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Abstract 

 

 This research explores deterministic and stochastic policies to help organizations 

make data-driven optimal decisions. The two major application areas identified in this 

research are manufacturing and cyber security. In a recent report published by McKinsey 

Analytics, the manufacturing industry uses only 20%-30% of the potential of data 

analytics. This suggests that there are still plenty of opportunities to use analytics in 

manufacturing processes. In the first part of my research, I formulate an Integer 

Programming model for the “stamping” process in automotive manufacturing. I develop a 

production scheduling method for automotive stamping to maintain optimal inventory 

positions.  

 In stamping, different types of parts are scheduled for processing in the press, 

which requires different die-sets to be mounted on the press. This has all the elements of 

conventional scheduling problems with tardiness objectives and setup costs. Yet, it also 

has capacity constraints and part production constraints. We show that these constraints 

make solution with branch and bound difficult for problem sizes of interest. In this 

research, I use the structure of the scheduling problem and implemented heuristic 

methods like Genetic Algorithm alongside Earliest Due-date (EDD) rules to prioritize 
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production of parts with low inventory as well as minimize the number of die-set 

changeovers. I call this new method Genetic Algorithm with Generalized Earliest Due-

date (GAGEDD). I illustrate the computational advantages compared with alternatives 

and show its benefits using data from a real life automotive stamping press scheduling 

problem to build a decision support tool for the schedulers. 

 The second part of this research is motivated towards improving cyber 

vulnerability maintenance policies under uncertainty. A conservative estimate by McAfee 

in 2014 puts annual cost of cybercrime at US$375B. This is an important contemporary 

issue where role of data analytics and optimization have a lot to offer.  Here I implement 

stochastic optimization procedures for cybersecurity applications, where learning is 

incorporated to account for future rewards. First, I formulate a Partially Observable 

Markov Decision Process (POMDP) model to derive policies for cases when the state of 

compromise of a host is uncertain. This method assumes there is no parametric 

uncertainty. Next, I implement Bayes Adaptive Markov Decision Process model 

(BAMDP) on a dataset obtained from the cyber logs of an organization using finite 

numbers of model scenarios. Earlier BAMDP formulations use infinite model scenarios. I 

also describe the benefits of using finite scenarios including the ability to solve the 

problem optimally as a POMDP. The resulting BAMDP formulation accounts for the 

parametric uncertainty caused by the lack of data for certain events. I use a point based 

value iteration  method known as PERSEUS to solve both of these problems to generate 

𝛼-vectors, that can be used to design optimal policies based on the belief-state of the 

system.  
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Another benefit of using finite numbers of model scenarios relates to decision 

making for multiple identical systems, e.g., a “fleet” of identical Linux computer hosts. 

The issue of identical systems in machine learning has apparently received little attention 

despite the widespread relevance in data analytics. I propose a method for solving 

multiple identical system policy problems. The proposed method is based on a relatively 

large POMDP formulation with methods to compute the relevant transition, expected 

reward, and observation methods being provided. 

Then, I explore additional advantages of finite model scenario BAMDPs relating 

to the ability to incorporate reward-based or other learning in intuitive ways. Also, the 

speed of learning and the concept of “fast learning” and average learning time are 

proposed and explored computationally.  In concluding, I offer suggestions about how 

this research can be extended to build more powerful models with faster learning 

capabilities to help decision makers.  
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Chapter 1: Introduction 

 

 

1.1  Data and Making Decisions 

 The volume of data doubles every 3 years with the rapid growth of computing 

power and advancement in sensor technology (Henke et al 2016). The use of big data and 

analytics can result in competitive advantage through increase of productivity by 5-6% 

over competitors (McAfee, Brynjolfsson, Davenport 2012). To remain competitive, 

organizations feel the necessity to incorporate data and analytics as a core strategic vision 

(Mayhew, Saleh, Williams 2016). To achieve that, machine learning and optimization 

tools need to be made available to decision makers at different levels of the organization. 

Our research is aimed at building such decision support systems for the key decision 

makers in organizations. To understand our motivation, let us briefly review the history 

and the basics of the field of Operations Research.  

 The use of mathematical tools to make strategic decisions started during World 

War II (Hillier, Lieberman 2010) and the field of study became known as “Operations 

Research”. During the war, efficient distribution of scarce resources for military 

operations was of utmost importance and scientists were brought in to help with the 
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problems. Since the techniques proved to be effective in many cases, they found 

applications in different organizations and industries after the war. With time and 

research, the methods evolved and got enriched, and the application areas expanded 

through production planning, inventory management, supply chain, manufacturing, 

service sector, transportation and so on.  

 

1.2  Deterministic and Stochastic Problems 

 The decision problems solved in Operations Research (OR) can be broadly put 

into two categories, i) deterministic and ii) stochastic. In deterministic problems, it is 

assumed that all the parameters are known, and there is no randomness involved. As 

George Box famously quoted that “All models are wrong, but some are useful”, 

deterministic models are much simplified versions of the actual problems that they are 

addressing. For example, in Linear Programming (LP), the most basic model used in 

Operations Research, the objective function and the constraints are assumed to be linear 

with known parameters. That may not be the case however, LP has been used extensively 

to solve large decision problems, and the solutions have helped decision makers to use 

resources more efficiently than before. Even if a solution cannot be implemented exactly 

the way the algorithm suggests, it can still be used as a guide to make better decisions. 

There are many examples of how organizations have saved millions of dollars by 

implementing deterministic OR methods (Hillier, Lieberman 2010), and it is generally 

smarter to leverage these methods than to just use intuitive guesswork. Linear 

Programming, Integer Programming (IP), Dynamic Programming (DP) are some of the 
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key modeling techniques that are extensively used in OR. Deterministic methods are fast 

and can handle large number of variables and constraints. But on the other hand, the 

simplification of the problems makes it difficult to directly implement the solutions to 

real life situations. The trade-off between the complexity and the accuracy of the 

mathematical models is something an operations researcher often needs to consider while 

building a model for a specific problem.  

 In the “stochastic” problem formulations, the decision maker incorporates 

uncertainty involved in certain quantities. For instance, future demand of a commodity is 

not known beforehand at the time of deciding on production, however, a prediction on 

demand can be made using the past data. Certain parameters have inherent randomness in 

them, and taking that into account helps to make more realistic mathematical models of 

the problem. For example, availability of an important equipment on a production line 

can be regarded as a random variable, and taking into consideration a distribution over 

it’s time to failure may help the management to prepare a maintenance schedule. 

Sometimes decision making can be periodic, where a decision maker must choose among 

the available alternatives and then has to wait for the outcome before making the next 

decision on the same process. Stochastic programming (SP) models with recourse are 

developed specifically to solve these problems. Solution procedures for SP are often 

derived using the techniques of LP, especially leveraging the property of duality of LP. 

The other methods of modeling an SP are Approximate Dynamic Programming (Powell, 

2007) and Markov Decision Process (MDP) models (Puterman, 2014) which can be 

solved using Dynamic Programming techniques. Other methods like Monte Carlo 
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simulation are used to understand the dynamics of a stochastic process. More often, 

“approximate methods” and sampling techniques are used for stochastic problems, to 

keep the solution procedure computationally tractable. Once again, there is a tradeoff 

between how much stochasticity should be accounted for so that a reasonable solution 

can be reached in a decent amount of time. 

 

1.3  Relation to This Research 

 In this research, we explore both the deterministic and stochastic domains of OR. 

We have implemented a deterministic model to solve a problem related to automotive 

manufacturing. For the stochastic problem, we have modeled a cyber vulnerability 

maintenance problem using Partially Observable Markov Decision Process (POMDP). 

Moving a step forward, we accounted for the parametric uncertainty in the model and 

implemented Bayes Adaptive MDP for a cyber security problem. It is important to 

understand why we call our methods “Data-driven Policies”. Our goal is to build decision 

support tools, using which the decision maker can take actions based on the available 

data. For the production scheduling and inventory control problem, the decision maker is 

a scheduler, who must schedule the number of different parts to be processed by the 

stamping press looking into the available inventory, demand and storage capacity for 

each part. For the cyber maintenance problem, the decision maker is a network security 

administrator, who has to decide how many work hours or equipment cost to invest at a 

given vulnerability situation. In both of these problems, the tools that we have 

implemented are going to make use of the available data and then suggest an optimal 
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action to the decision maker. Note that there is no “one” solution for the problems, rather 

there could be many solutions based on the present conditions of the systems and the 

decision makers’ knowledge about the systems. That is why we say that our methods 

generate “policies” which the decision makers can use over time. In addition to that, the 

BAMDP model that we have implemented has the capability to learn from the 

interactions with the system. We will discuss more elaborately in chapters 4, 5 and 6.    

Based on our work, we have come up with 4 research questions that we are trying to 

address in this dissertation. We start with a deterministic production scheduling problem, 

connected to automotive manufacturing. This problem is more difficult than many 

classical scheduling problems because of inventory storage constraints and needed 

combinations of parts being made together. The question we are asking is:  

 1. “How  to generate schedules, assuming known demand and production times, 

within reasonable times which will minimize inventory starvation and changeovers with 

storage and part constraints?”  

 The actual automotive problem has some degree of stochasticity in that the 

amounts of production are random because of quality problems and downtimes. Yet, 

because of the number of items being large, stochasticity is assumed to be not 

addressable. Our research explores the viability of standard solvers and branch and 

bound-based solvers used for relatively simple scheduling problems (Smith, 1956, 

Posner, 1985, Monma and Potts, 1989, Wu, Yin, and Cheng, 2011). We also seek 

tocombine meta-heuristic methods like Genetic Algorithm and Earliest Due Date 

heuristic to build decision support tools. Genetic Algorithms (GA) have found 
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applications as optimization tools in numerous fields. Especially, in problems which are 

non-convex and cannot be easily approximated by convex functions, conventional 

gradient based methods are not applicable. GAs randomly search through the domain of 

decision variables to come up with better populations of solution at every subsequent 

generation. The randomized search makes the process less likely to get stuck in local 

optimal solutions. However, for problems with many dimensions, GAs can be 

computationally expensive and may not converge to a good solution in reasonable 

amount of time. In such cases, it is best to leverage the structure of the problem first 

before applying the GA. The research presented in Chapter 2 is an example of how we 

have used the structure of a single machine scheduling problem to design Genetic 

Algorithm Generalized Earliest Due Date (GAGEDD) method which is effective for both 

production and inventory control for an automotive stamping scheduling process. The 

problem is deterministic in the sense that the demand is known for the period of 

scheduling. The method is used to build a decision support tool for the scheduler in 

charge of stamping operations for an automotive manufacturer. Chapter 3 compares the 

solutions of a typical automotive stamping problem using GAGEDD and other methods 

for different inventory scenarios. 

  Our second area of research addresses stochasticity, also large numbers of 

decision-periods, and the possibly that decision makers will learn during the planning 

horizon. Chapter 4 discusses the MDP and its stochastic variants like POMDP and 

BAMDP, which we have used as our solution methods. The area of application we have 

chosen is cyber security which includes many important sources of uncertainty or 
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stochasticity. With growing number of incidents in the cyber world that make headlines, 

cyber security is considered a domestic as well as international security threat with actors 

all around the world potentially launching attacks. Be it the works of rival nations or 

organizations, extortionists or hacktivists, victims of cybercrimes bear huge financial 

losses and loss of information security.  McAfee estimates that cybercrime cost more than 

US$ 400Billion to the global economy every year (McAfee 2014). The same report 

explains that cyber-attacks are cheap with high incentives for the attackers, whereas the 

cost incurred by the defenders is huge. It is a critical business decision on how much an 

organization is willing to spend on cyber security. Even though the techniques used by 

cyber attackers are becoming more sophisticated and varied with time, yet, a lot of these 

attacks exploit known vulnerabilities. 

 To build effective strategies for network administrators to minimize the impact of 

cyber-attacks, we explore various methods derived from MDP. This brings to our next 

research question:  

 2.  “How can we develop cyber maintenance policies when there is uncertainty in 

the state of compromise of a host?” 

  By the phrase “state of compromise”, we mean whether a host is compromised, or 

breached by an attacker or not. A breached host can be exploited and used in a number of 

malicious ways, e.g. stealing information, disrupting control or being used to compromise 

other hosts. In many cases, it is not easy to detect if a host is breached and if left 

undetected, the compromised host can lead to greater financial and/or information losses. 

We build a partially observable Markov Decision Process model and observe how the 
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expected cost and optimal actions vary according to our belief about the state of 

compromise of the system. We make assumptions on the incumbent factors that build the 

transition probabilities and run our analysis for a typical scenario. Our main contribution 

is to identify a number of transition parameters and use them to build a POMDP model to 

derive cyber maintenance policies. These transition parameters can also provide valuable 

insights on how to improve incident logging. With comprehensive incident logging 

integrated with our POMDP decision support tool, more effective cyber maintenance 

systems can be developed.   Chapter 5 explains the procedure elaborately and the optimal 

policies are shown for typical belief states. 

 In the POMDP formulation, we assume that the transition probabilities are 

known. In Chapter 6, we explore methods in which we assume that the transition 

probabilities are not known, and account for parametric uncertainty. Here we have used 

real life data obtained from the network security log of an organization. The transition 

counts from low vulnerability to high vulnerability states are derived using the Common 

Vulnerability Scoring System (CVSS). The available data shows various limitations, such 

as rare occurrence of certain state transitions under certain actions. To address the 

uncertainty due to unavailability of data, and install learning capabilities in the decision 

support system, our third research question is coined as below: 

 3. “With the available data on vulnerability state transitions along with its 

limitations, how can we account for the parametric uncertainty with reasonable 

confidence and make policies?” 
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  We apply Bayes Adaptive Markov Decision Process Models (BAMDP, Duff 

(2002)) to derive cyber vulnerability maintenance policies under parametric uncertainty. 

We generate multiple scenarios from the available data and then create equivalent 

POMDPs to design maintenance policies.  Our BAMDP approach is model based, since 

we start with transition probabilities derived from the collected data.  To account for the 

uncertainty among the models, we generate a finite number of scenarios first, before 

solving the problem using POMDP. Although finite scenario models are faster than 

infinite scenario models, the computational burden increases with the number of 

scenarios. On the other hand, too few scenarios may lead to spurious learning by not 

taking into account a vast array of possibilities. The model effectively thinks that it is 

learning but there is no logical way that learning could happen on transitions other than 

what occurred. Our contribution in this area of research is to address this issue with the 

application of Orthogonal Array based Latin Hypercube (OALH) designs (Tang 1993) 

for sampling of the uncertain parameters to generate the scenarios. We use OALH of 

strength 𝑟, for cases with 𝑟 uncertain parameters. This ensures that the design exploits the 

𝑟-variate uniformity property of a strength 𝑟 Orthogonal Array, and the scenarios 

sampled are free from bias. We seek to derive policies generated by models with different 

number of scenarios and discuss the viability of using finite scenario BAMDP methods 

for cyber maintenance problems.  

 Often decision makers need to take actions to manage not one system, but a fleet 

of systems identical in characteristics, e.g. a number of computers in a lab, a fleet of cars, 
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population of a region and so on. The question that can be posed in relation to this 

decision problem with parametric uncertainty is: 

 4. “How to design efficient models for multiple systems with identical 

characteristics?” 

 To answer this question, we extend our BAMDP based method for multiple 

systems and call it Multiple Identical Systems (MIdS).  Our contribution is to motivate 

the idea of building models for multiple systems with identical characteristics. Decision 

makers can use this method to make policies to manage a whole group of identical 

systems. In section 6.5, we derive formulation for 2-state MIdS,  and we demonstrate the 

method using  a 2-state 2 systems model and derive policies by applying BAMDP. We 

believe MIdS can find extensive application where a large number of systems are 

involved and foster greater learning capability than single system models.  

  

1.4 Summary 

 In this dissertation, we are discussing deterministic and stochastic methods to 

develop policies with applications in automotive manufacturing and cyber vulnerability 

maintenance. This introductory Chapter aims at providing a context on how we make 

decisions in our everyday life and provides a brief introduction on practice of using 

numerical methods to make big decisions. We have also identified four fundamental 

research questions that we are going to address in this dissertation.  
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Chapter 2: A Genetic Algorithm with an Earliest Due Date Encoding for Scheduling 

Automotive Stamping Operations 

 

 

2.1 Introduction 

 Sheet metal stamping is an essential element of modern day manufacturing 

processes and is known for its high production rates and low labor costs (Lim, Venugopal 

and Ulsoy, 2014). The market for metal stamping is expected to exceed US$180B by 

2022 (Grandview Research, 2015). This metal forming process finds extensive use in the 

automotive industry as well as in the production of commodities ranging from furniture 

to aircraft fuselage. In automotive manufacturing, stamping operations are often 

responsible for supplying many different part types to different downstream facilities 

(Barlatt, Cohn, Gusikhin, Fradkin, Davidson and Batey 2012). Rigorous production 

scheduling and workforce planning are needed to run the operations in the most efficient 

manner. The stamping scheduling problem considered here contains multiple elements 

related to part demand, stamping dies, and part storage. The elements include: 
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1. Part inventory/tardiness: To ensure that the line downstream does not starve as the 

result of insufficient inventory, known demand for every part type should be 

considered. 

2. Setups: Die-set changeovers should be limited to reduce personnel costs and injury 

incidents.  

3. Die-set constraints: Stamping dies must be mounted on the stamping press so that 

one or more part types can be produced simultaneously. 

4. Inventory constraints: Limited storage space for the parts produced must be taken 

into account. 

 For cases with due date or “tardiness” objectives and conventional setup costs 

(setups that delay production completions), it has long been known that earliest due date 

(EDD) scheduling is optimal for parts that are not tardy in the context of many problem 

formulations (Smith, 1956, Posner, 1985, Monma and Potts, 1989, Wu, Yin, and Cheng, 

2011). Therefore, it is reasonable to expect that EDD ordering of jobs may be desirable 

for stamping scheduling as long as the inventory level is high enough so that lateness is 

not an issue. However, if the inventory level is relatively low, the EDD schedules do not 

always provide good solutions. The focus here is to generate methods applicable to a 

variety of inventory conditions.  

 Many scheduling problems with setups and the general weighted tardiness 

scheduling problem are known to be NP-hard (Graham, Lawler, Lenstra and Kan 1979, 

Morton, 1993 and Posner, 2011; Ben Hadj-Alouane and Bean, 1997; Norman and Bean, 

1997). NP-hard problems relate to formulations in which it may not be possible to find a 
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verifiably optimal solution in a reasonable amount of time depending on the numbers of 

variables. The challenge of NP-hard problems together with additional complications 

motivates the development of novel heuristics (Jerald, Asokan, Prabaharan, and 

Saravanan, 2005; Zegordi, Abadi, and Nia, 2010; Rahman, Sarker and Essam 2015; 

Celebi, 2015). All of these authors considered NP-hard scheduling formulation but none 

addressed stamping related die set and inventory constraints.  

 Several authors have addressed scheduling for automotive stamping with die set 

constraints. Barlatt, Cohn, Fradkin, Gusikhin and Morford (2009) proposed models based 

on composite variables to derive solutions for production planning problems without 

inventory constraints, using an automotive stamping facility scheduling example. Barlatt, 

Cohn and Guiskhin (2010) developed a “test and prune” algorithm for shift selection and 

task sequencing relating to stampings. Barlatt, Cohn, Gusikhin, Fradkin, Davidson and 

Batey (2012) investigated the stamping plant scheduling at the Ford Motor Company 

involving labor and die set constraints but no inventory constraints. Gencosman, 

Ozmutlu, Ozkan and Begen (2014) used mixed integer programming and constraint 

programming methods to address parallel stamping scheduling problems with die set 

constraints but also did not include inventory constraints.  

 Our case study features a large stamping press which attempts to consistently 

satisfy the demand of a downstream welding line. Prior to our project, the scheduling for 

the stamping press was performed manually. The data used here in the study derive from 

typical 110-hour and 50-hour operation planning windows for the plant. The operators in 
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charge of scheduling the press admitted difficulty in simultaneously addressing the 

starvation avoidance, inventory constraints, and setup reduction objectives.  

 This Chapter is organized as follows. In Section 2.2, we present the assumptions 

and the key elements of the problem along with a mathematical programming 

formulation. In Section 2.3, alternative methods from the literature including branch and 

bound, earliest due date (EDD) scheduling, and genetic algorithm are described. In 

Section 2.4, rigorous results are also provided for problem instances in which the 

methods based on generalized EDD scheduling will produce optimal schedules. In 

Section 2.5, a heuristic which combines genetic algorithm and earliest due date 

scheduling is proposed.  

