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Abstract 

 

In this research, we proposed an atlas-based automated segmentation approach 

which used 6 manually traced CT volumes (including the reference CT volume) to 

construct the atlas. We then registered the test CT volumes to a single reference volume. 

A series of morphological processes were implemented to segment the temporal bone 

anatomy. A 3D-view based tracing tool ‘VolEditor’ was used to provide the manual 

tracing results of the test data to compare with our automatic segmentations. The 

validation results of our method on 20 test clinical CT volumes (10 left, 10 right) resulted 

in average DICE similarity coefficients over 0.6 for cochlea, malleus and incus and 

ranged from 0.46 to 0.64 for facial nerve, semi-circular canals and vestibule. 

The proposed method didn’t reach the precision required for surgical planning but 

was effective for segmenting structures required in surgical simulation software. 

Additionally, we determined that the 3D manual tracing tool, used in this study, resulted 

in segmentation errors that caused degradation of the validation results. 
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Chapter 1 Introduction 

 

1.1 Problem Statement 

Image segmentation is a technique applied to segment the input image into 

regions with specific properties and extract those regions out for further processing. It is 

often the first step of image analysis. Through image segmentation, the region of interest 

(ROI) is labeled and its representation is simplified for further study. Common methods 

of image segmentation are based on the pixel values’ intensity difference between 

different regions. These methods work well when dealing with segmentation problems 

where different regions’ pixel values differ significantly from each other. But, when it 

comes to the segmentation need of temporal bone anatomy, the pixel intensities of 

different bony structures are very close to each other. Obviously, this makes the intensity-

based image segmentation unsuitable for this particular situation. Thus, we propose an 

atlas-based image segmentation approach for the segmentation of temporal bone 

anatomy.  

Atlas-based image segmentation is a type of method which does not depend on 

the pixel intensity difference between different regions to segment the image. This 

method segments the image into different regions of interest based on a user-defined 

atlas. The atlas serves as a source of information of the regions of interest that need to be 

segmented from the images. In our approach, this atlas is developed by combining 
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several manual segmentations of temporal bone anatomy from a set of selected “normal” 

reference images. Then image registration techniques are applied to align the atlas with 

the CT images of unknown subjects. Ideally, the manually segmented anatomic structures 

of the atlas will overlap with structures in the unknown CT images as much as possible. 

The segmentation results obtained from atlas based segmentation of temporal 

bone are mainly used to enhance 3D visualization and surgical simulation in virtual 

environment. 

 

1.2 Related Work 

In previous 3D visualization studies of the middle and inner ear, manual 

segmentation methods [7] were used that took many hours to perform. In a semi-

automated volume growing segmentation approach, proposed by M. Seemann et al. [8], a 

threshold interval density value was selected for each structure. An experienced 

investigator was needed to manually mark one voxel per slice that belonged to the 

structure of interest. Then the adjacent voxels whose intensity values were in the defined 

threshold interval would be segmented as part of the structure. If neighboring voxels were 

segmented that did not belong to this structure, they were manually removed by the 

investigator. This semi-automatic approach indeed shortened the segmentation process of 

middle and inner ear to about 40 minutes. But it still required a considerable amount of 

work from an experienced investigator. Segmentation times on the order of one hour to 

one day were observed by Chan et al. [2] using the commercially available software 

package Amira to prepare data for their surgical simulator. A further review of publicly 
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available software packages by Hassan et al. [9] resulted in the observation that one 

segmentation approach was inadequate for all anatomical structures of interest and would 

require an experienced user 1-2 hours’ effort to prepare the data for patient specific 

surgical simulation. Our approach currently takes less than five minutes to perform and 

could be further optimized for real-time applications.    

A temporal bone surgical simulation using Voxelman [1] used a semi-automated 

global segmentation for 3D reconstruction. The authors found that the time consumption 

is significant (on average 20 min) when uploading a new CT volume to the surgical 

simulator due to the segmentation process. The case rehearsal in Arora et al.’s research 

included ossicular chain surgery, cochlear implantation and congenital anomalies. They 

observed that rehearsals of surgical applications that involved facial nerve (e.g. the 

cholesteatoma surgery) were not possible due to lack of delineation of soft tissue. Our 

segmentation method delineates the facial nerve channel and incorporates the location of 

the facial nerve.  

Higher resolution images available from microCT imaging systems provide better 

delineation of fine structures such as the stapes and corda tympana. However, this is at 

the expense of increased image size. Lee et al. [3] developed a volume visualization and 

haptic interface system for measurement of 3D structures.  

In the field of automatic segmentation of medical images, atlas-based methods are 

well accepted and widely used. This method often served as the 1st step of automatic 

segmentation to localize the anatomic structures in unknown subjects. Noble et al. [4] 

applied atlas-based registration to automatically segment the following anatomic 
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structures: labyrinth, ossicles, and external auditory canal. This method registered the 

atlas image of a “normal” subject with the unknown subject’s image, and superimposed 

the manually labeled contour of the atlas onto the unknown subject. An active contour 

approach was then applied to acquire the final delineation of structures. The advantage of 

this atlas-based registration is that it is easy and fast to apply. But this simple method 

relies on the assumption that the anatomic structures of the manually picked “normal” 

subject are topologically similar to the structures of the unknown subjects. Due to 

variations in the region of pneumatized bone surrounding the facial nerve and chorda 

tympani, this assumption does not hold. Therefore, in the segmentation of these two 

structures, simple atlas-based registration only serves as the first step of segmentation. 

This step roughly localizes the anatomic structures and further algorithms were proposed 

to segment the facial nerve and chorda tympani.  

