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Abstract

Researchers in the social sciences are often interested in explaining causal processes

in which the effect of one variable is transmitted to another through one or more

intervening (or mediator) variables. Statistical mediation analysis can be used by

researchers to gain a better understanding of these causal processes. The methods

traditionally used to quantify and test a mediation process, or indirect effect, are

not directly applicable when the data are nested hierarchically, which is common in

educational, organizational, and behavioral sciences where students may be nested

within classrooms, employees may be nested within companies, or repeated measure-

ments may be nested within individuals. Multilevel modeling (MLM) is a method for

analyzing hierarchical data that allows for the simultaneous estimation of the effects

of variables at multiple levels of the hierarchy. As such, several researchers have pro-

posed methods for testing mediation using MLM. A majority of these methods have

focused on models in which the independent variable is a level-2 variable, the mediator

is either a level-2 or a level-1 variable, and the dependent variable is a level-1 variable.

Although some (Kenny, Korchmaros, & Bolger, 2003; Bauer, Preacher, & Gil, 2006)

have focused on models in which all three variables are measured at the lowest level,

the methods proposed are not without their shortcomings. The aim of this thesis

is to address and mitigate some of these shortcomings, as well as provide advance-

ments in the formulation and testing of a number of interesting effects that can be
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modeled using MLM. The major contributions include demonstrating how to simul-

taneously estimate between-group and within-group indirect effects using traditional

MLM software. A test for the difference between within-group and between-group

indirect effects is also conceptualized and explained. Further, the model is expanded

to include multiple mediators with either fixed or random slopes. In the case where

one or more paths for one indirect effect covary with one or more paths from an-

other, the covariance between the random indirect effects is derived. Finally, the

index of moderated mediation (Hayes, 2015) is applied to the multilevel context to

test the moderating effect of a level-2 variable on the within-group and/or between-

group indirect effect. To demonstrate the methods discussed throughout this thesis,

two real-world datasets are analyzed using MLmed, a free SPSS macro developed in

conjunction with this thesis and designed specifically to fit multilevel mediation and

moderated mediation models. The parameter estimates obtained using MLmed are

comparable to those obtained using Mplus (Muthén & Muthén, 2015) and the lme4

package (Bates, Mächler, Bolker, & Walker, 2015) in R (R Core Team, 2016), but

with considerably less programming effort required.
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Chapter 1: Introduction

Over the past several decades, researchers in the social sciences have moved be-

yond hypothesizing the mere existence of causal effects and have begun to focus on

explaining such effects. Often, these hypotheses involve a causal process in which

the effect of one variable is transmitted to another through one or more intervening

variables.

Statistical mediation analysis can be used by researchers to gain a better under-

standing of these causal processes. Within the mediation literature, an intervening

variable is often labeled a mediator (denoted M here), and is said to mediate the

relationship between the two variables on each side of its causal chain. The vari-

able that influences the mediator is the independent variable (denoted X here), and

the variable that is influenced by the mediator is the dependent variable (denoted Y

here). Hence, X transmits its effect on Y indirectly through M . This effect is labeled

the indirect effect. X may also influence Y independent of M . This effect is known

as the direct effect, as it does not operate through M .

The simple three variable mediation model, as well as models that include ad-

ditional mediators, have been widely applied in various fields including psychology,

education, business and organizational behavior, communications, medicine, and eco-

nomics. For example, Richter, König, Koppermann, and Schilling (2016) found that
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participation in a managerial training program reduced negative consequences when

acting out the situation of laying off an employee. Specifically, employees who were

“laid-of” by a manager that had completed the training were less likely to be angry,

to complain, and to seek legal action, and each of these relationships were mediated

by the employee’s perception of procedural justice. Schleider, Patel, Krumholz, Chor-

pita, and Weisz (2015) found support for the hypothesis that parents’ poor mental

health indirectly led to youth problems (such as delinquent and aggressive behavior)

through parent-youth stress.

Traditional methods for assessing mediation analysis based on ordinary least

squares (OLS) regression are not directly applicable when the data are nested. Nested

data occurs when the sampling units belong to, or are nested within, distinct groups

or clusters. For example, students may be nested within classrooms, employees may

be nested within organizations, or repeated measurements may be nested within in-

dividuals. Nested data are often referred to as hierarchical data, to emphasize that

there may be data collected at different levels of the hierarchy. Referring to the stu-

dent/classroom example, there may be lower (student) level variables, such as gender

and socioeconomic status (SES), as well as upper (classroom) level variables, such as

the number of students in the class, or the tenure of the teacher.

Multilevel models (MLMs), sometimes referred to as hierarchical models, random

effects models, random coefficient models, or mixed models, account for the depen-

dence of data within groups. Further, the between-group and within-group variance

of an outcome variable can be separated and explained by variables at the upper

and lower levels, respectively, and relationships between lower level variables can

randomly vary across groups or be explained by group-level variables. Due to the
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flexibility of MLMs coupled with advances in model estimation and computing tech-

niques, multilevel modeling has proved to be an indispensable method for analyzing

nested data.

As the popularity of implementing multilevel models in social science research has

increased, many researchers have proposed methods of testing mediation hypotheses

involving nested data using such models (Preacher, 2015). Because of the multiple

levels of data, the mediation process can take several forms based on the level at

which the independent, mediator, and dependent variables are measured. A popular

method for differentiating such forms is to label the three variable process based on

the levels at which X, M , and Y are measured. For example, a mediation model in

which X and M are measured at level-2 and Y is measured at level-1 would be labeled

a 2-2-1 model. A 2-1-1 model would contain a level-2 X variable, and level-1 M and

Y variables, and a 1-1-1 model would contain X, M , and Y variables measured at

the lowest level.

Like single-level mediation models, multilevel mediation models have been ap-

plied in a number of fields. For example, Zhu, Gardner, and Chen (2016) found that

intrinsic motivation in the workplace (a level-1 variable) mediates the relationship be-

tween collaborative team climate (a level-2 variable) and creativity (a level-1 variable).

Bakker, Vergel, and Kuntze (2015) found a significant indirect effect of students’ per-

sonal resources on observed learning activities through study engagement. The study

was longitudinal, where repeated measurements (level-1) were nested within individ-

uals (level-2).

An important topic within MLM that has made its way into the multilevel medi-

ation literature is that of centering level-1 predictor variables. Zhang, Zyphur, and
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Preacher (2009) argued that most of the advances made within multilevel media-

tion have failed to acknowledge centering decisions, which may result in biased or

conflated estimates of indirect effects composed of within-group and between-group

effects. They provided recommendations to decompose such effects to obtain accurate

estimates of the underlying processes.

This thesis expands upon the work of Kenny et al. (2003) and Bauer et al. (2006)

focused on 1-1-1 multilevel mediation models by following the recommendation of

Zhang et al. (2009) and explicitly decomposing within-group and between-group di-

rect and indirect effects and making inferences about such effects. In addition, this

thesis provides a number of advancements related to 1-1-1 multilevel mediation mod-

els. First, an indirect contextual effect is described, and methods of testing are ex-

plained. Next, multilevel multiple mediator models, which allow for the comparison

of indirect effects at the same level, are formulated within the framework of Bauer

et al. (2006). The covariance between random indirect effects in these models is also

derived. Finally, the index of moderated mediation (Hayes, 2015) is extended to

the multilevel context to allow for testing whether a level-2 variable moderates the

within-group or between-group indirect effect.

I begin by providing an overview of single-level mediation analysis and describe

the addition of covariates, multiple mediators, and moderators. Next, I describe

the general multilevel modeling framework and discuss centering methods and their

effects on parameter interpretations. Following, I review the previous literature on

multilevel mediation and provide a detailed account of the work presented by Kenny et

al. (2003) and Bauer et al. (2006). I outline the decomposition of effects as described

by MacKinnon (2008) and Zhang et al. (2009), make the model extensions discussed

4



previously, and describe the limitations of the model. The use of an SPSS macro that

vastly simplifies the fitting of multilevel mediation and moderated mediation models is

then demonstrated using two example datasets, and the estimates obtained from the

macro are compared to other popular software packages. The thesis concludes with

an overview of practical and theoretical issues related to fitting the models discussed

throughout this thesis, as well as recommendations for future research.
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Chapter 2: Single-Level Mediation

A three variable statistical mediation model with continuous M and Y variables

is often estimated using the following equations:

Mi = d1 + aXi + e1i (2.1)

Yi = d2 + c′Xi + bMi + e2i (2.2)

Yi = d3 + cXi + e3i, (2.3)

where e1i ∼ N(0, σ2
1), e2i ∼ N(0, σ2

2), and e3i ∼ N(0, σ2
3). The regression coefficient

c quantifies the expected change in Y resulting from a one unit change in X and

is referred to as the total effect. In equation 2.2, c′ is the direct effect of X on Y

and quantifies the expected change in Y resulting from a one unit change in X while

holding M constant. The indirect effect, which quantifies the expected change in Y

through M resulting from a one unit change on X, is the product of a and b, ab.

When the model is estimated using OLS or maximum likelihood, the total effect is

equal to the sum of the indirect and direct effects. That is, c = ab+ c′.
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2.1 Methods of Inference about the Indirect Effect

Inference about the direct and total effects can be conducted by calculating the

ratio of the estimated effect to its standard error and comparing this ratio to the t dis-

tribution with the appropriate degrees of freedom. Inference about the indirect effect,

however, has become a topic of heavy debate and research within the methodolog-

ical literature (MacKinnon, Lockwood, & Williams, 2004; MacKinnon, Lockwood,

Hoffman, West, & Sheets, 2002; Hayes & Scharkow, 2013).

2.1.1 Causal Steps

The causal steps approach (Baron & Kenny, 1986) involves estimating equations

2.1 - 2.3. Mediation can be concluded if the following four conditions are satisfied:

1. The estimated total effect of X on Y , ĉ, is statistically significant.

2. The estimated effect of X on M , â, is statistically significant.

3. The estimated effect of M on Y controlling for X, b̂, is statistically significant.

4. The estimated direct effect of X on Y controlling for M , ĉ′, is not statistically

significant.

If conditions 1-3 are satisfied, but the direct effect is statistically significant, M is said

to partially mediate the relationship between X and Y . Unfortunately, the causal

steps approach has some major flaws. First, it relies heavily on tests of statistical

significance and has been show to have very low statistical power relative to alternative

inferential methods (Hayes & Scharkow, 2013). Second, researchers have argued that

condition 1 does not need to be met for a mediation process to operate (Hayes, 2009;
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Shrout & Bolger, 2002; Rucker, Preacher, Tormala, & Petty, 2011). It is possible

for the indirect and direct effect to be opposite in sign. If this is the case, yet both

effects are equal in strength, the addition of the effects (which is equal to the total

effect) would equal zero. Therefore, a meaningful indirect effect, or mediation process,

can exist even if the total effect is zero. And third, the causal steps approach makes

inferences about the indirect effect by testing each of the individual paths, as opposed

to the indirect effect itself. Consequently, confidence intervals for the indirect effect

cannot be constructed, so the precision of the estimated effect is unknown when the

causal steps method is used.

2.1.2 Method of Joint Significance

The test of joint significance directly overcomes the second problem with the

causal steps approach by relaxing the necessity of demonstrating a statistically sig-

nificant total effect. Specifically, mediation can be concluded using the method of

joint significance by demonstrating the statistical significance of â and b̂. The first

problem listed for the causal steps approach is also reduced with the method of joint

significance because now fewer pathways have to be determined significant. However,

the third problem is still present, as inference is made about â and b̂ separately, as

opposed to the indirect effect as a whole, and a confidence interval for ab cannot be

constructed.
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2.1.3 Sobel Test/Delta Method

The Sobel (1982) test involves calculating the standard error of the estimated

indirect effect, âb̂, using the delta method. The standard error is estimated as

σ̂âb̂ =
√
b̂2σ̂2

â + â2σ̂2
b̂

+ σ̂2
âσ̂

2
b̂

(2.4)

where â and b̂ are the estimated regression coefficients and σ̂â and σ̂b̂ are their standard

errors. A test statistic can then be calculated by dividing the estimated indirect effect

by its standard error. Assuming normality of the sampling distribution of âb̂, this

ratio is distributed as a standard normal random variable under the null hypothesis

of ab = 0, so a p-value can easily be calculated. Further, confidence intervals for the

indirect effect can be calculated using

âb̂± Zα
2
σâb̂ (2.5)

where Zα
2

is the value for which (α
2
)100 percent of the standard normal distribution

falls above. Although Equation 2.4 provides a good estimate of the standard error

of the indirect effect, many researchers have cautioned against its use for hypothesis

testing and confidence interval construction due to the non-normal sampling distri-

bution of the indirect effect (MacKinnon et al., 2004; Hayes & Scharkow, 2013). The

sampling distributions of both â and b̂ are assumed to be normally distributed and,

typically, the distribution of the product of two normally distributed random variables

is not normally distributed (Aroian, 1947). Therefore, comparing the test statistic to

a standard normal distribution or constructing symmetric confidence intervals using

the standard error is not appropriate. Several simulation studies have demonstrated

that the Sobel test is substantially less powerful than newer methods of inference that
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are discussed in the following sections (Hayes & Scharkow, 2013; Preacher & Selig,

2012).

2.1.4 Cases Bootstrap

The cases boostrap (Efron & Tibshirani, 1994) is a resampling procedure that has

been shown to be useful for making inferences when the sampling distribution of a

test statistic is either unknown or difficult to derive analytically. The cases bootstrap

involves repeatedly drawing a random sample with replacement of original sample

size n from the dataset and calculating the statistic in the resample. In the context

of mediation, âb̂ is calculated in every resample. This process is repeated k times,

with k being an arbitrarily large number (usually 1,000+).

The k values of âb̂ serve as an empirical sampling distribution of âb̂, and a

100(1 − α)% percentile-based confidence interval can be calculated using the 100(α
2
)

and 100(1 − α
2
) percentiles as the upper and lower limits, respectively. The indirect

effect can be considered statistically significant at level α if the confidence interval

does not contain zero.

2.1.5 Monte Carlo Method

The Monte Carlo method (Preacher & Selig, 2012) is another procedure that uses

data simulation to make inferences about an effect. The method uses information

about the sampling distribution of individual model parameters to make inferences

about combinations or transformations of parameters. Within the context of media-

tion, the Monte Carlo method utilizes the assumed sampling distributions of a and b

to obtain information about the sampling distribution of ab.
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The procedure is implemented by first estimating the regression coefficients and

their standard errors from Equations 2.1 and 2.2. Because the joint sampling dis-

tribution of a and b is assumed multivariate normal, the sampling distribution of

the indirect effect can be estimated by generating k x 2 random numbers from the

following multivariate normal distribution:[
a∗

b∗

]
∼MVN

([
â

b̂

]
,

[
σ̂2
â σ̂â,b̂

σ̂â,b̂ σ̂2
b̂

])
where â and b̂ are the estimated regression coefficients, σ̂2

â and σ̂2
b̂

are their estimated

sampling variances, σ̂â,b̂ is the estimated sampling covariance for a and b, and k is an

arbitrarily large number. Next, the k simulated values of a are multiplied element-

wise by the k simulated values of b to generate k values of a∗b∗. A confidence interval

for the indirect effect can be calculated using the k simulated values following the

procedure described using the cases bootstrap.

In addition to inference about indirect effects, the Monte Carlo method can be

used to construct confidence intervals for a number of other parameters with un-

known sampling distributions that are a transformation or combination of estimated

parameters with known sampling distributions. Further, using data simulation is of-

ten much faster than bootstrapping, as the model only has to be fit once. Therefore,

the Monte Carlo method is particularly useful for complex models. This method will

be relied upon heavily in later chapters of this thesis when the focus is on multilevel

modeling.
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2.2 Extending the Mediation Model

The simple mediation model can be extended in a number of ways, including the

addition of other variables as covariates, mediators, or moderators.

2.2.1 Adding Covariates

An important topic in all scientific fields is that of causal inference. While sta-

tistical mediation analysis is conducted to better understand causal processes, no

statistical method can prove causality. Rather, claims of causality rely on theory

and careful research design. Within such design is an inherent need to control for

confounding variables either through randomization or measuring and statistically

controlling for such variables. Because the underlying goal of statistical mediation

analysis is to provide support for causal processes, it is important to be able to include

additional variables, or covariates, in mediation models to control for their effects and

obtain an unconfounded indirect effect.

Adding covariates into a mediation model is simple and can be accomplished by

merely adding the covariates as additional predictors in each of the mediation equa-

tions1. This ensures that the linear effects of the covariates on M and Y are partialled

out of the estimated a and b regression coefficients, resulting in an unconfounded es-

timate of ab. The methods of inference described in the previous sections can then

be carried out using these new estimates.

1If the researcher has reason to believe that one or more of the covariates is only a potentially
confounding variable in one of the equations, the covariate may be excluded from the other equations.
If excluded, c 6= ab+ c′.
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2.2.2 Parallel Mediation Model

A parallel mediation model refers to a mediation model in which there is one

independent variable X, one dependent variable Y , and k mediators M1, M2, . . . , Mk

without a hypothesized causal pathway between the mediators. That is, the indirect

effects act in parallel to each other. The equations to estimate a parallel mediator

model that includes k mediators are:

M1i = d1 + a1Xi + e1i (2.6)

M2i = d2 + a2Xi + e2i (2.7)

...

Mki = dk + akXi + eki (2.8)

Yi = d(k+1) + b1M1i + b2M2i + · · ·+ bkMki + c′Xi + e(k+1)i (2.9)

Yi = d(k+2) + cXi + e(k+2)i (2.10)

Notice that c still quantifies the total effect without taking into account the mediators.

Further, c′ still represents the direct effect of X on Y , but rather than controlling for

the effect of a single mediator, it is controlling for the effects of all of the mediators.

Also, now there are m indirect effects, each of which is termed a specific indirect effect.

A specific indirect effect through a given mediator can be calculated by multiplying

the product of the paths from X to the given mediator and from that mediator to Y .

For example, the specific indirect effect of X on Y through M2 is quantified as a2b2.

And, because there are now additional mediators in the model, the specific indirect

effect is interpreted as the effect of X on Y through M2 holding all other mediators

constant. Unless the mediators are orthogonal, a specific indirect effect, as well as the

13



direct effect, will change with the inclusion of additional mediators. The summation

of all of the specific indirect effects,
∑m

i=1 aibi is labeled the total indirect effect. It is

the effect of X on Y through all of the mediators. The sum of the total indirect effect

and the direct effect is equivalent to the total effect. That is, c =
∑m

i=1 aibi + c′.

Sometimes the focus of a linear regression analysis is to test the hypothesis that

two effects are equal in strength and direction. The same hypothesis can be tested

about indirect effects with a parallel mediation model (Preacher & Hayes, 2008; Hayes,

2013). To test whether two indirect effects are significantly different from each other,

an empirical sampling distribution of the difference between two indirect effects can

be estimated using the bootstrap method presented earlier. That is, in each bootstrap

sample, the difference between the indirect effects can be calculated and confidence

intervals can be constructed using many samples. For example, to test whether

the indirect effect through M1 is significantly different than M2, a2b2 − a1b1 can be

calculated in each bootstrap sample. If the percentile-based confidence interval based

on many bootstrap samples does not contain zero, the null hypothesis that a1b1 = a2b2

can be rejected. It is important to note that this is a test of whether two effects differ,

which is not necessarily the same as whether one effect is stronger than another. It

can only be concluded that one effect is stronger than the other using this method if

they are each of the same sign. However, if the strength of the effects are equal but

opposite in sign, the null hypothesis would be rejected given a large enough sample

size.

As with the basic mediation model, covariates can be added by including them as

predictors in the appropriate equations. Further, the methods of inference about the
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indirect effects discussed previously easily generalize to inferences about the specific

indirect effects and the direct and total effects in multiple mediator models.

2.2.3 Moderated Mediation Model

Moderated mediation is a term used to describe a situation where an indirect

effect changes as a function of a fourth variable, W . In this case, W is referred to as

a moderator. Moderated mediation is important because it allows researchers to gain

an understanding of the boundary conditions for the causal process. That is, a causal

process may be situational, it may exist for only a subset of the population, or its

strength or direction may depend on an additional variable. As such, models combin-

ing mediation and moderation are commonly referred to as conditional process models

(Hayes, 2013). There are many different ways in which mediation and moderation

can be combined into a single model (Preacher, Rucker, & Hayes, 2007; Edwards

& Lambert, 2007; Hayes, 2013). A simple moderated mediation model where the

relationship between M and Y is conditional on W can be formulated as:

Mi = d1 + aXi + e1i (2.11)

Yi = d2 + c′Xi + b1Mi + b2Wi + b3MiWi + e2i (2.12)

Note that the equation for M remains the same as that for the simple mediation

model. The equation for Y , however, now includes W and the product of M and W ,

MW , as additional predictors. The inclusion of the product term is what allows the

relationship betweenM and Y to be conditional onW as demonstrated by rearranging

the equation for Y :

Yi = d2 + c′Xi + b2Wi + (b1 + b3Wi)Mi + e2i (2.13)
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When W = 0, the effect of M on Y , controlling for X, is quantified as b1. Yet, when

W = 1, the effect is quantified as (b1 +b3). This also demonstrates that b1 is no longer

a “main effect” of M , but rather a conditional effect. Conversely, b2 is a conditional

effect of W on Y , conditioning on M = 0.

Because the pathway from M to Y is conditional on W , the effect of X on Y

through M is also conditional on W . This effect can be quantified by multiplying the

effect of X on M by the effect of M on Y , controlling for X. As such, the indirect

effect is equal to a(b1 + b3W ) = ab1 + ab3W .

In the past, moderated mediation was concluded if the interaction coefficient, b3,

was statistically significant. However, a significant b3 is not necessarily indicative of

moderated mediation (Hayes, 2015). Instead, a hypothesis test should be conducted

on ab3, which has been termed the index of moderated mediation (Hayes, 2015). A

significant ab3 demonstrates that the indirect effect of X on Y through M changes

as a function of W . To conduct the inferential test, a percentile-based bootstrap

confidence interval can be constructed. A confidence interval that does not contain

zero would be evidence that the strength of the indirect effect changes systematically

as a function of the moderator.

Next, the moderation can be probed by calculating the indirect effect at different

values of W . These values are usually the mean and one standard deviation above

and below the mean, or different percentiles of W . A simple method to conduct such

an analysis is to center W at different values and re-conduct the analysis. That is,

using WC = W − w in place of W allows the calculation of the conditional indirect

effect when W = w as a(b1 + b3WC) = a[b1 + b3(W − w)] = ab1.
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The method discussed to test and probe conditional indirect effects can be gen-

eralized to models that include multiple mediators and/or moderators. And, as with

the other mediation models discussed, covariates can easily be included by adding

them as predictors to each equation.
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Chapter 3: Overview of Multilevel Models

Multilevel models (MLMs) are sometimes referred to as hierarchical models, ran-

dom effects models, random coefficient models, or mixed models. This is predomi-

nantly a result of MLMs being advanced in many different fields simultaneously. As

they were being developed, the major complication of implementing MLMs was on

parameter estimation, as the estimation process must be iterative because there are

no closed form solutions. Advancements in estimation algorithms, computing meth-

ods, and software implementation have led to a widespread use of MLMs in a variety

of research fields.

3.1 The Unconditional Model

Multilevel models are often expressed either as separate equations for the different

levels of the model, or as one combined model. The lower-level equation for a two-

level unconditional model with 1 level-1 predictor can be expressed as (Raudenbush

& Bryk, 2002):

Yij = d0j + b1jXij + eij (3.1)

where Yij and Xij represent the responses for the ith person in group j, d0j is the

intercept, b1j is the slope, and eij ∼ N(0, σ2). Note that this is equivalent to a single-

level model except for the j subscript for the intercept and slope indicating that these
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values are allowed to randomly vary across groups, and are therefore termed random

effects. The slope and intercepts themselves can be modeled. An unconditional model

means that there are no level-2 predictors. The unconditional level-2 models are:

d0j = d0 + u0j (3.2)

b1j = b1 + u1j (3.3)

where d0 and b1 represent the grand mean intercept and slope values, respectively,

and u0j and u1j represents group js deviations from the grand mean. Generally, the

variances of the deviations, notated as τ00 and τ11 respectively, are estimated rather

than the specific deviations. The random effects are assumed to be multivariate

normal with covariance matrix

T =

[
τ00 τ01

τ10 τ11

]
(3.4)

Further assumptions include that the E(u0j) = E(u1j) = 0 and Cov(u0j, eij) =

Cov(u1j, eij) = 0.

The combined form of the two-level model can be formulated by plugging the

intercept and slope equations into their respective spots in the lower-level model:

Yij = (d0 + u0j) + (b1 + u1j)Xij + eij (3.5)

Expanding and rearranging the terms to separate the fixed and random components

yields:

Yij = d0 + b1Xij︸ ︷︷ ︸
fixed

+u0j + u1jXij + eij︸ ︷︷ ︸
random

(3.6)
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which demonstrates that the response for the ith person in group j is a function of

the grand mean intercept and slope, the deviations from the grand mean intercept

and slope for group j, and an individual-specific residual.

3.2 Adding Level-2 Predictors

The researcher may wish to add level-2 predictors to explain such variability in

the intercept or slope. Adding one level-2 predictor, Wj, for the intercept and slope

results in the following level-2 equations:

d0j = d0 + g01Wj + u0j (3.7)

b1j = b1 + g11Wj + u1j (3.8)

Much like the intercept in a single-level regression equation, d0 and b1 now represent

the expected intercept and slope values for a group whose value for Wj = 0. The

systematic change in expected group intercept and slope values as a function of Wj

is represented by the level-2 regression coefficients g01 and g11. Now, the covariance

matrix of random effects, T, contains residual variances and covariances of the random

effects, after removal of variance explained by Wj. The level-2 residuals are assumed

multivariate normal with mean 0.

The combined model for this conditional two-level model with one level-1 predictor

and one level-2 predictor becomes:

Yij = (d0 + g01Wj + u0j) + (b1 + g11Wj + u1j)Xij + eij (3.9)
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Expanding and rearranging the terms yields:

Yij = d0 + g01Wj + b1Xij + g11WjXij︸ ︷︷ ︸
fixed

+u0j + u1jXij + eij︸ ︷︷ ︸
random

(3.10)

Note that the addition of Wj as a predictor of b1j acts as a moderator, in that the

effect of Xij on Yij changes as a function of Wj. Because the relationship (or slope)

between Xij and Yij changes as a function of Wj, the interaction between Xij and Wj

is termed a cross-level interaction.

3.3 The General Model

The two-level model presented in the previous section can be expanded to include

additional level-1 and level-2 predictors. The general model with Q level-1 predictors

and Sq level-2 predictors for each random effect can be formulated as (Raudenbush

& Bryk, 2002):

Yij = d0j + b1jX1ij + b2jX2ij + · · ·+ bQjXQij + eij (3.11)

d0j = d0 + g01W1j + g02W2j + · · ·+ g0sqWsqj + u0j (3.12)

bqj = bq + gq1W1j + gq2W2j + · · ·+ gqsqWsqj + uqj (3.13)

where eij ∼ N(0, σ2), and the random effects uqj are multivariate normal with mean

0 and Var(uqi) = τqq. The random effects are collected into covariance matrix T

with dimensions (Q + 1) by (Q + 1). It is important to note that any bqj can be

specified as fixed by specifying bqj = bq or nonrandomly varying by specifying bqj =

bq+gq1W1j+gq2W2j+· · ·+gqsqWsqj. For each of these specifications, there is no longer

a random component. Further, each bqj can have a unique set of level-2 predictors.
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The inclusion of a level-two predictor for one bqj does not necessitate the inclusion of

the predictor for the rest.

3.4 Centering Predictors

Considerable attention has been devoted to parameter interpretations using dif-

ferent centering strategies for level-1 predictors (Kreft, De Leeuw, & Aiken, 1995;

Hofmann & Gavin, 1998; Raudenbush & Bryk, 2002; Enders & Tofighi, 2007). There

are two methods that are popular, each with their own benefits and limitations. These

methods are grand-mean centering and centering within group.

3.4.1 Grand-Mean Centering

Grand-mean centering involves subtracting the overall mean of a level-1 predictor

from each individual’s score on that predictor. In behavioral research, variables often

do not have a meaningful value for zero, which makes the intercept of a regression

equation meaningless. By grand-mean centering, the intercept for group j in an

unconditional model can now be interpreted as the expected value for a person in

group j who has a value equal to the grand-mean on that variable. Further, grand-

mean centering is a linear transformation, so the ordering between two individuals’

scores remains the same, regardless of what group they are in. Also, the variance of

the random intercepts, τ00, is the intercept variance after adjusting for differences on

the Level-1 predictor. Enders and Tofighi (2007) recommend grand-mean centering

level-1 predictors when the focus of the analysis is on a level-2 predictor, but the

researcher wants to control for individual differences on the level-1 predictors.
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3.4.2 Centering Within Group

When the focus is on level-1 predictors, grand-mean centering is not recommended

(Raudenbush & Bryk, 2002; Enders & Tofighi, 2007). The coefficients for level-1 pre-

dictors cannot easily be interpreted when grand-mean centering is used because they

are contaminated by between-group effects. That is, the coefficients are a weighted

average of within-group and between-group effects. To remove between-group effects,

it is recommended that level-1 predictors are centered within group. This involves

subtracting the group mean of a level-1 predictor from each individuals’ score on that

predictor. This centers each group’s mean at 0 and the intercept for group j in an

unconditional model is now interpreted as the expected response for individuals in

group j who have their average group response on the level-1 predictors. The coeffi-

cients for the level-1 predictors now represent the within-group relationship between

the predictor and the outcome. Centering within group is also recommended when

the focus of the analysis is on a cross-level interaction because the interest is on the

systematic change of the within-group relationship between the level-1 predictor and

the outcome as a function of the level-2 predictor.

3.4.3 Contextual Effects

Sometimes a researcher is interested in the within-group relationship between a

level-1 predictor and an outcome as well as the between-group relationship. Scenarios

in which the between-group effect differs from the within-group effect are labeled

contextual effects (Raudenbush & Bryk, 2002). The between-group relationship can

be tested by adding the group mean of the level-1 predictor as a level-2 predictor

for the random intercept. Although the model will be algebraically equivalent if the
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level-1 predictor is either grand-mean centered or centered within group (Kreft et al.,

1995; Enders & Tofighi, 2007), it is recommended that centering within group is used

to ease the interpretation of the parameters.

A two-level model with one within-group centered level-1 predictor and the group

mean on the predictor added as a level-2 predictor of the intercept is:

Yij = b0j + b1j(Xij −X .j) + eij (3.14)

d0j = d0 + g01X .j + u0j (3.15)

b1j = b1 + u1j (3.16)

where X .j is the mean of Xij for group j. The combined model is:

Yij = (d0 + g01X .j + u0j) + (b1 + u1j)(Xij −X .j) + eij (3.17)

which can be expanded and rearranged as:

Yij = d0 + g01X .j + b1(Xij −X .j)︸ ︷︷ ︸
fixed

+u0j + u1j(Xij −X .j) + eij︸ ︷︷ ︸
random

(3.18)

The average within-group effect of Xij on Yij is represented as b1 with variance

Var(b1j) = Var(u1j) = τ11, and the between group-effect is represented as g01. Differ-

ences between b1 and g01 indicate the presence of a contextual effect.

3.5 Model Building

An important consideration within statistical modeling is the method in which

to build the model. This topic is particularly relevant to multilevel modeling due

to practical issues with estimation as well as model specifications at different levels.
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Although the technical issues associated with estimating multilevel modeling param-

eters are omitted from this thesis, a brief overview is provided so as to make methods

for performing statistical tests on individual parameters clear.

3.5.1 Estimation Methods

From a frequentist perspective, there are two popular estimation methods for

multilevel models. The first is Full Maximum Likelihood (ML) and the second is Re-

stricted Maximum Likelihood (REML). Both methods involve obtaining the param-

eter estimates that maximize the likelihood of the data conditional on the parameter

values. The difference between the two methods is in how the fixed effects are treated

when estimating the variance and covariance parameters. With ML, these estimates

are conditional on the point estimates of the fixed effects, while REML corrects for

the uncertainty in the estimation of the fixed effects (Raudenbush & Bryk, 2002).

Consequently, the variance parameter estimates are downwardly biased with ML, but

the difference between ML and REML estimates is usually small when the number

of level-2 units is large.

3.5.2 Testing Fixed and Random Effects

For fixed effects, tests of individual parameters follow similarly as tests of OLS

regression parameters, where the coefficient is divided by its standard error and com-

pared to the t-distribution, with the appropriate degrees of freedom. In the MLM

framework, however, degree of freedom calculation is more complex and some soft-

ware programs (e.g., SPSS) make degree of freedom corrections. Usually, substantive

differences will not arise from these different methods.
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For variance and covariance parameters, tests based on the ratio of the parameter

estimate to its standard error are even more problematic because the asymptotic

properties that serve as the underlying justification for such tests generally do not

hold. Many researchers have cautioned about using this method, and some software

programs purposefully omit the standard errors for (co)variance parameter to deter

users from using them for calculating test statistics (e.g., the lme4 package for R).

An alternative approach to testing parameter estimates is to use a likelihood-ratio

test statistic, which is calculated using the deviances of nested models (Raudenbush &

Bryk, 2002). The deviance of a given model is −2 times the maximum log-likelihood

of the model. Under the null hypothesis that the additional parameters estimated

in the unrestricted model are equal to their constrained value (usually 0) in the

constrained model, the difference in deviances between nested models is distributed

as χ2 with degrees of freedom equal to the difference of parameters between the two

models. An extreme test statistic is indication that the constraints imposed on the

restricted model results in significantly worse model fit than the unrestricted model.

For example, if the covariance between two random effects was constrained to zero

in a model, and the same model was fit again with the only difference being that the

covariance was freely estimated, a large difference between the deviances of these two

models would indicate that zero may not be a plausible value for the covariance.

The likelihood-ratio test can be used to simultaneously test fixed effects and vari-

ance/covariance parameters if ML is used. If REML is used, only variance/covariance

parameters can be tested, and the fixed effect specification must remain the same for

both models (Raudenbush & Bryk, 2002). While the likelihood-ratio test is a more

reliable method for tests of variance parameters than comparing the estimate to its
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standard error, it should be noted that the test can be conservative since the null

hypothesis variance value of zero lies on the boundary of the parameter space which

results in the true null distribution being a mixture of χ2 distributions (Pinheiro &

Bates, 2000; Raudenbush & Bryk, 2002).

