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ABSTRACT

Nonsustained ventricular tachycardia (NSVT) is usually asymptomatic, even in
patients with cardiac diseases. In fact, the presence of NSVT is usually associated
with an increased incidence of subsequent sustained VT and has been considered as
a risk factor and a harbinger of sudden cardiac death (SCD). The detection of NSVT
thus becomes of great concern for clinicians. Previous studies have reported that
decreased long-term heart rate variabilty (HRV) may be associated with a propensity
to ventricular tachyarrhythmias. It is still disputed, however, whether there is any
alteration/derangement in instantaneous HRV or autonomic balance status (ABS) im-
mediately before the onset of these arrhythmias. If so, we can then effectively mark
and predict the occurrence of NSVT. The aim of this study is to investigate this im-
portant clinical subject. Knowing that the ABS (or sympathovagal balance status)
can be quantified by heart rate (HR) via the low frequency (LF) to high frequency (HF)
spectral power ratio, we investigated the relationship between autonomic nervous sys-
tem (ANS) and NSVT by assessing short-term ABS prior to the onset of NSVT. A
novel wavelet transform (WT) based scheme for HRV assessment is introduced to
facilitate the analysis. Due to its characteristic of varying frequency resolutions, the
WT can optimize the use of time-frequency information so that the instantaneous
ABS may be measured over a very short time frame (8-second period) far more accu-
rately than via the traditional short-time Fourier transform (STFT) based analysis
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which employs a fixed frequency resolution. A morphological information marker «
is then employed to characterize the behavior of the ABS waveform. This marker is
defined as the ratio of the mean value of the entries in an ABS vector greater than a
pre-determined threshold to that of the entries in the ABS vector less than the thresh-
old. In general, a large o may imply a trend of more peaks, or unusual large peaks
relative to the entire ABS waveform. Experiments were conducted using a database
consisting of 87 NSVT, 61 ischemic and 5 normal episodes. Analysis of this data pro-
duced distributions for « as for NSVT, ischemic and normal episodes that overlapped,
but had significantly different means. Optimally setting the threshold for & produced
correct classification results as follows: 68/87~78% NSVT, 45/61x74% ischemia and
4/5=80% normal. Numerical results obtained from the WT-based scheme indicated
that while there were no significant differences in the ABS waveforms observed for
ischemic and normal episodes (both with smaller ), the ABS evolution underwent
an abrupt increase over a period several minutes (8-20 minutes) preceding the on-
set of NSVT (with larger ), suggesting that a significantly accelerated short-term

sympathovagal imbalance might predict the occurrence of NSVT.
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CHAPTER 1

INTRODUCTION

Nonsustained ventricular tachycardia (NSVT), defined as three or more consecu-
tive ventricular premature beats (VPBs) with a rate of more than 120 beats/minute
and lasting less than 30 seconds [36, 88, is usually asymptomatic, even in patients
with cardiac diseases [11]. It can occur in normal individuals as well as in a variety
of cardiac and non-cardiac disease states. Among the risk factors for sudden cardiac
death (SCD), NSVT is the most challenging and difficult to manage because there
has been no evidence to suggest a “cause-and-effect” relationship between NSVT and
cardiac death although ventricular tachycardia (VT) is implicated in most cases of
SCD [46]. It has been confirmed, however, that the presence of NSVT is associated
with an increased incidence of subsequent sustained VT [62] and is thus considered as
a harbinger of SCD [14, 15, 16, 17, 18, 19, 20, 54]. Therefore, the detection of NSVT
becomes of great concern for clinicians.

Due to a lack of knowledge regarding the need for, as well as the potential benefits
of antiarrhythmic therapy, there have been a number of investigations based on the
use of electrophysiological (EPS) testing in stratifying risk and directing therapy in
patients with NSVT [11, 62, 102, 104, 106]. While EPS testing appears to provide
a promising basis for risk stratification and assignment of therapy in patients with

1



chronic coronary artery disease (CAD) and NSVT [11, 62, 106], such testing is highly
invasive, expensive, limited to large medical facilities with specialized personnel [15],
and limited to effective treatment strategy for patients with inducible VT [81]. Also,
this programmed electrical stimulation does not appear to be useful in NSVT patients
with nonischemic heart diseases (NHD) [81, 88, 102]. Therefore, a noninvasive, low-
cost prognostic alternative for risk stratification of NSVT would represent a significant
benefit.

During the last decade, more and more effort has been invested in understanding
the fluctuations in cardiovascular parameters. The rationale of this growing interest
in the study of cardiovascular variability is based on the hope that this approach may
serve as an unprecedented tools to explore neural regulatory mechanisms as shown
in Fig. 1.1. For this purpose, the instantaneous heart rate (HR) has been selected by
researchers as the main cardiovascular candidate for analysis of fluctuations because
it is the most straightforward keyhole into cardiovascular control [3, 9, 74], and is
the most easily measured. Heart rate variability (HRV) analysis thus has substantial
potential in both physiological studies and clinical investigations since it deals with
beat-to-beat fluctuations in the parameters of ECG waveforms due to the influence
of the autonomic function. In general, the regulatory components taken into con-
sideration in HRV are sympathetic- and parasympathetic-mediated activities. Since
the autonomic nervous system (ANS) plays an important role in the genesis of lethal
arrhythmias [22], we here propose a research study conducted on assessing HRV for
patients with NSVT. We may speculate that instead of EPS testing experiments, such
a noninvasive analysis may provide useful information about: (1) the relationship be-

tween ANS and NSVT, and (2) how ANS influences NSVT.
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In this research, a novel multiresolution analysis based on wavelet transform (WT)
is first introduced for HRV measurement. Such a technique may provide an accurate
time-frequency representation of the HR pattern/behavior so that even short-term
autonomic activity can be accurately localized and measured. Assessment of HRV is
then performed simply by evaluating the dynamic features defined as the power ratio
of low frequency (LF) to high frequency (HF) components (i.e., r(t) = LF(t)/HF(t)),
known to represent the evolution of the ANS balance state and/or ANS influence,
where the LF and HF powers are both derived from WT coefficients. The ultimate
goal of this research is to improve the sensitivity and specificity of HRV as a predictor
of NSVT and SCD, towards risk stratification as well as mortality prediction for

cardiac patients with NSVT.
1.1 Background

In this section, we provide a brief review of heartbeat regulation, HRV analysis

and of the clinical importance of NSVT.
1.1.1 Regulation of the Heartbeat

Heart rate (HR) is normally determined by the rate of depolarization of the car-
diac pacemaker. In fact, pacemaker tissue is located in the sinoatrial (SA) node, the
atrioventricular (AV) node and the Purkinje fibers. Since the depolarization rate of
the SA node is faster than that of other pacemaker tissue and the action potential
spreads via the cardiac conducting pathways to other pacemakers before they spon-
taneously depolarize, the SA node normally determines the HR. In case the SA node
fails to generate an impulse, a pacemaker elsewhere usually takes over. Certain local

factors, such as temperature changes and tissue stretch, may influence the discharge

4



frequency of the SA node. However, the principal control of HR is attributed to the
ANS. The discussion in this section will be restricted to the nervous control of HR.
The SA node is usually under the tonic influence of both divisions of the ANS.
The sympathetic system enhances automaticity, whereas the parasympathetic system
inhibits it. The HR represents the net effect of the parasympathetic nerves which
reduce it and the sympathetic nerves which increase it. Generally, in healthy and
resting individuals parasympathetic tone dominates [10]. When both divisions of
ANS are blocked, the HR (referred to as intrinsic HR) of young adults averages

about 100 beats per minute (BPM).

Parasympathetic Effects

The parasympathetic nerves originate in the medulla oblongata, in cells that lie
in the dorsal motor nucleus of vagus or in the nucleus ambiguus [10]. They run down
the neck alongside the carotid arteries into the thorax to synapse with postganglionic
cells located on the epicardial surface or within the walls of the heart itself. Most of
the cardiac ganglion cells are located near the SA node and AV conduction tissue.
The parasympathetic postganglionic fibers innervate the SA node, the AV conducting
pathways, and the atrial muscles. The question of whether or not the vagi provide
an efferent control of ventricular muscle remains controversial. Actually, the most
obvious effect of vagal stimulation is to slow, or even stop, the heart. Stimulation
of vagal nerves slows the heart or reduces HR. In addition to its effects on SA node,
vagal activity also slows AV conduction.

Note that both the SA and AV nodes are rich in cholinsterase. Hence, the effects
of a given vagal impulse are ephemeral since the acetylcholine released at the nerve

terminals is rapidly hydrolyzed. Also, since the effects of vagal activity on SA and
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AV nodal function have a very short latency (= 50-100 milliseconds), vagal stimula-
tion results in a peak response either in the first or the second beat after its onset.
After termination of vagal stimulation, HR rapidly returns to its previous level. The
combination of the brief latency and the rapid decay of the response (because acetyl-
choline is rapidly hydrolyzed) provides the potential for the vagal nerves to exert a

beat-to-beat control of SA and AV nodal function.

Sympathetic Effects

The sympathetic nerves originate in the intermediolateral column of the spinal
cord in the upper thoracic region. White rami synapse in the sympathetic ganglia and
the grey rami run with the preganglionic vagal fibers over the mediastinum. Both the
postganglionic cardiac sympathetic and parasympathetic fibers then form a complex
plexus of mixed efferent nerves to the heart. The sympathetic postganglionic fibers
approach the base of the heart along the adventitial surface of the great vessels. On
reaching the base of the heart, these fibers are distributed to the various chambers as
an extensive epicardial plexus. They then penetrate the myocardium. The adrenergic
receptors in the nodal regions and in the myocardium are predominantly of the 3 type,
i.e., they are responsive to B-adrenergic agonists (e.g., isoproterenol) and inhibited
by B-adrenergic blocking agents (e.g., propranolol). The sympathetic postganglionic
fibers innervate the entire heart, including the SA node, the AV conducting pathways
and the atrial and ventricular myocardium. Increased activity in the sympathetic
nerves results in increases in both HR and the force of contraction. Also, the rate of
conduction through the heart of the cardiac impulse is increased and the duration of

contraction is shortened.
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The effects of sympathetic stimulation decay very gradually after the cessation of
stimulation. This is because most of the norepinephrine released is taken up again
by the nerve terminals and much of the remainder is carried away by the blood
stream. These processes are relatively slow. Additionally, the facilitatory effects
of sympathetic stimulation on the heart attain steady state values much more slowly
than do the inhibitory effects of vagal stimulation. Therefore, vagal activity can exert

beat-to-beat control of cardiac function, whereas sympathetic activity cannot.
Baroreceptor Reflex

There is abundant evidence that both the vagal and sympathetic nerves carry
not only efferent fibers, but also many afferent fibers that subserve various reflex
functions [43]. Arterial baroreceptors and their reflex effects have been studied very
extensively both in animals and humans [33, 44, 87, 109]. Baroreceptors are situated
in the adventitia of some arteries, particularly the carotid sinuses and the aortic arch.
Increases in arterial blood pressure stretch these vessels and then result in increases
in discharge rate in their afferent nerves. Following an increase in blood pressure, the
discharge increases abruptly but then rapidly adapts to a rate which may be only
moderately raised.

Stimulation of baroreceptors results in increases in efferent cardiac vagal activ-
ity and decreases in sympathetic activity. That is, acute changes in arterial blood
pressure will reflexly elicit inverse changes in HR via the baroreceptors located in
the carotid sinuses and aortic arch. In general, such an inverse relation between HR
and arterial blood pressure is usually most pronounced over an intermediate range
of arterial blood pressures. Below the range of arterial blood pressures, the high HR
is achieved by intense sympathetic activity and the virtual absence of vagal activity.