As is known, facial nerve channel and chorda tympani are tubular structures, and 

Nobel el al. [5] proposed a model-based spatially-variant method which specifically 

targets tubular structures in pneumatized bone. In this approach, a set of training volumes 

was used to create the models of facial nerve channel and chorda tympani. The advantage 

of this method is that the minimum cost path algorithm, adopted in this approach, 

compensated for small registration errors in the atlas projection procedure. And the 

corresponding cost function, which was adopted to find the minimum path, was 

incorporated with spatial information of the structures of interest to compensate for the 

variation of intensity along the structures. This effectively improved the segmentation 

results of pneumatized tubular structures. The limitation of this algorithm is that it 
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assumes the location distribution of tubular structures of the model are similar to that of 

unknown CT volumes. Therefore, the training data set should be large enough to capture 

the variation in location for this method to work well.  

 

1.3 Motivations and Contributions 

The motivation for this research is the need for automatic segmentation of 

temporal bone anatomy for surgical simulations and case specific pre-surgical planning. 

Anatomic structures like the facial nerve and chorda tympani are crucial structures that a 

surgeon must avoid when performing surgery such as during a cochlear implant [6]. 

Thus, it is very important to segment these structures in the preoperative CT scans for 

surgical planning.  

 

1.4 Organization of Thesis 

The rest of this thesis is organized in the following manner. In chapter 2, we 

provide the work flow that we proposed for the segmentation approach followed by an 

introduction of the validation metrics that we adopted to evaluate the performance of our 

method. In chapter 3, we provide validation results of our approach. In chapter 4, we 

discuss the performance of our approach based on the experimental results and potential 

improvements in future work. 
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Chapter 2 Data and Methods 

 

2.1 Data Information 

A total of 27 bones (14 left, 13 right) obtained from the OSU body Donation 

program and the University of Cincinnati were used for the study. Six of the bones (3 left, 

3 right) were used to develop the automated registration parameters and the region-of-

interest (ROI) masks used for the automated segmentation. One was used as the reference 

for registration. The remaining bones were used for testing the atlas-based segmentation 

approach. 

Clinical X-ray computed tomography (CT) images of the bones were acquired at 

140 kVp and exposure times of 1000 mA s using a Siemens 64-bit detector Somatom 

SensationTM (Siemens Healthcare GmbH, Erlangen Germany). Axial slices were 

collected over a 119-mm field-of-view (FOV) with an in-plane voxel size of 0.232 mm 

and slice thickness of 0.4 mm. The images were oriented so that all the volumes are 

displayed starting from superior to inferior and anatomically from left to right. A single 

left image was randomly chosen to be used as the reference image (4532L) for 

registration. This image was flipped horizontally for spatial registration of the right bone 

images. 
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A demonstration of the image coordinate system adopted in ImageJ is shown in 

figure 1. The image coordinate system mentioned in the following sections refer to this 

coordinate system.  

 

Figure 1 Example of Coordinate system adopted by ImageJ 

 

 

All the manual segmentations were performed using VolEditor software that was 

developed in-house (Ohio Supercomputer Center, Columbus Ohio). The structures were 

manually segmented in a 3D view, and then verified by an experienced observer in a 3D 

view. Figure 1 is an example of such a 3D view provided by VolEditor.  

 

2.2 Manual Segmentation 

In the manual segmentation process, a nonlinear transfer function of gray levels is 

applied to adjust the 3D visualization results before manual tracing. The curve of this 

transfer function is manually selected. Figure 2 shows an example of the processed result. 
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The left image volume is the original image and the right image is the result after 

application of the transfer function. The corresponding transfer function for each volume 

is shown on the bottom left corner of the images in figure 2. After setting the transfer 

function, the original image volume is enhanced such that the image volume should 

contain bony structures only. This enhanced image is used for manual segmentation of 

bony structures using a painting tool with region size of 3 x 3 x 3. Figure 3 shows an 

example of manual segmentation result in 3D view. 

 

Figure 2 Examples of original image (left) and transferred image (right) 

 

 

 

Figure 3 Example of 3D-view based segmentation results 
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2.3 Work Flow of the Proposed Atlas-based Approach 

In our method, the segmentation procedure consisted of two major parts. The 1st 

part is the registration process of CT volumes and the 2nd part is the segmentation 

process. In the following sections, these two parts are explained in detail. 

 

2.3.1 Registration Process 

 

Figure 4 Work flow of registration process 

 

 

  



10 

 

As shown in figure 4, the registration process consists of 9 steps:  

In step ①, the clinical CT image voxel data type is converted from 16-bit to 8-bit 

to save computational resource.  

In step ②, the training and test CT volumes are manually adjusted to roughly 

align their orientation with that of the atlas volume, and all the CT volumes size are either 

cropped or padded to the same size as the reference volume (4532L). These adjustments 

are made through ImageJ [16], an image processing program developed at the National 

Institutes of Health. The resulting volume from this step is referred as 𝑉𝑗. The manual 

orientation and volume size adjustments of the test data set are recorded in Tables 1 and 

2. 

File name Flip along y axis Flip along z axis Crop/Pad slices  Original number of 

Slices 

4532L (reference) 
  

273 

08CL_3 (atlas) 
 

X 3 270 

08DL_3 (atlas) X 
 

59 214 

08FL_2 (atlas) X X -25 298 

08HL_3 X  
  

273 

08ML 
 

X 3 270 

08QL 
 

X 29 244 

6183L X 
 

-23 296 

6270L X 
 

52 221 

BYU960L1 X 
 

69 204 

BYU960L2 X 
 

86 187 

RDR974L X 
 

84 189 

rnf328L X 
 

102 171 

ZCO867L X 
 

74 199 

Table 1 Manual adjustment records of left volumes 

  



11 

 

 

 

File name  Flip along y axis Flip along z axis Crop/Pad slices Original number 

of slices 

4532L.flipx (reference) 
  

