
Moduli spaces of Bridgeland semistable complexes

Dissertation

Presented in Partial Fulfillment of the Requirements for the Degree
Doctor of Philosophy in the Graduate School of The Ohio State

University

By

Bingyu Xia, B.S.

Graduate Program in Mathematics

The Ohio State University

2017

Dissertation Committee:

Emanuele Macr̀ı, Advisor

David Anderson

Herbert Clemens

Hsian-Hua Tseng



c© Copyright by

Bingyu Xia

2017



Abstract

This thesis studies moduli spaces of semistable complexes in two aspects: the

first one is an interesting example of a moduli space in higher dimension, namely the

Hilbert scheme of twisted cubics in the three-dimensional projective space; the second

one considers a general conjecture by Bridgeland on the existence of a coarse moduli

space for the moduli problem of semistable complexes.
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Chapter 1: Introduction

In algebraic geometry, we frequently consider a family of objects parametrized by

some base variety. Actually, one of the most important success of modern algebraic

geometry is the study of families of objects. Among all the families, we always hope

there is a universal one that determines all the other families via the pullback of

a morphism between the bases. This univeral family, together with its base, is the

starting point of the theory of moduli space. In [Bri07], Bridgeland was inspired

by the work of Douglas in physics. He introduced the notion of stability condition

on a triangulated category. By taking the triangulated category to be the bounded

derived category of coherent sheaves on a smooth projective variety, we are led to the

study of moduli space of semistable complexes, which is similar to the classical moduli

space of Gieseker semistable sheaves. It has many applications in both mathematics

and physics. In this thesis, we will first study an interesting example of moduli

space of Bridgeland semistable complexes, namely, twisted cubics in three-dimensional

projective space. Then we go to the general situation and develop some partial results

and conjectures on the existence of a good moduli space of Bridgeland semistable

complexes.
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1.1 Hilbert Scheme of Twisted Cubics

There have been many successful works studying the moduli space of Bridgeland

semistable complexes on surfaces. For example, [ABCH13, CHW14, LZ16] gave com-

plete results on the projective plane P2; [BM14b] gave a partial result on K3 surfaces.

It is natural to ask if we can do similar things on threefolds. The first problem here

is to construct a Bridgeland stability on threefolds. In the case of the projective

space P3, this problem is solved in [Mac14] by proving a Bogomolov-Gieseker type

inequality for an auxiliary tilt stability. Once the existence of a Bridgeland stability

is established, we can study the moduli spaces of semistable complexes and see what

geometric information we can get by varying stability. This is the motivation of the

paper [Xia16]. Its main result is the following:

Theorem 1.1.1. There is a path γ in the space of stability conditions on P3 that

crosses three walls and four chambers for a fixed Chern character v = ch(IC), where

IC is the ideal sheaf of a twisted cubic C. If we list the moduli space of semistable

objects in each chamber with respect to the path γ, we have:

(1) The empty space ∅;

(2) A smooth projective integral variety M1 of dimension 12 containing the ideal

sheaves of twisted cubics as a dense subset;

(3) A projective variety M2 with two irreducible components B and P, where P

is a P9-bundle over P3 × (P3)∗ and B is the blow-up of M1 along a 5-dimensional

smooth center. The two components of M2 intersect transversally along the excep-

tional divisor of B;
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(4) The Hilbert scheme of twisted cubics M3. M3 is a blow-up of M2 along a

5-dimensional smooth center contained in P \B.

The Hilbert scheme of twisted cubics has been studied intensively in literature.

For example, in Piene and Schlessinger’s paper [PS85], they proved that the Hilbert

scheme has two smooth, projective and rational components: one is twelve-dimensional,

containing all twisted cubics as a dense open subset; the other is of fifteen dimen-

sion, containing the configurations of a plane cubic and an arbitrary point and their

degenerations. They proved further that the two components intersect transversely

along a smooth, projective and rational variety of dimension eleven. The above result

reproves the classical result and has two interesting features on analyzing the singu-

larities of the moduli space: it is the first time that we introduce the computation of

the main obstruction map on the first order deformations to general complexes, and

it is purely cohomological and does not use any explicit ideals of twisted cubics, thus

allowing for generalizations to other situations.

1.2 More on Moduli Space of Bridgeland Semistable Com-
plexes

In general, the existence of a coarse moduli space or a good moduli space in

the sense of [Alp12] for the moduli stack of Bridgeland semistable complexes is a

conjecture of Bridgeland:

Conjecture 1.2.1. ([Bri08], Conjecture 16.1) Given a smooth projective variety X,

a stability condition σ ∈ Stab(X) and a numerical class v ∈ N (X), there exists a

coarse moduli space Mσ(v) for complexes in Db(X) of class v which are semistable

with respect to σ.
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In the classical case of moduli space of Gieseker semistable sheaves, the existence of

a good moduli space is essentially due to geometric invariant theory on Quot scheme.

But for the moduli stack of Bridgeland semistable complexes, it is unclear that this

stack is associated with a GIT problem. In order to attack this problem, we attempt

to combine some ideas from two recent works: [AHR15] on the existence of a Luna

étale slice for Artin stacks under some mild techinical conditions; and [AS16] on the

local structure of moduli space of Gieseker semistable sheaves on a K3 surface.

The main result of [AHR15] proves that an Artin stack is étale locally a GIT

quotient at closed points with linearly reductive stabilizer. There is also a criterion

for the existence of a good moduli space if one can further check this étale local

neighborhood satisfies some additional properties. The ideas of [AS16] come later

when we are checking those properties for the moduli stack of semistable complexes.

At the end, we will provide some partial results and conjectures.
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1.3 Notations

X A smooth projective variety over the complex number C,

Coh(X) abelian category of coherent sheaves on X,

Db(X) bounded derived category of Coh(X),

TX tangent bundle of a smooth projective variety X

TX,x tangent space of X at a point x,

Tf,x tangent map TX,x −→ TZ,f(x) of a morphism f : X −→ Z,

NY/X normal bundle of a smooth subvariety Y in X,

NY/X,y normal space of Y in X at a point y,

E xt1f (F ,G) relative Ext1 sheaf of F and G with respect to a morphism f,

T or1(F ,G) Tor1 sheaf of F and G.

ch(E) Chern character of a complex E ∈ Db(P3)

ci(E) i-th Chern class of a complex E ∈ Db(P3)
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Chapter 2: Preliminaries

2.1 Stability Conditions

The idea of stability conditions in algebraic geometry goes back to the theory of

stable vector bundles and geometric invariant theory where one can single out a nice

algebraic family or construct a nice algebraic group quotient. Stability conditions on a

triangulated category pushes this idea further by allowing the objects in consideration

to be complexes. In this paper, the objects in our moduli problem will always be

complexes in the bounded derived category of coherent sheaves on a smooth projective

variety. The concept of derived category was first introduced by Grothendieck and

Verdier as a correct way to state certain duality theorems. Later on, this category

itself becomes more and more interesting and it has many applications. For the

definition and basic properties of derived category, one can look at [Chapter 1, Har66].

In this section, we will briefly review the definition of a stability condition on a

triangulated category and show how we can construct explicit stability conditions on

P3. We will also define a technical notion called a simple wall-crossing in the stability

manifold, which is useful later in the case of twisted cubics.
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Definition 2.1.1. A stability condition (Z,P) on a triangulated category D consists

of a group homomorphism Z : K(D) −→ C called central charge, and full additive

subcategories P(φ) ⊂ D for each φ ∈ R, satisfying the following axioms:

(1) if E ∈ P(φ) then Z(E) = m(E)exp(iπφ) for some m(E) ∈ R>0,

(2) for all φ ∈ R, P(φ+ 1) = P(φ)[1],

(3) if φ1 > φ2 and Aj ∈ P(φj), then Hom(A1, A2) = 0,

(4) for each nonzero object E ∈ D there are a finite sequence of real numbers

φ1 > φ2 > · · · > φn

and a collection of triangles

0 = E0
// E1

��

// E2

��

// · · · // En−1 // En = E,

��
A1

cc

A2

``

An

ee

with Aj ∈ P(φj) for all j.

There is a more handy way to define a stability condition, namely defining a stabil-

ity function on the heart of a bounded t-structure satisfying the Harder-Narasimhan

property. This is [Bri07. Proposition 5.3]. One can think of a stability function as

parallel to the classical slope stability on the category of coherent sheaves. Let A be

an abelian category and K(A) be its Grothendieck group.

Definition 2.1.2. A stability function on A is a group homomorphism Z : K(A) −→

C such that for all 0 6= E ∈ A, the complex number Z(E) lies in the strict upper half-

plane

{rexp(iπϕ)|r > 0, 0 < ϕ 6 1} ⊂ C
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Theorem 2.1.3. To give a stability function on a triangulated category D is equiva-

lent to giving a stability function with Harder-Narasimhan property on the heart of a

given bounded t-structure on D.

An easy example of a stability condition is when we take D to be the bounded

derived category of a smooth projective curve C, where our stability coincides with

the classical notion of slope stability.

Example 2.1.4. Take D = Db(A) and A = Coh(C) is the heart of the standard

t-structure. We define Z(E) = −deg(E) + irank(E), then Theorem 2.1.3 applies and

this will define a stability condition on D.

If we view rank(E) and deg(E) as the 0th and 1st Chern character of E, then

in fact this idea generalizes to higher dimensional case: we will always assume that

the central charge Z is a C-linear combination of the Chern characters pairing with

a fixed polarization.

One more technical condition we would like to introduce here is local finiteness

of a stability condition. Originally, Bridgeland introduced this property in order

to exclude some stability condition with bad behaviors, namely, strictly semistable

objects may have infinite Jordan-Hölder filtrations. Later on, as is mentioned in

various papers [BMS14] [BMT14] [MS16], the local finiteness property is equivalent

to the following so-called support property. First we notice that the image of our

central charge Z factors through the numerical Grouthendieck group Knum(X), which

is a finite rank lattice which we denote by Λ. We fix a norm || · || on Λ⊗ R.

Definition 2.1.5. A stability condition (P , Z) satisfies support property if

inf

{
|Z(ch(E))|
||ch(E)||

: 0 6= E ∈ P(ϕ), ϕ ∈ R
}
> 0
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Now if we denote the set of stability conditions satisfying support property by

Stab(D), then the main result of [Bri07] tells us that there is a natural topology on

Stab(D) making it a complex manifold.

Next we are going to discuss stability conditions on the three-dimensional projec-

tive space P3 and review some explicit constructions. The main difficulty to construct

an explicit stability condition lies in the requirement that the image of the stability

function Z has to be inside the upper-half plane. In [Tod09], Toda shows this is

not possible on the standard heart Coh(P3). In [BMT14], stability conditions are

constructed on a so-called double tilt A α,β of the standard heart. We recall this

construction here: First, we identify the cohomology H∗(P3,Q) with Q4 with respect

to the obvious choice of basis. Let (α, β) ∈ R>0 × R. We define the twisted slope

function for E ∈ Coh(P3) to be

µβ (E) =
c1 (E)− βc0 (E)

c0 (E)

if c0(E) 6= 0, and otherwise we let µβ = +∞. Then we set

Tβ = {E ∈ Coh(P3) : any quotient sheaf G of E satisfies µβ (G) > 0}

Fβ = {E ∈ Coh(P3) : any subsheaf F of E satisfies µβ (F ) 6 0}.

(Fβ, Tβ) forms a torsion pair in the bounded derived category of P3, because Harder-

Narasimhan filtrations exist for the twisted slope µβ.

Definition 2.1.6. Let Cohβ(P3) ⊂ Db(P3) be the extension-closure 〈Tβ,Fβ[1]〉. We

define the following two functions on Cohβ(P3):

Zα,β = −
(

ch2 − βch1 +

(
β2

2
− α2

2

)
ch0

)
+ i (ch1 − βch0) ,

να,β = −Re (Zα,β)

Im (Zα,β)
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if Im(Zα,β) 6= 0, and we let να,β = +∞ otherwise. An object E ∈ Cohβ(P3) is

called να,β-(semi)stable if for all nontrivial subobjects F of E, we have να,β(F ) < (6

)να,β(E/F )

An important inequality introduced in [BMT14] and proved in [Mac14] for να,β-

semistable objects is the following. It guarentees the image of the stability function

introduced later on the double tilt A α,β lies on the upper-half plane.