3.5.3 Non-nested Model Comparison

In addition to the likelihood-ratio test for comparing nested models, there are mul-

tiple model fit indices that can be used to compare non-nested models. Two popular

indices include the AIC (Akaike, 1974) and the BIC (Schwarz, 1978). These indices

penalize the inclusion of additional parameters that do not meaningfully contribute

to improved model fit, and smaller AIC and BIC values are preferred.

3.5.4 Order of Model Building

Because of the complexities involved with parameter estimation, it is often rec-

ommended to start with a small subset of the fully hypothesized model and build

it up using the tests and model fit indices described previously. Because the level-2

model relies heavily on the specification of the level-1 model (Raudenbush & Bryk,

2002), it is also recommended that level-1 model building should precede level-2 model

building. Therefore, the focus should begin on determining which level-1 predictors

should be included, and whether they should be allowed to vary across level-2 units.

Then, level-2 predictors of the random intercept should be specified before cross-level

interactions.
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Chapter 4: Multilevel Mediation

Due to the popularity of statistical mediation analysis and the growing preva-

lence of nested data structures, the basic mediation model has been adapted to the

multilevel context. Multilevel mediation analysis can be classified as any mediation

analysis that takes into account the nesting of hierarchical data. In some instances

the hierarchy is of direct importance, where it may be hypothesized that a level-2

variable causes a level-1 variable through either a level-2 or level-1 variable, or the

causal effects of level-1 variables are thought to differ across level-2 units. In other

cases, the hierarchy may be a nuisance, where the researcher is interested in a medi-

ation analysis involving variables all measured at one level, but the researcher needs

to account for the dependencies in the data that result from the nested structure.

Multilevel mediation models have been categorized either as upper- or lower-level

mediation, or by using a number system to describe the level at which each variable is

measured. There have been some inconsistencies in regards to classifying upper-level

mediation as some researchers have suggested that the model fits this classification if

X is measured at level 2, while others have termed upper level mediation for when

M is measured at level 2. Therefore, the number system in which the level at which

X, M , and Y are ordered will be used here as it is unambiguous.
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There is a relatively large body of work on 2-1-1 and 2-2-1 multilevel media-

tion models. This includes the work of Raudenbush and Sampson (1999), Krull and

MacKinnon (1999, 2001), Pituch, Stapleton, and Kang (2006), and Pituch and Sta-

pleton (2008, 2012). Because the independent variable is a level-2 predictor in each

of these models, it is often stated that only-between group indirect effects may be

of interest (Zhang et al., 2009). A between-group indirect effect is the effect of the

group differences in X on Y through M . Pituch and Stapleton (2012) argue, however,

that within-group effects may still be of interest, depending on the research question.

A within-group indirect effect is the (average) indirect effect of X on Y through M

within each level-2 unit. Nevertheless, in each of these model formulations, slopes

were specified as fixed effects and, therefore, the indirect effects were also fixed.

4.1 1-1-1 Mediation

The existing literature on the 1-1-1 mediation model is a bit more limited, but

the model has recently been gaining in popularity. The 1-1-1 model is different

than the 2-2-1 and 2-1-1 models in that random effects can play a more interesting

role, and the indirect effect may randomly vary across the level-2 units. 1-1-1 models

were discussed in Krull and MacKinnon (2001) and Pituch, Whittaker, and Stapleton

(2005), but the slopes were not specified as random. Kenny et al. (2003) were the first

to formally document such a model with random slopes, but were limited to a piece-

wise approach. Bauer et al. (2006) proposed a method of simultaneously estimating

the M and Y equations to allow for the estimation of all appropriate parameters

necessary to calculate and make inferences about the indirect effect. Both studies

29



described adding level-2 predictors to moderate the indirect effect, which is a topic

that will be discussed further in this thesis.

4.1.1 Kenny et al. (2003)

Following similar notation of Kenny et al. (2003) and Bauer et al. (2006), the lower

level equations for the 1-1-1 mediation model with random effects can be formulated

as:

Yij = d0j + cjXij + eij (4.1)

Mij = dMj + ajXij + eij (4.2)

Yij = dY j + c′jXij + bjMij + eij (4.3)

Where d represents random intercepts, c represents the total effect of X on Y , a

represents the effect of X on M , c′ represents the effect of X on Y controlling for M ,

and b represents the effect of M on Y controlling for X. The eij are independent and

normally distributed random errors. The level-2 equations for the slopes presented

by Kenny et al. (2003) are:

cj = c+ u0j (4.4)

aj = a+ u1j (4.5)

bj = b+ u2j (4.6)

c′j = c′ + u3j (4.7)

That is, unit j’s slope is a function of the grand mean slope across all level-2 units

as well as group j’s deviation from the grand mean. The equations for the random

intercepts follow a similar form, where they contain the grand mean intercept and

30



group deviations from the mean. The random effects are assumed to be multivariate

normal with mean 0.

Because the random slopes are allowed to covary, the expected value of the indirect

effect ajbj is not equal to the product of the expected value of aj and bj (Goodman,

1960), but rather

E(ajbj) = ab+ σaj ,bj (4.8)

where σaj ,bj is the covariance between aj and bj. This suggests that, if there is

covariance between aj and bj, there may be a non-zero expected indirect effect even

if the expected value of aj and bj are each zero. Therefore, Kenny et al. (2003) state

that the estimation and inclusion of σaj ,bj into the calculation of the indirect effect is

crucial.

The expected value for the total effect follows as:

E(cj) = c′ + ab+ σaj ,bj (4.9)

which eliminates the need to estimate the total effect using equation 4.1.

Kenny et al. (2003) derived the variance of the indirect and total effects assuming

multivariate normality as:

V ar(ajbj) = b2σ2
aj

+ a2σ2
bj

+ σ2
aj
σ2
bj

+ 2abσaj ,bj + σ2
aj ,bj

(4.10)

and

V ar(ajbj+c
′
j) = b2σ2

aj
+a2σ2

bj
+σ2

aj
σ2
bj

+2abσaj ,bj+σ
2
aj ,bj

+σ2
c′j

+2bσaj ,c′j+2aσbj ,c′j (4.11)
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4.1.2 Bauer et al. (2006)

The major limitation of Kenny et al. (2003) is their procedure for estimating σaj ,bj .

Because aj and bj are from separate equations, single-equation MLM methods do not

provide an estimate of σaj ,bj . Therefore, Kenny et al. (2003) proposed a piece-wise

approach to obtaining such an estimate. Bauer et al. (2006) worked around the prob-

lem by demonstrating how the mediation equations can be estimated simultaneously

in one equation, which allows the estimation of σaj ,bj . Further, Bauer et al. (2006)

derived the sampling variances of the average indirect and total effects and more thor-

oughly developed the addition of a level 2 predictor as a moderator of the indirect

effect.

Bauer et al. (2006) proposed combining equations 4.2 and 4.3 into a single equation

by stacking M and Y and creating indicator variables to toggle between the equations.

They stacked M and Y into a variable labeled Z and created indicators SM and SY ,

where SM equaled 1 and SY equaled 0 when Z referred to M . When Z referred to Y ,

SM equaled 0 and SY equaled 1. This permits the lower level equation to be equal

to:

Zij = SMij
(dMj

+ ajXij) + SYij(dYj + bjMij + c′jXij) + eZij (4.12)

which can be expanded as:

Zij = dMj
SMij

+ aj(SMij
Xij) + dYjSYij + bj(SYijMij) + c′j(SYijXij) + eZij (4.13)

Therefore, the model can be estimated by specifying random slopes for SMij
, SYij ,

(SMij
Xij), (SYijMij), and (SYijXij), and not estimating an intercept. Further, the

variance of the errors for the M and Y equations should be allowed to differ depending
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on whether Z is a value of M or Y . Specifying the model in this manner allows the

estimation of the covariance matrix of all random effects.

Bauer et al. (2006) also derived the sampling variance of the estimate of the

average indirect and total effects as:

V ar(âb̂+ σ̂aj ,bj) = b2V ar(b̂) + a2V ar(â) + V ar(â)V ar(b̂)

+2abCov(â, b̂) + Cov(â, b̂)2 + V ar(σ̂aj ,bj)

(4.14)

and

V ar(âb̂+ σ̂aj ,bj + ĉ′) = b2V ar(b̂) + a2V ar(â) + V ar(â)V ar(b̂)

+2abCov(â, b̂) + Cov(â, b̂)2 + V ar(ĉ′)

+2bCov(â, ĉ′) + 2aCov(b̂, ĉ′) + V ar(σ̂aj ,bj)

(4.15)

where V ar and Cov represent the asymptotic sampling variance and covariance, re-

spectively, of the estimates. The estimated sampling variances can be used to con-

struct confidence intervals or hypothesis tests on the average indirect and total effects.

For example, a 95% confidence interval for the average indirect effect could be calcu-

lated as:

(âb̂+ σ̂aj ,bj)± 1.96[ ˆV ar(âb̂+ σ̂aj ,bj)]
1/2 (4.16)

Unfortunately, as with single level mediation, the sampling distribution of the in-

direct effect is not normally distributed, which makes the use of symmetric confidence

intervals around the effect inappropriate. To obtain an asymmetric confidence interval

for the average indirect effect, the Monte Carlo method described in the single-level

mediation section can be applied by simulating k values of a∗, b∗, and σ∗aj ,bj from the
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multivariate distribution (Bauer et al., 2006): a∗

b∗

σ∗aj ,bj

 ∼MVN

( â

b̂
σ̂aj ,bj

 ,
 σ̂2

â σ̂â,b̂ 0

σ̂â,b̂ σ̂2
b̂

0

0 0 σ̂2
σ̂a,b

)

Then, formula 4.8 can be applied to each set of simulated values to construct an

empirical sampling distribution of the average indirect effect, and percentiles can be

used as endpoints of a confidence interval. Constructing a Monte Carlo confidence

interval for the total effect can be done using the same method, where the mean

vector is expanded to included the estimated c′ value, and the covariance matrix is

expanded to include the sampling variance of c′ and its sampling covariance with the

other estimates.

Adding predictors of aj, bj, and c′j were further discussed by Bauer et al. (2006).

That is, the Level-2 equations, with the addition of level-2 predictor W now become:

aj = a+ ga1Wj + uaj (4.17)

bj = b+ gb1Wj + ubj (4.18)

c′j = c′ + gc′1Wj + uc′j (4.19)

They recommend that W should also be added as a predictor of the random intercepts

as well. This is equivalent to lower order terms being added to an interaction equation

in OLS regression. Therefore, the intercept equations now become:

dMj
= dM + gdM1Wj + udMj

(4.20)

dYj = dY + gdY 1Wj + udY j (4.21)
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Bauer et al. (2006) argue that moderated mediation can be concluded if W is a

significant predictor of aj and/or bj. These can be tested individually, or as a joint

test. When W is included as a predictor of the slopes, the average indirect effect is

now conditional on the value of W . When W = 0, the average conditional indirect

effect can be formulated as (Bauer et al., 2006):

E(ajbj|Wj = 0) = ab+ σuaj ,ubj (4.22)

with sampling variance:

V ar(âb̂+ σ̂uaj ,ubj) = b2V ar(â) + a2V ar(b̂) + V ar(â)V ar(b̂)

+2abCov(â, b̂) + Cov(â, b̂)2 + V ar(σ̂uaj ,ubj)

(4.23)

This equation is equivalent to 4.14, except the parameters are conditional on Wj = 0.

The average conditional indirect effect at different values of W can be calculated

by centering W around the value of interest and refitting the model. That is,

E(ajbj|Wj = w) can be calculated by using WC = W − w in place of W (Bauer

et al., 2006). This is analogous to the simple slopes strategy of probing interaction

effects in moderated regression.
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Chapter 5: Extending Multilevel Mediation Models

Although the methods described by Kenny et al. (2003) and Bauer et al. (2006)

have aided many researchers in understanding and implementing 1-1-1 multilevel

mediation models, they are not without their shortcomings. The aim of this chapter,

and the main contribution of this thesis, is to address and mitigate some of these

shortcomings, as well as provide advancements in the formulation and testing of a

number of interesting effects that can be modeled using MLM.

First, while recent research on multilevel mediation has focused on disentangling

between- and within-group indirect effects, this has yet to be formulated in the stacked

equation method explained by Bauer et al. (2006) to allow for the simultaneous test-

ing of these effects using traditional MLM software. Without this model formulation,

the parameter estimates necessary to quantify within-group indirect effects cannot

be obtained. Therefore, this section begins with an overview of the decomposition of

within-group and between-group indirect effects, and an explanation of how to for-

mulate the model using a single equation. Further, comparisons between the within-

group and between-group indirect effects are examined, and a method for testing

the difference between these effects is described. The inclusion of covariates is also

addressed in this formulation.
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Next, the single-equation formulation is expanded to include multilevel models

with multiple mediators. As in the single-level multiple mediator case, tests of differ-

ences between indirect effects can be conducted, but now these comparisons can be

made at both levels. An interesting scenario unfolds in a multiple mediator model

where one or more of the paths in one indirect effect are permitted to covary with

those from another. In this situation, the random specific indirect effects may co-

vary. Derivations are provided, and the substantive interpretation of the covariance

is explained.

Finally, more sophisticated tests of multilevel moderated mediation are adapted

from the single-level moderated mediation literature (Hayes, 2015) and applied to

scenarios where a level-2 variable is a predictor of aj and/or bj. That is, this thesis is

the first to apply the index of moderated mediation (Hayes, 2015) to the multilevel

context. Because the within-group and between-group indirect effects have been

separated, each of these can be moderated by a level-2 variable. As an interesting

case, the between group effect of X or M can serve as a moderator of the within-group

indirect effect of X on Y through M .

5.1 Decomposing Between and Within Effects

As described previously, when level-1 predictor variables are grand mean centered

or left uncentered, the estimated coefficients are a mix of between-group and within-

group effects. Therefore, if between and within effects differ, the coefficients are not

easily interpreted. Consequently, the indirect effect calculated using such methods

are ambiguous in meaning. To disentangle the effects in regular multilevel models

and multilevel mediation models, some have suggested using within-group centering
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and adding the group means as level-2 predictors of the intercept (Zhang et al., 2009).

The lower level equations for the 1-1-1 multilevel mediation model using this centering

method become:

Mij = dMj + aj(Xij −X .j) + eij (5.1)

Yij = dY j + c′j(Xij −X .j) + bj(Mij −M .j) + eij (5.2)

where X .j and M .j represent the observed group means of X and M , respectively.

The upper level equations are:

dMj = dM + aBX .j + uMj (5.3)

dY j = dY + c′BX .j + bBM .j + uY j (5.4)

aj = aW + uaj (5.5)

bj = bW + ubj (5.6)

c′j = c′W + uc′j (5.7)

which disentangles the within-group effects from the between-group effects, denoted

with the subscripts W and B, respectively. As a result, one can estimate the within-

group and between-group indirect effects separately. The expected within-group in-

direct effect can be calculated following methods similar to those provided by Kenny

et al. (2003) and Bauer et al. (2006) using equation 4.8, where now aj and bj refer

to the random slopes for the centered Level-1 variables. In addition, the variance of

within-group indirect effects across groups can be calculated using formula 4.10. Fur-

ther, an inferential test of the average within-group indirect effect can be conducted

using the Monte Carlo method discussed previously.
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An estimate of the between-group indirect effect can be calculated as (Tofighi,

West, & MacKinnon, 2013):

E(aBbB) = aBbB (5.8)

which follows traditional methods of calculating indirect effects because the between-

group effects are fixed and, thus, cannot covary. The asymptotic sampling variance

of the between-group indirect effect can be computed using the delta method as:

V ar(âB b̂B) = b2
BV ar(âB) + a2

BV ar(b̂B) + V ar(âB)V ar(b̂B) (5.9)

However, the use of V ar(âB b̂B) in the construction of confidence intervals or hypoth-

esis tests is not recommended due to the non-normality of the sampling distribution

of aBbB. Instead, a Monte Carlo confidence interval can be calculated by simulating

k values of a∗B and b∗B from the multivariate distribution:[
a∗B
b∗B

]
∼MVN

([
âB
b̂B

]
,

[
σ̂2
âB

σ̂âB b̂B
σ̂âB b̂B σ̂2

b̂B

])

5.1.1 Interpretation of Between- and Within-group Indirect
Effects

Between-group and within-group indirect effects are orthogonal and conceptually

distinct. The within-group indirect effect is the expected difference in Y through M

for two level-1 units in the same level-2 unit who differ by one unit on X. That is, it

is the effect of X on Y through M within a particular level-2 unit, so the focus is on

the relative standing of level-1 units within level-2 units. Of interest is the average

and variability of within-group indirect effects across level-2 units.

The between-group indirect effect, on the other hand, is the expected difference in

the group aggregate of Y through the group-aggregate of M for two level-2 units that

39



differ by one-unit in the group-aggregate of X. Between-group effects can be difficult

to understand or easy to misinterpret. For example, Preacher, Zyphur, and Zhang

(2010) make use of an example differentiating individual efficacy and the collective

efficacy of a group. They argue that, while the aggregated individual efficacy for a

given group is in fact a group-level variable (in that it only varies between groups),

the focus is still at the individual level and the meaning of such a variable is likely to

differ from the meaning of a variable characterizing the dynamics of the self efficacy

of the group as a collective. Therefore, caution is recommended when interpreting

the meaning of between-group effects.

5.1.2 Indirect Contextual Effect

Recall that a difference between the within-group and between-group effect of a

variable is termed a contextual effect. Such a difference may also arise between a

within-group and a between-group indirect effect, and this difference may be sub-

stantively meaningful. I call this an indirect contextual effect, which is defined as the

expected difference in Y through M for two level-1 units that have the same value of

X but belong to level-2 units that differ by one unit in the group aggregate of X.

To test for the presence of an indirect contextual effect, a Monte Carlo confi-

dence interval can be constructed around the difference between the within-group

and between-group indirect effects, aBbB − (aW bW + σaj ,bj). A confidence interval

that does not include zero would suggest the presence of an indirect contextual effect.

5.1.3 Using Stacked Equations

To obtain all of the parameter estimates necessary to calculate the within-group

and between-group indirect effects, the model can be combined as a single equation
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following the method utilized by Bauer et al. (2006). The lower-level equation under

this formulation is:

Zij = SMij
[dMj

+aj(Xij−X .j)]+SYij [dYj +bj(Mij−M .j)+c′j(Xij−X .j)]+eZij (5.10)

where again SMij
and SYij are indicator variables, and the upper-level equations are

5.3 - 5.7. Therefore, the combined model is:

Zij = SMij
[dM + aBX .j + uMj + (aW + uaj)(Xij −X .j)]

+SYij [dY + c′BX .j + bBM .j + uY j + (bW + ubj)(Mij −M .j)

+(c′W + uc′j)(Xij −X .j)] + eZij

(5.11)

Expanding the terms within the brackets yields:

Zij = SMij
[dM + aBX .j + uMj + aW (Xij −X .j) + uaj(Xij −X .j)]

+SYij [dY + c′BX .j + bBM .j + uY j + bW (Mij −M .j) + ubj(Mij −M .j)

+c′W (Xij −X .j) + uc′j(Xij −X .j)] + eZij

(5.12)

Finally, distributing SMij
and SYij and rearranging the terms yields:

Zij = dM [SMij
] + dY [SYij ] + aB[SMij

X .j] + c′B[SYijX .j] + bB[SYijM .j]

+aW [SMij
(Xij −X .j)] + c′W [SYij(Xij −X .j)] + bW [SYij(Mij −M .j)]

+uaj[SMij
(Xij −X .j)] + uc′j[SYij(Xij −X .j)] + ubj[SYij(Mij −M .j)]

+uMj[SMij
] + uY j[SYij ] + eZij

(5.13)

The terms in the brackets represent variables that must be created in the dataset.

These include the two indicator variables SMij
and SYij , as well as the product of

the indicator variables with level-1 within-cluster centered variables and the observed

cluster means. Random slopes for the indicator variables and the product between the

indicator variables and centered level-1 predictors should be specified, as well as fixed
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effects for the product of the indicator variables and group means. Further, there

should be no intercept, and the error variance should be allowed to differ depending

on which equation Z represents.

5.1.4 Adding Covariates

As with single-level mediation models, the omission of confounding variables, or

covariates, can bias the estimated indirect effects and muddle causal interpretations.

Recently, there has been attention brought to the omission of level-2 and level-1

covariates in 1-1-1 multilevel mediation models (Tofighi et al., 2013; Tofighi & Kelley,

2016).

Tofighi et al. (2013) indicate that the covariance between the random intercepts

for the M and Y equations may signal that a level-2 confounding variable has been

omitted from the intercept equations. Further, the covariance between aj and bj may

indicate that the slopes are both influenced by an omitted variable. Preacher (2015)

recommends, however, that the covariance term, σaj ,bj , should remain in equation 4.8

and potential confounding effects should be explored.

Adding level-2 covariates to the random intercept equations can easily be accom-

plished by multiplying the covariate value by the respective indicator variables. For

example, level-2 covariate G can be included by adding the terms GjSMij
and GjSYij

as predictors in Equation 5.13. The coefficients that are estimated for each of these

variables represent the effect of G on M and Y , respectively, while holding all other

variables constant. Consequently, the estimated between-group indirect effect will be

the estimated effect when holding G constant.
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The model can also easily be expanded to include level-2 predictors of the random

slopes, but the details are left to a later section on adding moderators, as a predictor

of a random slope acts as a moderator.

Tofighi and Kelley (2016) explored how omitted level-1 variables may impact

parameter estimates for 1-1-1 multilevel mediation models. They found that both

between-group and within-group indirect effect estimates may be affected. They also

propose a sensitivity analysis to assess such a confounding effect, but the technique

is beyond the scope of the present thesis.

Nevertheless, inclusion of confounding level-1 variables is undoubtedly important.

They can easily be added to the model provided in equation 5.13. It is recommended

that the centering strategy of level-1 covariates follows that of other level-1 predictors

to gain an accurate estimate of the between- and within-group effects of the covariates.

That is, level-1 covariates should be within-group centered, and the observed group

means should be added as level-2 predictors of the random intercepts. In equation

5.13, this can be accomplished for an arbitrary level-1 covariate V by multiplying

(Vij−V .j) and V .j by the indicators SMij
and SYij . Then, random slopes are specified

for SMij
(Vij − V .j) and SYij(Vij − V .j) and fixed effects are specified for SMij

V .j and

SYijV .j. Of course, if the effect of V is not expected to vary across level-2 units, the

slopes can be specified as fixed rather than random. Now, the within-group indirect

effect is the estimated effect after controlling for Vij and the between-group indirect

effect is the estimated effect after controlling for V .j. Confidence intervals for these

indirect effects follow previously described procedures.
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5.2 More Than One Mediator

A model containing multiple mediators was hinted at by Bauer et al. (2006), but

never developed. However, the method of stacking equations that they used can be

adapted to allow for multiple mediators. The lower level equations for a 1-1-1 parallel

mediation model with k mediators is:

M1ij = dM1j + a1j(Xij −X .j) + eij (5.14)

M2ij = dM2j + a2j(Xij −X .j) + eij (5.15)

...

Mkij = dMkj + akj(Xij −X .j) + eij (5.16)

Yij = dY j + c′j(Xij −X .j) + b1j(M1ij −M1.j)

+b2j(M2ij −M2.j) + · · ·+ bkj(Mkij −Mk.j) + eij

(5.17)

The upper level equations, with no level-2 predictors except observed group means

are:

dM1j = dM1 + aB1X .j + uM1j (5.18)

dM2j = dM2 + aB2X .j + uM2j (5.19)

...

dMkj = dMk + aBkX .j + uMkj (5.20)

dY j = dY + c′BX .j + bB1M1.j + bB2M2.j + · · ·+ bBkMk.j + uY j (5.21)

a1j = aW1 + ua1j (5.22)
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a2j = aW2 + ua2j (5.23)

...

akj = aWk + uakj (5.24)

b1j = bW1 + ub1j (5.25)

b2j = bW2 + ub2j (5.26)

...

bkj = bWk + ubkj (5.27)

c′j = c′W + uc′j (5.28)

With k mediators, there are k specific within-group and between-group indirect effects

and one within-group and between-group direct effect. The average specific within-

group indirect effect that quantifies the within-group indirect effect of X on Y through

Mh is calculated as:

E(aWhbWh) = aWhbWh + σahj ,bhj (5.29)

and the corresponding specific between-group indirect effect is calculated as:

E(aBhbBh) = aBhbBh (5.30)

Due to the covariance between the slopes being a necessary component of the cal-

culation of specific indirect effects, the equations must be stacked to estimate all

necessary parameters. Because there are now k+ 1 lower-level equations, to combine

all equations into one requires k + 1 indicator variables, SM1ij
, SM2ij

, . . . , SMkij
, and

SYij where SM1ij
= 1 and all other indicators equal 0 when Z refers to M1, SM2ij

= 1

and all other indicators equal 0 when Z refers to M2, and so forth. Thus, the stacked

single lower-level equation to represent the 1-1-1 mediation model with m parallel

45



mediators is:

Zij = SM1ij
[dM1j + a1j(Xij −X .j)] + SM2ij

[dM2j + a2j(Xij −X .j)]

+ · · ·+ SMkij
[dMkj + akj(Xij −X .j)]

+SYij [dYj + b1j(M1ij −M1.j) + b2j(M2ij −M2.j)

+ · · ·+ bkj(Mkij −Mk.j) + c′j(Xij −X .j)] + eZij

(5.31)

The upper-level equations remain as before. It should be noted that, as with co-

variates, any within-group effects not expected to vary across level-2 units can be

specified as fixed. This is done for parsimony, as well as practicality, as computa-

tional burden and nonconvergence issues increase with each additional random effect.

Once all parameters are estimated, inference about the specific within and between

indirect effects follow the Monte Carlo procedures discussed previously. Of course,

a specific indirect effect is interpreted as the indirect effect of X on Y through the

given mediator, while holding all other mediators constant. This conforms to the

interpretation of a specific indirect effect in a single-level parallel mediation model.

5.2.1 Indirect Effect Contrasts

Tests for differences between specific indirect effects can be conducted similarly

to how they are for single-level multiple mediator models. Now, however, there can

be indirect effect contrasts at each level. For example, in a two-mediator model the

within-group indirect effects may statistically differ from each other, even though the

between-group indirect effects may not.

5.2.2 Covariance Between Random Indirect Effects

If at least one of the paths from one indirect effect is permitted to covary with a

path from another, then the random indirect effects may covary. A positive covariance
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between indirect effects would suggest that lower-level units that have higher than

average within-group indirect effects through one mediator tend to have higher than

average within-group indirect effects through the other. Following derivations of the

covariance between the products of jointly normally distributed random variables

(Bohrnstedt & Goldberger, 1969), the covariance between random indirect effects i

and j is:

Cov(aibi, ajbj) = E(ai)E(aj)Cov(bi, bj) + E(ai)E(bj)Cov(bi, aj)

+E(bi)E(aj)Cov(ai, bj) + E(bi)E(bj)Cov(ai, aj)

+Cov(ai, aj)Cov(bi, bj) + Cov(ai, bj)Cov(bi, aj)

(5.32)

Of course, if some coefficients are not permitted to covary with others, some terms

will equal zero and can be removed from the equation. A special case is if all co-

variances between the coefficients are zero, in which case the covariance between the

random indirect effects is also zero. The parameter estimates can be used in place

to estimate the covariance. Although a zero covariance between normally distributed

random variables implies independence, a zero covariance between indirect effects is

not necessarily indicative of independence, as the indirect effects are not typically

normally distributed.

5.3 Adding Level-2 Moderators

Level-2 moderators can be included in multilevel mediation models in a variety of

ways to help answer interesting research questions and gain a better understanding

of the conditional nature of indirect effects. This section characterizes different forms

of multilevel moderated mediation that have not previously been formulated.

47



5.3.1 Within-group Moderated Mediation

When there is variability in the random slopes, the researcher may wish to explain

this variability or covariance by adding a level-2 predictor, Qj, of the random slopes.

Here, Qj acts as a moderator in that the effect of the lower level relationships, aj and

bj, may change systematically as a function of Qj. The level-2 equations for aj and

bj with one predictor Qj are:

aj = aW + ga1Qj + uaj (5.33)

bj = bW + gb1Qj + ubj (5.34)

where aW and bW now quantify the expected slopes conditioned on Qj = 0, and ga1

and gb1 quantify the expected change in aj and bj resulting from a one-unit increase

in Qj, respectively. If, ga1 and gb1 are statistically significant, it can be said that Qj

moderates the relationships between Xij and Mij, and Mij and Yij, respectively. In

the past, if Qj significantly predicted aj or bj, this was deemed moderated mediation,

in that the indirect effect ajbj was thought to systematically vary as a function of

Qj (Bauer et al., 2006). However, a formal test of moderated mediation should be

conducted on the indirect effect, rather than the individual components. The index of

moderated mediation (Hayes, 2015), derived for the single-level case, can be extended

to multilevel designs.

Consider the case where Qj is a predictor of bj, but not aj. This is analogous

to the single level case described in Section 2.2.3. The within-group effect of Xij on

Yij is aj = aW + uaj, and the within-group effect of Mij on Yij controlling for Xij is

bj = bW + gb1Qj + ubj. Therefore, the average within-group indirect effect of Xij on
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Yij is:

E(ajbj) = aW bW + aWgb1Qj + σaj ,bj (5.35)

where σaj ,bj is the residual covariance between aj and bj after removing the variance

explained by Qj. This demonstrates that a formal test of moderated mediation would

involve testing whether aWgb1 is significantly different from zero, as this determines

how the indirect effect changes systematically as a function of Qj. In the single-level

case, this is often tested using bootstrapping. However, it can be tested using the

Monte Carlo method as well, which can be easier to implement in the multilevel case.

Here, data can be generated from the multivariate distribution:[
a∗W
g∗b1

]
∼MVN

([
âW
ĝb1

]
,

[
σ̂2
âW

σ̂âW ,ĝb1

σ̂âW ,ĝb1 σ̂2
ĝb1

])
and a Monte Carlo confidence interval for aWgb1 can be constructed. After obtaining

evidence of moderated mediation, the moderation can be probed at different values of

Qj by centering Qj around the value of interest and refitting the model, as discussed

previously and by Bauer et al. (2006).

When Qj is a predictor of both aj and bj, the formal test of moderated mediation

becomes more complex. In this scenario, the within-group effect of Xij on Yij is

aj = aW + ga1Qj + uaj, and the within-group effect of Mij on Yij controlling for Xij

is bj = bW + gb1Qj + ubj. Therefore, the average within-group indirect effect of Xij

on Yij is:

E(ajbj) = aW bW + (aWgb1 + bWga1)Qj + ga1gb1Q
2
j + σaj ,bj (5.36)

Note that now there is both a linear and a quadratic effect of Qj. Therefore, both

aWgb1 + bWga1 and ga1gb1 can be tested to determine if there is evidence of moderated
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mediation. Data can be generated from the multivariate distribution:
a∗W
b∗W
g∗a1

g∗b1

 ∼MVN

(
âW
b̂W
ĝa1

ĝb1

 ,

σ̂2
â σ̂â,b̂ σ̂â,ĝa1 σ̂â,ĝb1

σ̂â,b̂ σ̂2
b̂

σ̂b̂,ĝa1 σ̂b̂,ĝb1
σ̂ĝa1,â σ̂ĝa1,b̂ σ̂2

ĝa1
σ̂ĝa1,ĝb1

σ̂ĝb1,â σ̂ĝb1,b̂ σ̂ĝa1,ĝb1 σ̂2
ĝb1

)

A confidence interval for ga1gb1 that does not contain zero would suggest that the

indirect effect changes systematically as a function of Q in a quadratic way. Note

that the only way for there to be a quadratic effect is if both ga1 and gb1 do not equal

zero. If either equal zero, the indirect effect reduces to the linear form.

5.3.2 Between-group Moderated Mediation

Each of the moderated mediation hypotheses discussed thus far occur when the

within-group indirect effect changes systematically as a function of a level-2 variable.

It is also possible for the between-group indirect effect to be moderated by a level-2

variable. Recall that the between-group effects for level-1 variables take the form of

observed group means, which act as predictors for the random intercepts. That is,

X .j is a predictor of the intercept for Mij and its coefficient represents the between-

group effect of Xij on Mij. When a level-2 variable, say Qj, is added to the model as

a predictor of a random slope, it should also be added as a predictor of the random

intercept. The inclusion of an additional variable, QjX .j, in the intercept equation for

Mij can be used to test whether the between-group effect of Xij on Mij is moderated

by Qj.

Returning to the example where the effect of Mij on Yij is moderated by Qj, the

intercept equations for Mij and Yij can be specified as:

dMj = dM + aBX .j + uMj (5.37)
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dY j = dY + c′BX .j + bBM .j + gY 3Qj + gY 4M .jQj + uY j (5.38)

Note that the between-group effect of Mij on Yij is now conditional on Qj. This effect

is quantified as bB +gY 4Qj. Therefore, the between-group indirect effect of Xij on Yij

is also conditional on Qj, and can be quantified as aB(bB+gY 4Qj) = aBbB+aBgY 4Qj.

Formal testing of between-group moderated mediation can be conducted by construct-

ing a Monte Carlo confidence interval for aBgY 4 following the logic discussed previ-

ously, and the conditional between-group indirect effect can be probed at different

values of the moderator.

5.3.3 When the Between Effect of X or M is a Moderator of
the Within-group Indirect Effect

A conceptually interesting phenomenon that can be tested within multilevel med-

itation is whether the between effect of X or M moderates the within-group indirect

effect of X on Y through M . To conduct such a test, the group aggregate of X,

X .j, or M , M .j, is simply added as a predictor of the slope for the relationship in

which it is hypothesized to moderate. For example, if the group aggregate of X is

hypothesized to moderate the within-group X to M relationship, the level-two model

for aj would be:

aj = aW + ga1X .j + uaj (5.39)

and X .j should also remain as a predictor of the random intercepts. Now, however,

the effect of X .j on the intercept of M is a conditional effect. The conditional within-

group indirect effect is then the product of aj and bj, aW bW + ga1bWX .j + σaj ,bj . A

test for moderated mediation can be conducted by constructing a confidence interval
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around the index of moderated mediation for the model, ga1bW , following the method

described in Section 5.3.1.

A statistically significant positive index of moderated mediation would suggest

that the within-group indirect effect tends to be higher for level-2 units whose group

aggregate of X is above the average group aggregate than for level-2 units whose

group aggregate is below the average group aggregate.

