based diffusion weighted imaging (DWI) measures the rate of diffusion of 

water molecules in tissue. It has been observed that liver with cirrhosis yields restricted 
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diffusion (29). A meta-analysis of DWI studies by Wang et al. in (30) yielded an 

AUROC of 0.86 (95% CI 0.83-0.89) for stage 1 fibrosis, 0.83 (0.79-0.86) for stage 2 

fibrosis, and 0.86 (0.83-0.89) for stage 3 fibrosis. Alternatively, magnetic resonance 

elastography (MRE) estimates soft tissue stiffness through phase-contrast MRI by motion 

encoding of externally applied shear waves. A pooled meta-analysis of MRE in (30) 

yielded an AUROC of 0.95 (95% CI 0.93-0.97) for stage 1 fibrosis, 0.98 (95% CI 0.97-

0.99) for stage 2 fibrosis, 0.98 (95% CI 0.96-0.99) for stage 3 fibrosis, and 0.99 (95% CI 

0.97-0.99) for cirrhosis. Thus, MRE yields the highest degree of accuracy for staging 

fibrosis of all the noninvasive methods investigated. Additionally, MRE is highly 

accurate at staging fibrosis at early stages of the disease. An introduction to the technical 

aspects of MRE is given in chapter 3. 
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Chapter 3: Magnetic Resonance Elastography 

Magnetic resonance elastography (MRE) has emerged as a noninvasive, quantitative 

method of measuring the stiffness of soft tissue (1,31–41). MRE has found clinical 

application in the diagnosis of hepatic fibrosis and cirrhosis (12,42–44) and demonstrates 

potential in diagnosing various other hepatic, cardiac, brain, breast, aorta and skeletal 

muscle diseases (2–10). MRE consists of three principal steps, as shown in Figure 3. 

First, the region of interest is interrogated with mechanical waves. Next, the mechanical 

waves are encoded into the phase of the complex MR image signal. Finally, an MRE 

inversion algorithm is applied to the MRI phase images to produce a quantitative spatial 

map of the shear modulus, known as an elastogram. 
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Figure 3: Three principle steps of MRE, including introduction of mechanical waves via 

an external driver, encoding the resulting motion into the phase of the complex-valued 

images, and creation of an elastogram via an MRE inversion algorithm. 

The mechanical waves used in MRE are generated by an acoustic transducer and then 

routed to an MR safe passive driver placed above the anatomy of interest. A variety of 

driver architectures exist, including electromechanical, piezoelectric, and pneumatic 

drivers, with differing advantages and disadvantages (31). The frequency of these 

interrogating waves typically ranges from 50 – 500 Hz. Higher frequency mechanical 

waves yield greater sensitivity to anatomic motion due to the smaller applied wavelength, 

while lower frequencies demonstrate greater resistance to attenuation, extending the 

penetration depth of the waves. 

The resulting oscillatory motion of the anatomy is encoded into the phase of the complex 

MR images through application of a motion encoding gradient (MEG). These gradients 

can be applied in one or more directions in a standard MRI pulse sequence. The resulting 
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phase accumulated by the MR signal at position 𝒓 and phase offset 𝜃 between the motion 

and the MEG is expressed using the following equation (31) 

𝜙(𝒓, 𝜃) =
𝛾𝑁𝑇〈𝑮, ξ0〉

2
cos(〈𝒌, 𝒓〉 + 𝜃)    (1) 

where 𝛾 is the gyromagnetic ratio of hydrogen, 𝑁 is the number of gradient pairs used to 

sensitize the motion, 𝑇 is the period of the MEG, 𝑮 is the amplitude of the MEG, 𝜉0 is the 

maximum amplitude of the motion, and 𝒌 is the wave number. Thus, the phase of the MR 

signal is proportional to the tissue displacement. 

While the displacement of the anatomy due to the applied mechanical waves is small, 

synchronization of the MEG with the waves results in significant accumulation of phase. 

The effects of background phase are eliminated by repeating this acquisition with an 

MEG of the opposite polarity, allowing differentiation of the motion-encoded phase and 

background phase. A series of motion-encoded images are acquired at various phase 

offsets between the MEG and the mechanical motion, characterizing the wave 

propagation through the region of interest. 

After the complex-valued images are reconstructed for each offset, one of several MRE 

inversion algorithms is applied to produce a spatial map of the shear modulus, known as 

an elastogram. Most of the current inversion algorithms are based on the Helmholtz wave 

equation, as shown in equation 1 of (45), for planar waves propagating in a uniform, 
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homogeneous, isotropic medium. Local frequency estimation (LFE) produces a local 

estimate of the instantaneous frequency of the mechanical waves after application of 

lognormal quadrature filters (45,46) in the spatial frequency domain of the first harmonic 

displacement field. Alternatively, multimodel direct inversion (MMDI) attempts to fit 

low order polynomials to the first harmonic displacement field in a finite processing 

window (47,48) to estimate the Laplacian for solving the Helmholtz wave equation. 