Theorem 2.1.7. (Generalized Bogomolov-Gieseker inequality) For any να,β-semistable

object E ∈ Cohβ(P3) satisfying να,β(E) = 0, we have the following inequality

ch3 (E)− βch2 (E) +
β2

2
ch1 (E)− β3

6
ch0 (E) 6

α2

6
(ch1 (E)− βch0 (E)) .

On the other hand, for the new slope function να,β, Harder-Narasimhan filtrations

also exist. If we repeat the above construction by defining

T ′α,β = {E ∈ Coh(P3) : any quotient object G of E satisfies να,β(G) > 0}

F ′α,β = {E ∈ Coh(P3) : any subobject F of E satisfies να,β(F ) 6 0},

then (F ′α,β, T ′α,β) forms a torsion pair of Cohβ(P3) too.

Definition 2.1.8. Let A α,β ⊂ Db(P3) be the extension-closure 〈T ′α,β,Fα,β[1]〉. We

define the following two functions on A α,β, for s > 0:

Zα,β,s = −
(

ch3 − βch2 −
((

s+
1

6

)
α2 − β2

2

)
ch1 −

(
β3

6
−
(
s+

1

6

)
α2β

)
ch0

)
+ i

(
ch2 − βch1 +

(
β2

2
− α2

2

)
ch0

)
λα,β,s = −Re (Zα,β,s)

Im (Zα,β,s)

10



if Im(Zα,β,s) 6= 0, and we let λα,β,s = +∞ otherwise. An object E ∈ A α,β is called

λα,β,s-(semi)stable if for all nontrivial subobjects F of E, we have λα,β,s(F ) < (6

)λα,β,s(E/F ).

Finally by [BMT14, Corollary 5.2.4] and [BMS14, Lemma 8.8], Theorem 2.1.7

implies the following.

Proposition 2.1.9. The pair (A α,β, Zα,β,s) is a stability condition on Db(P3) for all

(α, β, s) ∈ R>0 × R× R>0. The function (α, β, s) 7→ (A α,β, Zα,β,s) is continuous.

2.2 Moduli of complexes

In this section, we are going to introduce some definitions on the moduli problem

of semistable complexes. The objects we parametrize are complexes in the bounded

derived category of coherent sheaves on a smooth projective variety X, so the first

concept we want to introduce is a family of complexes. Let S be a scheme over C of

finite type, then we have the unbounded derived category of quasi-coherent sheaves

D(Qcoh(X × S)). A complex E ∈ D(Qcoh(X × S)) is called S-perfect if it is locally

isomorphic to a bounded complex of flat sheaves over S of finite presentation. We

denote the subcategory of S-perfect complexes by DS−perf(X × S).

Definition 2.2.1. A family of complexes over a scheme S is an S-perfect complex E

in DS−perf(X ×S) such that Exti(Es, Es) = 0 for all s ∈ S and i < 0, where Es is the

derived restriction of E to X × {s}.

If we define the moduli functor M : SchC −→ Grp sending a scheme S to the

groupoid of families of complexes over S, then we have the following theorem from

[Lie06]. For definitions and properties related to Artin stacks, one can look at [Sta17].

11



Theorem 2.2.2. The moduli functor M is an Artin stack, locally of finite type, locally

quasi-seperated and with seperated diagonal.

We are mostly interested in the substack of semistable complexes in M, the precise

definition is the following. Suppose (P , Z) is a stability condition, we fix a numerical

class v in Knum(X) and a phase σ ∈ R.

Definition 2.2.3. The moduli stack of semistable complexes with a primitive numver-

ical class v and phase σ is a substack Mss
v,σ of M sending a scheme S to the groupoid

of all families of (P , Z)-semistable complexes with class v and phase σ. Similarly we

denote Ms
v,σ ⊂Mss

v,σ to be the substack of stable complexes.

If Ms
v,σ = Mss

v,σ, meaning that there is no strictly semistable complex or equiv-

alently all semistable complexes are stable, we usually say the stability condition

(P , Z) is not on a wall. We will say (P , Z) is on a wall if Ms
v,σ 6= Mss

v,σ. The set

of stability conditions on a wall is actually a union of locally finite codimension one

submanifold of Stab(Db(X)), and we can decompose its complement as a disjoint

union of connected components. Each connected component is called a chamber and

its has the property that all stability conditions inside a same chamber define a same

moduli functor of semistable complexes.

One more oberservation here is that stable complexes are always simple, meaning

that their endomorphism groups are just scalar multiplications. The next theorem

from [Ina02] guarentees the existence of a fine moduli space for Ms
v,σ. In particular

if a stability condition is not on a wall, we know that Ms
v,σ = Mss

v,σ, hence Mss
v,σ also

has a fine moduli space. We define MSpl to be the functor sending a scheme S to the

groupoid of families of simple complexes, and define MSpl to be the functor sending

a scheme S to just the set of families of simple complexes.

12



Theorem 2.2.4. The moduli functor MSpl is representable by an algebraic space

locally of finite type over C, and MSpl is a C∗-gerbe over MSpl via the forgetful mor-

phism.

Studying how the moduli space of semistable complexes changes when we take

stability conditions from different chambers is a very interesting topic, and this is

closely related to the geometry of the moduli space. We will study an example in the

case of moduli space of twisted cubics in the next chapter. Here we want to introduce

a technical definition of simple wall-crossings, which is very useful in Chapter 3. We

take two adjacent chambers C1, C2 in Stab(X) and denote the wall between them by

W , and we use λ1, λ2 for stability conditions in C1 and C2 respectively.

Definition 2.2.5. A wall-crossing (C1, C2,W ) is simple if there exists two families

UA and UB of semistable complexes with Chern characters vA and vB respectively, and

with phase σ, for stability conditions in a neighborhood of a point on W meeting C1

and C2. We denote the bases of the two families by MA and MB respectively, and

they satisfy the following conditions:

(1) vA + vB = v;

(2) if E is λ1-stable but not λ2-stable, then there exists a unique pair (A,B)

in MA ×MB such that 0 −→ B −→ E −→ A −→ 0 is a nontrivial extension.

Conversely, all nontrivial extensions of A by B are λ1-stable but not λ2-stable;

(3) if F is λ1-stable but not λ2-stable, then there exists a unique pair (A,B) in

MA ×MB such that 0 −→ A −→ F −→ B −→ 0 is a nontrivial extension. Con-

versely, all nontrivial extensions of B by A are λ1-stable but not λ2-stable.

In some sense, we can say this is the easiest nontrivial wall-crossing because on the

level of sets, the difference of the two moduli space of complexes in adjacent chambers

13



is controlled by the two families UA and UB: if we go from C1 to C2, the wall-crossing

destablizes a locus of all extensions 0 −→ B −→ E −→ A −→ 0 and replaces it by

a locus of all reverse extensions 0 −→ A −→ F −→ B −→ 0. In the case of moduli

space of twisted cubics, Schmidt first studied a series of wall-crossings in the stability

manifold in his paper [SchB15], his main result is the following.

Theorem 2.2.6. The Hilbert scheme of twisted cubics in P3 can be obtained via four

chambers and three simple wall-crossings in Stab(P3). The families controlling the

three wall-crossings are:

(1) (OP3(−2)3,OP3(−3)[1]2) with its base scheme being a point;

(2) (Ip(−1),OV (−3)), where p is a point and V is a hyperplane, with its base

scheme being P3 × (P3)∗;

(3) (OP3(−1), Iq/V (−3)), where q is a point lying on a hyperplane V , with its base

scheme being the universal hyperplane H := {(q, V ) ∈ P3 × (P3)∗ : q ∈ V }.

In the next chapter, we will show that we can get even more informations based

on those families: they can determine the geometry of the moduli spaces, and we are

able to describe the singularities in the moduli space after each wall-crossing.

14



Chapter 3: Hilbert Scheme of Twisted Cubics

In this chapter, we will fix the character v to be ch(IC), where C is a twisted

cubic in P3 and IC is its sheaf of ideals. There are three wall-crossings in total to be

analyzed by Theorem 2.2.6, so we will treat them seperately in three sections.

3.1 The First Wall-crossing

In this section, we first observe that Ext1(OP3(−2)3,OP3(−3)[1]2) = 0 so on one

side of the wall, there is no semistable complexes hence the moduli space is the

empty set. We denote the moduli space on the other side of the wall by M1. We

will construct the moduli space M1 from quiver representations and prove that it is

a smooth, projective and integral variety. This part first appears in Theorem 7.1 of

[SchB15], we will give more details here.

We start with a quiver Q = (V,A) : V = {v1, v2}, A = {ei|i = 1, 2, 3, 4}, where

s(ei) = v1 and t(ei) = v2. Explicitly, Q is • • with no relation. We set a

dimension vector to be (2,3) and define θ : Z ⊕ Z −→ Z to be θ(m,n) = −3m +

2n. A representation V with dimension vector (2, 3) is θ-(semi)stable if for any

proper nontrivial subrepresentation W we have θ(dimW ) > (>)0, where dimW is

the dimension vector of W . If S is a scheme, we define a family of θ-semistable

representations of Q over S with dimension vector (2, 3) to be four homomorphisms

15



f0, f1, f2, f3 : V −→ W , where V and W are locally free on S with rk(V ) = 2 and

rk(W ) = 3, such that the representation f0s, f1s, f2s, f3s : Vs −→ Ws is θ-semistable

for any closed point s ∈ S. We define Kθ : SchC −→ Sets to be the moduli functor

sending a scheme S to the set of isomorphism classes of families of θ-semistable

representations with dimension vector (2, 3) over S.

Proposition 3.1.1. The functor Kθ is represented by a smooth projective integral

variety Kθ.

Proof. By [Kin94], since the dimension vector (2, 3) is indivisible, Kθ is represented

by a projective variety Kθ and there is no strictly θ-semistable representation. The

path algebra of Q is hereditary since there is no relation between arrows, this means

Kθ is smooth and irreducible.

Theorem 3.1.2. The two moduli spaces Kθ and M1 are isomorphic.

Proof. Fix (α0, β0) = (1
2

+ ε,−5
2
), where ε > 0 is small. By [SchB15, Theorem 5.3;

Theorem 6.1], M1 is isomorphic to the moduli space Mtilt
α0,β0

(v) of να0,β0-semistable

objects in Cohβ0(P3). Since (α0, β0) is in the interior of a chamber, there is no strictly

semistable objects. Notice that −3 < β0 < −2, so by definition O(−2) and O(−3)[1]

are in Cohβ0(P3), and we have

Zα0,β0 (O(−2)) = −1

8
+
α2
0

2
+

1

2
i,

Zα0,β0 (O(−3)[1]) =
1

8
− α2

0

2
+

1

2
i.

On the other hand, We denote Rep(Q) to be the abelian category of quiver repre-

sentations of Q, and denote B to be the extension closure of O(−2) and O(−3)[1]

in Cohβ0(P3). By [SchB15, Theorem 5.1], all να0,β0-semistable objects are in B. By

16



[Bon89, Theorem 6.2], there is an equivalence F : Db(B) −→ Db(Rep(Q)). This

functor F sends O(−3)[1] and O(−2) to the two simple representations C −→ 0 and

0 −→ C. On B, we can define a central charge Z and a slope function η by

Z (E) = θ
(
F−1 (E)

)
+ idim

(
F−1 (E)

)
,

η (E) = −Re (Z (E))

Im (Z (E))
= − θ (F−1 (E))

dim (F−1 (E))
,

where dim is the sum of the two components of a dimension vector. This will make

σ := (Z,B) a stability condition on Db(B) by [Bri07, Example 5.5], and F sends

σ-semistable objects with Chern character v to θ-semistable representations with

dimension vector (2, 3). If we denote Mσ to be the moduli of σ-semistable objects in

B with Chern character v, then actually F defines a bijection map of sets between

Mσ and Kθ. We will globalize this construction later and get a bijective morphism

by using the existence of a universal family. Now we compute that

Z (O(−2)) = 2 + i,

Z (O(−3)[1]) = −3 + i.

If we view Z and Zα0,β0|Db(B) as linear maps from Z2 to R2, then an easy computation

shows they differ from each other by composing a linear map in GL+(2;R). This

means they define the same stability condition and hence have the same moduli of

semistable objects with Chern character v, so Mσ = Mtilt
α0,β0

(v).

