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Abstract 

 

Exponential random graph models (ERGM) have been widely applied in the social 

sciences in the past ten years. However, diagnostics for ERGM have lagged behind their 

use. Collinearity-type problems can emerge without detection when fitting ERGM, 

skewing coefficients, biasing standard errors, and yielding inconsistent model estimates. 

This leads to a unique paradox in statistical models of social networks: as more 

endogenous network effects are modeled, the likelihood of encountering poor model 

estimates may also increase. This paper provides a method to detect multicollinearity 

when using ERGM. It outlines the problem and provides a method to estimate shared 

variance between ERGM parameters. It then tests the method with a Monte Carlo 

simulation, fitting 27,000 ERGMs and calculating the variance inflation factors for each 

model. The distribution of variance inflation factors is analyzed using multilevel 

regression to determine what network characteristics lend themselves to collinearity-type 

problems. The parameter space of these variables is then examined to specify at what 

variance inflation factor value a researcher may expect problematic multicollinearity. 
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Section 1: Introduction 

 

Advances in the statistical modeling of social networks have provided a much 

needed analytic tool for social scientists. The exponential random graph model (ERGM) 

has been widely applied to test theories of racial boundaries (Wimmer and Lewis 2010), 

group processes (Goodreau, Kitts, and Morris 2009), the formation of drug distribution 

networks (Duxbury and Haynie unpublished manuscript), gang violence (Papachristos 

2009; Papachristos, Hureau, and Braga 2013), and social structure in total institutions 

(Kreager et al., unpublished manuscript), among other topics. The main benefit of ERGM 

is the ability to simultaneously model and compare actor level attributes against the 

effects of endogenous network substructures (Robins et al. 2007; Lusher, Robins and 

Koskinen 2013).1 While the theory behind these models has been well established for 

some time (Holland and Leinhardt 1981; Frank and Strauss 1986), researchers have only 

begun to widely use ERGM in the past 10 years. This is largely because of diagnostic 

breakthroughs that allow researchers to evaluate model fit (Handcock 2003; Hunter et al. 

2003; Hunter, Goodreau, and Handcock 2008) and Bayesian estimation methods to 

derive independent parameter estimates from network data (Snijders 2002; Handcock 

2003).  

                                                 
1 In ERGM, an endogenous effect is an explanatory variable related to the social structure of the network.  
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Despite widespread use of ERGM, the variety of diagnostic tools commonly used 

to evaluate bias in more conventional statistical models have yet to be adapted for 

ERGM. Particularly, the issue of multicollinearity often goes unchecked and, by 

extension, undetected. The lack of multicollinearity diagnostics for statistical network 

models is not surprising. The standard approach to diagnose multicollinearity in a 

regression model—the variance inflation factor (VIF)—implies independent 

observations. Consequently, translating this tool to network data is an unclear task. 

Moreover, extremely high multicollinearity in an ERGM may lead to model degeneracy 

and non-convergence (Lusher, Koskinen, and Roberts 2013; Chandrasekhar and Jackson 

2014).  

These practical limitations do not subvert the issue that multicollinearity in 

ERGM can yield similar estimation problems as in any statistical model: skewed 

regression coefficients and biased standard errors. Moreover, unique collinearity-type 

problems arise when using ERGM (Snijders et al. 2006; Dekker, Krakhardt, and Snijders 

2007; Salter-Townshend and Murphy 2015). First, the reliance of dyadic dependent 

ERGMs on Markov Chain Monte Carlo (MCMC) maximum likelihood estimation (MLE) 

means that highly collinear estimates may result in multiple models from which the best 

fitted model cannot be determined (Chandrasekhar and Jackson 2014). Similarly, because 

endogenous network parameters all often vary in tandem with the networks’ density, an 

increasing number of structural terms may increase the likelihood of collinearity-type 

problems (e.g. Hunter 2007). This is particularly problematic since the inclusion of 

endogenous parameters is often the primary appeal of using ERGM. 
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How can the VIF be translated to ERGM? What VIF value would indicate 

problematic levels of multicollinearity? What ERGM specifications are vulnerable to 

collinearity-type problems? This paper proposes a method to diagnose multicollinearity 

in ERGM. It introduces a technique to robustly estimate the shared variance between 

variables using a distribution of networks simulated from the parameters of a converged 

ERGM. It then provides the results from a Monte Carlo simulation experiment designed 

to create a distribution of VIFs retrieved from ERGM. The method is tested in the 

simulation experiment and the ERGM specifications which correlate with large VIFs are 

identified using multilevel regression. Based on the results of the simulations, a new rule 

of thumb for evaluating problematic multicollinearity in ERGM is provided: a VIF>110 

is concerning, a VIF>1100 is problematic.   
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Section 2: Problems Diagnosing Multicollinearity in Exponential Random Graph Models 

