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Abstract 
 

Natural disasters are one of the constant challenges for designing new and strengthening 

existing infrastructures. Such hazards in the past have incurred significant loss of life and 

economic damage; therefore, further research is warranted in this area to enhance the health 

and minimize the cost of maintaining and upgrading infrastructures, improve residents’ 

comfort, and enable achieving higher levels of life safety. To this end, the field of hazard 

mitigation and control focuses on performance improvement, safety, and cost effectiveness 

of structures mostly through minimizing large deformations of seismic-excited structures 

and suppressing the damage and collapse in dynamic systems due to excessive vibrations.  

Past developments in active and semi-active control designs, such as the commonly 

used state space controllers (e.g. linear quadratic regulator for fully observed systems and 

linear quadratic Gaussian for partially observed systems), consider linear feedback 

strategies. Meanwhile, such control strategies require linearization, and the system is 

usually linearized based on linear elastic properties. The control force is proportional to the 

state space vector and the dynamics and constraints of control devices are mainly ignored. 

The objective functions have restrictive forms, and are solely dependent on a second order 

convex function of the response variables. To overcome the aforementioned shortcomings, 

this dissertation develops new stochastic control algorithms for active and semi-active 

control strategies. This research concentrates on the development of frameworks that 



iii 

incorporate nonlinearity of the system, uncertainty of the excitation, and constraints and 

dynamics of the control device. Control designs are developed based on different objective 

functions such as higher order polynomials of response variables, reliability of the 

structure, and life cycle cost of the system considering hazard risks in seismic prone areas.  

In particular, a nonlinear sliding mode control algorithm based on stochastic 

linearization is developed; this method supports higher order objective functions and 

therefore enhances the ability of designers to achieve design objectives. The proposed 

control algorithm is designed, optimized, and tested on a seismically excited multi-span 

bridge equipped with semi-active magnetorheological dampers. Next, a stochastic control 

algorithm is presented based on a proposed stochastic averaging method called enhanced 

stochastic averaging. This method conserves the nonlinear behavior of the system and the 

stochastic nature of the excitation in optimal control design. In order to directly minimize 

the probability of failures, the stochastic control algorithm is extended to a reliability-based 

control algorithm. These control algorithms are implemented in a system with nonlinear 

soil-structure interactions. Furthermore, a risk-based control methodology is developed to 

minimize life cycle cost of a nonlinear multi-story building subjected to seismic 

excitations. The findings of these proposed control methodologies are found to be superior 

to conventional control techniques. This doctoral research aims at filling a major gap in 

smart control technology in terms of conserving nonlinearity and stochasticity in control 

design. Moreover, they provide explicit optimization processes based on reliability and 

risk. Future investigations include advancing the proposed methods and applying them to 

different structural systems subjected to various hazard types. 
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Chapter 1:  Introduction 
 

1.1. Motivation 

Natural disasters are one of the constant challenges to designing new or strengthening 

existing infrastructure. For instance, earthquakes are still demolishing cities such as the 

case in Haiti in 2010 (316,000 fatalities and $8 billion damage) (Guha-Sapir et al., 2011). 

Structural engineers are motivated to develop resilient infrastructure designs; ones that can 

ensure structural safety, serviceability, and comfort.  

Hazard Mitigation and Control (HMC) is one of the solutions to design resilient 

structures that can withstand natural disasters. HMC uses smart control devices to attenuate 

specific response variables, such as alleviating lateral and torsional response of a long span 

bridge subjected to heavy wind. On the community level, research in HMC can enhance 

the health and minimize the cost of maintaining and upgrading infrastructures, improve 

residents’ comfort, and enable achieving higher levels of life safety. To achieve these goals, 

this research concentrates on minimizing damage to structural and nonstructural 

components through actions that affect pre-, during, and post- hazard performance of 

systems. The research indirectly results in reducing initial cost, retrofitting cost, repair 

time, and injuries and casualties. 
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1.1.1  Background 

Over the past few decades, various structural control devices, including passive, active, 

and semi-active controllers have been developed to mitigate various critical responses of 

structures. Passive devices do not require power to operate during earthquakes or other 

hazards and often include supplementary dampers to dissipate the energy of systems. 

More common forms of these systems are tuned mass damper (TMD) (Figure 1-1b), 

tuned liquid column damper (TLCD) (Figure 1-1c), and base isolation systems. These 

dissipative devices are considered to be reliable, but they are effective only for a limited 

range of external excitations (Symans et al., 2008). Furthermore, they are unable to adapt 

to changes in the structural properties and to the nature of external excitations (Debbarma 

et al., 2010; Chakraborty et al., 2012; Soto and Adeli, 2013; Soto and Adeli, 2014). To 

overcome these shortcomings, active devices (e.g. active mass damper, hydraulic 

actuators) were developed which are capable of adjusting to a wide range of operating 

conditions. However, they require a large amount of power, may induce instability 

problems in structures (Du et al., 2008), and may cost more than passive control devices. 

Semi-active devices provide a compromise between the features of active and passive 

devices. These systems have gained attention and widespread acceptance in the control 

engineering community for their robustness and stability, in addition to adaptability and 

low (battery-operated) power requirements. Semi-active technology increases the overall 

reliability, stability, and efficacy of the control system (Corbi et al., 2013). Both semi-active 

and active systems are effective for a wide range of excitations as opposed to passive 

schemes that are effective for a limited bandwidth only (Yoshida and Dyke, 2005; Guo et 
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al., 2009; Fan et al., 2009). Semi-active systems include, among others, magnetorheological 

(MR) dampers (Figure 1-1e), variable friction dampers (Figure 1-1d), and negative stiffness 

devices (NSD) (Figure 1-2a), (Ozbulut and Huberlaus, 2011), among others. Moreover, 

hybrid control systems are introduced to combine different control systems and hence 

improve their performance, efficiency, and stability (Bahar et al., 2010; Chang and 

Spencer, 2010). An example of a hybrid system is depicted in Figure 1-2b where a semi-

active NSD is combined with a TLCD system on the roof. This system is expected to 

provide improved vibration attenuation compared with a stand-alone NSD system shown 

in Figure 1-2a. Some of the diverse applications of smart control systems are listed below: 

• Mitigating inter-story drifts and story accelerations in multi-story buildings (Figure 1-

1a). 

• Minimizing roof displacements in high-rise buildings (Figure 1-1b). 

• Reducing torsional displacements of irregular structures (Figure 1-1c). 

• Alleviating the impact of pounding of adjacent structures such as multi-span bridges 

(Figure 1-1e). 

• Attenuating vertical accelerations in vehicles (Spencer and Nagarajaiah, 2003; 

Korkomaz, 2011; El-Khoury and Adeli, 2013; Soto and Adeli, 2013). 
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Figure 1-1 Civil engineering applications of control engineering. 

To summarize, passive control systems have been well developed and tested over the 

past few decades. Meanwhile, the current frontier of research in this area is active and 

especially semi-active control of structures. Such control problems are complex and require 

integration of several different hardware and software technologies such as smart materials, 

adaptive dampers, actuators, sensors, and control and signal processing algorithms with 
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structural designs. Herein, the research is focused on active and semi-active control strategies 

and algorithms. In the next sections, the objectives and scopes of research (Section 1.2) and 

the dissertation content (Section 1.3) are discussed. 

 

  
(a)         (b) 

Figure 1-2 (a) NSD system and (b) a hybrid TLCD and NSD system. 

 

1.2. The Objectives and Scope of Research  

In semi-active and active control designs, systems subjected to external excitations are 

monitored via a set of sensors that measure critical structural responses as shown in Figure 

1-3a. Then, the central processing unit (CPU) estimates the full state responses and 

determines the control command. Subsequently, the control command is fed to the control 

device and the corresponding force is applied to the system. An example for a control 

system developed for a two span bridge equipped with semi-active MR dampers to mitigate 
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bridge responses especially poundings under seismic excitations is depicted in Figure 1-

3b. In this example, an observer and a controller system are designed and optimized for a 

representative dynamic model of the bridge. During seismic excitations, the control system 

calculates the optimal input current for MR dampers given the measured structure 

responses. MR dampers then react to the input current and induce a stabilizing force in the 

structural system. This process continues until the end of seismic excitation.  

Conventional linear feedback controllers such as linear quadratic regulator (LQR) for 

fully observed systems and linear quadratic Gaussian (LQG) controller for partially 

observed systems have been used extensively in control problems. In these methods, the 

control force, 𝐮, of the system is determined as −𝒌𝐗, where 𝒌 is the constant gain matrix 

and 𝐗 is the state space vector. The gain matrix is determined by minimizing a second 

degree polynomial cost function, (𝐗𝑻𝑸𝐗 + 𝐮𝑹𝐮), where 𝑸 and 𝑹 are semi-positive and 

positive definite matrices, respectively, that are defined by the designer to indicate the 

relative importance of reducing various responses of the structure and the control force. 

Such control algorithms are easy to implement and are relatively effective in mitigating the 

response of structures (See Aldemir et al., 2012; Karimi et al., 2013). However, a major 

limitation of these methods is that they produce optimal solutions for only linear systems 

and their application to nonlinear systems requires linearization of the system. In such 

cases, the derived control forces may not be optimal. As for the linearization of the systems, 

majority of studies have used linear elastic properties of systems in the LQR/LQG designs. 

This approach does not conserve the stochasticity of excitations and nonlinearity of the 

system behavior in response to high intensity stochastic excitations. 
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To overcome the shortcomings of conventional control strategies, the primary research 

goal here is to develop effective nonlinear stochastic control frameworks for nonlinear 

dynamic systems. These frameworks entail mitigating the vibrational effects, reducing the 

extent of damage, and minimizing the likelihood of failure and the life cycle cost. Herein, 

the development of control framework involves: (1) proper characterization of the 

nonlinearity and stochasticity of the system, and dynamics and constraints of the control 

device and (2) well-defined control design objective functions for systems of interest using 

measures such as drift, acceleration, reliability, cost, etc. To develop the aforementioned 

process, the following topics are studied in this dissertation:  

 The treatment of nonlinearity and stochasticity in the control design using stochastic 

linearization (El-Khoury et al., 2015; El-Khoury et al., 2016) and stochastic averaging 

(El-Khoury and Shafieezadeh, 2016). 

 The expansion of the conventional control objectives to higher order convex functions 

and incorporation of the dynamics and constraints of controllers (El-Khoury et al., 

2015; El-Khoury et al., 2016). 

 A nonlinear stochastic control based on stochastic averaging of energy envelope that 

enables the incorporation of nonlinearity of the system, stochasticity of the excitation, 

and unrestricted objective function of control design (El-Khoury and Shafieezadeh, 

2016; El-Khoury and Shafieezadeh, 2017a). 

 The development of a reliability-based control algorithm based on stochastic averaging 

of energy envelope that minimizes the probability of failure of nonlinear systems (El-

Khoury and Shafieezadeh, 2017b). 
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 The optimization of control systems within a risk management framework such that the 

life cycle cost of structures is minimized (El-Khoury et al., 2017). This control 

optimization explicitly minimizes structures’ life cycle cost which consists of the initial 

cost, the cost of maintaining and upgrading the structure, and finally direct and indirect 

costs of repairing the structures following hazards. This control algorithm implicitly 

minimizes casualties and improves residents’ comfort as well. 

All of the above studies enable achieving a more reliable and resilient system. 

1.3. The Dissertation Outline  

The rest of the dissertation consists of seven chapters with the following content: 

 Chapter 2 presents a review of model characterization techniques and control design 

strategies in the literature and discusses their strengths and shortcomings. 

 Chapter 3 develops a nonlinear sliding mode control design approach using concepts 

from optimal polynomial control (SMC-OPC) and applies it to multi-span bridges 

equipped with semi-active MR dampers. The chapter presents simulation as well as 

large scale shake table experiment results. 

 Chapter 4 presents development of an advanced stochastic averaging method of energy 

envelope, called enhanced stochastic averaging (ESA) and implements this approach 

for estimation of probabilistic features of responses of a single story building supported 

on a nonlinear foundation. 

 Chapter 5 introduces new stochastic control algorithms that implement ESA within 

optimal control designs and applies this method for the system discussed in Chapter 4. 



9 

 Chapter 6 presents development of a reliability-based control, where minimizing the 

probability of failure of the structure estimated via ESA is considered the primary 

objective. 

 Chapter 7 proposes a risk-based control framework to minimize the life cycle cost of 

structures and applies the method to a multi-story nonlinear building. 

 Chapter 8 summarizes the research, draws general conclusions, and highlights some 

future research needs. 

 

 

(a) 

 
(b) 

Figure 1-3 (a) Schematic of controlled systems and (b) Simulink model of two span 

bridge subjected to seismic excitation. 
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Chapter 2:  Challenges of Control Design of Structures under Hazard 

Excitation 
 

2.1 Introduction 

The complex behavior of civil engineering structures during a hazard event and the 

vulnerabilities of these assets have been extensively studied with the purpose of improving 

the design and providing effective mitigation options to reduce the potential of various 

types of damage and catastrophic failures (Berke et al., 2012). In hazard mitigation and 

control (HMC), the goal primarily is to develop and evaluate control methods that lead to 

more resilient designs for various civil engineering structures. HMC research addresses 

different objective such as 

• Adapting to sudden events by considering stochasticity and nonlinearities in different 

components and excitations (Connor et al., 2014; Tu et al., 2014; Yildiz et al., 2015). 

• Reducing the peaks and root mean square of response variables such as acceleration 

and displacements in dynamic systems (Cha et al., 2013; Xiang et al., 2014;  Rahman 

et al., 2015). 

• Maximizing the reliability and minimizing life cycle cost of special buildings (Yuen 

and Taflanidis, 2003; Scruggs and Taflanidis, 2006; Taflanidis and Beck, 2009) 
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• Minimizing power consumption of control devices and optimizing the number, the 

locations, and the reliability of control devices used in the controlled system (El-

Khoury et al., 2015; Yildiz et al., 2015; El-Khoury et al., 2016). 

Meanwhile, one major challenge of systems under extreme loadings (e.g. earthquakes) 

is nonlinearity. In this context, it is commonly argued that the purpose of the application 

of control strategies is to reduce the structural response and limit the extent of nonlinearities 

so that the system remains nearly linear elastic during the hazard. However, hazards are 

stochastic events with characteristics that are not fully known prior to the occurrence. This 

complicates the design of a controller that can ensure a linear system behavior or a behavior 

with limited nonlinearity. Also in some applications, the goal of the control strategy is to 

reduce the likelihood of extreme responses in critical demand measures to limit the 

potential of extensive damage in the system, while accepting presence of nonlinear 

behavior in the system response. This strategy will allow for more cost-effective solutions 

based on structural control. However, this strategy poses a challenge considering that 

control algorithms are normally designed for systems with linear models. Two primary 

aspects are essential to ensure good control performance: proper characterization of the 

system and control device and well-defined control design objectives as depicted in Figure 

2-1.  
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Figure 2-1 Factors in obtaining a successful control design optimization. 

 

 

In this chapter, these aspects are discussed in achieving the aforementioned objectives: 

(1) characterization of the system through deterministic and stochastic approximations and 

(2) the advancement of control algorithms (linear and nonlinear; deterministic and 

stochastic). Presented in the subsequent sections are the model characterization techniques 

(Section 2.2) , the control algorithms (Section 2.3), minimization of the probability of 

failure and extent of loss, the reliability-based control (Section 2.4) and the risk-based 

control (Section 2.5).  The concluding section elaborated the direction of the present 

research (Section 2.6). 

2.2 Model Characterization 

Model characterization and response prediction of dynamic systems have posed challenges 

in many fields of science and engineering. Natural or engineered systems may exhibit 

nonlinear behavior in their dynamic response; these responses are often uncertain due to 

the stochasticity in input excitations and other sources (Benjamin and Cornell, 2014). In 
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control design, incorporating the stochasticity or uncertainty of the excitation and the 

nonlinearity of the dynamic system is one of the major objective to ensure an optimal 

control performance. For instance, nonlinear systems can be treated using a variety of 

different methods (Socha, 2005a; Socha 2005b; Zhu, 2006; Chopra, 2007; Socha, 2007). 

Traditionally, the system is linearized according to linear elastic assumptions. For instance, 

a single degree of freedom (DOF) dynamic system is designated as: 

�̈� + 𝑓(𝑥, �̇�) = �̈�e (2.1) 

where 𝑥, �̇�, and �̈� are displacement, velocity, and acceleration respectively, 𝑓(𝑥, �̇�) is the 

nonlinear restoring force, and �̈�e is the external excitation. 𝑓(𝑥, �̇�) is linearized to 2ξ𝜔�̇�  +

𝜔2𝑥, where ξ and 𝜔 are the equivalent damping ratio and fundamental angular frequency, 

respectively (Chopra, 2007). Such a method does not incorporate the intensity of external 

excitation in the linearization process. Consequently, probabilistic methods are adopted in 

nonlinear stochastic dynamic systems to incorporate the properties of the external 

excitations. In the following subsections, two methods of model characterization are 

explained: deterministic and stochastic linearization (2.3.1) and stochastic averaging 

(2.3.2). 

2.2.1 Deterministic and Stochastic Linearization 

The system matrix in a nonlinear structure is not fixed, and depends on the response of the 

structure. To generate simplified models for such systems, linearization techniques were 

developed (Socha, 2005a; Socha 2005b; Chopra, 2007; Socha, 2007; Anh et al., 2015). 

This class of methods aims at determining parameters of an equivalent linear model by 

minimizing the error between the responses of the nonlinear and linear systems. A common 
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objective function for these purposes is the mean square error. The fitting process can be 

stochastic, where the probabilistic nature of the excitation is considered, or deterministic, 

where the excitation is assumed to be known a priori.  

Conventionally, initial linear elastic properties of systems have been used extensively 

to present the dynamic behavior of nonlinear structures. This deterministic approach can 

yield acceptable predictions of system responses in structures that experience very limited 

nonlinearity. Since such linearization methods do not consider the intensity of external 

excitation in the linearization process, they may yield poor response predictions when the 

system is subjected to large excitations and therefore experiences large nonlinearities.  

To overcome this limitation, stochastic linearization was introduced for nonlinear 

hysteretic systems. It is noteworthy that hysteretic nonlinearity is commonly observed in 

civil engineering structures (Priestley et al., 2007). The hysteretic components in the 

system matrix can be replaced by equivalent linear time invariant models; the residual 

errors arising from the linearization process can then be minimized (Wen, 1980). 

Stochastically linearized models better predict the response of nonlinear structures 

compared to linear elastic models (Basili and Angelis, 2007; Basili et al., 2013). Basili and 

Angelis (2007) optimized a passive control design for adjacent structures equipped with 

viscous dampers. Stochastic linearization was carried out to solve nonlinear equations of 

motion of the nonlinear system subjected to artificial ground motions generated using a 

Kanai-Tajimi filter (Kanai, 1957; Tajimi, 1960). Generally, stochastic linearization is easy 

to implement for simple systems with few degrees of freedom, but it becomes very 

complicated for multi-degree-of freedom systems. Stochastic linearization faces a number 

of limitations with regard to the stability of produced solutions, and in dealing with high 
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degree of freedom systems and structures with large nonlinearity. These limitations stem 

from the fact that obtaining coefficients of linearized models requires solving a system of 

nonlinear algebraic equations in the case of stationary response and a system of differential 

equations in the case of non-stationary response (Socha, 2005a; Socha, 2005b; Socha, 

2007).  

2.2.2 Stochastic Averaging  

As an alternative to linearization techniques, stochastic averaging is a proven solution that 

provides higher accuracy, since it retains the intrinsic nature of nonlinearity in the system 

behavior as well as effects of stochasticity in input excitations (Bellizzi et al., 2001). 

Stochastic averaging has been used for system identification and control design in different 

domains such as structural engineering (Zhu et al., 2004; Cheng et al., 2006; El-Khoury 

and Shafieezadeh, 2015), geotechnical engineering (Tartakovsky et al., 1999), earth and 

environmental sciences (Cai, 2009), and physics (Deng et al., 2011).   

Stochastic averaging can be used to derive approximate probabilistic solutions to 

problems involving lightly damped systems (Zhu, 2006). Such systems can be considered 

as diffusive Markovian processes with a transition probability density function (PDF) 

governed by the Fokker-Planck-Kolmogorov (FPK) equation. The drift and diffusion 

components of the FPK equation are derived by applying stochastic calculus. 

Subsequently, the PDF of system responses is computed by solving the FPK equation, and 

this can be used for response prediction of variables such as low and high order moments 

of energy, displacements, and velocities. In this aspect, three methods of averaging have 

been proposed (Zhu, 2006): standard stochastic averaging, the averaging method of 
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coefficients in FPK equation, and stochastic averaging of energy envelope. The first two 

methods were developed to derive the solution of FPK equation by averaging it with 

respect to time. The third method transforms the dynamic system into the Hamiltonian 

domain (in stochastic averaging of energy envelope, the total energy of the system is known 

as the Hamiltonian). Common response variables of dynamic systems e.g. displacements 

and velocities are often rapidly varying quantities, while energy envelopes of systems are 

slowly varying quantities. This method exploits this feature to average the rapidly varying 

processes to yield the averaged Itô equations for slowly varying processes. This method 

can be applied to lightly damped systems subjected to weak excitations (Zhu, 2006). 

Additional features of stochastic averaging of energy envelope include lower 

computational demand and simpler parameter analysis compared to other stochastic 

averaging methods, since the dimension of the FPK differential equation is reduced (Zhu 

et al., 2002).  

In general, multi-DOF systems of interest can be either integrable or non-integrable. 

Integrable systems are identified by uncoupled potential energies, where each DOF 

corresponds to an independent Hamiltonian. The integrable system is then averaged and 

the PDF of the Hamiltonian can be derived (Zhu et al., 2002; Huang and Zhu, 2004). On 

the other hand, non-integrable systems include coupled potential energies, where the entire 

system can only be represented by a single Hamiltonian (Huang and Zhu, 2009) for all 

DOFs. Stochastic averaging of energy envelope has been used for response prediction 

(Stafford et al., 2009; Xu et al., 2013) and reliability estimation (Chen and Zhu, 2009) for 

both integrable and non-integrable systems. For example, Zhu et al. (2004) applied this 

method to the linear model of a tall building subjected to wind loadings that were simulated 
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as filtered white noise. To simplify the analysis, the system was converted from a non-

integrable system to an integrable system using linear modal analysis. The averaging was 

applied to the derived integrable system and a controller was designed accordingly. 

Stochastic averaging of energy envelope was also implemented for system representation 

of single DOF hysteretic systems subjected to white noise excitations (Cheng et al., 2006). 

This technique was further extended to support systems subjected to other types of 

excitations such as Poisson excitation (Zeng and Zhu, 2011), Gaussian and Poisson 

excitation (Jia et al., 2014), combined harmonic and real noise excitation (Chen and Zhu, 

2011), and fractional Brownian excitation (Xu et al., 2013).  

Stochastic averaging of energy envelope is considered to be superior to stochastic 

linearization because of the following reasons: 

• More capable control solutions can be achieved using stochastic averaging versus 

various linearization methods because the intrinsic non-linearity in the original system 

is retained in the averaged system (Zhu and Huang, 2004). 

• The frequency content characterization is conserved in stochastic averaging, while for 

linearized systems, this may not be true (Soize, 1995; Bellizi and Bouc, 1999a; Bellizi 

and Bouc, 1999b). 

• Better estimations for probabilistic measures such as stationary probability density 

functions and higher order moments of responses are achieved using stochastic 

averaging compared to stochastic linearization. 

In addition, an averaged system model via stochastic averaging is a close representation 

of nonlinear system dynamics, however, this is not the case for linearized models. 

Therefore a nonlinear feedback control in stochastic linearization in order to yield optimal 
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results requires repeating the linearization procedure when the control force or excitation 

intensity, among other factors, change. On the other hand, the control forces can be 

embedded in the stochastic averaging without requiring further derivation and iterations. 

2.3 Control Algorithms 

In this section, several feedback control designs are discussed. The linear optimal state 

space control, known as linear quadratic regulator and linear quadratic Gaussian is 

elaborated in Section 2.3.1. In order to introduce higher order cost functions, the optimal 

polynomial control algorithm is presented in Section 2.3.2. Then to improve robustness, 

sliding mode control is introduced in Section 2.3.1. To incorporate stochasticity and 

nonlinearity of the system, a family of stochastic controllers based on stochastic averaging 

of energy envelope is included in Section 2.3.4. These methods are compared to 

uncontrolled systems, passive systems, and systems equipped with bang-bang control 

method (Lim et al., 2003) which is a feedback controller that switches between two states 

of control.   

2.3.1 Linear Quadratic Regulator/Gaussian 

Traditionally, the most commonly used optimal control algorithms are linear quadratic 

regulator for fully observed systems (LQR) and linear quadratic Gaussian (LQG) for 

partially observed systems. These algorithms are considered to be linear feedback 

strategies, where the control force is proportional to the state space vector and the 

minimization cost function is a second order convex function (Aldemir et al., 2012; Karimi 

et al., 2013; Lei and Lin, 2012; Li et al., 2010b; El-Khoury and Adeli, 2013). To date, LQR 

http://en.wikipedia.org/wiki/Feedback_control
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is still being adopted for research in active and semi-active control because of its simple 

implementation and satisfactory results.  

For instance in active control, Alavinasab et al. (2006) used LQR algorithm for a three 

story building equipped with actuators. Li et al. (2010b) designed LQG control algorithm 

for an eight story shear frame subjected to earthquake ground motions. Karimi et al. (2013) 

examined a 20 story flat slab building equipped with 20 actuators that were controlled by 

an LQR algorithm. This approach was introduced to improve the structural response. Lei 

et al. (2012) suggested an LQG controller to reduce the seismically induced response of a 

20-story benchmark linear structure. Amini et al. (2013) presented a design for a 10-story 

shear frame equipped with active tuned mass dampers using LQR control algorithm and 

particle swarm optimization. The objective was to reduce torsional deformation of irregular 

structures subjected to earthquake excitations. Kim et al. (2013) adopted the LQR control 

algorithm in tall structures equipped with active tuned mass dampers subjected to strong 

winds (e.g. Aldemir et al., 2012; Tse et al., 2012). 

For the semi-active control method, Yoshida et al. (2003) performed shaking table 

experiments on a two story asymmetric building model equipped with MR dampers 

subjected to earthquake disturbance to reduce torsional motions. Ohtori et al. (2004) 

studied seismic control of nonlinear benchmark buildings equipped with semi-active LQG 

control algorithm based on clipped optimality. The suggested control algorithm improved 

the reliability and reduced peak damage performance compared to uncontrolled structure. 

Here, reliability is measured as the conditional probability that the damage measures do 

not exceed the specified values. Similarly, Christenson and Emmons (2005) used LQR 



20 

control algorithm in a three story building equipped with MR damper under seismic 

excitation. Bitaraf and Huberlaus (2013) implemented semi-active LQR control in a 20-

story nonlinear building to reduce the damage in the structure. From this review, it can be 

realized that these control algorithms can be implemented for different disturbances (wind 

and earthquake) and various structures (high and medium rise buildings and bridges). 

However, a limitation of LQR and LQG in active and semi-active technology is that their 

objective functions has a restricted form and only contains polynomial functions of second 

degree.  

2.3.2 Optimal Polynomial Control 

To release the form of the objective function to contain higher (≥ 2) order convex 

functions, optimal polynomial control (OPC) algorithm was derived. This algorithm 

introduced by Agrawal and Yang (1996) generalizes the LQR algorithm through inclusion 

of higher order convex polynomials in the objective function. The OPC control force is 

composed of two components: a linear LQR component and a set of nonlinear higher order 

components. In that respect, LQR strategy can be perceived as a special case of OPC 

method. In general, it is expected that a second level optimization yields nonzero OPC gain 

matrices, and therefore provides a better performance compared to LQR method. In 

addition, nonlinear optimal control laws such as OPC are more robust than the linear 

optimal control law in dealing with uncertainties (Christofides and El-Farra, 2005). Similar 

to LQR, OPC requires linearization of the nonlinear structure. Studies have implemented 

stochastic linearization techniques which consider the stochasticity of the excitation and 

replace the nonlinearity in system components by equivalent linear time invariant models. 
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Peng et al. (2010) implemented polynomial chaos expansions in nonlinear optimal control 

of dynamic systems. This expansion estimates the probability distributions of the responses 

of interest in the structure. They implemented this strategy for an OPC algorithm in a base-

excited Duffing oscillator and compared the performance to LQR and Lyapunov control 

algorithms. Peng et al. (2013) generalized the control strategy to include serviceability, 

system comfort, and control device workability. A probabilistic control algorithm was 

suggested for an eight story shear frame equipped with actuators. The control strategy 

showed a noticeable reduction in the inter-drift of stories, in addition to an optimized 

efficiency compared to passive and uncontrolled systems. These control methods (LQR, 

LQG, and OPC) provide optimal solutions for linear systems subjected to white noise. 

However as stated earlier, these control algorithms do not consider the characteristics of 

the external disturbance. In reality, actual systems can be highly nonlinear, and external 

disturbances such as wind and earthquakes are stochastic phenomena, which can be 

characterized using their probabilistic properties. In addition, these methods are not 

immune to structure uncertainty, which is encountered in structures subjected to various 

hazards. In the next section, a family of robust controller known as sliding mode control 

are discussed to improve adaptability of the control design. 

2.3.3 Sliding Mode Control 

In order to provide an adaptive control performance, a class of robust control design 

strategies, known as Sliding Mode Control (SMC), was introduced by Vadim Utkin in the 

seventies (Utkins, 1977; Utkins, 1992; Fridman et al., 2011). The goal of SMC design was 

to drive the response trajectory into a pre-defined surface. Primarily, stability was 
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considered in the SMC design, which follows the trajectory of the sliding surface during 

the overall duration of the extreme event. Other attractive features included adaptability, 

efficacy, practical implementation, and good performance in the face of modeling 

uncertainty.  

The SMC algorithm is not based on a minimization procedure such as conventional 

feedback methods. However, the SMC design is known to be a two-step procedure. The 

first step involves the sliding surface design. After that, a control law is selected to drive 

the response variables to the defined sliding curve. Yang et al. (1994) derived linear sliding 

surfaces based on a regular form transformation and an LQR methodology. The surface 

designs were analyzed on linear elastic systems (Yang et al., 1995a) and hysteretic systems 

(Yang et al., 1995b). The control design showed performance improvements; in addition, 

it was shown to be robust when the stiffness of the structure was varied within 10 percent 

of the original value. Yang et al. (1996) tested the sliding surface design on seismically 

excited building. It was shown that the SMC design provided better peak response 

reduction as compared to traditional feedback LQR control algorithms (Wu and Yang, 

1997).  

The control law presented by Yang et al. (1994) could not be implemented unless the 

external excitation is deterministic. To resolve that issue, Adhikari and Yamaguchi (1997) 

replaced the feedforward component that depends on the excitation, by a Heaviside 

function that compensates for the stochastic disturbance. The Heaviside component is a 

source of chattering, which causes damage to mechanical components of actuators. As a 

result, this discontinuous component was replaced by a tangent-hyperbolic smooth 

function. Alternatively, Cai et al. (2000) preserved the Heaviside component but omitted 
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the linear component of the control design. Both design strategies have shown a good 

performance in terms of reduction in peak response values, and have been considered to 

various actively and semi-actively controlled multistory buildings (Yang et al., 2004; Fan 

et al., 2009; Li et al., 2010a) and bridges (Lim et al., 2003; Lee and Chen, 2011a; Lee and 

Chen, 2011b). However, these linear sliding surfaces are restrictive forms and limit the 

performance of controllers in terms of both response reduction and control force 

minimization for nonlinear systems.  To address these limitations, a new nonlinear sliding 

mode control is proposed in Chapter 3 which utilizes optimal polynomial strategy to design 

nonlinear sliding surfaces.  

2.3.4 Stochastic Control Algorithms Using Stochastic Averaging of Energy 

Envelope 

To implement stochastic averaging in control design, Zhu et al. (2000) introduced a 

nonlinear optimal control based on stochastic averaging of energy envelope for a hysteretic 

column equipped with an active device. The system was converted to energy domain where 

the linear and hysteretic displacement and velocity of the structure were reduced to an 

energy component in the form of a convex function of potential and kinetic energies. This 

method outperforms OPC control algorithm in terms of efficiency and response reduction. 