MRE can be performed in two or three spatial dimensions and with up to three 

orthogonal motion encoding directions. In practice, however, volumetric acquisitions 

with multi-directional encodings are not utilized due to prohibitively long acquisition 

times. Even low-resolution planar imaging with a single encoding direction, when used in 

conjunction with parallel MRI (pMRI), typically requires a long breath hold (> 15 

seconds). To avoid excessive noise amplification, it is a common practice to use pMRI 

with only modest acceleration rates (R<2). To improve clinical utility of MRE and to 

enable volumetric measurements, it is necessary to accelerate the MRE acquisition while 

maintaining the accuracy of stiffness quantification.  

Compressive sensing (CS) has been successfully employed to recover images at high 

acceleration rates for several MRI applications (49–53), yet its potential has not yet been 

recognized for MRE reconstruction. CS enables recovery from highly undersampled data 

by exposing and exploiting the underlying compressibility of the image. Three conditions 

must be met to exploit CS. First, the image must be sparse, or contain few nonzero 
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elements, in some transform domain. Sparsity refers to the number of transform 

coefficients necessary to form a close approximate representation of the image. Second, 

the sampling pattern used must generate incoherent aliasing under the sparsifying 

transform. Finally, application of a nonlinear reconstruction which enforces both 

measurement fidelity and sparsity of the transform image representation enables recovery 

from highly undersampled data. More recently, Rich et al. (54) proposed a Bayesian 

method, called ReVEAL, to highly accelerate phase-contrast MRI. ReVEAL goes beyond 

the concept of utilizing sparsity and additionally exploits magnitude and phase structure 

unique to phase-contrast MRI. 

In chapter 4, we propose a new method, called Bayesian method for magnetic resonance 

Elastography using Approximate Message passing (BEAM), which permits significant 

acceleration of MRE via Bayesian modelling. BEAM can be considered an adaptation of 

ReVEAL. BEAM, like traditional CS methods, employs pseudorandom sampling and 

exploits spatial sparsity in the image at each offset. In contrast to traditional CS methods, 

the proposed approach also exploits structure unique to MRE. To that end, BEAM 

enforces magnitude consistency across different offsets through implementation of a 

mixture density and hidden indicator variable that automatically controls the strength of 

magnitude consistency for a given pixel. 
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The aim of this study is to develop and validate BEAM against the clinical standard MRE 

sequence for staging liver fibrosis in a standard MRE phantom with known stiffness and 

in volunteers for estimating liver stiffness. 
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Chapter 4: Theory 

Notation 

We adopt the following notation. Vectors and matrices are represented in bold, with 

matrices represented by capital letters. Elements of matrices are denoted 𝑎𝑖𝑗 for the 𝑖th
 

row and 𝑗th
 column of 𝑨, while 𝑥𝑖 indicates the 𝑖th

 element of vector 𝒙. For vectors 

identified by subscripts, vector elements are designated by a second subscript, such as 𝑥01
 

representing the 1
st
 element of vector 𝒙0. Elementwise multiplication of vectors is 

denoted 𝒂 × 𝒃. The 𝑛-by-𝑛 identity matrix is expressed as 𝑰𝑛. Finally, 𝒞𝒩(𝑥; 𝜇, 𝜎2) 

represents a circularly symmetric complex Gaussian distribution on random variable 𝑥 

with mean 𝜇 and variance 𝜎2. 

MRE Signal Model 

The raw MRI signal acquired by the 𝑐th
 coil of a receiver array for the 𝑗th

 offset between 

the mechanical oscillation and the motion encoding gradient can be expressed as 
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𝒚𝑗
𝑐 = 𝑫𝑗𝓕𝑺𝑐𝒙𝑗 + 𝜼𝑗

𝑐 ,     (2) 

where 𝑺𝑐 is the coil sensitivity encoding matrix for coil 𝑐 = 0,1, … , 𝐶 − 1, 𝓕 is the 

Fourier transform, and 𝑫𝑗 is the sample selection operator for offset 𝑗. Here, 𝒙𝑗 ∈ ℂ𝑁 is 

the complex-valued image to be recovered for the 𝑗th
 offset, 𝜼𝑗

𝑐  ∈ ℂ𝑀 is complex-valued, 

zero-mean Gaussian noise with variance 𝜔2, 𝒚𝑗
𝑐 ∈ ℂ𝑀 is the measured complex-valued 

data, and 𝑗 = 0,1, … , 𝐽 − 1 represent 𝐽 different offsets. The measurements for a multi-

coil acquisition with 𝐶 total coils can therefore be represented as 

[
 
 
 
 

𝒚𝑗
0

𝒚𝑗
1

⋮
𝒚𝑗

𝐶−1
]
 
 
 
 

=

[
 
 
 
 

𝑫𝑗𝓕𝑺0

𝑫𝑗𝓕𝑺1

⋮
𝑫𝑗𝓕𝑺𝐶−1]

 
 
 
 

𝒙𝑗 +

[
 
 
 
 

𝜼𝑗
0

𝜼𝑗
1

⋮
𝜼𝑗

𝐶−1
]
 
 
 
 

,     (3) 

Thus, by defining 𝑨𝑗 as the encoding matrix above, the signal acquired for the 𝑗th
 offset 

can be written as 

𝒚𝑗 = 𝑨𝑗𝒙𝑗 + 𝜼𝑗 ,     (4) 

where 𝒚𝑗 ∈ ℂ𝑀𝐶 and 𝜼𝑗 ∈ ℂ𝑀𝐶  are obtained by concatenating 𝒚𝑗
𝑐 and 𝜼𝑗

𝑐, respectively, 

from all coils. 

