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Abstract 

 

Epithelial ovarian cancer (EOC) is most commonly diagnosed at advanced stages, 

resulting in poor prognoses.  Unlike most cancers, EOC does not typically spread 

hematogenously or lymphatically, opting instead for passive diffusion into the peritoneal 

cavity.  This paper proposes a model that simulates the transition from primary tumor to 

disseminated disease using adherent and non-adherent cell culture conditions.  Temporal 

transcriptomic analysis was performed on a well-studied ovarian cancer cell line that was 

subjected to this model.  This resulted in the identification of TXNIP as a primary gene of 

interest.  To validate the significance of this gene, a TXNIP knockdown cell line was 

developed using shRNA.  Spheroid formation of the knockdown cell line in vitro was 

analyzed qualitatively and quantitatively using live-cell imaging.  The knockdown was 

found to exhibit an anoikis-resistant phenotype.  To assess prognostic relevance of the 

gene, the TCGA ovarian cancer dataset was queried for differences in patient survival 

outcomes based on categorization of high or low TXNIP expression in tumor samples, 

relative to median expression, at the time of initial surgery.  High TXNIP expression was 

found to correlate significantly with longer overall and progression free survival in early 

stage patients.  The same was not true for late stage patients.  To assess the effect of 

platinum agents on TXNIP, carboplatin was used to treat three ovarian cancer cell lines 

grown in non-adherent conditions for 48 hours.  Western blots confirmed that 100 nM 
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carboplatin did not affect TXNIP expression at 48 hours.  The findings of this paper lead 

us to believe that TXNIP is a potential mediator of anoikis-resistance in ovarian cancer. 
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Chapter 1: Introduction 

 

Currently, there are no effective population-wide screening methods for epithelial ovarian 

cancer (EOC).  Consequently, EOC is most commonly diagnosed at advanced stages.  

Most EOC patients present with ascites and the disease is known to disseminate via the 

peritoneal cavity, leading to peritoneal carcinomatosis and metastasis.  To aid in the 

identification of new targeted therapies that increase survival rates, the development of 

realistic in vitro models of EOC progression are necessary.  This paper proposes a model 

that simulates the transition from primary tumor to disseminated disease using adherent 

and non-adherent cell culture conditions.  In this study, we use temporal transcriptomic 

analysis to sort genes into clusters and identify outlying genes which we then investigate 

further.  We hypothesized that these outlying genes would play a modulatory role in 

anoikis-resistance mechanisms in the early stages of tumorsphere formation. 

 

The aims of this study are to: 1) refine an in vitro model of ovarian cancer metastasis, 2) 

use bioinformatics methods to identify potential drivers of anoikis-resistance in ovarian 

cancer, 3) develop imaging techniques to study tumorsphere formation and growth 

kinetics, and 4) validate findings using in vitro experiments. 
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Chapter 2: Background 

 

Ovarian Cancer Epidemiology 

Ovarian cancer (OC) is a deadly, heterogeneous disease.  According to results from the 

National Cancer Institute’s Surveillance, Epidemiology, and End Results Program 

(SEER), OC is currently the fifth most lethal cancer type affecting women in the United 

States.  The disease has a 5-year survival rate close to 46.5% and its incidence was 

estimated to be approximately 11.7 cases per 100,000 women from 2010-2014.  The 

median age of diagnosis from 2010-2014 was 63 years of age and approximately 75% of 

incident OC cases were diagnosed at advanced stages (1).  Due to the relatively low 

incidence of OC along with the low positive predictive value of current screening tests 

reliant upon on transvaginal ultrasound and CA-125 measurements, as of 2012, the U.S. 

Preventive Services Task Force does not recommend screening of asymptomatic women 

who are not considered high-risk (2).  Risk factors for OC include age, use of fertility 

drugs, hormone therapy for menopause, and BRCA1/2 mutations.  Several factors have 

been found to be protective including parity, breastfeeding, and contraceptive use (3).  

Epithelial ovarian cancer (EOC) is a common subtype of OC that presents most 

frequently in post-menopausal women with symptoms including several months of 

abdominal pain and distension.  The most common cause of death from EOC is bowel 

obstruction (4).  EOC can also be broken down further into several morphological 
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subtypes including high-grade serous, mucinous, endometrioid, and clear cell.  These 

subtypes are determined after pathological analysis, but at least one recently conducted 

study in 2015 was partly successful in identifying EOC subtypes based on imaging alone 

(5). 

 

Staging 

The International Federation of Gynecology and Obstetrics (FIGO) staging system is 

used in the diagnosis and treatment of EOC (6,7).  Clinical staging is done prior to 

treatment.  It is considered preliminary and less accurate than the surgical staging because 

it is based on an incomplete picture of the cancer.  Surgical staging, on the other hand, is 

done at the time of initial surgery and is based on direct visual inspection and 

pathological analysis of tumor tissue and ascitic fluid.  Grading of one through three is 

also done after surgery, with grade one being the most like normal tissue and grade three 

being the fastest growing and least like normal tissue.  Ascitic fluid is analyzed for the 

presence of tumor spheroids and microscopic metastasis.  Stage one EOC is a tumor that 

has not spread beyond the ovaries.  Stage one can be further classified based on whether 

the cancer is unilateral, bilateral, or if the ovarian capsule has ruptured.  Stage two EOC 

indicates that the cancer has spread to other tissues within the pelvic region.  Stage two 

can be further classified based on which pelvic tissues or organs the cancer has 

infiltrated.  Stage three EOC indicates spread to tissues adjacent the pelvic region or to 

retroperitoneal lymph nodes.  Stage three can be further classified based on which tissue 



4 

 

has been invaded and the size of the tumor that has spread.  Stage four EOC indicates that 

the cancer has spread to distant sites. 