 

Formally, ERGM is defined as:  

(1) 

Pr(𝐘 = 𝒚) = (
1

𝑘
) exp⁡{∑𝜂𝐴 𝑔𝐴(𝐲)} 

Where A is a type of network configuration, 𝜂𝐴 is the parameter term,  𝑔𝐴(𝐲) is the 

network statistic, and k is a normalizing constant that ensures interpretable results and 

that the probability model sums to 1. Coefficients represent the log-odds of an edge 

connecting two vertices and decreasing Bayesian and Akaike information criteria indicate 

better model fit.  

While standard logistic regression can predict the log-odds of binary outcomes, 

the dependency of network observations skews standard errors when network ties are 

treated as the dependent variable. Maximum pseudo-likelihood estimation has long been 

a tool to generate robust standard error estimates when dyads can be treated as 

independent from one another (Frank and Strauss 1986). However, this assumption is 

violated in many social networks where network substructures influence the odds of tie 

formation (Geyer and Thompson 1992; Robins et al. 2007; Lusher et al. 2013). This 

problem led to the development of MCMC MLE to generate standard errors in ERGM 

(Snijders 2002; Handcock et al. 2003).  
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The general approach to fitting an ERGM is to assume that the empirical network 

is the result of a stochastic process. A probability distribution of networks is then 

simulated by starting with the statistics of maximum-pseudo likelihood estimates using 

MCMC simulation to update the parameter vector. As simulated networks converge on 

the parameterized sufficient statistics in the network, the parameter vector converges, 

yielding interpretable estimates. The log-likelihood of the ERGM is evaluated iteratively 

until it reaches convergence. The MCMC procedure is often repeated many times to 

ensure that the solution to the log-likelihood is a global maximum rather than a local one. 

The benefit of this approach is that dyadic dependent processes, such as triadic closure or 

the influence of shared partnerships, can be accurately estimated.   

Multicollinearity may be particularly difficult to detect with the inclusion of 

dyadic dependent terms (Snijders et al. 2004; Salter-Townshend and Murphy 2015). This 

is because endogenous network statistics largely depend on the network’s density, which 

functions equivalently to the intercept in OLS regression (Robins et al. 2007; Faust 2007; 

Lusher et al. 2013). Consequently, the correlation between endogenous and exogenous 

predictors may be inflated by an endogenous term’s inclusion or in higher density 

networks. Compounding this problem, multicollinearity may dramatically increase with 

the inclusion of multiple endogenous terms, all of which depend on the networks’ 

density, and in which higher order substructures depend on lower-order ones (Faust 

2007).  

Calculating shared variance between parameters 
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One large problem in detecting multicollinearity in ERGM relates to translating 

VIFs to the ERGM context. VIFs in GLM are based on the assumption of accurate and 

otherwise independent correlations between predictor variables (Fox and Monelli 1992; 

Fox 2008). The general approach is to regress the term of interest on all other explanatory 

variables in the model using OLS. The resulting 𝑅2 to is used to calculate a VIF for that 

variable. In this approach,  𝑅2 is calculated as:  

(2) 

𝑅2 = 1 −⁡
∑(𝑦𝑖 − ŷ𝑖)

2

∑(𝑦𝑖 − 𝑦̅)2
 

Where y is the outcome variable and ŷ is the predicted value of y. VIF is calculated as: 

 (3) 

𝑉𝐼𝐹 =
1

1 − 𝑅2
 

This approach works well in GLMs because observations are independent and 

errors are assumed to be uncorrelated. When predictor variables are highly correlated, 

variance estimates inflate and can be subsequently detected. However, variance estimates 

resulting from an OLS regression are inaccurate when working with network data 

because observations are not iid. Utilizing this method on network data may lead to 𝑅2 

values that do not reflect shared variance among network parameters, and therefore VIFs 

that do not accurately estimate multidimensional correlations between explanatory 

variables. This problem is likely to increase as dependencies between dyads are included, 

and so the method will be especially inaccurate in ERGMs with endogenous parameters.  
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 The proposed alternative for ERGMs is to simply calculate 𝑅2 from the fitted 

parameters of an existing model. This approach is particularly appealing for statistical 

network models, which explicitly seek to evaluate independent correlations between 

variables when using non-iid data. By calculating  𝑅2 directly from the correlation 

matrix, resulting VIFs will capture shared variance between explanatory variables. 

