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Abstract

Understanding the inherent genomic characteristic in the developing brain is a criti-

cal topic in developing neuroscience and translational bioinformatics. Since the brain is

one of the longest and most complex developing structure, the exploration of the com-

prehensive patterns that describe the changes during growth poses significant challenges.

With advances in data generation technologies, the Allen Developing Mouse Brain At-

las (ADMBA) and Allen Developing Human Brain Atlas (ADHBA) projects became an

invaluable resource for neuroscientists and developmental biologists for exploring interest-

ing spatial and temporal patterns of gene expression. However, given the extremely large

amounts of data, it is desirable to apply visualization techniques to their access, analysis,

and interpretation.

This dissertation proposes an extensible visual analytics framework for the spatiotem-

poral pattern exploration in the developing mouse and human brain. Targeting on the

ADMBA and ADHBA data, I developed three visual analytics components: the spatial

pattern exploration, the region-based temporal pattern exploration, and the integrative gene

gradient-based spatiotemporal pattern exploration. The spatial pattern exploration compo-

nent, HOS-Tree system, uses a tree-layout visualization to present the structural hierarchy

and uses colors to indicate the developing orientations. Also, the region-based temporal

pattern exploration component uses data-mining approaches to provide interactive pattern
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presentation among genes and structures. In addition, we use the gradient of gene ex-

pression to define the spatiotemporal genomic characteristic, and also design a 3-D visu-

alization component to provide the exploration of the spatiotemporal patterns. For each

visualization component, I investigate the visual analytics result by seeking the biological

interpretation of the explored patterns. The investigation shows that several explorations

are well-interpreted by development ground truth. These explored patterns could lead to

future studies potentially.

Finally, the proposed visual analytics framework and the containing approaches can

be extended to generalized tools and applications in which exploration and integration of

spatiotemporal data are needed. This dissertation also provides high-level design consider-

ations for future researchers and practitioners about the conceptual methodologies in inte-

grative visual analytics in spatiotemporal pattern exploration.
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Chapter 1: Introduction

As the controller of the mammalian body, the brain is the most complex biological

system. Its role is extraordinarily important and valuable for mammalian life since the brain

not only coordinates actions and reactions, but also an impetus for serving as a storage of

memories [7]. While the anatomy of the brain and its principal functions have been well-

studied in the past, studies of the development of the mammalian brain have gained much

traction more recently [8, 9]. Although the brains of all mammals develop in similar ways,

the entire development is a complex and regulated process that occurs over a period of

time [10]. The brain in humans, for instance, develops from a single fertilized egg to a

fully functional organ which contains around 100 billion neurons at birth. The biological

progresses is so marvelous that it has to generate about 250,000 nerve cells per minute to

construct this 3-pounds-only organ, the brain, from the tip of a 3 millimeter neural tube

in just 40 weeks [11, 12]. More remarkably, this process continues long into old age.

However, although the entire developmental process of the mammalian brain is complex,

fast, and long-lasting, it provides the blueprint for the entire development of mammals in

biology and helps biologists to gain deeper knowledge of mammalian lives. Thus, a clear

and comprehensive understanding of the developmental process of mammalian brains is

essential for predicting different neurological conditions during development and to thereby

improve mammalian lives.
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Over the past few decades, significant advances have sharply accelerated the explo-

ration and provided insights into the basic regulation and processes of the development of

the mammalian brain [8]. In developmental neuroscience, numerous studies have yielded

remarkable biological insights that have spanned the exploration of the development of the

neural organizations at multiple levels: from the structural, to the cellular, and to the molec-

ular levels. This body of work has provided an increasingly clear picture of brain develop-

ment, such that the entire developmental process should be considered as “the product of

a complex series of dynamic and adaptive processes operating within a highly constrained,

genetically organized but constantly changing context” [9].

Taking the central nervous system (CNS) as an example, several studies have revealed

that it is one of the longest and the most complex developmental procedures during brain

growth [9, 12]. In the mammalian brain, neurons—electrically excitable cells that transmit

electro-chemical signals to other cells—are the core components and the basic working

units [13]. In brain and spinal cord, neurons communicate with another 100 billion neu-

rons, as well as with the other cells, via synapses, hence forming the central nervous system

CNS [14]. Starting from a slipper-shaped neural plate at the earliest stages of embryogene-

sis, the CNS develops into the most complex organ that coordinates and affects the activity

of the entire mammalian body [15, 16]. Thus, the development of CNS that consists of

various neural organizations is one of the most important and essential developing proce-

dures. Obviously, it is indispensable to grasp this complex biological process in order to

comprehend the entire development of the mammalian brain [9, 17, 18].

As stunning as they are in the complexity, the developmental processes of the mam-

malian brain, however, requires much further study in order to be completely learned. There

is no doubt that more questions need to be addressed by biologists and neuroscientists in
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the related areas. How is such an intricate system that contains trillions of cells in different

kinds constructed in the first place? How are the myriad of functions that the mammalian

brain reliably carries out formed during the entire assembly? How is the specificity of

various brain functions assigned to certain types of cells or distinct locations during the

growth? How does the establishment of brain functions and the developing regions reflect

the existing developmental regulation and timeline [12]?

From these questions, the increasing importance for learning the developmental pro-

cesses, and the so-called developmental regulation in the mammalian brain can be clearly

seen. In biology and neuroscience, regulation, as a concept that indicates the “management

of complex systems according to a set of rules and trends”, is used to determine the program

of the development [19]. This program codes the entire developing process of the mam-

malian brain, from the embryonic stage, through birth, to adulthood. and finally turns it into

a complex organ that contains thousands of distinct structures. During the developmental

processes in the mammalian brain, multiple biological events and functionalities such as

neurogenesis, neuronal differentiation, cell migration, cell differentiation, synaptogenesis,

and synaptic transmission are all necessary for providing the shapes and functions to the

brain and the CNS. Remarkably, this entire development follows a predetermined program

which orchestrates the development synchronously at various levels—from the structural

to the molecular levels [20]. The most significant challenge for learning this predetermined

program, however, is that the diversity of these biological events and functionalities and at

several levels occurs in both space and time simultaneously.
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Figure 1.1: Developmental progress of the neuronal system in the human brain. (Re-
produced from [1]). Starting from the Carnegie stage 11 (29 days) at the bottom-left corner,
the neuronal system in the human brain develops in years until delivery (in the center). At
the earliest stage, only two embryological structures can be defined: mesonephric duct and
sinus venosus. In the following stages, neurons and connections are growing while more
subdivisions appear to form the major regions of the brain. As less as a quarter of its adult
size, the human brain is relatively immature at birth and it requires a significantly longer
time to develop continually. Commonly, the development of the human brain continues
until the age of 10.
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In developmental neuroscience, natural but distinctive developing patterns are the es-

sential information sought which actually reveal this program [20]. Hence, detecting, ex-

ploring, and understanding the developmental patterns in the mammalian brain are of pri-

mary importance, and as such, they deserve comprehensive approaches. As described, the

mammalian brain is composed of functional regions and distinct cell types. However, both

structural anatomy and functionality change uninterruptedly throughout the entire period

of growth. Thus, how to learn the salient patterns of these changes becomes the essential

point for exploring the comprehensive developmental patterns.

Fortunately, the changes in structural anatomy can be understood by grasping the devel-

opmental ontology of the brain structures. This ontology defines the patterns of structural

changes through time, location, size, and shape. For instance, Figure 1.2 shows the de-

velopmental ontology of the mouse brain from Level 00 to Level 05. Starting from the

neural plate (NP) at Level 00, neuroanatomical subdivisions are continually generated in

an increasing complexity through development. Early proto-segments such as forebrain

(F), midbrain (M), hindbrain (H), and spinal cord (SC) are clearly depicted in Level 01

and more subdivisions start to appear in the following levels [2]. Thus, based on various

anatomical and ontological atlases, marked anatomical structures can be tracked precisely,

and hence these salient structural changes can be explored by comparing marked anatomi-

cal structures at different time epochs, finally converting them into structural patterns. As a

result, various structural patterns describing developmental anatomy have been introduced

into the field of developmental neuroscience.

In addition, the predetermined program is detailed by genome, which is one of the most

important impact factors in organizational development, and the functional changes can be

inferred by the change of gene expression [21, 22, 23, 24, 25]. In genetics, expression is the
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Figure 1.2: The developmental ontology of mouse brain in the first six levels. (Repro-
duced from [2]). The developmental ontology of the mouse brain from Level 00 to Level
05. Starting from the neural plate (NP) at Level 00, neuroanatomical subdivisions are con-
tinually generated in an increasing complexity through development. Early proto-segments
such as forebrain (F), midbrain (M), hindbrain (H), and spinal cord (SC) are clearly de-
picted in Level 01 and more subdivisions start to appear in the following levels. The entire
developmental ontology of mouse brain contains 14 levels (00-13).
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process by which the genetic code of a gene is activated in order to control protein synthe-

sis. According to the central dogma of molecular biology by Francis Crick, “DNA can be

copied to DNA (DNA replication), DNA information can be copied into mRNA (transcrip-

tion), and proteins can be synthesized using the information in mRNA as a template (trans-

lation)” (DNA and mRNA refer to Deoxyribonucleic acid and messenger Ribonucleic acid

respectively) [26]. Thus, the entire expression process controls which information should

and will be used in order to construct functional gene products including RNA, hence it

gives rise to the phenotypes such as a variety of cells of different shapes and types and

organs’ functionalities [24, 27]. Thus, gene expression reflects the activation status of gene

products such as RNA and targeted proteins and hence the time-varying gene expressions

derive the temporal profiles of the organs’ biological functions activation status. There-

fore, the temporal patterns of gene expression—the developing patterns demonstrating the

changes of gene expression over time—delineate the timeline of the biological function-

alities of organs and structures in the developing mammalian brain. Thus, the exploration

of gene expression over time and structures can significantly enhance the understanding of

the development processes of the mammalian brain, and developmental neuroscience has

attached great importance to it.

In this dissertation, I will present an extensible visual analytics framework for the ex-

ploration of the comprehensive patterns of gene expression in the developing mammalian

brain. In this chapter, I will first elaborate on the motivation and aim of this work in Sec-

tion 1.1. The thesis statement is provided in Section 1.3, and I present proposed solutions

in Section 1.4. Finally, the layout of this entire dissertation organization is presented in

Section 1.5.
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1.1 Motivation

Although numerous studies in this area have introduced more developing patterns, neu-

roscientists have focused mainly on two forms as mentioned above: structural patterns and

temporal patterns [28, 29]. In 2013, the IEEE Scientific Visualization Contest focused on

the exploration of the various patterns of gene expression in the developing mouse brain

[30]. In order to help the neurosciences to investigate the spatial and temporal changes of

gene expression during the brain development, several question were posed:

1. “Gradient Identification: which genes exhibit directional expression patterns? For

example, in the cortex, rostral-to-caudal gradients indicate involvement with devel-

opment, whereas exterior-to-interior gradients are involved with layering. Which

categories do these genes belong to?

2. Structural Patterns: which genes show strong expression in a small set of structures

but little expression elsewhere? How do these patterns change throughout develop-

ment? Which categories do these genes belong to?

3. Structure Consistency: which structures have the most consistent expression pat-

terns over time? Which structures are the least consistent? Which structures most

resemble each other? This is particularly interesting if the structures are not neigh-

boring. How do the answers change if you restrict the expression patterns to a single

gene category?

4. Complementary Patterns: which genes have expression patterns that complement

each other within a structure? Are these patterns persistent during development?

Which categories do these genes belong to?” [30]
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Clearly, the various patterns regarding the questions above are not always presented

consistently during the entire developmental process, and more importantly, are potentially

mutually influenced and restricted. The structural patterns, for instance, not only reveal the

developmental behaviors of organs at various brain locations but also provide the anatom-

ical ontology of structures at various time epochs or stages. The temporal patterns (refer

to the Structure Consistency), on the other hand, represent the durative activation states

of genes while the expression profiles at each stage also affect the structural functional-

ities and development. Moreover, for any single gene, its current gene expression status

depends on its previous state strictly in both time and location during brain development.

Thus, the overall patterns that have integrated both structural and temporal patterns could

exhibit regional genomic behavior through time. Hence an integrative approach for these

various patterns is of primary importance and amenable for exploration and analysis.

Spatiotemporal data and patterns, which are used to represent the objects in both space

and time, have attracted considerable attention in the previous decade [31, 32, 33, 34, 35,

36, 37]. As a broad concept (as long as the data contains both spatial and temporal in-

formation), spatiotemporal data is worth its weight in gold in many fields, and especially

in developmental neuroscience [20, 38, 39, 40, 41]. As mentioned above, gene expres-

sion data can reflect distinct biological events and functionalities. Thus, for genes, their

time-varying properties of expression at various brain regions imply the temporal patterns

of regional functionalities. At the same time, their space-varying properties of expres-

sion also establish the spatial patterns which indicate the evolutions of these functionalities

among brain regions. Obviously, in order to gain a deeper and clearer understanding of the

development of the mammalian brain, it is important to explore the natural spatiotemporal

patterns of gene expression, hence to answer the questions of the contest.
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1.2 Challenges and aims

In computer science, data mining is an interdisciplinary subfield which focuses on ex-

ploring interesting and valuable patterns from large and complex data. Advancing signif-

icantly in biology and neuroscience, plentiful approaches in data mining have been devel-

oped in order to discover various types of patterns [42, 43]. Supervised learning (includes

classification and regression), clustering, dimensionality reduction, structured prediction,

and anomaly detection are common classes of techniques that are involved in data mining

[44, 45]. Each of them can serve as modeling or knowledge exploration approach for tar-

geting data types and tasks. Thus, how to choose proper approaches to thereby design a

robust pattern-learning methodology for revealing various types of patterns is a prerequisite

for the exploration of the spatiotemporal patterns.

Furthermore, after learning patterns in various types, integrating them into a data struc-

ture which represents spatiotemporal characteristics is the next challenge. Such a data

structure can not only enhance the entire visual analytics significantly, but also provide an

efficient and extensible platform that could significantly advance related studies. Since the

explored patterns contain region-varying expression information among brain structures

as well as the time-varying expression information over the entire development, this data

structure deserving of innovational approaches should be robustly constructed in order to

represent the spatiotemporal patterns effectively. Obviously, how to design such a data

structure, and consequently, to derive the spatiotemporal patterns also challenge the explo-

ration progress. Finally, whether the interpretation of these various types of patterns reflects

the biological accomplishment or leads to future hypotheses still needs investigation.
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On the other hand, understanding the comprehensive developing process requires not

only insightful and efficient analysis approaches to explore, but also interactive and intu-

itive visualization methods to present. ”Visual representations and interaction techniques

take advantage of the human eye’s broad bandwidth pathway into the mind to allow users to

see, explore, and understand large amounts of information at once. Information visualiza-

tion focused on the creation of approaches for conveying abstract information in intuitive

ways” [46]. Visual analytics, on the other hand, focuses on the visualization process in the

entire data analysis as well as the user interaction, and it is widely used in the studies of bi-

ological data analysis [47, 48]. However, although several visualization tools and platforms

targeting the comprehensive pattern presentation have been designed, none of them have

satisfied the requirements of the exploration of the spatiotemporal patterns in developing

neuroscience (detailed in Chapter 2). How to design such an eligible visual analytics tool

is thus the fourth challenge that I will undertake in this dissertation.

Given the challenges above, I propose an extensible visual analytics framework in order

to facilitate the comprehensive spatiotemporal pattern exploration of gene expression in

the developing mammalian brain. In this dissertation, I will focus only on two species

of mammalian brains: mouse and human. The data I have used were collected from the

Allen Developing Mouse Brain Atlas (ADMBA) project and the Allen Developing Human

Brain Atlas (ADHBA) project, both of which contributed by The Allen Institute for Brain

Science (AIBS) (detailed in Chapter 2.1). In summary, this dissertation will address the

above challenges in studies of the following specific aims:

Aim 1. Develop an interactive visual analytics method to present spatial information

of structures, based on the AIBS datasets for murine models.
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Aim 2. Develop a robust method for learning and visualizing the inherent temporal

patterns of gene expression in developing mammalian brains, based on the

AIBS datasets for both mouse and human brains.

Aim 3. Define an integrative method for providing the intuitive presentation of the

spatiotemporal pattern of gene expression in the mouse brain.

In my approach to addressing Aim 1, I will present a tree-layout visual analytics system

to present the spatial pattern of brain structural development. To address Aim 2, I propose a

matrix-layout system to perform robust visual analytics of region-based temporal patterns

of gene expression. Finally, for Aim 3, I will present a gene gradient approach to integrate

various patterns into the spatiotemporal pattern. It should be noticed, while this dissertation

is mainly focused on the exploration of spatiotemporal patterns for the AIBS data, it can

serve as an efficient and robust visual analytic solution for other developing brain data or

other multidimensional data as well.

1.3 Thesis statement

The mammalian brain develops through a predetermined program which contains roles

that are concurrent in of both space and time. The spatiotemporal patterns of the develop-

ing mammalian brain reveal novel biological insights from comprehensive data, to explore

these roles. An integrative visual analytics framework enables effective and precise explo-

ration of such spatiotemporal patterns, and overcomes existing challenges in related fields.

The explored patterns can reveal valuable developmental processes of the brain as well as

roles that can enhance the understanding of mammalian brains.
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1.4 Outline of Solutions

My overall approach offers an efficient visual analytic framework which allows for

various explorations of the spatiotemporal patterns of gene expression in the developing

brain. The proposed framework used three operating modules of the visual analytics to

overcome the existing challenges and achieve the aims above—spatial pattern exploration,

region-based temporal pattern exploration, and integrative gene gradient-based spatiotem-

poral pattern exploration. Next, I briefly describe each of the proposed modules.

• HOS-Tree—Hierarchical Orientation Structural Tree

I have developed the HOS-Tree, a visual analytics approach which allows the user to

explore the spatial patterns of structural development. The HOS-Tree utilizes prior

knowledge of hierarchical ontology to generate a tree-layout visualization of brain

structures. The edges in the tree are color-coded to reveal the growth directionality

of brain structures during development. At the same time, gene expression can be

integrated with the tree-layout hierarchy to indicate the spatial change of develop-

ing structures. I will demonstrate the usefulness of the HOS-Tree approach through

two case studies. Thus, in summary, the HOS-Tree system uses a tree-layout visual-

ization to present the structural hierarchy, and uses color to indicate the developing

orientations, hence to serves as the exploration module for the spatial pattern.