 

2.2 Problem Definition 

 Scheduling problems in the literature are often expressed in terms of jobs with 

processing times, completion times, due dates, and setup times. In our problem, we have 

significant inventory storage constraints for each part type.  Therefore, it is more 

convenient to formulate our problem in terms of inventory positions at various times for 

each part. We assume that the demand is known for the entire scheduling period and 

initial inventory levels for all part types are given. We also assume that each part type has 

a limit on the number that can be produced in a single period.  

 In automotive stamping, different types of parts are produced by the same 

stamping die or “die-set” mounted on the press. Multiple related parts within the same 

die-set can be produced at the same time, which we call a “subfamily” of parts. One die-
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set can accommodate at least one or more subfamilies. Switching from one subfamily to 

another within the same die-set is easy and does not affect the production, whereas 

switching from a subfamily in one die-set to a subfamily in another die-set, requires a 

significant investment in personnel time. At the same time, while the operation of 

switching dies is labor intensive, almost all of the labor can be done off-line while the 

press is running. This explains why we assume zero delay from a changeover.  

 The produced parts are stored in baskets or racks, based on their types. For 

example, part 1 from die-set 1 and part 22 from die-set 5 might have a similar shape and 

be stored in the same type of rack. Basket availability for a particular set of parts (based 

on their shapes) restricts how much of that part can be produced. When there is demand, 

baskets become available based on the rate at which the parts are consumed by the 

process downstream. We assume the basket capacities are given. 

 

2.2.1 The Objective Function 

 The primary objective is to minimize the number of starved periods. If there is 

insufficient inventory for a particular part, it signifies that the downstream line would 

lose production. This starvation concern is similar to the classical tardiness objective 

considered in the literature (Monma and Potts 1989).  

 Because the changeover of die-sets is labor-consuming, a lower number of die-set 

changeovers is desirable. Therefore, our objective is to minimize the weighted sum of 

starved periods and the number of changeovers. The integer programming formulation 

presented next includes the features discussed above. 
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2.2.2  The Mathematical Model 

 We use the following notation for the problem parameters and variables. 

Parameters: 

𝑁: Total number of part types 

𝐷: Total number of die-sets 

𝐾: Total number of baskets 

𝑇: Total time period 

𝐹: Total number of subfamilies 

𝐿𝑓𝑑: Binary, 1 if subfamily 𝑓 is in die-set 𝑑, 0 otherwise where 𝑓 ∈ {1. . . 𝐹}, 𝑑 ∈ {1. . . 𝐷} 

𝑆𝑖𝑓: Binary, 1 if part 𝑖 is in subfamily 𝑓, 0 otherwise where 𝑖 ∈ {1. . . 𝑁}, 𝑓 ∈ {1. . . 𝐹} 

𝐵𝑘𝑖: Binary element, 1 if part 𝑖 goes to basket 𝑘, otherwise 0 where 𝑖 ∈ {1. . . 𝑁},  

       𝑘 ∈ {1. . . 𝐾} 

𝛽𝑘
𝑖𝑛𝑖𝑡: Initial space availability in basket 𝑘 ∈ {1. . . 𝐾} 

𝐼𝑖
𝑖𝑛𝑖𝑡: Initial inventory of part 𝑖 ∈ {1. . . 𝑁} 

𝛽𝑘
𝑚𝑎𝑥: Capacity of basket 𝑘 ∈ {1. . . 𝐾} 

𝑄𝑖𝑡 : Demand of part 𝑖 at time 𝑡, where  𝑖 ∈ {1. . . 𝑁} and 𝑡 ∈ {1. . . 𝑇}  

𝑀 : A sufficiently large number 

𝐶𝑐 : Cost of changeover of die-set 

𝐶𝑠 : Cost of starvation at each period 

𝜑𝑖 : Maximum production of part 𝑖 in 1 hour 
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𝜒𝑖,𝑑 : Nominal hours of production of part 𝑖 and die set d   𝑖 ∈ {1. . . 𝑁} and 𝑑 ∈

{1. . . 𝐷} (used in the solution methods) 

 

Variables: 

𝜃𝑖𝑡 : Binary, 1 to select part 𝑖 for production at time 𝑡, otherwise 0, where 𝑖 ∈ {1. . . 𝑁} 

and            𝑡 ∈ {1. . . 𝑇} 

𝑥𝑓𝑡 : Binary, 1 to select subfamily 𝑓 for production at time 𝑡, otherwise 0, where 

    𝑓 ∈ {1. . . 𝐹} and 𝑡 ∈ {1. . . 𝑇} 

𝐼𝑖𝑡 : Integer, inventory of part 𝑖 at time 𝑡, where  𝑖 ∈ {1. . . 𝑁} and 𝑡 ∈ {0. . . 𝑇}  

𝐺𝑖𝑡 : Integer, production quantity of part 𝑖 at time 𝑡, where  𝑖 ∈ {1. . . 𝑁} and  

        𝑡 ∈ {1. . . 𝑇}  

𝛽𝑘𝑡 : Integer, basket space in basket 𝑘 at time 𝑡, where  𝑘 ∈ {1. . . 𝐾} and 𝑡 ∈ {0. . . 𝑇} 

𝑦𝑑𝑡 : Binary, 1 to select die-set 𝑑 for production at time 𝑡, otherwise 0, 𝑑 ∈ {1. . . 𝐷}, 

        and  𝑡 ∈ {1. . . 𝑇} 

𝑊𝑖𝑡 : Binary, 1 if 𝐼𝑖𝑡 ≤ 0, otherwise 0, 𝑖 ∈ {1. . . 𝑁} and  𝑡 ∈ {1. . . 𝑇} 

𝑧𝑑𝑡 : Binary, 1 if there is a changeover at period 𝑡 for die-set 𝑑, otherwise 0,  

        𝑑 ∈ {1. . . 𝐷} and 𝑡 ∈ {1. . . 𝑇} 

 

Based on the above assumptions, we developed the following integer programming 

model for the problem: 

  Minimize 𝑍 =  𝐶𝑠 ∑ ∑ 𝑊𝑖𝑡 
𝑇
𝑡=1

𝑁
𝑖=1 + 𝐶𝑐 ∑ ∑ 𝑧𝑑𝑡

𝑇
𝑡=1

𝐷
𝑑=1    (1) 
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Subject to:  

𝐺𝑖𝑡 ≤ 𝜑𝑖 ∑ 𝜃𝑖𝑡
𝑁
𝑖=1  ∀𝑖 ∈ {1. . . 𝑁}, 𝑡 ∈ {1. . . 𝑇}  (Production amount constraints)                   

(2) 

𝐺𝑖𝑡 ≤ (∑ 𝐵𝑘𝑖
𝐾
𝑘=1 )𝛽𝑘𝑡 ∀𝑖 ∈ {1. . . 𝑁},  𝑡 ∈ {1. . . 𝑇} 

𝐺𝑖𝑡 ≥ 0 , 𝐺𝑖𝑡 ∈ ℤ
+ 

 

∑ 𝑦𝑑𝑡𝑑∈𝐷 = 1 ∀𝑡 ∈ {1. . . 𝑇} (Die-set constraint)             (3)  

 

∑ 𝑥𝑓𝑡𝑓∈{1..𝐹]  ≤ 1  ∀𝑡 ∈ {1. . . 𝑇} (Subfamily constraints)           (4) 

𝑥𝑓𝑡 ≤ (∑ 𝐿𝑓𝑑
𝐷
𝑑=1 )𝑦𝑑𝑡 ∀ 𝑡 ∈ {1. . . 𝑇} 

      

𝜃𝑖𝑡 ≤ (∑ 𝑆𝑖𝑓
𝐹
𝑓=1 )𝑥𝑓𝑡 ∀ 𝑡 ∈ {1. . . 𝑇} (Part constraint)                                        (5) 

𝑥𝑓𝑡 ∈ {0,1},   𝑦𝑑𝑡 ∈ {0,1}  

 

𝐼𝑖𝑡 = 𝐼𝑖 𝑡−1 + 𝐺𝑖𝑡 − 𝑄𝑖𝑡 ∀𝑖 ∈ {1, . . 𝑁}, 𝑡 ∈ {1. . . 𝑇}  (Inventory constraints)         (6) 

𝐼𝑖𝑡 ≤ 𝑀(1 −𝑊𝑖𝑡) ∀𝑖 ∈ {1. . . 𝑁}, 𝑡 ∈ {1. . . 𝑇} 

𝐼𝑖𝑡 ≥ −𝑀𝑊𝑖𝑡 + 1 ∀𝑖 ∈ {1. . . 𝑁}, 𝑡 ∈ {1. . . 𝑇} 

𝐼𝑖0 = 𝐼𝑖
𝑖𝑛𝑖𝑡 ∀𝑖 ∈ {1. . . 𝑁}    

𝑊𝑖𝑡 ∈ {0,1} ∀𝑖 ∈ {1. . . 𝑁}, 𝑡 ∈ {1. . . 𝑇} 

𝐼𝑖𝑡 ∈ ℤ  ∀𝑖 ∈ {1. . . 𝑁}, 𝑡 ∈ {1. . . 𝑇} 
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𝑧𝑑𝑡 ≥ (𝑦𝑑 𝑡+1 − 𝑦𝑑𝑡)  ∀ 𝑑 ∈ {1. . . 𝐷}, 𝑡 ∈ {1. . . 𝑇 − 1} (Changeover constraints)        (7) 

𝑧𝑑𝑡 ≤ 𝑦𝑑 𝑡+1∀ 𝑑 ∈ {1. . . 𝐷}, 𝑡 ∈ {1. . . 𝑇 − 1}  

𝑧𝑑𝑡 ≤ 1 − 𝑦𝑑𝑡∀ 𝑑 ∈ {1. . . 𝐷}, 𝑡 ∈ {1. . . 𝑇 − 1}  

𝑧𝑑𝑡 ∈ {0,1}  

 

𝛽𝑘𝑡 = 𝛽𝑘𝑡−1 + (∑ 𝐵𝑘𝑖)𝑄𝑖𝑡
𝑁
𝑖=1 − (∑ 𝐵𝑘𝑖)𝐺𝑖𝑡

𝑁
𝑖=1 ∀ 𝑘 ∈ {1. . . 𝐾}, 𝑡 ∈ {1. . . 𝑇} (Basket  

 constraints)                  (8)           

𝛽𝑘0 = 𝛽𝑘
𝑖𝑛𝑖𝑡 ∀𝑘 ∈ {1. . . 𝐾} 

𝛽𝑘𝑡 ≤ 𝛽𝑘
𝑚𝑎𝑥𝑘 ∈ {1. . . 𝐾}, 𝑡 ∈ {1. . . 𝑇}    

 

The objective in Equation (1) balances starvation and setup labor costs. Constraint set 

(2) guarantees that the production amount of each part at every period is less than the 

minimum of the maximum allowable limit and the available storage space. Constraint (3) 

suggests that only one die-set can be chosen at each period. The constraint set (4) 

signifies that at most one subfamily can be selected at any given period and that 

subfamily has to be from the die-set in operation at that period.  

Equation (5) guarantees that the part in production is chosen from the subfamily 

already selected. Constraint set (6) connects the production amount, part demand and part 

inventory. It also counts the number of starved periods (periods for which 𝐼𝑖𝑡 ≤ 0 ). 

Constraint set (7) provides a way to count the number of die-set changeovers. The 

relation among basket space availability, production amount and the demand of each part 

is shown in constraint set (8).  
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2.3 Alternative Solution Methods 

 In this section, we describe four alternative methods for solving the integer 

program in Equations (1) through (8). These are branch and bound, an earliest due date 

heuristic, and two types of genetic algorithms. 

 

2.3.1 Branch and Bound 

 The integer program in Section 2.2 can be solved using branch and bound, e.g., 

Pochet and Wolsey (2006). The branch and bound algorithm starts with the solution of 

the linear relaxation of the initial model. The linear program obtained from the relaxation 

is easy to solve, but may render fractional optimal values for integer variables. In that 

case, the solution of the linear relaxation works as a lower bound of the original 

formulation.  

 The original feasible region is then partitioned and the algorithm proceeds by 

solving the linear relaxations of these branches. Any solution in which the relaxed integer 

variables have integer values is feasible to the original problem, and its objective function 

value provides an upper bound of the optimal objective function value. With complete 

enumeration, the final solution provided by the algorithm is exact, but if the enumeration 

is truncated, it provides an approximate solution. In the latter case, duality gap is used to 

measure the quality of the solution.   
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 The running time of this algorithm depends on the size of the problem as well as 

the formulation. Commercially available software products like CPLEX pre-solve the 

initial model to obtain an improved initial lower bound. CPLEX also add custom 

constraints or “cuts” automatically for faster enumeration. In the case study described in 

Chapter 3, we implemented branch and bound using IBM ILOG CPLEX 12.6.2 on a i7-

3770S CPU 3.10Ghz, with 8.00GB of memory.  

 

2.3.2  Generalized Earliest Due Date Methods 

 In earliest due date (EDD) scheduling, parts with the earliest due dates are 

produced first (Smith, 1956). In our problem, the due dates are the periods in which the 

inventory would become zero or negative such that the downstream department would be 

starved.  

 

2.3.2.1 Urgent Demand Scores 

 To address these complications, we propose a “generalized earliest due date” 

(GEDD) method. This method assigns continuous urgency scores relating to the due 

dates of both the subfamilies and the die-sets. Consider that each subfamily and die-set is, 

in general, composed of r part types. For each part type i, there is a number of periods, ti, 

until the inventory would become zero or negative assuming there is no additional 

production. We use parentheses to indicate the ordered numbers of periods from lowest to 
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highest in the relevant set: t(1),t(2),… The “urgent demand score” (UDS) associated with 

either the subfamily or die-set is: 

                                 𝑈𝐷𝑆 = 𝑡(1) + 𝑠
𝑡1+⋯+𝑡𝑟

𝑟
 .                    (9) 

where s is a small number, e.g., 0.001 used in our numerical examples.  For example, 

consider a subfamily containing two parts and the inventory positions in Table 1. Then, t1 

= 7, t2 = 5, t(1) = 5, and t(2) = 7 and the UDS = 5.006. For parts with no demand within the 

horizon, T, we assume ti = 2T.  

 

Table 2.1 Example of part UDS and Die-set UDS 

 7am 8am 9am 10am 11am 12am 1pm 

Part 1 

Inventory 
1200 800 800 400 200 100 -100 

Part 2 

Inventory 
900 600 300 100 -100 -200 -400 
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2.3.2.2  The GEDD Heuristic 

 The generalized earliest due date (GEDD) method has steps as follows. 

 

 Step 1: Start the time period at 𝑡 = 1.  

 Step 2: Select the die-set with minimum UDS for production. The duration is given 

by  𝑞𝛿𝑑 where 𝑞 is an integer multiple for the given nominal hours 𝛿𝑑 of operation 

with the die-set 𝑑.  

      Step 3: Select the subfamily 𝑓 with minimum UDS value within the selected die-set 

𝑑.  

      Step 4: The production amount 𝐺𝑖𝑡 for each part 𝑖 in the selected subfamily 𝑓 is the 

minimum of the hourly rate of production 𝜑𝑖 of the part and the available basket 

space 𝛽𝑖𝑡, hence 𝐺𝑖𝑡 = min (𝛽𝑖𝑡, 𝜑𝑖). Update the UDS for each part, subfamily, and 

die-set. 

      Step 5: Steps 3-4 are repeated for the duration of 𝛿𝑑 or until the final period is 

reached. If it is reached, stop. Otherwise, set 𝑡 = 𝑡 + 𝛿𝑑 and go to Step 2. 

 

GEDD Heuristic 

 

2.3.3  A Random Keys Elitist Genetic Algorithm with Bernoulli Cross-Overs 

 Meta-heuristics are general purpose optimization methods relevant to many 

problem types. Genetic algorithms (GAs) are meta-heuristics that have, in recent years, 

been widely adopted for solving scheduling problems (Bean, 1994; Husbands, 1994; 

Norman and Bean, 1997; Allahverdi, Ng, Cheng and Kovalyov 2006). Alternative types 

of genetic algorithms have been proposed such as gendered methods for scheduling 

problems (Zegordi, Abadi, and Nia, 2010). Because Equations (1)-(8) define a multiple 

choice integer program, we select the multiple choice genetic algorithm in Ben Hadj-

Alouane and Bean (1997) for our comparison. In particular, set (3) and (4) contain two 

types of multiple choice constraints (on die-set and subfamily selections). The Ben Hadj-

Alouane and Bean (1997) method is reviewed next to facilitate our comparison.  
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2.3.3.1  Overall Framework 

 The Ben Hadj-Alouane and Bean (1997) algorithm starts with initializing a 

population of “chromosomes” or candidate solutions which are essentially vectors with 

each element as uniform (0,1) random numbers. Each chromosome is then mapped to the 

decision variable values and the objective function is evaluated. The algorithm then 

proceeds from one generation to the next by copying over the top 𝑁𝑒 solutions. Then, 

Bernoulli crossover and tournament selection are used to create 𝑁𝑐 solutions in the next 

iteration.  

 Bernoulli crossover involves selecting two solutions randomly (equal 

probabilities) in the current solution. Then, two new solutions are created by Bernoulli 

trial for each element in the vectors with probability, 𝑝𝐵. In our examples, we use 

𝑝𝐵 = 0.8. The tournament then picks the superior of the two created solutions and places 

it into the next generation. Finally, the remaining solutions are generated using uniform 

(0,1) random numbers (immigrants). The details of the steps are as follows: 

 

 

Step 1: (Initialize) Create the first population using random numbers, #generation=1. 

      While {#generation ≤ total number of generations} 

Step 2:   Loop Over every chromosome in the population 

        Map the population to schedule and evaluate the objective function. 

      End Loop   

Step 3:     Sort the population based on objective function value. 

Step 4:     Copy the top 𝑁𝑒 chromosomes to next generation. 

Step 5:     Perform Bernoulli crossover to generate 𝑁𝑐 solutions in the next generation. 

Step 6:     Generate 𝑁𝑝 − 𝑁𝑒 − 𝑁𝑐 solutions randomly (immigrants). 

      End While 

 

Algorithm: GA 
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2.3.3.2  Initialization  

 The initial population is created with chromosomes of length 3𝑇, where 𝑇 is the 

number of periods. Each element (allele) of the chromosome vector is a uniformly 

distributed random number between 0 and 1.  

 

2.3.3.3  Solution Mapping Overview 

 The proposed methods differ only in the “mapping” which is the translation of a 

generic vector to a stamping schedule. Mapping procedures transform candidate solutions 

which are vectors of numbers between zero and one into solutions to the scheduling 

problems. This can be critical to the success of the derived schedules (Bean, 1994; 

Norman and Bean, 1997). For the purposes of comparison, we consider two mapping 

approaches. The first is described here and the second uses earliest due date order which 

is the basis for the proposed genetic algorithm with generalized earliest due date 

(GAGEDD) method described in the next section.  

 The first mapping uses the first number in the chromosome, 𝑎(1), to multiple-

choice select the die-set number. With 𝐷 die-sets, the Ben Hadj-Alouane and Bean (1997) 

selection is ⌊𝐷𝑎(1) + 1⌋, where ⌊𝑖⌋ is the floor operation. For example, with 𝐷 = 5 die-

sets, 𝑎(1) = 0.01 would select the first die-set, since 𝑎(1) <
1

5
. 

 Then, the next allele selects the duration that this die-set is used. We discuss the 

details of the duration selection below. The third allele selects the first part subfamily 

within the selected die-set. This is similar to the die-set multiple choice selection. This 

procedure is repeated until the die-set duration is reached. An example is given in the 
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next section. Then, the next die-set is selected and the procedure is repeated until all T 

periods in the planning horizon are specified. The remaining portions of the chromosome 

play no role in the schedule construction. 

2.3.3.4  Mapping of Durations 

 In the selection of the durations for die set d, we seek to leverage expert 

knowledge of the stamping operations process and the nominal number of  production 

hours for a given part j which is given as 𝜒𝑗,𝑑. Assume that the maximum of the nominals 

for all the associated parts (the set 𝐿𝑑) is 

 𝜌(𝑑) = [max𝑗∈𝐿𝑑 𝜒𝑗,𝑑]. So for allele i and die-set d, the duration, 𝜏𝑑, is: 

𝜏𝑑 =

{
 

 
2           𝑓𝑜𝑟 0 ≤ 𝑎(𝑖) ≤ 0.2

 𝜌(𝑑)       𝑓𝑜𝑟 0.2 < 𝑎(𝑖) ≤ 0.5
⌊1.5 𝜌(𝑑)⌋ 𝑓𝑜𝑟 0.5 < 𝑎(𝑖) ≤ 0.75

2 𝜌(𝑑)     𝑓𝑜𝑟 0.75 < 𝑎(𝑖) ≤ 1

 .                                     (10) 

 The subsequent 𝜏𝑑 elements of the chromosomes will be used to determine which 

subfamily of the die-set will be produced for each of the 𝜏𝑑 hours. For example, assume 

that there are 5 die-sets, and the first die-set has 2 subfamilies. The nominal hours of 

production for the first die-set is  𝜌(1) = 4. In this example, the chromosome fragment in 

the top vector of Fig. 1, is mapped to a partial schedule shown in the bottom vector. The 

chromosome fragment is encoded in the following way. Die-set 1 is the selected die-set, 

which would be mounted for 4 hours. For the next 4 periods (hours), subfamilies 1 and 2 

would be selected for production in the order shown (2, 1, 1, 2). This procedure is 

repeated until the number of periods of scheduling is covered. Expert knowledge is used 

to limit the duration options, e.g., die-sets are almost never mounted for fewer than two 
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periods or more than twice the nominal. Investigating a wider variety of durations is a 

topic for future research. 