 

Treatment 

Initial treatment for EOC is dependent on stage, performance status, and the patient’s 

desire to maintain fertility (6,7).  Surgical staging is the first phase of treatment.  Most 

advanced stage cancers, other than ovarian, do not obtain survival benefits from 

debulking procedures, thus EOC is special in that debulking surgery works to improve 

survival (8).  During surgical staging the cancer will be staged and surgeons will remove 

as much disease as possible.  Surgical staging may also involve complete removal of the 

patient’s omentum, ovaries, fallopian tubes, uterus, and cervix.  Both platinum-based and 

taxane-based chemotherapy are recommended if the cancer is beyond stage 1.  Advanced 

stage disease is treated with either intraperitoneal (IP) or intravenous (IV) chemotherapy 

following surgery.  IP chemotherapy is injected directly into the peritoneal cavity via a 

catheter and port.  It has pharmacokinetic advantages over IV delivery that can make it 

preferable in situations where the disease has not spread systemically (9).  IP delivery is 

associated with increased toxicity as compared to IV delivery and is therefore not 

recommended for use in patients with low performance status.  IP delivery is not used in 

stage 4 patients.  Patients typically undergo 4 to 8 cycles of chemotherapy after surgery.  

Each cycle typically lasts between 7 and 21 days.  In some cases, chemotherapy may be 

given in advance of surgery in an attempt to shrink tumors so that they can be more easily 

resected during surgery.  If patients relapse within 6 months of chemotherapy they are 
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considered to be platinum-resistant.  Otherwise, they are considered platinum-sensitive 

and will be candidates for further platinum-based treatment if they relapse. 

 

Peritoneal Metastasis 

The most common site for metastasis in EOC is the peritoneal cavity.  Malignancy-

related ascites is a potential consequence of peritoneal metastasis.  Abnormally high 

levels of ascitic fluid accumulate due to blockages that form in lymphatics.  Increased 

vascular permeability due to tumor secretion of vascular endothelial growth factor is also 

a major contributing factor (10).  Glucose concentrations within ascites are assumed to be 

similar to serum blood glucose levels.  This supposition is supported by several studies 

that have shown ascitic glucose conditions to be less than or equal to normal physiologic 

serum concentrations of 70-100 mg/dL.  One study of 43 patients with confirmed 

malignant ascites reported an average glucose concentration of 95 mg/dL (11).  Another 

study, using H-NMR spectroscopy for quantitative estimation of glucose concentration, 

found that patients with malignant, cancerous ascites had significantly lower (p<0.01) 

glucose concentration of 55.8 mg/dL (4933 ± 2980 uM) as compared to patients with 

benign ascites due to cirrhosis.  The patients with benign ascites exhibited average ascitic 

glucose concentrations of 95.14 mg/dL (8411 ± 4886 uM) (12).  In a 2013 longitudinal 

study of 333 patients with EOC, ascites occurred in 78% of the cases overall.  Ascites 

was present in 50.6% of stage I patients, 62.5% (stage II), 90.1% (stage III), and 100% 

(stage IV).  The volume of ascites was found to be significantly positively correlated with 

stage ranging from less than 100 mL to 3,800 mL at the point of primary treatment (13).  
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Treatment of ascites in practice is solely for the relief of ascites-related symptoms 

including abdominal pain, shortness of breath, and gastrointestinal upset (10).  

Paracentesis is performed to reduce ascitic volume and it frequently requires repeated 

treatments.  Interestingly, when patients who were given palliative peritoneovenous 

shunts to help relieve symptoms associated with ascites, cancer was found to metastasize 

to the same areas as would be expected if there were not systemic distribution of tumor 

cells.   

 

Patients diagnosed with stage 1C EOC have lower overall survival as compared to stage 

1A or 1B.  This is most likely due to the occult presence of tumor in the ascites.  One 

study showed that cells taken from metastatic deposits were strikingly similar to primary 

tumor as evidenced by their overlapping gene expression profiles.  The study reported 

that there were only 64 differentially expressed genes between the primary and metastatic 

tumor tissue that they analyzed.  This has led to the hypothesis that at least some 

metastatic sites are monoclonal as opposed to polyclonal in origin. 