To promote incoherent aliasing, a variable density pseudorandom sampling pattern called 

variable density incoherent spatiotemporal acquisition (VISTA) was employed (55). 
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Since VISTA operates in the offset-ky domain, it implicitly discourages repeated 

sampling of the same k-space location across different offsets, maximizing the 

information content of the sampled data. A typical VISTA pattern is shown in Figure 4, 

where the offset on the x-axis represents positive and negative encoding with four equally 

spaced samplings of the external motion required for MRE. 

 

Figure 4: Example VISTA sampling pattern  for 128 phase encodes and R = 11.6. The 

pattern is generated in the integrated offset-ky domain. 

For MRE, we can model images at different offsets according to 
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𝒙0 = 𝒎0 × 𝑒𝑖(𝝓+𝜽0) 

𝒙1 = 𝒎1 × 𝑒𝑖(𝝓+𝜽1) 

⋮ 

             𝒙𝐽−1 = 𝒎𝐽−1 × 𝑒𝑖(𝝓+𝜽𝐽−1),    (5) 

where 𝜽𝑗  is the spatially varying phase accumulated due to motion encoding for the 𝑗th
 

offset and 𝝓 is the spatially varying reference phase incurred by magnetic field 

inhomogeneity and off-resonance effects. Without loss of generality, we can define 𝝓 

such that 𝜽0 = 0, yielding 𝒙0 = 𝒎0𝑒
𝑖(𝝓). 

In the absence of any non-ideal behavior, one expects 𝒎0 = 𝒎1 = ⋯ = 𝒎𝐽−1. However, 

due to intravoxel dephasing and other potential sources of model mismatch, the 

magnitudes across different offsets can vary. Since it is not known in advance which 

pixel (voxel) will exhibit dephasing, we introduce a pixel-wise Bernoulli map, 𝒗 ∈

{0,1}𝑁, to denote the presence (or absence) of potential magnitude discrepancy among 

offsets. 
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Bayesian Model 

Now, we write the posterior probability distribution of the unknown parameters, 

𝒙0, 𝒙1, 𝒙2, 𝜽1, 𝜽2, 𝒗. For notational simplification, we assume 𝐽 = 3, i.e., the 

measurements are made at three offsets. The model, however, is amenable to any 

arbitrary number of offsets, 𝐽. Using Bayes' rule, the posterior distribution can be 

expanded as 

𝑝(𝒙0, 𝒙1, 𝒙2, 𝜽1, 𝜽2, 𝒗|𝒚0, 𝒚1, 𝒚2)

∝ 𝑝(𝒙0, 𝒙1, 𝒙2, 𝜽1, 𝜽2, 𝒗)𝑝(𝒚0|𝒙0)𝑝(𝒚1|𝒙1)𝑦(𝒚2|𝒙2),     (6) 

where 𝑝(𝒚𝑗|𝒙𝑗) is the likelihood function for offset 𝑗. By invoking the chain rule, the 

prior in Equation 5 can be further factorized as follows. 

𝑝(𝒙0, 𝒙1, 𝒙2, 𝜽1, 𝜽2, 𝒗)

= 𝑝(𝒙2|𝒙0, 𝒙1, 𝜽1, 𝜽2, 𝒗)𝑝(𝒙1|𝒙0, 𝜽1, 𝜽2, 𝒗)𝑝(𝜽1|𝒙0, 𝜽2, 𝒗)𝑝(𝜽2|𝒙0, 𝒗)𝑝(𝒗|𝒙0)𝑝(𝒙0),     (7) 

This model is greatly simplified by adopting several independence assumptions. First, it 

is assumed that magnitude discrepancy map 𝒗 is independent of the reference offset, 𝒙0, 

such that 𝑝(𝒗|𝒙0) = 𝑝(𝒗). Next, it is assumed that the motion-encoded phase of each 

offset is independent of the magnitude and phase of each other offset and 𝑣. Thus, 

𝑝(𝜽𝑗|𝒙0, 𝜽𝑘 , 𝒗) = 𝑝(𝜽𝑗) for all 𝑘 ≠ 𝑗. Finally, it is assumed that all offset images are 

independent when conditioned on the reference image. Therefore, 
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𝑝(𝒙𝑗|𝒙0, 𝒙𝑘, 𝜽𝑗 , 𝜽𝑘, 𝒗) = 𝑝(𝒙𝑗|𝒙0, 𝜽𝑗 , 𝒗) for all 𝑘 ≠ 𝑗. Consequently, the simplified prior 

yields 

𝑝(𝒙0, 𝒙1, 𝒙2, 𝜽1, 𝜽2, 𝒗) ≈ 𝑝(𝒙2|𝒙0, 𝜽2, 𝒗)𝑝(𝒙1|𝒙0, 𝜽1, 𝒗)𝑝(𝜽1)𝑝(𝜽2)𝑝(𝒗)𝑝(𝒙0),    (8) 

The resulting posterior distribution, consisting of the likelihood functions and simplified 

prior, benefits from drastic reduction in computational complexity while retaining the 

fundamental structure relating offset images. The data model is fully characterized 

through selection of each of the posterior factors. 