273 

9413R (atlas) X 
  

273 

UMO609R (atlas) X 
 

66 207 

UTQ235R (atlas) X 
 

55 218 

08AR_3 X 
  

273 

08BR_3 
 

X 3 270 

08ER 
 

X -25 298 

08GR 
 

X 3 270 

08JR_3 
 

X 3 270 

2517R X 
  

273 

3203R X 
  

273 

3689R X 
  

273 

5687R X 
 

1 272 

8871R X 
  

273 

Table 2 Manual adjustment records of right volumes 

 

 

 

In step ③, a copy of each volume 𝑉𝑗 is rescaled manually with ImageJ to suppress 

the visible soft tissue voxel values to 0s. The subjective standard in this linear rescaling is 

to keep malleus and incus visible in the CT image and suppress the soft tissue as much as 

possible. The linear intensity adjustment is given by the following ramp function: 

𝑇(𝑥) =  

{
 

 
0,                   𝑖𝑓 𝑥 ≤  𝑇1

255

𝑇2 − 𝑇1
(𝑥 − 𝑇2) + 255, 𝑖𝑓 𝑇1 < 𝑥 < 𝑇2

255,                𝑖𝑓 𝑥 ≥ 𝑇2
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Figure 5 shows an example of manual intensity adjustment result. 

 

Figure 5 Example of manual intensity adjustment with ImageJ 

 

 

In step ④, the rescaled image volumes are subsampled in all x, y, and z directions 

as output to the next step for the 1st coarse rigid body registration. 

In step ⑤, as shown in figure 4, the subsampled reference volume is set as the 

fixed image and the other subsampled volumes are set as the moving images in the 1st 

registration procedure. The result of this step is the transformation 𝑇1 from the moving 

image to the fixed image.  

In step ⑥, the original size volumes 𝑉𝑗 are transformed with 𝑇1 to get the coarsely 

registered volumes referred as 𝑅𝑗. Then 𝑅𝑗 is output to the following step for refined 

registration.  

In step ⑦, 𝑅𝑗 is registered to the reference volume with a manually made ROI 

mask of cylinder shape centering around the otic capsule of the reference image. This 2nd 
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refined image registration aims to register the otic capsules of the reference and the other 

volumes to a very close space for the following segmentation. 

In step ⑧, the transformation 𝑇2 acquired from last step is used to obtain the 

refine-registered volumes 𝑆𝑗.  

Both registrations in step ⑤ and ⑦ are rigid body registration implemented by 

elastix [10] with mutual information (MI) as the metric. This method maximizes the 

mutual information [11] between the two CT volumes A and B, where MI is given in the 

following equation:  

𝑀𝐼 =  𝐻(𝐴) + 𝐻(𝐵) − 𝐻(𝐴, 𝐵), 

where H(.) denotes the Shannon entropy of one image and H(.,.) denotes the joint 

Shannon entropy between two images. 

In step ⑨, the volumes 𝑆𝑗 with voxel size 0.232*0.232*0.4 𝑚𝑚3 are interpolated 

to isotropic volume 𝐿𝑗 with voxel size 0.232*0.232*0.232 𝑚𝑚3. After this step, the 8-bit 

isotropic volumes are sent to the next processing stage for automatic image segmentation. 
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2.3.2 Image Segmentation of Temporal Bone Anatomic Structures 

 

Figure 6 Work flow of segmentation process 

 

 

Figure 7 Work flow of clean operations and segmentation of bony surface 
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As can be seen in figure 6, the anatomic structures studied in this work are 

categorized as 3 groups (a), (b), and (c). All the image volumes go through the unsharp 

mask filter first. The unsharp mask filtering is defined by following equation: 

𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) + 𝑘 ∗ (𝑓(𝑥, 𝑦) − 𝑓(̅𝑥, 𝑦)), 

Where k = 0.6, 𝑓(̅𝑥, 𝑦) is the CT slice image 𝑓(𝑥, 𝑦) blurred by a 2D Gaussian filter with 

sigma = 1.5. Because k <1, this filtering is actual de-emphasizing the edges of the image 

volumes. A three-level Otsu’ Multi-level threshold [15] is then applied, where level 1 

refers to background, level 2 refers to soft tissue, and level 3 is the bone. The next section 

introduces the different segmentation approaches used for blob-like, cavitary, and tubular 

structures: 

 

a) Blob-like structures: Malleus and Incus 

The bone level of Otsu’s threshold is logically ANDed with the atlas label 

mask of Malleus (2) and Incus (3) separately. 

b) Cavitary structures: Cochlea and Vestibule 

The background level and soft tissue level of Otsu’s threshold are combined as 

a single mask to logically AND with the atlas label mask of Cochlea (1) and 

Vestibule (9) separately. The ANDed results are sent to segment the bony surface 

surrounding the structures separately. The output label mask of corresponding bony 

surface is then label as Cochlea and Vestibule respectively.  

c) Tubular structures: 
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Though, facial nerve channel and semicircular canals (SCCs) are both 

categorized as tubular structures, their topological characteristics are quite different. 

Therefore, a slightly different cleaning operation of floaters (tiny bone structures) 

near the tubular structures are adopted to remove floaters of facial nerve channel and 

SCCs after the separate Boolean logic AND operations between the combined Otsu’s 

mask and the atlas label masks (5, 6, 7 and 8). Figure 7 shows the details of the 

cleaning operations and segmentation of the bony surface. As shown in figure 6, the 

results of cleaning operations are sent to segment bony surface. And the output 

results of segment bony surface operation are labeled as the corresponding automatic 

segmentation labels.  

i. Facial nerve channel 

For tubular structures like facial nerve channel, a morphological erode 

with size 1 per each slice is applied to the image volume, then the connected 

components are calculated slice-wise to remove all but largest component. 