 

The Cancer Genome Atlas Ovarian Dataset 

The Cancer Genome Atlas Project (TCGA) was established in 2005 with the aim of 

generating and analyzing large-scale, publicly available, genomic datasets for a variety of 

cancers.  TCGA is managed by the National Cancer Institute (NCI) and the National 

Human Genome Research Institute (NHGRI).  The project is funded by the NCI, NHGRI, 

and federal funds allocated via the American Recovery and Reinvestment Act of 2009 
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(ARRA) (14).  Ovarian cancer was characterized in the first phase of TCGA (15).  As of 

2014, few of the gene-expression based biomarkers identified in TCGA studies have 

found their way into clinical practice.  There are conflicting views on how useful the 

TCGA findings have been in their ability to help predict prognosis.  One study, published 

in Nature, attempted to assess the added prognostic benefit of including molecular data 

together with clinical variables.  The study found that molecular biomarkers added very 

little to prognostic stratification (16).  Alternatively, a 2008 study using data from the 

tumor bank ovarian cancer network (TOC), successfully used semi-supervised prediction 

methods to validate the ability for TCGA generated ovarian molecular markers to predict 

prognosis independently from clinical variables alone (17).  Having good prognostic 

information for response to standard treatment of platinum and taxane combinations 

would be useful in identifying patients who might respond better to new experimental 

treatments. 

 

As of 2017, the TCGA ovarian cancer dataset includes 608 cases.  Tissue samples were 

resected from newly diagnosed patients prior to any treatment for the disease at tissue 

source sites including: Memorial Sloan-Kettering, Washington University, University of 

Pittsburgh, Mayo Clinic, Duke University, Gynecologic Oncology Group, Cedars-Sinai 

Medical Center, University of California San Francisco, Harvard Medical School, MD 

Anderson Cancer Center, British Columbia Cancer Agency, Fox Chase Cancer Center, 

Imperial College London, International Genomics Consortium, and Roswell Park Cancer 

Institute (18).  Specimen acquisition was standardized and quality control measures were 
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implemented to ensure consistency in collection methods across sites.  Once collected, 

samples were sent to a biospecimen core resource for inspection and storage.  Only about 

half of the samples sent to the biospecimen core resource have passed quality control 

tests for inclusion into the dataset.  Clinical data was collected for each case at the 

respective tissue source site and sent to the biospecimen core resource for electronic data 

entry.  Surgical cytoreduction was recorded as optimal (microscopic or less than or equal 

to 1 cm diameter residual disease) or suboptimal (greater than 1cm or residual disease).  

The TCGA study found that the detection of microscopic residual disease (less than 0.1 

cm) was significantly associated with longer overall survival, as compared to patients 

with optimally debulked disease.  However, there was no statistically significant 

difference found in optimally versus suboptimally debulked disease.  Three platforms 

were used for gene expression measurement in each sample including Agilent, 

AffymetrixHuEx, and Affymetrix U133A. 

 

TXNIP 

The thioredoxin interacting protein (TXNIP) gene encodes for a 391 amino acid protein 

that is named for its ability to bind and mediate thioredoxin (19).  TXNIP has also been 

shown to bind to importin-α, NLRP3, Mybbp1a, Jab1, SMRT-mSin3-HDAC, and 

REDD1 (20–22).  It is known to be upregulated by 1,25-dihyrdoxyvitamin D and is, 

consequently, also known as vitamin D-regulated gene (VDUP-1).  TXNIP protein can be 

found in a variety of intracellular locations including the cytosol, nucleus, and 

mitochondria.  Its localization is deeply connected to oxidative stress (23–25).  
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Functionally, TXNIP is known to be involved oxidative stress response, glucose 

regulation, autophagy, and apoptosis.  Downregulation of TXNIP results in increased 

glucose uptake and increased reliance on glycolysis by triple-negative breast cancer cells.  

Conversely, upregulation of TXNIP has been shown to lead to a significant decrease in 

cellular glucose uptake (26).  The role that TXNIP plays in cancer is complex.  TXNIP is 

currently thought to be a tumor suppressor because higher TXNIP expression has 

correlated with better survival outcomes in breast cancer, hepatocellular carcinoma, 

bladder cancer, and leukemia (27).  And yet, according to a study published in 2015, 

increased expression of TXNIP was significantly correlated with shorter progression free 

survival in a cohort of 70 non-small cell lung cancer patients (28). 

 

Spatial Conceptualization of Tumor Spheroids 

Three-dimensional in vitro tumor models may provide a more accurate representation of 

in vivo cancer biology as compared to traditional two-dimensional cell culture models 

(29–31).  3D systems generate multicellular aggregates (Figure 1), also referred to as 

spheroids or tumorspheres, that provide individual cells with a 3D spatial architecture.  

This 3D architecture is arguably more representative of an in vivo environment as 

compared to a 2D monolayer of cells because in vivo tumors do not grow in monolayers.  

Gene expression profiles of cells in 3D systems have been shown vary considerably from 

the same cell types grown in 2D systems.  Genomic and physical differences lead to 

significant phenotypic differences in drug response and cell survival.  These differences 

can be attributed to the physical architecture that is created by multicellular tumor 
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spheroids.  These models are not a replacement for in vivo models.  One study examined 

the differences between the same cell line grown in 2D, two different 3D models, and in 

mice and found that there were substantial gene expression differences across all models 

(32).  This means that 3D systems are not always more representative than 2D systems.  