Furthermore, Zhu et al. (2001) used the nonlinear feedback control algorithm in single and 

multiple DOFs. The paper presented a derivation of the HJB equation for a 2-DOF 

nonlinearly damped system. This method assumes the convex cost and value functions to 

be dependent on energy components. The method predetermines the form of both functions 

and solves the dynamic equation accordingly.  
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In another effort, Zhu and Ying (2002) considered a partially observed five story 

structure equipped with an active control device. The nonlinear stochastic control was 

implemented and compared to both LQG and uncontrolled states. The result showed a 

better response mitigation compared to linear feedback controller. Ying et al. (2003) 

suggested a design of hysteretic column equipped with MR damper. A clipped stochastic 

optimal control was adopted to solve the dynamic programming equation, and better 

efficiency was achieved compared to semi-active clipped LQG control algorithm. Zhu et 

al. (2004) implemented the nonlinear stochastic control in a 40 story structure subjected to 

strong wind excitations. Ying et al. (2004) applied the nonlinear stochastic control for 

coupled building structures (20 story and 10 story adjacent structures) equipped with active 

control devices. In that research, stochastic averaging method was used to reduce the higher 

dimension of the original state. They concluded that more response reduction was achieved 

for high random excitation intensities compare with conventional LQG control algorithm. 

Furthermore, Ying et al. (2005) implemented the nonlinear control algorithm for a structure 

equipped with hybrid control devices including a semi-active MR damper and a passive 

tuned liquid column damper.  

Gao (2006) investigated active stochastic control of a smart truss bridge subjected to 

stationary random excitations. A mathematical model was developed based on the 

dissipation of energy where the objective criterion was to minimize structural 

displacements. Luo and Zhu (2006) proposed a nonlinear stochastic control strategy for 

jacket-type offshore truss structures subjected to wave forces. This nonlinear stochastic 

control algorithm was derived according to stochastic averaging strategy. The results 
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reported better performance compared with LQG control and uncontrolled states. The 

authors state that by using the stochastic averaging, the problem dimension was reduced 

by half. Cheng et al. (2006) explored the nonlinear stochastic controller in comparison to 

stochastic linearized system equipped with a LQG controller. In the suggested control 

algorithm, the MR damper could achieve the active control force without clipping (e.g. 

Zhu, 2006; Chen and Zhu, 2009). Ying et al. (2007) developed a bounded nonlinear 

stochastic control for a structure equipped with MR damper which yields a smoother 

control force compared with bang-bang control algorithm with increased efficiency.  Liu 

and Zhu (2007) considered delayed feedback control based on stochastic averaging. Zhao 

and Zhu (2010) developed a nonlinear stochastic control for a cable-stayed bridge equipped 

with MR dampers. Then, the nonlinear control algorithm was compared with bang-bang 

control where improved controlled responses were observed. Zhu and Zhu (2011) designed 

nonlinear stochastic feedback controllers for Hamiltonian systems. In the analysis, they 

verified that the transient solution converges to the stationary probability density function 

as time goes to infinity.  

A primary drawback for this control algorithm that is based on stochastic averaging is 

that real-world systems are generally non-integrable and nonlinear. Conventional 

stochastic averaging methods for such systems neglect effects of off-diagonal damping 

terms, consider a lumped contribution of the diagonal entries rather than their individual 

effects, and treat external stochastic excitations on applied DOFs as independent processes 

(Gu et al., 2012; Gu and Zhu, 2014). These constraints may limit the application of 

stochastic averaging as nonlinear systems often do not satisfy these conditions. To address 
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the present shortcomings, Chapter 4 proposes a new strategy called enhanced stochastic 

averaging to derive an equivalent nonlinear stochastic system for which the application of 

stochastic averaging yields accurate results. Furthermore, Chapter 5 develops a nonlinear 

stochastic optimal control algorithm based on the enhanced stochastic averaging method 

of energy envelope to mitigate the response of nonlinear hysteretic systems. The 

performance of the suggested control algorithm is compared to that of uncontrolled and 

conventional control cases. 

2.4 Reliability-Based Control 

Over the past few decades, reliability has gained great attention in the design of structural 

systems against natural hazards (Frangopol et al., 2014). Structural reliability is commonly 

defined as the probability of demand not exceeding a predefined limit that represents the 

capacity of the structure. The limit state functions are often established using engineering 

demand parameters such as maximum inter-story drift, maximum absolute acceleration, 

and maximum shear force (Ghobarah, 2004). Using these functions, reliability analysis 

enables probabilistic assessment of the ability of a system to meet a set of performance 

criteria, while accounting for various uncertainties that may affect the system’s 

performance. Reliability concepts can therefore be employed in control design to 

effectively enhance the performance of systems under external disturbances such as natural 

hazards. However, research in hazard mitigation and control has been dedicated extensively 

to minimize particular response variables of interest. In conventional feedback controllers, 

reliability as a performance metric is not explicitly considered. For example, LQR and 

LQG algorithms are widely used feedback controllers that minimize the second order 



27 

moments of the response variables of interest. LQG and LQR also provide simple and fairly 

acceptable designs for performance improvement of systems (Shafieezadeh et al., 2008; 

Shafieezadeh and Ryan, 2011). However in LQR/LQG, minimizing the variance of 

responses of interest does not directly correspond to improving the reliability of the system 

(Scruggs et al., 2006; Taflanidis et al., 2007). Consequently, new control strategies had to 

be developed based on reliability concepts. 

To incorporate reliability in the control design, Yuen and Beck (2003) developed a 

reliability-based control strategy for a shear building model equipped with an actuator 

device. The control force was determined such that the likelihood of failure estimated via 

crossing rate is minimized. The limit states were defined in terms of bounds on inter-story 

drifts and absolute accelerations. In addition, the feedback control force was considered to 

be linear with respect to the state vector. Scruggs et al. (2006) applied this reliability-based 

control strategy to optimize the seismic performance of active base isolation systems. 

Restrictions on the control gain matrix (e.g. a negative definite matrix or a diagonal matrix 

with negative entries) were enforced to ensure that a stable dissipative force is applied to 

the structure. Numerical results indicated that their control algorithm provided higher 

reliability than the LQR method. Similar approaches have been used for passive control 

(Chakraborty and Roy, 2011), active control (Yuen and Beck, 2003; Scruggs et al., 2006; 

Taflanidis et al., 2008a; Taflanidis and Scruggs, 2010), and semi-active control (Taflanidis 

et al., 2007; Taflanidis et al., 2008b) of systems. In these studies, optimization procedures 

are applied to either linearized system models (Taflanidis et al., 2008a) or the original 

nonlinear model of the system (Taflanidis et al., 2008b). In the case of controllers for 

linearized system models, objective functions can be evaluated and optimized analytically. 
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For nonlinear system models, objective functions have been determined and minimized 

through numerical simulations. The first approach may not yield optimal control designs 

as the nonlinear behavior of the system is not directly accounted for in the control design 

process. In the second approach, extensive numerical simulations may be required to 

capture the nonlinear stochastic behavior of the systems. This together with additional 

runtimes needed for numerical optimization procedures may result in significant 

computational demands 

To investigate the essentials of reliability-based design, in Chapter 6, a set of reliability-

based control algorithms using stochastic averaging of energy envelope are proposed. The 

objective function includes the probability of failure which is defined as the likelihood of 

a key demand parameter exceeding a predefined limit. Figure 2-2 shows a smaller 

likelihood of failure for the optimally controlled system compared to the -uncontrolled 

case.   

 

 
Figure 2-2 PDF of uncontrolled and reliability-based control algorithm (optimal control 

force = u*). 
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2.5 Risk-Based Control 

Design of structural systems, especially in hazard prone areas, should account for potential 

of extreme hazard events. Although they have low probability of occurrence, they may 

have significant and lasting consequences (Norio et al., 2011). Some consequences include 

a high number of human casualties and/or extensive levels of physical damage that may 

lead to collapse, and dysfunctionality of the system. Civil engineers face a challenge to 

propose a final design that must be serviceable, safe, and economical during its lifetime. 

The measures of safety, serviceability, reliability, and resilience of structural systems 

require a detailed research in the dynamic properties of the system. In this context, smart 

control of structures against natural hazards can be a possible performance-based design to 

optimize the safety and serviceability of the system. For instance, the objective of smart 

control technologies for buildings and other structures has been primarily minimization of 

various structural responses.  

While above objectives will very likely reduce the probability of damage and the risk 

to the systems, the derived control strategies may not yield optimal solutions in terms of 

the risk and the overall life cycle cost. In particular, these performance objectives have not 

been incorporated directly into the design process of control algorithms. As a result, a 

decision-making framework is essential to choose the best alternative among options such 

as conventional designs (without control) and new designs equipped with control devices, 

considering costs of installation and maintenance of control systems. For instance, the 

number of actuators and their corresponding locations in a particular system can be selected 

based on the life cycle cost criterion. In addition, the control algorithms can be optimized 
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based on the different cases and the results can be depicted as shown in Figure 2-3. The 

stakeholder may decide to go with the optimal design that corresponds to the smallest life 

cycle cost. 

 

 
Figure 2-3 Trendlines of number of actuators versus life cycle cost (LC) and initial cost 

(IC). 

 

 

Recently, risk-based metrics such as life cycle cost have been added to the passive 

control objective functions (Taflanidis and Beck, 2009; Gidaris and Taflanidis, 2015). For 

instance, Taflanidis and Beck (2009) presented an analytical probabilistic framework that 

estimates and optimizes the life cycle cost for systems equipped with passive dissipative 

devices. The framework was implemented in a four-story reinforced concrete building. 

Gidaris and Taflanidis (2015) applied the aforementioned work to shear frame buildings 

equipped with fluid viscous dampers. In the design process, some challenges arise due to 

many factors such as uncertainty. Taflanidis and his fellow researchers accounted for 

uncertainty in the structural stiffness, damping, and mass, on one hand, and stochasticity 

in the occurrence and intensity of critical hazards on the other hand. In fact, the life cycle 

cost was computed by a stochastic, multi-dimensional integral over the uncertain 
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parameters. However, this increased the complexity of incorporating uncertainty with 

larger systems. 

Chapter 7 presents a novel risk-based control design framework for seismically excited 

nonlinear multi-DOF structures. The proposed method properly accounts for likelihoods 

of hazards of various intensities during the lifetime of the structure, the fragility of the 

system for multiple discrete damage states, and the likely consequences associated with 

each damage state to determine the hazard risks for the structure. These along with initial 

costs of implementation of control systems and their maintenance constitute the life cycle 

cost of the structure which is probabilistically incorporated in the proposed control design 

method. 

2.6 Direction for Present Research 

This chapter discussed the current state-of-the-art and challenges in active and semi-active 

control designs particularly focusing on (1) the characterization of the uncertainty of the 

system, excitation and the nonlinearity in the system, and modeling the dynamics and 

constraints of the controller and (2) the integration of flexible objective functions to 

optimize the performance of the system. Conventional linearization techniques and novel 

stochastic averaging methods were explained for different systems. Mainly, stochastic 

averaging methods are capable of conserving nonlinearity and stochasticity characteristics 

compared to conventional linearization techniques. For control design, conventional 

approaches based on selecting restrained objective functions and on designing sliding mode 

curves were also described. In addition, stochastic control designs based on stochastic 

averaging of energy envelope were highlighted in various disciplines. Other topics 
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included reliability-based control frameworks and risk-based frameworks that entail 

minimizing explicitly the likelihood and the cost of damage following a hazard event. 

Addressing these challenges may require further extensive studies on reliability, 

resilience, flexibility, practicality, constructability, and cost-effectiveness aspects of 

control systems. From the results of the literature review, it is found that proper modeling 

of nonlinearity of the system and further optimizing the controller’s performance are 

needed. Therefore, the following areas have been explored in this dissertation:  

• Characterizing systems accurately based on linear or nonlinear stochastic equations 

rather than using convectional linear deterministic strategies. 

• Enhancing conventional control methods by applying stochastic linearization methods, 

including flexible objective functions, incorporating controller dynamics and 

constraints, and conducting second level optimizations to select optimal weighing 

functions. 

• Designing a flexible control algorithm that can integrate nonlinearity, stochasticity, and 

high-order objective functions using stochastic averaging of energy envelope and 

applying it to real civil engineering applications. 

• Developing analytical (versus simulation-based) frameworks for control of nonlinear 

stochastic systems. 

A chart is created for the research directions in this dissertation in Figure 2-4. The red 

dashed line corresponds to research covered in this dissertation. The current research 

includes enhancing existing conventional methods (sliding mode control), and developing 

novel methods to improve performance of stochastic averaging of energy envelope in 

analytically characterizing systems’ behavior, incorporating reliability and risk measures 
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in control design, and discussing their applicability to civil engineering systems. Future 

interests are depicted in Figure 2-4 and explained in Section 8.2; These entail enhancing 

the current methodologies, developing new ones, applying them to complex civil 

engineering structures and various hazard events, and expanding the spectrum of 

applications of the developed algorithms to other disciplines.
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Figure 2-4 Research topics and directions.  
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Chapter 3:  Nonlinear Sliding Mode Control: Shaking Table 

Experiments on Seismically Excited Multi-Span Bridges Equipped with 

Semi-active MR Dampers 
 

3.1 Introduction 

Semi-active technology has been suggested by researchers to combine properties of both 

passive and active systems. In semi-active systems, physical parameters of passive systems 

can change with a small power requirement as opposed to active systems which require a 

significant amount of power to apply external forces to structures. Furthermore, semi-

active devices are efficient for a wide range of excitations compared to passive devices that 

are only effective for a limited bandwidth. 

One of the widely used semi-active devices is magnetorheological (MR) dampers. MR 

dampers are used in various control problems to: 

• Minimize the torsional effects in irregular buildings (Yoshida and Dyke, 2005). 

• Suppress the impact of pounding in highway bridges (Guo et al., 2009). 

• Reduce excessive displacements of seismically excited base isolated systems (Fan et 

al., 2009). 

• Decrease the acceleration of wind-excited tall buildings (Aly and Zasso, 2011). 

• Attenuate vertical vibrations of quarter car models (Prabakar et al., 2013).  
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MR dampers are considered to be controllable magnetic field devices. They consist of a 

hydraulic cylinder that contains magnetically polarizable particles suspended within MR 

fluid (Figure 1-2e). The damping forces are delivered by subjecting the fluid to a magnetic 

field. MR dampers exhibit high yield stress and operate at wide temperature ranges 

(Çeşmeci and Engin, 2010; Metered et al., 2010) which are attractive features for control 

applications. In that respect, MR dampers are employed which exhibit desirable features 

such as robustness, stability, adaptability, and low power requirements as compared to 

passive and active systems (Agrawal et al., 2003; Leavitt et al., 2006; Yang and Cai, 2016). 

However, one main challenge in designing control algorithms for this type of semi-active 

dampers arises from the nonlinear behavior of the device and the constraints on achievable 

control forces.  

To overcome the complexity of nonlinearity in the system and MR damper and the 

constraints of the corresponding damper, a new semi-active control algorithm is developed. 

The control algorithm is called sliding mode control (SMC) based on an optimal 

polynomial control (OPC) approach (SMC_OPC). The SMC-OPC control force that is 

derived for an active system is adjusted for MR dampers using a force saturation level and 

the direction of the motion. This nonlinear SMC is expected to yield better peak response 

reduction compared to linear SMC surface design at no additional cost as discussed in 

Section 2.3.3. In general, the proposed semi-active control design is intended to provide a 

balance between the performance of the controlled system and the power consumption of 

the controller. The former objective relates to the serviceability and reliability of the 

structural systems, whereas the latter corresponds to the performance of the control device 

(Bajaj et al., 2014). In this respect, during large seismic events where safety and reliability 
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of structures are the major concerns, the performance of the semi-active controller 

converges to that of the passive-on controller but with considerably reduced power 

consumption. 

The proposed semi-active control algorithm is analyzed and tested using shaking table 

tests on a three span bridge with a total length of 12 meters equipped with two MR dampers 

attached between adjacent spans. First, a comprehensive step-by-step procedure is 

presented for the control design. This is followed by modeling nonlinear bridge 

components to capture hysteretic responses and pounding. Then, a statistical linearization 

approach is implemented to provide an equivalent linear model, while accounting for the 

uncertainty in the system response due to seismic disturbances. Next, clipped-optimal SMC 

is designed according to a second level optimization that determines the optimal semi-

positive definite weighting matrices. The design is tested using shaking table tests of a 

three span bridge subjected to a scaled Kobe (KB) ground motion. In the testing procedure, 

the MR dampers are set to minimum and maximum current values, as well as the optimal 

current determined from semi-active control strategy. The results are elaborated for small 

and large scaled Kobe earthquake ground motions at different controlled states: 

uncontrolled structure (the bridge without MR dampers), passive-off (where the input 

current is set to zero at all times during earthquakes), passive-on (where the input current 

is set to a maximum value at all times during earthquakes), and semi-active case (in which 

the input current ranges between minimum and maximum values according to the proposed 

clipped SMC-OPC algorithm). The performance of these control cases is compared to 

maximum absolute displacements of the decks, maximum relative displacements between 

adjacent deck segments and between deck segments and abutments, and finally the 
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maximum absolute acceleration of deck segments. The primary control objective is to 

reduce maximum relative displacements that control the likelihood of damage due to 

pounding. Another goal of the control system is to reduce the maximum absolute 

displacements and the peak accelerations for mitigating damage to supports (Johnson et 

al., 2008; Saiidi et al., 2012) and enhancing riding comfort (Kwon et al., 1998; Ni et al., 

2001; Yau, 2009). The different control cases of the MR dampers considered in this study 

exhibit various attributes such as the adaptability to earthquake characteristics, the reduced 

power consumption in semi-active state, the suboptimal response reduction in passive-on 

state, and the functionality of the MR dampers when no power is available in the passive-

off state. 

The rest of the chapter is arranged as follows: Section 3.2 presents a detailed derivation 

of the novel control algorithm called SMC-OPC for the semi-active control of the system. 

Next, characteristics of the case study bridge along with modeling techniques for the rubber 

bearings, MR dampers, and pounding behavior and their validation with experimental 

results are explained in Section 3.3. Section 3.4 describes the procedure for stochastic 

linearization of the system and optimization of the clipped semi-active control design. 

Shaking table experiment results for the proposed SMC-OPC method along with 

uncontrolled, passive-on, and passive-off cases are presented in Section 3.5. Conclusions 

and results of the study are summarized in Section 3.6. 

3.2 Methodology 

In this section, a state space based nonlinear SMC-OPC is initially proposed and derived 

for the active control of a fully observed system. Then, the considerations of semi-active 
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control and partial observability are accounted in the design implementation for the 

particular system in Section 3.4. In that respect, a general linearized system subjected to 

stochastic disturbance is assumed and represented in state space form as: 

�̇� = G(𝐗, 𝐮, 𝑡) = 𝐀𝐬𝐭𝐚𝐭𝐞𝐗 + 𝐁𝐮 + 𝐅𝐞 (3.1) 

where 𝐗 is the response vector and 𝐀𝐬𝐭𝐚𝐭𝐞 is the system matrix which is derived using mass, 

damping, and stiffness components of the dynamic system. In addition, the system matrix 

can include models for the dynamics of the passive-off component of the control device 

and stochastically linearized models for the nonlinear behavior of the system. In Equation 

(3.1), 𝐅𝐞 and 𝐁 represent the excitation vector and the location matrix of controllers. The 

control component, 𝐮, denotes the force vector applied by active or semi-active controller. 

Unlike the case in conventional LQR and LQG methods, the design of SMC is not based 

on a minimization procedure. Instead, the SMC design is known to be a two-step procedure. 

The first step involves the design of the sliding surface. Then, a control law is selected to 

drive the response variables to the defined sliding surface. In order to design linear SMC 

forces, an optimal sliding surface can be obtained based on minimizing a LQR performance 

index, 𝐿𝐿𝑄𝑅, with semi-positive weighting matrix, 𝐐𝟏: 

𝐿𝐿𝑄𝑅 = ∫ 𝐗𝐓𝐐𝟏𝐗𝑑𝑡
∞

0

 (3.2) 

The corresponding linear sliding surface is represented by: 

𝐒 = 𝐏𝐗 (3.3) 

where 𝐏 is to be determined according to LQR method in order to force the system state 

trajectory to move along a stable manifold (Utkin, 1992; Yang et al., 1994; Adhikari and 

Yamaguchi, 1997). To enhance the transient response, this study proposes extending the 
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sliding surface to include higher order nonlinear terms; this extension is expected to 

improve vibration mitigation of the system. As a result, the performance index is expanded 

to include Higher Order Terms (HOT) to: 

𝐿𝑂𝑃𝐶 = ∫ (𝐗𝐓𝐐𝟏𝐗 + HOT) 𝑑𝑡
∞

𝟎

 (3.4) 

where the terms, 𝐐𝟏 and HOT are defined later in Equation (19). First, to design the sliding 

surface, the state space system in Equation (3.1) is converted into the so-called regular form 

of transformation (Utkin, 1992). The converted system of the state space vector, 𝐘,  is 

represented by: 

�̇� = �̂�𝐬𝐭𝐚𝐭𝐞𝐘 + �̂�𝐮 + �̂�𝐞 ; 𝐘 = 𝐃𝐗 (3.5) 

where 𝐃 is the orthogonal transformation matrix. The system is transformed and 

represented with new state space system, defined by �̂�𝐬𝐭𝐚𝐭𝐞 (= 𝐃𝐀𝐬𝐭𝐚𝐭𝐞𝐃
−𝟏), �̂� (= 𝐃𝐁), 

�̂�𝐞(= 𝐃𝐅𝐞). The new system matrices can be partitioned as: 

𝐘 = {
𝐘𝟏
𝐘𝟐
} , �̂�𝐬𝐭𝐚𝐭𝐞 = [

�̂�𝐬𝐭𝐚𝐭𝐞𝟏 �̂�𝐬𝐭𝐚𝐭𝐞𝟏𝟐
�̂�𝐬𝐭𝐚𝐭𝐞𝟐𝟏 �̂�𝐬𝐭𝐚𝐭𝐞𝟐

] , �̂� = [
𝟎
𝐁𝐓
] , and �̂�𝐞 = {

�̂�𝐞𝟏
�̂�𝐞𝟐

} (3.6) 

where 𝐁𝐓 is the transformed sub-location matrix. Assuming that the vector, Y, is an N-

dimensional transformed response vector and u is a P-dimensional control force vector, the 

vector, 𝐘𝟏, includes the (N-P) components that are independent of the control force. The 

remaining P components of 𝐘 form the vector 𝐘𝟐. This approach enables designing a state 

space-based surface that is explicitly a function of only 𝐘𝟏  and 𝐘𝟐. As a result, the system 

in Equation (3.5) can be rewritten as: 

�̇�𝟏 = �̂�𝐬𝐭𝐚𝐭𝐞𝟏𝐘𝟏 + �̂�𝐬𝐭𝐚𝐭𝐞𝟏𝟐𝐘𝟐 + �̂�𝐞𝟏 (3.7a) 
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�̇�𝟐 = �̂�𝐬𝐭𝐚𝐭𝐞𝟐𝟏𝐘𝟏 + 𝐁𝐓𝐮 + �̂�𝐬𝐭𝐚𝐭𝐞𝟐𝐘𝟐 + �̂�𝐞𝟐 (3.7b) 

In the design of the sliding surface using OPC, 𝐘𝟏 and 𝐘𝟐 play the role of the state vector 

and the control force of a traditional system, respectively. The term �̂�𝐬𝐭𝐚𝐭𝐞𝟏𝟐𝐘𝟐 can be 

considered virtually as a control force and substituted by 𝐁′𝒖′, therefore: 

�̇�𝟏 = �̂�𝐬𝐭𝐚𝐭𝐞𝟏𝐘𝟏 + 𝐁
′𝐮′ + �̂�𝐞𝟏 (3.7c) 

where 𝐁′ is the location matrix and 𝐮′(= 𝐘𝟐)  is the virtual control force. Referring to El-

Khoury et al. (2015), the performance index of system in Equation (7a) is represented by: 

𝐿𝑂𝑃𝐶 = ∫ (𝐘𝟏
𝐓𝐐𝟏𝟏𝐘𝟏 + 𝐘𝟐

𝐓𝐐𝟐𝟐𝐘𝟐 + (𝐘𝟏
𝐓𝐌𝐘𝟏)(𝐘𝟏

𝐓𝐐𝟑𝟑𝐘𝟏) + ℎ̅(𝒀𝟏)) 𝑑𝑡
∞

𝟎

 
(3.8c) 

The semi-positive definite matrices, 𝐐𝟏𝟏, 𝐐𝟐𝟐, and 𝐐𝟑𝟑 are gain components. The 

relationship of these gains with the matrices in Equation (3.4) is shown later in Equations 

(3.18) and (3.19). The term, h̅(𝒀𝟏), is defined as: 

ℎ̅(𝐘𝟏) = (𝐘𝟏
𝐓𝐌𝐘𝟏)𝐘𝟏

𝐓𝐌. �̂�𝐬𝐭𝐚𝐭𝐞𝟏𝟐
𝐓 𝐐𝟑𝟑

−𝟏. (𝐘𝟏
𝐓𝐌𝐘𝟏)𝐌𝐘𝟏 (3.9) 

The virtual OPC force is derived as: 

𝒖′ = 𝐘𝟐 = −𝑸𝟐𝟐
−𝟏�̂�𝐬𝐭𝐚𝐭𝐞𝟏𝟐

𝐓 𝐏𝐘𝟏 + 𝐐𝟐𝟐
−𝟏�̂�𝐬𝐭𝐚𝐭𝐞𝟏𝟐

𝐓 (𝐘𝟏
𝐓𝐌𝐘𝟏)𝐌𝐘𝟏 (3.10) 

in which the Ricatti matrix, 𝐏, and 𝐌  are determined as: 

𝐏�̂�𝐬𝐭𝐚𝐭𝐞𝟏𝟏
𝐓 + �̂�𝐬𝐭𝐚𝐭𝐞𝟏𝟏

𝐓 𝐏 − 𝐏�̂�𝐬𝐭𝐚𝐭𝐞𝟏𝟐
𝐓 𝐐𝟐

−𝟏�̂�𝐬𝐭𝐚𝐭𝐞𝟏𝟐
𝐓 𝐏 + 𝐐𝟏𝟏 = 𝟎 

(3.11a) 
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0 = 𝐌(�̂�𝐬𝐭𝐚𝐭𝐞𝟏𝟏  − �̂�𝐬𝐭𝐚𝐭𝐞𝟏𝟐
𝐓 𝐐𝟐𝟐

−𝟏𝐀𝟏𝟐
𝐓 𝐏) + (�̂�𝐬𝐭𝐚𝐭𝐞𝟏𝟏 − �̂�𝐬𝐭𝐚𝐭𝐞𝟏𝟐

𝐓 𝐐𝟐𝟐
−𝟏𝐀𝟏𝟐

𝐓 𝐏)
𝐓
𝐏

+ 𝐐𝟑𝟑 

(3.11b) 

The condition in Equation (3.10) can be enforced through a sliding surface, 𝐒, that satisfies 

the stability condition (𝐒 = 𝟎 ; �̇� = 𝟎) according to the Utkin-Drazenovic method (Utkin, 

1992). This surface can be defined by: 

𝐒 = 𝐘𝟐 + 𝑸𝟐𝟐
−𝟏�̂�𝐬𝐭𝐚𝐭𝐞𝟏𝟐

𝐓 𝐏𝐘𝟏 + 𝐐𝟐𝟐
−𝟏�̂�𝐬𝐭𝐚𝐭𝐞𝟏𝟐

𝐓 (𝐘𝟏
𝐓𝐌𝐘𝟏)𝐌𝐘𝟏 (3.12) 

Differentiating the sliding surface in Equation (12) with respect to time, �̇� is: 

�̇� = �̇�𝟐 + 𝑸𝟐𝟐
−𝟏�̂�𝐬𝐭𝐚𝐭𝐞𝟏𝟐

𝐓 𝐏�̇�𝟏 + �̇�(𝐘𝟏) (3.13) 

where 𝒇(𝐘𝟏) equals 𝐐𝟐𝟐
−𝟏�̂�𝐬𝐭𝐚𝐭𝐞𝟏𝟐

𝐓 (𝐘𝟏
𝐓𝐌𝐘𝟏)𝐌𝐘𝟏 and �̇�(𝐘𝟏) (𝑑�̇�(𝐘𝟏)/𝑑𝑡 ) is the time 

differential. Substituting Equations (3.7a) and (3.7b) into Equation (3.13), �̇� can be derived 

as: 

�̇� = (�̂�𝐬𝐭𝐚𝐭𝐞𝟐𝟏𝐘𝟏 + 𝐁𝐓𝐮 + �̂�𝐬𝐭𝐚𝐭𝐞𝟐𝐘𝟐 + �̂�𝐞𝟐)

+ 𝑸𝟐𝟐
−𝟏�̂�𝐬𝐭𝐚𝐭𝐞𝟏𝟐

𝐓 𝐏(�̂�𝐬𝐭𝐚𝐭𝐞𝟏𝐘𝟏 + �̂�𝐬𝐭𝐚𝐭𝐞𝟏𝟐𝐘𝟐 + �̂�𝐞𝟏) + �̇�(𝐘𝟏) 

(3.14) 

This equation can be rearranged as: 

�̇� = [𝑸𝟐𝟐
−𝟏�̂�𝐬𝐭𝐚𝐭𝐞𝟏𝟐

𝐓 𝐏 𝟏] [
�̂�𝐬𝐭𝐚𝐭𝐞𝟏 �̂�𝐬𝐭𝐚𝐭𝐞𝟏𝟐
�̂�𝐬𝐭𝐚𝐭𝐞𝟐𝟏 �̂�𝐬𝐭𝐚𝐭𝐞𝟐

] {
𝐘𝟏
𝐘𝟐
} + 𝐁𝐓𝐮 +

[𝑸𝟐𝟐
−𝟏�̂�𝐬𝐭𝐚𝐭𝐞𝟏𝟐

𝐓 𝐏 𝟏] {
�̂�𝐞𝟏
�̂�𝐞𝟐

} + �̇�(𝐘𝟏)   

(3.15) 
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For the convergence of sliding surface, Equation (3.15) is equated to zero.  Next, 

substituting = {
𝐘𝟏
𝐘𝟐
} , �̂�𝐞 = {

�̂�𝐞𝟏
�̂�𝐞𝟐

}, 𝑫𝟎𝟎 = [𝑸𝟐𝟐
−𝟏�̂�𝐬𝐭𝐚𝐭𝐞𝟏𝟐

𝐓 𝐏 𝟏], and �̂�𝐬𝐭𝐚𝐭𝐞 =

[
�̂�𝐬𝐭𝐚𝐭𝐞𝟏 �̂�𝐬𝐭𝐚𝐭𝐞𝟏𝟐
�̂�𝐬𝐭𝐚𝐭𝐞𝟐𝟏 �̂�𝐬𝐭𝐚𝐭𝐞𝟐

], the control force, 𝐮, becomes 

𝐮 = −𝐁𝐓
−𝟏 (𝑫𝟎𝟎�̂�𝐬𝐭𝐚𝐭𝐞𝐘 + 𝑫𝟎𝟎�̂�𝐞 + �̇�(𝐘𝟏))  

(3.16) 

The control force in Equation (3.15) works ideally for an external disturbance, �̂�𝐞, that is 

known a priori. However, for the case of seismic excitations, �̂�𝐞 is not known prior to the 

occurrence. Therefore, the term, �̂�𝐞, is dropped and is replaced by a properly selected 

parameter, μ ( ≥ 0), so that the reachability of the sliding mode is guaranteed with the 

condition of 𝐒�̇� = 0 (Adhikari and Yamaguchi, 1997).  It is common that μ is considered 

to be a percentage of the inertial force (𝜇 = 𝜖𝑚�̈�𝑔, 0 ≤ 𝜖 ≤ 1). In this approach, the SMC-

OPC control force is adjusted to: 

𝐮 = 𝛔 − μ 𝐬𝐚𝐭(𝐒)  (3.17) 

where 𝝈 is defined as −𝑩𝑻
−𝟏 (𝑫𝟎𝟎�̂�𝒔𝒕𝒂𝒕𝒆𝒀 + �̇�(𝒀𝟏)). In order to reduce chattering, the 

saturation function, 𝐬𝐚𝐭 (·), can be replaced by a tangent hyperbolic function. Substituting 

𝐘 = {
𝐘𝟏
𝐘𝟐
} = 𝐃𝐗(= [

𝐃𝟏
𝐃𝟐
] 𝐗) and 𝐘𝟏 = 𝐃𝟏𝐗 in Equation (3.8c), the performance index, 

𝐿OPC, is rearranged as: 
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𝐿𝑂𝑃𝐶 = ∫ (𝐗𝐓𝐃𝐓 [
𝑸𝟏𝟏 𝟎
𝟎 𝑸𝟐𝟐

] 𝐃𝐗 + (𝐗𝐓𝐃𝟏
𝑻𝑴𝐃𝟏𝐗)(𝐗

𝐓𝐃𝟏
𝑻𝑸𝟑𝟑𝐃𝟏𝐗)

∞

𝟎

+ ℎ̅(𝐃𝟏𝐗))  𝑑𝑡  

(3.18) 

which demonstrates the new optimization problem. Comparing Equation (3.18) to 

Equation (3.4), the matrix, 𝐐𝟏, and HOT are defined as: 

𝐐𝟏 = 𝐃
𝐓 [
𝑸𝟏𝟏 𝟎
𝟎 𝑸𝟐𝟐

] 𝐃 
(3.19a) 

HOT = (𝐗𝐓𝐃𝟏
𝑻𝑴𝐃𝟏𝐗)(𝐗

𝐓𝑸𝟐𝐗) + ℎ̅(𝐃𝟏𝐗) & 𝐐𝟐 = 𝐃𝟏
𝑻𝑸𝟑𝟑𝐃𝟏   (3.19b) 

  

3.3 Case Study 

The complex behavior of bridges during seismic events and the vulnerabilities of these 

assets have been widely studied with the purpose of enhancing the design and providing 

cost-effective mitigation options to reduce the potential of various types of damage and 

catastrophic failures. Primary types of damage that have been studied are shear and 

flexural failure of columns (Han et al., 2009; Kim et al., 2010), expansion joint failure 

(Zhang et al., 2008; Raheem, 2009), local failure of hinge bearings (Song and Kim, 2007; 

Johnson et al., 2008; Saiidi et al., 2012), and deck collapse (Pamuk et al., 2005; Han et al., 

2009). In multi-span bridges, pounding between adjacent decks is particularly a type of 

damage that can impact the functionality of bridges following earthquakes and, therefore, 

has to be considered in the design of new or retrofit of existing bridges. Pounding is a 

complex phenomenon that induces plastic deformation, local cracking, and fracturing 

(DesRoches et al., 2011; Naserkhaki et al., 2012; Efraimiadou et al., 2013). Detrimental 
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implications has been detected due to pounding in adjacent structures e.g. multi-span 

highway bridges may experience minor (concrete crushing) to major (span unseating) 

damage as a result of pounding (Kawashima et al., 2009; Huo and Zhang, 2012; Won et 

al., 2015).  

