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ABSTRACT

Let A  be an abelian variety defined over a number field K  and let L be a finite 

Galois extension of K  with Galois group G. Let End l(.4)[G] be the twisted group 

ring with multiplication defined by

9TT) =  ^  {p cq rW  
<T r  cr,r

for Pff,Qr & Endf,(.4) and a ,r  eO.
Write Z^{H,AutL{A)) for the group of 1-cocycles from a subgroup H  oî G  to 

A uti(A ). If % E A uti(A )), define an idempotent e(%) e Endx,(-4)[G] ® Q 

by e(x) =  YhaeH x (c)c- We will write for the twist of A  by the element 

in H^(GaZ(I//L^), Aut(A)) induced by %.

There is an L-function L {A /K ,s )  attached to A, defined by an Euler product 

for Re{s) large, which is conjectured to have an analytic continuation to all of C. 

Assuming this analytic continuation we can write L [A IK , s) ~  c(s — 1)  ̂ as s —>■ 1. 

There is a well-known conjecture for the order of vanishing r and the coefficient c.

C onjecture (B irch and  Sw in nerton-D yer).

(1) the order of vanishing r is equal to the rank of A {K )

(2) the coefficient c is equal to a constant C { A / K )  defined explicitly in terms 

of the Tate-Shafarevich group III (A/A'), the regulator, the periods and Tamagawa 

factors of A.

ii



P rop osition . If Yli =  0 is an idempotent relation with G Z, then

Yf,-niTankz{A^i{L^^)) =  0 and

L{A^^/L^\sY^ =  1.
i

M ain  T heorem . Assume that the Tate-Shafarevich groups are finite and there is an 

idempotent relation nie{Xi) =  0. Then

f j  C {A ^ i/L ^ T ' =  1-
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CHAPTER 1

INTRODUCTION

Let A  be an abelian variety defined over a number field K . Birch and Swinnerton- 

Dyer developed a conjecture which connects the order of vanishing and the leading 

coefficient of the Taylor expansion for the L-function L{A/K,  s) at s =  1 with several 

algebraic invariants of the abelian variety A: the rank of the Mordell-Weil group 

A{K) .  the regulator R{A /K ) ,  the order of the Shafarevich-Tate group in.{A/K),  and 

the Tamagawa number r { A l K )  (see pp. 9-10  for the definitions of these invariants).

C onjecture (B irch  and S w in n erton -D yer). Assume the L-function L { A / K , s )  

has an analytic continuation around s =  1 and the Shafarevich-Tate group III(.4/L') 

is finite. Write the Taylor expansion of L { A / K ,  s) at s =  1;

L(A/L:, s) =  c(A/% )(s -  1)'-^/^) +  0 ( ( s  -

Then

(a) the order of vanishing r { A / K )  =  rankz(v4(L!')) and

(b) the leading coefficient c^AjK) =  C { A j K ) ,



where C { A / K )  =  R{ Af K)  • • r { A / K) ,  called the constant of Birch and

Swinnerton-Dyer.

Tate [45, p .198] has mentioned that “this remarkable conjecture relates the be­

havior of a function L at a point where it is not at present known to be defined to

the order of a group III which is not known to be finite!”

Kolyvagin [16] proved that if an abelian ,4/Q  is a modular elliptic curve, and 

L{A/Q,  1) 0, then III(.4/Q) is finite (see also [29]).

Let L be a finite Galois extension of K  with Galois group G =  Gal{L/K) .  Kani

and Rosen [14] developed a relation among L-functions.

T heorem  (K a n i-R o sen  [14]). Define Eh =  ^ for a subgroup H ofG.

If YIh '̂ h£h =  0 in Q[G], then rankz(-4(L^)) =  0 and

W  \ [ L ( A I L ‘' , sT ’< = 1 .
H

Park [25] developed a new conjecture by combining the above theorem and the 

conjecture of Birch and Swinnerton-Dyer.

C onjecture (Park [25]). Suppose that the Shafarevich-Tate groups are finite. If 

=  0; then

JJC (.4/L ^)"« =  1.
H

Note that this would be a consequence of (*) if we knew that the conjecture 

of Birch and Swinnerton-Dyer were true. Park [25] also proved weaker form of this 

conjecture.



In this dissertation we prove Park’s Conjecture, and even a generalization of it. 

We state the general version, the Main Theorem, at the beginning of Chapter 6.

The following is a brief outline for the proof of Park’s Conjecture.

First, we define a map T : End£,(.4)[G] — > EndjciResL/Ki-^)) (see Definition 4.12 

p. 26), where is the restriction of scalars of A  from L down to K  (see

Section 4.2 for the definition).

We can rewrite the given relation nHen =  0 as, with n^, tuh >  0,

riHSH =  Y 2  '^h£h -
H  H

By applying T to the above equation, we derive

Y2'^H'T{eH) =  Y^rniiT{eH) in Endj<^(Aegz,/^(A)) ® Q-
H  H

Then, by using Theorem 5.1, which was proved by Kani and Rosen [13], there exists 

an isogeny:

H  H

Theorem 4.19 shows that T(£H)(Resx,/A-(.4)) ~  ResinjK[A)-,  so we get

ysxasLH 
H  H

Since the constant of Birch and Swinnerton-Dyer is an isogeny invariant (see Theo­

rem 5.2),

X [C (R es:,n ,K (A )IK )’'« = '[ [C (R e s^ u  i K { A ) I K r “ .
H  H

A theorem of Milne (Theorem 5.3) shows that C{A/L^)  =  C{ResiHi k {A) /K) ,  and 

Park’s Conjecture follows.



In Chapter 2 we introduce the conjecture of Birch and Swinnerton-Dyer. In order 

to state the conjecture, we set the notation, define the objects involved and some of 

their properties.

Chapter 3 presents the definition of idempotent relation the conjecture of Park.

In Chapter 4 we define twists and restriction of scalars. Then we show that the 

abelian varieties x(< )̂ ° {.R&Sl/ k {A)) and R e s ^ H are isogeneous

(see Theorem 4.22). This isogeny will play a major role in the proof of the Main 

Theorem.

Chapter 5 states theorems of Kani-Rosen, Milne, and Tate. These theorems will 

be used to prove the Main Theorem.

In Chapter 6 we state the Main Theorem and prove it. Then, some corollaries 

will be presented.

In Chapter 7 the individual factors of the Birch and Swinnerton-Dyer constant 

are investigated.



CHAPTER 2 

BIRCH AND SWINNERTON-DYER 

CONJECTURE

Let A be an abelian variety of dimension g defined over a number field K . Let v 

be a finite place of K  and N v  be the cardinality of the residue field ky. Let Gy be a 

decomposition group for v in Gk  =  Gâl { K/ K) .  Let be the inertia subgroup of Gy 

and let cr„ denote an arithmetic Frobenius which generates the quotient Gy/Iy.  Let 

 ̂be a rational prime distinct from char(A; )̂. The ^-torsion subgroup of .4, denoted 

A.{K)en^ is the set of points of order in A{K)^

A(K)en =  { P e  A (K )  I r P  =  0}.

The -f-adic Tate module of A  is the group

T e { A )  =  ^ m  A { K ) e n ,
n

the inverse limit being taken with respect to the natural maps

A(K)in~, A (K )t..



Note that the action of G k  on each A{K)(n commutes with the multiplication by 

[̂ ] maps, which are used to form the inverse limit, so G k  also acts on Ti{A). Further, 

since the profinite group G k  acts continuously on each finite (discrete) group A{K)in,  

the resulting action on 7}(.4) is also continuous. See [9], [24], or [32] for more detail.

P rop osition  2.1. This i~adic Tate module T(,{A) is a free Ze-module of rank 2g 

which admits a continuous Zi~linear action of G k -

Proof. See [24] or [32]. 0

We define the local L-factor of A  at v by the formula:

Ly{A,t)  =  det(l -  afH\  HomzXT((.4),Z<)^").

The characteristic polynomial Ly (.4, t) has integral coefficients which are independent 

of £ (see [31] and [49]).

The global L-function oî A / K  is defined by the formal Euler product

L { A , s ) = = L { A / K , s ) =  n  L y { A , Nv ~T ^.
V finite

Note that the global L-function is an isogeny invariant, i.e., if two abelian varieties A 

and A' are isogeneous over LT, then L{A,s)  =  L{A',s),  because Ly{A,t)  =  Ly{A',t) 

for every finite place v.

Let 5  be a finite set of places of K  containing the archimedian places and large 

enough so that A  has good reduction outside 5 . For each place v ^ S,  let Ay be 

the Néron minimal model. Define the abelian variety .4„ over the residue field ky by 

Ay =  Ay ®Ov where Oy is the valuation ring of v (see [32]).



According to well known results of Weil [49],

2g

L , { A t )  =  =  {Nv)H^^L, {ANv/ t ) ,
1=1

and Ly{A,t)  is a polynomial of degree 2g, with coefficients in Z, and with complex 

“reciprocal roots” of absolute value \/N v . These roots , and hence Ly{A,t) ,  

are characterized by the fact that for all m > 1

2 5  Number of points of Ay with coordinates in the
11 (1  -  a Z )  =  1
'=1 I extension of degree m of the finite field ky.

Now L(.4, $) converges for Re{s) >  3/2 because it is dominated by the product 

for (Cir(5 — It is generally conjectured that L(A, s) has an analytic continuation 

to the entire complex plane.

C onjecture (H asse—W eil). The L-function L{A,s)  has an analytic continuation 

to the entire complex plain and satisfies a functional equation relating the values at s 

and 2 — 8.

W e w ill assu m e th is  conjecture in  all th a t follow s.

Actually this general conjecture has been verified in some special cases. Let the 

endomorphism ring End (A) be the set of all isogenies from A  to itself. It is known that 

End(.4) is a free Z-module of finite rank < Ag (see [23, Theorem 12.5] or [24]) and that 

it contains a submodule, denoted Z, composed of multiplications. If End (A) contains 

a field of degree 2g over Q, then we say that A has complex multiplication. If A 

has complex multiplication, then L(A, s) has an analytic continuation and functional

7



equation according to the work of Shimura-Taniyama and Hecke (see [36, p. 145] 

and [39]).