All in vitro systems lack some component present in an in vivo system such a 

vascularization or other cell types. 
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Chapter 3: Methods 

 

Study design 

An outline of the study design can be found in Figure 2.  In brief, RNA was isolated from 

spheroids every 6 hours over a 72 hour time course.  Next, samples were frozen and 

shipped in dry ice to University of Chicago for gene expression measurement using 

microarray chips.  Next, genes were clustered based on trends in their temporal 

expression and outlier genes were ranked based on each gene’s Mahalanobis distance 

from its nearest cluster centroid.  A literature review was then conducted to assess 

biological relevance of the gene.  Next, the gene was assessed for prognostic differences 

using the TCGA ovarian cancer dataset.  Next, a shRNA knockdown of the lead outlying 

gene was developed along with a scrambled control.  Finally, the knockdown and control 

cell line were analyzed for differences in growth kinetics using live-cell imaging and 

measurement of protein expression. 

 

Cell culture 

HeyA8 cells were maintained in T-75 flasks at 5% CO2 and 37 Celsius using RPMI 1640 

media supplemented with L-Glutamine (ThremoFischer, cat#11875093), 1% Penicillin-

Streptomycin (ThermoFischer, cat#15070063), and 10% Fetal Bovine Serum 

(ThremoFischer, cat#10438026).  Glucose concentration of cell culture media was 220 
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mg/dL due to RPMI 1640 and Fetal Bovine Serum.  Cells were passaged at 80% 

confluency and were not kept beyond passage 10. 

 

Attachment-independent conditions for protein collection 

Cells were grown in 6 well flat-bottom plates coated with poly-2-hydroxyethyl 

methacrylate, also known as polyHema (Sigma-Aldrich, cat#1920660), after being 

seeded at a cell density of 62,500 cells per cm2.  Glucose concentrations were controlled 

to better represent physiologic ascites conditions.   Three independent glucose conditions 

were used.  The glucose conditions were designated: “full” (220 mg/dL), “half” (110 

mg/dL), and “none” or “no glucose” (less than 20 mg/dL).  The 110 mg/dL glucose 

concentration was obtained by mixing full glucose RPMI 1640 (ThremoFischer, 

cat#11875093) with glucose-free RPMI 1640 (ThremoFischer, cat#111879020). 

 

Attachment-independent conditions for time-lapse imaging 

Cells were grown in 96 well flat bottom plates coated with poly-2-hydroxyethyl 

methacrylate (polyHema) after being seeded at a cell density of 62,500 cells per cm2.  

Glucose concentrations were controlled to better represent physiologic ascites conditions.   

Three independent glucose conditions were used.  The glucose conditions were 

designated: “full” (220 mg/dL), “half” (110 mg/dL), and “none” or “no glucose” (less 

than 20 mg/dL).  The 110 mg/dL glucose concentration was obtained by mixing full 

glucose RPMI 1640 (ThremoFischer, cat#11875093) with glucose-free RPMI 1640 

(ThremoFischer, cat#111879020). 
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mRNA expression time-course using gene microarray 

HeyA8 cells were trypsinized with 0.25% Trypsin-EDTA, counted using a 

hemocytometer, and subsequently seeded in triplicate in polyHema coated 6 well plates.  

Lysates were isolated using a Qiagen RNeasy kit every 6 hours for 72 hours post seeding.  

The quality of RNA samples was checked using a NanoDrop spectrophotometer.  

Samples were analyzed using an Illumina HT-12 platform and later processed with 

GenomeStudio (Illumina). 

 

Gene expression profile analysis 

Gene expression values from the above microarray data were clustered using a Gaussian 

Mixture Model.  After normalizing all timepoints to the time zero gene expression level, 

time variant outlying genes were identified using a Mahalanobis Distance metric.  These 

genes showed the highest deviance from clusters identified using the Gaussian Mixture 

Model. 

 

Immunoblotting 

Cells were seeded in 6 well polyHema coated plates or 6 well standard cell culture flasks, 

depending on what condition was being tested.  Cells were lysed with cold RIPA buffer 

and transferred to 1.5 mL microtubes.  Lysate was kept on ice and vortexed gently 3 

times for 15 seconds.  Lysate was centrifuged at 15,000 RPM for 20 minutes at 4 Celsius.  

The resulting supernatant was saved and stored at -20 Celsius.  After all samples were 

collected, lysates were thawed and protein was quantified using a Direct Detect 
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Spectrometer (EMD Millipore).  Samples were mixed with distilled water and Laemmli 

Sample buffer to obtain 20 µg concentrations.  Next, samples were heated for 5 minutes 

at 100 Celsius.  Samples were loaded into mini-PROTEAN precast gels (Bio-Rad).  Gels 

were run in tris/glycine buffer at 300 volts.  Protein was transferred onto PVDF blots 

using a Trans-Blot Turbo system (Bio-Rad).  Following transfer, the blots were left to dry 

for 45 minutes before blocking with PBS based blocking buffer (Licor).   After blocking 

at room temperature for one hour, blocking solution was removed.  Primary antibodies 

were then added and incubated at 4 Celsius overnight.  After removal of primary 

antibodies, blots were washed with PBS-Tween 0.01% for 5 minutes, 3 times.  Next, 

near-infrared fluorophore secondary antibodies (Licor) corresponding to the primary 

antibody type were added and incubated for 1 hour at room temperature.  Blots were 

imaged dry using an Odyssey CLx near-infrared imaging system.  Brightness and 

contrast of resulting images were adjusted using Image Studio Lite 5.0.  Pixel 

densitometry was performed by, first, normalizing each loading control signal to the first 

lane loading control signal.  Next, the target protein signals for each lane were multiplied 

by the normalized loading control signal for that lane.  Fold-changes between lanes were 

calculated from the resulting values. 