 

Figure 2.1 Illustration of the first mapping of die sets in parts in a genetic algorithm. 

 

2.3.3.5  Evaluation of Objective Function 

 The objective function in Equation (1) is the weighted sum of the number of 

starved periods and the number of changeovers. The associated costs are 𝐶𝑠 and 𝐶𝑐 

respectively. In our numerical studies, we weighted the two counts approximately at 10:7 

for all the methods (Branch & Bound, GA, GEDD and GAGEDD in Chapter 3). The 

weights or relative costs are decided based on expert opinion on stamping operations, and 

they are kept the same in the objective functions for all the solution methods so that the 

methods can be compared with one another.  This effectively gives higher weight to 

starvation since every part could, hypothetically, cause starvation in multiple periods.  
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2.4 Rigorous Results 

 The following results are extensions of the results in Monma and Potts (1989). 

The first result relates to the ordering of parts within die-sets or “die-set fragments” in 

optimal schedules. 

Theorem 1. For the objective in Equation (1), there exists an optimal schedule, in which 

the die-set fragments containing no tardy jobs are ordered according to the non-

decreasing order of their respective die-set UDS values.  

Proof. Let us assume there is an optimal schedule in which the die-set fragments are not 

ordered in the non-decreasing order of UDS.  Without loss of generality let us assume 

that die-set 𝑖 and 𝑖 + 1 are ordered such that 𝑈𝐷𝑆𝑖 > 𝑈𝐷𝑆𝑖+1. If the order of these 

two die-sets is inter-changed such that (𝑖 + 1)𝑡ℎ   
die-set becomes the 𝑖𝑡ℎ die-set and 

vice-versa, then the parts with higher urgency are not produced any later than they 

already were in the original schedule. Also the number of die-set changeovers 

remains the same. Hence ordering the die-set fragments according to their non-

decreasing UDS value will also be optimal. 

 

The second result points to the ordering of subfamilies within die-set fragments in the 

optimal schedule. 

 

Theorem 2. For the objective in Equation (1), there exists an optimal schedule in which 

within the die-set fragments, the subfamilies containing no tardy jobs are ordered 

according to the non-decreasing order of their respective UDS values. 
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Proof. Let us assume there is an optimal schedule in which subfamilies in a die-set 

fragment are not ordered in the non-decreasing order of UDS. Without loss of 

generality let us assume that subfamilies 𝑖 and 𝑖 + 1 are ordered such that 𝑈𝐷𝑆𝑖 >

𝑈𝐷𝑆𝑖+1. If the order of these two subfamilies are inter-changed such that (𝑖 + 1)𝑡ℎ  

subfamily becomes the 𝑖𝑡ℎ subfamily for production within the selected die-set 

fragment and vice-versa, then the parts with higher urgency are not produced any 

later than they already were in the original schedule. Since the orderings of 

subfamilies are changed within individual die-sets, the number of die-set changeovers 

remains the same. Hence the ordering of the subfamilies within a die-set fragment 

according to their non-decreasing UDS value will also be optimal. 

These results do not establish the optimality of GEDD schedules for stamping 

operations scheduling and are irrelevant for jobs that cause starvation in the optimal 

schedules. Yet, consider an optimal solution to the problem in Equations (1)-(8). The two 

results do apply to the jobs in that optimal schedule which never have any negative 

inventories over the horizon. For these jobs, the schedule will resemble, subjectively, a 

schedule that the GEDD heuristic generates for some value of 𝑞, e.g., 𝑞 = 2. This implies 

that the associated subfamilies will follow UDS ordering and the die-set fragments will 

also have UDS ordering. Only the durations for the die-set fragments may differ between 

the optimal solution and the GEDD-generated schedule. 
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2.5 Genetic Algorithm Generalized Earliest Due Date Method (GAGEDD) 

 The proposed method combines GEDD heuristic with genetic algorithm resulting 

in Genetic Algorithm Generalized Earliest Due Date (GAGEDD). This method uses a 

different random key mapping based on the GEDD structure to generate solutions that 

follow the UDS ordering of die-sets and part families. In a manner similar to the first 

mapping (described in Sections 2.3.3 and 2.3.4), this mapping procedure alternatively 

selects the die-set and the duration. Here 𝑎(𝑖) refers to the 𝑖𝑡ℎ element of the 

chromosome vector and 𝑖 = 1…2𝑇. The subfamily is chosen by the minimum UDS 

given in Equation (9). We use 𝒟 to denote the set of die-sets.  

 The mapping which generates the “genetic algorithm generalized earliest due 

date” (GAGEDD) method is detailed below. This approach of generating a schedule is 

similar to the GEDD method. The difference is that for values greater than 𝛾 the genetic 

algorithm will override the GEDD and select a die-set according to the probability 

determined by the allele value instead of selecting the die-set with the lowest UDS value.  
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Initialize 𝑖 = 1 (the selected allele) and 𝑡 = 1 (the period). 

While {𝑡 ≤ 𝑇} 
Select die-set selection (𝑑) using. 

  If {𝑎(𝑖) ≤ 𝛾} Then, 𝑑 = argmin𝑑∈𝒟 𝑈𝐷𝑆𝑑. 

  Else  𝑑 = ⌊𝐷
𝑎(𝑖)−γ

(1−𝛾)
+ 1⌋. 

  𝑖 = 𝑖 + 1. 

Select the duration (𝜏𝑑) using Equation (10), 𝑘 = 1, and 𝑖 = 𝑖 + 1. 

 While {𝑘 ≤ 𝑑} 
  Select the subfamily with minimum 𝑈𝐷𝑆 value within the selected die-set.  

  Select the production amount 𝐺𝑖𝑡 = min (𝛽𝑖𝑡, 𝜑𝑖) and 𝑡 = 𝑡 + 1. 

 End While   

End While 

 

Algorithm GAGEDD 

 

2.6 Summary 

  In this Chapter we have modeled an automotive stamping scheduling problem as 

an integer program. Then we have described a method to use random key genetic 

algorithm (GA) to solve this problem. We have also identified a way to account for the 

complications created by the die-sets and subfamilies in the stamping problem. Since it is 

a production scheduling problem, the problem structure is compatible with the earliest 

due-date (EDD) heuristic, and we have developed a generalized earliest due-date 

(GEDD) for the problem. Next we have introduced a hybrid method GAGEDD, which 

uses the GEDD heuristic optimized by the GA so that the overall cost is minimized. In 

the next chapter, we will compare the results generated by different methods on an 

instance of the automotive stamping problem. 
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Chapter 3: An Automotive Stamping Case Study 

 

 

3.1 Case Study Results 

 In this chapter, we have implemented the methods described in the previous 

chapter, to schedule production of a stamping press of an automotive manufacturing 

plant. There are 49 different parts to produce, in 23 different die-sets, 36 subfamilies and 

the storage consists of 14 different types of baskets. To compare the results of the 

different solution methods, we have varied two factors of the problem, the number of 

periods and the initial inventory. The number of periods is varied at two levels, 50 and 

110. The initial inventory is varied at three levels, 25, 50 and 75% of the total demand of 

the parts. The data for demand, die-set, subfamily and basket have been directly taken 

from a typical workday scenario of the manufacturing plant. 

 Table 3.1 shows a replicated full factorial computational experiment. It includes 

the outcomes of 6 different methods when applied to the scenarios of the case study. The 

two main outputs are the number of starved periods and the number of die-set 

changeovers. These are compared along with the corresponding runtime of the methods. 
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The best solutions in terms of the overall objective function value are shown in the bold 

font. The first method, B&B, is a conventional branch and bound algorithm, implemented 

in CPLEX version 12.6.2 using the mathematical model described in Section 2.2. 

Admittedly, there are many ways to implement the model and more efficient 

implementations may exist. Yet, for both 50 and 110 period scenarios, the runtime for our 

best implementation exceeded 50,000 seconds. So we restricted the runtime to 10,000 

and 20,000 seconds for 50 and 110 period scenarios respectively.  Table 2 shows the best 

value at the cutoff time. 

 Next, the GEDD heuristic is used with 𝑞 = 1. This means die-sets are mounted on 

the press for the specified nominal periods designated for each die-set by the plant 

operators. The same heuristic is repeated with 𝑞 = 2, allowing the die-sets to be mounted 

for twice the specified number of nominal periods. Both B&B and GEDD heuristic are 

deterministic. The genetic algorithm (GA) method of Ben Hadj-Alouane and Bean (1997) 

and GAGEDD have inherent randomness which explains why 10 replications are run for 

each of the scenarios. . The average values from 10 replications are shown with the 

standard deviations in parentheses. 
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Table 3.1 Comparison of alternative solution methods for six scheduling problems with 

49 parts.  

 

(%) 

Initial 
(N) Time B&B

 
GEDD GEDD Ben-Alouane GAGEDD B&B

2 
 

 

Invent

ory 
Periods 

 
(q=1) (q=2) & Bean (GA) ( = 1,= 0.75)   

 
25 50 

511.00 

(0.00) 

907.00 

(0.00) 

1058.00 

(0.00) 

870.70 

(33.69) 

632.10 

(17.79) 

533.00 

(0.00) 
 

# Starved 50 50 
86.00 

(0.00) 

333.00 

(0.00) 

887.00 

(0.00) 

435.90 

(29.15) 

136.70 

(21.68) 

282.00 

(0.00) 
 

Periods 75 50 
0.00 

(0.00) 

57.00 

(0.00) 

163.00 

(0.00) 

100.80 

(15.02) 

0.50 

(0.81) 

2.00 

(0.00) 
 

Average 25 110 
603.00 

(0.00) 

840.00 

(0.00) 

1068.00 

(0.00) 

947.30 

(56.29) 
442.10 

(29.91) 

4321.00 

(0.00) 
 

(SD) 50 110 
0.00 

(0.00) 

1327.00 

(0.00) 

1514.00 

(0.00) 

151.80 

(50.18) 

11.60 

(9.09) 

2937.00 

(0.00) 
 

 
75 110 

0.00 

(0.00) 

0.00 

(0.00) 

3.00 

(0.00) 

1.00 

(2.19) 
0.00 

(0.00) 

0.00 

(0.00) 
 

 
25 50 

36.00 

(0.00) 

27.00 

(0.00) 

21.00 

(0.00) 

17.70 

(1.42) 

28.70 

(1.49) 

41.00 

(0.00) 
 

# 50 50 
39.00 

(0.00) 

26.00 

(0.00) 

8.00 

(0.00) 

19.20 

(1.47) 

35.50 

(2.77) 

47.00 

(0.00) 
 

Changeovers 75 50 
23.00 

(0.00) 

28.00 

(0.00) 

21.00 

(0.00) 

20.00 

(0.89) 

26.20 

(0.60) 

25.00 

(0.00) 
 

Average 25 110 
80.00 

(0.00) 

37.00 

(0.00) 

30.00 

(0.00) 

30.80 

(2.52) 
58.10 

(3.39) 

5.00 

(0.00) 
 

(SD) 50 110 
36.00 

(0.00) 

24.00 

(0.00) 

12.00 

(0.00) 

31.40 

(1.62) 

44.30 

(3.41) 

4.00 

(0.00) 
 

 
75 110 

24.00 

(0.00) 

29.00 

(0.00) 

27.00 

(0.00) 

26.80 

(1.89) 
24.00 

(0.00) 

40.00 

(0.00) 
 

 
25 50 >10,000 

1.00 

(0.00) 

2.00 

(0.00) 

1,233.70 

(14.91) 

477.50 

(6.17) 

500.00 

(0.00) 
 

Run 50 50 >10,000 
2.00 

(0.00) 

1.00 

(0.00) 

1,224.70 

(20.51) 

486.90 

(9.58) 

500.00 

(0.00) 
 

Time (sec) 75 50 >10,000 
2.00 

(0.00) 

2.00 

(0.00) 

1,236.40 

(14.30) 

465.10 

(4.91) 

500.00 

(0.00) 
 

Average 25 110 >20,000 
4.00 

(0.00) 

3.00 

(0.00) 

3,537.40 

(38.46) 

1,247.90 

(9.12) 

1200.00 

(0.00) 
 

(SD) 50 110 >20,000 
2.00 

(0.00) 

2.00 

(0.00) 

3,643.40 

(44.34) 

1,204.00 

(9.35) 

1200.00 

(0.00) 
 

 
75 110 >20,000 

2.00 

(0.00) 

2.00 

(0.00) 

3,769.70 

(12.43) 

1,025.20 

(9.34) 

1200.00 

(0.00) 
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 The GAGEDD is run with parameters 𝛼 = 1 and  𝛾 = 0.75 . The number of 

generations for GAGEDD is set to 200 and population size is set to 200. As shown in 

Table 3.1, GAGEDD results into fewer starved periods than both the GA and the GEDD 

heuristics.  GAGEDD also takes significantly less time than GA, for both 50-period and 

110-period problems. The branch and bound (B&B) method provides the best solutions 

in terms of number of starved periods and overall objective function values for 4 out of 6 

cases and ties with GAGEDD in the case with 75% initial inventory and 110 periods. But 

execution times for B&B
 
are much longer than GAGEDD, which could be prohibitive for 

real applications. To compare GAGEDD and branch and bound methods under time 

restrictions, we ran the branch and bound for 500 seconds for 50 period cases and 1200 

seconds for 110 period cases. The results are shown in the last column (B&B
2
) of Table 

2. Apparently GAGEDD outperforms B&B
2 

for all the cases except for the case of 25% 

initial inventory and 50 period.  

 Figure 3.1 shows the rate of reduction in objective function value with respect to 

number of iterations for GA and GAGEDD in 110 period scenarios with 25%, 50% and 

75% initial inventory.  
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(a) 

 

(b) 

 

(c) 

Figure 3.1 Change in objective function value with number of generations in GAGEDD 

and GA with initial inventory 25% (a), 50%, (b) and 75(%) of total demand over 110 

period (c). 
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As the result of the prioritization step, the GAGEDD starts with a much smaller objective 

function value, and the value remains lower than that generated by GA through the 

designated number of iterations. The GA, GEDD and GAGEDD are coded in Visual 

Basic for Application on MS Excel 2010, and run on the same machine as mention in 

Section 2.3.1.   

 

3.2 Analysis of Case Study Results 

 Analysis of Variance for all three responses shows that all the main effects and 

interactions are significant with p-values less than 0.001. This is to be expected since 

only the genetic algorithm methods are associated with randomness. Therefore, virtually 

all visible differences in the interaction plots are associated with statistical significance. 

 To observe the effects of different controlling parameters, interaction plots are generated 

from the full factorial design of Table 3.1. The number of starved periods and number of 

changeovers are chosen as response variables. Figure. 3.2 shows the interaction among 

the factors (initial inventory, number of periods and solution methods) with the response 

variable as the number of starved periods.  

 From the plot in the top left corner, it is apparent that the lowest number of 

starvations occurs when the initial inventory is 75% of the total demand, and also with 

the B&B method and with GAGEDD. There is little interaction between the methods and 

the number of periods as shown in the bottom left plot. The branch and bound method 

provides the best solutions for both 50 and 110 period problems, whereas GAGEDD 

provides the best solution only for the 110 period problems. The bottom right plot shows 
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there is marginal interaction between initial inventory and number of periods. The best 

solutions predominantly occur when the initial inventory is 75% of the projected demand.  

 

Figure 3.2 Interaction plot with number of starved periods as responses. 

 

 

Figure 3.2 shows the interaction plots for the same factors with the response variable 

being the number of changeovers. From the top left plot, it is evident that for this 

response, there is strong interaction between the initial inventory and methods. This 

occurs because GEDD performs well (probably optimally, see Section 3.1) when there is 

ample inventory.  

Note that the GEDD 2 heuristic provides the best solutions in terms of number of 

changeovers. However, GEDD 2 also generates solutions with high numbers of starved 

periods. This is due to the fact that the ordering is only optimal assuming when there are 
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no starved periods. As a result, for cases with starvation the overall solution quality is not 

as good as branch and bound or GAGEDD.  

 

 

Figure 3.3 Interaction plots with number of changeovers as response. 

 

From both Table 3.1 and figures 3.3-4, it is obvious that the best solutions are 

provided by B&B and GAGEDD. The B&B method provides the bests results in terms of 

the number of starved periods and overall objective function value (except in the case 

with 25% initial inventory and 110 periods), but it may not be a practical choice since the 

runtimes for branch and bound are above 10,000 seconds. Upon restricting the execution 

time to 500 seconds for 50 period cases and 1200 seconds for 110 period cases, branch 

and bound (B&B
2
) shows inferior performance than GAGEDD in 5 out of 6 cases as 

shown in Table 3.1. Table 3.2 shows the number of objective function enumerations for 

B&B
2  

is much higher than that of GAGEDD. 
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Table 3.2 Comparison of number of objective function enumerations for branch and 

bound and GAGEDD. 

(%) Initial 

Inventory 

(N) Time 

Periods 

 

B&B 

 

 

B&B
2 

 

GAGEDD 

25 50 28,427,089 1,285,128 40,000 

50 50 29,310,372 1,248,696 40,000 

75 50 44,416,486 2,112,701 40,000 

25 110 22,041,129 332,778 40,000 

50 110 26,487,990 3,580,581 40,000 

75 110 34,376,425 3,841,485 40,000 

 

 

3.3 Discussion 

 In this study, we consider a single machine manufacturing scheduling problem 

with known demand data motivated by automotive stamping operations. Different parts 

are to be processed by the machine and there are constraints related to the arrangements 

of parts and subfamily of parts within die-sets. For the real-world case study, we seek 

methods that generate acceptable solutions within reasonable amount of time (e.g. 20 

minutes or 1200 seconds for 110 period cases). The aim is to provide the stamping 

schedulers with a decision support system that they can use every morning to plan the 

production for the day(s) ahead. They should also have enough time for reruns whenever 

necessary.  

 We compare four methods using a full factorial computational experiment. 

Relating to speed, a simple heuristic based on earliest due dates dominates. Yet, solution 



41 

 

quality was poor for cases of interest in which the available inventory amounts cause 

some level of starvation. Also, it is understandable that CPLEX and the integer solver 

eventually obtain the exact optimal solution since our objective is linear and zero duality 

gap is possible. The generic genetic algorithm that we studied provided acceptable 

solutions in some cases but was computationally slow. Our comparison of the 

computation costs for branch and bound and the generic genetic algorithms suggests that 

the proposed GAGEDD heuristic better fits the real-world requirements. The GAGEDD 

methods is the only method to consistently achieve near optimal solutions in twenty or 

fewer minutes which is practically needed by the schedulers in the stamping company. 

Moreover, it is possible to increase the number of generations and populations easily if 

more time can be spent to get better solutions during the time of scheduling.  

 There are a number of opportunities for future research. Manufacturing processes 

such as forging, die-casting, and injection molding share at least some of the 

characteristics with metal stamping process (Groover, 2011) described in this article. All 

of these processes include expensive dies with changeover costs and inventory 

constraints for finished parts. Therefore, while the specific formulation addressed here 

relates to automotive stamping operations, we believe our method offers the possibility of 

extensions and additional applications.  

 The methods can also be extended to explore similar problems with stochastic 

demand. It may be interesting to broaden the scope of optimization by involving 

purchasing decisions relating to baskets and inventory storage. By studying the 

scheduling problems, some useful reductions or increases in capacity might be identified. 
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Operations like automotive stamping have complicated part family interrelationships, 

setup cost structures, and inventory constraints. It is unlikely, perhaps that all the 

machines and sub-lines in a complex organization can be scheduled successfully in a 

fully centralized way. Yet, it may be advisable to explore a range of centralization levels. 

The elements of the formulation presented here can be extended to multi-line, multiple 

organization scheduling problems.  

 It is not entirely appropriate to compare the execution times for the two methods, 

since branch and bound is implemented in CPLEX and GAGEDD is coded in VBA 

which is generally associated with inefficient computation. Yet, Table 3.2 shows the 

number of times the objective functions are enumerated for each of the experiments. For 

GAGEDD, both the generation size and population size are limited to 200, limiting the 

number of enumerations to 40,000. Some computational effort is spent for mapping of 

the chromosomes for each of these enumerations. On the other hand, in case of branch 

and bound methods, the number of enumerations ranges from 22 million to over 44 

million for B&B and from 0.3 million to over 3.8 million for B&B
2
, with a linear 

programming problem being solved in each iteration. This shows that the computational 

cost for branch and bound is much higher than GAGEDD.  