To investigate the effect of pounding on adjacent structures, the proposed control 

methodology in Section 3.2 is applied to a three span bridge equipped with two semi-

active MR dampers attached between adjacent spans. The bridge model includes three 

reinforced concrete decks, each supported by four rubber bearings, as shown in Figure 1-

2e. The dimensions of the bridge are given in the longitudinal and top views in Figure 3-

1a. In this setting, the four supports of span A and the two left supports of span B are 

positioned on shaking table A, while the two right supports of span B and the supports of 

span C are placed on shaking table B. Considering the short distance between the supports, 

it is assumed that the ground motions are fully correlated meaning that the same ground 

motion records are applied to both shaking tables A and B as shown in Figure 3-4d. Since 

the structure is symmetric with respect to the longitudinal axis and ground motions are 

applied in the longitudinal direction, a one directional model will be able to predict the 

dynamic response of the decks.  

In cases of large deformations, pounding in the bridge may occur between adjacent 

spans and between spans and abutments. Pounding can be detected by large acceleration 

spikes in the response of the spans. For seismic pounding mitigation, MR dampers 

manufactured by Lord Corporation, USA, are installed between adjacent spans for the 

passively and semi-actively controlled bridge, as shown in Figure 3-1a and Figure 3-1b. 

The input current to the MR dampers which control the forces applied to the system varies 
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from 0 to 2 Amp, the force capacity is ±2000 N, the maximum stroke is ±27.5 mm, the 

maximum velocity is 200 mm/sec, the extended length is 208 mm, and the weight is about 

1 kg. During the shaking table test of the uncontrolled system, displacement and 

acceleration responses are measured in real-time using piezoelectric sensors and 

accelerometers, respectively, as shown in Figure 3-1. In the controlled system, the 

measured responses are used to estimate the state vector through an observer model. In the 

following subsections, the modeling approach of the bridge components including rubber 

and lead-rubber bearings, the semi-active device, and the pounding phenomenon is 

elaborated. 

 

 
Figure 3-1 Three span bridge equipped with MR dampers between adjacent spans: (b) 

profile view of the three span bridge, and (c) top view of the three span bridge indicating 

the location and direction of linear variable differential transformers (LVDT) and 

accelerometers. 
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3.3.1 Models of Hysteretic Systems 

Components such as bearings and MR dampers that dissipate energy can be characterized 

by their hysteretic behaviors (El-Khoury et al., 2015). In order to capture this type of 

nonlinearity, the Bouc-Wen model (Bouc, 1971; Wen, 1976) has been extensively used for 

different applications, e.g. system identification of MR dampers (Kwok et al., 2007; 

Ikhouane and Dyke, 2007), structural elements (Ikhouane et al., 2007), base-isolation 

devices (Marano et al., 2007), soil material (Gerolymos and Gazetas, 2007), and energy 

dissipation systems (Shih and Sung, 2005). The hysteresis is a form of nonlinearity where 

the restoring force depends on both the current deformation and the deformation history 

(Ikhouane and Rodellar, 2007). Here, the hysteretic force is modeled by a set of stiffness, 

damping, and hysteresis components, as shown in Figure 3-2a. This approach is 

implemented in this study to represent the nonlinear dynamic behavior of the uncontrolled 

and controlled bridge. In the uncontrolled state, each span is separated by a gap distance as 

defined in Figure 3-1. For the controlled state, the MR damper is added and modelled by a 

parallel system of damping, stiffness, and hysteresis, as depicted in Figure 3-2b. 
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Figure 3-2 Components of the three span bridge model in (a) uncontrolled state and (b) 

controlled state equipped with MR dampers. 

 

 

 

To capture the nonlinear behavior of the bearings and the MR damper, the restoring 

force for the rubber bearing, 𝐹𝑗, and the MR damper, 𝐹MR, are modeled as: 

𝐹𝑗 = k𝑗(α𝑗𝑥𝑗 + (1 − α𝑗)𝑧𝑗) (j = 1, 2, 3) (3.20) 

𝐹MR = αẋMR�̇�𝑗 + αzMR𝑧𝑗 (j = 4, 5) (3.21) 

where 𝑥𝑗  and �̇�𝑗  are the displacement and velocities of jth hysteretic component, 

respectively. The subscript j ranges from 1 to 5, referring to spans A, B, C, and the MR 

damper between spans A and B, and between spans B and C. The model parameters k𝑗, 

αẋMR, and αzMR are the stiffness and pre-yield factor of rubber bearing, and the damping 
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and hysteretic component of the MR damper, respectively. In addition, the variable, z𝑗, is 

the jth evolutionary term governed by the Bouc-Wen differential equation defined as: 

�̇�𝑗 = 𝐴BW𝑗
�̇�𝑗 − βBW𝑗

|�̇�𝑗|𝑧𝑗 − 𝛾BW𝑗
�̇�𝑗|𝑧𝑗| (j = 1,..., 5) (3.22) 

where 𝐴BW𝑗
, 𝛾BW𝑗

, and βBW𝑗
 are parameters that control the shape of the loop. The general 

slope is controlled by (𝛾BW𝑗
+ βBW𝑗

). Parameters αẋMR and αzMR are decomposed into 

passive-off and passive-on components with respect to the current, 𝑖𝑐, as: 

αẋMR = αẋMR0
+ 𝑖𝑐αẋMR1

+ 𝑖𝑐
2αẋMR2

 (3.23a) 

αzMR = αzMR0
+ 𝑖𝑐αzMR1

+ 𝑖𝑐
2α𝑧MR2

 (3.23b) 

where α�̇�MR0
, α𝑧MR0

, α�̇�MR1
, α𝑧MR1

 , α�̇�MR2
, and α𝑧MR2

 characterize the impact of control 

current. 

To determine the model parameters shown above, a global optimization method based 

on gradient descent for bearings and MR dampers is used to minimize an error cost function 

between the experimental data and simulation results (El-Khoury et al., 2015). For the 

bearings, the three span bridge is subjected to a scaled Kobe earthquake. The parameters 

of the nonlinear model for rubber bearings in spans A, B, and C are shown in Table 3-1. 

For the MR damper, data of cyclic tests with a frequency of 1 Hz for currents ranging 

between 0 and 2 Amp was provided by the manufacturing company. The Bouc-Wen 

parameters for MR damper are represented as a function of the input current (αẋMR2
 = -5.7 

N.sec/mm.Amp2 , αzMR2
= -10.3 N /mm.Amp2 , αẋMR1

 = 13.1 N.sec/mm.Amp , αzMR1
= 

51.9 N /mm.Amp , αẋMR0
 = 1.4 N.sec/mm , αzMR0

=  7.0 N /mm ,   ABW4
=45.48, γBW4

= 

0.56, βBW4
= 1.38, ABW5

=45.48, γBW5
= 0.56, βBW5

= 1.38) (Table 3-1). Calibration 



50 

 

results are shown in Figure 3-3 where a good agreement is observed between simulation 

and experiment results for the MR damper operating at different current levels (0 to 2 

Amp). The force in the MR damper increases with current, from about 250 N at 0 Amp to 

around 2000 N at 2 Amp. 

 

 

Rubber Bearings 

          Parameters 

Span 
ABW𝑗

 γBW𝑗
 βBW𝑗

 α𝑗 k𝑗 

(N/mm) 

A  (𝑗 = 1) 1.20 0.26 0.74 0.63 1548.0 

B  (𝑗 = 2) 1.99 0.89 0.11 0.68 945.2 

C  (𝑗 = 3) 8.29 0.36 0.64 0.94 1298.0 

Table 3-1 Calibration results for Bouc-Wen model of rubber bearings. 

 

3.3.2 Pounding Model 

Pounding is a complex mechanism because of the inherent nonlinear nature of collision at 

the contact surfaces and the impacts on the vibrations of the structures. A variety of 

different collision models have been proposed. For instance, linear spring model is a 

straightforward approach that considers the contact force to be linearly related to the 

relative displacement when it is larger than the corresponding gap distance. This model is 

straightforward but does not consider the energy loss that occurs during impact (Maison 

and Kasai, 1992). To overcome this shortcoming, the Kelvin model includes a damping 

component. This model yields a uniform dissipation during the approach and restitution 

periods which is inconsistent with the actual mechanism of impact (Jankowski et al., 1998). 

Since the formulation of the Kelvin model is based on a static collision, it cannot properly 

present dissipation during contact (Chau and Wei, 2001). To better represent the dissipation 

during contact, Hertz model is suggested to model the impact force by a nonlinear spring 
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component. An extension of the Hertz model called Hertz Damped model incorporates 

nonlinear stiffness and damping, and considers the impact force, Fimpact, as 

𝐹impact = kh(𝑦12 − gp)
o
+ ch�̇�12 (3.24) 

where kh is the impact stiffness, 𝑦12 is the relative displacement between two adjacent 

nodes, gp is the gap distance, o is the Hertz coefficient that is typically taken as 3/2, and ch 

is the nonlinear damping coefficient and is computed as follows: 

 ch = ξ(𝑦12 − gp)
o
 (3.25) 

where ξ is the damping constant and is calculated by: 

ξ =  
3

4

(1 − ¥2)kh
∆𝑣12

 (3.26) 

where ¥ (= 0.6 for concrete) and ∆𝑣12 are the coefficient of restitution and relative velocity 

before impact, respectively (Muthukumar and DesRoches, 2006; Ye et al., 2009). From 

these equations, the pounding force can be computed as: 

𝐹impact = kh(∆𝑦12 − gp)
o
 [1 +

3

4

(1 − ¥2)

∆𝑣12
 �̇�12] (3.27) 

where �̇�12  is the relative velocity of the adjacent nodes. 
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        (a) 

     
         (b) 

      
                (c) 

 
(d) 

  
(e) 

Figure 3-3 Calibration results based on harmonic tests of the MR damper set at different 

currents: (a) 0.0 Amp, (b) 0.5 Amp, (c) 1.0 Amp, (d) 1.5 Amp, and (e) 2.0 Amp (____ 

Experiment , ----- Simulation). 

 

 

For experimental verification, pounding can be identified when large spikes in the 

absolute acceleration responses are observed. For instance, if opposite spikes at a given 

instant are observed in the absolute accelerations of adjacent spans, it indicates that 

pounding has occurred between those spans. Elsewhere, a large spike in the total span 

acceleration is an indication of the pounding between that span and the adjacent abutment. 
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The pounding model is tested for the uncontrolled three span bridge subjected to KB40 and 

the response is plotted in Figure 3-4. It can be observed that pounding occurred primarily 

between adjacent spans. In addition, the pounding model was able to capture the majority 

of acceleration spikes.  

 

 (a) (b) 

 (c)  (d)   

 

Figure 3-4 Acceleration response of the three span bridge subjected to KB40: (a) span A, 

(b) span B, and (c) span C and (d) ground motion accelerations of shaking tables. 

 

 

 

 

 

 

3.4 Implementation of Control Algorithm 

As mentioned earlier, this chapter investigates the semi-active control of a nonlinear 

partially observed system. In order to achieve an optimal control performance, a number 
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of additional steps are taken in the control design including linearization of the system, 

modeling constraints of the semi-active control force, and designing an observer for the 

partially observed system. First, the nonlinear passive-off bridge model is linearized 

stochastically. Next, a second level optimization is carried out in order to find the optimal 

gains of the SMC-OPC controller such that the performance of the MR damper is 

maximized based on a defined objective function. A clipped optimal strategy and a 

Kalman-based observer are designed to drive the MR damper forces into a feasible range 

based on current saturation and to estimate the state space given the measured responses, 

respectively.  

3.4.1 Stochastic Linearization 

In conventional linearization, the nonlinearity of the components is ignored and the system 

is calibrated and linearized based on initial or equivalent linear stiffness, which may yield 

inaccurate response predictions. Stochastic linearization replaces the hysteretic 

components by equivalent linear time invariant models through minimizing the residual 

errors arising from the linearization process (Basili and Angelis, 2007; Basili et al., 2013; 

El-Khoury et al., 2015). The stochastic linearization strategy is applied to the three span 

bridge equipped with MR dampers at zero current. The equation of motion of the dynamic 

system is presented as: 

𝐌�̈� + 𝐂𝐝�̇� + 𝐊𝐔𝐔 + 𝐊𝐙𝐙 = 𝐌�̈�𝐠 (3.28) 

where the matrices, 𝐌, 𝐂𝐝, 𝐊𝐔, and 𝐊𝐙 are the mass, damping, linear stiffness, and 

nonlinear stiffness matrices, respectively. 𝐔 is the linear displacement vector identified as 

[𝑥1;  𝑥2;  𝑥3], and 𝐙 is the evolutionary vector presented as [𝑧1;  𝑧2; 𝑧3; 𝑧4; 𝑧5]. The variables 



55 

 

𝑥1, 𝑥2, 𝑥3 are displacements of spans A, B and C, and 𝑧1, 𝑧2, 𝑧3, 𝑧4, and z5 are the hysteretic 

terms in the support models for spans A, B, and C, and the two MR dampers, respectively. 

�̈�𝐠 is the ground motion vector applied to the three span bridge. As mentioned in Section 

3.1, the hysteretic behavior is characterized by the Bouc-Wen model, presented as: 

�̇�𝑗 = A�̇�𝑗 − β|�̇�𝑗|𝑧𝑗 − γ�̇�j|𝑧𝑗| (3.29) 

where the subscript, j (= 1, 2 … 5), refers to spans A, B, and C, and MR dampers, 

respectively. Since this equation depends only on the velocity and hysteretic term, the 

equivalent linearized equation is presented as: 

�̇�𝑗 = −C𝑗�̇�𝑗 − K𝑗𝑧𝑗    (3.30) 

where C𝑗 and K𝑗  are the linearized parameters of the velocity and hysteretic term, 

respectively.  Under the assumption that �̇�𝑗 and  𝑧𝑗 are zero mean joint Gaussian processes, 

the linearized parameters, C𝑗 and K𝑗, are obtained by partially differentiating Equation 

(3.33) with respect to �̇�𝑗 and 𝑧𝑗  , respectively: 

C𝑗 = −
∂(�̇�𝑗)

∂(�̇�𝑗)
, K𝑗 = −

∂(�̇�𝑗)

∂(𝑧𝑗)
 (3.31) 

Applying Equation (31) to Equation (30), the linearized parameters are presented as: 

C𝑗 = β𝑗  E (
𝑧 ∂(|�̇�𝑗|)

∂�̇�𝑗
) + γ𝑗  E(𝑧𝑗)  − A𝑗 (3.32a) 

K𝑗 = β𝑗  E[|�̇�𝑗|] + γ𝑗  E (
�̇�𝑗 ∂(|𝑧𝑗|)

∂𝑧𝑗
)  

(3.32b) 

Since the external excitation is assumed to be a Gaussian process and the variables are 

jointly Gaussian, the linearized parameters can be evaluated in terms of the second 

moments as follows: 
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C𝑗 = √
2

π
  [βjσ𝑧𝑗 +

γ𝑗E(�̇�𝑗𝑧𝑗)

σ�̇�𝑗
] − A𝑗 (3.33a) 

K𝑗 = √
2

π
[
βjE(�̇�𝑗𝑧𝑗)

σ𝑧𝑗
+ γ𝑗σ�̇�𝑗] 

(3.33b) 

where 𝐸(�̇�𝑗𝑧𝑗) is the expected value of �̇�𝑗𝑧𝑗, and 𝜎�̇�𝑗
2  and 𝜎𝑧𝑗

2  are the variances of �̇�𝑗 and 𝑧𝑗, 

respectively (Socha 2008; To, 2011). Using the initial values of the linearized parameters, 

a Lyapunov equation is used to compute the second moments which are then substituted in 

Equations (3.33a-b) until the difference in the results of the pth and (p+1)th iterations is 

within a prescribed margin of error. Next, the converged linearized parameters, C𝑗 and K𝑗 

are substituted in Equation (3.28) and rearranged in the state space. Consequently, the 

linearized bridge model is derived as: 

�̇� = 𝐀𝐬𝐭𝐚𝐭𝐞𝐗 + 𝐅𝐞 (3.34) 

where the state vector, 𝐗, is defined as: 

𝐗 = [𝐔; �̇�; 𝐙] (3.35) 

The system matrix, 𝐀𝐬𝐭𝐚𝐭𝐞, includes mass, damping, and nonlinear stiffness components of 

the three span bridge: 

𝐀𝐬𝐭𝐚𝐭𝐞 = [
𝟎 𝐈 𝟎

−𝐌−𝟏𝐊𝐔 −𝐌−𝟏𝐂𝐝 −𝐌−𝟏𝐊𝐙
𝟎 𝐂𝐛 𝐊𝐛

] (3.36) 

where  𝐂𝐛, 𝐊𝐛, and 𝐅𝐞 are the linearized parameters for velocity and hysteretic components 

in the system and the external excitation vector, respectively. This procedure is used to 

derive the stochastic linear model of the passive-controlled system, i.e. the bridge model 

combined with the passive component of the MR damper. The performance of this model 
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is compared to the nonlinear and linear elastic models of the bridge for the Kobe ground 

motion scaled at 40% (KB40), and the results are presented in Figure 3-5. It is seen that 

the stochastically linearized model predicts well the response of the nonlinear bridge 

compared to the deterministic linear elastic model. This performance is expected since 

stochastic linearization replaces the nonlinear differential equation of the system by a linear 

one that is derived based on statistical measures considering the hysteretic behavior of the 

bridge. This ensures more accurate representation of system responses compared to the 

conventional linear elastic approach which ignores the z component. 
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(a) 

   
(b) 

 
(c) 

Figure 3-5 Time history of nonlinear model (NM) versus stochastic linearization (SLM) 

and linear elastic linearization (LEM) methods for (a) displacement of span A, (b) 

displacement of span B, and (c) displacement of span C under KB40. 

 

 

 

3.4.2 Second Level Optimization 

The weighting matrices in Equation (3.18) and Equation (3.19) are commonly determined 

based on the designer’s prior knowledge or an iterative procedure. However, such methods 

may not yield optimal results in most cases and better solutions can be achieved through a 

well-defined second level optimization. In order to determine the optimal weighting 

matrices, 𝐐𝟏 and 𝐐𝟐, and the parameter, μ, in Equation (3.17), Equation (3.18), and 
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Equation (3.19), a second level optimization cost function can be defined based on the 

interest and the judgment of the designer. Here, the second level global optimization 

problem is defined by a cost function which includes a combination of different response 

variables. For the three span bridge, one of the primary objectives of the control strategy is 

to reduce the likelihood of pounding and acceleration. To consider a combination of the 

critical responses, an objective function, L2, is considered to incorporate the critical 

displacements (pounding) and absolute span accelerations: 

𝐀𝐬𝐭𝐚𝐭𝐞 = [
𝟎 𝐈 𝟎

−𝐌−𝟏𝐊𝐔 −𝐌−𝟏𝐂𝐝 −𝐌−𝟏𝐊𝐙
𝟎 𝐂𝐛 𝐊𝐛

] (3.37) 

where the subscripts (·)C  and (·)P  refers to the SMC-OPC and passive-on states, 

respectively. The critical displacements are relative displacements between two sides of a 

gap in the direction of gap closure. For example, max𝑥12C
+  refers to the maximum of the 

positive relative displacement of span A with respect to span B, while max𝑥1C
−  represents 

the maximum relative displacement of span C with respect to the adjacent abutment in the 

negative direction. If these displacements are equal to the corresponding gap sizes, 

pounding will occur. On the other hand, maxx12Crefers to the maximum absolute relative 

displacement of span A and span B irrespective of direction i.e. max(|𝑥1 − 𝑥2|).The first 

four components consider the ratio of the max directional displacements, while the rest of 

the components take into account the ratio of the maximum absolute acceleration responses 

in the semi-actively controlled versus passively controlled bridge.  

3.4.3 Clipped Semi-Active Control Forces 
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During simulation and shaking table tests, clipped optimal rules are considered in order to 

apply the control force constraints of the semi-active device. These constraints include the 

dependency of the applied control force on the direction of the dynamic response of the 

MR damper and the force capacity of the device. To incorporate these limitations in the 

control model, the feasible range of 0 and 2 Amp for the input current to the MR damper 

is considered and the following force saturation model is applied: 

    𝐮constrained       

=

[
 
 
 
 
 

{
 
 

 
 

0                                                                ∆𝑗  < 0 Amp 

𝑢unconstrained𝑗                   0 Amp ≤  ∆𝑗≤ 2 Amp

−(∆𝑗αẋMR1
+ ∆𝑗

2αẋMR2
) �̇�𝑗                                                                     

     + (∆𝑗αzMR1
+ ∆𝑗

2αzMR2
) 𝑧𝑗         ∆𝑗  > 2 Amp }

 
 

 
 

𝑗

 

]
 
 
 
 
 

  

                  

(3.38) 

where ∆𝑗  ( j = 4, 5) is the root of 

   𝑢unconstrained𝑗 − (∆𝑗αẋMR1
+ ∆𝑗

2αẋMR2
) �̇�𝑗 + (∆𝑗αzMR1

+ ∆𝑗
2αzMR2

) 𝑧𝑗

= 0 

(3.39) 

and the unconstrained control force vector, 𝐮unconstrained, is the active control force from 

Equation (3.17). 

3.5 Results 

In order to evaluate the control performance of the three span bridge subjected to seismic 

excitations, four cases are considered for shaking table experiments: 

1- Uncontrolled, where no MR damper is installed on the bridge. 

2- Passive-off, where two MR dampers are installed between adjacent spans and are set 

to minimum current of 0 Amp. 
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3- Passive-on, where both dampers are set to maximum current of 2 Amp. 

4- SMC-OPC control, where a current value is determined from the control algorithm and 

fed into the MR damper instantaneously. 

In this study, Kobe earthquake is considered which is a near-field event with high 

amplitude long period velocity pulses and a peak ground acceleration (PGA) of 0.821g. 

This ground motion exported from NGA database (Chiou et al., 2008) was recorded at the 

KJMA Observatory station, with a distance to fault rupture of 0.6 km.   

The results, here, are analyzed for Kobe ground motion scaled at 20% (KB20) and 40% 

(KB40). For KB20, no pounding is observed in any of the cases; however, the critical 

displacement responses, 𝑥12
+   and 𝑥23

+ , are reduced to 23% and 48% at passive-on state and 

28% and 61%  at semi-active state, respectively, in comparison to the uncontrolled case. 

As for the acceleration responses, the passive-off case has the smallest absolute 

accelerations, in which �̈�1, �̈�2, and �̈�3  are reduced by 10%, 13%, and 1%, respectively, 

compared to the uncontrolled case (Table 3-2).  
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State Critical/Peak displacements (mm) and peak accelerations (g) 

𝑥1   𝑥12  𝑥23 𝑥3 �̈�1  �̈�2  �̈�3 

Uncont. 2.40/2.80 16.61/17.05 16.86/17.10 1.32/1.64 0.33 0.38 0.27 

Passive-off 2.75/2.65 12.34/12.34 11.56/12.61 1.41/1.83 0.30 0.33 0.27 

Passive-on 4.93/6.01 3.89/6.01 8.04/8.04 3.20/3.36 0.36 0.35 0.30 

SMC-OPC 4.76/6.3 4.64/7.15 10.01/10.11 2.92/3.08 0.33 0.35 0.36 

State RMS of displacements (mm) and accelerations (g) 

𝑥1   𝑥12  𝑥23 𝑥3 �̈�1  �̈�2  �̈�3 

Uncont. 0.32 2.42 2.43 0.23 0.05 0.06 0.04 

Passive-off 0.37 1.78 1.79 0.26 0.05 0.05 0.04 

Passive-on 0.65 0.50 0.70 0.78 0.05 0.05 0.05 

SMC-OPC 0.69 0.66 0.82 0.87 0.05 0.05 0.05 

Current Ratio = 
𝑖S̅MC−OPC

𝑖P̅assive−on
 / Energy Ratio = 

�̅�SMC−OPC

�̅�Passive−on
 

State MR-AB MR-BC 

SMC-OPC 0.61 / 0.31 0.62 / 0.31 

Table 3-2 Results for three span bridge subjected to KB 20. 

 

 

For KB40, the performance of passive and semi-active control strategies are more 

pronounced as compared to the uncontrolled bridge (Table 3-3). For this scaled ground 

motion, significant pounding is observed between adjacent spans in both the uncontrolled 

and passive-off states. Nevertheless, the number of acceleration spikes for passive-off are 

reduced by at least 25% compared to the uncontrolled state; four spikes for �̈�1, eight spikes 

for �̈�2, and four spikes for �̈�3. As for the semi-actively controlled system, a significant 

improvement is shown compared to the uncontrolled state especially where 41% and 32% 
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reductions in the relative displacements, 𝑥12 and 𝑥23 are observed. For the same response 

measures, these reductions are 46% and 37% for the passive-on control case. For further 

illustration, the time history of displacement and acceleration responses are shown in 

Figures 3-6 and 3-7. In addition, the bearing forces applied on span B are plotted in Figure 

3-8 where a pronounced improvement is observed in terms of the peak forces compared to 

the uncontrolled case: 32% reduction for both passive-on and SMC-OPC, and 13% 

reduction for passive-off. Similar behaviors are seen for bearings of spans A and C. 

 

 

State Critical/Peak displacements (mm) and peak accelerations (g) 

𝑥1   𝑥12  𝑥23 𝑥3 �̈�1  �̈�2  �̈�3 

Uncontrolled 13.62/18.56 28.88/28.88 30.31/30.31 8.24/15.95 7.32 7.60 16.79 

Passive-off 10.73/11.79 25.99/25.99 29.00/29.00 4.38/12.66 1.41 1.71 1.50 

Passive-on 8.72/11.22 15.70/18.94 19.43/19.43 4.65/4.76 0.56 0.51 0.49 

SMC-OPC 9.37/11.99 16.97/19.97 20.35/20.35 4.98/5.52 0.57 0.53 0.49 

State RMS of displacements (mm) and accelerations (g) 

𝑥1   𝑥12  𝑥23 𝑥3 �̈�1  �̈�2  �̈�3 

Uncontrolled 1.82 4.23 4.64 1.26 0.17 0.15 0.23 

Passive-off 1.42 4.11 4.42 0.80 0.10 0.11 0.10 

Passive-on 1.45 1.97 2.35 0.78 0.08 0.08 0.07 

SMC-OPC 1.54 2.02 2.38 0.87 0.08 0.09 0.07 

Current Ratio = 
𝑖S̅MC−OPC

𝑖P̅assive−on
 / Energy Ratio = 

�̅�SMC−OPC

�̅�Passive−on
 

State MR-AB MR-BC 

SMC-OPC 0.74 / 0.37 0.53 / 0.26 

Table 3-3 Results for three span bridge subjected to KB 40. 
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                                    (a)                                                                  (b)  

  
                                    (c)                                                                  (d)   

  
                                    (e)                                                                  (f)   

Figure 3-6 Time history response of the three span bridge with various control states 

subjected to KB40 for displacements of (a) span A, (b) AB, (c) BC, and (d) span C and 

current of MR dampers (e) AB and (f) BC. 
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                                    (a)                                                                  (b) 

 

  
(c) 

Figure 3-7 Absolute acceleration time history of three span bridge for different control 

states subjected to KB40 for (a) span A, (b) span B, and (c) span C. 
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(a) 

  

(b) 

  

(c) 

  

(d) 

Figure 3-8 Force-deformation behavior of bearing forces applied to span B under KB40 

for (a) uncontrolled, (b) passive-off, (c) passive-on, and (d) SMC-OPC. 

 

 

One of the main advantages of the control algorithm is its performance convergence to 

that of passive-on but at a lower cost by minimizing current and energy consumptions, as 

recorded in Tables 3-2 and 3-3. The control energy, 𝐸, of an MR damper is a more accurate 

measure than current to indicate the power consumption of the system. The control energy 

is defined as 

𝐸 = 𝑖𝑐
2𝑅𝑐𝑜𝑖𝑙 (3.40) 

where 𝑅𝑐𝑜𝑖𝑙 is the resistance of the coil wire (Nguyen et al., 2008). The results can be 

summarized as follows: the mean current values for semi-active MR-AB and MR-BC at 
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KB40 are reduced to 74% and 53% of passive-on case, and the energy consumptions for 

both MR dampers are reduced further to 37% and 26% of passive-on state. Similar results 

are observed for KB20, where the power consumption is reduced by 69% for both MR 

dampers compared to passive-on case. 

From the experiment results especially for the high intensity earthquake, it appears that 

reducing critical displacements helps in avoiding pounding and hence the acceleration 

values stay within moderate levels. Adding MR dampers enhances the energy dissipation 

capabilities of the system especially for ground motions with large PGA. Using these 

strategies, the likelihood of failure, collapse, and pounding can be noticeably reduced. For 

semi-active control, the performance of the system converges to that of the passive-on state 

with a considerable reduction in the energy consumption, as shown earlier. However, if the 

damper cannot operate semi-actively or at a constant nonzero current value, the passive-

off state can still reduce the impact of pounding as observed with fewer and less severe 

acceleration spikes compared to uncontrolled state (Figures 3-6 and 3-7). As a result, both 

passive and semi-active strategies have noticeable impacts on the seismic performance of 

the bridge and can be adopted as alternative solutions for seismic risk reduction of critical 

structures. 