 

shRNA knockdown of TXNIP 

Low-passage HeyA8 cells were grown as adherent cells as described above.  

Transfection-ready TXNIP Human shRNA plasmids with a green fluorescent protein tag 

(Origene, cat#TG308550) were added to HeyA8s by following manufacturer protocol.  
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The best one out of four constructs was used for all experiments.  The best construct was 

selected based on confirmatory western blots to ensure maximum silencing effect.  It is 

referred to as TXNIP-KD, TXNIPKD, and TXNIP knockdown throughout this paper.  A 

control cell line was also generated using a transfection-ready 29-mer scrambled shRNA 

construct encased in a green fluorescent protein vector.  The control cell line is referred to 

as HeyA8 scrambled throughout this paper. 

 

High-content confocal imaging of non-adherent cells 

Low-passage HeyA8 scrambled cells were seeded in several wells of an ultra-low 

attachment 96 well plate (Corning, cat#3474).  Cells were placed in a climate controlled 

chamber (5% CO2 and 37 Celsius) and imaged every 4 hours on DIC and green channels 

using a Nikon A1R Live Cell Imaging Confocal microscope to monitor the spheroid 

formation process.  Tiled images of each z-plane were assembled using Metamorph 

Premier Plus (Molecular Devices).  Z-stacks were assembled using ImageJ (NIH) and 

NIS-Elements (Nikon) to create a three-dimensional image of a single well that could be 

viewed and manipulated using ImageJ (Figure 3). 

 

Time-lapse imaging of adherent cells 

Low-passage HeyA8 scrambled and HeyA8 TXNIP-KD cells were seeded in 96 well 

plates at 4,000 cells per well.  The plates were then transferred to an IncuCyte ZOOM 

live-cell microscope (Essen Bioscience) housed in an incubator.  Cells were maintained 

at 5% CO2 and 37 Celsius.  Phase-contrast and green channel images were taken of each 
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well using a 10x Nikon objective.  Images were tiled and stitched by the IncuCyte ZOOM 

software (version 2015A).  Masking of adherent cells was also done by the IncuCyte 

Zoom software using only the phase-contrast channel.  Green channel images were not 

used due to phase images showing superior masking (Figure 4).  Data was exported to 

Excel 2016 and a graph of percent confluence versus time was generated for the 

scrambled and knockdown cell lines.  An unpaired t-test was conducted using Prism 7.0 

based on the 48 hour time point for each condition to assess differences in mean 

confluency (Table 2). 

 

Whole well time-lapse imaging of non-adherent cells 

Low-passage HeyA8 scrambled and HeyA8 TXNIP-KD cells were seeded in 96 well 

plates at 20,000 cells per well.  The plates were then transferred to an IncuCyte ZOOM 

live-cell microscope (Essen Bioscience) housed in an incubator.  Cells were maintained 

at 5% CO2 and 37 Celsius.  Phase-contrast and green channel images were taken of each 

well using a 4x Nikon objective on whole well mode.  The resulting images were then 

analyzed according to the image analysis workflow presented in Figure 5.  Images were 

tiled and stitched by the IncuCyte ZOOM software (version 2015A).  Analysis and 

masking of non-adherent cells was done using a custom script written for Fiji (33).  Only 

data from the green channel was used in masking and analysis.  Data was exported to 

Excel 2016 and Tableau Desktop for visualization. 

 

 



17 

 

Image analysis for non-adherent conditions 

After acquisition by the IncuCyte Zoom system, images were stored locally on a network 

attached storage device and analyzed using the general workflow presented in Figure 5.  

Tiled images were stitched by IncuCyte Zoom software, if necessary.  Image archives for 

each experiment were exported to an external hard drive as raw 16-bit .TIFF files.  

Approximately 17,493 images were collected in total over 8 independent experiments 

using non-adherent conditions (see Table 1 for a breakdown of the number of images 

captured).  Images were loaded into ImageJ using a custom script (Figure 6) in batches no 

greater than 1,000 images due to performance constraints of the computers being used for 

processing.  We recommend using a computer with at least 8 gigabytes of memory and a 

solid state hard drive when running the ImageJ script.  The batch process loaded “virtual 

stacks” of images instead of loading images directly into RAM.  Frequently, if not 

always, the aggregate size of all images in a batch would far exceed the amount of RAM 

available.  Virtual stacks load images directly from the hard drive instead of from RAM.  

This enables the user to load a greater number of files, with the downside being a 

substantial increase in the time it takes to load images for processing.  However, 

considering that files would need to be loaded from the hard drive into RAM either way, 

the extra time it takes to process a virtual stack is almost irrelevant for batches with an 

aggregate file size greater than the amount of RAM available.  After loading images as a 

virtual stack, thresholding was performed.  Thresholding involves converting each pixel 

into a binary value of 1 or 0.  If a pixel’s original intensity is above the threshold, it is 

marked as a one and therefore represents signal (i.e. belonging to part of a cell).  On the 
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other hand, if the pixel’s original intensity is below the threshold, it is marked as a zero to 

designate it as background (i.e. not belonging to part of a cell).  After thresholding, the 

macro tasks ImageJ with counting all the pixels within an image that are above the 

threshold value.  The macro prompts the user to save the results as an excel file that 

contains aggregate pixel counts for each image, one row per image.  The resulting 

spreadsheet was cleaned and organized so that the data can be normalized.  The following 

column names were generated in the final spreadsheet: originalLabel, totalArea, 

experimentID, wellCode, rowCode, columnCode. timepointHours, glucoseCond, 

cellLine, drugTreatment, throwAwayData, absRef, normalizedDataFormula, 

normalizedDataUseableValues, concatID, and Spheroid/Attached/Reattached.  