5.4 Limitations of MLM

The formulation of multilevel mediation models described here is not without its

limitations. First, all of the independent and mediator variables are assumed to be

measured without error. When an independent variable in a simple linear regression

model is measured with error, the estimated coefficient is attenuated by the degree of

unreliability of the measurement. In mediation analysis, if the mediator is measured

with error, the problem can be exacerbated. These issues with measurement error

generalize to the multilevel context and can result in biased parameter estimates.

Another limitation of using multilevel modeling to assess mediation is that the

final outcome variable must be measured at the lowest level, and a given variable

may only influence other variables at either it’s same level or a lower level. Hence,

MLM can only be used to assess 2-2-1, 2-1-1, and 1-1-1 mediation models.2

Finally, using the observed group mean as a level-2 predictor only acts as a proxy

for the true group mean value. Therefore, between-group effects that are a result of

using observed group means on lower-level variables may be biased. Lüdtke et al.

(2008) and Preacher et al. (2010) demonstrate that the between-group effect for a

2Other multilevel mediation models can be assessed using MLM if there are more than two levels.
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1-1 relationship is biased. This bias is largest when the within-group sample sizes are

small, and the intraclass correlation is low.

To circumvent these limitations, several researchers (e.g., Preacher et al., 2010)

have recommended analyzing hierarchical data using structural equation modeling, in

a general framework that has become known as multilevel structural equation modeling

(MSEM). Within MSEM, latent variables can be measured using indicator variables,

which may reduce or eliminate measurement error. Further, mediation models in-

volving “upward effect” can be hypothesized and tested. That is, a researcher may

model a 1-2-1 or 2-1-2 mediation process, or any other hypothesized set of pathways.

In addition, observed group means may be replaced with latent group means which

take the form of random intercepts in MSEM. This removes the bias in between-group

effects.

While MSEM can be incredibly useful in formulating multilevel mediation pro-

cesses, here I continues to use traditional MLM techniques. This is not to suggest

that MSEM may not be helpful in addressing the research questions that the models

presented here address. Rather, it serves to highlight that, under some circumstances,

formulating the model using MSEM is not necessary. This is particularly true when

the independent variables are measured reliably, there are no hypothesized “upward

effects” and the group sample sizes are large enough, and the intraclass correlation is

high enough, to yield reliable estimates of the true group means. The MLM method

would also be appropriate for 1-1-1 models if the last condition isn’t satisfied, but the

focus of the analysis is on the within-group indirect effect, which remains unbiased.
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Chapter 6: Example Analyses

The previous chapter described several advancements in the formulation and test-

ing of multilevel mediation and moderated mediation, including the simultaneous

estimation of between-group and within-group indirect effects as well as a compar-

ison between these effects, the inclusion of multiple mediators, and formal tests of

within-group and between-group moderated mediation. In this chapter, some of these

ideas are explored using two real-world datasets.

The first dataset comes from a large-scale educational assessment. Data from one

country is used which includes individual data for students nested within schools.

Using this dataset, within-group and between-group indirect effects will be tested

and compared. The within-group indirect effect will also be permitted to randomly

vary across schools, and some of this variability will be explained using a level-2 mod-

erator. The second example includes repeated measurements from participants who

completed multiple research conditions. The focus of this analysis is on the within-

person level, in which several mediators will be included in the model simultaneously,

and some of the specific indirect effects will be permitted to covary. Further, com-

parisons between these specific indirect effects will be made, and a test of the index

of moderated mediation will be conducted for one of these specific indirect effects in
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which the person-level aggregate of the independent variable will be included as the

level-2 moderator.

Throughout this chapter, analyses are conducted using MLmed, a free SPSS macro

developed in conjunction with this thesis. The purpose of MLmed is to simplify the

work necessary to conduct a multilevel mediation or moderated mediation analysis

using the methods described throughout this thesis. Even for a researcher with pro-

gramming experience, the data manipulations necessary to prepare the data for the

analysis (such as the within-group centering of variables, the stacking of equations,

the creation of indicator variables, and the unusual specification of the model) are

quite tedious and leave much room for error. Further, no multilevel software au-

tomatically provides Monte Carlo confidence intervals for indirect effects, indirect

contextual effects, indirect effect contrasts, or the index of moderated mediation. In-

stead, these intervals have to be constructed using the asymptotic covariance matrices

of the parameter estimates.

Using only a few lines of syntax, MLmed performs all of the data management

and equation stacking necessary to conduct multilevel mediation analysis, within-

group centers predictor variables, and takes advantaged of the MIXED procedure in

SPSS for estimation. Monte Carlo confidence intervals are automatically calculated

for indirect effects, indirect contextual effects, indirect effect contrasts, and tests of

moderated mediation. The code necessary to conduct these analyses is provided, as

well as information about interpreting the output. Users are encouraged to reference

Appendix B for the macro documentation which explains the syntax structure and

available arguments.
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Finally, to ensure that the solutions using MLmed are reasonable, all analyses are

also conducted using Mplus (Muthén & Muthén, 2015) and the lme4 package (Bates

et al., 2015) in R (R Core Team, 2016) to allow for comparisons.

6.1 Example 1 - PISA

6.1.1 Data

The data for this example are taken from the 2015 Programme for International

Student Assessment (PISA). The PISA dataset contains test scores of 15-year olds

from 72 countries on a variety of school subjects, as well as student, teacher, and school

questionnaires. For this example, the Canadian sample will be used. In total, the

sample contains 12,722 students from 643 schools. The variables of interest include the

student’s sense of belonging within his or her school (labeled BELONG in the dataset),

the degree to which the student enjoys cooperation (labeled COOPERATE), the

student’s math achievement score (labeled PV1MATH), the number of hours of out-

of-school study time per week (OUTHOURS), and an index of the student’s economic,

social, and cultural status (ESCS). In addition, the dataset contains a school identifier

(SCHID) and school population size in hundreds of students (SCHS 100).

6.1.2 Research Questions

Before proceeding, it should be noted that the results presented in this section

are for pedagogical purposes only. The research questions of interest for this exam-

ple include to what degree the enjoyment of cooperation mediates the within-group

relationship between students sense of belonging and math achievement score, af-

ter statistically controlling for number of study hours and status. Further, does the
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within-group indirect effect vary across schools, and can some of this variability be

explained by school size?

6.1.3 Analysis

Because it can sometimes be useful to begin with a less complex model than

the one hypothesized, the first analysis will not include the random slopes or the

moderator. The syntax for this first model is:

mlmed data = can data

/x = BELONG

/m1 = COOPERATE

/cov1 = OUTHOURS

/cov2 = ESCS

/y = PV1MATH

/cluster = SCHID

/est = ML

/folder = /Users/rockwood.19/Desktop/.

which corresponds to the following equations:

COOPij = dMj + aj(BELONGij −BELONG.j)

+ q1j(OUTij −OUT .j) + q2j(ESCSij − ESCS.j) + eij

PV 1MATHij = dY j + c′j(BELONGij −BELONG.j) + bj(COOPij − COOP .j)

+ q3j(OUTij −OUT .j) + q4j(ESCSij − ESCS.j) + eij

dMj = dM + aBBELONG.j + g1OUT .j + g2ESCS.j + uMj

dY j = dY + c′BBELONG.j + bBCOOP .j + g3OUT .j + g4ESCS.j + uY j

aj = aW , bj = bW , c
′
j = c′W , q1j = q1, q2j = q2, q3j = q3, q4j = q4

Figure 6.1 displays the output which, in this example, is broken down into four main

sections. The first section contains an overview of the model specifications and the fit
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indices. The next section contains fixed effect estimates, which are broken up by each

equation and by between and within effects. The following section contains the ran-

dom effects, which include the residual (co)variances and random effect (co)variances.

The last section contains indirect effect estimates.

As can be seen in the Model Specification table, the number of estimated param-

eters includes 16 fixed effects, 2 level-1 variances, and 2 level-2 variances for a total

of 20 parameters. The deviance of this model is 181,282.2.

The first part of the Fixed Effects section contains the within- and between-group

estimates for the M (COOPERATE) equation. The only nonsignificant effect is the

between-group effect of OUTHOURS. The next part of the Fixed Effects section

contains the estimates for the Y (PV1MATH) equation. The within-group effect of

BELONG and the between-group effect of COOPERATE are nonsignificant.

In the Random Effects section, it can be seen that the level-1 residual variances for

COOPERATE and PV1MATH are .94 and 5240.31, respectively and the variances of

the random M and Y intercepts are .01 and 647.48, respectively.

The final section contains the expected value and variance of the within-group

indirect effect, as well as inferential tests on the average within-group indirect effect,

the between-group indirect effect, and the indirect contextual effect. Because this

model is a simplification of the hypothesized model, these effects will not be inter-

preted until the final model is chosen. However, it is useful to understand how these

effects are calculated. Note that the estimated average within-group indirect effect

is 1.43, which is the product of the within-group effects of BELONG on COOPER-

ATE (.20) and COOPERATE on PV1MATH (7.12). Because there are no random

slopes, the variance of the indirect effect is zero. The between-group indirect effect
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*******************************  MLmed  ******************************* 
 
*********************************************************************** 
 
Model Specification 
N           12722 
Fixed          16 
Rand(L1)        2 
Rand(L2)        2 
Total          20 
 
Model Fit Statistics 
        Value 
-2LL 181282.2 
AIC  181322.2 
AICC 181322.3 
CAIC 181505.1 
BIC  181485.1 
 
 
 
***************************  FIXED EFFECTS  *************************** 
 
*********************************************************************** 
 Outcome: COOPERAT 
 
Within- Effects 
         Estimate     S.E.       df        t        p       LL       UL 
constant    .0561    .0446 675.0432   1.2579    .2089   -.0315    .1437 
BELONG      .2014    .0089 12154.80  22.6882    .0000    .1840    .2188 
OUTHOURS    .0027    .0007 12154.80   4.1423    .0000    .0014    .0040 
ESCS        .0928    .0120 12154.80   7.7487    .0000    .0693    .1163 
 
Between- Effects 
         Estimate     S.E.       df        t        p       LL       UL 
BELONG      .3000    .0354 759.4266   8.4713    .0000    .2304    .3695 
OUTHOURS    .0029    .0024 718.2089   1.2165    .2242   -.0018    .0076 
ESCS        .1331    .0268 613.9690   4.9725    .0000    .0805    .1857 
 
*********************************************************************** 
 Outcome: PV1MATH 
 
Within- Effects 
         Estimate     S.E.       df        t        p       LL       UL 
constant 507.3043   5.3395 748.2634  95.0096    .0000 496.8221 517.7865 
BELONG    -1.0739    .6767 12117.68  -1.5870    .1125  -2.4003    .2525 
COOPERAT   7.1197    .6791 12117.68  10.4838    .0000   5.7885   8.4508 
OUTHOURS   -.6971    .0492 12117.68 -14.1827    .0000   -.7935   -.6008 
ESCS      21.4665    .8960 12117.68  23.9572    .0000  19.7101  23.2229 
 
Between- Effects 
         Estimate     S.E.       df        t        p       LL       UL 
BELONG    21.4802   4.3063 882.3916   4.9880    .0000  13.0283  29.9321 
COOPERAT   4.2247   4.6610 792.7687    .9064    .3650  -4.9246  13.3739 
OUTHOURS  -1.1179    .2835 780.7099  -3.9432    .0001  -1.6745   -.5614 
ESCS      53.5280   3.3243 694.9366  16.1021    .0000  47.0011  60.0549 

Continued

Figure 6.1: MLmed output for the first model of Example 1.
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Figure 6.1 continued

*********************************************************************** 
 
**************************  RANDOM EFFECTS  *************************** 
 
Level-1 Residual Estimates 
         Estimate     S.E.   Wald Z        p       LL       UL 
PV1MATH  5240.313  67.3228  77.8386    .0000 5110.010 5373.938 
COOPERAT    .9404    .0121  77.9577    .0000    .9171    .9643 
 
Random Effect Estimates 
   Estimate     S.E.   Wald Z        p       LL       UL 
1     .0124    .0033   3.7676    .0002    .0074    .0208 
2  647.4753  52.5476  12.3217    .0000 552.2576 759.1101 
 
Random Effect Key 
1    Int        COOPERAT 
2    Int        PV1MATH 
 
*********************************************************************** 
 
************************  INDIRECT EFFECT(S)  ************************* 
 
Within- Indirect Effect(s) 
            E(ab)  Var(ab)   SD(ab) 
COOPERAT   1.4340    .0000    .0000 
 
Within- Indirect Effect(s) 
           Effect       SE        Z        p     MCLL     MCUL 
COOPERAT   1.4340    .1508   9.5093    .0000   1.1478   1.7345 
 
Between- Indirect Effect(s) 
           Effect       SE        Z        p     MCLL     MCUL 
COOPERAT   1.2672   1.4157    .8951    .3707  -1.4419   4.1100 
 
Test of Indirect Contextual Effect(s): Between - Within 
              Dif     MCLL     MCUL 
COOPERAT   -.1668  -2.8958   2.7018 
 
------ END MATRIX ----- 
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is 1.27, which is calculated as the between-group effects of BELONG on COOPER-

ATE (.30) and COOPERATE on PV1MATH(4.22). Finally, the indirect contextual

effect is the difference between the between-group and within-group indirect effects,

1.27− 1.43 = −.17.

Adding Random Slopes

Since there is interest in the variability of the within-group indirect effect across

level-2 units, the a and b paths can be specified as random. Adding the arguments

randx = 01 and randm = 1 to the MLmed syntax estimates these additional pa-

rameters. The complete syntax for this new specification is:

mlmed data = can data

/x = BELONG

/randx = 01

/m1 = COOPERATE

/randm = 1

/cov1 = OUTHOURS

/cov2 = ESCS

/y = PV1MATH

/cluster = SCHID

/est = ML

/folder = /Users/rockwood.19/Desktop/.

and the corresponding equations remain as before, with the exception that now aj =

aW + uaj, bj = bW + ubj, and σaj ,bj = 0. The Random Effects section of the new

output, displayed in Figure 6.2, contains the variance of the a and b paths. These are

.01 and 34.14, respectively. The ratio of the new variance estimates to their standard

errors are both statistically significant. However, these tests are not always reliable

for variance parameters. Instead, the likelihood ratio test can be conducted to test

whether the model without the additional variance parameters fits significantly worse

than the model relaxing these constraints.
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*********************************************************************** 
 
**************************  RANDOM EFFECTS  *************************** 
 
Level-1 Residual Estimates 
         Estimate     S.E.   Wald Z        p       LL       UL 
PV1MATH  5206.502  68.2679  76.2658    .0000 5074.404 5342.039 
COOPERAT    .9272    .0122  76.1368    .0000    .9036    .9514 
 
Random Effect Estimates 
   Estimate     S.E.   Wald Z        p       LL       UL 
1     .0130    .0033   3.9410    .0001    .0079    .0213 
2  649.1810  52.5681  12.3493    .0000 553.9096 760.8391 
3     .0136    .0036   3.8041    .0001    .0081    .0227 
4   34.1419  15.9486   2.1407    .0323  13.6669  85.2918 
 
Random Effect Key 
1    Int        COOPERAT 
2    Int        PV1MATH 
3    Slope      BELONG        ->      COOPERAT 
4    Slope      COOPERAT      ->      PV1MATH 
 
*********************************************************************** 
 
************************  INDIRECT EFFECT(S)  ************************* 
 
Within- Indirect Effect(s) 
            E(ab)  Var(ab)   SD(ab) 
COOPERAT   1.4650   2.5765   1.6052 
 

Figure 6.2: MLmed output containing the random effect estimates from the second
model of Example 1.

The deviance for the model with the additional parameters is 181,254.7, with 22

total parameters estimated. The difference between the deviance of this model and

the previous model is 27.5, and the difference in the number of parameters is 2. The

test can be conducted using the MLmed macro with the following syntax:

LRT D0 = 181282.2 / P0 = 20 / D1 = 181254.7 / P1 = 22.

where D0 and P0 are the deviance and number of parameters of the restricted model,

and D1 and P1 are the deviance and number of parameters of the unconstrained

model. The p-value for this test is <.001, which suggests there is significant variability

for the a and b paths. Therefore, the restricted model is rejected. For this new model,
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the within-group indirect effect remained relatively the same, but now has a non-zero

variance of 2.58 (SD = 1.61). Therefore, although the average within-group indirect

effect is estimated to be positive, for some schools this indirect effect is much smaller

or larger.

Permitting the Random Slopes to Covary

By default, the random a and b paths are not permitted to covary. The argument

covmat = UN can be used to override this specification. Refitting the model with

this additional argument results in a new model deviance of 181,250.5 with a total

of 23 parameters. The estimated covariance between a and b can be found in the

Random Effect Estimates table, displayed in Figure 6.3, in the row labeled (4,3), as

this corresponds to the covariance between the 4th and 3rd random effects as labeled

in the Random Effect Key table. This estimate is .35, with a p-value of .042. Using

the likelihood ratio test results in a p-value of .040. Thus, the results of the two tests

are nearly the same, and both suggest that freely estimating the covariance improves

the fit of the model.

Now, the estimated average within-group indirect effect is 1.81, which is calculated

as the product of the average within-group effects of BELONG on COOPERATE (.20)

and COOPERATE on PV1MATH (7.20), plus the covariance between these random

effects (.35). The Within- Indirect Effect(s) table contains a normal-theory p-value

and a 95% Monte Carlo confidence interval. The Monte Carlo confidence interval is a

more reliable test for the indirect effect because it does not assume that the indirect

effect is normally distributed. In this scenario, both tests result in similar conclusions,

as the confidence interval does not include 0 and the p-value is less than .05. This

suggests that the average within-group indirect effect significantly differs from zero.
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*********************************************************************** 
 
**************************  RANDOM EFFECTS  *************************** 
 
Level-1 Residual Estimates 
         Estimate     S.E.   Wald Z        p       LL       UL 
PV1MATH  5207.439  68.2842  76.2612    .0000 5075.310 5343.009 
COOPERAT    .9270    .0122  76.1539    .0000    .9034    .9511 
 
Random Effect Estimates 
      Estimate     S.E.   Wald Z        p       LL       UL 
(1,1)    .0130    .0033   3.9443    .0001    .0079    .0213 
(2,2) 649.1337  52.5677  12.3485    .0000 553.8635 760.7914 
(3,3)    .0139    .0036   3.8736    .0001    .0084    .0231 
(4,3)    .3510    .1725   2.0350    .0419    .0129    .6890 
(4,4)  33.0623  15.8386   2.0875    .0368  12.9289  84.5480 
 
Random Effect Covariance Matrix 
         1        2        3        4 
1    .0130    .0000    .0000    .0000 
2    .0000 649.1337    .0000    .0000 
3    .0000    .0000    .0139    .3510 
4    .0000    .0000    .3510  33.0623 
 
Random Effect Correlation Matrix 
         1        2        3        4 
1   1.0000    .0000    .0000    .0000 
2    .0000   1.0000    .0000    .0000 
3    .0000    .0000   1.0000    .5173 
4    .0000    .0000    .5173   1.0000 
 
Random Effect Key 
1    Int        COOPERAT 
2    Int        PV1MATH 
3    Slope      BELONG        ->      COOPERAT 
4    Slope      COOPERAT      ->      PV1MATH 
 
*********************************************************************** 
 
************************  INDIRECT EFFECT(S)  ************************* 
 
Within- Indirect Effect(s) 
            E(ab)  Var(ab)   SD(ab) 
COOPERAT   1.8149   3.7005   1.9237 
 
Within- Indirect Effect(s) 
           Effect       SE        Z        p     MCLL     MCUL 
COOPERAT   1.8149    .2428   7.4749    .0000   1.3472   2.3072 
 
Between- Indirect Effect(s) 
           Effect       SE        Z        p     MCLL     MCUL 
COOPERAT   1.2661   1.4144    .8951    .3707  -1.4506   4.0454 

Figure 6.3: MLmed output containing the random effect estimates from the third
model of Example 1.
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On average, within a given school, a one-unit increase in sense of belonging results in

a 1.81 unit increase in math achievement score by way of enjoyment of cooperation.

The variance of this indirect effect across schools is estimated as 3.70 (SD = 1.92).

The between-group indirect effect is estimated as 1.27, which does not significantly

differ from zero by using the Monte Carlo confidence interval or normal-theory test.

There is not evidence that an increase in school-aggregate student belonging score re-

sults in an increase in school-aggregate math achievement by way of school-aggregate

enjoyment of cooperation.

If it was thought that the random a and b paths also covary with the random

intercept for the Y equation, these covariances could be estimated. In this example,

the estimation of the additional parameters does not result is substantially better fit,

and so these parameters will remain constrained to zero.

Adding a level-2 Moderator

It may be of interest to try to explain the variability of the within-group indirect

effect by adding a level-2 moderator. To try to explain the random variability in

this example, school size (SCHS 100) is included as a moderator of the b path using

the argument modYcent. Recall that when a moderator is included the estimated

indirect effect is conditional on a moderator value of zero, which is meaningless in the

present example since there are no schools with zero students. Therefore, SCHS 100

can be centered using the modYcent argument. The average SCHS 100 value is 7.92

(792 students), so that value will be used initially. The complete syntax is now:
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mlmed data = can data

/x = BELONG

/randx = 01

/m1 = COOPERATE

/randm = 1

/cov1 = OUTHOURS

/cov2 = ESCS

/modY = SCHS 100

/modYcent = 7.92

/y = PV1MATH

/covmat = UN

/cluster = SCHID

/est = ML

/folder = /Users/rockwood.19/Desktop/.

and the corresponding changes to the equations for bj and dY j are:

bj = bW + g5(SCHSj − 7.92) + ubj

dY j = dY + c′BBELONG.j + bBCOOP .j + g3OUT .j + g4ESCS.j

+ g6(SCHSj − 7.92) + g7[(SCHSj − 7.92)(COOP .j)] + uY j

Of particular interest in this new model is the index of moderated mediation, which

is placed between the Random Effects section and the Indirect Effect(s) section. This

can be seen in Figure 6.4. By default, MLmed includes the within-group and between-

group interaction term to test for moderated mediation at both levels.

The within-group index of moderated mediation is calculated as the product of

the within-group effect of BELONG on COOPERATE (.20) and the within-group

interaction term for COOPERATE and SCHS 100 (-.35). This value is -.07, and the

Monte Carlo confidence interval does not contain zero, which suggests that the within-

group indirect effect systematically varies as a function of school size. The within-

school indirect effect of sense of belonging on math achievement through enjoyment
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*********************************************************************** 
 
*******************  INDEX OF MODERATED MEDIATION  ******************** 
 
Within- Index of Moderated Mediation 
              Est     MCLL     MCUL 
SCHS_100   -.0708   -.1335   -.0079 
 
Between- Index of Moderated Mediation 
              Est     MCLL     MCUL 
SCHS_100   -.0235   -.5901    .5401 
 
*********************************************************************** 
   

Figure 6.4: MLmed output containing the index of moderated mediation from the
fourth model of Example 1.

of cooperation is expected to differ by .07 units for schools that differ in size by 100

students, where the indirect effect decreases as school size increases.

The between-group index of moderated mediation, on the other hand, is -.02. The

confidence interval contains zero, suggesting that the between-group indirect effect

is not moderated by school size. For the purpose of parsimony, the between-group

interaction term can be removed from the model.

Probing the Interaction

After the between-group moderator is removed from the model, the within-group

index of moderated mediation remains largely the same, suggesting it is an important

component of the model. To gain a better understanding of the underlying process,

the moderation of the within-group indirect effect can be probed at multiple values of

the moderator. Because ModYcent was set equal to 7.92 (the mean), the estimated

average indirect effect in the output corresponds to the conditional within-group

indirect effect of belonging on math achievement through enjoyment of cooperation for

a school containing 792 students. This value is 1.84, and the Monte Carlo confidence
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************************  INDIRECT EFFECT(S)  ************************* 
 
NOTE: First Within- Indirect Effect is Conditional on a Moderator Value of: 
            value 
SCHS_100   3.3500 
 
Within- Indirect Effect(s) 
            E(ab)  Var(ab)   SD(ab) 
COOPERAT   2.1644   4.2472   2.0609 
 
Within- Indirect Effect(s) 
           Effect       SE        Z        p     MCLL     MCUL 
COOPERAT   2.1644    .2865   7.5533    .0000   1.6070   2.7424 
   
 
 
 
************************  INDIRECT EFFECT(S)  ************************* 
 
NOTE: First Within- Indirect Effect is Conditional on a Moderator Value of: 
            value 
SCHS_100   7.9200 
 
Within- Indirect Effect(s) 
            E(ab)  Var(ab)   SD(ab) 
COOPERAT   1.8410   3.6496   1.9104 
 
Within- Indirect Effect(s) 
           Effect       SE        Z        p     MCLL     MCUL 
COOPERAT   1.8410    .2423   7.5986    .0000   1.3763   2.3258 
   
 
 
 
************************  INDIRECT EFFECT(S)  ************************* 
 
NOTE: First Within- Indirect Effect is Conditional on a Moderator Value of: 
            value 
SCHS_100  12.4900 
 
Within- Indirect Effect(s) 
            E(ab)  Var(ab)   SD(ab) 
COOPERAT   1.5177   3.1224   1.7670 
 
Within- Indirect Effect(s) 
           Effect       SE        Z        p     MCLL     MCUL 
COOPERAT   1.5177    .2754   5.5099    .0000    .9660   2.0422 
   

Figure 6.5: MLmed output containing the conditional average within-group indirect
effect probed at three values of SCHS 100. The top is conditional on a value of 3.35,
the middle is conditional on a value of 7.92, and the bottom is conditional on a
value of 12.49.
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interval does not contain zero. Further, the variance of the conditional indirect effect

is estimated as 3.65 (SD = 1.91).

The analysis is then be repeated after changing the value of ModYcent. Note

that, while changing this value will change the conditional indirect effect, it will not

change the index of moderated mediation. For this example, the analysis was repeated

using values of 3.35 (335 students) and 12.49 (1,249 students) which correspond to

one standard deviation below and above the mean school size across all schools. As

seen in Figure 6.5, conditional on a school size of 335, the average within-group

indirect effect is estimated as 2.16 and this value significantly differs from zero. The

conditional variance of this effect is estimated as 4.25 (SD = 2.06). The estimated

within-group indirect effect conditional on a school size of 1,249 is 1.52, which also

significantly differs from zero. The variance is 3.12 (SD = 1.77).

So, after probing the interaction, it seems that although the average within-group

indirect effect decreases by .07 units for each additional 100 students, the effect re-

mains positive and significant for low, medium, and high school sizes. This is best

summarized in Figure 6.6, which plots the school size on the x-axis, and the average

within-group indirect effect on the y-axis. The inner vertical bars are the 95% Monte

Carlo confidence intervals constructed around the average within-group indirect ef-

fect at each value of school size that the interaction was probed. None of confidence

intervals contain zero. The outer bars, on the other hand, demonstrate the variability

of the within-group indirect effect across schools. These bars plot one standard devi-

ation above and below the average effect. Clearly, although the average within-group

indirect effect is positive and significant at each value probed, it’s estimated that

many schools may have a much larger or smaller within-group indirect effect.
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Figure 6.6: Average within-group indirect effect conditional on school size. The
inner bars are 95% Monte Carlo confidence intervals for the average indirect effect.
The outer bars are one standard deviation above and below the average conditional
effect.

Because the between-group interaction effect was removed from the model, the

estimated between-group indirect effect is not conditional on the school size. Note

that changing the value of ModYcent has no effect on the between-group indirect

effect, which is estimated as 1.52. There is not enough evidence to conclude that this

effect significantly differs from zero.

Finally, because the average within-group indirect effect changes depending on

the school size, the difference between the within-group and between-group indirect

effects also change. In this example, none of the values of the moderator that were

conditioned on resulted in a significant indirect contextual effect.
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6.1.4 Comparison with Other Software

The estimates of the final model, with SCHS 100 centered around 7.92 are dis-

played in Table 6.1. In addition, estimates obtained from fitting the same model

using lme4 and Mplus are provided for comparison. The model was fit piece-wise

in lme4, so the covariance between the random slopes was not estimated and the

within-group indirect effect was also not computed. Overall, the estimates using all

programs are very similar to each other. And, while there are small discrepancies in

these estimates due to differences in estimation algorithms, the overall substantive

conclusions reached from the analysis remain the same no matter which software is

used.

It should be noted that each model has one additional parameter that is not listed

in Table 6.1 because there is a slight difference in the models fit using each program.

Using Mplus, the group means of M are regressed on the group means of X and the

covariates to obtain the corresponding between-group effects. For MLmed and lme4,

however, the between-group effects of X and the covariates on M are estimated by

regressing the “complete” M variable (not just group means) on the group means of

X and the covariates. This does not cause any issues with estimating the between-

group effects because the group means of X and the covariates have no within-group

variability, so they cannot explain within-group variability in M . Therefore, the

between-group effects of X and the covariates on M obtained from using the group

means of M or the “complete” M will be equivalent. The only difference that does

arise is the estimated intercept and level-2 residual variance for M . In Mplus, this

variance is the residual variance of the group means of M , while in MLmed and lme4

this variance is the residual variance of the M intercept.
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6.2 Example 2 - Competition

6.2.1 Data

The data for this example come from a study conducted by Cooke, Kavussanu,

McIntyre, and Ring (2013) on the effect of individual and team competitions. Sixty-

four participants completed a handgrip endurance task under four conditions. One

of the conditions was a time-trial, while the other three conditions were one-on-

one, two-on-two, and four-on-four competitions. The dataset also contains a variable

dichotomizing the conditions to compare the time-trial condition (coded 0) to the

head-to-head conditions (coded 1). This variable is labeled COMP in the dataset.

For each condition, the participants’ effort (labeled EFF), enjoyment (labeled ENJ),

and anxiety (labeled ANX) were recorded, as well as the duration (labeled DUR) in

which they were able to perform the handgrip task. There is also a subject identifier,

which is labeled SUBJECT. The analyses conducted here are loosely based on those

from Cooke et al. (2013), but deviate some for pedagogical purposes. Researchers

interested in the theory behind the study and the full study results should reference

Cooke et al. (2013).

6.2.2 Research Questions

The research questions that are addressed in this example include to what degree

effort, enjoyment, and anxiety mediate the within-participant relationship between

competition formats (Time Trial vs. head-to-head competitions) and performance.

Further, do these indirect effects vary across participants? Do they covary? And

lastly, does the strength of the within-person indirect effect systematically differ across

participants as a function of average effort level across all conditions?
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6.2.3 Analysis

As with the previous example, the first model fit will contain only a subset of

the parameters of interest. While all three mediators are included, the only level-2

random components are the intercepts, and their covariance is not estimated. The

syntax for this first model is:

mlmed data = DataSet1

/x = COMP

/xB = 0

/m1 = EFF

/m2 = ENJ

/m3 = ANX

/y = DUR

/cluster = SUBJECT

/est = ML

/folder = /Users/rockwood.19/Desktop/.

which corresponds to the following equations:

EFFij = dM1j + a1j(COMPij − COMP .j) + e1ij

ENJij = dM2j + a2j(COMPij − COMP .j) + e1ij

ANXij = dM3j + a3j(COMPij − COMP .j) + e1ij

DURij = dY j + c′j(COMPij − COMP .j) + b1j(EFFij − EFF .j)

+ b2j(ENJij − ENJ .j) + b3j(ANXij − ANX .j) + eij

dM1j = dM1 + uM1j, dM2j = dM2 + uM2j, dM3j = dM3 + uM3j

dY j = dY + b1BEFF .j + b2BENJ .j + b3BANX .j + uY j

a1j = a1W , a2j = a2W , a3j = a3W , b1j = b1W , b2j = b2W , b3j = b3W , c
′
j = c′W

Most of these syntax arguments have already been explained. Now, however, there

are three M variables. Another new argument is xB which omits the between-group
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effect of X from the model if set equal to zero, as it is in this example. The reasoning

for removing this effect is that all participants completed all experimental conditions.

Therefore, there is no between-person variability in X and including the person means

on X would be equivalent to including an additional intercept, which is redundant.

Also, because there is no between-person variability in X there cannot be a between-

person indirect effect.

The output for this model is displayed in Figure 6.7. There are a few differences

in the layout of the output compared to that from the previous example. First, there

are now Fixed Effects sections for each mediator. And, because xB = 0 and there

are no level-2 covariates, there are no between-person effects for the equations with

the mediators as the outcomes. Also, there are no Between- Indirect Effect(s) in the

Indirect Effect(s) section. Because there are multiple mediators, however, there is

new output that contains indirect effect contrasts comparing the three within-person

indirect effects. If there were between-person indirect effects, their contrasts would

also be in this section. Since this model is only a subset of the fully hypothesized

model, it will not be fully interpreted now.

Including Random Slopes

The inclusion of random slopes was described in detail in Section 6.1.3. To de-

termine which slopes should be specified as random in this model, the same model

tests and comparisons were conducted, but the details are omitted. In the end, it was

decided that the slopes from COMP to EFF and from COMP to ENJ should vary

randomly, as well as covary. All other slopes remain fixed. The corresponding syntax

for the model is:
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*******************************  MLmed  ******************************* 
 
*********************************************************************** 
 
Model Specification 
N             256 
Fixed          14 
Rand(L1)        4 
Rand(L2)        4 
Total          22 
 
Model Fit Statistics 
        Value 
-2LL 6422.642 
AIC  6466.642 
AICC 6467.653 
CAIC 6597.134 
BIC  6575.134 
 
 
 
***************************  FIXED EFFECTS  *************************** 
 
*********************************************************************** 
 Outcome: EFF 
 
Within- Effects 
         Estimate     S.E.       df        t        p       LL       UL 
constant  87.4297   1.9491  64.0000  44.8568    .0000  83.5359  91.3234 
COMP      16.8021   2.4416 192.0000   6.8816    .0000  11.9863  21.6179 
 
Note: No Between- Effect(s) Specified. 
 
*********************************************************************** 
 Outcome: ENJ 
 
Within- Effects 
         Estimate     S.E.       df        t        p       LL       UL 
constant   3.8745    .1076  64.0000  35.9916    .0000   3.6594   4.0895 
COMP        .8172    .1080 192.0000   7.5680    .0000    .6042   1.0302 
 
Note: No Between- Effects Specified. 
 
*********************************************************************** 
 Outcome: ANX 
 
Within- Effects 
     Estimate     S.E.       df        t        p       LL       UL 
Int    5.2383    .2031  64.0000  25.7939    .0000   4.8326   5.6440 
COMP   1.1927    .1911 192.0000   6.2421    .0000    .8158   1.5696 
 
Note: No Between- Effects Specified. 
 