3.6 Closure 

The effectiveness of MR dampers controlled using passive and semi-active strategies are 

examined for response reduction and in particular pounding mitigation of adjacent 

structures. The damper is set at zero current, maximum current, and a current value that is 

determined through a semi-active control strategy. In that respect, a new state space based 

control algorithm, named SMC-OPC is introduced and derived. SMC-OPC is based on a 
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nonlinear sliding mode control, in which the linear sliding surface is expanded to a higher 

order trajectory. The higher order surface provides more flexibility to optimize the 

performance and maximize the robustness of the controller compared to linear sliding 

surfaces. Alongside the passive states, SMC-OPC is designed and tested using shaking 

table experiments for a three span bridge supported by nonlinear bearings. For this system, 

the control objectives are to reduce excessive deformations that may lead to collapse and 

the potential of pounding, depicted by spikes of absolute accelerations, since it may pose 

considerable damage to adjacent structures.  

To suppress the extreme effects of seismic-induced vibrations, two MR dampers are 

installed between adjacent spans. For semi-active technology, the clipped semi-active 

control strategy is adopted to optimize the performance of the MR damper as compared to 

the three conditions: uncontrolled, passive-off where the input current is zero, and passive-

on which has the maximum input current of 2 Amp. The control design process starts with 

developing numerical models for the characterization of nonlinear components of the 

system. The hysteresis in both the MR damper and rubber bearings is simulated using the 

Bouc-Wen model, while the nonlinear pounding phenomenon between spans and 

abutments is captured using Damped Hertz model.  

To design the state space control strategy, the nonlinear system is stochastically 

linearized where the nonlinear behavior of the passive MR damper is incorporated. Next, 

a clipped optimal strategy is utilized to account for MR damper constraints in the SMC-

OPC algorithm. To provide an optimal performance of the control device, the selection of 

the weighting matrices is made based on a global second level optimization of a prescribed 

cost function. Shaking table experiments are conducted for the bridge models for scaled 
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near-field ground motion records. The results show that passive-on at the stronger 

earthquake provides the best control performance with respect to reducing structural 

responses. The proposed SMC-OPC semi-active control method provides a balance 

between the performance of the controlled system with respect to its reliability, and the 

power consumption of the controller which affects the performance of the control device 

during the event. This strategy yields very close performance to the passive-on case but 

with a significantly reduced energy consumption during the large ground motion. Although 

the passive-off state is not as efficient as SMC-OPC and passive-on, it is able to noticeably 

reduce displacement and acceleration responses compared to the uncontrolled state during 

moderate and large earthquakes. This observation is important as passive-off state can 

represent the case where the power supply to the MR damper is failed. Considering these 

factors, it can be concluded that installation of MR dampers between adjacent structures 

has the potential to reduce damage due to pounding and excessive gap openings in adjacent 

structures in addition to mitigating other critical structural responses. Such passive and 

semi-active strategies can keep bridges operational following moderate and large seismic 

events. 
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Chapter 4:  Enhanced Stochastic Averaging of Non-integrable 

Nonlinear Systems 
 

4.1 Introduction 

Stochastic systems may exhibit nonlinear behavior in their dynamic response; these 

responses are often uncertain due to the stochasticity in input excitations and other sources 

as discussed in Section 2.2.1. To generate simplified models for such systems, stochastic 

linearization techniques were developed (Anh et al., 2015) to determine parameters of an 

equivalent linear model by minimizing the error between the responses of the nonlinear 

and linear systems (Socha, 2005). Stochastic linearization was used in Chapter 3 to 

linearize the nonlinear behavior in both rubber bearings of the bridge and semi-active 

control device; furthermore, the state space control algorithms (nonlinear sliding mode 

control based on optimal polynomial control) were designed based on the stochastic 

linearized system. This linearization method is an adequate approximation scheme, but the 

accuracy of these methods reduces as the nonlinearity in the system and the number of the 

degrees of freedom (DOF) increase (Socha, 2005).  

Alternatively, stochastic averaging is a solution that is proven to provide higher 

accuracy, since it retains the intrinsic nature of nonlinearity in the system behavior as well 

as effects of stochasticity in input excitations (Bellizzi et al., 2001). Stochastic averaging 

has been used for system identification and control design in different domains such as 
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structural engineering (Zhu et al., 2004; Cheng et al., 2006; El-Khoury and Shafieezadeh, 

2015), earth and environmental sciences (Cai, 2009), and physics (Deng et al., 2011).  As 

described in 2.2.2, stochastic averaging of energy envelope, one of the three stochastic 

averaging methods, is chosen here to transform the dynamic system into the Hamiltonian 

domain. This method can be applied to lightly damped systems subjected to weak 

excitations (Zhu, 2006). In addition, this method reduces the dimension of dynamic 

systems, while preserving the nonlinearity in system behavior and its stochasticity arising 

from input excitations.  In stochastic averaging of energy envelope, the total energy of the 

system is known as the Hamiltonian. Common response variables of dynamic systems e.g. 

displacements and velocities are often rapidly varying quantities, while energy envelopes 

of systems are slowly varying quantities. This method exploits this feature to average the 

rapidly varying processes to yield the averaged Itô equations for slowly varying processes.  

Generally, real-world systems are non-integrable. By definition, non-integrable 

systems include dependent potential energies, where the entire system can only be 

represented by a single Hamiltonian (Huang and Zhu, 2009) for all DOFs. Conventional 

stochastic averaging methods for such general systems neglect effects of off-diagonal 

damping terms and consider a collective contribution of the diagonal entries rather than 

their individual effects. They also treat external stochastic excitations on applied DOFs as 

independent processes (Gu and Zhu, 2014). These factors may limit the application of 

stochastic averaging for nonlinear systems given that these systems often do not comply 

with those conditions. To address these limitations, this chapter proposes an equivalent 

nonlinear models for hysteretic non-integrable multi-DOF systems subjected to stochastic 

excitations. In that respect, parameters of the equivalent nonlinear model including 



72 

 

modified damping parameters and equivalent excitation intensity are derived through the 

application of the method of weighted residuals to the drift and diffusion components in 

the Itô equation for actual and modified systems. The proposed methodology, called the 

enhanced stochastic averaging method, uses high order moments of velocity response 

variables to derive equivalent damping and intensity parameters; this improves the 

accuracy of the stochastic averaging method when applied to nonlinear non-integrable 

systems with coupled damping terms.  

The application of the new strategy is demonstrated for stochastic averaging of a 

nonlinear foundation-structure system subjected to stochastic excitations. It is noteworthy 

that SSI considerably influences the dynamic characteristics of seismically excited 

structures; the flexibility of the soil beneath the structure affects the response of the 

structure and therefore the extent of damage sustained by the structure following the 

earthquake. The challenge of modeling SSI arises from the induced material and geometric 

nonlinearities (Amini and Shadllou, 2011). As a result, past stochastic analyses of 

structures have generally neglected contributions from soil and foundation behaviors by 

assuming fixed support conditions, or oversimplified behaviors of foundations. Due to 

these complexities, capturing the nonlinear behavior of foundations and the interaction 

with the structure during earthquakes can yield more accurate estimates of the seismic 

performance of structures; this is essential for making proper design and retrofit decisions 

for structures (Kausel, 2010). This study considers a one-story building on a nonlinear raft 

foundation in loose sand subjected to Gaussian white noise excitations. The probability 

density function of the Hamiltonian and its moments are derived using the proposed 

method and are compared to those computed using conventional stochastic averaging and 
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Monte Carlo simulations (MCS). It should be noted that the proposed method is general 

and can be applied to multi-DOF non-integrable hysteretic systems. The rest of the chapter 

is structured as follows. Section 4.2 presents a comprehensive derivation of the proposed 

methodology. Next, results of the numerical study are presented in Section 4.3, and 

conclusions of the research are summarized in Section 4.4. 

4.2 Enhanced Stochastic Averaging of Energy Envelope 

Natural and engineered dynamic systems are often nonlinear and non-integrable. A multi-

story building supported by a nonlinear foundation subjected to lateral excitations is among 

such systems. A representative model for these structures is shown in Figure 4-1a where 

the DOFs of the system are coupled through damping and stiffness over the entire building. 

In conventional stochastic averaging methods, the effects of the off-diagonal damping 

terms vanish and a collective contribution rather than individual effects of diagonal terms 

is considered. In addition, these methods treat external excitations on DOFs of systems as 

independent processes, while in many cases such as the structure in Figure 4-1a, these 

disturbances are perfectly correlated, or have high degrees of correlation. These limitations 

may result in unacceptable response predictions of realistic systems using conventional 

methods of stochastic averaging of energy envelope. These conventional strategies are 

extended to provide more accurate representation of system behavior. The derivations of 

the proposed method for a general nonlinear hysteretic system subjected to Gaussian white 

noise excitation are presented in this section. The equations of motion of a p-DOF 

hysteretic system subjected to a single white noise excitation (Figure 4-1a) are as follows.  



74 

 

𝑚𝑖�̈�𝑖 = (𝑔𝑖(𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1) + 𝜏𝑖(𝑧𝑖−1, 𝑧𝑖 , 𝑧𝑖+1) + 𝑐𝑖−1�̇�𝑖−1 − 𝑐𝑖−1�̇�𝑖

+ 𝑐𝑖�̇�𝑖+1 − 𝑐𝑖�̇�𝑖) + 𝑚𝑖𝜎0
d𝐵

d𝑡
 

     

     (4.1a) 

𝜏𝑥𝑖(𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1)

= (−(𝛼𝑧𝑖𝑘𝑖 + 𝛼𝑧𝑖−1𝑘𝑖−1)𝑥𝑖 + 𝛼𝑧𝑖−1𝑘𝑖−1𝑥𝑖−1

+ 𝛼𝑧𝑖𝑘𝑖𝑥𝑖+1) 

        

 

        (4.1b) 

𝜏𝑧𝑖(𝑧𝑖−1, 𝑧𝑖 , 𝑧𝑖+1)

= (−((1 − 𝛼𝑧𝑖)𝑘𝑖 + (1 − 𝛼𝑧𝑖−1)𝑘𝑖−1)𝑧𝑖

+ (1 − 𝛼𝑧𝑖−1)𝑘𝑖−1𝑧𝑖−1 + (1 − 𝛼𝑧𝑖)𝑘𝑖𝑧𝑖+1) 

       

 

                   (4.1c) 

where 𝑚𝑖, 𝑥𝑖, �̇�𝑖, 𝑧𝑖, and �̈�𝑖(𝑖 = 1,… , 𝑝) are the mass, displacement, velocity, evolutionary 

variable, and acceleration of the 𝑖th DOF, respectively. The coupled functions, 

𝜏𝑥𝑖(𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1) and𝜏𝑧𝑖(𝑧𝑖−1, 𝑧𝑖 , 𝑧𝑖+1), are dependent on the displacements and 

evolutionary variables, respectively. 𝑐𝑖 is the damping coefficient of the ith DOF 

(𝑐0 = 𝑐𝑝+1 = 0). The parameters 𝑘𝑖 and 𝛼𝑧𝑖 represent the stiffness component and the 

level of nonlinearity, respectively. In Equation (4.1a), 𝐵 is the Brownian motion, also 

known as Weiner process, and its derivative with respect to time, 𝑑𝐵/𝑑𝑡, yields the 

Gaussian white noise excitation. In this case, the term, d𝐵/𝑑𝑡, represents the input 

acceleration that is applied to the system. The standard deviation of the excitation is 

represented by 𝜎0.  
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Figure 4-1 Hysteretic systems: (a) multi-DOF hysteretic system and (b) 2-DOF hysteretic 

system in study. 

 

 

 

The component £𝐸(𝑥1, 𝑥2, … , 𝑥𝑝, 𝑧1, 𝑧2, … , 𝑧𝑝) represents the potential energy and depends 

on the displacements, 𝑥1, 𝑥2, … , 𝑥𝑝,  and evolutionary variables, 𝑧1, 𝑧2, … , 𝑧𝑝. The potential 

energy of the 𝑝-DOF hysteretic system is: 

£𝐸(𝑥1, 𝑥2, … , 𝑥𝑝, 𝑧1, 𝑧2, … , 𝑧𝑝)

= ∫𝜏𝑥𝑖(𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1)𝑑𝑥𝑖 +∫𝜏𝑧𝑖(𝑧𝑖−1, 𝑧𝑖 , 𝑧𝑖+1)𝑑𝑧𝑖

+ IND(𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑝, 𝑧1, 𝑧2, … , 𝑧𝑖−1, 𝑧𝑖+1, … , 𝑧𝑝) 

=∑(𝛼𝑧𝑖𝑘𝑖 + 𝛼𝑧𝑖−1𝑘𝑖−1)
𝑥𝑖
2

2

𝑝

𝑖=1

+∑((1 − 𝛼𝑧𝑖)𝑘𝑖 + (1 − 𝛼𝑧𝑖−1)𝑘𝑖−1)
𝑧𝑖
2

2

𝑝

𝑖=1
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                                          −∑𝛼𝑧𝑖𝑘𝑖𝑥𝑖𝑥𝑖+1

𝑝−1

𝑖=1

−∑(1 − 𝛼𝑧𝑖)𝑘𝑖𝑧𝑖𝑧𝑖+1

𝑝−1

𝑖=1

          (4.2) 

The function IND(𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑝, 𝑧1, 𝑧2, … , 𝑧𝑖−1, 𝑧𝑖+1, … , 𝑧𝑝) is the component 

of energy that is independent of the variables 𝑧𝑖 and 𝑥𝑖. The energy, 𝐸, of the system in 

Equation (4.1a) is divided into potential and kinetic energies as follows: 

𝐸(𝑥1, 𝑥2, … , 𝑥𝑝, �̇�1, �̇�2, … , �̇�𝑝, 𝑧1, 𝑧2, … , 𝑧𝑝)

=∑𝑚𝑖

�̇�𝑖
2

2
+ £𝐸(𝑥1, 𝑥2, … , 𝑥𝑝, 𝑧1, 𝑧2, … , 𝑧𝑝)

𝑝

𝑖=1

 

         (4.3) 

For detailed derivations, a 2-DOF nonlinear hysteretic system with equal masses 

(𝑚1 = 𝑚2 = 𝑚) is considered here; however, the presented methodology is general and 

can be applied to larger DOF systems. The damping and stiffness components of the first 

DOF are linear (𝛼𝑧1 = 1), while the second DOF has damping, stiffness, and nonlinear 

hysteresis components (𝛼𝑧2 = 𝛼𝑧 < 1). This case can represent a single story building on 

a nonlinear foundation as shown in Figure 4-1b. To simplify the derivations without loss 

of accuracy, the energy of the system is derived for unit mass. This measure of energy is 

represented by e and is composed of kinetic energy per unit mass, 𝑣(�̇�1, �̇�2), and potential 

energy per unit mass, £𝑒(𝑥1, 𝑥2, 𝑧2) = £1(𝑥1, 𝑥2) + £2(𝑧2): 

𝑒 = 𝑣(�̇�1, �̇�2) + £𝑒(𝑥1, 𝑥2, 𝑧2)        (4.4a) 

𝑣(�̇�1, �̇�2) =
�̇�1
2

2
+
�̇�2
2

2
        (4.4b) 

£1(𝑥1, 𝑥2) =
𝑘1
𝑚

𝑥1
2

2
−
𝑘1
𝑚
𝑥1𝑥2 +

(𝑘1 + 𝛼𝑧𝑘2)

𝑚

𝑥2
2

2
        (4.4c) 
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£2(𝑧2) = (1 − 𝛼𝑧)
𝑘2
𝑚

𝑧2
2

2
        (4.4d) 

The equations of motion of the 2-DOF system can be described as: 

�̈�1 = (−
𝜕£1(𝑥1, 𝑥2)

𝜕𝑥1
−
𝑐1
𝑚
�̇�1 +

𝑐1
𝑚
�̇�2) + 𝜎0

d𝐵

d𝑡
 

�̈�2 = (−
𝜕£1(𝑥1, 𝑥2)

𝜕𝑥2
−
𝜕£2(𝑧2)

𝜕𝑧2
−
𝑐2′′

𝑚
�̇�2 +

𝑐1
𝑚
�̇�1) + 𝜎0

d𝐵

d𝑡
 

         (4.5) 

where 𝑐2′′ equals (𝑐1 + 𝑐2) and 𝜎0  is the standard deviation of the white noise excitation. 

The derivatives of the displacement and velocity are denoted by: 

d�̇�𝑖 = �̈�𝑖d𝑡 & d𝑥𝑖 = �̇�𝑖d𝑡  (𝑖 = 1, 2)           (4.6) 

Applying Equation (4.6) to Equation (4.5) yields: 

d�̇�1 = (−
𝜕£1(𝑥1, 𝑥2)

𝜕𝑥1
−
𝑐1
𝑚
�̇�1 +

𝑐1
𝑚
�̇�2)d𝑡 + 𝜎0d𝐵 

d�̇�2 = (−
𝜕£1(𝑥1, 𝑥2)

𝜕𝑥2
−
𝜕£2(𝑧2)

𝜕𝑧2
−
𝑐2′′

𝑚
�̇�2 +

𝑐1
𝑚
�̇�1)d𝑡 + 𝜎0d𝐵 

          (4.7) 

The total energy of the system, 𝑒, in Equation  (4.4) is alternatively known as the 

Hamiltonian of the non-integrable system in Equation (4.7). Differentiating the 

Hamiltonian by applying Itô’s stochastic calculus (Calin, 2012), the differential equation 

for energy is derived as follows: 

d𝑒 = �̇�1d�̇�1 +
1

2
d�̇�1d�̇�1 + �̇�2d�̇�2 +

1

2
d�̇�2d�̇�2 + d£1(𝑥1, 𝑥2) + d£2(𝑧2)          (4.8) 

Substituting Equation (4.7) into Equation (4.8), the differential equation for the 

Hamiltonian is 
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d𝑒 = �̇�1 ((−
𝜕£1(𝑥1, 𝑥2)

𝜕𝑥1
−
𝑐1
𝑚
�̇�1 +

𝑐1
𝑚
�̇�2)d𝑡 + 𝜎0d𝐵) +

1

2
𝜎0
2d𝑡

+ �̇�2 ((−
𝜕£1(𝑥1, 𝑥2)

𝜕𝑥2
−
𝜕£2(𝑧2)

𝜕𝑧2
−
𝑐2′′

𝑚
�̇�2 +

𝑐1
𝑚
�̇�1)d𝑡

+ 𝜎0d𝐵) +
1

2
𝜎0
2d𝑡 + d£1(𝑥1, 𝑥2) + d£2(𝑧2) 

         (4.9) 

Rearranging this equation to separate drift ((. . . )d𝑡) and diffusion((. . . )d𝐵) components, 

the stochastic differential equation is represented as: 

d𝑒 = (−
𝜕£1(𝑥1, 𝑥2)

𝜕𝑥1
�̇�1 −

𝑐1
𝑚
�̇�1
2 +

𝑐1
𝑚
�̇�1�̇�2 −

𝜕£1(𝑥1, 𝑥2)

𝜕𝑥2
�̇�2

−
𝜕£2(𝑧2)

𝜕𝑧2
�̇�2 −

𝑐2′′

𝑚
�̇�2
2 +

𝑐1
𝑚
�̇�1�̇�2 + 𝜎0

2)d𝑡

+ 𝜎0(�̇�1 + �̇�2)d𝐵 + d£1(𝑥1, 𝑥2) + d£2(𝑧2) 

       (4.10) 

The terms d𝑢2(𝑧2) and d𝑢1(𝑥1, 𝑥2)are expanded using the chain rule of total derivatives, 

as follows: 

d£2(𝑧2) =
𝑑£2(𝑧2)

𝑑𝑧2
 d𝑧2 = (1 − 𝛼𝑧)𝑘2𝑧2

𝑑𝑧2
𝑑𝑥2

�̇�2d𝑡     (4.11a) 

𝑑£1(𝑥1, 𝑥2) =
𝜕£1(𝑥1, 𝑥2)

𝜕𝑥1
�̇�1d𝑡 +

𝜕𝑢1(𝑥1, 𝑥2)

𝜕𝑥2
�̇�2d𝑡     (4.11b) 

Applying Equations (4.11a-b) to Equation (8), the following equation is derived: 

 

d𝑒 = (−
𝛼1
𝑚
�̇�1
2 +

𝛼1
𝑚
�̇�1�̇�2 − (1 − 𝛼𝑧)𝑘2𝑧2�̇�2 −

𝑐1
𝑚
�̇�1
2 −

𝑐2′′

𝑚
�̇�2
2 + 2

𝑐1
𝑚
�̇�1�̇�2

+ 𝜎0
2 + (1 − 𝛼𝑧)𝑘2𝑧2

𝑑𝑧2
𝑑𝑥2

�̇�2)d𝑡 + 𝜎0(�̇�1 + �̇�2)d𝐵 

      

 

                 (4.12) 

The stochastic differential equation is represented by the drift and diffusion components: 
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d𝑒 = 𝑀driftd𝑡 + 𝜎diffusiond𝐵               (4.13a) 

𝑀drift = (−(1 − 𝛼𝑧)𝑘2𝑧2�̇�2 −
𝑐1
𝑚
�̇�1
2 −

𝑐2′′

𝑚
�̇�2
2 + 2

𝑐1
𝑚
�̇�1�̇�2 + 𝜎0

2

+ (1 − 𝛼𝑧)𝑘2𝑧2
𝑑𝑧2
𝑑𝑥2

�̇�2) 

              (4.13b) 

𝜎diffusion
2 = (𝜎0

2�̇�1
2 + 𝜎0

2�̇�2
2 + 2𝜎0

2�̇�1�̇�2)               (4.13c) 

The Hamiltonian of the system, 𝑒, is a slowly varying process, while the response variables 

(𝑥1, 𝑥2, �̇�1, �̇�2) are rapidly varying processes. The stochastic averaging should be 

performed across the negative and positive velocities. From Equation (4.4a), the negative 

velocity, �̇�2
−, and positive velocity, �̇�2

+, are equal to ∓√2(𝑒 − 𝑢(𝑥1, 𝑥2, 𝑧2) − �̇�1
2), 

respectively. In general, the stochastic averaging of a function 𝑓(𝑥1, 𝑥2, �̇�1, �̇�2) depends on 

the response variables of the system in Equation (4.5), and can be derived using the 

weighted measure, d𝑥1d𝑥2d�̇�1 �̇�2⁄ , as follows: 

𝑓(̅𝑒) = 𝑓(𝑥1, 𝑥2, �̇�1, �̇�2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

=∭𝑓(𝑥1, 𝑥2, �̇�1, �̇�2)
 d𝑥1d𝑥2d�̇�1

�̇�2
𝛶

∭
d𝑥1d𝑥2d�̇�1

�̇�2
𝛶

⁄  

   (4.14a) 

𝛶

= {(𝑥1, 𝑥2, �̇�1, �̇�2)|

�̇�1
2

2
+
𝑘1
𝑚
𝑥1
2

2
−
𝑘1
𝑚
𝑥1𝑥2 +

                    
(𝑘1 + 𝛼𝑧𝑘2)

𝑚
𝑥2
2

2
+ (1 − 𝛼𝑧)

𝑘2
𝑚
𝑧2
2

2
≤ 𝑒

} 

        

 

    (4.14b) 

where 𝛶 is the domain of integration and 𝑒 ranges from 0 to +∞. Applying Equations 

(4.14a-b) to Equation (4.13), the averaged drift and diffusion components are derived as: 
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�̅�drift

=
∭ (−

𝑐1
𝑚 �̇�1

2 −
𝑐2′′
𝑚 �̇�2

2 + 2
𝑐1
𝑚 �̇�1�̇�2)

 d𝑥1d𝑥2d�̇�1
�̇�2𝛶

∭
d𝑥1d𝑥2d�̇�1

�̇�2𝛶

+
∭ (𝜎0

2 − (1 − 𝛼𝑧)𝑘2𝑧2�̇�2 + (1 − 𝛼𝑧)𝑘2𝑧2
𝑑𝑧2
𝑑𝑥2

�̇�2)
 d𝑥1d𝑥2d�̇�1

�̇�2𝛶

∭
d𝑥1d𝑥2d�̇�1

�̇�2𝛶

  

         

 

 

     (4.15a) 

�̅�diffusion
2

=∭(𝜎0
2�̇�1

2 + 𝜎0
2�̇�2

2 + 𝜎0
2�̇�1�̇�2)

 d𝑥1d𝑥2d�̇�1
�̇�2

𝛶

∭
d𝑥1d𝑥2d�̇�1

�̇�2
𝛶

⁄  

     (4.15b) 

In Equations (4.15a-b), the stochastic averaging is applied to all terms as follows: 

∅1 =∭
�̇�1�̇�2
�̇�2

d𝑥1d𝑥2d�̇�1
𝛶

=       (4.16a) 

∅2 =∭
(1 − 𝛼𝑧)𝑘2𝑧2

𝑑𝑧2
𝑑𝑥2

�̇�2

�̇�2
 d𝑥1d𝑥2d�̇�1

𝛶

= 0      (4.16b) 

Other terms in Equations (4.15a-b) are: 

∅3 =∭
�̇�1
2

�̇�2
d𝑥1d𝑥2d�̇�1

𝛶

=∬𝜋(2𝑒 − 2𝑢(𝑥1, 𝑥2) − 2𝑢2(𝑧2)) d𝑥1d𝑥2       (4.17a) 

∅4 =∭
�̇�2
2

�̇�2
d𝑥1d𝑥2d�̇�1

𝛶

=∬𝜋(2𝑒 − 2𝑢(𝑥1, 𝑥2) − 2𝑢2(𝑧2)) d𝑥1d𝑥2      (4.17b) 

Equation (4.16) and Equations (4.17a-b) are fully derived in Appendix A. Substituting 

these equations into Equation (4.15), the drift and diffusion components are (∅3 = ∅4 =

∅0): 
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�̅�drift

= −(
𝑐1
𝑚
+
𝑐2
′′

𝑚
)∅0 ∭

d𝑥1d𝑥2d�̇�1
�̇�2

𝛶

⁄

+∭(𝜎0
2 − (1 − 𝛼𝑧)𝑘2𝑧2�̇�2)

d𝑥1d𝑥2d�̇�1
�̇�2

𝛶

∭
d𝑥1d𝑥2d�̇�1

�̇�2
𝛶

⁄  

             

 

                       (4.18a) 

�̅�diffusion
2 =∭2𝜎0

2∅0
d𝑥1d𝑥2d�̇�1

�̇�2
𝛶

∭
d𝑥1d𝑥2d�̇�1

�̇�2
𝛶

⁄  
    (4.18b) 

Since ∅1 = 0, the off-diagonal damping term, 𝑐12 = 𝑐21 = −𝑐1,vanishes from the 

formulation of the stochastically averaged system. However, in real systems, this 

component may have a noticeable effect on the covariance matrix of the system response, 

among other measures. In addition, the diagonal damping terms, 𝑐1 and 𝑐2, have a 

collective impact in the stochastic averaging. This limitation results in two identical 

systems but with different 𝑐1 and 𝑐2
′′ to yield the same stochastic averaging results as long 

as they have identical 𝑐1 + 𝑐2′′. Since the component ∅1 is equal to zero, stochastically 

averaging the term 𝜎0
2�̇�1�̇�2̅̅ ̅̅ ̅̅ = 𝜎0

2∅1 yields zero as well. To overcome these shortcomings, 

Equation (4.13) is transformed to an equivalent nonlinear system as follows: 

d𝑒 = 𝑀′driftd𝑡 + 𝜎′diffusiond𝐵 

 

       (4.19a) 

𝑀′drift = (−(1 − 𝛼𝑧)𝑘2𝑧2�̇�2 −
𝑐′

𝑚
�̇�1
2 −

𝑐′

𝑚
�̇�2
2 + 𝜎′0

2

+ (1 − 𝛼𝑧)𝑘2𝑧2
𝑑𝑧2
𝑑𝑥2

�̇�2) 

 

                  (4.19b) 

𝜎′diffusion
2 = (𝜎′0

2�̇�1
2 + 𝜎′0

2�̇�2
2) 

       (4.19c) 

where 𝑐′ and 𝜎′0
2 are the equivalent damping and excitation variance terms, respectively. 

To determine these parameters, the method of weighted residuals (Lin and Cai, 2004) is 

utilized. In that respect, a weighting polynomial function is applied to both original and 
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equivalent nonlinear systems and the integration of the residue over the entire domain is 

derived to zero. Here, residues are defined for drift and diffusion components by comparing 

Equation (4.13) and Equation (4.19).The mean of the weighted residues are equated to zero 

and the equivalent parameters, 𝑐′ and 𝜎′0
2, are computed subsequently: 

∆drift= ∫∫∫∫𝑊(�̇�1, �̇�2) × 𝛿drift(�̇�1, �̇�2)

× 𝑝f(𝑥1, 𝑥2, �̇�1, �̇�2)𝑑𝑥1 d𝑥2 d�̇�1 d�̇�2 

      (4.20a) 

∆diffusion= ∫∫∫∫𝑊(�̇�1, �̇�2) × 𝛿diffusion(�̇�1, �̇�2)

× 𝑝f(𝑥1, 𝑥2, �̇�1, �̇�2)𝑑𝑥1𝑑𝑥2 𝑑�̇�1𝑑�̇�2 

     (4.20b) 

where 𝑝f(𝑥1, 𝑥2, �̇�1, �̇�2) is the joint stationary probability density function for of the rapidly 

varying processes i.e. displacements and velocities of the system. The parameters 𝛿drift 

and 𝛿diffusion are the error measures defined as: 

𝛿drift = 𝑀′drift −𝑀drift    (4.21a) 

𝛿diffusion = 𝜎′diffusion
2 − 𝜎diffusion

2     (4.21b) 

In addition, the weighting function, 𝑊(�̇�1, �̇�2), has the following polynomial form: 

𝑊(�̇�1, �̇�2) = �̇�1
2 + �̇�2

2 + 𝐾𝑤�̇�1�̇�2   (4.22) 

where 𝐾𝑤 equals 1. Substituting Equation (13), Equation (19), Equation (20), Equation 

(21), and Equation (22) into Equations (20a-b), the integrands are derived as: 
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𝑊(�̇�1, �̇�2) × 𝛿drift

= (
(𝑐1 − 𝑐′)

𝑚
�̇�1
2 +

(𝑐2′′ − 𝑐′)

𝑚
�̇�2
2 − 2

𝑐1
𝑚
�̇�1�̇�2

+ (𝜎′0
2
− 𝜎0

2)) × (�̇�1
2 + �̇�2

2 + 𝐾𝑤�̇�1�̇�2) 

                    (4.23a) 

𝑊(�̇�1, �̇�2) × 𝛿diffusion

= ((𝜎0
2 − 𝜎′0

2
)�̇�1

2 + (𝜎0
2 − 𝜎′0

2
)�̇�2

2 + 2𝜎0
2�̇�1�̇�2)

× (�̇�1
2 + �̇�2

2 + 𝐾𝑤�̇�1�̇�2) 

                    (4.23b) 

Expanding the integrands in Equations (4.23a-b) and applying the integral in Equations 

(20a-b), the equivalent parameters are computed using higher order moments as: 

 𝑐′ = 
𝑐1(E(�̇�1

4) + E(�̇�1
2�̇�2

2) + 𝐾𝑤E(�̇�1
3�̇�2))

(E(�̇�1
4) + E(�̇�2

4) + 2E(�̇�1
2�̇�2

2) + 𝐾𝑤E(�̇�1�̇�2
3) + 𝐾𝑤E(�̇�1

3�̇�2))

+
𝑐2
′′(E(�̇�2

4) + E(�̇�1
2�̇�2

2) + 𝐾𝑤E(�̇�1�̇�2
3))

(E(�̇�1
4) + E(�̇�2

4) + 2E(�̇�1
2�̇�2

2) + 𝐾𝑤E(�̇�1�̇�2
3) + 𝐾𝑤E(�̇�1

3�̇�2))
 

−
2𝑐1(E(�̇�1�̇�2

3) + E(�̇�1
3�̇�2) + 𝐾𝑤E(�̇�1

2�̇�2
2))

(E(�̇�1
4) + E(�̇�2

4) + 2E(�̇�1
2�̇�2

2) + 𝐾𝑤E(�̇�1�̇�2
3) + 𝐾𝑤E(�̇�1

3�̇�2))

+
𝑚(𝜎′0

2
− 𝜎0

2) × (E(�̇�1
2) + E(�̇�2

2) + 𝐾𝑤E(�̇�1�̇�2))

(E(�̇�1
4) + E(�̇�2

4) + 2E(�̇�1
2�̇�2

2) + 𝐾𝑤E(�̇�1�̇�2
3) + 𝐾𝑤E(�̇�1

3�̇�2))
 

        

(4.24a) 

𝜎′0
2

= 𝜎0
2 (

E(�̇�1
4) + E(�̇�2

4) + (2 + 2𝐾𝑤)E(�̇�1
2�̇�2

2)

E(�̇�1
4) + E(�̇�2

4) + 2E(�̇�1
2�̇�2

2) + 𝐾𝑤E(�̇�1�̇�2
3) + 𝐾𝑤E(�̇�1

3�̇�2)

+
(2 + 𝐾𝑤)E(�̇�1�̇�2

3) + (2 + 𝐾𝑤)E(�̇�1
3�̇�2)

E(�̇�1
4) + E(�̇�2

4) + 2E(�̇�1
2�̇�2

2) + 𝐾𝑤E(�̇�1�̇�2
3) + 𝐾𝑤E(�̇�1

3�̇�2)
) 

(4.24b) 
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In these equations, the second order moments are determined according to Lyapunov 

equation for stochastically linearized systems (El-Khoury et al., 2016). In addition, the 

even order moments can be expressed in terms of second order moments since the system 

is subjected to a Gaussian white noise and the response variables are considered Gaussian 

(Muravyov et al., 1999): 

E(�̇�𝑞�̇�𝑟�̇�𝑠�̇�𝑡) = E(�̇�𝑞�̇�𝑟) × E(�̇�𝑠�̇�𝑡) + E(�̇�𝑞�̇�𝑠) × E(�̇�𝑟�̇�𝑡) + E(�̇�𝑞�̇�𝑡)

×  E(�̇�𝑟�̇�𝑠) 

   (4.25) 

Applying stochastic averaging to the derived equivalent nonlinear system results in: 

    𝑀′̅̅̅̅ drift =
−2

𝑐′

𝑚∅0

∭
d𝑥1d𝑥2d�̇�1

�̇�2𝛶

+
∭ (𝜎′0

2 − (1 − 𝛼𝑧)𝑘2𝑧2�̇�2)𝛶

d�̇�1d𝑥1d𝑥2
�̇�2

∭
d𝑥1d𝑥2d�̇�1

�̇�2𝛶

 (4.26a) 

𝜎′̅diffusion
2 =

2𝜎′0
2∅0

∭
d𝑥1d𝑥2d�̇�1

�̇�2𝛶

 
                 

(4.26b) 

Consequently, the stationary Fokker-Planck-Kolmogorov equation of the stochastically 

averaged differential equation in Equation (4.26) is defined as: 

d𝑝s(𝑒)

d𝑡
= −

d

d𝑒
[𝑀′̅̅ ̅̅

drift(𝑒) × 𝑝s(𝑒)] 

                                                     +
1

2

d2

d𝑒2
[�̅�′diffusion

2 (𝑒) × 𝑝s(𝑒)] 

  (4.27) 

where 𝑝s(𝑒) represents the stationary PDF of energy that is derived by considering 

(d𝑝s(𝑒)/𝑑𝑡 = 0) and solving the FPK equation: 

𝑝s(𝑒) =
𝜆e

�̅�′diffusion
2 exp {∫

2𝑀′̅̅̅̅ drift(𝑦)

�̅�′diffusion
2 (𝑦)

𝑒

0

d𝑦}      (4.28) 
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where 𝜆e is a constant to ensure that the integration of the PDF function over the entire 

domain yields one: 

𝜆e =
1

∫
1

�̅�′diffusion
2 (𝑒)

exp {∫
2�̅�′drift(𝑦)

�̅�′diffusion
2 (𝑦)

𝑒

0
d𝑦}

+∞

0
d𝑒

 
   (4.29) 

Having found 𝑝𝑠(𝑒), the mean of the Hamiltonian, E(𝑒), and second order moment, E(𝑒2), 

can be determined as 

E(𝑒) = ∫ 𝑦𝑝s(𝑦)
+∞

0

d𝑦    (4.30a) 

E(𝑒2) = ∫ 𝑦2𝑝s(𝑦)
+∞

0

d𝑦    (4.30b) 

 

4.3 Numerical Example 

During seismic excitations, structural systems interact with surrounding soil at the 

foundation level; these interactions alter the seismic behavior of structures. Such effects 

can be in the form of elongation of the natural vibration period of structures, an increase in 

the damping and energy dissipation of the system, and a reduction in the overall stiffness. 