It only remains to show that Kθ is isomorphic to Mσ. For any σ-semistable

object E ∈ Db(B) with Chern character v, F (E) is a θ-semistable representation

f1, f2, f3, f4 : C3 −→ C2. We have an obvious exact sequence

0 −−−→ C3 −−−→ C3y fi

y y
C2 −−−→ C2 −−−→ 0
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in Rep(Q) which corresponds to an exact sequence O(−2)3 −→ E −→ O(−3)[1]2

in B. By applying the long exact sequence for Hom functor to it, we can see that

Ext2(E,E) = 0. But Ext2(E,E) computes the obstruction space of Mσ at E by

[Ina02] and [Lie06], so Mσ is smooth and hence a complex manifold. Since there is no

strictly σ-semistable object, a universal family U of σ-semistable objects with Chern

character v exists on Mσ×P3, and U is an extension of p∗O(−3)⊕2[1] by p∗O(−2)⊕3. If

we denote B′ to be the extension closure of p∗O(−3)⊕2[1] and p∗O(−2)⊕3 in Db(Mσ×

P3), and denote RepKθ(Q) to be the category of families of quiver representations

over Kθ. Then there exists an equivalence FKθ : B′ −→ Db(RepKθ(Q)) such that

when restricted to a fiber x × P3, FKθ is the same as F . Because FKθ(U)|x×P3 =

F (U|x×P3) and U|x×P3 is a σ-semistable object with Chern character v, FKθ(U)|x×P3

is θ-semistable with dimension vector (2, 3). This means FKθ(U) is a family of θ-

semistable objects with dimension vector (2, 3), so it induces a morphism ϕ : Mσ −→

Kθ. As U is a universal family of σ-semistable objects with Chern character v, and

F is a bijection between σ-semistable objects with Chern character v in B and θ-

semistable representations with dimension vector (2, 3), ϕ is a bijective morphism. We

proved that Kθ is smooth in Proposition 3.1, and any bijective morphism between

complex manifolds is an isomorphism, so ϕ is an isomorphism. Therefore Kθ is

isomorphic to M1.

3.2 The Second Wall-crossing

In this section, we study the wall-crossing controlled by the second family of pairs

in Theorem 2.2.6 and prove (3) in Theorem 1.1.1. Throughout this section, we will
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fix

(A,B) = (Ip(−1),OV (−3)) ,

and denote the stability conditions in the chamber of M1 (resp. M2) by λ1 (resp. λ2).

Whenever we take an extension of A and B, we always mean a nontrivial extension

class modulo scalar multiplications. The following Hom and Ext group computations

are straightforward.

Lemma 3.2.1. Hom(A,B) = Hom(B,A) = 0, Hom(A,A) = Hom(B,B) = C;

Ext1(A,B) = C if p ∈ V , and 0 otherwise,

Ext1(A,A) = Ext1(B,B) = C3, Ext1(B,A) = C10;

Ext2(A,B) = C, Ext2(B,B) = 0, Ext2(A,A) = C3, Ext2(B,A) = 0;

Ext3(A,B) = Ext3(A,A) = Ext3(B,B) = Ext3(B,A) = 0.

Moduli space of nontrivial extensions. In this subsection, we construct two

moduli spaces H and P, where H parametrizes nontrivial extensions of A by B and

P parametrizes the reverse nontrivial extensions. We show that with the universal

extensions on those moduli spaces, H is embedded into M1 and P is embedded into

M2. Then we do some detailed computations on Ext groups for later uses.

Let us first introduce some more notations here: we will denote the family of A

on MA × P3 = P3 × P3 by UA, and the family of B on MB × P3 = (P3)∗ × P3 by UB.

Denote two projections by

MA × P3 πA←−MA ×MB × P3 πB−→MB × P3.

We also denote the projection onto the first two factors by MA ×MB × P3 π−→

MA ×MB. Let H be the incidence hyperplane {(p, V ) ∈ P3 × (P3)∗|p ∈ V }, and
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denote the restriction of the above three projections to H × P3 by πHA , πHB and πH .

Define F to be π∗AUA and G to be π∗BUB, and define FH to be
(
πHA
)∗ UA and GH to be(

πHB
)∗ UB. Let S −→ MA ×MB and SH −→ H be any morphisms of schemes, and

denote the pullbacks of these two morphisms with respect to π and πH by qS and qSH .

Proposition 3.2.2. There exists an extension on H × P3

0 −→ GH ⊗ π∗HL −→ UE −→ FH −→ 0, (3.1)

L = E xt1πH (FH ,GH)∗ is a line bundle, which is universal on the category of noethe-

rian H-schemes for the classes of nontrivial extensions of
(
qSH
)∗FH by

(
qSH
)∗ GH on

(H × P3)×H SH , modulo the scalar mutiplication of H0(SH ,O∗SH ).

Proof. We apply [Lan85, Proposition 4.2; Corollary 4.5] to FH , GH and πH . We

only need to check that E xt0πH (FH ,GH) = 0 and E xt1πH (FH ,GH) commutes with

base change in the sense that over any point (p0, V0) ∈ H, E xt1πH (FH ,GH) restricts

to Ext1(A0, B0). First notice that E xt3πH (FH ,GH) restricts to Ext3(A0, B0) over

(p0, V0), where the latter is 0 by Lemma 4.1. Then [Lan85, Theorem 1.4] tells us

E xt2πH (FH ,GH) restricts to Ext2(A0, B0) over (p0, V0), where the latter is C for all

points in H. Hence E xt2πH (FH ,GH) is a line bundle. Again [Lan85, Theorem 1.4]

tells us E xt1πH (FH ,GH) restricts to Ext1(A0, B0) over (p0, V0). By Lemma 4.1 we

have Ext1(A0, B0) = C for all points in H, so E xt1πH (FH ,GH) is a line bundle. Apply-

ing [Lan85, Theorem 1.4] a third time, E xt0πH (FH ,GH) will restrict to Hom(A0, B0),

where the latter is 0 by Lemma 4.1. Hence E xt0πH (FH ,GH) = 0.

Proposition 3.2.3. The relative Ext sheaf E xt1π(G,F) is locally free of rank 10 on

MA ×MB. If we denote its projectivization P(E xt1π(G,F)∗) by P, then there exists
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an extension on P× P3

0 −→ h∗F ⊗ π∗POP(1) −→ UF −→ h∗G −→ 0, (3.2)

h is the projection P × P3 −→ MA ×MB × P3, πP is the projection P × P3 −→ P

and OP(1) is the relative O(1) on P, which is universal on the category of noetherian

MA ×MB-schemes for the classes of nontrivial extensions of
(
qS
)∗F by

(
qS
)∗ G on

(MA ×MB × P3)×MA×MB
S, modulo the scalar multiplication of H0(S,O∗S).

Proof. The proof is completely analogous to the proof of Proposition 3.2.2.

The existence the above extension UE (resp. UF) gives a flat family of λ1-stable

(resp. λ2-stable) sheaves on H (resp. P), hence it induces a morphism ϕE : H −→M1

(resp. ϕF : P −→M2).

Proposition 3.2.4. (1) The induced morphism ϕE is a closed embedding;

(2) The induced morphism ϕF is injective on the level of sets and Zariski tangent

spaces.

Proof. On the level of sets, ϕE maps an extension 0 −→ B −→ E −→ A −→ 0 to

E. If we have two extensions 0 −→ B −→ E −→ A −→ 0 and 0 −→ B′ −→ E ′ −→

A′ −→ 0 such that E ∼= E ′ as stable sheaves, then E ′ = E and this isomorphism is

just a scalar multiplication by some c ∈ C∗. By the definition of a simple wall-crossing

with a pair of destabilizing object, we must have A′ = A and B′ = B. This implies

that ϕE is injective on the level of sets.

On the level of Zariski tangent spaces, a tangent vector v of H at a point (p, V ) can

be represented by a morphism SpecC[ε]/(ε2) −→ H. By pulling back the universal

extension (1) to (H × P3) ×H SpecC[ε]/(ε2) = SpecC[ε]/(ε2) × P3, we get an exact
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sequence of flat families

0 −→ Gε −→ Eε −→ Fε −→ 0

and Gε, Eε and Fε restrict to B, E and A on the closed fiber respectively. In particular,

Eε is a flat family of λ1-stable objects. It gives rise to a morphism SpecC[ε]/(ε2) −→

M1 corresponding to TϕE ,(p,V )(v). Suppose we have two tangent vectors v, v′ rep-

resented by morphisms ξ, ξ′ : SpecC[ε]/(ε2) −→ H and TϕE ,(p,V )(v) = TϕE ,(p,V )(v
′).

Then there exists an isomorphism η : Eε −→ E ′ε between the resulting flat families of

λ1-stable objects such that η restricts to identity on the closed fiber. By [Ina02] and

[Lie06], η corresponds to the following diagram in the derived category:

E E

ζ

y ζ′

y
E[1]

c−−−→ E[1],

where c is a multiplication by some nonzero constant c. By composing ξ and ξ′ with

the natural projections

MA = P3 ←− H −→ (P3)∗ = MB,

we can complete ζ and ζ ′ to commutative diagrams

B −−−→ E −−−→ A B −−−→ E −−−→ Ay ζ

y y y ζ′

y y
B[1] −−−→ E[1] −−−→ A[1] B[1] −−−→ E[1] −−−→ A[1],

Via the two diagrams, the above diagram of η will induce two diagrams

B B A A

ζB

y ζ′B

y ζA

y ζ′A

y
B[1]

c−−−→ B[1] A[1]
c−−−→ A[1]

corresponding to isomorphisms ηB : Gε −→ G ′ε and ηA : Fε −→ F ′ε such that they

restrict to identities on closed fiber and they make the following diagram commutative:
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0 −−−→ Gε −−−→ Eε −−−→ Fε −−−→ 0

ηB

y η

y ηA

y
0 −−−→ G ′ε −−−→ E ′ε −−−→ F ′ε −−−→ 0,

which implies the two morphisms ξ and ξ′ are the same. Therefore v = v′ and TϕE ,E is

injective. This proves that ϕE is a closed embedding. The proof of (2) is completely

analogous to the above argument.

Now we study the normal sequence of the embedding ϕE : H −→ M1. Fix a

nontrivial extension 0 −→ B −→ E −→ A −→ 0, then we have the following lemma.

Lemma 3.2.5. The following diagram is coming from taking the long exact sequences

for Hom functor in two directions, it is commutative with exact rows and columns and

all boundary homomorphisms are 0.

Ext1(A,B) = C 0−−−→ Ext1(A,E) = C2 −−−→ Ext1(A,A) = C3 −−−→ C

0

y y y y
Ext1(E,B) = C2 −−−→ Ext1(E,E) = C12 −−−→ Ext1(E,A) = C10 −−−→ 0y y y y
Ext1(B,B) = C3 −−−→ Ext1(B,E) = C13 −−−→ Ext1(B,A) = C10 −−−→ 0y y y y
Ext2(A,B) = C 0−−−→ Ext2(A,E) = C3 −−−→ Ext2(A,A) = C3 −−−→ 0

Proof. This diagram is a straightforward computation by using that (A,B) = (Ip(−1),

OV (−3)) and that E satisfies a triangle O(−2)3 −→ E −→ O(−3)[1]2.

The Kodaira-Spencer map KS : TM1,E −→ Ext1(E,E) is known to be an isomor-

phism by deformation theory of complexes in [Ina02] and [Lie06]. If we let θE to

be the composition Ext1(E,E) −→ Ext1(E,A) −→ Ext1(B,A) (or Ext1(E,E) −→

Ext1(B,E) −→ Ext1(B,A)) in the diagram of Lemma 3.2.5, and let the kernel of θE

to be KE, then we have
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Proposition 3.2.6. The Kodaira-Spencer map KS restricts to an isomorphism be-

tween TH,E and KE, and we have the following commutative diagram:

0 −−−→ TH,E −−−→ TM1,E −−−→ NH/M1,E −−−→ 0yKS

yKS

y
0 −−−→ KE −−−→ Ext1(E,E)

θE−−−→ Ext1(B,A)

Proof. θE is the composition of Ext1(E,E) −→ Ext1(E,A) −→ Ext1(B,A), where

the first map is surjective with a two-dimensional kernel Ext1(E,B) and the second

map has a 3-dimensional kernel Ext1(A,A) by Lemma 3.2.5. This implies KE is

5-dimensional since KE is an extension of Ext1(A,A) by Ext1(E,B), so dimKE =

dimTH,E. On the other hand, as shown in the proof of Proposition 3.2.4, a vector v

in TH,E is represented by a commutative diagram:

B −−−→ E −−−→ Ay KS(v)

y y
B[1] −−−→ E[1] −−−→ A[1]

.