This method assumes an ERGM has already converged. After yielding estimates, 

a distribution of networks can be simulated from the parameters of the ERGM using 

MCMC techniques (Geyer and Thompson 1992; Hunter et al. 2008). An accurate 

bivariate correlation matrix R can be calculated from the statistics of these networks. R 

can then be broken into a vector of correlations 𝒓𝒙𝒚, where subscript y represents the 

explanatory variable of interest and x represents all other explanatory variables in the 

ERGM, and a square correlation matrix 𝑹𝒙𝒙  consisting of all explanatory variables in the 

model other than y. Correlations with the edges term should be excluded from both 𝒓𝒙𝒚 

and 𝑹𝒙𝒙. Thus, in the fitted ERGM, 𝑅2 for an explanatory variable of interest y be 

calculated as (Rencher 2002): 

 (4) 

𝑅2 = 𝒓𝒙𝒚
𝑻 𝑹𝒙𝒙

−𝟏𝒓𝒙𝒚2 

This 𝑅2 can then be used in Eq. (3) to calculate the VIF for the ERGM. 

It may seem curious to simulate a distribution of networks rather than to calculate 

R from the ERGM directly. MCMC MLE explores unlikely network configurations when 

                                                 
2 This can be reduced to Eq. (2) for a more parsimonious equation in the regression context. However, this 

reduction changes the input values on the right-hand side of the equation from correlations reflecting 

independent parameters to values observed in independent observations.  
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approaching convergence. Consequently, the correlation matrix of a fit ERGM may 

reflect some error implicit in the simulation procedure. Thus, calculating 𝑅2 directly from 

the prior distribution of ERGM networks may yield biased estimates. It is therefore 

important that the researcher simulate a distribution of networks from a converged 

ERGM and use this posterior distribution of networks to calculate R.  

To summarize, the proposed approach is to: 

1) Fit an ERGM. 

2) Simulate a large distribution of networks from the ERGM parameters.3 

3) Calculate 𝑅2 using Eq. (4), treating the explanatory variable of interest as y. 

4) Calculate VIF using Eq. (3). 

 To evaluate this method, a single condition Monte Carlo simulation experiment 

that regressed a randomized variable on three randomized variables using OLS regression 

was compared to a dyadic independent ERGM.4 The ERGM was Bernoulli, predicting a 

75-vertex network with three randomized node-level variables. Explanatory variables in 

both models were equidispersed (ratio of variance to mean is equal to 1). In the OLS 

regression, VIF was calculated using Eq. (2) and Eq. (3); the ERGM used the approach 

described above. The distribution of VIFs for the OLS regression yielded a mean of 2.71, 

a standard deviation of 0.44, and a range of 1.80 to 4.41. The distribution of VIFs for 

ERGM yielded a mean of 2.74, a standard deviation of 0.41, and a range of 1.81 to 4.19. 

                                                 
3 A distribution of 1,000 networks is sufficient in most cases, but the number of networks should be 

increased in larger networks or ones with potentially problematic coefficients.  
4 Both models were ran 100 times to calculate three VIFs for 100 different OLS regressions and ERGMs. 

The ERGM correlation matrix was calculated from a posterior distribution of 1000 simulated networks. 
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The two distributions were positively correlated with a correlation coefficient of 0.13. 

These results indicate that the proposed method is comparable to well-known methods 

and yields similar results even when applied to non-independent outcomes. 

 It is worth discussing here the meaning of this VIF in the ERGM context. There 

currently is not a clear estimate of variance explained for ERGM parameters, including 

the 𝑅2 in Eq. (4).  ‘Spectral’ goodness of fit measures for social networks have only been 

developed recently (Shore and Lubin 2015) and they do not easily translate to estimating 

multicollinearity. Instead, the calculation for 𝑅2 proposed in Eq. (4) estimates shared 

variance; where increasing values of the ERGM VIFs indicate higher multivariate 

correlations between explanatory variables. Thus, while increasing VIFs across models 

indicate increasing multidimensional correlations, it is not clear how VIF values should 

be interpreted on their own.  

In order to evaluate how these VIF values fluctuate—i.e. when a VIF is high 

enough to warrant concern—the properties of ERGM VIFs must be examined. The 

remainder of this paper is dedicated to 1) defining when VIF values are problematic and 

2) identifying ERGM specifications that are vulnerable to multicollinearity. 