7
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Contrarily, above this intermediate range, the low HR is achieved by intense vagal

activity and a constant low level of sympathetic activity.
Other Reflexes

Bainbridge noted that HR. could be influences by atrial size in 1915. He proposed
a reflex linking atrial size to the firing of parasympathetic fibers so that an increase
in atrial size led to a decrease in cardiac vagal efferent activity and an increase in
HR. In fact, atrial receptors are stimulated mainly by stretching due to increases in
atrial volume. Their discharge rate is directly related to atrial pressure. The reflex
response is to subserve the Bainbridge reflex, which is to increase HR in response to
an increase in venous return [65]. The atrial receptors are located in the venoatrial
junctions— in the right atrium at its junctions with the venae cavae; in the left atrium
at its junctions with the pulmonary veins.

The cardiac response to peripheral chemoreceptor stimulation is the resultant
of primary and secondary reflex mechanisms. The primary reflex effect of carotid
chemoreceptor excitations is mainly to ezcite the medullary vagal center and thus
to decrease HR. The secondary effects are mediated by the respiratory system. The
respiratory stimulation by the arterial chemoreceptors produces hypocapnia and in-
creases lung inflation and then tends to inhibit the medullary vagal center. Hence, the
primary and secondary effects tend to neutralize each other and carotid chemoreceptor

influences HR only minimally.

Respiratory Sinus Arrhythmia

Respiratory sinus arrhythmia (RSA) can be defined simply as the variations in HR

that occur simultaneously with respiratory activity. Respiration influences a large
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number of autonomic and hemodynamic parameters, leading to a variety of proposed
physiological mechanisms for the origin of RSA. In fact, rhythmic variations in HR
occurring at the respiratory frequency are detectable in most individuals. It has
been noted that RSA is both a frequency- and an amplitude-dependent phenomenon
(8, 29, 32, 47]. In this aspect, it was concluded that (1) at a given respiratory fre-
quency, the amplitude of the change in HR. increases as the tidal volume increases,
and (2) for a given tidal volume, the amplitude of the change in HR decreases as the
respiratory frequency increases. It is also noted that RSA usually diminishes with
increasing age [47]. Additionally, most investigations suggest that cardiac vagal effer-
ents are involved in mediating the HR fluctuations that occur with respiration. That
is, RSA is predominantly or exclusively mediated by respiratory gating of parasym-
pathetic efferent activity to the heart [40, 41, 89]. This is because the acetylcholine
released at the vagal endings is removed so rapidly that the rhythmic changes in
activity can elicit rhythmic variations in HR. Therefore, RSA is exaggerated when
vagal tone is enhanced. Recordings from the autonomic nerves to the heart reveal
that the neural activity increases in the sympathetic fibers during inspiration, whereas
the neural activity increases in the vagal fibers during expiration. Since respiration
continually perturbs cardiovascular hemodynamics, it has the potential to influence
cardiac autonomic efferent activity through a variety of direct and indirect mecha-
nisms (as shown in Fig. 1.2) described below.

Both reflex and central factors contribute to the genesis of the RSA. Observing
Fig. 1.2, we see that during inspiration the intrathoracic pressure decreases and thus,
venous return to the right atrium is accelerated so that atrial stretch is increased,

eliciting the Bainbridge reflex to increase HR. After a period of time required for
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Figure 1.2: Factors contributed to RSA. Respiration influences a wide range phys-
iological parameters through its mechanical effects and through direct links in the

central nervous system.
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the increased venous return to arrive the left ventricle, cardiac output increases and
arterial blood pressure is thus raised. HR is then reflexly decreased through barore-
ceptor stimulation. Also, stretch receptors in the lungs may also affect HR. Moderate
pulmonary inflation may increase HR reflexly. The afferent and efferent limbs cf this
reflex are located in the vagal nerves. In addition, central factors are also responsible
for RSA. That is, a direct interaction between the respiratory and cardiac autonomic

(vagal) centers in the medulla generates RSA as well.

1.1.2 HRYV Analysis

For the intact cardiovascular system (see Fig. 1.1), feedback and control mecha-
nisms are particularly efficient at maintaining the mean value of arterial blood pressure
(ABP) and central venous volume within a narrow range by constant regulation of HR
and vascular tone. Certainly, quantifying the changes in the mean value of ABP or HR
may not reveal substantial responses in the underlying control system during periods
of hemodynamic stress. Alternatively, analysis of beat-to-beat variability of cardiac
parameters such as HR and ABP can provide specific quantitative information about
modulation of cardiac parasympathetic, cardiac sympathetic, and peripheral sympa-
thetic nervous activity [4, 96, 98]. Thus, interest in HRV in the medical community
is based on the possible use of measures of HRV to indicate ANS activity. From the
above studies, it was clear that the HRV signal consists well-defined rhythms, which
have been successfully shown to contain physiological information. Figs. 1.3(a)-(c)
give an RR-interval signal, HR signal and power spectral plot of the RR. signal, re-
spectively, from a normal individual who was breathing quietly. Experiments using

pharmacologic blockade of the sympathetic and parasympathetic inputs to the SA
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node have demonstrated that HR fluctuations at frequencies > 0.15 Hz are medi-
ated virtually completely by vagal activity (due primarily to respiration), whereas
those at frequencies < 0.15 Hz are mediated by both vagal and sympathetic activities
(mainly due to baroreflex elicited by ABP change). Long period rhythms at frequen-
cies < 0.03 Hz may be mediated by neurochormones and these rhythms account for
the long-term regulation mechanisms probably related to thermoregulation, to the
renin-angiotensin system and to other humoral factors. The power spectrum shown
in Fig. 1.3(c) depicts these three main contributions to the total power which are well
identifiable in three different frequency ranges. It should be noted that the above
findings actually allow a precise description of response characteristics of HR to ANS
inputs as a function of frequency.

In addition to having proven useful in understanding cardiovascular in normal
adults, alterations in autonomic nervous tone are observed in different disease states.
The critical importance of normal HRV was first elucidated in the observations of fetal
HR, where it became clear that absence of the normal beat-to-beat variability of HR
would indicate an abnormal central nervous modulation of HR and thus might be an
indication for emergency Caesarean operation. Furthermore, there is evidence to show
that the HRV measures are altered by various disease states, such as diabetes [34, 58,
66}, congestive heart failure (CHF') [98], hypertension [76], transplantation [5, 95] and
heart diseases [59], and that the abnormalities may have prognostic significance. In
certain illness, these changes in ANS activity may be important modulators of patient
outcome. For example, there is a large body of experimental evidence suggesting

that activation of the sympathetic nervous system during myocardial infarction (MI)
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greatly increases the chance that a fatal cardiac arrhythmia may occur. In contrast,
parasympathetic activation appears to be protective in this setting [30].

It has been reported that lethal heart rate fluctuations show a diminution in the
beat-to-beat variability [23, 69, 83, 97]. In particular, measures of HRV may have
prognostic value in patients recovering from MI. Several studies have found that
a decrease in the range of RR intervals is associated with increased mortality af-
ter MI (59, 67, 83]. All these studies suggested that the degree of variability could
be a predictor of cardiac pathology in otherwise asymptomatic individuals. While
HRV analysis shows great promise in this regard, studies to date were limited either
to power spectral analysis such as simple fast Fourier transform (FFT) algorithms
[62, 51, 63, 67, 83], or to measuring rate fluctuations by quantifying variation via
the standard deviation (SD) of the rate values, calculated over the entire recording
interval [23, 51]. In addition, some studies [23, 83] have also indicated that a small
number of the beat-to-beat differences in RR intervals above 50 ms could be a strong
predictor of sudden cardiac death (SCD), even in previously asymptomatic individ-
uals. Although there have been a tremendous number of studies presented for HRV
research, yet the methods that were adopted are mostly developed based on the time-
or frequency-domain analyses mentioned above. In fact, the suitability of these tech-
niques for this analysis remains uncertain. For instance, FFT analysis is known as
one of the simplest and most widely used spectral analysis techniques for biological
signal processing [13], but it is only valid under the constraint of stationarity for the
signals, so called time-invariant signals [84]. Unfortunately, HR. behaves as a highly
dynamic and nonstationary signal [56] and thus, the information obtained solely by

applying FFT analysis may be inaccurate. As for the time-domain features, mostly
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Measure Description/Definition

SDANN standard deviation of the averaged normal RR intervals
in successive 5-minute blocks over 24 hours
SDNN standard deviation of the set of all normal RR intervals

over 24 hours
| SDNN index | mean of the standard deviations of normal RR intervals
in successive 5-minute blocks over 24 hours

RMSSD root-mean-square successive difference for all normal RR
intervals over 24 hours
PNN350 percentage of differences between adjacent normal RR

intervals > 50 over 24 hours

Table 1.1: Definitions for time domain measures of HRV.

based on standard deviation (SD) calculation such as SDANN, SDNN, SDNN index,
RMSSD, RR50 and so on [23, 83], are known as the most popular choices. Table 1.1
provides a list of the definitions for these time domain measures of HRV. However,
SD is a notoriously non-robust estimator and also, these indices may not well reflect
subtle or asynchronous variations of HR. fluctuations.

Wavelet analysis is a potentially useful tool since it allows an attractive time-
frequency representation of the signal. In general, the wavelet transforms (WT)
represent the temporal characteristics of a signal by its spectral components in the
frequency domain. Although it has been widely used in the signal processing of
biomedical signals and the subject has grown rapidly in the past few years [1, 2], no
WT-based application to HRV analysis has been reported to date. In this work, we

introduce this novel method to this application.
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1.1.3 The Clinical Significance of Nonsustained Ventricular
Tachycardia (NSVT)

Each year more than 300,000 individuals die suddenly in the United States from
cardiac disease [88]. Without organic heart disease, patients with NSVT may expect
to have a normal life. On the other hand, NSVT could be a very strong predictor
of cardiac arrest in patients who have cardiac diseases. The occurrence of NSVT
in patients with structural heart disease may serve as a prognostic indicator of an
increased risk of mortality and sudden death. Since NSVT does not pose the same
risk for cardiac patients, the prognosis for patients with NSVT varies depending on
the underlying type of heart disease and management/treatment thus becomes a
dilemma. In general, the management of asymptomatic patients with NSVT should
first attempt to stratify the risk for cardiac arrest and devise a treatment plan that
can reduce the incidence of mortality due to cardiac arrest. However, the classification
of such patients remains a major challenge using all existing tests. That is, there is
a lack of an effective strategy for identifying high-risk patients who would benefit the
most from treatment.

EPS testing, alternatively known as programmed electrical stimulation (PES) or
programmed ventricular stimulation (PVS), plays an important role in the risk strat-
ification and the management of patients with CAD and NSVT. It is used in order
to characterize the inducibility and the morphology, rate and hemodynamic conse-
quences of arrhythmias. It also guides treatment strategies, such as the selection of
antiarrhythmic drug therapy and the suitability for antiarrhythmic surgery or implan-
tation of an implantable defibrillator. This invasive technique has been devoted to risk

stratification of patients after myocardial infarction (MI). Generally speaking, these
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Test Risk/Prognostic Factor Clinical Applications

EPS 4 Sustained monomorphic VT inducibiliity | CAD or post-MI
Ambulatory ECGs 1 Complexity or frequency of VPBs Widespread use
(Holter monitoring)

Treadmill test 1. T Residual ischemia CAD

2. | Exercise tolerance
3. 1 Exercise-induced arrhythmia

Coronary angiography 1 Vessel occlusions (LAD, LCX, RCA) CAD
Left ventricular function | | LVEF CAD or post-MI
Signal-averaged ECG 1 Late potentials CAD or post-MI

Table 1.2: A list of the existing tests and their associated risk factors (VT- ven-
tricular tachycardia; CAD- coronary artery disease; VPB- ventricular premature
beat; LVEF- left ventricular ejection fraction; LAD- left anterior descending coro-
nary artery; LCX- left circumflex coronary artery; RCA- right coronary artery).

studies suggested that the induction of sustained VT in patients with impaired left
ventricular function, chronic coronary artery disease (CAD) and spontaneous NSVT
may identify a subgroup at high risk of SCD and similar patients without inducible
sustained VT are at much lower risk. However, in [62, 106] both studies indicated
while that the noninducible VT implies a low risk group has been well established,
the EPS-directed therapy of the inducible patients still have limited efficacy.