θE(KS(v)) is equal to the composition B −→ E
KS(v)−→ E[1] −→ A[1], which is zero

since by using the commutativity of the diagram. Hence TH,E is mapped into KE

under KS. Since we have proved dimKE = dimTH,E , KS canonically induces an

isomorphism between them.

We can also define θF : Ext1(F, F ) −→ Ext1(A,B) for any nontrivial extension

0 −→ A −→ F −→ B −→ 0 in a similar way. Denote its kernel by KF , then we have

:

Corollary 3.2.7. The tangent space TP,F is canonically identified with KF under the

Kodaira-Spencer map.
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Proof. The reason that TP,F is mapped into KF under the Kodaira-Spencer map

is the same as in the case of Proposition 3.2.6. Conversely, take any ζ ∈ KF , we

have that the composition A −→ F
ζ−→ F [1] −→ B[1] is 0. By using the universal

property of a triangle in the derived category, there exists morphisms A −→ A[1] and

B −→ B[1] such that the following diagram is commutative:

A −−−→ F −−−→ By ζ

y y
A[1] −−−→ F [1] −−−→ B[1]

.

This diagram will correspond to an exact sequence of flat families on SpecC[ε]/(ε2)×

P3

0 −→ Fε −→ F ′ε −→ Gε −→ 0

where Fε, F ′ε and Gε will restrict to A, F and B on the closed fiber. By the universal

property of P proved in Proposition 3.2.3, this sequence induces a morphism from

SpecC[ε]/(ε2) to P corresponding to a tangent vector v of P at F . It is not hard to

check KS(v) = ζ, so KS is also surjective between TP,F and KF .

We can use the exact sequence (3.1) to write down the following globalization of

the diagram in Proposition 3.2.6.

Proposition 3.2.8. The following diagram has exact rows. Among the three vertical

morphisms, the left one and middle one are isomorphisms, and the right one is an

injection.

0 // TH //

��

TM1|H //

KS
��

NH/M1
//

��

0

0 // KE // E xt1πH (UE,UE) // E xt1πH (GH ⊗ π∗HL,FH)
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From this proposition we see that the normal bundleNH/M1 embeds into E xt1πH (GH⊗

π∗HL,FH), hence its projectivization P(N ∗H/M1
) is embedded in

P(E xt1πH (GH ⊗ π∗HL,FH)∗) = P(E xt1πH (GH ,FH)∗),

where the latter is the preimage of H under the projection P(E xt1π(G,F)∗) = P −→

P3 × (P3)∗.

Next we are going to compute the dimension of the Zariski tangent space TM2,F
∼=

Ext1(F, F ) for a nontrivial extension 0 −→ A −→ F −→ B −→ 0. First let us

introduce some notations: we denote e : A −→ B[1] the nontrivial extension of A

by B and name the arrows B
h−→ E

j−→ A. Similarly let f : B −→ A[1] be the

extension we fix and name the arrows A
k−→ F

l−→ B. There are three cases and

they are taken care of by the following three propositions.

Proposition 3.2.9. If F ∈ P(N ∗H/M1
), then we have the following commutative di-

agram with exact rows and columns. All boundary homomorphisms are 0 except at

Ext1(B,A), where the two homomorphisms Ext1(F,A)←− Ext1(B,A) −→ Ext1(B,F )

have a same 1-dimensional kernel Cf .
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Ext1(B,A) = C10 −−−→ Ext1(F,A) = C12 −−−→ Ext1(A,A) = C3y y y
Ext1(B,F ) = C12 −−−→ Ext1(F, F ) = C16 −−−→ Ext1(A,F ) = C4y y y
Ext1(B,B) = C3 −−−→ Ext1(F,B) = C4 −−−→ Ext1(A,B) = Cy 0

y 0

y
0 −−−→ Ext2(F,A) = C3 −−−→ Ext2(A,A) = C3y y y
0 −−−→ Ext2(F, F ) = C4 −−−→ Ext2(A,F ) = C4y y y
0 −−−→ Ext2(F,B) = C −−−→ Ext2(A,B) = C

Proof. We show that the diagram holds if and only if F ∈ P(N ∗H/M1
). If the diagram

holds, then θF 6= 0. We can find ζ ∈ Ext1(F, F ) such that e = l[1]◦ζ ◦k. Now we have

f ◦e[−1] = f ◦l◦ζ[−1]◦k[−1] = 0 because f ◦l = 0. This means f : B −→ A[1] factors

through h : B −→ E, i.e. f = x◦h for some x : E −→ A[1]. On the other hand, from

the diagram in Lemma 3.2.5 we see that Ext1(E,E)
j∗−→ Ext1(E,A) is surjective,

hence x : E −→ A[1] lifts to some ξ : E −→ E[1]. So we have f = j[1] ◦ ξ ◦ h

and f is in the image of θE. By Proposition 3.2.6, this means f is in P(N ∗H/M1
).

Conversely, if f is in P(N ∗H/M1
), then we can write f = j[1] ◦ ξ ◦h for some nontrivial

ξ : E −→ E[1]. Then f [1] ◦ e = j[2] ◦ ξ[1] ◦ h[1] ◦ e = 0 because h[1] ◦ e = 0. This

means e : A −→ B[1] factors through l[1] : F [1] −→ B[1], i.e. e = l[1] ◦ z for some

z : A −→ F [1]. On the other hand, Ext1(F, F )
k∗−→ Ext1(A,F ) is surjective because

its cokernel Ext2(B,F ) = 0. This implies that z = ζ ◦ k for some ζ : E −→ E[1]. So

we have e = l[1]◦ζ ◦k and e is in the image of θF . Therefore θF 6= 0. By Corollary 4.7,

the kernel of θF is TP,F , which is 15-dimensional since P is a P9-bundle over P3×(P3)∗.
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Hence Ext1(F, F ) = C16. The rest of the diagram will follow automatically due to

exactness.

Proposition 3.2.10. If F ∈ P(E xt1πH (GH ,FH)∗) \ P(N ∗H/M1
), then we have the fol-

lowing commutative diagram with exact rows and columns. All boundary homomor-

phisms are 0 except at Ext1(B,A), where the two homomorphisms Ext1(F,A) ←−

Ext1(B,A) −→ Ext1(B,F ) have a same 1-dimensional kernel Cf .

Ext1(B,A) = C10 −−−→ Ext1(F,A) = C12 −−−→ Ext1(A,A) = C3y y y
Ext1(B,F ) = C12 −−−→ Ext1(F, F ) = C15 −−−→ Ext1(A,F ) = C3y y 0

y
Ext1(B,B) = C3 −−−→ Ext1(F,B) = C4 −−−→ Ext1(A,B) = Cy y y

0 −−−→ Ext2(F,A) = C3 −−−→ Ext2(A,A) = C3y y y
0 −−−→ Ext2(F, F ) = C3 −−−→ Ext2(A,F ) = C3y y y
0 −−−→ Ext2(F,B) = C −−−→ Ext2(A,B) = C

Proof. By the proof of previous proposition, we know that θF = 0 since F is not in

P(N ∗H/M1
). Therefore Ext1(F, F ) = C15. By Lemma 3.2.1, we know Ext1(A,B) = C,

since F is mapped into H under the bundle projection P −→ P3× (P3)∗. The rest of

the diagram then follows automatically due to exactness.

Proposition 3.2.11. If F ∈ P\P(E xt1πH (GH ,FH)∗), then we have the following com-

mutative diagram with exact rows and columns. All boundary homomorphisms are 0

except at Ext1(B,A), where the two homomorphisms Ext1(F,A)←− Ext1(B,A) −→

Ext1(B,F ) have a same 1-dimensional kernel Cf .
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Ext1(B,A) = C10 −−−→ Ext1(F,A) = C12 −−−→ Ext1(A,A) = C3y y y
Ext1(B,F ) = C12 −−−→ Ext1(F, F ) = C15 −−−→ Ext1(A,F ) = C3y y y
Ext1(B,B) = C3 −−−→ Ext1(F,B) = C3 −−−→ Ext1(A,B) = 0y 0

y y
0 −−−→ Ext2(F,A) = C3 −−−→ Ext2(A,A) = C3y y y
0 −−−→ Ext2(F, F ) = C4 −−−→ Ext2(A,F ) = C4y y y
0 −−−→ Ext2(F,B) = C −−−→ Ext2(A,B) = C

Proof. Since F is not in P(N ∗H/M1
), we have θF = 0 and Ext1(F, F ) = C15. By

Lemma 3.2.1, we know Ext1(A,B) = 0 since F is mapped outside H under the bundle

projection P −→ P3× (P3)∗. The rest of the diagram then follows automatically due

to exactness.

Remark 3.2.12. From the above propositions, we can see that for F ∈ P\P(N ∗H/M1
),

P is smooth at F and dimTP,F = dimTM2,F = 15. By Proposition 3.2.4 (2), TϕF ,F is

injective. This implies ϕF is an isomorphism at F and M2 is smooth at F .

Elementary modification. In this subsection, we construct a flat family of λ2-

stable objects on the blow-up of M1 along H. The key is to perform a so-called

elementary modification on the pullback of universal family of λ1-stable objects along

the exceptional divisor with respect to the extension (3.1) in Proposition 3.2.2.

Let us first introduce some notations: denote the blow-up of M1 along H by B,

the blow-up morphism B×P3 −→M1×P3 by b and its restriction to the exceptional

divisor P(N ∗H/M1
) × P3 −→ H × P3 by bH . Denote the universal family of λ1-stable
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objects on M1 × P3 by U1, then U1|H×P3 and UE both induce the embedding ϕE :

H −→ M1, so they differ from each other by tensoring a pullback of a line bundle

from H via projection. Assume U1|H×P3 = UE ⊗ π∗HL′ for some line bundle L′ on

H. Consider the composition of the restriction map and the pullback of surjection in

(3.1) by bH :

b∗U1 � b∗U1|P(N ∗
H/M1

)×P3 = b∗HUE ⊗ b∗Hπ∗HL′ � b∗HFH ⊗ b∗Hπ∗HL′

Denote the kernel of this composition by K then we have:

Proposition 3.2.13. The sheaf K is a flat family of λ2-stable objects.

Proof. K is a flat family of λ2-stable objects outside the exceptional divisor because

it is identical to U1. If we restrict the exact sequence 0 −→ K −→ b∗U1 −→ b∗HFH ⊗

b∗Hπ
∗
HL′ −→ 0 to the exceptional divisor P(N ∗H/M1

)× P3, we will get

0 −→ T or1(b∗HFH ⊗ b∗Hπ∗HL′,OP(N ∗
H/M1

)×P3) −→ K|P(N ∗
H/M1

)×P3 −→

b∗HUE ⊗ b∗Hπ∗HL′ −→ b∗HFH ⊗ b∗Hπ∗HL′ −→ 0

On the other hand, tensoring b∗HFH ⊗ b∗Hπ∗HL′ to the exact sequence

0 −→ IP(N ∗
H/M1

)×P3 −→ O −→ OP(N ∗
H/M1

)×P3 −→ 0,

we have

0 −→ T or1(b∗HFH ⊗ b∗Hπ∗HL′,OP(N ∗
H/M1

)×P3)
=−→ b∗HFH ⊗ b∗Hπ∗HL′ ⊗ IP(N ∗H/M1

)×P3

0−→ b∗HFH ⊗ b∗Hπ∗HL′
=−→ b∗HFH ⊗ b∗Hπ∗HL′ −→ 0.

Hence

T or1(b∗HFH ⊗ b∗Hπ∗HL′,OP(N ∗
H/M1

)×P3) = b∗HFH ⊗ b∗Hπ∗HL′ ⊗ IP(N ∗H/M1
)×P3

= b∗HFH ⊗ b∗Hπ∗HL′ ⊗N ∗P(N ∗
H/M1

)×P3 .

