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Abstract 

 

Scaffolded DNA origami is a recently emerging technology that allows the 

construction of complex nanostructures via molecular self-assembly driven by Watson 

and Crick base-pairing, i.e. A-T, C-G. In the past decade, this approach has been 

successfully used to construct complex 2D or 3D static structures. Complex dynamic 

DNA origami mechanisms (DOM) have been fabricated and can achieve 1D, 2D and 3D 

motions. However, thermal fluctuation can dramatically influence the performance of 

these dynamic DNA nanostructures in solution in solution. The function of DOM always 

suffers significant variation due to the random motion of flexible joints constructed by 

flexible single-strand DNA (ssDNA) connections. Verification of these DOM depends 

heavily on the projection configurations of the nanostructures on two-dimensional 

transmission electron microscopy (TEM) images, which cannot always provide the 

accurate information of the actual configuration if the shape of the nanostructure is not 

planar. In addition, much more design and control of multiple degree-of-freedoms is still 

difficult. 

This research expanded scaffolded DNA origami nanotechnology to design dynamic 

nanomechanisms by following a design framework that parallels macroscopic compliant 

mechanism design. We refer these compliant DNA origami mechanisms as CDOM. The 

compliant components can be built by ssDNA connections or double-strand (dsDNA) 



iii 

 

bundles with small bending stiffness, which can be easily realized within DNA origami. 

Firstly, Pseudo-rigid-body models were developed for the application of DNA 

nanostructures analysis. Then, a compliant hinge and a four-bar bistable mechanism were 

fabricated to demonstrate the design methodology. In addition, projection kinematics 

analysis was developed for obtaining the actual configurations of DNA origami 

nanomechanims in space from the projection configurations on TEM images. This 

provides an efficient and economic approach for verification of dynamic DNA origami 

nanostructures. Finally, a waterbomb base was designed and fabricated by scaffolded 

DNA origami. Folding of the waterbomb base first demonstrated the control of multiple 

degree-of-freedom nanostructures. Moreover, higher-order dynamic nanostructures can 

be fabricated from the polymerization of folded waterbomb base. 
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surface based on square configuration. Scale bars: 100 nm. .......................................... 178 
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Chapter 1: Introduction 

 

 

1.1. Background  

Nanotechnology opened the door of the world at the nanoscale, through which humans 

can visualize, inspect, construct, and manipulate molecules and atoms. Even the direct 

manipulation of individual atoms was realized at the end of last century, but the 

technology used to achieve this was very complex and expensive.  It is imperative and 

worthwhile to develop nanotools to conduct the work at nanoscale, such as atomic 

rearrangement, nanoparticle delivery and nanomanipulator actuation.  

 

 

 

Figure 1.1: A molecular robot by Lund et al.[1] 
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    The design and fabrication of nanomachines or nanorobot is one of the greatest 

scientific and technological challenges of the near to medium term future [2]. The ability 

to create and control nanorobots will inspire creation of new technologies and bring 

enormous welfare to human. Figure 1.1 shows a nanorobot built by protein and DNA 

molecules and it can follow the planned path on a track sheet built with DNA. As the 

booming of nanotechnology, engineering design is placed to a more and more important 

position because nanoscale devices with much more complex operations and multiple-

functions are urged by necessitated applications, such as targeted drug delivery, 

controlled drug release and nanoparticles fabrication.   

1.1.1. Nanomachines and nanorobots 

    Mechanisms and machines are the devices that can transmit force, motion or energy 

from the input joystick to the output effector through the intermediate components [3]. 

Usually, they consist of several links connected by kinematical joints, such as revolute, 

prismatic and spherical joints. The design and fabrication face huge challenges as the size 

of machine goes to nanoscale, but the abundant experience accumulated in macroscopic 

machine design can still provide plentiful valuable and feasible experiences for the 

nanomechanisms and nanomachines design. In recently years, kinds of protein are chosen 

by researchers to develop nanomachines. Proteins always consist of a bunch of amino 

acids whose properties have been investigated in detail, such as the stiffness, folding and 

unfolding states, stretching behavior, and degradation [4–6].  The polypeptide chain 

structure promises the stability of protein, which increases the probability of success on 

fabricating nanostructures. Here, it is intuitive for us to analyze the entire protein by a 
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chain model which uses the rigid link or part to represent the amino and revolute or hinge 

joint to represent the connection between the amino acids. Chirikjian and co-workers 

explained the folding and unfolding of proteins through a statistical kinematics approach 

[4]. In addition, Kazerounian applied the kinematic linkage model on the protein structure 

and developed a Matlab program named ProtoFold for predicting protein kinematics 

. The design and fabrication of bio-nanorobots with proteins and DNA was also on board 

through the effort of Mavroidis et al.[2]. Their research showed that many biological 

elements, such as kinesin, RNA polymerase, myosin, dynein, adenosine triphosphate 

(ATP) synthase, and DNA can function as nanoscale linear, oscillatory or rotary motors. 

     Recently, several hybrid protein-DNA nanomachines with functional motion had been 

achieved. For example, Lund et al. designed a molecular walker, shown in Figure 1.1, 

with three legs comprised by three individual dsDNA helices extending from a protein 

core [1]. Single-stranded overhangs were placed on the dsDNA legs and the 

corresponding complementary ssDNA overhangs were placed on the substrate. The 

“walk” was driven by thermal fluctuation while the ssDNA overhangs bind and release 

with the ssDNA strands on the substrate. Directionality was imposed by enzymatically 

disable the overhangs on the trajectory after the legs moving to the next step. These 

examples provide a promising proof-of-principle for nanoscale robot that can be 

controlled to finish prescribed motions and transports. However, they are still far away 

from the robot in macroscopic world that can be programed and controlled to finish 

complex tasks automatically. In addition, the structures of these nanorobots are very 
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simple and their applications are greatly limited because many of them can only finish 

single task, such as simple rotation and translation [7–9].  

1.1.2. DNA nanotechnology 

Except the protein, scientists also pay lots of attention to utilize DNA as basic element 

to build biomaterials and nanostructures because DNA has a more concise and stable 

structure [10]. In addition, the DNA strand is constructed by four bases, adenine (A), 

thymine (T), guanine (G), and cytosine (C), while proteins are always constructed by a 

bunch of amino acids which have multitude of complex interactions that are difficult to 

quantify [11]. In addition, scientists have mastered and commercialized the artificial 

synthesis of arbitrary DNA polymers, which provides infinite possibility for the 

nanostructure and nanorobot designed with DNA. On the other hand, DNA has the ability 

of self-assembly based on the Watson and Crick base pairing principle, A-T & G-C. 

During the growing of cell, DNA can duplicate and unzip and zip to express the gene to 

make RNA, and RNA can unzip and zip to make proteins. Most of the complex biology 

activities are controlled by DNA molecules, which shows us that DNA is not only a very 

promising material for designing nanomachine or nanorobot, but the self-assembly 

property of DNA may also be the most practical approach for tuning and controlling of 

nanostructures. 

The initial structural DNA nanotechnology was found by Nadrian Seeman in 1980’s 

and 90’s [12,13]. Although the majority of DNA nanostructure applications utilize 

objects with static geometry, important strides have been made to design dynamic DNA 

devices (i.e. DNA nanomachines). Early DNA nanomachines [14,15] involved 
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configurations of DNA strands that could be triggered to undergo conformational 

changes, usually via DNA strand displacement [16–18], to achieve, for example 

rotational or translational motion or even measure molecular binding energies [15]. 

Recently, a new type of DNA nanotechnology called scaffolded DNA origami has 

developed and it enabled the construction of nanostructures with unprecedented 2D or 3D 

structural complexity by self-assembly [19–22].  

 

 

 

Figure 1.2: Scaffolded DNA origami. (a) Geometrical parameters of single dsDNA and 

two parallel dsDNA connected with two crossovers [20]. (b) Sketch of the scaffoled 

DNA origami: the single-stranded scaffold is folded by the ssDNA strands based on the 

base-pairing (A-T, G-C). (c) An example of the blueprint export from caDNAno: the 

scaffold (blue line) is folded and hold by a bunch of staples (color ones). 

 

 

   Scaffolded DNA origami is a bottom-up self-assembly fabrication method which can be 

explained concisely by Figure 1.2. Single dsDNA strand consists of two ssDNA strands 
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coiled into double helix structure by following the Watson-Crick base-pairing rules, A-T 

and G-C. From the top to the bottom, Figure 1.2(a), one ssDNA strand starts from the 5’ 

end to the 3’ end and the complementary ssDNA strand starts from the 3’ end to the 5’ 

end. Single dsDNA has a diameter close to 2~2.5 nm and the length of one base pair (bp) 

is about 3.4nm. The helix pitch of single dsDNA is 21 base-pair (bp). Usually, during the 

conception design, dsDNA can be presented by a single uniform cylinder with a diameter 

equal to 2-2.5 nm. When two dsDNA strands are arranged parallel together, the ssDNA 

strand on one dsDNA strand can  routing to the other dsDNA strand through the tangent 

positions where their rotation directions are coincident. This is the key feature of the 

DNA origami, and the position that has the ssDNA strands span on two dsDNA strands is 

called crossover. Based on this, the scaffolded DNA origami is driven by DNA base-

pairing between a long (~7000-8000 bases) single-stranded DNA (ssDNA) named 

“scaffold” and a bunch of shorter (~30-50 bases) ssDNA named “staple” strands (Figure 

1.2(b)). The sequence of the scaffold has been identified and the popular method to 

obtain the scaffold is extracting from the M13MP18 bacteriophage virus genome [22]. 

The sequences of the staples are designed to be piece-wise complementary to sections of 

the scaffold that may be distant in primary sequence. That is, one staple strand may bind 

separate sections of the scaffold that may be several thousand bases away. All of the 

crossovers on the complementary ssDNA can be figured out by following the helix 

rotation of the dsDNA. Usually, more crossovers between adjacent dsDNA strands, more 

stable and stiffer the structure will be. When all of the staples and scaffold are mixed at 

specialized concentration ratio in buffer, the staples will bind to the scaffold and force the 
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scaffold to fold to the pre-designed nanostructure. This process is also called as self-

assembly folding and the entire experiment process is controlled by an optimized thermal 

ramp. As the folding progress, the staples zip to the scaffold and form double-stranded 

DNA (dsDNA) and finally the entire scaffold will be stabilized into close-packed bundles 

of dsDNA by the staples. Structures are designed so that these bundles arrange into the 

desired 3D structure. Then the complementary ssDNA strands can be figured out easily 

by following the sequence of the scaffold.  

Figure 1.2(c) shows that how a bunch of ssDNA strands (color ones) is used to fold the 

entire scaffold (blue line) into a four dsDNA strands plate. Currently, several computer-

aided design tools of DNA origami are available to facilitate the design process. The 

most popular one is caDNAno which provides a fast and flexible design optimization of 

DNA origami scaffold, staple routing and sequence determinations.  

Usually, the scaffold is derived from the M13MP18 bacteriophage virus and staple 

oligos are ordered from a commercial supplier. Complete and detailed protocol of 

scaffolded DNA origami was presented by Castro et al [22]. Briefly, the concentration of 

scaffold used to folding is 10-20 nM and the concentration of the mixed staples is 10-fold 

excess of each staple. Then the self-assembly process will happen in a buffer containing 

5mM TRIS, 1Mm EDTA, 5 mM NaCl, 20 mM MgCl2 and be controlled by a thermal 

annealing ramp with initial heating to 65 °C and subsequent slow cooling down to 4 °C 

over a typical timescale of 2-5 days. 
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Figure 1.3: Examples of 2D and 3D DNA origami nanostructures.[19,20,22,23]. 

     

 

    During the actual experiment, we need to screen the buffer conditions, especially the 

concentration of MgCl2, and thermal annealing ramps to optimize self-assembly of the 

desired 3D nanostructures. Gel-electrophoresis is followed to purify the folded 

nanostructures and best folding condition can be figured out by evaluating the gel image. 

Then the purified samples will be deposited on the negative-stain grids of transmission 

electron microscopy (TEM). During the depositing process, the self-assembled 

nanostructures will drop and be absorbed to the surface of the grids. Finally, images will 

be taken under TEM. Lots of complex 2D and 3D nanostructures have been fabricated 

successfully by scaffolded DNA origami, such as stars and smiley faces[19], 

cuboid[20,24], tensegrity[25], sphere[26], polyhedron[27], and nanopores[28,29] (Figure 

1.3).  
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1.1.3. DNA origami mechanisms (DOM) 

DNA origami has been successfully used to design and fabricate hinge, prismatic, 

universal joints and furthermore, a spatial Bennett four-bar mechanism, a crank-slide 

mechanism and a scissor (Figure 1.4) [30,31].  

 

 

 

Figure 1.4: DNA origami mechanisms and machines (DOM).[31] 

 

 

These joints and mechanisms were built by following the methodology of classic 

mechanical design and they are cataloged to the DNA origami mechanisms (DOM). 

These work proof that it is feasible to design mechanisms which can achieve 1D, 2D and 

3D motions with DNA origami nanotechnology. Based on the achievement of DOM, 

more complex and powerful nanomachines can be built. But our current DOM is ad hoc, 

very inefficient and error-prone, especially can be dramatically influenced by the thermal 



10 

 

fluctuation. In addition, the control of the DOM is difficult due to the high flexibility of 

the joints.  

Mechanical engineers also face great challenges when try to design and fabricate 

micromechanical devices. One challenge is the assembly of components can’t be 

achieved according to the traditional machine assembly approach. Another big challenge 

is the micro devices can’t suffer long time work and low fatigue bearing ability is a fatal 

weakness. However, compliant mechanism provides feasible and reliable ability to 

overcome these faults. Different from general machines, compliant mechanism can 

transmit energy, motion and forces by the deformation of the integrated compliant 

components. These compliant components always have smaller stiffness which can be 

achieved by using softer material or varying the geometry design parameters, such as a 

neck placed between two rigid segments. The design methodology of compliant 

mechanism has been successfully used on the micro-devices design and fabrication. It is 

worthy and valuable to apply the design and analysis methodology of compliant 

mechanism on the DNA origami mechanisms and machines.  

1.1.4. Compliant mechanism 

Different from rigid mechanism, compliant mechanism can transfer or transform the 

motion, force and energy through the deformation of the flexible elements that have 

relative smaller stiffness comparing with the other rigid portions [32–35].  Usually, 

mobility of compliant mechanism is obtained and determined by the range of deformation 

of the flexile elements that can made with either flexible material or the same material as 

the rigid portion but has small bending or torsional stiffness proving necessary 

https://disl.osu.edu/
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deformation in the needed motion direction.  One advantage is that the entire compliant 

mechanism can be fabricated from a single sheet or a bulk material without assembling 

individual parts, which reduce the cost and increase the throughput. In addition, the 

accuracy of the compliant mechanism is pretty high because there is no clearance and 

lubrication problem caused by the assembly, which enable it as a significant choice for 

the design of high performance microscale and precision machines. 

 

 

 

Figure 1.5: Examples of compliant mechanisms, a clamper (left) and a compliant hinge 

(right). 

 

 

    Figure 1.5(left) shows a clamper, an example of compliant mechanism. The entire 

clamper is fabricated from a single plastic sheet and its hinges or pivots have relative 

small bending stiffness about the rotation axes. A conception design of compliant hinge is 

shown in Figure 1.5(right). Most of deformation will exist at the hinge segment when a 

distal force is applied because the hinge segment has a much lower bending stiffness 

comparing with other portions. 
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    These advantages of compliant mechanism can be integrated to the design and 

fabrication of microscale and even nanoscale machines, such as the microscale flipping 

robots, high precision XY nanopositioner [36]. In addition, compliant mechanisms also 

appear in the design of functional material that has special thermal expansion properties 

or negative Poisson’s ratio [37].   

1.1.5. Analysis of compliant mechanism 

Due to the intrinsic nonlinear properties of deformation of flexible components, it is 

inefficiency to obtain the entire picture of the motion based on the stress and strain 

analysis or finite element simulation of compliant mechanism. Pseudo-rigid-body model 

(PRBM) provides a concise and easy-to-use approach for the kinematics and dynamics 

analysis of compliant mechanism [32–34]. Figure 1.6 shows the detailed PRB model 

application on a cantilever beam with a distal force. 

 

 

 

Figure 1.6: Pseudo-Rigid-Body model of a complaint cantilever beam. 
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Different from obtain solutions from the nonlinear deformation equations, PRBM 

treats the flexible component by torsional or linear springs and rigid component 

connected with traditional revolute or prismatic joint. The springs function as energy 

story element that is the same as the strain energy storage, the rigid component replace 

the flexible element and satisfy the geometry constraint and the joint provides the needed 

mobility for the mechanism. Then, traditional analysis methods for rigid body 

mechanisms can be applied on the compliant mechanism with acceptable accuracy. 

Also, PRBM can be employed to analyze structures constructed by anisotropic 

materials, such as rubber and plastic[32]. As energy analysis is always important in 

biological system analysis, PRBM provides a useful approach for estimating the energy 

stored or transferred in structures of biological materials on which complex finite element 

methods or molecular simulations are always difficult to be conducted [35]. For instance, 

molecular simulation costs too much computation sources to obtain the deformation of 

DNA bundles under bending or twisting loads [38]. However, with the well-established 

relationship between persistence length and bending stiffness of DNA, PRBM can be 

applied to quantify the deformation and energy storage of DNA bundles [39–41].  

1.2. Compliant DNA origami nanomechanisms   

As mention previously, the development of scaffolded DNA origami enabled greater 

control over geometry and stiffness of nanostructure components, which has expanded 

the possibilities to design complex mechanical behavior. Furthermore, in recent years 

design and analysis tools have sped up the development DNA origami and enabled 

consideration of properties beyond geometry, such as stiffness, which play a critical role 
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in the function of many DNA origami nanodevices [42,43]. Prior work to design and 

quantify the mechanical behavior of DNA origami nanostructures has revealed that they 

exhibit mechanical deformations such as bending, stretching, and compression, similar to 

macroscopic structures [25,39,44]. Furthermore, some dynamic nanostructures fabricated 

with scaffolded DNA origami shown that it is feasible to design more complex 

nanorobots [24,45–47]. For example, Shown et al. designed a logic-gated nanorobot to 

delivery drugs to cells[45]. However, we can find that these designs are ad hoc and can 

only perform simple single task. More powerful, efficient and automatic nanorobots are 

still urgent needed. Because the fabrication process happens in the pre-set solution, it is 

still pretty difficult to obtain the fabrication result information from the solution directly. 

While the thermal fluctuation may dramatically influence the deformation of the flexible 

elements and the configuration of the entire nanomechanism, a big difference will be 

generated between the initial design and the experiment results.  

In order to overcome those issues, this dissertation introduced the design of dynamic 

DNA origami nanostructures by employing the macroscopic compliant mechanism 

design. This work combined the methodology of macroscopic compliant mechanism 

design with scaffolded DNA origami to design and fabricate self-assembled DNA 

nanostructures which have tunable mechanical properties, robust performance and 

programmable motions. Different from the previous research and initial conception of 

DNA origami mechanisms (DOM), the introduction of compliant components to the 

DNA nanostructure design raises a novel concept which is termed compliant DNA 

origami mechanisms (CDOM).  In this research, mechanical properties of compliant joint 



15 

 

and beam is been quantified and examples of compliant DNA origami mechanism have 

been fabricated.   

1.3. Contributions 

    The overall theme of the research presented in this dissertation is to resemble concepts 

of compliant mechanism with the nanostructure design of DNA origami to solve the two 

challenges: quantification of mechanical properties and suppressing thermal fluctuations 

in solution. The design of CDOM will be considered as an assembly process of basic 

components, such as rigid links and compliant joints.    

Three major achievements have been obtained: developed a design methodology for 

compliant joints, links and mechanisms with DNA origami, established the modeling and 

analysis procedure of CDOM based on PRB model and experiment verification and 

successfully demonstrated the application of paper origami design on DNA origami 

nanostructures. The accomplishments of this dissertation pave the road for designing 

much more complex nanomachines, broaden the applications of DNA nanostructures, 

provide comprehensive modelling and analysis procedures and establish detailed 

experiment protocols and efficient control and actuation approaches. Specially, the 

contributions of this thesis are summarized as follows. 

1. PRB models are firstly used on the compliant mechanisms fabricated by DNA 

origami. 

2. Nanoscale compliant hinges were fabricated by DNA origami and its 

mechanical properties can be tuned by adjusting its geometry design. 
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3. A nanoscale four-bar bistable mechanism was fabricated by DNA origami and 

it can be actuated to transfer between two stable configurations. 

4. Projection kinematics analysis conception was established and applied on the 

analysis of DNA origami mechanisms based on two-dimensional transmission 

electron microscopy. 

5. Paper origami methodology was successfully applied to design complex DNA 

origami mechanisms, which was demonstrated by the design and fabrication of 

Waterbomb base.   

1.4. Organization of this thesis 

The rest of this thesis is organized as follows. 

Chapter 2 proposed detailed PRB models for compliant DNA origami mechanisms. 

With the parameters of DNA, such as diameter, single base length and persistence length, 

related to moment of inertia and Young’s modulus, traditional material mechanic analysis 

can be applied on DNA nanostructures. And furthermore, much more accurate PRB 

models are provided for future analysis of DNA nanostructures. 

Chapter 3 presents the design of DNA origami compliant hinges whose deformation 

can be controlled by the imbedded single strand DNA springs at the compliant segment. 

As the length of ssDNA springs shorten, the angle of the compliant hinges declines. In 

addition, Euler-Bernoulli beam equation was used to model the deformation and Worm-

like chain model was employed to obtain the force introduced by the ssDNA springs. The 

models capture the experiments results well.  
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Chapter 4 introduced a four-bar bistable mechanism whose configurations can be 

controlled and transferred between the two stable positions. In addition, the energy 

landscape describing the transformation can be expected by the well-established PRB 

model. Controlled transformation between the two stable configurations is experimentally 

achieved via DNA displacement approach. 

Chapter 5 established the concept of projection kinematics that analyzes nanoscale 

mechanisms or machines only based on two-dimensional images including electron 

microscopy and atomic force microscopy images. This analysis approach is built on 

kinematics analysis of the nanoscale mechanisms and their spatial transformations. It can 

be applied not only on DNA origami mechanisms, but also on macroscopic linkage 

analysis and control based on videos or pictures. 

Chapter 6 introduced the design and fabrication of waterbomb base by DNA origami, 

which mimicked the methodology of paper origami. Waterbomb base is a complex 

dynamic DNA origami mechanism that has multiple configurations. Detailed kinematics 

model was presented. Multiple configurations were achieved by controlling the folding of 

corresponding joints via DNA strand displacement. In addition, several high-order 

nanostructures based on different configurations of waterbomb base were obtained. 

Chapter 7 summarized all achievements and discussed the future directions of research 

about DNA origami mechanisms and machines. Moreover, potential and promising 

applications of dynamic DNA nanostructures were presented.         
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Chapter 2: Mechanical Modeling of Compliant DNA Origami Mechanisms 

 

 

    In this chapter, computational analysis of compliant DNA origami mechanisms 

(CDOM) is introduced and explained in detail. The rigid, compliant and flexible parts are 

constructed by bundles of many double-stranded DNA (dsDNA) helices, bundles of a 

few dsDNA helices or a single dsDNA helix, and single-stranded DNA (ssDNA) strands, 

respectively. Similar to its macroscopic counterparts, a CDOM generates its motion via 

deformation of at least one structural member. During the motion, strain energy is stored 

and released in the compliant components. Therefore, these CDOM have the advantage 

of suppressing thermal fluctuations due to the internal mechanical energy barrier for 

motion. Here, it is demonstrated that classic Pseudo-rigid-body (PRB) models for 

compliant mechanism can be employed to the analysis of these DNA origami 

nanomechanisms and can serve to guide the design and analysis method.  

2.1. Background  

    DNA origami is a kind of bottom-up nanotechnology that uses DNA as material to 

create complex 3D nanostructures based on programming base-pairing interactions to 

control self-assembly. More specifically, the scaffolded DNA origami approach [19,20] 

uses short ssDNA strands (~30-50 bases), referred to as staples, to fold a long ssDNA 
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loop (~7000-8000 bases), referred to as a scaffold, into a desired geometry. The scaffold 

is usually derived from the M13MP18 bacteriophage virus and staples can be ordered 

from commercial vendors. Castro et al. [22] reported the process of design and 

experimental protocols of DNA origami in detail and also introduced the computational 

tools for predicting the folded shape of DNA origami structures [42]. In recent years, 

many complex 2D and 3D structures have been designed and fabricated successfully, 

such as smiley faces [19], bent and twisted bars [21], and spheres [26]. Besides these 

static nanostructures with arbitrary geometries, dynamic structures are also designed and 

investigated carefully. For example, Liedl et al. [25] designed 3D prestressed tensegrity 

structures to inspect the mechanical properties of DNA bundles, and Andersen et al. [24] 

reported an approach to construct a nanoscale box with a controllable lid.  Recently, the 

concept of DNA origami mechanisms (DOM) has been introduced [48,49] to fabricate 

nanostructures with complex and programmable motions, such as a four-bar Bennett 

linkage, which consists of four rigid links connected by four hinge joints, and a crank-

slider linkage, which consists of three hinge joints coupled to a sliding joint. These 

kinematic joints that form the basis of DOM are designed by exploiting the flexibility of 

single-stranded DNA (ssDNA). Due to the extremely low stiffness of ssDNA strands, the 

motion of a DOM is subject to thermal fluctuations if no active actuation or control 

mechanism is present, yielding random motion along the designed motion path. 

    In order to simplify DNA origami design, computer-aided design tools have been 

developed, such as caDNAno [20]. It provides a design interface for two popular cross 

sections, honeycomb and square, used for DNA origami nanostructures design. When the 
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design is finished, the sequences of the staples can be determined and exported easily 

from caDNAno.  Kim et al. [42] explained the fundamental principle of CanDo—a FEA 

software for structure prediction and stiffness analysis of the DNA origami 

nanostructures. These two tools have greatly improved the ability to efficiently design 

with DNA origami. 

Although plenty of advances have been made on the geometric design of DNA origami 

nanostructures, the mechanical properties, such as bending and torsional stiffness, are still 

not well studied. It is still difficult to model the behavior of DNA nanostructures under 

various environments, especially the thermal fluctuations in solution. Usually, in the 

context of stiff dsDNA bundles, a single dsDNA helix can be modeled as a uniform 

elastic cylinder with appropriate material properties. The mechanical properties of the 

dsDNA bundle can be quantified by following the classic principles of mechanics of 

materials [21,25]. For example, the bending stiffness of a bundle of dsDNA is decided by 

the elastic modulus and inertial moment of the cross section. The elastic modulus of one 

dsDNA helix has been characterized by experiments and the inertial moment of a bundle 

of dsDNA helices can be calculated by following the parallel axis theorem. Figure 2.1 

shows the double helix structure of DNA and how the cylinder model is used to represent 

the dsDNA helix. While the diameter of dsDNA is 2 nm, in the context of DNA origami 

nanostructures the diameter of each dsDNA swells to around 2.5 nm [20]. In the 

following sections, the 3D model of the design will always been shown as the cylinder 

model instead of the molecular model. 
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Figure 2.1: (a) The cylinder model of single dsDNA helix. (b) Two parallel dsDNA 

helices. 