After removing all the small floaters, another morphological dilate with size 1 

per each slide is applied to the image volume. The remaining mask was 

labeled as facial nerve channel for segmentation of bony surface. The output 

bony surface mask is then labeled as the automatic segmentation of facial 

nerve channel. 

ii. Semicircular canals 

For cleaning of SCCs, we simply calculated the 3D connected 

components and the largest component is identified as the corresponding SCC 
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mask. Then this mask is sent to segment bony surface. The results surface 

mask is labeled as the corresponding automatic segmentation label. 

iii. Segment bony surface 

As shown in figures 6 and 7, the intermediate automatic segmentation 

labels are passed to segment the bony surface surrounding the structure. In this 

process, the whole image volume is cropped into a sub-volume that centered at 

the segmentation mask. This cropping process merely aims to reduce 

computational load. The previous automatic segmentation labels are then 

dilated by 3 and ANDed with the Otsu’s bone mask. The resulting labels are 

regarded as the corresponding bony surface structures. 

 

2.4 Introduction of Validation Metrics 

Validation of segmentation results serves as a reference in the process of 

developing and evaluating a new method of image segmentation. According to the 

validation results, adjustment of the approach is made to improve the segmentation 

accuracy. In our experiment, multiple validation metrics were adopted to evaluate the 

accuracy of the proposed segmentation approach.   

In the following section, six different metrics are introduced, DICE coefficient, 

volume similarity, Hausdorff Distance, average Hausdorff distance, Mahalanobis 

Distance, and principal component axes similarity. All of these metrics except principal 

component axes similarity were calculated using Taha et al.’s [12] quantitative evaluation 

tool. The principal component axes similarity was calculated with MATLAB. 
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2.4.1 DICE 

The DICE coefficient was first proposed by LR. Dice [13] in 1945. It is 

considered a spatial overlap-based similarity measurement. The concept of confusion 

matrix is adopted for overlap-based metric. For a specific bone structure with predefined 

structure label X, if the segmentation label of the voxel is X, then it is regarded as a 

positive case. Otherwise, it is regarded as a negative case. The corresponding 4 scenarios 

of a confusion matrix are shown in table 3. 

 Auto segmentation positive Auto segmentation negative 

Manual segmentation positive TP FN 

Manual segmentation negative FP TN 

Table 3 The confuison matrix 

 

According to Dice LR, the DICE coefficient is calculated through the following equation: 

𝐷𝐼𝐶𝐸 =
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

2.4.2 Volumetric Similarity 

Volume similarity (VS) metric is also defined with the 4 basic scenarios 

introduced previously. The following equation were used to calculate the volume 

similarity between auto and manual segmentations: 

VS = 1 −
|𝐹𝑁 − 𝐹𝑃|

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
= 1 −

||𝑉𝑎𝑢𝑡𝑜| − |𝑉𝑚𝑎𝑛𝑢𝑎𝑙||

𝑉𝑎𝑢𝑡𝑜 + 𝑉𝑚𝑎𝑛𝑢𝑎𝑙
 

Where 𝑉𝑎𝑢𝑡𝑜 represents the total volume of the auto segmentation mask and 𝑉𝑚𝑎𝑛𝑢𝑎𝑙 

represents the total volume of the manual segmentation mask. Even though the 4 
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cardinalities are used in the above equation to calculate the VS, this is not an overlap-

based metric. As shown in the equation, the total volume of the auto segmentation is 

compared with the total volume of the manual segmentation, the overlap volume between 

auto and manual segmentation has no effect on this metric.  

 

2.4.3 Hausdorff Distance 

Hausdorff Distance (HD) is commonly used as a validation metric of image 

segmentation which describes the dissimilarity between segmentations. It measures the 

spatial distance between 2 segmentations. The directed Hausdorff Distance between 2 

sets of points A and B is given by the following equation:  

ℎ(𝐴, 𝐵) = max
𝑎∈𝐴

min
𝑏∈𝐵

‖𝑎 − 𝑏‖ , 

where ‖𝑎 − 𝑏‖ is some type of norm, i.e. Frobenius norm. And Hausdorff distance is 

defined by the following equation: 

𝐻𝐷(𝐴, 𝐵) = max (ℎ(𝐴, 𝐵), ℎ(𝐵, 𝐴)) 

This metric is sensitive to outliers, as can be seen from the equation of HD. Thus, 

we also evaluated the Average Hausdorff Distance (AVD) as one of our validation 

metrics. 

 

2.4.4 Average Hausdorff Distance 

The Average Hausdorff Distance is the Hausdorff Distance averaged over all 

points in sets A and B. AVD is more stable and less sensitive to outliers. AVD is given 

by the following equation:  
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𝐴𝑉𝐷(𝐴, 𝐵) = max (𝑑(𝐴, 𝐵), 𝑑(𝐵, 𝐴)) , 

where d(A,B) is the directed AVD defined by following equation: 

𝑑(𝐴, 𝐵) =
1

𝑁
∑min

𝑏∈𝐵
‖𝑎 − 𝑏‖

𝑎∈𝐴

 

 

2.4.5 Mahalanobis Distance 

The original Mahalanobis Distance (MHD) is in contrast to the Euclidean 

distance. For 2 points x and y included in a point cloud K, MHD takes the information of 

the point cloud K into account when calculating the Mahalanobis distance. MHD is given 

by the following equation:  

𝑀𝐻𝐷(𝑥, 𝑦) =  √(𝑥 − 𝑦)𝑇𝑆−1(𝑥 − 𝑦) 

Where S is the covariance matrix of the point set K. For our validation, a variant of MHD 

is adopted. According to G.J. McLachlan [14], MHD is modified to calculate the distance 

of the means of 2 point sets, A and B. It is given by the following equation: 