For any positive integer N, let X q{N)  be the compactification on 9-^/ro(7V), where 

Ti is the complex upper half-plane and

To{N) =
/ a 0

c =  0 (mod N)e % (Z )

Let E  be an elliptic curve, an abelian variety of dimension 1, defined over Q. 

If there is a non-constant morphism X q{N)  — > E  of algebraic curves defined over 

Q, then we call E  modular. In 1958, Shimura proved the Hasse-Weil conjecture for 

modular elliptic curves (see [36, p .145], [34] and [35]).

C onjecture (Taniyam a—Shim ura). Every elliptic curve over Q is modular.

If the conjecture of Taniyama-Shimura is true, then the Hasse-Weil conjecture 

is also true. Although these two conjectures are still open, thanks to the work of 

Wiles [50] and Taylor-Wiles [46], we know at least that it is true for a large and 

important class of elliptic curves, namely, the semistable ones.

T h eorem  2.2 (W iles). Every semistable elliptic curve over Q oS modular.

This is a key theorem to prove Fermat’s last theorem. In fact, by improving Wiles 

methods, Fred Diamond [7] has proved the much stronger result that every elliptic 

curve E/Q,  that is semistable at 3 and 5 is modular.



Under the assumption of the Hasse-Weil conjecture, we have the Taylor expansion 

of L{A,  s) at s =  1:

where r { A / K )  is the order of vanishing. Birch and Swinnerton-Dyer conjectured the 

order of vanishing r { A / K )  and the leading coefficient c {A/ K)  when A is an elliptic 

curve. Tate formulated the conjecture for abelian varieties (see [44]).

By the Mordell-Weil theorem, A{K) ,  the group of JC-rational points of A,  is a 

finitely generated abelian group, i.e.,

A(A:) =  A(A:)tors@z"

for some integer r >  0. We call r  the rank of A / K .

Let A! be the dual abelian variety Pic°.4 over K .  Let ( , ) : A{ K)  x A'{K)  —> R  

denote the canonical height pairing corresponding to the Poincaré divisor on A x A'. 

Fix bases { z i , . . . ,  Xr} and { y i , . . . ,  for free subgroups X  C A{ K)  and Y  C A'{K)  

of finite index in the respective grouns of points. Define the regulator:

Note that this nonzero real number is independent of the choice of Xi and yj.

For each place u, we fix an extension of v to K ,  which serves to fix an embedding 

K  C Ky  and a decomposition group Gy C Gk - Then Gy acts on A{Ky) .  The natural 

inclusions Gy Gk  and A{K)  ^  A{Ky)  give restriction maps on cohomology 

groups. Therefore, we have a homomorphism H^(Gi^,.4) — > A).



Define

m { A / K )  =  Ker |h '(G k , A) — >

which is called the Shafarevich-Tate group of A over K.  Note that III (A /K ) does 

not depend on the extension of the u’s to K.  It depends only on A  and K .  It is 

known that III (A /K ) is a torsion group whose p-primary component HI (A /K ) (p) is 

of finite corank for each prime p. Another deep conjecture underlying the Birch and 

Swinnerton-Dyer conjecture is that HI (A /K ) is finite.

C onjecture. Let A / K  he an abelian variety. Then HI (A /K ) is finite.

In general, (assuming finiteness) we have #IH (A /K ) =  #IH (A '/K ).

Let w be a non-zero invariant exterior differential form of degree g on the abelian 

variety A /K . Define

{1, if u is archimedian;

 , if V IS non-archimedian,

where Uy is the order of A°(k„), the group of points on the connected component of 

zero of the reduction of the Néron minimal model of A. By Theorem 2.2.5 [48] the 

A„ form a set of convergence factors for A. Let Ak- be the adèle ring of K. We define 

r(A) to be the measure of the adèle group A(Aj^) of A relative to the Tamagawa 

measure (w, (1)) [48, p.23j:

T(A/K) =  /  (w, (1))
J . A[ AK) / Ai K)

10



With all these defined terms, the regulator, Shafarevich-Tate group, and Tama­

gawa number, we are now ready to formulate the conjecture of Birch and Swinnerton- 

Dyer.

C onjecture (B irch  and S w in n erton -D yer). Assume the L-function L [ A / K , s )  

has an analytic continuation around s =  1 and the Shafarevich-Tate group ^ { A / K )  

is finite. Write the Taylor expansion of L{AJK.s)  at s =  1:

s) =  c(vl/.R:)(g -  l)^^/^) +  0((g  -

Then

(a) the order of vanishing r { A / K )  =  rankz(-4(iv)) and

(b) the leading coefficient c {A/K)  =  R { A f K )  ■ #111 (.4/%) • r { A j K ) .

For more details, see [3] for elliptic curves and [44] for abelian varieties.

N o ta tio n . Let C^AjK)  be the product R{AJK)  ■ #111 (.4/Æ) - r { A j K ) .  We call 

C { A ! K )  the constant of Birch and Swinnerton-Dyer associated with the abelian 

variety A / K .

Remark 2.3. The constant C { A / K )  is an isogeny invariant. Cassels proved this for 

elliptic curves provided that III is finite. Tate extended that result to abelian varieties. 

See [6] for elliptic curves and [44] for abelian varieties.

If A  is an elliptic curve, we have the following progress toward the Birch and 

Swinnerton-Dyer conjecture.

11



T h eorem  2 .4 . Let E  be a modular elliptic curve defined over Q. Suppose that 

order^^i L (.4/Q , 1) <  1. Then i&nkz{E{Q)) =  orders=i X(A/Q , 1) and U1{E/Q)  

is finite.

Proof. See [16]. D

T h eorem  2.5 (R u b in  [29]). Suppose E  is an elliptic curve defined over an imagi­

nary quadratic field K , with complex multiplication by the ring of integers Ok  of K ,  

and with minimal period lattice generated by Q, E C^. Write w =

(1) If L { E / K ,  1) 7  ̂ 0 then E { K )  is finite, the Shafarevich-Tate group HI(j4/K) of E  

is finite and there is a u  £ O k [w ~̂ ]  ̂ such that

In other words, the full Birch and Swinnerton-Dyer conjecture for E  is true up to an 

element of K  divisible only by primes dividing # { O k )̂-

(2) I f L { E / K ,  1) =  0 then either E{ K)  is infinite or the p-part of'[M{E/K) is infinite 

for all primes p  of K  not dividing #(Oa'^)-

T h eorem  2 .6 . For any positive integer d let denote the elliptic curve =  

— dPx, which has complex multiplication by Z[z]. Suppose p is a prime, p  =  3 

(mod 8). Then the full Birch and Swinnerton-Dyer conjecture is true for E^^^Q.

Proof. See [29]. □

T h eorem  2 .7  (G onzalez—A vilés [8]). Let E  be an elliptic curve defined over the 

field K  =  Q (v '^ )?  complex multiplication by the ring of integers of K . Suppose

12



L { E / K , 1 )  7  ̂ 0. Then the full Birch and Swinnerton-Dyer conjecture is true for 

E JK.

T h eorem  2.8 (G onzalez—A viles  [8 ]). Let E  be an elliptic curve defined over Q 

with complex multiplication by the ring of integers o /Q ( \ /—7). Suppose L { E / K ,  1) 7  ̂

0. Then the full Birch and Swinnerton-Dyer conjecture is true for E / Q .

Proof This follows from Theorem 2.7 by Corollary 6.4. □

13



CHAPTER 3

IDEMPOTENT RELATIONS

3.1 Definition

Let L be a finite Galois extension of K  with Galois group G. Let End^(A) be the 

ring of endomorphisms of .4 defined over L, and let Endi(A)[G] be the twisted group 

ring with multiplication defined by

iY l
(T r

for Ptr,9r € End£,(.4) and a ,r  e  G.

Let Auti(.4) denote the automorphism group of A  defined over L, that is, the set 

of invertible elements in Endi(A). Write Auti(A )) for the set of 1-cocycles 

from a subgroup i f  of G to A uti(A ), i.e.,

Auti(A )) =  { x : H - ^  Auti(-4) | %((TT) =

If X E A uti(A )), define an element s(x) E EndL(A)[G] ® Q by

' I £t6H 

14



L em m a 3.1. The element s{x) is an idempotent in End%,(A) [G] ® Q. 

Proof.

' ' <7, r € f f

=  i W  Z
' I c,reH

=  i ^ 2 Z =  cCx)-
c r € H  

□

In particular, for the trivial cocycle idff 6  Z^(H,Autr^{A)), we have the idempo­

tent

siidn)  =  j r ^  ^ 2  ^ ^ 2[G] ® Q C Endi,(-4)[G] ® Q.
' I c r€ H

D efin ition  3 .2 . Let %. € Aut^,(A)). A relation of the form

=  0, ni G Q,
i

is called an idempotent relation in End£,(.4)[G] ® Q.

Example 3.3. Let G =  Z/2Z =  {e,cr}, where a  is the non-trivial element. There is 

a non-trivial cocycle % G A uti(A)) defined by %(o) =  —1. Then

e (̂x) + ^ M g ) =£{id{e}).

Example 3.4- Let G =  (Z/pZ)^, where p is a prime. Then it has p 4 - 1  subgroups 

H i , . . .  , of order p, and we obtain
p+i
Y^eiidHi) =  p£{idc) +  £{id{e}).
i=l

15



Example 3.5. Let G =  (Z/2Z)” with n >  1. The automorphism group Aut 1 ,(̂ 4 ) 

always has a subgroup {± 1 }. Then Hom(G, {± 1}) is a subset of Z^{G, Aut£,(A)) and

^  e ( / )  =  s ( « r f { e } ) -
/£ H o m ( G ,{ ± l } )

Example 1  is a special case of Example 3 (when n =  1 ).