*********************************************************************** 
 Outcome: DUR 
 
Within- Effects 
         Estimate     S.E.       df        t        p       LL       UL 
constant  24.4710  18.4308  64.0000   1.3277    .1890 -12.3487  61.2908 
COMP       1.6181   5.1255 192.0000    .3157    .7526  -8.4914  11.7277 
   

Continued

Figure 6.7: The MLmed output for the first model of Example 2.
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Figure 6.7 continued

EFF         .5796    .1347 192.0000   4.3029    .0000    .3139    .8453 
ENJ       22.4873   2.9858 192.0000   7.5314    .0000  16.5981  28.3765 
ANX       -3.3662   1.6916 192.0000  -1.9899    .0480  -6.7027   -.0296 
 
Between- Effects 
    Estimate     S.E.       df        t        p       LL       UL 
EFF    .1911    .1734  64.0000   1.1021    .2746   -.1553    .5376 
ENJ  12.6625   3.1885  64.0000   3.9713    .0002   6.2928  19.0322 
ANX   -.4108   1.6414  64.0000   -.2503    .8032  -3.6899   2.8683 
 
*********************************************************************** 
 
**************************  RANDOM EFFECTS  *************************** 
 
Level-1 Residual Estimates 
    Estimate     S.E.   Wald Z        p       LL       UL 
DUR 850.2833  86.7817   9.7980    .0000 696.1266 1038.578 
EFF 286.1465  29.2047   9.7980    .0000 234.2680 349.5133 
ENJ    .5597    .0571   9.7980    .0000    .4583    .6837 
ANX   1.7524    .1789   9.7980    .0000   1.4347   2.1405 
 
Random Effect Estimates 
   Estimate     S.E.   Wald Z        p       LL       UL 
1  171.5952  43.5958   3.9361    .0001 104.2911 282.3337 
2     .6017    .1319   4.5626    .0000    .3916    .9246 
3    2.2014    .4687   4.6964    .0000   1.4503   3.3415 
4  228.3637  80.9099   2.8224    .0048 114.0365 457.3095 
 
Random Effect Key 
1    Int        EFF 
2    Int        ENJ 
3    Int        ANX 
4    Int        DUR 
 
*********************************************************************** 
 
************************  INDIRECT EFFECT(S)  ************************* 
 
Within- Indirect Effect(s) 
       E(ab)  Var(ab)   SD(ab) 
EFF   9.7384    .0000    .0000 
ENJ  18.3775    .0000    .0000 
ANX  -4.0148    .0000    .0000 
 
Within- Indirect Effect(s) 
      Effect       SE        Z        p     MCLL     MCUL 
EFF   9.7384   2.6894   3.6210    .0003   4.8134  15.5188 
ENJ  18.3775   3.4576   5.3151    .0000  12.0202  25.6407 
ANX  -4.0148   2.1422  -1.8742    .0609  -8.5761   -.0253 
 
Note: No Between- Indirect Effect(s) Specified. 
 
*********************************************************************** 
 
Within- Indirect Effect Contrasts 
             Dif     MCLL     MCUL 
ab2-ab1   8.6391   -.4893  18.2216 
ab3-ab1 -13.7532 -21.5620  -6.5054 
ab3-ab2 -22.3923 -31.1922 -14.3323 
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mlmed data = DataSet1

/x = COMP

/randx = 0110

/xB = 0

/m1 = EFF

/m2 = ENJ

/m3 = ANX

/y = DUR

/covmat = UN

/cluster = SUBJECT

/est = ML

/folder = /Users/rockwood.19/Desktop/.

where now a1j = a1W + ua1j, a2j = a2W + ua2j, and σa1j ,a2j is freely estimated. If

it was expected that the M intercepts covary with each other, the covariances could

be estimated using the command mcovmat = UN. In this example, estimating the

covariances does not improve the fit of the model, so they are not included in the

analyses.

The covariance between the random slopes is estimated as 9.31, which translates

to a correlation of .83, indicating that participants that have a higher than average

COMP to EFF slope tend to have a higher than average COMP to ENJ slope as well.

All of the fixed effects remained relatively the same when the new parameters

were included in the model. But, within the new output for the Indirect Effect(s)

section, displayed in Figure 6.8, are two new matrices for the random indirect effects,

which include the estimated covariances and correlations. The covariance between

the random indirect effects through EFF and ENJ is estimated as 121.28, which

corresponds to a correlation of .83. Participants with a higher than average indirect

effect of COMP on DUR through EFF tend to also have a higher than average indirect

effect through ENJ.

78



************************  INDIRECT EFFECT(S)  ************************* 
 
Within- Indirect Effect(s) 
       E(ab)  Var(ab)   SD(ab) 
EFF   9.7384  95.5233   9.7736 
ENJ  18.3775 222.1097  14.9033 
ANX  -4.0148    .0000    .0000 
 
Within- Indirect Effect Covariance Matrix 
         EFF      ENJ      ANX 
EFF  95.5233 121.2829    .0000 
ENJ 121.2829 222.1097    .0000 
ANX    .0000    .0000    .0000 
 
Within- Indirect Effect Correlation Matrix 
         EFF      ENJ      ANX 
EFF   1.0000    .8326    .0000 
ENJ    .8326   1.0000    .0000 
ANX    .0000    .0000   1.0000 
 
Within- Indirect Effect(s) 
      Effect       SE        Z        p     MCLL     MCUL 
EFF   9.7384   2.8778   3.3840    .0007   4.6964  16.0540 
ENJ  18.3775   3.7828   4.8582    .0000  11.5403  26.3012 
ANX  -4.0148   2.1422  -1.8742    .0609  -8.5645   -.1139 
 
Note: No Between- Indirect Effect(s) Specified. 
 
*********************************************************************** 
 
Within- Indirect Effect Contrasts 
             Dif     MCLL     MCUL 
ab2-ab1   8.6391   -.3252  17.8508 
ab3-ab1 -13.7532 -21.9948  -6.7345 
ab3-ab2 -22.3923 -31.8980 -14.2190 

Figure 6.8: MLmed output containing the random indirect effect estimates from
Example 2.

Adding a Person-level Moderator

From the fixed effect estimates of the first model (which are close to those of the

second model), it can be seen that, within individuals, higher than within-person

average effort leads to longer than within-person average duration. It may be hy-

pothesized, however, that this effect is weaker for those who, on average across all

conditions, give more effort than others. That is, while giving more effort results in

a longer duration, the participants may reach a point where they cannot increase the

duration no matter how hard they try. To test the plausibility of this hypothesis, the

mean of each participants’ effort across the four conditions (labeled EFF M) can be
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included as a moderator of the within-person slope of effort to duration. This model

can be fit in MLmed using the following syntax:

mlmed data = DataSet1

/x = COMP

/randx = 0110

/xB = 0

/m1 = EFF

/m2 = ENJ

/m3 = ANX

/mB = 011

/modY = EFF M

/modYB = 0

/modYcent = 87.4297

/y = DUR

/covmat = UN

/cluster = SUBJECT

/est = ML

/folder = /Users/rockwood.19/Desktop/.

The equation for bj and dY j are now:

b1j = b1W + g1(EFF .j − 87.4297)

dY j = dY + b1B(EFF .j − 87.4297) + b2BENJ .j + b3BANX .j + uY j

The mB argument is used to specify which between effects of M on Y are included in

the model. The 011 indicates that the between effect of M1 is not included (specified

with a 0), while the between effects of M2 and M3 are included (specified with a

1). The reason for specifying that the between effect of EFF is not included, is that

the between effect (labeled EFF M) is specified as a moderator, and any specified

moderator is automatically included as a predictor of the intercept for that equation.

Therefore, not removing the effect using mB would result in a redundant predictor.

As with the previous example, the moderator is centered around its mean (87.43) to
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ensure that the corresponding conditional indirect effect is meaningful. It should be

noted that any moderator included moderates the indirect effect through M1 only,

not any other mediators included in the model.

As seen in Figure 6.9, the index of moderated mediation for this model is estimated

as -.32, with a Monte Carlo confidence interval that does not include zero. That is,

the within-person indirect effect of head-to-head competition on duration through

effort decreases by an estimated .32 units for each additional unit of a participants

average effort over all conditions.

The (average) within-person indirect effects through enjoyment and anxiety are

not conditional on overall effort level. These are estimated to be 18.24 and -3.99,

respectively. For enjoyment, both the Monte Carlo confidence interval and the p-

value for the normal theory test agree that the effect is significantly different from zero.

Based on the estimated fixed effects, on average the effect of head-to-head competition

leads to an increase in enjoyment, which leads to an increase in duration. In addition,

the variance of the indirect effect across participants is estimated as 226.94 (SD =

15.06).

For anxiety, on the other hand, the Monte Carlo confidence interval (-8.32, -

.09) does not contain zero, but the normal theory p-value is .058. Recall that this

test is conservative, and the Monte Carlo test is a more accurate test as it does not

inappropriately assume that the sampling distribution of the indirect effect is normally

distributed. The estimated fixed effects demonstrate that head-to-head competition

leads to an increase in anxiety, which leads to a decrease in duration. Because none of

the paths in this indirect effect were random, the indirect effect does not vary across

participants.
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*********************************************************************** 
 
*******************  INDEX OF MODERATED MEDIATION  ******************** 
 
Within- Index of Moderated Mediation 
           Est     MCLL     MCUL 
EFF_M   -.3151   -.6004   -.0804 
 
*********************************************************************** 
 
************************  INDIRECT EFFECT(S)  ************************* 
 
NOTE: First Within- Indirect Effect is Conditional on a Moderator Value of: 
         value 
EFF_M  87.4297 
 
Within- Indirect Effect(s) 
       E(ab)  Var(ab)   SD(ab) 
EFF   7.9692  66.0074   8.1245 
ENJ  18.2372 226.9443  15.0647 
ANX  -3.9947    .0000    .0000 
 
Within- Indirect Effect Covariance Matrix 
         EFF      ENJ      ANX 
EFF  66.0074 100.0546    .0000 
ENJ 100.0546 226.9443    .0000 
ANX    .0000    .0000    .0000 
 
Within- Indirect Effect Correlation Matrix 
         EFF      ENJ      ANX 
EFF   1.0000    .8175    .0000 
ENJ    .8175   1.0000    .0000 
ANX    .0000    .0000   1.0000 
 
Within- Indirect Effect(s) 
      Effect       SE        Z        p     MCLL     MCUL 
EFF   7.9692   2.7778   2.8688    .0041   3.0908  14.0488 
ENJ  18.2372   3.7748   4.8313    .0000  11.3916  25.9681 
ANX  -3.9947   2.1309  -1.8746    .0608  -8.4461   -.0101 
 
Note: No Between- Indirect Effect(s) Specified. 
 
*********************************************************************** 
 
Within- Indirect Effect Contrasts 
             Dif     MCLL     MCUL 
ab2-ab1  10.2680   1.3678  19.5800 
ab3-ab1 -11.9638 -20.0283  -4.8057 
ab3-ab2 -22.2318 -31.2377 -13.9697 
 
------ END MATRIX ----- 
 

Figure 6.9: MLmed output containing the index of moderated mediation and
indirect effect estimates from Example 2.
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In the indirect effect contrasts table, it can be see that the difference between

the indirect effects through anxiety and enjoyment is -22.23 (95% CI = [-31.24, -

13.97]). Note that this suggests the indirect effect through enjoyment is larger than

the indirect effect through anxiety, but not necessarily stronger, as the effects are in

different directions.

Probing the Interaction

The conditional within-person indirect effect of head-to-head competition on du-

ration through effort can be probed at multiple values of person-level effort. The

previous syntax probes the effect when average effort equals the mean value (87.43).

Conditional on this value, the average indirect effect is estimated as 7.97, with a

variance of 63.97 (SD = 8.00). The Monte Carlo confidence interval suggests that

the effect significantly differs from zero. The indirect effect contrasts, displayed in

Figure 6.10, also suggest that the indirect effect through enjoyment is significantly

larger than the conditional indirect effect through effort (difference = 10.27, 95% CI

= [1.46, 19.70]), which is significantly larger than the indirect effect through anxiety

(difference = 11.96, 95% CI = 5.05, 19.84]).

For a participant with an average effort of one standard deviation above the mean

(103.05), the average conditional indirect effect through effort is estimated to be 3.05,

which is not statistically significant. The variance of this effect across participants is

estimated as 9.35 (SD = 3.06). At this value of the moderator, the average indirect

effect through enjoyment is statistically larger than the average conditional indirect

effect through effort (difference = 15.19, 95% CI = [5.61, 25.72]), but the effect

through effort is not statistically different than the indirect effect through anxiety

(difference = 7.04, 95% CI = [-1.12, 15.78]).
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*********************************************************************** 
 
Within- Indirect Effect Contrasts 
             Dif     MCLL     MCUL 
ab2-ab1   5.3450  -4.3725  14.6632 
ab3-ab1 -16.8869 -25.8846  -9.0311 
ab3-ab2 -22.2318 -31.3174 -14.0152 
   
 
 
    *********************************************************************** 
 
Within- Indirect Effect Contrasts 
             Dif     MCLL     MCUL 
ab2-ab1  10.2680   1.4588  19.6951 
ab3-ab1 -11.9638 -19.8371  -5.0543 
ab3-ab2 -22.2318 -31.4462 -13.9453 
 
 
   
*********************************************************************** 
 
Within- Indirect Effect Contrasts 
             Dif     MCLL     MCUL 
ab2-ab1  15.1910   5.6073  25.7211 
ab3-ab1  -7.0408 -15.7750   1.1165 
ab3-ab2 -22.2318 -31.6038 -14.0795 
   
   

Figure 6.10: The MLmed output for the indirect effect contrasts at different values
of the moderator. The top is at one standard deviation below the mean, the middle
is at the mean, and the bottom is at one standard deviation above the mean.

Finally, for a participants with an average effort one standard deviation below the

mean (71.81), the average conditional indirect effect through effort is estimated as

12.89, with a Monte Carlo confidence interval that does not include zero. The esti-

mated conditional variance of this effect is 167.41 (SD = 12.94). With indirect effect

contrasts suggesting that the effect through enjoyment is not significantly different

from the effect through effort (difference = 5.35, 95% CI = [-4.37, 14.66]), but the

effect through effort is significantly larger than the effect through anxiety (difference

= 16.89, 95% CI = [9.03, 25.88]).
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6.2.4 Comparison with Other Software

The parameter estimates obtained using MLmed for the final model conditional

on a moderator value of 87.43 are displayed in Table 6.2. For comparison, the results

obtained using Mplus and lme4 are also displayed. As before, the estimates from

MLmed and lme4 are essentially the same. And because the piecewise approach was

used for lme4, the covariance between the random slopes was not estimated. The

results obtaining using Mplus are also very similar, though some differences arise in

the estimation of the variance parameters. Overall, the conclusions reached using

each software package remain the same.
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Chapter 7: Discussion

Multilevel mediation and moderated mediation allow researchers to formulate and

test a number of interesting hypotheses regarding causal processes and the boundary

conditions of these processes when faced with nested data structures. These include

research designs in which participants are nested within groups, which allow for the

testing of between-group and within-group indirect effects, as well as the variability

of the indirect effect across level-2 units. Further, the models can be used to test

within-person processes and individual differences in these processes by using data

containing repeated measurements. This thesis serves to highlight these methods as

well as provide advancements in their formulation, conceptualization, and inference.

I began by providing an overview of single-level mediation and multilevel mod-

eling. I then reviewed previous research on multilevel mediation for 1-1-1 designs

before providing extensions to the model and introducing new inferential tests to

address important and interesting substantive research questions. These extensions

include simultaneously estimating between-group and within-group indirect effects us-

ing traditional multilevel software, making comparisons between these indirect effects,

including multiple mediators that act in parallel, estimating the covariance between

specific random indirect effects, and testing moderated mediation of between-group

and within-group indirect effects. An SPSS macro to conduct such analyses was also
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introduced, and two examples were worked through to demonstrate how to go about

fitting the models discussed throughout this thesis.

7.1 Limitations

The most notable practical limitation when conducting multilevel mediation anal-

yses is the estimation of the model parameters. Nonconvergence issues are not un-

common, especially when a large number of random effect parameters are estimated.

Often, a nonconvergence issue arises when one or more of the parameters specified as

random has little or no true variability. In this circumstance, the parameter should be

re-specified as fixed and the model can be refit. A related limitation within MLmed is

the inability to fully customize the model to suit the data at hand. While many fea-

tures have been programmed to allow for changes in the model specification, there are

some models that may be better suited for other software programs, such as Mplus.

This is particularly true when the desired random effect covariance matrix is not

available using MLmed. Nevertheless, the model formulations described throughout

this thesis, as well as the tests of indirect contextual effects, indirect effect contrasts,

and moderated mediation can be conducted using any multilevel modeling program.

It is recommended that those not conducting their analyses using MLmed should still

construct Monte Carlo confidence intervals using the asymptotic covariance matrices

provided in the software output rather than rely on the standard errors provided by

whichever software program is utilized.

As in the single-level case, causal inference using multilevel mediation models

relies on more than just large or significant indirect effects. To support causal claims,

the methods provided throughout this thesis must be accompanied by sound theory
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and research design. There are limitations in every study and it’s important for

researchers to understand and express these limitations when interpreting the results

obtained. This is especially true in multilevel mediation where there may be indirect

effects at multiple levels, each with their own substantive meaning.

A potential critique of the present thesis is the specific focus on 1-1-1 multilevel

mediation models. However, other multilevel mediation models can actually be seen

as special cases of the 1-1-1 model. For example, the 2-1-1 model is a 1-1-1 model

without any within-group variance in X. Thus, a 2-1-1 model can be estimated using

the formulation provided throughout this thesis by omitting the (non-existent) level-1

predictor of X. In fact, MLmed can easily accommodate such a model. Consequently,

there is no longer a within-group indirect effect, as there is no within-group effect of

X. The 2-2-1 model is a further simplification, in that there is also no within-group

effect of M . While the conceptualization remains the same as before, the M model

is no longer a multilevel model, as it consists only of the effects on a level-2 variable.

Thus, fitting the model in a univariate program would involve a piece-wise approach

with a simple regression analysis to estimate a and a multilevel analysis to estimate

b and c′.

As described previously, a limitation of traditional multilevel modeling as pre-

sented here is the inability to estimate “bottom-up” effects, as the dependent variable

in a multilevel model must have variability at the lowest level. Readers interested

in testing such effects using MSEM should reference Preacher et al. (2010). Further

information about the benefits of an MSEM approach can be found in Section 5.4.
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7.2 Future Directions

An avenue for future research is the formulation of mediation models in which

lower-level units are cross-classified within multiple overlapping upper-level units,

the classic example being students cross-classified within schools and neighborhoods

(Raudenbush & Bryk, 2002). These data structures are prevalent in education and

organizational behavior, and formulating these models may provide valuable insight

into the causal processes in such contexts. In theory, within-group indirect effects

could randomly vary across both level-2 grouping units and between-group indirect

effects could be estimated for each of the higher levels. However, the research on this

topic is limited.

Research on the performance of multilevel moderated mediation is also limited,

and simulation studies could be useful in determining the performance of these models

formulated using MLM and MSEM, as well as the sample sizes needed at each level

to ensure adequate power to detect the effects of interest. The Monte Carlo method

of inference should also be thoroughly evaluated in the multilevel mediation context.

While the method has been shown to work well for single-level models (Preacher &

Selig, 2012), there has not been a comprehensive comparison of methods for multilevel

models. Because the standard errors of the individual parameters are used in the

construction of the confidence intervals, the intervals may be unreliable in scenarios

where the large-sample properties of the standard errors do not hold.
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Appendix A: MLmed Macro for SPSS

The following code can be typed into an SPSS sytnax window and executed to

load the MLmed macro into SPSS. Then, any syntax previously described can be run

to fit the corresponding models.

DEFINE LRT (D1 = !charend('/')/ D0 = !charend('/')/ P1 = !charend('/')/
P0 = !charend('/')).

MATRIX.
compute chi = !D0 - !D1.
compute df = !P1 - !P0.
compute p = 1 - CHICDF(chi,df).
compute table = {chi, df, p}.
print table /title = "Likelihood Ratio Test" /clabels = "Dif" "df" "p" /

format = F8.4.
END MATRIX.
OUTPUT MODIFY

/REPORT PRINTREPORT=NO
/SELECT HEADINGS
/IF COMMANDS=["Matrix(LAST)"] LABELS=[EXACT("Title")] INSTANCES=[1]
/DELETEOBJECT DELETE=YES.

!ENDDEFINE.

DEFINE mlmed (data = !charend('/') !default(DataSet1)
/x = !charend('/')
/randx = !charend('/') !default(0000)
/xB = !charend('/') !default(1)
/xW = !charend('/') !default(1)
/m1 = !charend('/')
/m2 = !charend('/')
/m3 = !charend('/')
/randm = !charend('/') !default(000)
/randMint = !charend('/') !default(111)
/mB = !charend('/') !default(111)
/y = !charend('/')
/randYint = !charend('/') !default(1)
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/cluster = !charend('/')
/cov1 = !charend('/')
/randc1 = !charend('/') !default(0000)
/cov1B = !charend('/') !default(1)
/cov1c = !charend('/')
/cov2 = !charend('/')
/randc2 = !charend('/') !default(0000)
/cov2B = !charend('/') !default(1)
/cov2c = !charend('/')
/cov3 = !charend('/')
/randc3 = !charend('/') !default(0000)
/cov3B = !charend('/') !default(1)
/cov3c = !charend('/')
/l2cov1 = !charend('/')
/l2cov2 = !charend('/')
/l2cov3 = !charend('/')
/modM = !charend('/')
/modMcent = !charend('/') !default(0)
/modMB = !charend('/') !default(1)
/modY = !charend('/')
/modYcent = !charend('/') !default(0)
/modYB = !charend('/') !default(1)
/indint = !charend('/') !default(1)
/covmat = !charend('/') !default(DIAG)
/mcovmat = !charend('/') !default(DIAG)
/ycov = !charend('/') !default(0)
/rescovmat = !charend('/') !default(DIAG)
/est=!charend('/') !default(REML)
/iters = !charend('/') !default(100)
/mxstep = !charend('/') !default(10)
/scoring = !charend('/') !default(1)
/asym = !charend('/') !default(NO)
/samples = !charend('/') !default(10000)
/conf = !charend('/') !default(95)
/eor = !charend('/') !default(0)
/folder = !charend('!')).

DATASET ACTIVATE !data.
DATASET COPY mlmdata.
DATASET ACTIVATE mlmdata.
AGGREGATE

/OUTFILE=* MODE=ADDVARIABLES
/BREAK= !cluster
/meanx=MEAN(!x)
/meanm1=MEAN(!m1).

COMPUTE x_c = !x - meanx.
COMPUTE m1_c = !m1 - meanm1.
EXECUTE.
!LET !x_name = !QUOTE(!x).
!LET !y_name = !QUOTE(!y).
!LET !m1_name = !QUOTE(!m1).
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!LET !eor_1 = (!eor = 1).
!IF (!m2 ˜= !NULL) !THEN

!LET !m2_1 = 1.
!LET !m2_name = !QUOTE(!m2).
AGGREGATE

/OUTFILE=* MODE=ADDVARIABLES
/BREAK= !cluster
/meanm2=MEAN(!m2).

COMPUTE m2_c = !m2 - meanm2.
EXECUTE.

!ELSE
!LET !m2_1 = 0.
!LET !m2_name = !QUOTE(none).

!IFEND
!IF (!m3 ˜= !NULL) !THEN

!LET !m3_1 = 1.
!LET !m3_name = !QUOTE(!m3).
AGGREGATE

/OUTFILE=* MODE=ADDVARIABLES
/BREAK= !cluster
/meanm3=MEAN(!m3).

COMPUTE m3_c = !m3 - meanm3.
EXECUTE.

!ELSE
!LET !m3_1 = 0.
!LET !m3_name = !QUOTE(none).

!IFEND
!IF (!cov1 ˜= !NULL) !THEN

!LET !cov1_1 = 1.
AGGREGATE

/OUTFILE=* MODE=ADDVARIABLES
/BREAK= !cluster
/meanc1=MEAN(!cov1).

!IF (!cov1c = !NULL) !THEN
COMPUTE c1_c = !cov1 - meanc1.
EXECUTE.

!ELSE
COMPUTE c1_c = !cov1 - !cov1c.
EXECUTE.

!IFEND
!ELSE

!LET !cov1_1 = 0.
!IFEND
!IF (!cov2 ˜= !NULL) !THEN

!LET !cov2_1 = 1.
AGGREGATE

/OUTFILE=* MODE=ADDVARIABLES
/BREAK= !cluster
/meanc2=MEAN(!cov2).

!IF (!cov2c = !NULL) !THEN
COMPUTE c2_c = !cov2 - meanc2.
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EXECUTE.
!ELSE

COMPUTE c2_c = !cov2 - !cov2c.
EXECUTE.

!IFEND
!ELSE !LET !cov2_1 = 0.
!IFEND
!IF (!cov3 ˜= !NULL) !THEN

!LET !cov3_1 = 1.
AGGREGATE

/OUTFILE=* MODE=ADDVARIABLES
/BREAK= !cluster
/meanc3=MEAN(!cov3).

!IF (!cov3c = !NULL) !THEN
COMPUTE c3_c = !cov3 - meanc3.
EXECUTE.

!ELSE
COMPUTE c3_c = !cov3 - !cov3c.
EXECUTE.

!IFEND
!ELSE

!LET !cov3_1 = 0.
!IFEND
!IF (!l2cov1 ˜= !NULL) !THEN

!LET !l2cov1_1 = 1.
!ELSE

!LET !l2cov1_1 = 0.
!IFEND
!IF (!l2cov2 ˜= !NULL) !THEN

!LET !l2cov2_1 = 1.
!ELSE

!LET !l2cov2_1 = 0.
!IFEND
!IF (!l2cov3 ˜= !NULL) !THEN

!LET !l2cov3_1 = 1.
!ELSE

!LET !l2cov3_1 = 0.
!IFEND
!LET !samemod = 0.
!IF (!modM = !modY) !THEN

!LET !modYc = !modMcent.
!ELSE

!LET !modYc = !ModYcent.
!IFEND
!IF (!modM ˜= !NULL) !THEN

!LET !modM_1 = 1.
!LET !modM_n = !QUOTE(!modM).
COMPUTE modM_c = !modM - !modMcent.
EXECUTE.

!ELSE
!LET !modM_1 = 0.
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!LET !modM_n = !QUOTE(none).
!IFEND
!IF (!modY ˜= !NULL) !THEN

!LET !modY_1 = 1.
!LET !modY_n = !QUOTE(!modY).
!LET !samemod = (!modY = !modM).
COMPUTE modY_c = !modY - !modYc.
EXECUTE.

!ELSE
!LET !modY_1 = 0.
!LET !modY_n = !QUOTE(none).

!IFEND
!LET !covmat_1 = (!covmat = UN).
!LET !rescov_1 = (!rescovmat = UN).
!LET !bet_x_1 = (!xB = 1).
!LET !wit_x_1 = (!xW = 1).
!LET !modMB_1 = (!modMB = 1).
!LET !modYB_1 = (!modYB = 1).
!LET !bet_c1_1 = (!cov1B = 1).
!LET !bet_c2_1 = (!cov2B = 1).
!LET !bet_c3_1 = (!cov3B = 1).
!LET !bet_m1_1 = 0.
!LET !bet_m2_1 = 0.
!LET !bet_m3_1 = 0.
VARSTOCASES /ID = case_num
/MAKE Z FROM !m1 !m2 !m3 !y
/INDEX =DV(Z).

OUTPUT MODIFY
/REPORT PRINTREPORT=NO
/SELECT TABLES
/IF COMMANDS=["Variables to Cases(LAST)"] LABELS=[EXACT("Processing

Statistics")] INSTANCES=[1]
/DELETEOBJECT DELETE=YES
/SELECT TABLES
/IF COMMANDS=["Variables to Cases(LAST)"] LABELS=[EXACT("Generated

Variables")] INSTANCES=[1]
/DELETEOBJECT DELETE=YES
/SELECT TEXTS
/IF COMMANDS=["Variables to Cases(LAST)"] LABELS=[EXACT("Active

Dataset")] INSTANCES=[1]
/DELETEOBJECT DELETE=YES
/SELECT HEADINGS
/IF COMMANDS=["Variables to Cases(LAST)"] LABELS=[EXACT("Title")]

INSTANCES=[1]
/DELETEOBJECT DELETE=YES.

RECODE
DV
(!QUOTE(!y)=1) (ELSE=0) INTO y_ind.
EXECUTE.
RECODE
DV
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(!QUOTE(!y)=1) (ELSE=0) INTO y_int.
EXECUTE.
RECODE
DV
(!QUOTE(!m1)=1) (ELSE=0) INTO m1_int.
EXECUTE.
!IF (!m2 ˜= !NULL) !THEN

RECODE
DV
(!QUOTE(!m2)=1) (ELSE=0) INTO m2_int.
EXECUTE.

!IFEND
!IF (!m3 ˜= !NULL) !THEN

RECODE
DV
(!QUOTE(!m3)=1) (ELSE=0) INTO m3_int.
EXECUTE.

!IFEND
RECODE DV (!QUOTE(!y)='1').
EXECUTE.
RECODE DV (!QUOTE(!m1)='2').
EXECUTE.
!IF (!m2 ˜= !NULL) !THEN

RECODE DV (!QUOTE(!m2)='3').
EXECUTE.

!IFEND
!IF (!m3 ˜= !NULL) !THEN

RECODE DV (!QUOTE(!m3)='4').
EXECUTE.

!IFEND
COMPUTE a1_w = m1_int*x_c.
EXECUTE.
COMPUTE cp_w = y_int*x_c.
EXECUTE.
COMPUTE b1_w = y_int*m1_c.
EXECUTE.
COMPUTE a1_b = meanx*m1_int.
EXECUTE.
COMPUTE cp_b = meanx*y_int.
EXECUTE.
COMPUTE b1_b = meanm1*y_int.
EXECUTE.
!IF (!modM ˜= !NULL) !THEN

COMPUTE qM = modM_c*m1_int.
EXECUTE.
COMPUTE qM_x_a_w = qM*a1_w.
COMPUTE qM_x_a_b = qM*a1_b.
EXECUTE.

!IFEND
!IF (!modY ˜= !NULL) !THEN

COMPUTE qY = ModY_c*y_int.
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EXECUTE.
COMPUTE qY_x_b_w = qY*b1_w.
COMPUTE qY_x_b_b = qY*b1_b.
EXECUTE.

!IFEND
!IF (!cov1 ˜= !NULL) !THEN

COMPUTE g1m1_w = c1_c*m1_int.
COMPUTE g1y_w = c1_c*y_int.
COMPUTE g1m1_b = meanc1*m1_int.
COMPUTE g1y_b = meanc1*y_int.
EXECUTE.

!IFEND
!IF (!cov2 ˜= !NULL) !THEN

COMPUTE g2m1_w = c2_c*m1_int.
COMPUTE g2y_w = c2_c*y_int.
COMPUTE g2m1_b = meanc2*m1_int.
COMPUTE g2y_b = meanc2*y_int.
EXECUTE.

!IFEND
!IF (!cov3 ˜= !NULL) !THEN

COMPUTE g3m1_w = c3_c*m1_int.
COMPUTE g3y_w = c3_c*y_int.
COMPUTE g3m1_b = meanc3*m1_int.
COMPUTE g3y_b = meanc3*y_int.
EXECUTE.

!IFEND
!IF (!l2cov1 ˜= !NULL) !THEN

COMPUTE g1m1_2 = !l2cov1*m1_int.
COMPUTE g1y_2 = !l2cov1*y_int.
EXECUTE.

!IFEND
!IF (!l2cov2 ˜= !NULL) !THEN

COMPUTE g2m1_2 = !l2cov2*m1_int.
COMPUTE g2y_2 = !l2cov2*y_int.
EXECUTE.

!IFEND
!IF (!l2cov3 ˜= !NULL) !THEN

COMPUTE g3m1_2 = !l2cov3*m1_int.
COMPUTE g3y_2 = !l2cov3*y_int.
EXECUTE.

!IFEND
!IF (!m2 ˜= !NULL) !THEN

COMPUTE a2_w = m2_int*x_c.
COMPUTE b2_w = y_int*m2_c.
COMPUTE a2_b = m2_int*meanx.
COMPUTE b2_b = y_int*meanm2.
EXECUTE.
!IF (!cov1 ˜= !NULL) !THEN

COMPUTE g1m2_w = c1_c*m2_int.
COMPUTE g1m2_b = meanc1*m2_int.
EXECUTE.
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!IFEND
!IF (!cov2 ˜= !NULL) !THEN

COMPUTE g2m2_w = c2_c*m2_int.
COMPUTE g2m2_b = meanc2*m2_int.
EXECUTE.

!IFEND
!IF (!cov3 ˜= !NULL) !THEN

COMPUTE g3m2_w = c3_c*m2_int.
COMPUTE g3m2_b = meanc3*m2_int.
EXECUTE.

!IFEND
!IF (!l2cov1 ˜= !NULL) !THEN

COMPUTE g1m2_2 = !l2cov1*m2_int.
EXECUTE.

!IFEND
!IF (!l2cov2 ˜= !NULL) !THEN

COMPUTE g2m2_2 = !l2cov2*m2_int.
EXECUTE.

!IFEND
!IF (!l2cov3 ˜= !NULL) !THEN

COMPUTE g3m2_2 = !l2cov3*m2_int.
EXECUTE.

!IFEND
!IFEND
!IF (!m3 ˜= !NULL) !THEN

COMPUTE a3_w = m3_int*x_c.
COMPUTE b3_w = y_int*m3_c.
COMPUTE a3_b = m3_int*meanx.
COMPUTE b3_b = y_int*meanm3.
EXECUTE.
!IF (!cov1 ˜= !NULL) !THEN

COMPUTE g1m3_w = c1_c*m3_int.
COMPUTE g1m3_b = meanc1*m3_int.
EXECUTE.

!IFEND
!IF (!cov2 ˜= !NULL) !THEN

COMPUTE g2m3_w = c2_c*m3_int.
COMPUTE g2m3_b = meanc2*m3_int.
EXECUTE.

!IFEND
!IF (!cov3 ˜= !NULL) !THEN

COMPUTE g3m3_w = c3_c*m3_int.
COMPUTE g3m3_B = meanc3*m3_int.
EXECUTE.

!IFEND
!IF (!l2cov1 ˜= !NULL) !THEN

COMPUTE g1m3_2 = !l2cov1*m3_int.
EXECUTE.