• BGEFM—Bi-clustered Gene Expression Flow Matrix

I have developed the BGEFM, a visual analytics approach which focuses on the

association between gene and structure in a temporal manner. This method uses

a data-mining approach to learn the inherent temporal patterns of gene expression,

and then presents the patterns in a matrix format for all given genes and structures.
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Since bi-clustering, a data mining approach can seek the correlative signals between

the rows and columns of a matrix (refer to genes and structures domain, detailed

in Chapter 4), we apply such approach to the generated matrix in order to explore

the correlated region-based temporal patterns of gene expression. Also, I use neu-

rodevelopment events to interpret the learned temporal patterns, while using the en-

richment of biological function to investigate the region-based temporal patterns.

In summary, the BGEFM uses data-mining approaches for providing an interactive

pattern-presentation among genes and structures, hence to serve as the exploration

module for the region-based temporal patterns.

• Spatiotemporal Gradients of Gene Expression

The gene gradient is a proposed data structure that measures how a gene expres-

sion changes across the developmental structures in the brain, thus representing the

spatiotemporal patterns. I use two measurements to indicate the gradients of gene ex-

pression: the main gradient orientation (MGO) and gradient anisotropy (GA). Also,

I developed a visualization approach to present the gene gradient in an intuitive way.

Again, I have investigated the functional enrichment of genes which have signifi-

cant and distinct gradient properties and demonstrate how the spatiotemporal pattern

reflects the brain development. Therefore, in summary, I use the gradient of gene

expression to define a data structure which derives spatiotemporal genomic charac-

teristics, as well as provides an intuitive visualization of the 3-D coordinates, hence

to furnish the exploration of the spatiotemporal pattern.

As described above, for each module, I have investigated the result by seeking the rela-

tions between patterns and biological properties. The analyses show that several explored

patterns are well supported by the preliminary knowledge of brain development. Thus, I
14



assert that the proposed visual analytic framework demonstrates an excellent precision of

gene characteristics during brain development. Therefore, it enables the efficient and robust

exploration of spatiotemporal patterns of gene expression in the developing brain for both

mouse and human. Last but not least, although not all explored patterns are well-explained

by existing knowledge, I still firmly believe, however, that they potentially lead to future

studies in developing neuroscience fields.

It should be noticed, once again, that although my proposed framework focuses on the

spatiotemporal pattern exploration for both the ADMBA and ADHBA data, it could also

serve as an efficient and robust visual analytic solution for other multidimensional data for

comprehensive pattern exploration.

1.5 Organization of this dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, I will review

existing work in the presentation of spatial and temporal patterns, as well as the related

works which have focused on ADMBA and ADHBA data visualization and analysis. In

Chapters 3 and 4, I will describe the HOS-Tree and BGEFM respectively. In each chapter,

I will first detail the design rationales of the visual analytics modules, and they illustrate

the robustness and efficiency by investigating interesting patterns. The gene gradient-based

spatiotemporal pattern exploration will be described in Chapter 5. Finally, in Chapter 6, I

will summarize this dissertation and discuss future works on this topic. Again, although

my proposed framework focuses on the spatiotemporal pattern exploration for both the

ADMBA and ADHBA data, it can also serve as an efficient and robust visual analytic

solution for other multidimensional data for comprehensive pattern exploration.
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Chapter 2: Related Works

With rapid growth during recent years, the exploration of overall genomics patterns in

mammalian brain has become increasing valuable in biological and neuroscience studies.

In this chapter, before the discussion of related studies, I will first detail the data collected

from the AIBS projects in Section 2.1. Next, I will survey studies that are most related

to the scope of my topic in two categories. First, in Section 2.2, I will review related

techniques in high-dimensional data visualization, and especially, in spatiotemporal pattern

observation. Following this, I will review salient studies which focus on the topics of

observing expression patterns in brains, especially for the AIBS data portal, in Section

2.2.1. Finally, the chapter ends with a brief summary in Section 2.3.

2.1 Allen Brain Neuroscience Datasets

In order to understand how the human brain works in states of health and disease and to

answer various challenging questions in neuroscience, the Allen Institute for Brain Science

(AIBS) has published an online resources data portal that provides extensive gene expres-

sion and neuron-anatomical data [49, 50]. This public data-driven resource enables the

discovery and exploration of fundamental brain properties by scientists and researchers.

I will introduce both the data contained in the Allen Developing Mouse Brain Atlas and

Allen Developing Human Brain Atlas.

16



2.1.1 The Allen Developing Mouse Brain Atlas

As one of the discovery projects of AIBS, the Allen Developing Mouse Brain Atlas

(ADMBA) focuses on providing a detailed description of the various gene expressions in

the developing mouse brain. To complete such a comprehensive genome-scaled mouse

brain atlas, high-resolution (approximately 20µm3 per voxel), deep-level (approximately

2600 structures, for a total of 14 levels of hierarchical structural ontology) anatomic ref-

erence atlases at significant growing stages were generated. Figure 2.1 shows example

slides in the sagittal plane chosen from the ADMBA. At the same time, the entire structural

ontology during brain development from embryo to adult was provided. By focusing on

the neuroanatomical and signaling pathways of targeted genes, the ADMBA project has

enabled discovery of the change from neuron development-related functions for the field

scientist. This complete neuron development-targeted dataset was provided in the form of

the gene-structure pair, where the structures followed a developmental hierarchy. Described

in detail, the collected Allen Developing Mouse Brain Atlas data consists of:

• Six developing stages: three embryonic and three early postnatal Theiler Stages are

selected: 13.5 days after embryo (E13.5), 15.5 days after embryo (E15.5), 18.5 days

after embryo (E18.5), 4 days after born (P4), 14 days after born (P14), and 56 days

after birth (P56, adult).

• 2691 structures with hierarchical structure ontology.

• 2105 neuron development-targeted genes.

• 3-D structure annotation information, one for each stage.

• Detailed anatomic reference atlases, one for each stage.
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• High resolution in situ hybridization image data across all stages.

In summary, the ADMBA data uses the genes-per-structure approach to provide a char-

acterization of gene expression in the brain from mid-gestation to young adult mouse. At

the same time, each developmental stage has its reference structure annotation volume, and

structure labels are assigned to every voxel in the brain. Since the gene expression val-

ues were derived from in situ hybridization of brain section images, every pixel has been

registered as an appropriate reference structure. Thus, the expression data of ADMBA is

multidimensional, and for any given gene, a user can access the detail expressing values in

entire brain locations across all developing stages. Finally, the structural annotations follow

a hierarchical ontology of the evolving brain.

2.1.2 The Allen Developing Human Brain Atlas

Similar to the ADMBA project, the Allen Developing Human Brain Atlas (ADHBA, or

BrainSpan) project was introduced for describing transcriptional mechanisms involved in

the developing human brain. However, in contrast with the ADMBA data, in which genes

are chosen for neuroanatomical functions, the ADHBA data examines almost all known

probes, in order to provide a complete data portal for field scientists. In the ADHBA data,

two data modalities were used for gene examination, including RNA sequencing and exon

microarray hybridization. Also, the expression data were generated based on 42 brain

samples, including both males and females, and spanning the prenatal and postnatal stages

of brain development. For each brain specimen, up to 26 targeted cortical and subcortical

structures were examined by more than 52,000 gene probes. Thus, described in detail, the

collected Allen Developing Human Brain Atlas data consists of:
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Figure 2.1: The atlas of developing mouse brain at three embryonic and three postna-
tal stages [2]. Example atlas slides in the sagittal plane chosen from ADMBA: 13.5 days
after embryo (E13.5), 15.5 days after embryo (E15.5), 18.5 days after embryo (E18.5), 4
days after born (P4), 14 days after born (P14), and 56 days after born (P56, adult).
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• 42 brain specimens, spanning prenatal and postnatal development in both males and

females.

• All brain specimens were distributed into 31 developing stages.

• Up to 26 targeted cortical and subcortical regions across human brain development.

• 52,376 genes examined in each of the accessible regions.

In summary, the ADHBA data used the genes-per-region approach to provide gene

characterization in the human brain from early-gestation to adult. Each available region

was examined by entire gene probes for each brain sample, while these brain samples

belong to 31 developing stages. Thus, as with the ADMBA, the expression data of the

ADHBA is multidimensional. For any given gene, users can access the detailed expression

values in available brain regions throughout all developing stages. It should be noticed,

however, that not all regions were available for examination in each brain specimen. Thus,

the ADHBA data contains more empty data entries than the ADMBA.

2.2 Visualization Approaches for Spatial, Temporal, and Hierarchical
Patterns

Visualization can facilitate the discovery and exploration of structures, patterns, and as-

sociations among data, and can enable users to gain an intuitive understanding of the data

structure. More importantly, qualitative studies outweigh others in the early stage of data

analysis, in which analytical visualization is especially significant. Certainly, gene expres-

sion pattern analysis and visualization are challenging topics due to their dimensionality,

noisy environment, and pattern varieties.

Figure 2.3 shows well-known approaches of visualization and analysis targeting gene

expression data [3]. Among the studies using these visualization approaches, numerous of
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Figure 2.2: The 26 available regions in the ADHBA data. At each stage, up to 26 targeted
cortical and subcortical regions are examined by the gene probes. These regions contain
most of the functional subregions on the cortex as well as the midbrain structures.

21



Figure 2.3: Example visualization techniques in computational bioinformatics. (Re-
produced from [3]) (a) A timeline of the relevant technologies and approaches that intro-
duced into bioinformatics. (b) Visualization of K−Means clusters. (c) Visualization of
principal component analysis (PCA) in 3D space. (d) Visualization of parallel coordinates
of gene expression regarding in seven dimensions. (e) Visualization of the gene expression
clusters in the series of time or conditions. (f) Visualization of the hierarchical clusters in
the series of time or conditions. (g) Hypothetical integrative visualization approaches using
VR (virtual reality) devices.
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them exist on the observation of temporal patterns of gene expressions [51, 52, 53, 54].

Clustering methods is one of the most widely used analysis methods in the gene expression

related field [55]. By clustering, genes which co-express or share similar expression pat-

terns are grouped together. Further, as a dimension-reduction method widely used in bioin-

formatics, self-organizing maps (SOM) provide a visualization approach which projects

high-dimensional expression data into a low-dimensional viewpoint (usually in 2-D space)

[56]. On the other hand, among visual analytic methods, the parallel coordinates (PC) can

potentially be considered as the simplest approach to displaying the various gene expres-

sion patterns [57]. In PC, a separate axis represents each dimension, and data are linked

between the axes in order to detect the relationships. In this case, PC is well-known and

widely-used in temporal pattern visualization in the biological field [58]. At the same time,

TreeView is one of the most popular approaches to visualizing the hierarchical patterns.

The tree-layout presentation reflects the relationships between clusters by a hierarchical

dendrogram [59].

2.2.1 Pattern Exploration for the Allen Brain Atlas

Understanding the mammalian brain is significant in order to learn the regulation of life.

In order to explain the organization of the mammalian brain, several studies have focused on

identifying developmental patterns in the brain. The recognition of developmental patterns

in the brain can be obtained from the gene expression. Abundant approaches and techniques

have targeted the topic of analyzing and profiling the expression data in genome-wide range

[60, 61]. Recently, several studies have focused on identifying the spatial gene expression

patterns in the particular mammalian brain regions [62, 63, 21, 64]. At the same time, ABIS

has provided a genome-wide atlas of gene expression in the brains of many species. These

valuable datasets were accessible by the public by using the ABIS data portal. Especially,
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among these different datasets, both the developing mouse brain atlas and the developing

human brain atlas were put under the spotlight since they provided comprehensive data for

scientists in developing neuroscience and bioinformatics [65, 66, 67, 68, 69, 70].

Studies of the Mouse Brain

Among studies that have been performed for the AIBS datasets, multiple studies have

focused on the mouse species datasets, including the ADMBA and AMBA (Allen Mouse

Brain Atlas), with various scopes of targets. Some have focused on providing a global

comprehensive pattern exploration, including the gene expression pattern [71, 72] and the

connection networks [73, 74, 75, 76, 77], while others have performed gene-targeted anal-

yses [78, 79, 80, 81, 82, 83] or region development analyses [84, 85, 86, 87, 88]. Among

the abundant studies in this field, several works have targeted the exploration of the general

patterns in the developing mouse brain [89, 90, 91, 92, 93]. Especially, Ji’s lab made a

significant contribution on this topic. They used a tree-layout structure to denote the struc-

tures, similar to mine, while using HOSVD (High-order singular value decomposition) to

complete the data dimension-reduction and to perform visualization [4, 94, 95]. However,

in spite of this accelerated spatiotemporal pattern exploration, there are still limitations to

their progress. First, although they used a tree-layout structure to present the developing

hierarchy, compared with my work, it did not manifest enough spatial information. And

second, the spatiotemporal patterns observed were region- or structure-based, and lacked a

more global and integrative spatiotemporal pattern definition and observation.
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Studies of the Human Brain

On the other hand, more valuable work has been performed targeting the human species

datasets, including the ADHBA and AHBA (Allen Human Brain Atlas). From these stud-

ies, some have proposed the limited solutions for the global gene expression network and

region-connectivity challenges [96, 97, 98, 99, 100, 101, 102, 103], while others have fo-

cused on distinct targets. For example, several types of research have focused on local

function and development in the human brain and have found distinct relationships be-

tween brain structures and cell types during growth [104, 105, 106, 107, 108, 109, 110].

Moreover, some studies tried to identify the developing differences between human and

other species, and found that the differences came from not only biological function but

also anatomical structures [111, 112, 113]. More recent studies also focused on diseases

analysis based on the AHBA data to provide a better understanding of their impact on the

brain [114, 115, 116, 117, 25]. Since the majority of the brain is the neuron system, only the

neurodevelopment-related diseases were chosen, such as autism disorders and Parkinson’s

disease. However, a global spatiotemporal pattern exploration approach is still missing for

the developing human brain data.

2.2.2 Released Tools for AIBS Data Portal

At the same time, constructed by the AIBS data portal and the above studies, exten-

sive data exploration tools have already been developed. Brain Gene Expression Analysis

(BGEA) provides computational techniques for gene expression analysis [118, 119]. Neu-

roBlast, which is derived from the principles of the Basic Local Alignment Search Tool
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(BLAST), is used to identify similar genes based on sequences. In NeuroBlast, the expres-

sion patterns can be observed in 3-D space, and users can also explore similar genes by gen-

erating a ranked list based on the similarity of expression patterns [120]. Brain Explorer,

constructed by AIBS, serves as a visualization tool for visualizing mouse brain anatomy

and gene expression data. It provides a 3-D rendering of mouse brain structures and the

gene expression patterns [2, 121]. Anatomic Gene Expression Atlas (AGEA), on the other

hand, was built based on computed spatial correlations across gene expression data [122].

AGEA offers users the exploration of the genome-wide neuroanatomical relationships as

well as molecular-level brain organization. ALLENMINER is an open-source software that

provides the 3-D exploration of mouse brain data [123]. Enhanced to the Brain Explorer,

ALLENMINER enables the custom regions of interest (ROI) analysis for gene expression

and structure. Finally, in 2013, our team developed HOS-Tree, a visual analytic system that

enables the exploration of the spatial expression pattern over a structure-wide hierarchical

layout [4].

2.2.3 Existing Challenges in Capturing Spatiotemporal Gene Gradi-
ents

Although this body of work in visualization has provided various approaches for re-

vealing various types of gene expression patterns, few of them have focused on the topic of

the exploration of the spatiotemporal pattern and so called the gene gradient [4, 124, 122].

While several studies have provided limited discoveries for specific diseases and genes

[125, 126, 127], few of them have concerned the spatiotemporal pattern across the en-

tire development of mammalian brains [23, 70, 100]. Finally, although our preliminary

work provided the exploration of the spatiotemporal fold change of gene expression in the
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developing mouse brain, no reported work has provided a visualization approach which

facilitates the comprehensive visualization of the spatiotemporal gene gradient [128].

2.3 Summary

This chapter reviews the related works in the fields of visual analytics of AIBS datasets.

I started by reviewing the related technologies and proposed methods for comprehensive

pattern visual analytics, and followed with a discussion of previous studies for the AIBS

data portal. I listed the advantages and limitations of several interesting approaches. In

the next three chapters, I will present three visual analytics components for my proposed

visual analytics framework. In each chapter, I will discuss the visual techniques that I have

chosen, and will use explored patterns to perform investigation.
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Chapter 3: Exploration of the Spatial Pattern of Brain Development

In this chapter, we present an interactive visual analytics method to explore the spatial

patterns in the AIBS datasets. Especially, in 2013, we developed HOS-Tree (Hierarchi-

cal Orientation Structure Tree) to participate the 2013 IEEE Data Visualization Contest

[4]. HOS-Tree focuses on the spatial pattern visualization of both developing orientations

among all brain structures and gene expression inside. In order to provide an intuitive and

efficient way, the HOS-Tree utilizes the prior knowledge of the hierarchical ontology to

generate a tree-layout visualization for the brain structures. This data-driven visual analyt-

ics overcomes the first challenge in Chapter 1.1: how to enable the learning of the natural

spatial patterns of structures in the developing brain.

To satisfy one of the core prerequisites for spatiotemporal pattern exploration, we de-

signed HOS-Tree. By describing each structure as a node and the development relationship

as edges, the HOS-Tree used a tree-layout representation to indicate the entire hierarchical

ontology in an intuitive way. More important and innovational, the edges in the tree are

color encoded to reveal the growth directionality during structural development. At the

same time, the gene expression can be integrated with the tree component to indicate the

spatial change over developing structures. We demonstrated the efficiency of HOS-Tree

through two case studies.
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The chapter is structured as follows. Section 3.1 provides background and motivations.