3.2 Independent idempotent relations

We consider the number of independent idempotent relations. The results of this 

section are not needed for the proof of our main result, but help to show how widely 

applicable that result is.

Define

IR{G ) =  I G I J  A u tiiA ))  and ^ =  0 L
I i  H C G  i J

Note that the idempotent relation in Example 2  involves only the idempotents

coming from trivial cocycles. We will discuss first the number of independent relations

which contain only the idempotents coming from trivial cocycles. See [27] and [13,

Section 3]. Define

TIR{G )  =  i  nnidH riHs{idH) =  0 i  -
IH C G  H C G  }

Note that T IR {G )  is a subspace of IR{G).

16



T h eorem  3 . 6  (R eh m ). The dimension ofTIR[G ) is the number of non-cyclic sub­

groups of G .

Proof. Let J? be a noncyclic subgroup of G. Denote by C{H) the set of cyclic 

subgroups of H. For J  E C{H), define

a j  =  a j  =  ^  /i([Z : J]),
Z€C{H)

zdj

where p, denotes the Mobius function.

Then a basis of the space TIR{G)  is

\H \id H -
JeC(H)

H  Is a. noncyclic subgroup of G. > .

For details see [27] and [13]. □

Remark 3.7. Wolfgang Happle in his Ph.D. thesis [10] has shown that a group G has 

a non-trivial idempotent relation =  0  with n{e} ^  0 , if and only if there

is a subgroup of order p q , p < q  primes, which is not cyclic.

We will study another subspace of IR{G)  which contains TIR{G ).  Let R be a 

finite commutative subgroup of Auti(A ) which is stable under G. Define

7iîi,(G ) =  | Ç n « ,  e / f i ( G )  U x . ( J ï i ) c B | .

Note that TIR {G )  =  7i?{i}(G), where 1  denotes the identity automorphism.

L em m a 3.8 . If A is simple, then B  is cyclic.
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Proof. Since A  is simple, End (A) ® Q is a division ring (see [17] or [24]). Since B  

is a commutative subgroup of Aut^(A), Q[B] is a subfield of End (A) g) Q. So B  is a 

finite subgroup of the multiplicative group of the field Q[B]. Thus B  is cyclic. 0  

For a cyclic subgroup H  of G, define

Note that Ub {H) is a subgroup of B.

T heorem  3.9. Suppose that A is simple, and B is a finite commutative subgroup of 

Auti,(A) which is stable under G. Then the dimension of I R b {G) is

H C G  H C G
H  cyclic

where tp is the Euler function.

Proof. Let w  : Q[UircG B)] — > Endi(A)[G] ® Q be the map defined by

i  i

Then IR b {G) =  ker(-0u). Now we will compute the dimension of image('u7).

Suppose H  is not cyclic. By using the idea of Rehm in the proof of Theorem 3.6, 

for X G Z^{H,B)  we have the following equality:

\H\e{x) = aj\JHx\j)-
Jec{H)

Thus image(u?) is generated by the set «S =  {e'(x) | % €  Z^{H, B) and H  is cyclic.}.

Assume H  is cyclic. Because B  is cyclic, the subgroup Ub {H) is cyclic. Then 

Q[ZYg(B)] is an extension field over Q of dimension (/?(#Wg(B)). Actually Q[W(B)] =

18



Q[C], where C is a primitive #W s(iî)-th  root of unity. Through this isomorphism, 

Ub {H) can be identified as Then is a

basis for Q,\Ub {H)]. Define

=  { x  e  B ) I =  C  for 1 <  f <  - 1},

where c  is a fixed generator of H.

Suppose we have a 1-cocycle v  E Z^{H,B)  such that i/ 0  S h - Then i'(a) =  

riiÇ, with Tii e  Z, that is, i/{a) =  Then for another

generator a' E H, u{a') =  because all primitive #&/a(jT)-th roots of

unity are Galois-conjugate. Therefore,

\H\e{v) =
X^Sii T^Gen(H) V X^^H /

where Gen{H) =  {generators of H }.  Now, from simple computation, we have

- Y '  ̂ =  Y - Y ),
T^Gen{H) \  X^Sh /  JÇH  \  X^^H /

where a j  =  ^  /j,{[Z : J]) with the Mobius function n. So
J C Z C H

e{i') E Q
k j c h

By induction, image(ra) is generated by the set s {Sh )-
H  cyclic

Now we only have to show that this set is linearly independent to finish the proof

of this theorem. Suppose

Y  Y  = 0-
H  cyclic x 6S/f
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Choose H q to be a maximal cyclic subgroup of G such that ^  0 for some % €

Thus for a cyclic subgroup H  oî G which strictly contains ifo, =  0 for x  ^

Fix a generator a  6  Hq. Then =  0. Therefore, =  0 for % €

because the set {x((r) | % 6  5jyo} is linearly independent in Q[Ws(iîo)] and thus in 

End(.4) ® Q. This contradicts to the assumption on H q. So is a basis
H  cyclic

of image (ix7 ), and the proof of the theorem is complete. □

C orollary 3 .10 . Suppose that A is simple, and B is a finite commutative subgroup 

o/Aut.A:(.4). Then the dimension of IR b {G) is

H C G  H C G
H cyclic

where ip is the Euler function and gcd means the positive greatest common divisor.

Proof. Because G acts trivially on Aut/v:(A), Z^{H, B) =  Hom(if, B). It is obvious 

that # U b {H) =  g c d {# H ,# B ) .  0

3.3 Conjecture of Park

T h eorem  3.11 (K an i-R osen). Suppose that nHsiidn) =  0 in Endi(.4)[G]®Q  

with uh £ Z. Then 53^nfl^rankz(-4(L-^)) =  0 and

n  s)"» =  1 .
H
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Proof. See [14]. D

By combining this theorem and the conjecture of Birch and Swinnerton-Dyer, 

Park made the following conjecture.

C onjecture (Park [25]). Let E  be an elliptic curve defined over K .  Assume that 

the Shafarevich-Tate groups are finite. Given Yhn’̂ H^iidH) =  0, then

Y [ C { E /L ^ Y «  =  I.
H

We will prove more general form of this conjecture by using the restriction of 

scalars. For the elliptic curves, Park proved weaker form of this conjecture by looking 

at each factor of the Birch and Swinnerton-Dyer constant (see Theorems 5.10 and 

6.11 [25]).
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CHAPTER 4

RESTRICTION OF SCALARS

4.1 Tw ist

D efin ition  4 .1 . Let A be an abelian variety defined over a number field K .  A twist 

of A  is an abelian variety A' defined over K  which is isomorphic to A over K .  We 

generally identify two tvdsts if they are isomorphic over K .  The set of twists of A /K ,  

modulo AT-isomorphism, is denoted T w is t{A /K ) .

Note that Silverman [33] used the notation T w is t{ {E ,0 ) /K )  for the set of twists 

of an elliptic curve E  defined over K .

Now let A' be a twist of A jK .  There exists an isomorphism a  : A' — > A  defined 

over K  with a(0) =  0. Consider the map

Ç : Gk  Aut(.4) defined by ^(a) =  a o  a~ ‘̂ .

It turns out that  ̂ is a 1 -cocycle, that is, it satisfies the equality
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The cohomology class of  ̂ is uniquely determined by the üf-isomorphism class of A'. 

Further, every cohomology class in Aut(^)) comes from some twist of A /K .

In this way, T w is t{A /K )  may be identified with Aut(.4)).

D efin ition  4 .2 . Let L be a finite Galois extension of the number field K .  Define 

Twistx, {A/K)  to be the set of twists of A  which are isomorphic to A  over L,  modulo 

FC-isomorphism, that is,

T w is t i { A /K )  =  { abelian variety A '/K  | A' is isomorpic to A  over L } /  ~ ,

where ~  means the equivalence relation defined by Af-isomorphism.

L em m a 4 .3 . Through the identification between T w is t{A /K )  and Aut(A)),

T w is ti ,[A /K ) can he identified with Aut%,(.4)).

Proof. See [15]. 0  

Remark 4 .4.. From the above lemma, we have the following diagram.

TwistL{AIK) T w is t[A /K )  T w is t{A /L )

H:(G;;/j,,Aut2;(A)) H:(G,r,Aut(A)) H:(G,;,Aut(A))

The maps in the first row can be defined naturally. In general, Aut(A) is not an 

abelian group, so the objects in the bottom row are just pointed sets and the arrows 

in the bottom row are not homomorphisms. But we can still show that the map 

XaTjf is injective and that Xj^j:{frwistL{A/K)) =  'R,ss~^{[A/L]), where [A/L] is the 

distinguished element in the pointed set T w is t{A /L )  =  .A.ut(A)).
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4.2 Restriction of sccdars

Let L / K  be a separable algebraic extension of degree d. Let V, W  be varieties 

defined over L, K  respectively. Let (p : W  —>• V' be a map defined over L. Let 

E =  {(Ji,. . .  ,ad}  be the set of all distinct isomorphisms of L into K .  We can then 

define <jf : W  and also

this being the mapping w —>• If the latter map gives an isomorphism,

we call W  (actually the pair {W,4>}) the variety obtained from V  by the restriction 

of scalars from L to K  and write {W, =  ResL/K{V), or, by abuse of language,

W  =  ResL/K(V). For more detail, see [48, page 5].

T h eorem  4 .5  (E x isten ce). Let A be an abelian variety defined over L. If L / K  is 

a separable field extension, there exists a restriction of scalars of A from L to K ,  

which is also an abelian variety.

Proof. See [48] and [2 1 ]. □

T h eorem  4 .6  (U n iversa l M apping P ro p erty ). Let A  be an abelian variety de­

fined over L. Suppose L / K  is a separable field extension. Let X  be an abelian variety 

defined over K ,  and let f  : X  —¥ A be defined over L. Then there is a unique 

T  \ X  {ResLjK{A),(j)} defined over K  such that f  =  4>o X.