In design and analysis of structures especially controlled systems, buildings are commonly 

assumed to have rigid foundation. This assumption is realistic only when the structure is 

built on solid rock; for other cases, it may lead to inaccurate predictions of system responses 

such as displacements, induced forces and moments, and generally the state of the structure 

(Isbiliroglu et al., 2015). During medium to large intensity seismic excitations, the induced 

nonlinear hysteretic behavior of soil-foundation can have even more prominent impact on 

the performance of structures (Mason et al., 2013). Consequently, incorporating nonlinear 
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hysteresis behavior of soil-foundation in the control design is necessary since the soil is 

likely to behave nonlinearly even when the structure is equipped with control systems. 

A single story structure supported on a nonlinear raft foundation in loose sand is 

considered here to demonstrate the application of the proposed reliability-based 

controllers. The structure is assumed to be linear with a natural period of 0.25 sec and a 

damping ratio of 1.0%, while the foundation is considered to have a nonlinear hysteretic 

behavior. The dimensions, the mass of the structure, and the embedment depth of the 

shallow foundation are given in Figure 4-1a. The nonlinear hysteretic behavior of the 

foundation is simulated using the Bouc-Wen model (El-Khoury et al., 2015; El-Khoury et 

al., 2016). This model that is presented in Equations (3a-b) consists of linear stiffness, 

damping, and hysteresis as shown in Figure 4.2. In order to obtain the model parameters, a 

foundation model consisting of an array of independent nonlinear springs, dashpots, and 

gap elements (Gajan et al., 2010) is developed in the finite eslement platform of OpenSEES 

(McKenna, 2011). The implemented nonlinear horizontal springs are able to capture sliding 

and passive pressure effects on the sides and the base of the foundation. This model takes 

as input a set of soil properties including shear modulus (G = 5 MPa), poisons ratio (𝑣p =

 0.25), angle of friction (∅a = 25o), soil density (𝜌s = 2000 kg/m3), and soil type. The 

natural period of the structure is 0.25 sec and the damping ratio is 1%. The entire system 

is subjected to a lateral Gaussian white noise with three levels of standard deviation to 

represent low, moderate, and high levels of excitation intensity. The reference point for the 

standard deviation of the excitation is 0.2 g (Spencer et al., 1998; Rofooei et al., 2001) and 

the two additional intensity levels correspond to ±60% [0.12g, 0.32g] of the reference 

intensity. 
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Figure 4-2 A single story building on a raft foundation with loose sand properties –

structural period (Tstructure), damping ratio (ξstructure), Young’s modulus (Es), shear modulus 

(G), poisons ratio (𝑣), angle of friction (∅), and soil density (𝜌) are provided. 

 

 

 

4.3.1 Discussion 

The nonlinear foundation-structure system is modeled in OpenSEES McKenna (2011) 

which is an object oriented Finite Element platform for earthquake engineering 

simulations. The horizontal force versus lateral displacement and velocity responses of the 

foundation model when the system is subjected to excitation realizations for three levels of 

intensity are presented in Figure 4-3. The area enclosed by the force-deformation loops 

represents hysteresis or alternatively energy dissipation. It is seen that the foundation 

behavior is nonlinear and therefore a nonlinear analysis is required (Pecker et al., 2014). 

As expected, higher intensities of input excitation yield larger hysteresis area. In order to  

apply stochastic averaging, the model representing the behavior of the foundation should 

comply with the general form of system model given in Equation (4.5). Bouc-Wen models 

(Ismail et al., 2009) can properly capture nonlinear hysteretic responses (El-Khoury et al., 
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2015), and are used in this study to represent foundation behavior. The overall foundation 

force is decomposed into stiffness, damping, and hysteretic components, which are 

connected in parallel as shown in Figure 4-3b. The differential equation for the hysteretic 

component of the Bouc-Wen model is presented in Appendix A. Parameters of the Bouc-

Wen model are determined by deriving the error of model outputs with respect to 

OpenSEES results to zero using a constrained numerical optimization approach based on 

gradient descent (Rao and Rao, 2009). The objective function, 𝐽, is defined based on the 

peaks of the lateral forces (PLF) as follows: 

𝐽@ 0.20g =∑ |PLFBouc−Wen Model
all peaks

− PLFOpenSees|α𝑧, ABW, γBW, 𝑐2, 𝑘2
 

          

 

          (4.31) 

where ABW and γBW are parameters that control the shape of the loop. Parameters of the 

Bouc-Wen model are derived for the medium intensity level of 0.20 g; these parameters 

are used for the other two intensity levels. Comparison of the horizontal force-deformation 

behavior from Bouc-Wen model and OpenSEES simulations in Figure 4-3 indicates that a 

good agreement is achieved for all excitation intensity levels using the parameters derived 

for 0.20 g intensity level.  
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Figure 4-3 Characterization of the nonlinear foundation based on Bouc-Wen model for 

white noise excitations at different standard deviations: (a) 0.12 g, (b) 0.24 g, and (c) 0.32 

g (αz= 0.30; ABW= 0.77; γBW= 5.82 m-1; k1= 1.35 × 108 N/m; k2= 3.50 × 108 N/m; 

c1 =   1.07 × 105 N.sec/m; c2'' =   2.18 × 105 N.sec/m). 

 

 

 

As the benchmark to assess the accuracy of the conventional and proposed enhanced 

stochastic averaging methods, Monte Carlo simulations are conducted on the nonlinear 

system subjected to a set of white Gaussian noise. The structure-foundation system with a 
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Bouc-Wen model representing the nonlinear foundation behavior complies with the form 

of the equations of motion in Equation (4.5). In order to apply the proposed enhanced 

stochastic averaging method, the stochastic differential equation of the Hamiltonian is first 

derived as presented in Equations (4.13a-b). Subsequently the system is converted to an 

equivalent model in Equations (20a-b) and the equivalent damping, 𝑐′, and equivalent 

intensity, 𝜎0
′, are derived using Equations (4.24a-b). Following this process for each of the 

three considered intensity levels yields 𝑐′ 𝑐1⁄  of 1.40, 1.44, and 1.48 for low, medium, and 

high intensity levels, while the ratio 𝜎0
′ 𝜎0⁄  remained nearly the same and equal to 1.67 for 

all three intensity levels. The very small variation of the derived equivalent parameters 

against the intensity shows the robustness of the proposed strategy to changes in excitation 

intensity. In this study, equivalent parameters derived for the moderate intensity level of 

0.20 g (i.e. 𝑐′ =  1.44 𝑐1 and 𝜎0
′ = 1.67 𝜎0) is used to evaluate the proposed enhanced 

stochastic averaging for all intensity levels. Subsequently, the stationary PDF and the first 

and second order moments of energy, E(𝑒) and E(𝑒2), are determined according to 

Equation (4.28) and Equation (4.30). Figure 4-4 shows stationary PDF of total energy per 

unit mass derived using MCS, enhanced stochastic averaging (ESA), and conventional 

stochastic averaging (CSA) methods for three levels of excitation intensity. It appears that 

the PDF of the Hamiltonian of the system derived using ESA method has a very good 

agreement with the PDF derived using Monte Carlo simulations. On the other hand, results 

produced using CSA are inaccurate. This is due to the fact that the conventional stochastic 

averaging neglects the effects of off-diagonal damping terms, accounts for a collective 

rather than individual effects of diagonal damping terms, and assumes independent 

stochastic excitations for the foundation and the roof of the structure. The estimated 
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expected values of the energy for 0.12 g intensity level are 0.046 J/kg, 0.051 J/kg, and 

0.031 J/kg, for 0.20 g intensity level are 0.121 J/kg, 0.125 J/kg, and  0.077 J/kg, and for 

0.32 g intensity level are 0.262 J/kg, 0.281 J/kg, and 0.175 J/kg, using MCS, ESA, and 

CSA methods, respectively. The errors for the mean estimate of energy for ESA range from 

3% to 10%, while these errors for the case of CSA are 33% to 36%. In terms of the second 

order moment of energy, the estimates of E(𝑒2) at 0.20 g intensity level are 0.025 J2/kg2, 

0.022 J2/kg2, and 0.009 J2/kg2 based on MCS, ESA, and CSA methods, respectively. The 

estimated quantities for 0.12 g intensity level are 0.0040 J2/kg2, 0.0037 J2/kg2, and 0.0014 

J2/kg2, and for 0.32 g intensity level are 0.122 J2/kg2, 0.110 J2/kg2, and 0.044 J2/kg2, for 

MCS, ESA, and CSA methods, respectively. It appears that the proposed ESA method 

outperforms the conventional approach for the estimation of E(𝑒2) where the error for ESA 

varies from 8% to 10%, while the corresponding errors for CSA is between 64% and 66%. 
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Figure 4-4 Probability density function of the energy of the system subjected to single 

white Gaussian noise at different standard deviations; (a) 0.12 g, (b) 0.20 g , and (c) 0.32 

g. 

 

4.4 Closure 

Non-integrable systems such as buildings and bridges have a general form of damping 

matrix which is coupled, sparse, symmetric, and positive definite. Such systems are often 

subjected to a single or a set of correlated excitations. The conventional stochastic 

averaging approach does not account for the off-diagonal damping terms as well as for 

individual effects of the diagonal components. In addition, this method assumes 

independent stochastic excitations for involved degrees of freedom of the system. Herein, 

a methodology is presented to extend the conventional stochastic averaging method to non-

integrable systems with general form of damping matrices subjected to perfectly correlated 

excitations. The proposed method called enhanced stochastic averaging applies method of 

weighted residuals to the drift and diffusion components of the original and equivalent 
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stochastic nonlinear systems to derive modified lumped damping and excitation intensity 

parameters. Subsequently, stochastic averaging of energy envelope is applied in this 

approach to obtain the probability density function (PDF) of the Hamiltonian. 

The application of the proposed method is demonstrated for a one-story building on a 

nonlinear raft foundation. The foundation is modelled using finite elements and its force-

deformation responses under stochastic excitations are used to derive and calibrate a Bouc-

Wen hysteresis model. The stationary PDF of the Hamiltonian of the building and 

foundation system is derived analytically using enhanced as well as conventional stochastic 

averaging methods; the results are compared to that of Monte Carlo simulations. The 

accuracy of both analytical methods is evaluated in terms of PDF and the mean and second 

order moment of the Hamiltonian of the system at different excitation levels. While errors 

in the estimated mean of energy using the conventional method ranges from 33% to 36%, 

this error is found to be less than 10% for the proposed method. In addition, enhanced 

stochastic averaging approach provides more accurate estimates of the tails of the 

stationary PDF compared to the conventional method. The proposed enhanced stochastic 

averaging method can be applied to multi-DOF systems and can be used in different fields 

such as reliability analysis and robust control of dynamic systems subjected to stochastic 

excitations.  
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Chapter 5:  A Stochastic Averaging-Based Optimal Control for 

Nonlinear Systems: Application to a Structure with Soil-Structure 

Interaction 
 

5.1 Introduction 

The design of control algorithms in optimal control strategies is commonly an optimization 

problem with the objective of minimizing a cost function. This function is usually 

composed of components representing the response of the system and the applied control 

forces. In feedback control designs, the set of control forces to be applied to the system is 

derived as functions of some measured responses. The parameters of such functions are 

determined via optimization techniques considering system dynamics. Since actual 

systems behave in a nonlinear manner especially in response to moderate to large 

disturbances and the fact that the nature of such excitations is often stochastic, 

incorporation of system dynamics in optimization problems becomes very challenging. As 

discussed in Chapter 2, conventional optimal control designs provide a solution as they 

require simplified models of nonlinear dynamic systems often based on their initial linear 

elastic behavior. For instance, Linear Quadratic Regulators (LQR) can be viewed as a 

solution of a simplified Hamilton-Jacobi-Bellman (HJB) equation that are limited to linear 

systems and second order convex objective functions of response variables and control 

forces (Todorov, 2006; Shafieezadeh et al., 2008; El-Khoury et al., 2015; El-Khoury et al., 
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2016). Although these approaches are simple to implement, they neglect the nonlinear 

behavior of the system in response to stochastic excitations; therefore, the derived control 

forces will not be optimal for the actual nonlinear system. This issue has been partially 

addressed through stochastic linearization where the nonlinear system is replaced with an 

equivalent linearized system such that the root mean square (RMS) of the error of the 

nonlinear term is minimized. However, the accuracy of this approach for predicting high 

order moments and peaks of system responses, among other measures, decreases as the 

number of DOFs of the system and the extent of nonlinearity in system behavior increase 

(Crandall, 2001; Socha, 2005). A class of nonlinear controllers known as nonlinear 

stochastic control algorithms based on stochastic averaging of energy envelope can 

overcome these limitations (Gu and Zhu, 2014). These methods can offer the following 

features: conservation of the nonlinearity of the system and the nature of the excitation, 

incorporation of high order convex objective functions, and reduction in the dimension of 

the problem.  

The above class of nonlinear stochastic control methods are based on stochastic 

averaging of energy envelope which suffers from the limitations explained in Chapter 4. 

This chapter introduces a stochastic controller based on the proposed enhanced stochastic 

averaging method presented in Chapter 4 in order to control the lateral deformations and 

story drift of the structure with nonlinear soil-structure-interactions (elaborate in the 

previous chapter) subjected to white Gaussian noise and seismic ground motions. Section 

5.2 presents the proposed algorithm for the controlled system. Section 5.3 discusses the 

results for the uncontrolled case, controlled state using LQR algorithm, and controlled state 
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based on the proposed method using enhanced stochastic averaging. Conclusions of the 

study are provided in Section 5.4. 

5.2 Methodology 

This section presents the proposed control method which employs a new stochastic 

averaging method based on energy envelope for representation of system dynamics in 

energy domain. The control strategy is derived for a two degree of freedom (DOF) 

nonlinear system; however, the method is general and can be applied to systems with higher 

DOFs. This section focuses on the control design, and the formulations are expanded for a 

fully observed system. However, the presented methods are general, and observer systems 

including sensor layout and observer algorithm can be designed and implemented 

separately. The design of the observer system is out of scope of this research. 

5.2.1 Optimal Control Design 

Adding the control force to the system in Equation (4.5), the equations of motion of the 

controlled system (Figure 5-1) can be presented as: 

�̈�1 = (−
𝜕£1(𝑥1, 𝑥2)

𝜕𝑥1
−
𝑐1
𝑚
�̇�1 +

𝑐1
𝑚
�̇�2 − 𝑢) + 𝜎0

d𝐵

d𝑡
 

�̈�2 = (−
𝜕£1(𝑥1, 𝑥2)

𝜕𝑥2
−
𝜕£2(𝑧2)

𝜕𝑧2
−
𝑐2′′

𝑚
�̇�2 +

𝑐1
𝑚
�̇�1 + 𝑢) + 𝜎0

d𝐵

d𝑡
 

          (5.1) 

The variable, 𝑢, represents the control force of the actuator shown in Figure 5-1. Adding 

the effect of the control force, Itô’s formulation in Equations (4.19a-c) is modified to: 

d𝑒 = 𝑀′driftd𝑡 + 𝜎′diffusiond𝐵      (5.2a) 
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𝑀′drift = (−(1 − 𝛼𝑧)𝑘2𝑧2�̇�2 −
𝑐′

𝑚
�̇�1
2 −

𝑐′

𝑚
�̇�2
2 + 𝜎′0

2

+ (1 − 𝛼𝑧)𝑘2𝑧2
𝑑𝑧2
𝑑𝑥2

�̇�2) + 𝑢(�̇�2 − �̇�1) 

     (5.2b) 

𝜎′diffusion
2 = (𝜎′0

2�̇�1
2 + 𝜎′0

2�̇�2
2)       (5.2c) 

 

 

Figure 5-1 Building model (a) schematic of the soil-foundation-structure system and (b) 

the representative lumped. 

 

 

 

Applying stochastic averaging to Equations (5.2a-c) using Equations (4.16a-b), (4.17a-b), 

and (4.18a-b), the drift and diffusion components are 

d𝑒 = 𝑀′̅̅̅̅ driftd𝑡 + 𝜎′̅diffusiond𝐵       (5.3a) 

𝑀′̅̅̅̅ drift = −2
𝑐′

𝑚
∅0 − ((1 − 𝛼𝑧)𝑘2𝑧2�̇�2̅̅ ̅̅ ̅̅ ) + 𝜎′0

2
+ �̅�(�̇�2 − �̇�1)       (5.3b) 

𝜎′2̅̅ ̅̅ diffusion = 2𝜎′0
2∅0        (5.3c) 
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The design of the control strategy is treated as an optimization problem where a 

functional representing the cost objective function is minimized while satisfying a 

constraint that is the nonlinear dynamic behavior of the system. This optimization problem 

can be presented as the dynamic programming equation, also known as HJB equation. The 

functional or alternatively the value function, 𝑉(𝑡, 𝑒), is initially introduced and defined in 

terms of the performance index, 𝐿(𝑡, 𝑒, �̅�), as (Fleming and Soner, 2006; Sun, 2006): 

𝑉(𝑡, 𝑒) = min (∫ 𝐿(𝜏, 𝑒, �̅�)
𝑇

𝑡

d𝜏) = min (∫ 𝐿(𝜏, 𝑒, �̅�)
𝑡+𝑑𝑡

𝑡

d𝜏 + ∫ 𝐿(𝜏, 𝑒, �̅�)
𝑇

𝑡+𝑑𝑡

𝑑𝜏) 

= min(∫ 𝐿(𝜏, 𝑒, �̅�)
𝑡+𝑑𝑡

𝑡

𝑑𝜏 + 𝑉(𝑡 + d𝑡, 𝑒 + d𝑒))

= min(𝐿(𝑡, 𝑒, �̅�)d𝑡 + 𝑉(𝑡 + d𝑡, 𝑒 + d𝑒)) 

  (5.4) 

where 𝑇 is the final time. Applying the second order Taylor approximation, Equation (5.4) 

can be written as: 

𝑉(𝑡, 𝑒) = 𝐿(𝑡, 𝑒, �̅�)d𝑡 + 𝑉(𝑡, 𝑒) +
𝜕𝑉

𝜕𝑡
d𝑡 +

𝜕𝑉

𝜕𝑒
d𝑒 +

1

2

𝜕2𝑉

𝜕𝑒2
(d𝑒)2     (5.5) 

Substituting Equations (5.3a-c) in Equation (5.5), the HJB equation is derived as: 

0 =
𝜕𝑉(𝑡, 𝑒)

𝜕𝑡
d𝑡 + 𝐿(𝑡, 𝑒, �̅�)𝑑𝑡 + �̅�′drift

∂𝑉(𝑡, 𝑒)

∂𝑒
d𝑡 + 𝜎 ′̅diffusion

∂𝑉(𝑡, 𝑒)

∂𝑒

d𝐵 × d𝑡

d𝑡
 

           +
𝑀′2̅̅ ̅̅ ̅

drift

2

∂2𝑉(𝑡, 𝑒)

∂𝑒2
d𝑡 × d𝑡 +

𝜎′2̅̅ ̅̅ diffusion
2

∂2𝑉(𝑡, 𝑒)

∂𝑒2
d𝐵 × d𝐵     (5.6) 

Applying Itô’s calculus (d𝑡 ≠ 0; d𝑡 × d𝑡 = 0; d𝑡 × d𝐵 = 0; d𝐵 × d𝐵 = d𝑡), the above 

equation can be simplified to: 

𝜕𝑉(𝑡, 𝑒)

𝜕𝑡
= −𝐿(𝑡, 𝑒, �̅�) − �̅�′drift

∂𝑉(𝑡, 𝑒)

∂𝑒
−
𝜎′2̅̅ ̅̅ diffusion

2

∂2𝑉(𝑡, 𝑒)

∂𝑒2
     (5.7) 
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For optimal control design, the system in Equation (5.1) is subjected to stationary Gaussian 

white noise and infinite time horizon for control is considered i.e. 𝑇 = ∞. To ensure 

boundedness of the solution, the value function, 𝑉(𝑡, 𝑒), and the objective function, 

𝐿(𝑡, 𝑒, �̅�), can be decomposed into products of two independent functions: one solely 

dependent on time and the other on energy (Fleming and Soner, 2006): 

𝑉(𝑡, 𝑒) = exp(−𝜌𝑡) × 𝑉′(𝑒)       (5.8a) 

𝐿(𝑡, 𝑒, �̅�) = exp(−𝜌𝑡) × 𝐿′(𝑒, �̅�)       (5.8b) 

where 𝜌 (> 0) known as the discount factor represents the rate of convergence of the value 

function, 𝑉′(𝑒). The cost function, 𝐿′(𝑒, 𝑢), is defined as 

𝐿′(𝑒, �̅�) = 𝜃(𝑒) + 𝑅�̅�2      (5.9) 

where 𝜃(𝑒) is a convex polynomial function that depends on the energy of the system and 

𝑅 is a positive gain factor that represents the gain for the control force in the objective 

function. Substituting Equations (5.7a-b) into Equation (5.6), the modified HJB equation 

is derived as: 

𝜌𝑉′(𝑒) = 𝐿′(𝑒, �̅�) + �̅�′drift
d𝑉′(𝑒)

𝑑𝑒
+
𝜎2′diffusion

2

d2𝑉′(𝑒)

𝑑𝑒2
    (5.10) 

By partially differentiating Equation (5.10) with respect to �̅�, the expression for averaged 

control force is obtained as: 

�̅� = −
1

2𝑅

d𝑉′(𝑒)

𝑑𝑒
(�̇�2 − �̇�1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅     (5.11) 

Substituting Equation (5.11) into Equations (5.3a-c), the Itô equation for the energy of the 

system can be derived as: 

d𝑒 = 𝑀′̅̅̅̅ driftd𝑡 + 𝜎′̅diffusiond𝐵  (5.12a) 
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𝑀′̅̅̅̅ drift = −2
𝑐′

𝑚
∅0 − ((1 − 𝛼𝑧)𝑘2𝑧2�̇�2̅̅ ̅̅ ̅̅ ) + 𝜎′0

2
−
1

2𝑅

d𝑉′

𝑑𝑒
(�̇�2 − �̇�1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2  (5.12b) 

𝜎′2̅̅ ̅̅ diffusion = 2𝜎′0
2∅0  (5.12c) 

The stochastic averaging of the term (�̇�2 − �̇�1)
2, yields: 

(�̇�2 − �̇�1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2 = �̇�1
2̅̅ ̅ + �̇�2

2̅̅ ̅ − 2�̇�1�̇�2̅̅ ̅̅ ̅̅ = 2∅0   (5.12d) 

Replacing Equation (5.12d) into Equation (5.12b), the Itô equation is: 

d𝑒 = 𝑀′̅̅̅̅ driftd𝑡 + 𝜎′̅diffusiond𝐵   (5.13a) 

𝑀′̅̅̅̅ drift = −2
𝑐′

𝑚
∅0 − ((1 − 𝛼𝑧)𝑘2𝑧2�̇�2̅̅ ̅̅ ̅̅ ) + 𝜎′0

2
−
1

𝑅

d𝑉′

𝑑𝑒
∅0   (5.13b) 

𝜎′2̅̅ ̅̅ diffusion = 2𝜎′0
2∅0    (5.13c) 

Substituting Equations (5.13a-b) into Equation (5.10), the resulting dynamic equation 

becomes solely a function of energy. This nonlinear differential equation can be solved 

iteratively using collocation method (Miranda and Fackler, 2002).  In this approach, 𝑉′, is 

discretized to 

𝑉′ =∑ℎ𝑗𝜑𝑗(𝑒)

𝑛

𝑗=1

       (5.14) 

where 𝜑1,…,𝜑𝑛 are known independent basis functions and ℎ1,…,ℎ𝑛 are unknown 

coefficients. Substituting Equation (5.14) into Equation (5.10) yields: 

𝜌∑ℎ𝑗𝜑𝑗(𝑒) = 𝐿
′(𝑒, �̅�) + �̅�′drift∑ℎ𝑗

d𝜑𝑗(𝑒)

d𝑒

𝑛

𝑗=1

𝑛

𝑗=1

 

                     +
𝜎′2diffusion

2
∑ℎ𝑗

d2𝜑𝑗(𝑒)

d𝑒2

𝑛

𝑗=1

      (5.15) 
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To solve this nonlinear equation at n collocation nodes, an iterative rule is used to update 

the coefficients until convergence is achieved. The convergence within the domain is 

measured by low residue values at the collocation nodes. The implemented basis functions 

are Chebyshev basis polynomials which provide computationally efficient and accurate 

solution. This procedure ensures minimizing the residue and determining a well-defined 

solution for the value function (Miranda and Fackler, 2002). Increasing the number of the 

nodes, basis functions, and the domain of interest can improve the quality of the solutions. 

Using the collocation method, 𝑉′(𝑒) in Equation (5.15) can be obtained and replaced in the 

control force equation to derive: 

𝑢 = −
1

2𝑅

d𝑉′(𝑒)

𝑑𝑒
(�̇�2 − �̇�1)        (5.16) 

For multi-DOF non-integrable systems, the nonlinear HJB formulation can be derived in a 

form similar to Equation (5.10). In this case, one Hamiltonian representing the total energy 

of the system is defined, a single nonlinear HJB equation is derived, and a value function 

is determined, accordingly. It should be noted that the computational demand to apply 

enhanced stochastic averaging method based on energy envelope increases with the size 

(or DOFs) of the system. This issue will be addressed in future research via methods such 

as advanced multi-dimensional integration techniques. 

5.3 Discussion 

The system in Figure 5-1a is subjected to a series of white noise excitations with various 

intensity levels (𝜎0 = 0.12 g, 0.20 g, 0.32 g)  as well as ground motions from historic 

earthquakes including 1994 Northridge (peak ground motion (PGA) = 1.33 g recorded at 

the Sepulveda Veterans Hospital station), 1940 El-Centro (PGA = 0.35 g recorded at the 
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Imperial Valley Irrigation District station), and 1995 Kobe (PGA = 1.28 g recorded at the 

Kobe University station); Northridge and Kobe ground motions are considered near-field 

earthquakes, while El-Centro ground motion is considered a far-field earthquake. The 

ground motions were extracted from the PEER Strong Motion Database 

(http://peer.berkeley.edu/smcat). Figure 5-2 presents the power spectral density of the 

selected ground motions and highlights the differences in the amplitude and frequency 

domain characteristics of these records. The lateral force-displacement response of the 

foundation under Northridge earthquake is shown in Figure 5-3a. It is seen that the response 

is nonlinear but the extent of nonlinearity is limited. In order to assess the performance of 

considered controllers for highly nonlinear systems, the Bouc-Wen model parameter, γBW, 

that controls the shape of the hysteresis loops is increased by five times. The new structure 

model is called the modified system, and the lateral force-displacement response of its 

foundation under Northridge earthquake is shown in Figure 5-3b where higher extent of 

nonlinearity is observed. 

 

 
Figure 5-2 Power spectral density versus frequency. 

 

 

http://peer.berkeley.edu/smcat
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(a) 

  

(b) 

   

(c) 

       

(d) 

Figure 5-3 The nonlinear foundation response under Northridge earthquake for (a) the 

uncontrolled original system (γBW = 5.82m-1) and (b) the uncontrolled modified system 

(γBW = 29.1m-1), and the PDF of the energy of (c) the original uncontrolled system (γBW = 

5.82 m-1, Kw = 1, c' = 1.44 c1, σ0' = 1.67 σ0) and (d) the modified uncontrolled system 

(γBW = 29.1 m-1, Kw = -2, c' = 4.12 c1, σ0' = 1.41 σ0) derived using Monte Carlo 

simulations (MCS), enhanced stochastic averaging (ESA), and conventional stochastic 

averaging (CSA) (Kw is defined in Equation (4.22) and the parameters c' and σ0' are 

defined in Equations (4.24a-b)). 

 

 

 

In order to evaluate the performance of the proposed controller, additional cases are 

considered including the uncontrolled structure and the building controlled using the LQR 

strategy. In conventional linear feedback control, nonlinearity is ignored and the LQR 

algorithm is designed based on the initial linear behavior of the system (Todorov, 2006). 
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To further optimize the performance of the conventional controller and have a fair 

comparison with the proposed control strategy, stochastic LQR (SLQR) method is adopted. 