Normalization involved running a macro in Excel 2016 designed to assign absolute 

references to the “zero” timepoint for each timepoint associated with a given well.  Each 

time point was then divided by the time zero fluorescence value of its particular well.  

Next, data was imported to Tableau Desktop for data visualization and qualitative 

analysis.  Two experiments were excluded due to inconsistent masking.  Inter-

experimental variability was analyzed qualitatively in Tableau (Figures 7 and 8).  A 

Welch’s t-test was conducted using Prism 7.0 based on the 48 hour time point for each 

cell line grown in half glucose conditions (Table 2). 

 

Survival outcomes analysis using TCGA dataset 

KMPlotter (34) was used to split TCGA ovarian cancer data on median expression of 

TXNIP.  Data was split into early (stage I and II) and late stage (stage III and IV) cohorts.  
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Survival curves were generated using KMPlotter.  Only optimally debulked patients were 

selected for stage III and stage IV patients.   The resulting log-rank p values comparing 

overall survival and progression free survival comparisons were reported.  Hazard ratios 

and hazard ratio confidence intervals were also reported to assess the magnitude of effect.  

Finally, beeswarm plots were generated to assess distributions of transcript expression 

levels (Figure 9). 
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Chapter 4: Results 

 

Identification of TXNIP as a primary gene of interest 

TXNIP emerged as the top outlier in our Gaussian Mixture Model based on its measured 

Mahalanobis distance from its nearest cluster (Figure 10 and 11).  A brief literature 

review of studies mentioning TXNIP revealed several accounts purporting it to be a 

tumor suppressor gene that was potentially mechanistically involved in a process known 

as autophagy.  TXNIP’s role in diabetes has also been studied extensively, which has led 

to the finding that the gene plays a major role in glucose regulation and response to 

oxidative stress.  Based on this information, we decided to create a TXNIP shRNA 

knockdown cell line, in order to assess the gene’s effect on spheroid growth kinetics.  

Successful knockdown of TXNIP and validation of transcriptomic findings were 

confirmed by western blot densitometry (Figure 12). 

 

Characterization of spheroid formation dynamics 

Live-cell confocal microscopy was used to create a three-dimensional image of all 

spheroids within a well (Figure 13).  This was done in order to characterize spheroid 

morphology.  We learned that HeyA8 spheroids frequently formed both ellipsoid and 

spherical clusters.  Spheroid formation typically occurred at 13 hours post-seeding in 

non-adherent conditions.  Spheroids generated in vitro were similar in size and 
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morphology to those found in samples of ovarian cancer patient ascites as previously 

reported by Chen et al (35). 

 

Effect of TXNIP on spheroid proliferation 

We tested HeyA8 scrambled and HeyA8 TXNIP-KD cells’ ability to form spheroids in 

multiple different glucose concentrations.  We found differences in spheroid proliferation 

when comparing the two cell lines (Figure 14).  We believe that this inter-experimental 

variability could be minimized by using a more robust image thresholding algorithm.  

The algorithm that we used treated all images in the time series independently and we 

normalized each time point to the total fluorescence detected at time zero.  This 

normalization procedure was found to be slightly problematic because cells were not 

always evenly dispersed at the time of seeding.  Nonetheless, TXNIP-KD cells appear to 

grow and divide faster than scrambled cells over the first 48 hours in non-adherent 

conditions.  An unpaired, two-tailed Welch’s t-test was performed and the result was 

significant with p<0.05.  Even across glucose conditions, TXNIP-KD spheroids were 

larger by at least 20% (Figure 8). 

 

Effect of TXNIP on growth kinetics in attached conditions 

HeyA8 scrambled and HeyA8 TXNIP-KD cells were grown in standard 96 well flat 

bottomed plates.  A graph of percent confluence versus time was generated for the 

scrambled and knockdown cell lines (Figure 15).  Images were taken every hour for 48 

hours and the resulting data was tested using a two-tailed unpaired t-test for difference in 
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means at the 48 hour timepoint.  The result was significant at p<0.05 (Table 2).  The data 

showed that the scrambled condition had higher confluency at 48 hours than the 

knockdown condition (Figure 14). 

 

Correlation of TXNIP expression levels with survival data from TCGA dataset 

Patients within the TCGA EOC dataset were separated into early and late stage cohorts 

and split on median TXNIP expression level to assess survival differences using Kaplan 

Meier curves (Figure 16).  Progression free survival in early stage disease was 

significantly different for at least one point on the survival curves based on a statistically 

significant log-rank p value of less than 0.05.  The trend in progression free survival 

showed that early stage patients with TXNIP expression values above the median 

performed better.  These patients experienced longer intervals before relapse after the 

completion of primary chemotherapy.  As expected, the PFS findings matched overall 

survival findings.  The early stage patients with higher TXNIP expression levels at the 

time of surgery progressed later and lived longer that early stage patients with lower 

TXNIP expression levels.  Late stage patients with TXNIP expression levels above the 

median exhibited significantly shorter overall survival with a log-rank p value of 0.043.  