Section 3.2 describes the data collection and tasks. Section 3.3 describes the design of the

HOS-Tree system. Next, we demonstrated the efficiency of HOS-Tree through two case

studies in Section 3.4. We close this chapter by summarizing our work in Section 3.5. It

should be noticed, since the ADHBA data did not provide the spatial region information, we

only perform the HOS-Tree to the ADMBA data, which contains entire structure volume

and location information in 3-D space.

3.1 Background and Motivation

Developmental neuroscience is a subfield of neuroscience which records and analyzes

changes in the developing brain from embryogenesis to end-of-life. The development of

the mammalian brain provides useful and valuable information for neuroscience in the

form of patterns of changes in structure and function. Patterns, in turn, serve as essential

information to characterize brain development. Therefore, it is pivotal and critical to ob-

serve, identify, visualize and analyze the inherent patterns of change that can be used to

infer genomic regulation. A systemic and comprehensive understanding of the rules during

brain development will lead neuroscientists to biologically relevant insights and treatment

strategies of neurological disorders and diseases.

Several studies have demonstrated that underlying genomics has the most impact on the

growth of the mouse brain. Until recently several efforts has been expended on studying

spatiotemporal gene expression (mRNA) patterns; developmental neuroscience has tradi-

tionally focused on either the underlying spatial or temporal patterns. Understanding spa-

tiotemporal patterns of gene expression will help clarify the roles that various genes play
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during brain development. Thus, understanding the spatial pattern of developing structures

becomes more important.

Data repositories from the Allen Institute for Brain Science (AIBS) inherently captured

structures and associated changes in gene expression in both adult and the developing brain

at numerous stages. It now remains to discover these associations. The topic of the 2013

IEEE Data Visualization Contest targeted the existing domain of developmental neuro-

science on the mouse brain. It is essential to record and characterize the significant patterns

of mouse brain organization and development and to analyze their relationships to gene ex-

pression patterns. However, to aid neuroscientists to explore the evolution and regulation

of such complex processes and to help grasp the multitude of gene expression-structural

relationships, it requires not only a complete and comprehensive data processing system

but also an interactive and efficient visualization approach.

In order to observe, identify, visualize and analyze the comprehensive patterns of gene

expression during brain development, we created a visual analytic system based on the

ADMBA dataset. Our system was crafted in response to the spatial pattern exploration

challenges posed by the contest. We next describe the posed challenges and specifically

describe the required analytic tasks.

3.2 Data and Tasks

The Allen Institute has organized several salient studies that capture and curate a large

number of genes in the developing brain and made this data publicly available. It is now

feasible to characterize various relationships between gene expression and structural pat-

terns over space and time. In this section, we briefly describe the available data set, i.e., the
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Allen Developing Mouse Brain Atlas or the ADBMA, as well as the tasks and challenges

posed by the 2013 IEEE Data Visualization Contest [4].

3.2.1 Data Collection

The ADMBA provides the expression levels of 2105 genes in 2691 anatomical struc-

tures across three embryonic and three early postnatal stages: E13.5 — embryonic days

13.5, E15.5 — embryonic days 15.5, E18.5 — embryonic days 18.5, P4 — postnatal days

4, P14 — postnatal days 14, and P56 — postnatal days 56 (adult). Three-dimensional refer-

ence mouse brain atlases for each stage and the corresponding annotated volume with struc-

ture labels are also available. Additionally, a hierarchical annotation of various evolving

brain structures is available. Finally, the scrutinized genes are organized into 11 categories

allowing for further appropriate enrichment studies.

3.2.2 Tasks

Based on the data provided by the Allen Institute, the 2013 IEEE Scientific Visualiza-

tion Contest posed several tasks and challenges, and two of them were targeting on the

spatial pattern of structures.

Task 1. Gradient Identification. Which genes exhibit directional expression pat-

terns? Which categories do these genes belong to?

Task 2. Structural Patterns. Which genes show strong expression in a small set of

structures but little expression elsewhere? How do these patterns change

throughout development?

Indeed, the characterization of such complex structural patterns requires not only an

efficient visual analytic approach to representing the entire developmental process but also
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Figure 3.1: Gene expression visualization of Tbr1 using AIBS’s Brain Explorer 2.
Spatial visualization of expression of gene Tbr1 at stages: (a) E13.5, (b) E15.5, (c) P4, (d)
P14, and (e) P56 with more details. The expression levels are visualized using a heat map,
where the highest and lowest values of expression are marked as red and green respectively.
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a flexible interrogative method to enable effective interactive queries. The Allen Institute

designed a visualization tool, Brain Explorer 2, to explore gene expression levels and mark

their 3-D locations in the mouse brain at a given stage of development. Figure 3.1 shows

the visualization pertinent to the expression of gene Tbr1 by using Brain Explorer [121].

However, this tool is too limited to observe spatiotemporal patterns hidden in the data or

to complete any of the two tasks listed above. These tasks can only be realized when

significant patterns in various phenotypes are exhumed from data collected. Therefore,

to explore the spatial patterns in a developing mouse brain and to address the challenges

posed by the contest, we created a visual analytics system described in some detail in the

following section.

3.3 Visual Analytics Design

In order to address the challenges posed in the tasks above, we created a visual analytic

solution that rests on the Hierarchical Orientation Structural Tree or HOS-Tree. This com-

ponent organizes the brain anatomy as an oriented tree and allows for the visualization of

the development process in an intuitive manner. Eventually, the proposed visual analytics

framework integrated all these components (including the component in Section 4) together

interactively and subsequently the developmental genomic patterns in a mouse brain could

be revealed. The structure-gene cluster patterns found in the second component (refer to

the BGEFM in Section 4) are used to drive the visualization of the patterns during devel-

opment and hence the HOS-Tree. Further, a collection of gene expression patterns can be

traced back to various anatomical structures. Here, we first describe the designing of the

first component, the HOS-Tree.
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Figure 3.2: Constructing the HOS-Tree. HOS-Tree used a tree-layout graph to represent
the structural hierarchy that using the first developing level as the root of the tree. (a)
Example annotated structures of first four levels. (b) Constructed structure hierarchical tree
derived from (a). (c) Aligning the structures nodes along annular circles in the preferential
growth order, the complete HOS-Tree visualizes the entire brain structures.
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3.3.1 Using Tree-layouts to Present Structures

The HOS-Tree imposes a hierarchical structure over the developmental stages and is

well suited to observe the evolution of structural patterns. Since brain structures were

selected for the spatial pattern visual analytics, it is natural to use their developmental ori-

entations and hierarchical levels to represent such patterns. As done in the previous work,

we used a tree-layout graph to represent the structural hierarchy. For a mammalian brain

study, it is natural to use the first developing level as the root of the tree. Further, aligning

the structures along annular circles presented the preferential growth of the structures in a

hierarchy. Moreover, various brain structures form the nodes, while the edges among them

displayed the developmental relationships (connected predecessor with successor struc-

tures). Figure 3.2(a) and (b) shows an example with various annotated structures at the

first four levels. Figure 3.2(c) is the constructed hierarchical structure tree derived from

this annotation. In the HOS-Tree, solid lines were used between structural nodes attributed

with expression levels while dashed lines marked those nodes with missing measurements

of expression levels. Additionally, the thickness of edges provided an indication of the

normalized expression values at any given stage. This depiction allowed for a synergistic

depiction of the structure of function, and vice-versa, a significant relationship in develop-

mental biology.

3.3.2 Coloring the HOS-Tree Using Developing Orientation

Additionally, in order to visualize the spatial patterns intuitively, we next color-encoded

this tree-layout graph by the developmental orientation. The developmental orientation of

each structure could be obtained through the spatial locations of itself and its predeces-

sor. However, Simply calculating the 3D vector from the centroids of the predecessor to
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successor structures in different coordinates could lead to inaccurate results. Even worse,

3-D imaging registration could neither be used in our case due to the significant variances

among the volumes’ sizes and shapes. To solve this problem, we designed an ontological

structure registration that assumed a structure’s location at a higher hierarchical level or

a later stage. In this method, we used the union of successor structures at the next level

to predict the location of the predecessor structure. Equation 3.1 and 3.2 showed how we

calculated the predicted volume (PV) of structure:

PVSi =<VSi

⋃
(

S j�Si
′⋃

j

VS j)> (3.1)

Here, Si denotes the ith brain structure, VSi denotes the 3D volume of structure Si in

the atlas as well as < VSi > denotes its spatial centroid , Si
′ denotes the predecessor of Si,

and S j � Si denotes that S j is a successor structure of Si. Thus, the spatial developmental

orientation (DO) of Si is defined as:

~DOSi =<VSi >−< PVSi > (3.2)

where VSi denoted the spatial centroid of the brain structure Si:

~<VSi >= (Cx,Cy,Cz)|Si (3.3)

and the coordinates of the centroid is the average of every voxel’s coordinates in this

brain structure volume at each unit direction (x, y, and z):

Cx =
∑i x̄Vi

∑iVi
,Cy =

∑i ȳVi

∑iVi
,Cz =

∑i z̄Vi

∑iVi
, (3.4)
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Figure 3.3: Coloring the HOS-Tree using spatial developing orientations. (a) The entire
HOS-Tree used the ontological structure registration. (b) An example of how we converted
the spatial developmental orientations into RGB space.
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Figure 3.4: Example of the ontological structure registration. (a) Specific structures
CSP (caudal secondary prosencephalon) and RSP (rostral secondary prosencephalon) were
developed from SP (secondary prosencephalon) at the previous level; (b) Imprecise location
of SP, as the black outline shows, without the structure-based registration; (c) Our structure-
based registration approach provides the new location of SP, as the black outline shows.
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Next, the spatial developmental orientations were normalized into RGB space, as the

same method used in DTI (Diffusion Tensor Imaging) visualization. In this color sys-

tem, the intensity of each primary color denotes the measurement on each color axis as

determined by the projection of the development orientation vector: red is along the x-

axis (medial-lateral), green is along the y-axis (ventral-dorsal), and blue is along the z-

axis (caudal-rostral). Figure 3.3(a) shows the entire color-encoded HOS-Tree while (b)

indicates the color-encoding method. Figure 3.4 shows the entire HOS-Tree using the on-

tological structure registration, in which we believed to provide better robustness on DO

calculations: (a) structure CSP and RSP were developed from SP at previous level; (b) the

location of SP is not precise when calculating the developing orientation without the struc-

ture registration; (c) the structure registration uses the union of children structures of SP,

CSP and RSP, to predict the new location of SP for developing orientation calculation. In

summary, the HOS-Tree to represent the spatial patterns of the entire brain structures, and

it formed the first component of our visual analytics.

3.3.3 Interactive Functions in HOS-Tree

Our overall approach offered an efficient visual analytic system that allows for various

exploration by integrating both visual analytics components (the BGEFM and the HOS-

Tree). The interactive functions will be discussed later since they include the next visual

analytics component. Among these functions, there is one that was designed especially for

the HOS-Tree: gene profile exploration (GPE). The GSP function focuses on the spatial

expression patterns of any given gene at various stages. After the user selects a single GOI

(gene-of-interest) by using GPE, HOS-Tree can present its expression profile by highlight-

ing the edges among the structural nodes, and hence displays the spatial expression patterns
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at any given stage. In this case, since the colors of edges indicate the developing orienta-

tion while the highlighted edges measure the gene expression levels, the spatial expression

patterns could be inspected from the HOS-Tree. Moreover, users can compare various di-

rectional expression patterns at each stage to find the expression changes throughout the

development process.

3.4 Observations and Results

In this section, we will demonstrate the robustness and effectiveness of our prototypical

visual analytic system by analyzing several explored spatial patterns. Figure 3.5 shows a

distribution histogram of the DO on each direction. From the chart, DO that strong in z

direction has much large number when comparing with in x and y directions, and this can

be easily interpreted by the major developmental direction of the mouse brain is rostral-

caudal (along z axis). By investigating these trends, we will find that the HOS-Tree pro-

vides the solutions for the contest tasks. Moreover, although the tasks were targeting on

the spatial pattern of structures, the HOS-Tree overcomes the limited demand and provides

an effective visual analytics for the spatial pattern exploration of both structure and gene

expression. Especially, as described in the section above, GPE represents pertinent gene

expression energy by the width of graph edges. Thus, the spatial patterns of both devel-

oping structures and gene expression are observed by comparing the variance of spatial

expression patterns through the various developmental stages.

3.4.1 Exploring Global Spatial Pattern of Structures using HOS-Tree

In our first case study, we use our approach to explore the spatial pattern of developing

structures. Since the HOS-Tree presents the entire structures, the spatial developmental

pattern could be observed. Figure 3.6 showed an example analysis of spatial pattern by
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Figure 3.5: Histogram of the distribution of the DO on each direction. The DO that
strong in z direction has much large number when comparing with in x and y directions.
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Figure 3.6: Comparing the highlighted structures in the forebrain and hindbrain in
HOS-Tree. (a) The forebrain structures showed an expanding developing property. (b)
The hindbrain structures had a strong developing direction in the z-direction.
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comparing the structures in the forebrain and hindbrain. Since the edges were colored

using the 3-D developing orientation, three color units (refer to Red, Green, and Blue)

showed the orientation of the developing vector in each coordinate. Thus, based on the

HOS-Tree visualization, we found the forebrain structures (highlighted in Figure 3.6(a))

showed an expanding developing property, while the hindbrain structures (highlighted in

Figure 3.6(b)) had a strong developing direction in the z-direction (caudal− rostral). This

observation could be interpreted by the biological ontology that the forebrain, majorly con-

tains the frontal cortex, has strong expanding developing direction horizontally. On the

other hand, the hindbrain, which contains the cerebellum and pons, majorly develop in an

extending way. Thus, the global spatial pattern of developing structures in mouse brain is

explored, and hence, the precondition of Task 1: Structural Patterns is solved. Therefore,

we believed the HOS-Tree component was suitable and robust for spatial pattern explo-

ration of ADMBA data, and next, we move on to the following step: explore the spatial

pattern of gene expression.

3.4.2 Exploring Gene Profiles at Various Stages

Next, we demonstrate how the HOS-Tree component provides the exploration of the

spatial pattern of gene expression. We first consider gene Sim2, well known as the ho-

molog of one of Drosophila single-minded (Sim) gene. It expresses preferentially in the

diencephalon during early embryogenesis to mediate neuroendocrine hormone gene ex-

pression. Since function GPE seeks the desired spatial pattern of a single gene across

stages, here we use this function to investigate its spatial patterns at various stages. Figure

3.7 shows the spatial expression patterns, (a) at stage E13.5 (left), and (b) at stage P56

(right). As a reminder, HOS-Tree uses colors to measure developing orientations, widths
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Figure 3.7: Gene profile analysis of gene Sim2. (a) For the pattern at stage E13.5, the
strongly expressed areas are mostly mid-range-between levels 9 and 11. (b) The pattern
with high expression at stage P56 diffuses into late-range levels-between levels 11 and 13.
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to measure the gene expression energy, and corresponding radius to measure hierarchy lev-

els. Thus, the nodes in the HOS-Tree with wider edges connected are the structures Sim2

strongly expressed. Thus, it is clearly observable that the highly expressed areas are in mid-

range levels (between levels 9 and 11). Compared to the pattern at stage P56, the highly

expressed areas are diffusing into late-range levels (between levels 11 and 13).

We also choose gene T br1 (T-box, brain, 1) to perform another investigation. This

analysis focuses on the comparison between distinct spatial expression patterns at postna-

tal stages P14 and P56. Gene T br1 serves as an important transcription factor in vertebrate

embryonic development, and it is critical for neuron differentiation and migration in brain

development. Furthermore, T br1 is considered to be one of the essential genes in regulat-

ing development of the human cortex. Figure 3.8 shows the spatial pattern of the expression

profile of gene T br1. It can be clearly observed that many of the wider edges are colored

as either green or red. By the definition of the HOS-Tree coloring scheme, this pattern

provides strong evidence that the observed expression energy is much stronger along the x-

and y- axes than the z-axis. Since x and y units estimate horizontal and vertical spatial gra-

dients respectively, the observed spatial expression pattern matches often observed major

cortical development closely. On the other hand, when compared to the spatial expression

pattern at stage P56, the expression energy observed (per the widths of edges) are much

weaker. Based on this observation, we believe gene T br1 is functionally expressed before

the postnatal stage P56.

We now state our solution to Task 1 and Task 2: by analyzing gene profiles at various

stages using the GPE (gene profile exploration) function, the spatial pattern of expression

of any given gene could be detected by examining the width of edges in the HOS-Tree.
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Figure 3.8: Spatial pattern of the expression profile of gene T br1. (a) The pattern at
stage P14, wider edges are mostly colored as green and red indicating that gradients exist
along x-y-axes. (b) The pattern at stage P56 depicting expression energy is much weaker
indicating that T br1 is functionally expressed before stage P56.
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Hence, we firmly believe that the HOS-Tree visual analytic system is robust and efficient

in observing the spatial patterns of both developing structures and gene expression.

3.5 Summary

In this chapter, we present HOS-Tree, an interactive visual analytics method to explore

the spatial patterns of structures in the ADMBA data. HOS-Tree enables the spatial pattern

exploration not only for developing orientations of all brain structures but also for gene

expression among them. The HOS-Tree generates a tree-layout visualization for the brain

structures, and use the spatial development orientation to color-encode the tree. This data-

driven visual analytics overcomes the first challenge in Section 1.1: how to enable the

learning of the natural patterns of structures in the developing brain.

We used two case studies to investigate the performance of the HOS-Tree. The first case

study focused on the global spatial developing pattern of all structures, while the second

one picked two example genes to analyze the spatial expression pattern at various stages.

Both of them indicate the HOS-Tree provides efficient solutions for the parts of 2013 IEEE

Data Visualization Contest tasks and, more importantly, is suitable for delivering efficient

and intuitive spatial pattern exploration approaches to the users.

However, the HOS-Tree still has its limitations. The major problem is the overlay of the

structure nodes on the interface due to the large amount of brain structures. It is a limitation

coming from the iteration when calculating the position of the nodes on the tree. Since each

node was placed on the certain circle to indicate the developing hierarchy level, the overlay

problem in the HOS-Tree cannot be Simply solved until another force-based algorithm was

used. Thus, in the future, we plan to look for a robust force-directed method to revise the

node overlay problem in the HOS-Tree.
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Chapter 4: Exploration of the Temporal Pattern of Brain Development

In this chapter, we present another interactive visual analytics method to explore the

temporal patterns in the AIBS datasets. When we participated the 2013 IEEE Data Visual-

ization Contest, we developed another visual analytics component that focused on visual-

izing the gene-structure associations in a temporal pattern manner, especially, we named it

the BGEFM which short for Bi-clustered Gene Expression Flow Matrix. This data-driven

visual analytics overcomes the second challenge in Section 1.1: how to enable the learning

of the inherent temporal patterns of gene expression in the developing brain.