In this approach, the system model used for control design is derived using stochastic 

linearization, where the hysteresis component is linearized and considered as part of the 

response variables of the system (Basili and Angelis, 2007; El-Khoury et al., 2015; El-

Khoury et al., 2016). In addition, the LQR control design requires considering positive 

definite weighting matrices, 𝑄SLQR and 𝑅SLQR, to indicate the importance of system 

response variables and applied control forces in the optimization process, respectively. In 

this case, 𝑅SLQR is considered 1 and 𝑄SLQR for the vector of five state 

variables (𝑥1, 𝑥2, �̇�1, �̇�2, 𝑧2) is considered to have the following form: 

𝑄SLQR = diag(vSLQR, vSLQR, 0,0,0)       (5.17) 

where vSLQR is a positive number that is chosen such that the applied control forces in 

SLQR are at the same level of control forces in ESA-Control strategy. 

The two controlled systems together with the uncontrolled structure are subjected to a 

white Gaussian noise excitation with the intensity of 0.32 g and Kobe ground motion. The 

relative displacement results and the applied control forces are presented in Figure 5-4 (the 

drift (𝑥2 − 𝑥1) foundation displacements (𝑥2) and the absolute acceleration of the roof, �̈�1A 

(R1 = 
ESA−Control

SLQR
)). Under the white noise disturbance, the reduction in the relative 

displacement achieved via the ESA-control method is 8% more than that gained using 

SLQR at a comparable control force level: this can be observed in the time history of the 

applied control force of the actuator in Figure 5-4 f. Similar performance is observed for 

the case of 0.2 g intensity for the white noise in Table 5-1 where 7% further reduction is 
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gained using ESA-control method with respect to SLQR for the relative displacement 

response of the structure. When the uncontrolled system is subjected to white noise with 

𝜎0 = 0.32 g, the drift ratio is found as 1.19% resulting in an irreparable damage in the 

structure. Both considered controllers reduce the drift ratio to fall within the repairable 

range: the drift ratios for ESA-control and SLQR are found 0.53% and 0.56%, respectively. 

Compared to SLQR, noticeable improvements in the response variables are also observed 

under Kobe ground motion where 16%, 12%, and 14% reductions are achieved for the 

maximum relative displacement of the structure with respect to the foundation, the 

foundation displacement, and the absolute acceleration of the roof, as presented in Table 

5-1. For Northridge earthquake, the SLQR performs slightly better than the ESA-control 

method, but both strategies reduce the drift ratio to within the safe and repairable damage 

state (𝐷𝑅 < 1.00%). For the El-Centro ground motion, the proposed control algorithm 

reduces the peak relative displacement of the structure and foundation displacement by 7% 

compared to SLQR as seen in Table 5-1.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5-4 The relative displacement of the structure with respect to foundation for the 

two control cases and the uncontrolled structure subjected to (a) white noise with 

intensity of 0.32 g and (b) Kobe ground motion. The relative displacement results for the 

two control cases under (c) white noise with intensity of 0.32 g and (d) Kobe ground 

motion. Time-history of applied control forces for the two control strategy under (e) 

white noise with intensity of 0.32 g and (f) Kobe ground motion. 
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γBW = 5.82m-1 

White Noise 

(0.12 g) Peak/RMS 

White 

Noise (0.2 

g) Peak/RMS 

State 

(𝑥2
− 𝑥1) 
 (mm) 

𝑥2 

(mm) 

�̈�1A  

(m/sec2) State 

(𝑥2
− 𝑥1) 
 (mm) 

𝑥2 

(mm) 

�̈�1A 

(m/sec2) 

Uncont. 21.0/6.5 14.1/4.2 13.3/4.1 Uncont. 32.5/10.1 22.3/6.6 20.5/6.4 

ESA-Cont. 7.8/2.1 6.0/1.6 5.4/1.5 ESA-Cont. 13.1/3.6 10.1/2.7 8.9/2.4 

SLQR 8.5/2.3 6.2/1.6 5.4/1.5 SLQR 14.1/3.8 10.3/2.7 9.0/2.5 

R1 0.92/0.92 0.98/0.99 0.98/0.99 R1 0.93/0.93 0.98/0.99 0.99/0.99 

White Noise 

(0.32 g) Peak/RMS Northridge Peak/RMS 

State 

(𝑥2
− 𝑥1) 
 (mm) 

𝑥2 

(mm) 

�̈�1A  

(m/sec2) State 

(𝑥2
− 𝑥1) 
 (mm) 

𝑥2 

(mm) 

�̈�1A 

(m/sec2) 

Uncontrolled 47.7/14.8 33.8/9.9 30.2/9.3 Uncont. 54.9/10.7 44.3/7.3 34.8/6.8 

ESA-Control 21.3/5.7 16.5/4.4 14.5/3.9 ESA-Cont. 38.4/4.7 33.6/3.6 25.9/3.1 

SLQR 22.4/6.1 16.7/4.4 14.5/3.9 SLQR 36.3/4.6 34.7/3.5 26.3/2.9 

R1 0.95/0.94 0.99/1.00 1.00/0.99 R1 1.06/1.03 0.97/1.01 0.98/1.04 

El-Centro Peak/RMS Kobe Peak/RMS 

State 

(𝑥2
− 𝑥1) 
 (mm) 

𝑥2 

(mm) 

�̈�1A  

(m/sec2) State 

(𝑥2
− 𝑥1) 
 (mm) 

𝑥2 

(mm) 

�̈�1A 

(m/sec2) 

Uncont. 23.4/3.6 15.9/3.6 14.8/3.5 Uncont. 28.6/5.0 22.9/3.7 18.1/3.2 

ESA-Cont. 9.8/1.5 7.0/1.5 6.7/1.3 ESA-Cont. 18.4/3.6 17.8/3 12.4/2.4 

SLQR 10.5/1.5 7.5/1.5 6.9/1.3 SLQR 21.9/3.7 20.3/3.1 14.4/2.4 

R1 0.93/1.02 0.93/1.01 0.98/1.01 R1 0.84/0.95 0.88/0.98 0.86/0.98 

Table 5-1 Simulation results for various control cases for the original system. 

 

 

To investigate the effectiveness of the considered control algorithms for higher levels 

of nonlinearity in the system, the parameter, γBW, is increased by five times. This 

modification results in a decrease of the equivalent stiffness of about 50% with an increase 

in the dissipative energy as shown in Figure 5-5b. As seen in Table 5-2, with the increase 

of the extent of hysteretic nonlinearity, the foundation displacement increases and the inter-

story drift decreases; this trend has also been observed in general multi-story buildings 

(Raychowdhury, 2011; Nateghi-A and Rezaei-Tabrizi, 2013). Similar to the case of the 

original system, the enhanced stochastic averaging is applied to the modified structure and 
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the PDF of energy is derived and compared to that from Monte Carlo simulations and the 

conventional stochastic averaging approach in Figure 5-3d. It is observed that ESA 

provides a considerably better estimation of the PDF of energy of the system compared to 

the conventional method. Simulation results for the uncontrolled structure and the two 

control systems under white noise and recorded ground motions are shown in Table 5-2. 

The most pronounced improvement achieved using ESA-control approach versus SLQR is 

under Kobe ground motion where 14%, 21%, and 15% reductions are gained respectively 

for peak relative story displacement, foundation displacement, and roof acceleration. Under 

white noise excitation, the largest improvement is 8% for the RMS of the relative 

displacement for the intensity of 𝜎0 = 0.12 g. Unlike the case in the original system, the 

ESA-control method performed better than SLQR under Northridge ground motion where 

the proposed control approach further reduced the relative story displacement and 

foundation displacement 2% and 3%, respectively, compared to SLQR. In addition, the 

uncontrolled system under Northridge earthquake does not sustain damage as the drift ratio 

is 0.93%. The likelihood of damage is reduced using both controllers: the drift ratio is 

0.77% and 0.79% for ESA-control method and SLQR, respectively. Time histories of the 

relative story displacement of the modified uncontrolled structure and the modified system 

equipped with SLQR and ESA-control methods together with the applied control forces 

for a white noise excitation with intensity of 0.32 g and Kobe ground motion are shown in 

Figures 5.5a-f. 
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(a) 

 

(b) 

(c) 

 

(d) 

(e) 

 

(f) 

Figure 5-5 The relative displacement of the modified structure with respect to foundation 

for the two control cases and the uncontrolled modified structure subjected to (a) white 

noise with intensity of 0.32 g and (b) Kobe ground motion. The relative displacement 

results for the two control cases under (c) white noise with intensity of 0.32 g and (d) 

Kobe ground motion. Time-history of applied control forces for the two control strategy 

under (e) white noise with intensity of 0.32 g and (f) Kobe ground motion. 
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γBW = 29.1 m-1 

White Noise 

(0.12 g) Peak/RMS 

White 

Noise (0.2 

g) Peak/RMS 

State 

(𝑥2
− 𝑥1) 
 (mm) 

𝑥2 

(mm) 

�̈�1A  

(m/sec2) State 

(𝑥2
− 𝑥1) 
 (mm) 

𝑥2 

(mm) 

�̈�1A 

(m/sec2) 

Uncont. 15.2/4.8 11.6/3.3 9.6/3.00 Uncont. 21.8/6.9 18.3/5 13.8/4.40 

ESA-Cont. 6.9/2.0 6.0/1.6 4.80/1.40 ESA-Cont. 11.2/3.2 10.5/2.7 7.70/2.20 

SLQR 7.4/2.1 6.2/1.6 4.90/1.40 SLQR 11.8/3.4 10.7/2.7 7.90/2.20 

R1 0.93/0.92 0.98/0.99 0.98/0.99 R1 0.94/0.93 0.98/1.00 0.98/0.99 

White Noise 

(0.32 g) Peak/RMS Northridge Peak/RMS 

State 

(𝑥2
− 𝑥1) 
 (mm) 

𝑥2 

(mm) 

�̈�1A  

(m/sec2) State 

(𝑥2
− 𝑥1) 
 (mm) 

𝑥2 

(mm) 

�̈�1A 

(m/sec2) 

Uncontrolled 29.7/9.5 28.6/7.3 18.70/6.00 Uncont. 37.0/5.9 54.9/5.2 23.5/3.70 

ESA-Control 17.3/5 17.9/4.4 11.90/3.50 ESA-Cont. 30.8/4.0 46.1/4.1 21.90/2.70 

SLQR 17.7/5.3 17.9/4.4 12.10/3.50 SLQR 31.4/3.8 47.7/4.1 22.5/2.60 

R1 0.98/0.95 1.00/1.00 0.98/1.00 R1 0.98/1.04 0.97/1.00 0.98/1.03 

El-Centro Peak/RMS Kobe Peak/RMS 

State 

(𝑥2
− 𝑥1) 
 (mm) 

𝑥2 

(mm) 

�̈�1A  

(m/sec2) State 

(𝑥2
− 𝑥1) 
 (mm) 

𝑥2 

(mm) 

�̈�1A 

(m/sec2) 

Uncont. 16.1/3 14/2.8 10.20/2.70 Uncont. 27.9/5.5 29.9/5 17.60/3.50 

ESA-Cont. 8.9/1.5 7.3/1.4 6.30/1.20 ESA-Cont. 17.2/3.5 23.4/3.5 11.60/2.30 

SLQR 9.6/1.5 7.0/1.4 6.50/1.20 SLQR 20.0/3.5 29.6/3.6 13.70/2.40 

R1 0.93/1.02 1.04/1.01 0.97/1.01 R1 0.86/0.99 0.79/0.95 0.85/0.99 

Table 5-2 Simulation results for various control cases for the modified system. 

 

5.4 Closure 

This study proposes a stochastic control algorithm based on an enhanced stochastic 

averaging method of the energy envelope. The developed enhanced stochastic averaging 

method addresses current limitations in conventional techniques with respect to damping 

effects and applied stochastic excitations in nonlinear non-integrable systems. The 

improvement is achieved by deriving an equivalent nonlinear stochastic system with an 

equivalent excitation intensity and modified damping parameters by equating drift and 

diffusion components of the modified and the original system using method of weighted 

residuals and employing high order moments of system velocities. The optimization 
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process to derive the optimal control force model is formulated according to the nonlinear 

Hamilton-Jacobi-Bellman equation where the objective is to reduce the excitation-induced 

energy of the system.  

The performance of the proposed control model is assessed for response mitigation of 

a one-story building on a shallow nonlinear hysteretic foundation in loose sand. The system 

is subjected to various excitations including white noise of different intensity levels and 

historic ground motions with different peak ground accelerations. In addition, the proposed 

control strategy is compared to the uncontrolled system and the structure controlled with 

an LQR design based on a stochastically linearized system model (SLQR) with similar 

maximum applied control forces. To investigate the sensitivity of the system to external 

excitation, the system is subjected to three artificial excitations of different intensity levels 

and three ground motions with different peak ground acceleration (El-Centro, Northridge 

and Kobe) and the analysis is performed accordingly. Simulation results for both synthetic 

and recorded excitations indicate significant improvements for the suggested control 

algorithm versus SLQR. For instance, the proposed method reduced drift ratio and 

foundation displacement responses by 16% and 12%, respectively compared to SLQR 

method using equivalent level of forces under Kobe ground motion. To evaluate the 

effectiveness of the considered control methods for higher levels of nonlinearity, the 

system model parameter that control the shape of hysteresis loop of the foundation is 

increased resulting in a decrease in the equivalent stiffness and increase in the dissipation 

energy in the foundation. Simulations results indicate higher levels of improvement in the 

system response with respect to SLQR compared to the case of the original system: under 

Kobe ground motion, reductions of 14% and 21% are achieved for the maximum relative 
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displacement and foundation displacement respectively using the proposed method 

compared to SLQR. 

Similarly for multi-story buildings with nonlinear SSI, the proposed framework can be 

generalized to determine the equivalent damping and excitation parameters using the 

method of Weighted Residuals and conduct stochastic averaging of energy envelope. For 

the considered historic ground motions, Gaussian white noise excitations, and the structural 

system, it can be concluded that the proposed control strategy based on enhanced stochastic 

averaging of energy envelope is more efficient than SLQR algorithm. This superior 

performance is due to ability of the proposed control strategy to explicitly incorporate the 

nonlinearity of the system through the averaging method and implement more complex 

and higher order objective functions in the HJB equation compared to conventional optimal 

control techniques. The conclusions of this study can be further expanded by evaluating 

the seismic performance of the proposed control system for various structures and other 

ground motion records. This strategy can be adopted in various engineering fields and 

applied to improve robustness and reliability of different systems. In addition to buildings, 

the proposed control strategy can be used to suppress vertical vibrations of cars, mitigate 

the dynamic response and enhance the efficiency of wind turbines, and reduce the potential 

of pounding in multi-span bridges, among other applications. 
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Chapter 6:  Reliability-based Control Algorithms Using Enhanced 

Stochastic Averaging 
 

6.1 Introduction 

As discussed in Section 2.4, current reliability-based control techniques have been 

successfully applied to linear systems; however, incorporation of stochastic nonlinear 

behavior of systems in such control designs remains a challenge (Yuen and Beck, 2003; 

Scruggs et al., 2006; Taflanidis et al., 2008a; Taflanidis et al., 2008b; Taflanidis and 

Scruggs, 2010).  

The primary contribution here is the development of reliability-based control 

algorithms for nonlinear hysteretic systems. Compared to other approaches including the 

work presented in Chapter 5 and in El-Khoury and Shafieezadeh (2016) that aimed at 

minimizing structure responses without considering the implications of the response levels 

for the performance of the systems, the proposed algorithms here explicitly optimize 

reliability of structures; hence, the primary objective function in the optimization 

algorithms is the probability of failure. This chapter presents two reliability-based control 

algorithms that minimize failure probabilities of nonlinear hysteretic systems subjected to 

stochastic excitations. The proposed methods include constrained reliability-based control 

(CRC) and unconstrained reliability-based control (URC) algorithms. Accurate 

probabilistic estimates of nonlinear system responses to stochastic excitations are derived 
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analytically using enhanced stochastic averaging of energy envelope proposed previously 

by the authors. Convolving these demand estimates with capacity models yields the 

reliability of nonlinear systems in the control design process. In the CRC approach, first- 

and second-level optimizations are implemented. The first-level optimization entails 

obtaining the value function of the Hamilton-Jacobi-Bellman (HJB) equation (Fleming and 

Soner, 2006) through enhanced stochastic averaging of energy envelope. The second-level 

optimization considers minimizing the probability of failure subjected to force constraints 

by searching for gain parameters in the objective function. Here, the probability of failure 

is defined as the likelihood of exceeding a predefined limit. In the URC approach, a single 

optimization process is utilized to minimize the probability of failure by directly searching 

for the optimal control gain. To ensure that applied control forces are dissipative, they are 

enforced to follow a particular form. The performance of the reliability-based algorithms 

is evaluated on the system introduced in Chapter 4. 

The rest of the chapter is organized as follows. Section 6.2 presents the detailed 

formulation of the proposed reliability-based control algorithms. Section 6.3 implements 

the design for the system with soil structure interaction (SSI) discussed in Chapter 3. 

Section 6.3.1 presents optimization procedures for the reliability-based algorithms. Section 

6.3.2 discusses the results of the proposed algorithms in comparison to the uncontrolled 

case and the system controlled using LQR algorithm applied to a stochastically linearized 

model of the system. Finally, conclusions of the study are presented in Section 6.4. 
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6.2 Methodology 

The reliability-based control algorithms for non-integrable nonlinear systems are developed 

using enhanced stochastic averaging (refer to Section 4.2) (El-Khoury and Shafieezadeh, 

2016) of energy envelope. This process and the integration of reliability concepts into 

stochastic control design for nonlinear hysteretic systems subjected to stochastic 

excitations are explained in detail in Sections 6.2.1 and 6.2.2. Two approaches are derived: 

constrained reliability-based control (CRC) and unconstrained reliability-based control 

(URC). In CRC approach (Section 6.2.1), an analytical optimization method solves the 

Hamilton-Jacobi-Bellman equation and then a numerical optimization technique minimizes 

the probability of failure by searching for optimal gains. In URC approach (Section 6.2.2), 

a numerical optimization method is employed to directly minimize the probability of failure. 

6.2.1 Constrained Reliability-Based Control Algorithm 

In order to develop CRC design, first, the dynamic equilibrium equation of the controlled 

system is translated into the Itô equation of energy envelope using enhanced stochastic 

averaging. The active controller added here could be a system of electric or hydraulic 

actuators; this controller installed in the first story connecting the foundation to the roof as 

shown Figures 5-1a-b. Next, the HJB equation is derived for the first-level optimization, 

the probability of failure is defined as the objective in the second-level optimization, and a 

numerical minimization technique is applied to find optimal control gain parameters such 

that the probability of failure is minimized while constraining the magnitude of control 

forces to an upper bound that represents the capacity of actuators. The equations of motion 

of the controlled system can be presented as: 
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�̈�1 = (−
𝜕£1(𝑥1, 𝑥2)

𝜕𝑥1
−
𝑐1
𝑚
�̇�1 +

𝑐1
𝑚
�̇�2 − 𝑢) + 𝜎0

d𝐵

d𝑡
 

�̈�2 = (−
𝜕£1(𝑥1, 𝑥2)

𝜕𝑥2
−
𝜕£2(𝑧2)

𝜕𝑧2
−
𝑐2′′

𝑚
�̇�2 +

𝑐1
𝑚
�̇�1 + 𝑢) + 𝜎0

d𝐵

d𝑡
 

      (6.1) 

Applying stochastic averaging of energy envelope to Equation (6.1), the drift and diffusion 

components are: 

d𝑒 = 𝑀′̅̅̅̅ driftd𝑡 + 𝜎′̅diffusiond𝐵    (6.2a) 

𝑀′̅̅̅̅ drift = −2
𝑐′

𝑚
∅0 − ((1 − 𝛼𝑧)𝑘2𝑧2�̇�2̅̅ ̅̅ ̅̅ ) + 𝜎′0

2
+ �̅�(�̇�2 − �̇�1)    (6.2b) 

𝜎′2̅̅ ̅̅ diffusion = 2𝜎′0
2∅0     (6.2c) 

Next, the control force is determined based on constrained reliability-based control design. 

As mentioned earlier, the constrained reliability-based design incorporates first-level and 

second-level optimizations that are implemented as follows.  

6.2.1.1 First Level Optimization 

In the first-level optimization, the HJB formulation for the system model in Equations (6.2-

a-c) is derived in Equation (5.10) and Equation (5.11): 

𝜌𝑉′(𝑒) = 𝐿′(𝑒, �̅�) + �̅�′drift
d𝑉′(𝑒)

𝑑𝑒
+
𝜎2′diffusion

2

d2𝑉′(𝑒)

𝑑𝑒2
   (6.3a) 

�̅� = −
1

2𝑅

d𝑉′(𝑒)

𝑑𝑒
(�̇�2 − �̇�1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    (6.3b) 

𝐿1 = 𝐿′(𝑒, �̅�) = 𝜃(𝑒) + 𝑅�̅�
2   (6.3c) 

where 𝜃(𝑒) (e.g. 𝑠1𝑒 + 𝑠2𝑒
2; 𝑠𝑖 ≥ 0; i = 1, 2) is a convex polynomial function that depends 

on the energy of the system and 𝑅 is a positive gain factor that represents the gain for the 

control force in the objective function. As discussed in Section 5.2, Equations (6.3a-b) are 

solved using the collocation method (Miranda and Fackler, 2002). In the process of solving 
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the HJB equation, the number of nodes, basis functions, and the domain of interest can be 

increased to improve the quality of the solutions (Miranda and Fackler, 2002). 

6.2.1.2 Second Level Optimization 

A numerical optimization is employed to find optimal gain parameters 𝑠1 and 𝑠2 in 

Equation (6.3c) such that the probability of failure 𝐿2 is minimized: 

𝐿2 = 𝑃(𝑒 ≥ 𝑒𝑐) = ∫ 𝑝s(𝑒)𝑑𝑒
∞

𝑒𝑐

       (6.4) 

Restrictions are applied to ensure the convexity of the cost function 𝐿1. Herein, the 

objective is to reduce the( likelihood of exceeding a critical threshold 𝑒𝑐. The probability 

distribution function (PDF) of energy,  𝑝(𝑒), can be derived as: 

𝑝(𝑒) =
𝜆e

�̅�′diffusion
2 exp {∫

2𝑀′̅̅̅̅ drift(𝑦)

�̅�′diffusion
2 (𝑦)

𝑒

0

d𝑦}   (6.5) 

where for controlled and uncontrolled states, 𝑀′̅̅̅̅ drift are derived as shown in Equation 

(6.2b), respectively: 

𝑀′̅̅̅̅ drift = −2
𝑐′

𝑚
∅0 − ((1 − 𝛼𝑧)𝑘2𝑧2�̇�2̅̅ ̅̅ ̅̅ ) + 𝜎′0

2
+
1

2𝑅

d𝑉′

𝑑𝑒
(�̇�2 − �̇�1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2      (6.6) 

In the above equations, 𝜆e is a constant to ensure that the integration of the PDF function 

over the entire domain yields one:  

𝜆e =
1

∫
1

�̅�′diffusion
2 (𝑒)

exp {∫
2�̅�′drift(𝑦)

�̅�′diffusion
2 (𝑦)

𝑒

0
d𝑦}

+∞

0
d𝑒

 
   (6.7) 

6.2.2 Unconstrained Reliability-Based Control Algorithm 

To provide more flexibility for the form of the control force, the unconstrained reliability-

based control approach is proposed. This algorithm does not rely on the HJB equation to 
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define the structure of the control force. Rather, it considers a similar but more flexible 

form for the control force represented as: 

�̅� = −
1

2𝑅
g(𝑒)(�̇�2 − �̇�1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅           (6.8) 

where 𝑔(𝑒) is a second order polynomial function in terms of energy and is defined as: 

𝑔(𝑒)  = 𝑗0 + 𝑗1𝑒 + 𝑗2𝑒
2      (6.9) 

A numerical optimization similar to the constrained reliability-based control algorithm is 

applied to find optimal values for parameters 𝑗0, 𝑗1, and 𝑗2 such that the following objective 

function that estimates the probability of failure is minimized. 

𝐿0 = 𝑃(𝑒 ≥ 𝑒𝑐) = ∫ 𝑝(𝑒)𝑑𝑒
∞

𝑒𝑐

 (6.10) 

Restrictions are appropriately enforced on the space of admissible controllers to yield a 

bounded dissipative control force. In this case, the constants 𝑗𝑖 (i = 0, 1, 2) are chosen such 

that 𝑔(𝑒) remains positive across the domain (0, 𝑒max ). This condition ensures a negative 

gain in Equation (6.8) and hence ensures response reduction and dissipation of energy. In 

addition, the limit 𝑢max is applied to the control force to account for the capacity of the 

control device.  

6.3 Implementation 

The reliability-based algorithms are implemented in the same system with SSI discussed 

in Chapters 3 and 4.  the control design is aimed at mitigating the probability of failure due 

to large story drifts. Next, the constrained reliability-based control (CRC) and 

unconstrained reliability-based control (URC) algorithms are applied, and their 
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performance is compared to stochastic LQR (SLQR) and uncontrolled cases. The 

controlled and uncontrolled systems are subjected to artificial and historic ground motions 

similar to Chapter 5. 

6.3.1 Control Designs 

Initially, the Itô formulation of the uncontrolled system is derived based on the enhanced 

stochastic averaging (ESA) method of energy envelope in Section 4.2. After modeling the 

uncontrolled system, the Itô equation of the controlled system is derived by adding the 

effect of the control force in Equation (6.1). Then, the control algorithms are designed 

following the procedures explained in Section 6.2. In the CRC design, first- and second-

level optimizations are sequentially implemented in order to minimize the cost function, 

𝐿1,  in Equation (6.3c) and the probability of failure, 𝐿2, in Equation (6.4) with the control 

force subjected to the limit, 𝑢max. In the URC design, the probability of failure, 𝐿0, in 

Equation (6.10) is minimized through one optimization process with the control force limit. 

The peak drift ratio, 𝐷𝑅, is used as an engineering demand parameter to assess the level of 

damage of the building. This ratio is defined as: 

𝐷𝑅 =
max (|𝑥1 − 𝑥2|)

𝐻
    (6.11) 

where 𝐻 (= 4 m) is the story height. In the controlled state, the goal is to minimize the 

likelihood of the slight damage, thus the threshold of 0.2% according to Ghobarah (2004) 

is considered for 𝐷𝑅 in the design of the control strategies. In the stochastic averaging 

method, the system is described in terms of total energy; therefore, a mapping from drift to 

energy is performed using modal analysis to derive a critical energy that approximately 
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corresponds to 0.2% drift level in the system. In the next step for the CRC strategy, the 

value function, 𝑉′(𝑒) in Equation (6.3b), is calculated based on a predefined cost function, 

𝐿1 in Equation (6.3c), with 𝑅 = 1 and 𝜃(𝑒) = 𝑠1𝑒 + 𝑠2𝑒
2. For the URC method, the 

optimization is conducted based on the function 𝑔(𝑒) in Equation (6.8) with 𝑅 = 1 and 

𝑔(𝑒) = 𝑗0 + 𝑗1𝑒 + 𝑗2𝑒
2. For both control approaches, the force per unit mass capacity of 

the actuator is derived and capped at the maximum control force per unit mass 𝑢𝑚𝑎𝑥 of 0.4 

g. In addition, the root mean square (RMS) of the control force 𝑢rms can be determined 

using: 

𝑢rms = √∫ 1/2𝑅2𝑓𝑒(𝑒)
2∅0(𝑒) 𝑝(𝑒)𝑑𝑒

∞

0

 (6.12) 

where the function 𝑓𝑒(𝑒) is equal to d𝑉′/𝑑𝑒 for CRC and g(𝑒) for URC. Equation (6.12) 

are enforced to be within 0.15 g to reduce sudden changes in the control force. The 

iterations within the optimization processes for the shape of the function d𝑉′/𝑑𝑒 are shown 

in Figure 6-2a with the converged optimal solution shown in bold lines. This optimal 

solution satisfies the maximum and RMS force requirements stated previously. 

Furthermore, the optimal solutions for CRC (d𝑉′/𝑑𝑒)  and URC (𝑔(𝑒)) are compared in 

Figure 6-2c. It appears that the optimal solution for URC has a steeper slope than that for 

CRC. In addition for low energy values, the optimal gain and hence the applied control 

force for URC are smaller than the corresponding quantities for CRC. This pattern is 

reverse for medium to large energy levels. The steep positive slope is expected to ensure a 

dissipative force since the function 𝑔(𝑒) is free and is not governed by the HJB equation. 
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As mentioned previously, this result yields a negative nonlinear gain in Equation (6.8) and 

provides response reduction and dissipation. 

In order to evaluate the performance of the proposed controllers for highly nonlinear 

systems, the Bouc-Wen model parameter, γBW, that controls the shape of the hysteresis 

loops is increased by five times. The new structure model is called the modified system. 

The force versus the lateral foundation displacement of this structure for the uncontrolled 

and URC states under Kobe ground motion is shown in Figure 6-1b. In comparison to the 

original system, similar trends of d𝑉′(𝑒)/𝑑𝑒 and 𝑔(𝑒)  are observed for the modified 

system as shown in Figure 26b and Figure 26d. 

 

 

(a) 

 

(b) 

Figure 6-1 The nonlinear foundation response under Kobe earthquake for (a) the original 

system (b) the modified system. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6-2 The iterations of dV’/de for the CRC optimization for (a) original and (b) and 

modified systems, and the optimal gain functions (dV’/de ; g(e)) for the constrained and 

unconstrained reliability-based optimizations for (c) original and (d) modified systems. 

 

 

6.3.2 Discussion 

Before analyzing the time history results, the PDF of the energy of the system 𝑒 for the 

uncontrolled, CRC, and URC states are derived using the analytical enhanced stochastic 

averaging and Monte Carlo simulation (MCS) methods and the results are shown in Figure  

6-3a and 6-3b. A very good agreement is observed between results obtained using 

analytical and numerical techniques for the uncontrolled and controlled cases. The first and 
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second order moment of energy, E(𝑒) and E(𝑒2), for the case of γBW = 29.1 m-1 are 

compared here for different states. For the uncontrolled case, MCS and ESA estimates for 

E(𝑒) are 0.112 Joules/kg and 0.116 Joules/kg, and for E(𝑒2) are 0.0198 Joules2/kg2 and 

0.021 Joules2/kg2, respectively. Estimates of E(𝑒) through ESA and MCS techniques are 

0.033 Joules/kg and 0.031 Joules/kg for the CRC state and 0.030 Joules/kg and 0.0298 

Joules/kg for the URC state, respectively. Estimates of the second order moment of energy 

derived using ESA and MCS techniques are 0.0016 Joules2/kg2 and 0.0019 Joules2/kg2 for 

the CRC state and 0.0013 Joules2/kg2 and 0.0017 Joules2/kg2 for the URC state, 

respectively. All these results indicate the high accuracy of enhanced stochastic averaging 

of energy envelope in estimating probabilistic characteristics of system responses. 

Moreover, both CRC and URC techniques appear to significantly reduce the mean and 

standard deviation of system energy as shown in Figure 6-3.  

 

 

  
(a) 

 
(b) 

Figure 6-3 The PDF of controlled and uncontrolled cases for (a) original system and (b) 

modified system under white noise (σ0 = 0.32 g). 
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Prior to the simulations, the analytical forms of the control force for the proposed 

control methods are derived and therefore, no computationally demanding operation is 

required to determine the control force during the simulations or actual implementations. 

For the case study system, functions 𝑉′(𝑒) and 𝑔(𝑒) are determined beforehand as shown 

in Figure 6.2c and Figure 6.2d; these functions are represented by polynomial functions of 

the energy of the system. During the simulations, the energy of the system is computed 

based on its responses, and the aforementioned functions 𝑉′(𝑒) and 𝑔(𝑒) are evaluated to 

determine in real-time control forces for the CRC case using Equation (18b) and for the 

URC case via Equation (26). To examine the reliability of the controlled systems, the 

probabilities of failure based on energy P(e ≥ ec)  and drift P(DR ≥ 0.20%) are obtained 

for white noise input excitation with the intensity of 0.32 g, and the results are presented 

in Table 6-1 for the original and modified systems. It should be noted that P(e ≥ ec) is the 

cost function L2 in Equation (23) for CRC approach and the cost function L0 in Equation 

(28) for URC approach. Results indicate that control systems in general considerably 

improve the reliability of the structure. For the original system, the extent of improvement 

achieved using proposed CRC and URC techniques with respect to stochastic linear 

quadratic regulator (SLQR) in Section 5.3  is 23% and 41% based on P(e ≥ ec) and 40% 

and 55% based on P + (DR ≥ 0.2%), respectively. For the case of the modified system 

(the system with higher extent of nonlinearity), CRC and URC techniques improve the 

reliability of the structure with respect to SLQR by 26% and 38% based on P(e ≥ ec) and 

56% and 72% based on P(DR ≥ 0.20%), respectively.  The control algorithm in El-

Khoury and Shafieezadeh (2016) is based on solving the Hamilton-Bellman-Jacobi 

equation to reduce the expected energy of the system and the control objective function 
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does not involve the probability of failure of the system. For the original system (γBW = 

5.82 m-1) equipped with ESA-based control algorithm, P(e ≥ ec) and P(DR ≥ 0.20%) are 

0.1308 and 0.1617, respectively; these probabilities for the modified system (γBW = 29.1 

m-1) are 0.086 and 0.104, respectively. In addition to improvements in the reliability of the 

structure, proposed controllers can further reduce some of the structural responses 

compared to the ESA-based control method. For example, URC method reduces the 

relative displacement of the original system under Kobe ground motion by 8% compared 

to ESA-based control method. 