𝑀𝐻𝐷(𝐴, 𝐵) =  √(𝜇𝐴 − 𝜇𝐵)𝑇𝑆𝐴𝐵
−1(𝜇𝐴 − 𝜇𝐵) 

Where, 𝜇𝐴 and 𝜇𝐵 are the means of point set A and B respectively. 𝑆𝐴𝐵 is the common 

covariance matrix of point sets A and B. It is defined by the following equation: 

𝑆𝐴𝐵 =
𝑛𝐴𝑆𝐴 + 𝑛𝐵𝑆𝐵
𝑛𝐴 + 𝑛𝐵

 

Where, 𝑛𝐴 and 𝑛𝐵 are the number of points in set A and B respectively. 𝑆𝐴 and 𝑆𝐵 are the 

covariance matrix of set A and B respectively. 
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2.4.6 Principal Component Axes Similarity 

The following figure 8 and 9 show examples of the cochlea’s principal component 

axes and the orientation angles Alpha, Beta and Gamma between the principal axes of 

manual and automatic segmentation results of the cochlea, respectively. 

 

Figure 8 Example of principal component axes of cochlea 

 

 

 

Figure 9 Example of orientation angles 
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The principal component axes similarity measures the difference in orientation 

angles between the principal component axes as shown figure 9. The smaller the 

difference in orientation angles, the more similar the two point clouds of automatic and 

manual segmentation labels are. The principal component axes are computed in the 

following manner. First, the coordinates of a structure’s manual (or automatic) 

segmentation labels (x, y, z) are stacked into a matrix X as column vectors. Then the 

column vectors in X are treated as sample vectors. By applying eigenvalue 

decomposition of the corresponding sample covariance matrix S computed from X, we 

can obtain the principal axes (eigenvectors of S) of the segmentation mask. The principal 

axes (p1, p2, and p3) can be used to visualize the shape and orientation difference 

between the manual and auto-segmentation masks. Figure 9 shows 2 set of principal axes,  

one set of axes are calculated from manual segmentation mask (green arrows) and the 

other set of axes are calculated from automatic segmentation mask (red arrows). The 

limitation of this validation method is that if the segmentation labels’ locations vary in a 

way that is close to isotropic manner (e.g. the segmented structure has a spherical-like 

shape or cylinder-like shape), then the principal axes are not helpful, because the labels 

location distribution varies similarly in every direction. 

 

2.5 Comparison between the Automatic Segmentation with a Baseline Approach 

 The proposed automatic segmentation approach was compared with a baseline 

approach which segmented the temporal bone anatomy by simply using the registered 

atlas as a segmentation mask and ANDing it with the bone mask of the test image without 
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any additional image processing. The comparison results were used to evaluate the 

performance of the additional image processing techniques adopted in the proposed 

automatic segmentation. 

 

2.6 Evaluation of Manual Tracing Results Generated by VolEditor 

 The 3D-view based manual tracing results generated by VolEditor were evaluated 

by comparing them to the corresponding test image’s bone mask calculated by Otsu’s 

multi-level threshold method. Besides, comparison between 3D-view based tracing 

results of VolEditor and 2D-view based tracing results were also conducted through 

visual inspection to evaluate the manual segmentation results used in this work. 
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Chapter 3 Results 

 

3.1 Validation Results  

The median, mean, variance, minimum and maximum validation results of DICE, 

Volume Similarity (VS), Hausdorff Distance, Average Hausdorff Distance and 

Mahalanobis Distance calculated between automatic and manual segmentations of the 

test set are shown in Tables 4 (left) and 5 (right). The mean and standard deviation of 

orientation angles between principal component axes (principal component axes 

similarity) of automatic and manual segmentation labels for each anatomic structure are 

shown in Tables 6 (left) and 7 (right). 

According to the validation results in Tables 4 and 5, the average DICE 

coefficients of cochlea, malleus, and incus were over 0.6; the average DICE coefficients 

of the facial nerve channel and the semi-circular canals ranged from 0.4 and 0.6. The 

lowest DICE coefficients were observed for the facial nerve channel, lateral SCC, and 

posterior SCC, of which, the minimum DICE coefficient dropped to 0.3015. The 

maximum variance of the DICE coefficient was observed to be 0.01 in the facial nerve 

channel. 

The mean VS coefficients of all the anatomic structures were greater than 0.68 for 

each structure. The VS of facial nerve channel and SCCs were on average greater than 
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0.8. The variance of the VS coefficient for each structure was below 0.03. The lowest VS 

coefficient was observed in the incus, where it dropped to 0.4655.  

The HD coefficients in the validation results are generally very large. This result 

shows that HD is highly sensitive to outliers in the manual segmentation and is therefore 

less useful to validate the automatic segmentation result. The average of directed 

Hausdorff Distance (AVD) coefficient for all structures was less than 1.9 on average, and 

the maximum AVD observed was 3.3858 in the facial nerve channel. The largest 

variance was 0.6455 in the facial nerve channel. The MHD coefficients were on average 

below 0.7 with a maximum variance 0.0951 observed for the lateral SCC. The maximum 

MHD was also observed for the lateral SCC.  