In late stage patients, PFS showed a similar trend to overall survival, but that trend was 

not statistically significant. 
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Protein expression of TXNIP is not affected by platinum agent 

Three ovarian cancer cell lines (HeyA8, Ovcar8, Skov3) were subjected to 100 nM 

carboplatin for 48 hours in non-adherent conditions.  A western blot testing for TXNIP 

expression was performed on untreated and treated cells.  The blot showed no significant 

alteration in TXNIP expression between untreated and treated cells of all three cell lines 

after 48 hours (Figure 17). 
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Chapter 5: Discussion 

 

Part of the reason it is so important to research ovarian cancer is the peculiarity of the 

disease itself.  Rather than spreading hematogenously or lymphatically like most cancers, 

ovarian cancer spreads transcoelomically.  After the formation of a primary tumor, it is 

believed that certain populations of cancer cells detach from the original site and float 

into the peritoneal cavity.  Normal cells, upon detachment, would immediately undergo a 

form of pre-programmed cell death termed anoikis.  However, ovarian cancer cells avoid 

this self-regulating biological process and instead often develop into multicellular 

floating spheroids that continue to grow and eventually implant on peritoneal surfaces.  

These implantations invade surface tissue and overwhelm vital organs, disrupting bodily 

processes, leading in most cases to death. 

 

Because of the direct danger associated with spheroids in advanced stage ovarian cancer, 

the study of spheroids in vitro is crucial to the development of better treatment methods.  

In this study, we modeled the spread of ovarian cancer using cells placed in attachment-

free conditions.  The HeyA8 cell line, a high grade serous adenocarcinoma subtype of 

ovarian cancer, formed spheroids when grown in non-adherent conditions.  We used 

longitudinal microarray data generated using HeyA8 cells over the course of 72 hours 

post-detachment to identify genes that were least concordant with clusters.  In doing so, 

TXNIP was identified as the leading outlier.  In order to validate the in vitro relevance of 
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TXNIP we then generated a HeyA8 cell line with TXNIP knocked down by an shRNA 

construct.  We also generated a HeyA8 control cell line using a scrambled vector.  The 

promoters of the TXNIP and scrambled genes were tagged with a gene for green 

fluorescent protein.  This enabled us to perform fluorescence image analysis with an 

adequately high signal-to-noise ratio. 

 

The methods we used for image analysis led to the identification of statistically 

significant differences being found between the TXNIP-KD and scrambled cell line with 

respect to growth kinetics in attached and spheroid form.  We noted trends that appeared 

to show the TXNIP-KD cell line exhibiting greater resistance to anoikis.  This was 

concluded based on the relative size of spheroids at 48 hours post seeding. 

 

The clinical relevance of the gene was further examined by splitting the TCGA ovarian 

cancer dataset into early and late stage cohorts and assessing the survival outcomes as a 

function of TXNIP expression.  The finding that early stage patients with high TXNIP 

levels have longer overall survival is congruent with current literature that purports 

TXNIP to be a tumor suppressor gene.  Interestingly, the late stage cohort was discordant 

with the early stage cohort with respect to which TXNIP category had longer overall 

survival.  We found that later stage patients with higher TXNIP expression values had 

shorter overall survival.  While it is not immediately clear as to why this might have 

occurred, it is worth noting that the differences in survival were relatively small.  The 

TCGA dataset has far more late stage patients than early stage patients, which could have 
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helped late stage patients achieve statistically significant differences even though the 

magnitude of effect was small in comparison to early stage patients. 

 

Finally, protein expression of three well-characterized high grade serous ovarian cancer 

cell lines was evaluated after treatment with 100 nM carboplatin for 48 hours in non-

adherent conditions.  Considering that carboplatin is the first line chemotherapeutic 

treatment for ovarian cancer, it is interesting that it has no effect on TXNIP expression.  

This finding suggests that it is worthwhile to explore modulating TXNIP 

pharmacologically as a potential alternative therapy for platinum-resistant tumors.  

 

Limitations 

There are several limitations present in this study.  First, research into biomarkers is not 

easily integrated into clinical practice.  Second, this study only validates one cell line.  In 

addition, in vitro cell lines are notoriously unrepresentative of current real-world 

manifestations of disease.  Third, the use of in vitro models cannot guarantee successful 

translation of results to in vivo conditions.  Fourth, while the tissue procurement methods 

of the TCGA dataset were standardized, errors and variances in the application of these 

practices are still possible.  Furthermore, to the extent of our knowledge, the TCGA 

collection protocol does not specify whether samples were extracted from primary or 

metastatic sites.  Fifth, microarray data vary greatly across different platforms making 

relative comparisons difficult and sometimes impossible.  To counter this, we validated 

microarray findings using analysis of protein expression through western blots.  Sixth, in 
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order to utilize imaging methods in the analysis of spheroid growth dynamics, several 

limiting factors must be considered: timing of spheroid formation is frequently not 

consistent, modeling 3D growth using a 2D area involves substantial approximation, and 

differences in levels of fluorescence between cell lines occur.  Seventh, the relationship 

between spheroid size and metastatic potential is unstudied.  Finally, although we chose 

to frame our study in 72 hour period, the true relationship between time in vivo and time 

in vitro is unclear. 