!IFEND
!IF (!l2cov2 ˜= !NULL) !THEN

COMPUTE g2m3_2 = !l2cov2*m3_int.
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EXECUTE.
!IFEND
!IF (!l2cov3 ˜= !NULL) !THEN

COMPUTE g3m3_2 = !l2cov3*m3_int.
EXECUTE.

!IFEND
!IFEND
!LET !rm2_1 = 0.
!LET !rm3_1 = 0.
!LET !rm1int_1 = 0.
!LET !rm2int_1 = 0.
!LET !rm3int_1 = 0.
!LET !ryint_1 = 0.
!LET !ylist_w = !CONCAT(constant, !BLANKS(1))
!LET !ylist_b = !CONCAT(!BLANKS(0))
!LET !m1list_w = !CONCAT(constant, !BLANKS(1))
!LET !m1list_b = !CONCAT(!BLANKS(0))
!LET !ranvar = !CONCAT(!BLANKS(0))
!LET !ranint = !CONCAT(!BLANKS(0))
!LET !ranslope = !CONCAT(!BLANKS(0))
!LET !ranslop2 = !CONCAT(!BLANKS(0))
!LET !varlist = !CONCAT(y_int, !BLANKS(1), m1_int)
!IF (!randYint = 1) !THEN

!LET !ranvar = !CONCAT(!ranvar, y_int)
!IF (!ycov = 1) !THEN

!LET !ranslope = !CONCAT(!ranslope, y_int)
!IFEND
!LET !ryint_1 = 1.

!IFEND
!IF (!SUBSTR(!randMint,1,1) = 1) !THEN

!LET !ranvar = !CONCAT(!ranvar,!BLANKS(1), m1_int)
!LET !ranint = !CONCAT(!ranint, m1_int)
!LET !rm1int_1 = 1.

!IFEND
!IF (!m2 ˜= !NULL) !THEN

!LET !rm2_1 = 1.
!LET !varlist = !CONCAT(!varlist, !BLANKS(1), m2_int)
!IF (!SUBSTR(!randMint,2,1) = 1) !THEN

!LET !ranvar = !CONCAT(!ranvar, !BLANKS(1), m2_int)
!LET !ranint = !CONCAT(!ranint, !BLANKS(1), m2_int)
!LET !rm2int_1 = 1.

!IFEND
!LET !m2list_w = !CONCAT(constant, !BLANKS(1))
!LET !m2list_b = !CONCAT(!BLANKS(0))

!IFEND
!IF (!m3 ˜= !NULL) !THEN

!LET !rm3_1 = 1.
!LET !varlist = !CONCAT(!varlist, !BLANKS(1), m3_int)
!IF (!SUBSTR(!randMint,3,1) = 1) !THEN

!LET !ranvar = !CONCAT(!ranvar, !BLANKS(1), m3_int)
!LET !ranint = !CONCAT(!ranint, !BLANKS(1), m3_int)
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!LET !rm3int_1 = 1.
!IFEND
!LET !m3list_w = !CONCAT(Int, !BLANKS(1))
!LET !m3list_b = !CONCAT(!BLANKS(0))

!IFEND
!IF (!modM ˜= !NULL) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), qM)
!IF (!xW = 1) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), qM_x_a_w)
!IFEND

!LET !m1list_b = !CONCAT(!m1list_b, !BLANKS(1), !modM)
!IF (!xW = 1) !THEN

!LET !m1list_w = !CONCAT(!m1list_w, !BLANKS(1), int_1)
!IFEND

!IF (!Xb = 1) !THEN
!IF (!modMB = 1) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), qM_x_a_b)
!LET !m1list_b = !CONCAT(!m1list_b, !BLANKS(1), int_2)

!IFEND
!IFEND

!IFEND
!IF (!modY ˜= !NULL) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), qY)
!LET !varlist = !CONCAT(!varlist, !BLANKS(1), qY_x_b_w)
!IF (!modYB = 1) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), qY_x_b_b)
!IFEND
!LET !ylist_w = !CONCAT(!ylist_w, !BLANKS(1), int_1)
!LET !ylist_b = !CONCAT(!ylist_b, !BLANKS(1), !modY)
!IF (!modYB = 1) !THEN

!LET !ylist_b = !CONCAT(!ylist_b, !BLANKS(1), int_2)
!IFEND

!IFEND
!IF (!xW = 1) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), cp_w)
!LET !ylist_w = !CONCAT(!ylist_w, !BLANKS(1), !x)

!IFEND
!IF (!xB = 1) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), cp_b)
!LET !ylist_b = !CONCAT(!ylist_b, !BLANKS(1), !x)

!IFEND
!IF (!xW = 1) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), a1_w)
!LET !m1list_w = !CONCAT(!m1list_w, !BLANKS(1), !x)

!IFEND
!IF (!xB = 1) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), a1_b)
!LET !m1list_b = !CONCAT(!m1list_b, !BLANKS(1), !x)

!IFEND
!LET !ylist_w = !CONCAT(!ylist_w, !BLANKS(1), !m1)
!LET !varlist = !CONCAT(!varlist, !BLANKS(1), b1_w)
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!IF (!SUBSTR(!mB,1,1) = 1) !THEN
!LET !varlist = !CONCAT(!varlist, !BLANKS(1), b1_b)
!LET !ylist_b = !CONCAT(!ylist_b, !BLANKS(1), !m1)
!LET !bet_m1_1 = 1.

!IFEND
!IF (!m2 ˜= !NULL) !THEN

!IF (!xW = 1) !THEN
!LET !varlist = !CONCAT(!varlist, !BLANKS(1), a2_w)
!LET !m2list_w = !CONCAT(!m2list_w, !BLANKS(1), !x)

!IFEND
!IF (!xB = 1) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), a2_b)
!LET !m2list_b = !CONCAT(!m2list_b, !BLANKS(1), !x)

!IFEND
!LET !ylist_w = !CONCAT(!ylist_w, !BLANKS(1), !m2)
!LET !varlist = !CONCAT(!varlist, !BLANKS(1), b2_w)
!IF (!SUBSTR(!mB,2,1) = 1) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), b2_b)
!LET !ylist_b = !CONCAT(!ylist_b, !BLANKS(1), !m2)
!LET !bet_m2_1 = 1.

!IFEND
!IFEND
!IF (!m3 ˜= !NULL) !THEN

!IF (!xW = 1) !THEN
!LET !varlist = !CONCAT(!varlist, !BLANKS(1), a3_w)
!LET !m3list_w = !CONCAT(!m3list_w, !BLANKS(1), !x)

!IFEND
!IF (!xB = 1) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), a3_b)
!LET !m3list_b = !CONCAT(!m3list_b, !BLANKS(1), !x)

!IFEND
!LET !ylist_w = !CONCAT(!ylist_w, !BLANKS(1), !m3)
!LET !varlist = !CONCAT(!varlist, !BLANKS(1), b3_w)
!IF (!SUBSTR(!mB,3,1) = 1) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), b3_b)
!LET !ylist_b = !CONCAT(!ylist_b, !BLANKS(1), !m3)
!LET !bet_m3_1 = 1.

!IFEND
!IFEND
!IF (!cov1 ˜= !NULL) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g1y_w)
!IF (!bet_c1_1 = 1) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g1y_b)
!IFEND
!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g1m1_w)
!IF (!bet_c1_1 = 1) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g1m1_b)
!IFEND
!LET !ylist_w = !CONCAT(!ylist_w, !BLANKS(1), !cov1)
!IF (!bet_c1_1 = 1) !THEN

!LET !ylist_b = !CONCAT(!ylist_b, !BLANKS(1), !cov1)
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!IFEND
!LET !m1list_w = !CONCAT(!m1list_w, !BLANKS(1), !cov1)
!IF (!bet_c1_1 = 1) !THEN

!LET !m1list_b = !CONCAT(!m1list_b, !BLANKS(1), !cov1)
!IFEND
!IF (!m2 ˜= !NULL) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g1m2_w)
!IF (!bet_c1_1 = 1) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g1m2_b)
!IFEND
!LET !m2list_w = !CONCAT(!m2list_w, !BLANKS(1), !cov1)
!IF (!bet_c1_1 = 1) !THEN

!LET !m2list_b = !CONCAT(!m2list_b, !BLANKS(1), !cov1)
!IFEND

!IFEND
!IF (!m3 ˜= !NULL) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g1m3_w)
!IF (!bet_c1_1 = 1) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g1m3_b)
!IFEND

!LET !m3list_w = !CONCAT(!m3list_w, !BLANKS(1), !cov1)
!IF (!bet_c1_1 = 1) !THEN

!LET !m3list_b = !CONCAT(!m3list_b, !BLANKS(1), !cov1)
!IFEND

!IFEND
!IFEND
!IF (!cov2 ˜= !NULL) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g2y_w)
!IF (!bet_c2_1 = 1) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g2y_b)
!IFEND
!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g2m1_w)

!IF (!bet_c2_1 = 1) !THEN
!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g2m1_b)

!IFEND
!LET !ylist_w = !CONCAT(!ylist_w, !BLANKS(1), !cov2)
!IF (!bet_c2_1 = 1) !THEN

!LET !ylist_b = !CONCAT(!ylist_b, !BLANKS(1), !cov2)
!LET !m1list_b = !CONCAT(!m1list_b, !BLANKS(1), !cov2)

!IFEND
!LET !m1list_w = !CONCAT(!m1list_w, !BLANKS(1), !cov2)
!IF (!m2 ˜= !NULL) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g2m2_w)
!IF (!bet_c2_1 = 1) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g2m2_b)
!IFEND
!LET !m2list_w = !CONCAT(!m2list_w, !BLANKS(1), !cov2)
!IF (!bet_c2_1 = 1) !THEN

!LET !m2list_b = !CONCAT(!m2list_b, !BLANKS(1), !cov2)
!IFEND

!IFEND
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!IF (!m3 ˜= !NULL) !THEN
!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g2m3_w)
!IF (!bet_c2_1 = 1) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g2m3_b)
!IFEND
!LET !m3list_w = !CONCAT(!m3list_w, !BLANKS(1), !cov2)
!IF (!bet_c2_1 = 1) !THEN

!LET !m3list_b = !CONCAT(!m3list_b, !BLANKS(1), !cov2)
!IFEND

!IFEND
!IFEND
!IF (!cov3 ˜= !NULL) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g3y_w)
!IF (!bet_c3_1 = 1) !THEN

!LET !varlist = !CONCAT(!varlist,!BLANKS(1), g3y_b)
!IFEND
!LET !varlist = !CONCAT(!varlist,!BLANKS(1), g3m1_w)
!IF (!bet_c3_1 = 1) !THEN

!LET !varlist = !CONCAT(!varlist,!BLANKS(1), g3m1_b)
!IFEND
!LET !ylist_w = !CONCAT(!ylist_w, !BLANKS(1), !cov3)
!LET !m1list_w = !CONCAT(!m1list_w, !BLANKS(1), !cov3)
!IF (!bet_c3_1 = 1) !THEN

!LET !ylist_b = !CONCAT(!ylist_b, !BLANKS(1), !cov3)
!LET !m1list_b = !CONCAT(!m1list_b, !BLANKS(1), !cov3)

!IFEND
!IF (!m2 ˜= !NULL) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g3m2_w)
!IF (!bet_c3_1 = 1) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g3m2_b)
!LET !m2list_b = !CONCAT(!m2list_b, !BLANKS(1), !cov3)

!IFEND
!LET !m2list_w = !CONCAT(!m2list_w, !BLANKS(1), !cov3)

!IFEND
!IF (!m3 ˜= !NULL) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g3m3_w)
!IF (!bet_c3_1 = 1) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g3m3_b)
!LET !m3list_b = !CONCAT(!m3list_b, !BLANKS(1), !cov3)

!IFEND
!LET !m3list_w = !CONCAT(!m3list_w, !BLANKS(1), !cov3)

!IFEND
!IFEND
!IF (!l2cov1 ˜= !NULL) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g1y_2, !BLANKS(1),
g1m1_2)

!LET !ylist_b = !CONCAT(!ylist_b, !BLANKS(1), !l2cov1)
!LET !m1list_b = !CONCAT(!m1list_b, !BLANKS(1), !l2cov1)
!IF (!m2 ˜= !NULL) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g1m2_2)
!LET !m2list_b = !CONCAT(!m1list_b, !BLANKS(1), !l2cov1)
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!IFEND
!IF (!m3 ˜= !NULL) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g1m3_2)
!LET !m3list_b = !CONCAT(!m1list_b, !BLANKS(1), !l2cov1)

!IFEND
!IFEND
!IF (!l2cov2 ˜= !NULL) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g2y_2, !BLANKS(1),
g2m1_2)

!LET !ylist_b = !CONCAT(!ylist_b, !BLANKS(1), !l2cov2)
!LET !m1list_b = !CONCAT(!m1list_b, !BLANKS(1), !l2cov2)
!IF (!m2 ˜= !NULL) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g2m2_2)
!LET !m2list_b = !CONCAT(!m1list_b, !BLANKS(1), !l2cov2)

!IFEND
!IF (!m3 ˜= !NULL) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g2m3_2)
!LET !m3list_b = !CONCAT(!m1list_b, !BLANKS(1), !l2cov2)

!IFEND
!IFEND
!IF (!l2cov3 ˜= !NULL) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g3y_2, !BLANKS(1),
g3m1_2)

!LET !ylist_b = !CONCAT(!ylist_b, !BLANKS(1), !l2cov3)
!LET !m1list_b = !CONCAT(!m1list_b, !BLANKS(1), !l2cov3)
!IF (!m2 ˜= !NULL) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g3m2_2)
!LET !m2list_b = !CONCAT(!m1list_b, !BLANKS(1), !l2cov3)

!IFEND
!IF (!m3 ˜= !NULL) !THEN

!LET !varlist = !CONCAT(!varlist, !BLANKS(1), g3m3_2)
!LET !m3list_b = !CONCAT(!m1list_b, !BLANKS(1), !l2cov3)

!IFEND
!IFEND
!LET !rcp_1 = 0.
!LET !ra1_1 = 0.
!LET !ra2_1 = 0.
!LET !ra3_1 = 0.
!LET !rb1_1 = 0.
!LET !rb2_1 = 0.
!LET !rb3_1 = 0.
!IF (!SUBSTR(!randx,1,1) = 1) !THEN

!LET !rcp_1 = 1.
!LET !ranvar = !CONCAT(!ranvar, !BLANKS(1),cp_w).
!LET !ranslope = !CONCAT(!ranslope, !BLANKS(1),cp_w).
!LET !ranslop2 = !CONCAT(!ranslop2, !BLANKS(1),cp_w).

!IFEND
!IF (!SUBSTR(!randx,2,1) = 1) !THEN

!LET !ra1_1 = 1.
!LET !ranvar = !CONCAT(!ranvar, !BLANKS(1), a1_w).
!LET !ranslope = !CONCAT(!ranslope, !BLANKS(1), a1_w).
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!LET !ranslop2 = !CONCAT(!ranslop2, !BLANKS(1), a1_w).
!IFEND
!IF (!m2 ˜= !NULL) !THEN

!IF (!SUBSTR(!randx,3,1) = 1) !THEN
!LET !ra2_1 = 1.
!LET !ranvar = !CONCAT(!ranvar, !BLANKS(1), a2_w).
!LET !ranslope = !CONCAT(!ranslope, !BLANKS(1), a2_w).
!LET !ranslop2 = !CONCAT(!ranslop2, !BLANKS(1), a2_w).

!IFEND
!IFEND
!IF (!m3 ˜= !NULL) !THEN

!IF (!SUBSTR(!randx,4,1) = 1) !THEN
!LET !ra3_1 = 1.
!LET !ranvar = !CONCAT(!ranvar, !BLANKS(1), a3_w).
!LET !ranslope = !CONCAT(!ranslope, !BLANKS(1), a3_w).
!LET !ranslop2 = !CONCAT(!ranslop2, !BLANKS(1), a3_w).

!IFEND
!IFEND
!IF (!SUBSTR(!randm,1,1) = 1) !THEN

!LET !rb1_1 = 1.
!LET !ranvar = !CONCAT(!ranvar, !BLANKS(1),b1_w).
!LET !ranslope = !CONCAT(!ranslope, !BLANKS(1),b1_w).
!LET !ranslop2 = !CONCAT(!ranslop2, !BLANKS(1),b1_w).

!IFEND
!IF (!m2 ˜= !NULL) !THEN

!IF (!SUBSTR(!randm,2,1) = 1) !THEN
!LET !rb2_1 = 1.
!LET !ranvar = !CONCAT(!ranvar, !BLANKS(1), b2_w).
!LET !ranslope = !CONCAT(!ranslope, !BLANKS(1), b2_w).
!LET !ranslop2 = !CONCAT(!ranslop2, !BLANKS(1), b2_w).

!IFEND
!IFEND
!IF (!m3 ˜= !NULL) !THEN

!IF (!SUBSTR(!randm,3,1) = 1) !THEN
!LET !rb3_1 = 1.
!LET !ranvar = !CONCAT(!ranvar, !BLANKS(1), b3_w).
!LET !ranslope = !CONCAT(!ranslope, !BLANKS(1), b3_w).
!LET !ranslop2 = !CONCAT(!ranslop2, !BLANKS(1), b3_w).

!IFEND
!IFEND
!IF (!cov1 ˜= !NULL) !THEN

!IF (!SUBSTR(!randc1,1,1) = 1) !THEN
!LET !ranvar = !CONCAT(!ranvar, !BLANKS(1), g1y_w).
!LET !ranslope = !CONCAT(!ranslope, !BLANKS(1), g1y_w).
!LET !ranslop2 = !CONCAT(!ranslop2, !BLANKS(1), g1y_w).

!IFEND
!IF (!SUBSTR(!randc1,2,1) = 1) !THEN

!LET !ranvar = !CONCAT(!ranvar, !BLANKS(1), g1m1_w).
!LET !ranslope = !CONCAT(!ranslope, !BLANKS(1), g1m1_w).
!LET !ranslop2 = !CONCAT(!ranslop2, !BLANKS(1), g1m1_w).

!IFEND
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!IF (!m2 ˜= !NULL) !THEN
!IF (!SUBSTR(!randc1,3,1) = 1) !THEN

!LET !ranvar = !CONCAT(!ranvar, !BLANKS(1), g1m2_w).
!LET !ranslope = !CONCAT(!ranslope, !BLANKS(1), g1m2_w).
!LET !ranslop2 = !CONCAT(!ranslop2, !BLANKS(1), g1m2_w).

!IFEND
!IFEND
!IF (!m3 ˜= !NULL) !THEN

!IF (!SUBSTR(!randc1,4,1) = 1) !THEN
!LET !ranvar = !CONCAT(!ranvar, !BLANKS(1), g1m3_w).
!LET !ranslope = !CONCAT(!ranslope, !BLANKS(1), g1m3_w).
!LET !ranslop2 = !CONCAT(!ranslop2, !BLANKS(1), g1m3_w).

!IFEND
!IFEND

!IFEND
!IF (!cov2 ˜= !NULL) !THEN

!IF (!SUBSTR(!randc2,1,1) = 1) !THEN
!LET !ranvar = !CONCAT(!ranvar, !BLANKS(1), g2y_w).
!LET !ranslope = !CONCAT(!ranslope, !BLANKS(1), g2y_w).
!LET !ranslop2 = !CONCAT(!ranslop2, !BLANKS(1), g2y_w).

!IFEND
!IF (!SUBSTR(!randc2,2,1) = 1) !THEN

!LET !ranvar = !CONCAT(!ranvar, !BLANKS(1), g2m1_w).
!LET !ranslope = !CONCAT(!ranslope, !BLANKS(1), g2m1_w).
!LET !ranslop2 = !CONCAT(!ranslop2, !BLANKS(1), g2m1_w).

!IFEND
!IF (!m2 ˜= !NULL) !THEN

!IF (!SUBSTR(!randc2,3,1) = 1) !THEN
!LET !ranvar = !CONCAT(!ranvar, !BLANKS(1), g2m2_w).
!LET !ranslope = !CONCAT(!ranslope, !BLANKS(1), g2m2_w).
!LET !ranslop2 = !CONCAT(!ranslop2, !BLANKS(1), g2m2_w).

!IFEND
!IFEND
!IF (!m3 ˜= !NULL) !THEN

!IF (!SUBSTR(!randc2,4,1) = 1) !THEN
!LET !ranvar = !CONCAT(!ranvar, !BLANKS(1), g2m3_w).
!LET !ranslope = !CONCAT(!ranslope, !BLANKS(1), g2m3_w).
!LET !ranslop2 = !CONCAT(!ranslop2, !BLANKS(1), g2m3_w).

!IFEND
!IFEND

!IFEND
!IF (!cov3 ˜= !NULL) !THEN

!IF (!SUBSTR(!randc3,1,1) = 1) !THEN
!LET !ranvar = !CONCAT(!ranvar, !BLANKS(1), g3y_w).
!LET !ranslope = !CONCAT(!ranslope, !BLANKS(1), g3y_w).
!LET !ranslop2 = !CONCAT(!ranslop2, !BLANKS(1), g3y_w).

!IFEND
!IF (!SUBSTR(!randc3,2,1) = 1) !THEN

!LET !ranvar = !CONCAT(!ranvar, !BLANKS(1), g3m1_w).
!LET !ranslope = !CONCAT(!ranslope, !BLANKS(1), g3m1_w).
!LET !ranslop2 = !CONCAT(!ranslop2, !BLANKS(1), g3m1_w).
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!IFEND
!IF (!m2 ˜= !NULL) !THEN

!IF (!SUBSTR(!randc3,3,1) = 1) !THEN
!LET !ranvar = !CONCAT(!ranvar, !BLANKS(1), g3m2_w).
!LET !ranslope = !CONCAT(!ranslope, !BLANKS(1), g3m2_w).
!LET !ranslop2 = !CONCAT(!ranslop2, !BLANKS(1), g3m2_w).

!IFEND
!IFEND
!IF (!m3 ˜= !NULL) !THEN

!IF (!SUBSTR(!randc3,4,1) = 1) !THEN
!LET !ranvar = !CONCAT(!ranslope, !BLANKS(1), g3m3_w).
!LET !ranslope = !CONCAT(!ranslope, !BLANKS(1), g3m3_w).
!LET !ranslop2 = !CONCAT(!ranslop2, !BLANKS(1), g3m3_w).

!IFEND
!IFEND

!IFEND
!LET !rmint = 0.
!IF (!rm1int_1 = 1) !THEN

!LET !rmint = 1.
!IFEND
!IF (!rm2int_1 = 1) !THEN

!LET !rmint = 1.
!IFEND
!IF (!rm3int_1 = 1) !THEN

!LET !rmint = 1.
!IFEND
!LET !intcovmat = ID.
!IF (!rm1int_1 = 1 !AND !rm2int_1 = 1) !THEN

!LET !intcovmat = !mcovmat.
!IFEND
!IF (!rm1int_1 = 1 !AND !rm3int_1 = 1) !THEN

!LET !intcovmat = !mcovmat.
!IFEND
!IF (!rm2int_1 = 1 !AND !rm3int_1 = 1) !THEN

!LET !intcovmat = !mcovmat.
!IFEND
!LET !int_1 = (!intcovmat = UN).
!LET !ycov_1 = (!ycov = 1).
!LET !indint_1 = (!indint = 1).
!LET !covs = 1.
OMS

/SELECT TABLES
/IF COMMANDS=['Mixed'] SUBTYPES=['G Matrix']
/DESTINATION FORMAT=SAV
OUTFILE=!QUOTE(!CONCAT(!folder,g_mat.sav)) VIEWER=NO.

OMS
/SELECT TABLES
/IF COMMANDS=['Mixed'] SUBTYPES=['Parameter Estimates']
/DESTINATION FORMAT=SAV NUMBERED=TableNumber_
OUTFILE=!QUOTE(!CONCAT(!folder,p_est.sav)) VIEWER=NO.

* OMS.
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OMS
/SELECT TABLES
/IF COMMANDS=['Mixed'] SUBTYPES=['Covariance Matrix']
/DESTINATION FORMAT=SAV NUMBERED=TableNumber_
OUTFILE=!QUOTE(!CONCAT(!folder,cov_mat.sav)) VIEWER=!asym

/COLUMNS SEQUENCE=[RALL CALL LALL].

* OMS.
OMS

/SELECT TABLES
/IF COMMANDS=['Mixed'] SUBTYPES=['Tests of Fixed Effects']
/DESTINATION VIEWER=NO.

* OMS.
OMS

/SELECT TABLES
/IF COMMANDS=['Mixed'] SUBTYPES=['Model Dimension']
/DESTINATION FORMAT=SAV NUMBERED=TableNumber_
OUTFILE=!QUOTE(!CONCAT(!folder,mod_dim.sav)) VIEWER=NO.

OMS
/SELECT TABLES
/IF COMMANDS=['Mixed'] SUBTYPES=['Covariance Parameter Estimates']
/DESTINATION FORMAT=SAV NUMBERED=TableNumber_
OUTFILE=!QUOTE(!CONCAT(!folder,cov_p_est.sav)) VIEWER=!asym.

OMS
/SELECT TABLES
/IF COMMANDS=['Mixed'] SUBTYPES=['Information Criteria']
/DESTINATION FORMAT=SAV NUMBERED=TableNumber_
OUTFILE=!QUOTE(!CONCAT(!folder,fit_stat.sav)) VIEWER=NO.

!IF (!indint = 0 !OR !rmint = 0) !THEN
!IF (!ycov = 1 !OR !indint = 0) !THEN

MIXED
Z WITH !varlist
/CRITERIA = CIN(!conf) MXITER(!iters) MXSTEP(!mxstep) SCORING(!

scoring)
/FIXED = !varlist | NOINT SSTYPE(3)
/METHOD = !est
/PRINT = COVB G SOLUTION TESTCOV
/RANDOM !ranvar | SUBJECT(!cluster) COVTYPE(!covmat)
/REPEATED DV | SUBJECT(case_num*!cluster) COVTYPE(!rescovmat).

EXECUTE.
!ELSE

!IF (!ranslope ˜= !BLANKS(0)) !THEN
MIXED
Z WITH !varlist
/CRITERIA = CIN(!conf) MXITER(!iters) MXSTEP(!mxstep) SCORING

(!scoring)
/FIXED = !varlist | NOINT SSTYPE(3)
/METHOD = !est
/PRINT = COVB G SOLUTION TESTCOV
/RANDOM y_int | SUBJECT(!cluster) COVTYPE(ID)
/RANDOM !ranslope | SUBJECT(!cluster) COVTYPE(!covmat)
/REPEATED DV | SUBJECT(case_num*!cluster) COVTYPE(!rescovmat).
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EXECUTE.
!ELSE

MIXED
Z WITH !varlist
/CRITERIA = CIN(!conf) MXITER(!iters) MXSTEP(!mxstep) SCORING

(!scoring)
/FIXED = !varlist | NOINT SSTYPE(3)
/METHOD = !est
/PRINT = COVB G SOLUTION TESTCOV
/RANDOM y_int | SUBJECT(!cluster) COVTYPE(ID)
/REPEATED DV | SUBJECT(case_num*!cluster) COVTYPE(!rescovmat).
EXECUTE.
!LET !covs = 0.

!IFEND
!IFEND

!ELSE
!IF (!ycov = 1) !THEN

!IF (!ranslop2 ˜= !BLANKS(0)) !THEN
MIXED
Z WITH !varlist
/CRITERIA = CIN(!conf) MXITER(!iters) MXSTEP(!mxstep) SCORING

(!scoring)
/FIXED = !varlist | NOINT SSTYPE(3)
/METHOD = !est
/PRINT = COVB G SOLUTION TESTCOV
/RANDOM !ranint | SUBJECT(!cluster) COVTYPE(!intcovmat)
/RANDOM !ranslope | SUBJECT(!cluster) COVTYPE(!covmat)
/REPEATED DV | SUBJECT(case_num*!cluster) COVTYPE(!rescovmat).

EXECUTE.
!ELSE

MIXED
Z WITH !varlist
/CRITERIA = CIN(!conf) MXITER(!iters) MXSTEP(!mxstep) SCORING

(!scoring)
/FIXED = !varlist | NOINT SSTYPE(3)
/METHOD = !est
/PRINT = COVB G SOLUTION TESTCOV
/RANDOM !ranint | SUBJECT(!cluster) COVTYPE(!intcovmat)
/RANDOM !ranslope | SUBJECT(!cluster) COVTYPE(ID)
/REPEATED DV | SUBJECT(case_num*!cluster) COVTYPE(!rescovmat).

EXECUTE.
!LET !covs = 0.

!IFEND
!ELSE

!IF (!ranslope ˜= !BLANKS(0)) !THEN
MIXED
Z WITH !varlist
/CRITERIA = CIN(!conf) MXITER(!iters) MXSTEP(!mxstep) SCORING

(!scoring)
/FIXED = !varlist | NOINT SSTYPE(3)
/METHOD = !est
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/PRINT = COVB G SOLUTION TESTCOV
/RANDOM !ranint | SUBJECT(!cluster) COVTYPE(!intcovmat)
/RANDOM y_int | SUBJECT(!cluster) COVTYPE(ID)
/RANDOM !ranslope | SUBJECT(!cluster) COVTYPE(!covmat)
/REPEATED DV | SUBJECT(case_num*!cluster) COVTYPE(!rescovmat).
EXECUTE.

!ELSE
MIXED
Z WITH !varlist
/CRITERIA = CIN(!conf) MXITER(!iters) MXSTEP(!mxstep) SCORING

(!scoring)
/FIXED = !varlist | NOINT SSTYPE(3)
/METHOD = !est
/PRINT = COVB G SOLUTION TESTCOV
/RANDOM !ranint | SUBJECT(!cluster) COVTYPE(!intcovmat)
/RANDOM y_int | SUBJECT(!cluster) COVTYPE(ID)
/REPEATED DV | SUBJECT(case_num*!cluster) COVTYPE(!rescovmat).
EXECUTE.
!LET !covs = 0.

!IFEND
!IFEND

!IFEND
OMSEND.
OUTPUT MODIFY

/REPORT PRINTREPORT=NO
/SELECT HEADINGS
/IF COMMANDS=["Mixed(LAST)"] LABELS=[EXACT("Title")] INSTANCES=[3]
/DELETEOBJECT DELETE=YES
/SELECT HEADINGS
/IF COMMANDS=["Mixed(LAST)"] LABELS=[EXACT("Title")] INSTANCES=[2]
/DELETEOBJECT DELETE=YES
/SELECT HEADINGS
/IF COMMANDS=["Mixed(LAST)"] LABELS=[EXACT("Title")] INSTANCES=[1]
/DELETEOBJECT DELETE=YES.

!IF (!indint = 0 !OR !rmint = 0) !THEN
!IF (!ycov = 0) !THEN

OUTPUT MODIFY
/REPORT PRINTREPORT=NO
/SELECT HEADINGS
/IF COMMANDS=["Mixed(LAST)"] LABELS=[EXACT("Title")] INSTANCES

=[1]
/DELETEOBJECT DELETE=YES.

!IFEND
!ELSE

!IF (!ycov = 1) !THEN
OUTPUT MODIFY

/REPORT PRINTREPORT=NO
/SELECT HEADINGS
/IF COMMANDS=["Mixed(LAST)"] LABELS=[EXACT("Title")] INSTANCES

=[1]
/DELETEOBJECT DELETE=YES.
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!ELSE
OUTPUT MODIFY

/REPORT PRINTREPORT=NO
/SELECT HEADINGS
/IF COMMANDS=["Mixed(LAST)"] LABELS=[EXACT("Title")] INSTANCES

=[1]
/DELETEOBJECT DELETE=YES.

OUTPUT MODIFY
/REPORT PRINTREPORT=NO
/SELECT HEADINGS
/IF COMMANDS=["Mixed(LAST)"] LABELS=[EXACT("Title")] INSTANCES

=[1]
/DELETEOBJECT DELETE=YES.