 

Evaluating ERGM VIFs 

 Having defined a robust method to calculate the VIF from network data, ERGM 

specific problems resulting from dyadic dependencies can be directly addressed. The 

main ambiguity in evaluating VIFs in ERGM is that MCMC estimation for ERGM is 

much more tolerant to correlation between explanatory variables. MCMC estimation 
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expects a relatively high degree of collinearity between endogenous parameters (Snijders 

2002; Robins et al. 2007).5 Consequently, the standard rule of thumb for evaluating 

VIFs—where a VIF larger than 4 indicates concerning levels of collinearity, and a VIF 

greater than 10 indicates problematic levels of collinearity (Chatterjee and Price 1991; 

O’Brien 2007)—does not translate well to the ERGM context because VIFs in ERGM 

will likely be much larger. Similarly, the VIF in ERGM does not have a straightforward 

interpretation as in GLM, where √𝑉𝐼𝐹 is the factor by which variance estimates are 

inflated.  

How should researchers interpret VIFs in ERGM? What ERGM specifications 

may increase the risk of multicollinearity? To answer these questions, I conducted a 27 

factorial condition Monte Carlo simulation experiment to investigate the properties (or 

distribution) of VIFs under a variety of ERGM specifications. Monte Carlo simulation 

generates random samples of data from fixed specifications—or factorial conditions 

(Mooney 1997). The underlying logic of this strategy is to create a distribution of VIFs 

that reflect a wide variety of ERGM specifications and network configurations. The 

distribution of VIFs resulting from these experiments are then analyzed using multilevel 

regression models to evaluate which ERGM specifications may result in high 

multicollinearity. Finally, results from multilevel regression are evaluated to specify at 

which VIF values concerning multicollinearity may be present.  

                                                 
5 MCMC calculates variance using change statistics, where the values of the observed step in the chain are 

recorded only if the observed edge changes from 0 to 1, or vice versa, and the simulated network fulfills the 

acceptance criteria. Consequently, high correlations in the observed network only impact the standard 

errors of the ERGM if the change statistics are highly correlated as well, i.e. if the high correlation persists 

throughout the MCMC procedure.  
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Section 3: Experimental Conditions 

 

A Monte Carlo simulation experiment with 27 conditions gives insight as to when 

multicollinearity skews model estimates. The simulated networks are random (e.g. Erdos 

and Renyi 1967) with 75 vertices. An ERGM is then fit to the network per the 

specifications of that factorial condition. A posterior distribution of 1,000 networks is 

then simulated from the fitted ERGM. A correlation matrix is retrieved from this 

distribution and the VIF for each variable is calculated using Eq. (4) and Eq. (3).   

The factorial design of the experiment varies network density, ERGM parameters, 

and variance-mean ratios of node-level attributes to create a robust distribution of ERGM 

VIFs that reflect variation in realistic ERGM specifications (see Table 1). Each ERGM is 

predicted with three random node level attributes with varying variance-mean ratios. The 

variance-mean ratio is the ratio of variance (𝜎2) to mean (µ), defined as 
𝜎2

µ
. Higher 

variance-mean ratios lead to over dispersion, and small variance-mean ratios indicate low 

dispersion in the probability distribution of a model. By varying the variance-mean ratio 

of node-level attributes, the simulation experiment introduces (or reduces) correlation 

between exogenous variables. Variance-mean ratio values vary across low dispersion 

(0.5), equidispersion (1), and over dispersion (5). Network density varies within realistic 

values (0.1, 0.2, 0.3) (Steglich et al. 2010), to gain representative estimates of potential 

dependencies between endogenous terms (higher density will likely lead to higher levels 
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of collinearity in the endogenous terms). Three different endogenous terms are included: 

degree correlation, gwesp, and degree popularity. Degree correlation measures the 

correlation of degree scores between vertices connected by an edge; degree popularity 

measures an actors’ degree score relative to the degree score of other actors; gwesp 

measures localized clustering through edgewise shared partnership.6 These terms were 

chosen for their theoretical relevance and common usage to parse out the independent 

effects of global and local hierarchies in network formation (e.g. preferential attachment 

vs. localized clustering) (Snijders, van de Bunt, and Steglich 2010). Each condition of the 

experiment adds an additional endogenous term to force increasing multicollinearity 

between network substructures. When there is only one endogenous parameter in the 

model, it is gwesp; when there are two endogenous parameters, the model includes both 

degree popularity and gwesp; where there are three endogenous parameters, the model 

includes degree correlation, gwesp, and degree popularity.  

 

Table 1. Conditions of the experiment 

 

 

                                                 
6 The gwesp term is a geometrically weighted term for edgewise shared partnership. It falls under the 

‘curved’ family of ERGM terms and is generally a more robust estimate than network transitivity. See 

Hunter (2007) for an introduction and discussion.  
7 Decay parameter of the gwesp term is fixed at 0.7. See Hunter (2007) for an introduction.  