 

 

 

 



43 

 

 

 

 

 

Chapter 4: Review of Markov Decision Process and Variants 

 

 

4.1  Introduction 

 In everyday life, we make a sequence of decisions which are associated with 

either costs or rewards. Our objectives are commonly to minimize the expected cost or 

maximize the expected rewards over an extended period of time. In some cases, the 

rewards are manifested at a later point of time, while the action incurs some immediate 

cost. We base our judgements on our knowledge of the particular situation, and the 

chances of earning the rewards. This procedure can be modeled as a Markov Decision 

Process (MDP) (Puterman, 2014). In this chapter, we review the Markov Decision 

Processes (MDPs)and their extension to more uncertain domains. Uncertainty sources 

can include not knowing which transitions will occur, the state of the system, or the 

parameters accurately. We also review Partially Observable Markov Decision Process 

(POMDP) where there is uncertainty about the state of the system, and a point based 

solution procedure PERSEUS (Spaan, Vlassis 2005) to solve POMDP models. We then 

discuss Bayes Adaptive Markov Decision Processes (BAMDPs) which take into account 

the uncertainty in parameters. We reviewed the background of BAMDP and 
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reinforcement learning methods to put it in context to our solution approaches for cyber 

vulnerability maintenance problems described in chapters 5 and 6. 

  

4.2  Markov Decision Processes 

 In sequential decision problems, decisions are made at certain time epochs. The 

assumption is that the system retains the Markovian property, i.e. the state of the system 

at the present time epoch is only dependent on the state and the action taken at the 

previous epoch. The possibility of transitioning from one state to another can be 

quantified using transition probabilities.  Let us suppose that the system has 𝑁 states, 

𝑠1, . . , 𝑠𝑁, and there are 𝑈 possible actions 𝑎1, . . , 𝑎𝑈 that can be taken at each epoch. The 

probability of transitioning from state 𝑖 to state 𝑗 upon taking action 𝑎 is  𝑝𝑖𝑗
𝑎 , where 

𝑖 = 1, . . , 𝑁, 𝑗 = 1, . . , 𝑁, 𝑎 = 1, . . , 𝑈. Let 𝑆 be the set of all states and 𝐴 be the set of all 

actions. If 𝑟𝑖𝑗
𝑎 is the reward for transitioning from state 𝑖 to state 𝑗 upon taking action 𝑎 

then the expected reward at some epoch 𝑡 will be being in state 𝑖 and taking action 𝑎 will 

be 𝑟𝑡(𝑖, 𝑎) = ∑ 𝑝𝑖𝑗
𝑎 𝑟𝑖𝑗

𝑎𝑁
𝑗=1 .  

 In MDP a policy 𝑎|𝑖 suggests the action 𝑎 should be taken at state 𝑖. Denote the 

random system states as Y1,…,Y∞. The objective function for this problem is the 

expected sum of the discounted rewards: 

   max𝜋(1),…,𝜋(𝑠) E𝑌1,…𝑌∞ [∑ 𝛾𝑖(𝑟𝑌𝑖−1𝑌𝑖
𝜋(𝑌𝑖−1) + 𝜖)∞

𝑖=1 ]             (1) 

where 𝜖 is a random reward generally taken with mean zero on top of the expected 

rewards, 𝑟𝑖𝑗
𝑎.  
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The optimal value function at epoch 𝑡 is given by the Bellman equation 

𝑉𝑡
∗(𝑖) = max𝑎 ∑ 𝑝𝑖𝑗

𝑎 (𝑟𝑖𝑗
𝑎 + 𝛾𝑁

𝑗=1 𝑉𝑡−1
∗ (𝑗)) for all 𝑖 = 1, . . , 𝑁.    (2) 

In the above equation, 0 < 𝛾 ≤ 1 is a discount factor.  

 MDPs can be solved using value iteration and policy iteration algorithms 

(Puterman 2014). We review these because they share elements with the more general 

alogirthms that we describe later. In value iteration (Bellman 1957), the algorithm loops 

through the states, updating the value of the states using the Bellman equation. The 

method finally converges to an optimal value, the associated policy becoming the optimal 

policy.  

 

Initialize 𝑉(𝑠) arbitrarily 

∆= 0  

While {∆< 𝜎} 
 For each 𝑠 ∈ 𝑆 

  𝑣 = 𝑉(𝑠) 
  For each  𝑎 ∀ 𝑖 ∈ 𝐴  

   𝑄(𝑠, 𝑎) = ∑ 𝑝(𝑠, 𝑎, 𝑠𝑘)𝑘 (𝑅(𝑠, 𝑎, 𝑠𝑘) + 𝛾𝑉(𝑠𝑘)) 
            End for 

   𝑉(𝑠) = max𝑗 𝑄(𝑠, 𝑎)  

      ∆= max (∆, |𝑣 − 𝑉(𝑠)|)      
 End for 

End While 
 

Algorithm: Value iteration 

 

 In policy iteration (Howard 1960), policies are generated randomly, which are 

then evaluated and improved to converge to a final optimal policy. Let 𝜋(𝑠), 𝑠 ∈ 𝑆 be the 

policy which is for ordinary MDP, action 𝑎(𝑠) ∈ 𝐴  to be taken at state 𝑠. The value of a 
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policy 𝜋(𝑠) is given by 𝑉𝜋(𝑠). The steps of the policy iteration algorithm are shown 

below (Otterlo, Wiering 2012). 

 

Initialize  𝑉(𝑠) ∈ 𝑅, 𝜋(𝑠) ∈ 𝐴 ∀ 𝑠 ∈ 𝑆 arbitrarily 

Evaluate Policy (𝑠) : 
∆= 0  

While {∆< 𝜎} 
 For each 𝑠 ∈ 𝑆 

  𝑣 = 𝑉𝜋(𝑠) 
            𝑉(𝑠) = ∑ 𝑝(𝑠, 𝜋(𝑠), 𝑠𝑘)𝑘 (𝑅(𝑠, 𝜋(𝑠), 𝑠𝑘) + 𝛾𝑉(𝑠𝑘)) 
            ∆= max (∆, |𝑣 − 𝑉(𝑠𝑖)|)      
 End for 

End While 

Improve Policy: 

policy.stable=true 

For each 𝑠 ∈ 𝑆 

  𝜇 = 𝜋(𝑠) 
           𝜋′(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 ∑ 𝑝(𝑠, 𝑎, 𝑠𝑘)𝑘 (𝑅(𝑠, 𝑎, 𝑠𝑘) + 𝛾𝑉(𝑠𝑘)) 
            If (𝑠) ≠ 𝜋′(𝑠) : policy.stable = false 

End for 

If policy.stable: STOP ; Else Goto Evaluate Policy 

 

Algorithm: Policy Iteration 

 

 In the policy improvement step, the best action is greedily selected based on the 

value function. The optimal policy is reached when the policy cannot be improved any 

further. The policy iteration generates a series of alternating policies and value functions, 

and for MDPs with finite state and action spaces, it converges in finite time.  

 

4.3  Partially Observable Markov Decision Process 

 When there is uncertainty about system state, the problem becomes a Partially 

Observable Markov Decision Process (POMDP). A probability distribution 𝑏(𝑖) gives the 
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probability of being in state 𝑖, which is called the belief state. In POMDP, instead of 

directly observing the system state, the decision maker observes an output 𝑜 ∈ 𝑂, with a 

probability 𝑝𝑗𝑜
𝑎  if the new state is 𝑗 ∈ {1, . . , 𝑁} (Smallwood and Sondik 1973). A reward 

𝑟𝑖𝑗𝑜
𝑎  is accrued if the system transitions from state 𝑖 to state 𝑗 upon taking action 𝑎 and 

observing output 𝑜. Smallwood and Sondik (1973) assume that this reward is not directly 

observable. The belief state is updated after each transition, and the updated probability 

of being in state 𝑗 is given by:  

     𝑏𝑗
′ =

∑ 𝑏𝑖𝑝𝑖𝑗
𝑎𝑝𝑗𝑜

𝑎
𝑖

∑ 𝑏𝑖𝑝𝑖𝑗
𝑎𝑝𝑗𝑜

𝑎
𝑖,𝑗

   ∀ 𝑗 = 1, . . , 𝑁            (3) 

 The above expression can also be written in vector form as 𝑏′ = 𝑝(𝑏|𝑎, 𝑜). The 

denominator is the normalizing constant, which is also conditional probability of 

observing output 𝑜, given action 𝑎 and belief state 𝑏 and hence can be summarized as 

𝑝(𝑜|𝑎, 𝑏).  The optimal value function in relation to the problem in equation (1) in 

POMDP is given by 

   𝑉𝑡
∗(𝑏) = max𝑎 ∑ ∑ 𝑝𝑖𝑗

𝑎𝑁
𝑗=1

𝑁
𝑖=1 ∑ 𝑝𝑗𝑜

𝑎
𝑜 {𝑟𝑖𝑗𝑜

𝑎 + 𝑉𝑡−1
∗ 𝑝(𝑏|𝑎, 𝑜)}   (4) 

Smallwood and Sondik (1973) show that the optimal value function 𝑉𝑡
∗(𝑏) is piecewise 

linear and convex. This property is used to parameterize the value function by a set of 

vectors (𝛼 vectors). Hence the optimal value function can be represented as  

       𝑉𝑡
∗(𝑏) = max𝑘 ∑ 𝛼𝑡

𝑘(𝑠)𝑏(𝑠)𝑠      (5) 

for a set of vectors 𝛼𝑡
𝑘 = {𝛼𝑡

1, 𝛼𝑡
2, . . }.  

 Effective solution methods for POMDPs to derive the optimal “alpha vectors” in 

equalition (5) has remained an active area of research for quite a long time. Monahan 
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(1982) reviews some of the earlier models and solution methods for POMDPs. 

Smallwood and Sondik (1973) propose an algorithm for finite horizon POMDP policies. 

This algorithm generates the set of alpha vectors  𝜗(𝑡)  at time 𝑡 from 𝜗(𝑡 − 1) which is 

the set at time 𝑡 − 1. Linear inequalities are identified to represent the belief space and 

the optimal solution. They also propose a linear programming algorithm to identify 

tighter constraints for the belief space, to make the overall algorithm computationally 

efficient. White (1980) extends this algorithm with the help of known structural 

properties of certain classes of POMDPs, resulting in a more efficient solution method. 

Sondik (1978) develops a policy iteration algorithm for infinite horizon discounted cost 

POMDPs. The idea of finitely-transient policies are applied here, such that the associated 

infinite horizon discounted value function become piecewise linear. Then solutions can 

be derived using the same procedure as given in Smallwood and Sondik (1973). 

 Algorithms described above construct an approximate value function with the 

alpha vectors (𝑉𝑡
∗(𝑏) = max𝑘 ∑ 𝛼𝑡

𝑘(𝑠)𝑏(𝑠)𝑠 ) and sequentially improve the value function 

by including new vectors to the set of alpha vectors 𝜗𝑡.  The central idea behind these 

methods is that any vector 𝛼𝑡 generated from the set 𝜗𝑡−1 at a belief state 𝑏 will be added 

to 𝜗𝑡 only if  𝑉𝑡(𝑏) = 𝑉𝑡
∗(𝑏). The algorithms’ task is to find a belief-point 𝑏 for which 

this relation does not hold, or to prove that such a belief-point does not exist. Cassandra, 

Kaelbling and Littman (1994) propose the Witness Algorithm for efficient execution of 

this task. This algorithm creates a linear program that returns a belief-point which is 

“witness” to the occurrence of 𝑉𝑡(𝑏) = 𝑉𝑡
∗(𝑏). This witness point is then used to 

determine a new vector to be added to 𝜗𝑡 
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 The linear programming based algorithms may prove to be computationally 

expensive and difficult to implement for large problems and infinite horizons. The 

practical circumstances, often the system never transitions to a large section of the belief 

space, hence the reachable belief space is comparatively much smaller. New methods 

such as Point Based Value Iteration (PBVI) have been developed considering only the 

reachable belief simplex. PBVI (Pineau, Gordon, Thrun, 2003) is an approximate method 

which selects a small set of belief-points and tracks the values and the derivative of these 

points. The process of exploring stochastic trajectories reduces the number of belief-

points and generates good solution for large problems in reasonable time. “PERSEUS” is 

one such PBVI developed by Spaan and Vlassis (2005). It is a randomized point based 

value iteration algorithm which operates on a large set of belief-points sampled through 

the interactions between the agent and the environment. The algorithm generates and 

updates the set of non-optimal alpha vectors (“backup” stages) through iterations and 

ensures that at each backup stage, the value of each point in the belief set is improved or 

stays the same. The advantage of this algorithm is that a single backup operation may 

improve the values of many points, thereby speeding up the solution process for large 

problems. We have used PERSEUS in the next chapter to solve our POMDP formulation 

of the cyber vulnerability maintenance problem in the next chapter.  

 We derive the formulation of the backup stage for PERSEUS below. Let us 

suppose that the reward 𝑟(𝑠, 𝑎) only depends on the destination state 𝑠′ ∈ 𝑆 and action 

𝑎 ∈ 𝐴.  From stage 𝑡 of the value iteration and a discount factor 𝛾, the value of stage 

𝑡 + 1 is derived by (using (1), and (2) ): 
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𝑉𝑡+1(𝑏) = max𝑎[∑ 𝑏(𝑠′)𝑟(𝑠′, 𝑎) + 𝛾 ∑ 𝑝(𝑜|𝑎, 𝑏)𝑉𝑡(𝑏
′)𝑜𝑠′ ]  

              = max𝑎[∑ 𝑏(𝑠′)𝑟(𝑠′, 𝑎) + 𝛾 ∑ max {𝑔𝑎,𝑜𝑘 } ∑ 𝑏(𝑠′)𝑔𝑎,𝑜
𝑘 (𝑠′)𝑠′  𝑜𝑠′ ]                 (6) 

where 𝑔𝑎,𝑜
𝑘 (𝑠) = ∑ 𝑝𝑠′𝑜

𝑎
𝑠′ 𝑝𝑠𝑠′

𝑎 𝛼𝑡
𝑘(𝑠′). 

The backup vector at belief-point 𝑏 is given by 

  𝑏𝑎𝑐𝑘𝑢𝑝(𝑏) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑔𝑎𝑏 ∑ 𝑏(𝑠)𝑔𝑎
𝑏(𝑠)𝑠  where       (7) 

  𝑔𝑎
𝑏(𝑠) = 𝑟(𝑠, 𝑎) + 𝛾 ∑ 𝑎𝑟𝑔𝑚𝑎𝑥𝑔𝑎,𝑜𝑘 ∑ 𝑏(𝑠′)𝑔𝑎,𝑜

𝑘 (𝑠′)𝑠′𝑜     .    (8)  

The steps of the PERSEUS algorithm are given below. 

 

Generate Belief-points Generate a set of reachable belief-points 𝑩 by random walk. 

Initialize Set 𝜗𝑡+1 = ∅, �̂� = 𝑩.  

Sample Belief-point 𝑏 from  �̂� uniformly at random. 

Backup Calculate 𝛼 = 𝑏𝑎𝑐𝑘𝑢𝑝(𝑏). 
Update If ∑ 𝛼(𝑠)𝑏(𝑠)𝑠 > 𝑉𝑡(𝑏) 
 include 𝛼 to 𝜗𝑡+1, else include �̅� = 𝑎𝑟𝑔𝑚𝑎𝑥𝛼𝑡𝑘

∑ 𝛼𝑡
𝑘(𝑠)𝑏(𝑠)𝑠 . 

Filter Update �̂� with unimproved points �̂� = {𝑏 ∈ 𝑩, 𝑉𝑡+1(𝑏) < 𝑉𝑡(𝑏)}. 
Check If �̂� is empty, STOP else go to Sample 

 

Algorithm: PERSEUS 

 

 The random walk in the first step can be considered as a sample of interaction 

between the agent and the environment. A small number of alpha vectors can improve 

𝑉𝑡(𝑏), for all the belief-points 𝑏 ∈ 𝑩. PERSEUS randomly samples a single belief-point 𝑏 

from �̂�, generates an alpha vector 𝛼 = 𝑏𝑎𝑐𝑘𝑢𝑝(𝑏) for this point and then checks adds the 

alpha vector to the set 𝜗𝑡+1 if ∑ 𝛼(𝑠)𝑏(𝑠)𝑠 > 𝑉𝑡(𝑏). The value of 𝑉𝑡+1(𝑏) is updated with 

the new alpha vector and usually, many other belief-points are improved with a single 

backup operation. The steps are repeated as long as all the points in �̂� are not improved. 
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4.4 Bellman Error 

 Shani, Brafman, Shimoni (2006) discusses the idea of Bellman error, which is the 

improvement in value that can be gained from an update of belief-state from 𝑏. The 

Bellman error for an update to a new belief-state 𝑏′ is given by 

𝑒(𝑏) = max𝑎[∑ 𝑏(𝑠′)𝑟(𝑠′, 𝑎) + 𝛾 ∑ 𝑝(𝑜|𝑎, 𝑏)𝑉(𝑏′)𝑜𝑠′ ] − 𝑉(𝑏)                     (9) 

where 𝑉(𝑏) is defined in equation (5). In the PVI algorithm proposed by Shani, Brafman, 

Shimoni (2006), the belief-states are updated in the order of decreasing Bellman error. 

We have used a similar idea to check the quality of solution generated by PERSEUS. We 

call this criteria 𝑅𝑀𝑆𝐸𝐵𝑒𝑙𝑙𝑚𝑎𝑛, which is given by the square root of the mean of the sum 

of square errors over all the belief-points in 𝐵. To derive the expression of 𝐸𝐵𝑒𝑙𝑙𝑚𝑎𝑛 , we 

first need to look at the Bellman optimality equation as given in Spaan, Vlassis (2006),  

           𝑉∗(𝑏) = max𝑎[∑ 𝑏(𝑠′)𝑟(𝑠′, 𝑎) + 𝛾 ∑ 𝑝(𝑜|𝑎, 𝑏)𝑉∗(𝑏′)𝑜𝑠′ ]                 (10) 

 Since PERSEUS is an approximate method, this above equality may not always be 

reached in a reasonable span of time. Hence after every iteration 𝑖, with a set of 𝛼-vectors 

𝛼𝑖, we generate two quantities for each belief-point 𝑏, the left-hand side (LHS) value and 

the right-hand side (RHS) value of the above equation for iteration 𝑖. 

𝑉𝐿𝐻𝑆
𝑖 (𝑏) = max

𝑘
∑𝛼𝑖

𝑘(𝑠)𝑏(𝑠)

𝑠

 

𝑉𝑅𝐻𝑆
𝑖 (𝑏) = max

𝑎
[∑𝑏(𝑠′)𝑟(𝑠′, 𝑎) + 𝛾∑𝑝(𝑜|𝑎, 𝑏)max

𝑘
∑𝛼𝑖

𝑘(𝑠)𝑏′(𝑠)

𝑠𝑜𝑠′

] 
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Here and in chapters 5 and 6, we create a summary measure based on the individual 

Belman errors called root mean squared error of Bellman (𝑅𝑀𝑆𝐸𝐵𝑒𝑙𝑙𝑚𝑎𝑛) given by 

           𝑅𝑀𝑆𝐸𝐵𝑒𝑙𝑙𝑚𝑎𝑛
𝑖 = √∑ (𝑉𝐿𝐻𝑆

𝑖 (𝑏) − 𝑉𝑅𝐻𝑆
𝑖 (𝑏))

2

/𝑛𝐵𝑏                                      (11) 

(where 𝑛𝐵 is the number of belief-point considered). 

Ideally the optimal solution with the belief-set 𝐵 should result in 𝑅𝑀𝑆𝐸𝐵𝑒𝑙𝑙𝑚𝑎𝑛 = 0. As 

𝑖 → ∞, 𝑅𝑀𝑆𝐸𝐵𝑒𝑙𝑙𝑚𝑎𝑛
𝑖 → 0.  

 We can also come up with similar criteria in terms of actions. The action 𝑎𝐿𝐻𝑆
𝑖 (𝑏) 

from LHS can be derived from the action corresponding to the 𝛼-vector yielding 

maximum value for belief-point 𝑏. The 𝑎𝑅𝐻𝑆
𝑖 (𝑏) from RHS is given by the action 

yielding maximum value. 