30



Also notice that the kernel of

b∗HUE ⊗ b∗Hπ∗HL′ −→ b∗HFH ⊗ b∗Hπ∗HL′

is b∗HGH ⊗ b∗Hπ∗HL ⊗ b∗Hπ∗HL′, so K|P(N ∗
H/M1

)×P3 satisfies

0 −→ b∗HFH ⊗ b∗Hπ∗HL′ ⊗N ∗P(N ∗
H/M1

)×P3 −→ K|P(N ∗
H/M1

)×P3 −→

b∗HGH ⊗ b∗Hπ∗HL ⊗ b∗Hπ∗HL′ −→ 0. (3.3)

This means on each fiber x × P3, the restriction Kx is an extension of B by A. In

particular Kx has the same Chern character as other fibers, therefore K is flat since

B is smooth. To prove it is a family of λ2-stable objects, we need to show Kx is a

nontrivial extension of B by A. Actually since x ∈ P(N ∗H/M1
) represents a nonzero

normal direction of H in M1, we expect Kx to be θE(KS(x)) in Ext1(B,A). This is

indeed the case because K|P(N ∗
H/M1

)×P3 can be interpreted in the following way: First

we use the injection

b∗HGH ⊗ b∗Hπ∗HL ⊗ b∗Hπ∗HL′ −→ b∗HUE ⊗ b∗Hπ∗HL′

to pull back the exact sequence

0 −→ b∗U1 ⊗ IP(N ∗
H/M1

)×P3 −→ b∗U1 −→ b∗HUE ⊗ b∗Hπ∗HL′ −→ 0,

we get

0 −→ b∗U1 ⊗ IP(N ∗
H/M1

)×P3 −→ K −→ b∗HGH ⊗ b∗Hπ∗HL ⊗ b∗Hπ∗HL′ −→ 0.

Then we push out the resulting exact sequence using the surjection

b∗U1⊗IP(N ∗
H/M1

)×P3 −→ b∗HFH⊗b∗Hπ∗HL′⊗IP(N ∗H/M1
)×P3 = b∗HFH⊗b∗Hπ∗HL′⊗N ∗P(N ∗

H/M1
)×P3 ,
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we will get (3.3). On a fiber x× P3, this means first we take an extension

0 −→ E −→ G −→ E −→ 0

representing x ∈ Ext1(E,E), then do a pullback using B −→ E followed by a pushout

using E −→ A. The resulting extension

0 −→ A −→ Kx −→ B −→ 0

is exactly θE(KS(x)). This shows that K is a flat family of λ2-stable objects.

If we denote the induced morphism of K by δ : B −→M2, then

Proposition 3.2.14. (1) The induced morphism δ is an isomorphism outside P(N ∗H/M1
),

and the restriction δ|P(N ∗
H/M1

) coincides with ϕF |P(N ∗
H/M1

);

(2) The induced morphism δ is injective on the level of sets and Zariski tangent

spaces.

Proof. δ is an isomorphism outside P(N ∗H/M1
) because K is the same with U1. On the

other hand, under the identification

Ext1
(
b∗HGH ⊗ b∗Hπ∗HL ⊗ b∗Hπ∗HL′, b∗HFH ⊗ b∗Hπ∗HL′ ⊗N ∗P(N ∗

H/M1
)×P3

)
= Ext1

(
b∗HGH ⊗ b∗Hπ∗HL, b∗HFH ⊗N ∗P(N ∗

H/M1
)×P3

)
= H0

(
P(N ∗H/M1

),E xt1πP(N∗
H/M1

)

(
b∗HGH ⊗ b∗Hπ∗HL, b∗HFH ⊗ π∗P(N ∗

H/M1
)OP(N ∗

H/M1
)(1)
))

= H0
(
H,E xt1πH (GH ⊗ π∗HL,FH)⊗N ∗H/M1

)
= Hom

(
NH/M1 ,E xt

1
πH

(GH ⊗ π∗HL,FH)
)
,

the extension (3.3) corresponds to the injection i fromNH/M1 to E xt1πH (GH⊗π∗HL,FH)

constructed in Proposition 3.2.8 via the Kodaira-Spencer map. Similarly in Proposi-

tion 3.2.3, the extension (3.2) corresponds to the identity id in Hom(E xt1π(G,F),E xt1π(G,F)) =
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Ext1(h∗G, h∗F⊗πPOP(1)). Notice that i is the restriction of id to NH/M1 , this means

(3.3) is a restriction of (3.2) to P(N ∗H/M1
) × P3 up to tensoring a pullback of some

line bundle on P(N ∗H/M1
). Therefore δ|P(N ∗

H/M1
)×P3 = ϕF |P(N ∗

H/M1
)×P3 . In particular,

δ|P(N ∗
H/M1

)×P3 is injective on the level of Zariski tangent spaces since ϕF is. To show

δ is injective on the level of Zariski tangent spaces, it only remains to show that the

normal direction vx of P(N ∗H/M1
) in B at a point x ∈ P(N ∗H/M1

) is not sent to the

image of TP(N ∗
H/M1

),x under Tδ,x. If it were so, we suppose ξ : SpecC[ε]/(ε2) −→ B

represents vx. Notice that we have a pullback diagram

P(N ∗H/M1
) −−−→ Py ϕF

y
B

δ−−−→ M2

since δ(B) ∩ ϕF (P) = δ(P(N ∗H/M1
)). Because Tδ,x(TP(N ∗

H/M1
),x) is contained in TϕF ,x,

we can lift δ ◦ ξ to ξ′ : SpecC[ε]/(ε2) −→ P that makes the pullback diagram above

commutative, hence ξ factors through P(N ∗H/M1
). This implies vx is in TP(N ∗

H/M1
),x,

which is a contradiction.

Remark 3.2.15. (1) The last argument also shows that the normal direction vx is

not mapped to the image of TP,Kx under TϕF ,F . By Corollary 4.7, TϕF ,F (TP,Kx) is the

kernel of θF , so we must have θF (vx) 6= 0;

(2) Since TϕF ,F (TP,F ) = C15 and Tδ,F (TB,F ) = C12, the pullback diagram in the

above proof also implies TϕF ,F (TP,F ) ∩ Tδ,F (TB,F ) = Tδ,F (TP(N ∗
H/M1

),F ) = C11.

Obstruction computation. In this subsection, we study the deformation theory

of complexes on the intersection of the two irreducible components of M2. We give

explicit local equations defining M2 at a point in the intersection. In particular, this

will imply the two irreducible components of M2 intersect transversely.

33



Recall that we have constructed two morphisms δ : B −→M2 and ϕF : P −→M2,

both of them are injective on the level of sets and Zariski tangent spaces. By the

definition of a simple wall-crossing, any λ2-stable object has to lie in the image of one

of the two morphisms. Thus M2 has two irreducible components corresponding to

the image of δ and ϕF . The intersection of the two components is the image of the

exceptional divisor P(N ∗H/M1
) by Proposition 3.2.14. Outside the intersection of the

two components, M2 is smooth by Remark 3.2.12 and Remark 3.2.15 (1). To study

the singularity of M2, we fix an λ2-semistable object F in P(N ∗H/M1
), then we have

Proposition 3.2.16. The tangent vectors of M2 at F in the subspaces TϕF ,F (TP,F )

and Tδ,F (TB,F ) correspond to miniversal deformations of F .

Proof. Suppose a Zariski tangent vector of M2 at F in TϕF ,F (TP,F ) is represented by

a morphism η : SpecC[ε]/(ε2) −→M2, then η factors through ϕF : P −→M2:

SpecC[ε]/(ε2) //

η′

��

η

''

SpecS

ξ
ww

P
ϕF //M2

If S is a finite dimensional local Artin C-algebra with a local surjection S −→

C[ε]/(ε2), then we can lift η′ to ξ : SpecS −→ P since P is smooth. By compos-

ing ξ with ϕF , we get a lift of η. Hence η corresponds to a miniversal deformation.

A similar argument works for tangent vectors in Tδ,F (TB,F ).

In order to show TϕF ,F (TP,F ) and Tδ,F (TB,F ) are all the miniversal deformations

of F , we study the quadratic part of the Kuranishi map κ2 : TM2,F
∼= Ext1(F, F ) −→

Ext2(F, F ). First we give a decomposition of TM2,F
∼= Ext1(F, F ) with respect to some

geometric structures. In the blow-up B, we have TB,F = NP(N ∗
H/M1

)/B,F ⊕ TP(N ∗
H/M1

),F
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and NP(N ∗
H/M1

)/B,F is 1-dimensional. Suppose it is generated by a vector vF , then we

have

Proposition 3.2.17. The Zariski tangent space TM2,F
∼= Ext1(F, F ) has the following

decomposition

TM2,F = CvF⊕TP(N∗
H/M1,E

),F⊕NP(N∗
H/M1,E

)/P(Ext1(B,A)∗),F⊕TH,E⊕NH/P3×(P3)∗,E. (3.4)

In this decomposition,

Tδ,F (TB,F ) = CvF ⊕ TP(N∗
H/M1,E

),F ⊕ TH,E

TϕF ,F (TP,F ) = TP(N∗
H/M1,E

),F ⊕NP(N∗
H/M1,E

)/P(Ext1(B,A)∗),F ⊕ TH,E ⊕NH/P3×(P3)∗,E

Proof. By Remark 3.2.15 (1), θF (vF ) 6= 0, hence we can decompose Ext1(F, F ) =

CvF ⊕TP,F because the kernel of θF is TP,F . On the other hand, P = P(E xt1π(G,F)∗)

is a projective bundle over P3×(P3)∗, so we have TP,F = TP(Ext1(B,A)∗),F⊕TP3×(P3)∗,(A,B).

To give further decomposition, denote E the nontrivial extension of A by B, we have

that P(N∗H/M1,E
) is embedded in P(Ext1(B,A)∗) via the Kodaira-Spencer map by

Proposition 3.2.6, so TP(Ext1(B,A)∗),F = TP(N∗
H/M1,E

),F ⊕NP(N∗
H/M1,E

)/P(Ext1(B,A)∗),F . Also

notice that the incidence hyperplane H is embedded in P3× (P3)∗, so TP3×(P3)∗,(A,B) =

TH,E⊕NH/P3×(P3)∗,E. By composing all the decompositions above, we have the propo-

sition.

The importance of this decomposition is that some of the summands have direct re-

lations with the Ext2 groups in Lemma 3.2.5, Proposition 3.2.6 and Proposition 3.2.9,

which becomes crucial later when we compute κ2. Fix a nontrivial ζ ∈ Ext1(F, F ).

Let e : A −→ B[1] correspond to the nontrivial extension E and f : B −→ A[1]
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correspond to F , name the arrows A
k−→ F

l−→ B. Then we have the following two

lemmas:

Lemma 3.2.18. The normal space NP(N∗
H/M1,E

)/P(Ext1(B,A)∗),F can be identified with

Ext2(A,A) under a canonical isomorphism. If ζ belongs to NP(N∗
H/M1,E

)/P(Ext1(B,A)∗),F

in (3.4), then ζ = k[1] ◦ t ◦ l for some t ∈ Ext1(B,A) such that t[1] ◦ e is nonzero in

Ext2(A,A).

Proof. By Lemma 3.2.5, we know that the cokernel of θE : Ext1(E,E) −→ Ext1(B,A)

is Ext2(A,A). By Proposition 3.2.6, we know that the Kodaira-Spencer map KS

induces an isomorphism between the image of θE and NH/M1,E. On the other hand,

NP(N∗
H/M1,E

)/P(Ext1(B,A)∗),F is equal to the quotient Ext1(B,A)/NH/M1,E, so we have

NP(N∗
H/M1,E

)/P(Ext1(B,A)∗),F
∼= Ext2(A,A).

To prove the second statement, we look at the square

Ext1(B,A)
l∗−−−→ Ext1(F,A)

k[1]∗

y k[1]∗

y
Ext1(B,F )

l∗−−−→ Ext1(F, F )

in Proposition 3.2.9. There is an injection Ext1(B,A)/Cf −→ Ext1(F, F ), which is

the same as TP(Ext1(B,A)∗),F −→ Ext1(F, F ). Notice the fact thatNP(N∗
H/M1,E

)/P(Ext1(B,A)∗),F

is contained in TP(Ext1(B,A)∗),F , ζ has to be in TP(Ext1(B,A)∗),F , this means ζ = k[1]◦ t◦ l

for some t ∈ Ext1(B,A). For ζ to be nontrivial and lying in Ext2(A,A), t has

to be nonzero under the cokernel map (−)[1] ◦ e : Ext1(B,A) −→ Ext2(A,A), so

t[1] ◦ e 6= 0

Lemma 3.2.19. The normal space NH/P3×(P3)∗,E can be identified with Ext2(A,B)

under a canonical isomorphism. If ζ belongs to NH/P3×(P3)∗,E in (3.4), then ζ can
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be completed to the following commutative diagram with e[1] ◦ t + r[1] ◦ e 6= 0 in

Ext2(A,B):

A
k−−−→ F

l−−−→ B

t

y ζ

y r

y
A[1]

k[1]−−−→ F [1]
l[1]−−−→ B[1]

Proof. Recall that KE is the kernel of θE, and by Proposition 3.2.6 it can be identified

with TH,E via the Kodaira-Spencer map. From the diagram in Lemma 3.2.5, we have

an exact sequence

0 −→ KE −→ Ext1(A,A)⊕ Ext1(B,B)
(e[1]◦−)+(−[1]◦e)−−−−−−−−−−→ Ext2(A,B) −→ 0.