Proof. See [48]. 0

Note that from the universal mapping property, a restriction of scalars ResLjK{A) 

of A  from L to K  is uniquely determined up to Ül-isomorphism.
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Lemma 4.7. Let {ResLiK{A),é} he the restriction of scalars. Define a map 

T  ; EndL{ResL/K{A)) — > Eom{ResL/K{A),A) 

by T { T )  =  (t>oT for T  € EndL{ResL/K{^))- Then T  is injective.

Proof. Let JF be a homomorphism in E n d z , / K  (^ )) such that (f)oP' =  0. But 

o 0 =  0. So by the universal mapping property, .F =  0. □

Remark 4-8. If /  o ^ =  0 for /  € End^(A), then /  =  0. This follows from the 

surjectivity of the map é.

Definition 4.9. For any f  6 Endx,(.4), f  o (p e  B.omL{ResL/K{A), A). From the 

universal mapping property, there is a unique F ’ G EndA'(i?eSi//c(^)) such that 

f) o P'  =  f  o 0 .  Denote this map F" by / .

From now on, we vdll assume that .4 is an abelian variety defined over K .

Definition 4.10. For each u £ G, (jf Çi Yiomi{Resi/K{A),A)  because the abelian 

variety A  is defined over K .  From the universal mapping property, there is a unique 

P  G EndK{ResLjK{A)) such that © o F  =  0°’. Denote this map P  by (j)̂ .

L em m a 4 .11 . The map from E ndi(^) to End A" i,/;r W) ) defined by f  f  is

a homomorphism, that is. f  o g =  f  og, and the map from G to EndK{R&SL/K{A))

defined by a ^  ç̂ r is a homomorphism, i.e., (pa-r =  <?o- °  <?t-

Proof.

<po f  o g  =  f  o g  o (j) =  f  o(j )o  g =  (po f  o g .

Then, from Lemma 4.7, f  o g =  f  o g .
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Because (j)„ is defined over K ,  by letting r  € G act on the identity 4>o<p̂  =  

we have T{(j>) o<p  ̂ =  r{a{4>))- Now we have the following equality:

o  (j)̂  o  (j)  ̂ =  t { 6 )  o(j)„  =  r { a { 4>) )  -  (rcr)(<?i) =  (f)o

Then, from Lemma 4.7, 0

N o ta tio n . For notational convenience, in EndK{ResL/K{A)) we will write pq instead 

0Î p o q  where p,q  e  Endx{Res

D efin ition  4 .12 . Define a map T : Endi,(.4)[G] — > End%(J^esjL/x(^)) by

T j =  '^PaCpc,
\ a € G  J  CÇ.G

where € Endi(.4).

L em m a 4 .13 . The map T  is an injective homomorphism.

Proof. We can check that the map T  is a ring homomorphism in the following 

computation:

T ( (X^P.rO-)(5^?Tr) j = T  =  ^{p^q^)cj)^r
V cr T J \cr,T j  a,T

(T,r (T,T
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Suppose =  0, that is, =  0- Then Y.aeGP<^^" =  °

because

=  ^P(T#<T =  (̂PP<7<I><T =  <t>'Y^PA,7 =  0 .
(t̂ G ff̂ G ^̂ G o"€G

By looking at YL„ç.q P<t(I>'̂  carefully we can break this into a composition of three 

homomorphisms:

A x - - - x .4 A x - - - x A A,

where S  means summation of all components. Because HtreG isomorphism,

S  o YI^çqPc =  0. So it follows that Po- =  0 for cr € G. 0

We can extend T to a map from End£,(A)[G](E>Q to End^(i?e5 £,/^(A))®Q, which 

again will be denoted by T.

Lemma 4.14. The map T : Endz,(A)[G] ® Q — >- End/c(i?e5 L/iï-(A)) ® Q zs a ring 

homomorphism which is injective.

Definition 4.15. For every subgroup H  of G, define i?esx,/f/A'(*4) to be the restric­

tion of scalars of A from to K  with a fixed map d>H : Resinjjc{A)  —> A defined 

over .

Definition 4.16. Because (j)H is defined over L, according to the universal mapping 

property for {ResL/K{A),é},  there exists a unique T  : Resi,Hjj({A) -> ResL/K{A) 

such that (j)oT  ■=. Denote this map .F by

Definition 4.17. Note that • R ^ sl/k {^ )  — A is defined over L^. Accord­

ing to the universal mapping property for { R e s ^ n there exists a unique
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T  : ResijK{A) ResiH/k {A) such that Denote this map R  by

L em m a 4.18 .

^ffO'^ff =  \H\ and ° <̂r-
creH

Proof. For any a  €  H, =  (p .̂ Then

(pH °^ H  =  =  '^<Ph =  (pH ° \H\.
<rÇg (tGH

Then from Lemma 4.7, we have $ g  o

0 o o o ^   ̂° I y~! 00-1 -
o-gg Vcreg /

Then from Lemma 4.7, we have ^ g  o =  YP,reH 0 

T heorem  4 .19 .

I ^  (P<r I {Rssl/k {A)) ~  ResiH
\<7€H /

where ~  means K-isogeneous.

Proof From the equation $ g  o =  |Jï|, is surjective and ^ g  has a finite 

kernel. Then

^  j (i?eSi/g(A)) =  (^ g  o $g)(i2esi/g(A ))
K(t€H

=  H{^H{ReSL/K{A))) 

=  '^H{Re$LH/K{A))

~  Res^Hjx{A).
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Remark 4-20. Let % G Z^{H, Aut^(yl)) be a 1 -cocycle. As in Remark 4.4, through the 

identification between T w is t i iA /L ^ )  and Autx,(A)), there is a corresponding

twist defined over which is isomorphic to A  over L. Actually, we even have 

an isomorphism a  : — > A  defined over L such that a  o a~'  ̂ =  %(cr).

With this isomorphism a  we have the following lemma.

Lemma 4.21. The restriction of scalars of A^ from L to K  is {ResL/K{A), 

that is, ResL/K{A^) =  R csl/k {A ) over K .

Proof. Because {i?e5 £,//<-(A), çi} represents a restriction of scalars of A  from L to 

K ,  there is an isomorphism

, • • - , : ResLjK{A)--------  ̂ A"": X "  X

where ,<7 ^} is the set of all distinct isomorphisms of L into K .  Then the

composition map ((a“  ̂ o . . . .  (a~^ o (pY' )̂ =  o . . .  ,

jResz,/K(A) A ': X . . .  X A'" x  . . .  x

is an isomorphism because these two maps, and are iso­

morphisms. So by the definition of the restriction of scalars, the lemma follows. 

0

By the same computation as in Theorem 4.19 for {ResLiK{A),a~^ o ^}, we can 

generalize Theorem 4.19.

Theorem 4.22 (Generalization of Theorem 4.19).

^  \  {ResL/K{A)) ~  ResLH/K{A^),
\<t€H j

where ~  means K-isogeneous.
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Proof. For a E H, (a  ̂o 0 ) o %(cr) o (f)̂  =  (a  ̂ o é) o (a  ̂ o ( )̂y, because

(o!~  ̂o( j ) )o  x(cr) o(j)^ =  O x(cc) o(j)0(j)^

=  o a  o oT'  ̂o (j)o (j)„

=  Q~° o (jf =■ o (j)^

=  (0 :“  ̂of))o  (a “  ̂o 0 ) 0-.

Then by Lemma 4.7, x(cr) o(f>̂  =  (a"^ o 0 ) .̂

Therefore, from Theorem 4.19,

X )  X ((^ ) °  ) [ResLiK{A))  =  f  °  j  ( i 2e s L /A '( -4 ) )
/  \<t6H /
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CHAPTER 5

BACKGROUND RESULTS

Kani-Rosen

Let A  be an abelian variety defined over K  and s  an idempotent in Endj<-(yl) <S> Q- 

Here e(-4) denotes any representative of the K-isogenv class containing the abelian 

subvarieties (ne) (A) C A, where n G N  is chosen such that ne € End%(A).

We say two elements a and b of Endi^-(A) ® Q are characteristic equivalent, a ^  b, 

if x(a) =  x ( 6 ) for all rational characters % of End;^(A) ® Q.

Theorem 5.1 (K ani-Rosen [13]). Let Si,  . . .  ,Sn,£'i,  ■■■ ^ End;^(A) ® Q 6 e

(not necessarily distinct) idempotents. Then idempotent relation

E i+  £2 +  h £n ~  + ----- !■

holds in End;^(.4) if and only if we have the isogeny relation

El (A) X g2(A) X . . .  X gn(A) e ;(A ) x  . . .  x  e(^(A).
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Tate

T heorem  5.2 (T ate [44]). The truth of the Birch and Swinnerton-Dyer conjecture 

depends only on the K-isogeny class of A. Furthermore, if the two abelian varieties 

A and B  are isogeneous over K ,  then C {A /K )  =  C {B /K ) .

This has been verified by Cassels [6 ] for elliptic curves.

Milne

Let L / K  he a, finite separable field extension, A  be an abelian variety over L, and 

R&Si i k {A) be the restriction of scalars of A  from L to K .

T h eorem  5.3 (M ilne [2 1 ]).

r i;  L(A/L,s) =  L(Jka^/j,(A)/jir,g). 

r2 )T (A /L )= T (J 2 es^/j,(A)/Jir).

A (A /L) =  E(;kai,/x(;4)/A :).

w  n i(A /L ) ^  m (Jks^/;,(A )/A r).

C (A /L ) =  C(Aea^/x(A)/A:).

(6) rankz(-4(L)) =  rankz (.R es^ ,/(A) (AT) ).

T heorem  5.4  (M ilne [21]). The Birch and Swinnerton-Dyer conjecture is true for  

A over L if  and only if it is true for ResL/^iA) over K .

Proof This is an immediate consequence of Theorem 5.3. □
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CHAPTER 6

MAIN THEOREM AND APPLICATIONS

We are ready to state the Main Theorem and we will prove this theorem right 

after Theorem 6.2.