 

 

2.2. Design of compliant DNA origami joints and mechanisms 

    Cureently, several kinematic joints, including revolute (hinge) and prismatic joints, 

have been fabricated with scaffold DNA origami [48]. These joints can be combined to 

form more complicated mechanisms, termed DNA origami mechanisms (DOM). In the 

design of DOM, hinge joints are designed by several ssDNA strands with 2-4 bases and 

rigid links by bundles of dsDNA helices [48,49]. Each hinge joint has at least two such 

ssDNA strand connections between the edges of the assembled links. In this way, the two 

connected links can rotate about the axis determined by the line passing through the 

ssDNA connections. However, these ssDNA based joints are subject to significant 

thermal fluctuations due to their extreme flexibility. It is a challenge to maintain the 

mobility of the nanomechanism but also achieve enough stiffness to overcome thermal 

fluctuations.  

    Fortunately, the methodology of compliant mechanisms [32,33,50] provides a feasible 

approach to achieve this goal by strategically designing desired stiffness at selected 

locations in a mechanism. At the nanoscale, it is challenging to assemble traditional 

kinematic joints from separate parts due to the complexity of topology of scaffold 
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patterning, which causes a decreasing fabrication yield of self-assembly. However, the 

fabrication of compliant mechanisms is relatively easy due to a smaller part count. The 

mobility of the compliant joint can be obtained by the deformation of the compliant 

component with a relatively low stiffness selectively placed in the mechanism [32,33,50]. 

DNA origami has the ability to fabricate parts with nearly arbitrarily complex geometry 

by self-assembly, so it is feasible to control the compliance of the parts. Here, compliant 

DNA origami mechanisms (CDOM) were introduced in detail.   

2.2.1. Design of compliant DNA origami joints 

    Compliant joints are used to assemble the rigid parts to develop complex compliant 

mechanism which can achieve the desired motion [32]. Similar to traditional kinematic 

joints, compliant DNA origami joints can be designed by mimicking the macroscopic 

counterparts.    Figure 2.2 shows six types of compliant joints including compliant wire, 

blade, hinge, notch, cross-strip R-joint and parallelogram P-joint and their DNA origami 

conception design respectively. As the fabrication yield of DNA origami depends on the 

geometrical complexity, actual DNA origami designs of these joints may be different 

from what depicted here. Sometimes it is necessary to change the design geometrical 

parameters to avoid the much high inner stress concentration that can fail the construction 

based on self-assembly. The basic compliant elements, such as the wire, blade, hinge and 

notch are much easy to be fabricated. Then much more complex compliant joints, such as 

the cross-strip R-joint and parallelogram P-joint (the bottom two row of    Figure 2.2) can 

be synthesized from those basic compliant elements.    
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                        Figure 2.2: Basic elements for the joints design of CDOM. 

 

 

2.2.2. Design of compliant DNA origami mechanisms 

Based on the compliant joints, much more complex compliant DNA origami 

mechanisms with multiple DOF can be designed and fabricated. The design of links with 

different cross sections and shapes can be integrated to the CDOM design procedure as 

separated and customizable modules (Figure 2.3(a)). In addition, classic compliant 

mechanisms, such as the bistable mechanism and expandable square mechanism may be 

fabricated (Figure 2.3(b,c)). 
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Figure 2.3: Design links and mechanisms. (a) Rigid parts with different cross sections. (b) 

A four-bar bistable mechanism. (c) Expandable mechanism. 

 

 

    In the following sections, mechanical models of ssDNA and dsDNA polymers will be 

discussed, and the Pseudo-rigid-body model (PRBM) [32,33,50,51] than can be used in 

design and analysis of compliant DNA origami links and mechanisms will be introduced. 

2.3. Mechanical models of ssDNA and dsDNA 

    To study the force and deformation of CDOM, first select mechanics models for 

ssDNA and dsDNA strands are introduced and explained.  

2.3.1. Persistence length of polymers and bundles 

    Persistence length, which is a measure of bending stiffness, is a widely used parameter 

for quantifying the mechanical properties of biopolymers. If the length of the polymer is 

much shorter than its persistence length, the polymer can be modeled as a uniform bar. 



25 

 

Experimental measurements [52–54] have shown the persistence length of dsDNA and 

ssDNA are about 50 nm and 2 nm, respectively.  From an engineering analysis point of 

view, bending stiffness is more commonly used to study mechanics of polymers. In what 

follows, the relation between the persistence length and the bending stiffness is reviewed. 

 

 

 

Figure 2.4: Sketch of single polymer. 

 

 

    In Figure 2.4, the energy stored in the curved short segment, E0, whose length is L can 

be calculated by 

2

0

1
( )

2
E EI L , 

1

R
                                                 (2.1) 

Here, E is the Young’s modulus, I is the moment of inertia,    is the curvature, R is the 

curvature radius. 

    Based on the theorem of equipartition of energy, E0 can also be related to thermal 

energy as:  

0

1

2
BE k T                                                        (2.2) 
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Here <E0> denotes the expected value of E0; Bk  is the Boltzmann constant; and T is the 

absolute temperature. At room temperature, 4.1Bk T pN nm  . Combining Eqs. (2.1) and 

(2.2) and noting that the persistence length, LP, is defined as the length scale where the 

polymer length, L, is equal to the average radius of curvature, R, then the relationship 

between the persistence length and bending stiffness (EI) is obtained from Eqs. (2.1) and 

(2.2) 

P

B

EI
L

k T
                                                      (2.3) 

Therefore, the stiffness of dsDNA can be quantified by PL . It follows that the elastic 

modulus of single dsDNA helix, dsDNAE can be calculated by  

( )P B
dsDNA

dsDNA

L k T
E

I
                                                    (2.4) 

Based on the assumption that a dsDNA helix in the design can be modeled as single 

uniform elastic cylinder and that cylinders in the bundle are securely coupled together, 

the bending stiffness, BSk  of the dsDNA bundles with inertia moment I, can be calculated 

by 

( )P B
BS dsDNA

dsDNA

L k T
k E I I

I
                                         (2.5) 

Here, I is the inertial moment of the bundle about its neutral axis. Generally, for a cross 

section with m dsDNA helices, the inertial moment is         

2

1

m

dsDNA ii
I mI A d


                                           (2.6) 
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Here, m is the number of dsDNA helices, A is the cross section area of single dsDNA 

helix and di is the distance between the center of ith single dsDNA helix and the neutral 

axis, see Figure 2.5. 

 

 

Figure 2.5: The cross section of a bundle of six dsDNA helices, each circle represents a 

dsDNA helix. 

 

 

2.3.2. The Worm-like chain (WLC) model 

If the polymer is much longer than its persistence length, the Worm-like chain model 

[54] can be used to determine the relationship between its end-to-end length and 

extension force as the following equation, 

2

1 1
( , )

4
4 1

B
WLC C

P C

C

k T x
F L x

L Lx

L

 
 
 

   
      

                                      (2.7) 

    Here x is the end-to-end length of the polymer, and LC is the contour length. For a 

DNA strand L mL
C b
 , where bL  is the base length, which is about 0.6 nm for ssDNA 

and 0.34 nm for dsDNA, and m is the number of bases or base pairs. 
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2.4. Pseudo-rigid-body models of compliant DNA links  

   Extensive studies on macro and micro compliant mechanisms have been carried out in 

the past two decades. Among the numerous methods developed for compliant 

mechanisms, the Pseudo-rigid-body model (PRBM) [32] is a well-studied method which 

models complaint links and joints as rigid links connected by a revolute joint with 

torsional springs. As a result, a compliant mechanism is converted into a traditional rigid-

body mechanism, and the analysis and design methodology of rigid-body mechanisms 

can be applied. 

    However, to apply these PRBMs to compliant DNA origami mechanisms, the 

following two factors must be taken into account. First, essentially no joint in DNA 

origami mechanisms is perfectly rigid, it is necessary to consider the compliance even if 

joints are intended to be fixed ends to improve the accuracy of the PRBM. The second 

one is the cross section of a link is not always uniform which means beam components 

may be constructed by multiple segments with each segment defined by a length, cross 

section and bending stiffness. PRBMs for these two special cases are discussed in detail 

in the following section. 

2.4.1. Effect of a non-rigid-fixed end on the PRBM for a compliant DNA link 

To study the effect of the compliance at the non-rigid-fixed end on PRBM, a torsional 

spring with stiffness K0 is placed at the fixed end as shown in Figure 2.6. For the design 

of DNA origami mechanisms, the non-rigid-fixed joint stiffness can be quantified 

experimentally [40]. Let us denote the rotation angle at the fixed end by 0 . For 

convenience,   is also defined as 0 1/K K   , the ratio of the relative stiffness of the fixed 
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end and the PRBM of the beam. The value of  depends on the design of the fixed end, in 

particular, the number and lengths of ssDNA connection that form the fixed joint. The 

larger the value of , the closer the fixed end is to an ideal fixture joint.  

 

 

  

                Figure 2.6:  PRBM for cantilever beam with a non-rigid-fixed end. 

 

 

   The following steps explain how to determine the values of the PRBM parameters. 

First, the deformation of the beam is determined by the Euler-Bernoulli beam equation, 

written as  

( ) ( )
'( )

y xF a x F b y
s

EI


  
                           (2.8) 

where Fx and Fy are the horizontal and vertical component of the end force F.  Eq. (2.8) 

can be solved numerically to obtain solution ( )s with the following two boundary 

conditions, 



30 

 

'( ) 0
s L

s

 ,   00

( )
s

s

                                 (2.9) 

Then the position of the end tip (a, b) can be obtained. By moment equilibrium of the 

beam about the origin, O, the rotation angle of the torsional spring by can be calculated 

by 

0

0

y xF a F b

K


                                            (2.10) 

    However the initial angle value at the fixed end 0  is unknown. To determine the value 

of 0  , iteratively searching is conducted in a range 0min 0max[ , ]  until the boundary 

conditions Eq. (2.9) and the equilibrium Eq. (2.10) are satisfied. 

    The energy stored in the system consists of two parts: the strain energy stored in the 

beam itself and the energy absorbed by the torsional spring, 

 
2 2

0 0
0

1
'( )

2 2

L

b

EI
E s ds K                                (2.11) 

      With regard to PRBM, the location of tip point B(Bx, By) can be easily computed with 

the kinematic parameters 0 1,  . And the end tip angle 0  is calculated by  

 0 0 1c                                                 (2.12) 

The statics equations of the beam can be derived using the Jacobian of serial chains, 

0 0

1 1
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y
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 
 
  
 
 
  

T
J                      (2.13) 

Here 
T

J  is the transpose of Jacobian matrix of the kinematics equation and the potential 

energy stored in the two torsional springs is 



31 

 

 2 2

0 0 1 1

1 1

2 2
pE K K                                        (2.14) 

In order to test the effect of K0 on the accuracy of PRBM,  is defined as =K1/K0 and 

a list of values are assigned to , e.g.  {0.5, 1, 2, 4, 8, 20, 80, 200, 400, 1000}. Both 

the deformation (tip position and tip angle) and the energy can be evaluated by the beam 

model and PRBM. In order to simplify the calculation, the units of all parameter values 

used in the numerical calculation are bundled in the non-dimensional force index 

2 / ( )f FL EI  [19]. 

 

 

Table 2.1: Basic parameters for Pseudo-rigid-body model. 

n    K  c  

-5.0 11.3 0.8391 2.4987 1.1788 

-4.0 14.0 0.8522 2.5899 1.1971 

-3.0 18.4 0.8669 2.6889 1.2119 

-2.0 18.4 0.8813 2.8016 1.2293 

-1.5 33.7 0.8796 2.7808 1.2322 

-1.0 45.0 0.8707 2.7282 1.2323 

-0.5 63.4 0.8612 2.6932 1.2348 

0.0 90.0 0.8517 2.6762 1.2385 

0.5 116.6 0.843 2.6374 1.243 

1.0 135.0 0.836 2.6126 1.2467 

1.5 146.3 0.8311 2.5929 1.2492 

2.0 153.4 0.8276 2.5971 1.2511 

3.0 161.6 0.8232 2.5674 1.2534 

4.0 166.0 0.8207 2.5651 1.2548 

5.0 168.7 0.8192 2.5625 1.2557 

7.5 172.4 0.8168 2.5598 1.257 

10.0 174.3 0.8156 2.566 1.2578 

            1/ tan( )n   . 
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    First,  =0.5 and a unit end load force (i.e., f=1)  are chosen for the calculation and 

the direction angle of the end load force is shown in the  

 

Table 2.1. Figure 2.7(a) shows the end tip position and three deformed beams, end tip 

angle and energy calculated by PRBM and beam model. The results show that the PRBM 

matches the beam model very well. Second, three special cases are studied. Each case has 

the same end tip unit force but different force directions (=90, =45 and =135) and 

also different ratio . Figure 2.7(b, c, d) shows the end tip position, end tip angle and 

energy calculated by the beam model and PRBM. 

 

 

 

Figure 2.7:  Comparison between PRBM (red dots or lines) and beam model (blue dots or 

lines) for non-rigid-fixed end cantilever beam. 
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    The results show that the effect of the fixed end stiffness to the accuracy of the PRBM 

is small. This is because the end load force direction angle  relative to the fixed end of 

the beam is changed during the deformation, but the  and K  were chosen according to 

the initial force direction angle. The larger the change of the angle  is, the larger the 

error between the PRBM and beam model will be. Hence, the classic PRBM can be 

applied to the analysis of this type of DNA origami link if its deformation or the change 

of the relative force angle  is small. 

2.4.2. PRBM for non-uniform cross section cantilever beams  

In the design of DNA origami mechanisms, a link may consist of a DNA bundle where 

the cross section (i.e. number of dsDNA strands in the bundle) varies along the length. 

For example, it is often necessary to increase the cross section at the ends of links to 

appropriately design joints. To improve the accuracy of the PRBM model these types of 

links may be broken down into different segments, which adjusts the overall compliance 

of the link.  

 

  

                                Figure 2.8:  Three segments cantilever beam. 
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Figure 2.8 shows a general three segment beam with larger cross sections on the two 

ends and smaller cross section on the middle. L is the total length of the beam, 1L , 2L and 

3L are the lengths and 1( )EI , 2( )EI and 3( )EI are the bending stiffness of each segment. 

2.4.3. Euler-Bernoulli beam model for three segments cantilever beam  

All three segments 1L , L2 and 3L  were treated as three independent compliant links. The 

bending angles for each segment are defined as 1( )s , 2 ( )s , and 3( )s . Due to the less of 

boundary conditions, similar solving strategy as the non-rigid-fixed end beam was used 

to solve Eq. (2.8) for segment L1. The beam equation was solved based on the best '(0)  

that can satisfy all boundary conditions. The detailed process was listed in below: 

1. Search '(0)  that satisfies the boundary conditions; 

2. Solve the beam equation for segment 1L ; 

3. Solve the beam equation for segment 2L , The boundary conditions for segment 2L  

are:  

2 1 1 1( ) ( )L L   and 2 1 1 2 1 1'( ) (( ) / ( ) ) '( )L EI EI L  ; 

4. Solve the beam equation for segment 3L , The boundary conditions for segment 3L  

are:  

3 1 2 2 1 2( ) ( )L L L L     and 3 1 2 2 3 2 1 2'( ) (( ) / ( ) ) '( )L L EI EI L L    ; 

5. Check the value of the 1 '(0)  that satisfy equation 1 1'(0) ( ) / ( )y x x yF B F B EI   . 

The energy stored in the three segment beam is  
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2.4.4. One torsional spring PRBM for three segments cantilever beam  

    A model based on the classic PRBM was introduced here for the analysis of the three 

segment beam, termed PRB-1R model. The two end segments are treated as rigid parts 

and only consider the deformation of the middle segment. But the end load on segment 

2L  is changed to a combined force and moment because the force is actually applied on 

the end tip of the beam segment. Hence, a moment is introduced to the end of segment 2L  

equal to the force multiplied by the length, 3L . According to the classic PRBM, the 

torsional spring stiffness will be changed. Here  and K  are kept as the same as classic 

PRBM, but  a correction coefficient  was introduced to the torsional spring stiffness of 

PRBM, i.e. 

2

2

( )EI
K K

L
                                                (2.16) 

A proper  is the key to the accuracy of PRBM. Optimized  should be obtained to 

minimize the strain energy difference between the beam model and PRBM as energy is 

the most important measure for DNA origami nanostructures. The errors of end tip 

position, end tip angle and energy for each case are defined as 

2 2

2 2

( ) ( )

( ) ( 0)

xP xB yP yB

tip

xB yB

B B B B

B L B

  
 

  
                               (2.17) 
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0 0 0 0| | /P B B                                                  (2.18) 

0
| | /E P B BE E E                                                (2.19) 

Here ( , )xP yPB B , 0P , and PE are the end tip position, end tip angle and energy calculated 

by PRBM, while ( , )xB yBB B , 0B , and BE  are the corresponding end tip position, end tip 

angle and energy calculated by beam model. The average errors of end tip position, end 

tip angle and energy for different load force angles are tip , 
0  and 0E . 

 

 

 

Figure 2.9:  One revolute joint PRBM for the three segment cantilever beam. (a) Sketch 

of the PRBM. (b) Test of different segment length ratios. (c) Comparison of end tip 

position and energy between PRBM and beam model. 

 

 

   For convenience, relationships of geometrical parameters and bending stiffness are 

defined as 1 2 3L L L L   , 1 1L L , 3 2L L , 
32 1L L L L   , 1 1 2( ) ( )EI e EI , 
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3 2 2( ) ( )EI e EI . Here, 1 and 2 are the ratios of 1L and 3L over L respectively, e1 and e2 

are the ratios of the bending stiffness of two end segments over the middle segment.  

    To test the effect of (1, 2) on the accuracy of the PRBM, e1 and e2 are assigned as 

2 and the value of (1, 2) is varied as {0.05, 0.1, 0.15, 0.2}. Here the nondimensional tip 

force is increased to f=3. For each of 16 combinations of (1, 2), the values of n and  are 

chosen from  

 

Table 2.1. The optimal value of  should be determined as described earlier. Figure 2.9 

shows the comparison of the beam model and PRBM. As we can see, the end tip position 

error is noticeable and 2 has a bigger effect to  than 1. In addition, the energy predicted 

by the PRBM has an insignificant error with the beam model. These errors are mostly 

attributed to the compliance of the two end segments. Of course, further studies are 

required to verify the conclusion. 

2.4.5. Three torsional springs PRBM for three segments cantilever beam  

  In order to obtain a more accurate PRBM, compliance of the two end segments is 

included in our modeling process and each segment is treated respectively. For the two 

short segments, the PRBM for compliant hinge can be used, while for the long segment,   

PRBM for the cantilever beam should be employed. Finally, the model has 3 revolute 

joints and torsional springs as shown in Figure 2.10(a), and is referred to as the PRB-3R 

model. 1K  and 3K  are calculated by  

31
1 3

1 3

( )( )
,

EIEI
K K

L L
                                     (2.20) 
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and 2K is calculated by Eq. (2.16). The rotation angles of the corresponding torsional 

springs are 1 , 2  and 3 . From the new model, the end tip position B ( , )x yB B  can also 

be easily derived from the kinematics equations. The statics equations of the new model 

are: 
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3 3
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K
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J                              (2.21) 

The end tip deflection angle will be 

0 1 2 3c                                               (2.22)                     

The energy stored in the PRB-3R model will be  

2 2 2

0 1 1 2 2 3 3

1 1 1

2 2 2
E K K K                                         (2.23) 

 

    The numerical example in the former section is evaluated here again based on the 

PRB-3R model. Different from the PRB-1R model, the rotation angle of each torsional 

spring is obtained by implementing Eq. (2.21). Figure 2.10 shows the comparison of the 

new PRB-3R model and the beam model. As one can see, the range of  is between 0.81 

and 0.97, which is smaller than that of PRB-1R model. In addition, the relative errors of 

end tip position, end tip angle and energy are smaller than 4%, 5%, 6% and the 

corresponding average errors are smaller than 2%, 3% and 4%, respectively. In addition, 
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 and the average errors of end tip position, end tip angle and energy are more sensitive 

to 2 than to 1. It implies that the moment introduced by the segment 3L  must be 

considered if a PRBM is used for the analysis. Also, for the compliant DNA origami 

links,  the segment 3L  should be designed as short as possible in order to reduce the 

moment load to the middle compliant segment.  

 

 

 

Figure 2.10:  PRB-3R model for non-uniform cross section beam. (a) Sketch of the 

model. (b) Test of different segment length ratios. (c, d, e) Comparisons of end tip 

position, end tip angle, energy and their relative errors and average errors. 
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Figure 2.11: Test the PRB-3R model for different bending stiffness of different segment. 

(a) Sketch of the model. (b) Test of different segment length ratios. (c, d, e) Comparisons 

between PRB-3R model and beam model. 

 

 

    Similar to the previous case, the effect of e1 and e2 on the accuracy of the PRBM is 

studied. Varying e1 and e2 with values in the list of {2.0, 5.0, 10.0, 50.0, 100.0}, and 

setting  1 0.1  , 2 0.1  and nondimensional force f=1, evaluation parameters can be 
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determined, including the optimal value of  as well as errors of tip positions and energy 

between the PRB-3R model and beam model, as shown in Figure 2.11. The range  

[0.91, 0.93] means it is not sensitive to the bending stiffness of the two end segments e1 

and e2. The relative errors of end tip position, end tip angle and energy are also small 

when n≤7.5, i.e. ≤172.4. In addition, all of their corresponding average errors are 

smaller than 3%.  and all of the average errors are more sensitive to e1 than to e2 and the 

effect of e2 can even be neglected. This means the bending stiffness of the segment L3 

does not affect the flexibility of the whole link significantly especially for large cross 

sections, which result in larger bending stiffness for the design of end segment in CDOM 

link.  

2.4.6. Apply the PRB-3R model for non-rigid-fixed end three segments cantilever 

beam  

    Furthermore, the PRB-3R model is applied to the analysis of non-rigid-fixed cantilever 

beam (Figure 2.12). The end tip position ( , )x yB B  can be easily derived from the 

kinematics equations and the statics equations of the model, 
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And the end tip angle is 

0 0 1 2 3c                                        (2.25) 

The energy absorbed by the torsional springs will be 

2 2 2 2

0 0 0 1 1 2 2 3 3

1 1 1 1

2 2 2 2
E K K K K                       (2.26) 

The detailed solving procedure is described as the following: 

1. Search for 0  in a domain that satisfies the boundary conditions of beam 

equation; 

2. Solve the beam model Eq. (2.8); 

3. Check the equilibrium angle 0  by Eq. (2.10); 

4. Calculate the energy stored in beam (Eq. (2.15)) and the non-rigid-fixed end 

torsional spring; 

5. Find  that minimizes the average energy error calculated by Eq. (2.19). 

    The numerical example in section 4.2.2 is used to test this model. First, model 

parameters are set as 0 2/ 0.5K K   , e1=e2=2, 1 and 2 {0.05, 0.1, 0.15, 0.2} 

respectively. Figure 2.12(b) compares the end tip position and energy stored between the 

PRB-3R model and beam model. Secondly, 
0 2/ 2.0K K    is used and re-solve the beam 

model and PRB-3R model. The end tip position and stored energy are shown in Figure 

2.12(c). For this example, the torsional spring on the fixed end has a negligible effect on 

the PRB-3R model for relatively small to moderate deformations.                   
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Figure 2.12: PRB-3R model applied on the non-rigid-fixed multi-cross section cantilever 

beam. (a) Sketch of the model. (b, c) End tip position, stored energy calculated by the 

PRB-3R model and the beam model. 

 

                                                                                                                                                                                                           

2.5. Conclusions 

    The well-studied compliant mechanism theories as well as enormous computational 

tools provide a useful and convenient avenue to design and analyze these CDOM. More 

specifically, Pseudo-rigid-body models can be used to design and predict the performance 

of CDOM, especially for complaint hinge joint and multi-segment compliant link.   
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Chapter 3: DNA Origami Compliant Nanostructures with Tunable Mechanical 

Properties 

 

 

    DNA origami enables fabrication of precise nanostructures by programming the self-

assembly of DNA. While this approach has been used to make a variety of complex 2D 

and 3D objects, the mechanical functionality of these structures is limited due to their 

rigid nature.  Here, the fabrication of deformable, or compliant, objects has been explore, 

which can help establish a framework for mechanically functional nanostructures. This 

compliant design approach is used in macroscopic engineering to make devices including 

sensors, actuators, and robots. Compliant nanostructures introduced here is built by 

utilizing the entropic elasticity of single-stranded DNA (ssDNA) to locally bend bundles 

of double-stranded DNA (dsDNA) into bent geometries whose curvature and mechanical 

properties can be tuned by controlling the length of ssDNA strands. The ability to achieve 

a wide range of geometries by adjusting a few strands in the nanostructure design has 

been demonstrated here. Furthermore, a mechanical model is developed to predict both 

geometry and mechanical properties of these compliant nanostructures that agrees well 

with experiments. The results provide a basis for the design of mechanically functional 

DNA origami devices and materials. 
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3.1. DNA origami compliant mechanisms 

    DNA origami nanostructures contain several thousand base-pairs arranged into objects 

with typical dimensions of ~10-100nm [19]. Since spatial registry is largely retained over 

every base-pair in the object, chemical functionalities can be placed on objects with ~nm 

resolution. Current applications of DNA origami exploit this precise geometric design. 

Furthermore, computer aided design programs, such as caDNAno[55], have been 

developed to simplify the sequence design process; and the finite element based software, 

CANDO, was developed to predict the folded geometry of scaffolded DNA origami 

structures, which is particularly useful when designing structure that incorporate local 

stresses to create curved or twisted objects. These computer aided design tools facilitate 

rapid prototyping of designed DNA nanostructures. And the development of theoretical 

models has provided effective and convenient methods to analyze the behavior of double 

helical nucleic-acid structures [52,56–58]. The demonstrated applications have fostered a 

growing interest in building DNA-based devices, machines, and robots [45,59–61]. 

However, applications of DNA origami to date have largely focused on geometric design. 

The fabrication of mechanically functional structures such as springs, actuators, 

manipulators, which could greatly broaden the scope of DNA nanomachines has 

remained largely unexplored. Previous work to create controllable curvature in DNA 

origami nanostructures were either designed on an ad hoc basis, or followed a mechanical 

model that predicted only geometry. The finite element based software, CANDO, is a 

useful computational tool to predict the folded geometry and thermal fluctuations of 

curved or twisted structures; however, it is not currently suited to analyze structures that 
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incorporate ssDNA components or structures that undergo large deformations in general. 

Furthermore, a theoretical model provides a more useful design tool where parameters 

can be quickly optimized for desired structural and material behavior. 

 In general, mechanical functionality requires two key capabilities: 1) an ability to 

specifically design mechanical behavior, and 2) the ability to integrate dynamics (i.e. 

motion). In engineering design, controllable mechanical behavior is achieved by using 

multiple material components with the desired mechanical stiffness. The stiffness of 

DNA origami components can vary over several orders of magnitude from highly flexible 

single-stranded DNA (ssDNA), which exhibits a persistence length of ~2nm [53], up to 

bundles of double-stranded DNA, which can be 1000-fold stiffer [44]. However, 

integrating these components to achieve tunable mechanical behavior has not been 

explored. Furthermore, achieving controlled dynamic behavior in designed DNA systems 

remains a key challenge in the field. This is usually done in macroscopic systems by 

integrating flexible elements with constrained motion (i.e. joints), but flexibility in 

nanoscale systems leads to random thermal motion [62].  

One promising approach to achieve controlled mechanical and dynamic behavior with 

stiff components that has been successfully applied for microscopic machines [63,64] is 

compliant mechanism design. Compliant mechanisms [32,50] utilize components with 

varying stiffness and geometry to achieve controlled motion. This approach requires an 

ability to design components with controllable mechanical behavior and geometry. Here a 

foundation was established for DNA origami compliant mechanisms by designing, 
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fabricating, and characterizing a deformable (compliant) DNA origami nanostructure 

with controllable geometry and mechanical behavior. 