𝑎𝐿𝐻𝑆
𝑖 (𝑏) = 𝑎(𝑎𝑟𝑔𝑚𝑎𝑥

𝛼𝑖
𝑘 ∑ 𝛼𝑖

𝑘(𝑠)𝑏(𝑠)𝑠 ) 

𝑎𝑅𝐻𝑆
𝑖 (𝑏) = argmax

𝑎
[∑𝑏(𝑠′)𝑟(𝑠′, 𝑎) + 𝛾∑𝑝(𝑜|𝑎, 𝑏)max

𝑘
∑𝛼𝑖

𝑘(𝑠)𝑏′(𝑠)

𝑠𝑜𝑠′

] 

 

 The sum of the difference between LHS and RHS actions over the belief-set in 

iteration 𝑖 is given by  

                                             ∆𝑎
𝑖 = ∑ |𝑎𝐿𝐻𝑆

𝑖 (𝑏) − 𝑎𝑅𝐻𝑆
𝑖 (𝑏)|𝑏                                         (12) 

 For an optimal solution, both 𝑅𝑀𝑆𝐸𝐵𝑒𝑙𝑙𝑚𝑎𝑛
𝑖 = 0 and ∆𝑎

𝑖 = 0 (from 8). We cannot 

prove that equation (12) is a sufficient condition for optimality, since we have only used a 

sample of reachable belief-points to form the belief-set 𝐵 in an algorithm like PERSEUS. 

However, 𝑅𝑀𝑆𝐸𝐵𝑒𝑙𝑙𝑚𝑎𝑛
𝑖 ~0 and ∆𝑎

𝑖 = 0 are necessary conditions assuming that the system 
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has a stead state optimal policy. In effect, ∆𝑎
𝑖 = 0 is more important, since the policy is 

determined by what action to take for a certain belief-point. In some cases, multiple 

actions can lead to same expected reward, if all the actions yield same expected reward. 

In chapter 5 and 6, although we have not used these two criteria directly in PERSEUS 

generate the 𝛼-vectors, we have used them in the stopping criteria to ensure quality of our 

solutions. 

 

4.5 Bayes Adaptive Markov Decision Process 

 In both MDP and POMDP, it is assumed that the transition probabilities 𝑝𝑖𝑗
𝑎  and 

the reward or observation probabilities 𝑟𝑎 are known. However, in more general cases 

these parameters can be unknown as well. Then, there is an added expectation in the 

optimization formulation in equation (1) over these parameters. Duff (2002) considers 

this problem which he calls “Optimal (Parametric) Learning” where the agent learns 

about the possible environments through action.  

 The formulation of the problem  could be “model-based” (as in equation (1)) or 

“model free”. In the model-based approach, the decision maker starts with scenarios for 

transition probabilities, observation probabilities, and expected reward. In the model free 

approach, there is no specific distribution for these unknown quantities. The decision 

maker observes the reward of his action at the current time step, updates his beliefs about 

the operating environment and picks the next action with the goal of optimizing the 

expected reward over the planning horizon of the experiment.  Duff (2002) uses both to 

demonstrate the applicability of Bayesian models in sequential decision processes. While 
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Duff (2002) , Poupart (2006) only consider cases in which the number of possible 

environments or scenarios  is infinite, Hou (2014) proposes a formulation with finite 

number of scenarios. While finite scenario models are faster to solve, they will have the 

inherent problem of “spurious” learning because, with finite scenarios, transitions for one 

action from one state could effectively trigger learning about other states and/or actions 

which are linked by the scenarios. The infinite scenario models on the other hand assume 

one step at a time learning, which is much slower. Here we explore the idea of using 

Orthogonal Array based Latin Hypercube design (Tang 1993) to sample the scenarios, to 

derive models that are fast and free of spurious learning. We also explore the 

opportunities for learning more than a single transition-at-a-time afforded by finite 

scenario-based methods. 

 

4.5.1 Model-based Methods 

 Model-based reinforcement learning is indirect, in the sense that the method starts 

with a certain model of the environment. The decision maker takes actions based on the 

model with the goal of maximizing the expected reward over the time horizon. The 

model parameters are first learned through interactions with the environment and 

observation of rewards (Ray and Tadepalli 2010). Once the model parameters are learned 

with some degree of confidence, general MDP solution algorithms like value iteration 

and policy iteration can be implemented to generate the optimal policy. In case the model 

parameters are unknown, the current model can be updated after observing the 

environment, and value or policy iteration could be run offline to solve the updated MDP. 
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The action suggested by the MDP may be then taken to interact with the environment and 

receive information for the next update step. This procedure is associated with significant 

computationally cost. Dyna (Sutton 1990) and Adaptive Real-time Dynamic 

Programming (ARTDP) (Barto, Bradtke and Singh 1995) are learning algorithms which 

use efficient update rules to lower computational burden. Dyna is an architecture in AI, 

which is an attempt to integrate learning, planning and taking actions. RTDP incorporates 

asynchronous DP for learning and execution, without the exhaustive nature of offline DP 

algorithms. 

 Policy gradient methods also fall under the domain of model-based learning. 

Wang and Dietterich (2003) build a number of incomplete models of MDP from training 

experiences to derive the policy gradient in closed form. Their algorithm switches 

between pruning, exploration, and gradient ascent search and requires fewer training 

examples than methods implementing Monte Carlo trials for gradient estimation. Abbeel, 

Quigel and Ng (2006) present a hybrid algorithm which uses an approximate model to 

solve problems with high dimensional continuous state space. This method learns the real 

system with only a handful of real-life trials based on a relatively “inaccurate” model. It 

first evaluates a policy on a real-life trial and them improves it using derivative estimates 

to reach near optimal solutions. 

 Choice of the correct MDP models is an issue with model-based so-called 

“reinforcement learning” (RL) as are all MDP formulations and variants because they 

relate to agents attempting to maximize their expected rewards. The trade-off between 

exploration and exploitation poses direct influence over the solution quality. Kearns and 
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Singh (2002) provide algorithms with polynomial bound in which the agent explicitly 

decides about exploiting the known part and exploring the uncertain part of the MDP 

(𝐸3). In 𝐸3 the learning process continues up to a point at which it cannot be continued 

any more efficiently, then the agent implements the learned model to generate optimal 

policy. Brafman and Tennenholtz (2002) propose the R-MAX algorithm, in which the 

choice between exploration and exploitation remains implicit. In R-MAX, the agent 

keeps a possibly inaccurate model of its environment and takes action based on the 

optimal policy generated from this model. It is an improvement over the 𝐸3 algorithm, in 

the sense that it is not biased towards exploration at earlier stages like the 𝐸3 algorithm. 

The optimal policy derived from an inaccurate model in R-MAX has the important 

property of being either optimal or resulting in efficient learning.  

 

4.5.2 Model-Free Methods 

 In model-free learning, the solution does not start with an estimate of the actual 

MDP. It is a more direct approach where the agent starts taking actions based on 

estimated values, without a MDP model. In one class of methods, the value of a state is 

estimated based on the immediate reward and the estimated discounted value of the next 

state. These methods fall under the category of temporal difference learning (Wiering, 

Otterlo 2012). These methods are also categorized as online learning methods, since the 

agent interacts with the environment first and then updates the estimates of the model 

parameters. One aspect of model-free learning is the need of balance between exploration 

and exploitation. In exploitation, the agent repeats the actions that have yielded the best 
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rewards in past. But for long term reward, the agent also needs to explore outcomes of the 

actions not tried as many times before.  

 Watkins’ Q-learning algorithm is an example of model-free reinforcement 

learning (Watkins 1989). In Q-learning, 𝑄(𝑠, 𝑎) represents the expected discounted 

reward of taking action 𝑎 in state 𝑠. If 𝑄∗(𝑠, 𝑎) is the optimal expected return, the 

Bellman equation with Q-value is given by, 

𝑄∗(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾∑𝑝(𝑠, 𝑎, 𝑠′)max
a′

𝑄∗(𝑠′, 𝑎′)

𝑠′

 

 where 𝑟(𝑠, 𝑎) is the immediate reward in state 𝑠 when action 𝑎 is taken, 𝑝(𝑠, 𝑎, 𝑠′) 

is the probability of transitioning from state 𝑠 to state 𝑠′ upon taking action 𝑎 and 𝛾 is the 

discount factor. As shown in Kaelbling (1996), Q-learning estimates the Q values online 

following the rule, 

𝑄∗(𝑠, 𝑎) ≔ 𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾maxa′ 𝑄
∗(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)) 

 where 𝑟 is the observed reward when system transitions from state 𝑠 to state 𝑠′ on 

taking action 𝑎. 

  One common exploration strategy is the 𝜀-greedy policy, where the agent 

chooses its current best action with probability 1 − 𝜀, and the exploratory step with 

probability 𝜀. In Boltzmann exploration strategy, the action selection probabilities depend 

on their relative Q-values. The probability of picking action 𝑎 can assume an expression 

as below: 

𝑃(𝑎) =
𝑒
𝑄(𝑠,𝑎)
𝜏

∑ 𝑒
𝑄(𝑠,𝑎𝑖)
𝜏𝑖
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In the above expression, 𝜏 is equivalent to the temperature parameter. With the increase 

of 𝜏 the randomness of action selection increases. Lower values of 𝜏 will tend to exploit 

the best action greedily. Duff (2002) proposes a model-free reinforcement learning 

algorithm to calculate the Gittins indices for multi-arm bandit problems.  

 

4.5.3 Finite Scenario BAMDP 

 The methods described above have found extensive use in robot movement 

control and multi-arm bandit type problems. Here the decision maker (robot) takes an 

action, observes the consequences (rewards or outputs) and updates its belief state before 

taking the next action. However, this one-step at a time learning could be slow. In such 

circumstances, finite scenario formulations may prove to be useful (Duff, 2002). There 

are some studies with finite parameter or multi matrix cases where the assumption is that 

the MDP is generated from a possible set of known transition matrices and they can be 

reduced to POMDPs (Silver, 1963, Duff, 2002, Hou, 2015). The advantage of doing this 

is a more intuitive state space (states are combinations of usual “natural states” and 

scenarios being true) and potentially faster learning in that users might effectively 

eliminate all but one model scenarios in a small number of steps.. 

 Delage and Mannor (2010) presents a sampling procedure for transition 

probabilities 𝑝𝑖𝑗
𝑎  using Dirichlet priors from the corresponding frequencies of transitions 

𝑓𝑖𝑗
𝑎.  It is convenient to assume Dirichlet prior, since given a set of observed transitions 

from the multinomial distribution, the analytical solution to the posterior can be found 

using the Multinomial-Dirichlet conjugate relation. However, the number of scenarios 
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chosen will influence the solution quality. If the number of chosen scenarios 𝑞 is small, 

there is a possibility of spurious learning. In cases where number of instances of 

transitioning from state 𝑖 to state 𝑗 is low compared to the other transition frequencies or 

zero, a model with small number of scenarios will almost neglect these instances 

altogether. The overall solution might be more optimistic in this case. In other words, this 

would be a case of over exploitation.  

 The problem of insufficiency in learning has received some attention in research. 

In the literature related to dynamic pricing, Rothschild (1974) proposes the use of 

Bayesian adaptive control theory to identify optimal sequences of offer prices. This 

approach, as recognized in Rothschild (1974), is associated with a positive probability of 

incomplete learning. In the long run, the learning mechanism may not always generate 

the most profitable price. This phenomenon, called price dispersion happens with 

positive probability even when all the players start with true beliefs initially.  Xia and 

Dube (2007) addresses this problem in Bayesian adaptive control formulation and builds 

a framework using simulated annealing which avoids price dispersion. This framework 

shows convergence to the true optimal exploration policy to the true optimal policy with 

complete information.   

 In our case, the problem of spurious learning can be mitigated by considering a 

large number of scenarios. However, when the scenario matrices are consolidated to form 

a POMDP (as shown later in this section), the size of the problem may render it difficult 

to solve. To balance between effective learning and computation time, we here propose to 

integrate into BAMDP scenario selection with Orthogonal Array Latin Hypercube 
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(OALH) design. Additional details and examples are in Chapter 6. In this chapter, the 

focus is on reviewing the relevant sampling methods. 

 Ordinary Latin hypercube sampling (LHS) was first introduced by Mckay, 

Beckman and Conover (1979) and it is widely used in experimental design with 

continuous variables. In LHS, the probability distributions of each of the random 

variables involved are divided simultaneously in equal segments, and then one sample 

from each segment is drawn. Orthogonal Arrays (OA) produce uniform samples for 

multidimensional spaces. LHS is a special case of OA since it produces uniform sampling 

in one dimension. We have used the OALH design formulated by Tang (1993) in our 

study. These designs preserve the stratification properties of LHS, as well as the 

stratification over 𝑟-dimensional margins for strength 𝑟 OA based Latin hypercubes. 

These designs show improved performance for computer experiments and possess better 

numerical integration properties than ordinary Latin Hypercubes. We use OALH to 

sample probability of state transitions for cases with higher uncertainty, i.e. transitions 

that are rare or the ones of which we do not have any data. 

 

4.5.4 Formulation of BAMDP Model: 

 Let us keep the same notations as used in the previous sections, and assume there 

are 𝑁 states in which the system can reside, and the decision maker has 𝑈 actions to 

choose from. But since there is uncertainty in the transition probabilities, let us assume 

there are 𝑞 scenarios, and that the 𝑁 original states are natural states. Let the probability 

of being in one of these scenarios be 𝑃(𝑘), 𝑘 ∈ {1, . . , 𝑞}. As shown in Delage and 
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Mannor (2010), given a set of observations 𝑓𝑖𝑗
𝑎 from natural states 𝑖 to 𝑗 where (𝑖, 𝑗) ∈

{1, . . , 𝑁}, upon taking action 𝑎 ∈ {1, . . , 𝑈}, the transition probabilities can be sampled 

from a Dirichlet distribution: 

              𝑝𝑖𝑗
𝑎 (𝑘)~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (𝑓𝑖𝑗

𝑎 + 𝛽(𝑘)) , 𝑘 ∈ {1, . . , 𝑞} , 𝑖, 𝑗 ∈ {1, . . , 𝑁}                       (12) 

where 𝑝𝑖𝑗
𝑎 (𝑘) is the transition probability for scenario 𝑘 and 𝛽(𝑘) is the Dirichlet prior for 

scenario 𝑘.  

 From above, the stochastic process can be formulated as follows. Let 𝑆𝑡 be the 

natural state at time 𝑡, which is the result of transitioning from natural state 𝑆𝑡−1 at time 

epoch 𝑡 − 1 upon taking action 𝑎𝑡−1. For a certain scenario 𝑘 ∈ {1, . . 𝑞}, the stochastic 

process of the MDP follows a multinomial distribution (Hou, 2015).            

         𝑆𝑡|𝑆𝑡−1, 𝑎𝑡−1, 𝒑(𝑘)~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙((𝑝(𝑘)
𝑎𝑡−1)𝑆𝑡,:)                         (13) 

where "𝑆𝑡−1, : " refers to the entire row of state 𝑆𝑡−1 of the relevant transition matrix. This 

means destination state of the transition from state 𝑆𝑡−1 upon taking action 𝑎𝑡−1 is 

multinomially distributed with parameters given by the probability values in the row 

corresponding to state 𝑆𝑡−1 in the probability transition matrix of action  𝑎𝑡−1.  

  Hou (2015) shows that the above problem can be converted to a POMDP. 

Considering the 𝑞 scenarios, we will have a total of 𝑁 × 𝑞 states, which we call the pure 

states. The transition probability matrices and the rewards can be formed as below: 
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�̂�𝒂 =

[
 
 
 
 
𝒑𝒂(𝟏) 𝟎  …    𝟎

𝟎 𝒑𝒂(𝟐)   …   𝟎
…
…

𝟎     𝟎     𝒑𝒂(𝒒)]
 
 
 
 

 

 

�̂�𝒐
𝒂 =

[
 
 
 
 
𝒓𝒐
𝒂(𝟏) 𝟎  …    𝟎

𝟎 𝒓𝒐
𝒂(𝟐)   …   𝟎
…
…

𝟎     𝟎     𝒓𝒐
𝒂(𝒒)]

 
 
 
 

 

where  𝒑𝒂(𝑘) is the transition probability matrix in scenario 𝑘 upon taking action 𝑎, and 

𝒓𝒐
𝒂(𝑘) is the reward matrix upon taking action 𝑎 and observing 𝑜 in scenario 𝑘. The 

belief-points 𝑏 for being in natural state 𝑋𝑡 at epoch 𝑡 is given by: 

�̂�(𝑠, 𝑡) = {
𝑃(𝑘)       if 𝑠 = (𝑘 − 1)𝑁 + 𝑋𝑡
0                                                      

 

where 𝑃(𝑘) is the probability of scenario 𝑘 and 𝑠 is the pure state of the system. 

Once we formulate the BAMDP as a POMDP we can use any of the solution procedures 

described in section 4.3. In the next chapter, we will use PERSEUS to solve the BAMDP 

models for cyber vulnerability maintenance problems.  

 

4.6 Summary 

 This chapter is a review on MDP based methods that are used to make decisions 

in a stochastic environment. We started with the basic MDP and discussed the value and 

policy iteration algorithm. Then we discussed the purview of POMDP, in which there is 

uncertainty about the system state. We reviewed different POMDP solution techniques, 
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in particular, PERSEUS, which we will use in our cyber vulnerability maintenance 

application in the next chapters. Next, we explored the domain of BAMDP and 

reinforcement learning, and methods which also take into account parametric uncertainty 

inherent in the problem. In the next two chapters, we will show how POMDP and 

BAMDP formulations can be used to model cyber maintenance problems.  
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Chapter 5: Cyber Vulnerability Maintenance using POMDP 

 

 

5.1 Introduction 

 With new technology, come new responsibilities of managing those innovations 

to prevent them from being utilized to harm people and organizations. It is no less true in 

case of present day dependencies on computers and internet. Starting from minor attacks 

on personal computers to thwart an individual’s day to day work, to stealing of sensitive 

information concerning national security, cyber attackers’ spectrum of influence is as 

wide as the means to commit such crimes. 

Since life in digital age is enmeshed with the cyber world in virtually every 

possible way, be it an individual’s health and financial records, or sensitive information 

about future strategies of an organization, operations of power grids, banking systems, 

military establishment, we have exposed ourselves to this new form of crime which was 

not even a concern even 20 years ago. Several incidents of data breaches to reveal 

personal information of account holders with various internet based service providers, 

theft of large sum of money from banks, compromise of information of Navy sailors have 

been reported in 2016 alone (ComputerWeekly.com, 2016). Reports on major 
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cyberattacks that crippled electrical utilities in Ukraine in December 2016 raised concern 

among policy makers all over the world (Smith 2016). The recent discussions on how 

cyber-crime has possibly influenced the 2016 U.S. presidential election highlight severity 

of the issue even further. It has become imperative to create well-defined mechanisms to 

prevent these attacks from causing large scale disruptions impacting daily life and 

economy. 

The U.S. Department of Defense has recognized cybersecurity as a high priority 

(Kott, 2014). The importance of treating cybersecurity as a “science” and develop 

comprehensive R&D effort has been emphasized by the US President’s National Science 

and Technology Council (2011). This has engendered increase in funding formal research 

and policy development in the area of cybersecurity.  

 Cybersecurity is emerging as a prospective application area in the field of 

Operations Research. Since this new front of vulnerabilities comes with its own 

overhead, efficient deployment of financial and labor resources would ensure higher 

sustainability for any organization. Interestingly, an estimate shows that more than 90% 

of the reported attacks are preventable with available patches and control schemes 

(Cockburn 2009).  Efficient classification and identification of the major sources of 

vulnerabilities can lead to development of effective strategies to significantly reduce the 

extent of certain attacks. Gil et al. (2014) explored threat logs from a university and 

found causal relations between network services used by the hosts and susceptibility to 

certain attacks using a genetic epidemiology approach. Network security for smart 

electrical grids is another important area of research. For instance, Chen, Sanchez-
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Aarnoutse and Bufford (2011) have proposed a Petri net based method for modeling 

cyber physical attacks on smart grids. Srivastava, Morris and Ernster (2013) have 

presented graph theory based methods for smart grid related cyber physical systems.  

 Application of MDP based methodologies has gained some importance in the 

world of cyber security over the past few years. Holloway (2009) presents a network 

security model with self-organized agent swarms (SOMAS) which is based on POMDP. 

Afful-Dadzie, Allen (2014) developed a Markov Decision Process based approach for 

generation and graphical evaluation of cybersecurity policies. They proposes the 

“Sufficiency Model Action Clarification” method and implements it to develop optimal 

cyber vulnerability maintenance policies. This method also attempts to address the issue 

of data insufficiency and parametric uncertainty. With the ever-evolving dynamics of 

cyber-crime, defense mechanisms with inherent and autonomous learning capabilities are 

becoming more relevant. The research presented here is an attempt to develop such 

adaptive control policies in cybersecurity. 

 The aim of this chapter is to develop control policies under uncertainty for 

cybersecurity. We introduce MDP based methods to explore policies in cybersecurity. 