Also, a number of risk stratification efforts have been devoted to patients with
NSVT and known cardiac diseases. In particular, the CAD or post-MI patient popu-
lation is the most convenient group for these studies. Table 1.2 provides a list of the
existing tests reported to be of value in identifying high-risk NSVT patients. Note
that no single test can solely achieve a complete assessment of a patient’s risk. But
that combination of several tests might be very helpful.

In addition to serving as a risk predictor, NSVT itself is also known as a risk

factor. Therefore, the prediction of NSVT is important clinically as well. As described
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previously, HRV can be measured in a number of ways and is known as a useful
index of autonomic tone. It is also noted that autonomic activity plays an important
role in the genesis of lethal arrhythmias [22]. The applications of HRV analysis to
the assessment of NSVT, however, have not been widely explored and only limited
studies have been reported to date [36, 49, 105]. Fei et al. [36] assessed spectral HRV
immediately before the onset of NSVT based on STFT analysis. They found that the
power ratio LF/HF had increased for a period of from 2 to 18 minutes before VT in
comparison with mean LF/HF over 24 hours (1.67 & 0.63 vs. 1.24 +0.60, p < 0.001)
and that such an increment was mostly due to decreased HF (4.70+1.15 vs. 5.10+1.06
In[ms?], p = 0.001) while LF remained unchanged (6.3741.20 vs. 6.3440.91 In [ms?],
p = 0.786). This conclusion is questionable, however, because the distributions for
all comparison pairs appeared seriously overlapped. Also, since circadian variability
of an individual could be very significant within a day, the assessment of HRV right
before the onset of NSVT might be misleading if simply compared with the averaged
LF/HF over the entire 24-hour period. Vybiral et al. [105] reported that there
is no significant change in the time-domain HRV before the onset of spontaneous
ventricular fibrillation. As for the prognostic value of HRV to NSVT, Farrell ef al.
[35] suggested that a decreased HRV was more predictive of arrhythmic events than
the signal-averaged ECG (the presence of late potentials), frequent VPBs, treadmill
test or LVEF. Additionally, they found that in multivariate analysis of combinations
of risk factors, the combination of late potentials by SAECG and reduced HRV was
more predictive than any other combination. However, direct evidence for a change
or derangement in HRV immediately before the onset of NSVT is still scarce and

remains to be fully defined.
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In this dissertation research, we aim to improve the measurement of HRV as
a predictor of NSVT based on the wavelet method first, and then to assess HRV
prior to the onset of episodes of spontaneous NSVT such that the noninvasive risk
stratification as well as the mortality prediction tasks for cardiac patients with NSVT

may be achieved.

1.2 Contribution of this Research Work

According to the description above, it is known that the autonomic balance status
(ABS) can be quantified by HR via the LF to HF spectral power ratio. In this research
work, we study the relationship between ANS and NSVT by assessing short-term ABS
immediately before the onset of NSVT. A novel WT-based scheme for HRV assessment
is introduced. Due to the characteristic of varying frequency resolutions (FR), the
WT can optimize the use of time-frequency information so that instantaneous ABS
may be measured over a very fast time frame (8-second period) far more accurately
than via the traditional short-time Fourier transform (STFT) based analysis which
employs a fixed FR. A morphological information marker « is then used to indicate
the behavior of ABS waveform. In general, a large o may imply a trend of (1) more,

or (2) unusually large peaks relative to the entire ABS waveform.

1.3 Overview

This dissertation is organized as follows. Chapter 2 provides a summary of the un-
derlying theory of the WT-based multiresolution method. In Chapter 3, the rationale

and numerical experiments of the validation task for the application of this method
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to HRV analysis are described. A comparison of the performances respectively ob-
tained by applying WT-based multiresolution and STFT analyses to HRV data for a
group of control subjects is also included in Chapter 3. In Chapter 4 we describe the
application of wavelets to the prediction of NSVT in patients with organic cardiac
disease. In addition to the prediction task, descriptions of the pattern classification
methods used to separate NSVT/non-NSVT classes are also presented in this chapter.
Chapter 5 provides a performance evaluation for the proposed methods by further
analyzing the numerical results obtained in Chapter 4 and also, provides a discussion
of some underlying clinical implications revealed by these numerical results. Finally,
in Chapter 6, we summarize this research work as well as suggest potential extensions

of this work for future exploration.
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CHAPTER 2

REVIEW OF WAVELET TRANSFORM-BASED
TECHNIQUES

Wavelet analysis methods have been widely used in the signal processing of biomed-
ical signals [1, 2]. In general, these methods represent the temporal characteristics
of a signal by its spectral components in the frequency domain. Being a power-
ful alternative for the analysis of nonstationary signals whose spectral features are
changing over the course of time, wavelet analysis is very important to the analysis
of biological signals since most of the statistical characteristics of these signals are
nonstationary. The term “wavelet” was first introduced by Grossman and Morlet [39]
to describe how a square integrable function forms a basis for L?(R) with appropriate
translations and dilations. Then, Daubechies [25, 26] and Mallat [72] related wavelet
theory to discrete signal processing. Due to a number of theoretical and practical
contributions, the subject has grown rapidly in the past few years [1].

Generally speaking, the basis functions in L?(R) used for wavelet transforms
(WTs) are referred to as wavelets. Thus, the study of wavelets is the study of bases
for L*(R) which have the property that all of the basis functions are self-similar and
differ only by translation and change of scale from one another. In signal processing

applications, orthogonal wavelets are used almost exclusively although there exist
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non-orthogonal wavelets [21]. A wavelet can be visualized as a damped sinusoidal
wave with very small amplitude (perhaps zero) outside some bounded interval, and
with a somewhat distorted shape so that the orthogonality conditions all hold. Be-
cause the wavelets used in practice usually vanish outside a bounded interval, this
compactly supported characteristic allows the WT to transfer a time-domain function
into a representation that is localized not only in frequency but also in time as well,
permitting a good time resolution at HF' and good frequency resolution at LF. In
this section, a brief introduction to wavelet analysis is presented. The description is
mainly based on discussing the design and implementation of the orthonormal WTs,

so called multiresolution analysis (MRA).

2.1 Continuous Wavelet Transform (CWT)

We begin from the continuous wavelet transform (CWT) with notations. Denote

L%(R) as the space of square integrable functions in real number line, i.e.,

(R) = (/@ : W @I* = [ | /@) [* dz < o}. 1)

The inner product of two functions f(z), g(x) € L*(R) is given by

(F@)g@) = [ flag"@)s, (2:2)

and the Fourier transform (FT) of a function f(z) € L?(R) is thus defined as
: o0 i
F) = (f(a),6) = [ f(z)e da. (23)
—00
Assume that the signals we encounter are in L2(R) (i.e., finite energy signals).
Also, assume that the analyzing functions come from a fixed function ¥(z) € L*(R),

so called “mother wavelet,” and they are formed by using a variety of translations
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and dilations of ¥(z). In other words, the analyzing functions are expressed by

L_v(E=2) with a,b € B a0, (2.4)

la] @

Typically, a mother wavelet needs to satisfy two constraints— (1) it must decay with

'wa,b (:1: ) =

respect to time:

lim [¢(z)|=0 (2.5)

300

and (2) its integral over the entire time axis must vanish:

/ * w(z)dz = 0. (2.6)

-0
Both constraints will guarantee that the analyzing functions v, ,(z) are well localized
and oscillate like a wave. Observing Eq. 2.4 we can see that as a decreases, ¥,,(z)
shrinks and gets localized in time and simultaneously, the FT of 4, () increases in
band width, resulting in poor frequency resolution. When a becomes larger, 1,s(z)
dilates in time and gets localized in frequency. Hence, the frequency resolution im-
proves at the expense of the time resolution. Note that these functions are scaled
by a factor of ﬁ so that their L2(R) norms are independent of a and identical one

another. That is,

et = 7 [ wE (s
ol g I EILTGEGY:
= [~ wew e

1% (2.7)

Actually, this norm-identity guarantees energy preservation. The continuous wavelet

transform (CWT) of a function f(z) € L2(R) is then defined as

Wyf(a,b) = (f(z),Vap())
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! 220y (2.8)

O | Far =

In wavelet analysis, we always set the translation parameter b = ka, k£ € Z and
usually set the scale parameter a = 277, j € Z (a is not restricted to powers of 2) so

that 1, 4(z) becomes the form
Vap(z) = 279z — k) = P i(x) with 5,k € Z. (2.9)

The family {¢;x(z) : j,k € Z} is referred to as the family of wavelets derived from
the wavelet 1. The determination of 1 is based on the concept of MRA that will be

described in next section.

2.2 Multiresolution Analysis

The initial goal of multiresoiution analysis (MRA) is to state properties of a
function ¢ € L%(R), the so called generating function or scaling function, from
which a wavelet ¥y € L?(R) can be then derived. Given that ¢ € L?(R) and
¢ () = 212¢(27z — k) (Note that here ¢;4(z)’s also satisfy the norm-identity, i.e.,

li#;£l? = l|9]1?), we define

Vo span{@gx(z) : k € Z} (2.10)

V; = span{o;i(z): k € Z} = {f(¥z): f € Vo}. (2.11)

Thus, by definition, V4 is the closure of the set formed by all linear combinations
of translates of ¢ by integers, V; is the set of all scaled versions, with scale factor
a = 277, of elements of V5. The set V = {V; : j € Z} is then referred to as an MRA

of L2(R) if the following conditions are satisfied:

1. V forms a nested sequence of closed subspaces: V; C Vj,, for all j € Z,
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2. flz)eV; & f(2z) € Vi, forall j € Z,
3. f(z)eV; & f(x—n)eVj, foralln € Z,
4. Njez V5 = {0},

ot

. Ujez Vj is dense in L*(R),

6. There exists a scaling function ¢ € V; with a non-zero integral (i.e., [°2 ¢(z)dz #

0) and its integer translates, {¢(z — k) : k € Z}, forms a basis for Vj.

Now, we can develop the wavelet analysis from the concept of MRA. By condition
1 above, since V,;, is a larger space than V;, we may speculate that there exists
a “detail” space, Wj, so that V;y; = V; ® W; where V;LW,. In other words, the
space W; contains the detail information needed to go from Vj to Vj;; similarly, the
details peeled off while going from Vj;, to V; are stored in W;. Symbol & denotes
the orthogonal direct sum (ODS) of V; and W}.! Using the recursive form, we have
J
Vin=-—oW, oW, oW, oW;= @ W, (2.12)
n=-—0g
where Wi LW, for | # m. Therefore, we can finally conclude that
P W, = L*(R). (2.13)
nez
Eq. 2.13 shows that there exists an ODS decomposition of L2(R), implying that for
every f(z) € L%(R), it has a unique expression as
flz) =Y gi(z), gj(z) € W;. (2.14)
i€z

INote that V = S} & S, represents that a Hilbert space V is the “orthogonal direct sum” of
closed subspaces S; and S, if: (1) for every v € V, there only exist a unique s; € S; and a unique
83 € S» such that v = s; + g2 and (2) 51 LS,, i.e., {s1,82) =0 for all 5; € S; and s, € Ss.
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We now turn to the construction of the wavelet . This construction presumes
that the ¢q’s are orthonormal and real-valued. Thus, the function ¢ € W, which we
will construct has the properties that the v ,’s (defined by Eq. 2.9) are orthonormal
real-valued functions and that {¥g.(z) = ¢¥(z — k) : k € Z} forms a basis for Wj.
Then, we immediately have {1;.(z) = 29/%)(2iz — k) : k € Z} forms a basis for W;.
This is the key-point of MRA since it gives a general algorithm for the construction
of wavelet bases for L2(R). Furthermore, since W;LWj for j # j' and ¥;4’s are

orthonormal wavelets at jth level, we have

(Vi i) = /_ : ik AT = 851 0ppe . (2.15)
That is, ¥;x’s have the orthogonality between levels (scales) and translates. Thus,
U = {9;,(z) : j, k € Z} represents an orthonormal family of wavelets. This normally
implies that ¥ serves as a basis for L2(R). Therefore, any function f(z) € L2(R) has

a series expansion of the form

f(z) = Y di(k)¥ie(z) (2.16)

and the coefficients {d;(k)} are called WT of the function f(z), where

di(k) = (f(z), bia(@)) = Wy (277, k27), (2.17)
consistent to Eq. 2.8.