The BGEFM serves as an integrative visual analytics component, and satisfies the

other core prerequisites for spatiotemporal pattern exploration. In order to implement the

BGEFM, we first used the data-mining approach to learning the inherent temporal expres-

sion profiles of genes and consider them as the temporal pattern. We next use these learned

patterns to represent the association between genes and spatial structures and used a 2-D

matrix to visualize them. Also, we apply bi-cluster process to this matrix to seek the corre-

lated region-specific expression behaviors. Again, we investigate the usefulness of BGEFM

through the biological analyses of several patterns explored.

In this chapter, we first describe the background and motivations in Section 4.1. In the

following Section 4.2, we describe the data collection for the temporal pattern exploration

component. Since this chapter includes both ADMBA and ADHBA data, we first introduce
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the methods used for BGEFM in Section 4.3, including data processing and data-mining

approaches. Then, we focus on the visual analytics of ADMBA in Section 4.4 and of

ADHBA in Section 4.5. In each section, we will discuss the visualization processes and

results, and next use several observed patterns to investigate the efficiency of the BGEFM.

Finally, we summarize our work in Section 4.6.

4.1 Background and Movitation

Exploring inherent genomic characteristics of the developing mammalian brain is criti-

cal for developmental neuroscience and an important topic in translational bioinformatics.

Over the past few decades, significant advances have provided substantial insights in this

and related fields [8, 43]. Spanning the studies at multiple levels from structural, to cellu-

lar, and to molecular levels, numerous studies have characterized functions and regulations

of genes in the brain developmental processes [9]. While this body of work has provided

an increasingly clear picture of genomic characteristics in brain development, however, a

comprehensive and deeper understanding of genes requires much further study due to the

complexity of the developing brain.

In developmental neuroscience, distinct spatial and temporal patterns of gene expres-

sion are essential for revealing the genomic characteristics of the brain development [20,

129, 22]. In genetics, expression is the process by which the genetic code of a gene is

activated for protein synthesis, hence the gene expression, which reflect the activation sta-

tus of genes, result in the phenotypes such as a variety of shapes and types of cells and

their functionalities as well as their organizations into various anatomical structures in the

brain [24]. Various types of patterns of gene expression thereby provide valuable informa-

tion for delineating the cell lineage and organization patterns as well as the functionalities
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of structures during brain development. Numerous neuroscience studies have focused on

two major forms of genetic patterns: temporal patterns and structural patterns. The first

one represents the locally consistent temporal patterns of gene expression in certain brain

region(s) or structure(s). The second one, on the other hand, reveals the differences of ex-

pression patterns across different brain locations. However, since the brain is composed of

different functional regions and various cell types, both structural anatomy and functional-

ity change uninterruptedly throughout the entire period of growth, and more importantly,

these changes interact and influence each other. Thus, an integrative pattern that exhibits the

regional genomic behaviors through time can provide a more comprehensive observation

of the genomic characteristics in the developing brain. Consequently, detecting, exploring,

and understanding these patterns are of great interest and importance to the research field

and a comprehensive visual analytic strategy combining data analysis and visualization is

needed to achieve this goal.

Visual analytics plays an important role in bioinformatics and neuro-informatics due

to its capacity for organizing, transforming, analyzing, and representing a large amount of

data in a visually intuitive fashion [46, 48, 130]. In 2013, the IEEE Scientific Visualization

Contest targeted the exploration of the comprehensive patterns of gene expression in the de-

veloping mouse brain [30]. In order to tackle the posed challenges and tasks, we designed

and developed an integrative visual analytics system to finish several posed challenges [4].

As one of the core visualization components in that system, a bi-clustered gene expres-

sion flow matrix (BGEFM), was implemented to allow the observation and identification

of the region-specific temporal patterns of gene expression during brain development. The

BGEFM enabled users to explore distinct temporal genomic characteristics across all brain

structures during all developmental stages and thereby gain a comprehensive understanding
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of the developmental processes. Using the BGEFM, we discovered multiple types of salient

patterns including: gradient pattern which exhibits genes with directional expression; struc-

tural pattern which identified the structures with highly expressed genes; consistency pat-

tern which highlight the structures with the most consistent expression patterns over time;

and complementary pattern which include genes exhibiting complementary patterns inside

a structure.

As described, the AIBS data portal has published the developing brain data for both

mouse and human. The topic of the 2013 IEEE Scientific Visualization Contest targeted

the existing domain of developmental neuroscience about the mouse brain, and we de-

veloped the HOS-Tree to finished several challenges. Here, we propose another visual

analytics component to aid neuroscientists explore the hidden relationships between gene

expression and structures, and more importantly, provide an interactive and robust visual-

ization approach. We created the BGEFM, the second visual analytics component in this

dissertation, which enables the observation and identification of the region-specific tempo-

ral patterns of gene expression during brain development. It should be noticed, the BGEFM

was designed in response to the temporal pattern exploration challenges posed by the con-

test.

Although the brains of all mammals develop in similar ways, understanding the devel-

opmental processes of both mouse and human brain are important [10]. After the ADHBA

data published, we shifted our attention to the human brain. ADHBA provides gene-per-

region expression data for almost all known gene probes across brain regions, and hence it

is best suited for our approaches to perform the exploration of regional temporal patterns.

Thus, we also perform the proposed platform to enable an integrative exploration of the

regional temporal patterns of gene expression in the developing human brain.
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In summary, our proposed framework provides a comprehensive exploration of patterns

as well as capabilities for interactive visualization for both ADMBA and ADHBA data. It

contains two components: 1) a data-driven pattern learning approach that identifies inherent

temporal patterns of gene expression across various brain regions, and 2) the BGEFM

for region-based temporal pattern visualization. The entire workflow and analysis of our

proposed framework can be described in the following steps:

Step 1. Generate a data structure to represent the gene-per-region expression data at

various developing stages.

Step 2. Clean the data in order to retain the most information and distinct expression

entries.

Step 3. Use K−Means clustering to learn the regional temporal patterns of gene

expression.

Step 4. Visualize temporal patterns learnt from the clusters.

Step 5. Interpret the patterns using neurodevelopmental processes and events [6].

Step 6. Apply BGEFM to present the region-specific characteristics.

Step 7. Investigate the correlated gene-structure sections in the BGEFM using bio-

logical enrichment analyses.

Using this framework, we identify several interesting patterns that were explored (step

7), and further examine them using gene enrichment analyses with a focus on neurodevel-

opmental processes. Based on the results, we have several biologically interpretable obser-

vations that can potentially enhance the biological knowledge. These learnt temporal pat-

terns, which interpreted by the neurodevelopment events, reflected the brain developmental
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processes. Also, the genes with these patterns clearly play certain roles in various regions

during the development, and the temporal patterns captured these roles. Specifically, genes

can be categorized into two subsets — 1) region-agnostic, which showed consistent tempo-

ral characteristics in the entire brain, and 2) region-specific, which showed distinct patterns

at various brain regions. In addition, the brain regions that physically close have similar

temporal patterns for most of the genes. We postulate that the explored patterns reflect

the comprehensive genomic characteristics of the brain developmental processes. Hence,

neuroscientists will be able to gain a deeper understanding of the development of the brain

using the proposed framework. It should be noted that although our proposed framework

focused on the region-specific temporal pattern exploration for both the ADMBA and AD-

HBA data, it could serve as an efficient and robust visual analytic solution for other multi-

dimensional data that contains large numbers of entries with spatial measurements across

time. Next, we briefly describe the posed challenges and tasks one more time and the data

collected for this chapter.

4.2 Data and Tasks

As described, the AIBS data portal has published the developing brain data for both

mouse and human. In this section, we briefly describe the collected data, the ADMBA

(Allen Developing Mouse Brain Atlas) and ADHBA (Allen Developing Human Brain At-

las), as well as the other tasks and challenges posed by the 2013 IEEE Data Visualization

Contest [4].

4.2.1 Data Collection

The ADMBA provides the expression levels of 2105 genes in 2691 anatomical struc-

tures across three embryonic and three early postnatal stages: E13.5-embryonic days 13.5,
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E15.5-embryonic days 15.5, E18.5-embryonic days 18.5, P4-postnatal days 4, P14-postnatal

days 14, and P56-postnatal days 56 (adult). Three-dimensional reference mouse brain at-

lases for each stage and the corresponding annotated volume with structure labels are also

available. Additionally, a hierarchical annotation of various evolving brain structures is

available. Finally, the scrutinized genes are organized into 11 categories allowing for fur-

ther appropriate enrichment studies.

Similar to the ADMBA project, Allen Developing Human Brain Atlas (ADHBA, or

BrainSpan) project was introduced for describing transcriptional mechanisms involved in

the developing human brain. However, differ to the ADMBA data which only contains

neuroanatomical genes, the ADHBA data examined 52376 probes which contain almost all

known genes to provide a complete data portal for the field scientists. First, In the AD-

HBA data, two data modalities were used for the gene examination which includes RNA

sequencing and exon microarray hybridization. Also, the expression data were generated

based on 42 brain samples, including both males and females, spanning prenatal and post-

natal stages of brain development. For each brain specimen, up to 26 targeted cortical and

subcortical structures were examined by most probes of genes.

4.2.2 Tasks

Besides on the tasks described in Section 3.2.2, the 2013 IEEE Scientific Visualization

Contest posted others tasks and challenges for the region-specific temporal pattern explo-

ration.

Task 1. Structural Consistency. Which structures have the most consistent expres-

sion patterns over time? Which structures are the least consistent?
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Task 2. Complementary Patterns. Which genes have expression patterns that com-

plement each other within a structure? Are these patterns persistent during

development?

Although these data have become an invaluable resource for the exploration of inter-

esting temporal patterns of gene expression, a viable systematic visual analytic platform

has still failed to materialize. Thus, to help field scientists to access, observe, explore, and

analyze the interesting spatiotemporal patterns, we propose a visual analytics component

base on ADMBA and ADHBA data. Using the observed patterns that provided by this

component, users can understand the genomic characteristics for particular processes in

the developing brain, which can potentially lead to further analysis.

4.3 Visual Analytics Design

In order to explore the inherent and temporal patterns of gene expression from the

complex data of ADMBA, it is necessary to use an efficient and suitable approach to repre-

senting the data before doing the analysis. In this section, we will introduce the design of

the proposed visual analytics component, the BGEFM. First, we will describe the data pro-

cessing steps followed by the temporal pattern-learning process. Then, we will introduce

the how we integrate the temporal pattern with BGEFM to provide a global visualization.

4.3.1 Data Processing

We first used a 3-D matrix, Mg,s,t , to collect the pair-wise expression values for specific

genes in the 1st dimension (g in rows) across particular spatial structures in the 2nd dimen-

sion (s in columns) at definitive stage in the 3rd dimension (t in depth). Thus, the matrix M
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contains the entire collected data, and any data entry could be queried through any given g,

s, and t.

In multidimensional data analysis and visualization, one of the most challenging prob-

lems is the dimensionality reduction. An efficient reduction process will not only reduce

the complexity of the data structure but also enhance the performance of the visual ana-

lytics. Focusing on the AIBS data, we first used a data-mining approach to reducing the

dimensionality on the time-dimension to learn the time-varying characteristics of gene ex-

pression, so-called temporal patterns. Next, we used a 2-D matrix visualization to represent

the associations among genes and structures in the temporal patterns manner.

In the data-mining field, clustering process best suited our purpose since by grouping

subsets of collected temporal expression profiles in such a way that the genes in the same

group shared the highest similarity in time-varying behavior. Thus, we clustered the data

matrix M into subsets of temporal profiles and hence to reveal the temporal patterns. In

order to increase the cluster performance, we converted the data matrix M into the format

of temporal profiles. In this approach, for each gene at each structure, we collected the gene

expression values at various stages and reshaped them into a temporal profile in the format

of a 1-by-6 vector for mouse, and 1-by-31 for human. For the stages that the structure did

not exist, we used the median expression values of its ancestor structures at the correspond-

ing stages to represent those missing data. Since the sampling structures in each profile are

in the stage sequential order as well as the developmental hierarchy, the inherent temporal

patterns would be preserved from the original data. Thus, this data conversion process gen-

erated a collection of complete temporal profiles while keeping the inherent characteristics

of genes. Eventually, this process converted the 3D data matrix M into a temporal profile

matrix, and we named it MVg,s.

56



Figure 4.1: Skewness distributions.To present the association among genes in rows and
structures in columns. Different distribution types of the temporal patterns provide valu-
able properties for future analyses: positive skewed distribution (blue curve), the negative
skewed distribution (red curve), the near-flat distribution with low variance (green curve),
and the normal distribution with high variance (black curve).
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However, MVg,s cannot be used for further analyses directly due to its huge size. We

next filtered it based on the features of the central moments in order to increase the ef-

ficiency and the performance of the pattern-learning process in the later step. Here we

considered the expressional flows with both the largest variance and most significant skew-

ness for the pattern-learning process. The variance is the 2nd central moment of the tem-

poral flow, which uses the squared standard deviation to measure how the distribution is

spread out from the mean. As Figure 4.1 shows, comparing with the low variance distri-

bution (green curve), the normal distribution (black curve) has more variance in statistics

and contains distinct temporal property. On the other hand, the skewness, the 3rd central

moment, measures the lopsidedness or the asymmetry of the distribution of expressional

values in the temporal flow. Different from the normal or the uniform distribution, both

positive (blue curve) and negative skewness (red curve) show specific temporal properties,

which are significantly valuable for detecting the expressional behaviors in the temporal

trend. Thus, both variance and skewness provided the measurements to distinguish the

time-varying changes of gene expression across structures and regions and hence enabled

an efficient learning of inherent and distinct temporal patterns, and therefore, the observa-

tion of inherent temporal patterns is enabled. However, although this process grasped the

most significant genomic properties in the developing brain, balancing between accuracy

and performance, it is not guaranteed that the whole inherent patterns will be grasped. We

believe a better performance supercomputer would make a more precise pattern exploration

available in the future.

4.3.2 Learning Temporal Patterns

Based on the filtered MVg,s, which contained the most significant gene-per-structure

expression flows, we used a data-driven pattern-learning approach to reveal the temporal
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patterns. This process has two steps: learning modules from data, and then obtaining

patterns from those modules. The implementation of the learning module could be best

considered as a clustering process that classifies the expression flows into groups. Thus,

simply applying a cluster analysis to the filtered MVg,s could complete the first step. In

order to discover the salient patterns, we repeated the clustering process for ensuring the

convergence, and used silhouette to choose the best result from multiple parameters. It

should be noted, although unsupervised cluster approaches are best suited for the non-

known data, depending on the situation of the study, the supervised or semi-supervised

clustering could also be considered.

Once the temporal module learning process is completed, the temporal patterns could

be observed from the clustering results. We next used the median or mean values at each

stage to represent the time-varying flows. Then we used those flows to represent the tempo-

ral patterns and hence the associations between the corresponding genes and regions. For

each temporal patterns, the x-axis shows the temporal stamps while the y-axis denotes the

collected expression values in the corresponding time stamp. Consequently, we sort the

temporal patterns in the order of the appearance of the first peak and hence the patterns

follow a decreasing-to-increasing order. Moreover, we assigned a pattern index as well as

a unique color to each pattern in order to provide a measurable association [131]. There-

fore, the pattern-indices-based representation not only reduced the dimensionality on the

temporal series but also enhanced the efficiency for future analysis and visualization.

4.3.3 The Bi-clustered Gene Expression Flow Matrix (BGEFM)

Before exploring the region-specific patterns, we design the visualization component,

BGEFM (Bi-clustered Gene Expression Flow Matrix) to represent temporal patterns. We

believe a 2D matrix could best represent the association of the gene-structure data. Thus,
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we used such a matrix to represent the associations between entries in rows and locations

in columns. Figure 4.2 shows the BGEFM designed in our previous work. However, when

we designed the original BGEFM in 2013, it had significant limitations. First, the temporal

patterns of gene expression were predefined. Thus, the temporal associations among genes

and structures are biased. For a robust approach, the temporal patterns should capture

the natural characteristics that gleaned from the data. Hence, targeting the ADMBA and

ADHBA, we use a data-driven approach to learn the inherent temporal patterns for the

visual analytics. For each entry inside the BGEFM, we applied a pattern-matching process

to seek the index of the most matching temporal pattern based on the Pearson Correlation

Coefficient (PCC) and assigned to the entry. Obviously, the size of such a matrix should

be the size of entries by the size of the measured locations, and each element in this matrix

was the label of the temporal patterns. Therefore, this 2D matrix indicated the associations

of the entries and locations in the form of temporal properties.

Bi-clustering, or co-clustering, is a data mining approach to seek the strong correlated

sections among rows and columns of a matrix. Over the past decade, many bi-clustering

algorithms have been developed and widely applied in bioinformatics in order to explore

local patterns [132, 133]. By clustering data entries in rows (genes) and columns (regions)

that share the most similar expressional patterns together, bi-clustering is best suited to

our purpose in seeking the strongly correlated gene-structure sections. Thus, we next per-

formed a bi-clustering analysis to this 2-D matrix and we named it the BGEFM which is

short for Bi-clustered Gene Expression Flow Matrix. In summary, the BGEFM used visu-

alization techniques to encode the variability of the expression patterns over various stages

and among regions in the temporal pattern manner.
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Figure 4.2: The original BGEFM developed in 2013. The BGEFM visualization ap-
proach designed in our previous work [4]. However, the pattern-matching process was
used with 5 pre-defined temporal patterns, and lead to biased result.
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4.4 Implementation and Result for the Developing Mouse Brain Dataset

We applied the temporal modules-learning method into ADMBA data to observe the

temporal patterns of gene expression.