 

γBW = 5.82 m-1 

Reliability Measures URC CRC SLQR Uncontrolled 

P(𝑒 ≥ 𝑒c) 0.074 0.097 0.126 0.864 

P(𝐷𝑅 ≥ 0.20%) 0.087 0.116 0.192 0.600 

γBW = 29.1 m-1 

Reliability Measures URC CRC SLQR Uncontrolled 

P(𝑒 ≥ 𝑒c) 0.048 0.058 0.078 0.608 

𝑃(𝐷𝑅 ≥ 0.20%) 0.035 0.054 0.123 0.416 

Table 6-1 MCS results of reliability-based measures at an intensity level of 0.32 g. 

 

 

Moreover for the original and modified systems, the three controlled and the 

uncontrolled systems are subjected to white noise excitations with intensities of 0.12 g, 0.2 

g, and 0.32 g as well as recorded ground motions for Northridge, El Centro, and Kobe 

earthquakes. Peak and root mean square of system responses including the relative 

displacement of the structure with respect to foundation, foundation displacement, and 

acceleration of the structure are presented in Tables 6-3 and 6-4 for the original and 

modified systems, respectively. For the original system, the only ground motion where the 
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SLQR case yields the lowest 𝐷𝑅 is the Northridge ground motion where 𝐷𝑅 equals 1.37%, 

0.93%, 0.95%, and 0.91% (𝐷𝑅 < 1.00%) for uncontrolled, URC, CRC, and SLQR cases, 

respectively (Tables 6-3 and 6-4). In all other cases including white noise excitations of 

different intensity levels and El Centro and Kobe ground motions, URC performed the best 

in terms of reducing the relative displacement of the structure with respect to foundation 

which is the engineering demand parameter for reliability analysis. For instance for the 

original structure under Kobe ground motion, the normalized peak drift displacement with 

respect to the SLQR case is 0.78 and 0.81 for the URC and CRC cases, respectively. The 

ratios of peak foundation displacement for URC and CRC cases with respect to SLQR are 

0.89 and 0.88, respectively. For the modified system under Northridge ground motion, 𝐷𝑅 

equals 0.93%, 0.81%, 0.79%, and 0.79% for uncontrolled, URC, CRC, and SLQR cases, 

respectively. Similar to the case of the original system, considerable improvements in 

responses of the modified system are observed when the system is subjected to Kobe 

ground motion. For example, the normalized peak drift displacement with respect to SLQR 

is 0.76 and 0.84 for the URC and CRC cases, respectively and the normalized peak 

foundation displacement with respect to SLQR is 0.78 and 0.79 for the URC and CRC 

cases, respectively. Time histories of drift and control force for the three controlled systems 

are shown in Figure 6.4 for the original system under Kobe Earthquake. These results 

highlight the improvements achieved in system responses using proposed reliability-based 

methods compared to SLQR, while using comparable level of control forces. 

Based on the results presented here, it can be observed that the URC method reduces 

the probabilities of failure the most compared to other techniques. Moreover, controllers 
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exhibit similar performance trends under white noise and actual ground motions. As seen 

in Table 6-2 for the original and in Table 6-3 modified structures, the URC method yields 

the least peak relative displacements which correlates with damage for two thirds of 12 

cases that involve white noise excitations of varying intensities and actual ground motions. 

 

 

White Noise 

(0.12 g) Peak/RMS 
White Noise 

(0.2 g) Peak/RMS 

State 

(𝑥2
− 𝑥1) 
 (mm) 

𝑥2 

(mm) 

�̈�1A  

(m/sec2) State 

(𝑥2
− 𝑥1) 
 (mm) 

𝑥2 

(mm) 

�̈�1A 

(m/sec2) 

Uncontrolled 21/6.5 14.1/4.2 13.26/4.10 Uncontrolled 32.5/10.1 22.3/6.6 20.53/6.35 

URC 7.1/2.1 6.1/1.6 5.08/1.46 URC 10.3/3.2 9.9/2.6 8.21/2.29 

CRC 7.0/1.9 5.8/1.6 4.98/1.36 CRC 11.6/3.2 9.7/2.6 8.25/2.26 

SLQR 8.5/2.3 6.2/1.6 5.45/1.48 SLQR 14.1/3.8 10.3/2.7 9.01/2.46 

White Noise 

(0.32 g) Peak/RMS Northridge Peak/RMS 

State 

(𝑥2
− 𝑥1) 
 (mm) 

𝑥2 

(mm) 

�̈�1A  

(m/sec2) State 

(𝑥2
− 𝑥1) 
 (mm) 

𝑥2 

(mm) 

�̈�1A 

(m/sec2) 

Uncontrolled 47.7/14.8 33.8/9.9 30.20/9.30 Uncontrolled 54.9/10.7 44.3/7.3 34.82/6.79 

URC 18.9/4.8 15.1/4.1 15.10/3.50 URC 37.3/4.7 33.6/3.6 25.30/2.97 

CRC 19.8/5.1 15.7/4.2 14.20/3.60 CRC 38.0/4.6 33.5/3.5 25.77/3.01 

SLQR 22.4/6.1 16.7/4.4 14.50/3.90 SLQR 36.3/4.6 34.7/3.5 26.31/2.93 

El-Centro Peak/RMS Kobe Peak/RMS 

State 

(𝑥2
− 𝑥1) 
 (mm) 

𝑥2 

(mm) 

�̈�1A  

(m/sec2) State 

(𝑥2
− 𝑥1) 
 (mm) 

𝑥2 

(mm) 

�̈�1A 

(m/sec2) 

Uncontrolled 23.4/3.6 15.9/3.5 14.79/3.48 Uncontrolled 28.6/5.0 22.9/3.7 18.06/3.17 

URC 9.0/1.4 7.1/1.2 6.53/1.23 URC 17.0/3.2 18.1/3.0 14.34/2.26 

CRC 8.3/1.5 7.3/1.3 6.34/1.27 CRC 17.7/3.4 18.0/3.0 12.84/2.29 

SLQR 10.5/1.5 7.5/1.3 6.88/1.30 SLQR 21.9/3.7 20.3/3.1 14.43/2.41 

Table 6-2 Simulation results for control cases for the original system (γBW = 5.82 m-1). 
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White Noise 

(0.12 g) Peak/RMS 
White Noise 

(0.2 g) Peak/RMS 

State 

(𝑥2
− 𝑥1) 
 (mm) 

𝑥2 

(mm) 

�̈�1A  

(m/sec2) State 

(𝑥2
− 𝑥1) 
 (mm) 

𝑥2 

(mm) 

�̈�1A 

(m/sec2) 

Uncontrolled 15.2/4.8 11.6/3.3 9.61/3.02 Uncontrolled 21.8/6.9 18.3/5.0 13.81/4.37 

URC 5.9/1.8 6.0/1.6 4.43/1.29 URC 8.5/2.7 10.2/2.6 7.19/2.04 

CRC 5.9/1.6 5.8/1.5 4.41/1.25 CRC 9.4/2.7 10.0/2.6 7.09/2.04 

SLQR 7.4/2.1 6.2/1.6 4.90/1.38 SLQR 11.8/3.4 10.6/2.7 7.87/2.24 

White Noise 

(0.32 g) Peak/RMS Northridge Peak/RMS 

State 

(𝑥2
− 𝑥1) 
 (mm) 

𝑥2 

(mm) 

�̈�1A  

(m/sec2) State 

(𝑥2
− 𝑥1) 
 (mm) 

𝑥2 

(mm) 

�̈�1A 

(m/sec2) 

Uncontrolled 29.7/9.5 28.6/7.2 18.74/6.00 Uncontrolled 37.0/5.9 54.9/5.2 23.45/3.73 

URC 15.4/4.0 16.4/4.2 12.91/3.12 URC 32.2/4.0 46.9/4.1 22.51/2.62 

CRC 15.7/4.2 16.7/4.3 12.12/3.20 CRC 31.4/3.9 46.3/4.1 21.67/2.60 

SLQR 17.7/5.2 17.7/4.4 12.12/3.46 SLQR 31.4/3.8 47.7/4.1 22.46/2.57 

El-Centro Peak/RMS Kobe Peak/RMS 

State 

(𝑥2
− 𝑥1) 
 (mm) 

𝑥2 

(mm) 

�̈�1A  

(m/sec2) State 

(𝑥2
− 𝑥1) 
 (mm) 

𝑥2 

(mm) 

�̈�1A 

(m/sec2) 

Uncontrolled 16.1/3 14/2.7 10.16/2.70 Uncontrolled 27.9/5.5 29.9/5.0 17.60/3.50 

URC 7.1/1.4 7.7/1.2 5.85/1.16 URC 15.2/3.0 23.0/3.4 12.72/2.18 

CRC 7.8/1.4 7.6/1.1 6.03/1.15 CRC 16.7/3.2 23.3/3.4 12.81/2.12 

SLQR 9.6/1.8 7.1/1.5 6.47/1.22 SLQR 20.0/3.5 29.6/3.6 13.71/2.35 

Table 6-3 Simulation results for control cases for the modified system (γBW = 29.1 m-1). 
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Figure 6-4 (a) The relative displacement of the structure with respect to foundation for 

CRC compared to SLQR; and (b) applied control forces for CRC compared to SLQR 

under Kobe ground motion for the modified system of the original system. 

 

 

 

6.4 Closure 

This chapter proposes reliability-based control algorithms using enhanced stochastic 

averaging of energy envelope to minimize the probability of system failure against 

stochastic excitations. Two new control techniques are developed: constrained reliability-

based control (CRC) and unconstrained reliability-based control (URC) designs. These 

algorithms address current limitations in integration of reliability measures in design of 

control methods for nonlinear hysteretic systems. First, the Itô stochastic equation of 
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energy for the uncontrolled system is derived using enhanced stochastic averaging method 

to yield probability distribution function of system’s energy. This initial step entails 

deriving an equivalent nonlinear stochastic system with an equivalent excitation intensity 

and modified damping parameters by applying the method of weighted residuals. The 

method of weighted residuals determines those parameters in terms of high order moments 

of system velocities. The proposed CRC design employs first-level analytical optimization 

based on Hamilton-Jacobi-Bellman equation for a given objective function and second-

level numerical optimization to find optimal parameters of the objective function such that 

the probability of failure that is derived through enhanced stochastic averaging is 

minimized. In the URC design, a flexible dissipative form for the control force is 

considered and a numerical optimization is used to find the parameters of the control gain 

such that the probability of failure is minimized. 
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Chapter 7:  Risk-Based Control Algorithms for Seismically Excited 

Nonlinear Systems 
 

7.1 Introduction 

Conventional performance-based control designs (e.g., a linear quadratic regulator) 

achieve their results by minimizing the variance in response variables such as roof 

displacement and inter-story drifts in multi-story buildings. However, the damage to 

structures due to seismic activity is best minimized by reducing the expected cost due to 

loss at different damage states, hence minimizing the risk of damage by natural hazards on 

structures. From this point of view, life cycle cost is considered a common measure for 

representing such risk: it includes both the initial cost and the maintenance cost following 

the earthquake through the remaining life of the structure, as described in Section 2.5. 

Taflanidis and Beck (2009) and Gidaris and Taflanidis (2015) implemented life cycle cost 

measure for design of passive systems, however those methods have not been extended to 

active or semi-active control designs. Moreover, those methods are computationally very 

demanding and their potential extension to active and semi-active strategies will require 

significantly more computational resources.  

A comprehensive and computationally efficient framework is developed based on life 

cycle cost criteria for design of active controllers for seismically excited nonlinear multi-

story buildings. This framework models loss based on damage states due to inter-story 
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drifts, and the expected costs are identified accordingly. The probabilistic properties of 

uncertain parameters of the system and the probability of exceedance of seismic activity 

are both considered in the framework. Computation and assessment of life cycle cost 

follow the approach established in Fereshtehnejad and Shafieezadeh (2016), where the 

failure probability abides by the crossing rate theory (Lutes and Sarkani, 1997), the 

stochasticity of uncertain parameters is embedded in the risk estimates, and nonlinearity of 

the system is accounted for based on stochastic linearization (El-Khoury et al., 2016).  

This chapter is divided as follows. Section 7.2 develops the risk-based control 

framework. Section 7.2.1 derives the representation of the uncontrolled system, and the 

computations and assumptions of corresponding costs due to damage. Section 7.2.2 

introduces two analytical control frameworks: the risk-based linear quadratic regulator (R-

LQR) and the unconstrained risk-based regulator (URR). R-LQR optimization obtains the 

control gain matrix by applying the conventional LQR solution and then minimizing the 

life cycle cost. In contrast, URR optimization obtains the control gain matrix by directly 

minimizing the life cycle cost. Section 7.3 discusses the numerical example (nonlinear 

multi-story building subjected to seismic excitations) and analyzes the results from 

different control cases: an uncontrolled case and a controlled case equipped with R-LQR, 

URR, and conventional linear quadratic regulator. The results are generated using 

stochastic simulations (Latin hypercube sampling) for artificial and real seismic 

excitations.  Section 7.4 summarizes and concludes the research study. 
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7.2 Methodology 

This section introduces the risk-based control framework based on the total probability 

theorem and crossing rate technique (Lutes and Sarkani, 1997). The following sections 

present a general infrastructure system then further develop the framework for multi-story 

buildings. The damage is expressed in terms of inter-story drift. Given the stochastically 

linearized system, the optimization is applied to minimize the life cycle cost. In this regard, 

the uncontrolled system is presented in subsection 7.2.1. In section 7.2.2, two control 

algorithms are depicted for the controlled state: risk-based linear quadratic regulator and 

unconstrained risk-based regulator. 

7.2.1 Uncontrolled System 

The status-quo system corresponding to the uncontrolled system is presented in state space 

form as: 

�̇� = 𝑮𝐬𝐭𝐚𝐭𝐞(𝐗) + 𝐅𝐞 ≈ 𝐀state𝐗 + 𝐅𝐞 (7.1) 

where the state space vector 𝐗 consists of the displacement, velocity, and other nonlinear 

response variables of the entire system, and 𝐀state is the state matrix. The excitation vector 

𝐅𝐞 identifies a particular hazard; for a seismic activity, the vector includes the ground 

motion acceleration  �̈�𝑔. The state function, 𝑮𝐬𝐭𝐚𝐭𝐞(𝐗), includes the full nonlinear behavior 

of the system (e.g., hysteretic behaviors in a multi-story building). The nonlinear term 

𝒇𝐬𝐭𝐚𝐭𝐞(𝐗) is linearized to the term 𝐀state𝐗 based on stochastic linearization, as mentioned 

earlier. For this purpose, the Lyapunov equation, presented later as Equation (7.18), is 

solved to determine the covariance matrix of the state vector 𝐗 (Wen, 1980; Robert and 
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Spanos, 2003) and to further compute probabilities of failure and life cycle cost (Lutes and 

Sarkani, 1997).  

In this research, the life cycle cost (LCC) for n years is defined as: 

LCC = ICC + 𝑃(EQ) × 𝐾𝛾
𝑛 × E(Loss) + 𝐾𝛾

𝑛 × AMC   (7.2) 

where ICC is the initial construction cost and is considered to be 0.91 times the replacement 

cost (RC); the unit cost of construction is considered to be 75 $/ft2 (Jalayer et al., 2011; 

Fereshtehnejad and Shafieezadeh, 2016); and 𝑃(EQ) is the annual probability of 

earthquake occurrence. The unit construction cost is the sum of the cost of constructing the 

building and is given per square foot (Jalayer et al., 2011). The annual maintenance cost 

(AMC) is considered to be 1% of ICC (Jalayer et al., 2011). 𝐾𝛾
𝑛 is the cumulative discount 

factor for n years, and is defined as: 

𝐾𝛾
𝑛  = ∑𝛾df

𝑡

𝑛−1

𝑡=1

 

  (7.3) 

where the discount factor 𝛾df is defined as: 

𝛾df = (
1

1 + 𝛿dr
) 

  (7.4) 

where 𝛿dr represents the discount rate. Notably, the controlled state includes the initial cost 

and maintenance cost of the control device in addition to the aforementioned costs of the 

uncontrolled system. Assuming a Poisson distribution, the annual probability of at least 

one earthquake occurrence 𝑃(EQ) is expressed as: 

𝑃(EQ) = 1 − exp(−𝑣𝐸𝑄)    (7.5) 

where 𝑣𝐸𝑄 is the mean annual rate of hazard occurrence. E(Loss) is the total annual loss 

or alternatively average annual repair cost associated with the damage induced by the 
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hazard on the system. Based on the total probability theorem and the conditional 

probability chain rule, E(Loss) is expressed as: 

E(Loss) = ∫ ∑E(Loss|𝐷𝑆𝑖) × 𝑃(𝐷𝑆𝑖|𝐼𝑀)

4

𝑖=0

𝑓(𝐼𝑀)𝑑𝐼𝑀
𝐼𝑀

 

  (7.6) 

where E(Loss|𝐷𝑆𝑖) is the average cost of the estimated loss or equivalently the repair cost 

required to restore the structure to its initial condition for a particular damage state  𝑖 (𝐷𝑆𝑖). 

The losses include those due to damage to structural components, nonstructural drift 

sensitive components, nonstructural acceleration sensitive components, and contents as a 

percentage of replacement cost (FEMA, 2003): 

E(Loss|𝐷𝑆𝑖) = E(Repair Cost|𝐷𝑆𝑖) = % of RC   (7.7) 

The index i (= 0…4) corresponds to the damage state: 0 for intact, 1 for light, 2 for 

moderate, 3 for extensive, and 4 for collapse states. Intuitively, the higher the damage state, 

the greater the loss is. In this framework, the cost of human casualties is not considered. 

The probability of damage state 𝑃(𝐷𝑆𝑖|𝐼𝑀) is calculated using the crossing rate 

technique, as shown later in Equation (7.9). 𝑓(𝐼𝑀) is the annual probability density 

function of the intensity measure 𝐼𝑀. The intensity measure 𝐼𝑀 is the peak ground 

acceleration (PGA), and the corresponding probability is denoted by 𝑃(PGA). The annual 

probability 𝑃(PGA) is determined as follows (Kiureghian, 2005; Fereshtehnejad and 

Shafieezadeh, 2016): 

𝑃(PGA) =
∆𝜆AR(PGA)

𝑣𝐸𝑄
 

  (7.8) 

The mean annual rate of exceedance 𝜆AR(PGA) can be determined from probabilistic 

seismic hazard analysis. For simplicity herein, the continuous probability distribution 
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𝑃(PGA) is discretized and a summation operator substitutes the integration operator in 

Equation (7.6), giving: 

E(Loss) = ∑∑𝐸(Loss|𝐷𝑆𝑖) × 𝑃(𝐷𝑆𝑖|PGA)

4

𝑖=0

𝑃(PGA)

PGA

 

  (7.9) 

Noticeably, ∑ 𝑃(PGA)PGA  equals 1 across the whole domain. While the loss due to 𝐷𝑆0 is 

considered to be zero, the probability of the damage state 𝑃(𝐷𝑆ℎ|PGA) is determined for 

the four damage levels 1 to 4 as follows: 

𝑃(𝐷𝑆ℎ|PGA) = 𝑃(𝑏ℎ−1 ≤ 𝐷𝑅 ≤ 𝑏ℎ) ; ℎ = 1…4   (7.10) 

The extent of damage defined in Equation (10) is based on drift (𝐷𝑅) levels. The seismic 

drift ranges are 0.00-0.20% for intact, 0.20-0.40% for light, 0.40-1.00% for moderate, 1.00-

1.80% for extensive, and ≥ 1.80% for collapse damage states (Abad et al., 2013). 𝑏ℎ−1 and 

𝑏ℎ are the lower and upper bounds, respectively of drifts at the hth damage level (e.g. for 

the light damage level 𝐷𝑆1, 𝑏0 and 𝑏1 are 0.20% and 0.40% respectively). The probability 

of failure corresponding to the hth damage level (i.e. 1…4) due to drift can be expanded 

as: 

𝑃(𝐷𝑆ℎ|PGA) = ∫… .∫𝑃∅(𝑏ℎ−1 ≤ 𝐷𝑅 ≤ 𝑏ℎ) × 𝑔𝑝(∅1, … , ∅s)d∅1… . 𝑑∅𝑠 
  (7.11a) 

∫… .∫𝑔𝑝(∅1, … , ∅s)d∅1… . 𝑑∅𝑠 = 1 
  (7.11b) 

𝑔𝑝(∅1, … , ∅s) is the probability density function of the uncertain parameters (∅1, … , ∅s) 

(Scruggs et al., 2006). The uncertain parameters may include the stiffness, mass, and 

damping variables of the given system. Assuming a Gaussian distribution of the drift 

response, the probability of failure 𝑃∅(𝑏ℎ−1 ≤ 𝐷𝑅 ≤ 𝑏ℎ) within time 𝑇 corresponds to the 
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probability of a drift ranging between 𝑏ℎ−1 and 𝑏ℎ. 𝑇 is equal to 30 seconds to present 

seismic excitation (Scruggs et al., 2006). The failure probability follows a Poisson 

distribution and is achieved using the crossing rate technique (Lutes and Sarkani, 1997; 

Casciati and Roberts, 1996), shown by: 

𝑃∅(𝑏ℎ−1 ≤ 𝐷𝑅 ≤ 𝑏ℎ) = 𝑃∅(𝐷𝑅 ≥ 𝑏ℎ−1) − 𝑃∅(𝐷𝑅 ≥ 𝑏ℎ) = (1 −

exp (−𝑣CR(∅)Σ𝑏ℎ−1
(𝑇)   − (1 − exp (−𝑣CR(∅)Σ𝑏ℎ

𝑇))) =

exp (−𝑣CR(∅)Σ𝑏ℎ
𝑇) − exp (−𝑣CR(∅)Σ𝑏ℎ−1

𝑇)   

  (7.12) 

The drift is considered to be a stationary Gaussian variable. Substituting Equation (7.12) 

in (7.11a), the probability of failure corresponding to the hth damage is: 

𝑃(𝐷𝑆ℎ|𝐼𝑀) = ∫… . ∫ exp(−𝑣CR(∅)Σ

𝑏

ℎ𝑇) − exp(−𝑣CR(∅)Σ
𝑏ℎ−1𝑇)  ×

𝑔𝑝(∅1, … , ∅s)d∅1… . 𝑑∅𝑠   

  (7.13) 

The total crossing rate 𝑣CR(∅)Σ𝑏ℎ−1
 is the summation of p failures due to 𝑏ℎ−1 drift 

assuming the failures are unlikely or highly uncorrelated (Scruggs et al., 2006), defined as: 

𝑣CR(∅)Σ
𝑏ℎ−1 = 𝑣Σ

𝑏ℎ−1 = ∑ 𝑣𝑏ℎ−1
𝑚

p

𝑚=1

 

  (7.14) 

It is noteworthy that the assumptions of stationary, uncorrelated, and Gaussian variables 

may induce error for realistic systems. In the future research, the frameworks will be 

expanded to include nonstationary correlated variables. On the other hand, the evaluation 

of the multiple integrals in Equation (7.13) is not trivial and its dimension grows 

significantly with the number of uncertain parameters. For simplicity, the integral is 

approximated by applying the first order second moment method, as follows: 
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𝑃(𝐷𝑆ℎ|𝐼𝑀) = ∫… .∫exp(−𝑣CR(∅)Σ
𝑏ℎ𝑇) − exp(−𝑣CR(∅)Σ

𝑏ℎ−1𝑇)

× 𝑔𝑝(∅1, … , ∅s)d∅1… . 𝑑∅𝑠

≈ (exp(−�̅�DR(∅)Σ
𝑏ℎ𝑇) − exp(−�̅�DR(∅)Σ

𝑏ℎ−1𝑇))

× ∫… .∫× 𝑔𝑝(∅1, … , ∅s)d∅1… . 𝑑∅𝑠 =(exp(−�̅�DR(∅)Σ
𝑏ℎ𝑇)

− exp(−�̅�DR(∅)Σ
𝑏ℎ−1𝑇)) 

  (7.15) 

The averaged total crossing rate �̅�DR (∅)Σ
𝑏ℎ−1   for 𝑏ℎ−1 is denoted as: 

�̅�DR (∅)Σ
𝑏ℎ−1 = ∑ �̅�𝑏ℎ−1

𝑚

p

𝑚=1

 

  (7.16a) 

�̅�𝑏ℎ−1
𝑚 =

E(𝜎𝐷�̇�𝑚)

𝜋 E(𝜎𝐷𝑅𝑚)
exp(−

𝑏ℎ−1
2

2E(𝜎𝐷�̇�𝑚)
2) 

  (7.16b) 

where the expectation of the standard deviations of drift 𝐸 (𝜎𝐷𝑅𝑚 (∅̅, 𝜎(∅̅))) and of the 

time differential E (𝜎𝐷�̇�𝑚 (∅̅, 𝜎(∅̅))) of the 𝑚th node is determined using Taylor Series 

as: 

E(𝜎𝐷𝑅𝑚) = E (𝜎𝐷𝑅𝑚(∅ = ∅̅ + Δ∅))  

= E (𝜎𝐷𝑅𝑚(∅̅)) + E(
1

2
∑

𝜕2𝜎𝐷𝑅𝑚(∅̅) 

𝜕∅𝑖
2

𝑝

𝑖=1

Δ∅𝑖Δ∅𝑖) + HOT 

= E(𝜎𝐷𝑅𝑚(∅̅)) +
1

2
∑

𝜕2𝜎𝐷𝑅𝑚(∅̅) 

𝜕∅𝑖
2

𝑝

𝑖=1

𝐸(Δ∅𝑖Δ∅𝑖) + HOT

= 𝜎𝐷𝑅𝑚(∅̅) +
1

2
∑

𝜕2𝜎𝐷𝑅𝑚(∅̅) 

𝜕∅𝑖
2

𝑝

𝑖=1

𝜎∅𝑖
2 + HOT 

   

 

(7.17a) 
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 E(𝜎𝐷�̇�𝑚) = E (𝜎𝐷�̇�𝑚(∅̅, 𝜎∅𝑖
2 , HOT))

= 𝜎𝐷𝑅𝑚̇ (∅̅) +
1

2
∑

𝜕2𝜎𝐷𝑅𝑚̇ (∅̅) 

𝜕∅𝑖
2

𝑝

𝑖=1

𝜎∅𝑖
2 + HOT 

            

(7.17b) 

where ∅̅ (∅̅1… ∅̅𝑝 ) is the mean vector of uncertain parameters, (𝜎∅𝑖 … 𝜎∅𝑝) are the 

corresponding standard deviations and Δ∅ is defined as ∅ − ∅̅. The uncertain parameters 

here are considered to be uncorrelated. HOT includes higher order terms  of Taylor’s 

expansion. If HOT is incorporated, higher order moments of the uncertain parameters can 

be considered accordingly. The standard deviations, 𝜎𝐷𝑅𝑚(∅̅) and 𝜎𝐷𝑅𝑚̇ (∅̅), can be 

determined using the Lyapunov equation as follows: 

𝟎 = 𝐀𝐬𝐭𝐚𝐭𝐞𝐒𝐂𝐎𝐕 + 𝐒𝐂𝐎𝐕𝐀𝐬𝐭𝐚𝐭𝐞
𝐓 + 𝐓𝐞 (7.18) 

where 𝐒𝐂𝐎𝐕 defines the covariance matrix of the state vector and 𝐓𝐞 is a vector that 

identifies the intensity level of the ground motion (El-Khoury et al., 2015a; El-Khoury et 

al., 2015b; El-Khoury et al., 2016). 

7.2.2 Controlled System  

The objective here is to introduce a control methodology that can explicitly alleviate the 

life cycle cost. The controlled system is represented as: 

�̇� = 𝑮𝐬𝐭𝐚𝐭𝐞(𝐗) + 𝐁𝐮 + 𝐅𝐞 ≈ 𝐀state𝐗 + 𝐁𝐮 + 𝐅𝐞 (7.19) 

The control force vector 𝐮 is considered linear and equals to 𝑲𝒖𝐗 where the gain matrix 𝑲𝒖  

is determined by minimizing the objective function representing the life cycle cost. 𝐁 is 

the location matrix of controllers. The life cycle cost (LCC) for n years at the controlled 

state is defined as  
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LCC = ICC + 𝑃(EQ) × 𝐾𝛾
𝑛 × 𝐸(Loss) + 𝐾𝛾

𝑛 × AMC + Ccontroller (7.20)  

where the controller cost Ccontroller is added to the life cycle cost. The controller cost 

Ccontroller is defined as: 

Ccontroller =  ICo + AMCC × 𝐾𝛾
𝑛 (7.21a) 

MCC = AMCC × 𝐾𝛾
𝑛 (7.21b) 

where ICo is the initial controller cost and AMCC is the annual controller maintenance costs. 

The maintenance cost MCC includes the mobilization cost and the calibration cost of each 

actuator. The objective of this control design is to minimize the life cycle cost. For the 

uncontrolled case, the controller cost Ccontroller is zero, and the annual maintenance cost 

AMC and initial construction ICC of the building excluding the controller cost is assumed 

to be the same for both controlled and uncontrolled states. The objective is to evaluate the 

life cycle cost of the controlled case LCCcontrolled and compare it with that of uncontrolled 

case (<  LCCuncontrolled).  

Two control strategies are derived. The first control algorithm, risk-based linear 

quadratic regulator (R-LQR), employs two levels of optimization. The first level is based 

on LQR and minimizes the second order moment of inter-story drifts, and the second level 

searches for optimal gains to minimize the expected life cycle cost of the system. This is 

depicted as: 

[𝑲𝐮
∗ , 𝜃𝑖

∗] = argmin (∑ 𝑹𝑻𝐮𝑹
𝑛

𝑖=0
+∑ 𝜃r𝑖(𝑥𝑖 − 𝑥𝑖−1)

2
𝑤

𝑖=1
)|
𝑲𝐮,𝜃r𝑖

  
(7.22a) 

[𝑲𝐮
∗ , 𝜃r𝑖

∗] = argmin(LCC)|
𝑲𝐮,𝜃r𝑖

  (7.22b) 

𝐮 = 𝑲𝐮
∗𝐗 = −𝑹−𝟏𝐁𝐓𝑷𝐑−𝐋𝐐𝐑𝐗 (7.22c) 
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where 𝑲𝐮, 𝜃r𝑖, and 𝑹 are the control gain, drift weights, and positive definite weighted 

matrix for control force, respectively. The asterisk symbol (*) corresponds to the optimal 

solution. 𝑤 is the number of stories. The matrix 𝑷𝐑 −𝐋𝐐𝐑 corresponds to the optimal positive 

definite symmetric matrix corresponding to the optimal 𝜃s ( 𝜃∗). The second algorithm, 

unconstrained risk-based regulator (URR), directly minimizes the expected life cycle cost 

as follows: 

𝑲𝐮
∗ = argmin(LCC)|𝑲𝐮  (7.23a) 

 𝑲𝐮
∗ = −𝑹−𝟏𝐁𝐓 𝑷𝐔𝐑𝐑𝐗  (7.23b) 

where 𝑷𝐔𝐑𝐑 corresponds to the optimal positive definite symmetric matrix to produce 

stable dissipative forces (Taflanidis et al., 2008). Controller capacity is defined by a 

maximum force (𝑢max). An upper bound of the standard deviation of every control force 

is applied to the control algorithm to account for the maximum capacity of the 

corresponding control device. Because the control force is assumed to be a Gaussian 

variable, the ratio between the maximum and the standard deviation (𝑢max  /𝜎𝑢 ) is 

considered to be equal to 3.3, which corresponds to a 99.97% confidence interval (Kester, 

2005; Moghimi, 2010).  