For zero-mean circularly-symmetric additive Gaussian noise, with variance 𝜔2, the 

likelihood distributions are given by the following expression. 

𝑝(𝒚𝑗|𝒙𝑗) = 𝒞𝒩(𝒚𝑗; 𝑨𝑗𝒙𝑗 , 𝜔
2𝑰),    (9) 

A constant magnitude across offsets is enforced through selection of the conditional prior 

distribution relating each offset to the reference offset, 𝒙0. To accommodate model 

mismatches which reduce the validity of the magnitude assumption, the conditional prior 

for offset image 𝒙𝑗 is given by the following mixture density conditioned on the 

magnitude discrepancy indicator, 𝒗. 

𝑝(𝒙𝑗|𝒙0, 𝜽𝑗 , 𝒗) = 𝒗𝒞𝒩(𝒙𝑗; 𝒙0𝑒
𝑖𝜽𝑗 , 𝜎1

2𝑰) + (1 − 𝒗)𝒞𝒩(𝒙𝑗; 𝒙0𝑒
𝑖𝜽𝑗 , 𝜎2

2𝑰),     (10) 
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The two components of this mixture are shown in Figure 5. Each term of the mixture 

constrains the magnitude of 𝒙𝑗 to resemble that of reference image 𝒙0, while leaving the 

encoded phase 𝜽𝑗  unconstrained with respect to the reference image. By selection of two 

differing variances for the mixture components, i.e. 𝜎1
2 < 𝜎2

2, the appropriately strong 

magnitude constraint can be applied locally throughout the image based on the value of 

the magnitude discrepancy indicator, 𝒗. The prior probability of strong magnitude 

consistency at each pixel 𝑛 is uniformly assigned as 𝑝(𝑣𝑛 = 1) = 𝛾. For the prior on the 

motion-encoded phase, 𝑝(𝜽𝑗), an uninformative uniform distribution is selected on the 

interval [0,2𝜋). 

On the one hand, the factor 𝑝(𝒚𝑗|𝒙𝑗), represents the noise uncertainty in the MRE 

acquisition and provides a traditional sum-of-squares data fidelity term in the 

reconstruction. On the other hand, the factors in the prior, such as 𝑝(𝜽𝑗), 𝑝(𝒗), and 𝑝(𝒙0) 

provide a regularization effect in image reconstruction. Thus, the various simplifying 

assumptions above maintain data fidelity while providing a trade-off between physically 

motivated regularizing constraints and computational complexity. Further, the modeling 

parameter 𝒗 provides, at each voxel, an automated tuning of the intra-offset 

regularization. 
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Figure 5: Mixture density relating offset 𝒙𝒋 to the reference offset 𝒙𝟎. (a) The conditional 

distribution that enforces weak magnitude consistency, accommodating large magnitude 

variations across offsets, for example, due to dephasing. (b) The conditional distribution 

that enforces strong magnitude constraint, permitting little variation in magnitude. BEAM 

automatically assigns the probability that a given pixel belongs to 𝒗 = 𝟎 or 𝒗 = 𝟏 and 

enforces appropriate contributions from the two components of the mixture density.  

Wavelet Compression 

Selection of the prior, 𝑝(𝒙𝑗), on each complex-valued offset is the final remaining 

modelling decision to be addressed. Here, a prior is selected such that sparsity is 

promoted in each offset under a two-dimensional undecimated wavelet transform. To this 

end, we assume an analysis compressed sensing formulation, where the wavelet synthesis 

operator 𝚿 is appended as additional rows to forward operator 𝑨𝑗, as in (56). The image 
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prior is defined as a zero-mean Laplace distribution on the complex-valued wavelet 

coefficients with shape parameter 𝜆. 

𝑝(𝒙𝑗) ∝ ∏
𝜆2

2𝜋
𝑒

−𝜆|[𝚿𝒙𝑗]𝒏
|

𝑁−1

𝑛=0

,     (11) 

For Gaussian likelihood and Laplace prior, the maximum a posteriori (MAP) estimate is 

equivalent to solving the following optimization problem. 

𝒙𝑀𝐴𝑃 = argmax
𝒙

𝑝(𝒙|𝒚) = argmax
𝒙

𝑝(𝒚|𝒙)𝑝(𝒙)                  

= argmax
𝒙

ln(𝑝(𝒚|𝒙)) + ln(𝑝(𝒙))                    

= argmin
𝑥

1

𝜔2
‖𝒚 − 𝑨𝒙‖2

2 + 𝜆‖𝚿𝒙‖1
1 ,     (12) 

Here 𝒚, 𝒙, and 𝑨 represent the data, image, and encoding matrix, respectively, from all 

offsets. 