Based on the proposed method, the key process in this module was an unsupervised

cluster analysis to the filtered 3D storage matrix that in the size of 1753*2489*6 (filtered

from the original size as 2105*2691*6). As described, in order to maximize the perfor-

mance and provide the most significant genes for bioinformatics analyses, we used the

central moment filter to reduce the data size. Balancing the performance (4-Cores Intel

Core i7 CPU and 16GB RAM), we chose the top approx. 2.2 million profiles (approx.

50%) of the temporal profiles that had largest variance and significant skewness for the

next pattern-learning module (in log2 space). However, although this process gleaned the

most significant genomic properties in the developing brain, it is not guaranteed that all

inherent patterns will be grasped.

4.4.1 Temporal Patterns and BGEFM

For the ADMBA data, we performed the clustering process (setting as described in

Section 4.3.2) for each reasonable K (3≤ K≤ 13), and then, used the silhouette to find the

best cluster result. Figure 4.3 showed the max, mean, median, and min values of silhouette

for each K. In our case, balanced the performance and robustness, we chose K as 10 for our

future analysis. Figure 4.4 showed the ten temporal patterns in the corresponding colors as

well as the fitting curves in the encoded colors.

As proposed in our method, we next used BGEFM to visualize the associations between

genes (in rows) and structure (in columns). As described, we applied the pattern-matching

process to seek the most-similar temporal pattern among the ten learned ones. In our case,
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Figure 4.3: Using silhouette properties to choose the best temporal pattern-learning
result for the mouse brain. For the temporal pattern-learning process in the ADMBA
data, we repeat the K-Means cluster for each K from 3 to 13. Based on the result, we
choose K as 10 for the following work (values are curved using a smoothing spline).
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Figure 4.4: The Color-encoded Temporal Patterns Learned from the ADMBA dataset.
The ten temporal patterns in the corresponding colors as well as the fitting curves in the en-
coded colors. The x anix indicates the stages from E13.5 to P56, the y axis is the normalized
gene expression values.
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Figure 4.5: The Color-encoded BGEFM for the ADMBA dataset. (a) The color-encoded
BGEFM, each entry inside indicates the color-labeled temporal association across genes
(in rows) and structures (in columns). (b) The brain regions chosen for the visual analyt-
ics, which matched the structure bar on the top of BGEFM. (c) A zoomed-in view of the
BGEFM, each entry inside is a color-encoded temporal pattern.
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approx. 90% entries (approx. 4.2 million of approx. 4.6 million) were well matched

(PCC ≥ 0.5), and we also assigned a black color to those entries that not well matched or

learned. Figure 4.5(a) showed the color-encoded BGEFM that enabled global observation

of the temporal associations between genes (in rows) and structures (in columns). At the

top part of the BGEFM are the color labels of the entire brain structures, which encoded

based on ADMBA reference color code. It should be noted that, for a clear and intuitive

visualization, we simplified the structures into three parts (forebrain, midbrain, and hind-

brain) and several interesting regions (hypothalamus, isocortex, hippocampus, thalamus,

cerebellum, and pons) which is indicated intuitively through the top-right legend (Figure

4.5(b)).

4.4.2 Observations on Exploration of the ADMBA Dataset

We used the BGEFM, as the second visual analytics component in this dissertation, to

represent the temporal associations between genes and structures. Since we color-encoded

the temporal pattern indices of entire genes across entire structures, users can intuitively

observe how and where the gene expressed over time. Based on the visualization result, we

explored several gene expression characteristics in the developing mouse brain. We next

investigate these patterns through the DAVID (Database for Annotation, Visualization, and

Integrated Discovery) enrichment analysis, and manifest how they helped the scientists in

their research.

Genes are playing certain roles in the brain development.

The first observation is that the genes expressed in certain ways in the local brain re-

gions. From the BGEFM, it is clear that the major colors of the matrix entries were con-

sistently represented in most of the bi-clustered correlated sections. We investigated this
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observation by taking the 3rd structure cluster in the BGEFM as an example, where most

structures here belong to the thalamus (structure color labeled as yellow). In this structure

cluster, the color of rows (temporal patterns of genes) in each gene clusters are showing

specific temporal patterns: the 2nd gene cluster showed strong characteristics of 1st and 2nd

temporal patterns (patterns in purple and blue colors); the 3rd , 5th, 8th, and 9th gene clus-

ters showed only high expression values in the middle-stages (patterns in green, yellow,

and orange colors); the 1st , 7th, and 10th gene clusters showed strong characteristics of the

in late-increasing temporal patterns (patterns in red and cherry colors). These observations

are the evidence that specific genes are showing distinct correlations in different brain re-

gions, and those distinct correlations are in the form of the change of expression values

through time.

The similarity of gene expressing patterns is correlated with the distance among re-
gions.

In the developing mouse brain, we observed a rule that the closer of two structures in

physical space, the similar temporal patterns the genes expressed in. This observation was

also grasped from the BGEFM visualization by comparing the primary colors among var-

ious correlation sections. We took the 3rd , 6th, 8th, and 9th structure clusters to investigate

our observation. Their structure color labels indicated the structures in these clusters only

belonged to the forebrain brain regions. Interestingly, the temporal pattern labels in these

structure clusters are very similar to each other. For example, most of the genes in the 1st ,

6th, 7th, 9th, and 10th gene clusters expressed in the consistently increasing temporal pat-

terns while 3rd , 5th, and 8th gene clusters expressed in the increasing-decreasing patterns

and 2nd gene clusters showed decreasing patterns. However, contrasting to the forebrain,
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the distinct patterns in the hindbrain (the 2nd , 4th, and 5th structure clusters) were notice-

able. The distinction came from the different temporal patterns of the genes in 6th and 10th

gene clusters-surging in the hindbrain but consistently increasing in the forebrain. Thus,

base on the visualization of BGEFM, the temporal pattern labels in each structure cluster

is similar to those that contained the structures in the same or neighboring brain regions.

Therefore, based on the above observations, we made a hypothesis that the genes expressed

in certain temporal patterns in the whole brain, and the closer in physical space, the fewer

patterns change.

Genes could be categorized into two subsets: region-agnostic and region-specific.

The region-agnostic genes were those genes that expressed in certain temporal patterns

across all brain regions, and in our case, are those in the 1st , 2nd , 3rd , 7th, 8th, and 9th gene

clusters. As clearly represented in the BGEFM, the 1st and 7th gene clusters were showing

sharply increasing expression patterns (patterns in hot colors as cherry and red) at entire

brain structures. Similarly, the 2nd gene cluster in the BGEFM showed only decreasing

expression patterns (patterns in purple and blue colors) in all brain regions. Neverthe-

less, the genes in the 3rd , 8th, and 9th gene clusters showed fluctuant patterns across all

regions. From the enrichment analysis result, we found the genes in the 2nd gene cluster

were strongly enriched in neuron and cell development. However, the genes in the 3rd gene

cluster had high proliferation- and metabolic-related enrichments. Thus, we could make a

biological hypothesis based on the integrative result: the 2nd cluster genes only activated

at the early stages to build up the foundation of the brain-the neuron cells, and during this

progress, the genes in the cluster started to work for the cellular activities.

On the other hand, region-specific genes expressed depending on the specific locations,

and their temporal patterns varied at different brain region. For example, the genes in the
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Table 4.1: Enrichment results of the genes in different gene clusters in the ADMBA
data. The p values are in the −log10 space.
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6th and 10th gene clusters showed sharply increasing patterns in the forebrain but decreas-

ing patterns in other regions. Moreover, our enrichment analysis result showed these genes

enriched in homeostasis firmly. Hence, we may make another biological hypothesis that

hindbrain stopped to grow earlier than the forebrain. Table 4.1 gave out the entire enrich-

ment results of the genes in different gene clusters. Therefore, we believed these explored

patterns reflected the development of the mouse brain and were suitable for biologists and

neuroscientist to enhance their studies.

The temporal patterns could be interpreted by neural events.

The explored temporal patterns could also be interpreted by well-known neurodevelop-

ment events. We analyzed the learned temporal patterns using the mice brain developing

events database provided by the TranslatingTime [6]. Since the time-varying functionality

could best interpret the temporal genomic characteristic, we only focus on the fluctuant

events, i.e., onset-peak-offset. Figure 4.6 showed the two example temporal patterns that

we learned from the ADMBA data, the 1st and the 9th one. As showed, the 1st temporal

pattern starts with a peak expression and then decreases until the E18.5 stage. As per the

mice neural events on TranslatingTime.net, several neural system developments showed

offset within the first stages. Interestingly, either the functionality of these events or the

affected regions had a strong correlation with the elaboration of the neural system, and also

corroborated the enrichment results (genes in the 2nd gene cluster of BGEFM were strongly

enriched in neuron and cell development). This revealed that the murine brain is starting to

form its core-neuron system at the very early stages and then subsequently constructs the

supporting or collaborating structures.
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Figure 4.6: Two example temporal patterns that learned from the ADMBA could be
well-interpreted by the neurodevelopment events. The 1st temporal pattern starts with
a peak expression and then decreases until the E18.5 stage. This temporal property highly
matched the neuron-related events. The 9th temporal pattern increases from the P4 stage,
and this pattern could be interpreted by the myelination-related events.
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On the other hand, the 9th (and also the 10th) temporal pattern increases from the P4

stage, and this pattern could be interpreted by the myelination-related events. Also, enrich-

ment analysis showed the related genes (as the genes in the 7th and the 10th gene clusters

of BGEFM for the forebrain region) were highly enriched in biological quality and home-

ostatic processes. Thus, we believe these observations revealed that from the 4th stage

onwards, the brain finished the basic construction and subsequently supporting tissue and

supporting structures are stabilized and matured. Therefore, we believe the approached

framework provided a valuable result for the region-specific temporal patterns exploration

and these results potentially lead to future studies.

4.5 Implementation and Result for the Developing Human Brain Dataset

Similar to the process in Section 4.4, we applied the temporal modules-learning method

into ADHBA data. Different to the mouse data, the human data contains much more genes

and stages, but much fewer regions. As described, ADHBA data contains 52376 genes, 31

stages, and 26 regions, we first generated the 3-D data matrix for the entire data and then

applied the data filter. However, since the ADHBA data contains missing entries inside, we

first filtered the missing data to improve the robustness for future analyses. For those genes,

stages, or regions that were not fully examined, we simply removed them. After filtering

these missing entries, a 3-D matrix data in the size of 15867*16*16 was kept (16 available

regions are shown in Figure 2.2(c), 16 available stages are shown in Figure 2.2(b)). In order

to maximize the performance and provide the most significant genes for bioinformatics

analyses, we next used the central moment filter to reduce the data size. Balancing the

performance (4-Cores Intel Core i7 CPU and 16GB RAM), we chose the top 1350 genes

(approx. 8.5%) of the temporal profiles that had largest variance and significant skewness
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for the next pattern-learning module (in log2 space). However, once again, although this

process gleaned the most significant genomic properties in the developing brain, it is not

guaranteed that all inherent patterns will be grasped.

4.5.1 Temporal Patterns and BGEFM

Since the data size after the filter is small enough to provide adequate progress, we

kept the entire filtered temporal profiles for the pattern-learning process. For the ADHBA

data, we repeated the K-Means clustering for each reasonable K (2 ≤ K ≤ 20) and used

silhouette to choose the best K. Figure 4.7 showed the max, mean, median, and min values

of silhouette for each K. As shown in Figure 4.7, to balance between performance and

precision, we chose K as 8 as the number of temporal patterns. Figure 4.9 shows the eight

temporal patterns that were learned from the ADHBA data as well as the box-plot showing

the distribution of normalized gene expressional values for each pattern. Figure 4.7(a)

shows the BGEFM and the cluster dendrogram for the brain regions. The bi-clustering

process in BGEFM grouped the genes into 10 clusters. In addition, we also performed a

correlation analysis between the brain regions as shown in Figure 4.7(b).

Similar to the process in Section 4.4, we next visualize the temporal associations be-

tween genes and structure using BGEFM. Since we only have 16 brain regions, when

seeking the correlated sections, we applied hierarchical cluster to explore the dendrogram

among the brain regions. Figure 4.6(a) showed the eight color-encoded temporal patterns

while (b) displays the BGEFM where its entries indicate the temporal pattern types. The

structure names are shown on the top of BGEFM.
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Figure 4.7: Using silhouette properties to choose the best temporal pattern-learning
result for the human brain. For the temporal pattern-learning process in the ADHBA
data, we repeat the K-Means cluster for each K from 2 to 20. Based on the result, we
choose K as 8 for the following work (values are curved using a smoothing spline).
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Figure 4.8: The eight temporal patterns learned from the ADHBA. (a) We plot the tem-
poral patterns that were learned from the ADHBA data. They are sorted into a decreasing-
to-increasing order. For each pattern, the box-plot shows the distribution of gene expres-
sional values (data is processed in log2 space, and normalized into the range of [0,1], as
visualized). (b) The 16 filtered temporal stages.
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Figure 4.9: The BGEFM visual analytic component of the ADHBA data. (a) The entire
BGEFM of the ADHBA data. 1350 filtered genes are in rows and 16 brain regions are
in columns. The genes were clustered into 10 groups as indicated using the gene cluster.
The cluster dendrogram of brain regions is shown on top. (b) A regional correlation visu-
alization among these 16 regions. (b) 16 brain regions that corresponded to the columns in
(a).
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4.5.2 Observations on Exploration of the ADHBA Dataset

We used BGEFM to visualize the color-coded temporal associations between genes and

brain structures as shown in Figure 4.9(a) and then examined some identified patterns to

demonstrate the usefulness of the proposed visual analytics framework. To interpret the

temporal patterns, we used neurodevelopment events from TranslatingTime.net [6]. Also,

for gene-of-interest (GOI), we used the NIH Database for Annotation, Visualization and

Integrated Discovery (DAVID) v6.8 to perform the enrichment analyses [5]. Moreover,

through the analyses, we also show how these region-specific temporal patterns enhanced

the biological knowledge on brain development.

Genes play certain but various roles in different brain regions during the develop-
ment.

The first observation is that the genes expressed in certain ways in local brain regions.

From the BGEFM, it is clear that the colors of the matrix entries were consistently rep-

resented in most of the bi-clustered correlated sections. For instance, the 1st gene cluster

showed a very consistent red color among all brain regions. According to our color-coding

method, these genes had an increasing expressional pattern (the 8th temporal pattern in

Figure 4.8). Starting from the early embryonic stages, these GOIs started to perform pro-

tein synthesis that controlled the developmental phenotypes and reached the peaks at early

childhood (7th stage). More importantly, the expression values of these GOIs kept at high

level and continued long into old ages. Besides this, the genes in the 6th gene cluster also

showed consistent patterns that majorly based on the 6th and 7th temporal patterns (in-

creasing but in different ways), and the enrichment analysis showed these genes strongly

enriched in biological functions of synaptic transmission and signaling as well (Table 4.2).
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Table 4.2: Significant neurodevelopment events of the human in various stages. The
neuron-related regions and functions started to develop at very early stages and stopped at
the 4th stage, and only the 1st and 2nd temporal patterns best matched this. The myelination
functions have significant change in the 5th, 6th, and 7th stages. The 3rd and 6th temporal
patterns best matched these changes.
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In contrast, the genes in the 3rd gene cluster showed an opposite pattern — a consis-

tent decreasing pattern (the 1st temporal pattern in Figure 4.8). Interestingly, these GOIs

started from their peak expression levels at the earliest stage, and continually decreased

until infancy, then kept this condition to the end. Thus, we believe the genes in the 1st

and 3rd clusters have complement functionalities in the entire brain development. Table

4.2 shows the enrichment analysis for the targeted GOIs. From the result, the genes in

consistent increasing pattern — those in the 1st cluster — strongly enriched in synaptic

signaling and transmission, while the genes in consistent decreasing pattern — those in

the 3rd cluster — strongly enriched in neurogenesis and neural system development. This

can be best interpreted by the well-known developmental processes that happened in the

human brain: from the beginning of the development, brain generates neurons in a high

speed until birth; during the neuron generation and neuron system development, synapse

starts to connect these neurons into the neural network as well as enables the functionali-

ties in different regions; synapse transmits signals among the neurons in the brain as long

as the brain is functioning. Thus, this observation showed the evidence that genes were

playing certain roles during the brain development, and more importantly, their temporal

expressional characteristics indicated the specific correlations.

The temporal patterns match neurodevelopment events.

We used the neurodevelopment events of human, which are listed on TranslatingTime.net,

to interpret learned temporal patterns with key events listed in Table 4.2. While the neu-

rodevelopment events only contain the early stage in human development (i.e., up to ap-

prox. 800 post-conceptional (PC) days), we focused on the flows of the temporal patterns

before the 8th stage which is around 3 years old.
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We first notice that the neural-related regions and functions started to develop at very

early stages and stopped at the 4th stage while only the 1st and 2nd temporal patterns

matched this condition. Both of them had very high expression values at the beginning

stages and started to decrease from the 3rd and 5th stage separately. The second observa-

tion included the 5th, 6th, and 7th stages, which strongly matched the myelination functions.

In the 5th stage, the 260-300 PC days or the birth of the child, the myelination functions

started to onset, while the expression of related genes should have high values or peaks.

On the other hand, the myelination functions started to offset from the 6th to 7th stages

(350-800 PC days) and the myelination genes should start to decrease the expression lev-

els. Combining these two results above, the 3rd and 6th temporal patterns are best matched.

However, the only difference between them was that the gene expression values began to

decrease after birth in the 3rd pattern, while in the 6th pattern the expression values still

kept in a high level and continued to old age. Based on this difference, we strongly be-

lieved these distinct GOIs could lead to future biological studies that targeted on the new

myelination biomarkers searching.

Genes could be categorized into two subsets: region-agnostic and region-specific.

Based on the visualization result of the BGEFM, we classified the genes into two cate-

gories: region-agnostic and region-specific. The region-agnostic genes expressed in certain

temporal patterns across all brain regions while the region-specific genes expressed in dif-

ferent patterns in the specific brain regions.

The region-specific genes expressed in different temporal patterns depended on the lo-

cations, and in our case for the ADHBA data, most of the genes showed this behavior.