Conditions Values 

Network density  .1 .2 .3 

Variance mean ratios of exogenous variables .5 1 5 

Count of endogenous parameters 1 2 3 

Endogenous parameters gwesp (0.7)7 Degree 

popularity 

Degree 

correlation 
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Section 4: Results 

 

The distribution of ERGM VIFs 

 The first concern is to characterize the distribution of VIFs retrieved from the 

Monte Carlo experiment to understand how the proposed method behaves across a range 

of ERGM specifications. Unlike VIFs in GLM, ERGM estimation is much more tolerant 

to multicollinearity, and so models with multicollinearity problems may yield absurdly 

high VIFs. The range of VIFs in the experiment stretches from 1.00 to 2.75⁡x⁡107. The 

mean VIF value is 1077.01 with a standard deviation of 1.48 x 105. These results indicate 

extreme negative skew in the distribution of VIFs. Logarithmic transformation brings the 

VIFs into a more interpretable range. The resulting mean of log(VIF) is 1.49, with a 

standard deviation of 1.78 and a range of 0.00 to 17.13. These trends are demonstrated 

graphically in Figure 1. Over half of (log) VIF values range between 0 and 1 in value, 

indicating that extremely high VIF values are still relatively rare when using ERGM. 

Only 4.76% of log(VIF) are greater than 5. Log(VIF) is dealt with for the remainder of 

this paper for the sake of interpretability and consistency. 
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Figure 1. Distribution of log(VIF) 

 

What ERGM specifications are likely to produce collinearity-type problems? 

 Prior research suggests that an increasing amount of endogenous terms may 

increase the likelihood of encountering collinearity-type problems (Lusher, Koskinen, 

and Roberts 2013; Chandrasekhar and Jackson 2014), however it has yet to be 

empirically examined. It is also unclear whether a simple increase in the count of 

endogenous parameters increases the risk of multicollinearity or if endogenous variables 

may spur multicollinearity more so than exogenous variables. Multicollinearity may also 

increase as network density increases because the specific attributes or endogenous 
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effects which correlate with selection patterns may be more difficult to identify as actors 

connect with one another more frequently. There may also be an interactive effect, where 

high density networks are less robust to endogenous specifications than low density 

networks because parameters may be highly correlated with the density of the network. 

These potential trends are investigated empirically using three-level linear regression on 

the distribution of VIFs (VIFs nested in ERGMs nested in experimental conditions). 

Log(VIF) is the dependent variable. Fixed effects include the type of variable, variance 

mean ratios, network density, the count of endogenous variables in the model; random 

effects include network density and the count of endogenous variables.8 All random 

effects are specified at the level of conditions; the model and condition level intercepts 

vary randomly. While an uncommon approach, regression on simulated data is useful to 

evaluate multidimensional correlations that may not be apparent through descriptive 

statistics alone (Kim and Bearman 1997; Hanaki et al. 2007). 

 Model 1 includes the network density, variance mean ratios, and combinations of 

specific endogenous parameters. Results show that increases in density are correlated 

with increased VIFs. Results also indicate that compared to exogenous parameters, 

endogenous parameters tend to be correlated with higher VIFs. Results also indicate that 

as the variance-mean ratio of exogenous variables increase (towards over dispersion), 

log(VIF) decreases.  

 

                                                 
8 Additional models were ran with variance mean ratios varying randomly on the third level. However, the 

variance components for the coefficients were <0.00001 across all models, yielding similar coefficient and 

standard error estimates for fixed effects. 
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Independent Variables Model 1 Model 2 Model 3  Model 4 

Network density - - - - 

   0.2 0.415 

(0.163) 

0.668 

(0.068) 

0.636 

(0.066) 

0.129 

(0.058) 

   0.3 0.833 

(0.238) 

1.164 

(0.016) 

1.116 

(0.009) 

0.184 

(0.009) 

Variance mean ratios  - - - - 

   1 -0.400 

(0.155) 

-0.352 

(0.019) 

-0.349 

(0.011) 

-0.349 

(0.009) 

   5 -0.577 

(0.155) 

-0.487 

(0.019) 

-0.482 

(0.012) 

-0.482 

(0.006) 

Count of endogenous 

parameters 

- 0.908 

(0.055) 

0.432 

(0.050) 

0.429 

(0.041) 

Endogenous parameters - - - - 

   gwesp 1.482 

(0.006) 

- 1.482 

(0.006) 

0.322 

(0.009) 

   Degree popularity 3.169 

(0.008) 

- 3.169 

(0.008) 

1.924 

(0.011) 

   Degree correlation 3.572 

(0.010) 

- 3.572 

(0.010) 