2.3 Filter Banks and Fast Wavelet Transform

In this section, the applications of filter banks to the calculation of fast wavelet
transform (FWT), or known as discrete wavelet transform (DWT), is described. Since

¢ € Vo C Vs and {V/2¢(2z — n) : n € Z} is a basis of V;, we have
#(z) = Y V2h(n)¢(2z — n). (2.18)
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Eq. 2.18 is referred to as the dilation equation or two-scale difference equation. Also,

Y € Wy C V; since V| =V, & W,, therefore

Y(z) = Y V2g(n)$(2z — n). (2.19)

The design of a wavelet analysis involves the estimates of ¢(z), h(n) and g(n). In fact,
the wavelet analysis can be started either by carefully selecting the scaling function
@(z) or by choosing the appropriate scaling and wavelet filter coefficients h(n) and
g(n). It is, however, very difficult to solve for ¢(z) and ¥(z) and usually we do
not need to do that in practice. In many applications, we work directly with h(n)
and g(n) instead of ¢(x) so that the wavelet computations can be easily and fastly
performed simply by employing these filter coefficients. Since we note that V5 LW,

implies ¢(z) Ly(z), this is followed by
($(z),¥(z)) =0
= (3 V2h(n)p(2z — 1), 3 V2g(n)g(2z ~ n)) = 0

= ) h(n)g(n) =0. (2.20)

Therefore, according to Eq. 2.20 we see that once h(n) is given, a possible solution

for g(n) is thus given by
g(n) = (-1)"h(1 — n). (2.21)

We now start to describe how to use the filter bank concept to perform an FWT

calculation. Using the recursions in Eq. 2.18, we then obtain
6z ~k) = 3 Vehm)$(2(2z~k) - n)
n
= Y V2h(m — 2k)¢(27*'z — m), (2.22)
m
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where m = 2k + n (variable change). Multiplying both sides by 27/2, Eq. 2.22 then

has the form as
$ik(z) = Y_ h(m — 2k)¢js1.m(2)- (2.23)
m
Similarly, Eq. 2.19 leads to

Yik(z) = Zg(m — 2k)dj41,m(z). (2.24)

Now, consider a function f(z) € Vj4,. f(z) has a series form as

f(z) = Z cj+1(k)@i+1.(z)- (2.25)
k
Also, since Vj, = V; ® W; is known, f(z) can be alternatively expressed by
f(z) = X ci(k)din(z) + 3 dj(k)vju(z). (2.26)
k k

Based on the assumption made previously, we know that both ¢;x and ;, are or-
thonormal. Equating Eqgs. 2.25 and 2.26 and then taking inner product operations
with @, (using the expression in Eq. 2.23) and with 1;; (using the expression in

Eq. 2.24), we thus obtain

cj(k) = Y h(m — 2k)cjy1(m) (2.27)

and

di(k) = 3 g(m — 2K)cjaa(m) (2.28)

respectively, where c; represents the scaling function coefficients in V; (coarse); d; de-
notes the wavelet coefficients in W; (detail). Similarly, we can also obtain a synthesis

form as

ci1(k) =3 h(k — 2m)c;(m) + Y g(k ~ 2m)d;(m). (2.29)
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Therefore, Eqs. 2.27- 2.28 define the FWT and Eq. 2.29 defines its inverse version
(IFWT); the relations in Egs. 2.27 and 2.28 define the forward transform used for
analysis (signal decomposition), while Eq. 2.29 defines the inverse transform used for
synthesis (signal reconstruction).

Observing Figs. 2.1(a) and (b), we can get the idea of the implementations of FWT
and IFWT, respectively, from the filter bank structures. Fig. 2.1(a) is the realization
form of Eqgs. 2.27 and 2.28, whereas Fig. 2.1(b) is that of Eq. 2.29. Generally speaking,
Fig. 2.1(a) demonstrates the next lower level signal decomposition. Letting A(k) =
h(—k) and §(k) = g(—k), the scaling coefficients c;j(k) and wavelet coefficients d;(k)
can be obtained by first performing a convolution between c¢;ji(k) and h(k), and
between c;.i(k) and §(k), respectively, and then downsampling both the resultant
signals by a factor of 2. Similarly, Fig. 2.1(b) provides the demonstration of the next
higher level signal reconstruction. For example, to reconstruct c;+1(k) from c;(k)
and d;(k), we first upsample c;(k) and d;(k) by a factor of 2 (scheme: putting zero
between the consecutive samples), then filter both the upsampled signals using h(k)
and g(k), respectively, and finally add both the resultant signals to get c;.1(k).

Define a matrix H by Hy,, = h(m—2k) and note that here the size of H is infinite
(i.e, —ooth, ---, —1th, Oth, 1th, - - -, coth rows and columns). The kth row is the Oth
row shifted to the right by 2k units if £ > 0, or to the left by 2 | k | units if £ < 0. H,
in fact, has a circulant structure. Similarly, define a matrix G by G, = g(m — 2k)
and G has the same circulant structure as H. According to Egs. 2.23 and 2.24, we
see that the matrix

at
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Figure 2.1: (a) Implementation of FWT using a filter bank structure (analysis decom-
position scheme); (b) implementation of [FWT using a filter bank structure (synthesis

reconstruction scheme).
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is the matrix of an orthonormal basis change from the basis {¢j+14(z) : k € Z} to
the basis {¢;(z), ¥jx(z) : £ € Z} in V1. Therefore, W is necessarily unitary and

real. We thus have

r [H r1_ [HHT HG" ] _
WW _[G][HT G ]_[GHT car | =1 (2.30)
and
WTW=[HT GT][g}=HTH+GTG=I. (2.31)

The above two equations will accordingly result in the following relationships:

HHT =1 (2.32)
GGT =1 (2.33)
GHT =HG" =0 (2.34)
H'TH+ GG =L (2.35)

Letting h = [R(0) A(1) --- h(p—1)]¥ and g = [g(0) g(1) --- g(p~1)]7, h and g can
be referred to as a discrete wavelet pair if both the matrices H and G, respectively
defined in Eqgs. 2.36 and 2.37, satisfy Eqs. 2.32- 2.35. It follows that we can obtain
discrete wavelet pairs with desirable properties without going through the process of
constructing a multiresolution analysis [21]. Instead, we can directly solve Egs. 2.32
through 2.35.

Furthermore, the FWT computation can be also performed simply using the op-
erators W, H and G. Let f be a discrete signal with a finite length of N =24, A
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natural decimation of the finite-length signal f occurs in the FWT process. Assume
that h(n) =0 for n < 0 and n > p—1 for some positive integer p. For each scale level
j€{-1,-2,...,—K} (K is a positive integer), let H; and G; be 2M+7 x 2M+i+!

dimensional matrices, defined by the finite dimensional analogues of H and G, i.e.,

[ h(0) h(1) h(2) --- h(p-1) O 0 0 - 0
T o
0 0 o o - 0 0 0 AO) k)
and
[ 9(0) g(1) g(2) -~ glp-1) 0 0 0 -~ 0
G=| 0 9 @ eabmd gD gm0 0 o8y
L0 0 0 - 0 0 0 g0 o
where H_; or G_, is 2M~! x 2 H_, or G_, is 2M-2 x 2M-L ... and so forth. In

practice, we stop generating H; and G; when the number of columns in both matrices
2M+i+l < 5 Obviously, here we have 2M—%+! > 5 for some K < M. At the same
time, it can be inferred that the filter length p determines the maximum number of

scales used in FWT. Define an operator W; as

Now, in order to perform the FWT or DWT, denoted as W_xf, we can simply apply

the operator W; to the coarse signal at each scale level:

Woif = W_.f = [ H_.f }

G_f

woH 1 [|H-2H-f

W_2f=[ (‘;’ f—l = | G_,H_,f

-t = G’_lf
W_aH_,H_.f ] H_;H ,H_,f
G_;H_,H_/f

W_sf = G_H_,f -

G..f G_,H_,f

-t | G_if
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H_xH_ g, - H H_f]
G_xH_gp1---H_H_f

W_gf = (2.38)

G_sH_,H_f
G_H_,f
i G_\f

The output given by Eq. 2.38 is the FWT/DWT of the original signal f at scale — K.
Note that both the DWT results obtained by applying Egs. 2.27- 2.28 and applying
Eq. 2.38 to f are identical. Moreover, suppose that f is a function in V; (i.e., f € V),

we may readily obtain that

G_f € W_,,
G_oH_f € W,

G_3H_2H_1f € W._,,

G_xkH_gp---H o H_f € W_g,

H—-KH—K+1 --HH_ f € V..

By Eqgs. 2.18 and 2.19, we see that if ¢(z) and ¥(z) are compactly supported (i.e.,
the function value vanishes outside a bounded interval), the filters h(k) and g(k) are
finite impulse response (FIR) filters so that the summations in the FWT given by
Egs. 2.27- 2.29 are finite. This apparently is of use in practical implementations. If
they are not compactly supported, a fast decay is thus desirable so that the filters can
be reasonably approximated by FIR filters. Note that h(k) acts like a low-pass filter
(LPF) with the passband of [0, 7/2] and g(k) similarly behaves like a high-pass filter
(HPF) with the passband of [r/2,7]. Both FIR filters are also known as quadrature
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Figure 2.2: Dyadic blocks in frequency domain

mirror filters (QMF). Further, by Eq. 2.18 the FT of ¢(z) must satisfy

1

A

implying that the major part of the energy of the function in V4 (respectively W)

B(w) = 2)3(3), (2.39)

should be concentrated in the band {0, 7] (respectively [r,2r]). This means that
the wavelet expansion splits the frequency space into dyadic blocks [2/m, 27F1x] with
j € Z [70, 71], as illustrated by Fig. 2.2.

Now that given c;11(k), we know how to compute next lower level c;(k) and d;(k).
But, what are the initial coefficients used to start this FWT computation process for

a function f(z)? A trivial approximation could be
ci(k) = f(k/2). (2.40)

Therefore, we begin at level j = 0 and the approximated signal co(k) can be thus

given as

co(k) = f(k). (2.41)
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Then, a wavelet analysis can be obtained by successively decomposing c; into c;—,
and d;_, for j < 0. Also, initially the QMF filters should be determined as well. In
this aspect, there are a number of existing algorithms developed for the derivations
of the scaling filter h(k) [25, 26, 27, 28, 70, 71, 72]. Note that these wavelets all have
different properties. Once h(k) is determined by using any one of these algorithms,

the wavelet filter g(k) can be obtained simply using Eq. 2.21.
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CHAPTER 3

DESIGN AND METHOD VALIDATION OF WT-BASED
ANALYSIS SCHEMES FOR HRV INVESTIGATIONS

In this chapter, we seek for some potential WT applications for HRV and then,
examine the suitability of the WT-based algorithms to HRV assessments by evaluating

the results obtained from a method validation task.
3.1 Rationale

The ruling action of the ANS controls is not static. Due to this dynamic ac-
tion, the physiological parameters do not remain in the same stationary status but
are modified by the evolving condition of the cardiovascular regulatory systems [68].
Consequently, it is noted that the HR waveform varies in different time-scale levels,
i.e., it varies from seconds to seconds, minutes to minutes and hours to hours. Tra-
ditional spectral analysis, such as FF'T or STFT methods, requires that the signal
desired to be analyzed is statistically stationary. The problem with the STFT is
that both time and frequency resolutions of the transform are fized over the entire
time-frequency plane. Therefore, selecting a short analysis window may cause poor

frequency resolution and on the other hand, while a long analysis window may improve
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the frequency resolution, it loses the time resolution and compromises the assump-
tions of stationarity within the window so that the time-varying (or nonstationary)
characteristic of the windowed signal is unable to be preserved. Hence, FFT-based
methods sometimes may not be appropriate to physiological signal processing. Many
HRV analyses, however, have been performed overwhelmingly by using these spec-
tral estimation techniques for extracting the frequency-domain features. In order to
accurately identify the changes in a variety of time scales, selecting a technique that
can simultaneously gain good resolutions for both slow- (LF) and quick-changed (HF')
components buried in the HR waveform so that a multiresolution signal analysis may
be achieved becomes the most essential for HRV investigation.