3.2. Design of DNA origami compliant joint  

The structure was designed to behave as a compliant joint similar to a hinge with a 

torsional spring [39]. The design was constructed as an eighteen-helix bundle that was 

organized into three layers of six helices (Figure 3.1). The two ends, which contain all 18 

helices, are stiff components that could be integrated into a larger scale mechanism. The 

central portion, which forms the basis of the compliant joint, consists of the top layer of 6 

dsDNA helices (green in Figure 3.1) and 6 ssDNA connections across the bottom layer 

(blue in Figure 1).  

 

 

 

Figure 3.1: 3D model and function of DNA origami compliant nanostructure. 
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Table 3.1: Design parameters of the ssDNA springs. 

Design Lower three ssDNA springs Upper three ssDNA springs 

Version 1 

(0 bases) 
0 bases ssDNA+10 bases dsDNA 24 bases ssDNA 

Version 2 

(11 bases) 
11 bases ssDNA +10 bases dsDNA 35 bases ssDNA 

Version 3 

(32 bases) 
32 bases ssDNA +10 bases dsDNA 56 bases ssDNA 

Version 4 

(53 bases) 
53 bases ssDNA +10 bases dsDNA 77 bases ssDNA 

 

 

The ssDNA connections function as entropic springs that apply a force causing the top 

layer to bend. The magnitude of the force, and correspondingly the joint angle (ϕ), 

depends on the length of the ssDNA springs. In a bent configuration, the ssDNA springs 

connecting the top 3 helices of the blue layer span a larger distance than the ssDNA 

springs connecting the bottom 3 helices of the blue layer. Therefore, the ssDNA 

connections between the top three helices were correspondingly made longer. For 

subsequent definition, it is referred to the length of the shorter ssDNA springs. Complete 

design details of all versions are given in Table 3.1.  

The structure is an 18-helix bundle organized into 3 layers (top left). The two ends that 

contain all 18 helices are stiff components that could be integrated into a larger 

mechanism. The central portion balances tension in the ssDNA “springs” with bending of 

the top 6-helix layer. The joint angle, ϕ, can be adjusted by shifting length of ssDNA 

between the springs and the loops. A novel approach is developed to modulate the 

structural and mechanical properties using scaffold loops as a reservoir of additional 

ssDNA length (Figure 3.1, upper right).  
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The combined number of ssDNA bases in the springs and loops remained constant. 

Small joint angles could be obtained by shifting length from the ssDNA springs to the 

reservoir loops, and in contrast, large angles could be obtained by shifting ssDNA from 

the loops to the springs. In this way, structures with distinct geometries (joint angles) 

could be achieved by switching out only the staples located between the loops and the 

springs. The scaffold routing is optimized to minimize the possibility of secondary 

structure [65,66] in the ssDNA springs. For cases of small joint angles, where the ssDNA 

loops were long, short staples (~20 bases) were added to minimize the possibility of 

multiple structures interacting at the single-stranded loops. 

3.3. Experiment results 

    Agarose gel electrophoresis (Figure 3.2(a)) reveals geometric differences between 

design versions. The bands from left to right are: DNA ladder, ssDNA scaffold, and five 

design versions with 0, 11, 32, 53, and 74 bases in the ssDNA springs on the following 

five columns. TEM images of the five versions (Figure 3.2(b to f)) confirm that longer 

ssDNA springs result in larger joint angles. In many cases, the details of the compliant 

joint (6 helix layer and gap between the other two layers) are visible. Aside from the 

smallest angle version, all of the structures adopt a smooth curvature that depends on the 

force applied by the ssDNA springs. In the case of the smallest angle, some structures 

adopt a kinked configuration (Figure 3.2(b)). This can be explained by the existence of 

nicks that occur at the staple cross-overs in the 6-helix layer of the compliant joint.  

Kinks occur at nicks due to reduced stiffness [67].   
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Figure 3.2: TEM experimental results. (a) Gel electrophoresis reveals geometric 

differences between design versions. (b to f) TEM images of the five design versions. 

Scale bars, 50nm. 

 

 

 

Figure 3.3: Angle measurement error analysis. 

 

 

The software ImageJ was used to manually measure the angles of each structure from 

TEM images. Error of manual angle measurement was evaluated by making multiple 
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measurements on the same structure. The standard deviation of the manual measurement 

was found to be 1.2
o
 (Figure 3.3). To ensure measurement of properly folded structures, 

only the particles with smooth curved segment and an obvious gap between the other two 

layers were included in analysis. 

 

 

 

Figure 3.4: Conformational analysis of the TEM experiment results. (a to e) Typical 

particles and histogram distribution of versions with 0, 11, 32, 53, and 74 bases in the 

ssDNA springs. All scale bars are 20 nm. 
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A Gaussian distribution was used to fit the angular distributions of each version (Figure 

3.4). (a to e) Typical particles and histogram distribution of versions with 0, 11, 32, 53, 

and 74 bases in the ssDNA springs. The black lines show Gaussian fits to the data. The 

angles corresponding to the peak values of Gaussian fits were 56.5° (n=154), 70.2° 

(n=213), 97.9° (n=169), 110.0° (n=252), 128.2° (n=204) and correspondingly the 

bending angles of the curved segment range from about ~125° to ~50°.  The angular 

distributions also revealed that longer ssDNA springs resulted in larger variation in the 

joint angle suggesting a lower joint stiffness (Figure 3.4). Due to thermal fluctuations, the 

compliant joint fluctuates about the equilibrium angle, which occurs when the extensional 

energy in the springs balances the bending energy in the 6-helix layer. The entropic 

elasticity of the ssDNA exhibits higher stiffness at larger extension, or larger angles, 

resulting in a slight asymmetry of the angular distribution (steeper gradient at larger 

angles).  

3.4. Theoretical model of balanced bending and entropic tension 

Previous work to create controllable curvature in DNA origami nanostructures were 

either designed on an ad hoc basis [26], or followed a mechanical model that predicted 

only geometry [21]. The finite element based software, CANDO [42], is a useful 

computational tool to predict the folded geometry and thermal fluctuations of curved or 

twisted structures; however, it is not currently suited to analyze structures that 

incorporate ssDNA components or structures that undergo large deformations in general. 

Furthermore, a theoretical model provides a more useful design tool where parameters 

can be quickly optimized for desired structural and material behavior. 
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In this section, the details are provided on the derivation of the theoretical model for 

predicting the joint angle of the designed compliant nanostructures that are controlled by 

the tunable length of the ssDNA springs. This model closely captured the equilibrium 

angle and the angular distributions for the compliant nanostructures. 

3.4.1. Theoretical model of bending  

The design of these kind of compliant joints is shown detailed in Figure 3.5(a) again. 

Each cylinder represents a dsDNA helix. The length of the middle compliant segment 

(joint) is denoted by L0. The two end segments are designed with bundles of dsDNA and 

are considered as relatively rigid since they contain the 18 helices.  

 

 

 

Figure 3.5: Analysis based on the Bernoulli-Euler beam model and WLC model. (a) The 

cylinder model (b) the deformed compliant joint (c) right half of the compliant joint (d) 

force needed to bend the joint.  
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When one or more ssDNA springs are applied to connect the two rigid arms at A and 

A′, they exert an inward force on the connection points and cause the compliant segment 

to bend (Figure 3.5(b)). For simplicity, the end segments are treated as rigid bodies and 

the compliant segment as an incompressible beam. The goal here is to calculate the 

equilibrium angle of deflection of the beam and predict the energy landscape that governs 

fluctuations about the equilibrium angle.  

Due to symmetry, only the right half of the beam needs to be analyzed, schematically 

shown in Figure 3.5(c). The length of the half-beam model, L, is L0/2. The segment AB is 

considered a rigid bar of length e. Point B is the tip of the deflected beam. b is the vertical 

coordinate of point B, and a is the horizontal coordinate of point A in the deformed 

configuration. 

Suppose the internal load by the ssDNA springs is denoted by Fx. Based on the 

Bernoulli-Euler beam theory
1
, the beam slope angle  s (0 )s L   is subject to the 

following differential equation 

   
  ( )d s M s

ds EI


                                                    (3.1)  

where E and I are the elastic modulus and moment inertia of the beam respectively. Here 

 M s  is the internal moment at any arbitrary point 𝑠 in the beam caused by the load xF   

, calculated as 

         ( cos )xM s F y s b e                                      (3.2)                                     

where  y s  represents the deflection of the beam at the point s and  L    is the tip 

deflection angle. Differentiating Eq.(3.1) and substituting Eq.(3.2) yield 
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2

2

( ) ( )xFd s dy s

d s EI ds


                                             (3.3) 

By using the geometric relationship 
( )

sin ( )
dy s

s
ds

  , Eq.(3.3) becomes the following 

second order differential equation 

                                                         
2

2

( )
sin ( )xFd s

s
d s EI


                                            

(3.4) 

which is subject to the following two boundary conditions  

                                                  
  cos( )

,    (0) 0
x

s L

eF Ld s

ds EI






                         (3.5) 

For any given internal load Fx, ( )s  can be obtained by solving Eq.(3.4). And the joint 

angle of the compliant nanostructure is 

π  2                                                           (3.6) 

 

By using the geometric relationship 
( )

cos ( )
dx s

s
ds

  and 
( )

sin ( )
dy s

s
ds

   the position 

of point A( ,A Ax y  ) can be calculated as  

      
0

cos( ( )) cos( / 2)

L

Ax a s ds e                             (3.7) 

   
0

sin( ( )) sin( / 2)

L

Ay s ds e                                  (3.8) 

 The strain energy stored in the beam is 
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2

0

( )

2

L

beam ex

M s
E ds W

EI
                                             (3.9) 

exW  represents the work done by the loads applied to the beam, here it is equal to the 

work done by the force  Fx. The total energy in the whole dsDNA layer in the compliant 

joint is two times beamE . 

In the next sections, cylinder model is used for determining the bending stiffness EI of 

the compliant segment (joint). 

3.4.2. Quantify the bending stiffness  

Assuming the cylinder model used for dsDNA strands is isotropic and the mass is 

uniformly distributed, the elastic modulus of dsDNA, DNAE , can be quantified by 

                P B
DNA

DNA

L k T
E

I
                                                 (3.10) 

DNAI  is the area moment of inertia of a dsDNA helix. Approximating the dsDNA as a 

cylinder, DNAI  is equal to 
4

64

D
 where D is the diameter of the cylinder. Bk  is Boltzman’s 

constant, and T is the absolute temperature. At room temperature 4.1Bk T pN nm  .   

   In the design, dsDNA strands are placed adjacent to each other in parallel. The 

behavior of half beam will be similar to the beam model introduced above (Figure 3.5b, 

c). The area moment of inertia of the beam segment, 6hbI , can be calculated using the 

parallel axis theorem as: 

2
2 4

6 6( ( ) ) 23 
4

hb DNA

D
I I h nm


                                         (3.11) 
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and the bending stiffness, BS, is then:                                     

3 2

6 2.46 10  DNA hbBS E I pNnm                                         (3.12) 

Substituting stiffness BS  in Eq.(3.12) for EI into the Eq.(3.4) gives the relationship 

between the internal force Fx and deformation that can be solved numerically with the 

ordinary differential equation solver in Mathematica. 

    In the next sections, the WLC model is used to determine the internal load Fx of 

ssDNA springs and use the 

3.4.3. Theoretical model of entropic tension of the ssDNA springs 

The WLC model[54] is used to calculate the inward force of the ssDNA springs, 

  2

1 1
,

4
4 1

B
WLC C

P C

C

k T x
F L x

L Lx

L

 
 
 

   
      

                                    (3.13) 

Here x is the extension of the ssDNA springs, and LC is the contour length of the ssDNA 

springs. 

Due to the honeycomb structure, the end-to-end distance of the three upper ssDNA 

springs of the bottom layer are not the same lengths as the three lower ssDNA springs in 

the bottom layer (Figure 3.5(a)) in the deformed configuration. In order to balance the 

length of the six springs, the upper three are 14 bases longer than the lower three except 

in the last design version, and 10 extra dsDNA base pairs extend from the arms at the 

connection points of the three lower ssDNA springs to guarantee be consistent with the 
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DNA helical structure.  The lengths of the six ssDNA springs are summarized in Table 

3.1. 

The force of each of the lower three ssDNA springs can be calculated as 

       1 1 2

1

1

1 1
,

4
4 1

B
WLC C

P C

C

k T x
F F L x

L Lx

L

 
 
 

    
      

                       (3.14) 

Here x represents the extension of the lower three ssDNA springs on the bottom layer. 

According to the beam model, x is also equal to 2a, where a is horizontal coordinate of 

the end of the beam described by Eq.(3.7). 1CL  is the contour length of the ssDNA 

springs. Version 1, where the length of the ssDNA springs is zero, is omitted from the 

following analysis.  

Similarly, the force of the each of upper three ssDNA springs can be calculated using 

the equation: 

       2 2 2

2

2

101 1
, 10

410
4 1

bB
WLC C b

P C
b

C

x Lk T
F F L x L

L Lx L

L

 
 

 
     

      

                 (3.15) 

where the term 10 bL  is due to the additional extension in the upper three ssDNA springs 

equal to the extra 10 dsDNA base pairs in the lower three ssDNA springs. 2CL  is the 

contour length of the upper three ssDNA springs. 

  The total force of all six ssDNA springs is: 

               1 23( )ssDNAF F F                                                    (3.16) 
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And the energy stored in the ssDNA springs can be obtained by calculating the integral of 

the total force on the interval from zero up to the extension of ssDNA springs: 

     
0

x

ssDNA ssDNAE F dx



                                                  (3.17) 

The results are plotted in Figure 3.1(d). The red curve represents the force needed to 

bend the beam according to the beam model to obtain the corresponding extension of 

ssDNA, which can be derived from the horizontal position of point A; the other four 

curves (from left, black curve, to right, blue curve) represent the total force vs. extension 

of the ssDNA springs in design versions 2 to 5 respectively. All the basic parameters used 

in the calculations are presented in Table 3.2. 

 

 

Table 3.2: Basic parameters used in the analytical model. 

Symbol Parameter Values 

D Diameter of dsDNA strands 2.5 nm 

Lb 
Length of one base pair

3
 0.337 nm（dsDNA） 

Length of one base 0.65 nm（ssDNA） 

L0 Nominal length of the beam 84Lb = 28.31 nm 

LP Persistence length 
50 nm（dsDNA） 

2 nm（ssDNA） 

e 
Offset distance of ssDNA springs to the 

joint 
3.25D = 8.125 nm 

R Radius of dsDNA  D/2 = 1.25 nm 

h Vertical offset from centroid D/4 = 0.625 nm 
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Table 3.3: Equilibrium angles obtained from experiment and analytical model. 

Design 
 (prototype 

samples) 
 (beam model) 

Version 1(0 bases) 56.5° N/A 

Version 2(11 bases) 70.2° 59.8° 

Version 3(32 bases) 97.9° 94.4° 

Version 4(53 bases) 110.0° 115.6° 

Version 5(74 bases) 128.2° 126.0° 

 

     

 

     

Table 3.3 shows five versions of the compliant nanostructures, which are designed to 

deform to different joint angles . It also shows the equilibrium value of the joint angle , 

calculated from the theoretical model and measured by TEM. From  

Table 3.3, we can also conclude that the theoretical beam model agrees well with the 

experimental results for the large joint angle versions 3, 4, 5 with the percentage error 

being 3.7%, 5.4% and 1.5% respectively.  While for the small joint angle version 2, the 

error 15.2% is relatively high.  

3.4.4. Evaluating and predicting compliant joint stiffness 

    The deformation of the compliant joint is defined in terms of the end-to-end distance of 

the ssDNA springs, r (r = 2a in Figure 3.6(a)). The minimum energy configuration of the 

springs occurs at r = 0, and the minimum energy configuration for the 6-helix layer 
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occurs when r is equal to the length of the 6-helix layer, L0. The total energy of the 

compliant joint, U(r), is obtained by summing the energy of the springs in the 6-helix 

layer (Figure 3.6(c)) and the energy stored in the bent beam. 

( ) beam ssDNAU r E E                                              (3.18) 

 

 

 

Figure 3.6: Theoretical model of the compliant joint. (a) Beam model of the curved 

segment. (b) Energy stored in the 6-helix layer (red). (c) The total energy of the 

compliant joint. (d) Boltzmann distribution of the thermal fluctuations in angle. 

 

 

Based on the relation between ϕ and a described by Eq.(3.6) and (3.7), U(ϕ) could be 

easily obtained. The equilibrium angle of the compliant joint occurs at the minimum total 

energy configuration. The equilibrium angles calculated from the analytical model were 
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59.8º, 94.4º, 115.6º, and 126.0º for the 11, 32, 53, and 74 base long ssDNA springs 

respectively.  

Due to thermal fluctuations, the compliant joint will fluctuate about this equilibrium 

position. The magnitude of the thermal fluctuations is proportional to the stiffness of the 

joint. Angular distributions (Figure 3.6(d)) were calculated from the analytical energy 

landscapes of the compliant joint (Figure 3.6(4)) using Boltzmann distribution, 𝑃(𝜙) =

𝑒𝑥𝑝(−𝑈(𝜙)/𝑘𝑏𝑇)/𝑍, where kb is Boltzmann’s constant, T is the absolute temperature, 

and Z is the partition function defined as 𝑍 = ∫ 𝑒𝑥𝑝(−𝑈(𝜙)/𝑘𝑏𝑇)
∞

−∞
𝑑𝜙. The angular 

distributions are wider for longer ssDNA springs, which is consistent with the angular 

distributions shown in Figure 3.4. This implies that the torsional stiffness of the 

compliant joint decreases while the joint angle increases.   

 

 

 

Figure 3.7: Theoretical model captures angular distribution. (a) The analytical model and 

(b) the trend of increasing width, characterized by the FWHM. (c) Analytical energy 

landscape captures the asymmetry of the experimental distributions. 
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Figure 3.7 compares the equilibrium angles predicted by the analytical model to the 

maximum angles from the experimental distributions. Note that the model is purely 

predictive and does not contain any fitting parameters. Figure 3.7(b) compares the full-

width at half of the maximum value (FWHM) calculated from the analytical energy 

distributions to the FWHM of the experimental distributions. Figure 3.7(c) compares the 

full distributions. The full angular distribution (black), calculated using a Boltzmann 

distribution of the analytical energy landscape, also captures the asymmetry of the 

experimental distributions (gray). Gaussian fits are also shown in dashed black. Even 

without any fitting parameters, the theoretical model captures the trend of increasing 

thermal fluctuations with longer ssDNA springs and also captures the asymmetry of the 

angular distributions, which results from the asymmetric energy landscape (Figure 

3.6(c)).  

3.4.5. Modeling of tunable mechanical properties 

In order to estimate the torsional stiffness of the compliant joint, it can be approximated 

as a linear torsional spring that follows the equation T = 𝜅Δθ, where Δθ is the change in 

angle from the equilibrium angle, 𝜅 is the torsional stiffness, and T is the torque required 

to deform the angle by Δθ.  In this case, 𝜅 can be related to thermal energy by the 

theorem of equipartition of energy as 𝜅<Δθ
2
> = kbT. Based on the joint angle variance, 

<Δθ
2
>, calculated from experimental distributions, torsional stiffness is determined 

ranging from 107 pN·nm/rad for the longest ssDNA spring up to 367 pN.nm/rad for the 

shortest ssDNA spring. These results indicate that we can design compliant joints with 

torsional stiffness similar to or stiffer than actin binding proteins such as Arp 2/3 (~80-
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130 pN.nm/rad) [68] or Filamin (~50 pN.nm/rad) [69]. Since the persistence length of 

DNA origami nanostructures is also tunable over several orders of magnitude up to >µm, 

DNA origami could ultimately be used to design biomaterials with mechanical behavior 

similar to cross-linked actin networks [70–72]. 

The geometry and stiffness of a DNA origami compliant joint can be tuned with a 

novel approach of locally shifting single-stranded scaffold DNA within the structure. By 

this parameter alone, the geometry and stiffness cannot be controlled independently. 

Longer ssDNA springs results in larger joint angles with lower torsional stiffness. 

However, the model includes additional design parameters, specifically the length and 

bending stiffness of the stiff component, here a layer of 6 dsDNA helices. By 

cooperatively adjusting the three design parameters of the compliant joint (length of stiff 

dsDNA segment, bending stiffness of the stiff dsDNA segment, and length of ssDNA 

springs), both the bending stiffness and the joint angle could be independently designed. 

For example, the theoretical model predicts that an 8-helix layer as the stiff segment with 

28 base long ssDNA springs would give a similar equilibrium joint angle but narrower 

distribution to the 6-helix layer with 32 bases (Figure 3.8(a)). Similarly, different joint 

angles with the same stiffness can be achieved by cooperatively varying the bending 

stiffness of the top layer (i.e. number of helices) and the length of the ssDNA springs 

(Figure 3.8(b)). Tuning the properties of the stiff segment, unlike adjusting the length of 

the ssDNA springs, would require designing a new structure. But the analytical model 

presented here could be used as tool to guide the design of compliant joints with a wide 

range of joint angles and torsional stiffness. 
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Figure 3.8: Designing joint angle and stiffness with the theoretical model. (a) Predict the 

width of the joint angle distribution and (b) control the equilibrium angle. 

 

 

 As the model can well predict the behavior of mechanically functional DNA origami 

nanostructures, probability of reliability still needs comprehensive study. A range of 

values have been reported in previous literature for some of the parameters used in the 

model including the length of a ssDNA base [73–75], the persistence length of ssDNA 

[53,76], the length of a dsDNA base pair [10,52,77], and the persistence length of dsDNA 

[52,78–80] and the offset distance e. Therefore, the sensitivity of the model to these 

parameters were checked (Figure 3.9). Variation in the length of ssDNA or dsDNA had 

minimal effect. Variation within the reported range of values of the persistence length of 

ssDNA and dsDNA, which largely determine the stiffness parameters in the model, both 

caused similar variations of ~10
o
-15

o
 in joint angle and ~2

o
-4

o
 in FWHM. The offset 

distance of ssDNA springs from the curved segment also results in a higher sensitivity to 

the equilibrium angle due to its influence on the moment applied to the curved segment. 
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While the numerical results are somewhat sensitive to the values used, the qualitative 

trends and conclusions drawn are not. 

 

 

 

Figure 3.9: Sensitivity analysis. (a) the length of a ssDNA base, (b) the persistence length 

of ssDNA, (c) the length of a dsDNA base pair, (d) the persistence length of dsDNA and 

(e) the offset distance e. 
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3.5. Pseudo-rigid-body model of DNA origami compliant joint 

    The Pseudo-rigid-body model of the DNA origami compliant joint is shown in Figure 

3.10. The compliant segment has a length of L0=28.56 nm or 84 base pairs. The other two 

dimensions are L1=54.74 nm, L2=59.5 nm and H=8.125 nm. 

 

 

 

Figure 3.10: PRBM of the CDOM hinge joint. 

 

 

    The deformed configuration of the compliant joint is shown at the bottom of Figure 

3.10. Here, the direction and position of the force F added in the 3D model is chosen for 

our specific design. For general application, the actuation force has no specific location 

and direction requirements. Because the compliant segment is not very long, it is 

reasonable to model the compliant joint as a hinge joint with a torsional spring according 

to PRBM. The torsional spring with stiffness K is placed at the middle of the compliant 

segment (bottom right of Figure 3.10) and each side is modeled as rigid link. The key 

point is to find the accurate value of K which depends on the stiffness of dsDNA helix, 
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the inertial moment of the cross section, and the loading condition. However, the loading 

condition and the bending stiffness can be affected by the solution condition and 

temperature. Here, the torsional spring stiffness is given by  

EI
K c

L
                                                             (3.19) 

where c is a correction coefficient, EI and L are the bending stiffness and the length of the 

compliant segment respectively. We will calibrate the coefficient c using experimental 

data.  

    In order to bend the compliant joint, we intentionally left six ssDNA strands (called 

ssDNA springs) on the bottom layer at the corresponding position of the compliant 

segment (top of Figure 3.10). The ssDNA strands act like springs where the force is 

generated due to their entropic elasticity. The force introduced by the ssDNA springs can 

bend the compliant joint. Shorter ssDNA springs will stretch more, and accordingly a 

larger force will result in a smaller angle between the two bars. Four design versions with 

different lengths of ssDNA springs were fabricated and analyzed here.  

    The six ssDNA springs can be divided into two groups, the upper three and the lower 

three springs (Table 1). Due to local geometric constraints, the upper three springs are 

slightly longer than the lower and their end-to-end distance is 3.4 nm longer.  

    Based on the Eq. (3.13)  of Worm-like chain model, the resultant force of the ssDNA 

springs is  

1 2 1 23 ( , ) 3 ( , 3.4)SS WLC C WLC CF F F F L x F L x    
                              (3.20)

 

Here, LC1 and LC2 are the contour lengths of the two groups of ssDNA springs. 
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    The equilibrium angle of each design version corresponds to the minimum energy 

configuration of the compliant joint, which can be determined by the following 

optimization, 

 
2

0
0[0, ]

0

1
min ( , ) ( )

2

 s.t.   sin( / 2) 2 cos( / 2) 0

x

SSE x K F dx

L H x

 
  

 


  

  

 ,                         (3.21) 

The geometric constraint equation is derived from the geometry in the bottom right of 

Figure 3.10. 

 

 

 

Figure 3.11:  (a) TEM images of CDOM hinge joint and (b) comparison of experiment 

and model results, scale bar = 20 nm. 
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    The experiment results presented in [39] are referred here in Figure 3.11(b). It seems 

that when the stiffness correction factor c nears 1.0 and 1.2, the PRBM results are close 

to the experimental results. 

3.6. Materials and methods 

3.6.1. Producing ssDNA scaffold 

The scaffold used in this work is a 7,560 base clone of the M13MP18 bacteriophage 

virus. The scaffold was produced by following protocols detailed in Castro et al.[22].  

3.6.2. DNA origami structure design and fabrication 

The structure and staple sequences were designed using the DNA origami computer 

aided design software caDNAno [55], and fabricated using a 7,560 base clone of the 

single-stranded M13MP18 bacteriophage viral genome
5
 and 160 single-stranded staples 

that were ordered from a commercial vendor (Eurofins, Huntsville, AL). Five versions of 

the compliant joint with varying geometry were designed by varying the length of ssDNA 

springs. These versions had 0, 11, 32, 53, and 74 ssDNA bases in the springs 

respectively, which was achieved by changing only the staples positioned between the 

ssDNA springs and the loops (~15% of total staples). For self-assembly, scaffold was 

mixed at 20 nM with staples at 10-fold excess (each staple at 200 nM) in a folding 

reaction containing 5 mM Tris, 5 mM NaCl, 1 mM EDTA, and 14-20 mM MgCl2 (MgCl2 

concentrations in this range produced similar folding results). The folding reactions was 

subjected to a thermal annealing ramp where the temperature was quickly increased to 65 

°C and then slowly cooled down to 4 °C over a timescale of two and half days.  
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3.6.3. Structure purification and imaging  

DNA origami structures were purified by agarose gel electrophoresis. Gels were mixed 

with 2% agarose in 0.5× TBE buffer (44.5 mM Tris-borate, 1 mM EDTA) with 11 mM 

MgCl2 and 1 μM ethidium bromide. Folded structures were mixed with 6× loading dye 

(New England Biolabs, Ipswich, MA) and run for approximately 4 hours at 70 V. 