3.011 

(0.016) 

Endogenous 

parameters*density 

- - - - 

   0.2*gwesp - - - 1.199 

(0.013) 

   0.3*gwesp - - - 2.281 

(0.013) 

   0.2*degree popularity - - - 1.221 

(0.016) 

   0.3*degree popularity - - - 2.513 

(0.016) 

   0.2*degree correlation - - - 0.591 

(0.022) 

Continued 

 Table 2.  Multilevel regression analysis of log(VIF) in a random network. 
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Model 2 includes the global count of endogenous parameters and removes the 

factor variable for specific endogenous parameters.10 The count of endogenous 

parameters is positively associated with log(VIF) for all variables in the model, indicating 

                                                 
9 This 𝑅2 is calculated using Snijders and Bosker’s (2008) total model variance method.  
10 To clarify this distinction, the specific endogenous variable parameter is a nominal factor variable 

associated with specific values of log(VIF) at level 1; the global count of endogenous variables is a level 3 

continuous variable indicating the count of endogenous variables in the ERGM.  

Table 2 continued     

   0.3*degree correlation - - - 1.092 

(0.022) 

Intercept 0.382 

(0.116) 

-0.772 

(0.167) 

-.718 

(0.150) 

-0.217* 

(0.122) 

Variance components (std. 

dev.) 

    

   Model-level intercept    0.000* 

(0.000) 

0.000* 

(0.000) 

0.000* 

(0.000) 

0.000* 

(0.000) 

   Condition-level intercept  0.049* 

(0.221) 

0.494 

(0.703) 

0.436 

(0.816) 

0.275 

(0.524) 

   Density (0.2) 0.325* 

(0.569) 

0.075 

(0.274) 

0.082 

(0.285) 

0.005 

(0.229) 

   Density (0.3) 0.512* 

(0.716) 

0.000 

(0.005) 

0.000 

(0.001) 

0.000 

(0.002) 

   Count of endogenous 

parameters 

- 0.055 

(0.236) 

0.049 

(0.220) 

0.031 

(0.175) 

AIC 3.49 x⁡105 4.97 x⁡105 3.49 x⁡105  3.09 x⁡105 

𝑅29 0.73 0.27 0.76 0.82 

*Not statistically significant at the 5% level; N for count of VIFS is 135,000, N of models is 

27,000, N for conditions is 27.  

**Reference category for network density is 0.1; reference category for variance mean ratios is 

0.5 reference category for endogenous parameters is whether the VIF observation was an 

exogenous variable; reference category for interaction is density (0.1)*exogenous variable. 

Standard errors are in parentheses. 
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that as more endogenous parameters are included, the overall log(VIF) for each term 

increases. However, the large decline in  𝑅2 between these two models indicates that the 

log(VIF) values associated with endogenous parameters explain more variance in the 

log(VIF) outcome than the global count of endogenous parameters in the model. This is 

reflected in a comparison of the Akaike Information Criteria of the two models: the AIC 

of Model 1 is 3.49 x⁡105, whereas the AIC of Model 2 is 4.97 x⁡105.11  

Model 3 adds both the count of endogenous parameters and the term for specific 

endogenous variables. The decline in strength of the count of endogenous variables 

indicates that the effect that an increase in endogenous specifications has on log(VIF) for 

each term in the model is partially explained by the increase in log(VIF) for specific 

endogenous variables. These results lend support to the thesis the collinearity problems 

are most likely to emerge among endogenous parameters, as opposed to exogenous 

variables. 

Model 4 tests cross-level interactions between specific endogenous variables and 

the density factorial condition. The coefficients indicate that increasing network density 

and endogenous variable specifications have a positive interactive effect on log(VIF) 

when compared to the log(VIF) of exogenous variables in a sparse network (0.1 density). 

In terms of main effects, each additional endogenous variable correlates with an increase 

in log(VIF). When interacted with density, there is a diminishing marginal return on 

log(VIF) as the density increases. Figure 2 shows these trends graphically. The difference 

                                                 
11 An F-test was not possible because the models are not nested. Lower AIC is commonly used as an 

alternative goodness of fit indicator in non-nested multilevel models (Harrell 2001).  
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between degree correlation and degree popularity interactions decreases as the density of 

the network increases; the degree popularity interaction yields higher average log(VIF) 

than the degree correlation interaction at high levels of network density. Similarly, as 

network density increases, the value of log(VIF) for the gwesp term increases. The 

interaction between network density and exogenous variables shows little variance as 

network density changes. These results suggest that researchers using ERGM should be 

particularly concerned with multicollinearity when specifying numerous endogenous 

effects in relatively dense networks.  