On the other hand, we have the canonical normal sequence of H embedded in P3 ×

(P3)∗

0 −→ TH,E −→ TP3×(P3)∗,(A,B) −→ NH/P3×(P3)∗,E −→ 0,

since Ext1(A,A)⊕Ext1(B,B) can also be identified with TP3×(P3)∗,(A,B) via the Kodaira-

Spencer map, this induces a canonical isomorphism betweenNH/P3×(P3)∗,E and Ext2(A,B).

Notice that NH/P3×(P3)∗,E is contained in TP,F and the latter is kernel of θF . We

have θF (ζ) = 0. By using the universal property of triangles, ζ can be completed to

a commutative diagram:

A
k−−−→ F

l−−−→ B

t

y ζ

y r

y
A[1]

k[1]−−−→ F [1]
l[1]−−−→ B[1]

.

Since ζ is nontrivial, (t, r) has to be sent to a nonzero element in Ext2(A,B) under

the last map of the exact sequence above, therefore e[1] ◦ t+ r[1] ◦ e 6= 0.

With respect to the decomposition (3.4), we let

ζ = u1vF + w1 + u2s1 + u3s2 + u4s3 + w2 + u5s4, (3.5)
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where w1 ∈ TP(N∗
H/M1,E

),F , {s1, s2, s3} forms a basis of NP(N∗
H/M1,E

)/P(Ext1(B,A)∗),F , w2 ∈

TH,E, {s4} is a basis of NH/P3×(P3)∗,E and ui ∈ C are coefficients. (3.5) is inspired by

the explicit basis chosen in the proof of [PS85, Lemma 6]. In the next theorem, we

will see that the equations cutting out miniversal deformations by using (3.5) is the

same as using Piene and Schlessinger’s basis in the case of deformations of ideals.

Proposition 3.2.20. The quadratic part of Kuranishi map takes the following form

with respect to (3.5)

κ2(ζ) = ζ ∪ ζ =
4∑
i=1

u1ui+1(vF + si) ∪ (vF + si),

where ∪ is the Yoneda pairing of extensions. {(vF +si)∪ (vF +si)|i = 1, 2, 3, 4} forms

a basis of the obstruction space Ext2(F, F ).

Proof. The equality κ2(ζ) = ζ ∪ ζ is known for complexes in [Ina02], [Lie06] and

[KLS06]. The second equality is a straightforward computation. It only uses the fact

that for any v in TB,F or TP,F , we have v ∪ v = 0 since v is a miniversal deformation

by Proposition 3.2.16.

To prove the last statement, we first show that {(vF + si)∪ (vF + si)|i = 1, 2, 3} is

linearly independent. If not, then a certain nontrivial linear combination
∑3

i=1 ai(vF+

si)∪ (vF + si) = 0. We can rewrite it as vF [1] ◦ s+ s[1] ◦ vF = 0, where s =
∑3

i=1 aisi

is a nontrivial first deformation of F in NP(N∗H,E)/P(Ext
1(B,A)∗),F . By Lemma 3.2.18,

we can write s = k[1] ◦ t ◦ l for some t ∈ Ext1(B,A) such that t[1] ◦ e is nonzero in

Ext2(A,A). Now

0 = (vF [1] ◦ s+ s[1] ◦ vF ) ◦ k

= vF [1] ◦ k[1] ◦ t ◦ l ◦ k + k[2] ◦ t[1] ◦ l[1] ◦ vF ◦ k.
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Since l ◦ k = 0 and l[1] ◦ vF ◦ k = θF (vF ) = e, we have k[2] ◦ t[1] ◦ e = 0. From

the diagram in Proposition 3.2.9, we know that Ext2(A,A)
k[2]∗−→ Ext2(A,F ) is an

injection, hence t[1] ◦ e = 0, which is a contradiction.

It only remains to show that (vF + s4) ∪ (vF + s4) is not a linear combination of

{(vF + si) ∪ (vF + si)|i = 1, 2, 3}. For this we will show for i = 1, 2, 3

l[2] ◦ ((vF + si) ∪ (vF + si)) = 0,

l[2] ◦ ((vF + s4) ∪ (vF + s4)) 6= 0.

By Lemma 3.2.18, we can assume si = k[1] ◦ ti ◦ l for some ti ∈ Ext1(B,A) satisfying

ti[1] ◦ e 6= 0. Then

l[2] ◦ ((vF + si) ∪ (vF + si))

=l[2] ◦ vF [1] ◦ k[1] ◦ ti ◦ l + l[2] ◦ k[2] ◦ ti[1] ◦ l[1] ◦ vF .

Since l[2] ◦ vF [1] ◦ k[1] = e[1] and l[2] ◦ k[2] = 0, we have l[2] ◦ ((vF + si)∪ (vF + si)) =

e[1] ◦ ti ◦ l. Notice that e[1] ◦ ti ∈ Ext2(B,B) = 0, so l[2] ◦ ((vF + si)∪ (vF + si)) = 0.

On the other hand, s4 is a nontrivial element in NH/P3×(P3)∗,E. By Lemma 3.2.19, s4

can be completed to the following commutative diagram with e[1] ◦ t4 + r4[1] ◦ e 6= 0

in Ext2(A,B):

A
k−−−→ F

l−−−→ B

t4

y s4

y r4

y
A[1]

k[1]−−−→ F [1]
l[1]−−−→ B[1]
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Now

l[2] ◦ ((vF + s4) ∪ (vF + s4)) ◦ k

=l[2] ◦ vF [1] ◦ s4 ◦ k + l[2] ◦ s4[1] ◦ vF ◦ k

=l[2] ◦ vF [1] ◦ k[1] ◦ t4 + r4[1] ◦ l[1] ◦ vF ◦ k

=e[1] ◦ t4 + r4[1] ◦ e 6= 0.

By the diagram in Proposition 3.2.9, k∗ : Ext2(F,B) −→ Ext2(A,B) is an isomor-

phism, hence l[2] ◦ ((vF + s4) ∪ (vF + s4)) 6= 0.

Corollary 3.2.21. The two irreducible components of M2 intersect transversely.

Proof. Proposition 3.2.20 shows that κ−12 (0) is cut out by equations u1u2, u1u3, u1u4, u1u5

in Ext1(F, F ), so all first order deformations that can be lifted to the second order form

a C15 ∪C12 satisfying C15 ∩C12 = C11 in Ext1(F, F ). But TϕF ,F (TP,F )∪Tδ,F (TB,F ) =

C15∪C12 and TϕF ,F (TP,F )∩Tδ,F (TB,F ) = TϕF ,F (TP(N ∗
H/M1

),F ) = C11 by Remark 3.2.15

(2), so indeed we have exhibited all miniversal deformations of F and the two com-

ponents of M2 intersect transversely.

We end this section by proving M2 is a projective variety.

Theorem 3.2.22. The moduli space M2 is a projective variety.

Proof. M2 is smooth outside the intersection of its two components by Remark 3.2.12

and Remark 3.2.15 (1) . For any F ∈ P(N ∗H/M1
), since no first order deformation

other than a versal one can be lifted to the second order, M2 is reduced at F . This

proves M2 is reduced. Now we can view M2 as the pushout of the closed embeddings

B←− P(N ∗H/M1
) −→ P. In general a pushout diagram does not exist in the category
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of schemes, but when the two morphisms are closed embeddings it exists [SchK05,

Lemma 3.9]. This proves that M2 is a scheme. The fact that M2 is projective and

of finite type comes after the analysis of the third wall-crossing in the next section,

where we prove that M3 is a blow-up of M2 along a smooth center contained in

ϕF (P) \ δ(B). Since M3 is the Hilbert scheme, it is automatically projective and of

finite type, so M2 is a projective variety.

3.3 The Third Wall-crossing

In this section, we study the wall-crossing controlled by the third family of pairs

in Theorem 2.2.6 and prove (4) in Theorem 1.1.1. In this section, we will fix

(A,B) =
(
O(−1), Iq/V (−3)

)
.

The methods are almost the same as the ones in the previous section, but the situation

here is easier since we expect no extra components or singularities occur after the

wall-crossing, and M3 is a blow-up of M2 along a smooth center.

The following Hom and Ext group computations are straightforward.

Lemma 3.3.1. Hom(A,B) = Hom(B,A) = 0, Hom(A,A) = Hom(B,B) = C;

Ext1(A,B) = C, Ext1(A,A) = 0, Ext1(B,B) = C5, Ext1(B,A) = C10;

Ext2(A,B) = 0, Ext2(B,B) = C2, Ext2(A,A) = 0, Ext2(B,A) = C;

Ext3(A,B) = Ext3(A,A) = Ext3(B,B) = Ext3(B,A) = 0.

Similar to Proposition 3.2.2, the incidence hyperplane H is the moduli space of

nontrivial extensions of A by B. Similar to Proposition 3.2.4, we can construct an

embedding ϕ′E : H −→M2. Since M2 has two irreducible components B and P, we

want to know which component H lies in.
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Proposition 3.3.2. Under the induced morphism ϕ′E, H is embedded into P \B.

Proof. Take any E ∈ H, we have a nontrivial extension 0 −→ B −→ E −→ A −→ 0.

By using long exact sequences for Hom functor, we get the following commutative

diagram with exact rows and columns, and all boundary homomorphisms are 0.

Ext1(A,B) = C 0−−−→ Ext1(E,B) = C5 −−−→ Ext1(B,B) = C5

0

y y y
Ext1(A,E) = 0 −−−→ Ext1(E,E) −−−→ Ext1(E,B)y y y
Ext1(A,A) = 0 −−−→ Ext1(E,A) = C10 −−−→ Ext1(B,A) = C10y y y
Ext2(A,B) = 0 −−−→ Ext2(E,B) = C2 −−−→ Ext2(B,B) = C2y y y

0 −−−→ Ext2(E,E) −−−→ Ext2(B,E)y y y
0 −−−→ Ext2(E,A) = C −−−→ Ext2(B,A) = C

If E ∈ B \ P, then Ext1(E,E) = C12, but this violates the exactness of the central

column of the above diagram. If E ∈ P ∩ B, then by Proposition 4.9 we have

Ext1(E,E) = C16 and Ext2(E,E) = C4, which also does not fit into the above

diagram. Hence E ∈ P \B.

Remark 3.3.3. This proposition means that the third wall-crossing only modifies one

irreducible component of M2, namely P. It does not touch the other component B.

On the other hand, we can construct a morphism ϕ′F : P′ −→M3 that is injective

on the level of sets and Zariski tangent spaces, where P′ is a P9-bundle over H

parametrizing all nontrivial extensions of B by A. This implies that for any F in
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the image of ϕ′F , Ext1(F, F ) is at least 14-dimensional since dimP′ = 14 and P′ is

smooth.

If we denote the blow-up of M2 alongH by B′, then we can perform the elementary

modification on the pullback of the universal family over M2 along the exceptional

divisor of B′ to get a flat family K′. Similar to Proposition 3.2.14, K′ induces a

morphism δ′ : B′ −→ M3 which is injective on the level of sets and Zariski tangent

spaces.

Theorem 3.3.4. The induced morphism δ′ is an isomorphism.

Proof. K′ is the same as the universal family over M2 outside the exceptional divisor,

so δ′ is an isomorphism outside the exceptional divisor. For any F lying in the

exceptional divisor, δ′ induces an injection TB′,F −→ Ext1(F, F ) = TM3,F . To prove

δ′ is an isomorphism at F , we only need to show Ext1(F, F ) = C15 = TB′,F . Since

we have an exact sequence 0 −→ A −→ F −→ B −→ 0, this can be done by writing

down the long exact sequences for Hom functor again.