M ain  T heorem . Assume that the Shafarevich-Tate groups are finite and there is 

an idempotent relation =  0 with rij G Z. Then

(M l) ^  Hi rankz(Æ' (T^')) =  0.
i

(M2) Y [ L { A ^ i / L ^ \ s r  =^1.
i

(M3) =  1-
i

N o ta tio n . For % G Z (̂JT, Aut£,(.4)) -with a subgroup H  of G, let be the fixed 

field of L by H, i.e. .

L em m a 6.1.

T(e:(x))(i?esi/;c(A)) ~  ResLx/K{A^)-
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Proof.

’̂ (s’(x))(-ResL/A'(A)) =  T j -j-— J ^  xM cr I {P.esL/K{A))

=  (i?esA/K(A))

(6.1) ~  I V  %((7)(pa I {ReSL/K{A))
\cr€Ĥ  J

(6 .2 ) ResLx/K{A^)■

The isogeny (6 .1 ) is from the definition of the action of idempotents on abelian 

varieties. The isogeny (6.2) is from Theorem 4.22. □

T h eorem  6 .2 . Assume that the Shafarevich-Tate groups are finite and there is an 

idempotent relation tiie{Xi) =  where Ui and mj are positive integers.

Then

i j

Proof. By applying the homomorphism T to — 2 2 ; we have

an idempotent relation in End%(j?esA/A:(-4)) 0  Q,

^ n i T ( e ( x J )  =  Y ^ m j i : { £ { p . ) ) .  

i  i

Then, from Theorem 5.1,

n  (T (a(x ,))(ge«^ ,;r(4))'^  ~  n  (r (e { l i i ) ) {^ s : . iK {A )))~ ‘ .
i j

Now, the theorem follows from Lemma 6.1 . □

34



Proof of the Main Theorem

First, rewrite the given relation =  0 as

=  Ŷ rujsin )̂, 
i j

where rii and rrij are positive integers.

From Theorem 6.2

(») n  /KW"' r - n  //f (-4 '' )” ' •
i j

From the isogeny (*), we have

rij rankz(ResLXi/K(A^O(-^)) =  rankz (Res^uj (,4^j ){K)).  
i j

By Theorem 5.3 (6 ),

rii r a n k z (L)) =  mj r a n k z ( T ) ) .  
i j

Therefore, (Ml) holds.

Because isogenous abelian varieties have the same L-function,

Y [L {R esL x ,/K {A ^ ^ )/K ,sr  = l[L {R esL > ^ j/K iA ^ ^ )/K ,sr^ .
i j

Then from Theorem 5.3 (1),

i j

which gives the result (M2).
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By using Theorem 5.2, from the isogeny (*) we also have

= X [C (R e s i , .! ,K (A ’‘i ) I K r ‘ .
i j

Now, from Theorem 5.3 (5),

Y i  c{A^i / K Y ^= Y l  /^<r^ ■
i j

So (MS) follows. □

C orollary 6 .3. The conjecture of Park is true.

Proof. By applying the Main Theorem with all %. =  1, we prove the conjecture 

of Park. □

C orollary 6 .4. Suppose E  is an elliptic curve over Q, with complex multiplica­

tion hy the ring of integers of an imaginary quadratic field K .  Then the Birch and 

Swinnerton-Dyer conjecture for E / K  is equivalent to the Birch and Swinnerton-Dyer 

conjecture for E/Q,.

Proof. If E'  ̂ is the twist of E  by the quadratic character of K /Q ,  then E^ is 

isogenous to E  (see [28, Lemma 3]). From Theorem 5.2, E /Q  satisfies the Birch and 

Swinnerton-Dyer conjecture if and only if E'  ̂ does. By applying the Main Theorem 

on the idempotent relation in Example 3.3, p. 15, the corollary follows. □

C orollary 6 .5. Assume that the Shafarevich-Tate groups are finite and there is an 

idempotent relation =  0 with rii € Z. If every A^i but one, say

satisfies the Birch and Swinnerton-Dyer conjecture, then .4^i does too.
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Proof. This is an immediate result of the Main Theorem. □

C orollary 6 .6 . Suppose E  is an elliptic curve defined over Q with complex multi­

plication by Z[(l +  \ / —7)/2], Gal{L/Q)  =  (Z/2Z)”, and L{E /L .  1) #  0. Then the 

conjecture of Birch and Swinnerton-Dyer holds for E /L .

Proof. From Example 3.5, there is an idempotent relation

^  e ( x )  =  e ( l { e } ) -  

x € H o m (G ,{± l} )

If % =  Ig e  Hom(G, {±1}), then E^ =  E.

Suppose X € Hom(G, {±1}) and % 7  ̂ 1g- Then is a quadratic extension

over Q, and E'  ̂ is the twist of E  by the quadratic character of 

If X =  l { e } ,  =  E /L .

Now L{E^/Q ,1)  7  ̂ 0 for X e  Hom(G, {±1}) because L {E /L ,1 )  7  ̂ 0. Then by 

Theorem 2.8, E ^/Q  satisfies the Birch and Swinnerton-Dyer conjecture. Thus the 

corollary follows from Corollary 6.5. D
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CHAPTER 7

SEPARATING THE FACTORS

7.1 Shafarevich-Tate groups in arbitrary Galois extension

The constant C i s  defined as a product of various factors: R{A^i

3.nd r{A^i/L^^). Given =  0, although Y[-C{A^i/L^') =

1, the individual factors do not. In general,

J J  (# n i(A ^ 7 L ^ 0 r  ^  1 and #  1.
i i

In this chapter, we copmpute these products. Especially for quadratic extensions, 

we have the explicit result, Theorem 7.7 and Theorem 7.38.

T heorem  7.1 (W alter [47]). Let G be a finite group, k a number field, and O the 

ring of integers of k. Let T  =  {sj} be a finite set of idempotents in fc[G] and O r  the 

subring ofk  generated over O by |G |“  ̂ and the coefficients of the s, € T. Suppose that 

there is an idempotent realtion UiSi =  ^  rrijSi, where ni and mi are non-negative 

integers. I f  M  is a finite OT[G]-module, then there is a Or-module isomorphism

— 5.
i i
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Here M^' =  {x^' \ x E M }.

In particular, =  H i

N o ta tio n . For any real numbers a, 6  and any positive integer n, a =„ 6  means that 

a is equal to h up to the prime factors of n, i.e.,

where pi\n and Ui E h  for all i.

L em m a 7.2. If M  is a finite G-module, and if YIh =  0, then

=iGi 1 .
H

Proof. See [25]. □

D efin itio n  7.3. For any finite abelian group M, define

M  =  {x  E M  \ the order of x  is prime to |G |.}.

Note that M  is a subgroup of M .

L em m a 7.4. Let idjj E Z^{H, AutL{A)) be the trivial cocycle for a subgroup H  of 

G. Then

Proof. From Definition 4.16 we have an induced map from YP{GK,ResLHi k {A)) 

to E }{G k , R&Sl i k {A)) and we denote the restriction of this map on TR{Resj^Hix{A)) 

by ^H. From Definition 4.17, we have an induced map from 1A}-{Gk ,R^sl/ k {A)) to
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'&-{Gk -,R&Si h i k [A)) and we denote the restriction of this map on 'Ul{ResLiK[A)) 

by Now it is easy to check that

Image(^jy) C III(i?esL/A'(i4)) and Image($/f) C III(i?eSjr,///Ar(i4)).

Because =  \H\, ° =  \H\- Note that the map \H\ is bijective on

ni(J?esL/A-(^)). Then is surjective and is injective.

#m(Besi,K(.4))'fW <''»» =  (n ï( i îe s y ,f (A )) )

=  O ^ I I I ( J ? e s £ , /A - ( i4 ) )  j

=  # m { A / L ^ )

The last equality comes from Theorem 5.3 (4). 0

L em m a 7.5. Let % € Z^{H, Antl {A)) be a 1-cocycle for a subgroup H  of G. Then

Proof. Using Lemma 4.21, the lemma follows by the same computation as in the 

proof of Lemma 7.4. □

T h eorem  7 .6 . Suppose that the Shafarevich-Tate groups are finite and there is an 

idempotent relation Yfi =  0 with ui € Z. Assume that there is a finite subgroup

B  in Autf,(.4) containing IJiXi(-^i) stable under G. Let n =  -[L : K]. Then

l [ i f m { A ^ i / L ^ T ^  = n  1.
i
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Proof. We can check very easily that the semi-direct product T{B)  x T(G) is a 

finite subgroup of AutK-(i?eSi/K-(^)) of order n =  • [L ; K]. Now III(i?es£,//c(A))

is a finite T (5 ) x T(G)-module. We have an idempotent relation =  0.

From Lemma 7.2

n  =„ 1 .
i

Then the theorem follows from Lemma 7.5. □

7.2 Shafarevich-Tate groups in quadratic extensions

From now on we assume L j K  is a quadratic extension of Galois group Gal{LIK)  

and we fix (7 e  Gk  — Gl- Let Mk  be a complete set of places on K  and let M l be 

a complete set of places on L. Denote G al{L/K )  by G and by G^ for

w € Ml -

In this section, we will prove the following theorem. The proof is on page 59.

T h eorem  7.7. Let denote the quadratic twist by the non-trivial character % of 

G and A' be the dual variety of A. Then

# m { A / K ) # m { A ^ / K )  #  H°(G, (G, A{L))
dfni(A/Z,) #]]*(=&% '

7.2.1 C om puting # in (A /L )^ /# n i( .4 /ii: )

Now we start with a natural commutative diagram (see [33]): for a place v £ Mk ,
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w^Ml
w \ v

where <j> and 4>w are the restriction maps in the Inflation-Restriction sequence. Note 

that Ker(0) =  E^{G,A{L)), and Ker(^^) =  A(L„)).

With these kernels, we can construct the following commutative diagram:

(7.1)

0 A(Lu;)) ------ > A).

Lemma 7.8.

A(Lu,)) is flnite.
w^Ml

In particular, A(L„)) =  TlweML A(L^.)).