Actually, a great interest is given to the WT which, among the broad field of
possible applications, allows an attractive time-frequency representation of the sig-
nal. Note that WT does not increase the information having already been present in
a signal. It is just an alternate which provides a more useful representation of the
signal. WT-based method serves as an excellent tool to satisfy the requirement de-
scribed above since it employs analysis windows with variable size so that the trade-off
effects between time and frequency resolutions may be minimized, towards the op-
timal time-frequency representation for signals of interest. Therefore, using such a
multiresolution analysis it is possible to resolve HF components or to obtain time
resolution in the same plot for better evidencing the different features of the signal
simultaneously. This may permit a promising and hopeful beginning for HRV inves-
tigation. In the following, an HR data measurement and preprocessing are described

first. Then, a development of potential WT-based applications to HRV analysis and
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a method validation task for the new designed analysis schemes with the associated

numerical experimental results are also introduced.

3.2 HR Data Measurement and Preprocessing

In HR data collection, correctly specifying the fiducial point on an ECG signal is
the very first step. Theoretically, this point should be the onset of the P wave since it
represents the start of activation of cells in the sinoatrial (SA) node. However, using
the RR time interval as a measure of heart period is generally acceptable because the
PR interval remains relatively constant if there is no conduction disorder. In fact,
the measurement of RR. interval is more convenient since the R. wave is more easily
identifiable than the P wave on the ECG tracing. Such a sequence of RR durations
is usually referred to as an RR interval tachogram or more concisely, tachogram. The
corresponding HR signal can be then obtained by calculating the reciprocals of RR
intervals. Since an RR or HR signal obtained from the above process is expressed as
a function of the beat number, in order to operate in the more common time scales
such as second or millisecond (e.g., for HRV spectral analysis) more efforts should be
devoted to preprocessing the HR waveform so that it can be expressed as a function of
discrete-time (DT) with uniform sampling period in the abscissa. The preprocessing
task is mainly accomplished by interpolating and resampling the RR. sequence.

Fig. 3.1 provides schematic diagrams to interpret how to derive the RR signal and
how to convert it as a DT function. The steps involved are described as follows. First,
an ECG is sampled at a sufficiently high rate, f,, to determine the time location of the

R waves with a sufficient accuracy. Denoting RR;. as the RR interval corresponding
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Figure 3.1: HR Measurement and preprocessing procedure.
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to the k-th beat and ¢, as the discrete time location of the k-th R wave, we then have
RRk = tk+1 - tk. (31)

Observing Fig. 3.1(a), we see that for a given t, there is a corresponding RR.
Note that here the magnitude of RR; only represents number of samples between
two consecutive R waves rather the actual RR interval in real time. Actually, the

corresponding real-time RR interval (denoted as RRI) is measured by
1000
fs '

where AT, represents the sampling period with the unit of millisecond (ms).

RRIy = RRy- AT, = RR;. -

(3.2)

Since the tachogram can be considered as an irregularly sampled waveform, by
means of interpolation (e.g., either linear or p-th order polynomial) a continuous
signal can be thus rendered suitable for conversion to a regularly sampled waveform
so that it might be further processed digitally [92]. Here, after obtaining a series of
RRy's from an ECG signal, a linear interpolation task is performed next, as shown
in Fig. 3.1(b). First, we may speculate that the RR signal g in Fig. 3.1(a) is an
envelope of a spurious RR signal g, that had the same sampling rate f, as the original
ECG signal. Considering any pair of two consecutive RR intervals in g, say RR;
and RRy,, it can be readily inferred that there should exist (¢¢,; — £ + 1) samples,
including RR; and RRy,;, between these two RR intervals in g,. Denoting the n-th
RR samples between RR; and RR;, as RRi(n), using linear interpolation RR(n)

is then estimated as

~ RR,
RRi(n) = RRy +n- RRe k, forn=0,1,..., (tes1 — t), (3.3)
b1 — Lk
or equivalently (using Eq. 3.1),
Riy1 — RR;
RRy(n) = RR +n- = "’;R RRe forn=0,1,..., RR;. (3.4)
k
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Obviously, we have RR;(0) = RR; and RRx(RR;) = RRi+,. Observing Fig. 3.1(b),
we see that after interpolating all the adjacent RR interval pairs an estimated RR
waveform with uniform sampling period in time domain is then constructed.

The final step involved in the data preprocessing task is to resample the interpo-
lated RR waveform, as shown in Fig. 3.1(c). In general, the frequency components
of interest for HRV analysis is usually less than 1 Hz [56], therefore according to the
Nyquist sampling theorem we here choose the resampling rate as 2 Hz (i.e., decimated
by a factor of 12-'-) so that all frequency components below 1 Hz can be thus preserved.
Also, to prevent the aliasing effect due to downsampling, a lowpass filter, referred to
as the anti-aliasing filter, with cutoff frequency f. = 1 Hz is introduced before the
decimation stage. As a result, a resampled RR signal g- with a uniform sampling
period (0.5 second) in time domain is then obtained. Similarly, the corresponding
resampled HR signal can be measured by calculating the reciprocals of the resampled
RR signal. Fig. 3.2 gives illustrations of an original RR, HR tachograms and the
corresponding resampled signals, respectively. These resampled signals thus provide

a desired form used for HRV analysis.

3.3 Design of WT-based Analysis Schemes

A description of WT-based analysis scheme design is presented in this section.
Before developing the algorithms, we first calculated FWT for the two resampled RR
signals obtained from a subject under supine and tilt maneuvers, respectively, and
examine how temporal representations of the LF and HF components behave during
both position states. For this purpose, after obtaining the WT coefficients for both

RR signals two illustrations for supine and tilt stimulations were constructed and
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Figure 3.2: Illustrations of RR and HR signals: (a) an RR interval tachogram; (b)
an HR tachogram; (c) the corresponding resampled RR signal; (d) the corresponding
resampled HR signal.
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shown in Figs. 3.3 and 3.4, respectively. Note that in both illustrations each one
of them consisted of the resampled RR waveform and the corresponding composite
detail signals at all levels. Observing these figures closely, it appeared that in Fig. 3.3
the oscillations in the HF bands (i.e., > 0.15 Hz), such as [0.125,0.25] Hz (j = -3)
and [0.25,0.5] Hz (j = -2), were more clearly monitored with larger amplitudes
and at the same time, those in the LF band ranged from 0.03125 Hz to 0.0625 Hz
( = —5) seemed more suppressive, in comparison with the same frequency locations
in Fig. 3.4. The basis functions we adopted here and throughout this dissertation were
the Daubechies orthonormal wavelets generated by both scaling filter h(n) and wavelet
filter g(n) with 8 filter coefficients. Fig. 3.5 shows the estimates of the corresponding
scaling function ¢(t) and wavelet function ¥ (¢).

According to the previously researches [56, 69, 96], it has been confirmed that LF
components (usually below 0.1 Hz) of HRV spectrum should correspond to a mediated
activity of sympathetic and vagal nerves while HF components (usually above 0.15
Hz) solely correspond to vagal response, mainly due to respiratory activity. Therefore,
it can be seen that the preliminary wavelet analysis results presented by both Figs. 3.3
and 3.4 are accordingly consistent to the fact of physiological events, i.e., an increase
of the sympathetic activity (LF components) and a decrease of the vagal activity (HF
components) when changing from supine to tilt.

Since there exists an antagonist relation between LF and HF powers, the power
ratio 7 = LF/HF can be thus visualized as an index used to quantify the ANS or
sympathovagal balance. Actually, to further study how ANS influences on the HRV,
particularly during a very short time interval, we must be very careful in estimating

the short-time spectral powers to guarantee that LF/HF can be measured in the
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RR signal
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Figure 3.3: WT-based multiresolution representation of the RR signal for a subject
at supine position. Top panel- normalized RR signal; the second to the sixth panels
(from the top)- composite detail signals with corresponding scaling levels: 27! to 273
(i.e., in subspaces W_; to W_s), respectively; bottomn panel- composite coarse signal

at level 275 (V_s).
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Figure 3.4: WT-based multiresolution representation of the RR signal for a subject
at tilt position. Top panel- normalized RR signal; the second to the sixth panels
(from the top)- composite detail signals with corresponding scaling levels: 2! to 273
(i.e., in subspaces W_, to W_;), respectively; bottom panel- composite coarse signal
at level 273 (V_5).
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Daubechies wavelet function (8 B er coolficients)

Figure 3.5: (a) scaling function ¢(t); (b) wavelet function 1(¢t). Both are estimated by
Daubechies wavelet system filters h(n) and g(n) with 8 filter coefficients (successive
approximation).

most appropriate and efficient manner so an accurate instantaneous autonomic (or
sympathovagal) balarce status estimation may be then attained. Fortunately, wavelet
analysis may do this. Two algorithms based on WT application for short-time HRV

analysis will be presented in the following sections.
3.3.1 Analysis Scheme 1

In order to perform a short-time HRV analysis,” we may calculate power (or
energy) ratios on windowed RR signals simply by employing the segmental WT coef-
ficients since these coefficients carry the signal information. A scheme is designed as
follows. First, we set the window length to T seconds and let T be fized throughout all
scaling levels. Fig. 3.6 provides a schematic plot of the coverage in the time-frequency
plane for wavelet analysis. In this figure, the thick-line blocks represent the windowed

2Note that throughout this dissertation the “short-time HRV” is quantified via the instantaneous
sympathovagal balance states.
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Figure 3.6: Time-frequency tiles and coverage of the time-frequency plane for wavelet
analysis (thick-line blocks represent windowed regions that occupy the same real time
interval T'; also, each thin-line block has the same number of WT coefficients).

regions at all levels sharing the same real time interval T'. Also, each thin-line block
has the same number of WT coefficients. In general, the higher the level is, the more
the number of WT coefficients are contained by a thick-line block. Specifically, sup-
pose that this T-second window comprises N WT coefficients at level 27, it can be
readily inferred that this T-second window would comprise N - 28 WT coefficients at
level 20+F) as well.

Now a short-time spectral power calculation can be performed as follows. Given
an RR tachogram we first convert it into a uniformly-sampled RR signal by using the

techniques described in Section 3.2 and then, calculate the FWT for this resampled
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RR signal. After that, either the value of real-time window length T or, more con-
veniently, the total number of windows for analysis needs to be determined. Once
the FWT has been computed and the total number of windows for analysis, denoted
as Nyn, is determined, the WT coefficients at each level is then equally divided into
Nyin groups. To clearly express this short-time spectral power calculation scheme
in mathematical form, a number of useful denotations are defined here. Letting V;
represent the total number of WT coefficients at level 2/ and assuming that there are
L levels in FWT analysis, the composite detail signal in real time domain at level 2/

can be expressed by
Nj-1
Dj(t) = Y. dj(k)¥jx(t), forj=-1,...,-L, (3.5)
k=0
where Dj;(t) is a continuous-time signal. Since our analysis is actually based on a
discrete-time RR signal processing, D;(t) should be further sampled by a sufficiently

fast sampling period T, as®
Nj-1

D;(nT;) = g d;i(k)Yjk(nT,), forj=-1,...,—L. (3.6)
D;(nT,) thus represents the discrete-time signal components corresponding to the
dyadic frequency bands [277 /Ty, 297/ T,]. Also, for each window at level 27 we here
assume that there are N; WT coefficients and N; = Nj/Nyjin. Since it has been noted
that the quantitative information of the sympathetic- and vagal-mediated activities
are reflected by the LF and HF powers, respectively, using the denotations defined
above the autonomic balance state corresponding to the i-th window can be measured

3Note that in order to avoid aliasing effects due to sampling process, T, needs to meet the Nyquist
criterion that T, < m/Qrg, where Qgp is the bandlimit of the continuous-time RR signal. Here, T,
is identical to the resampling period of the original RR signal, i.e., T, = 1/ f,.
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by the form as

g ID;(n T
r = ZiLE DT (for (i — 1)T < nT, < iT)

¥ ;-HF |1 Di(nT5)|?
iN.—1
Ty Satp g BN TP

iN;—1
Z_7'=HF E;_-:J(,'_]_)NJ{ d?(k) 'ijak(nTs) ”2

iN -1
Zj=LF zsz(i—l)N; d?(k)

= o fori=1,..., Ny (3.7)
2j=HF zk;(f-l)w; dj(k)

r; thus provides an insight into autonomic balance status over the i-th short-time
window. Such an instantaneous autonomic balance of the heart period signal is thus
monitored by a T-second time frame. Since r; is a time-varying quantity, r = {r; fv;’{"
would represent a vector consisting of the estimates of autonomic balance status
versus time evolution. As a result, the investigation of the autonomic dynamics can
be simply achieved by r.