Belief Propagation 

The posterior distribution of the Bayesian MRE model can be represented visually as a 

factor graph, as shown in Figure 6. Circular nodes represent random variables, while 

square nodes represent distributions. Edges between these nodes represent dependence of 
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distributions on variables. By analogy, just as the gradient of a cost function can specify 

an iterative algorithm, such as conjugate gradients, the factor graph can specify an 

iterative algorithm for determining the posterior mean image using a Bayesian model. 

Specifically, application of the sum-product algorithm on the factor graph provides a 

computationally efficient method of estimating the marginal posterior distributions of 𝒙𝑗, 

𝜽𝑗 , and 𝒗 (57,58). The algorithm passes messages between nodes containing beliefs about 

the values of surrounding variables. The marginal posterior distributions of variables in 

the loop free region of the graph are exactly determined after a message is passed in each 

direction across each edge. In the densely interconnected regions introduced by the 

Fourier measurement operator the generalized approximate message passing (GAMP) 

algorithm is utilized to significantly reduce computational complexity through 

application of the central limit theorem and Taylor series approximations; GAMP 

leverages the large number of pixels in each offset to approximate messages as simply 

Gaussian (59). Once marginal posterior distributions are obtained, the maximum a 

posteriori estimate of each reconstruction is obtained by finding the maximum value of 

the distribution. 
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Figure 6: Factor graph representation of the joint posterior distribution of an MRE 

dataset with three offsets. This structure is expandable to an arbitrary number of offsets, 

retaining this structure which relates each offset to the reference offset 𝒙𝟎. Application of 

an iterative message passing algorithm provides a computationally efficient method of 

estimating the posterior marginal distribution of variables of interest. GAMP permits 

rapid estimation of messages passed in the densely interconnected loopy regions of the 

graph, which represent each offset. 

In summary, each offset image is first reconstructed from noisy measurements via 

GAMP. The resulting approximated messages are then passed between offset images, 

where a spatially varying magnitude constraint is enforced by the mixture density. The 

messages received by each offset image are then used to update the image estimate 

through an updated GAMP reconstruction. This algorithm is iterated until convergence. 
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Chapter 5: Methods 

The study protocol involving human subject was approved by the Institutional Review 

Board. Written, informed consent was obtained from each volunteer. All imaging was 

performed on a 3 T clinical MRI scanner (Tim Trio, Siemens Healthineers, Erlangen, 

Germany), using a gradient echo MRE pulse sequence. Offline reconstructions were 

performed in MATLAB (Mathworks, Natick, MA). Across several studies we compared 

BEAM to spatial CS (SCS) as well as SENSE (60) or GRAPPA (61) reconstructions. 

When performing BEAM and SCS reconstructions, the same VISTA sampling patterns, 

wavelet compression, and GAMP solver were used. However, the SCS reconstructions 

only exploited spatial sparsity and were performed independently on each offset image 

without application of any magnitude constraint jointly across offsets.  
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Retrospectively Accelerated Phantom MRE Acquisition and 

Reconstruction 

BEAM was first validated using a cylindrical phantom with known stiffness (5.6 kPa). 

Mechanical waves were applied to the phantom at a frequency of 60 Hz with an MEG 

frequency of 60 Hz. Fully sampled data were acquired on a 256x256 matrix with four 

MRE phase offsets with positive and negative motion encoding. The field of view was 

280x280 mm
2
, with 5 mm slice thickness, TE = 21.9 ms, and TR = 50 ms. The data were 

retrospectively downsampled using a VISTA sampling pattern to allow SCS and BEAM 

reconstruction and a uniform sampling pattern for SENSE reconstruction at R = 1, 2, … , 

15. The central 128 lines of k-space from a single offset were used to generate coil 

sensitivity maps, as suggested by Walsh et al. (62). This study was also used to optimize 

parameters for BEAM and SCS. 

Prospectively Accelerated In Vivo Liver MRE Acquisition and 

Reconstruction 

Liver MRE was performed on 23 healthy individuals (14 men, 9 women, mean age 26, 

age range 21 to 38) using an 18-channel coil array. The experimental setup is shown 

below in Figure 7. Three or four axial slices were sequentially collected for each 

volunteer, yielding a total of 86 axial slices. In each scan, the field of view was 320x320 
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mm, with 5 mm slice thickness. Data were collected on a 128x64 matrix with TE = 21.16 

ms and TR = 50 ms. Mechanical waves were applied to the abdominal region at a 

frequency of 60 Hz while an MEG of 60 Hz was applied. 

 

Figure 7: Experimental setup for liver MRE imaging. 