Proof. First, it is obvious that A(Lu,)) is finite for w € Ml-

Define Sl =  {w  Ml | A has bad reduction at w, w is above 2, or w  is an 

infinite place.}. Note that Sl is a finite set. We will show that if in ^ Sl , then 

# H X G « ,,A (L J ) =  0.

If w  0  Sl splits, this is obvious because Gw =  0.

Assume that w 0  Ml is inert. Since A has good reduction at w, we have the 

following exact sequence:

0 — > Ai{Lw) — > A[L-ui) — > A(£yj) — > 0,
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where ^  is the residue field of (see [32]).

Note that 2 • Ai(L^)) =  0 because =  2 (see Corollary 1 [30, p.l30]).

The map 2 : B}{Gyj, Ai{L^)) — )• H (̂Gu;, Ai(Liu)) is an isomorphism because the 

map 2 : Ai(L,;,) — > Ai{LJ)  is an isomorphism. Therefore,

H X G ^ ,A i(T J) = 0 .

With H H G ai(C /^-u,),-4(0) =  0 for u; ^ (see [17] and [28, p.496]),

H^(G^,A(T^)) =  0.

N o ta tio n . Let denote the 2-component of a torsion abelian group M.

By considering the 2-component of diagram (7.1), we have the following commu­

tative diagram:

(7 2)
0 ^  BH G ,A{L))  ------  ̂ H:(GAT,A)(2)   ̂ ^ { E \G k , A ) Y ^ ^ 0

91 92 93

0 -> -^ H ^ (G ^ , A(L^))  r ^ H ^ (G a'„ , A)̂ "̂  ------ > A)^~^
W  V  w

N o ta tio n . Let (p : H^(Gl, A)*̂  — > H^(G, A(L)) be the Transgression map.

N o ta tio n . Denote by 2c the map Coker(pi) — > Coker(^2 ) in the above sequence. 

Write Ztu for the infiation map H^(Gu,,A(L)) — > H^(GA^, A). Denote by IZa the 

restriction on III(A/Ül') of the restriction map H^(Gat, A) — )■ H^(Gi, A)* .̂
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Lemma 7.9.

(7.3) 0 — > Ker(pi) ni(A/K)(^) — > Ü 1 { A /L f  n  Ker(y)(^)

— > Coker (pi) — > % (Coker (pi)) — > 0.

Proof. Note that Ker(gs) =  m { A /L )^  n(f>iE^iGK, =  m(-4/L)^nKer((^)(2) 

and Ker(^2) =  III(A/iv)^^^. Then the Kemel-Cokemel sequence of diagram (7.2) 

becomes the sequence (7.3). D

Lemma 7.10.

#m (^/L )<^ n Ker(y) #  0 ^  A(L«,))
#IH(v4/A:) #  m (G , yl(L))#%(Coker((yi)) '

Proof. From the sequence (7.3),

# K er(^i). #m (A /L )(^  n  Ker(v,)(^) - #Z^(Coker(pi)) =  #ni(v4/A :)(2). #  Coker(^i). 

By looking at gi in diagram (7.2), we have

#K er(^i). #0H X G :,,.4 (L ^ )) =  #H XC, A(L)) - #Coker(^i).
W

Therefore,

# m (A /L )^ n K e r (y )  _  # m (A /L )^  n Ker(yp)( )̂ _  # ® ^ H X G « ,A (L J )
#m (A/jiT) #m(A/% )(2) #  HI (G, A(L))#l^(Coker(gi)) '

where the first equality holds because ~  ^ power of 2.

□

N o ta tio n . For an abelian group M, denote ]^mM/2"M by M.
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Theorem 7.11 (Global Duality Theorem).

0 H'(C?â .4)(2) -24 0 h '(G a„,A)(2)
V

h-2. E om {A '{K ),Q /Z ) 0.

Proof. See [2]. D

D efin ition  7.12. Define N  : A{L) — > A{K)  by N {P) =  P  +  <j{P) for P  € A{L),

and let N  : .4(L) — )■ A {K)  denote the map induced by N, i.e., defined by 

]V({fk 4- 2"A(jC)}) =  {N (& ) +  2"A(AT)},

for {Pn +  2^A{L)} 6 .4(L). 

Lem m a 7.13.

0 ------  ̂ H om (H °(G ,-4(I)),Q /Z) —^  H om (l(ü:), Q /Z )   ̂ Hom(^(L), Q /Z ).

In particular, the map 91 is injective.

Proof. For any n >  1,

A{L) A {K )    ̂ È°{G,A{L))  ------  ̂ 0

A (L )/2M (L ) ------  ̂ A {K )/2 \A {K )   > E°{G,A{L)) ------  ̂ 0

because 2'^A{K) C N{A{L)). So we have the following exact sequence:

Â(L) J (! q   )■ E°{G,A{L))  )■ 0.

Now, by applying Hom(-, Q /Z), we have proved the lemma. 0
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T h eorem  7.14 (Local D u ality  T heorem ). Let v € be a place. Then there 

exists a bilinear, non-degenerate pairing

( , > : X A') ^  Q/Z.

Proof. See [42] and [43]. □

L em m a 7.15.

.4)(2) S  H om (:4 ^ , Q/Z).

Proof From Theorem 7.14, 4)2"-torsion — Hom(.4'(i^t,)/2M '(iv„),Q/Z).

Thus

A)(2) = )̂2._to,sion = h^Hom(A'(jr,)/2"^'(K,), Q/Z)

=  Hoxa{]^A!{K„)l2^A!{K„), Q /Z ) =  Hom(Æ(A:«), Q /Z ).

D

L em m a 7.16. Through the isomorphism in Lemma 7.15,

0 H '( G ^ ,.4 ( L J )  ^  H om (% ]H °(G ^,^'(L J),Q /Z ).
W  W

Proof. From Lemmas 7.13 and 7.15, we derive the following diagram:

0 - ,  H:(G^,^(L^))  HXG7r„A)(2)  , H:(G^„;4)(2)

0 ^H om (H °(G ^,.4'(L ^)),Q /Z )------ >Eom{A’{ K „ ) ,Q /Z ) ------ ^H om (.4'(Lj, Q /Z),
which is commutative (see [42]). Then

0H '(G ,,,^ (L ^ )) S  0H om (H °(G ^,A '(IJ),Q /Z)
W W

^  H om (rjH °(G ^, A '(L ,)), Q /Z).
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Lemma 7.17. Let 5' : E°{G,A'{L)) 11  ̂ Then

Proof. First, #Ic(Coker(^i)) =  # ( / i 2  ° 0^ 2^ „)(0^ , A(L^„))) from the

diagram
0 H '(G „ , .4 { i„ ) )  ^  0 H‘(Gk.,.4)P)

W  V

surjective /i2

Coker(pi) Hom (A'(i^),Q/Z).

From Lemmas 7.15 and 7.16, we can naturally identify 0 ^  A(Lu,)) with

Hom(n«,H°(G^,A'(L^)) and 0 ,H X G K ., A)(2) with H o m (n , A '(K ,),Q /Z ).

Now, from the diagram

Hom(n„H“(G„,.4'(i„)),Q/Z) ^  H o m ( n , Q / Z )
hz

Hom (H°(G,.4'(L)),Q/Z) Hom(Æ(isr), Q /Z ),

we obtain /i2  °  0 ^ , ^  =  W o Hom(^o, •). Because W is injective (Lemma 7.13), 

#Xmage(h2  o 0^ 2)^ ) =  #Image(Hom(p^, •)).

Since #Coker(Hom(p^, •)) =  #Ker(g(,),

#2c(Coker(5i)) =  #H om (^',-)(H om (]][H °(G „,Æ (L ,,)),Q /Z ))
W

_ #H om (H °(G ,.4'(L)),Q /Z )
#  Coker(Hom(^(), •))

_ #H °(G ,Æ (L ))
#Ker(p^) -
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Theorem 7.18.

# in (.4 /% ) #H °(G ,A '(L ))#H i(G ,^(L))

Proof. From Lemmas 7.10 and 7.17,

# in (.4 /L )®  # ff l(A /L )^  #n i(.4 /L )G  n Ker(^) 
# in ( A /;r )  # m (A /L )G n K er(y ) # in M /F T )

= # . ( m ( A / . , = , « S ^

'#Hi(G,A(L))#% (Coker(pi))
=  j4(L^)) #Ker(5o)

#H i(G ,.4(L)) #H °(G ,.4'(L))'

7 .2 .2  C om p u tin g  # n i ( A / ir ) /# ( H - a ) m ( A /L )

T heorem  7.19 (C assels, T ate). There is a canonical pairing

m { A / K )  X m [A ! lK )  — > Q /Z, 

which is non-degenerate ifT il{A /K ) is finite.

Proof. See [6] and [43]. 0

Call this pairing Cassels pairing. Let ( - ,  —)j. : III(A/iir) x ]J1{A'/K) —  ̂ Q /Z  

be the Cassels pairing for A /K ,  and let ( - ,  - )^  ; III(^ /L ) x III(j4'/L) — > Q /Z  be 

the Cassels pairing for AfL.

Now we want to introduce one description of Cassels pairing.
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An element a € III (A/AT) has a locally trivial principal homogeneous space C 

over K. Let K  be the algebraic closure of AT, and let K {C )  be the function field of 

C K .  Then we have an exact sequence such that

K{C)^  — ^ Q — ^0.

From this exact sequence, there is a commutative diagram:

Br(AT) ------  ̂  ̂ Ĥ ~(Gk ,Q) ^ 0

(7.4) i l
0 - ^ 0  Br(K,) ------  ̂ 0  H2(G,,ïï;(C)") ------  ̂ 0  H^(G,,Q).

The exact sequence

0 —4 .Q —  ̂Div°(C ® ¥ )  — > Pic°(C ® Z ) — > 0 

gives us a cohomology sequence

H '(G i^ ,D iv°(C ® Â )) ^ H '(G A ^ P ic ° (C ® Â )) ^ H 2 (G/c,(3) — » • • • .