An example for demonstration is described as follow. In this example, each one of
the resampled RR signals given by Figs. 3.3 and 3.4 was 64 seconds (= 1 minute) in
length, the resampling frequency f, = 2 Hz (this yields 128 samples), the time interval
of a window for short-time analysis T = 32 seconds and the number of FWT analysis
levels L = 5. This allows the number of the analysis windows N,;, = 2 and each
window readily comprises N_, =32, N, =16, N.3=8, N_,=4and N_y =2 WT
coefficients at levels 27!, 22, 273, 2-¢ and 273, respectively. Considering Fig. 3.6.

we may see that each thin-line block in this figure would contain 2 WT coefficients

throughout all levels. In addition, the frequency allocations are listed as follows:
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J corresponding frequency band
—1|05-1 Hz

-2 { 0.25-0.5 Hz

-3 | 0.125-0.25 Hz

-4 | 0.0625-0.125 Hz

-5 | 0.03125-0.0625 Hz

We here chose [0.03125,0.0625] Hz as LF and [0.125,0.5] Hz as HF bands in the

demonstrated example. Using Eq. 3.7, r; is then calculated by
iN,—1
Tims Ty G (E)
o= "iff‘_‘: i1 fori=1,2. (3.8)
Zj=—2,—3 Zk::,(i—l)N;- d?(k)

Obviously, Eq. 3.8 will result in two power ratio values as r; and ry, which approzi-
mately indicate the autonomic balance states during 0-32 seconds and 32-64 seconds,
respectively. Note that in this scheme, the last power ratio value should be the least
accurate. This is because a number of zeros were padded after the ending point EP
(here EP = 128) and such a zero-padding process obviously would result in inaccu-
rate estimates of WT coefficients, throughout all levels, associated with the signal
monitored by the last window. Therefore, in this example we thus only adopted the
first power ratio value, ry, for performance evaluation.

Applying the WT-based method to both the RR signals given in Figs. 3.3 and 3.4,
consequently, we obtained rstilt) = (0.7409 and rl(supine) = (0.0314. That is, the power
ratio within a very short period (= half a minute) obtained from tilt appeared to be
larger than that obtained from supine, indicating that the sympathetic activity might
dominate in ANS function as the patient is at tilt position. This is actually consistent
to the fact of physiological events.

The WT-based analysis scheme introduced here seems to give a hopeful start.
We would further test this analysis scheme on a patient group in Section 3.4 to see

if similar promising observations can hold for the more subjects, towards a method

50

U N SO



f Hz
i=-2
j=-3
==
Jj=-
0 T 2T

t sec

Figure 3.7: Time-frequency tiles and coverage of the time-frequency plane for wavelet
analysis (thick-line blocks represent the windowed regions that have the same number
of WT coefficients).

validation. Also, a comparison between the results obtained by applying both the

WT-based and the traditional STFT methods will be presented.
3.3.2 Analysis Scheme 2

Considering the analysis scheme 1, since the short-time analysis was performed
over a fixed T-second period throughout all levels (e.g., LF and HF power calcula-
tions), the tile-structure of time-frequency representation contributed by a variable
frequency resolution for the WT method was thus ignored. In this section, a bet-
ter WT-based scheme adequately employing such a unique time-frequency structure
will be introduced. Unlike the analysis scheme 1, the one presented in the following

may provide more efficient measures of the instantaneous autonomic balance states.
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Fig. 3.7 gives the schematic diagram of this new application. First, it should be
noted that here the criterion used for window selection is different from that used in
scheme 1. Instead of selecting the same number of windows throughout all levels by
using a fixed real-time period T as the window length in scheme 1, we here adopt a
fixed number of WT coefficients, M, as the window length for window selection at
all levels so that the number of windows might vary in different levels. In Fig. 3.7,
each thick-line block thus indicates a window selected from each level. According to
this different window selection criterion, it can be readily inferred that if there are
N windows at level 27 occupying a certain time interval, then the same time interval
would also comprise N - 2F windows at level 20+F),

Similarly, we first calculate the FWT for a uniformly-sampled RR signal. Once
the FWT has been computed and the window length M is determined, the total
number of windows at each level, denoted as N,f;fi),,, is thus determined by N;/M,
where N; represents the total number of WT coefficients at level 2/. The short-
time spectral power calculation is then performed on these windows. In other words,
each window containing M WT coefficients serves as a power calculation unit (PCU).
After obtaining power estimates from all PCU’s, the instantaneous autonomic balance
states can be then measured simply by finding the LF to HF power ratios. This
process will be illustrated by an existing example as follows.

Still, the RR signals used in this illustrative example are given by Figs. 3.3 and 3.4.
As described in Section 3.3.1, it has been known that the resampled RR signal was
64 seconds in length, the resampling frequency f, = 2 Hz and the number of FWT
analysis levels L = 5. Choosing the window length as M = 4 here, it thus readily

resulted in the numbers of the analysis windows Nfl;,}) = 16, Nﬁ,;,f) =38, N,(U‘{,f) = 4,
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NG = 2 and NP =1 at levels 271, 2-2, 273, 2-4 and 2-5, respectively. Also,
denoting the real time interval occupied by a window at level 2/ as AT; (unit: sec-
onds), we then have AT, =4, AT_, = 8, AT_3 =16, AT_s = 32 and AT_5 = 64.
The time-frequency tile structure of this illustrative example is provided in Fig. 3.8.
Each tile in Fig. 3.8 represents a window in time-frequency plane and contains 4 WT
coefficients throughout all levels. Now, considering the structure shown in this fig-
ure, we may see that the higher the level is, the faster the window moves. In this
example, since we chose, as previously, j = —5 as LF (i.e., [0.03125,0.0625] Hz) and
j = —2,-3 as HF (i.e., [0.125,0.5] Hz), it can be concluded that a window at level
275 would share the same time interval as that spanned by four windows at level 23
with proper time location and similarly, by eight windows at level 272. Denote i as
the enumerative number for windows at level 273, [ as the enumerative number for
windows at level 272 and m as the enumerative number for windows at level 2-2.
Using (7,!,m) to describe the temporal locations of the short-time windows at these

three levels, in this example the window movement can be expressed by a sequential

representation of (z,!,m) as
(1,1,1) = (1,1,2) = (1,2,3) = (1,2,4) = (1,3,5) = (1,3,6) = (1,4,7) — (1,4,8).

Therefore, the short-time power ratio calculation is performed according to this
sequential order. Denoting the instantaneous power ratio as r;;,, and recalling
LF=[0.03125,0.0625] Hz and HF=[0.125,0.5] Hz in the illustrative example, r;, is

thus measured by

Titem = ~T M1 K%: ;cg&—l)l‘{t dgsfrﬁv)l-1
AT 3 Ek:(l—l)M d?_;,(k) + AT_; &k=(m-1)M d?-z(k)
8 ;..It{(—i-—l)M d? (k)
16 ZZM(I-I-I)M s(k) + %Z;g([n:ium d2,(k)
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Figure 3.8: An illustration for the demonstrative example in Section 3.3.2. Note that
each tile (or window) contains M WT coefficients (M = 4); power calculation is
then performed on each one of these windows. In addition, the enumerative numbers
(in italic style) for the windows at the levels of interest (j = —2,—3, —5) are also
included. To describe the window movement, a sequential representation of (i,{,m) is
thus expressed as: (1,1,1) — (1,1,2) = (1,2,3) — (1,2,4) — (1,3,5) — (1,3,6) —
(1,4,7) = (1,4,8).
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_ ZZ-’Z&L)M d2 5(k) (M=14) (3.9)
4- St ya (k) + 8- St d2a(k)

where (i,1,m) = (1,1,1),(1,1,2),(1,2,3), (1, 2,4), (1,3,5), (1,3,6), (1,4,7), (1, 4, 8).

Consequently, Eq. 3.9 will result in eight power ratio values as 71,11, 71,1,2, 71,23,
T124, T13,5) T13,6, T1,4,7 and 1,45, which approzimately indicate the autonomic bal-
ance states during 0-8, 8-16, 16-24, 24-32, 32-40, 40-48, 48-56 and 56-64 seconds,
respectively. Obviously, the scheme 2 can provide measure of the power ratio over
a much shorter time period than the scheme 1 so that the instantaneous autonomic
balance states can be monitored in a much faster time frame. Also, due to the char-
acteristic of a variable time size in LF and HF windows for WT method, it can be
expected that this novel scheme should work much better than the STFT method
because the WT-based method allows a more efficient arrangement of time and fre-
quency resolutions so that the temporal-spectral information associated with the RR
signals might be maximally utilized. Figs. 3.9 and 3.10 show the power ratio plots
obtained by applying this scheme and STFT method, respectively, to the RR signals
recorded during supine and tilt stimulations for a subject. Observing both figures
we may see that while the STFT-based power ratios failed to discriminate the supine
and tilt maneuvers, the WT-based results indicated a clear and complete separation
between these two position states for the subject.

In this comparison the short-time (= 8 seconds) power ratios obtained from tilt
appeared to be generally larger than those obtained from supine and, again, indicated
the fact of physiological events that the sympathetic activity might dominate in ANS
function as the patient is at tilt position. Similarly, we would further test this analysis
scheme on a patient group in Section 3.4 to see if similar promising observations can
hold for the more subjects, towards a method validation task. Also, a comparison
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Autonomic balance states during supine and tilt maneuvers (FWT)

1.8

1.6

1.4

1.2

LF/HF ratio

0.8

0.6

0.4

0.2

e e et
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (minute)

0

Figure 3.9: The instantaneous autonomic balance states during supine (dash line)
and tilt (solid line) maneuvers obtained by the proposed WT-based scheme 2.
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Autonomic balance states during supine and tiit maneuvers (FFT)
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Figure 3.10: The instantaneous autonomic balance states during supine (dash line)
and tilt (solid line) maneuvers obtained by the traditional STFT method.
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between the results obtained by applying both this WT-based and the traditional

STFT methods will be presented.

3.4 Validation Experiments

Before further applying the WT-based analysis schemes introduced in Sections 3.3.1
and 3.3.2 to HRV assessment, a simple numerical experiment for method validation
was performed. Such a validation task was initiated by a cardiac autonomic stim-
ulation trial (i.e., supine-tilt maneuvers). We here included a small patient group,
consisting of eight healthy adults, that had undergone a simple physical experiment.
Using the Holter tape recorder, an RR recording associated with each subject in this
group was measured. Each RR recording consists of two episodes and both episodes
were measured during supine and tilt maneuvers, respectively, for each subject. Each
episode was only approximate 1-minute (64 seconds) in length. HRV examinations
were performed on the group using the two WT-based schemes described previously
and STFT methods, respectively. A method validation can be then achieved simply
by evaluating and comparing the numerical results obtained from both the WT- and

STFT-based methods. The details are described in the following sections.