Structure bands were excised and removed from agarose using freeze and squeeze 

extraction DNA gel extraction spin columns (Biorad, Hercules, CA). To verify properly 

folding, purified structures were prepared for transmission electron microscopy (TEM) 

imaging for structural feedback as described in Castro et al. [22] Briefly, 4 μl of purified 

structure solution was deposited on a plasma treated formvar coated TEM grid stabilized 

with evaporated carbon film (Electron Microscopy Sciences, Hatfield, PA) and incubated 

for four minutes. The structure solution was wicked away, and structures were negatively 

stained by applying a 20 μl drop of 2% Uranyl formate (SPI, West Chester, PA), 

incubating for 40 seconds, and then wicking off the stain solution. Sample grids were 

allowed to dry for at least 30 minutes prior to imaging. Images were taken on a FEI 

Tecnai G2 Spirit TEM at an acceleration voltage of 80 kV. 

3.7. Summary 

    The geometry and mechanical properties of the compliant joint are determined by a 

balance of tension in flexible ssDNA components and bending in structurally well-

defined dsDNA bundles. In addition, a novel approach is developed to tune the geometry 

and mechanical properties of the DNA nanostructure by introducing ssDNA scaffold 

loops that functioned as a reservoir to add or remove length from the ssDNA springs. 
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Five different structures with joint angles ranging from 56.5
o
 to 128.2

o
 were achieved 

simply switching out a small subset (15%) of the overall number of staples. 

In order to quantitatively understand the behavior of the compliant joint, an analytical 

model is developed that combined a beam model and an entropic model (WLC) of the 

stiff (dsDNA bundle) and flexible (ssDNA) segments, respectively, of the compliant 

joint. This analytical model closely captured the equilibrium joint angles and the angular 

distributions resulting from thermal fluctuations of the four design versions with 

appropriate lengths of ssDNA.  The analytical model also captured the trend of increasing 

magnitude of thermal fluctuations with longer ssDNA springs, indicating that the 

stiffness of the compliant joint is also tunable. To test the validity of the model, a simple 

alternative is explored, using a torsional spring to replace the beam description in the 

compliant joint model. The results show the beam model better predicts the experimental 

results over the entire range of designs. 

    It is the first demonstration of a compliant (deformable) DNA origami nanostructure 

with geometry and stiffness that can be designed according to a theoretical 

micromechanical model. The approach presented here establishes a foundation to design 

and fabricate DNA-based devices with mechanically functional components such as 

springs, joints, or actuators. Ultimately, compliant components like the ones presented 

here can form the basis of compliant mechanisms that can be applied as nanomechanical 

devices with controllable motion. 
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Chapter 4: Direct Design of an Energy Landscape with Bistable DNA Origami 

Mechanisms 

 

 

    As the fabrication of basic compliant DNA origami joints have been fabricated, much 

more complex compliant mechanisms can be fabricated by structural DNA 

nanotechnology. In this chapter, it is demonstrated that DNA origami is a feasible 

technique for the design and fabrication of complex mechanisms even exhibiting 

controllable dynamic behavior. In last chapter, compliant hinge was designed and 

fabricated. Here based on the implementing macroscopic engineering design approaches 

to construct DNA origami mechanisms (DOM) with programmable motion and tunable 

flexibility, the design of compliant DNA origami mechanisms is implemented to extend 

from prescribing motion to prescribing an energy landscape. Compliant mechanisms 

facilitate motion via deformation of components with tunable stiffness resulting in well-

defined mechanical energy stored in the structure. Specifically, a DNA origami 

nanostructure is designed, fabricated, and characterized and its energy landscape is 

defined by two stable states (local energy minima) separated by a designed energy 

barrier. This nanostructure is a four-bar bistable mechanism with two undeformed states. 

Traversing between those states requires deformation, and hence mechanical energy 
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storage, in a compliant arm of the linkage. The energy barrier for switching between two 

states was obtained from the conformational distribution based on a Boltzmann 

probability function and closely follows a predictive mechanical model. Furthermore, the 

a bility is demonstrated that to actuate the mechanism into one stable state via additional 

DNA inputs and then release the actuation via DNA strand displacement. This 

controllable multistate system establishes a foundation for direct design of energy 

landscapes that regulate conformational dynamics similar to biomolecular complexes. 

4.1. Background  

    Structural DNA nanotechnology[12,13,81,82] has enabled the precise design of 2D 

and 3D static and dynamic structures including smiley faces[19,83], twisted and bent 

bars[21], spheres[26,84], linkages with complex motion[30], and 

nanorobots[45,59,85,86]. Recent studies have demonstrated promising applications that 

utilize DNA origami nanostructures as templates to organize proteins[83] or 

nanoparticles[87,88] in 2D and 3D space, vehicles for drug delivery[24,45,89], 

nanopores[28,90,91], and biosensors[92,93]. Although the majority of DNA 

nanostructure applications utilize objects with static geometry, important strides have 

been made to design dynamic DNA devices (i.e. DNA nanomachines). Early DNA 

nanomachines[14,15,61] involved configurations of DNA strands that could be triggered 

to undergo conformational changes, usually via DNA strand displacement[18], to 

achieve, for example rotational[94] or translational motion[95] or even measure 

molecular binding energies[96]. The development of scaffolded DNA origami[19,20,22] 

enabled greater control over geometry and stiffness of nanostructure components, which 
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has expanded the possibilities to design complex mechanical behavior. Furthermore, in 

recent years design[55] and analysis tools[22,38,42,97] have sped up the development 

DNA-based design and enabled consideration of properties beyond geometry, such as 

stiffness, which play a critical role in the function of some DNA origami devices[98]. 

Prior work to quantify and design the mechanical behavior of DNA origami 

nanostructures has revealed that they exhibit mechanical deformations such as bending, 

stretching, and compression[25,39,44], similar to macroscopic structures. Here this 

mechanical behavior is exploited to design a nanomechanism with a prescribed energy 

landscape consisting of multiple stable states separated by an energy barrier [40]. 

    In typical engineering design, components gain mobility via kinematic joints, which 

allow constrained motion between two rigid parts. For example, a revolute joint, which 

allows relative motion in one rotational degree of freedom, can be constructed by 

connecting two links with a pin. These joints can be combined to create mechanisms with 

complex motion. Borrowed from the classical engineering field, the term mechanism is 

defined as a collection of rigid components, individually called “links”, connected by 

kinematic joints. Recently, DNA origami mechanisms (DOM) can be constructed by 

connecting stiff double-stranded DNA (dsDNA) bundles at joints formed by flexible 

single-stranded DNA (ssDNA) connections[30]. However, in the absence of actuation, 

these dynamic structures are subject to thermal fluctuations resulting in random 

configurations along the constrained motion path since they utilize very flexible ssDNA 

components.  
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An alternative methodology to develop systems with controlled motion is compliant 

mechanism design[32,50], which integrates rigid components with high stiffness, and 

deformable, or compliant components with relatively lower stiffness. The compliant 

components can either comprise a lower stiffness material or the same material with a 

smaller moment of inertia resulting in a lower bending stiffness. With DNA origami 

nanotechnology, rigid, compliant and flexible components can be respectively designed 

as bundles of many dsDNA helices, bundles of fewer dsDNA helices, and short ssDNA 

polymers. Then motions in DNA origami mechanisms with compliant component can be 

facilitated not only by flexible ssDNA[30] but also by deformation of compliant dsDNA 

helices. Also, the DNA origami mechanism that obtains its mobility based on the 

deformation of its compliant component is named compliant DNA origami mechanism 

(CDOM). The use of compliant components affords greater control over nanoscale 

thermal fluctuations and also allows for direct consideration of the energy landscape 

governing dynamic behavior through mechanical design (i.e. designing geometry and 

stiffness).  

4.2. Design of Four-bar Bistable DNA Origami Mechanism 

Here, stiff, compliant, and flexible components are integrated to construct a compliant 

DNA origami mechanisms with two stable positions (local energy minima) separated by 

an energy barrier that results from mechanical strain energy stored in a compliant 

component. Similar macroscopic engineering systems are referred to as bistable. A 

simple example of a macroscopic bistable mechanism is a compliant straight beam that 

has buckled to one side (one stable position) under an axial compressive force.  When a 
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transverse load is applied, the beam can undergo a “snap-through” transition to the other 

side (second stable position) if the work input is larger than the energy barrier. Figure 

4.1(a) shows a beam is buckled to the upper stable equilibrium configuration (solid line) 

by a load P on the two ends. It can then snap to the other stable configuration (dashed 

line) after applying a downward force F. Figure 4.1(b) illustrates a 3D model of a bistable 

compliant four-bar mechanism is shown. One end of the compliant link (red) is fixed on 

the frame link (blue) and the other end is connected with the coupler link (cyan) with a 

revolute joint. S2 and S1 are the two stable equilibrium positions of this bistable 

mechanism. 

 

 

 

Figure 4.1: A bistable beam and a bistable compliant four-bar mechanism. 
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The bistable nanomechanism designed here is conceptually similar to this buckled 

beam example. The design is based on a bistable four-bar mechanism consisting of three 

relatively rigid links (blue, green, and cyan in Figure 4.2) and one compliant link (red in 

Figure 4.2). Analogous bistable four-bar mechanisms have previously been implemented 

in MEMS applications[99,100]. Here the three relatively stiff links consist of a 10 helix 

bundle (hb), and the compliant link is a 6-hb of dsDNA. At either end of the compliant 6-

hb, the cross section is increased to a 10-hb to allow appropriate attachment to other 

components. These four components are connected into a closed loop with flexible hinge 

connections at three corners (bottom left, top left, and top right in Figure 4.2) and one 

fixed connection at the fourth corner (bottom right in Figure 4.2). The hinges are formed 

by two ssDNA connections 2 or 4 nt long. Additional longer ssDNA connections at the 

hinges influence the flexibility of the device. 

 

 

 

Figure 4.2: Design sketch and stable equilibrium configurations of the bistable 

nanomechanism. (a) 3D model. (b) Energy variation of this nanomechanism. 
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    Energy variation of this nanomechanism is mainly determined by the deformation of 

the compliant link, which results in two stable equilibrium configurations (S1 and S2) 

where there is no deformation of the compliant link and one statically unstable 

equilibrium configuration (U) where the compliant link reaches its maximum 

deformation. 

    The short green link on the left side can be viewed as the input, or crank link for the 

mechanism. The two stable positions (Figure 4.2(b), bottom) correspond to 

configurations where the crank link is either at a small angle relative to the frame link 

(S1) or in a vertical position (S2). Traversing between the two stable positions requires 

deformation of the mechanism, which largely occurs in the compliant link since it has the 

lowest stiffness. When the crank and the coupler links are collinear, the compliant link 

reaches its configuration of maximum deformation (U) and maximum energy. The strain 

energy stored in the compliant link at this maximum deformation is the energy barrier for 

the bistable mechanism. In both stable positions, the compliant link is undeformed. The 

energy landscape of the bistable mechanism can be determined by considering the 

mechanical deformation of the compliant link. Figure 4.2(b) illustrates the bistable 

mechanism energy landscape as a function of the crank angle, θ.  

In this particular design, the crank link (green), coupler link (cyan) and frame link 

(blue) have 10-hb cross section organized in honeycomb lattice and lengths of 39.78, 

61.88, 92.82 nm, respectively. The red compliant link (red) is constructed by three 

segments. The end segments are 16.66 nm in length with a 10-hb cross section, and the 

middle segment, which is the actual compliant component, has a 6-hb cross section 54.74 
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nm length. For the three hinge connections, the hinge axis is defined by two ssDNA 

scaffold connections. At the hinges that form inner angles ≲ 90° (bottom left and top 

right in Figure 4.2) these scaffold connections are 2 nucleotides (nt) long. At these 

hinges, the scaffold is at the appropriate helical location closest to the hinge vertex. The 

third hinge (top left in Figure 4.2(a)) forms an inner angle that is straight (180
o
) in the 

unstable position, greater than 180° in the S1 configuration, and less than 180° in the S2 

configuration. Since there is a potential for interference between the helices at this hinge, 

the connections were made slightly longer (4 nt). At each hinge there are also two longer 

ssDNA connections (Figure 4.2(a) top left). These connections do not define the hinge 

axis; however they may affect the motion of the mechanism due to entropic elasticity, 

steric effects, and electrostatic interactions. The fixed right angle connection (fixed joint) 

was designed by routing scaffold from the bottom end of the compliant link directly into 

cross-over junctions on the top side of the frame link. With this design, the configurations 

S1, U, and S2 correspond to crank angles of θ = 29°, 49°, and 90° (θ defined in Figure 

1b, bottom), respectively. 

4.3. Experiment results 

4.3.1. Initial data 

The DNA origami bistable mechanism was self-assembled from a single ssDNA 

scaffold obtained from the M13MP18 bacteriophage virus genome and 189 staples via 

molecular self-assembly and then purified via agarose gel electrophoresis (see Materials 

and Methods).  Figure 4.3(a) shows Gel purification image, from left to right are 1kb 
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DNA reference ladder, the scaffold, the bistable nano-mechanism folded at 14, 16, 18, 20 

mM MgCl2 in a 4.5 days annealing ramp. Figure 4.3(b, c) present typical TEM images of 

the assembled bistable structures, scale bars are 50 nm. All of the angle measurements 

were conducted in ImageJ and the standard derivation of the angle measurement is 1.35° 

(Figure 4.3(d)). 

 

 

 

Figure 4.3: Gel purification and TEM images. 

 

 

TEM images reveal that folded structures adopt both stable configurations and most 

particles appear at or near the open or closed configurations. Interestingly, some particles 

appear in the maximum energy configuration (i.e. unstable position, U). This is likely due 

to base-stacking interactions
45,46

 between the crank link and the coupler link that line up 
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end-to-end in the unstable position. The deformation of the compliant link can be viewed 

clearly from particles in this configuration (Figure 4.4(a), middle).   

 

  

Figure 4.4: TEM experimental results and analysis. (a) Typical TEM images, scale bars 

are 50 nm. (b) Conformational distribution. 

 

 

Because the nanostructure is a planar mechanism, 2D TEM images are sufficient to 

capture the full structure configuration. Figure 4.4(b) shows the configurational 

distribution of the nanomechanisms (quantified from TEM images) in terms of the angle 
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θ between the crank link and frame link (sample count n = 493). Although the structure 

may subjected to some forces during the surface deposition and staining process, 

variations in the sample prep suggested these forces do not impact the distribution of 

conformations for this particular structure. The distribution clearly shows the two stable 

positions of the bistable mechanism and the small population that adopts the unstable 

configuration. Approximately 31% of the structures adopt the closed configuration 

(θ<40°) and ~53% adopt the open configuration (θ > 60°).  The fitting function used in 

the distribution is a combination of three normal distributions, mathematically written as 

22 2

3 31 1 2 2

2 2 2

1 2 31 2 3

( )( ) ( )
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2 2 22 2 2

a xa x a x
F x Exp Exp Exp
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    

 
       (4.1) 

From the multimodal normal distribution fit, the closed population has a peak value at 

θ ≈ 27.5°, the open population has a peak value at θ ≈ 79.7°, and the population of 

particles in the unstable position has a peak value at θ ≈ 48.4°. These values are very 

close to the original design intention except the open stable position is about 10° smaller 

than the design value of 90°. This deviation is likely due to the mechanics of the ssDNA 

hinge connections. In the other research, it has been shown that although these types of 

hinges are quite flexible, they exhibit an equilibrium angle between 60 and80°.
10

 

Furthermore, the closed (S1) configuration has a larger stiffness than the open (S2) 

configuration indicated by the narrower distribution, likely because the S1 configuration 

is closer to the energy barrier. Hence, small changes of angle θ result in larger energy 

changes in the S1 configuration compared to the S2 configuration.  
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The free energy landscape 𝑈(𝜃) shown in Figure 4.4(b) was determined from the 

probability density distribution 𝑃(𝜃), assuming a Boltzmann distribution, 𝑃(𝜃) ∝

𝑒𝑥𝑝(−𝑈(𝜃)/𝑘𝐵𝑇), where kB is Boltzmann’s constant and T is the absolute temperature. 

Theoretically, the unstable position should correspond to an energy maximum. However, 

because some particles get stuck in the unstable position, likely due to base-stacking 

interactions, the small peak on the probability distribution results in a third energy 

minimum in the free energy landscape. Although this effect is distinct from the 

mechanical deformation of the compliant link, it still affects the overall mechanical and 

dynamic behavior of the device. 

4.3.2. Actuation analysis 

    DNA strand displacement
1,2

 is a popular approach to design and control dynamic DNA 

nanostrucutres, which is illustrated in Figure 4.5. In this case, in the initial relaxed state 

(upper left), overhang staples (red) are designed for each of the four links. Initially there 

is no connection between crank link (green) and frame link (blue), or between the coupler 

link (cyan) and compliant link (red). The closing staples (green strands) were added and 

hybridization of closing staples with the red overhangs holds the structure in the closed 

S1 position (upper middle). The releasing staples (purple strands), which are the full 

reverse complement of the closing strands, were added to remove the closing strands via 

DNA strand displacement (upper right). An example of this DNA strand displacement 

process is shown on the bottom. 
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Figure 4.5: Actuation with DNA strand inputs. 

 

 

To demonstrate control over the configuration of the structure, a distributed actuation 

approach similar to Marras, et al.’s work
10

 is used to transfer and hold all the particles in 

the S1 state. In this approach, illustrated in Figure 4.6(a), ssDNA input strands added to 

the purified structure facilitate reconfiguration of the mechanism by binding to ssDNA 

staple overhangs on adjacent links.  

For this bistable mechanism, actuation process utilizes additional ssDNA inputs 

(closing strands) to fix the structure in the S1 (closed) configuration. The closing strands 

can then be removed via toehold-mediated DNA strand displacement by adding 

additional ssDNA inputs (releasing strands), releasing the mechanisms back into the free 

state. To force the mechanism into the closed configuration (stable position S1), 

connections were introduced between overhangs on the crank and the frame links and 

similarly between the coupler and compliant links. These links form a nonzero angle 

between them in the closed position, and the length of the overhang staples (8 to 23 nt) 
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was determined accordingly. Five additional bases were added to each ‘closing’ staple to 

function as a toehold for subsequent strand displacement. All overhang and toehold 

sequences were optimized to avoid competitive binding to other staples and with the 

scaffold. 

 

 

 

Figure 4.6: Reversible actuation of bistable nanomechanism. (a) Actuation process. (b) 

Conformational distributions. Scale bars = 100 nm. 

 

 

    Figure 4.6(b) (middle) and 3c (top) depict the angular distribution and representative 

TEM images after the closing actuation. Approximately 76% of the nanomechanisms 

were found in the closed (S1) configuration (θ<40°) compared to 31% prior to actuation 

(Figure 4.6(b), top, n = 496). The energy landscapes are shown on the right of Figure 

4.6(b). The open particles were excluded from the energy curve for the S1-actuated 
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structures because in all likelihood they do not contain the additional connections formed 

by the input strands and hence are mechanically distinct.  

To demonstrate reversible actuation, a second round of ssDNA input strands were 

introduced, which were the full reverse complement of the closing strands, in order to 

remove the closing strands via strand displacement. Toehold-mediated strand 

displacement
27,47

 has been successfully used to actuate a variety DNA 

nanostructures.
22,27,28,48,49

 Here DNA strand displacement is used in the context of the 

distributed actuation approach where the several “closing”’ strands that hold the structure 

in the stable position S1 are all displaced to release the structure back into the free state 

where it can again achieve equilibrium between the multiple conformations. High 

efficiency of the reverse actuation required a slight elevation in temperature to 37°C. This 

is attributed to faster reaction rates at elevated temperatures and the possibility of weak 

secondary structure or binding interactions of the actuation strands that must be melted to 

allow for efficient toehold binding and strand displacement. Figure 4.6(b) (bottom) and 

(c) (bottom) depict the angular distribution, the energy landscape, and a representative 

TEM image after running the reverse actuation at 37°C for 1 h. DNA strand displacement 

can be effected by temperature and cation conditions. Figure 4.7 shows the influence of 

temperature to the reverse actuation of this DNA origami bistable mechanism.  
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Figure 4.7: Effects of temperature on the reverse actuation. (a) Initial TEM image and 

angle distribution. (b) Closed configuration actuation. (c) Re-opened experiment at room 

temperature. (d) Re-opened experiment at 32°C. (e) Re-opened experiment at 37°C. 
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Figure 4.7(a) presents the initial TEM image and conformation distribution after gel 

purification. For the closing actuation, closing staples were added at 10-fold excess 

relative to the structure concentration as measured by a ThermoScientific NanoDrop. The 

binding reaction was kept at room temperature overnight. Typical TEM image and 

configuraiton distribution shown in Figure 4.7(b) demonstrated most of the particles can 

be switched to the closed state. Then re-open experiment was firstly conducted at room 

temperature and releasing staples were added at 10-fold concentration relative to the 

closing staples. But the re-open efficiency is not good shown by typical TEM image and 

configuration distribution in Figure 4.7(c). Then, temperature of the re-open experiment 

was increased to 32°C and timescale was limited to 1 hour, TEM image and 

configuration distribution of the re-opened samples in Figure 4.7(d) indicates the re-open 

efficiency is increased, but still not high enough. Finally, the re-opened sample kept at 

37°C for one hour and then cooled to room temperature and this time the re-open 

efficiency is pretty good shown in by TEM image and configuration distribution in 

Figure 4.7(e). All of the percentages of closed, unstable and open configurations and the 

corresponding equilibrium angles are summarized in Table 4.1. 

The distribution and energy landscape of nanomechanisms after the reverse actuation 

at 37°C is close to the original distribution, suggesting most if not all of the closing 

strands were removed. These results not only demonstrate control over the stable position 

of the structure, but also show that the mechanism exhibits passive conformational 

changes over the energy barrier to reach equilibrium between the two stable 

configurations. Following the design approach, larger energy barriers could be designed 
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such that the particles do not switch between the two stable states freely under thermal 

fluctuation.  

 

 

Table 4.1: Summary of experimental angle distributions and model. 

 Stable positon (S1) Unstable position (U) Stable positon (S2) 

 θϵ(0°, 

40°) 

Equilibrium 

angle θ 

θϵ(40°, 

60°) 

Equilibrium 

angle θ 

θϵ(60°,120°

) 

Equilibrium 

angle θ 

Design N/A 29.1° N/A N/A N/A 90.0° 

Initial ~31% 27.5° ~16% 48.4° ~53% 79.7° 

Closed ~76% 29.2° ~9% N/A ~15% N/A 

Room 

temperature 
~50% 28.8° ~16% 46.4° ~34% 77.2° 

32°C ~39% 28.7° ~19% 50.4° ~42% 76.6° 

37°C ~34% 28.1° ~14% 49.0° ~52% 79.0° 

Theoretical 

Model 
N/A 29.1° N/A 49.2° N/A 90.0° 

 

 

4.4. Modeling analysis 

    As introduced in Chapter 2, Pseudo-rigid-body model (PRBM) provides a 

demonstration of predicting functional mechanical behavior of compliant DNA origami 

mechanisms. Here, PRBM is applied to analyze the behavior of the bistable mechanism. 

Both of PRB-1R model and PRB-3R model were employed to study the deformation 

behavior of the compliant link. 

4.4.1. Stiffness measurement of the fixed joint 

As mentioned previously, the right angle connection between the compliant link and 

the frame link was designed to be a rigid connection. Stiffness of the right angle 
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connection can’t be ignored due to the strand connections between these two links are 

based on the base pairing which can be destabilized by temperature, cation concentration 

and PH values. To specifically quantify the stiffness of that fixed joint, the structure was 

folded as an open loop and measured small fluctuations of the joint about the 

perpendicular position from TEM images (Figure 4.8).  

 

 

Figure 4.8: Measuring the stiffness of the fixed joint between the compliant and frame 

links. (a) Sketch of the fixed joint. (b) The 3D sketch of the model used to measure the 

fixed joint stiffness, scale bars are 100 nm. 

 

 

Details of the right angle connection are shown in Figure 4.8(a). In Yellow points on 

the frame link represent the four connection points were ssDNA scaffold connects the 

frame link (blue) to the compliant link (red). The straight black lines represent 
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connections where there are no extra bases and the dashed black spline lines represent 

connections where there are extra bases between them.  Connection points are also shown 

schematically in a double-helix structure. Figure 4.8(b) shows the 3D sketch of the model 

used to measure the fixed joint stiffness and a small segment in the middle of the frame 

link was removed so that the whole structure becomes an open loop. TEM images and 

angle distribution of the fixed joint are shown in Figure 4.8(c). The mean angle is 89.9° 

and the stiffness is about 1578.9 pN·nm, calculated by the following equation 

𝜅<Δϕ
2
> = kBT                                                     (4.2) 

where Δϕ is the angular displacement of the joint, kB is Boltzmann’s constant and T is 

absolute temperature.  

4.4.2. PRB model 

   The analysis of rigid body mechanisms has been well studied. However, the analysis 

of compliant mechanisms (with compliant links), is not a trivial task due to coupling of 

kinematics and mechanics of solids. Although the finite element method could be used to 

solve this problem, the fact that it is computationally costly and requires material 

properties to be known beforehand makes it inconvenient for our study. Here, the so 

called Pseudo-rigid-body (PRB) model
3–5

 is adopted for the design and analysis of 

compliant mechanisms. Taking a flexible cantilevered beam as an example, the end 

deformation and energy storing process can be represented by two rigid links connected 

with a revolute joint which has a torsion spring on it (Figure 4.9 (a, b)).  
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Figure 4.9: The PRB model for the bistable mechanism. (a) Deformed shape of a 

cantilevered beam. (b) The PRBM for a cantilever beam (c) PRB-1R model of bistable 

compliant nano-mechanism, dimension unit: nm. (d) Simplified model. 

 

 

    The energy barrier is determined by the maximum deformation of the compliant link. 

In order to elucidate the energy landscape, a simplified model is developed based on the 

design of a compliant mechanism. The foundation of this mechanism model is to treat the 

relatively stiff links as rigid components and replace the compliant link with two rigid 

links connected by a torsional spring. Several models have been introduced for analyzing 

the mechanical properties of DNA nanostructures[21,39,101]. Previous studies have also 

demonstrated that a coupled cylinder model provides a good estimate of the mechanical 

behavior of designed DNA nanostructures[39,101]. In this model, each dsDNA helix is 

treated as a cylinder with an effective diameter close to 2.5 nm (DNA origami cross 

sections tend to swell, so helices exhibit a larger effective diameter)[55]. The compliant 
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link can then be treated as a beam with a cross section of six double helices in a 

honeycomb arrangement (Figure 4.9 (c,d)). The deformation of the compliant beam is 

approximated by two rigid links OD and DC with two torsion springs at the connection 

points O and D, whose stiffness are 1k  and 2k , respectively.  The position and the 

stiffness of the torsion spring is given by the following equations  

(1 ) EG OEr L L                                                         (4.3) 

6
2

( ) hb

EG

EI
k K

L
 

                                                       (4.4) 

Here r represents the distance between the revolute joint and the fixed end, L is the beam 

length , and γ is called the “characteristic radius factor”[32], which is determined by the 

force angle φ (Figure 4.9(b)). 