For each slice, a low resolution pre-scan (48 lines of k-space) was acquired under a 

separate breath hold to generate coil sensitivity maps. The prescan was collected in the 

presence of mechanical vibrations and with MEG activated. Next, prospectively 

downsampled MRE data were acquired using a VISTA sampling pattern for R = 1, 4, 6, 

and 8 with four MRE phase offsets with positive and negative motion encoding, requiring 

breath holds of 25.6, 6.4, 4.3, and 3.2 seconds, respectively. For comparison, each slice 

was also acquired at R =1.4 with 24 reference lines (18 s breath hold) and reconstructed 

online with GRAPPA. Additionally, repeated GRAPPA scans were acquired from 5 

volunteers (19 slices) to determine the variance among GRAPPA measurements collected 
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under similar settings but different breath holds. BEAM and SCS reconstructions were 

performed offline in MATLAB on a 128x128 grid. Before each reconstruction was 

interpolated to 256x256 by zero padding k-space, Gaussian windowing was applied to 

reduce Gibbs ringing. The R = 1.4 GRAPPA acquisitions were reconstructed online on a 

256x256 grid. 

Parameter Selection 

Noise variance, 𝜔2, was estimated from the periphery of k-space. Before processing, all 

data sets were normalized by a factor of
1

𝑚𝑒𝑎𝑛(|𝑥̃|)
, where 𝑥̃ is the reconstructed pre-scan 

after thresholding to eliminate low-intensity regions. The prior probability of strong 

magnitude consistency, 𝛾, was set at 0.9 for all datasets, and moderate changes (range: 

0.8—0.95) in 𝛾 resulted in no appreciable difference in the image quality. For phantom 

study, the values of the Laplace shape parameter controlling the strength of the wavelet 

compression, 𝜆, and the mixture density variances controlling the degree of magnitude 

regularization, 𝜎1
2 and 𝜎2

2, were manually adjusted using an additional phantom dataset 

(not shown). For in vivo study, the values of 𝜆, 𝜎1
2, and 𝜎2

2 were manually adjusted using 

separate retrospectively downsampled datasets (not shown) from three volunteers. 
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MRE Inversion 

The phase from reconstructed complex-valued offsets was then used to generate 

elastograms in MRELab (Mayo Clinic, Rochester, MN). After applying a phase 

unwrapping algorithm, directional filtering was applied in four directions with passbands 

spanning 2 to 128 waves per field of view to mitigate interference from reflected 

mechanical waves (45). Elastograms were created for each dataset via multimodel direct 

inversion (MMDI) (48). Manual regions of interest (ROI) were drawn avoiding large 

vessels and poor wave amplitudes within the liver to report mean stiffness. 

Reconstruction Quality Metrics 

Retrospectively accelerated reconstruction quality was quantified through calculation of 

the mean squared error (MSE), defined as 

𝑀𝑆𝐸{𝒙̂} = 10 log10

‖𝒙̂ − 𝒙𝒓𝒆𝒇‖2

2

‖𝒙𝒓𝒆𝒇‖2

2 ,     (13) 

where 𝒙̂ is the reconstructed image and 𝒙𝒓𝒆𝒇 is the fully sampled reference image. This 

metric provides a global measure of reconstruction quality by considering the entire 

complex reconstruction across all four offsets with positive and negative motion 

encoding. 
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For all studies, mean stiffness of BEAM and SCS within a user defined ROI was 

compared with that of SENSE (for phantom) or GRAPPA (in vivo). For phantom data, 

SENSE was used to reconstruct the reference images to enable MSE computation for 

BEAM and SCS, which are also based on a SENSE formulation. For in vivo data, 

GRAPPA was used as reference to emulate the existing clinical protocol. For phantom, 

the ROI was selected based on magnitude threshold and consisted of the entire circular 

cross section. For in vivo data, ROI was localized inside the liver near the driver and was 

manually selected by an expert user (AK, ~12 years of experience in analyzing MRE 

data). The mean stiffness within the ROI was then compared across reconstructions and 

accelerations to determine the effectiveness of each reconstruction at preserving 

estimated stiffness. 

In the prospectively accelerated in vivo study, Bland Altman analysis was performed to 

assess the agreement between GRAPPA and BEAM derived stiffness estimates (63). In 

this analysis, the mean difference across estimates yields the overall bias of BEAM 

compared to GRAPPA, and the 95% limits of agreement capture the overall variance 

between BEAM and GRAPPA. Additionally, examination of the Bland Altman plot 

provides insight into the possibility of proportional bias, where the agreement between 

methods varies based on the average value of the measurements. Additionally, the 

Pearson correlation coefficient, 𝑟, was assessed between GRAPPA and BEAM derived 

stiffness estimates. 
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Chapter 6: Results 

Retrospectively Accelerated Phantom MRE Results 

A sample of phantom magnitude images, wave images, and elastograms is shown in 

Figure 8 after reconstruction using SENSE, SCS, and BEAM at various accelerations. 

The MSE (in dB) of each reconstruction for R = 1, 2, … , 15 was calculated and is shown 

in Figure 9. Figure 10 depicts the mean stiffness of the phantom, as calculated from each 

reconstruction using MMDI. 
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Figure 8: Comparison of SENSE, SCS, and BEAM phantom reconstructions at R = 1, 3, 

6, 9, 12, and 15. Magnitude images, wave images, and elastograms are shown for each 

reconstruction. 
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Figure 9: MSE of reconstructed phantom images for SENSE, SCS, and BEAM 

reconstructions. MSE provides a measure of the error between each complex 

reconstruction and the fully sampled SENSE reconstruction. 