We start with a POMDP model where the uncertainty of the system state derives from the 

limited knowledge of whether the system is compromised or not.  

 

5.2 Methods 

 We propose a partially observable Markov Decision Process for a cybersecurity 

case study to generate control policies when there is uncertainty in the state of the system. 
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Hou (2015) states, based on the CVSS score an individual host can be in one of 5 states 

of vulnerability, viz, low, medium low, medium high, high and critical. In our analysis, 

we will consider only two vulnerability states, low and high. We will account for the 

uncertainty about the state of compromise of a host. If a host is compromised, then it is 

assumed that an attacker has gain control of it. A compromised host can be exploited in 

many ways, for instance it can provide access to sensitive information to the attacker, it 

can be used to compromise other hosts, or if it is a part of a control network, it can be 

used to disrupt entire control systems such as power grids. Not all the hosts in an 

organization contain sensitive data or has access to other critical systems. But they can 

still be used to infect other computers, or launch attacks which require multiple hosts e.g. 

DDoS attacks.  

 In most cases, it is not difficult to determine the state of vulnerability of a host, 

the CVSS scores can be used to get a relative sense. Hou (2015) considers that a single 

host can have more than one vulnerabilities and the host vulnerability is equivalent to the 

status of its worst vulnerability. However, it may not be always obvious if a host is 

breached or not. Especially when a host runs on an out of date OS, or does not get 

updated or scanned regularly, it can potentially be compromised and not detected. 

Microsoft Advanced Threat Analytics estimates that median number of days an attacker 

can stay undetected in a network is 146. In view of this, we have created six different 

states 𝑆𝑖, 𝑖 = {1,2…6} for a host, high and low states in convolution with three 

compromise states, viz. not compromised, compromised known and compromised 

unknown.  There are three general actions 𝑎𝑖, 𝑖 = {1,2,3} to control the system, 𝑎1 is to 
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leave the host for “automatic patching”, which means a human administrator will not 

intervene. This action is associated with the lowest cost, but has limited ability to detect 

compromise or reduce vulnerability of a system. The second action 𝑎2 is “manual 

intervention” where an administrator does “take action” based on the state of a host. This 

can range from a few hours of work to restore a system back to an acceptable state, to a 

complete replacement of a host. Hence 𝑎2 is more expensive than 𝑎1 in terms of 

personnel time and/or equipment cost. The third action 𝑎3 is inspect and act, where an 

administrator first runs forensic inspection to check if the host is compromised  then takes 

action. We assume that 𝑎3 will have the same effects as that of 𝑎2 on the transition 

probabilities, in addition, it will reveal the state of compromise to the administrator. 

Although the cost of inspection makes 𝑎3 more expensive than the other two, action 𝑎3 

reduces the probability of transitioning to “compromised unknown” states to zero. The 

list of actions is given below in a concise fashion: 

𝑎1: Automatic patching, no manual intervention. 

𝑎2: Manual intervention 

𝑎3: Manual intervention with forensic inspection. 

 To build the state transition matrix, we consider a number of parameters which 

may influence the transition probabilities. The parameters themselves are probabilities 

and their values depend on the action chosen. The list of parameters is given below all of 

them are probabilities of the events described alongside for actions 𝑎1 and 𝑎2. : 

𝑝𝑣𝑤
𝑎𝑖  : Vulnerability will get worse. 

𝑝𝑣𝑤
𝑎𝑖 ′ = 1 − 𝑝𝑣𝑤

𝑎𝑖  . 
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𝑝𝑣𝑏
𝑎𝑖  : Vulnerability will get better. 

𝑝𝑣𝑏
𝑎𝑖 ′ = 1 − 𝑝𝑣𝑏

𝑎𝑖  . 

𝑝𝑙𝑐𝑘
𝑎𝑖  : Low vulnerability and it is known that the host is compromised. 

𝑝𝑙𝑐𝑢
𝑎𝑖  : Low vulnerability and it is unknown that the host is compromised. 

𝑝𝑙𝑐𝑛
𝑎𝑖 = 1 − 𝑝𝑙𝑐𝑘

𝑎𝑖 − 𝑝𝑙𝑐𝑢
𝑎𝑖  : Low vulnerability and host is not compromised. 

𝑝ℎ𝑐𝑘
𝑎𝑖  : High vulnerability and it is known that the host is compromised. 

𝑝ℎ𝑐𝑢
𝑎𝑖  : High vulnerability and it is unknown that the host is compromised. 

𝑝ℎ𝑐𝑛
𝑎𝑖 = 1 − 𝑝ℎ𝑐𝑘

𝑎𝑖 − 𝑝ℎ𝑐𝑢
𝑎𝑖  : High vulnerability and host is not compromised. 

𝑝𝑓𝑘
𝑎𝑖 : Known comprise will be fixed. 

𝑝𝑓𝑘
𝑎𝑖 ′ = 1 − 𝑝𝑓𝑘

𝑎𝑖 . 

𝑝𝑓𝑢
𝑎𝑖 : Unknown comprise will be fixed. 

𝑝𝑓𝑢
𝑎𝑖 ′ = 1 − 𝑝𝑓𝑢

𝑎𝑖 . 

 

Table 5.1 Transition probabilities for actions 1 and 2 

 
Not compromised 

Compromised 

Known 

Compromised 

Unknown 

Low High Low High Low High 

Not 

compromised 

Low 𝑝𝑣𝑤
𝑎𝑖 ′𝑝𝑙𝑐𝑛

𝑎𝑖  𝑝𝑣𝑤
𝑎𝑖 𝑝𝑙𝑐𝑛

𝑎𝑖  𝑝𝑣𝑤
𝑎𝑖 ′𝑝𝑙𝑐𝑘

𝑎𝑖  𝑝𝑣𝑤
𝑎𝑖 𝑝𝑙𝑐𝑘

𝑎𝑖  𝑝𝑣𝑤
𝑎𝑖 ′𝑝𝑙𝑐𝑢

𝑎𝑖  𝑝𝑣𝑤
𝑎𝑖 𝑝𝑙𝑐𝑢

𝑎𝑖  

High 𝑝𝑣𝑏
𝑎𝑖 𝑝ℎ𝑐𝑛

𝑎𝑖  𝑝𝑣𝑏
𝑎𝑖 ′𝑝ℎ𝑐𝑛

𝑎𝑖  𝑝𝑣𝑏
𝑎𝑖 𝑝ℎ𝑐𝑘

𝑎𝑖  𝑝𝑣𝑏
𝑎𝑖 ′𝑝ℎ𝑐𝑘

𝑎𝑖  𝑝𝑣𝑏
𝑎𝑖 𝑝ℎ𝑐𝑢

𝑎𝑖  𝑝𝑣𝑏
𝑎𝑖 ′𝑝ℎ𝑐𝑢

𝑎𝑖  

Compromised 

Known 

Low 𝑝𝑣𝑤
𝑎𝑖 ′𝑝𝑓𝑘

𝑎𝑖  𝑝𝑣𝑤
𝑎𝑖 𝑝𝑓𝑘

𝑎𝑖  𝑝𝑣𝑤
𝑎𝑖 ′𝑝𝑓𝑘

𝑎𝑖 ′ 𝑝𝑣𝑤
𝑎𝑖 𝑝𝑓𝑘

𝑎𝑖 ′ 0 0 

High 𝑝𝑣𝑏
𝑎𝑖 𝑝𝑓𝑘

𝑎𝑖  𝑝𝑣𝑏
𝑎𝑖 ′𝑝𝑓𝑘

𝑎𝑖  𝑝𝑣𝑏
𝑎𝑖 𝑝𝑓𝑘

𝑎𝑖 ′ 𝑝𝑣𝑏
𝑎𝑖 ′𝑝𝑓𝑘

𝑎𝑖 ′ 0 0 

Compromised 

Unknown 

Low 𝑝𝑣𝑤
𝑎𝑖 ′𝑝𝑓𝑢

𝑎𝑖  𝑝𝑣𝑤
𝑎𝑖 𝑝𝑓𝑢

𝑎𝑖  0 0 𝑝𝑣𝑤
𝑎𝑖 ′𝑝𝑓𝑢

𝑎𝑖 ′ 𝑝𝑣𝑤
𝑎𝑖 𝑝𝑓𝑢

𝑎𝑖 ′ 

High 𝑝𝑣𝑏
𝑎𝑖 𝑝𝑓𝑢

𝑎𝑖  𝑝𝑣𝑏
𝑎𝑖 ′𝑝𝑓𝑢

𝑎𝑖  0 0 𝑝𝑣𝑏
𝑎𝑖 𝑝𝑓𝑢

𝑎𝑖 ′ 𝑝𝑣𝑏
𝑎𝑖 ′𝑝𝑓𝑢

𝑎𝑖 ′ 
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Table 5.2 Transition probabilities for action 3 (note all parameters are for 2) 

 
Not compromised 

Compromised 

Known 

Compromised 

Unknown 

Low High Low High Low High 

Not 

compromised 

Low 𝑝𝑣𝑤
𝑎2 ′𝑝𝑙𝑐𝑛

𝑎2  𝑝𝑣𝑤
𝑎2 𝑝𝑙𝑐𝑛

𝑎2  𝑝𝑣𝑤
𝑎2 ′𝑝𝑙𝑐𝑘

𝑎2  𝑝𝑣𝑤
𝑎2 𝑝𝑙𝑐𝑘

𝑎2  𝑝𝑣𝑤
𝑎2 ′𝑝𝑙𝑐𝑢

𝑎2  𝑝𝑣𝑤
𝑎2 𝑝𝑙𝑐𝑢

𝑎2  

High 𝑝𝑣𝑏
𝑎2𝑝ℎ𝑐𝑛

𝑎2  𝑝𝑣𝑏
𝑎2′𝑝ℎ𝑐𝑛

𝑎2  𝑝𝑣𝑏
𝑎2𝑝ℎ𝑐𝑘

𝑎2  𝑝𝑣𝑏
𝑎2′𝑝ℎ𝑐𝑘

𝑎2  𝑝𝑣𝑏
𝑎2𝑝ℎ𝑐𝑢

𝑎2  𝑝𝑣𝑏
𝑎2′𝑝ℎ𝑐𝑢

𝑎2  

Compromised 

Known 

Low 𝑝𝑣𝑤
𝑎2 ′𝑝𝑓𝑘

𝑎2 𝑝𝑣𝑤
𝑎2 𝑝𝑓𝑘

𝑎2 𝑝𝑣𝑤
𝑎2 ′𝑝𝑓𝑘

𝑎2′ 𝑝𝑣𝑤
𝑎2 𝑝𝑓𝑘

𝑎2′ 0 0 

High 𝑝𝑣𝑏
𝑎2𝑝𝑓𝑘

𝑎2 𝑝𝑣𝑏
𝑎2′𝑝𝑓𝑘

𝑎2 𝑝𝑣𝑏
𝑎2𝑝𝑓𝑘

𝑎2′ 𝑝𝑣𝑏
𝑎2′𝑝𝑓𝑘

𝑎2′ 0 0 

Compromised 

Unknown 

Low 𝑝𝑣𝑤
𝑎2 ′𝑝𝑓𝑘

𝑎2 𝑝𝑣𝑤
𝑎2 𝑝𝑓𝑘

𝑎2 𝑝𝑣𝑤
𝑎2 ′𝑝𝑓𝑘

𝑎2′ 𝑝𝑣𝑤
𝑎2 𝑝𝑓𝑘

𝑎2′ 0 0 

High 𝑝𝑣𝑏
𝑎2𝑝𝑓𝑘

𝑎2 𝑝𝑣𝑏
𝑎2′𝑝𝑓𝑘

𝑎2 𝑝𝑣𝑏
𝑎2𝑝𝑓𝑘

𝑎2′ 𝑝𝑣𝑏
𝑎2′𝑝𝑓𝑘

𝑎2′ 0 0 

 

 

 Table 5.1-2 shows the transition probabilities derived from the given parameters. 

The expressions for 𝑎3 are derived with the parameters for 𝑎2, since it is assumed that the 

effects of both are same for all three actions for the compromised states of not 

compromised and compromised known. For the compromised unknown states, we 

consider that action a3 will reveal the state of compromise at the inspection stage. Hence 

we calculate the transition from the compromised unknown states to not compromised 

states taking into account that the probability of a known compromise will be fixed (pfk
a2). 

It is also worth noting that for actions a1and a2, we are assuming there is zero probability 

of transitioning from the compromised known states to compromised unknown states to 

vice-versa. On the other hand, for a3, the inspection step reveals the state of compromise, 

hence there is zero probability of transitioning into the compromised unknown states 

once this action is taken.  
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 We consider four possible observations, low and high vulnerability scores with no 

information on the state of compromise. Table 5.3 shows the probabilities of the 

observations given the states. 

 

Table 5.3 Observation probabilities 

 
No Information 

Compromised 

Known 

Low High Low High 

Not 

compromised 

Low 1 0 0 0 

High 0 1 0 0 

Compromised 

Known 

Low 0 0 1 0 

High 0 0 0 1 

Compromised 

Unknown 

Low 1 0 0 0 

High 0 1 0 0 

 

 The cost is broken into four different components. We assume that the cost of the 

first “breach” of a not compromised host is much higher than the cost of continued 

compromised state. The estimated costs are given in table 5.4. The costs incurred from 

state transitions upon taking different actions are given in tables 5.5-7.           

          

Table 5.4 Cost of actions and compromise situations 

Situation Cost ($) 

Action average cost 150 

First compromised average cost 10000 

Continue compromised average 2000 

Inspection Cost 150 
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Table 5.5 Transition cost for action 1 

 
Not compromised 

Compromised 

Known 

Compromised 

Unknown 

Low High Low High Low High 

Not 

compromised 

Low 0 0 -10000 -10000 -10000 -10000 

High 0 0 -10000 -10000 -10000 -10000 

Compromised 

Known 

Low 0 0 -2000 -2000 -2000 -2000 

High 0 0 -2000 -2000 -2000 -2000 

Compromised 

Unknown 

Low 0 0 -2000 -2000 -2000 -2000 

High 0 0 -2000 -2000 -2000 -2000 

 

 

Table 5.6 Transition cost for action 2 

 
Not compromised 

Compromised 

Known 

Compromised 

Unknown 

Low High Low High Low High 

Not 

compromised 

Low -150 -150 -10150 -10150 -10150 -10150 

High -150 -150 -10150 -10150 -10150 -10150 

Compromised 

Known 

Low -150 -150 -2150 -2150 -2150 -2150 

High -150 -150 -2150 -2150 -2150 -2150 

Compromised 

Unknown 

Low -150 -150 -2150 -2150 -2150 -2150 

High -150 -150 -2150 -2150 -2150 -2150 

 

 

Table 5.7 Transition cost for action 3 

 
Not compromised 

Compromised 

Known 

Compromised 

Unknown 

Low High Low High Low High 

Not 

compromised 

Low -300 -300 -10300 -10300 -10300 -10300 

High -300 -300 -10300 -10300 -10300 -10300 

Compromised 

Known 

Low -300 -300 -2300 -2300 -2300 -2300 

High -300 -300 -2300 -2300 -2300 -2300 

Compromised 

Unknown 

Low -300 -300 -2300 -2300 -2300 -2300 

High -300 -300 -2300 -2300 -2300 -2300 
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We make assumptions for the values of the parameters used to make the transition 

probabilities. The values are given in table 5.8.                          

 

Table 5.8 Parameter values 

Parameters Values Parameters Values 

𝑝𝑣𝑤
𝑎1  0.100 𝑝𝑣𝑤

𝑎2  0.010 

𝑝𝑣𝑏
𝑎1 0.100 𝑝𝑣𝑏

𝑎2 0.800 

𝑝𝑙𝑐𝑛
𝑎1  0.998 𝑝𝑙𝑐𝑛

𝑎2  0.990 

𝑝𝑙𝑐𝑘
𝑎1  0.001 𝑝𝑙𝑐𝑘

𝑎2  0.005 

𝑝𝑙𝑐𝑢
𝑎1  0.001 𝑝𝑙𝑐𝑢

𝑎2  0.005 

𝑝ℎ𝑐𝑛
𝑎1  0.994 𝑝ℎ𝑐𝑛

𝑎2  0.985 

𝑝ℎ𝑐𝑘
𝑎1  0.005 𝑝ℎ𝑐𝑘

𝑎2  0.010 

𝑝ℎ𝑐𝑢
𝑎1  0.001 𝑝ℎ𝑐𝑢

𝑎2  0.005 

𝑝𝑓𝑘
𝑎1 0.100 𝑝𝑓𝑘

𝑎2 0.100 

𝑝𝑓𝑢
𝑎1  0.100 𝑝𝑓𝑢

𝑎2  0.900 

     

   

5.3 Results 

 Using all the data listed above, we run the POMDP using the PERSEUS 

algorithm. Since there is partial observability in the states, so a policy 𝜋(𝑏|𝑎) in this case 

would be an optimal action 𝑎, given a belief state 𝑏. We sampled 1,000 belief states 

through a random walk, starting from a non-informative belief state (probability of each 

state 
1

𝑁
 where 𝑁 is the total number of states). Each belief states were iterated ten times to 

account for the randomness embedded in the value iteration of PERSEUS. Table 5.9 

provides the average and standard deviations of the optimal values at ten typical belief 
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states encountered in the random walk. The optimal action at each belief state is the same 

for all iterations. 

 

Table 5.9 Typical Policies from analysis of cyber security by POMDP with values in $. 

 Not 

compromised 

Compromised 

Known 

Compromised 

Unknown 

Percentage 

of Similar 

Belief 

States 

Action 
Value 

($/host) 
Low High Low High Low High 

1 1.000 0.000 0.000 0.000 0.000 0.000 1.500 𝑎1 -573.16 

2 0.000 0.000 1.000 0.000 0.000 0.000 0.900 𝑎2 -913.09 

3 0.000 0.000 0.000 1.000 0.000 0.000 1.100 𝑎2 -935.22 

4 0.909 0.000 0.000 0.000 0.091 0.000 0.400 𝑎3 -963.82 

5 0.840 0.000 0.000 0.000 0.160 0.000 0.300 𝑎3 -970.32 

6 0.785 0.000 0.000 0.000 0.215 0.000 0.200 𝑎3 -975.25 

7 0.525 0.000 0.000 0.000 0.475 0.000 93.100 𝑎3 -999.22 

8 0.167 0.167 0.167 0.167 0.167 0.167 0.100 𝑎3 -1036.90 

9 0.048 0.000 0.000 0.000 0.952 0.000 1.300 𝑎3 -1043.22 

10 0.000 0.515 0.000 0.000 0.000 0.485 1.100 𝑎3 -1049.850 

 

 

 Table 5.9 shows a few typical belief states encountered in the random walk 1,000 

belief states. The column “Percentage of Similar Belief States” shows the percentage of 

times a similar belief state (all probability values within ∓0.05) appeared in the 1,000 

belief states sampled for the POMDP. The optimal policies indicate that if the system is 

equally likely to be in any of the six states, which is also the starting belief state for this 

example, action 𝑎3 (inspect and act) is optimal (row 8). It is also evident, that even a 

small probability of being in the compromised unknown states will prompt action 𝑎3 

(row 4, 5, 6).  
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The most frequently visited belief state generated by the random walk has around 

0.5 probability of being in each of not compromised low vulnerability and compromised 

unknown low vulnerability states, which also demands action 𝑎3 (row 7). When there is 

certainty that the system is compromised, action 𝑎2 is optimal (row 2, 3). This intuitively 

makes sense as in fact, if the administrator is certain that a host is compromised, she takes 

the action to restore the system, without the need to incur inspection cost. On the other 

hand, if there is more uncertainty about the state of compromise of the host, it is more 

economic to choose the “manual intervention and forensic inspection” alternative. When 

it is certain that the host is in the not compromised low vulnerability state, it is best to 

choose action 𝑎1, which is automatic patching without any manual intervention (row 1). 

This belief state-action pair also incurs the least cost.  

 

 

Figure 5.1Values and actions for different belief-states generated by POMDP 
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 Table 5.6 shows that majority of the time, there in some uncertainty about the 

state of compromise. In such circumstances, it is best to choose action 𝑎3. Figure 5.1 

shows once in a while the system switches to belief states with known state of 

compromise and in these situations, actions 𝑎1 or 𝑎2 can be taken depending whether 

there the host is compromised or not. Overall, the POMDP suggests a conservative policy 

in cybersecurity, which can be summarized as “if there is even a little possibility that a 

host is compromised, it is best to do inspection and take action accordingly.”    