According to Tables 6 and 7, most of the average orientation angles are less than 

20 degrees, except for malleus of right temporal bone, the posterior SCC and vestibule of 

both sides of the temporal bone. The maximum average orientation angle observed was 

50.2798 degrees in the alpha orientation angle of left temporal bones’ vestibules. The 

minimum average orientation angle was observed for the malleus of left temporal bones 

with 4.0532 degrees. Average Orientation angles less than 10 degrees were observed in 

all structures except the vestibule. 
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Structure names Cochlea Malleus Incus 
Facial Nerve 

Channel 

Lateral 

SCC 

Posterior 

SCC 

Superior 

SCC 
Vestibule 

DICE 

median 0.6220 0.6717 0.6261 0.4418 0.5272 0.5084 0.5882 0.5193 

mean 0.6241 0.6706 0.6305 0.4623 0.5319 0.5273 0.5734 0.5245 

variance 0.002984 0.002335 0.007581 0.010571 0.007044 0.004297 0.005941 0.004994 

min 0.5531 0.6044 0.5074 0.3191 0.3750 0.4615 0.4642 0.4328 

max 0.7184 0.7542 0.7656 0.6620 0.6397 0.6296 0.6865 0.6181 

Volumetric Similarity (VS) 

median 0.8237 0.7372 0.7333 0.9111 0.8513 0.8807 0.9430 0.9143 

mean 0.8315 0.7579 0.7249 0.8972 0.8656 0.8750 0.8799 0.8623 

variance 0.006619 0.006890 0.013809 0.003815 0.009449 0.004851 0.011098 0.016693 

min 0.7076 0.6385 0.5817 0.8179 0.6537 0.7360 0.7031 0.5580 

max 0.9721 0.9025 0.9543 0.9824 0.9899 0.9839 0.9714 0.9906 

Hausdorff Distance (HD) 

median 9.3372 4.7775 5.8735 11.9370 8.1542 15.2440 7.9671 11.4017 

mean 10.6360 5.7198 8.2222 47.1780 8.6098 26.1294 8.1241 11.5677 

variance 17.860954 7.759544 51.326455 5388.590953 3.523423 1511.726767 4.887193 2.320594 

min 7.0000 3.1623 3.0000 7.6158 6.4031 7.3485 5.3852 9.0000 

max 21.5639 12.0000 27.7308 189.7103 11.8743 136.3635 11.6619 14.2478 

Average Hausdorff Distance (AVD) 

median 0.5757 0.4099 0.5046 1.3625 0.8316 1.2671 0.7296 1.0430 

mean 0.6352 0.3965 0.5206 1.4253 0.9191 1.3214 0.7279 1.0973 

variance 0.042687 0.003661 0.041357 0.509493 0.106978 0.216415 0.032523 0.054059 

min 0.3962 0.2928 0.2474 0.6056 0.5512 0.7219 0.5125 0.8085 

max 1.1208 0.4688 0.9175 3.0173 1.6338 2.0543 1.0924 1.6170 

Mahalanobis Distance (MHD) 

median 0.2305 0.3924 0.3581 0.3176 0.5721 0.5853 0.4111 0.5957 

mean 0.2163 0.3879 0.3867 0.3381 0.6150 0.5441 0.4862 0.5503 

variance 0.008742 0.041375 0.055207 0.029253 0.051015 0.046448 0.059524 0.043584 

min 0.0847 0.1336 0.0480 0.1194 0.2150 0.1221 0.1725 0.3037 

max 0.3607 0.6860 0.7715 0.6687 0.9967 0.9119 0.9248 0.9505 

Table 4 Validation results of left volumes 
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structure 

names Cochlea Malleus Incus 

Facial Nerve 

Channel 

Lateral 

SCC 

Posterior 

SCC 

Superior 

SCC Vestibule 

DICE 

median  0.6500 0.6579 0.6415 0.5481 0.5846 0.4665 0.6833 0.5906 

mean 0.6366 0.6425 0.6185 0.5327 0.5632 0.4937 0.6466 0.5834 

variance 0.004988 0.005720 0.008620 0.008807 0.007841 0.009588 0.008857 0.001811 

min 0.4688 0.4762 0.4249 0.3015 0.3975 0.3383 0.4297 0.4941 

max  0.7074 0.7537 0.7033 0.6184 0.6581 0.6564 0.7308 0.6362 

Volumetric Similarity (VS) 

median  0.7728 0.7768 0.7141 0.8902 0.9306 0.8250 0.9662 0.8046 

mean 0.7708 0.7953 0.6865 0.9095 0.9236 0.8243 0.9245 0.8425 

variance 0.008539 0.005148 0.011441 0.003824 0.002883 0.026250 0.005948 0.006310 

min 0.5496 0.6863 0.4655 0.8223 0.8446 0.6254 0.8058 0.7513 

max  0.8749 0.9172 0.8145 0.9710 0.9937 0.9987 0.9931 0.9802 

Hausdorff Distance (HD) 

median  9.4575 6.4803 7.4407 14.4821 9.5647 18.1489 8.4243 11.5199 

mean 10.5075 7.1628 10.3872 32.5746 10.8170 17.3776 26.0297 11.3360 

variance 20.323998 5.549219 56.340699 3187.441712 28.214925 9.799476 3142.060770 3.438791 

min 5.6569 4.8990 4.1231 9.2195 6.3246 11.3578 6.0828 9.0000 

max  19.8997 12.1655 26.4386 192.6707 24.9199 21.7486 185.4993 14.5258 

Average Hausdorff Distance (AVD) 

median  0.5345 0.4786 0.4667 1.1171 0.8559 1.9134 0.5380 0.8377 

mean 0.5733 0.5242 0.6438 1.2773 0.9753 1.8117 0.6758 0.8960 

variance 0.025578 0.034043 0.329539 0.645467 0.178917 0.493983 0.199838 0.038299 

min 0.4152 0.2935 0.3310 0.6363 0.5540 0.8743 0.3579 0.6598 

max  0.9317 0.9253 2.2437 3.3858 1.6739 3.1511 1.8859 1.2915 

Mahalanobis Distance (MHD) 

median  0.1866 0.4081 0.3183 0.3707 0.6148 0.8017 0.4014 0.5182 

mean 0.2180 0.5665 0.3612 0.3841 0.6633 0.6802 0.4100 0.5283 

variance 0.017133 0.085860 0.046600 0.065502 0.095080 0.079429 0.073307 0.033325 

min 0.0528 0.2820 0.0761 0.1364 0.2574 0.1806 0.0964 0.1861 

max  0.4905 1.1533 0.7968 0.9986 1.2021 0.9816 1.0800 0.8044 

Table 5 Validation results of right volumes 
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Table 6 Principal component axes similarity of left volumes 