!IFEND
!IFEND
DATASET CLOSE mlmdata.
DATASET ACTIVATE !data.
MATRIX.
GET fit_stat/file=!QUOTE(!CONCAT(!folder,fit_stat.sav))/variables = Var2

/MISSING = ACCEPT/SYSMIS=-999.
GET estim/file=!QUOTE(!CONCAT(!folder,p_est.sav))/variables = Estimate

To UpperBound/MISSING = ACCEPT/SYSMIS=-999.
GET g/file=!QUOTE(!CONCAT(!folder,g_mat.sav))/MISSING = ACCEPT/SYSMIS=0.
GET cov_mat/file=!QUOTE(!CONCAT(!folder,cov_mat.sav))/MISSING = ACCEPT/

SYSMIS=-999.
GET cov_p/file=!QUOTE(!CONCAT(!folder,cov_p_est.sav))/variables =

Estimate TO UpperBound/MISSING = ACCEPT/SYSMIS=-999.
GET mod_dim/file=!QUOTE(!CONCAT(!folder,mod_dim.sav))/variables =

NumberofParameters NumberofSubjects/MISSING = ACCEPT/SYSMIS=-999.
print /title = "******************************* MLmed

*******************************".
print /title = "******************************************
*****************************".
compute est = estim(:,1).
compute yeq = estim(1,:).
compute m1eq = estim(2,:).
compute num_int = 2.
compute num_rint = 0.
do if (!ryint_1 = 1).

compute num_rint = num_rint + 1.
end if.
do if (!rm1int_1 = 1).

compute num_rint = num_rint + 1.
end if.
do if (!m2_1 = 1).

compute num_int = num_int + 1.
compute m2eq = estim(num_int,:).
do if (!rm2int_1 = 1).

compute num_rint = num_rint + 1.
end if.

end if.
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do if (!m3_1 = 1).
compute num_int = num_int + 1.
compute m3eq = estim(num_int,:).
do if (!rm3int_1 = 1).

compute num_rint = num_rint + 1.
end if.

end if.
compute sca1b1b = 0.
compute sca2b2b = 0.
compute sca3b3b = 0.
compute num_fix = nrow(est).
compute num_ran = nrow(g).
compute g = g(1:num_ran, 5:(4 + num_ran)).
compute cov_fix = reshape(cov_mat(1, 5:(4 + num_fix**2)), num_fix,

num_fix).
do if (!rescov_1 = 1).

compute rfx = cov_p(((num_int&*(num_int + 1)/2) + 1):nrow(cov_p),:).
compute resfx = cov_p(1:(num_int&*(num_int + 1)/2),:).

else.
compute rfx = cov_p((num_int + 1):nrow(cov_p),:).
compute resfx = cov_p(1:num_int,:).

end if.
compute sampsize = mod_dim((nrow(mod_dim)-1),2).
compute tot_par = mod_dim(nrow(mod_dim),1).
compute fix_par = num_fix.
compute ran_l1_p = nrow(resfx).
compute ran_l2_p = tot_par-fix_par-ran_l1_p.
compute mod_spec = {sampsize; fix_par; ran_l1_p; ran_l2_p; tot_par}.
compute ran_mat =(cov_mat(2,((5 + num_fix**2):ncol(cov_mat)))).
compute ranmatn = sqrt(ncol(ran_mat)).
compute cov_ran = reshape(ran_mat, ranmatn, ranmatn).
do if (!rescov_1 = 1).

compute cov_ran = cov_ran(((num_rint&**2 + 1):ncol(cov_ran)), ((
num_rint&**2 + 1):ncol(cov_ran))).

else.
compute cov_ran = cov_ran(((num_rint + 1):ncol(cov_ran)), ((num_rint

+ 1):ncol(cov_ran))).
end if.
compute m1tab_b = {0,0,0,0,0,0,0}.
compute m2tab_b = {0,0,0,0,0,0,0}.
compute m3tab_b = {0,0,0,0,0,0,0}.
compute ytab_b = {0,0,0,0,0,0,0}.
compute fcount = 1.
compute y_int = est(fcount, :).
compute ytab_w = estim(fcount,:).
compute svy_int = cov_fix(fcount, fcount).
compute fcount = fcount + 1.
compute m1_int = est(fcount,:).
compute m1tab_w = estim(fcount,:).
compute svm1_int = cov_fix(fcount, fcount).
compute fcount = fcount + 1.
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do if (!m2_1 = 1).
compute m2_int = est(fcount,:).
compute m2tab_w = estim(fcount,:).
compute svm2_int = cov_fix(fcount, fcount).
compute fcount = fcount + 1.

end if.
do if (!m3_1 = 1).

compute m3_int = est(fcount,:).
compute m3tab_w = estim(fcount,:).
compute svm3_int = cov_fix(fcount, fcount).
compute fcount = fcount + 1.

end if.
do if (!ModM_1 = 1).

compute qM = est(fcount,:).
compute m1tab_b = {m1tab_b; estim(fcount,:)}.
compute svqM = cov_fix(fcount, fcount).
compute fcount = fcount + 1.
do if (!wit_x_1 = 1).

compute qMxaw = est(fcount,:).
compute m1tab_w = {m1tab_w; estim(fcount,:)}.
compute qMxaw_l = fcount.
compute svqMxaw = cov_fix(fcount, fcount).
compute fcount = fcount + 1.

end if.
do if (!bet_x_1 = 1 AND !modMB_1 = 1).

compute qMxab = est(fcount,:).
compute m1tab_b = {m1tab_b; estim(fcount,:)}.
compute qMxab_l = fcount.
compute svqMxab = cov_fix(fcount, fcount).
compute fcount = fcount + 1.

end if.
end if.
do if (!ModY_1 = 1).

compute qY = est(fcount,:).
compute Ytab_b = {Ytab_b; estim(fcount,:)}.
compute qY_l = fcount.
compute svqY = cov_fix(fcount, fcount).
compute fcount = fcount + 1.
compute qYxbw = est(fcount,:).
compute Ytab_w = {Ytab_w; estim(fcount,:)}.
compute qYxbw_l = fcount.
compute svqYxbw = cov_fix(fcount, fcount).
compute fcount = fcount + 1.
do if (!modYB_1 = 1).

compute qYxbb = est(fcount,:).
compute Ytab_b = {Ytab_b; estim(fcount,:)}.
compute qYxbb_l = fcount.
compute svqYxbb = cov_fix(fcount, fcount).
compute fcount = fcount + 1.

end if.
end if.
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do if (!wit_x_1 = 1).
compute cp_w = est(fcount,:).
compute Ytab_w = {Ytab_w; estim(fcount,:)}.
compute cp_w_l = fcount.
compute svcp_w = cov_fix(fcount, fcount).
compute fcount = fcount + 1.

end if.
do if (!bet_x_1 = 1).

compute cp_b = est(fcount,:).
compute Ytab_b = {Ytab_b; estim(fcount,:)}.
compute cp_b_l = fcount.
compute svcp_b = cov_fix(fcount, fcount).
compute fcount = fcount + 1.

end if.
do if (!wit_x_1 = 1).

compute a1_w = est(fcount,:).
compute m1tab_w = {m1tab_w; estim(fcount,:)}.
compute a1_w_l = fcount.
compute sva1_w = cov_fix(fcount, fcount).
do if (!bet_x_1 = 1).

compute sca1b1w = cov_fix(fcount, fcount + 2).
else.

compute sca1b1w = cov_fix(fcount, fcount + 1).
end if.
compute fcount = fcount + 1.

end if.
do if (!bet_x_1 = 1).

compute a1_b = est(fcount,:).
compute m1tab_b = {m1tab_b; estim(fcount,:)}.
compute a1_b_l = fcount.
compute sva1_b = cov_fix(fcount, fcount).
do if (!bet_m1_1 = 1).

compute sca1b1b = cov_fix(fcount, fcount + 2).
end if.
compute fcount = fcount + 1.

end if.
compute b1_w = est(fcount,:).
compute Ytab_w = {Ytab_w; estim(fcount,:)}.
compute b1_w_l = fcount.
compute svb1_w = cov_fix(fcount, fcount).
compute fcount = fcount + 1.
do if (!bet_m1_1 = 1).

compute b1_b = est(fcount,:).
compute Ytab_b = {Ytab_b; estim(fcount,:)}.
compute b1_b_l = fcount.
compute svb1_b = cov_fix(fcount, fcount).
compute fcount = fcount + 1.

end if.
do if (!wit_x_1 = 1).

compute sca1b1w = cov_fix(a1_w_l, b1_w_l).
end if.
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do if (!bet_x_1 = 1 AND !bet_m1_1 = 1).
compute sca1b1b = cov_fix(a1_b_l, b1_b_l).

end if.
do if (!m2_1 = 1).

do if (!wit_x_1 = 1).
compute a2_w = est(fcount,:).
compute m2tab_w = {m2tab_w; estim(fcount,:)}.
compute a2_w_l = fcount.
compute sva2_w = cov_fix(fcount, fcount).
do if (!bet_x_1 = 1).

compute sca2b2w = cov_fix(fcount, fcount + 2).
else.

compute sca2b2w = cov_fix(fcount, fcount + 1).
end if.
compute fcount = fcount + 1.

end if.
do if (!bet_x_1 = 1).

compute a2_b = est(fcount,:).
compute m2tab_b = {m2tab_b; estim(fcount,:)}.
compute a2_b_l = fcount.
compute sva2_b = cov_fix(fcount, fcount).
do if (!bet_m2_1 = 1).

compute sca2b2b = cov_fix(fcount, fcount + 2).
end if.
compute fcount = fcount + 1.

end if.
compute b2_w = est(fcount,:).
compute Ytab_w = {Ytab_w; estim(fcount,:)}.
compute b2_w_l = fcount.
compute svb2_w = cov_fix(fcount, fcount).
compute fcount = fcount + 1.
do if (!bet_m2_1 = 1).

compute b2_b = est(fcount,:).
compute Ytab_b = {Ytab_b; estim(fcount,:)}.
compute b2_b_l = fcount.
compute svb2_b = cov_fix(fcount, fcount).
compute fcount = fcount + 1.

end if.
do if (!wit_x_1 = 1).

compute sca2b2w = cov_fix(a2_w_l, b2_w_l).
end if.
do if (!bet_x_1 = 1 AND !bet_m2_1 = 1).

compute sca2b2b = cov_fix(a2_b_l, b2_b_l).
end if.

end if.
do if (!m3_1 = 1).

do if (!wit_x_1 = 1).
compute a3_w = est(fcount,:).
compute m3tab_w = {m3tab_w; estim(fcount,:)}.
compute a3_w_l = fcount.
compute sva3_w = cov_fix(fcount, fcount).
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do if (!bet_x_1 = 1).
compute sca3b3w = cov_fix(fcount, fcount + 2).

else.
compute sca3b3w = cov_fix(fcount, fcount + 1).

end if.
compute fcount = fcount + 1.

end if.
do if (!bet_x_1 = 1).

compute a3_b = est(fcount,:).
compute m3tab_b = {m3tab_b; estim(fcount,:)}.
compute a3_b_l = fcount.
compute sva3_b = cov_fix(fcount, fcount).
do if (!bet_m3_1 = 1).

compute sca3b3b = cov_fix(fcount, fcount + 2).
end if.
compute fcount = fcount + 1.

end if.
compute b3_w = est(fcount,:).
compute Ytab_w = {Ytab_w; estim(fcount,:)}.
compute b3_w_l = fcount.
compute svb3_w = cov_fix(fcount, fcount).
compute fcount = fcount + 1.
do if (!bet_m2_1 = 1).

compute b3_b = est(fcount,:).
compute Ytab_b = {Ytab_b; estim(fcount,:)}.
compute b3_b_l = fcount.
compute svb3_b = cov_fix(fcount, fcount).
compute fcount = fcount + 1.

end if.
do if (!wit_x_1 = 1).

compute sca3b3w = cov_fix(a3_w_l, b3_w_l).
end if.
do if (!bet_x_1 = 1).

compute sca3b3b = cov_fix(a3_b_l, b3_b_l).
end if.

end if.
do if (!cov1_1 = 1).

compute Ytab_w = {Ytab_w; estim(fcount,:)}.
compute fcount = fcount + 1.
do if (!bet_c1_1 = 1).

compute Ytab_b = {Ytab_b; estim(fcount,:)}.
compute fcount = fcount + 1.

end if.
compute m1tab_w = {m1tab_w; estim(fcount,:)}.
compute fcount = fcount + 1.
do if (!bet_c1_1 = 1).

compute m1tab_b = {m1tab_b; estim(fcount,:)}.
compute fcount = fcount + 1.

end if.
do if (!m2_1 = 1).

compute m2tab_w = {m2tab_w; estim(fcount,:)}.
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compute fcount = fcount + 1.
do if (!bet_c1_1 = 1).

compute m2tab_b = {m2tab_b; estim(fcount,:)}.
compute fcount = fcount + 1.

end if.
end if.
do if (!m3_1 = 1).

compute m3tab_w = {m3tab_w; estim(fcount,:)}.
compute fcount = fcount + 1.
do if (!bet_c1_1 = 1).

compute m3tab_b = {m3tab_b; estim(fcount,:)}.
compute fcount = fcount + 1.

end if.
end if.

end if.
do if (!cov2_1 = 1).

compute Ytab_w = {Ytab_w; estim(fcount,:)}.
compute fcount = fcount + 1.
do if (!bet_c2_1 = 1).

compute Ytab_b = {Ytab_b; estim(fcount,:)}.
compute fcount = fcount + 1.

end if.
compute m1tab_w = {m1tab_w; estim(fcount,:)}.
compute fcount = fcount + 1.
do if (!bet_c2_1 = 1).

compute m1tab_b = {m1tab_b; estim(fcount,:)}.
compute fcount = fcount + 1.

end if.
do if (!m2_1 = 1).

compute m2tab_w = {m2tab_w; estim(fcount,:)}.
compute fcount = fcount + 1.
do if (!bet_c2_1 = 1).

compute m2tab_b = {m2tab_b; estim(fcount,:)}.
compute fcount = fcount + 1.

end if.
end if.
do if (!m3_1 = 1).

compute m3tab_w = {m3tab_w; estim(fcount,:)}.
compute fcount = fcount + 1.
do if (!bet_c2_1 = 1).

compute m3tab_b = {m3tab_b; estim(fcount,:)}.
compute fcount = fcount + 1.

end if.
end if.

end if.
do if (!cov3_1 = 1).

compute Ytab_w = {Ytab_w; estim(fcount,:)}.
compute fcount = fcount + 1.
do if (!bet_c3_1 = 1).

compute Ytab_b = {Ytab_b; estim(fcount,:)}.
compute fcount = fcount + 1.
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end if.
compute m1tab_w = {m1tab_w; estim(fcount,:)}.
compute fcount = fcount + 1.
do if (!bet_c3_1 = 1).

compute m1tab_b = {m1tab_b; estim(fcount,:)}.
compute fcount = fcount + 1.

end if.
do if (!m2_1 = 1).

compute m2tab_w = {m2tab_w; estim(fcount,:)}.
compute fcount = fcount + 1.
do if (!bet_c3_1 = 1).

compute m2tab_b = {m2tab_b; estim(fcount,:)}.
compute fcount = fcount + 1.

end if.
end if.
do if (!m3_1 = 1).

compute m3tab_w = {m3tab_w; estim(fcount,:)}.
compute fcount = fcount + 1.
do if (!bet_c3_1 = 1).

compute m3tab_b = {m3tab_b; estim(fcount,:)}.
compute fcount = fcount + 1.

end if.
end if.

end if.
do if (!l2cov1_1 = 1).

compute Ytab_b = {Ytab_b; estim(fcount,:)}.
compute fcount = fcount + 1.
compute m1tab_b = {m1tab_b; estim(fcount,:)}.
compute fcount = fcount + 1.
do if (!m2_1 = 1).

compute m2tab_b = {m2tab_b; estim(fcount,:)}.
compute fcount = fcount + 1.

end if.
do if (!m3_1 = 1).

compute m3tab_b = {m3tab_b; estim(fcount,:)}.
compute fcount = fcount + 1.

end if.
end if.
do if (!l2cov2_1 = 1).

compute Ytab_b = {Ytab_b; estim(fcount,:)}.
compute fcount = fcount + 1.
compute m1tab_b = {m1tab_b; estim(fcount,:)}.
compute fcount = fcount + 1.
do if (!m2_1 = 1).

compute m2tab_b = {m2tab_b; estim(fcount,:)}.
compute fcount = fcount + 1.

end if.
do if (!m3_1 = 1).

compute m3tab_b = {m3tab_b; estim(fcount,:)}.
compute fcount = fcount + 1.

end if.
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end if.
do if (!l2cov3_1 = 1).

compute Ytab_b = {Ytab_b; estim(fcount,:)}.
compute fcount = fcount + 1.
compute m1tab_b = {m1tab_b; estim(fcount,:)}.
compute fcount = fcount + 1.
do if (!m2_1 = 1).

compute m2tab_b = {m2tab_b; estim(fcount,:)}.
compute fcount = fcount + 1.

end if.
do if (!m3_1 = 1).

compute m3tab_b = {m3tab_b; estim(fcount,:)}.
compute fcount = fcount + 1.

end if.
end if.
compute m1b = 0.
compute m2b = 0.
compute m3b = 0.
compute yb = 0.
do if (nrow(ytab_b) > 1).

compute ytab_b = ytab_b(2:nrow(ytab_b),:).
compute yb = 1.

end if.
do if (nrow(m1tab_b) > 1).

compute m1tab_b = m1tab_b(2:nrow(m1tab_b),:).
compute m1b = 1.

end if.
do if (!m2_1 = 1).

do if (nrow(m2tab_b) > 1).
compute m2tab_b = m2tab_b(2:nrow(m2tab_b),:).
compute m2b = 1.

end if.
end if.
do if (!m3_1 = 1).

do if (nrow(m3tab_b) > 1).
compute m3tab_b = m3tab_b(2:nrow(m3tab_b),:).
compute m3b = 1.

end if.
end if.
compute f_nc = csum(estim(:,4) = -999).
compute r_nc = csum(cov_p(:,3) = -999).
compute e1 = (estim(:,4) = -999)
do if (f_nc > 0).

print /title = "***Warning: One or more fixed effect parameters could
not be estimated.".

print f_nc /title = "Number of fixed effect parameters that could not
be estimated:".

print /title =
"********************************************************

***************"/ format = A8.
end if.
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do if (r_nc > 0).
print /title = "***Warning: One or more random effect parameters

could not be estimated.".
print r_nc /title = "Number of random effect parameters that could

not be estimated:".
print /title =

"*********************************************************
**************"/ format = A8.

end if.
do if (r_nc = 0 AND f_nc = 0).

print mod_spec /title "Model Specification"/format = F8.0 / rlabels =
"N" "Fixed" "Rand(L1)" "Rand(L2)" "Total".

print fit_stat /title = "Model Fit Statistics"/format = F8.4/ rlabels
= "-2LL" "AIC" "AICC" "CAIC" "BIC"/ clabels = "Value".

print /title = " ".
end if.
do if ((r_nc = 0 AND f_nc = 0) OR !eor_1 = 1).

print /title = "*************************** FIXED EFFECTS

***************************".
compute m1ntab = {"Outcome:", !m1_name}.
print m1ntab/title =

"***************************************************
********************"/ format = A8.
print m1tab_w/ title = "Within- Effects" /rlabels = !m1list_w "-"/

format = F8.4/clabels = "Estimate" "S.E." "df" "t" "p" "LL" "UL".
do if (m1b = 1).

print m1tab_b/ title = "Between- Effects" /rlabels = !m1list_b
"-"/format = F8.4/clabels = "Estimate" "S.E." "df" "t" "p"
"LL" "UL".

else.
print /title = "Note: No Between- Effect(s) Specified.".

end if.
do if (!ModM_1 = 1).

compute indtab1 = {"0", "0", "0", "0", "0", "0"}.
do if (!xW = 1).

compute indtab1 = {indtab1; "Within-", !modM_n, " x ", !
x_name, " -> ", !m1_name}.

end if.
do if (!bet_x_1 = 1 AND !modMB_1 = 1).

compute indtab1 = {indtab1; "Between-", !modM_n, " x ", !
x_name, " -> ", !m1_name}.

end if.
compute indtab1 = indtab1(2:nrow(indtab1),:).
print indtab1 /title = "Interaction Codes" /rlabels = "int_1 " "

int_2 " /format = A8.
end if.
do if (!m2_1 = 1).

compute m2ntab = {"Outcome:", !m2_name}.
print m2ntab/title =

"****************************************************
*******************"/ format = A8.
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print m2tab_w/ title = "Within- Effects" /rlabels = !m2list_w "-"/
format = F8.4/clabels = "Estimate" "S.E." "df" "t" "p" "LL" "
UL".

do if (m2b = 1).
print m2tab_b/ title = "Between- Effects" /rlabels = !m2list_b

"-"/format = F8.4/clabels = "Estimate" "S.E." "df" "t" "p"
"LL" "UL".

else.
print /title = "Note: No Between- Effects Specified.".

end if.
end if.
do if (!m3_1 = 1).

compute m3ntab = {"Outcome:", !m3_name}.
print m3ntab/title =

"******************************************************
*****************"/ format = A8.
print m3tab_w/ title = "Within- Effects" /rlabels = !m3list_w "-"/

format = F8.4/clabels = "Estimate" "S.E." "df" "t" "p" "LL" "
UL".

do if (m3b = 1).
print m3tab_b/ title = "Between- Effects" /rlabels = !m3list_b

"-"/format = F8.4/clabels = "Estimate" "S.E." "df" "t" "p"
"LL" "UL".

else.
print /title = "Note: No Between- Effects Specified.".

end if.
end if.
compute yntab = {"Outcome:", !y_name}.
print yntab/title =

"*********************************************************
**************"/format = A8.
print ytab_w/ title = "Within- Effects" /rlabels = !ylist_w "-"/

format = F8.4/clabels = "Estimate" "S.E." "df" "t" "p" "LL" "UL".
do if (yb = 1).

print ytab_b/ title = "Between- Effects" /rlabels = !ylist_b "-"/
format = F8.4/clabels = "Estimate" "S.E." "df" "t" "p" "LL" "
UL".

else.
print /title = "Note: No Between- Effects Specified.".

end if.
do if (!ModY_1 = 1).

compute indtab2 = {"Within-", !modY_n, " x ", !m1_name, " ->
", !y_name}.

do if (!modYB_1 = 1).
compute indtab2 = {indtab2; "Between-", !modY_n, " x ", !

m1_name, " -> ", !y_name}.
end if.
print indtab2 /title = "Interaction Codes" /rlabels = "int_1 " "

int_2 " /format = A8.
end if.
print /title = "***************************************************
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********************"/format = A8.
else if (f_nc > 0).

print /title = "*************************** FIXED EFFECTS

***************************".
compute m1ntab = {"Outcome:", !m1_name}.
print m1ntab/title = "**********************************************
*************************"/ format = A8.
print (m1tab_w(:,3) = -999)/ title = "Within- Effects" /rlabels = !

m1list_w "-"/format = F8.0/clabels = "Error".
do if (m1b = 1).

print (m1tab_b(:,3) = -999)/ title = "Between- Effects" /
rlabels = !m1list_b "-"/format = F8.0/clabels = "Error".

else.
print /title = "Note: No Between- Effect(s) Specified.".

end if.
do if (!ModM_1 = 1).

compute indtab1 = {"0", "0", "0", "0", "0", "0"}.
do if (!xW = 1).

compute indtab1 = {indtab1; "Within-", !modM_n, " x ", !
x_name, " -> ", !m1_name}.

end if.
do if (!bet_x_1 = 1 AND !modMB_1 = 1).

compute indtab1 = {indtab1; "Between-", !modM_n, " x ", !
x_name, " -> ", !m1_name}.

end if.
compute indtab1 = indtab1(2:nrow(indtab1),:).
print indtab1 /title = "Interaction Codes" /rlabels = "int_1 " "

int_2 " /format = A8.
end if.
do if (!m2_1 = 1).

compute m2ntab = {"Outcome:", !m2_name}.
print m2ntab/title =

"************************************************
***********************"/ format = A8.
print (m2tab_w(:,3) = -999)/ title = "Within- Effects" /rlabels =

!m2list_w "-"/format = F8.0/clabels = "Error".
do if (m2b = 1).

print (m2tab_b(:,3) = -999)/ title = "Between- Effects" /
rlabels = !m2list_b "-"/format = F8.0/clabels = "Error".

else.
print /title = "Note: No Between- Effects Specified.".

end if.
end if.
do if (!m3_1 = 1).

compute m3ntab = {"Outcome:", !m3_name}.
print m3ntab/title =

"************************************************
***********************"/ format = A8.
print (m3tab_w(:,3) = -999)/ title = "Within- Effects" /rlabels =

!m3list_w "-"/format = F8.0/clabels = "Error".
do if (m3b = 1).
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print (m3tab_b(:,3) = -999)/ title = "Between- Effects" /
rlabels = !m3list_b "-"/format = F8.0/clabels = "Error".

else.
print /title = "Note: No Between- Effects Specified.".

end if.
end if.
compute yntab = {"Outcome:", !y_name}.
print yntab/title = "*******************************
****************************************"/format = A8.
print (ytab_w(:,3) = -999)/ title = "Within- Effects" /rlabels = !

ylist_w "-"/format = F8.0/clabels = "Error".
do if (yb = 1).

print (ytab_b(:,3) = -999)/ title = "Between- Effects" /rlabels =
!ylist_b "-"/format = F8.0/clabels = "Error".

else.
print /title = "Note: No Between- Effects Specified.".

end if.
do if (!ModY_1 = 1).

compute indtab2 = {"Within-", !modY_n, " x ", !m1_name, " ->
", !y_name}.

do if (!modYB_1 = 1).
compute indtab2 = {indtab2; "Between-", !modY_n, " x ", !

m1_name, " -> ", !y_name}.
end if.
print indtab2 /title = "Interaction Codes" /rlabels = "int_1 " "

int_2 " /format = A8.
end if.
print /title = "*******************************
****************************************"/format = A8.

end if.
do if (!rescov_1 = 1).

compute rfx = cov_p(((num_int&*(num_int + 1)/2) + 1):nrow(cov_p),:).
compute resfx = cov_p(1:(num_int&*(num_int + 1)/2),:).

else.
compute rfx = cov_p((num_int + 1):nrow(cov_p),:).
compute resfx = cov_p(1:num_int,:).

end if.
compute reskey = {!y_name; !m1_name}.
do if (!m2_1 = 1).

compute reskey = {reskey; !m2_name}.
end if.
do if (!m3_1 = 1).

compute reskey = {reskey; !m3_name}.
end if.
compute numrint = num_rint - (!ryint_1 = 1).
do if ((r_nc = 0 AND f_nc = 0) OR !eor_1 = 1).

print /title = "************************** RANDOM EFFECTS

***************************".
do if (!rescov_1 = 1).

print resfx /title = "Level-1 Residual Estimates" /clabels = "
Estimate" "S.E." "Wald Z" "p" "LL" "UL"
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/rlabels = "(1,1)" "(2,1)" "(2,2)" "(3,1)" "(3,2)" "(3,3)"
"(4,1)" "(4,2)" "(4,3)" "(4,4)" "(5,1)" "(5,2)" "(5,3)"
"(5,4)" "(5,5)" /format = F8.4.

print reskey/ title = "Level-1 Residual Names"/ rlabels = "1" "2"
"3" "4" /format = A8.

else.
compute list = t(reskey).
print resfx /title = "Level-1 Residual Estimates" /clabels = "

Estimate" "S.E." "Wald Z" "p" "LL" "UL" /rlabels = !y !m1 !m2
!m3 "-"/format = F8.4.

end if.
do if ((!covmat_1 = 0 OR !covs = 0) AND !int_1 = 0).

print rfx/ title = "Random Effect Estimates" /clabels = "Estimate"
"S.E." "Wald Z" "p" "LL" "UL" /rlabels = "1" "2" "3" "4" "5"

"6" "7" "8" "9" "10"/ format = F8.4.
else.

do if (!indint = 0).
print rfx/ title = "Random Effect Estimates" /clabels = "

Estimate" "S.E." "Wald Z" "p" "LL" "UL"
/rlabels = "(1,1)" "(2,1)" "(2,2)" "(3,1)" "(3,2)" "(3,3)"

"(4,1)" "(4,2)" "(4,3)" "(4,4)" "(5,1)" "(5,2)"
"(5,3)" "(5,4)" "(5,5)" "(6,1)" "(6,2)" "(6,3)" "(6,4)
" "(6,5)" "(6,6)"

"(7,1)" "(7,2)" "(7,3)" "(7,4)" "(7,5)" "(7,6)" "(7,7)"
"(8,1)" "(8,2)" "(8,3)" "(8,4)" "(8,5)" "(8,6)" "(8,7)
" "(8,8)"/ format = F8.4.

else if (!int_1 = 0 AND !covmat_1 = 1).
do if ((numrint = -1 AND !ycov = 0) OR (numrint = 1 AND !ycov =

1)).
print rfx/ title = "Random Effect Estimates" /clabels = "

Estimate" "S.E." "Wald Z" "p" "LL" "UL"
/rlabels = "(1,1)" "(2,1)" "(2,2)" "(3,1)" "(3,2)" "(3,3)

" "(4,1)" "(4,2)" "(4,3)" "(4,4)" "(5,1)" "(5,2)"
"(5,3)" "(5,4)" "(5,5)" "(6,1)" "(6,2)" "(6,3)"
"(6,4)" "(6,5)" "(6,6)"

"(7,1)" "(7,2)" "(7,3)" "(7,4)" "(7,5)" "(7,6)" "(7,7)"
"(8,1)" "(8,2)" "(8,3)" "(8,4)" "(8,5)" "(8,6)"
"(8,7)" "(8,8)"/ format = F8.4.

else if ((numrint = 0 AND !ycov = 0) OR (numrint = 1 AND !ycov
= 1)).
print rfx/ title = "Random Effect Estimates" /clabels = "

Estimate" "S.E." "Wald Z" "p" "LL" "UL"
/rlabels = "(1,1)" "(2,2)" "(3,2)" "(3,3)" "(4,2)"

"(4,3)" "(4,4)" "(5,2)" "(5,3)" "(5,4)" "(5,5)"
"(6,2)" "(6,3)" "(6,4)" "(6,5)" "(6,6)"

"(7,2)" "(7,3)" "(7,4)" "(7,5)" "(7,6)" "(7,7)"
"(8,2)" "(8,3)" "(8,4)" "(8,5)" "(8,6)" "(8,7)"
"(8,8)"/ format = F8.4.

else if ((numrint = 1 AND !ycov = 0) OR (numrint = 2 AND !ycov
= 1)).
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print rfx/ title = "Random Effect Estimates" /clabels = "
Estimate" "S.E." "Wald Z" "p" "LL" "UL"

/rlabels = "(1,1)" "(2,2)" "(3,3)" "(4,3)" "(4,4)"
"(5,3)" "(5,4)" "(5,5)" "(6,3)" "(6,4)" "(6,5)"
"(6,6)"

"(7,3)" "(7,4)" "(7,5)" "(7,6)" "(7,7)" "(8,3)"
"(8,4)" "(8,5)" "(8,6)" "(8,7)" "(8,8)"/ format
= F8.4.

else if ((numrint = 2 AND !ycov = 0) OR (numrint = 3 AND !ycov
= 1)).
print rfx/ title = "Random Effect Estimates" /clabels = "

Estimate" "S.E." "Wald Z" "p" "LL" "UL"
/rlabels = "(1,1)" "(2,2)" "(3,3)" "(4,4)" "(5,4)"

"(5,5)" "(6,4)" "(6,5)" "(6,6)"
"(7,4)" "(7,5)" "(7,6)" "(7,7)" "(8,4)" "(8,5)"

"(8,6)" "(8,7)" "(8,8)"/ format = F8.4.
else if (numrint = 3 AND !ycov = 0).

print rfx/ title = "Random Effect Estimates" /clabels = "
Estimate" "S.E." "Wald Z" "p" "LL" "UL"

/rlabels = "(1,1)" "(2,2)" "(3,3)" "(4,4)" "(5,5)"
"(6,5)" "(6,6)"

"(7,5)" "(7,6)" "(7,7)" "(8,5)" "(8,6)" "(8,7)"
"(8,8)"/ format = F8.4.

end if.
else if (!int_1 = 1 AND !covmat_1 = 1).

do if (numrint = 2 AND !ycov = 1).
print rfx/ title = "Random Effect Estimates" /clabels = "

Estimate" "S.E." "Wald Z" "p" "LL" "UL"
/rlabels = "(1,1)" "(2,1)" "(2,2)" "(3,3)" "(4,3)" "(4,4)

" "(5,3)" "(5,4)" "(5,5)" "(6,3)" "(6,4)" "(6,5)"
"(6,6)"

"(7,3)" "(7,4)" "(7,5)" "(7,6)" "(7,7)" "(8,3)" "(8,4)"
"(8,5)" "(8,6)" "(8,7)" "(8,8)"/ format = F8.4.

else if (numrint = 2 AND !ycov = 0).
print rfx/ title = "Random Effect Estimates" /clabels = "

Estimate" "S.E." "Wald Z" "p" "LL" "UL"
/rlabels = "(1,1)" "(2,1)" "(2,2)" "(3,3)" "(4,4)" "(5,4)

" "(5,5)" "(6,4)" "(6,5)" "(6,6)"
"(7,4)" "(7,5)" "(7,6)" "(7,7)" "(8,4)" "(8,5)" "(8,6)"

"(8,7)" "(8,8)"/ format = F8.4.
else if (numrint = 3 AND !ycov = 1).

print rfx/ title = "Random Effect Estimates" /clabels = "
Estimate" "S.E." "Wald Z" "p" "LL" "UL"
/rlabels = "(1,1)" "(2,1)" "(2,2)" "(3,1)" "(3,2)" "(3,3)

" "(4,4)" "(5,4)" "(5,5)" "(6,4)" "(6,5)" "(6,6)"
"(7,4)" "(7,5)" "(7,6)" "(7,7)" "(8,4)" "(8,5)" "(8,6)"

"(8,7)" "(8,8)"/ format = F8.4.
else if (numrint = 3 AND !ycov = 0).

print rfx/ title = "Random Effect Estimates" /clabels = "
Estimate" "S.E." "Wald Z" "p" "LL" "UL"
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/rlabels = "(1,1)" "(2,1)" "(2,2)" "(3,1)" "(3,2)" "(3,3)
" "(4,4)" "(5,5)" "(6,5)" "(6,6)"

"(7,5)" "(7,6)" "(7,7)" "(8,5)" "(8,6)" "(8,7)" "(8,8)"/
format = F8.4.

end if.
else if (!int_1 = 1 AND !covmat_1 = 0).

do if (numrint = 2).
print rfx/ title = "Random Effect Estimates" /clabels = "

Estimate" "S.E." "Wald Z" "p" "LL" "UL"
/rlabels = "(1,1)" "(2,1)" "(2,2)" "(3,3)" "(4,4)"

"(5,5)" "(6,6)"
"(7,7)" "(8,8)"/ format = F8.4.

else if (numrint = 3).
print rfx/ title = "Random Effect Estimates" /clabels = "

Estimate" "S.E." "Wald Z" "p" "LL" "UL"
/rlabels = "(1,1)" "(2,1)" "(2,2)" "(3,1)" "(3,2)"

"(3,3)" "(4,4)" "(5,5)" "(6,6)"
"(7,7)" "(8,8)"/ format = F8.4.

end if.
end if.

compute rfxtab = {1:20}.
compute rfxtab = t(rfxtab).
compute rfxtab = rfxtab(1:nrow(g)).
print g/title = "Random Effect Covariance Matrix" /clabels = "1"

"2" "3" "4" "5" "6" "7" "8" / rlabels = "1" "2" "3" "4" "5"
"6" "7" "8" /format = F8.4.

compute sds = sqrt(mdiag(diag(g))).
compute sds_inv = inv(sds).
compute cor_mat = sds_inv*g*sds_inv.
print cor_mat/title = "Random Effect Correlation Matrix" /clabels

= "1" "2" "3" "4" "5" "6" "7" "8" / rlabels = "1" "2" "3" "4"
"5" "6" "7" "8" /format = F8.4.

end if.
else if (r_nc > 0).

print /title = "************************** RANDOM EFFECTS

***************************".
do if (!rescov_1 = 1).

print (resfx(:,3) = -999)/title = "Level-1 Residual Estimates" /
clabels = "Estimate" "S.E." "Wald Z" "p" "LL" "UL"
/rlabels = "(1,1)" "(2,1)" "(2,2)" "(3,1)" "(3,2)" "(3,3)"

"(4,1)" "(4,2)" "(4,3)" "(4,4)" "(5,1)" "(5,2)" "(5,3)"
"(5,4)" "(5,5)" /format = F8.4.

print reskey/ title = "Level-1 Residual Names"/ rlabels = "1" "2"
"3" "4" /format = A8.

else.
compute list = t(reskey).
print (resfx(:,3) = -999) /title = "Level-1 Residual Estimates" /

clabels = "Estimate" "S.E." "Wald Z" "p" "LL" "UL" /rlabels =
!y !m1 !m2 !m3 "-"/format = F8.4.