 

 

Figure 5.2 RMSE (Bellman) over iterations showing convergence of PERSEUS 

  

 In section 4.4 we have seen the expressions for Bellman Error, and have proposed 

the idea of using root mean square of the Bellman Error (𝑅𝑀𝑆𝐸𝐵𝑒𝑙𝑙𝑚𝑎𝑛) over all the 

belief-points as an indicator for convergence of PERSEUS. Figure 5.2 shows how 

𝑅𝑀𝑆𝐸𝐵𝑒𝑙𝑙𝑚𝑎𝑛 asymptotically converges as PERSEUS runs through completion.  
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Figure 5.3 Sum of difference of actions associated with Bellman Error over iterations 

 

 Figure 5.3 shows the sum of difference of actions Δ𝑎 of the two sides of Bellman 

equation (section 4.4, equation 12) plotted with the iterations of PERSEUS. The uneven 

characteristics are caused by the random sampling of belief-points for the backup step of 

PERSEUS. The optimal solution has Δ𝑎
𝑖 = 0. 

 

 

Figure 5.4 Sum of Optimal Values of all belief-points over iterations 
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 Spaan and Vlassis (2006) use the sum of optimal values over all the belief-points 

as a convergence criterion for PERSEUS. Figure 5.4 shows a plot of sum of all the 

optimal values with the iterations. It shows the sum initially increases and then converges 

to a fixed value after a certain period of time.  

 

5.4 Sensitivity Analysis 

 
Figure 5.5 Expected cost for belief-states with positive probability of unknown state of 

compromise against probability of high vulnerability unknown compromise with action 

          

 To understand the effect of acting when the system has high vulnerability and the 

state of compromised is unknown we have run 11 different models varying the parameter 

𝑝ℎ𝑐𝑢
𝑎2  from 0 to 0.1. Figure 5.2 shows how the expected cost (Value) changes with 𝑝ℎ𝑐𝑢

𝑎2  

for the belief-points with positive probability of unknown state of compromise. We 

filtered the set of belief-points in this manner in order to highlight the cases with 

substantial probability of unknown state of compromise. The optimal action for all these 

cases is 𝑎3 (inspect and act). Figure 5.2 reveals that although there is some variation for 
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each of the values considered for 𝑝ℎ𝑐𝑢
𝑎2 , there is a clear trend that the cost (negative 

reward) increase with the increase of 𝑝ℎ𝑐𝑢
𝑎2 .  

 

5.5 Summary 

 In this chapter, we have introduced a POMDP model for cyber vulnerability 

maintenance analysis. The belief states for POMDP reflect the uncertainty due to the state 

of compromise of the host. We have built the transition probabilities from simpler factors 

such as probability if the vulnerability of a host is going to become worse upon taking 

certain actions, or better. We have solved the POMDP problem using PERSEUS and 

policies are derived for a number of belief-states. Typically, for belief-states with positive 

probability for only not compromised low vulnerability states, automatic patching is 

optimal. However, if there is even a small probability for unknown state of compromise, 

manual intervention with forensic inspection is the optimal action. For cases with positive 

probability only for known compromised states, 𝑎2 for manual intervention is optimal. 

We have also shown convergence of PERSEUS in terms of 𝑅𝑀𝑆𝐸𝐵𝑒𝑙𝑙𝑚𝑎𝑛 and sum of 

optimal values over all the belief-points considered.  

 Next we have run a sensitivity analysis to determine the effect of changing one of 

the parameters over the solutions. We have found that increasing the probability of 

“being in a high vulnerability state in an unknown state of compromise upon taking 

action” does not necessarily change the nature of the policies derived before, but it 

increases the overall cost.  
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 We believe that this POMDP based cyber vulnerability maintenance policies can 

help network administrators to manage the networks more efficiently. The parameters 

that we have assumed in the model can give us some insights on what type of data to log, 

so that we don’t have to assume all the values and can use actual data to formulate similar 

models. In the next Chapter, we introduce BAMDP models for cyber vulnerability 

maintenance analysis which account for the parametric uncertainty stemming from data 

insufficiency.  
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Chapter 6: BAMDP for Cyber Maintenance 

 

 

6.1 BAMDP Multiple Scenarios 

 In the previous chapter, we have used a POMDP model for cybersecurity 

maintenance analysis. We assumed that the transition probabilities and the observation 

probabilities are known. However, in reality, these parameters could be uncertain, or may 

change over time. Transition data could be available in some cases (e.g., for automatic 

patching action, system transition from low vulnerability to low vulnerability state) but in 

some other cases (high to low vulnerability), there might be no available data. This 

prompts us to explore methods which account for parametric uncertainty. The BAMDP 

models described in the previous chapter recognizes the issue of parametric uncertainty.  

In this section, we will implement three finite scenario methods of BAMDP.  

The first method will consider a small number of scenarios (viz. 3), and the second 

method will consider a large number of scenarios (viz. 100). The first example with small 

scenarios would show the effects of spurious learning. This method will not sample from 

the scenarios which are less likely, and in effect will have a more optimistic outlook 

overall. The second example with a large number of scenarios will mitigate the spurious 
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learning issue, however, it might be debatable “how many scenarios could be considered 

a large number of scenarios.” To address this problem, we will explore a third method, 

where we will sample the uncertain parameter from an Orthogonal Array Latin 

Hypercube (OALH) design. The OALH design exploits the 𝑟-variate uniformity, where 𝑟 

is the strength of the OA.  

 

6.2 Test Problem 

 The data we have used in our example relate to the real-world network 

vulnerability situation of an organization. Based on the CVSS scores, we have assumed 

two natural states of vulnerability, low and high. There are three actions that the 

administrator can take, 

𝑎1: Automatic patching, no manual intervention. 

𝑎2: Research accept (inspect and accept the risk and if patch is found, fix the issue 

manually) 

𝑎3: Overhaul or complete system restore. 

The transition data and the cost structure are given in tables 6.1-3. In this table, normal 

risk indicates low vulnerability state and elevated risk indicates high vulnerability state. 

 

 

 

 

 



83 

 

Table 6.1 Transition data for 1 

Auto-patch 
Normal 

Risk 

Elevated 

Risk 
Cost of Action ($) 

Average Cost ($) of Being 

at High Vulnerability 

Normal Risk 216861 3341 0 (0,0,0) 

Elevated Risk NA NA 0 (1000,500,1500) 

 

 

Table 6.2 Transition data for 2 

Research Accept 
Normal 

Risk 

Elevated 

Risk 
Cost of Action ($) 

Average Cost ($) of Being 

at High Vulnerability 

Normal Risk NA NA 50 (50,50,50) 

Elevated Risk 1903 2442 50 (1050,550,1550) 

 

Table 6.3 Transition data for 3 

Overhaul 
Normal 

Risk 

Elevated 

Risk 
Cost of Action ($) 

Average Cost ($) of 

Being at High 

Vulnerability 

Normal Risk 600 0 1,100 (1,100, 1,100, 1,100) 

Elevated Risk 400 0 1,100 (2,100, 1,600, 2,600) 

 

 In tables 6.1-3, we have included a “Cost of Action” columns which shows our 

assumptions on the respective costs. The costs of actions are assumed to be known, since 

these are incurred by the deployment of personnel or buying new software/equipment. 

The automatic patching does not cost anything, whereas the “Research Accept” action 

incurs some minor costs. Compared to these, the cost of overhaul is much more 

expensive, but it also removes the high-risk states completely. The column “Cost of being 

at high vulnerability” states shows the random costs that are associated with high 

vulnerability states. We assume that the high vulnerability state poses high risk for hosts 

for being compromised. It is hard to estimate these costs, since not all vulnerabilities are 
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as critical and it is difficult to put a dollar value over the loss due to system breach. We 

have assumed 3 different average costs for being at high vulnerability states, 1000, 500 

and 1500 units.  

 In tables 6.1-3, we see that no data is available for state of elevated risk with 

action 𝑎1 and the state of 𝑛𝑜𝑟𝑚𝑎𝑙 𝑟𝑖𝑠𝑘 with action 𝑎2. We have made reasonable 

assumptions of about these numbers assigning much lower frequencies. The augmented 

data is shown in tables 6.4-5 

 

Table 6.4 Augmented transition data for 1 

Auto-patch Normal Risk Elevated Risk 

Normal Risk 216,861 3,341 

Elevated Risk 0 10 

 

Table 6.5 Augmented transition data for 2 

Research Accept 
Normal 

Risk 
Elevated Risk 

Normal Risk 10 1 

Elevated Risk 1,903 2,442 

 

 We start with the case with three scenarios. We assume a Dirichlet prior for 0.25 

for all the transitions, and the scenarios are generated using equation 6 in Chapter 4. 

Since we start with two natural states and three scenarios, we have six pure states 

altogether.  

 To account for the parametric uncertainty, we start with a 3 scenario problem. In 

this problem, we consider 3 parameters to be uncertain, viz. the transition probabilities 
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from high vulnerability state of action automatic patching and from low vulnerability for 

action research accept. The third uncertain parameter is the cost of being at high 

vulnerability states. We generate 3 different probability transition models by sampling 

from a Dirichlet distribution for these 3 parameters. The rest of the transition probabilities 

are given by the fraction of the number of transitions for a certain state transition with 

respect to the number of all transitions from the same source state.  

 

6.2.1 Solution using Equivalent POMDP 

 We then create the equivalent POMDP combining these 3 models. We use 

PERSEUS to solve the POMDP and generate 𝛼-vectors in order to formulate policies for 

any given belief states. In order to cover a wide variety of belief-points, we used Latin 

Hypercube sampling to generate multiple initial belief-points and then used random walk 

from each of them to create the sample belief space. We then run the point-based value 

iteration of PERSEUS to generate the solutions. The steps are summarized as follows: 

 

 

 

 

 

 

 

 



86 

 

 

1. Create scenarios: Use Dirichlet sampling for uncertain parameters to create different 

scenarios. 

 

2. Combine scenarios: Merge the scenarios to form an equivalent POMDP. 

 

3. Create sample belief space: Sample multiple initial belief-points from a Latin 

Hypercube design and generate belief-points from each of them using random walk. 

 

4. Run value-iteration: Run PERSEUS on the sampled belief space 

 

5. Derive policy: Use the 𝛼-vectors generated from PERSEUS to create action strategy 

for any given belief-point 

 

Steps for multiple scenario BAMDP 

 

6.2.2 Reward Based Learning 

 In our BAMDP model for cyber vulnerability, we have created a provision for 

reward based learning following Hou (2015). We are assuming that the cost 𝑅𝑎 of taking 

an action 𝑎 is fixed, and the cost of transitioning to a high vulnerability state 𝑅ℎ is 

random. Hence for each scenario, the variable cost of transitioning to a high vulnerability 

state is sampled from a normal distribution with the average of the observed variable cost 

as mean and the standard deviation of the observed variable cost as standard deviation. 

The observation matrix 𝑶𝒂  for each action 𝑎 of the equivalent POMDP has dimension 

𝑁 × 𝑛𝑂𝑁. The observation probability for each state- action- scenario tuple (𝑂𝑠𝑗
𝑎 ) is 

derived as the probability of being in a certain bin created by the intervals of the range of 

rewards. The details are given below: 

𝑛𝑂: number of observation levels 

𝑁 = 2: number of natural states 
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𝑈: number of actions 

𝑞: number of scenarios 

𝑛𝑂𝐶: number of columns in the observation matrix 

𝑛𝑅: number of reward levels observed 

𝑅𝑎 : Cost (negative reward) of action 𝑎 (fixed) 𝑎 ∈ {1,… , 𝑈} 

𝑅ℎ: Cost (negative reward) of being at high vulnerability state (variable) 

�̅�ℎ: Average cost of high vulnerability 

𝑆𝑅: Standard deviation of observed reward   

𝑅𝑚𝑠
𝑎 ~𝑁(�̅�ℎ + 𝑅𝑎 , 𝑆𝑅)   ∀𝑚 ∈ {1,… , 𝑞}, 𝑠: High Vuln} : Cost of transitioning from (to?) 

state 𝑠 (high) upon taking action 𝑎 in scenario 𝑚 

𝑅𝑚𝑠
𝑎 = 𝑅𝑎 , 𝑠: Low Vuln  : Cost of transitioning from (to?) state 𝑠 (low) upon taking 

action 𝑎 in scenario 𝑚 

𝑅𝑚𝑖𝑛 = min{𝑅𝑚𝑠
𝑎 } + 3𝑆𝑅  

𝑅𝑚𝑎𝑥 = max{𝑅𝑚𝑠
𝑎 } − 3𝑆𝑅  

𝐼𝑛𝑡 =
𝑅𝑚𝑎𝑥−𝑅𝑚𝑖𝑛

𝑛𝑂−1
   

 𝐿𝑜𝑏𝑠 = 𝑅𝑚𝑖𝑛 + 𝐼𝑛𝑡 × (𝑜𝑏𝑠 − 1)    ∀ 𝑜𝑏𝑠 ∈ {1, . . , 𝑛𝑂}  

𝑈𝑜𝑏𝑠 = 𝑅𝑚𝑎𝑥 + 𝐼𝑛𝑡 × 𝑜𝑏𝑠    ∀ 𝑜𝑏𝑠 ∈ {1, . . , 𝑛𝑂}  

The elements of the observation matrix 𝑶𝒂  are given by 

𝑂𝑠𝑗
𝑎 = Pr{𝐿𝑜𝑏𝑠 ≤ 𝑅𝑚𝑠

𝑎 ≤ 𝑈𝑜𝑏𝑠}   where  𝑗 = 𝑠 + (𝑜𝑏𝑠 − 1)𝑁   ∀ 𝑠 ∈ {1, . . , 𝑁} 
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6.2.3 Results of 3 Scenario Problem using BAMDP 

 Figures 6.1 a and b show scatter plots of belief-points for low and high 

vulnerability states respectively.  

 

 

Figure 6.1 3D scatter plot for (a) low, (b) high vulnerability states  

 

 Figure 6.1(a) shows that when the system is in low vulnerability state, it is 

optimal to choose action 1 (automatic patching) irrespective of the scenarios. Figure 6.1 

(b) shows that if the system is in high vulnerability state, actions 2 and 3 are chosen 

depending on the situation.  

   

(a) (b) 
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Figure 6.2 Value-action plot for 3 scenario 

 

 Figure 6.2 shows a plot of optimal values and actions for the belief-points used to 

solve the POMDP. Although this figure does not reveal much about the individual belief-

points, it still shows that action 1 is chosen most of the time and is associated with lower 

cost or higher reward (value). Action 2 and action 3 are associated with higher cost, 

indiciated by the downward spikes in the top frame of the figure. The action names at the 

right side of the top frame show average values corresponding to different actions. 

 

6.3 Simulation  

 To evaluate the effect of implementation of BAMDP, we created simulations to 

compare results from a random walk experiment and from optimal 𝛼-vectors. We started 

from a general uncertain belief-state, where each scenario is equally likely with a positive 

probability on the natural state of low vulnerability. For example, for the 3 scenario case, 

the initial belief-state for simulation is (0.33,0,0.33,0,0.33,0). At each step, an action is 

𝑎1 

 
𝑎2 

 𝑎3 
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chosen from the current belief-state and a new belief-state is generated by Monte Carlo 

(MC) sampling from the transition probability and observation matrices. The choice of 

action could be random or based on the optimal 𝛼-vector for the current belief-state. The 

steps of the simulation are given below. 

 

 

1. Initial belief-state: Create initial belief-state where all scenarios are equally likely 𝑏𝑡 

2. Initial pure state: Determine initial state 𝑠𝑡 of the system by random sampling based 

on initial belief-state probabilities 

3. Take action: Select action 𝑎𝑡 randomly (for random walk) or from optimal 𝛼-vector   

      for the current belief state  

4.  Next pure state:  Sample next state 𝑠′𝑡 from transition probabilities and 𝑎𝑡  

5. Next observation: Simulate next observation 𝑜𝑡, based on observation probabilities 

and selected action 

6.  Reward: Observe reward value based on state transition, action and observation 𝑟𝑡 

7.  Bayesian update of belief-state: Update belief-state using equation (1) of Chapter 4 

to 𝑏𝑡+1 

8. Go to next step: Update 𝑠𝑡+1 = 𝑠𝑡
′, current belief-state with updated belief-state and 

go to step 2 until number of maximum steps reached 

Steps for BAMDP simulation 
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 Figure 6.3 shows a schematic diagram of the steps in the BAMDP simulation. We 

have run the simulation for 10000 steps and replicated 10 times starting from the initial 

belief-state of (0.33, 0, 0.33, 0, 0.33, 0) for the 3 scenario problem. The histogram of the 

rewards generated by random walk is shown in figure 6.4 (a), and that by optimal 𝛼-

vectors in figure 6.4 (b). From the histograms, it is clear that taking optimal action at each 

step will incur lower cost than if the actions are chosen randomly. 

 

 

 

Figure 6.4 Histogram of expected reward from (a) Random walk, (b) Optimal alpha 

vectors 
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′        𝑠𝑡 

𝑎𝑡+1 

𝑏𝑡 𝑏𝑡+1 𝑏𝑡+2 

𝑜𝑡+1, 𝑠′𝑡+1, 

𝑟𝑡+1 

       𝑠𝑡+2 = 𝑠𝑡+1
′  

Figure 6.3 BAMDP simulation diagram 

(a) (b) 
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6.3.1 Average Learning Time 

 In the simulation runs, after a certain number of steps, the belief-states converge 

to a single scenario. That means the belief-states will have non-zero probabilities for the 

natural states belonging to only one scenario, and that scenario will remain true in the 

subsequent steps of the simulation. This indicates that the BAMDP leads to decrease the 

parametric uncertainty at every step with the Bayesian update of the belief-state and after 

a certain number of steps in the simulation, the parametric uncertainty is resolved and the 

true scenario is revealed. We come up with a measure called Average Learning Time 

(𝐴𝐿𝑇) which provides the expected number of steps to converge to a single scenario from 

an initial belief-state where all the scenarios are equally likely. Let us suppose that 𝜌𝐿𝐿𝑡 is 

the parametric learning level at step 𝑡. For a system with 2 natural states and 𝑞 scenarios,  

the belief-state will have 2𝑞 elements. Let 𝑝𝑡𝑗 be the probability of being in natural state 

1 in scenario 𝑗 ∈ {1,… , 𝑞}. Then, for a threshold value of 𝜖 

𝜌𝐿𝐿𝑡 = max
𝑗
min [𝑝𝑡𝑗, 1 − 𝑝𝑡𝑗]       ∀ 𝑗 ∈ {1,… , 𝑞}             

𝐴𝐿𝑇 = 𝐸(𝑡|𝜌𝐿𝐿𝑡 > 1 − 𝜖) 

Here 𝜖 should typically be around 0.01. We have calculated 𝐴𝐿𝑇 as the average of the 

number of steps to reach 𝜌𝐿𝐿𝑡 > 1 − 𝜖 for 10 replications of the same simulations, each 

of which is run for 10000 steps.  
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Table 6.6 Learning time for BAMDP with 3 scenarios 

Method 𝐴𝐿𝑇 
Std. Dev. of 

Learning Time 

Random Walk 185 109.10 

Optimal  1039 769.08 

 

 Table 6.6 provides the mean and the standard deviation of the learning times from 

the 10 replications of the BAMDP simulation for the 3 scenario case. It shows on an 

average, random walk (where actions are chosen randomly) takes fewer steps to reveal 

the true scenario than the optimal 𝛼-vectors. This can be explained by the trade of 

between exploration and exploitation in BAMDP. In random walk, since there is no 

objective to pick the action which will maximize the expected reward, the agent can learn 

fast by taking actions that are suboptimal. On the other hand, with the optimal 𝛼-vectors, 

there is only one action to be taken at each belief-state, which is the optimal action. 

Hence the agent does not learn about how the system would evolve if actions other than 

the optimal are taken for a certain belief-state. This contributes to the slow learning, but 

leads to higher expected return than random walk as shown in figures 6.4 (a) and (b). 

 

6.4 More scenarios 

  Next we analyze the results generated by implementing a 100 scenario BAMDP 

on the same dataset. With 2 natural states and 100 scenarios, we have 200 pure states in 

the equivalent POMDP formulation. Since it is not possible to generate plots like  figure 
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6.1 with 100 scenarios, we present in table 6.7 the distribution of the actions in the 1000 

belief-points we used for PERSEUS to solve the equivalent POMDP. 

 

Table 6.7 Optimal Value and Action by BAMDP for Belief-points evaluated in 

PERSEUS  

Natural State 
Optimal Value 

Avg. (Std.) 

Percentage of 

Belief-points 
Optimal Action 

Low  -278.38 (59.93) 86.6% 𝑎1 

High  -1952.83 (591.71) 10.1% 𝑎2 

High  -2572.44 (96.83) 3.3% 𝑎3 

 

 Table 6.7 shows that out of 1000 belief-points, 86.6% have positive probabilities 

in low vulnerability natural states in all the scenarios. For such belief-points, 𝑎1 or 

automatic patching is the optimal action. The rest of the belief-points have non-zero 

probabilities for the high vulnerability natural states. For these cases 10.1% of all the 

belief-states have 𝑎2 or research accept as the optimal action, and 3.3% of all the belief-

states as 𝑎3 or complete overhaul as the optimal action associated with higher cost.   