Since Pic°(C ® K )  =  Pic°(A ® K ) =  A!, the sequence gives a map

(7.5) TroTiSA: : A') —4 Q).

Choose an element h G III (A'/AT). Then Transnih) € B.' (̂Gk ,Q)  lifts to an 

element of E^(Gk ,K {C )^ )  in the diagram (7.4), and the image of this element in 

0^H-(AT„, AT ,̂(C) )̂ lifts to an element (cy) G 0^Br(AT^). Then

(a, b)K =  ' ^  invvicv) € Q /Z .

See [22, pp.98-99] for the details.
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T heorem  7.20. For a E Yil[A /K) and b € U1{A'/L)

(o, Cores(6))^ =  (7e.4(a),6)^,

where TZa denotes the restriction to in .{A /K ) of the restriction map ^

and Cores denotes the corestriction map.

Proof. Let a € III (.4 /if). Then there is a locally trivial principal homogeneous 

space C /K .  For 7^.4(a) € III(.4/L), C / K  is a corresponding locally trivial principal 

homogeneous space. And K  =  Ls. From the following commutative diagram

0 K Q 0

0 Lr —  ̂ LXC)"

we can derive a commutative diagram:

spores

B r{K )

® v€Ml ■̂ ’"(■̂ 1') 

Cores

sCores

l T { G K , K ( c r )

sPores

sPores

I T { G k , Q )  —  0

Cores

From the map (7.5), we have the commutative diagram
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Cores

4- H2(Gk ,0 ) .

TTansi'. H^(Gi,.4) -

Cores

TransK ■ -

Let b G III(AyL). Then Transiib)  lifts to an element u of L s { C y ) ,  and

the image of this in 0  L„,s(C)^) lifts to an element (c^) 6 0  Br(L„). Now, for

each element we think of the image of Cores. Then we obtain the following diagram:

u ---------------------------- - Transi{b)

(c«)

Cores (m)

image of u in ------------inu

image of Cores (a) in

Then {TZA{a),b)j^ =  G Q /Z . From the commutativity of the corestric­

tion map at each step, we have

(a, Cores (6)}^ =  ^  inv„ (Cores (c„)) =  y^inv„(c„).

The last equality comes from [41]. Thus (a. Cores(6));^ =  (7?.^(o), 6)^. □

L em m a 7.21. Let M  and M' he finite abelian groups of the same order, and suppose 

that there exists a bilinear, non-degenerate pairing

T : M x M '  ■ 
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For any subgroup B, define B'  ̂ =  {6 G M' : T{a,b) =  0 for any a G B }.  Then

=  # M .

Proof. We have an isomorphism $  : B-  ̂ — > Hom(M /B, Q /Z ) such that for 

b G B- ,̂ $ (6 )(a +  B) =  r(a , b) for any o G M. Then

# B ^  =  #H om (M /B , Q /Z) =  # M /B  =

Lemma 7.22. Let denote the restriction to in .{A '/K) of the restriction map: 

H^((?A:,.4') — > E.^{Gl,A')^ and let Cores^ be the corestriction map: 'iV-{Gi,A) — > 

HHGk,-4). Then

#  Ker(%A')# CoresA(HI(.4/L)) =  #m (.4 /JT ).

Proof. Define Cores.4  (III(A/L))-'- =  {6  G IH(.4'/LL') | (a, b)^ =  0, for every a G 

CoresA(III(A/L)) }. Suppose that (CoresA(III(j4/L)), 6 )^ =  0, for b G III(A 7^ )-  

Then (III(A/L),7^a'(“) ) l  =  0, so TIa'{o)  =  0 because Cassels pairing is non­

degenerate. Thus CoresA(III(A/L))-^ C  Ker(%A')- Ker(T^A') C Cores A ( III (.4/L) ) -"- 

is obvious. Therefore,

Ker(7?-A') =  CoresA (III ( A /L) ) -'-.

From Lemma 7.21, this Lemma follows. 0 

Lemma 7.23.

^ I ^ j i | w  =  #C = resA m (A /L )x ,, 

where III(A/L)^ =  {a G III(.4/L) | a{a) =  —a}.
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Proof. Note that (TZa ° C oresA)(a) =  (1 +  cr)(a) for a € III(i4/L). By considering 

a restriction of TZa to Cores (III (^ /L )) we have the following sequence:

0 ^  Ker(%4 ) n Cores;i(ni(A/I:)) — Cores^(m (^/L)) (1 +  CT)(ni(A/L)) 0.

It is easy to show that Cores^(III(i4/L)^) =  Ker(o;) n  Cores^(III(.4/L)). □

Lemma 7.24.

= #Cores.(ni(A/L)X)#Ker(7î.,).

Proof. From Lemmas 7.23 and 7.22,

# n i( .4 /A 0  #C ores.4(m (.4/L)) #IH (A /K )
# (1  +  a )n i( .4 /L ) # (1  +  c7)in (^ /L ) # C ores^(m (.4/L ))

# U 1 {A /K )

=  #CoresA(IH(A/L)x)#Ker(% ^,).

7.2.3 Connection between Transgression and Corestriction

Let C^{Gk :A) be the set of cochains.

7.1.3.1 Transgression

Remark 1.25. Recall that tp : (Gr, .4)*̂  — > H^(G, A{L)) is the Transgression map.

Now, for any element x € H^(Gx„.4)‘̂ , p{x) is defined by the following condition: 

there are a cochain /  € C^(G/<-,A) and a 2-cocycle Y  € Z"^{G,A{L)) such that
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the restriction of /  to G i  is a representing cocycle for rr, df is the natural image 

in Z^{Gk ,A )  of Y  by inflation, and (p{x) 6 H^(G, A(L)) is the element which is 

determined by Y.

y  6 #  e A)
For more detail, see [11, p.l29].

L em m a 7.26. Let f  € Z^{Gk /G l , A{L)) be a 2-cocycle such that f{ id , id )  =  0. 

Then

f{a , id )  =  f { id ,a )  =  0 and f { a , a y  =  / ( a ,  5).

Proof. See [30, p .ll3]. D

Definition 7.27. Let €^{Gk, A) be a subset of C^{Gk, A) defined by the condition: 

/  6 €^{Gk,A) if , for /  € C^{Gk,A), there is P  € A (K )  such that /  satisfies the 

equation

f i n )  +  T i/(r 2 ) if Ti € Gl or Tg E Gl

f i n )  +  n f i n )  -  p  if ri ^ and Tg 0  Gl- 

Notation. For n-cocycle /  G Z^iH .B)  we denote by [/] the cohomology class con­

taining / .

L em m a 7 .28 . For x  € H^(Gi,.4)'^, there are a cochain f  € (Î^(Ga',.4) and a 2 -  

cocycle Y  E Z^(G, A(L)) such that

f inn) = <

df =  I n f iY ) ,  [Y] =  (fix) and [flai.] =

54



Proof. From Remark 7.25, there are /  E C^{Gk ,A)  and Y  E Z^{G, A{L)) such 

that

df =  In f {Y ) ,  [Y] =  (p{x) and [/Ig^] =  x.

The only thing we have to show here is f  E €^{Gk, A). Because / | c i  E Z^{G l,A),  

df{Ti,T2) =  0 for ri,T 2  E G l.  Then Y {id, id) =  0. From Lemma 7.26,

= y  (id,?) = 0 and <;(y(?,?)) = y(?,?).

Write P  =  Y {a ,a )  E A {K ).  From the defintion of df [30, p .113], i.e., d /(r i,r 2 ) =

Tl/(T2) -  f{riT2) +  / ( t i ) ,

jo  if Ti E G l or T2 E G l 
ri/(T2) -  /(rir2) + / ( t i )  =  Inf{Y){ri,T2)  =  <

I p  if Ti 0  G l and T2 0  Gl -

Therefore, /  E €^(Gic,A). □

Definition 7.29. Define ^ : B }{G l, A)^  — > as the composition of the

following series of maps:

E \ G l ,A )^  E^{G,A{L)) ^ E °{G ,A {L ))  ^ E ^ {G ,A H L ))

Notation. Denote by 5 the map:A — > A^ defined over L such that

id if r  E Gl

1̂—id if r  ^ Gl -

Note that there exists J  because is the quadratic twist of A (see Defintion 4.1 or 

Remark 4.20).
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L em m a 7.30. Let x  e  R^{Gl -,A)^ be a 1-cohomology. Then G Is

represented by a 1-cocycle U G Z^{Gk ,-^) defined by

U{r) =  0 if r  e Gl and U{r) =  3 (F ) if r  ^ Gl 

where P  =  Y  (à, a), which is defined in Lemma 7.28.

Proof. The image g>{x) in A(L)) is represented by P  =  Y{à, a) which is 

defined in Lemma 7.28. Then (p{x) G H^(G, .4^(L)) is represented by a 1-cocycle 

u G -4^(L)) such that

u{a) =  3(F ) and u{id) — 0.

The inflation map leads to the Lemma. 0

7 .1 .3 .2  C orestriction

Remark 7.31. Let X  be a cocyle in Then with fixed a  G G k  — Gl , we

have Cores(X) G Z^{Gk ,A)  such that

Cores(X)(r) =
X  (t) +  aX  (a V a) r  £ G l 

^% (ra) +  (tX t G Gk  ~  Gl - 

See [26, Theorem 3].

N o ta tio n  Write Cores ax for the corestriction map from A^) to A^).
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Definition 7.32. Define © : — y '&-{Gk-,A^) by the composition of the

following two maps:

HH<3z,,-4)^ EHGk ,A^),

where H^(Gl,.4^)^ =  { x  E H^(Gx,,.4^) | a{x) =  —x}.

Lemma 7.33. Let x € H^(G£,,.4)‘̂  be a 1-cohomology. Then ©(z) € E^{Gk-,A?‘-) is

represented by a 1-cocycle U € Z^{Gk i A) defined by

U { r ) = 0  i f r e G i  and U{t ) = Z { P )  I J t' ^ G l ,

where P  =  Y {a ,a )f  which is defined in Lemma 7.28.