 

 

 

Figure 2. Interactions for variable type*density. 
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When is a VIF too large? 

 The large range of VIFs retrieved from analyses reinforce the problem proposed 

in the beginning of this paper: many ERGMs may converge and also yield inaccurate 

results. In support of this, multilevel regression shows that many common ERGM 

specifications may generate large VIFs when used to estimate realistic social networks. 

Thus, the question remains, at what VIF value should a researcher consider 

multicollinearity to be a problem? Having generated a representative and expansive 

distribution of potential VIFs, the distribution can be examined to identity those VIF 

values which are outliers. VIF values that are relatively rare in the distribution of VIFs 

and also are more likely to occur with problematic specifications reflect concerning levels 

of multicollinearity.  

Figure 3a shows that log(VIF) for exogenous variables tend to stay well below 

3.12 Alternatively, log(VIF) for the gwesp parameter peaks when log(VIF)=1, when 

log(VIF)=3, and when log(VIF)=5. The degree popularity term peaks when 

log(VIF)=4.5; degree correlation specifications also show higher concentration between a 

log(VIF) value of 4 and 5.13 

                                                 
12 It is important to remember that while a VIF can never be less than 1 in value, the log of VIF can be as 

low as 0.  
13 Both the degree popularity and degree correlation terms were included in the ERGM models with other 

endogenous variables. Consequently, descriptive statistics may be skewed by the influence of the count of 

endogenous variables. 
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Figure 3. Frequency of log(VIF) value by variable type 
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Figure 4. Frequency of log(VIF) by variable type 

 

 

Log(VIF) clusters between 0 and 2 and between 4 and 5 regardless of network 

density (Figure 4). However, at higher values increases as network density increases, 

especially between a log(VIF)=4 and log(VIF)=6. This trend is also reflected in the count 

of endogenous variables (Figure 5). When there is only one endogenous variable in the 

model, log(VIF) sits comfortably below a value of 2. However, as more endogenous 

parameters are included in the model, log(VIF) increasingly cluster in a range of 4 – 6.  
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Figure 5. Frequency of log(VIF) by network density. 
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Figure 6. Frequency of log(VIF) by count of endogenous variables. 

 

 

Taken in sum, these patterns reflect the predictions made in multilevel regression. 

They pinpoint that unproblematic network specifications (low density, low endogeneity) 

tend to yield VIFs in the unproblematic range, well below log(VIF)=3.14 However, as 

endogeneity and network density increase, log(VIF) increasingly clusters around a value 

of 5. Moreover, Figure 3a demonstrates that most log(VIF) values tend to stay well below 

                                                 
14 It is important to remember here that a log(VIF) of 3 still reflects high multicollinearity if seen in a GLM 

(exp(3)=20.086). 
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5 even among problematic variables (95.8% of cases). With this in mind, it is reasonable 

to conclude that a log(VIF) of 5 (VIF=110) in an ERGM indicates concerning levels of 

multicollinearity. Further, only 1.2% of observed log(VIF) were greater than 6, making 

these values clear outliers in the distribution of ERGM VIFs. Thus, a log(VIF) of 6 

(VIF=1097) reflects problematic levels of multicollinearity and probable bias in ERGM 

results.  
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Section 5: Discussion and Future Directions 

 

Results from a 27 condition Monte Carlo simulation experiment show considerable 

kurtosis in VIF values across representative range of ERGMs. VIFs were as low as 1 and 

as high as 27 million. The paper then sought to evaluate which ERGM specifications 

were responsible for high levels of multicollinearity. It identified three themes that make 

an ERGM more likely to encounter collinearity-type problems: high network density, 

models with a large count of endogenous explanatory variables, and an interactive effect 

in dense networks with many endogenous explanatory variables. It also identified that 

VIFs associated with endogenous parameters tend to be the culprit of multicollinearity 

much more frequently than exogenous variables. 

 Results from multilevel regression models were then applied to examine 

clustering in the distribution of VIFs. A rule of thumb was provided to evaluate when a 

VIF is large enough to draw concern (VIF=110; log(VIF)=5) and when a VIF is large 

enough to warrant model respecification (VIF=1100; log(VIF=6). Considering the 

remarkable over dispersion in the range of ERGM VIFs (standard deviation =1077.01; 

mean=1.48 x 105), it is recommended that researchers deal with the logarithmic 

transformation of VIFs. To be sure, this rule of thumb should not be interpreted as a 

stand-alone indicator of multicollinearity. Instead, this method should be used to test 
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whether multicollinearity may exist in the models. Since a VIF > 1100 is rare (less than 

1.2% of cases), this value indicates that a VIF greater than 1100 in a real-world ERGM is 

an extreme outlier and should raise real concern regarding multicollinearity in the model. 