    In this study, OE and FG 10-hb cross section segments are relatively rigid and their 

deformations are very small. Since FG segment is very short, FG segment is treated as 6 

hb cross section for the sake of simplicity. The average value of γ between the two stable 

configurations is about 0.8654. K is the torsion stiffness and K  is called the stiffness 

coefficient
5
 related to the loading case and geometry, which is also determined by the 

angle φ (Figure 4.9(b)). The average value of K  between the two stable configurations 

is about 2.6698.  E is the Young’s modulus of the material and I is the moment of inertia 

of the beam cross section. For the compliant link, I can be calculated by  

4 2 4 2
2 2

6 2( ( ) ) 4( ( / 2) )
64 4 64 4

hb

D D D D
I D D

   
                             (4.5) 

For the 10-hb cross-section segment, I is calculated by 
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4 2 4 2
2 2

10 4( ( ) ) 6( ( / 2) )
64 4 64 4

hb

D D D D
I D D

   
                             (4.6) 

Here, D =2.5 nm is the diameter of dsDNA.  

The PRB model of the nano-mechanism, the final model is shown in Figure 4.9(c, d). 

The stiffness of the fixed joint, 
1k , was calculated in Eq. (4.2). And the bending stiffness 

(EI) of the flexible beam segment was calculated using the equation:  

p

B

EI
L

k T
                                                                (4.7) 

Here, 
pL  is the persistence length of the bundles of dsDNA. The persistence length of 

single dsDNA is about 50 nm[102,103]. Here the diameter of single dsDNA is 2.5 nm. 

This gives a bending stiffness of 11070 pN·nm
2
 or a persistence length of 2700 nm for 

the 6-hb flexible bundle. Based on Eq.(4.4) and Eq.(4.5) and the average value of γ and 

K , we can obtain the stiffness 
2k  408.857 pN·nm. 

The strain energy stored in the two torsion springs can be calculated by 

2 2

1 1 2 2 1

1 1
( ) ( )

2 2
SE k k                                                 (4.8) 

In order to solve 1  and 2 , a kinematic constraint equation of the mechanism is needed. 

From the model in Figure 4.9, the edge vectors of the four links ( AB , BC , AO , OD ,

DC ) form a loop which has the follow relationships: 

BC AO OD DC AB                                                  (4.9) 

2

BCl BC BC                                                            (4.10) 
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Here 
BCl  is the length of coupler link. Then, 1  and 2  can be determined by finding the 

minimum value of strain energy SE. At the same time the value of strain energy SE at 

each position will form the energy landscape (Figure 4.10). 

 

 

 

Figure 4.10: Comparison of the energy landscapes obtained from experiment and 

theoretical model. 

 

 

    In Figure 4.10, red and blue lines show the energy landscape of the nanomechanism in 

the initial state and the released state after actuation, respectively. The dashed lines show 

the mechanical energy landscape (i.e. middle energy well removed), which agrees well 

with the theoretical model (black line). Note that colors are consistent with Figure 4.6, 

and the red and blue solid lines are identical to those shown in Figure 4.6(b).   

    In the model, the mechanical energy is completely stored in the two torsional springs. 

The total energy stored can be calculated using Eq.(4.8). Then the energy landscape of 

the model is obtained by minimizing the total energy at each position of θ based on the 

geometric constraint Eq.(4.10). The energy barrier obtained from the model is about 4.12 
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𝑘𝐵𝑇 occurring at θ ≈ 49.3°, whereas the energy barrier showed by the initial and 

reopened nanomechanisms was approximately 2 𝑘𝐵𝑇. However, as previously 

mentioned, an additional interaction, likely DNA base-stacking between the crank link 

and the coupler link, creates a decreased local energy at the mechanically unstable 

position. To determine the energy landscape due purely to mechanical deformation of the 

compliant link, the energy landscape was calculated from just the normal distribution fits 

for the two stable positions. In Figure 4.10, the solid red and blue lines show the full 

energy landscapes for the free and re-opened nanomechanisms, and the red and blue 

dashed lines show the modified energy landscape purely due to mechanical deformation. 

The mechanical energy barriers from the free nanomechanism (4.94 𝑘𝐵𝑇) and the 

reopened nanomechanism (4.04 𝑘𝐵𝑇) resemble the theoretical model (4.12 kBT).  

Our pseudo-rigid-body model provides a simple and convenient tool with acceptable 

accuracy to predict the deformation and mechanical energy storage of compliant 

nanomechanisms, and demonstrates a feasible approach to model other DNA 

nanostructures.  In addition, the calculated energy landscape is not sensitive to the value 

of the coefficients (γ and K ) in the feasible range (sensitivity analysis shown in Figure 

4.11).  Figure 4.11 shows variation of PRB parameters γ and K  and sensitivity of the 

potential energy landscape of the theoretical model. The variation of γ vs. the angle φ is 

shown in Figure 4.11(a) and the red dashed line represents the average value of γ between 

the two stable positions. The variation of K  with the angle φ is shown in Figure 4.11(b) 

and the green dashed line represents the average value of K  between the two stable 



98 

 

positions. Energy landscapes calculated using the maximum, average and minimum 

values of γ between the two stable positions demonstrated negligible sensitivity in the 

feasible range (Figure 4.11(c)). On the other side, energy landscapes calculated with the 

maximum, average and minimum values of K between the two stable positions also 

demonstrated negligible sensitivity in the feasible range (Figure 4.11(d)). 

 

 

 

Figure 4.11: Variation of PRB parameters and sensitivity of the potential energy 

landscape of the theoretical model. 

 

 

This model also predicts the deformed shape of the nanomechanism very well (Figure 

4.12).  
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Figure 4.12: Comparison between theoretical PRB model and experimental results for the 

geometry of the unstable position. 

 

 

In Figure 4.12, the red line represents the compliant link, the dashed lines are the two 

stable positions, and the black solid line corresponds to the unstable equilibrium position 

calculated from the theoretical model. The blue dashed line represents the trajectory of 

the joint between the coupler link and the compliant link during deformation. The solid 

red line shows the configuration of maximum deformation for the pseudo-rigid-body 

model. The green dots represent the compliant link deformation measured from the 

unstable samples captured from TEM images. The green points are close to the predicted 

deformed position based on the model. A measured example is shown on the upper left 

corner.  
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4.4.3. Modified PRB model 

In the previous simplified model, the two 10-hb sections at the ends of the compliant 

link were ignored. The effect of the 10-hb cross sections at the top and bottom of 

compliant link needs to be considered. For the sake of simplicity, the top 10-hb cross 

section is treated as a 6-hb since it is very short, hence has little deformation. The bottom 

10-hb cross section is treated as a rigid link since the stiffness is much larger than the 6-

hb cross section. If the compliant properties of the 10-hb cross sections are considered in 

the models, the flexure ability of the entire beam will increase, which means it will be 

easier to deform the beam and the energy barrier will decrease a little bit.  

 

 

 

Figure 4.13: Modified model of the bistable nano-mechanism. (a) Dimension details of 

the modified model. Unit is nm. (b) Simplified modified model. (c) Comparison of 

energy landscapes. 
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In order to quantify this, the two 10-hb cross sections are modeled by using two torsion 

springs placed at the middle of the two segments (positions H and I, Figure 4.13(a,b)). 

Each of the two 10-hb cross section segments is modeled as two rigid bars connected by a 

torsion spring. This is based on the fact that the deformations of the two 10-hb cross 

sections are very small. The torsion spring stiffness is calculated by (EI)/L, where EI is 

the bending stiffness and L is the length of the segment. The entire modified model is 

shown in Figure 4.13. The stiffness of the 6-hb cross section is calculated by Eq.(4.6), but 

only considering the length between point E and F. Finally, the stiffness of the four 

torsion springs are 𝑘1 = 1578.877 𝑝𝑁 ∙ 𝑛𝑚/𝑟𝑎𝑑, 𝑘2 = 467.10 𝑝𝑁 ∙ 𝑛𝑚/𝑟𝑎𝑑, 𝑘3 =

1205.88 𝑝𝑁 ∙ 𝑛𝑚/𝑟𝑎𝑑, 𝑘4 = 2569.05 𝑝𝑁 ∙ 𝑛𝑚/𝑟𝑎𝑑. 

The total energy of the modified model is calculated by following equations based on the 

geometry constrain equations 

 
2 2 2 2

1 1 3 3 1 2 2 3 4 4 2

1 1 1 1
( ) ( ) ( ) ( )

2 2 2 2
SE k k k k                       (4.11) 

The geometry constrain equations  

BC AO OH HD DI IC AB                                            (4.12) 

2

BCl BC BC
                                                           (4.13) 

The result shows that the energy barrier between the original and modified models is 

about 1.07 kBT. In addition, the bottom 10 hb cross section were treated as a rigid link 

(k3=Infinity) and find that the obtained energy landscape (dashed line in Figure 4.13) is 

very close to the initial model. This means the difference between the original and 

modified model is mainly decided by the bottom 10 hb. The energy barrier (the dashed 
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line) is slightly off the initial model, which is due to the fact that the model neglected the 

small geometric difference of the top end (10 hb) and treated the entire flexible link as a 6 

hb cross section in the initial model. This also proves that the initial simplified model is 

acceptable for the nano-mechanism analysis. 

4.4.4. Tune the stiffness of the compliant DNA origami bistable mechanim 

    In previous section, the shape of the energy landscape of the modified model is similar 

to the initial model, but the energy barrier predicted by the modified model is ~1.1  𝑘𝐵𝑇  

lower than the initial model. The difference in the height of the energy barrier is mainly 

caused by some small deformation of the bottom 10-hb cross section segment, where in 

the initial model, the bottom 10-hb cross section segment were treated as rigid. With this 

in mind, the accuracy of the simplified model could be improved by making the bottom 

10-hb segment of the compliant link more rigid, for example by adding more helices to 

the cross section.  This might also increase the stiffness of the joint between the 

compliant link and frame link because larger cross section could provide additional 

positions for joint connections (Figure 4.14(a)). This analysis demonstrates the utility of 

the theoretical pseudo-rigid-body modeling approach in designing the nanomechanism. 

    The change of k1 and k2 can be realized by varying the geometry design of the 

compliant link.  k1 is mainly decided by the connections placed between the compliant 

and bottom links. For example, in order to increase k1, more double strands can be put at 

the bottom end of the compliant link and more connection positions will be provided 

(Figure 4.14).  k2 is mostly depended on the bending stiffness of the compliant link, the 

cross section of the compliant link can be changed to vary k2. For example, in order to 
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decrease k2, the compliant link can be a 6-hb thin plate (Figure 4.14 (b)). The inertial 

moment value will be smaller than the honeycomb style 6-hb. The bending stiffness is 

only 2460 𝑝𝑁 ∙ 𝑛𝑚2which is about 0.222 of the honeycomb style 6-hb (11070 𝑝𝑁 ∙ 𝑛𝑚2). 

In this way, based on Eq.(4.4), the new k2 will be only 0.222 of the initial design.  

 

 

 

Figure 4.14: Tune the stiffness of the bistable mechanisms. (a) Add more connections at 

the right angle junction. (b) Modify the shape of the compliant link. 

 

 

4.4.5. Conformation distribution analysis during depositing and drying process 

Generally, it is reasonable to assume that the conformations observed in TEM images 

are reflective of the conformations in solution. The first reason is that the nano-

mechanism is a planar structure. The 2D image is enough to capture the full 3D 

conformation. Further assumption can be made that once the structure adsorbs on the 

surface the conformation remains fixed in the conformation the structure attained in 

solution just when contacting the surface due to the force between the particle and 
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hydrophilic grid when the particle is adsorbed. Secondly, the design is not a passive 

structure. The conformational change of the DNA origami nano-mechanism requires a 

force input to overcome the energy barrier between the open and closed conformations. 

Therefore, it is not easy for the nano-mechanism to change its conformation during the 

depositing and drying process. An experimental analysis was performed, detailed here, to 

test the effects of deposition and drying on the conformational distribution. 

During the TEM sample prep, structures may be subjected to a number of forces. First, 

an important phenomenon during the drying process is called the coffee-ring effect, 

which may transport many particles to the edge of the grid through a fluid cycle directed 

from the grid center to the edge[104,105]. A large enough capillary force produced 

during this process could potentially impact the conformation of the nano-mechanism. In 

addition to this coffee ring effect, the inter-particle forces may change as particles get 

concentrated during the drying process and the chance of interactions between particles 

increases.  Finally, particles may experience some additional fluid forces when excess 

fluid is wicked off the grid prior to applying the negative stain on the grid. 

    To explore the effect of these or other forces on the conformation of the bi-stable DNA 

origami nanostructure, variations were tested on the TEM sample prep. The normal 

sample prep calls for depositing 3.4µl of structure solution on the grid and incubating for 

~4 min to allow structures to adsorb to the grid surface prior to wicking the remaining 

fluid off the grid and staining. Two extremes were tested on this prep. First, the sample 

was allowed to completely dry on the grid surface, which took approximately 17 min. It 

is assumed that in this “long incubation” case, structures adsorb to the surface prior to 
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any fluid forces imposed by the wicking process and in the presence of capillary forces 

that cause the coffee-ring effect (i.e. radially outward flow to replenish liquid evaporated 

at edges). Secondly, another sample was prepared by depositing the structure solution on 

a grid and incubating for only ~30 seconds prior to wicking off the remaining fluid and 

staining. This time, it is assembled that in this “short incubation” case, minimal fluid has 

evaporated and many of the structures adsorb to the surface in the presence of the fluid 

forces resulting from the wicking process. 

Figure 4.15 shows sample TEM images and angular distributions of both cases as well 

as the normal sample prep. Specially, Figure 4.15 shows: (a) (Left) TEM images obtained 

from the center of a grid that had the sample totally dry under room temperature and 

(Right) the conformation distribution (n=265); (b) (Left) TEM images obtained from the 

center of a grid made with usual protocol and (Right) the conformation distribution 

(n=361); (c) (Left) TEM images obtained from the edge of a grid made with usual 

protocol and (Right) the conformation distribution (n=324); (d) (Left) TEM images 

obtained from  a grid that had the sample deposited for 30 seconds and (Right) the 

conformation distribution (n=450). Tree energy landscapes of different depositing and 

drying conditions were compared in Figure 4.15(e). These were derived respectively 

from initial obtained conformation distribution (red), conformation distribution obtained 

from the center of a grid that had the sample totally dry under room temperature (orange), 

conformation distribution obtained from the center of normal grid (purple), conformation 

distribution obtained from the edge of normal grid (brown) and conformation distribution 

obtained from the 30 seconds depositing grid (cyan). 
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Figure 4.15: Conformational distribution analysis during depositing and drying process. 
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In the case where the grid was left to dry for 17 minutes, a high density of particles was 

indeed observed at the edge of the grid confirming the presence of the coffee-ring effect 

in the sample prep. These images also reveal the presence of structures in both the S1 and 

S2 configurations both at the center and at the edge. While the angular distribution of 

structures at the edge is difficult to obtain since many structures overlap, the angular 

distribution for structures at the center of this “long incubation” case is similar to the 

normal prep suggesting the fluid forces due to the wicking of excess fluid do not affect 

the structure conformation. Similarly, structures in both S1 and S2 stable configurations 

were observed in the “short incubation” case, and the angular distribution again is very 

similar to the case of the normal prep. Furtherly, re-examined samples was prepared with 

the normal ~4 min incubation procedure and was compared an angular distribution taken 

from particles near the center of the grid versus an angular distribution taken from 

particles near the edge of the grid where capillary forces would be different. Again, 

differences between these angular distributions were minor.  

From what have been discussed above, the original conformation distributions can 

reflect the real situations in solution. At the same time, depositing and drying processes 

are really needed to be considered carefully during the analysis especially when the 

particle is a dynamic structure. Further research is still needed for this topic, since lots of 

factors can affect the conformation of dynamic nanostructures such as the concentration 

of particles, concentration of ions, evaporating rate and so on.   
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4.5. Materials and methods 

    The DNA origami bistable nanomechanism is self-assembled with the 8064-nt single-

stranded scaffold and 189 single-stranded staples (not including actuation staples, 

Supporting Information Table S2). The scaffold is obtained from the clone of the 

M13MP18 bacteriophage virus[20] following protocols detailed in Castro et al.[22] The 

mechanism was designed in caDNAno[55] and the staples were ordered from a 

commercial vendor (Eurofins, Huntsville, AL). Scaffold was mixed at 20 nM with staples 

at 10-fold excess (each staple at 200 nM) in a solution containing 5 mM Tris, 5 mM 

NaCl, 1 mM EDTA, and 14 mM MgCl2. The self-assembly reactions were conducted in a 

thermal cycler (Bio-Rad, Hercules, CA) by rapidly heating the solution to 65 
o
C followed 

by slow cooling to 4 °C over ~4.5 days.  

4.5.1. Structure purification and imaging 

DNA origami structures were purified with 2% agarose gels in 0.5× TBE buffer (44.5 

mM Tris-borate, 1 mM EDTA) with 11 mM MgCl2 and 1 μM ethidium bromide. Well-

folded samples were separated from agarose using DNA gel extraction spin columns 

(Bio-Rad, Hercules, CA). Purified structures were imaged on a transmission electron 

microscope (TEM) for structural feedback as described in Castro et al.[22] Briefly, 

Formvar coated copper grids stabilized with evaporated carbon film (Electron 

Microscopy Sciences, Hatfield, PA) were used for TEM imaging. These were prepared 

by initially depositing 3.4 μl of gel-purified structure solution on a plasma treated grid 

and incubated for 4 minutes. The structure solution was then wicked away, and a 20 μl 

drop of 2% Uranyl Formate (SPI, West Chester, PA) was applied to negatively stain the 



109 

 

structures. Next the grid and stain were incubated for 40 seconds and the stain solution 

was wicked off. Images were taken on a FEI Tecnai G2 Spirit TEM at an acceleration 

voltage of 80 kV. 

4.5.2. DNA displacement actuation 

Actuation was achieved using 13 binding staples and 13 releasing staples with lengths 

ranging from 21 to 51 nt. The concentration of folded particles was measured by UV 

absorbance on a Nanodrop 2000c (Thermo Scientific NanoDrop Products, Wilmington, 

DE) after gel purification. The concentration was measured at approximately 1.2 nM. 

Actuation staples were added so that each staple was at 10-fold excess relative to the 

structure. For the closing actuation, the sample was kept at room temperature overnight. 

For the reverse actuation process, the releasing staples were added at 10-fold excess 

relative to the closing staples, and the sample was kept under 37 °C for about one hour 

after addition of the releasing staples and then directly prepared for TEM imaging as 

previously described. 

4.6. Summary and discussion 

    The DNA origami bistable nanomechanism developed here provides a novel technique 

to design and fabricate a dynamic nanostructure exhibiting multiple stable states 

separated by designed energy barriers.  To our knowledge, this is the first demonstration 

of direct design of several features (stable states, energy barriers, and distances in 

between) of a DNA origami nanostructure energy landscape. In comparison to 

nanomachines built from DNA strands[14,15,61], here the DNA origami approach is 
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specifically exploited to design components with varying stiffness and anisotropic 

mechanical properties (i.e. 10-hb has larger bending stiffness preventing out of plane 

deformations). Furthermore the use of bundles as components enhances our ability to 

constrain motion because hinges can be defined by multiple connections distributed along 

a line. The results presented here also establish a foundation for the use of 6-hb and other 

small DNA origami cross sections to be implemented as compliant or deformable 

components in DNA-based design with explicit treatment of their strain energy. In the 

current design, the structure can traverse the energy barrier via thermal fluctuations. 

However, based on the model, the geometry of the structure or the stiffness of the 

compliant link could be modified to increase or decrease the height of the energy barrier. 

Furthermore, this work illustrates the potential for exploiting not just mechanical 

deformation, but also base-stacking interactions to program local stable states in an 

energy landscape. These types of structures with multiple stable states and designed 

energy barriers could provide useful tools for the design of biosensors, mechanical 

manipulators, or switches whose function is based on specific work inputs.  

    In the same vein, molecular structures with multistate energy landscapes separated by 

well-defined energy barriers are ubiquitous in natural biomolecular machinery, in 

particular proteins such as GCN4 leucine[106], GFP[107], or T4 lysozyme[108] where 

the details of the energy landscape are critical to the dynamic function of the 

macromolecule. This research provides a potential model system to explore the design of 

energy landscapes similar to protein systems in a DNA nanostructure; and further, the 
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compliant mechanism design approach demonstrated here for a biomolecular system 

could even potentially be applied to designed protein systems.  

    This work more generally demonstrates the successful application of macroscopic 

engineering design concepts to DNA origami nanotechnology. These bottom-up 

fabricated DNA-based nanomechanisms exhibit similar characteristics to 

MEMS/NEMS[109–111] devices top-down fabricated from metal, silicon, polymer 

materials and carbon nanotubes and exhibit some unique advantages compared to 

traditional materials such as potential self-healing, biochemical functionality, and the 

ability to interface with biomolecular and even cellular systems. 

 

 

  



112 

 

 

 

 

 

 

Chapter 5: Projection Kinematic Analysis of DNA Origami Mechanisms Based on a 

Two-Dimensional TEM Image 

 

 

    DNA Origami Mechanisms (DOM) are nanometer scale mechanisms made of DNA 

materials. By mimicking concepts of links and joints in macroscopic mechanisms, we 

demonstrated that these DOM can produce a prescribed motion pattern. While important 

progress has been made towards design, fabrication and actuation of DOM, quantitative 

validation of their kinematic motion remains a challenge. Currently the kinematic 

analysis of these DOM still heavily relies on the analysis of Transmission Electronic 

Microscopy (TEM) or Atomic Force Microscopy (AFM) images. TEM gives 2D 

projections, and AFM gives height information on the top surface of the structure. Hence 

these images do not represent the true kinematic parameters in space. While 3D 

reconstruction methods exist, they are highly challenging, time consuming, and often 

average over many structures, which is problematic for mechanisms that can adopt many 

configurations. Here we propose a method, which we named “projection kinematics,” for 

the configuration analysis of individual DOM based on 2D projection images. The 

method enables finding all possible projected configurations of a DOM in space by 

solving the projection kinematics equations based on the minimum needed information 

measured from a 2D image. First, the projection kinematic analysis is demonstrated for 
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the basic kinematic joints – revolute, prismatic, cylindrical and spherical joints – and one 

degree-of-freedom (DOF) planar four-bar and two DOFs five-bar linkages. Then, a 

generalized procedure is presented for projection kinematics analysis. Finally, a universal 

joint and a Bennett linkage fabricated by DNA origami self-assembly are chosen as 

proof-of-concept examples to verify the feasibility of projection kinematics analysis of 

DOM. This approach not only provides valuable guidance for the design of nanoscale 

mechanisms and robots, but also offers a low cost analysis approach for kinematic 

verification. 

5.1. Background  

    Structural DNA nanotechnology enables the construction of complex geometrical 

nanostructures through the bottom-up self-assembly of single DNA strands based on the 

Watson-Crick base pairing principle[15,112]. Recent advanced, including the 

development of scaffolded DNA origami [19,22,113], have promoted and expanded the 

design of dynamic DNA nanostructures. Recently we demonstrated the ability to use 

scaffolded DNA origami to design and fabricate a series of nanoscale classic kinematic 

joints, such as the revolute, prismatic, universal joints and kinematic mechanisms 

including a spatial four-bar Bennett linkage, a crank-slider mechanism and a scissor 

mechanism [20,21,30]. In addition, we also implemented the design methodology of 

compliant mechanisms, constructing a compliant hinge joint and a four-bar bistable 

mechanism [31,39,114]. We call these nanostructures DNA Origami Mechanisms 

(DOM).   
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    Currently, design validation analysis of these DOM relies on measurement of projected 

geometric parameters, such as link lengths, angles between two links [20,40] measured 

from Transmission Electron Microscopy (TEM) or Atomic Force Microscopy (AFM) 

images. However, TEM gives a 2D projection of 3D structures, and AFM images give 

height information, but only of the upper most surface of a structure. Hence, it is difficult 

to fully prescribe the configurations of DOM, especially ones with 3D motion. EM-based 

reconstruction techniques provide a powerful technique to determine the 3D geometry of 

biomolecules with nanometer or subnanometer resolution by taking a series of images 

from different view angles [41,115], and this approach has been applied to DNA 

origami[116]. However, this technique depends heavily on the preparation quality of the 

sample and often requires averaging over many structures, which is problematic for 

DOM that adopt many configurations. In addition, the post imaging-processing algorithm 

for 3D reconstruction from 2D TEM images is far from mature. Recent single particle 

reconstruction methods have demonstrated tremendous promise for the 3D structure 

analysis of individual molecules and nanoparticles [116,117]; however, these methods are 

challenging and require time consuming optimization of sample preparation.   

    Here we present an alternative approach to validate the kinematic motion of DOM by 

analyzing its projected kinematic constraint equations to determine the relative spatial 

geometries of links projected on a 2D plane. Intuitively, the projected configuration of a 

DOM is determined by its configuration in space as well as the projection direction. If the 

projection direction is fixed, the motion of the mechanism in the projected image will 

follow the motion of the DOM in space. For example, Su et al. [115] first derived the 
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motion of the Bennett linkage in space and then projected the entire Bennet linkage 

configuration on a designated 2D plane. By kinematic analysis of a one DOF Bennett 4-

bar linkage, Su et al. had successfully determined the projected joint angles and 

compared them with measured data from 2D TEM images.  

    In this chapter, we further expand this method to the kinematic analysis of projected 

configurations of general mechanisms. We call this approach “projection kinematics.” It 

differs from the projective kinematics in that projective kinematics reconstructs a 3D 

object from at least two stereo images [118] while our projection kinematics predicts 3D 

configurations using one 2D image.  

This chapter is organized as the following. First, a general algorithm of the projection 

kinematics analysis of mechanisms is devised based on the investigation of various 

kinematic joints and four-bar and five-bar linkages. Second, a universal joint and Bennett 

linkage fabricated by DNA origami are used as two case studies to demonstrate the 

feasibility and describe the application process of projection kinematics. Multiple 

solutions can be obtained by solving the projection kinematics equations based on the 

information measured from the projected configuration. Also, different information, such 

as the combination of different angles or link lengths measured can result in different 

projection kinematics equations, which can obtain different solutions and some of them 

are mechanically different. Usually, measuring angles between two links is easier and has 

better measurement accuracy than measuring lengths because the ends of the links are 

often blurry in TEM images, especially for biological materials that are generally flexible 

and do not give strong contrast. At last, we will discuss the minimum variables that must 
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be measured for solving of projection kinematics equations and how to eliminate the 

extraneous one to determine the right solutions. 

5.2. Projection analysis of kinematic joints 

    The configuration of a DOM is determined if it is fully controlled, i.e. the number of 

actuated kinematic parameters equals the number of its degree-of-freedom (DOF). Then 

the entire mechanism can be treated as a static structure and its configuration in space can 

be modeled by conducting the transformation in global frame. For convenience, we 

define the project direction as the z-axis. The projection plane is the x-y plane. Only 

rotations about x and y axes alter the projected configuration of the DOM. In addition, the 

rotation about the x-axis does not affect the projected length of a link placed along the x-

axis. The same is true for the y-axis.  

Mathematically, the rotation matrices about the x-axis (rotation angle α) and y-axis 

(rotation angle β) are defined as 

1 0 0

[ ( )] 0 cos sin

0 sin cos

X   

 

 
 

 
 
  

 and 

cos 0 sin

[ ( )] 0 1 0

sin 0 cos

Y

 



 

 
 


 
  

                  (5.1) 

Combining these gives the resultant rotation matrix [R] as 

cos sin sin cos sin

[ ] [ ( )][ ( )] 0 cos sin

sin sin cos cos cos

R Y X

    

   

    

 
 

  
 
  

                        (5.2) 

    For any given joint, or mechanism, the projection kinematics analysis will determine 

all possible spatial configurations that can have a particular projected configuration. 