From the visualization of BGEFM, the 2nd , 4th, 5th, 6th, 7th, 8th, 9th, and 10th gene clus-

ters showed strong region-specific property (Figure 4.9(a)). From the hierarchical cluster
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dendrogram at the top of the BGEFM, we found that these genes show different patterns

in the 1st , 13th, 14th, 15th, and 16th brain region (cerebellar cortex, hippocampus, amyg-

daloid complex, striatum, and mediodorsal nucleus of thalamus) comparing to the other

brain regions (2nd to 12th regions). Interestingly the 2nd to 12th regions are all cerebral

cortex regions while the 1st , 13th, and 16th regions are not.

These genes are also associated with important brain functions. For example, the genes

in the 8th gene cluster showed very different temporal pattern in the different brain re-

gions: gradually increasing in the 2nd to 12th regions, irregular in 15th and 16th regions,

increasing-to-decreasing in the 1st region, but more drastically increasing around the time

of birth (37 PCW) in regions 13 (hippocampus) and 14 (amygdaloid complex). As shown

in Table 4.3, the enrichment of the corresponding genes showed some learning-behavior

related functions, which exactly matches the learning and cognitive functions associated

with hippocampus and amygdala.

On the other hand, the region-agnostic genes only were those in the 1st and 3rd gene

clusters. From the BGEFM, it is clear that the genes in the 1st gene cluster belonged to the

8th temporal pattern while the genes in the 3rd gene cluster belonged to the 1st temporal pat-

tern. As described, the 1st temporal pattern showed a consistent decreasing trend before the

birth and maintained at low expressing values till the last stage. The 8th temporal pattern,

however, showed a consistent increasing trend before the birth and kept expressing at high

values in all following stages. Since these two temporal patterns were completely comple-

mentary, we firmly believe those two groups of genes have complementary functions, as

well as they reflected the regulation of the human brain development that the neuron system

is only constructed during embryonic period and the synapse starts to be functional around

the birth and till old age.
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Table 4.3: Enrichment results of the genes in different gene clusters in the ADMBA
data. The p values are in the−log10 space and used the Benjamini correction. The p=0.05
is shown using red-dot line. The genes in the 1st and 6th gene clusters are strongly enriched
in synaptic signaling and transmission. The genes in the 3rd gene cluster are strongly
enriched in neural-related function and development. The genes in the 8th gene cluster also
show enriched functions in learning-behaviors.
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Figure 4.10: Correlation analysis between all 16 brain regions. The cerebellar cortex
showed the most different patterns to all other regions, and two subsets of regions showed
strong distinctions: hippocampus with amygdaloid complex, and striatum with mediodor-
sal nucleus of thalamus. The correlation also confirmed that genes in the brain regions that
are physically close expressed in similar patterns.
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Genes in the brain regions that are physically close expressed in similar patterns.

From the BGEFM, as described in the above observation, most genes expressed in dif-

ferent temporal patterns depended on the brain regions. However, not each region was dis-

tinguished, and they could be grouped into four subsets. These first distinct region(s) subset

only contained the 1st region (cerebellar cortex); the third subset contained the 2nd to 12th

regions (primary motor cortex, primary somatosensory cortex, primary auditory cortex,

posteroventral parietal cortex, posterior superior temporal cortex, ventrolateral prefrontal

cortex, orbital frontal cortex, dorsolateral prefrontal cortex, inferolateral temporal cortex,

primary visual cortex, anterior cingulate cortex); the third subset contained the 13th region

(hippocampus) and the 14th region (amygdaloid complex); the fourth subset contained the

15th region (striatum) and the 16th region (mediodorsal nucleus of thalamus). Figure 4.10

shows the correlation between all regions. Clearly, the cerebellar cortex showed the most

different patterns to all other regions, and two subsets of regions showed strong distinctions:

hippocampus with amygdaloid complex, and striatum with mediodorsal nucleus of thala-

mus. Next, we investigated these regions in brain anatomy. Among these 16 brain regions,

15 of them belonged to the forebrain and midbrain except the cerebellar cortex, which is

far away in space. On the other hand, hippocampus, amygdala, and thalamus belonged to

the striatum which was part of the midbrain. Especially, the thalamus and putamen belong

to the main body of the striatum, while amygdala and hippocampus belong to the tail of

caudate nucleus. Thus, this observation was interpreted by the biological grand truth and

hence we strongly believed that the region-specific temporal patterns reflected the brain

development regulations and could be used for future studies.
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4.6 Summary

In this chapter, focusing on the ADMBA and ADHBA data, we proposed a visual ana-

lytics component that enabled an integrative exploration of the regional temporal patterns

of gene expression in the developing brain. As a part of the overall proposed framework,

this component consisted of a data-driven pattern-learning approach and the BGEFM vi-

sualization component, and provided a comprehensive pattern exploration as well as an

interactive visualization. We first used a data structure MVg,s to collect the entire gene-

per-region expression data in the manner of temporal flows, and filtered using the largest

variance and the skewness properties in statistics. We next used the K−Means clustering

approach to seek the temporal patterns as well as color-coded them in order to perform

the visualization. Finally, the BGEFM, which was initially designed in our previous work,

served as the overall visual analytics of the regional temporal patterns of gene expression.

After implementing to both the ADMBA and ADHBA data, the proposed visual analytics

framework provided several salient patterns and observations, and we investigated several

of them using the neurodevelopmental events and gene enrichment analyses. Based on

the result, several learned patterns could be well-interpreted by the neurodevelopmental

events and reflect the developmental processes of the human brain. On the other hand,

we also observed several interesting genomic characteristics. First is that we found genes

were expressing in certain but various temporal patterns in the brain. More importantly,

some of the patterns were consistent in all brain regions while others were not, hence we

named them region-agnostic and region-specific genes. Furthermore, we also found that

the brain regions that are physically close contained similar temporal patterns of gene ex-

pression, while the similarity was correlated negatively with the physical distance among

them. These patterns and observations clearly provide scientists valuable information to
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gain a deeper understanding of the brain development. Therefore, we claim that our second

visual analytics component overcomes the second challenge in Section 1.1: how to enable

the learning of the inherent temporal patterns of gene expression in the developing brain.
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Chapter 5: Exploration of Spatiotemporal Patterns of Brain

Development

In this chapter, we present an integrative method to provide an intuitive presentation

of the spatiotemporal pattern of gene expression. We used gene gradient to combine the

two types of patterns (spatial patterns and temporal patterns) explored in Section 3 and

Section 4. The gene gradient measures how a gene expression changes across the struc-

tures in the developing hierarchy. In order to provide an intuitive visualization, we use

two measurements to present the gene gradient: the main gradient orientation (MGO) and

gradient anisotropy (GA). Again, based on the explored patterns, we will investigate the

functional enrichment of genes with distinct gradient properties, and demonstrate how the

spatiotemporal patterns reflect the brain development. Once again, since the ADHBA data

did not provide the spatial region information, we only perform the spatiotemporal pattern

exploration to the ADMBA data.

In this chapter, we first repeat our motivations in Section 5.1. Then, we focus on the spa-

tiotemporal pattern and the gene gradient measurements in Section 5.2, as well as present

an intuitive visualization method. Next, based on several explored patterns, we investigate

the usefulness of the gene gradient-based spatiotemporal pattern in Section 5.3. Finally, we

summarize our work in Section 5.4.
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5.1 Movitation

In developmental neuroscience, discovering and visualizing the spatiotemporal gradi-

ent of gene expression in the developing brain is an increasingly important topic. The spa-

tiotemporal gradient of gene expression, or so-called expression directionality, indicates the

changes of expression behaviors of genes across both space and time. Such a gradient nor-

mally provides plentiful and valuable information for scientists. Especially in studies with a

focus on the brain development, gradients are commonly used to divide neurogenic regions

into distinct functional domains. In the cortex of the mouse brain, for example, rostral-

to-caudal (front-to-bottom) gradients are usually involved with tissue development, while

exterior-to-interior (outside-to-inside) gradients indicate the cortex layering [30]. Thus, by

exploring such gradients in gene expression, scientists are able to capture comprehensive

patterns of target transcriptionic characteristics and hence gain a better understanding of

the entire program of brain development.

Over the past few decades, numerous studies have developed several approaches to

reveal patterns of gene expression [134]. These approaches have yielded remarkable bi-

ological insights that span the exploration of these patterns of gene expression in various

forms: from regional to global, from temporal to spatial. However, although this body of

work has enabled the discovery and exploration of specific types of patterns, few of them

have provided an integrative approach for exploring the gradients of gene expression.

In computational bioinformatics, fold change of gene expression is widely used for de-

scribing the genetic variation between two situations. Thus, fold changes of expression

over developmental stages can denote temporal genetic activity during organ development,

and fold changes among brain structures can indicate the spatial gene activities. Therefore,
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the integrative spatiotemporal fold change will describe not only how much a gene expres-

sion changes but also where these changes occur, and the rate of such a fold change thereby

can be best considered as the spatiotemporal gradient. At the same time, anisotropy is a

well-known measurement to present the isotropic property in the visualization of spatial

diffusion. In diffusion tensor imaging (DTI), fractional anisotropy (FA) — a scalar value

between zero and one — is widely used to determine the neural fibers in white matter

[135, 136]. For isotropic diffusion, when FA=0, the gradient is uncertain in directional-

ity (equally restricted or unrestricted in all directions); for a direction-restricted diffusion,

then FA=1. Thus, since the FA is well suited for the measurement of directionality, we

leveraged such a concept and enabled the determination of the directionality of the gene

gradient. There is some work in spatiotemporal visualization, however, there is little work

in visualizing gradients of gene expression in the developing brain.

However, in order to capture such directionalities as well as perform a visualization,

more challenges have to be overcome. For instance, how to capture the expression changes

in various structures and across time; how to provide the spatiotemporal fold changes;

how to convert the fold changes into gradient; how to provide integrative data structures to

represent them; how to statistically measure the gradients; how to leverage FA concept to

define and measure the anisotropy; how to visualize the gradient and anisotropy intuitively;

and whether the explored gradient and anisotropy are interpretable in biology are questions

which still need to be answered.

Focusing on the Allen Developing Mouse Brain (ADMBA) data, we propose a vi-

sual analytics method to facilitate the comprehensive exploration of the spatiotemporal

anisotropy of the gene gradient in the developing mouse brain. Figure 5.1 shows the entire

pipeline of our proposed method: using the gene expression data (as shown in (a)) and the
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Figure 5.1: Pipeline of our visual analytics method. (a) 3D gene expression data of two
example genes at six development stages are shown in sagittal view. (b) 3D atlases of brain
structures at each corresponding stages from E13.5 to P56. (c) The 3D coordinate of in
our method: < +x > represents the left or lateral axis (ADMBA data is only available in
hemisphere), <+y> represents up or dorsal axis, <−y> represents down or ventral axis,
< +z > represents front or rostral axis, and < −z > represents rear or caudal axis. (d)
The 3D spatiotemporal gradient of two example genes during the entire brain development
are shown in sagittal, coronal, and dorsal views. (e) The designed cone-shape visualization
approach provided an intuitive presentation of the anisotropy of the gene gradient.
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corresponding atlases of structures (as shown in (b)), we first generate the developmental

orientation-weighted fold changes of the gene expression in the 3D coordinate (as shown

in (c)). Next, for each gene, we integrate its fold changes in the entire structures into the

spatiotemporal gradient (as shown in (d)). Moreover, we define GA (gradient anisotropy)

and MGO (main gradient orientation) which measure the anisotropy of the spatiotemporal

gradient. In addition, we design a cone-shape visualization approach to provide an intuitive

presentation of the GA and MGO (as shown in (e)). Finally, we investigate the spatiotem-

poral anisotropy and the gradient of several genes to examine the precision of the proposed

method.

5.2 Visual Analytics Design

In order to explore the spatiotemporal gradient and anisotropy of gene expression, our

proposed method uses the entire spatiotemporal fold changes of gene expression across

all stages to generate the gradient, and uses two measurements to present it, hence to pro-

vide a visualization. We first give a description of the approaches we developed for the

exploration of the spatiotemporal fold change. Next, we will introduce the methods that

integrate these fold changes into the gradient as well as the measurements that present

the anisotropy. Finally, we will describe a 3D visualization component which provides an

intuitive presentation of the spatiotemporal anisotropy of gene expression.

5.2.1 Exploring Fold Changes of Gene Expression

In order to explore and visualize the spatiotemporal fold changes of gene expression as

described, our proposed method integrates the 3-D development orientation (DO, described

in Equation 3.2 in Chapter 3.3) and the fold-change of the gene expression. Specifically,

for each gene at the corresponding structures and stages, we use the fold-change of gene
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Figure 5.2: Temporal expression values of gene Oxt at two brain structures. The stage-
varying expression values of gene Oxt (oxytocin) at structure preoptic area (red curve) and
cerebellar vermis (blue curve). In the preoptic area, gene Oxt shows a consistent increasing
pattern. In cerebellar vermis, gene Oxt shows a flat-increasing-decreasing pattern.
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expression values to modulated the DOs. In this section, we will describe these steps in

greater detail.

We integrated DO with the gene expression values to generate the spatiotemporal fold

changes in the form of 3D vectors. Thus, for each DO, its magnitude is weighted by the

log2 fold changes of gene expression between stages and in turn we name them gradient

orientations (GOs). Figure 5.2 shows the stage-varying expression values of gene Oxt

(oxytocin) at structure preoptic area (red curve) and cerebellar vermis (blue curve). In the

preoptic area, gene Oxt shows a consistent increasing pattern and the log2 fold changes:

from E13.5 to E15.5 is 3.95; from E15.5 to E18.5 is 2.16; from E18.5 to P4 is 0.35; from P4

to P14 is 0.25; and from P14 to P56 is 0.40. In cerebellar vermis, however, gene Oxt shows

a flat-increasing-decreasing pattern and the log2 fold changes: from E13.5 to E15.5 is 0.77;

from E15.5 to E18.5 is 2.17; from E18.5 to P4 is 0.20; from P4 to P14 is 1.59; and from

P14 to P56 is −1.14. Thus, for any given stage t, spatiotemporal fold change ~GO(Gp,Si, t)

denotes the directionality of who gene Gp expressed in structure Si, and hence the GOs are

computed as:

~GO(Gp,Si, t) =


|log2(

Ep,i,t
Ep,i,t−1

)| · ~DOSi, if Si exist at both

stages t and t−1
~< 0,0,0 > otherwise

(5.1)

5.2.2 Generating the Integrative Gene Gradient

Since the collection of GOs of genes had revealed the spatial expressing trend in the de-

veloping mouse brain, we thereby integrated them into the spatiotemporal gradient of gene

expression. For any given gene, this gradient indicated the average change of the spatial

expression directionalities across entire developmental stages. Temporal gradient orienta-

tion (TGO), which is also included in our preliminary work, indicates the sum of the GOs
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for all stages for any given gene. Also, we summarized the TGOs into a vector-layout data

structure WGO (weighted gradient orientation), which provided the inherent spatiotempo-

ral patterns of gene expression during brain development, for future visualization:

~T GO(Gp,Si) =
N

∑
t=2

~GO(Gp,Si, t) , and

~WGOp =< ~T GO(Gp,S1), ~T GO(Gp,S2), ... , ~T GO(Gp,SN)>

(5.2)

Here, N is 2489 due to the total number of brain structures in ADMBA data and Ep,i,t

is the expression value of the pth gene at the ith structure at the tth stage.

5.2.3 Measuring the Spatiotemporal Anisotropy of the Gene Gradient

Measuring and comparing the learned spatiotemporal gradients of genes, i.e., the WGOs,

are our next challenges. In order to provide scale measurements, inspired by the FA (frac-

tional anisotropy) concept from DTI (diffusion tensor imaging), which a scalar value be-

tween zero and one (when FA=0, the gradient is diffusional or uncertain in directionality;

when FA=1, the gradient has direction-restricted directionality) [135, 136]. Here, we used

two definitions to measure the gradient and anisotropy of the WGO for each gene: MGO

(main gradient orientation) and the GA (gradient anisotropy). The MGO is the main ori-

entation of the WGO, which is essentially presented as the sum of the entire TGOs. It

indicates the direction where the largest gradient happened in the developing brain, hence

represents the orientation of the spatiotemporal gradient of gene expression. Therefore, the

MGO of each gene Gp can be captured as:

~MGOp = ∑
i

~T GO(Gp,Si), (5.3)
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On the other hand, the gradient anisotropy (GA) measures the directionality of expres-

sion gradients of any given gene. Here we defined the gradient anisotropy of for each gene

Gp as the log ratio of the Euclidean norm of the MGO and the variance of the WGO:

GAp = log2(

∥∥∥ ~MGOp

∥∥∥
var( ~WGOp)

), (5.4)

and the variance of the weighted gradient vectors var( ~WGOp) is calculated by the an-

gles of entire gradient vectors ~T GOGp,Si and the ~MGOg:

var( ~WGOp) =
1
n
∗

n

∑
i=1

angle( ~MGOp, ~T GOGp,Si), (5.5)

angle( ~MGOp, ~GOGp,Si) = arccos
~MGOp · ~GOGp,Si∥∥∥ ~MGOp

∥∥∥∗∥∥∥ ~GOGp,Si

∥∥∥ , (5.6)

By the definition described above, GA can indicate the anisotropy property of the gra-

dient of any given gene. After rescaling the GA values into the range from 0 to 1, a lower

GA value (closer to 0) means the gene expresses in an expanding way that with low direc-

tionality, while a higher GA value (closer to 1) indicates the gene expression has a strong

directionality in the corresponding MGO direction.

5.2.4 Visualizing the Spatiotemporal Anisotropy

After we defined and captured the spatiotemporal gradient and the anisotropy of gene

expression, we designed a visualization method to enable an intuitive presentation. Focus-

ing on the 3D vector-layout gradient, 3D rendering approach in the Cartesian space is the

best method for such a presentation. Thus, we use x, y, and z to indicate the sagittal, dorsal,

and coronal axes for our visualization method. In such a 3D space, the origin represents

the centroid of the mouse brain, < +x > represents the left or lateral axis (ADMBA data

95



is only available in hemisphere), <+y > represents up or dorsal axis, <−y > represents

down or ventral axis, <+z > represents front or rostral axis, and <−z > represents rear

or caudal axis.