end if.
do if ((!covmat_1 = 0 OR !covs = 0) AND !int_1 = 0).
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print (rfx(:,3) = -999)/ title = "Random Effect Estimates" /
clabels = "Estimate" "S.E." "Wald Z" "p" "LL" "UL" /rlabels =
"1" "2" "3" "4" "5" "6" "7" "8" "9" "10"/ format = F8.4.

else.
do if (!indint = 0).

print (rfx(:,3) = -999)/ title = "Random Effect Estimates" /
clabels = "Estimate" "S.E." "Wald Z" "p" "LL" "UL"

/rlabels = "(1,1)" "(2,1)" "(2,2)" "(3,1)" "(3,2)" "(3,3)"
"(4,1)" "(4,2)" "(4,3)" "(4,4)" "(5,1)" "(5,2)"

"(5,3)" "(5,4)" "(5,5)" "(6,1)" "(6,2)" "(6,3)" "(6,4)
" "(6,5)" "(6,6)"

"(7,1)" "(7,2)" "(7,3)" "(7,4)" "(7,5)" "(7,6)" "(7,7)"
"(8,1)" "(8,2)" "(8,3)" "(8,4)" "(8,5)" "(8,6)" "(8,7)
" "(8,8)"/ format = F8.4.

else if (!int_1 = 0 AND !covmat_1 = 1).
do if ((numrint = -1 AND !ycov = 0) OR (numrint = 1 AND !ycov =

1)).
print (rfx(:,3) = -999)/ title = "Random Effect Estimates" /

clabels = "Estimate" "S.E." "Wald Z" "p" "LL" "UL"
/rlabels = "(1,1)" "(2,1)" "(2,2)" "(3,1)" "(3,2)" "(3,3)

" "(4,1)" "(4,2)" "(4,3)" "(4,4)" "(5,1)" "(5,2)"
"(5,3)" "(5,4)" "(5,5)" "(6,1)" "(6,2)" "(6,3)"
"(6,4)" "(6,5)" "(6,6)"

"(7,1)" "(7,2)" "(7,3)" "(7,4)" "(7,5)" "(7,6)" "(7,7)"
"(8,1)" "(8,2)" "(8,3)" "(8,4)" "(8,5)" "(8,6)"
"(8,7)" "(8,8)"/ format = F8.4.

else if ((numrint = 0 AND !ycov = 0) OR (numrint = 1 AND !ycov
= 1)).
print (rfx(:,3) = -999)/ title = "Random Effect Estimates" /

clabels = "Estimate" "S.E." "Wald Z" "p" "LL" "UL"
/rlabels = "(1,1)" "(2,2)" "(3,2)" "(3,3)" "(4,2)"

"(4,3)" "(4,4)" "(5,2)" "(5,3)" "(5,4)" "(5,5)"
"(6,2)" "(6,3)" "(6,4)" "(6,5)" "(6,6)"

"(7,2)" "(7,3)" "(7,4)" "(7,5)" "(7,6)" "(7,7)"
"(8,2)" "(8,3)" "(8,4)" "(8,5)" "(8,6)" "(8,7)"
"(8,8)"/ format = F8.4.

else if ((numrint = 1 AND !ycov = 0) OR (numrint = 2 AND !ycov
= 1)).
print (rfx(:,3) = -999)/ title = "Random Effect Estimates" /

clabels = "Estimate" "S.E." "Wald Z" "p" "LL" "UL"
/rlabels = "(1,1)" "(2,2)" "(3,3)" "(4,3)" "(4,4)"

"(5,3)" "(5,4)" "(5,5)" "(6,3)" "(6,4)" "(6,5)"
"(6,6)"

"(7,3)" "(7,4)" "(7,5)" "(7,6)" "(7,7)" "(8,3)"
"(8,4)" "(8,5)" "(8,6)" "(8,7)" "(8,8)"/ format
= F8.4.

else if ((numrint = 2 AND !ycov = 0) OR (numrint = 3 AND !ycov
= 1)).
print (rfx(:,3) = -999)/ title = "Random Effect Estimates" /

clabels = "Estimate" "S.E." "Wald Z" "p" "LL" "UL"
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/rlabels = "(1,1)" "(2,2)" "(3,3)" "(4,4)" "(5,4)"
"(5,5)" "(6,4)" "(6,5)" "(6,6)"

"(7,4)" "(7,5)" "(7,6)" "(7,7)" "(8,4)" "(8,5)"
"(8,6)" "(8,7)" "(8,8)"/ format = F8.4.

else if (numrint = 3 AND !ycov = 0).
print (rfx(:,3) = -999)/ title = "Random Effect Estimates" /

clabels = "Estimate" "S.E." "Wald Z" "p" "LL" "UL"
/rlabels = "(1,1)" "(2,2)" "(3,3)" "(4,4)" "(5,5)"

"(6,5)" "(6,6)"
"(7,5)" "(7,6)" "(7,7)" "(8,5)" "(8,6)" "(8,7)"

"(8,8)"/ format = F8.4.
end if.

else if (!int_1 = 1 AND !covmat_1 = 1).
do if (numrint = 2 AND !ycov = 1).

print (rfx(:,3) = -999)/ title = "Random Effect Estimates" /
clabels = "Estimate" "S.E." "Wald Z" "p" "LL" "UL"
/rlabels = "(1,1)" "(2,1)" "(2,2)" "(3,3)" "(4,3)" "(4,4)

" "(5,3)" "(5,4)" "(5,5)" "(6,3)" "(6,4)" "(6,5)"
"(6,6)"

"(7,3)" "(7,4)" "(7,5)" "(7,6)" "(7,7)" "(8,3)" "(8,4)"
"(8,5)" "(8,6)" "(8,7)" "(8,8)"/ format = F8.4.

else if (numrint = 2 AND !ycov = 0).
print (rfx(:,3) = -999)/ title = "Random Effect Estimates" /

clabels = "Estimate" "S.E." "Wald Z" "p" "LL" "UL"
/rlabels = "(1,1)" "(2,1)" "(2,2)" "(3,3)" "(4,4)" "(5,4)

" "(5,5)" "(6,4)" "(6,5)" "(6,6)"
"(7,4)" "(7,5)" "(7,6)" "(7,7)" "(8,4)" "(8,5)" "(8,6)"

"(8,7)" "(8,8)"/ format = F8.4.
else if (numrint = 3 AND !ycov = 1).

print (rfx(:,3) = -999)/ title = "Random Effect Estimates" /
clabels = "Estimate" "S.E." "Wald Z" "p" "LL" "UL"
/rlabels = "(1,1)" "(2,1)" "(2,2)" "(3,1)" "(3,2)" "(3,3)

" "(4,4)" "(5,4)" "(5,5)" "(6,4)" "(6,5)" "(6,6)"
"(7,4)" "(7,5)" "(7,6)" "(7,7)" "(8,4)" "(8,5)" "(8,6)"

"(8,7)" "(8,8)"/ format = F8.4.
else if (numrint = 3 AND !ycov = 0).

print (rfx(:,3) = -999)/ title = "Random Effect Estimates" /
clabels = "Estimate" "S.E." "Wald Z" "p" "LL" "UL"
/rlabels = "(1,1)" "(2,1)" "(2,2)" "(3,1)" "(3,2)" "(3,3)

" "(4,4)" "(5,5)" "(6,5)" "(6,6)"
"(7,5)" "(7,6)" "(7,7)" "(8,5)" "(8,6)" "(8,7)" "(8,8)"/

format = F8.4.
end if.

else if (!int_1 = 1 AND !covmat_1 = 0).
do if (numrint = 2).

print (rfx(:,3) = -999)/ title = "Random Effect Estimates
" /clabels = "Estimate" "S.E." "Wald Z" "p" "LL" "UL"
/rlabels = "(1,1)" "(2,1)" "(2,2)" "(3,3)" "(4,4)"

"(5,5)" "(6,6)"
"(7,7)" "(8,8)"/ format = F8.4.

else if (numrint = 3).
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print (rfx(:,3) = -999)/ title = "Random Effect Estimates
" /clabels = "Estimate" "S.E." "Wald Z" "p" "LL" "UL"
/rlabels = "(1,1)" "(2,1)" "(2,2)" "(3,1)" "(3,2)"

"(3,3)" "(4,4)" "(5,5)" "(6,6)"
"(7,7)" "(8,8)"/ format = F8.4.

end if.
end if.

end if.
compute va1 = 0.
compute va2 = 0.
compute va3 = 0.
compute vb1 = 0.
compute vb2 = 0.
compute vb3 = 0.
compute rtable = {"0", "0", "0", "0"}.
compute rcount = 1.
compute covcount = 1.
do if (!rm1int_1 = 1).

compute rtable = {rtable; "Int", !m1_name, " ", " "}.
compute vm1_int = g(rcount, rcount).
compute rcount = rcount + 1.

end if.
do if (!rm2_1 = 1 AND !rm2int_1 = 1).

compute rtable = {rtable; "Int", !m2_name, " ", " "}.
compute vm2_int = g(rcount, rcount).
compute rcount = rcount + 1.

end if.
do if (!rm3_1 = 1 AND !rm3int_1 = 1).

compute rtable = {rtable; "Int", !m3_name, " ", " "}.
compute vm3_int = g(rcount, rcount).
compute rcount = rcount + 1.

end if.
compute counter = rcount - 1.
do if (!int_1 = 1 AND counter > 0).

compute counter = (counter*(counter + 1))/2.
end if.
compute counter = counter + 1.
compute counter2 = 1.
do if (!ryint_1 = 1).

compute rtable = {rtable; "Int", !y_name, " ", " "}.
compute vy_int = g(rcount, rcount).
compute rcount = rcount + 1.
compute covcount = covcount + 1.
do if (!ycov_1 = 1).

compute counter2 = counter2 + 1.
else.

compute counter = counter + 1.
end if.

end if.
do if (!rcp_1 = 1).

compute rtable = {rtable; "Slope", !x_name, " ->", !y_name}.
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compute vcp = g(rcount, rcount).
compute rcount = rcount + 1.
compute counter2 = counter2 + 1.

end if.
do if (!ra1_1 = 1).

compute rtable = {rtable; "Slope", !x_name, " ->", !m1_name}.
compute va1 = g(rcount, rcount).
compute a1loc = rcount.
compute rcount = rcount + 1.
compute a1loc2 = counter2.
compute counter2 = counter2 + 1.

end if.
do if (!ra2_1 = 1).

compute rtable = {rtable; "Slope", !x_name, " ->", !m2_name}.
compute va2 = g(rcount, rcount).
compute a2loc = rcount.
compute rcount = rcount + 1.
compute a2loc2 = counter2.
compute counter2 = counter2 + 1.

end if.
do if (!ra3_1 = 1).

compute rtable = {rtable; "Slope", !x_name, " ->", !m3_name}.
compute va3 = g(rcount, rcount).
compute a3loc = rcount.
compute rcount = rcount + 1.
compute a3loc2 = counter2.
compute counter2 = counter2 + 1.

end if.
do if (!rb1_1 = 1).

compute rtable = {rtable; "Slope", !m1_name, " ->", !y_name}.
compute vb1 = g(rcount, rcount).
compute b1loc = rcount.
compute rcount = rcount + 1.
compute b1loc2 = counter2.
compute counter2 = counter2 + 1.

end if.
do if (!rb2_1 = 1).

compute rtable = {rtable; "Slope", !m2_name, " ->", !y_name}.
compute vb2 = g(rcount, rcount).
compute b2loc = rcount.
compute rcount = rcount + 1.
compute b2loc2 = counter2.
compute counter2 = counter2 + 1.

end if.
do if (!rb3_1 = 1).

compute rtable = {rtable; "Slope", !m3_name, " ->", !y_name}.
compute vb3 = g(rcount, rcount).
compute b3loc = rcount.
compute rcount = rcount + 1.
compute b3loc2 = counter2.
compute counter2 = counter2 + 1.
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end if.
compute rtable = rtable(2:nrow(rtable),:).
print rtable /title = "Random Effect Key" /rlabels = "1" "2" "3" "4" "5"

"6" "7" "8" "9" "10" "11"/ format = A10.
print /title = "*********************************
**************************************"/format = A8.
compute ca1a2 = 0.
compute ca1a3 = 0.
compute ca1b1 = 0.
compute ca1b2 = 0.
compute ca1b3 = 0.
compute ca2a3 = 0.
compute ca2b1 = 0.
compute ca2b2 = 0.
compute ca2b3 = 0.
compute ca3b1 = 0.
compute ca3b2 = 0.
compute ca3b3 = 0.
compute cb1b2 = 0.
compute cb1b3 = 0.
compute cb2b3 = 0.
compute sv_ca1b1 = 0.
compute sv_ca2b2 = 0.
compute sv_ca3b3 = 0.
compute sc_12 = 0.
compute sc_13 = 0.
compute sc_23 = 0.
compute v_a1b1_w = 0.
compute v_a2b2_w = 0.
compute v_a3b3_w = 0.
do if (!ra1_1 = 1).

do if (!ra2_1 = 1).
compute ca1a2 = g(a1loc, a2loc).

end if.
do if (!ra3_1 = 1).

compute ca1a3 = g(a1loc, a3loc).
end if.
do if (!rb1_1 = 1).

compute ca1b1 = g(a1loc, b1loc).
end if.
do if (!rb2_1 = 1).

compute ca1b2 = g(a1loc, b2loc).
end if.
do if (!rb3_1 = 1).

compute ca1b3 = g(a1loc, b3loc).
end if.

end if.
do if (!ra2_1 = 1).

do if (!ra3_1 = 1).
compute ca2a3 = g(a2loc, a3loc).

end if.
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do if (!rb1_1 = 1).
compute ca2b1 = g(a2loc, b1loc).

end if.
do if (!rb2_1 = 1).

compute ca2b2 = g(a2loc, b2loc).
end if.
do if (!rb3_1 = 1).

compute ca2b3 = g(a2loc, b3loc).
end if.

end if.
do if (!ra3_1 = 1).

do if (!rb1_1 = 1).
compute ca3b1 = g(a3loc, b1loc).

end if.
do if (!rb2_1 = 1).

compute ca3b2 = g(a3loc, b2loc).
end if.
do if (!rb3_1 = 1).

compute ca3b3 = g(a3loc, b3loc).
end if.

end if.
do if (!rb1_1 = 1).

do if (!rb2_1 = 1).
compute cb1b2 = g(b1loc, b2loc).

end if.
do if (!rb3_1 = 1).

compute cb1b3 = g(b1loc, b3loc).
end if.

end if.
do if (!rb2_1 = 1).

do if (!rb3_1 = 1).
compute cb2b3 = g(b2loc, b3loc).

end if.
end if.
compute mc_ca1b1 = make(!samples, 1, 0).
compute mc_ca2b2 = make(!samples, 1, 0).
compute mc_ca3b3 = make(!samples, 1, 0).
do if (!indint = 1 AND counter < nrow(cov_ran)).

compute cov_ran = cov_ran(counter:nrow(cov_ran), counter:nrow(cov_ran
)).

end if.
do if (!covmat_1 = 1).

do if (!ra1_1 = 1 AND !rb1_1 = 1).
do if (!indint = 1).

compute a1b1loc = {b1loc2, a1loc2}.
else.

compute a1b1loc = {b1loc, a1loc}.
end if.
compute rowa1b1 = (((a1b1loc(1,1) - 1)*a1b1loc(1,1))/2) + a1b1loc

(1,2).
compute sv_ca1b1 = cov_ran(rowa1b1, rowa1b1).
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end if.
do if (!ra2_1 = 1 AND !rb2_1 = 1).

do if (!indint = 1).
compute a2b2loc = {b2loc2, a2loc2}.

else.
compute a2b2loc = {b2loc, a2loc}.

end if.
compute rowa2b2 = (((a2b2loc(1,1) - 1)*a2b2loc(1,1))/2) + a2b2loc

(1,2).
compute sv_ca2b2 = cov_ran(rowa2b2, rowa2b2).

end if.
do if (!ra3_1 = 1 AND !rb3_1 = 1).

do if (!indint = 1).
compute a3b3loc = {b3loc2, a3loc2}.

else.
compute a3b3loc = {b3loc, a3loc}.

end if.
compute rowa3b3 = (((a3b3loc(1,1) - 1)*a3b3loc(1,1))/2) + a3b3loc

(1,2).
compute sv_ca3b3 = cov_ran(rowa3b3, rowa3b3).

end if.
do if (!ra1_1 = 1 AND !rb1_1 = 1 AND !ra2_1 = 1 AND !rb2_1 = 1).

compute sc_12 = cov_ran(rowa1b1, rowa2b2).
end if.
do if (!ra1_1 = 1 AND !rb1_1 = 1 AND !ra3_1 = 1 AND !rb3_1 = 1).

compute sc_13 = cov_ran(rowa1b1, rowa3b3).
end if.
do if (!ra2_1 = 1 AND !rb2_1 = 1 AND !ra3_1 = 1 AND !rb3_1 = 1).

compute sc_23 = cov_ran(rowa2b2, rowa3b3).
end if.
compute rcovs = {ca1b1; ca2b2; ca3b3}.
compute rcovmat = {sv_ca1b1, sc_12, sc_13; sc_12, sv_ca2b2, sc_23;

sc_13, sc_23, sv_ca3b3}.
do if (rcovmat(1,1) = 0).

compute rcovmat(1,1) = .0000000000001.
compute rcovmat(1,2) = 0.
compute rcovmat(1,3) = 0.
compute rcovmat(2,1) = 0.
compute rcovmat(3,1) = 0.

end if.
do if (rcovmat(2,2) = 0).

compute rcovmat(2,2) = .0000000000001.
compute rcovmat(1,2) = 0.
compute rcovmat(2,1) = 0.
compute rcovmat(2,3) = 0.
compute rcovmat(3,2) = 0.

end if.
do if (rcovmat(3,3) = 0).

compute rcovmat(3,3) = .0000000000001.
compute rcovmat(1,3) = 0.
compute rcovmat(3,1) = 0.

137



compute rcovmat(2,3) = 0.
compute rcovmat(3,2) = 0.

end if.
compute rvec = make(!samples, 1, rcovs(1)).
loop i=2 TO nrow(rcovs).

compute rvec_2 = make(!samples, 1, rcovs(i)).
compute rvec = {rvec,rvec_2}.

end loop.
compute rx2 = sqrt(-2*ln(uniform(!samples,ncol(rcovmat))))&*cos

((2*3.14159265358979)*uniform(!samples,ncol(rcovmat))).
compute rx2 = (rx2*chol(rcovmat)) + rvec.
do if (!ra1_1 = 1 AND !rb1_1 = 1).

compute mc_ca1b1 = rx2(:,1).
end if.
do if (!ra2_1 = 1 AND !rb2_1 = 1).

compute mc_ca2b2 = rx2(:,2).
end if.
do if (!ra3_1 = 1 AND !rb3_1 = 1).

compute mc_ca3b3 = rx2(:,3).
end if.

end if.
compute cov_12 = 0.
compute cov_13 = 0.
compute cov_23 = 0.
do if (f_nc = 0 AND r_nc = 0).
do if (!wit_x_1 = 1 AND f_nc = 0).

compute a1b1_w = a1_w*b1_w + ca1b1.
compute v_a1b1_w = (b1_w**2)*va1 + (a1_w**2)*vb1 + va1*vb1 + 2*a1_w*

b1_w*ca1b1 + (ca1b1**2).
compute sva1b1_w = (b1_w**2)*sva1_w + (a1_w**2)*svb1_w + sva1_w*

svb1_w + 2*a1_w*b1_w*sca1b1w + (sca1b1w**2) + sv_ca1b1.
compute se_a1b1w = sqrt(sva1b1_w).
compute a1b1_w_z = a1b1_w/se_a1b1w.
compute a1b1_w_p = (1 - cdfnorm(abs(a1b1_w_z)))*2.

end if.
do if (!bet_x_1 = 1 AND !bet_m1_1 = 1 AND f_nc = 0).

compute a1b1_b = a1_b*b1_b.
compute sva1b1b = (b1_b**2)*sva1_b + (a1_b**2)*svb1_b + sva1_b*svb1_b

+ 2*a1_b*b1_b*sca1b1b + (sca1b1b**2).
compute se_a1b1b = sqrt(sva1b1b).
compute a1b1_b_z = a1b1_b/se_a1b1b.
compute a1b1_b_p = (1 - cdfnorm(abs(a1b1_b_z)))*2.

end if.
do if (!m2_1 = 1).

do if (!wit_x_1 = 1 AND f_nc = 0).
compute a2b2_w = a2_w*b2_w + ca2b2.
compute v_a2b2_w = (b2_w**2)*va2 + (a2_w**2)*vb2 + va2*vb2 + 2*

a2_w*b2_w*ca2b2 + (ca2b2**2).
compute cov_12 = a1_w*a2_w*cb1b2 + a1_w*b2_w*ca2b1 + b1_w*a2_w*

ca1b2 + b1_w*b2_w*ca1a2 + ca1a2*cb1b2 + ca1b2*ca2b1.
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compute sva2b2_w = (b2_w**2)*sva2_w + (a2_w**2)*svb2_w + sva2_w*
svb2_w + 2*a2_w*b2_w*sca2b2w + (sca2b2w**2) + sv_ca2b2.

compute se_a2b2w = sqrt(sva2b2_w).
compute a2b2_w_z = a2b2_w/se_a2b2w.
compute a2b2_w_p = (1 - cdfnorm(abs(a2b2_w_z)))*2.

end if.
do if (!bet_x_1 = 1 AND !bet_m2_1 = 1 AND f_nc = 0).

compute a2b2_b = a2_b*b2_b.
compute sva2b2b = (b2_b**2)*sva2_b + (a2_b**2)*svb2_b + sva2_b*

svb2_b + 2*a2_b*b2_b*sca2b2b + (sca2b2b**2).
compute se_a2b2b = sqrt(sva2b2b).
compute a2b2_b_z = a2b2_b/se_a2b2b.
compute a2b2_b_p = (1 - cdfnorm(abs(a2b2_b_z)))*2.

end if.
end if.
do if (!m3_1 = 1).

do if (!wit_x_1 = 1 AND f_nc = 0).
compute a3b3_w = a3_w*b3_w + ca3b3.
compute v_a3b3_w = (b3_w**2)*va3 + (a3_w**2)*vb3 + va3*vb3 + 2*

a3_w*b3_w*ca3b3 + (ca3b3**2).
compute cov_13 = a1_w*a3_w*cb1b3 + a1_w*b3_w*ca3b1 + b1_w*a3_w*

ca1b3 + b1_w*b3_w*ca1a3 + ca1a3*cb1b3 + ca1b3*ca3b1.
compute cov_23 = a2_w*a3_w*cb2b3 + a2_w*b3_w*ca3b2 + b2_w*a3_w*

ca2b3 + b2_w*b3_w*ca2a3 + ca2a3*cb2b3 + ca2b3*ca3b2.
compute sva3b3_w = (b3_w**2)*sva3_w + (a3_w**2)*svb3_w + sva3_w*

svb3_w + 2*a3_w*b3_w*sca3b3w + (sca3b3w**2) + sv_ca3b3.
compute se_a3b3w = sqrt(sva3b3_w).
compute a3b3_w_z = a3b3_w/se_a3b3w.
compute a3b3_w_p = (1 - cdfnorm(abs(a3b3_w_z)))*2.

end if.
do if (!bet_x_1 = 1 AND !bet_m3_1 = 1 AND f_nc = 0).

compute a3b3_b = a3_b*b3_b.
compute sva3b3b = (b3_b**2)*sva3_b + (a3_b**2)*svb3_b + sva3_b*

svb3_b + 2*a3_b*b3_b*sca3b3b + (sca3b3b**2).
compute se_a3b3b = sqrt(sva3b3b).
compute a3b3_b_z = a3b3_b/se_a3b3b.
compute a3b3_b_p = (1 - cdfnorm(abs(a3b3_b_z)))*2.

end if.
end if.
compute conf = !conf.
compute cilow=((100-conf)/200).
compute cihigh=1-cilow.
compute cilow=trunc(!samples*cilow).
compute cihigh=trunc((!samples*cihigh)+.999)+1.
do if (!modM_1 = 1 OR !modY_1 = 1).

print /title = "******************* INDEX OF MODERATED MEDIATION

********************".
end if.
compute cov2 = cov_fix.
compute mvec2 = make(!samples, 1, est(1)).
loop i=2 TO nrow(est).
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compute mvec2_2 = make(!samples, 1, est(i)).
compute mvec2 = {mvec2,mvec2_2}.

end loop.
compute x2 = sqrt(-2*ln(uniform(!samples,ncol(cov_fix))))&*cos

((2*3.14159265358979)*uniform(!samples,ncol(cov_fix))).
compute x2 = (x2*chol(cov2)) + mvec2.
do if (!wit_x_1 = 1).

compute mc_ab1_w = x2(:,a1_w_l)&*x2(:,b1_w_l) + mc_ca1b1.
end if.
do if (!bet_x_1 = 1 AND !bet_m1_1 = 1).

compute mc_ab1_b = x2(:,a1_b_l)&*x2(:,b1_b_l).
end if.
do if (!bet_x_1 = 1 AND !wit_x_1 = 1 AND !bet_m1_1 = 1).

compute mc_ab1_c = mc_ab1_b - mc_ab1_w.
end if.
do if (!m2_1 = 1).

do if (!wit_x_1 = 1).
compute mc_ab2_w = x2(:,a2_w_l)&*x2(:,b2_w_l) + mc_ca2b2.
compute ab_12_w = mc_ab2_w - mc_ab1_w.

end if.
do if (!bet_x_1 = 1 AND !bet_m2_1 = 1).

compute mc_ab2_b = x2(:,a2_b_l)&*x2(:,b2_b_l).
compute ab_12_b = mc_ab2_b - mc_ab1_b.

end if.
do if (!bet_x_1 = 1 AND !wit_x_1 = 1AND !bet_m2_1 = 1).

compute mc_ab2_c = mc_ab2_b - mc_ab2_w.
end if.

end if.
do if (!m3_1 = 1).

do if (!wit_x_1 = 1).
compute mc_ab3_w = x2(:,a3_w_l)&*x2(:,b3_w_l) + mc_ca3b3.
compute ab_13_w = mc_ab3_w - mc_ab1_w.
compute ab_23_w = mc_ab3_w - mc_ab2_w.

end if.
do if (!bet_x_1 = 1 AND !bet_m3_1 = 1).

compute mc_ab3_b = x2(:,a3_b_l)&*x2(:,b3_b_l).
compute ab_13_b = mc_ab3_b - mc_ab1_b.
compute ab_23_b = mc_ab3_b - mc_ab2_b.

end if.
do if (!bet_x_1 = 1 AND !wit_x_1 = 1 AND !bet_m3_1 = 1).

compute mc_ab3_c = mc_ab3_b - mc_ab3_w.
end if.

end if.
do if (!modM_1 = 1).

do if (!wit_x_1 = 1).
compute QM_w = qMxaw&*b1_w.
compute mc_QM_w = x2(:,qMxaw_l)&*x2(:,b1_w_l).
compute i_sav_w = mc_QM_w.
compute QMwtmp = mc_QM_w.
compute QMwtmp(GRADE(mc_QM_w)) = mc_QM_w.
compute mc_QM_w = QMwtmp.
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compute QM_wci = {mc_QM_w(cilow,1), mc_QM_w(cihigh,1)}.
compute tab6 = {QM_w, QM_wci}.

end if.
do if (!bet_x_1 = 1 AND !modMB_1 = 1 AND !bet_m1_1 = 1).

compute QM_b = qMxab&*b1_b.
compute mc_QM_b = x2(:,qMxab_l)&*x2(:,b1_b_l).
compute i_sav_b = mc_QM_b.
compute QMbtmp = mc_QM_b.
compute QMbtmp(GRADE(mc_QM_b)) = mc_QM_b.
compute mc_QM_b = QMbtmp.
compute QM_bci = {mc_QM_b(cilow,1), mc_QM_b(cihigh,1)}.
compute tab7 = {QM_b,QM_bci}.

end if.
end if.
do if (!modY_1 = 1).

do if (!wit_x_1 = 1).
compute QY_w = qYxbw&*a1_w.
compute mc_QY_w = x2(:,qYxbw_l)&*x2(:,a1_w_l).
compute QYwtmp = mc_QY_w.
compute QYwtmp(GRADE(mc_QY_w)) = mc_QY_w.
compute mc_QY_w = QYwtmp.
compute QY_wci = {mc_QY_w(cilow,1), mc_QY_w(cihigh,1)}.
compute tab8 = {QY_w, QY_wci}.

end if.
do if (!bet_x_1 = 1 AND !modYB_1 = 1 AND !bet_m1_1 = 1).

compute QY_b = qYxbb&*a1_b.
compute mc_QY_b = x2(:,qYxbb_l)&*x2(:,a1_b_l).
compute QYbtmp = mc_QY_b.
compute QYbtmp(GRADE(mc_QY_b)) = mc_QY_b.
compute mc_QY_b = QYbtmp.
compute QY_bci = {mc_QY_b(cilow,1), mc_QY_b(cihigh,1)}.
compute tab9 = {QY_b, QY_bci}.

end if.
end if.
compute modmedW = 0.
compute modmedB = 0.
do if ((!modY_1 = 1) AND (!samemod = 1)).

do if (!wit_x_1 = 1).
compute QMY2_w = qYxbw&*qMxaw.
compute QMY1_w = qMxaw&*b1_w + qYxbw&*a1_w.
compute mcQMY2_w = x2(:,qYxbw_l)&*x2(:,qMxaw_l).
compute mcQMY1_w = i_sav_w + mc_QY_w.
compute QMYwt2 = mcQMY2_w.
compute QMYwt2(GRADE(mcQMY2_w)) = mcQMY2_w.
compute mcQMY2_w = QMYwt2.
compute QMY2_wci = {mcQMY2_w(cilow,1), mcQMY2_w(cihigh,1)}.
compute QMYwt1 = mcQMY1_w.
compute QMYwt1(GRADE(mcQMY1_w)) = mcQMY1_w.
compute mcQMY1_w = QMYwt1.
compute QMY1_wci = {mcQMY1_w(cilow,1), mcQMY1_w(cihigh,1)}.
compute tab10 = {QMY1_w, QMY1_wci; QMY2_w, QMY2_wci}.
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print tab10/ title = "Within- Index of Moderated Mediation"
/clabels = "Est" "MCLL" "MCUL" /rlabels = "linear" "quad" /

format = F8.4.
compute modmedW = 1.

end if.
do if (!bet_x_1 = 1 AND !modMB_1 = 1 AND !modYB_1 = 1 AND !

bet_m1_1 = 1).
compute QMY2_b = qYxbb&*qMxab.
compute QMY1_b = qMxab&*b1_b + qYxbb&*a1_b.
compute mcQMY2_b = x2(:,qYxbb_l)&*x2(:,qMxab_l).
compute mcQMY1_b = i_sav_b + mc_QY_b.
compute QMYbt2 = mcQMY2_b.

compute QMYbt2(GRADE(mcQMY2_b)) = mcQMY2_b.
compute mcQMY2_b = QMYbt2.
compute QMY2_bci = {mcQMY2_b(cilow,1), mcQMY2_b(cihigh,1)}.
compute QMYbt1 = mcQMY1_b.

compute QMYbt1(GRADE(mcQMY1_b)) = mcQMY1_b.
compute mcQMY1_b = QMYbt1.
compute QMY1_bci = {mcQMY1_b(cilow,1), mcQMY1_b(cihigh,1)}.
compute tab11 = {QMY1_b, QMY1_bci; QMY2_b, QMY2_bci}.
print tab11/ title = "Between- Index of Moderated Mediation"

/clabels = "Est" "MCLL" "MCUL" /rlabels = "linear" "quad" /
format = F8.4.

compute modmedB = 1.
else if (!bet_x_1 = 1 AND !modMB_1 = 1 AND !modYB_1 = 0).

print tab7/ title = "Between- Index of Moderated Mediation"
/clabels = "Est" "MCLL" "MCUL" /rlabels = !modM "modM"/

format = F8.4.
compute modmedB = 1.

else if (!bet_x_1 = 1 AND !modMB_1 = 0 AND !modYB_1 = 1).
print tab9/ title = "Between- Index of Moderated Mediation"

/clabels = "Est" "MCLL" "MCUL" /rlabels = !modY "modY"/
format = F8.4.

compute modmedB = 1.
end if.
compute val = {!modMcent}.
print /title = "*****************************
******************************************".
print /title = "************************ INDIRECT EFFECT(S)

*************************".
do if (modmedW = 1 AND modmedB = 1).

print val/title = "NOTE: First Indirect Effects are Conditional
on a Moderator Value of:"

/clabels = "value" /rlabels = !modM "modM" /format = F8.4.
else if (modmedW = 1 AND modmedB = 0).

print val/title = "NOTE: First Within- Indirect Effect is
Conditional on a Moderator Value of:"
/clabels = "value" /rlabels = !modM "modM" /format = F8.4.

else if (modmedW = 0 AND modmedB = 1).
print val/title = "NOTE: First Between- Indirect Effect is

Conditional on a Moderator Value of:"
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/clabels = "value" /rlabels = !modM "modM" /format = F8.4.
end if.

end if.
do if (!samemod = 0 AND !modM_1 = 1 AND !modY_1 = 1).

do if (!wit_x_1 = 1).
compute comtab = {tab6;tab8}.
print comtab/ title = "Within- Index of Moderated Mediation"

/clabels = "Est" "MCLL" "MCUL" /rlabels = !modM !modY "ModM"
"modY" /format = F8.4.

compute modmedW = 1.
end if.
do if (!bet_x_1 = 1 AND !modMB_1 = 1 AND !modYB_1 = 1 AND !

bet_m1_1 = 1).
compute comtab2 = {tab7; tab9}.
print comtab2/ title = "Between- Index of Moderated

Mediation"
/clabels = "Est" "MCLL" "MCUL" /rlabels = !modM !modY "

modM" "ModY" /format = F8.4.
compute modmedB = 1.

else if (!bet_x_1 = 1 AND !modMB_1 = 1 AND !modYB_1 = 0).
print tab7/ title = "Between- Index of Moderated Mediation"

/clabels = "Est" "MCLL" "MCUL" /rlabels = !modM "modM" /
format = F8.4.

compute modmedB = 1.
else if (!bet_x_1 = 1 AND !modMB_1 = 0 AND !modYB_1 = 1).

print tab9/ title = "Between- Index of Moderated Mediation"
/clabels = "Est" "MCLL" "MCUL" /rlabels = !modY "modY" /

format = F8.4.
compute modmedB = 1.

end if.
print /title = "****************************
*******************************************".
print /title = "************************ INDIRECT EFFECT(S)