3.4.1 STFT Analysis

For STFT analysis, we here divided the RR signal into K windows so that each RR
episode comprises K power ratio values. That is, each window contains N' = 128/K-

points. Denote the i-th windowed signal as RR;(n), where

RRi(n) = RR((i-1)N'+n), for0<n<N -1

0, otherwise. (3.10)
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Here we used the periodogram spectral estimator [57], known as a Fourier-based
method, to estimate the power spectral density (PSD), that is,
N'—1 )
Sper(f) = I >_ RRi(n)e~7rn 2, (3.11)
n=0
where f represents the fundamental frequency (or Nyquist frequency).
Similarly, we chose the same LF and HF locations as before: LF=[0.03125,0.0625]
Hz and HF=[0.125,0.5] Hz. To digitally process the data, we first converted these

frequencies to their corresponding fundamental frequencies simply by dividing them

by fs (here f; =2)

0. 03125 0. 0625 5 0.5
, fe= , [ = fro= -

fo =

Denoting the i-th estimated PSD and the corresponding LF-to-HF power ratio as

S,(,;),( f) and r,-(FT), respectively, r,-(FT) is then expressed by

(FT) _ [ S@.(f)df
Ti - a2 (1)
JP2 Spe(f)df
JI? 3 | =N RR;(n)e 72 |2 df
f!{?xz 1‘}' I Zn—ol RRt(n)e_ﬂwfn l2 df

Since S,(,Q,( f) cannot be computed for a continuum of frequencies, we are forced to

fori=1,..,K. (3.12)

sample it. In general, equally spaced frequency samples are taken so that f, = k/N’
for k=0,1,...,N' —1 to yield
1 = 2 2
Sper(fk) = | Z RR,(n)e" "fknl

n=0

= |Zj1!212,(n)e-1-“f"'|2 k=0,1,...,N' =1. (3.13)

n=0
The latter expression is in the form of a DFT and hence may be efficiently computed

using an FFT. To approximate S,(,’e),( f) more closely, we may need to have a finer
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frequency spacing. This is accomplished by zero padding the data with N, — N’ zeros
and then taking an N, point FFT. Let f; = k/N, and the frequency spacing A f will

then be 1/N, < 1/N'. As a result, Eq. 3.13 becomes

1 N'—1 inp
Sprlft) = 75| 3 RRi(m)ehin 2
n=0
1 S itk
= N—,l u; RRi(n)e ™" 2, k=0,1,...,N,—1, (3.14)
where
RR{(n) = RR;(n), for0<n< N -1 (3.15)
0, for N <n< N, -1 (3.16)
r,-(FT) in Eq. 3.12 is thus approximated by ri(FFT) in the form as

L —i2xk
(FFT) Stachicsa 7 | Taco' RRi(n)e ™" 2 Af
‘ ,—_ _;2zk
ZfMSfLthz # | 2,1:’_-:01 RR;(TL)C Tap ™ |2 Af
_ _j2xk
SNy fn<k<Nofi | Tonep. RRi(n)e %" |2

— mE
YNy fur <k<Nofnz | Tomeo” RRi(n)e™ ™™ |2

, fori=1,...,K.(3.17)

r,-(FFT) in Eq. 3.17 thus provides an STFT-based estimate of autonomic balance

status over the i-th short-time window.

Note that this method was performed based on the assumption of stationary
data. Actually, the choice of the STFT method is imposed by the need to obtain a
good compromise between a sufficient frequency resolution that may be achieved with
long data records and the stationarity condition of the signal which is required for
a reliable spectral estimation. This cannot be maintained for a long time, especially
on biological signals. In the following, performance evaluations for both the WT-

based schemes described in Sections 3.3.1 and 3.3.2 will be achieved by comparing
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the numerical results with those obtained from STFT method, as well as with the

fact in physiology, towards a method validation for both WT-based schemes.

3.4.2 Method Validation for Analysis Scheme 1

Denote the power ratio obtained by analysis scheme 1 as r,-(FWTl) first. According
to the given demonstrative example in Section 3.3.1, we know that r,~(FWT1) was
derived under the condition of Ny, = 2. In order to compare the performance of
the scheme 1 with that of STFT method, we here performed the STFT method on
the same RR data by also setting number of windows K = 2 (i.e., window length
N' = 64 samples) for each RR episode. Using Eq. 3.17, we then obtained r,-(FFT) ,
for ¢ = 1,2. These r,-(FFT) values hence represented the STFT-based autonomic
balance state estimates. The performance evaluation here was mainly focused on
the ability in accurately estimating power ratio over a very short window for both
WT- and STFT-based methods. As described before, for WT-based method the
WT coeflicients obtained from the last one window region are usually less accurate
than the remainings, therefore we here included all but the last one power ratios in
performance evaluation task for both methods. Since in this demonstrative example

there were only two windows, we thus observed the first power ratio values, rSFWTl)

and TI(FFT) , to see how well they can accordingly meet the expected physiological
observation, that is, the power ratio over a short window of the RR signal recorded
from tilt is larger than that from supine.

In this trial, we obtained two power ratio estimates for each one of the eight

subjects corresponding to tilt and supine maneuvers, respectively. All the numerical

results obtained from both the WT-based analysis scheme 1 and the STFT-based
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subject no. | tilt supine
0.7409 | 0.0314
2.6674 | 0.3588
0.6430 | 0.1377
1.2780 | 0.0113
0.5478 | 0.2021
1.3766 | 0.0532
1.8309 | 0.8900
0.2490 | 0.0604

00| ~3] | x| whaf SO DO 4=

Table 3.1: rSFWTl) obtained from the eight subjects during tilt and supine.

subject no. | tilt supine
1.2284 | 0.3044
1.3927 | 0.7714
0.4497 | 0.3911
0.1800 | 0.4974
2.0208 | 0.1682
0.5998 | 0.1309
0.2090 | 0.6371
0.7744 | 0.3604

QO ~J| [ Ui it O DI =

Table 3.2: rl(FFT) obtained from the eight subjects during tilt and supine.
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method were listed in Tables 3.1 and 3.2. We also presented these results by using bar

diagrams as shown in Figs. 3.11 and 3.12. Both plots show the power ratios (rgFW'rl)

and rgFFT)) obtained by applying WT- and STFT-based analyses, respectively, for
the eight subjects under the two different position states. Consequently, we see, from
Fig. 3.12, that while two out of eight subjects (subjects 4 and 7) appeared to be
identified as wrong positions by FFT analysis, Fig. 3.11 shows that the positions of
all eight subjects had been successfully detected. This indicated that the application
of wavelet analysis not only was able to resolve the differences between the RR signals
recorded from tilt and supine positions, but also worked a bit better (100% detection
accuracy) than did the STFT-based method (only 75% detection accuracy), especially
on short-time analysis.

According to the above results, it might tell us that the wavelet package could
provide a useful tool in many aspects of HRV analysis in future. In fact, the most
interesting dissimilarity between Fourier and wavelet transforms is that individual
wavelet functions are localized in space but Fourier sinusoidal functions are not. Thus,
we can see that such an excellent performance from WT-based method should be due
to its compactly supported characteristic. The nonstationarity of the RR signal, either
buried in LF or HF bands, can be preserved and then stored in WT coefficients until
the ending point of the entire signal. Since WT coefficients carry the information of
RR waveforms in a variety of bands, the spectral power estimation over a very short
window can be thus performed simply using the segmental WT coefficients so that the
autonomic balance state over a short window may be accurately reflected by power
ratio r,~(FWT1) . As for STFT-based method, although it can somehow well track the

nonstationarity due to short-lived signal or HF components, yet at the same time
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Autonomic balance states for all 8 subjects at different positions (FWT)
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Figure 3.11: Short-time autonomic balance states during supine/tilt positions ob-
tained by FWT analysis for all eight subjects (dash line: supine; solid line: tilt).

64



Autonomic balance states for all 8 subjects at different positions (FFT)
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Figure 3.12: Short-time autonomic balance states during supine/tilt positions ob-
tained by FFT analysis for all eight subjects (dash line: supine; solid line: tilt).
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it loses resolution in LF components. On the other hand, taking a longer window
to well resolve LF components will be simultaneously at the expense of preserving
nonstationarity. Additionally, the continuity of the RR segments across the adjacent
point of any two consecutive windows is also destroyed by zero paddings introduced
by FFT computation. Therefore, because of failure in resolving LF components for
shorter window, being unable to preserve the signal nonstationary for longer window
and losing coherence of the signals across window boundaries, the STFT-based power
estimation over a short window would be more or less distorted and hence the resultant

(FFT)

power ratio 7 might be severely inaccurate.
3.4.3 Method Validation for Analysis Scheme 2

According to the description and demonstration in Section 3.3.2, we see that the
analysis scheme 2 can monitor the instantaneous autonomic balance states in a much
faster time frame. We here applied it to the same RR database and see if the tilt and
supine positions for more subjects can be also successfully identified by the short-time
power ratios of their corresponding RR signals. Recall the structure shown in Fig. 3.8
and the corresponding power ratio calculation formula in Eq. 3.9 first. As previously,
choosing [0.03125,0.0625] Hz and [0.125,0.5] Hz as LF and HF bands, respectively, the
computation in Eq. 3.9 would result in eight power ratio values for each subject during
either tilt or supine stimulation and each value reflected the instantaneous autonomic
balance state over an 8-second time interval. We then plotted the resultant power
ratios for all these eight subjects in Fig. 3.13. Additionally, in order for performance
evaluation we also computed the STFT-based power ratios for each subject in the

database simply using Eq. 3.17 with number of windows K = 8 and then plotted the
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results in Fig. 3.14. Note that, in both figures, for each subject while the solid line
represents the instantaneous autonomic balance waveform under tilt stimulation, the
dash line represents the one under supine stimulation.

As a result, observing Fig. 3.13 we see that there exists a clear separation between
the power ratios obtained from tilt and supine stimulations for almost all subjects,
indicating that the autonomic balance states might be still accurately estimated even
during a much shorter time interval by this WT-based scheme. On the contrary,
Fig. 3.14 revealed that the STFT-based instantaneous autonomic balance state esti-
mates over very short windows for tilt and supine maneuvers were hard to be distin-
guished from each other in most cases.

Although STFT-based methods are widely diffused for their easy applicability,
computational speed and direct interpretation of the results, Fourier transforms are
theoretically defined on infinite data sequences and hence errors are introduced by
the need to operate on finite data records in order to obtain estimates of the true
functions. In fact, the finite short signal makes it necessary to make assumptions
about the data outside the window. In most cases, they are considered to be zero.
This implicit rectangular windowing process results in a spectral leakage in the PSD.
Some different windows that more smoothly connect the side samples to zero are
often used to solve the problem of leakage. They may, however, introduce a reduction
in the frequency resolution. Actually, the frequency resolution is inversely related
to the windowed data length, i.e., Af, 17}7,4 and this is reduced by the windowing
operation. Generally speaking, the shorter the window length, the worse the frequency
resolution. In addition, a fixed frequency resolution for STFT method should also

4 A f, represents the frequency resolution. Note that this is conceptually different from the fre-
quency spacing A f introduced by FFT computation.
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account for such a degraded performance. Therefore, the STFT-based analysis results
appeared to be much worse than those obtained from WT-based analysis.