Ext1(B,A) = C10 −−−→ Ext1(F,A) = C9 −−−→ Ext1(A,A) = 0y y y
Ext1(B,F ) = C14 −−−→ Ext1(F, F ) = C15 −−−→ Ext1(A,F ) = Cy y y
Ext1(B,B) = C5 −−−→ Ext1(F,B) = C6 −−−→ Ext1(A,B) = C

0

y 0

y y
Ext2(B,A) = C −−−→ Ext2(F,A) = C −−−→ Ext2(A,A) = 0y y y
Ext2(B,F ) = C3 −−−→ Ext2(F, F ) = C3 −−−→ Ext2(A,F ) = 0y y y
Ext(B,B) = C2 −−−→ Ext2(F,B) = C2 −−−→ Ext2(A,B) = 0
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Chapter 4: More on Moduli Spaces of Bridgeland Semistable

Complexes

In this chapter, we give some general discussions on the moduli stack of Bridgeland

semistable complexes. Our goal is to prove Conjecture 1.2.1, at least in the case of

K3 surfaces. As we have already mentioned in the introduction, the difficulty of this

conjecture is that we do not know whether the moduli stack of Bridgeland semistable

complex associates with a GIT problem while the classical moduli space of Gieseker

semistable sheaves does. The recent development [AHR15] in stack theory has shed

some light on how we may proceed for a proof, which we are now going to discuss.

Let (P , Z) be a stability condition on Db(X) satisfying support property, where P

is the slicing and Z is the central charge. We fix a numerical class v in the numerical

Grothendieck group Knum(X) and a phase σ ∈ R. For simplicity, we will just denote

the moduli functor of semistable complexes with class v and phase σ to be Mσ(v),

which was denoted by Mss
v,σ in Chapter 2. In the rest of this chapter, we will always

be with respect to the stability condition (P , Z) when we say a semistable complex.

By Theorem 2.2.2,Mσ(v) is an algebraic stack locally of finite type over C. Our goal

is to show that Mσ(v) has a good moduli space in the sense of [Alp12], and the first

key ingredient is the following criterion.
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Theorem 4.0.1. ([AHR15], Theorem 2.15) Let X be an algebraic stack, locally of

finite type over C, with affine diagonal. Then X admits a good moduli space if and

only if

1. For every point y ∈ X (C), there exists a unique closed point in the closure {y}.

2. For every closed point x ∈ X (C), the stabilizer group scheme Gx is linearly

reductive and the morphism X̂x → X from the coherent completion of X at x

satisfies:

(a) The morphism X̂x → X is stabilizer preserving at every point; that is,

X̂x → X induces an isomorphism of stabilizer groups for every point ξ ∈

|X̂x|.

(b) The morphism X̂x → X maps closed points to closed points.

(c) The map X̂x(C)→ X (C) is injective.

The theorem basically tells us that local behaviors of an algebraic stack at the

most degenerated points determine whether it has a good moduli space. We want to

check these conditions on Mσ(v).

The first thing we check is the assumption that Mσ(v) has affine diagonal. The

following proposition mimicks Corollary 5.5 in [AHR15], and it proves Mσ(v) has

affine diagonal. Let F and G be two families over a scheme S parametrizing semistable

complexes with Chern character v and phase σ.

Proposition 4.0.2. The functor Hom(F ,G) assigning to any f : S ′ → S the set

HomDb(X×S′)(Lf
∗F ,Lf ∗G) is representable by an affine S-scheme.
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Proof. Assume f is affine, then

HomDb(X×S′) (Lf ∗F ,Lf ∗G) = HomDb(X×S) (F , f∗Lf ∗G)

= HomDb(X×S)
(
F ,G ⊗L π∗(f∗OS′)

)
The functor HomDb(X×S)

(
F ,G ⊗L π∗(−)

)
: QCoh(S)→ Ab is coherent by a variation

of [AHR15] Proposition 5.4 to the case X × S π→ S. By the observation in [Hal14]

Example 3.10, this functor is corepresentable by some quasicoherent sheaf Q. Hence

HomDb(X×S′) (Lf ∗F ,Lf ∗G) = HomDb(X×S)
(
F ,G ⊗L π∗(f∗OS′)

)
= HomOS (Q, f∗OS′)

= HomOS−Alg(Sym•OSQ, f∗OS′)

= HomSch/S(S ′, SpecOSSym•OSQ).

This proves the proposition.

Remark 4.0.3. Theorem 1.2 of [AHR15] can be applied toMσ(v) after this proposi-

tion. It provides an equivariant étale local neighborhood around every closed point of

Mσ(v) with linearly reductive stabilizer group. Actually we will prove in next section

that every closed point of Mσ(v) has linearly reductive stabilizer group.

4.1 On the Topology of |Mσ(v)|

In this section, we will try to understand the topology of the underlying topological

space |Mσ(v)| ofMσ(v) and prove partially that the first condition in Theorem 4.0.1

is true for Mσ(v).

First we recall the definition of the underlying topological space |X | for an alge-

braic stack. Let X be an algebraic stack, |X | is defined to be the set of equivalent
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classes of morphisms p : Spec(K) → X , where K is a field. We say that two points

p : Spec(K)→ X and q : Spec(L)→ X are equivalent if there exists a field Ω and a

2-commutative diagram

Spec(Ω) //

��

Spec(L)

q

��
Spec(K)

p // X .

|X | is equiped with the following topology: take any π : U → X which is is surjective,

flat, and locally of finite presentation with U an algebraic space, W ⊆ |X | is open if

and only if π−1(W ) is open in U .

In our case, since our stack is over the complex number C, points in |Mσ(v)| can

be represented byMσ(v)(C), where the latter is just the set of semistable complexes.

Sometimes we will use ”points” and ”semistable complexes” interchangably. We are

particularly interested in characterizing E ′ ∈ {E} for two semistable complexes E

and E ′. We need the following definition: we say that E isotrivially specializes to E ′

if there is a smooth curve C and a family of semistable complexes E ∈ Db
perf(C ×X),

such that E is a trivial family of E over an open subset of C and E has some special

fiber E ′. By [ASvdW10], we have

Proposition 4.1.1. The complex E isotrivially specializes to E ′ if and only if E ′ ∈

{E}.

In particular, if we have three complexes E, F and G such that E isotrivially

specializes to F and F isotrivially specializes to G, then E isotrivially specializes

to G by topology. Now we are ready to state the main result in this section which

partially proves the first condition in Theorem 4.0.1.
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Proposition 4.1.2. For any semistable complex E ∈Mσ(v)(C), there is a semistable

complex F ∈ {E} that is a closed point with respect to the topology of |Mσ(v)|.

Moreover, F = gr(E) is equal to the direct sum of the stable Jordan-Hölder factors of

E.

We will need the following two lemmas.

Lemma 4.1.3. For any nonsplit exact sequence 0 → B → E → A → 0 in P(σ), E

isotrivially specializes to A⊕B.

Proof. First, we construct a natural family over Ext1(A,B) parametrizing extensions

of A by B, which can be viewed as a generalization of Example 2.1.12 in [HL97]. Let

S = P(Ext1(A,B)∗) and denote the projections by S
p←− S ×X q−→ X, then

Ext1(q∗A, q∗B ⊗ p∗OS(1)) = H1(S ×X,Hom·(q∗A, q∗B ⊗ p∗OS(1))

= H1(S ×X,Hom·(q∗A, q∗B)⊗OS×X(1))

= H1(S ×X, q∗Hom·(A,B)×OS×X(1))

= H1(X,Hom·(A,B))⊗ Ext1(A,B)∗

= Ext1(A,B)⊗ Ext1(A,B)∗

= Hom(Ext1(A,B),Ext1(A,B)).

The extension corresponds to the identity would be the desired family.

Now we denote the given extension 0 → B → E → A → 0 by e ∈ Ext1(A,B),

then by restricting the family constructed above to the affine line Ce, we get an trivial

family of E on C\0, and the fiber over 0 is 0 ·e = 0 ∈ Ext1(A,B), which is the trivial

extension A⊕B.
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Lemma 4.1.4. If a semistable complex E isotrivially specializes to F , then E ⊕ E ′

isotrivially specializes to F ⊕ E ′.

Proof. By assumption there exists an isotrivial family of E to F . Then by adding a

trivial family of E ′ to the isotrivial family of E to F , we will get a isotrivial family

of E ⊕ E ′ to F ⊕ E ′.

Proof of Proposition 4.1.2. Recall that the full subcategory P(σ) consists of all

semistable complexes of phase σ. It is an excercise to show that P(σ) is an Artinian

and Noetherian abelian category, hence every object has Jordan-Hölder filtrations.

By repeatedly using Lemma 4.1.3 and 4.1.4 together with a Jordan-Hölder filtration

of E, we see that E isotrivially specializes to F := gr(E), which is the direct sum

of the stable Jordan-Hölder factors of E. We need to show that F is a closed point

in {E}. Suppose F ′ ∈ {F} is another point in the closure, then there exists a flat

family F over a smooth curve C such that F|0 = F ′ for some point 0 ∈ C and

F|C\0 = OC\0 ⊗ F . Let F =
⊕

i F
ni
i be the unique decomposition of F into stable

factors, where Fi runs through a complete set of representative of isomorphism classes

of stable complexes in P(σ) and ni = hom(Fi, F ). Since F is flat, the function from

C to Z sending a point x to hom(Fi,Fx) is semicontinuous for every i. It equals ni

for every point x 6= 0. Thus n′i = hom(Fi,F
′) > ni. Now if we consider the evaluation

map ei : Fi ⊗ Hom(Fi, F
′) −→ F ′, it has to be injective and its image is isomorphic

to F
n′i
i . Finally, the sum

∑
i F

n′i
i has to be direct. This can only happen when all n′i

are equal to ni. Hence F ′ =
⊕

i F
ni
i = F .

Remark 4.1.5. For a complete proof of the first condition in Theorem 4.0.1, we need

to show that this closed point F is unique {E}.
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4.2 Étale Local Neighborhood at Closed Points

This section is devoted to the second condition in Theorem 4.0.1, but it is merely

a plan with only a few rigorious proofs and details. We will label the statements

without a proof by ”claims”.

The key concept in the second condition of Theorem 4.0.1 is the coherent comple-

tion of Mσ(v) at a closed point F . But as far as the author knows, there is no good

way in general to construct this stack and to check 2.(a), 2.(b) and 2.(c), unless one

can construct an explicit étale local neighborhood of Mσ(v) at F with reasonable

properties.

Definition 4.2.1. Let X be an algebraic stack of finite type over C and x ∈ X (C).

We call f : ([SpecA/Gx], v) −→ X an étale GIT presentation around x if

• A is a finite type C-algebra and Gx is linearly reductive.

• f is étale, affine and f(v) = x.

• f is stabilizer preserving at v.

The second condition in Theorem 4.0.1 is now equivalent to the following state-

ment.

Claim 4.2.2. Let F be a closed point in Mσ(v) (which means F is a polystable

complex), then

• There exists an étale local GIT presentation f : ([SpecA/Aut(F )], w) −→

(Mσ(v), F ) around F .

• f is stabilizer preserving, and it sends closed points to closed points. The induced

map [SpecA/Aut(F )](C) −→Mσ(v)(C) is injective.
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As mentioned in Remark 4.0.3, there is a first candidate for such an étale local

GIT presentation provided by Theorem 1.2 of [AHR15], where it is constructed by

some deep theories on algebraic stacks. A disadvantage of this candidate is that it

is not explicit enough, and one will not be able to check the the second statement

in Claim 4.2.2. However, if we assume the polystable complex F to have one more

property, we will be able to construct an explicit candidate for the étale local GIT

presentation by using the ideas in [AS16]. The property we want to introduce here is

”formality”.

Definition 4.2.3. Let E be a complex in Db(X). If the differential graded Lie algebra

RHom·(E,E) is quasi-isormorphic to its cohomology complex, we say that E has the

formality property.

For more on this formality property, one can look at Section 3 of [AS16]. At least in

the case of K3 surfaces, the expectation is that any Gieseker semistable sheaves have

such property. From now on, we will always assume that F has formality property.

An important consequence of the formality property is the following proposition on

the miniversal deformation space of F .

Proposition 4.2.4. Let E be a complex that has formality property and

κ : Êxt1(E,E) −→ Ext2(E,E).

be the formal Kuranishi map, where Êxt1(E,E) is the completion of Ext1(E,E) at 0.