The designed visualization method consisted of two modules: gradient rendering, which

provides 3D visualization of the spatiotemporal gradient of gene expression and anisotropy

rendering, and uses the cone-glyph to present the anisotropy of the gradient. In the first

module, the TGOs of every given gene were used for the visualization. Focusing on the

two measurements — MGO and GA, the second module used a cone-glyph to visualize

their spatiotemporal properties. In order to indicate a spatial orientation, it is natural to use

the direction of MGO to control the central axis of the cone, and the height and radius of

the cone reflect the GA value:

height = 0.6∗‖GA‖+0.2,

radius =

√
1−height2

2

(5.7)

Moreover, we used red-green colors to encode the cone-glyph in order to provide a

more visual understanding of the GA. In this color system, green stands for lower GA

while red stands for higher GA. Finally, the histogram of the GA values is also provided,

for both regional structures and the entire brain. Figure 5.3 shows the 3D visualization of

the gradients and anisotropy of example genes in various brain regions. We will discuss the

results in detail in the next section.

5.2.5 Role of Validation

Effective evaluation is necessary for visualization techniques, and most visualization

studies require validation processes such as user studies, surveys, case studies, and exper-

iments [137, 138]. However, in the targeted fields of our proposed visualization method,
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Figure 5.3: GA visualization method of the cone-glyph. (a) The designing of the cone-
shape glyph shows how we calculate the height and radius of the cone using GA value. (b)
The maximum GA value is 1, which are represented in red color, while the minimum GA
value is 0 in green color. (c) A histogram shows the distribution of GA values of the entire
1753 genes in all brain structures.
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the accuracy of either the gene gradient or the anisotropy can not be guaranteed since the

ground truth in this topic is lacking. As described in Chapter 2, no reported work has pro-

vided similar visualization approaches in this topic and hence no gradient-relative results

have been published in developmental neuroscience which can verify the observations.

Thus, in this case, validation of accuracy and user studies are not provided in this work.

However, the proposed visualization method can serve as a platform for exploring the gene

gradient for scientists in related areas and lead to potential biological hypotheses.

5.3 Result

In order to investigate the performance of the proposed visualization method, we se-

lected several genes that showed distinct spatiotemporal patterns of gradient and anisotropy

to perform gene-annotation enrichment analyses.

5.3.1 3D gradient and anisotropy provided a visualization of direc-
tionality of gene expression.

Figure 5.4, Figure 5.5, and Figure 5.6 provide the complete gradient visualization of

gene Cdh24 (Cadherin 24, Figure 5.4), Rreb1 (Ras-Responsive Element-Binding Protein

1, Figure 5.5), and Tubb3 (tubulin beta 3 class III, Figure 5.6) in the entire developmental

period from E15.5 to P56. The first column shows the normalized 3D expression data of

these three genes in the sagittal view; the second, third, and forth column present the 3D

rendering of the WGO of these example genes in three different views (sagittal, dorsal, and

coronal); The final column provides the cone-glyph GA visualization of the anisotropy of

the WGO in the sagittal view.

The patterns of the WGO of the example genes, can be clearly seen in the 3-D visu-

alization. As shown in Figure 5.4(a), gene Cdh24 has very strong expression gradient in
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Figure 5.4: Visualization of gene gradient and the anisotropy. (a) Cdh24 shows rela-
tively stronger density in the < +x,+y,+z > direction. (b) An increasing pattern in the
forebrain from E15.5 to E18.5 and in the cortex from P4 to P14 can be clearly seen. (c)
Shows a strong anisotropic expression with GA=0.7181.
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Figure 5.5: Visualization of gene gradient and the anisotropy. (a) Rreb1 expands the
expression locations but the gradient is low except in the < +x,+y,+z > direction. (b)
This expanding behavior can be clearly seen from the lower hindbrain and the midbrain
(13.5 and 15.5) to the entire brain regions and specially in the cortex. (c) This behavior
leads to a slight diffusional anisotropy with GA=0.3681.
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Figure 5.6: Visualization of gene gradient and the anisotropy. Tubb3 shows low gradi-
ent n the brain which the GA=0.1527. No significant directionality or anisotropy can be
detected.
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the brain and there by lead to the exploration that the expression of Cdh24 changed largely

and in various directions during the development. More importantly, the gradient of Cdh24

shows relatively stronger density in the diagonal < +x,+y,+z > direction. This can be

verified through the 3D expression values Figure 5.4(b): a clear increasing pattern in the

forebrain from E15.5 to E18.5 and in the cortex from P4 to P14. The cone-glyph visu-

alization of the anisotropy, Figure 5.4(c), presented this observation in 3D rendering in a

sagittal view: a thin cone which indicates a high directional anisotropy in red color with

the corresponding GA=0.7181. In Figure 5.5(a), gene Rreb1 did not only show large ex-

pression gradient but also present clear directionalities. However, the expanding behavior

of the expression can be clearly detected in Figure 5.5(b): from lower hindbrain and the

midbrain (13.5 and 15.5) to the entire brain regions and specially in the cortex. The WGO

rendering clearly showed this diagonal direction between <+z> and <−z> with few sig-

nificant large gradients toward <+x,+y,+z > orientation. Therefore, in Figure 5.5(c), the

GA visualization of Rreb1 presented a fairly diffusional result with the GA=0.3681. Sim-

ilar to Rreb1, in the Figure 5.6, the third example gene Tubb3 also showed a diffusional

expression behavior. Although the expression in the cortex and thalamus showed consis-

tent higher values in later stages, the global gradient did not present a large variance and

hence both WGO and GA visualization showed this diffusional pattern in the 3D rendering

(Figure 5.6(a) and (c)). Therefore, the the 3D rendering of the WGO and the cone-glyph

GA visualization provided a precise and intuitive discovery of the gene gradient and the

isotropy in the developing mouse brain.
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Figure 5.7: Visualization of GA in various local regions. Each column denotes a single
brain region while each row denotes a gene: (a) Cdh24, (b) for Rreb1, and (c) for Tubb3.
(d) The histogram of GA distribution of all genes in the corresponding region, with the
example genes highlighted.
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this phenomenon, we used GA values to separate the targeted genes-of-interest (GOI) and

perform genomic enrichment analyses.

5.3.3 Genes with specific gradient and anisotropy properties enriched
in specific biological functions.

In order to answer the question of how the gradient and the anisotropy reflect the bi-

ological process, we investigated the GOI with significant gradients using Database for

Annotation, Visualization and Integrated Discovery (DAVID) v6.8 [5]. Based on the WGO

and GA, the investigation included two parts: analysis that focused on the GOI with the

largest MGO in certain directions, and analysis that concerned the GOI with the smallest

and largest GA values.

In the first part, we chose two groups of GOI: genes with the top 100 largest MGO in

< +x > direction, and genes with the top 100 largest MGO in < −z,+z > direction. We

used the entire 1753 genes as background, and Table 5.1 shows the p values of enrichment.

From the result, clearly, the genes with the largest MGO in < +x > direction have strong

function enrichment in phosphorylation and metabolic process, while those with largest

MGO in < −z,+z > direction have strong function enrichment in the cell and nervous

system development. The genes showing strong gradient in medial-lateral (largest MGO

in < +x >) could be related to the development of cortex layers, where metabolic and

phosphorylation played as the major biological processes. On the other hand, since the

neuronal system is majorly located in the cortex which develops stronger in caudal-rostral,

this observation could also be interpreted in biological accomplishment.

In the second part, we performed genomic enrichment analysis based on the genes

in different GA properties. Figure 5.2 shows the enrichment analysis among the top 50

diffusional genes (with smallest GA) and Table 5.3 shows the top 50 directional genes
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Table 5.1: Enrichment analysis of the top GOI with significant MGO properties.
GOI with top 100 largest MGO in < +x > direction, and with top 100 largest MGO in
< −z,+z > direction were chosen for the analysis (the entire 1753 genes are used as en-
richment background). The genes with the largest MGO in < +x > direction have strong
function enrichment in phosphorylation and metabolic process, while those with largest
MGO in < −z,+z > direction have strong function enrichment in the cell and nervous
system development.
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Table 5.2: GOI analysis based on the 50 top smallest GA values. (a) The genomic
enrichment of the GOI of top the 50 diffusional genes (with the smallest GA values), which
enriched consistently in nervous and tube development. (b) Averaged 3D expression data
of the sample genes with the smallest GA values.
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Table 5.3: GOI analysis based on the 50 top largest GA values. (a) The genomic enrich-
ment of the GOI of the top 50 directional genes (with the largest GA values) which strongly
enriched in structure development. (b) Averaged 3D expression data of the sample genes
with the largest GA values.
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(with largest GA). Table 5.2(a) shows the enrichment analysis of the top 50 GOI with

the most diffusional gradient, and clearly, they had stable enrichment in nervous and tube

development. As described in the above observation, the neuronal system is located in the

cortex where the developing orientation is diffusing in caudal-rostral, and hence proved this

observation. Table 5.3(a) shows the enrichment analysis of the top 50 GOI with the most

directional gradient. We found these genes strongly enriched in structure development,

which is obviously interpreted by the brain’s major developing orientation (caudal-rostral).

Finally, in order to provide an intuitive understanding of the difference between dif-

fusional and directional expressed genes, we also collected several genes from each GOI

group and rendered the average expression data in sagittal view. Table 5.2(b) shows the

average raw expression data of the top five diffusional genes including Grik1, Tubb3,

Sema4g, Mpped1, and Ne f h; Table 5.3(b) shows the average raw expression data of the

top five directional genes including Bmp4, Cnr2, Foxo1, Zdhhc2, and Fbxw4. From the

rendering, the diffusion group shows an agnostic pattern in the entire brain while the di-

rectional group presents a special pattern depending on the location. Thus, the properties

of both diffusional and directional expression can be easily observed. Therefore, based on

the observations above, we believed most genes expressed in certain gradients during the

brain development, and these gradients reflect the development progress in biological ac-

complishment. More importantly, the proposed visual analytics method provides a precise

and intuitive discovery of these gradient as well as the isotropy, which potentially lead to

future studies.

108



5.4 Summary

In this chapter, we proposed a visual analytics method which facilitated the compre-

hensive exploration of the spatiotemporal gradient and its anisotropy of the gene gradient

in the developing mouse brain. Focusing on the ADMBA data, we first generated the 3D

spatial developmental orientations of brain structures, and next we used fold changes of the

expression values to weight them into the spatiotemporal fold changes of gene expression.

Since the spatiotemporal fold change of gene expression was explored through the spa-

tial developmental orientation of brain structures and the corresponding gene expression

values, it contained both time-varying expression patterns and structure-development pat-

terns. Therefore, we used such spatiotemporal fold changes of gene expression to capture

the gene gradient during the brain development. Consequently, we defined MGO (main

gradient orientation) and GA (gradient anisotropy) to measure the direction and anisotropy

of the learned spatiotemporal gradient, correspondingly. The anisotropy property of the

gene gradient, GA, is a scale value in the range from 0 to 1. For any given gene, based

on the proposed method, a lower GA value (closer to 0) means it exhibits a diffusional

expression while a higher GA value (closer to 1) indicates its expression has a strong di-

rectionality towards the direction of the corresponding MGO. Moreover, we designed a

cone-glyph visualization approach to provide an intuitive presentation of the MGO and

GA. In this visualization approach, the central axis of the cone represents the direction of

the MGO, and the height and radius of the cone are calculated by the GA value.

We also investigated the spatiotemporal anisotropy and the gradient of several genes

to examine the precision of the proposed method. Using the DAVID genomic enrichment

analysis, several interesting patterns of MGO and GA can be interpreted in biology, and po-

tentially lead to future studies. Therefore, we firmly believe that the proposed visualization
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method facilitated the exploration of the spatiotemporal gene gradient and the anisotropy

in the developing mouse brain. However, once again, although several observations above

were interpretable, the verification of the accuracy of the gene gradient is not guaranteed

since the ground truth in this topic is lacking and hence user studies are not provided. Last

but not the least, although our work targeted the ADMBA data, it could also serve as an

efficient and robust visualization solution for spatiotemporal pattern exploration of multi-

dimensional data in a similar data format.

However, the spatiotemporal pattern exploration has its limitations. First, it is still

not efficient enough to perform visual analytics on single structure or region. Since the

WGO are calculated based on a bunch of structures together, changing from global to

local exploration is costly, and the WGO of a single structure is entirely useless for the

spatiotemporal pattern exploration. Another limitation is the definition of GO. Since it

used the absolute value of the expression fold change, positive (increasing) and negative

(decreasing) cannot be distinguished. Thus, we plan to look for a more robust definition of

the gene gradient and spatiotemporal pattern measurement in the future.
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Chapter 6: Contributions and Future Work

The brain is the most complex biological system in the mammalian body, and recently,

the exploration of the mammal brain development has been put under a bright spotlight

by neuroscientists. In developing neuroscience, patterns are the keys to describe these

changes and hence to learn about brain development. Among various developing patterns,

the comprehensive pattern that integrated both spatial and temporal pattern of gene expres-

sion becomes the key bridge that links genomics with phenomics in the brain development

domain.

In this dissertation, I present an extensible visual analytics framework for exploring the

spatiotemporal patterns of gene expression the developing mammalian brain. The data used

were collected from the Allen Developing Mouse Brain Atlas (ADMBA) project and Allen

Developing Human Brain Atlas (ADHBA) project. In order to overcome the challenges as

mentioned earlier in this research field, this dissertation has achieved the following three

tasks:

Aim 1. Develop an interactive visual analytics method to present the spatial infor-

mation of structures based on the AIBS datasets.

Aim 2. Develop a robust method to learn and visualize the inherent temporal pat-

terns of gene expression in developing brains based on the AIBS datasets.
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Aim 3. Define an integrative method to provide an intuitive presentation of the spa-

tiotemporal pattern of gene expression.

In Chapter 3, I presented the HOS-Tree, a visual analytics approach that allows the

user to explore the spatial patterns of structural development. The HOS-Tree utilizes the

prior knowledge of the hierarchical ontology to generate a tree-layout visualization for the

brain structures. Focusing on the ADMBA data, this data-driven visual analytics not only

learned the natural patterns of structures in the developing brain but also served as a vi-

sualization component that showed the gene expression among structures. For each brain

structure, the HOS-Tree calculated its spatial development orientation (DO) in vector space

and color-coded it in the RGB space. In order to provide precise and robust DO calculation,

I also designed an ontology-based structure registration approach which assumes a struc-

ture’s new location at a higher hierarchical level or a later stage. In this approach, I used the

union of entire successor structures at the next level to predict the location of the predeces-

sor structure. I next used two case studies to investigate the performance of the HOS-Tree.

The first case study focused on the global spatial developing pattern of all structures, while

the second one picked two example genes to analyze the spatial expression pattern at var-

ious stages. Both of them indicate the HOS-Tree provides efficient solutions for the parts

of 2013 IEEE Data Visualization Contest tasks and, more importantly, is suitable for deliv-

ering efficient and intuitive spatial pattern exploration approaches to the users.

In Chapter 4, I presented BGEFM, a data-driven visual analytics approach that focuses

on the association between gene and structure in a temporal manner. In order to provide

a comprehensive pattern exploration, I first used a data structure MVg,s to store the entire

gene-per-region expression data in the manner of temporal profiles, Next, I filtered this

data structure using the variance and skewness properties, and applied K-Means clustering

112



to seek the significant temporal patterns. After color-coding the learned temporal pattern, I

used the 2D matrix-layout visualization component — the BGEFM — to present the over-

all visual analytics. The BGEFM has provided several salient patterns and observations,

and I investigated several of them using the neurodevelopmental events and gene enrich-

ment analyses. Based on the result, several learned patterns could be well-interpreted by

the neurodevelopmental events and reflect the developmental processes of the human brain.

On the other hand, I also observed several interesting genomic characteristics in both de-

veloping mouse and human brains. First is that I found genes were expressing in certain

but various temporal patterns in the brain. More importantly, some of the patterns were

consistent in all brain regions while others were not, hence I named them region-agnostic

and region-specific genes. Furthermore, I also found that the brain regions that are physi-

cally close contained similar temporal patterns of gene expression, while the similarity was

correlated negatively with the physical distance among the structures. These patterns and

observations clearly provide scientists valuable information to gain a deeper understanding

of the brain development.

In Chapter 5, I presented the gene gradient-based spatiotemporal pattern. The gene

gradient measures how a gene expression changes across the developing structures, and

hence represents the spatiotemporal pattern of gene expression. In order to achieve this

goal, I first calculated the spatiotemporal fold change of gene expression using the DO

and the corresponding fold changes between each stage for any give gene. Since the spa-

tiotemporal fold change of gene expression was explored through the spatial developmental

orientation of brain structures and the corresponding gene expression values, it contained

both time-varying expression patterns and structure-development patterns. Therefore, such
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spatiotemporal fold changes of gene expression could be described as the spatiotempo-

ral pattern (so called gene gradient) during the brain development. After converting these

spatiotemporal fold changes into spatiotemporal pattern in the format of collection of 3D

vectors, I use 3D rendering to present them. Consequently, I defined MGO (main gradi-

ent orientation) and GA (gradient anisotropy) to measure the directionality and anisotropy

of these learned spatiotemporal gradient, correspondingly. The anisotropy property of the

gene gradient, GA, is a scale value in the range from 0 to 1. For any given gene, based on

the proposed method, a lower GA value (closer to 0) means it exhibits a diffusional expres-

sion while a higher GA value (closer to 1) indicates its expression has a strong directionality

towards the direction of the corresponding MGO. Moreover, I designed a cone-glyph vi-

sualization approach to provide an intuitive presentation of the MGO and GA. In the 3D

visualization approach, the central axis of the cone represents the direction of the MGO,

and the height and radius of the cone are calculated by the GA value. I investigate the

functional enrichment of genes that have significant and distinct gradient properties and

demonstrate how the spatiotemporal pattern reflects brain development.

However, the work described in this dissertation also has some limitations as well as

leaves considerable room for future research. Here I list some of the drawbacks and future

directions for improvement:

• The overlying problem in the HOS-Tree. The major issue is that of the overlay of

the structure nodes on the interface due to the large amount of structure nodes. It is a

limitation which results from the iteration when calculating the position of the nodes

on the tree. Since each node was placed on a certain circle to indicate the developing

hierarchy level, the overlay problem in the HOS-Tree cannot be simply solved until
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another force-based algorithm was used. Thus, in the future, I plan to look for a

robust force-directed method to revise the node overlay problem in the HOS-Tree.