Proof. By Lemma 7.28, there are a cochain /  E <Ẑ {Gk ,A)  and a 2-cocycle

Y  €  Z ‘̂ {G,A{L)) such that

df =  In f{Y ) ,  [Y] =  (p{x) and [f\cj] =  x.

Now, if r  E G l,

® (/|gJ W  =  3 (/(r)) +  <75(/(o-"Va)) =  a (/(r )  -  ct/ ( ct"V ct))

=  Z{f {cr )  -  r/(<7)) =  5 (/(a )) -  r3 (/(a ))

= 3 ( / W - f ) - T 3 ( / W - P ) .

0 (/|c i)(T ) =  3 (/(ra )) +  <73(/(o--V)) =  Z { f { r c r )  -  a/((7"V))

=  +  r/(cr) - P ) =  Zificr)) -  rZ (f(a ))  -  J (P )

= 3(/W  -  f  ) -  T3(/W -  P) + 3(P).

□
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P ro p o sitio n  7.34.

5 = 0 .

Proof. This is an immediate result of Lemmas 7.30 and 7.33. 0

T heorem  7.35.

#^(ni(;4/L)(^) =  #Cores^x(in(.4)(/Z,):^).

Proof. From the definition of 5, # ¥ ’(III(A/L)'^) =  # 5 (III(A /L )‘̂ ). From the 

definition of 5? #  Cores^x(III(.'4^/L)^) =  #0(III(.4/L)'^). Thus the theorem follows 

from the previous proposition. □

7.2 .4  P r o o f o f T heorem  7.7  

L em m a 7.36.

=  #  Cores^x(IHM'^/L):^)#Ker(%^v).#(l+a)ni(.4VL)

Proof. This is obvious from Lemma 7.24. □

Note that (1 +  a )m {A ^ /L )  =  (1 -  a )m {A /L ) .

L em m a 7.37.

#Ker(7^;ix') =  #Ker(^o)-

Proof. First, Ker(%^x') =  Ker{H'(G,.4^'(L)) — > Now

#  Ker(g'o) =  #Ker{H^(G, .4^'(L)) — )■ 0 ^  .4^'(L^)} by the isomorphisms

E \G ,A ^ '{L ))  ^  H°(G,A'(L)) and HXG^,.4x'(L^) S  E°{G^, A'{Ly,)). 0
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P r o o f  o f  T heorem  7.7
# n i(A V i^ )

# n i(A /A 0 # m (.4 V A 0  _  # m ( .4 /A )# n i( .4 V A )  # ( i  -  a )n i(^ /L )
# n i(A /L )  # IH (A /I )G # (l -  a )in (^ /A ) # m (A /L )^

#m (^ /A T )

from Theorem 7.18 and Lemmas 7.36 and 7.37

#  Coresyix (in (A V A )x )#  Ker(%^v)

from Theorem 7.35

#  Cores^x(IH(Ax/A)x) #  H°(G, A%L))# H^G, A(A)) 
#v;(ni(A /A )G ) #  n .  HI (G«,,

# E \ G , A ' { L ) ) # E \ G , A { L ) )

7.3 Regulators in quadratic extension

In this section, we will prove the following theorem.

T h eorem  7 .38 . Suppose that L / K  is a quadratic extension. Let A^ denote the 

quadratic twist by the non-trivial character % of G ai(L /K ) and A' he the dual va­

riety of A. Then

R {A /K )R {A ^ IK ) ^ _____________ 1_____________
R{AIL) ~  #H O (g ,A '(L ))#H H G ,A (A ))‘
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N o ta tio n . Write Mt for the torsion subgroup of group M. Denote the quotient 

group M /M t  by Mj.

Lem m a 7.39.

#HHG,A(L)) # A ^ { K ) , K 1  + g ) A ^ ( L ) ,  

* H H G ,A (L ),)  # A ( L ) f /A ( K ) f  '

Prvof. From the following short exact sequence

0 A(L)t A(L) A(L)f 0, 

we have the long exact sequence

0 A (K ),  — > A (K ) A (L )f  H^(G,A(Lh)

-^ H ^ (G ,A (L ))  ^ H ^ ( G ,A ( L ) f )  ^ H ^ ( G ,A ( L ) t )  — ^H^(G,A(L)).

In the above sequence, the first three terms can be shortened so that

0 ------  ̂ A (L ) f /A (K ) f  ------  ̂ HHC?,.4(L)0  > HXG,A(L))  ^

We can show that the kernel of the map H^(G,A(L)t) — > H^(G,A(L)) is isomorphic

) lto A ^ {L )f/A ^ {K )f  by the following diagram:

E^{G,A{L)t) ------ > H2(G,A(L))

0 ------ > A H L )f /A H K )f    ̂E^{G,AHL)t)  > HXG,Ax(L)).

Thus we have the exact sequence

0 A {L ) f /A { K ) i  H‘(G, A (i) ,)  B}(G,A(L))

— > H '(G ,^ ( i) /)  A ‘ {L )f /A ’‘{ K ) ,  — > 0.
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Then

# a \ G , A ( L ) )  # H '(G ,^ (L )/)
#  H>(G, A{L)t) * A { L ) y A { K ) ,  ■ #A >^(L )yA x{K ),

#A *(i)°/(l + <7)/l=<(L);
* A ( L ) f lA ( K ) ,  ■ if:AHL)'f/Ax{K), 
* A ^ { K ) , l ( l  +  a)A>^(L),

L em m a 7.40.
„ A (L ),  „ (1 -  <t)A {L),

^  A f T \ n ^  Af T\ y  ^A (L )y@ A (L g 2^(L)^ '

Proof. From the commutative diagram

0 ------ )■ 0   ̂ A {L)j 2A{L)}  )■ 0

0 ------ )■ A {L )f   > A{L)f { l - a ) A { L ) f  --------- 0

by using the Kemel-Cokemel sequence, we have

0 ------ > A i D f   > A (L ),IA {L )j  -------» ~2A(L))^’   * 0.

Therefore,
A{L)j _ ( 1 -  ct)A(L);

Remark l . f l .  Through the map 3  ̂ — > A, we assume that A^{K) is a subgroup

of .4(1).

61



Rem ark 7.42.

,, A jD f  _  „ M D i  „ M D ?  „
^ A{ K) ,  ffi ^x(JO/  ^A{L) f  e  A( L) } ^A{ K) f A>c { K) ,  ' 

N otation . Denote by S /.

L em m a 7,43.
#H^(G, A(L)) _  2rank(>ix(/£•))

Proof. From Lemmas 7.39 and 7.40 and Remark 7.42 we can prove this lemma as 

follows:

# H ‘ (G,.4(L))_^_ A(L)i
#  H‘(G, A ( L ) , r A ( K ) s  e  .4*(ir)/

( K ) j K 1 +  a ) A ^ ( L ) ,  „ A (L ),  „ A {L )°  A (L))
it^A{L)f/A{K), ’̂ A {L )J  e  A ( L ) f A { K ) , ' ^ A x { K ) i  

# A ^ ( K ) , / ( \  +  „ (1 -  g)A (L ), A {L )°  A ( i y j
#A (L)<jlA (K )! *  2A(L)j ^ A { K ) , ^ A y { K ) i

A(L)} A H K )j J 1 + ^ ) A H L ) ,
^ A x { K ) f { l  +  (7)Ax{L), 2A(L}}

X
  M. _  .■)rank{.A{L)^)   nrank{.A>^{K))

0

D efin ition  7.44. Let {-,-)k  • x A'{K) —  ̂ R  denote the canonical height

pairing on .4(K) x A'{K), and let (•, -)  ̂ : .4(L) x A'{L) —  ̂R  denote the canonical 

height pairing on A{L) x A'{L).

Remark 7.45. Note that
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for P  € A { K )  and Q  6 A' { K) .

L em m a 7.46.

R (A /K )R (A \< K )  _______________________Q^OV___
R{A /L )  #H>(G.^(i)«)#HHG,Æ(L),)'

Proof. Let Pi, - - ,Pr € A{K)  be generators for the free part of A {K ),  and let 

P[, P25 ■ ■ ■ ! ^ be generators for the free part of A'{K). Let Qi, Q2, - - , €

A^{K) be generators for the free part of A^{K), and let Q[, Qg. • ■ • , Q' 6 A^{K) be 

generators for the free part of A'^{K). Then

det{(^Pi, Pj) f^)l<i,j<r
R {A /K )  =

R {A^fK) =
dL4xCK-);#j4"CKl, '

Let N  be the subgroup of A{L) which is generated by {Pi, 

Let N' be the subgroup of A'{L) which is generated by {P{, 

Then

R {A /L )  =

det
( Q i . p i ) ,  { Q . m f

Note that {Pi, Q'k)i =  {Qu Pj)j^ =  0, and

N

, Qs}-

63



Thus

det{(^Pi, P j ) j ) \ < i , j < r  det{(^Qi,Qj) j ^ ) i < i , j < s
R ( A / L )  =

2Tank{A(K))

Q f  ■ * A ( L ) ,  Qs ■ * A ' ( L ) ,
_  y a .h M W )  R { A / K ) * A { K ) , # A ' ( K ) t  R { A ’‘/ K ) t A H K ) t # A ' ’‘( K ) ,  

Q ,  ■ # A ( L ) t  Q ,  ■

Therefore.

R { A I K ) R { A ^ / K )  # A { L ) t  # A ' { L ) ,

S /S ' /

because   ]:______  Q

P roof of Theorem 7.38

From Lemmas 7.43, and 7.46,

# m a , A ( L ) ) H : È ' ‘( G , A ' ( L ) ) ^ A ^ ^ ^ ^ ^

"  Q f  2 /

1 Q /G '/
X 2nmk(A(L)) #  H1(G, H1(G,

=  1,

because rank(Æ(FC)) =  rank(A(üf)) and #H i(G ,.4'^(L)f) =  ^E^{G,A'{L)t). 0
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