Mechanisms are comprised of links connected by kinematic joints, such as revolute, 
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prismatic, cylindrical and spherical joints. Because of the practical difficulties in 

measuring the detailed geometric shape of a link from a 2D image, we simplify a link 

into a single line, which is sufficient to reconstruct the kinematic configuration of the 

DOM. Considering the links as rigid lines, their projection is the same as the projection 

of static structure and their shape can be reconstructed by the views taken from any side.  

The derivation of projection kinematics for mechanisms is based on the projection 

analysis of the classic kinematic joints. The top of Error! Reference source not found. 

shows the sketches of revolute, prismatic, cylindrical and spherical joints in space and 

their projected configurations on the x-y plane are shown at the bottom of Error! 

Reference source not found..  The origin of the global coordinate frame is placed at the 

point O and the x-axis is pointing in the direction of link OA and the z axis is the 

projection direction.   

 

 

 

Figure 5.1: Kinematic parameters of revolute, prismatic, cylindrical and spherical joints 

(from left to right) are 3D (top) in nature. 
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    In the following sections, the projection kinematics of the revolute, prismatic, 

cylindrical and spherical joints will be discussed in details.  

5.2.1. Revolute joint 

    A revolute joint is constructed by two links connected with a pin joint to yield one 

rotational DOF. Figure 5.2 shows a sketch of a revolute joint, where cylinders represent 

the links and balls represent joints and end points of links. Note this representation 

neglects the shape of links and joints. This representation method is also used in the 

following sections. In Figure 5.2, the local coordinate frame xyO0 is defined with x-axis 

along one link and x-y plane on the plane formed by the two links and in order to clearly 

show the spatial and projected configurations respectively, the spatial configuration is 

shifted vertically to a position above the x-y plane. The projected parameters are shown 

on the projected configuration (Figure 5.2(c)). 

 

 

 

Figure 5.2: Projection of a revolute joint formed by two links. 
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    For the analysis of the revolute joint, we assume that both links are initially laid on the 

x-y plane with the link  O0A0 along the x-axis and O0 at the origin position of the global 

frame, as shown in Figure 5.2(a). Here the two link lengths are L1 and L2, and the joint 

angle is θ0.  

For convenience, let us define the x-y plane projection matrix as 

[P]=

1 0 0

0 1 0

0 0 0

é

ë

ê
ê
ê

ù

û

ú
ú
ú
                                                  (5.3) 

By multiplying [P], the projection coordinate (x, y, 0) on the x-y plane of any spatial 

points (x, y, z) can be obtained. The geometric information for the projected 

configuration (Figure 5.2(c)), namely the projected link lengths 
1L , 

2L and the projected 

angle 
1 can be measured by image analysis tools. 

 

 

Table 5.1: Initial, rotated, projected and measured points that define the structure of the 

revolute joint 

Points in the local reference 

frame 

Points after 

rotation 

Projected 

points 

Measured points from a 2D 

image 

0 1( ,0,0)TLA  0[ ]RA A  [ ]PA A  
1( ,0,0)TLA  

0 2 01 2 01( cos , sin ,0)TL L B  0[ ]RB B  [ ]PB B  
2 1 2 1( cos , sin ,0)TL L B  

 

 

    Comparing the coordinates of projected points and measured points in Table 5.1, we 

can obtain the following three equations 
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1 1

2 01 01 2 1

2 01 2 1

cos

(cos cos sin sin sin ) cos

sin cos sin

L L

L L

L L



     

  

 


 




                              (5.4) 

Parameters α, β and θ01 can be solved from Eq.(5.4)  when 
1L , 

2L and 
1 are measured 

from the projected configuration. It is noted that only the last two equations in (5.4) are 

mildly coupled. Solving the first equation yields two solutions of β. Substituting either of 

those solutions for β into the last two equations in (5.4) and eliminating α lead to an 

equation for θ01, which we can solve to obtain four solutions. Hence, we conclude that 

there are at most eight solutions for the system given by Eq.(5.4).   

    A numerical example is shown below to validate the projection kinematics solution 

process for a revolute joint. First, the length of the links, the joint angle θ01 and global 

rotation angles α, β are chosen randomly (excluding the extreme position, such as the link 

perpendicular to the x-y plane) shown in the first row of Table 1. Secondly, the designed 

projected configuration can be obtained and the projection variables are shown in the 

second row of Table 5.2.  

 

 

Table 5.2: Numerical example for projection kinematic analysis of revolute joints 

Initial configuration L1=100, L2=150, θ01 =120°  

Rotation angles α = -30°, β = 60° 

Projected configuration 
1L =50, 

2L =195.256, 
1 =129.809° 
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Figure 5.3: Configuration solutions of the projection kinematic analysis of a revolute 

joint. 

 

 

Eight solutions are obtained by solving Eq. (5.4) when keep θ01, α and β as unknowns 

and substituting the other variables shown in Table 1 into the equations. Figure 5.3 shows 

the eight possible solutions that can correspond to the same projected configuration, 

where each solution has the spatial configuration above the x-y plane and the projected 

configuration on the x-y plane (θ01, α and β for each solution are shown under the figure 

as (θ01, α, β)). The first solution is the same as the specified initial configuration shown in 

Table 5.2. The second solution has the same joint angle as the designed, but the global 

rotation angles α and β are actually opposite as designed. It means the revolute joint has 

two spatial positions that can have the same projected configuration. These kinds of 
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solutions can be grouped as a set. Then, the third and fourth solutions construct another 

set whose joint angle is -120° which means the joint rotates in the opposite direction. In 

addition, α of third and fourth solutions have the negative supplementary angle values as 

the first and second solutions respectively, while β are respectively the same. If the 

rotation direction can be determined from the projected configuration, for example by 

some asymmetric feature on a link, then the solutions with opposite rotation angle can be 

eliminated. The absolute angle value of the bottom four solutions is 97.18°, which means 

the revolute joint can have two different joint angles that correspond to the same 

projected configuration.  Figure 5.4 shows two examples of the symmetrical (or mirrored) 

configurations of a revolute joint (Figure 5.4(a)) and planar four-bar linkage (Figure 

5.4(b)).   

 

 

 

Figure 5.4: Explanation of symmetrical (mirrored) configurations distinguished by a 

designed feature (red box on the purple link). (a) Positive and negative revolute joint 

angles. (b) Symmetrical configurations of planer four-bar linkage. 
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An asymmetric feature, indicated by the small red box placed on the purple links can 

specify the rotation direction of the revolute joint and also tell the difference of the 

configuration of the four-bar linkage. This provides an important criterion for the design 

if 2D images are to be used for the analysis and verification of motion. Alternatively, if 

the range of angular motion can be constrained by the design, for example to be between 

0
o
 and 180

o
, then the joint angle can be uniquely specified. We previously used this 

approach for a DNA origami hinge [6]. 

In the following section, all of the solutions with negative rotation angles or mirrored 

configurations are still presented in the figures of solutions even though they look the 

same as the target configuration. In general asymmetric design features box can confirm 

the difference easily. 

5.2.2. Prismatic joint 

    Prismatic joints are usually constructed by a slider that translates linearly relative 

another part. A simple example is a square rod that slides with a single DOF inside a 

square tube.  Figure 5.5(a) shows the coordinate frame of a general prismatic joint whose 

cross section is rectangular and the red and blue components are the fixed part and the 

slider, respectively. The x-axis points along the translation direction of the blue slider. 

From the model, the rotation about x-axis does not change the projection result if the 

geometrical information of the joint is ignored.  L1 and L2 are the length of the fixed 

component (red) and the extension of the slider beyond the fixed component, as shown in 

Figure 5.5(a). The sketch of the projected configuration of this prismatic joint is shown in 
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Figure 5.5(b). In addition, the projection variables, 
1L and 

2L  corresponding with L1 and 

L2 respectively, are shown in Figure 5.5(c). 

 

 

 

Figure 5.5:  Projection kinematic analysis of prismatic joint and a numerical example. (a). 

The coordinate frame of prismatic joint. (b). Sketch of the projection of prismatic joint. 

(c). Projected configuration of the prismatic joint. (d). Solutions of a numerical example 

of projection kinematics analysis of prismatic joint. 

 

 

    By following the same solution procedures applied to the revolute joint, we can obtain 

the following two projection kinematic equations for a prismatic joint             

1 1

1 2 1 2

cos

( )cos

L L

L L L L





 


  

    .                                           (5.5) 

The angle α doesn’t show up in Eq.(5.5) because the rotation about x-axis does not 

change the projected lengths, 
1L and 

2L . Solving Eq. (5.5) yields two solutions with 

identical L2 but opposite signs of β in terms of L1, 1L and 
2L , which means the prismatic 

joint has a unique configuration with two opposite rotation positions about the y-axis that 
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correspond to the same projected configuration. A numerical example for the projection 

kinematic analysis of prismatic joint is shown in Table 5.3.  

 

 

Table 5.3: Numerical example for projection kinematic analysis of a prismatic joint 

Initial configuration L1=100, L2=150 

Rotation angles α = -30°, β = 60° 

Projected configuration 1L =50,  
2L =75 

 

 

5.2.3. Cylindrical joint 

The cylindrical joint not only has a translational DOF but also a rotational DOF about 

the sliding axis. That rotation does not affect the projected configuration if the x-axis of 

the global coordinate frame is placed along the rotation axis. In other words, it is 

impossible to obtain the rotation angle of the cylindrical joint from the projected image if 

the geometrical information of the joint is neglected or undistinguishable. Then the 

projection kinematics analysis is the same as the prismatic joint if the local rotational 

DOF is ignored. 

5.2.4. Spherical joint 

    A spherical joint as shown in Figure 5.1 has three DOFs. Instead of using traditional 

azimuth and zenith angles for the modeling, here we use the angle θ01 between links O0A0 

and O0B0, and the angle ϕ0 of link O0B0 rotating about x-axis to describe the configuration 
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of spherical joint. In addition, the third DOF, rotation around link O0B0, is neglected as it 

does not affect the projected configuration. Actually, the full geometry of the spherical 

joint is determined only by the angle θ01 if the shape of the two links is negligible.  

 

 

 

Figure 5.6: Projection kinematics analysis of spherical joint. (a). The local coordinate 

frame of spherical joint. (b). Sketch of the projection of spherical joint. (c). Projected 

configuration of the spherical joint. 

 

 

    When the angle θ01 and ϕ0 are given, the general configuration of the entire spherical 

joint in space (Figure 5.6(a)) can be determined. Setting the coordinates of projected 

points (3
rd

 column) equal to the measured points (4
th

 column) in Table 5.4, we obtain 

three projection kinematics equations  

   

1 1

2 01 01 0 2 1

2 01 0 2 1

cos

(cos cos sin cos( )sin ) cos

sin sin( ) sin

L L

L L

L L



      

   

 


  


 

                  (5.6)   

However the above three equations are not sufficient to solve the four unknowns, α, β, θ01 

and ϕ0. 
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Table 5.4: Initial, rotated, projected and measured points that define the structure of the 

spherical joint  

Points in the local 

reference frame 

Points after rotation Projected points Measured points from a 

2D image 

0 1( ,0,0)TLA  0[ ]RA A  [ ]PA A  
1( ,0,0)TLA  

0 0 00[ ( )]X B B  0

0 00

[ ]

[ ( )][ ( )]

R

Y X  



 

B B

B
 

[ ]PB B  
2 1 2 1( cos , sin ,0)TL L B

 

Here 
00 2 01 2 01( cos , sin ,0)TL L B . 

 

 

    Noticing that 0   in Eq. (5.6) can be treated as a single unknown, eight solutions of 

β, θ01 and 0   can be obtained similarly to the projection kinematics analysis of 

revolute joint. This agrees with our intuition that the initial configuration is determined 

by the angle θ01 and the local rotation ϕ0 is coupled to the global rotation about x-axis. In 

other words, the projection kinematics of spherical joint reduces to the same analysis as 

the revolute joint if the specific geometry of the links is neglected. To validate the 

projection kinematics analysis procedure of a spherical joint, a numerical example shown 

in Table 5.5 is used. 

 

 

Table 5.5: Numerical example for projection kinematics analysis of a spherical joint 

Initial configuration L1=100, L2=150; θ01=100°, ϕ0= 15° 

Rotation angles α = -30°, β=30° 

Projected configuration 1L =86.60,  
2L =148.65, 

1 =106.28° 
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Figure 5.7: Configuration solutions of the projection kinematic analysis of a spherical 

joint. θ01, β and α+ϕ0 for each solution is shown under the figure as (θ01, β, α+ϕ0). 

 

 

    Eight solutions of (θ01, β, α+ϕ0) are obtained and the corresponding projection sketches 

are shown in Figure 5.7. Similar to the revolute joint, the first two solutions have the 

same θ01 as the specified one in Table 5.5 and the third and fourth solutions have the 

opposite θ01.  The other four solutions have a different θ01 and different spatial positions 

with the seventh and eighth solutions having an opposite θ01 as the fifth and sixth 

solutions.  

From the projection kinematic analysis of revolute, prismatic, cylindrical and spherical 

joints, if the rotation direction is identifiable, for example by an asymmetric design 

feature, there would be only two configurations with two spatial positions for each joint 
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that can have the same projected configuration for a revolute or a spherical joint. If the 

rotation of the prismatic and spherical joint about the sliding axis cannot be identified, 

there will be only one configuration solution with two spatial positions that can have the 

same projected configuration. 

5.3. Projection kinematics of planar mechanisms 

Building on the projection kinematics analysis for basic kinematic joints, we can apply 

the projection kinematics analysis to any planar or spatial mechanisms. Different from 

the single joint analysis, we consider closed-chain mechanisms with four or more links, 

which provides more information for analysis of projected configurations. In addition, the 

DOF of the mechanism can introduce additional constraints to the analysis. We first 

consider a general four-bar linkage and a general five-bar linkage as examples to show 

the comprehensive analysis procedure.   

5.3.1. Planar four-bar linkage 

Planar four-bar linkages are constructed by four links connected by four revolute 

joints. Figure 5.8(a) shows the sketch and coordinate frame of a general four bar linkage. 

As explained previously, thick lines and circles are used to represent the links and joints 

respectively. We assume the thickness of the lines and the size of the dots are infinitely 

small. In reality, the geometry of the links or details of the joint may provide constraints 

to the range of motion of each joint. However, this would only simplify the projection 

kinematics analysis by allowing selection of the correct solution. The configuration in 
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space can still be obtained by the consequently rotations about x-axis and y-axis and the 

rotation matrix is the same as Eq. (5.2). 

 

 

 

Figure 5.8: Projection kinematic analysis of a planar four-bar linkage. (a). The local 

coordinate frame of planar four-bar linkage. (b). The original and projected planar four-

bar linkage. (c). The projected configuration. 

 

 

    In contrast to single joints, the four-bar linkage has its own kinematics equations which 

should be solved first to obtain the true configuration if any of the input angles, e.g. θ01, 

is given. These kinematics equations of the projected configuration can introduce extra 

constraints. 

    The spatial configuration can be obtained by two global rotation angles α and β (Figure 

5.8(b)). Plus one extra unknown for the input parameter, there are three unknowns in total 

that need to be solved. Therefore, three constraint equations must be derived based on the 

information measured from the projected configuration as well as the closed-loop 

constraint equation. The detailed derivation is described below. 
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    Equating the coordinates of projected points (3
rd

 column) and measured points (4
th

 

columns) in Table 5.6 yields five projection kinematic equations, 

         
1 1cosL L                                                                                       (5.7) 

      
1 2 02 2 02 1 2 2cos cos cos sin sin sin cos( )L L L L L                 (5.8)

2 02 2 2cos sin sin( )L L                                                                 (5.9) 

4 01 4 01 4 1cos cos sin sin sin cosL L L                                         (5.10) 

4 01 4 1cos sin sinL L                                                                     (5.11) 

And the geometric constraint equation of the constant coupler link is 0 0 3 0L  B C , 

which can be rewritten as the following equation after substituting the coordinates of in 

B0 and C0 , 

2 2 2 2

1 2 4 3 1 4 01 1 2 02 2 4 01 022 cos 2 cos 2 cos( ) 0L L L L L L L L L L                   (5.12) 

Including the geometry constraint equation Eq.(5.12), six equations are obtained and θ01, 

θ02, α, β, 
1 , 

2 , 
1L , 

2L and 
4L are the unknowns.   

 

 

Table 5.6: Initial, rotated, projected and measured points that define the structure of 

planar four-bar linkage 

Points in the local reference 

frame 

Points after 

rotation 

Projecte

d points 

Measured points from a 2D 

image 

0 1( ,0,0)TLA  0[ ]RA A  [ ]PA A

 
1( ,0,0)TLA  

0 0

2 02 02(cos( ),sin( ),0)TL    

 

 

B A

 

0[ ]RB B  [ ]PB B  

2 2 2 2( cos( ), sin( ),0)TL L   

 

 

B A
 

0 4 01 01(cos ,sin ,0)TL  C  0[ ]RC C  [ ]PC C  
4 1 4 1( cos , sin ,0)TL L C  
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    Notice that there are eight total parameters including four angles, 
1 , 

2 , 
3 and 

4 , and 

four link lengths, 
1L , 

2L , 
3L and 

4L , which can be measured on the projected configuration 

(Figure 5.8©). This gives a total of 56 combinations of three parameters that can be 

chosen from the total of eight. However, we only need to consider the following four 

cases without loss of generality.  

1. Two adjacent links and the joint between them are measured. Without loss of the 

generality, if 
1L , 

4L and 
1 are measured, then Eqs. ((5.7), (5.10), (5.11)) and 

constraint equation Eq. (5.12) are enough to solve θ01, θ02, α, β. The solving process is 

identical to that of the revolute joint. 

2. Two adjacent joint angles and the length of link between them. For instance, if 
1 , 

1L

and 
2 are measured, 

2L can be solved first by Eq. (5.9)   

2 2 02 2cos sin / sin( )L L                                               (5.13) 

       Substituting (5.13) into (5.8) yields 

1 2 02 2 02 1 2 02 2 2cos cos cos sin sin sin ( cos sin / sin( ))cos( )L L L L L                 ,   

(5.14) 

       and 
4L can be solved by Eq. (5.11) 

4 4 01 1cos sin / sinL L    ,                                                (5.15) 

Substituting (5.15) into (5.10) yields 

4 01 4 01 4 01 1 1cos cos sin sin sin ( cos sin / sin )cosL L L                   (5.16) 

       Finally, Eqs. ((5.7), (5.15), (5.16)) and constraint equation Eq. (5.12) are used to 

solve θ01, θ02, α, β. 
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3. Three joint angles are measured, e.g. 
1 , 

2 , 
3 .  In addition, the projected 

configuration has another close loop kinematic constraint, written as 

1 2 2 4 1 3 3cos( ) cos cos( )L L L L       ,                          (5.17) 

2 2 4 1 3 3sin( ) sin sin( )L L L      ,                                  (5.18) 

 where 

4 1 2 3

3 1 4

2 ( ),

.

    

   

   

  
                                                     (5.19) 

and the projection length variable, 
3L can be obtained by substituting 

2L in Eq.(5.13) 

and 
4L in Eq.(5.15) into Eq.(5.18)  

3 2 02 4 01 3( cos sin cos sin ) / sin( )L L L                                 (5.20) 

Then 
1L , 

2L , 
4L and 

3L solved by Eqs.((5.7), (5.13), (5.15), (5.20)) are substituted into 

Eqs. ((5.8), (5.10), (5.17)) and obtain 

1 2 02 2 02 1 2 02 2 2cos cos cos sin sin sin ( cos ) ( cos sin / sin( ))cos( )L L L L L                 

(5.21) 

4 01 4 01 4 01 1 1cos cos sin sin sin ( cos sin / sin )cosL L L          ,            (5.22) 

1 2 02 2 4 01 1 2 02 4 01 3cos cos sin cot( ) cos sin cot ( cos sin cos sin )cot( )L L L L L                

(5.23) 

Eqs ((5.20), (5.21), (5.22)) and Eq. (5.12) are the final four equations that are used to 

obtain θ01, θ02, α, β.  

4. Three adjacent links, e.g. 
1L , 

2L and 
4L are measured. Based on the projected link 

lengths AB and OC , i.e.  2L A B , 4L O C  , we can obtain 
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2 2 2

4 01 4 01 4 01 4( cos cos sin sin sin ) ( cos sin )L L L L         ,                              (5.24) 

2 2 2

1 2 02 2 02 1 2 02 2( cos cos cos sin sin sin cos ) ( cos sin )L L L L L L             , (5.25) 

Together with Eq. ((5.7), (5.12)), we can solve for the four unknowns, θ01, θ02, α, β.  

    The four cases for projection kinematic analysis of four-bar linkage and the 

corresponding equations are summarized in Table 5.7. Note each case is a representative 

case of multiple permutations.  

 

 

Table 5.7: Equations and solutions of four kinds of projection kinematic analysis for the 

four-bar linkage 

Case Measured geometric 

parameters  

Measured parameters Representative 

Equations 

# of 

solutions 

1 Two links and the 

joint between them 
1L , 

4L , 
1  (7, 10, 11, 12) 2 

2 Two adjacent joints 

and the link between 

them 

1 , 
1L , 

2  (7, 12, 15, 16) 4 

3 Three joints 
1 , 

2 , 
3  (12, 20, 21, 22) 4 

4 Three links 
1L , 

2L , 
4L  (7, 12, 24, 25) 8 

 

 

A numerical example is discussed below to verify the strategies introduced above. The 

variables of initial and projected configurations and global rotations are shown in Table 

5.8. 
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Table 5.8: Numerical example of projection kinematic analysis of a four-bar linkage 

Initial configuration L1=5, L2=5, L3=6, L4=3, θ01=60°, θ02=116.011°; α = 15°, 

β=45° 

Projected 

configuration 
1L =3.54, 

2L =4.95, 
3L =4.74, 

4L =2.94; 
1 =58.53°, 

2

=118.67°, 
3 =38.61°; 

 

 

Table 5.9: Solutions of case 1, 2, 3 and 4 of the projection kinematics analysis of planar 

four-bar linkage. The values of (θ01, θ02, α, β) is shown at the bottom of each 3D 

subfigure. 
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The equations in case 1 and 2 can be solved easily. However, the equations derived in 

case 3 and 4 are too complex to be solved directly. Instead, we used the polynomial 

homotopy solver PHCpack [17] to find the solutions of case 3 and 4.  To obtain 

polynomial equations, we defined c and s for cos(•) and sin(•) functions and introduce the 

extra identical equation c
2
+s

2
=1 for each angle variable. The eight equations for case 3 

and 4 respectively are imported into the PHCpack. Finally, all solutions of case 1, 2, 3 

and 4 are summarized in Table 5.9. For each solution, the spatial and projected 

configurations are presented in a boxed figure and the values of the unknowns, (θ01, θ02, 

α, β) are shown at the bottom of each figure.  

5.3.2. Planar five-bar linkage 

In order to further test the projection kinematics routine, we considered a general 

planar five-bar linkage. Here we focus on only one case, i.e. measuring joint angles only. 

The planar five-bar linkage has two DOFs that will bring in two extra input unknowns 

and together with the two global rotation variables, four total unknowns need to be 

solved, which means we need to measure at least four angles to solve the projection 

kinematics equations. 

    Planar five-bar linkage consists of five links connected by five revolute joints (Figure 

5.9(a)), when θ01 and θ02 are given, the configuration of the five-bar linkage is determined 

but not unique due to the existence of multiple solutions of θ03. To uniquely determine 

the true configuration, we must rely on extra information to pick the correct solution of 

θ03. Figure 5.9(b) shows the sketch of the projection after the global rotations about x-axis 

and y-axis and the projected configuration is shown in details in Figure 5.9(c).  Four 
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adjacent joint angles, 
1 , 

2 , 
3 and 

4  will be measured and used for the projection 

kinematic analysis of the five-bar linkage. Table 5.10 presents the joints positions of 

initial, rotated and projected configurations of five-bar linkage. 

 

 

 

Figure 5.9: Projection kinematic analysis of a planar five-bar linkage. (a) The local 

coordinate frame is defined. (b) The planar five-bar linkage in space and its projection 

onto xy plane. (c) The detailed projected configuration. 

 

 

Table 5.10: Initial, rotated, projected and measured points that define the structure of 

planar five-bar linkage 

Points in the local reference frame Points After 

Rotation 

Projecte

d points 

Measured points from a 2D 

image 

0 1( ,0,0)TLA  0[ ]RA A  [ ]PA A

 
1( ,0,0)TLA  

0 0

2 02 02( cos( ),sin( ),0)TL  

 



B A
 

0[ ]RB B  [ ]PB B

 
2 2 2 2( cos( ), sin( ),0)TL L 

 



B A
 

0 0

3 02 03 3 02 03( cos( ), sin( ( )),0)TL L   

 

  

C B

 

0[ ]RC C  [ ]PC C

 
3 2 3 3 2 3( cos( ), sin( ( )),0)TL L   

 

  

C B

 

0 5 01 5 01( cos , sin ,0)TL L D  0[ ]RD D  [ ]PD D

 
5 1 5 1( cos , sin ,0)TL L D  
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    Equating the coordinates of projected points (3
rd

 column) with measured points (4
th

 

column) in Table 5.10 yields seven equations, 

1 1

1 2 02 2 02 1 2 2

2 02 2 2

1 2 02 3 02 03 2 02 3 02 03

1 2 2 3 2 3

2

cos

cos cos cos sin sin sin cos( )

cos sin sin( )

cos cos cos cos cos( ) sin sin sin sin sin sin( )

cos( ) cos( ),

cos sin

L L

L L L L L

L L

L L L L L

L L L

L



       

   

            

   





    

 

     

    

02 3 02 03 2 2 3 2 3

5 01 5 01 5 1

5 01 5 1

cos sin( ) sin( ) sin( ( ))

cos cos sin sin sin cos

cos sin sin

L L L

L L L

L L

       

     

  









       

  




                   (5.26) 

Based on the coordinate frame in Figure 5.9(a), the geometry constraint equation is 

2

0 0 4| | 0L  C D  .                                                          (5.27) 

In addition, the vector loop of the projected configuration leads two additional constraint 

equations                                                    

1 2 2 3 2 3 5 1 4 1 5

2 2 3 2 3 5 1 4 1 5

cos cos( ) cos cos( ) 0

sin sin( ) sin sin( ) 0

L L L L L

L L L L

     

     

       


     

                      (5.28) 

Finally, we obtained ten total equations, Eqs. ((5.26), (5.27), (5.28)), for the projection 

kinematics analysis of the planar five-bar mechanism. First, 
1L , 

2L , 
3L , 

4L , and 
5L should 

be eliminated and only five equations with five unknowns, θ01, θ02, θ03, α and β, are kept. 

Then the five equations, along with the five identical equation c
2
+s

2
=1 for each angle 

variable, can be solved by the PHCpack solver. The redundant solutions can be 

eliminated by checking the four measured projected joint angles and the projected link 

length, and finally we obtained four solutions with all of them have the same 
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configuration as the designed one. A numerical example of projection analysis of a five-

bar linkage was shown in Table 5.11. 

 

 

Table 5.11: Numerical example of projection kinematics analysis of a five-bar linkage 

Initial configuration L1=2, L2=5/3, L3=2, L4=7/3, θ01=120°, θ02=110°, θ03=110.119°; α = 

15°, β=45° 

Projected 

configuration 
1L =1.414, 2L =1.663, 3L =1.505, 4L =1.945, 5L =1.804; 1 =103.126°, 

2 =114.509°, 3 =121.303°°, 4 =93.22°, 5 =107.842°; 

 

 

 

 

Figure 5.10: Solutions of the projection kinematics analysis of planar five-bar linkage. 