*************************".
do if (modmedW = 1 AND modmedB = 1).

print {!modMcent;!modYcent} /title = "NOTE: First Indirect
Effects are Conditional on a Moderator Value of:"
/clabels = "value" /rlabels = !modM !modY "ModM" "ModY" /

format = F8.4.
else if (modmedW = 1 AND modmedB = 0).

print {!modMcent;!modYcent} /title = "NOTE: First Within-
Indirect Effect is Conditional on a Moderator Value of:"
/clabels = "value" /rlabels = !modM !modY "ModM" "ModY" /

format = F8.4.
else if (modmedW = 0 AND modmedB = 1).

print {!modMcent;!modYcent} /title = "NOTE: First Between-
Indirect Effect is Conditional on a Moderator Value of:"
/clabels = "value" /rlabels = !modM !modY "ModM" "ModY" /

format = F8.4.
end if.

end if.
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do if (!samemod = 0 AND !modY_1 = 0 AND !modM_1 = 1).
do if (!wit_x_1 = 1).
print tab6/ title = "Within- Index of Moderated Mediation"

/clabels = "Est" "MCLL" "MCUL" /rlabels = !modM "modM"/
format = F8.4.

compute modmedW = 1.
end if.
do if (!bet_x_1 = 1 AND !modMB_1 = 1 AND !bet_m1_1 = 1).

print tab7/ title = "Between- Index of Moderated Mediation"
/clabels = "Est" "MCLL" "MCUL" /rlabels = !modM "modM"/

format = F8.4.
compute modmedB = 1.
end if.
print /title = "**************************
*********************************************".
print /title = "************************ INDIRECT EFFECT(S)

*************************".
do if (modmedW = 1 AND modmedB = 1).

print !modMcent /title = "NOTE: First Indirect Effects are
Conditional on a Moderator Value of:"
/clabels = "value" /rlabels = !modM "modM" /format = F8

.4.
else if (modmedW = 1 AND modmedB = 0).

print !modMcent /title = "NOTE: First Within- Indirect
Effect is Conditional on a Moderator Value of:"
/clabels = "value" /rlabels = !modM "modM" /format = F8

.4.
else if (modmedW = 0 AND modmedB = 1).

print !modMcent /title = "NOTE: First Between- Indirect
Effect is Conditional on a Moderator Value of:"
/clabels = "value" /rlabels = !modM "modM" /format = F8

.4.
end if.

end if.
do if (!samemod = 0 AND !modY_1 = 1 AND !modM_1 = 0).

do if (!wit_x_1 = 1).
print tab8/ title = "Within- Index of Moderated Mediation"

/clabels = "Est" "MCLL" "MCUL" /rlabels = !modY "modY" /
format = F8.4.

compute modmedW = 1.
end if.
do if (!bet_x_1 = 1 AND !modYB_1 = 1 AND !bet_m1_1 = 1).

print tab9/ title = "Between- Index of Moderated Mediation"
/clabels = "Est" "MCLL" "MCUL" /rlabels = !modY "modY" /

format = F8.4.
compute modmedB = 1.

end if.
print /title = "***********************
************************************************".
print /title = "************************ INDIRECT EFFECT(S)

*************************".
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do if (modmedW = 1 AND modmedB = 1).
print !modYcent /title = "NOTE: First Indirect Effects are

Conditional on a Moderator Value of:"
/clabels = "value" /rlabels = !modY "modY" /format = F8

.4.
else if (modmedW = 1 AND modmedB = 0).

print !modYcent /title = "NOTE: First Within- Indirect Effect
is Conditional on a Moderator Value of:"

/clabels = "value" /rlabels = !modY "modY" /format = F8
.4.

else if (modmedW = 0 AND modmedB = 1).
print !modYcent /title = "NOTE: First Within- Indirect Effect

is Conditional on a Moderator Value of:"
/clabels = "value" /rlabels = !modY "modY" /format = F8

.4.
end if.

end if.
do if (!modM_1 = 0 AND !modY_1 = 0).

print /title = "************************ INDIRECT EFFECT(S)

*************************".
end if.
do if (!wit_x_1 = 1).

compute ab1wtmp = mc_ab1_w.
compute ab1wtmp(GRADE(mc_ab1_w)) = mc_ab1_w.
compute mc_ab1_w = ab1wtmp.
compute ab1_wci = {mc_ab1_w(cilow,1), mc_ab1_w(cihigh,1)}.

end if.
do if (!bet_x_1 = 1 AND !bet_m1_1 = 1).

compute ab1btmp = mc_ab1_b.
compute ab1btmp(GRADE(mc_ab1_b)) = mc_ab1_b.
compute mc_ab1_b = ab1btmp.
compute ab1_bci = {mc_ab1_b(cilow,1), mc_ab1_b(cihigh,1)}.

end if.
do if (!bet_x_1 = 1 AND !wit_x_1 = 1 AND !bet_m1_1 = 1).

compute ab1ctmp = mc_ab1_c.
compute ab1ctmp(GRADE(mc_ab1_c)) = mc_ab1_c.
compute mc_ab1_c = ab1ctmp.
compute ab1_cci = {mc_ab1_c(cilow,1), mc_ab1_c(cihigh,1)}.
compute ab1_c = a1b1_b - a1b1_w.
compute cont_tab = {ab1_c, ab1_cci}.

end if.
do if (!m2_1 = 1).

do if (!wit_x_1 = 1).
compute ab12_w = a2b2_w - a1b1_w.
compute ab2wtmp = mc_ab2_w.
compute ab2wtmp(GRADE(mc_ab2_w)) = mc_ab2_w.
compute mc_ab2_w = ab2wtmp.
compute ab2_wci = {mc_ab2_w(cilow,1), mc_ab2_w(cihigh,1)}.
compute ab12wtmp = ab_12_w.
compute ab12wtmp(GRADE(ab_12_w)) = ab_12_w.
compute ab_12_w = ab12wtmp.
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compute ab12_wci = {ab_12_w(cilow,1), ab_12_w(cihigh,1)}.
end if.
do if (!bet_x_1 = 1 AND !bet_m2_1 = 1).

compute ab12_b = a2b2_b - a1b1_b.
compute ab2btmp = mc_ab2_b.
compute ab2btmp(GRADE(mc_ab2_b)) = mc_ab2_b.
compute mc_ab2_b = ab2btmp.
compute ab2_bci = {mc_ab2_b(cilow,1), mc_ab2_b(cihigh,1)}.
compute ab12btmp = ab_12_b.
compute ab12btmp(GRADE(ab_12_b)) = ab_12_b.
compute ab_12_b = ab12btmp.
compute ab12_bci = {ab_12_b(cilow,1), ab_12_b(cihigh,1)}.

end if.
do if (!bet_x_1 = 1 AND !wit_x_1 = 1 AND !bet_m2_1 = 1).

compute ab2ctmp = mc_ab2_c.
compute ab2ctmp(GRADE(mc_ab2_c)) = mc_ab2_c.
compute mc_ab2_c = ab2ctmp.
compute ab2_cci = {mc_ab2_c(cilow,1), mc_ab2_c(cihigh,1)}.
compute ab2_c = a2b2_b - a2b2_w.
compute cont_tab = {cont_tab; ab2_c, ab2_cci}.

end if.
end if.
do if (!m3_1 = 1).

do if (!wit_x_1 = 1).
compute ab13_w = a3b3_w - a1b1_w.
compute ab23_w = a3b3_w - a2b2_w.
compute ab3wtmp = mc_ab3_w.
compute ab3wtmp(GRADE(mc_ab3_w)) = mc_ab3_w.
compute mc_ab3_w = ab3wtmp.
compute ab3_wci = {mc_ab3_w(cilow,1), mc_ab3_w(cihigh,1)}.
compute ab13wtmp = ab_13_w.
compute ab13wtmp(GRADE(ab_13_w)) = ab_13_w.
compute ab_13_w = ab13wtmp.
compute ab13_wci = {ab_13_w(cilow,1), ab_13_w(cihigh,1)}.
compute ab23wtmp = ab_23_w.
compute ab23wtmp(GRADE(ab_23_w)) = ab_23_w.
compute ab_23_w = ab23wtmp.
compute ab23_wci = {ab_23_w(cilow,1), ab_23_w(cihigh,1)}.

end if.
do if (!bet_x_1 = 1 AND !bet_m3_1 = 1).

compute ab13_b = a3b3_b - a1b1_b.
compute ab23_b = a3b3_b - a2b2_b.
compute ab3btmp = mc_ab3_b.
compute ab3btmp(GRADE(mc_ab3_b)) = mc_ab3_b.
compute mc_ab3_b = ab3btmp.
compute ab3_bci = {mc_ab3_b(cilow,1), mc_ab3_b(cihigh,1)}.
compute ab13btmp = ab_13_b.
compute ab13btmp(GRADE(ab_13_b)) = ab_13_b.
compute ab_13_b = ab13btmp.
compute ab13_bci = {ab_13_b(cilow,1), ab_13_b(cihigh,1)}.
compute ab23btmp = ab_23_b.
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compute ab23btmp(GRADE(ab_23_b)) = ab_23_b.
compute ab_23_b = ab23btmp.
compute ab23_bci = {ab_23_b(cilow,1), ab_23_b(cihigh,1)}.

end if.
do if (!bet_x_1 = 1 AND !wit_x_1 = 1 AND !bet_m3_1 = 1).

compute ab3ctmp = mc_ab3_c.
compute ab3ctmp(GRADE(mc_ab3_c)) = mc_ab3_c.
compute mc_ab3_c = ab3ctmp.
compute ab3_cci = {mc_ab3_c(cilow,1), mc_ab3_c(cihigh,1)}.
compute ab3_c = a3b3_b - a3b3_w.
compute cont_tab = {cont_tab; ab3_c, ab3_cci}.

end if.
end if.
do if (!wit_x_1 = 1).

compute tab1 = {a1b1_w, v_a1b1_w}.
compute tab2 = {a1b1_w, se_a1b1w, a1b1_w_z, a1b1_w_p, ab1_wci}.

end if.
do if (!bet_x_1 = 1 AND !bet_m1_1 = 1).

compute tab3 = {a1b1_b, se_a1b1b, a1b1_b_z, a1b1_b_p, ab1_bci}.
end if.
do if (!m2_1 = 1).

do if (!wit_x_1 = 1).
compute tab1_2 = {a2b2_w, v_a2b2_w}.
compute tab2_2 = {a2b2_w, se_a2b2w, a2b2_w_z, a2b2_w_p, ab2_wci}.
compute tab1 = {tab1; tab1_2}.
compute tab2 = {tab2; tab2_2}.
compute tab4 = {ab12_w, ab12_wci}.

end if.
do if (!bet_x_1 = 1 AND !bet_m2_1 = 1).

compute tab3_2 = {a2b2_b, se_a2b2b, a2b2_b_z, a2b2_b_p, ab2_bci}.
compute tab3 = {tab3; tab3_2}.
compute tab5 = {ab12_b, ab12_bci}.

end if.
end if.
do if (!m3_1 = 1).

do if (!wit_x_1 = 1).
compute tab1_2 = {a3b3_w, v_a3b3_w}.
compute tab2_2 = {a3b3_w, se_a3b3w, a3b3_w_z, a3b3_w_p, ab3_wci}.
compute tab4_2 = {ab13_w, ab13_wci; ab23_w, ab23_wci}.
compute tab1 = {tab1; tab1_2}.
compute tab2 = {tab2; tab2_2}.
compute tab4 = {tab4; tab4_2}.

end if.
do if (!bet_x_1 = 1 AND !bet_m3_1 = 1).

compute tab3_2 = {a3b3_b, se_a3b3b, a3b3_b_z, a3b3_b_p, ab3_bci}.
compute tab5_2 = {ab13_b, ab13_bci; ab23_b, ab23_bci}.
compute tab3 = {tab3; tab3_2}.
compute tab5 = {tab5; tab5_2}.

end if.
end if.
compute tab1 = {tab1, sqrt(tab1(:,2))}.
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compute numvary = (csum(tab1(:,1) NE 0)).
compute co1_0 = 0.
compute co2_0 = 0.
compute co3_0 = 0.
do if (!wit_x_1 = 1).

print tab1/ title = "Within- Indirect Effect(s)" /clabels = "E(ab)" "
Var(ab)" "SD(ab)"/rlabels = !m1 !m2 !m3 /format =F8.4.

do if (cov_12 NE 0 OR cov_13 NE 0 OR cov_23 NE 0).
compute ind_cov = {v_a1b1_w, cov_12; cov_12, v_a2b2_w}.
do if (!m3_1 = 1).

compute newcol = {cov_13; cov_23}.
compute newrow = {cov_13, cov_23, v_a3b3_w}.
compute ind_cov = {ind_cov, newcol}.
compute ind_cov = {ind_cov; newrow}.

end if.
print ind_cov /title = "Within- Indirect Effect Covariance Matrix"

/clabels = !m1 !m2 !m3 "-" /rlables = !m1 !m2 !m3 "-" /format
= F8.4.

do if (ind_cov(1,1) = 0).
compute co1_0 = 1.
compute ind_cov(1,1) = .001.

end if.
do if (ind_cov(2,2) = 0).

compute co2_0 = 1.
compute ind_cov(2,2) = .001.

end if.
do if (nrow(ind_cov) > 2 AND ind_cov(3,3) = 0).

compute co3_0 = 1.
compute ind_cov(3,3) = .001.

end if.
compute sds = sqrt(mdiag(diag(ind_cov))).
compute sds_inv = inv(sds).
compute cor_mat = sds_inv*ind_cov*sds_inv.
print cor_mat /title = "Within- Indirect Effect Correlation Matrix

" /clabels = !m1 !m2 !m3 "-" /rlables = !m1 !m2 !m3 "-" /
format = F8.4.

end if.
print tab2/ title = "Within- Indirect Effect(s)" /clabels "Effect" "

SE" "Z" "p" "MCLL" "MCUL" /rlabels = !m1 !m2 !m3 /format = F8.4.
else.

print /title = "Note: No Within- Indirect Effect(s) Specified.".
end if.
do if (!bet_x_1 = 1).

print tab3/ title = "Between- Indirect Effect(s)" /clabels "Effect" "
SE" "Z" "p" "MCLL" "MCUL" /rlabels = !m1 !m2 !m3 /format = F8.4.

else.
print /title = "Note: No Between- Indirect Effect(s) Specified.".

end if.
do if (!m2_1 = 1).

print /title = "********************************
***************************************".
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print tab4/ title = "Within- Indirect Effect Contrasts" /clabels "Dif
" "MCLL" "MCUL" /rlabels = "ab2-ab1" "ab3-ab1" "ab3-ab2" /format
= F8.4.

do if (!bet_x_1 = 1).
print tab5/ title = "Between- Indirect Effect Contrasts" /clabels

"Dif" "MCLL" "MCUL" /rlabels = "ab2-ab1" "ab3-ab1" "ab3-ab2" /
format = F8.4.

end if.
end if.
do if (!bet_x_1 = 1 AND !wit_x_1 = 1).

print cont_tab/ title = "Test of Indirect Contextual Effect(s):
Between - Within" /clabels "Dif" "MCLL" "MCUL" /rlabels = !m1 !m2
!m3 /format = F8.4.

end if.
else.

print /title = "Note: Indirect Effects Not Calculated Due to Error(s)
in Estimated Fixed or Random Effects.".

end if.
END MATRIX.
OUTPUT MODIFY

/REPORT PRINTREPORT=NO
/SELECT TEXTS
/IF COMMANDS=["Matrix(LAST)"] LABELS=[EXACT("Active Dataset")]

INSTANCES=[1]
/DELETEOBJECT DELETE=YES
/SELECT HEADINGS
/IF COMMANDS=["Matrix(LAST)"] LABELS=[EXACT("Title")] INSTANCES=[1]
/DELETEOBJECT DELETE=YES.

!ENDDEFINE.
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Appendix B: MLmed Macro for SPSS Documentation

MLmed is a computational macro for SPSS that simplifies the fitting of multilevel

mediation and moderated mediation models, including models containing more than

one mediator. After the model specification, the macro automatically performs all

of the tedious data management necessary prior to fitting the model. This includes

within-group centering of lower-level predictor variables, creating new variables con-

taining the group means of lower-level predictor variables, and stacking the data as

outlined in Bauer et al. (2006) and their supplementary material to allow for the

simultaneous estimation of all parameters in the model. The output is conveniently

separated by equation, which includes a further separation of between-group and

within-group effects. Further, indirect effects, including Monte Carlo confidence in-

tervals around these effects, are automatically provided. The index of moderated

mediation is also provided for models involving level-2 moderators of the indirect

effect.

B.1 Preparation for Use

Before using MLmed, the syntax file containing the code necessary to define the

macro (MLmed.sps), must be opened and executed without modification. The file

can then be closed, and MLmed can be operated using a new syntax file. Note that
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the macro will remain active only for the duration of the SPSS session (i.e., until

SPSS is closed). The macro will need to be re-executed at the start of a new session.

B.2 Minimum Model Specification

Once the macro is activated, it can be called by typing MLmed followed by the

appropriate macro arguments. Each argument, except the first, should begin with a

forward slash, and the final argument should be followed by a period. The minimum

syntax necessary to run the most basic model is:

MLmed data = DataSet1
/x = Xvar
/m1 = Mvar
/y = Yvar
/cluster = group
/folder = FilePath.

where the italicized words are replaced with the correct dataset name, variable names,

and file location. The dataset name should be the name that appears in brackets on

the opened dataset window, rather then the saved .sav file name. By default, the

first dataset opened in a new SPSS session is named DataSet1 and MLmed defaults

to this name. To be safe, specify the correct dataset name, even if it is the default.

The x, m1, and y arguments should be the names of the variables in the dataset

corresponding to X, M , and Y . The cluster argument should be a variable that

labels which level-2 unit each row in the dataset belongs to. Finally, the folder

argument should be a file path on the user’s computer. This does not have to be the

location of the dataset, syntax file, or any other specific file, but must be a correct

folder location on the computer. Note that file paths on a Windows OS will use

a backslash between folders, while a Mac OS will use a forward slash. The macro
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arguments do not have to be in any specific order, other than the folder specification

being last.

This minimum syntax will fit a model where Xvar is the independent variable,

Mvar is the mediator, and Yvar is the dependent variable. The macro automatically

group-mean centers X and uses the group means as a level-2 predictor of M . Further,

mean-centered X and M are used as level-1 predictors of Y and the group-means

of X and M are used as level-2 predictors. All intercept terms are random. By

default, all slope terms (described in this section and later sections) are fixed and

the random effect covariance matrix is diagonal, where variances are freely estimated

and covariances are constrained to zero. These defaults are useful for increasing the

likelihood of convergence. Macro arguments that can change these specifications are

described in a later section.

B.3 Adding Fixed Effects

The basic syntax can be expanded to fit models that include additional fixed

effects that result from adding mediators, covariates, and moderators.

B.3.1 Mediators

Up to two additional mediators can be specified by including the arguments m2

and m3 with the variable name following. Each mediator included will be group-mean

centered prior to the analysis. The group means will also be included to estimate

between-group effects.
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B.3.2 Level-1 Covariates

Up to three level-1 covariates can be included by using the cov1, cov2, and cov3

arguments, with the appropriate variable names following. As with other level-1 vari-

ables, the covariates are automatically group mean centered to disentangle between-

group and within-group effects.

B.3.3 Level-2 Covariates

Up to three level-1 covariates can be included by using the l2cov1, l2cov2,

and l2cov3 arguments, with the name of the covariates following. Note that the

first character of each of these arguments is the letter “l”, not the number “1”. The

user should manually center level-2 covariates prior to using MLmed if desired.

B.3.4 Level-2 Moderators

One level-2 moderator can be specified for the a path, and one level-2 moderator

can be specified for the b path. These are specified using the modM and modY argu-

ments, respectively, where the letters M and Y correspond to the dependent variable

for the equation in which the moderator is included in. The user should NOT include

the level-2 moderator as a level-2 covariate, as MLmed will do this automatically. It

should also be noted that the variable is included as a moderator only for the first

mediator listed (the one specified by m1).

By default, the moderation of both the between-group and within-group effects

the will be tested for each moderator included. The same moderator can be specified

for both paths to allow for the testing of a quadratic moderation effect. The user can

also specify a specific value to center each moderator around using the modMcent and
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modYcent arguments, respectively. Any effect that is moderated will be conditional

on the value in which the moderator is centered around (by default, the value is 0).

B.4 Removing Fixed Effects

Some of the effects automatically included by MLmed may be omitted from the

model. These include a number of between-group effects, and also the within-group

effect of X.

B.4.1 Between-group Effects

The general format for removing a between group effect is by listing the argument

to specify the original variable followed by a B and setting this new argument equal

to zero. That is, it can be though of as specifying that between-group effect to be

omitted. For example, removing the between-group effect of x can be specified using

the argument xB = 0. The between-group effect of cov1 can be omitted using

cov1B = 0. Further, the between-effects of the M and/or Y moderators can be

specified using modMB = 0 and ModYB = 0, respectively.

There is, however, a slight deviation from this format for removing the between-

group effect(s) of the mediator(s). Rather than the between-group effect of each

mediator being specified with its own argument, the between-group effect of all me-

diators can be specified using mB, which should be a list of zeros and ones equal in

length to the number of mediators where a 1 denotes that the between-group effect of

that particular mediator should be estimated and a 0 denotes it should be omitted.

For example, a model including three mediators where the between-group effect of

mediators 1 and 3 on Y is estimated, but the effect of mediator 2 on Y is omitted

can be specified using mB = 101.
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There are two main reasons one may wish to omit a between-group effect. The

first occurs if there is no actual between-group variability on a given variable. In this

scenario, the group-mean for the variable will be the same for each group, making

the vector of group means redundant. Consequently, the model cannot be estimated

without this effect omitted. The second reason is simply for parsimony, as the removal

of the effect can simplify the model. This is particularly true with the removal of the

between-group moderator, given that including the moderator makes the indirect

effect conditional. It should be noted that if the between-group effect of X or one

of the mediators is not estimated, the between-group indirect effect involving that

parameter is also not calculated.

B.4.2 Within-group Effect of X

The within-group effect of X can also be omitted using the argument xW = 0.

Of course, no within-group indirect effects will then be estimated.

The ability to omit the within-group effect of X expands MLmed to be able to

estimate 2-1-1 multilevel mediation models, as the 2-1-1 model can be seen as a special

case of the 1-1-1 model with no within-group variability on X.

B.5 Specifying Random Effects

Any intercept and/or within-group slope included in the model can be specified

as randomly varying across groups.

B.5.1 Random Intercepts

By default, all intercepts included in the model are specified as random. Because

nonconvergence may be an issue if the variance of a random effect nears zero, the
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user can specify any intercept as fixed. For the Y intercept, this is accomplished

using randYint = 0, indicating that a random term for the Y intercept should be

omitted. For M , the argument to omit a random intercept is randMint, though the

exact specification depends on the number of mediators in the model. A list of zeros

and ones that is the length of the number of mediators should be included, where

a zero omits the random effect and a one estimates it. For example, randMint =

011 should be specified to omit the random intercept for the first mediator in a three

mediator model.

B.5.2 Random Slopes

Random slopes can be specified using similar syntax as random intercepts. To

specify the effect of X to be random, the argument randx is used, which should be

a list of binaries of length k + 1 where k is the number of mediators in the model.

The first binary refers to the effect of X on Y (the c′ path), the second refers to

the effect of X on M1, the third refers to the effect of X on M2, and so forth. A

1 corresponds to a random effect, while a 0 corresponds to a fixed effect. Random

effects of the mediator(s) on Y are specified using randm which should be a list of

binaries of length m, where the first refers to the effect of the first mediator on Y , the

second refers to the effect of the second mediator on Y and so forth. Random effects

of level-1 covariates are specified using randc1, randc2, and randc3. The format

of these arguments follow that of randx.

B.6 Covariance Matrices

The residual covariance matrix and the covariance matrix of the random effects

can be modified.
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B.6.1 Residual Covariance Matrix

The residual covaraince matrix is specified as diagonal (DIAG) by default, where

the residual variance of each equation is freely estimated and the covariance between

the residuals of each equation are constrained to zero. The residual covariance matrix

can be specified as unconstrained (where all variances and covariances are freely

estimated) using the argument rescovmat = UN.

B.6.2 Random Effect Covariance Matrix

By default, the random effect covariance matrix is specified as diagonal, where all

variances are freely estimated and the covariances are constrained to zero. However,

some or all of the random effects can be permitted to covary. If there is more than

one random slope, their covaraince(s) can be freely estimated by including the com-

mand covmat = UN. To estimated the covariance between random slopes and the

Y intercept, the command ycov = 1 can be included (if covmat = UN). If more

than one mediator is in the model, the covariance between the random intercepts for

the mediators can be estimated using mcovmat = UN. The covariance between the

M and Y intercepts can be included in the model using indint = 0. If there are

random slopes in the model, covmat = UN, ycov = 1, and indint = 0, then

the whole random effect covariance matrix is unstructured, where all variances and

covariances are freely estimated.

B.7 Estimation

The default estimator for MLmed is Restricted Maximum Likelihood (REML). Users

may instead estimate the model using Full Maximum Likelihood by including the
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argument est = ML. The user may also provide a number of specifications that

influence the estimation. These specifications include iters (maximum number of

iterations), mxstep (maximum step-halving), and scoring (number of iterations

in which the Fisher scoring algorithm is used). Further details of these can be found

in the SPSS users manual under the section for MIXED.

B.8 Other Specifications

The user may specify the confidence level used for inferences provided in the

output using the conf argument, which should include a number between 0 and 100

which corresponds to the percentage of confidence. By default, this value is 95. The

number of Monte Carlo samples used can be changed using samples, which defaults

to 10,000. Lastly, when the model fails to converge the estimates of the parameters

is omitted from the output. The user may override this by specifying eor = 1,

which is short for Error Override. This command can be useful for assessing issues

in convergence by identifying which parameters may be causing the difficulties.

B.9 Output

The MLmed macro provides a very detailed output including individual parameter

estimates, and the estimated indirect effects. In addition, the index of moderated

mediation is included if a moderator is specified. This section provides an overview

on each of the output tables provided.

B.9.1 Errors

If there are any errors when estimating the model, the estimated parameters are

disabled from the output (unless this is overridden). Instead, the user is provided with
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the number of fixed effect and random effect parameters that could not be estimated,

as well as a code labelling the specific parameters, where a 1 indicates the parameter

could not be estimated. The user can use this information to respecify the model.

B.9.2 Model Fit Statistics

If the model converges, various statistics are provided, such as the sample size and

number of model parameters, as well as several model fit statistics, including -2 times

the Log Likelihood (-2LL), Akaike’s Information Criterion (AIC), Hurvich and Tsai’s

Criterion (AICC), Bozdogan’s Criterion (CAIC), and Schwarz’s Bayesian Criterion

(BIC). The fit statistics can be useful when comparing models.

B.9.3 Fixed Effects

After the model fit statistics, the fixed effect estimates are provided. These es-

timates are grouped by each outcome variable, starting with the mediator(s) and

ending with Y . Within each section containing each outcome variable, the effects

are broken up by within-group and between-group effects. If no covariates are in-

cluded in the model and the between-group effect of X is disabled, there will not

be any between-group effects in each of the mediators’ sections. If any moderators

are included, the interaction terms are labeled using int, and the Interaction Codes

section contains information on what each interaction term represents.

B.9.4 Random Effects

If the level-1 residual covariance matrix is specified as diagonal, the estimates

are displayed in the Level-1 Residual Estimates section. If the matrix is specified

as unstructured, the effects are labeled with a number system where the effect is a
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variance parameter if the two numbers in parentheses are the same, and a covariance

parameter if the two numbers differ. The numbers correspond to the key provided

below the table.

If the random effect covariance matrix is specified as diagonal (the default), the

Random Effects section of the output will contain the estimated variance of each

random effect, as well as the relevant test statistics for that effect. If the covariance

matrix is specified as unstructured, the Random Effect Estimates table will contained

each estimated variance and covariance parameter, as well as the relevant test statis-

tics for each of these parameters. These effects use the same number system as the

Level-1 Residual Estimates section. A table containing the number key for each ef-

fect is also included. Finally, the estimated covariance and correlation matrices are

provided.

B.9.5 Index of Moderated Mediation

If any moderators are included in the model, an Index of Moderated Mediation

section follows the Random Effects section. This section includes the index of moder-

ated mediation for each interaction term as well as a Monte Carlo confidence interval.

If the same variable is specified as a moderator for both a and b, the linear and

quadratic terms are included. Further, this section is broken up by within-group and

between-group effects.

B.9.6 Indirect Effect(s)

The final section included in the output contains the indirect effect(s). If there

are any moderators in the model, a code is provided which states what value of the

moderator(s) the indirect effect(s) are conditional on. These are the values specified
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using modMcent and modYcent, which default to 0. If no moderators are specified,

the indirect effects are unconditional. The first Within- Indirect Effect(s) section

displays the estimated average within-group indirect effect(s), as well as the estimated

variability of indirect effects across level-2 units. If neither a nor b are random, the

variance of the indirect effect is 0. The next Within- Indirect Effect(s) section contains

a normal-theory test on the average within-group indirect effect(s). A Monte Carlo

confidence interval is also provided. Finally, the Between- Indirect Effect(s) section

contains the normal-theory test and Monte Carlo confidence interval for the between-

group indirect effect(s). If xB = 0, this section is omitted.

If multiple mediators are specified, a section containing indirect effect contrasts

follows. Every pairwise combination of indirect effects is tested using a Monte Carlo

confidence interval. This section is broken up by within-group and between-group

effects.
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Appendix C: Code Used for Final Models of Example

Analyses

The following code was used to obtain the parameter estimates of the final model

of each Example in Chapter 6.

C.1 Example 1

MLmed:

mlmed data = DataSet1
/x = BELONG
/randx = 01
/m1 = COOPERATE
/cov1 = OUTHOURS
/cov2 = ESCS
/randm = 1
/modY = SCHS_100
/modYcent = 7.92
/modYB = 0
/y = PV1MATH
/covmat = UN
/cluster = SCHID
/est = ML
/folder = /Users/nickrockwood/Desktop/.

Mplus:

TITLE: Example 1 Model;
DATA: FILE IS can_data.dat;
VARIABLE: NAMES ARE schid out belong coop escs math schs
schs100 schsc outm belongm coopm escsm;
USEVAR = schid out belong coop escs math

schsc outm coopm escsm belongm;
CLUSTER = schid;
WITHIN ARE belong coop escs out;
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BETWEEN ARE outm coopm escsm schsc belongm;
MISSING = .;
DEFINE:
CENTER belong coop escs out(GROUPMEAN);
ANALYSIS: TYPE = twolevel random; ESTIMATOR = ML;
MODEL: \%WITHIN\%
sa | coop ON belong;
sb | math ON coop;
coop ON escs out;
math ON escs out belong;
[coop@0];
\%BETWEEN\%
sb ON schsc (int);
coopm ON belongm(ab);
math ON coopm(bb);
coopm ON escsm outm;
math on escsm outm belongm schsc;
[sa](aw);
[sb](bw);
sa WITH sb(covab);
MODEL CONSTRAINT:
NEW(indw indb modmedw context);
indw=aw*bw+covab;
indb = ab*bb;
modmedw = aw*int;
context = indb-indw;
OUTPUT: tech1 tech8 cinterval;

lme4:

library(lme4)
mod1 <- lmer(COOPERATE˜ BELONG_c + OUT_c + ESCS_c + BELONG_m + OUT_m

+ ESCS_m + (1|SCHID) + (0 + BELONG_c|SCHID), data = data, REML =
FALSE)

mod2 <- lmer(PV1MATH˜ BELONG_c + OUT_c + ESCS_c + BELONG_m + OUT_m
+ ESCS_m + COOP_c + COOP_m + int + SCHS_100c + (1|SCHID)
+ (0 + COOP_c|SCHID), data = data, REML = FALSE)

summary(mod1)
summary(mod2)

C.2 Example 2

MLmed:

mlmed data = DataSet3
/x = COMP
/randx = 0110
/xB = 0
/m2 = ENJ
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/m1 = EFF
/m3 = ANX
/mB = 011
/modY =EFF_M
/modYB = 0
/modYcent = 71.8065
/covmat = UN
/y = DUR
/est = ML
/cluster = SUBJECT
/folder = /Users/nickrockwood/Desktop/ .

Mplus:

TITLE: Example 2 Model;
DATA: FILE IS competition_data.dat;
VARIABLE: NAMES ARE subject type eff anx enj dur comp eff_m
eff_cent int eff_mean anx_m enj_m;

USEVAR = subject comp eff anx enj dur eff_mean int anx_m enj_m;
CLUSTER = subject;
WITHIN ARE comp eff anx enj int;
BETWEEN ARE eff_mean enj_m anx_m;
MISSING = .;
DEFINE:
CENTER comp eff anx enj(GROUPMEAN);
ANALYSIS: TYPE = twolevel random; ESTIMATOR = ML;
MODEL: \%WITHIN\%
sa1 | eff ON comp;
sa2 | enj ON comp;
anx ON comp (a3);
dur ON eff (b1);
dur ON enj (b2);
dur ON anx (b3);
dur ON comp (cp);
dur ON int (inter);
[eff@0];
[enj@0];
[anx@0];
\%BETWEEN\%
dur ON eff_mean enj_m anx_m;
[sa1](a1);
[sa2](a2);
sa1 WITH sa2;
eff_mean enj_m anx_m;
dur;
MODEL CONSTRAINT:
NEW(ind1 ind2 ind3 index ab3_ab1 ab2_ab1 ab3_ab2);
ind1=a1*b1;
ind2=a2*b2;
ind3=a3*b3;
index=a1*inter;
ab3_ab1 = ind3-ind1;
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ab2_ab1 = ind2-ind1;
ab3_ab2 = ind3-ind2;
OUTPUT: tech1 tech8 cinterval;

lme4:

mod1 <- lmer(Eff˜ Comp_c + (1| Subject) + (0 + Comp_c | Subject), data
= data, REML = FALSE)

mod2 <- lmer(Enj˜ Comp_c + (1| Subject) + (0 + Comp_c | Subject), data
= data, REML = FALSE)

mod3 <- lmer(Anx˜ Comp_c + (1 | Subject), data = data, REML = FALSE)
mod4 <- lmer(Dur˜ Comp_c + Eff_c + Enj_c + Anx_c + Eff_meanc + Enj_m +

Anx_m + inter + (1|Subject), data = data, REML = FALSE)
summary(mod1)
summary(mod2)
summary(mod3)
summary(mod4)
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