The control design minimizes the losses due to seismic vibrations. The optimization 

process is carried out by analytically determining the covariance matrix of the system and 

further computing the objective function. The control gain is computed by either R-LQR 

or URR. Finally, Latin hypercube sampling is applied to calculate and compare the 

averaged LCC and study the performance for both the controlled and uncontrolled states 

(Figure 7-1). 
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Figure 7-1 Risk-Based Control Framework. 

 

 

7.3 Numerical Example 

The proposed framework is applied and demonstrated for a four story nonlinear reinforced 

concrete frame building. The building is considered an office building and the floor plan 

and elevation sections are shown in Figure 7-2. The plan is composed of five bays in 

longitudinal direction and three bays in transverse direction. The dimensions of each bay 

are 24’× 24’. The story height is 12’ throughout. The seismic design of the building 

complies with the Uniform Building Code (ICBO, 1988) and FEMA 273 (BSCC, 1997).  
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The fundamental period of the building is 0.30 seconds and the building has a classical 

damping of 5%. Further details of this design can be found in Gupta and Kunnath (2000).  

 

 

Figure 7-2 Four Story Concrete moment resisting frame (MRF) (Business/Office). 
 

 

To characterize the system here, the story stiffnesses and mass are derived from 

performing a static pushover analysis that satisfies the following conditions: a fundamental 

period equals 0.30 seconds and an averaged slope of 0.50 for the normalized base shear 

and roof displacement as shown in Gupta and Kunnath (2000). The system is further 

calibrated to characterize the post-yield behavior. This is achieved by matching the inter-

story drifts (Figure 7-3a) for all stories subjected to fn Northridge, 1994, Newhall (LA13) 

(civil.eng.buffalo.edu/Sac_records) to the results shown in Gupta and Kenneth (2000). The 

hysteretic nonlinearity is characterized using the Bouc Wen model (Ikhouane et al., 2007; 

Ismail et al., 2009); the Bouc Wen model used here obeys class I, which is considered 

asymptotically dissipative and thermodynamically stable (Ikhouane et al., 2007). Figure 7-

3a depicts the inter-story drifts of the system under LA13. The base shear forces and roof 



144 

 

displacements are shown in Figure 7-3b and a close match is observed relative to the results 

found in Gupta and Kunnath (2000).  

 

 

   
(a)  

 

 
(b)  

Figure 7-3 (a) Inter-story drifts profiles for the four story building under fn Northridge, 

1994, Newhall ground motion (Reference: Gupta and Kunnath, 2000) and (b) base shear 

versus roof displacement for the four story building (story mass and story stiffness are 

1.037E+06 kg  and 4.19E+08 N/m, respectively). 

 
 

 

For this particular example, the objective is to minimize the life cycle cost defined in 

Equation (7.20). The risk-based control algorithms are demonstrated for different cases 

where the number and location of actuators are varied. The following six cases are adopted:  

 Case-0 for uncontrolled state. 

 Case-1 for one actuator on the first floor. 

 Case-2 for two actuators installed on the first floor. 

 Case-3 for two actuators installed on the first and third floors (See Figure 7-2c). 
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 Case-4 for three actuators installed on the first, second, and third floors. 

 Case-5 for one actuator on every floor. 

The control algorithms are compared to uncontrolled state and controlled state 

equipped with conventional linear quadratic regulator (LQR). The results are generated for 

artificial and historic ground motions. The artificial ground motions are simulated to 

determine and analyze the life cycle cost for all cases. The historic ground motions are 

extracted from  SAC LA ground motions (civil.eng.buffalo.edu). In this respect, a pair of 

the historic ground motion are considered for fault-normal (fn) and fault-parrallel (fp) 

directions. The properties (peak ground acccleration, earthquake magnitude, time step, 

distance, and scale factor) of the LA ground motions comply with the values given in 

civil.eng.buffalo.edu/Sac_records/LA. The results are analyzed in the following section. 

7.3.1 Results 

After modeling the system, the control algorithms (R-LQR and URR) are designed and 

optimized analytically. The system is linearized using a classical Kanai-Tajimi filter and 

the Lyapunov equation (Equation (7.18)) is solved analytically. The classical Kanai-Tajimi 

filter is a good approach for generating artificial earthquakes and properties such as non-

stationarity can be added to more closely approximate an actual earthquake (Amiri et al., 

2007). Herein, the classical stationary Kanai-Tajimi filter (Kanai, 1957; Tajimi, 1960) is 

used and corresponds to a linear filter under white Gaussian noise 𝑛(𝑡), and is denoted as: 

𝐻(𝑗ω) =
1 + 2ζg𝑗(ω/ωg)

1 − (ω/ωg)
2
+ 2ζg𝑗(ω/ωg)

 
(7.24a) 

�̈�𝐾𝑇 + 2ζgωg�̇�𝐾𝑇 +ωg
2𝑥𝐾𝑇(𝑡) = 𝑛(𝑡) (7.24b) 
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where 𝐻(𝑗ω) is the frequency response function, 𝑗 is √−1, and �̈�𝐾𝑇 is the artificially 

generated acceleration using the Kanai-Tajimi filter. The parameters   ωg (= 5 rad/sec) and 

𝜁g (= 0.2) are the angular frequency and the damping content, respectively for the soft soil 

conditions, and depend on the distance from the epicenter and the rigidity of the ground 

layer (Kiureghian and Neuenhofer, 1992).  For R-LQR, the control gain is determined 

using Equation (7.22c), where the matrix 𝑷𝐑−𝐋𝐐𝐑 is controlled by the LQR design. For 

URR, the control gain is determined using an unconstrained matrix 𝑷𝐔𝐑𝐑 in the numerical 

optimization. For instance, the initial guess of 𝑷𝐔𝐑𝐑 is equal to 𝑷𝐑−𝐋𝐐𝐑; upper and lower 

bounds are enforced in the optimization to ensure adherence to the semi-positive definite 

requirement and the forces’ upper bound. Both matrices should be positive definite to 

comply with stability conditions and generate dissipative forces. 

From Section 7.2, the life cycle cost for uncontrolled and controlled states is 

represented for 𝑛-years (𝑛 = 100) as: 

LCCuncontrolled = ICC + 𝑃(EQ) × 𝐾𝛾
𝑛 × 𝐸(Loss) + 𝐾𝛾

𝑛 × AMC (7.25a) 

LCCcontrolled = ICC + 𝑃(EQ) × 𝐾𝛾
𝑛 × 𝐸(Loss) + 𝐾𝛾

𝑛 × AMC + Ccontroller (7.25b) 

Ccontroller = ICo + AMCC × 𝐾𝛾
𝑛 (7.25c) 

ICo = AC + IAC +WSC + SHCC (7.25d) 

The initial cost ICC and annual maintenance cost AMC are the same for uncontrolled and 

controlled cases. They are excluded here since they are assumed fixed and equal for both 

controlled and uncontrolled states. The initial controller cost ICo consists of the costs of 

the actuator, AC, the installation cost, IAC, the cost for a wireless data acquisition 

system, WSC, and the servo hydraulic controller cost, SHCC. The actuator cost AC at Shore 
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Western is approximately $110 K. The installation cost IAC includes the labor cost (= $2 

K per day: 1 day for 1 actuator, 1.5 days for 2 actuators, 1.75 for 3 actuators, and 2 days 

for 4 actuators) and the mobilization cost (= $1 K). The cost WSC is $0.6 K per node (Kim 

et al., 2007). In this study, the wireless system is installed to support one accelerometer for 

each floor; therefore, four nodes are considered here. According to Shore Western, the cost 

of a servo hydraulic controller unit is $20 K + (NA –  1) × $13.3 K, where NA represents 

the number of actuators. Furthermore, new parameters are redefined as: 

ReCOST = 𝑃(EQ) × 𝐾𝛾
𝑛 × 𝐸(Loss) (7.26a) 

Sv = LCCuncontrolled − LCCcontrolled (7.26b) 

MCC = AMCC × 𝐾𝛾
𝑛 (7.26c) 

The repair cost ReCOST is the total cost to restore the building after an earthquake event. 

However, for evaluating the saving Sv of using different control cases and comparing them 

with the uncontrolled state, the controller cost Ccontroller is added. MCC the maintenance 

controller cost spanned over n-years. The annual maintenance controller cost AMCC 

incorporates the cost to calibrate the actuators and maintain the wireless data acquisition 

system and a servo hydraulic controller. In consultation with Shore Western, hydraulic 

actuators are used in this research, with each actuator having the capacity of 1,000 kN. 

Based on those consultations, the maintenance cost of actuators including the costs of 

mobilization and calibration can be determined as: 

AMCC = MoC + NA ∗ CCC ($) (7.27) 
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MoC (= $1,000) and CCC (= $500) correspond to the mobilization cost and calibration cost 

per actuator, respectively. In Equation (7.7), 𝐸(Loss|𝐷𝑆𝑖) is based on the replacement cost. 

These values are provided in Table 7-1 in FEMA (2003). 

 

Repair Cost 

Damage Level 

Light Moderate Extensive Collapse 

Structural 0.4 1.9 9.6 19.2 

Non-structural 

drift 

0.9 4.8 14.4 47.9 

Non-structural 

acceleration 

0.7 3.3 16.4 32.9 

Contents 0.5 2.3 11.4 22.8 

Table 7- 1 Repair cost in terms of the percentage of replacement cost of the building (RC 

= $2.85E+06). 

 

As stated above, the aim of this research is: (1) to evaluate whether the use of 

controllers that explicitly minimize life cycle cost is superior to the status quo case; and (2) 

whether the proposed controller can further optimize life cycle cost relative to conventional 

strategies. As a result, in addition to the uncontrolled system, a system equipped with a 

conventional LQR is used for reference. The conventional LQR is designed based on 

minimizing the second order moments of inter-story drift, and the objective function is:  

𝑲𝐮 = argmin(∑𝑹𝑻𝐮𝑹

𝑛

𝑖=0

+∑𝜃r𝑖(𝑥𝑖 − 𝑥𝑖−1)
2

𝑤

𝑖=1

) 
(7.28) 

In R-LQR, those factors are optimized to minimize the life cycle cost. Here, 𝜃rs are chosen 

to provide a maximum force provided by the actuator (i.e., 1,000 kNs per actuator).  

To analyze life cycle cost, the Kanai-Tajimi filter presented in Equation (7.24a) is 

applied to the system; the annual rate of exceedance 𝜆 is given in Figure 7-4 

(geohazards.usgs.gov). Corresponding to this hazard curve, the mean annual rate 𝑣𝐸𝑄 of 

earthquake occurrence is equal to 0.584. The mass, damping, and stiffness are varied 
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probabilistically for each of the realizations selected by Latin hypercube sampling. The 

variation coefficient is applied to the mass, damping, and stiffness matrices as follows: 

𝐌𝐝 = £𝐿𝐻𝐹 ∗ 𝐌p (7.29) 

  
Figure 7-4 The annual rate of exceedance versus PGA (geohazards.usgs.gov) in Los 

Angeles (34.0522°, 118.2437°). 

 

 

 

 

The results of ReCOST and Sv are described in Table 7-2 for conventional LQR and R-

LQR. As mentioned above, different cases are analyzed in which the number of actuators 

NA and actuator location are varied. Use of more actuators for conventional LQR does not 

necessarily yield minimum repair costs (e.g. ReCOST in case-2 is lower than that in case-4 

and case-5) and maximum savings (e.g. for case-4 and case-5 Sv < $0), as shown in Table 

7-2. Moreover, in case-2 for conventional LQR, the repair cost ReCOST is reduced by $97.7 

K and the saving is reduced by $37.0 K relative to case-1, where one actuator is installed. 

The stakeholder may therefore decide to go with one actuator and adopt case-1 for a 

conventional-LQR, since an additional amount needs to be paid for an actuator in case-2. 

To optimize case-1 further, R-LQR is adopted and an improvement of $32.0 K and $245.6 
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K is achieved over the conventional LQR and uncontrolled cases, respectively. In addition, 

case-3 and case-2 correspond to the same controller cost Ccontroller, but the location of the 

actuators is different. In the conventional LQR and R-LQR cases, case-2 is superior to 

case-3, as shown in Table 7-2. As a result, case-3 may not be an optimal solution for 

stakeholders. For case-2, the conventional LQR approach provides a better Sv value of 

$176.6 K compared to the uncontrolled state (Sv = $0). Case-2 is further optimized using 

the R-LQR approach, and the savings are increased by $113.0 K. Meanwhile, the 

conventional LQR designs of case-4 and case-5 are not economic (Sv < 0). In case-4 (NA =

3), the R-LQR design saves $113.2 K with respect to case-5 (NA = 4, one per story). 

Applying the R-LQR strategy, the savings are increased significantly as depicted in Table 

7-2. Additionally, a reliability measure defined by the probability of exceeding 1.00% drift 

(DR) P(DR ≥ 1.00%) is defined in Table 7-2 (i.e., this region corresponds to the extensive 

damage and collapse states). Case-5 yields the smallest probability of failure for R-LQR. 

Case-2 results in the smallest probability of failure for conventional LQR and the highest 

savings for R-LQR, as shown in Table 7-2 and Figure 7-5b. Although case-5 of R-LQR 

approach corresponds to the lowest repair cost (Figure 7-5a), its Sv value is the lowest 

among all controlled cases (Figure 7-5b). Overall, it can be seen for all cases that R-LQR 

yields higher savings than the conventional LQR. 

Considering the stakeholders are willing to purchase more than one actuator, case-1, case-

2, case-3, and case-4 are selected to be further optimized using the URR approach (See 

Table 7-2). URR is a more flexible approach, since it is not restricted by the LQR objective 

function. The only condition for the URR approach is to search for a positive definite 

matrix, 𝑷𝐔𝐑𝐑, as mentioned previously. For case-1, the ReCOST of URR is equal to $853.9 
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K, corresponding to a saving of $2.6 K when compared to the R-LQR approach, and the 

probability of failure P(DR ≥ 1.00%) is equal to 0.0282. For case-2, the ReCOST of URR is 

equal to $677.5 K, corresponding to a saving of $0.3 K when compared to the R-LQR 

approach, and the probability of failure P(DR ≥ 1.00%) is equal to 0.0225. For case-3, the 

ReCOST of URR is equal to $762.7 K, corresponding to a saving of $12.4 K when compared 

to the R-LQR approach, and the probability of failure P(DR ≥ 1.00%) is equal to 0.0221. 

For case-4, the ReCOST of URR is equal to $644.0K, corresponding to a saving of $5.6K, 

and the probability of failure P(DR ≥ 1.00%) is equal to 0.022.  

 

 
Conventional LQR 

ReCOST 

($) 

Case-0 Case-1 Case-2 Case-3 Case-4 Case-5 

1268810 888539 790815 853158 1028090 1023967 

 ICo ($) 0 135400 259733 259733 383567 507400 

MCC ($) 0 31260 41681 41681 52101 62521 

P(DR ≥
 1.00%) 0.0414 0.0281 0.0242 0.0269 0.0342 0.0341 

Sv ($) 0 213610 176581 114238 -194948 -325078 

R-LQR 

ReCOST 

($) 

Case-0 Case-1 Case-2 Case-3 Case-4 Case-5 

1268810 856569 677791 775079 649468 642236 

 ICo ($) 0 135400 259733 259733 383567 507400 

MCC ($) 0 31260 41681 41681 52101 62521 

P(DR ≥
 1.00%) 0.0414 0.0283 0.0226 0.0258 0.0221 0.0219 

Sv ($) 0 245580 289604 192317 183675 56653 

Table 7-2 Results for risk-based parameters. 
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(a) 

  

(b) 

Figure 7-5 (a) Repair cost versus NA. (b) Savings versus NA (R-LQR). 

 

 

To analyze the peak performance of the control algorithms, the normalized drift 𝐽DR  is 

defined as follows: 

𝐽DR =
max(DRcontrolled)

max(DRuncontrolled)
 

(7.30) 

Using Latin hypercube sampling, random realizations are generated for the stiffness, 

damping, and mass, as mentioned in Equation (7.29). The averaged peak drift is defined 

as: 

𝐸(𝐽DR) = 𝐸 (
max(DRcontrolled)

max(DRuncontrolled)
) 

(7.31) 

The averaged peak drift is determined for the controlled and uncontrolled systems under 

LA ground motions (See Table 7-3). An improvement (𝐽DR < 1) is recorded in most cases 

(i.e., for case-2, and the maximum inter-story drift decreases by 27.6% for the system 

equipped with R-LQR compared to the uncontrolled system under fp Northridge, 1994, 

Sylmar). Similar trends are reported for various controlled systems and different cases. For 
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case-3 with the URR approach, the maximum and minimum values of 𝐽DR are 0.976 for fn 

North Palm Springs and 0.829 for fp Loma Prieta, 1989. For case-4 with the URR 

approach, the maximum and minimum values of 𝐽DR are 1.044 for fp 1995 Kobe ground 

motion and 0.855 for fp Northridge, 1994, respectively. The stakeholder may therefore 

decide to select case-2 where two actuators are needed, achieving a significant 

improvement in savings (R-LQR is equal to $289.6K; URR is equal to $289.9K ) and a 𝐽DR 

value smaller than one for all ground motions except fn North Palm Springs, 1986.  
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Table 7-3 Results for peak normalized inter-story drift under LA ground motions. 
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7.4 Closure 

This research introduces on risk-based control algorithms with life cycle cost taken as the 

performance objective, a common measure for assessing potential damage and loss 

following an earthquake. The process here entails: (1) estimating the life cycle cost, and 

(2) optimizing the controller’s performance. The life cycle cost includes the initial cost and 

the expected losses due to seismic events. Cost is described as stochastic and is 

approximated as a linear function of system repair costs. Repair costs are estimated based 

on the severity of the damage, which in turn is quantified in terms of probability for each 

damage level, defined as intact, light, moderate, extensive, and collapse. The probability 

of damage is calculated based on the total probability theorem and using the crossing rate 

technique. The stochasticity of the system is incorporated in terms of higher order moments 

of the corresponding parameters (stiffness, mass, and damping), and system uncertainty is 

based on fragility curves for the properties of ground motion in a particular region. After 

defining the life cycle cost, two control algorithms are designed. The first control 

algorithm, risk-based linear quadratic regulator (R-LQR), employs two levels of 

optimization, where the first level is based on LQR and minimizes the second order 

moment of inter-story drifts, and the second level obtains optimal gains to minimize the 

expected life cycle cost of the system. The second algorithm, unconstrained risk-based 

regulator (URR), directly minimizes the expected life cycle cost.  

The framework is applied to a nonlinear multi-story building subjected to earthquake 

hazard. The control optimizations are performed on the stochastically linearized model of 

the system. These designs are compared to the status quo option and the structure equipped 
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with a conventional LQR control strategy. The number of controllers and their locations 

are varied in multiple cases. Results show that the proposed control methods reduce the 

life cycle cost and the extent of expected damage significantly when compared to the status 

quo (savings ranging from $180-290 K) (including actuator and maintenance costs for 

controlled systems) and compared to conventional LQR (savings ranging from $32-382 

K). Additional results are presented for LA ground motions, and reasonable improvements 

are observed in the proposed control algorithms (i.e., for the system equipped with two 

actuators—located on the first and second floors and using the URR approach—subjected 

to the historical Imperial Valley, 1940, El Centro earthquake, the maximum displacement 

drift was reduced by 22% compared to the uncontrolled case). This proposed framework 

was capable of minimizing the lifecycle cost compared to conventional control states and 

the uncontrolled state.  This is promising, considering the current framework and the 

possibility of expanding it to different structural systems subjected to various hazard types. 
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Chapter 8: Summary and Future Recommendations 
 

This chapter summarizes the course of the research for the proposed control methodologies. 

Moreover, it presents the studies of every chapter in Section 8.1. Based on the research 

findings, the future directions are highlighted in Section 8.2. 

8.1 Summary 

This dissertation focused on two stages in structural control: (1) modeling nonlinear 

behavior in systems in response to stochastic excitations and (2) control design including 

dynamics and constraints of control devices. For modeling the nonlinearity and 

stochasticity, a method known as stochastic linearization (Chapter 3) was used and a 

stochastic averaging method was adopted and extended to enhanced stochastic averaging 

method (Chapter 4). State space control design based on nonlinear sliding mode control 

was developed (Chapter 3). In addition, a stochastic control method using enhanced 

stochastic averaging was introduced and was further extended to optimize reliability of 

systems. Multiple civil engineering applications subjected to seismic excitations were 

considered, including a nonlinear multi-span bridge (Chapter 3), a structure with nonlinear 

soil structure interactions (Chapters 4-6), and a nonlinear multi-story building (Chapter 7). 

Various control objective functions were studied such as drift, acceleration, pounding, 

energy, probability of failure, and life cycle cost. 
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Chapter 3 enhanced linear sliding mode control to nonlinear sliding mode control using 

concepts from optimal polynomial control. This method considered higher order weighting 

functions which consequently provides designers with more flexibility to achieve design 

objectives. The developed methodology was applied to a multi-span bridge equipped with 

semi-active MR dampers. The stochastically linearized model of the nonlinear system 

incorporated the dynamics of the control device, and a clipped optimal strategy was 

enforced for lower and upper bounds of control inputs. This methodology was shown to be 

successful in reducing pounding and excessive gap openings in adjacent structures. 

However, for larger systems and higher extents of nonlinearity, stochastic linearization 

may not be a good solution to characterize the system and design an optimal control 

algorithm. 

To avoid linearization of the system, stochastic averaging of energy envelope was 

presented in Chapter 4 in order to characterize nonlinearity and uncertainty in the system 

and the excitation. The existing stochastic averaging of energy envelope was extended to 

enhanced stochastic averaging (ESA) to address limitations of these methods in dealing 

with damping in multi-DOF coupled nonlinear hysteretic systems and independent 

treatment of stochastic excitations. The averaging method was implemented in a single-

story building with soil-structure interactions. To evaluate this method, the probabilistic 

measures of energy (e.g. probability distribution function and first and second order 

moments) were determined and compared with Monte Carlo simulations and the 

conventional stochastic averaging of energy envelope method (Chapter 4). Results 

indicated significant improvements in the accuracy of predictions using ESA compared to 

existing stochastic averaging method. Furthermore, Chapter 5 proposed a stochastic control 
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algorithm based on enhanced stochastic averaging of energy envelope. This strategy 

enables proper consideration of the stochastic nonlinear behavior of systems in the 

optimization process of the control design. The active control algorithm was implemented 

in a system with SSI, verified, and compared with linear quadratic regulator based on 

stochastic linearization.  

Chapter 6 extended the stochastic control algorithm presented in Chapter 5 to explicitly 

optimize reliability of structures. Two variations of reliability-based control methods were 

proposed including constrained reliability-based control (CRC) and unconstrained 

reliability-based control (URC) algorithms. The CRC design employed first- and second-

level optimizations sequentially, where the first-level optimization solved the Hamilton-

Jacobi-Bellman equation and the second-level optimization searched for optimal objective 

function parameters to minimize the probability of failure. In the URC design, a single 

optimization minimized the probability of failure by directly searching for the optimal 

control gain. Considerable improvements were observed in structure’s performance under 

stochastic excitations as discussed in Section 6.3. The proposed control methods have the 

potential to be used for control of other structures and dynamic systems.  

Chapter 7 presented a stochastic risk-based framework for design as well as 

performance evaluation of controlled systems. The objective of the control design was to 

directly minimize the life cycle cost, which is evaluated through total probability theorem 

and crossing rate technique. Two control strategies were developed. The first control 

algorithm, called risk-based linear quadratic regulator (R-LQR), employs two levels of 

optimization where the first level is based on LQR and minimizes the second order moment 

of inter-story drifts, and the second level searched for optimal gains to minimize the 
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expected life cycle cost of the system. The second algorithm, called unconstrained risk-

based regulator (URR), directly minimized the expected life cycle cost. These methods 

were applied to a nonlinear multi-story building subjected to earthquake excitations. 

Analytical optimizations were performed on the stochastically linearized model of the 

system. Uncertainties in system parameters and excitations were incorporated in the 

evaluation stage via Latin hypercube sampling method. These designs were compared with 

the status-quo option and the structure equipped with conventional LQR control strategy. 

Results showed that the proposed control methods reduced the life cycle cost and the extent 

of expected damage significantly compared with the status-quo option. In comparison to 

conventional LQR, R-LQR and URR reduced the life cycle cost of the system by $32.0-

382.0K (including actuator and maintenance costs for controlled systems) as depicted in 

Table 7-2. This active control framework is a promising methodology to explicitly 

minimize the risk to structures under seismic events.  

8.2 Future Research Directions 

The presented computational and experimental research studies span two areas: hazard 

mitigation of civil engineering structures and treatment of system nonlinearity and 

stochasticity of hazard excitation. This research aims at developing control strategies that 

reduce the life cycle cost of structures that includes initial cost, the cost of maintaining and 

upgrading infrastructures, and repair costs in case of damage to structures following 

hazards. Other objectives include minimizing casualties and improving residents’ comfort; 

all these enable achieving more resilient systems. Potential future research directions based 

on developments and findings of this research are listed below. 
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 Expanding the enhanced stochastic averaging method to higher DOFs under external 

excitations. 

 Developing adaptive frameworks for disaster management and recovery of 

infrastructure systems and applying them to alleviate the likelihood and extent of 

damage to nonlinear structures under various hazard excitations. 

 Integrating other risk measures to the risk-based framework discussed in the Chapter 7 

by releasing the assumptions and limitations listed earlier. 

 Implementing proposed control frameworks for other applications (e.g. irregular 

structures, quarter car model) and diverse hazard types (e.g. wind). 

 Introducing a bounded optimization framework, which provides bounded optimal 

solutions versus clipped solutions for the constraints and dynamics of active and semi-

active controllers. 

 Conducting shaking table experiments to test proposed control strategies for realistic 

systems (e.g. systems with soil structure interactions).  

 Optimizing the placement of control devices in large structures to maximize efficiency 

and performance on one hand and minimize cost on the other hand. 
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Appendix A: Derivation of Stochastic Averaging of Energy Envelope 
 

Equations (4.16a-b) and Equation (4.17a-b) are fully derived here. First, the term, ∅1, in 

Equation (4.16a), is 

∅1 =∭
�̇�1�̇�2

�̇�2
d𝑥1d𝑥2d�̇�1𝛶

= (∬∫ �̇�1𝑑�̇�1𝑑𝑥2𝑑𝑥1
√(2𝑒−2𝑢(𝑥1,𝑥2)−2𝑢2(𝑧2))

−√(2𝑒−2𝑢(𝑥1,𝑥2)−2𝑢2(𝑧2))

|

�̇�2
+

+

∬∫ �̇�1𝑑�̇�1𝑑𝑥2𝑑𝑥1
√(2𝑒−2𝑢(𝑥1,𝑥2)−2𝑢2(𝑧2))

−√(2𝑒−2𝑢(𝑥1,𝑥2)−2𝑢2(𝑧2))

|

�̇�2
−

=

∬
�̇�1
2

2
|
√(2𝑒−2𝑢(𝑥1,𝑥2)−2𝑢2(𝑧2))

√(2𝑒−2𝑢(𝑥1,𝑥2)−2𝑢2(𝑧2))

𝑑𝑥2𝑑𝑥1|

�̇�2
+

+

∬
�̇�1
2

2
|
−√(2𝑒−2𝑢(𝑥1,𝑥2)−2𝑢2(𝑧2))

√(2𝑒−2𝑢(𝑥1,𝑥2)−2𝑢2(𝑧2))

𝑑𝑥2𝑑𝑥1|

�̇�2
−

) = 0  

( 

(A1) 

To compute ∅2 in Equation (4.16b), the differential equation for hysteresis is introduced. 

In that respect, the evolutionary variable, 𝑧2, is governed by the Bouc-Wen model as 

�̇�2 = ABW − γBW(�̇�2|𝑧2| + 𝑧2|�̇�2|) 

      

                 

(A2) 

where ABW and γBW are parameters that control the shape of the loop. The nonlinear 

differential equation in Equation (A2) can be solved as 
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𝑧2(𝑥2) =

{

ABW(𝑥2 + 𝑥0)                                            − 𝑎 ≤ 𝑥2 ≤ −𝑥0
ABW
2γBW

(1 − exp(−2γBW(𝑥2 + 𝑥0)))   − 𝑥0 ≤ 𝑥2 ≤ 𝑎 
(�̇�2 ≥ 0)

{

ABW
2γBW

(−1 + exp(2γBW(𝑥2 − 𝑥0)))   − 𝑎 ≤ 𝑥2 ≤ 𝑥0

ABW(𝑥2 − 𝑥0)𝑥0 ≤ 𝑥2 ≤ 𝑎 

(�̇�2 < 0)

 
 (A3) 

where 𝑎 and 𝑥0  are parameters the maximum amplitude and residue respectively. Then, 

the differential of 𝑧2with respect to 𝑥2, 

𝑑𝑧2(𝑥2)

𝑑𝑥2
=

{
ABW                                                                           − 𝑎 ≤ 𝑥2 ≤ −𝑥0
ABWexp(−2γBW(𝑥2 + 𝑥0))                                  − 𝑥0 ≤ 𝑥2 ≤ 𝑎 

(�̇�2 ≥ 0)

{
ABWexp(−2γBW(𝑥2 − 𝑥0))                               − 𝑎 ≤ 𝑥2 ≤ 𝑥0

ABW𝑥0 ≤ 𝑥2 ≤ 𝑎 
(�̇�2 < 0)

  (A4) 

Recall Equation (4.16b) is defined as 

∅2 =∭
(1 − 𝛼𝑧)𝑘2𝑧2

𝑑𝑧2
𝑑𝑥2

�̇�2

�̇�2
 d𝑥1d𝑥2d�̇�1

𝛶

=∭(1 − 𝛼𝑧)𝑘2𝑧2
𝑑𝑧2
𝑑𝑥2

 d𝑥1d𝑥2d�̇�1
𝛶

 

(A5) 

Substituting Equation (A3) and Equation (A4) in Equation (A5), the integrand of ∅2, is 

evaluated and integrated as 

∫(1 − 𝛼𝑧) 𝑘2𝑧2
𝑑𝑧2
𝑑𝑥2

𝑑𝑥2 = ∫(1 − 𝛼𝑧) 𝑘2𝑧2
𝑑𝑧2
𝑑𝑥2

𝑑𝑥2⌋
�̇�2
−

+∫(1 − 𝛼𝑧) 𝑘2𝑧2
𝑑𝑧2
𝑑𝑥2

𝑑𝑥2⌋
�̇�2
+

= ∫ (1 − 𝛼𝑧) 𝑘2𝑧2
𝑑𝑧2
𝑑𝑥2

−𝑎(𝑥1,�̇�1)

𝑎(𝑥1,�̇�1)

𝑑𝑥2 +∫ (1 − 𝛼𝑧)𝑘2𝑧2
𝑑𝑧2
𝑑𝑥2

𝑎(𝑥1,�̇�1)

−𝑎(𝑥1,�̇�1)

𝑑𝑥2 

(1 − 𝛼𝑧)𝑘2 (∫ ABW
2(𝑥2 − 𝑥0)

𝑥0

𝑎(𝑥1,�̇�1)

𝑑𝑥2

+∫
−ABW

2

2γBW
(exp(2γ(𝑥2 − 𝑥0)) − exp(4γBW(𝑥2 − 𝑥0)))

−𝑎(𝑥1,�̇�1)

𝑥0

𝑑𝑥2) 

            +(1 − 𝛼𝑧)𝑘2 (∫ ABW
2(𝑥2 + 𝑥0)

−𝑥0

−𝑎(𝑥1,�̇�1)
𝑑𝑥2 +

          ∫
ABW

2

2γBW
(exp(−2γ(𝑥2 + 𝑥0)) − exp(−4γBW(𝑥2 + 𝑥0)))

𝑎(𝑥1,�̇�1)

−𝑥0
𝑑𝑥2) = 0  

         (A6) 

The terms in Equations (4.18a-b) are obtained as: 
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∅3 =∭
�̇�1
2

�̇�2
d𝑥1d𝑥2d�̇�1
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¥
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  (A7) 

∅4 =∭
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