 

 

 

Table 7 Principal component axes similarity of right volumes 

 

 

3.2 Comparison between the Automatic Segmentation and a Baseline Approach 

Figures 10 to 14 show a comparison between average validation coefficients 

calculated from the segmentation results generated by the proposed automatic 

segmentation with additional image processing, and another set of segmentation results 

generated by the baseline approach with no extra image processing.  
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Figure 10 DICE 

 

Figure 11 Volumetric Similarity  
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Figure 12 Hausdorff Distance 

 

 

 

Figure 13 Average Hausdorff Distance 
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Figure 14 Mahalanobis Distance 

 

 

The mean DICE coefficients of the automatic method were greater than the 

baseline values for incus, facial nerve channel, posterior SCC, superior SCC and 

vestibule. For the cochlea and lateral SCC, the DICE coefficients of the baseline method 

were greater than the automatic method’s DICE coefficient. For the incus, the baseline’s 

DICE coefficient was greater than the automatic method’s.  

The average VS coefficients of malleus and incus of baseline method are greater 

than the automatic approach. And for the rest of the anatomic structures in our research, 

the automatic method resulted in higher VS coefficients.  
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The HD coefficients of the automatic method are generally a bit higher than the 

baseline method, except that the baseline method resulted in much higher HD coefficients 

in the malleus and the automatic method resulted in much higher HD coefficients in the 

facial nerve channel. The automatic method resulted in lower AVD coefficients in all 

structures. The comparison of MHD showed that the automated method resulted in higher 

average MHD coefficients in lateral SCC, posterior SCC and vestibule.  

 

3.3 Evaluation of Manual Tracing Results Generated by VolEditor  

The evaluation of VolEditor contained two parts. The first part was compared the 

manual segmentation results with Otsu’s automatic segmentation of bone mask. The 

second part compared the 3D tracing results of VolEditor to conventional 2D tracing 

results.  

 

3.3.1 Comparing the 3D-view Manual Segmentation Results with Otsu’s Automatic 

Segmentation of Bone Mask 

Figure 15 and 16 show examples of manual segmentation labels that are not part 

of the bone mask of Otsu’s multi-threshold in the automated segmentation approach. The 

right images in the figures are the original CT slices and the left images are the original 

CT images overlapped with the manual segmentation mask. The blue areas shown in the 

images represent the region where the manual segmentation mask overlaps with the bone 

mask, and the red areas represent the region where the manual segmentation mask does 

not overlap with the bone mask. 
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Figure 15 Example of voxels in the manual segmentation that do not overlap with the bone mask 

 

Figure 16 Example of voxels in the manual segmentation that do not overlap with the bone mask 

 

 

The percentage of voxels in the manual segmentation that do not overlap with the 

bone mask of multi-threshold results from Otsu’s method are computed in this work and 

the corresponding results are shown in table 8. 

  

manual segmentation mask distribution original slice

manual segmentation mask distribution original slice
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Table 8 Non-overlapping percentage 

 

 

According to table 8, the corresponding percentages for different structures range 

from 5.28% (superior SCC) to 86.42% (vestibule). On average, the posterior SCC has the 

lowest percentage of 13.49% in our test set, and incus has the highest percentage of 

41.60%. The variance of vestibule’s corresponding percentage is the highest in our 

validation results. For convenience purpose, the “percentage of voxels in the manual 

segmentation that do not overlap with the bone mask of multi-threshold results from 

Otsu’s method” are referred as “the non-overlapping percentage” in the following 

sections. 
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3.3.2 Comparing the 3D-view Manual Segmentation Results Traced by VolEditor with 

2D-view Manual Segmentation Results 

The left image of Figure 17 is an example of 2D manual tracing result and the 

image on the right side is an example of 3D manual tracing result generated from 

VolEditor. 

  

Figure 17 Comparison between 2D-view based segmentation and 3D-view based segmentation 

 

 

Through visual inspection, we can easily notice that the 2D segmentation’s 

contours are lying on the boundaries between bone structures and the background/soft 

tissue. In contrast, the 3D tracing results generally have fuzzy boundaries between bone 

structures and the background/soft tissue. Part of the segmentation labels of VolEditor are 

observed to spread into the bone. This is caused by the 3x3x3 kernel used in the labeling 

tool in VolEditor.  

These results suggest that manual tracing of the structures using VolEditor is 

more likely to label voxels that belong to soft tissue and background masks segmented by 

Otsu’s method as the bone structures. Additionally, the segmentation labels provided by 
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VolEditor may spread non-uniformly into the bones segmenting an irregular bony surface 

of the structure. 
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Chapter 4 Discussion and Conclusion 

 

4.1 Analysis of Validation Results 

In this work, an atlas-based method of segmentation of temporal bone anatomy is 

presented. We rely on a two-step image registration to register the manually constructed 

atlas of temporal bone anatomy to the test CT images with elastix [10]. Based on the 

overlapped atlas and the test images, a series of image processing techniques, introduced 

in chapter 2, are applied to the test images to locate the anatomic structures of research 

interest.  