 

Figure 10: Mean phantom stiffness, as measured from the ROI. 
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Prospectively Accelerated In Vivo Liver MRE Results 

For prospectively accelerated data, Figure 11 depicts GRAPPA and BEAM magnitude 

images, wave images, and elastograms for one of the volunteers. Figure 12 shows Bland 

Altman analysis of stiffness estimates between GRAPPA and BEAM with different 

acceleration rates. Compared to the stiffness values derived from GRAPPA R = 1.4, the 

BEAM derived values at R = 1, 4, 6, and 8 yield biases of -0.06, -0.07, -0.04, and -0.06, 

respectively. The limits of agreement between GRAPPA and BEAM derived stiffness 

values are -0.35 — 0.23, -0.36 — 0.21, -0.36 — 0.28, and -0.46 — 0.33, respectively. 

Pearson correlation coefficients between BEAM and GRAPPA-derived stiffness values 

were 0.831, 0.821, 0.800, and 0.637 for R=1, 4, 6, and 8, respectively. 
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Figure 11: Comparison of GRAPPA at R = 1.4 and BEAM at R = 1, 4, 6, and 8 

reconstructions of a representative prospectively accelerated in vivo dataset. 
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Figure 12: Bland Altman analysis of BEAM-derived stiffness measurements to 

GRAPPA-derived stiffness measurements. (a) Comparison of GRAPPA, R = 1.4, and 

BEAM, R = 1. (b) Comparison of GRAPPA, R = 1.4, and BEAM, R = 4. (c) Comparison 

of GRAPPA, R = 1.4, and BEAM, R = 6. (d) Comparison of GRAPPA, R = 1.4, and 

BEAM, R = 8. 

Additionally, Bland Altman analysis (Figure 13) provided insight into the relationship 

between stiffness measurements derived from two subsequent GRAPPA acquisitions 

with identical parameters but collected under separate breath holds. The difference 

between the measurements demonstrated a bias of -0.04 and limits of agreement of -0.32 

— 0.23. The correlation between the subsequent GRAPPA-derived stiffness 

measurements was 0.86. 
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Figure 13: Bland Altman analysis of stiffness measurements derived from two separate 

GRAPPA scans. The two GRAPPA scans were collected from the same volunteer using 

identical parameters but under separate breath holds. 
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Chapter 7: Discussion 

The proposed acquisition and reconstruction strategy for MRE utilizes parallel MRI, 

spatial compressed sensing, and magnitude regularization across MRE phase offsets to 

enable image reconstruction at high acceleration rates without sacrificing image fidelity. 

In the phantom data, BEAM demonstrated significant improvement over SENSE 

reconstruction in MSE, and produced very high quality reconstructions for acceleration 

rates as high as R = 10. In the liver data, BEAM at R = 6 exhibited high levels of 

agreement with GRAPPA at R = 1.4. Additionally, BEAM at R = 6 demonstrated similar 

variation in performance compared to repeated GRAPPA scans. 

BEAM exploits both spatial sparsity (in the wavelet domain) and magnitude consistency 

to enable image recovery from undersampled data. For magnitude consistency, BEAM 

utilizes a mixture density with hidden indicator variable to automatically adjust the extent 

of magnitude consistency on per-pixel basis. This probabilistic approach demonstrates 

significant improvement over application of a single magnitude constraint. In contrast, 

enforcing strict magnitude equality across all offsets led to significant image artifacts 
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(data not shown). Also, with a computationally efficient approximate message passing 

algorithm, BEAM enabled image recovery in less than 8 minutes using ordinary CPU-

based computation. Further reduction in computation time is feasible by optimizing the 

code and by employing parallel computing.  

In reconstruction of the retrospectively accelerated phantom, BEAM achieved the lowest 

MSE of all accelerated reconstructions considered, enabling acceleration rates as high as 

R = 10 without substantially impacting results. At acceleration rates exceeding R = 4, 

BEAM provides an improvement over SCS of approximately 1 dB, which increases to 

more than 5 dB beyond R = 10. Both SCS and BEAM produce stiffness errors of less 

than 0.25 kPa (4%) for accelerations up to R = 9. At R = 10 and beyond, BEAM 

demonstrated significant improvement over SCS in reconstruction stiffness 

measurements. Compared to MSE, mean stiffness is a more forgiving metric, which can 

explain the lack of performance loss for SCS until R=10. Compared to BEAM and SCS, 

SENSE reconstruction exhibits excessive noise amplification even at lower acceleration 

rates and degrades rapid beyond R=4.  

At low acceleration rates, BEAM effectively reduced the noise seen in smooth regions of 

the liver without sacrificing detail in vessels. These details are mostly preserved through 

R = 6, while images at R=8 demonstrate visible reduction in fine detail. On average, 

across all in vivo datasets, the BEAM reconstruction at R = 6 yielded a stiffness estimate 

which differs from the GRAPPA derived stiffness by 6.5%. From Bland Altman analysis, 
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stiffness measurements resulting from all four tested BEAM acceleration rates 

demonstrated no appreciable bias, as compared with GRAPPA at R = 1.4. A strong 

agreement (r ≥ 0.8) between BEAM (R ≤ 6) and GRAPPA at R = 1.4 is observed. At 

R=8, however, the correlation degrades to r=0.68. 