 

Conclusion 

With the conclusion of this study, we have successfully described an in vitro model of 

ovarian cancer metastasis and applied bioinformatics methods to identify TXNIP as a 

potential driver of anoikis-resistance in ovarian cancer.  Although we have begun the 

process of validating our findings using in vitro experiments, further refinement of our 

live-cell imaging analysis methodology is necessary to complete the process.  Because 

many of the image analysis tools we used are open source, we hope other researchers will 

continue our endeavor to validate the bioinformatics methods developed in this study.  

We believe that identifying outlying genes as mediators of cancer-specific processes 

holds great promise for the future treatment of patients with ovarian cancer. 

 

Public Health Relevance 

Biomarker identification and validation are key areas to the advancement of public health 

and oncology research.  Further development of techniques used to identify meaningful, 
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clinically relevant biomarkers will lead to better screening and diagnostic tests, more 

accurate prognostic assessments, and improved prediction of response to therapy.  
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Appendix A: Tables and Figures 

Figure 1: Model of peritoneal metastasis 

Illustration of the in vitro model for peritoneal metastasis used in this study. 
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Figure 2: Overview of study design 

A brief overview of the study design. 
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Figure 3: Z-stack generated with confocal microscopy 

Z-stacks of GFP-tagged HeyA8 spheroids obtained using confocal microscopy. 
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Figure 4: Example of pixel masking 

An example of pixel masking performed on attached cells. 
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Figure 5: Image analysis workflow 

Image analysis workflow used to obtain quantitative growth metrics for spheroids. 
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Figure 6: ImageJ macro 

The script used to threshold and quantify images in ImageJ. 
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Figure 7: Inter-experimental variability in non-adherent conditions 

Graph showing inter-experimental variability after the removal of two trials that showed 

inconsistent masking resulting in overly jagged curves that are not biologically 

representative.  The inconsistent masking could have been due to fluctuations in the 

instrument, trouble with auto-focus, or the selection of an inappropriate threshold value. 
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Figure 8: Averages of total spheroid area versus time 

Six dual-axis graphs showing the average of total spheroid area versus time across 

glucose conditions and cell lines.  The left y-axis shows average spheroid area versus 

time, indicated by red lines.  The right y-axis shows relative standard error of the mean 

versus time, indicated by grey lines. 
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Figure 9: Beeswarm plots 

Beeswarm plots showing the distribution of mRNA expression levels within early and 

late stage patients that are members of the TCGA ovarian cancer dataset.  The red 

indicates expression above the median, the black indicates expression below or equal to 

the median expression value. 
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Figure 10: Clustering 

Graph showing TXNIP gene expression relative to the 6 clusters generated using a 

Gaussian Mixtures Model over 12 time points. 
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Figure 11: TXNIP mRNA expression versus time in non-adherent conditions. 

TXNIP mRNA expression versus time in non-adherent conditions. 
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Figure 12: Western blots of knockdown versus control 

A) Western blot of HeyA8 TXNIP knockdown and HeyA8 scrambled control cell lines 

confirming successful knockdown of TXNIP in the knockdown cell line and temporal 

expression of TXNIP at the protein level in the control.  B) Pixel densitometry performed 

on (A) showing 1.79 fold increase in TXNIP expression in the knockdown cell line and 

6.59 fold increase in TXNIP expression in the scrambled cell line.  C) Western blot of 

HeyA8 TXNIP knockdown versus HeyA8 scrambled control cell lines, again, showing 

successful knockdown of TXNIP in the knockdown cell line.  D) Pixel densitometry 

performed on (C) showing 31% reduction in TXNIP expression in the TXNIP 

knockdown cell line under attached conditions and a 52% reduction in TXNIP expression 

in the TXNIP knockdown cell line in non-adherent conditions, as compared to control. 
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Figure 13: Three-dimensional reconstruction of HeyA8 spheroids. 
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Figure 14: Comparisons of knockdown and control at 48 hours 

Left: Bar chart comparing percent confluency at 48 hours between scrambled and TXNIP 

knockdown cell lines grown as monolayers. Right: Bar chart comparing normalized total 

green area at 48 hours between scrambled and TXNIP knockdown cell lines grown under 

non-adherent conditions. 
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Figure 15: Plot of confluency versus time for knockdown and control 

Graph plotting percent confluence over time for scrambled and TXNIP knockdown cell 

lines. 
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Figure 16: Kaplan-Meier plots 

TCGA ovarian cancer dataset survival analysis of early and late stage patients split by 

median TXNIP expression. 
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Figure 17: Western blot showing effect of carboplatin on TXNIP expression 

Western blot for TXNIP in three ovarian cancer cell lines comparing untreated versus 

100 nM carboplatin treated after 48 hours in non-adherent conditions. 
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Table 1: Images acquired per experiment 

Number of images acquired across all non-adherent experiments by experimental 

condition. 
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Table 2: Results of t-tests 

Left: Results of t-tests performed on image data from the 48 hour time point for attached 

conditions.  Right: Results of t-test performed on image data from the 48 hour time point 

for non-adherent conditions. 

 
 

 