Let

κ2 : Ext1(E,E) −→ Ext2(E,E)

be the main obstruction map, it equals the usual Yoneda pairing of extensions. Then

κ−1(0) = κ̂2
−1(0) where κ̂2

−1(0) is the completion of κ−12 (0) at 0.
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If we start with the miniversal deformation space (Σ, F̂) of F where Σ = SpecB

for some complete local C-algebra B and F̂ is a formal universal family on F̂ , then

Σ can be identified with κ−1(0), and the above proposition implies that the germ

(κ−12 (0), 0) is an algebraization of Σ in the sense that Σ is the completion of κ−12 (0) at

0. Notice that Σ has a natural Aut(F )-action on it, we expect that (κ−12 (0), 0) is an

Aut(F )-equivariant algebraization of Σ. To be precise, we need to prove the following

statement.

Claim 4.2.5. There exists an Aut(F )-action and an Aut(F )-equivariant family U

on the germ (κ−12 (0), 0) such that U restricts to F at 0 and pullbacks to F̂ via the

completion morphism.

The germ (κ−12 (0), 0) is expected to be the second candidate for an étale local GIT

presentation of Mσ(v) at F . We will explain later why (κ−12 (0), 0) is explicit enough

to check the second statement in Claim 4.2.2. At the moment, it is still not clear why

(κ−12 (0), 0) is an étale local GIT presentation. We propose to show this by proving

the following statement.

Claim 4.2.6. There exists an Aut(F )-equivariant analytic isomorphism between the

germ of the étale local GIT presentation (SpecA,w) provided by Theorem 1.2 of

[AHR15] and the germ (κ−12 (0), 0).

Since (SpecR,w) is an étale local GIT presentation by construction, so is (κ−12 (0), 0)

if they are Aut(F )-equivariantly isomorphic. The main ingredients of a proof of the

above claim would be to answer the following question: If we have a linearly reductive

group G acting on two varieties X and Y with fixed points x ∈ X and y ∈ Y , and

if there exists a G-equivariant isomorphism between the completions ÔX,x and ÔY,y,
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when can we lift this isomorphism to a G-equivariant analytic isomorphism between

the germs (X, x) and (Y, y)?

Now we give some more detailed description of (κ−12 (0), 0) in terms of quiver

representations. Let F =
⊕r=1

i F ni
i , where the sum runs through all nonisomorphic

stable factors F1, F2, . . . , Fr of F . We define the following Ext1 quiver Q of F1, F2,

. . . , Fr: the vertex set of Q is in 1-to-1 correspondence with F1, F2, . . . , Fr; between

i-th vertex and j-th vertex, we put ext1(Fi, Fj) arrows.

Proposition 4.2.7. There exists a canonical identification of Ext1(F, F ) and the

space of quiver representations Rep(Q, n̄), where the dimension vector n̄ = (n1, n2, . . . , nr).

Proof. Let Vi to be an ni-dimensional vector space and write F =
⊕

i Fi ⊗ Vi. Then

Ext1(F, F ) =
⊕
i,j

Ext1(Fi, Fj)⊗ Hom(Vi, Vj). (4.1)

This exactly means to give ext1(Fi, Fj) linear maps between Vi and Vj.

If we further introduce some relations of arrows on the quiver Q, we will be able

to characterize the locus κ−12 (0). For any ξ ∈ Ext1(F, F ), we can represent ξ as a

matrix with respect to the decomposition (4.1): Mξ = (ξi,j ⊗ fi,j)r×r where ξi,j ⊗ fi,j

is in Ext1(Fi, Fj)⊗ Hom(Vi, Vj). Then

κ2(ξ) = ξ ∪ ξ = M2
ξ ,

where M2
ξ is just the usual matrix product with the product on elements defined by

(ξi,j ⊗ fi,j) · (ξj,k ⊗ fj,k) = (ξi,j ∪ ξj,k)⊗ (fj,k ◦ fi,j).

The resulting (ξi,j ∪ ξi′,j′)⊗ (fi′,j′ ◦ fi,j) is in Ext2(Fi, Fk)⊗Hom(Vi, Vk), which can be

viewed as a direct summand in Ext2(F, F ). The relations we want to introduce on the
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arrows of Q are exactly the same as the above description. We first identify the vector

space generated by arrows between i-th vertex and j-th vertex with Ext1(Fi, Fj), then

we can introduce Yoneda pairing on the space of all arrows
⊕

i,j Ext1(Fi, Fj). The

relations of arrows are generated by R ∪R = 0 for any R ∈
⊕

i,j Ext1(Fi, Fj). Let us

denote the Ext1 quiver of F1, F2, . . . , Fr with the above relations by QY , then we can

summarise the above construction to be the following proposition.

Proposition 4.2.8. There is a canonical identification between κ−12 (0) and the space

of quiver representations Rep(QY , n̄), where the dimension vector n̄ = (n1, n2, . . . , nr).

Interpreting κ−12 (0) as quiver representation will help us understand the étale local

GIT presentation if we assume Claim 4.2.5 and Claim 4.2.6. To be precise, we propose

the following statement. Let modQY be the category of quiver representations over

QY .

Claim 4.2.9. There exists a canonical inclusion h : modQY ↪→ P(σ) making modQY

a full subcategory of the semistable complexes of phase σ. Its image is the full subcat-

egory generated by the stable factors F1, F2, . . . , Fr. The étale local GIT presentation

f :
(
[κ−12 (0)/Aut(F ), 0]

)
−→ (Mσ(v), F )

will send an element ξ ∈ κ−12 (0) to h(ξ).

On the level of simple objects and extensions of simple objects, it is clear what

h does: it sends a simple object in modQY to its corresponding stable factor Fi in

P(σ); it sends an extension of two simple objects to the corresponding extensions in

Ext1(Fi, Fj). But in general if one has a quiver representation with a long Jordan-

Hölder filtration, we hope that h will send it to a complex in P(σ) with same filtration.
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Assuming Claim 4.2.9, we will be able to partially prove the second statement in

Claim 4.2.2.

Corollary 4.2.10. The étale local GIT presentation f :
(
[κ−12 (0)/Aut(F ), 0]

)
−→

(Mσ(v), F ) is stabilizer preserving, and it sends closed points to closed points.

Proof. f is stabilizer preserving, because it sends ξ to h(ξ), where h is an inclusion

from a full subcategory, so we indeed have Aut(ξ) = Aut(h(ξ)).

As a GIT quotient, closed points in the stack [κ−12 (0)/Aut(F )] means points whose

orbit under the Aut(F )-action is closed. If we still use the matrix Mξ to represent a

point in κ−12 (0), it is not hard to see ξ has a closed orbit if and only if Mξ is diagonal

and fi,i ∈ Hom(Vi, Vi) is diagonal for any i. As a quiver representation, this means

all maps between different vertices are 0 and all endomorphisms are diagonal, hence

it is a direct sum of simple representations. Since h preserves direct sum and sends

simple representations to stable complexes, h(ξ) will be a polystable complex, which

means it is a closed point in Mσ(v).
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[AS16] E. Arbarello and G. Saccà, Singularities of moduli spaces of sheaves on K3
surfaces and Nakajima quiver varieties, 2016, arXiv:1505.00759.

[BM14a] A. Bayer and E. Macr̀ı, Projectivity and birational geometry of Bridgeland
moduli spaces, J. Amer. Math. Soc. 27 (2014), 707-752.

[BM14b] A. Bayer and E. Macr̀ı, MMP for moduli of sheaves onK3s via wall-crossing:
nef and movable cones, Lagrangian fiberations. Invent. Math., 198(3), 505-
590, 2014.

[Bon89] A. I. Bondal, Representation of associative algebras and coherent sheaves,
Izv. Akad. Nauk SSSR Ser. Mat. 53, 25-44, 1989.

[BMS14] A. Bayer, E. Macr̀ı and P. Stellari. The Space of Stability Conditions on
Abelian Threefolds, and on some Calabi-Yau Threefolds, arXiv:1410.1585.

[BMT14] A. Bayer, E. Macr̀ı and Y. Toda. Bridgeland Stability on threefolds I:
Bogomolov-Gieseker type inequalities. J. Algebraic Geom. 23, 117–163,
2014.

56



[Bri07] T. Bridgeland, Stability conditions on triangulated categories, Ann. of Math.
166, 317-345, 2007.

[Bri08] T. Bridgeland, Stability conditions on K3 sufaces, Duke. Math. J.,
141(2):241-291, 2008.

[CHW14] I. Coskun, J. Huizenga and M. Woolf, The effective cone of moduli of
sheaves on the plane, 2014, arXive:1401.1613.

[Hal14] J. Hall, Cohomology and base change for algebraic stacks, Math. Z.
278(2014), no. 1-2, 401-429.

[Har66] R. Hartshorne, Residue and duality, Springer, Berlin, 1966.

[HL97] D. Huybrechts and M. Lehn, The geometry of moduli of sheaves. Number
E 31 in Aspects of Mathematics, Viewveg, 1997.

[Ina02] M. Inaba. Toward a definition of moduli of complexes of coherent sheaves
on a projective scheme. J. Math. Kyoto Univ. 42, 317–329, 2002.

[KLS06] D. Kaledin, M. Lehn and C. Sorger. Singular symplectic moduli spaces.
Invent. Math. 164, 591–614, 2006.

[Lan83] H. Lange. Universal families of extensions. Journal of Algebra 83, 101–113,
1983.

[Lie06] M. Lieblich. Moduli of complexes on a proper morphism. J. Algebraic Geom.
15, 175–206, 2006.

[LLMS16] M. Lahoz, M. Lehn, E. Macr̀ı and P. Stellari, Generalized twisted cubics on
a cubic fourfold as a moduli space of stable objects, 2016, arXiv:1609.04573.

[LZ16] C. Li and X. Zhao, Birational models of moduli spaces of coherent sheaves
on the projective plane, 2016, arXive:1603.05035.

[M2] D. R. Grayson and M. E. Stillman, Macaulay2, a software system for re-
search in algebraic geometry. Available at http://www.math.uiuc.edu/

Macaulay2.

[Mac14] E. Macr̀ı, A generalized Bogomolov-Gieseker inequality for the three-
dimensional projective space. Algebra Number Theory 8, 173–190, 2014.

[MS16] E. Macri and B. Schmidt, Lectures on Bridgeland stability,
arXiv:1607.01262, 2016

[Kin94] A.D. King, Moduli of representations of finite-dimensional algebras. Quart.
J. Math. 45, 515–530, 1994.

57

http://www.math.uiuc.edu/Macaulay2
http://www.math.uiuc.edu/Macaulay2


[PS85] R. Piene and M. Schlessinger, On the Hilbert scheme compactification of
the space of twisted cubics. Amer. J. Math 107, 761-774, 1985.

[PT16] D. Piyaratne and Y. Toda. Moduli of Bridgeland semistable objects on 3-
folds and Donaldson-Thomas invariants, arxiv:1504.01177.

[SchK05] K. Schwede, Gluing schemes and a scheme without closed points, Contemp.
Math. 386, 157-172, 2005.

[SchB15] B. Schmidt, Bridgeland stability on threefolds - some wall crossings, 2015,
arXiv:1509.04608.

[SM] The SageMath Developers, SageMath (Version 7.0), 2016. http://www.

sagemath.org

[Sta17] the Stacks Project authors, Stacks Project, http://stacks.math.

columbia.edu, 2017

[Tra16] R. Tramel, New stability conditions on surfaces and new Castelnuovo-type
inequalities for curves on complete-intersection surfaces. Ph.D thesis. Uni-
versity of Edinburgh. 2015.

[Tod09] Y. Toda. Limit stable objects on Calabi-Yau 3-folds. Duke Math J. 149,
157–208, 2009.

[Xia16] B. Xia, Hilbert scheme of twisted cubics as simple wall-crossing, 2016,
arXiv:1608.04609v1

58

http://www.sagemath.org
http://www.sagemath.org
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu

	Abstract
	Acknowledgments
	Vita
	Introduction
	Hilbert Scheme of Twisted Cubics
	More on Moduli Space of Bridgeland Semistable Complexes
	Notations

	Preliminaries
	Stability Conditions
	Moduli of complexes

	Hilbert Scheme of Twisted Cubics
	The First Wall-crossing
	The Second Wall-crossing
	The Third Wall-crossing

	More on Moduli Spaces of Bridgeland Semistable Complexes
	On the Topology of |M(v)|
	Étale Local Neighborhood at Closed Points

	Bibliography