We conjecture that some of the variation between BEAM and GRAPPA at R = 1.4 was 

due to small differences between the subsequent breath holds. Since each scan was 

performed under a separate breath hold, slight variation was introduced in the slice 

location of each scan, leading to small discrepancies in the resulting stiffness estimates. 

This conjecture is supported by the fact that Bland Altman for repeated GRAPPA 

measurements demonstrated very similar bias and limits of agreement as GRAPPA-

BEAM analysis up to R = 6. 

As implemented, BEAM reconstruction requires manual tuning of several parameters. Of 

principal importance are the Laplace shape parameter 𝜆, controlling the tradeoff between 

data fidelity and wavelet compression, and the variance of the components of the mixture 

density 𝜎1
2 and 𝜎2

2, controlling the strength of the two magnitude constraints across 

offsets. The values of these parameters were manually tuned using separate training 

datasets that were not included in the subsequent validation. For all phantom and in vivo 

datasets, we used 𝜆 = 20 and observed that the recovery process was relatively robust to 

the choice of 𝜆. For 𝜎1
2 and 𝜎2

2, selecting small values generated lower MSE but provided 

inconsistent performance across different training datasets. To favor robustness over 
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optimality, we selected relatively large values 𝜎1
2 and 𝜎2

2. Being a Bayesian approach, 

BEAM is amenable to auto-tuning using expectation maximization (64–66) or similar 

algorithms. Such extensions of BEAM are beyond the scope of current work and will be 

considered separately. 

Several simplifications are made in the derivation of BEAM to ensure the algorithm is 

tractable and computationally efficient. To produce a tractable prior three independence 

assumptions are made. First, it is assumed that the location of magnitude discrepancies is 

independent of the complex-valued images. Second, the motion-encoded phase for each 

offset is independent of the magnitude and phase of each other offset, as well as the 

location of motion. Finally, it is assumed that each offset is independent of each other 

offset except the reference offset, eliminating loops in the factor graph between offsets 

while maintaining the structure used to enforce the magnitude regularization. 

Additionally, two simplifications are made in the derivation of messages passed between 

offsets to enable processing of datasets consisting of numerous offsets. According to the 

sum-product algorithm (57), the message received by each offset consists of the product 

of the messages sent from each of the other offsets. These messages contain the mixture 

density, which is the sum of two circularly symmetric Rician terms. Thus, if 𝐽 offsets are 

acquired (including all MEG offsets and polarities), the received message consists of a 

2𝐽−1 term polynomial. To address this concern, cross terms involving multiplication 

between circularly symmetric Rician distributions with differing variances are 

disregarded, yielding messages consisting of the sum of two products of 𝐽 − 1 
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distributions. Additionally, the product of two Rician distributions is simplified as Rician, 

analogous to the product of two Gaussian distributions. This allows rapid, 

computationally efficient characterization of the messages through multiplications 

involving the mean and variance of each mixture density. 

Numerous other potential applications of BEAM exist. Acceleration due to BEAM 

potentially permits acquisition of volumetric MRE within a single breath hold, which, in 

turn, enables further acceleration through compression in three spatial dimensions via a 

three dimensional wavelet transform. Alternatively, further compression could be 

achieved through leveraging the smooth structure of the liver with alternative sparsifying 

sparsifying transforms such as curvelets or contourlets (67–70). BEAM is also amenable 

to multidimensional motion encoding, which provides a more complete depiction of the 

mechanical wave propagation through the region of interest by application of an MEG in 

three orthogonal spatial directions. Furthermore, exploration of alternative temporal 

encoding schemes, such as collection of seven MRE phase offsets, where only one offset 

includes negative motion encoding, could provide more accurate motion encoding. 

All participants in this study were healthy volunteers with no history of liver disease. 

Future testing of BEAM in clinical patients could investigate the possibility of 

proportional bias at higher liver stiffness and validate the method against biopsy. After 

demonstrating success in staging liver fibrosis, BEAM could be assessed for detection 
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and staging of a variety of other diseases. The preliminary data strongly suggests that 

BEAM is a viable option to accelerate clinical application of liver MRE. 
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Chapter 8: Conclusion 

An acquisition and reconstruction strategy was presented for magnetic resonance 

elastography which enabled high rates of acceleration by utilizing spatially varying 

magnitude regularization across offsets, spatial sparsity, and accelerated computation via 

generalized approximate message passing. The algorithm, BEAM, was validated through 

reconstruction of retrospectively accelerated phantom as well as prospectively 

accelerated in vivo stiffness measurements in the liver. Stiffness measurements derived 

from prospectively accelerated BEAM reconstructions (at R = 6) demonstrated strong 

consistency with stiffness measurements derived from GRAPPA R = 1.4 reconstructions, 

with correlation coefficient r = 0.8. Thus, BEAM demonstrates potential for clinical 

elastography applications. 
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