The (θ01, θ02, θ03, α, β) for each solution is shown at the bottom of each subfigure. 
 



140 

 

    The eight solutions are shown in Figure 5.10. The first four solutions have the same 

configuration as designed but with four different orientations in 3D space, while the last 

four solutions are the mirrored configurations, also with four different orientations. 

5.4. Algorithm of the projection kinematics analysis 

    All of the projection kinematics equations can be solved when the number of 

unknowns equals to the number of equations, which is referred as the minimum 

measurement case. With minimum measurements, the projection kinematics analysis 

procedure is summarized as follows: 

1) Set up the global coordinate frame of the mechanism. Specifically, it is convenient 

to place the x-axis along a link so that the projected link length of this link will 

not change if the entire mechanism has a transformation of rotation about x-axis. 

2) Define the true configuration of the mechanism.  

3) Conduct the global rotation about x-axis and y-axis to obtain the spatial 

configuration. 

4) Project the spatial configuration to the x-y plane and obtain the symbolic 

equations of the projected angles and projected link lengths. 

5) Measure the corresponding angles and link lengths from the experimental 2D 

image, for example a TEM image. 

6) Obtain the minimum projection kinematics equations by comparing the variables 

obtained in 4) and 5). 

7) Solve the projection kinematics equations obtained in 6). PHCpack solver can be 

used when the equations are complex. 
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8) Compare the projection information calculated from the solution obtained in 7) 

with the measured ones in 5) and keep the right solutions if the differences 

between them are acceptable.  

In real world applications, you may have more than minimum measurements. Different 

measurements for the projection kinematics equations may result in different solutions 

with different errors. Errors mainly depend on the fabrication of the mechanisms and 

accuracy of measurement. In order to minimize the errors, the variables with less 

measurement errors should been used firstly and the quality of the solutions must be 

verified by extra kinematics equations or measurements. For example, {Qm=0} and { nx } 

are respectively the collection of all projection kinematics equations and measurements, 

and {Qj=0} is a subset of {Qm=0} and has the minimum number of equations 

corresponding to the chosen subset of measurements { jx }. The error can be quantified by 

substituting solutions obtained by solving {Qj=0} into all other kinematics equations, as 

kQ     (k   j). Also, the error can be termed by the derived projection variables and the 

extra measurements as ( ) / ( )i i P ix x x i j    . Finally, the good solutions should be 

those that can obtain small and acceptable errors  and .  

5.5. Application on DNA origami nanomechanisms 

In this section, we will apply projection kinematics to the analysis of two real DNA 

origami mechanisms (DOM). As mentioned in the introduction section, the motivation of 

this research comes from the need to estimate the true configuration of DOM from a 

single 2D microscopy image, which is essentially the projected image of an arbitrary 



142 

 

mechanism in 3D space. Errors of variables measured from TEM images always exist 

due to the fuzzy ends or boundaries of double strand DNA bundles. The main sources of 

the fuzzy end or boundaries include ssDNA at the end of the link (to prevent nonspecific 

binding) or staining during TEM sample preparation [7,8].   

 

 

 

Figure 5.11: Measurements on TEM image. 

 

 

Figure 5.11 shows how the projected angle and link length are measured from a TEM 

image and red lines are the reference lines that parallel with the helices of double strand 

DNA on each link. It is usually very easy to distinguish the helices of double strand DNA 

on TEM image, such as the four helices (labeled as 1, 2, 3 and 4) on the upper left link. 

The angle θ between the reference lines is measured as the projected angle and the 

projection link length is measured along the reference line. However, the ends of double 

strand DNA bundles are fuzzy. Therefore, estimated positions will be chosen for the 

length measurement. For example, the two ends of the horizontal link on Figure 5.11 fall 

in the two white boxes and the width of the white box is about 12 nm which is close to 
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20% of the designed link length. Here, the projection kinematics results are acceptable if 

the link length error between the calculation and the measurement is smaller or close to 

20%.  

5.5.1. Application to the DNA origami quasi universal joint TEM image analysis 

    The design of a quasi universal joint with DNA origami nanotechnology has been 

described in [49]. Here, we use the quasi universal joint as an example of an open chain 

mechanism for demonstrating the application of projection kinematics for the analysis of 

2D transmission electronic microscopy (TEM) images. The dimension information is also 

represented in the Figure 5.12.  

 

 

 

Figure 5.12: Dimension of the universal joint, unit: nm. 
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Figure 5.13: Projection kinematics analysis of quasi universal joint. (a, b, c) are the local 

coordinate frame, sketch of the projection configuration and projected configuration of 

the quasi universal joint respectively. 

 

 

In addition, the conceptual design of the universal joint and the initial position are 

shown in Figure 5.13(a). Axis 1, constructed by the shared edge between link 1 and link 

2, and axis 2, constructed by the edge between link 2 and link 3, intersect at a point, 

which is also chosen as the origin position of the global coordinate frame. 01 and 02  are 

the initial rotation angles of the two joints respectively. To be clear, the spatial and 

projected configurations are shown in Figure 5.13(b) and Figure 5.13(c) respectively.  

    Here, we picked A0, B0 and C0 on the three links respectively as the primary points to 

explain the solution process. Other points on each link could also be used following a 

similar computing procedure. The rotation matrix about the two hinge joint are defined as 

01 01

01

01 01

cos 0 sin

[ ( )] 0 1 0

sin 0 cos

Y

 



 

 
 


 
  

,

02 02

02 02 02

cos sin 0

[ ( )] sin cos 0

0 0 1

Z

 

  

 
 


 
  

.            (5.29) 

Then the coordinates of points A0, B0 and C0 on the true, rotated and projected 

configurations are derived and presented in  
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Table 5.12.   

 

Table 5.12: Initial, rotated, projected and measured points that define the structure of 

quasi universal joint 

True configuration 

points 

Points after rotation Projected 

points 

Measured points from a 2D 

image 

0 1( ,0,0)TLA  0[ ]RA A  
[ ]PA A

 
1( ,0,0)TLA  

0

2 2( cos , sin ,0)TL L 



 

B

 

01 0[ ][ ( )]R Y B B  [ ]PB B  
2 1 2 1( cos( ), sin( ),0)TL L   B  

0 3( ,0, )TL h  C  
01 02 0[ ][ ( )][ ( )]R Y Z 

C

C

 

[ ]PC C

 3 1 2 3 1 2( cos( ), sin( ),0)TL L   



   

C

 

Note: h is the design variable that is shown in Figure 5.12. 

 

 

    Equating the coordinates of projected (3
rd

 column) and measured points (4
th

 column) in 

Table 10, we obtain five equations 

  

1 1

2 01 01 2 1

2 01 2 1

3 01 02 01 02 02 3 1 2

3 01 02

cos

( cos cos cos cos sin sin cos sin sin sin ) cos

(sin sin cos cos sin ) sin

( cos cos cos cos sin sin cos sin sin sin ) cos( )

( sin sin cos cos s

L L

L L

L L

L L

L



          

     

           

   



   

 

     

  02 3 1 2in ) sin( )L  








   

   (5.30) 

The unknowns α, β, θ01 and θ02 can be easily solved from Eq. (5.30) if 
1 , 

2 , 
1L , and 

2L  

are measured from the projected configuration. The solution of 
3L can be used as a 

criterion for picking the correct configuration. Finally, a total of sixteen groups of 

solutions including the initially specified one are obtained. The other fifteen groups of 

solutions do not satisfy the projection information including the projected angles and 

links. 
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Figure 5.14: Projection kinematics analysis of the quasi universal joint based on the TEM 

image. (a) A typical TEM image of the DNA origami universal joint. (b) The projection 

information that can be measured from the TEM image. (c) 3D projection solution of the 

TEM image sample. (d) The detailed projected configuration of the solution. 

 

 

    The experimental methods and results are discussed in [49]. Here, one typical universal 

joint TEM image is shown in Figure 5.14(a).  
1 , 

2 , 
1L , 

2L and 
3L are measured from the 

TEM image (Figure 5.14(b)) which are shown in Table 5.13. All measurements were 

conducted by ImageJ and the value of each measured variable value is the average value 

of three repeated measurements. 

 

 

Table 5.13: Projection kinematic analysis of a DNA origami quasi universal joint 
True configuration L1=59.84nm, L2=34.34 nm, L3=49.3nm; φ=41.75° 

Projected configuration 
1L =57.29, 

2L =31.38, 
3L =37.52, 

1 = 122.20°, 
2 = 123.49° 

Solution θ01= -62.12°, θ02= -62.99°; α = -10.32°, β=16.79° 

Projected variables calculated 

from the solution 
1 PL 

=57.29,  
2 PL 

=31.38,  
3 PL 

=39.18, 
1 P 

= 122.20°, 
2 P 

= 

123.49° 
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    The final solution is chosen based on the following criteria:  

1. The projected angle calculated from the model, 
1 P 

 and 
2 P 

, are the same as 

those from measurements, 
1  and 

2 .  

2. The projected link lengths 
1 PL 

and 
2 PL 

calculated from the model are the same as 

from  measurements, 
1L and 

2L , 

3. The projected link length 
3 PL 

calculated from the model should be as close from 

measurement 3L  as possible.  

Here, the difference between 
3L and 

3 PL 
is about 4.42%. Figure 5.14(c) shows the 3D 

projection of the solution and Figure 5.14(d) shows the projected configuration of the 

universal joint in details. 

5.5.2. Application of projection kinematics analysis on the DNA origami Bennett 

linkage 

 

 

 

Figure 5.15: Dimension of the Bennett linkage. 
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We previously reported the design of the Bennett linkage [6,12]. The details of its 

dimensions are shown in Figure 5.15. 

 

 

 

Figure 5.16:  Projection kinematics analysis of the Bennett linkage. (a, b and c) are the 

local coordinate frame, sketch of the projection configuration and projected configuration 

of the Bennett linkage respectively. 

 

 

In addition, Figure 5.16(a) shows the sketch of the Bennett linkage, the coordinate 

system and the rotation angles. Here, the configuration is determined when all of the 

points O0, A0, B0 and C0 are in the same plane and this plane is chosen as the x-y plane of 

the global coordinate frame. The lengths of the four edges are equal to L. The same as 

previous examples, α and β are the global rotation angles used to determine the pose of 

the Bennett linkage is spatial. Figure 5.16(b) shows the Bennett linkage in spatial and its 

projected configuration.  Here, we only test the case 3 discussed in previous section, 
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which can solve the projection kinematics equations based on three projected angles. 

Figure 5.16(c) shows the projected configuration of the Bennett linkage in 2D and the 

three angles, 
1 , 

2 , and 
3  that can be obtained from the quadrilateral determined by the 

inner boundaries (bottom of Figure 5.16(c)). The link lengths 
1L , 

2L , 
3L and

4L can be used 

to eliminate extraneous solutions. The kinematics equations of the Bennett linkage are 

discussed in  

 

Table 5.14.  

 

 

Table 5.14: Initial, rotated, projected and measured points that define the structure of 

DNA origami Bennett linkage 

Points in the local reference 

frame 

Points after 

rotation 

Projected points Measured points 

0 ( ,0,0)TLA  0[ ]RA A  
[ ]

( ,0,0)T

x

P

A





A A
 

1( ,0,0)TLA  

02 2

0 0 [ ] 0

0

L

e


 
 

   
 
 

S
B A  

0[ ]RB B  
[ ]

( , ,0)T

x y

P

B B





B B
 

2 2 2 2( cos( ), sin( ),0)TL L 

 



B A
 

01 1

0 [ ] 0

0

L

e


 
 

  
 
 

S
C  

0[ ]RC C  
[ ]

( , ,0)T

x y

P

C C





C C
 

4 1 4 1( cos , sin ,0)TL L C  

Note: xA , xB , yB , xC  and yC are used to represent the coordinates elements because the explicit expressions of 

them are too complex. 

 

 

    Again, equating the coordinates of projected and measured points in Table 13, we can 

obtain five equations 
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1xA L , 
1 2 2cos( )xB L L     , 2 2sin( )yB L    ,

4 1cosxC L  , 4 1sinyC L      (5.31)                                 

The geometric constraint equation is given by the length of top blue link 

2

0 0 0 0( ) ( ) 0L    B C B C ,                                             (5.32) 

and θ02 can be solved from this equation when θ01 is given. 

Similar to the case of planar four-bar linkages, the closed-loop of the projected 

configuration introduces two additional constraint equations Eqs. ((5.17), (5.18)). 

Together with Eqs. ((5.31), (5.32)), eight equations are obtained. 
1L , 

2L , 
3L and 

4L  are 

eliminated first, then the left four equations are the minimum equations that can be used 

to solve for θ01, θ02, α and β. 

 

 

 

Figure 5.17: Analysis of the projection kinematic of the Bennett linkage based on the 

TEM image.(a) Typical TEM images of the Bennett linkage. (b) The projection 



151 

 

information measured from the TEM image. (c) 3D projection solution of the TEM image 

sample. (d) The detailed projected configuration of the solution. 

 

 

 

 

Table 5.15: Measurements, projection kinematics solution and projection results from the 

model, errors of link lengths between the experiment measurements and projection 

kinematics analysis of DNA origami Bennett linkage (examples 1, 2, and 3 corresponding 

to the three examples in Figure 5.17 from top to bottom respectively), unit for length: nm. 

E.g Measurements Solutions Projection results from 

the model 

Average error of the 

link length  

1 
1 = 101.05°, 

2 = 

52.52°, 
3 = 

110.19°, 
1L

=31.64,  
2L

=31.20,  
3L

=16.93, 
4L

=19.71 

θ01= 155.85°, 

θ02= 67.25°, 

α= -2.33°, β= 

22.24° 

1 P 
= 101.05°, 

2 P 
= 

52.52°, 
3 P 

= 110.19°, 

1 PL 
=25.73,  

2 PL 

=26.50,  
3 PL 

=17.55,  

4 PL 
=14.58, 

15.9% 

2 
1 = 113.25°, 

2 = 

55.48°, 
3 = 

109.18°, 
1L

=35.29,  
2L

=35.03,  
3L

=24.11,  
4L

=25.89 

θ01= 154.88°, 

θ02= 66.93°, 

α= -2.47°,  

β= 5.74° 

1 P 
= 122.20°, 

2 P 
= 

123.49°, 
3 P 

= 123.49°, 

1 PL 
=27.66,  

2 PL 

=27.48,  
3 PL 

=18.82, 

4 PL 
=20.24 

21.7% 

3 
1 = 99.138°, 

2 = 

78.27°, 
3 = 

105.027°, 
1L

=25.89,  
2L

=25.07,  
3L

=24.59,  
4L

=25.67 

θ01= -

124.83°, θ02= 

104.99°, 

α=32.41°,  

β= -9.57° 

1 P 
= 99.138°, 

2 P 
= 

78.27°, 
3 P 

= 105.027°, 

1 PL 
=27.41,  

2 PL 

=25.38,  
3 PL 

=25.42,  

4 PL 
=27.90 

4.8% 
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The experimental analysis of the Bennett linkage fabricated by scaffolded DNA 

origami was described in [7]. Here three different TEM images of the Bennett linkage 

were picked, and each of them correspond to an individual Bennett linkage (Figure 

5.17(a)). Seven variables, 1 , 2 , 3 , 1L , 2L , 3L and 4L were measured from each TEM 

images (Figure 5.17(b) and Table 5.15), and the measured three angles were used to solve 

the projection kinematics equations, and the measured link lengths were used to verify 

the solutions and only the one that can produce the minimum error between the derived 

projection link lengths and the measurements can be kept. The second column of the 

Table 5.15 shows the obtained solution and the corresponding spatial and projection 

configuration are shown in Figure 5.17(c,d). The errors between the link lengths of the 

three TEM images and projected configurations derived from the solutions are 15.9%, 

21.7% and 4.8% respectively (Column 4 of Table 5.15). 

5.6. Summary and discussion 

    In this chapter, we introduced the concept of the projection kinematics that can be used 

to identify the possible configurations of mechanisms by only analyzing their 2D 

projected images. The motivation of this research comes from the need for the 

verification of the kinematics of DNA origami mechanisms (DOM). These DOM are 

self-assembled by programmed DNA base paring and function much like macroscopic 

mechanisms.  We started with the projection kinematics analysis of revolute, prismatic, 

cylindrical and spherical joints and then extend it to general planar mechanisms. For 

planar mechanisms, we can always determine the unique configuration if the rotation 
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directions of the joint can be distinguished from the projection image. For analysis of 

spatial linkages and application to real world DNA origami mechanism samples, we 

studied universal joints and the Bennett four-bar linkage. We concluded that the 

estimated configurations of DOM are close to our initial mechanism because they 

followed the kinematics constraints fairly well. Moreover, unique solutions may be 

obtained if two images taken from different directions are used for the projection 

kinematics analysis since the correct solution must be the common solution of the 

analyses based on the two projection images. Finally, the existence of multiple solutions 

suggests that it is important to design extra feature on the structures to eliminate the 

ambiguity. 
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Chapter 6: Origami Inspired Design of Reconfigurable Nanostructures with DNA 

Origami 

 

 

    Origami provides feasible and flexible approaches for novel civil structures, robot and 

material designs and fabrication at macro/micro scale. Based on the ability to program 

DNA self-assembly, DNA origami nanotechnology is enriching the fabrication of static 

and dynamic nanostructures with DNA as the underlying construction material.  Here, we 

expand the capabilities to design DNA origami nanodevices with drastic shape 

transformations by mimicking the waterbomb base paper origami design. In particular we 

followed the waterbomb base design used in thick panel origami. A six-link-joint-spatial 

dynamic waterbomb base linkage was designed, fabricated and actuated by DNA origami 

nanotechnology. Its shape transformation capability was demonstrated by actuating the 

linkage into triangular, rectangular and fully-compacted configurations, respectively. 

This multi degree of freedom nanostructure can be a foundational element of functional 

biomaterials or innovative design of nanomachines. 

6.1. Background and motivation 

As an art of three-dimensional construction, paper-based origami enables the 

fabrication the fabrication of arbitrary three-dimensional structures based on the folding 
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along valley and mountain creases pre-assigned on a two-dimensional thin sheet [119].  

Without assembly, fabrication of origami structures is simplified and microscale or even 

nanoscale origami structure designs can also been built [120–122].  Recently the paper 

origami principle has been successfully applied to the design of novel materials 

[123,124], foldable robots [125,126] and deployable structures [127–129].  While the 

traditional origami folding art neglects the material thickness, some noticeable efforts 

have enabled the design of foldable structures out of thick (nonzero) panels at the macro 

[121], micro and nano scale [122]. 

 

 

 

Figure 6.1: Design procedure. (A) Waterbomb base designed by a single paper. (B) Thick 

panel design of Waterbomb base. (C) Modified waterbomb base design with a square 

potion was removed at center. (D) Cylinder model of our waterbomb base design. (E) 

Dimensions and cross section of the waterbomb base. 
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DNA nanotechnology, specifically DNA origami, has enabled the self-assembly of 

nanostructures with unprecedented 2D and 3D geometric complexity. As shown in 

previous chapters, complex dynamic nanostructures have been designed and fabricated 

by scaffolded DNA origami following a macroscopic machine design philosophy, 

including classic linkages and joints, such as the Bennett linkage, prismatic joint, 

compliant hinge, and four-bar bistable linkages [30,31,39,40]. However, most of the 

fabricated dynamic nanostructures have only one degree-of-freedom (DOF) and can only 

achieve single function or dual configuration transformation [47,130,131].  

Here, a Waterbomb base was designed by DNA origami (Figure 6.1) based on thick 

panel origami method. The entire size of the design is about 52nm×52nm for the outside 

square and all of the double helices are aligned parallel to the edges of the square. A 

small square (~27nm×27nm) was cut at the center of the square in order to avoid short 

helices due to the sharp angle of the triangle shape. Very short helices may have 

insufficient base-pair binding energy leading to poor folding results. Each link has 

fourteen dsDNA helices arranged in two honeycomb layers (Figure 6.1). The four 

mountain creases at four corners and two valley creases at waist correspond to four 

diagonal and two waist revolute joints, respectively.  Each revolute joint is constructed by 

two connections consisting of four or six ssDNA bases on the scaffold (Figure 6.2). 
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Figure 6.2: Construction of joints. Detailed length for each connection can be found in 

Table 6.1. 

 

 

Table 6.1: Detailed design parameters of joints 

 

 

 

In order to avoid base stacking, extra ssDNA bases on the scaffold are left at the ends 

of double helices on the mating surfaces between two connecting links. These extra 

ssDNA strands at the end of double helices can cause steric or charge repulsion effects 
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that force joints have some initial joint angles so that the waterbomb base structure tends 

to avoid the flat configuration. The completely flat configuration is a singularity position 

where folding into other configurations is challenging (Table 6.1).  

 

 

 

Figure 6.3: 3D folding design of waterbomb base. (A) The waterbomb base folded by a 

single thin paper and its square, triangle, rectangle, intermediate, compact configurations 

(from left to right). (B) Thick panel Waterbomb base design. (C) Cylinder model of DNA 

origami Waterbomb base. 

 

 

    At the flat square configuration, the waterbomb has three degree of freedoms, which 

correspond to folding along the two diagonal creases toward the triangle configurations 

and folding along the waist crease towards the one rectangle configuration. In addition, 

when all of six joints are closed, a final folded compact configuration can be achieved. In 

this way, the scaling ratio of the folding can reach 0.25, which is ratio between the top 
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surface area of square and final compact configurations (Figure 6.3). All of the joints can 

be closed by binding of DNA actuation strands, and reversed by the strand displacement 

method. The actuation strands bind to two overhangs extended eight bases from staples 

ends that point outwards from link body on adjacent links. For example, joint J1 can be 

actuated by an actuation strand that binds to overhangs on the surface of both link 2 and 

link 1. Each joint has at least four pairs of overhangs that can be bound by 

complementary ssDNA strands, which we refer to as actuation staples. In order to 

demonstrate that all of folded configurations are reversible, a toehold consisting of five 

bases is added at the end of each actuation staple so that a removal staple that has the full 

complementary sequence of the actuation staple can be added to release the overhangs 

and reopen the structure. 

6.2. The modeling and analysis of the waterbomb base 

6.2.1. Kinematic analysis  

The single waterbomb base comprised of thick panels can be modeled as a 6R (six 

revolute) joint closed chain spatial mechanisms (Figure 6.4).Here, without loss of 

generality, the red link was chosen as the frame link, and the global coordinate frame was 

located on the red link with the X-axis perpendicular with its lateral surface and Y-axis 

along the edge of the bottom surface. The coordinate frame of each joint is represented by 

blue lines pointing to the positive direction. Note only the Z- and X-axes of each frame 

are shown.  
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Figure 6.4: Coordinate frames and parameters for kinematics analysis. 

 

 

 

    Folding the Waterbomb base into the respective triangular or rectangular 

configurations requires folding of the corresponding joints. The transformation between 

the square and the compact configurations is a one degree-of-freedom (DOF) motion, 

which can be analyzed using the following kinematics analysis routine. First, we chose 1  

as the input (driver) angle and others 2  to 6  as the output (driven) angles. Due to the 

known symmetric constraint, we have 

1 3 4 6 2 5,                                                                     (6.1) 

The rotation matrix about the Z- and X- axes are defined by 

cos sin 0

( ) sin cos 0

0 0 1

ZR

 

  

 
 


 
  

,

1 0 0

( ) 0 cos sin

0 sin cos

XR   

 

 
 

 
 
  

                           (6.2) 

where θ and α are the rotation angles about the Z and X axes, respectively. 



161 

 

In addition, screw theory was used to obtain the kinematics equations and we defined the 

transformation matrix for screw system as  

0
[ ]

R
Ad

DR R

 
  
 

                                                         (6.3) 

where R is the 3x3 rotation matrix and D is  the antisymmetric matrix of the position 

vector of the screw. With the position vector defined as  

( , , )x y zr r rr                                                               (6.4) 

the corresponding antisymmetric matrix is 

0

0

0

z y

z x

y x

r r

D r r

r r

 
 

  
  

                                                    (6.5) 

In addition, the initial screw of the global coordinate frame is defines as 

0 {0,0,1,0,0,0}$                                                        (6.6) 

 

 

Table 6.2: Detailed Denavit–Hartenberg parameters and obtained screws for all joints. 
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The screws of all joints were calculated based on the Denavit–Hartenberg parameters 

shown in Table 6.2. The relationship between screws of joint 3 and joint 4 are 

4 3[ ]$ Ad $                                                                (6.7) 

where ( / 2)XR R  , (0,0,0)r . 

    From Eq.(6.7), the relationship of joint angles 1  and 2 can be obtained as 

2 2 2

1 2 1 2 2 1 1 1 21 cos cos cos cos 2cos sin 2 2 cos sin sin 0                        (6.8) 

6.2.2.  Projection kinematics analysis  

    As discussed in detail in Chapter 5, structure parameters measured from TEM images 

do not represent the true kinematic parameters, but instead the projected ones. Here, the 

recently developed projection kinematic analysis methods [132] was applied to obtain the 

true kinematic parameters based on measurements of the projected angles from TEM 

images. With the assumption that three points on the waterbomb lay flat on the TEM 

grid, projection plane are defined by the three corner points of three links, 1P  , 2P and 3P

shown in Figure 6.5(A). The projection angles, 1  and 2  are respectively calculated by 

the corresponding projection vectors, which can be derived from the real link edge 

vectors based on the following equation 

( )  v v v n n                                                             (6.9) 

v  is the projection vector, v is the real link edge vector,  and n is the unit normal vector 

of the projection plane. 
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    The relationship between projection angles 
1  and 

2 can be derived from the 

projection configuration (Figure 6.5(A)) directly, 
2 12  . The relationship between the 

real joint angle 1  and projection angle 
1  is presented in Figure 6.5(C). If a projection 

angle 
1  is measured from a TEM image, the real joint angle 1 , and correspondingly the 

real waterbomb base configuration, can be obtained. 

 

 

 

Figure 6.5: Projection kinematics analysis. (A) Top view of the waterbomb base. (B) 

Bottom view of the waterbomb base. (C) Relationship between the real joint angle θ1 and 

projection joint angle 1 . 
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6.3. Fabrication of the waterbomb base 

The entire waterbomb base is constructed by folding a 8064 base version of the M13 

ssDNA scaffold [20] using 197 ssDNA staples. The folding conditions and thermal 

annealing protocol are detailed in the following Experimental procedure section.  

 

 

 

Figure 6.6: Experiment of waterbomb base. (A) Agarose gel electrophoresis purification 

image. (B) Transformation paths among the square, triangle, rectangle and compact 

configurations. (C) A transmission electron microscopy images and represents of folded 

configurations, scale bar: 100 nm. (D) Projection kinematics analysis (cite MMT paper) 

and equilibrium configuration. Black line is the theoretical relationship between 

projection angles 
1  and 

2 , red dots are the measured projection information from TEM 

images and five typical TEM particles are shown. The distribution of the measured 

projection angle 1 is shown at the right bottom, and the equilibrium configuration is 

pointed out at the highest probability position.  
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    The Gel purification image (Figure 6.6(A)) showed 14mM is the best magnesium 

concentration for the folding of waterbomb base. Figure 6.6(B) shows a TEM image 

snapshot of the experimental results. Most of the particles stay at an intermediate 

configuration where the six joints have some non-zero initial joint angles. A few 

structures exhibit the flat square configuration, and a few others exhibit a triangle or 

rectangle configuration. The most common set of configurations where the six joints have 

some random initial angles was termed an “intermediate” configuration, while a certain 

percentage of square, triangle and rectangle configurations can also be found.  