Our validation results in tables 4 and 5 showed that the automated segmentation 

of cavitary structures, like the cochlea and vestibule, resulted in varying results. The 

average DICE coefficients of the vestibule on both sides of the temporal bone are less 

than 0.6, while the cochlea’s average DICE coefficients are greater than 0.6. There are 

three reasons which may have caused this phenomenon. One is that the ROI mask of the 

2nd image registration is targeting the cochlea of the fixed image. Thus, the registration 

error of the cochlea would be expected to be less than that of vestibule, resulting in a 

better segmentation result of the cochlea than the vestibule. The other reason is that, 

compared to cochlea, the vestibule has more ‘holes’ in its’ cavitary wall that could cause 

more errors in the segmentation procedure. Table 8 shows that the mean non-overlapping 

percentages of cochlea and vestibule are 23.60% and 20.93% respectively. The 
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percentage of bone mislabeled in the manual segmentation using VolEditor also 

contributes to the lack of overlap as seen in the DICE metrics in cochlea and vestibule  

The malleus and incus, blob-like structures, have mean DICE coefficients that 

range from 0.6185 to 0.6706. This range is relatively good for the DICE validation results 

while the mean VS coefficients of malleus and incus is below average (VS<0.8) when 

compared to the other structures evaluated in this study. As shown in table 8, the malleus 

and incus have the highest average non-overlapping percentage among all the anatomic 

structures in this study. Combining the mean VS coefficients of the malleus and incus 

with these highest percentages, we infer that the degradation of the VS coefficients was 

caused by VolEditor falsely labeling soft tissue and background voxels surrounding the 

malleus and incus as part of the corresponding segmentation results. Except for the VS 

metric, the validation results of the malleus and incus are above average in other metrics.  

Our current method’s robustness for tubular structure, such as the facial nerve 

channel and the semi-circular canals (SCC), is not good. For example, the mean DICE 

coefficients of these structures were between 0.4623 and 0.6466, and the variance of the 

DICE coefficients for the left facial nerve channel were the highest among all of the 

structures. Additionally, the maximum mean AVD and MHD were   observed in either 

the facial nerve channel or the SCCs.  

The principal axes orientation difference of the posterior SCC and vestibule are 

the highest (i.e. 50 degrees) when compared to the other structures in tables 6 and 7. This 

orientation difference between the automatic segmentation mask and manual mask is 

more stable and useful for structures like facial nerve channel. The orientation of the 
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vestibule’s segmentation mask is generally more misaligned compared to other structures 

evaluated in the study. Combining the DICE validation results of the vestibule (0.5245 ~ 

0.5834) with the principal axes orientation difference, indicated that that even when there 

is significant overlap between the manual and automatic segmentation masks, the 

automatic segmentation mask could still miss important shape/orientation information 

(the surface or boundary) as compared to the manual segmentation mask. 

Overall, the validation results between automatic and manual segmentation 

showed that our method is good enough to provide visual enhancement in 3D 

visualization of temporal bone anatomy to help the surgeon identify the structures and 

provide segmentation results for surgical training or teaching, but due to the accuracy of 

our current method, it is not yet capable to provide precise segmentation results for 

further clinical use.  

 

4.2 A Comparison between Automatic and the Baseline Approach 

The segmentation results of the baseline method for malleus and incus had better 

validation results for the VS metric than other structures. The DICE coefficients were 

similar for both the automatic and baseline segmentations. This indicates that the 

topological variations of the malleus and incus are relatively low as compared to other 

anatomic structures analyzed in this study. The segmentation results of the automated 

method generally had close or better validation results compared to the baseline approach 

for the remaining structures, especially for structures like the facial nerve channel that has 

high topological variety.  
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4.3 The 3D-view Based Manual Tracing Method 

As introduced in chapter 2, all the manual segmentation masks are generated 

using VolEditor. Compared to conventional 2D manual tracing method based on a 2D 

view, this software provides a 3D view for the user to label all the anatomic structures of 

interest. This is an attractive property because it greatly improves the speed of manual 

labeling and it’s easier to train people how to label anatomic structures in a 3D view. 

The current limitation of this software is that there’s a transfer function that needs 

to be set at the beginning of the manual tracing for each test image. Manually setting the 

transfer function subjectively results in inconsistencies in the segmentation results. For 

example, the voxels which lay on the boundary of soft tissue and bone structures might 

be over-enhanced as a result of the transfer function and be segmented as soft tissue or 

bone when they should not be. Another problem with segmentations using VolEditor are 

labeling a 3D region pointed by the mouse with user selected size. Thus, when a user 

wants to label a specific region, all the voxels in this region with non-zero gray level will 

be labeled. It was observed that this feature could sometimes cause over-segmentation of 

the bony structures.  

From examination of table 8, we discovered that the manual tracing labels in bony 

structures has spread into background and soft tissue masks of Otsu’s multi-threshold. On 

average, each structures’ manual segmentation’s non-overlapping percentage was at least 

13.29%. 

These two problems are causing loss in our validation results. Our ongoing 

research with 2D manual segmentations also confirmed this observation.  
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4.4 Conclusion and Suggestions for Future Work 

The performance of the proposed method is, on average, better than the baseline 

approach. The automatic segmentation results could be served as a preprocessing result 

for higher level segmentation approaches, i.e. model-based approach. The segmentation 

results of the current approach are not accurate enough for surgical planning, but was 

adequate for use in surgical simulation applications.  

The following improvements could be made to the registration process: The 

manually rescaled CT volumes used for the 1st registration could be replaced with the 

bone level of Otsu’s multi-level threshold to gain more consistency. A more refined 2nd 

registration procedure with an ROI_mask (introduced in chapter 2) specific for each 

anatomic structure could also potentially provide better segmentation results.  

Finally, some improvements could be made to VolEditor. First, the transfer 

function in the VolEditor should be changed to an automatic procedure with well-defined 

standards to reduce inconsistency of manual segmentation results. Second, the spreading 

feature of the labeling tool of VolEditor could be modified, so that the labels would not 

spread in all directions. For example, if the selected region is on the surface of a bone 

structure, then the label should only spread in the neighboring voxels which are also on 

this surface, but not spreading into the inside region of the bone structure. 
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