Similarly, a VIF > 110 indicates to a researcher that their model includes relatively highly 

correlated variables (present in less than 5% of simulated VIFs). Such VIF values should 

drive the researcher to carefully consider their theoretical models and to examine the 

bivariate correlation matrix of the posterior distribution of networks as well as how VIFs 

and standard errors change across model specifications. As with GLMs, the most 

common response to a high VIF will be to remove the offending variable from the 

ERGM.  

 This project offers a much-needed statistical tool to evaluate ERGM estimates. 

The paper demonstrates that the proposed method is robust to both network data as well 

as endogenous network effects. Thus, it resolves the ERGM paradox described above by 

allowing researchers to pinpoint which endogenous predictors exhibit high 

multicollinearity. Further, while the simulation experiment used to interrogate and 

evaluate the method was computationally intensive, the method itself requires little 

computational power or specialization in statistical network analysis to execute (outlined 

under Eq. (4)). Thus, the general approach is relatively parsimonious and should be easily 

applied by researchers who may not be familiar with network analysis.  

Another benefit of this approach is that the general method can be translated to 

other cross-sectional network models, such as the quadratic assignment procedure 

(Krackhardt 1987, 1988), with little modification. For example, using the approach 
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outlined in Eq. (4), the correlation matrix of a fitted QAP regression could be used to 

calculate VIFs, and skew estimates provided by simulation experiments may be adjusted 

to evaluate multicollinearity in other statistical network models. As such, this approach 

takes a promising step towards developing powerful diagnostic tools for the emerging 

classes of models designed to handle dependent data.  

The tasks facing future research are four-fold. First, future research may extend 

the simulations to networks of different topographies and sizes. ERGMs of networks that 

exhibit preferential attachment (e.g. Barabasi and Albert 1999) may be particularly 

vulnerable to multicollinearity in degree-related endogenous specifications because 

highly connected vertices may disproportionately exhibit unique traits. Similarly, 

networks that exhibit localized clustering (e.g. Watts and Strogatz 1998; Watts 1999) 

may be particularly vulnerable to multicollinearity related to substructural transitivity 

parameters, like gwesp, because desirable traits may be highly correlated with shared 

partnerships. Future research may include scale-free and small-world network 

topographies as additional factorial conditions to evaluate whether the topography of a 

network lends itself to collinearity-type problems. Moreover, network size may influence 

how endogenous parameter specifications influence multicollinearity in an ERGM, 

especially because ERGM generally performs poorly when estimating large networks 

(Thiemichen and Kauermann 2017). With greater diversity in tie formation processes, 

ERGMs fit to larger networks may be able to more accurately estimate the independent 

correlations of variables, and thus be less vulnerable to multicollinearity. In other words, 

a larger network may moderate the effect network density has on multicollinearity. 
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Second, future research can expand on these findings by determining whether the 

effect of the count of endogenous variables in the model is influenced depending on 

which endogenous parameter is included first. Particular endogenous parameters may 

have ripple effects that shape the size and significance of other variables in the model. 

Third, due to constraints on computational power and processing time, the count of 

endogenous terms included in the ERGMs for these simulations has been limited. The 

terms provided in this paper have been selected due to their widespread popularity and 

common usage (Handcock et al. 2003b). A promising direction for future research is to 

interrogate how variance estimates change with the inclusion of less common 

endogenous effects, such as the arc tangent or k-cores. These effects are sometimes 

applied as specific measures in research (e.g. Hipp et al. 2013), but may have less clear 

behaviors when included with other network terms. Similarly, selective-sorting 

parameters such as homophily and heterophily are widely used by networks scholars, but 

may have distinct behaviors.  

 Fourth, a final step is to adapt multicollinearity diagnostics to the burgeoning 

classes of dynamic network models (Snijders, van de Bunt, and Steglich 2010; Krivitsky 

and Handcock 2014; Hanneke, Fu, and Xing 2010). This will help extend diagnostic tools 

to more recent and promising developments in longitudinal network analysis. This is 

particularly important, as collinearity-type problems often emerge in longitudinal 

analyses due to autocorrelation. Multicollinearity diagnostics will help strengthen this 

category of models by providing a method to detect collinearity-type problems in 

dynamic networks due to multicollinearity. By excluding multicollinearity as a source of 



30 

 

bias, researchers can determine when autocorrelation may be causing collinearity-type 

problems—an issue that has plagued network scholars for some time (Dekker, 

Krackhardt, and Snijders 2007). 
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