• The temporal patterns are sensitive to K. Since the temporal patterns were pre-

sented by each of the learned clusters, choosing the K for the clustering process

would influence the pattern-learning result. In our cases of ADMBA and ADHBA

data, I chose the best K based on the averaged silhouette values. However, this could

lead to bias result since not all available patterns were observed, and even worse,

user could control their final result of the temporal patterns by choosing appropriate

K. Thus, in the future, I plan to involve non-parameter cluster approaches into the

pattern-learning module in order to solve this problem.

• The gene gradient-based spatiotemporal pattern is not robust in small regions.

The gene gradient is not precise enough to perform visual analytics on single struc-

tures or regions. Since the WGO are calculated based on several structures together,

changing from global to local exploration is costly. For a single structure or small

regions, WGO cannot provide the precise gradient and the calculation of anisotropy

is entirely useless. This limitation is caused by the definition of gene gradient as well

as the data detail and I thereby believe this cannot be overcome until AIBS publish

more detailed data sources.

• Positive (increasing) and negative (decreasing) fold change cannot be distin-

guished. The since the calculation of GO used the absolute value of the expression

fold change, positive (increasing) and negative (decreasing) cannot be distinguished.

Especially, for the genes with lower GA values, it is agnostic to detect whether this

gene has strongly changed expression but in large variance, or has weakly changed

115



expression but in small variance. Thus, I plan to look for a more robust definition of

the gene gradient and spatiotemporal pattern measurement in the future.

• Unable to explore either spatial or spatiotemporal patterns for human data

since lacking data. The spatial pattern exploration (HOS-Tree) and the spatiotem-

poral pattern exploration (gene gradient, MGO, and GA) were only applied for the

ADMBA data. Since AIBS hasn’t provided the spatial information of the structures

in the of human brain, either type of pattern cannot be explored in the proposed plat-

form. However, this potential work can be finished as soon as AIBS publish the new

3D data for the human structures in the future.

• Lacking ground-truth validation. In the spatiotemporal pattern exploration, as

mentioned in Chapter 5, the accuracy of either the gene gradient or the anisotropy

can not be guaranteed since the ground truth in this topic is lacking. As described

in Chapter 2, no reported work has provided similar visualization approaches in this

topic and hence no gradient-relative results have been published in developmental

neuroscience which can verify the observations. However, the proposed visualiza-

tion method can serve as a platform for exploring the gene gradient for scientists in

related areas, and the future studies of the potential biological hypotheses can be used

for the user studies and validating the proposed platform.

Finally, the contribution of this dissertation is providing an extensible visual analytics

framework for the exploration of the comprehensive patterns of gene expression in the de-

veloping mammalian brain, and the future directions I have listed can further improve the

proposed framework. Although this work is only a beginning of the emerging research on

the spatiotemporal pattern exploration, in the future, this proposed platform could serve as
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a pattern-database for providing reference pattern as normal or control group for related

studies, which can lead to more insights into the biological knowledge of brain develop-

ment.
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Table A.1: Biological enrichment analysis of the 1st and 2nd gene clusters in the BGEFM
(Figure 4.5) [5]. Used entire 1753 genes as background. Count indicates the number of
genes which enriched in the corresponding term, and % indicates the percentage.
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Table A.2: Biological enrichment analysis of the 3rd gene cluster in the BGEFM (Figure
4.5) [5]. Used entire 1753 genes as background. Count indicates the number of genes
which enriched in the corresponding term, and % indicates the percentage.
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Table A.3: Biological enrichment analysis of the 4th gene cluster in the BGEFM (Figure
4.5) [5]. Used entire 1753 genes as background. Count indicates the number of genes
which enriched in the corresponding term, and % indicates the percentage.
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Table A.4: Biological enrichment analysis of the 5th gene cluster in the BGEFM (Figure
4.5) [5]. Used entire 1753 genes as background. Count indicates the number of genes
which enriched in the corresponding term, and % indicates the percentage.
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Table A.5: Biological enrichment analysis of the 6th gene cluster in the BGEFM (Figure
4.5) [5]. Used entire 1753 genes as background. Count indicates the number of genes
which enriched in the corresponding term, and % indicates the percentage.
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Table A.6: Biological enrichment analysis of the 7th gene cluster in the BGEFM (Figure
4.5) [5]. Used entire 1753 genes as background. Count indicates the number of genes
which enriched in the corresponding term, and % indicates the percentage.
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Table A.7: Biological enrichment analysis of the 8th gene cluster in the BGEFM (Figure
4.5) [5]. Used entire 1753 genes as background. Count indicates the number of genes
which enriched in the corresponding term, and % indicates the percentage.
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Table A.8: Biological enrichment analysis of the 9th gene cluster in the BGEFM (Figure
4.5) [5]. Used entire 1753 genes as background. Count indicates the number of genes
which enriched in the corresponding term, and % indicates the percentage.
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Table A.9: Biological enrichment analysis of the 10th gene cluster in the BGEFM (Figure
4.5) [5]. Used entire 1753 genes as background. Count indicates the number of genes
which enriched in the corresponding term, and % indicates the percentage.
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Neurodevelopment Events
Equivalent

PC days
Cranial motor nuclei peak 9
Inferior olive generation onset 9
Locus coeruleus onset 9
Locus coeruleus peak 9
Occulomotor nucleus cell generation onset 9
Trigeminal ganglion cell generation onset 9
Trigeminal mesencephalon nucleus offset 9
Trigeminal mesencephalon nucleus onset 9
Trigeminal motor nucleus peak 9
Medial longitudinal fasciculus appears 9.5
Post-proliferative zone in the medulla appears (caudal to the
trigeminal nerve) 9.8

Entorhinal cortex neurogenesis onset 10
Granule cell layer fascia dentata neurogenesis onset 10
Granule cells in the dentate gyrus onset 10
Hippocampal CA1 neurogenesis onset 10
Hippocampal CA3 neurogenesis onset 10
Inferior olivary nucleus peak 10
Locus coeruleus offset 10
Medial geniculate nucleus onset 10
Olfactory tubercle generation onset 10
Photoreceptor generation onset 10
Purkinje cell generation onset 10
Septal nuclei onset 10
Subicular cortex neurogenesis onset 10
Subplate onset of neurogenesis 10
Trigeminal motor nucleus offset 10
dLGN start 10.5
Mitral cells onset 10.5
Post-proliferative zone appears in the tegmentum 10.5
Purkinje cells peak 10.5
Retinal ganglion cell generation start 10.5
Superficial SC laminae start 10.5
Ganglionic eminence post-proliferative zone appears 10.8
Cranial sensory nuclei peak 11
Globus pallidus peak 11
Inferior olive generation offset 11
Medial geniculate nucleus peak 11
Neurogenesis cortical layer VI start (VC) 11
Reticular nuclei peak 11
Subplate peak 11
Superior colliculus generation onset 11
Post-proliferative zone appears in the bulging thalamus 11.5
Post-proliferative zone appears in the cerebellum 11.5
Post-proliferative zone appears in the pre-tectum 11.5
vLGN peak 11.5
Post-proliferative/white matter appears in the hypothalamus 11.6

Table A.10: List of the neurodevelopment events of mouse brain [6]. Sorted in the increas-
ing PC days order.
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Neurodevelopment Events
Equivalent

PC days
Post-proliferative zone appears in the medial pallium 11.8
Amygdala peak 12
Anteroventral cochlear nucleus peak 12
Caudoputamen generation onset 12
Cochlear nuclei peak 12
Cortical plate first observed/visible, first cortical plate
neurons born 12

dLGN peak 12
GABA cells in subplate start 12
GABAir cells in lower intermediate zone/subventricular border
(no synapses) 12

Mitral cells peak 12
Neurogenesis cortical layer V start (VC) 12
Post-proliferative zone appears in the superior colliculus 12
Purkinje cell generation offset 12
Trigeminal ganglion cell generation offset 12
Axons in optic stalk 12.3
Claustrum peak 12.5
dLGN end 12.5
Neurogenesis cortical layer VI peak (VC) 12.5
Nucleus of lateral olfactory tract peak 12.5
Preoptic nucleus peak 12.5
VP (Ventroposterior) and VB (ventrobasal complex) nuclei
peak (thalamus) 12.5

Entorhinal cortex peak 13
GABA cells in subplate end 13
Medial forebrain bundle appears 13
Medial geniculate nucleus offset 13
Neurogenesis cortical lamina VI end (VC) 13
Neurogenesis cortical layer V peak (VC) 13
Optic axons at chiasm of optic tract 13
Primary somatosensory cortex layer 2/3 offset 13
Retinal ganglion cells peak 13
Rod generation onset 13
Septal nuclei peak (neuron) 13
Subiculum peak (hippocampus) 13
Superior colliculus peak 13
Suprachisamatic nucleus peak (hypothalamus) 13
Anterior olfactory nucleus peak (smell func) 13.5
AV, AM, AD nuclei 13.5
Cortical subventricular zone (abventricular cells) onset 13.5
Lhx6 first in cortex in GABAergic cells 13.5
Olfactory tubercle generation peak 13.5
Parasubiculum peak 13.5
Pontine nuclei peak 13.5
Raphe complex peak 13.5
Stria terminalis appears 13.5

Table A.11: List of the neurodevelopment events of mouse brain (continued) [6].
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Neurodevelopment Events
Equivalent

PC days
Caudoputamen peak 14
Fasciculus retroflexus appears 14
Fornix appears 14
Horizontal cell generation offset 14
LGN axons in subplate 14
Neurogenesis cortical layer V end (VC) 14
Primary somatosensory cortex layer IV offset 14
Primary somatosensory cortex layer V offset 14
Superficial SC laminae end 14
Anterior commisure appears 14.5
Optic axons reach dLGN and SC 14.5
CA 1, CA 2 peak 15
Hippocampal commisure appears 15
Neurogenesis cortical lamina IV start (VC) 15
Neurogenesis cortical layer II/III peak (VC) 15
Retinal amacrine cells peak 15
Subicular cortex neurogenesis offset 15
Superior colliculus generation offset 15
Mitral cells offset 15.5
Cortical axons reach thalamus 16
Entorhinal cortex neurogenesis offset 16
Nucleus accumbens peak 16
Onset of retinal waves stage 1 16
Primary somatosensory cortex layer VI offset 16
Septal nuclei offset 16
Tufted cells peak (olfactory bulb) 16
Corpus callosum appears 17
Hippocampal CA1 neurogenesis offset 17
Hippocampal CA3 neurogenesis offset 17
Neurogenesis cortical layer IV end (VC) 17
Neurogenesis cortical layer IV peak (VC) 17
End of retinal waves stage 1 18.5
Onset of retinal waves stage 2 18.5
Retinal ganglion cell generation end 18.5
Initial differentiation of layer V (S1) 19
Rods peak (neuron) 19
Onset of decrease in fractional anisotropy 20
Surface righting onset 21.5
Onset of barrels (S1) 22
Onset of sublayers in layer V (S1) 22
Onset of trilaminar plate (S1) 22
Rod generation offset 23.5
Onset of barrel field septa (S1) 24
Rooting reflex offset 24.5
Ipsi/contra segregation in LGN 25.5
Ipsi/contra segregation in SC 25.5
Inferior cerebellar peduncle myelination onset 27

Table A.12: List of the neurodevelopment events of mouse brain (continued) [6]. Sorted in
the increasing PC days order.
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Neurodevelopment Events
Equivalent

PC days
Lateral lemniscus myelination onset 27
Medial lemniscus myelination onset 27
Middle cerebellar peduncle myelination onset 27
Corticospinal projections reach lumbar levels 27.5
Internal capsule myelination onset 28
Optic tract myelination onset 28
Posterior commisure myelination onset 28
Superior cerebellar peduncle myelination onset 28
Fasciculus retroflexus myelination onset 29
End of retinal waves stage 2 29.5
Onset of retinal waves stage 3 29.5
Postconception walking onset 29.5
Cingulum myelination onset 30
Eye opening 30
Preyer reflex 30
Stria medullaris myelination onset 30
Striatum myelination onset 30
air righting reflex 31
Brachium inferior colliculus myelination onset 31
Ears open (auditory canals fully open) 31
Olfactory tract myelination onset 31
Vibrissa placing adult like pattern 31
Anterior commisure myelination onset 32
Fornix myelination onset 32
Hippocampus myelination onset 32
Mammillothalamic tract myelination onset 32
End of retinal waves stage 3 32.5
Corpus callosum body myelination onset 33
Lenticular fasciculus myelination onset 33
Splenium myelination onset 33
Plasticity/OD critical period start 37.5
Visual placing is mature 37.5
Plasticity/OD critical period end 50.5
Corpus callosum body myelination end 62
Middle cerebellar peduncle myelination end 78

Table A.13: List of the neurodevelopment events of mouse brain (continued) [6]. Sorted in
the increasing PC days order.
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Appendix B: Supplementary Material for the Developing Human
Brain Dataset
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Table B.1: Biological enrichment analysis of the 1st gene cluster in the BGEFM (Figure
4.9) [5]. Count indicates the number of genes which enriched in the corresponding term,
and % indicates the percentage.
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Table B.2: Biological enrichment analysis of the 2nd gene cluster in the BGEFM (Figure
4.9) [5]. Count indicates the number of genes which enriched in the corresponding term,
and % indicates the percentage.

145



Table B.3: Biological enrichment analysis of the 3rd gene cluster in the BGEFM (Figure
4.9) [5]. Count indicates the number of genes which enriched in the corresponding term,
and % indicates the percentage.
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Table B.4: Biological enrichment analysis of the 4th gene cluster in the BGEFM (Figure
4.9) [5]. Count indicates the number of genes which enriched in the corresponding term,
and % indicates the percentage.
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Table B.5: Biological enrichment analysis of the 5th gene cluster in the BGEFM (Figure
4.9) [5]. Count indicates the number of genes which enriched in the corresponding term,
and % indicates the percentage.
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Table B.6: Biological enrichment analysis of the 6th gene cluster in the BGEFM (Figure
4.9) [5]. Count indicates the number of genes which enriched in the corresponding term,
and % indicates the percentage.
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Table B.7: Biological enrichment analysis of the 7th gene cluster in the BGEFM (Figure
4.9) [5]. Count indicates the number of genes which enriched in the corresponding term,
and % indicates the percentage.
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Table B.8: Biological enrichment analysis of the 8th gene cluster in the BGEFM (Figure
4.9) [5]. Count indicates the number of genes which enriched in the corresponding term,
and % indicates the percentage.
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Table B.9: Biological enrichment analysis of the 9th gene cluster in the BGEFM (Figure
4.9) [5]. Count indicates the number of genes which enriched in the corresponding term,
and % indicates the percentage.
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Table B.10: Biological enrichment analysis of the 10th gene cluster in the BGEFM (Figure
4.9) [5]. Count indicates the number of genes which enriched in the corresponding term,
and % indicates the percentage.

153



Neurodevelopment Events
Equivalent

PC days
Medial forebrain bundle appears 33

Posterior commisure appears 33

Subplate onset of neurogenesis 35

Mammillo-thalamic tract appears 44

Stria medullaris thalami appears 44
Cortical plate first observed/visible, first cortical plate

neurons born 50

LGN axons in subplate 50

Axons in optic stalk 51

Neocortical layer 1 emerges 52.5

Cortical subventricular zone (abventricular cells) onset 54.3

External capsule appears 56

Stria terminalis appears 56

Fornix appears 63

Internal capsule appears 63

Anterior commisure appears 70

Cortical plate apoptosis onset 77

GABA positive cells appear in lower intermediate zone 77
GABAir cells in lower intermediate zone/subventricular

border (no synapses) 77

Hippocampal commisure appears 77

Subplate and intermediate zone apoptosis onset 77

Corpus callosum appears 81

Dopaminergic axons from the midbrain reach the subplate 91
Dopaminergic axons from the midbrain reach the cortical

plate 105
Pulvinar projections in the intermediate zone of the

developing pre striate iso cortex are present 105

Range of rapid synaptogenesis (VC) start 120
Pulvinar projections in the sub plate of the developing

prestriate iso cortex are sparse 129.5

Onset of retinal waves stage 1 154

Eye opening 157.5
Pulvinar projections in the cortical plate of the developing

prestriate isocortex are present 161
Dopaminergic axons from the midbrain are found

throughout the cerebral cortex 168

Inferior cerebellar peduncle myelination onset 168

Medial lemniscus myelination onset 168

Onset of decrease in fractional anisotropy 173

Ipsi/contra segregation in LGN 175

Ipsi/contra segregation in SC 175

Superior cerebellar peduncle myelination onset 182

Lenticular fasciculus myelination onset 196

Corticospinal projections reach lumbar levels 203

End of retinal waves stage 1 210

Optic tract myelination onset 224

Table B.11: List of the neurodevelopment events of human brain [6]. Sorted in the increas-
ing PC days order.
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Neurodevelopment Events
Equivalent

PC days
Anterior commisure myelination onset 266

Brachium inferior colliculus myelination onset 266

Optic radiation myelination onset 266

Fornix myelination onset 273

Stria medullaris myelination onset 273

Middle cerebellar peduncle myelination onset 280

Auditory radiation myelination onset 287

External capsule myelination onset 294

Lateral Geniculate Nucleus Myelination Onset 294

Mammillothalamic tract myelination onset 308

Cingulum myelination onset 329

Corpus callosum body myelination onset 350

Internal capsule myelination onset 350

Semi-adult like sleep cycle 361

Hippocampus myelination onset 371

Fasciculus retroflexus myelination onset 378

Splenium myelination onset 378

Stria terminalis myelination onset 378

Optic tract myelination end 483

Visual cortex peak synaptic density (area 17) 510

Range of rapid synaptogenesis (VC) end 580

Postconception walking onset 627

Corpus callosum body myelination end 735

Middle cerebellar peduncle myelination end 833

Table B.12: List of the neurodevelopment events of human brain (continued) [6]. Sorted in
the increasing PC days order.
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