    When the waterbomb base is at the flat square configuration, the axes of the diagonal 

joints J1 and J4 are collinear and so are the diagonal joints J3 and J6. This square 

configuration facilitates the transformation into the triangular configuration by actuating 

the two collinear diagonal joints at the same time. Similarly, the structure transforms into 

the rectangular configuration by actuating the two waist joints (J2 and J5). In addition, 

the intermediate configuration can be folded into the compact one by closing all six joints 

simultaneously. Due to the compliance and clearance of the ssDNA connections at the 

joints and flexibility of dsDNA bundles, the entire structure is flexible and has noticeable 

variations in all configurations.  

Since measuring the true kinematic parameters like joint angles in 3D space using 

TEM images is not possible, we applied the projection kinematics analysis (Figure 

6.6(D)) [132] to estimate the configuration parameters based on projected parameters 

measured from 2D TEM images. We use 1 , 2 , 3 , 4 , 5  and 6  to denote the six 

projected joint angles from a chosen particle. From the projection angle distribution 
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(average value of 
1 , 

3 , 
4  and 

6 ), the equilibrium configuration was determined at 

1 64.5  , and the real joint angles 
1 79.5  and 

2 79.5  were obtained from the 

projection kinematics analysis (Figure 6.5). Previous research has shown that joints 

constructed by several short ssDNA segments had an equilibrium angle where the torque 

was zero if it was modeled as a torsional spring and the torque was fairly large when the 

joint was near the close and open positions [30].  

6.4. Actuation of the waterbomb base 

    The waterbomb base is widely used as a structural unit for periodic assemblies with 

complex shape transformations such as a flat ribbon to a tube, or a tube to a sphere.  

 

 

 

Figure 6.7: 3D cylindrical model of waterbomb base and its transformations. 
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    The DNA waterbomb base is comprised of 6 flat panels connected by 6 foldable 

creases. Figure 6.7 illustrates the cylindrical model and its transformations.  

6.4.1. Triangular configuration folding at room temperature 

    Each of the four diagonal joints J1, J3, J4 and J6 has five pairs of overhangs designed 

for actuation. In order to actuate into the folded triangular configuration, pairs of 

overhangs were designed, such as five pairs of overhangs on the surfaces of link2 and 

link 1 were used to assist the actuation of joint J1. A similar strategy was applied to the 

other three diagonal joints J3, J4 and J6. There are about 18 pairs of overhangs designed 

to trigger the folding of each triangle configuration, which should provide enough 

binding strength to stabilize the triangle. In addition, larger actuation torque introduced 

by these overhangs is levered by their further distance to diagonal joint axes.  Also, more 

binding probability may be added for a successfully actuation. 

    Firstly, all 18 actuation staples for both right and left triangle configurations were 

added into waterbomb base sample purified by gel and kept incubated at room 

temperature overnight with the actuation staples at a 10-fold excess and magnesium ion 

concentration adjusted to 10 mM. Figure 6.8(top) shows the results of folding triangle 

configurations by adding the actuation staples directly. The actuation efficiency was 

determined by quantifying the ratio of the number of triangle configurations and total 

number of well-folded waterbomb bases on TEM images. Actuation efficiencies of both 

triangle configurations upon directly adding all of the actuation staples were in the range 

of 30-40%. The likely reason for the low efficiency is that a geometric obstacle is 

introduced when the waterbomb base is at an intermediate configurations, which is the 
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most common initial configurationIn the intermediate configurations, the axes of the 

diagonal joint pairs (J1 and J4) or (J3 and J6) are not collinear. This can also be detected 

and shown from the TEM images taken after directly actuation. Such as the circled 

particles shown on the right top TEM image, two diagonal joints J1, J4, but the particles 

still stay at the middle configuration because the clearances at joints introduced by four 

bases joint connections result in larger flexibility of the entire structure. In addition, 

adjuvant overhangs for the actuation of diagonal joints can’t work due to geometric 

constraints. This is the case for both of the triangle configurations. 

 

 

 

Figure 6.8: Triangle configurations actuation of waterbomb base. 
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    In order to increase the triangle configuration actuation efficiency, a configuration 

folding control approach was developed. Intuitively, it is much easier to fold the 

waterbomb base from square configuration into the triangle configuration than start from 

the middle configuration where the entire structure has high probability folding to final 

compact configuration. In addition, flexibility of the joints results in uncertain 

configuration. In our waterbomb base design, two waist joints J2 and J5 can be locked by 

inducing base stacking at the ends of double helices adjacent to joint J2 on link 2 and link 

3 or adjacent to joint J5 on link 5 and link 6. Only the two DOFs corresponding to the 

two triangle configurations will be left when two waist joints J2 and J5 are locked. Base 

stacking can be easily triggered by increasing the magnesium ion concentration as 

demonstrated in a recent study using base stacking interactions to reconfigure DNA 

origami devices [47,133].  

    To improve the triangle configuration actuation, we developed a multi-stage actuation 

approach. First, the magnesium concentration of gel purified waterbomb base samples 

was adjusted to 15 mM and kept at room temperature for a couple of hours to facilitate 

transformation into the flat configuration. Then, the actuation staples for the respective 

triangle configurations were added at 10-fold excess, and the mixture was incubated at 

room temperature overnight. TEM images at the bottom of Figure 6.8 show that most of 

waterbomb bases stay at triangle configuration, which means the DOFs elimination can 

dramatically increase the designated actuation efficiency. Also, torque introduced by the 

actuation staples works with the thermal fluctuation can overcome the energy barrier 

between the square and triangle configurations. We measured an actuation efficiency of 
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~80% was obtained for both of the triangle configuration actuations following this multi-

stage actuation scheme.  

    On the other hand, in order to demonstrate that the triangle either configuration folding 

is reversible, a 30x excess of the removal staples that are fully complementary to the 

actuation staples were added to reopen all triangle-shape folded waterbomb bases. The 

mixtures were kept on a shaker table with 250 rpm rotation speed and 37 °C for two 

hours. TEM images show that most of triangle configuration particles were reopened 

(Figure 6.8, bottom left).   

6.4.2. Rectangular configuration folding at room temperature 

    In addition to the two triangle configurations, the waterbomb base can also be folded 

into a rectangle configuration by actuating two waist joints J2 and J5. Similar to the 

triangle configuration actuation, six extra pairs of overhangs were designed on the 

surface of link 1 and link 4. Therefore, there are a total 16 pairs of overhangs for the 

actuation of rectangle configuration including five pairs of overhangs for each waist 

joints and the 6 pairs on link 1 and link 4. 

First, all sixteen actuation staples corresponding to the sixteen pairs of overhangs were 

added to gel-purified waterbomb base structures directly. We tested ratios between the 

actuation staples and nanostructure of 10:1, 50:1 and 100:1 (the result of 10:1 actuation 

was shown in the top of Figure 6.9). The mixtures were kept at room temperature 

overnight. TEM images show ~30% of nanostructures achieved a rectangle configuration 

with the 100x actuation staples sample giving higher actuation efficiency relative to the 

other cases. In order to increase the actuation efficiency, the mixtures were put in a 
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shaker rotating at 250 rpm and 37 °C for 2 hours. It was found that 100-fold actuation 

staple over waterbomb base nanostructure have efficiency close to 40%. Even though 

thermal fluctuation can help the rectangle configuration folding, the efficiency is still less 

than half. 

 

 

 

Figure 6.9: Rectangle configuration actuation of waterbomb base. 

 

 

    

We tested a similar approach of suppressing other DOFs to improve the actuation of 

the rectangle configuration. In this case we locked all of four diagonal joints J1, J3, J4 

and J6 into the angles corresponding to the flat square configuration leaving only the 

single DOF corresponding to the waist joint. Four locking staples that bind to the ssDNA 

strands left at each end of double helix are employed to constraint the rotation of the four 

diagonal joints. Specifically, each locking staple spans across the back side of the joint 
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binding to two adjacent ends of double helices on the mating surfaces. This binding 

constrains the rotation of the diagonal joint forcing it to stay near an angle corresponding 

to the flat configuration. In addition, lots of waterbomb base nanostructures stay at square 

configuration when four diagonal joints are locked without rotation angles, which ensure 

that the locked square waterbomb bases have the only DOF that is transfer to the 

rectangle configuration. Firstly, 10x actuation staples were added to waterbomb sample 

with the four diagonal joints locked and incubated on a shaker table rotating at 250 rpm at 

37 °C for 2 hours. Quantified from TEM images, 54% waterbomb bases were folded into 

rectangle configuration quantified from TEM images (bottom of Figure 6.9). Actuation 

efficiency of rectangle configuration was not as high as the triangle configuration 

actuation. This is likely because the staple strands added to the diagonal joints were not 

as efficient in suppressing those degrees of freedom as the basse-stacking approach used 

to suppress the waist joints for the triangle actuation. 

6.4.3. Final compact configuration folding at room temperature 

Folds of triangle and rectangle configurations of the waterbomb base were achieved 

with ~50-80% actuation efficiency. This suggests all six of the revolute joints on the 

nanostructure can effectively fold from 0° to 180°, which indicates the designated final 

compact configuration should also be achievable. In the macroscopic waterbomb base 

fold, the final compact configuration requires that the six joints are actuated at the same 

time and the rotation angles of the four diagonal joints and the two waist joints should be 

the same, respectively. Our approach used to actuate the joints of adding strands the bind 

across links does not provide precise control over the actuation timing and symmetry. It 
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is impossible to ensure the symmetry of rotation of four diagonal joints and two waist 

joints. Also, thermal fluctuations can introduce undesired transformation when the joints 

are actuated. Fortunately, the flexibility and clearance of the joints is enough to reduce 

the geometric constraints of the entire nanostructure so that joints can be actuated 

separately or individually. In order to stabilize the folding of final compact configuration, 

four pairs of overhangs were respectively designed on the mating surface of link 2 and 

link 6 and the mating surface of brown and black links. Including these staples that 

stabilize the final folded configuration, there are 38 actuation staples in total for folding 

of final compact configuration. 

 

 

 

Figure 6.10: Final folded configuration actuation of waterbomb base. 
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   We first tested the approach of adding all the actuation staples of final compact 

configuration to the gel purified waterbomb base sample all at once. The mixture was 

kept at room temperature overnight with the actuation staples at 10-fold excess with 

respect to the structure. Without suppressing any DOFs control, the entire nanostructure 

has three DOFs, which means many configurations including the triangle, rectangle and 

others can result from this direct actuation approach. The top right TEM image in Figure 

6.10 show that a portion of waterbomb bases stay at triangle configuration, while others 

stay at rectangle configuration, also some of them actually folded into final compact 

configuration. Some twist and undesired configuration can also be found on the TEM 

such as the conformation highlighted in a blue square. 

     

    To improve the actuation of the fully compacted state, we pursued a similar approach 

of controlling individual DOFs control in multiple stages to the fold of final compact 

configuration. The folding was divided into two steps. First, two diagonal joints J1, J3 

and one waist joint J2, all on one side of the waterbomb base were actuated. Since we 

already know that most of the particles exhibit an intermediate configuration where 

actuating all the joints along one side should force the waterbomb base towards the 

compacted state (here, J1 and J3 corresponding to two triangle configuration respectively 

and J2 corresponding to rectangle configuration). When only these three joints on one 

side of the structure were actuated, it is expected that most of particles will be at a 

configuration close to the designated final compact configuration with some flexibility 

due to the joint compliance, while some of them may already achieve the fully compacted 
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state. Theoretically, control of these three joints means the entire waterbomb base should 

have no remaining DOFs. However, the clearance and flexibility of the joints is large 

enough to enable a relatively small local mobility even when other joints are actuated. 

The TEM image in the middle bottom of Figure 6.10 showed that the flexibility of joints 

lower the geometric constraints on the entire structure and results in half of the joints 

being closed while the others still have some mobility due to the overall flexibility. In the 

following step, 10-fold actuation staples for the remaining three joints on the other side of 

the structure were added and the mixture was incubated at room temperature overnight 

again.  With this multi-stage actuation approach, many particles were folded into the 

designated final compact configuration (bottom of Figure 6.10) yielding an actuation 

efficiency of 70%. 

    In addition, we demonstrated the reversability of folding by adding 30x releasing 

staples to the nanoparticles of fully compacted waterbomb base structures. The mixtures 

were kept in a shaking table rotating at 250 rpm and 37 °C for 2 hours. TEM images in 

the bottom of Figure 6.10 show that nearly all particles were released from the final 

compact configuration and stay at the initial middle configuration

     In general, transformation between initial, square and triangle configurations were 

achieved with high efficiencies based on the DOFs controlled actuation approach. 

Directly actuation of multiple DOFs nanostructure, such the waterbomb base shown here, 

usually obtained low yield and useless secondary results. It is valuable to first fix 

movable joints or links that are unnecessary for targeted shape transformation 
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6.5. Actuation of the waterbomb base by thermal annealing  

The actuated shape transformations between different configurations are schematically 

represented in Figure 6.11(A). We tested the ability to perform all of the shape 

transformations of the waterbomb bases are conducted in a thermal cycler with a low 

temperature annealing ramp (detailed in following section 6.7) (Figure 6.11).  

 

 

 

Figure 6.11: Folds of waterbomb base by thermal annealing control. (A) Folding of 

different configurations. (B) Obtain square configuration by increasing the magnum 

concentration and a TEM image shows the result. (C) Gel purification image of the 

annealing controlled folding of square, triangular, rectangular and compact configuration. 

(D, E, F, G, H) TEM images of the folded square, triangle, rectangle and compact 

configurations. Scale bars: 100 nm. 

 

 

    The flat configuration can be obtained by flattening all or at least the four diagonal 

joints. Our experiment show that when the concentration of magnesium ion was 
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increased from 10 mM to 15 mM or even higher, such as 20 mM, most of the particles 

were transformed from the initial intermediate configuration to the square configuration 

due to base stacking interactions [47] (Figure 6.11(B)). On the other hand, square 

configuration is obtained by fixing the four diagonal joints via binding staples that 

connect the extra ssDNA segments at the ends of dsDNA bundles. Most of the 

waterbomb bases were actuated to the flat configuration via thermal annealing (Figure 

6.11(D)). 

    The annealing approach of folding triangle configurations can also achieve a high yield 

(~80%)(Figure 6.11(E,F)). Similar to the folding of triangle configurations, rectangle 

configurations can also be achieved by the annealing actuation with a yield of about 80% 

(Figure 6.11(G)). Folding of the compact configuration by the anneal control fold with 

adding folding staples at once obtained similar results as the one conducted at room 

temperature (Figure 6.11(H)).  

6.6. Higher-order DNA origami structures based on polymerization  

A key reason for selecting the waterbomb base design was the possibility of making 

higher order assemblies that undergo drastic shape transitions. We designed DNA 

origami waterbomb base assemblies by the polymerization of the waterbomb bases via 

base-pairings of overhangs on specified surfaces. First, as the waterbomb bases were 

folded to the compact configuration, assembly between individual monomers occurred 

upon the adding of complementary binding strands that can connect the overhangs on 

lateral surfaces. Due to the gaps introduced by the connection of overhangs and 
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construction of joints, both linear and circular higher-order assemblies were observed 

(Figure 6.12(A)).  

 

 

 

Figure 6.12: Higher-order nanostructures based on waterbomb base. (A) Polymerization 

based on the folded compact configuration along its lateral sides. Theoretically, straight 

filament can be obtained if no clearances exist and curved filament or even circular 

structure can be achieved if the clearances introduced by the design are taken into 

account, a circular structure has nine folded waterbomb bases is shown as an example. 

TEM images show the examples of linear, circular and curved structures obtained in the 

polymerization.  (B) TEM images show the reopen example of the polymerized structures 

based on folded configuration. (C) Polymerization along the normal direction of lateral 

surface based on square configuration. Scale bars: 100 nm.   

 

 

As seen from the experiment results, polymerization is achieved even though polymers 

ranged in size from 2 to 10 individual units, and structures with noticeable curvatures or 
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even closed circular loops of structures were observed. Then, the reopening strands of the 

compact configuration were added to release all folded waterbomb bases and more linear 

high-order structures show a large curvature due to the reduction of structural stiffness 

(Figure 6.12(B)). In addition, polymerization along the normal direction of the lateral 

side of the square configuration was achieved by adding the binding strands that connect 

the overhangs on the surfaces of individual monomers (Figure 6.12(C)). 

6.7. Experimental procedure 

    The design was finished in caDNAno. Scaffold strand that has 8064 bases is clone the 

single-stranded M13MP18 bacteriophage viral genome and single-stranded staples were 

ordered from commercial vendors (Eurofins, Huntsville, AL and Integrated DNA 

Technologies, Inc., Coralville, IA).   

Self-assembly: Scaffold strands were mixed at 20 nM with staples at 10-fold excess (each 

staple at 200 nM) in a buffer (containing 5 mM Tris, 5 mM NaCl, 1 mM EDTA), and a 

screening of MgCl2 concentrations from 12, 14, 16, 18, 20, 22, 24, 26 mM was firstly 

conducted and found 14 mM was good enough for the future self-assembly. The self-

assembly was finished during a thermal annealing ramp by increasing the temperature 

quickly to 65 °C and then slowly cooling down to 4 °C over a timescale of two and half 

days.  

    Gels were made with 2% agarose in 0.5× TBE buffer (44.5 mM Tris-borate, 1 mM 

EDTA) with 11 mM MgCl2 and 1 μM ethidium bromide. Self-Assembled nanostructures 

were mixed with 6× loading dye (New England Biolabs, Ipswich, MA) and loaded to the 

well on the gel and run for approximately 3-4 hours at 70 V. Under UV table, bright 



180 

 

bands that contain nanostructures were excised and put into spin columns (Biorad, 

Hercules, CA) and then spin in a tabletop centrifuge at 10, 000 g for 10 min.  

    PEG purification: Mix self-assembled samples (>=100 ul) with the same volume 15% 

PEG8000 in a 1.5 ml tube, spin the mix in a tabletop centrifuge at 16, 000 g for 30 min,  

remove the liquid carefully and finally suspend the nanostructures in a 1× TBE buffer 

with 14 mM MgCl2 at a small volume. The concentration of nanostructure was measured 

by NanoDrop 1000.  

    Samples from gel purification can be directly used to prepare TEM grids and samples 

from PEG purification need to adjust the concentration to be smaller than 4nM before 

making TEM grids. For making a single grid, about 4 μl purified nanostructure sample 

was deposited on a plasma treated formvar coated TEM grid stabilized with evaporated 

carbon film (Electron Microscopy Sciences, Hatfield, PA) and incubated for four 

minutes. Then the sample was wicked away, and nanostructures were negatively stained 

by 2% Uranyl formate (SPI, West Chester, PA).The grid-side was firstly immersed into a 

small stain solution 10 ul droplet that was wicked off quickly and then quickly immersed 

into a 20 μl droplet and wicked off after incubating for 40 seconds. TEM grids need to 

dry for at least 30 minutes prior to imaging. Images were taken on a FEI Tecnai G2 Spirit 

TEM at an acceleration voltage of 80 kV. 

    Concentration of nanostructure in purified self-assembled sample was firstly measured 

by NanoDrop 1000. Then folding staples mixed with purified samples at big enough 

ratios (Table S) and the mixes were kept at room temperature overnight. For the two steps 

controlled folding, the mixes were kept at room temperature overnight first and the 
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adding the folding DNA strands and kept the final mixes at room temperature overnight. 

For the anneal controlled folding, folding DNA strands were added to the self-assembled 

samples at big enough excess ratios (Table S) and then increasing the temperature 

quickly to 37 °C and then slowly cooling down to 4 °C over a timescale of about 17 

hours and final nanostructures were purified by agarose gel electrophoresis. 

Polymerizations were also a anneal controlled process by increasing the temperature 

quickly to 37  °C and then slowly cooling down to 4 °C over a timescale of about two 

days. Reopen of polymerizations high-order structures were conducted by two 

approaches: (I) after mixing the reopen strands with the samples, the mix was put in 

thermal cycler controlled by a anneal ramp which increasing the temperature quickly to 

30 °C and then slowly cooling down to 4 °C over a timescale of about 15 hours and  (II) 

keeping the mix at 37 °C for about 2 hours.  

6.8. Summary and conclusion 

    The waterbomb base fabricated by DNA origami here demonstrates for the first time 

that the design principle of the paper folding art origami can be applied to design DNA 

nanostructures with multiple controllable configurations via molecular self-assembling. 

The realization of patterning multiple dynamic waterbomb base nanostructures shows the 

feasibility of polymerizing high-order origami structures. This novel design approach 

paves the road to self-assemble reconfigurable materials and systems whose mechanical 

properties can be programed and tuned via transforming individual monomers [134–136] 

among several pre-designed configurations. 
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Chapter 7: Conclusions and Future Work 

 

 

7.1. Conclusions 

The dissertation presents the achievements of research about compliant and rigid-body 

DNA origami mechanisms, including PRB models application on CDOM, design and 

fabrication of compliant hinge and four-bar bistable mechanism, projection kinematics 

analysis of DOM and demonstration of origami of DNA origami nanostructures by the 

design of a waterbomb base. 

Chapter 2 present the PRB models used in compliant mechanism design and analysis. 

Classic PRB model works well for cantilever beam with uniform cross section cantilever 

beam. However, in the design of compliant DNA origami mechanisms, all joints or 

junctions are not perfect as designed. For example, one end of the cantilever beam 

usually should be fixed on the frame link or ground, but this fixed junction in DNA 

origami nanostructures can’t obtain infinite large stiffness. This can vary parameters used 

in the classic PRB model, including the characteristic radius factor and stiffness 

coefficient. In order to overcome this issue, another torsional spring was used to model 

the junction in the DNA origami nanostructures and the relationship between stiffness of 

the junction and the parameters used in PRB model were explored. In addition, it is very 
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common that the beam has several different segments in the DNA origami nanostructures 

design. Modified PRB  models were presented for analysis of three segment beam design. 

These modified PRB models can provide precise expectations of deformation and stored 

energy of beam designed by DNA origami.  

Chapter 3 showed a compliant hinge designed and fabricated by scaffolded DNA 

origami. If an external bending load applied on the two ends, the compliant joint can be 

easily deformed due to the small stiffness of the middle thinner segment. Most of the 

deformation happened on the compliant segment and most of the strain energy are stored 

in it. In order to test the deformation ability of the compliant joint, ssDNA strands springs 

were placed between the two sides at the bottom layer and then the bending angle can be 

controlled by shifting the length of the ssDNA strands from the loops placed on the side 

of the rigid segment. The experiment results proved that the strategy of design compliant 

hinge by DNA origami is feasible and successful. This example also demonstrated that it 

is a feasible to tune the stiffness of the complaint nanostructures by tuning the geometry 

parameters. In addition, beam model and PRB model were used to quantify the 

deformations and stored energies and the models can capture the experiment results very 

well. 

Chapter 4 introduced the design and fabrication of the four-bar bistable linkage by 

scaffolded DNA origami. There are two positions where there is no deformation on the 

compliant link. These two stable positions can be easily figured out on the energy curve 

of the entire bistable mechanism because both of them correspond to the two energy 

minima points. Experiment results demonstrate that without control, lots of particles stay 
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at the two stable configurations, close or open, while some particles got stuck at the 

unstable configuration due to the base-stacking on the joint between the crank and 

coupler links. In addition, PRB models developed in Chapter 2 were used to quantify the 

switch behavior between the two stable configurations and its results were close to 

experiment. This four-bar bistable mechanism brings us great confidence to apply the 

design methodology of compliant mechanism on the design of DNA origami mechanisms 

and machines. 

Chapter 5 established the conception of projection kinematics analysis and applied it to 

verify the DNA origami mechanisms based on the 2D TEM images. Started from analysis 

of projection configuration of basic kinematic joints, including revolute, prismatic, 

cylindrical and spherical joints, real configuration in space can be obtained by 

geometrical information of projection configuration, such as link length and the angle 

between links. Then, four-bar and five-bar mechanisms were chosen as theoretical 

examples to demonstrate the feasibility of projection kinematics analysis. At last, real 

configuration of universal joint and Bennett linkage in space were figured out by 

projection information measured from 2D TEM images. Projection kinematics provides 

systematical analysis and verification of 3D configurations of DNA origami mechanisms 

based on their projection configurations.    

Chapter 6 demonstrated the origami of DNA origami nanostructures by the design and 

folding of a waterbomb base. This waterbomb base can lead to four foldable 

configurations, including square, triangles, rectangle and folded compact shape. The 

control of the six hinge angles can be achieved by the binding and releasing of over-
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hangs. All of the folding configurations can be either achieved at room temperature or by 

in a thermocycler with annealing control. In addition, higher-order DNA origami 

nanostructures were obtained by the polymerizations of folded waterbomb base with 

different configurations. This not only proved that much more complex dynamic DNA 

origami mechanisms can be fabricated, but also higher-order dynamic nanostructures can 

be obtained based on the pattern of single nanostructures. 

7.2. Future work 

With these advances, complex nanostructurs and nanomachines can be designed and 

fabricated by scaffolded DNA origami nanotechnology. In the future, significant 

challenges must be addressed in order to realize the functional potential of DNA origami 

nanomachines.  

First, general design and fabrication protocol of higher-order dynamic DNA origami 

nanostructures should be achieved. Right now, the size of DNA origami nanostructure is 

determined by the length of the scaffold (typically ~7000-8000 nucleotides). As the 

larger the DNA origami structure is, the lower the yield will be. One strategy is to 

assemble individual parts one by one, such as the assembly of a table, when the top 

surface plate is fixed, the four legs can be assembled to it one after another. This method 

can ensure that all of the parts are assembled, but it always costs lots of time and needs 

many operations especially when the number of parts is large. Another big issue of this 

kind of assembly is the assembly interference can be easily caused due to the geometry 

complexity. It is very often that the former assembled part may obstacle the assembly of 

the later one or increases the assemble difficulty of the later one.  
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Second, much more efficient actuation method should be developed. Right now, DNA 

strand displacement is the most popular approach, which depends on the number and 

length of overhangs placed on the surfaces of DNA origami structures. The efficiency of 

this method is a little bit slow and can be dramatically influenced by the ion 

concentration and temperatures. Also, it is not good to do multiple steps actuations 

because in each step, new DNA strands need to be added, which will dilute the 

concentration of the nanostructure. Another issue is extra binding and releasing DNA 

strands may influence the behavior of dynamic DNA nanostructures.  

Third, comparing with computer-aided design tools used in traditional machine design, 

currently, the design process of DNA origami nanostructures is ad hoc and tedious, 

design automation is necessary for design optimization. Usually, DNA origami design 

started from the 2D sheet in caDNAno which is the most popular design tools. In the 

engineering design, 3D model should be finished first and then 2D design of the scaffold 

routing and staples can be finished on the 3D geometrical. This can provide good 

visualization for designers and also make the detection and correction of errors easily.  

Moreover, much more efficient and accurate computational models and tools should be 

developed. As the DNA nanostructure become more and more complex, computational 

tools should have the ability to provide accurate enough results to quantify the 

performance with acceptable cost. Right now, computational tools developed based on 

finite element method and coarse-grain model of DNA can’t capture the performance of 

very flexible elements in DNA nanostructures, such as short ssDNA connections. As 

molecular dynamic simulation always costs lots of time and computation source, it is not 
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economic for engineering design of DNA origami. In addition, the computational tool 

should combine with the design automation to speed the design and analysis process of 

DNA nanostructures and provide accurate expectations before experiment.  

Finally, much more applications, such as targeted drug delivery, drug releasing control 

and biosensors et al., can be explored. These researches will bring novel techniques for 

diagnosis, monitoring and therapy of diseases including cancers. 
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