 

Figure 6.5 Optimal value and actions for 100 scenario BAMDP 
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 Figure 6.5 shows the optimal expected rewards (values) and actions for the 1000 

belief-points used in the PERSEUS.  

 Finally we present the BAMDP with Orthogonal Array Latin Hypercube 

Sampling (OALH) sampling. Latin Hypercube Sampling (McKay, Conover and 

Beckman 1979) is used for experimental designs and are known for stratifying each 

univariate margins simultaneously. OA based designs are also popular in industry, partly 

due to their uniformity properties. The OA based Latin Hypercubes as proposed by Tang 

(1993), preserves 𝑟-variate uniformity property of a strength 𝑟 OA design. We have used 

strength 𝑟 OALH designs to sample scenarios with 𝑟 uncertain parameters. 

    We first construct an Orthogonal Array Latin Hypercube following Tang 

(1993).  For the cases designated as “NA” in tables 6.1.a and b, (𝑎1: high  low, high  

high;  𝑎2 : low  low, low  high), and the negative reward associated with being in the 

state of high vulnerability, we generate samples from a Dirichlet distribution taking 

inverse over the values taken from the OALH design. The OALH design is of strength 3 

to take into account the parametric uncertainty in these 3 quantities. Each scenario is 

sampled from each row of the OALH design. Since the design has 27 runs, we generate 

27 scenarios, and as we have 2 natural states, our total number of pure states is 27 × 2 = 

54. We solve the equivalent POMDP with 1000 belief-points generated from a random 

walk using PERSEUS.  
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Table 6.8 Optimal Value and Action for OALH BAMDP 

Natural State 
Optimal Value 

Avg. (Std) 

Percentage of 

Belief-points 
Optimal Action 

Low  -289.34 (60.60) 89.5% 𝑎1 

High  -2135.73 (120.40) 4.3% 𝑎2 

High  -2532.26 (56.39) 6.2% 𝑎3 

 

 

 Table 6.8 gives an overview of the policies over the belief-points used in 

PERSEUS. Like the 100 scenario case, here also, most belief-points have positive 

probabilities in the low vulnerability natural states, with 𝑎1 or automatic patching as the 

optimal action. The high vulnerability belief-states have optimal actions 𝑎2 or research 

accept and 𝑎3 or complete overhaul. Figure 6.6 shows the optimal values and actions for 

the belief-points used in PERSEUS. Like the 3 scenario and 100 scenario cases, it shows 

that the system stays in the low vulnerability state most of the time, and action 𝑎1 would 

be optimal in these cases. Once in a while when the belief shifts towards high 

vulnerability requiring to take more expensive actions 𝑎2 and 𝑎3.  
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Figure 6.6 Optimal value and actions for OALH BAMDP 

 

 Figure 6.7 shows the boxplots of the optimal values corresponding to 𝑎1, 𝑎2 and 

𝑎3 for 3, 27 and 100 scenario cases that we have discussed so far. 

 

     

Figure 6.7 Boxplot of optimal values for different actions for 3, 27 and 100 scenario 

problems 
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 Figure 6.8 shows a comparison between the three BAMDP methods described in 

this section. This is a plot of the sum of all optimal values for the 1000 belief-points 

generated by the random walk in PERSEUS. It gives us an idea on how the values 

converge in the three cases. Apparently the 3 scenario case shows fastest convergence 

and the 100 scenario case is the slowest.  

 

 

Figure 6.8 Plot of sum of optimal values over all belief-points with time 

  

 Although the 3 scenario BAMDP converges the fastest, it might lead to spurious 

learning, since a vast number of scenarios will remain unrealized. An infinite scenario 

model would be much closer representation of reality, but it will lead to slow 

convergence. BAMDP with OALH sampling will ensure that scenarios which are less 
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likely also get sampled. This mitigates the problem arises from using small number of 

scenarios, but also shows overall reasonable convergence properties. 

 

6.5   Multiple Identical Systems 

 In real world, a decision maker may have to manage more than one identical 

system together. For instance, the decision could be related to the maintenance of a group 

of computers in a laboratory, or maintenance of a fleet of trucks, policy implementation 

on general population and so on. The actions only depend on the state of the system, they 

do not vary based on the individual systems. For these situations, we can formulate the 

decision problem covering all the identical systems together. We call this the multiple 

identical systems (MIdS) formulation. For example, if there are 10 computers to 

maintain, each of which can be in any one of the 2 original states, and there are 3 actions 

to choose from, we can set up the system states as percentage of computers at different 

states of vulnerability. Since all the systems are identical, we will only consider the 

different combinations possible, and treat all the permutations among the systems with 

the same percentage distribution of states as equal. The new states will indicate the 

percentage of systems that are in a particular original state, we call these the compound 

states.  Also, we will only include states which will have an integer value for the number 

of systems in a certain original states.  For example, if there are 10 computers, then 60% 

(6 computers) of them are in original state 1 and 40% (4 computers) are in original state 2 

makes a feasible compound state (0.6,0.4), on the other hand 55% in original state 1 and 
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45% in original state 2 would not make a feasible compound state, since the number of 

computers cannot be in fractions. 

Let there are 𝑁 original states, 𝐾 identical systems. Then the total number of 

compound states will be given by 𝑁𝑐 = (𝑁+𝐾−1
𝑁−1

). Let 𝜆𝑖 ∶ {0 ≤ 𝜆𝑖 ≤ 1; ∑ 𝜆𝑖
𝑁
𝑖=1 =

1; 𝜆𝑖𝐾 ∈ {0} ∪ ℤ
+} be the fraction of the number of systems that are in state 𝑖, 𝑖 ∈

{1, . . , 𝑁}. Then a compound state can be represented as  𝑆𝑐 = {𝜆𝑖}𝑖=1
𝑁  where 𝑐 =

{1, . . , 𝑁𝑐}. 

It is interesting to note that since the systems are identical, for each combination 

{𝜆𝑖}𝑖=1
𝑁 , there will be ( 𝐾

𝜆1𝐾,…,𝜆𝑁𝐾
) permutations, where ( 𝐾

𝜆1𝐾,…,𝜆𝑁𝐾
) =

𝐾!

(𝜆1𝐾)!,…,(𝜆𝑁𝐾)!
.  

 The compound actions are formed with the original states and original actions. So 

for our 2 state example, a compound action "11" would mean original action 1 when in 

original state 1 and also when in state 2. Consider the number of original actions to be 𝑈, 

the number of compound actions will be 𝑈𝑐 = 𝑁𝑈. Table 6.6 shows an example 

involving 2 systems with 2 original states and 2 actions.  

 

Table 6.9 Compound states for a 2 state 2 system multiple identical systems 

Compound 

State 
Proportions System 1 System 2 

1 (1,0) Original State 1 Original State 1 

2 (0.5,0.5) Original State 1 Original State 2 

3 (0,1) Original State 2 Original State 2 

 

 

 



101 

 

Table 6.10 Compound actions for a 2 state 2 system multiple identical systems 

Compound 

Actions 

Original 

State1 

Original 

State 2 

11 
Original 

Action 1 

Original 

Action1 

12 
Original 

Action 1 

Original 

Action2 

21 
Original 

Action 2 

Original 

Action1 

22 
Original 

Action 2 

Original 

Action2 

 

When there are 2 original states, the compound states can be written as {𝜆, 1 − 𝜆}. Let 

compound state 𝑔 is formed with  {𝜆, 1 − 𝜆} and state ℎ is formed with   {𝜆′, 1 − 𝜆′}and 

compound action 𝑎𝑐 = {𝑎|𝑖}𝑖=1
2 , where 𝑎𝑖 is the original action to be taken in original 

state 𝑖. Considering the state transitions are independent, the transition probabilities from 

compound state 𝑔 to compound state ℎ (𝑔, ℎ ∈ {1, . . , 𝑁𝑐}) under compound action 

𝑎𝑐, 𝑎𝑐 ∈ {1, . . , 𝑈𝑐} for  𝐾 identical systems can be calculated with the original state 

transition probabilities. 

𝑃𝑔ℎ
𝑎𝑐 =

{
  
 

  
 (𝑝11

𝑎|1
)
𝐾
 𝑓𝑜𝑟 𝑔 = {1,0}, ℎ = {1,0}

(𝑝22
𝑎|2
)
𝐾
𝑓𝑜𝑟 𝑔 = {0,1}, ℎ = {0,1}

∑∏𝑝𝑖𝑗
𝑎|𝑖

𝐾

𝑘=1𝑖∈𝐺
𝑗∈𝐻

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where 𝐺 ∈ {𝟏𝜆𝑘 , 𝟐1−𝜆𝑘}, 𝐻 ∈ {𝟏𝜆𝑘
′ , 𝟐1−𝜆𝑘

′ }, considering 𝒕𝑛is a vector with 𝑛 elements, all 

being equal to 𝑡.  
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6.5.1 Results 

 We have created a MIdS model with 2 systems and 2 states with 3 scenarios. We 

have used the same transition data as given in tables 6.1-6.2. After creating the BAMDP 

with 3 compound states and 9 compound actions, we derive the equivalent POMDP and 

follow the same method as described in section 6.2.  The optimal policies are derived 

from the 𝛼-vectors, which shows for the belief-points considered in PERSEUS, actions 

11, 12 and 13 are the ones that came out to be optimal for different belief-points. It 

intuitively makes sense that all these compound actions consider auto-patching (original 

action 1) as optimal for low vulnerability states.  

 

 

 

Figure 6.9 3D scatter plot for compound state (a) (1,0), (b) (0.5,0.5) and (c) (0,1)  

(a) (b) 

(c) 
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 Figures 6.9(a)-(c) show 3D scatter plots for the 3 different compound states 

respectively. For compound state 11, figure 6.9(a) shows that the optimal action is always 

11, i.e. do automatic patching if the system is in low vulnerability state for all the 

scenarios. For compound state 11, both the hosts are in low vulnerability states, so it is 

optimal to take the action which is least expensive. 6.9(b) shows the compound state 12, 

which means one system is in low vulnerability state and the other system is in the high 

vulnerability state. Depending on the scenario compound actions 12 and 13 are optimal. 

It is important to note, that the cost of being at high vulnerability states, and the transition 

probabilities are different for different scenarios. Hence the optimal policies are 

dependent on the scenarios, which show that parametric uncertainty in the system makes 

a difference on the action policies.   In Figure 6.9(c), for the compound state (0,1) there 

are very few data points, since this represents an extreme state where both the systems are 

at high vulnerability states. The effect of any action other than compound action 11 is to 

mitigate the high vulnerability state, which makes the random walk come out of the 

compound state of (0,1) quickly. Which explains why there are more points in compound 

states (1,0) and (0.5, 0.5) and so few points in (0,1). 

 

6.6 Summary 

 In this chapter, we have implemented finite scenario BAMDP on a cyber 

vulnerability maintenance problem. Our method has the capability to learn through 
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interaction with the environment, and take action correspondingly. The decision-making 

agent is armed with the 𝛼-vectors generated by the BAMDP, and it takes action based on 

its perceived belief-state of the environment. We have shown that for belief-states with 

positive probability in low vulnerability states, the action automatic patching or 𝑎1 is 

optimal. For the belief-states with positive probability in the high vulnerability natural 

states, for some cases research accept 𝑎2 is optimal and complete overhaul or 𝑎3 is 

optimal for the others. We then presented an Orthogonal Array Latin Hypercube based 

sampling method to sample the scenarios, and compared the results with 3 scenario and 

100 scenario cases. The OALH based BAMDP has the advantage to avoid spurious 

learning and finding an optimal solution in a reasonable amount of time. Next we 

presented a method to determine maintenance policies where more than one identical 

systems are involved.  

We call it “BAMDP for Multiple Identical Systems”, an example of which is 

shown for a 2 systems 2 state 3 scenario problem.  This method can be useful when a 

group of hosts are involved and a general policy is required for the entire group. This is 

also applicable for other processes where entities have identical properties with respect to 

the control problem, such as a group of vehicles, or a group of people and so on. BAMDP 

based vulnerability maintenance tools will help network administrators to make decisions 

more effectively. It can be used to build a more efficient alert system, which will notify 

the administrators about severity of system vulnerabilities with more precision. We 

believe this study can motivate more in depth research in using reinforcement learning 

methods to general policy making.  
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Chapter 7: Conclusions and Future Work 

 

 In this dissertation, we have explored deterministic and stochastic methods for 

data driven decision making. In Chapter 1, we discussed the motivation behind our 

research. We introduced the 4 questions that we are seeking to answer and put them in 

context. In this chapter, we will summarize our approach to answer these four questions, 

and discuss research avenues in relation to this work that can be pursued in future. Let us 

start with the deterministic problem.  

 

7.1 GAGEDD for Automotive Stamping Scheduling 

 1. “How to generate schedules, assuming known demand and production times, 

within reasonable times which will minimize inventory starvation and changeovers?”  

 To answer this question, in Chapter 2 we have built an Integer Programming 

model for a typical stamping scheduling problem with known demand in automotive 

manufacturing. The model can be applied to other manufacturing processes like injection 

molding and die casting where die-sets are involved in the process. Our main contribution 

is to develop a hybrid solution method involving Genetic Algorithm and Earliest Due-

date heuristic. We have implemented this method in a typical automotive stamping 
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scheduling scenario and compared the results with conventional methods like branch and 

bound and Genetic Algorithm. In Chapter 3, we have shown that when time is scarce, our 

method performs reasonably well, outperforming other methods. We have built software 

in Excel VBA which can be used as a decision support tool for similar scheduling 

purposes.  

 

7.2 Future Research Related to GAGEDD 

 For the stamping scheduling problem, the immediate extension would be to 

consider stochastic demand. However, with stochastic demand, there would be more 

restrictions on the size of the problem that can be solved. The other issue with stamping 

scheduling is uncertainty over the down time of the press. We have not considered any 

downtime for the problem we solved, but in real life the stamping presses need to be shut 

down from time to time for maintenance and other operational reasons. Inventory 

management and scheduling of the machines can be done more effectively if these 

sources of uncertainties are accommodated in the model.  

 

7.3 POMDP for Cyber Vulnerability Maintenance 

 Next, we explore stochastic methods for decision making in cyber security. We 

first start with a POMDP model to account for the uncertainty in the state of compromise 

of a host. Our research question for this topic is, 
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 2.  “How can we develop cyber maintenance policies when there is uncertainty in 

the state of compromise of a host?”  

 To answer this question in Chapter 4, we have reviewed MDP, and its extensions 

viz, POMDP and BAMDP. In Chapter 5, we first introduce parameters to account for the 

effect of different actions on the state of vulnerability and the state of compromise of a 

host. We assume that the state of vulnerability is observable, since the CVSS score of the 

vulnerabilities used as indicators of the state of vulnerability. However, it is not always 

obvious if a host is compromised or not. Our POMDP model operates over 3 actions, 

automatic patching, manual intervention and manual intervention with thorough forensic 

inspection (forensic scan). It should be noted that if the logging on the host is limited, the 

false negative probability of forensic scans could be quite high. We have used a point 

based value iteration method called PERSEUS (Spaan, Vlassis 2005) to solve the 

POMDP and derive optimal policies.  

Our policies suggest that if there is even a small probability that the system is in the 

unknown state of compromise, inspection and manual intervention would be the optimal 

action. We have run a sensitivity analysis over the parameter of probability of going to a 

high vulnerability compromised state after manual intervention, and see an increasing 

trend in the expected cost.  
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7.4 Future Research Related to POMDP for Cyber Maintenance 

 Our POMDP method can be extend to build decision support tools with 

automated alert systems. This will help network administrators to effectively monitor the 

state of compromise of a host and take necessary actions. Our contribution in this area of 

research is to identify a number of transition parameters and use them to build a POMDP 

model for cyber maintenance policies. Moreover, we can explore ways to estimate these 

parameters that went into the model from real world data. Different cost structure can be 

incorporated in the model since not all vulnerabilities and breaches cost the same. The 

solver can be made faster by implementing other POMDP solution methods. Exploring 

different sampling methods for the belief-states to run PERSEUS may also help speed up 

the running time of the method. This method can be a motivation to build new event 

logging systems targeted to capture data to more accurately  estimate the parameters used 

in this model. It can be integrated to create an intelligent alert system which network 

administrators can use. 

 

7.5 BAMDP for Cyber Maintenance 

 In Chapter 6 we have implemented BAMDP (Duff 2002) to solve a cyber 

vulnerability maintenance problem. This solution method is motivated from the fact, that 

we had limited data available from the net-logs of an organization. Our objective is to 

account for the parametric uncertainty inherent in the problem due to the unavailability of 
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cost data and frequency of certain state transitions. The research question we ask for this 

topic is, 

 3. “With the available data on vulnerability state transitions along with its 

limitations, how can we account for the parametric uncertainty with reasonable 

confidence and make policies?” 

 We have explored finite scenario methods, where we have used Dirichlet 

sampling for the uncertain parameters to generate multiple scenarios. The scenarios are 

then merged to an equivalent POMDP and PERSEUS is used to solve the POMDP. We 

show through the 3D scatter plots of a 3 scenario problem how different scenarios might 

influence the optimal policies. This method can lead to the development of a decision 

support system where the decision maker can leverage his/her process knowledge for the 

uncertain parameters. Most of the research related to reinforcement learning and BAMDP 

find application in robotics and multi-arm bandit problems. Our contribution is a step 

towards taking advantage of these methods to make more general policies. In robot 

movement problems, typically, learning is one-step at a time, whereas in our extended 

formulation, every step learns more information on all the state transitions.  

 With finite scenario models, the problem of how many scenarios will be sufficient 

poses an important question. If the number of scenarios is too small, then there could be 

learning which does not correspond to real learning, i.e., “spurious” learning. If the 

number of scenarios is too large, the problem cannot be solved in a reasonable amount of 

time. To find a balance between these 2 extremes, our main contribution in this area of 

research is the application of Orthogonal Array based Latin Hypercube (OALH) designs 
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(Tang 1993) for sampling of the uncertain parameters to generate the scenarios. We 

demonstrate the method with an example using a strength 3 Orthogonal Array Latin 

Hypecube (OALH) to sample for the 3 uncertain parameters of the model. The design has 

27 runs, so we created 27 scenarios each run catering to the 3 uncertain parameters of the 

model. We compare this model with a 3 scenario and a 100 scenario models, and show 

that 3 scenario converges the fastest, and the 100 scenario model is the slowest, while the 

27 scenario OALH based method show reasonable convergence properties. The OALH 

sampling makes sure that the transition events that are less likely also gets sampled. This 

is part of the exploration and exploitation tradeoff inherent in BAMDP and reinforcement 

learning. OALH sampling provides more effective exploration, so that an optimal policy 

can be derived in a reasonable amount of time. 

 Our other contribution related to cyber maintenance problems is to model 

Multiple Identical Systems (MIdS) with BAMDP. The question we ask in connection 

with decision making for multiple systems is:  

 4. “How to design efficient models for multiple systems with identical 

characteristics?” 

 . Our contribution is to motivate the idea of building models for multiple systems 

with identical characteristics. When there are more than one systems involved and they 

are identical in characteristics for the control problem, we have shown how to build 

compound states and compound actions, which can be effectively used to control several 

systems together. This method has the potential to leverage even faster learning, since 

every step encounters multiple transitions. We have presented an example with 2 systems 
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and 3 scenarios, for which we have derived the policies involving compound states and 

actions. 

    

7.6 Future Research BAMDP for Cyber Maintenance 

 There are many ways our research can be exploited to build more effective and 

faster learning models to derive decision policies. Markov Decision Process models are 

computationally expensive for problems with large dimensions. So naturally, BAMDP 

models are more difficult to solve. Research can be directed towards deriving more 

computationally efficient methods involving large number of diverse scenarios. For the 

decision problems similar to the cyber maintenance problems described in our research, 

we can already start with some known 𝛼-vectors which are associated with the optimal 

policies of a previous run of the process, so that we don’t have to spend as much time 

deriving the new policies.  

The data scarcity issues can be addressed in a more structured way using predictive 

tools like logistic regression. The Multiple Identical Systems method is only developed 

for 2 state processes, the method can be extended for processes with higher number of 

states. However, with large number of systems, the number of compound states will grow 

and the equivalent POMDP problem will be much more difficult to solve. Some actions 

are always dominated (e.g. action 22 in table 6.6b), so it would be interesting to see what 

happens if we do not consider them while solving the POMDP. In conclusion, the 

decision support tools must be usable by the decision makers in real time, so it would add 
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value to invest in research that would make the methods described here more 

computationally efficient. 

############### 
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