Since the structure of the analysis scheme 2 permits a more efficient use of the
information associated with an RR signal so that accurate autonomic balance esti-
mation over a much shorter time period may be attained, we here select this novel
WT-based technique as the principal method for this dissertation research. That is,
the occurrence of NSVT will be investigated next by assessing the HRV immediately

before the onset of NSVT mostly using the principal method.
3.5 Frequency Responses of the Dyadic Wavelet Functions

To this end, a discussion on frequency responses of the dyadic wavelet functions
are provided. According to Eq. 2.8, we see that the WT computation is actually
obtained by a filtering process. That is, Eq. 2.8 can be realized by a filter bank
structure formed by a number of bandpass filters, as shown in Fig. 3.15. Note that in
this discussion, the dyadic wavelets are considered and the number of scaling levels
is set to 5. Therefore, there are 5 filters included in Fig. 3.15 and obviously, each one

of them has the form as
wj(t) = 2%y*(=27t), j=—1,...,-5, (3.18)

which is the reflected complex conjugate of the scaled wavelet function ¥(z) (by factor
of 277). Denoting the signal of interest as the input signal z(t), the WT computation

is thus performed simply by the convolution as

d(t) = z(t) *w;(t), j=—1,...—5 (3.19)
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Figure 3.13: The WT-based autonomic balance state estimates (from analysis scheme
2) during supine (dash line) and tilt (solid line) maneuvers for all the eight subjects
(#1-#8) in the database for method validation.
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Figure 3.14: The traditional STFT-based autonomic balance state estimates during
supine (dash line) and tilt (solid line) maneuvers for all the eight subjects (#1-#8)

in the database for method validation.
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where d;(t) represents the detail signal at the j-th dyadic level. Since in this research
we employed the Daubechies wavelet system filters with 8 coefficients (denoted as
Daubechies(8)), the concern is that although the passbands of h(k) (scaling filter)
and g(k) (wavelet filter) should be theoretically equal to [0,0.5] Hz and [0.5,1] Hz
(assuming the sampling frequency f; = 2 Hz), respectively, practically both filters do
not have sharp cut-off edges in frequency domain. Observing the frequency responses
of these two filters shown in Figs. 3.16(a) and (b), we can see the spectra of both
filters are very smooth at the cut-off edges. Since there exists a relation between
the filter systems {h(k), g(k)} and {w;(¢)};2_,, such blunt cut-off edges associated
with {h(k), g(k)} may introduce serious leakage to the filters {w;(t)};2_, so that the

performance of these filtering processes may be severely degraded.

Filter | Passband (theoretical values) | Passband (3 dB estimates)
w_;(t) | 0.5~1 Hz 0.5400-0.9990 Hz
w_a(t) | 0.25-0.5 Hz 0.2812-0.5254 Hz
w_z(t) | 0.125-0.25 Hz 0.1406-0.2607 Hz
w_4(t) | 0.0625-0.125 Hz 0.0703-0.1299 Hz
w_s(t) | 0.03125-0.0625 Hz 0.0352-0.0645 Hz

Table 3.3: Passbands of the 5 filters in Fig. 3.15. Here, the theoretical and the
estimated frequency bands (i.e., 3 dB cut-off frequency) are both provided.

Here, we try to quantitatively evaluate how well the filtering processes can preserve
and separate signal components in different bands corresponding to a variety of the
WT functions. First, the impulse responses of the 5 filters in Fig. 3.15 are calculated
by setting z(t) = 4(¢t). Fig. 3.17 provides the plots of the impulse responses (left

column) and their corresponding spectra (right column) for all these filters when
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woy(t) )
woalt) d-»(t)
z(t) () d_3(t)
w-y(t) d-4(8)
w_s(®) d_s(t)

Figure 3.15: Realization of the filtering structure involved in WT computation. z(t)
represents the input signal to be analyzed and d_;(¢),...d_s(t) represent the out-
put signals of the 5 filters w_,(t),...w-5(t), respectively.
signals d_,(t),...d_s(t) can be equivalently visualized as the detail signals at level

271, ...,275 respectively, in WT computation.
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Figure 3.16: Frequency responses of the Daubechies wavelet system filters with 8
coefficients: (a) scaling filter h(k); (b) wavelet filter g(k).

Daubechies(8) is employed. Since the spectrum of §(t) is a constant throughout the
entire frequency axis, theoretically the impulse responses of the filters {w;(t)};2_,
should have a constant band-limited spectra (i.e., the ideal bandpass filters). We
see from Fig. 3.17, however, that each one of these frequency responses (represented
by solid lines in right column) appears to be a smoother bandpass filter. Table 3.3
provides listings of both the estimated and ideal values of passbands for these filters.
In general, it reveals from Table 3.3 that the central frequencies (i.e., 3 dB cut-off
frequencies) of these smooth bandpass filters can accordingly well approximate to the
ideal ones.

Additionally, Fig. 3.17 also indicates that spectra of these smoother bandpass
filters will overlap at their edges. Therefore, it can be seen that the filtering processes

involved in the WT computation may not always be able to completely separate

the signal components into different dyadic frequency bands. This may lead to an
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Figure 3.17: Plots of the impuse responses (left column) and their corresponding
frequency responses (right column) for all the 5 filters in Fig. 3.15. Note that for each
plot in right column, dash line represents the theoretical frequency response (i.e., a
ideal bandpass filter) and solid line represent the actual frequency response of the
filter w;(t).
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inaccurate spectral power estimation for the signal components in bands of interest.
In this dissertation research, we adopted the dyadic bands j = —2, —3 as HF and
J = =5 as LF, and the WT coefficient estimation was performed using Daubechies(8)
wavelet system filters. Observing the corresponding frequency responses of these 3
bandpass filters depicted in Fig. 3.18, we may see that there is a overlapped spectral
region between the filters w_»(t) and w_3(t), and also another one is found between
w_3(t) and w_s(t). The latter may be negligible because the response magnitudes of
both filters (w_3(¢) and w_s(t)) in their common spectral region are all very small
(less than —12 dB). The former looks more significant, but almost all the response
magnitudes of both filters (w_»(t) and w_3(¢)) in this overlapped spectral region are
less than —5 dB. Fortunately, it appears that Daubechies(8) wavelet system is suitable
to this research.

According to the discussion above, it should be noted that not all the wavelet
system filters are suitable to the application in this research. A bad choice of wavelets
may lead to a severely inaccurate spectral power or spectral power ratio estimation
and thus degrade the performance of pattern classification task. Generally speaking, a
wavelet system that allows a smaller overlapped spectral region between the passbands
of any two bandpass filters associated with that wavelet system is desired and can be

selected as a candidate for the analysis in this research.
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Figure 3.18: Frequency responses of the smooth bandpass filters employed in this
research. Here, we adopted the dyadic bands j = —2,~3 as HF and j = —5 as LF.
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CHAPTER 4

THE APPLICATION OF WT-BASED HRV ANALYSIS TO
THE PREDICTION OF NSVT

After introducing the WT-based methods and getting confidence from the method
validation in Chapter 3, we now seek for the further application of the principal
method (i.e., analysis scheme 2) to the proposed research study on the examination
of HRV, reflected by the short-time autonomic balance evolution, immediately before

the onset of NSVT, towards the investigation and prediction of NSVT.

4.1 A Postulate

A decreased HRV or an increased autonomic balance index quantified by spectral
power ratio LF/HF has been recognized as a long-term predictor of SCD and ar-
rhythmic death after MI. There is substantial experimental evidence suggesting that
an unbalanced autonomic influence on heart is associated with a propensity to elec-
trical instability and ventricular tachyarrhythmias [75, 99]. However, direct evidence
for changes or a derangement in HRV immediately before the onset of spontaneous
ventricular tachycardia is still scarce and disputed. It seems that an increased sym-
pathetic activity to the heart is usually arrhythmogenic, whereas parasympathetic

activity may serve as a protective effect [36]. We thus here make a postulate that
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the autonomic balance state (ABS) evolution LF(¢t)/HF(¢) would somehow abruptly
increase or reach to a very high level over a short period when measured in 8-20
minutes prior to NSVT episodes, whereas in other cases such as ischemia or healthy

the same phenomenon would not be seen in their ABS waveforms.
4.2 Database

We collected a patient group consisting of 64 patients for a numerical experiment
of HRV assessment. The patient group was composed of 31 NSVT patients® provided
by the cardiology division in the Ohio State University, 28 ischemic patients from
the European ST-T database and 5 healthy subjects from the volunteers. Knowing
that the European ST-T database was produced with the goal of defining an ECG
database as a reference for assessing the quality of ambulatory ECG analysis sys-
tems for detection of myocardial ischemia, we therefore adopted this database as the
ischemic group in this study.

The database was then constructed by including the ECG signals recorded from
these 64 adults first. After detecting the time locations of the R waves for the ECG
signal of each patient in the group using an R-wave detection algorithm, the corre-
sponding RR-interval data sequence can be then found simply using Eqs. 3.1 and 3.2.
It should be noted that for the purpose of spectral analysis, the RR signals obtained
above need to be further preprocessed by a linear interpolation between each pair of
consecutive RR values and then, by a resampling task with anti-aliasing filtering as
described in Chapter 3. Since the frequency components of interest for HRV analysis
is usually below 1 Hz [56], we here set the resampling frequency as f, = 2 Hz.

5All these NSVT patients also had coronary artery disease (CAD).
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4.2.1 Data Selection Criteria
NSVT Selection

In this study, patients with SA node dysfunction, abnormal AV conduction and
cardiac pacemakers were excluded. For NSVT episodes, 24-hour RR. intervals were
obtained from ambulatory Holter ECGs on a commercial Holter scanner system.
Knowing that NSVT is defined as three or more consecutive broad QRS complexes
with a rate > 120 beats/minute and lasting less than 30 seconds, we thus set criteria
for the selection of NSVT episodes to be analyzed as follows. To avoid any potential
inaccurate power ratio (or ABS value) estimates resulted from the existence of VPB,
an NSVT episode to be analyzed was selected if there was no VPB found within,
at least, 512 seconds (= 8.53 minutes) prior to the onset of NSVT. Note that the
Holter scanner might be occasionally unable to correctly label all QRS complexes
(e.g., usually mislabeling normal beats as artifacts), the QRS complexes during the
20-minute period before NSVT were also visually checked to ensure that all normal
QRS complexes during this period were correctly labeled. Moreover, patients with
frequent NSVT or VT throughout the whole 24-hour recordings were excluded because
any “clean” RR signal (“clean” means RR recording without any VPBs) that lasts,
at least, 512 seconds could not be found in frequent ectopic beats and such recordings
were hence unsuitable for HRV assessment before the onset of NSVT.

Consequently, the selection criteria resulted in a number of RR recordings, i.e.,
valid normal-to-normal (NN) intervals, prior to the cnset of NSVT with different
length ranged from 8 to 20 minutes. In fact, such a variable episode length will not
affect the performance of this research. We may speculate that these NSVT episodes

would permit an accurate HRV assessment over an appropriately long period without
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A typical NSVT episode selected to be analyzed
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Figure 4.1: A typical observation of RR-interval (or NN-interval) signals for an NSVT
episode selected to be analyzed. Note that here the time located at 0 minute represents
the onset of NSVT.
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A typical ischemic episode selected to be analyzed
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Figure 4.2: A typical observation of RR-interval (or NN-interval) signals for an is-
chemic episode selected to be analyzed.
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A typical normal episode selected to be analyzed
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Figure 4.3: A typical observation of RR-interval (or NN-interval) signals for a normal
episode selected to be analyzed.
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influence from VPBs. Fig. 4.1 gives a typical observation of RR-interval (or NN-
interval) signals for a selected NSVT episode. Note that in this figure, the time
located at 0 minute represents the onset of NSVT and the HRV assessment was

performed immediately before this point of time location.

Non-NSVT Selection

As for the ischemic and healthy subjects, we here randomly selected the RR.
signals without VPBs for a period lasting at least 8 minutes long but less than 20
minutes. Similarly, Figs. 4.2 and 4.3 show typical examples of RR-interval signals for
a selected ischemic and normal episodes, respectively. As a result, the demonstrative
RR database was formed by totally 153 episodes, consisting of 87 NSVT episodes, 61

ischemic episodes and 5 healthy episodes.

4.3 Approach

4.3.1 Design Motivation

Short-time HRV was examined on all episodes in the database simply using an ap-
proach designed based on the WT-based analysis scheme 2 described in Section 3.3.2.
The resampled RR signals were first transformed into wavelet space to allow a tempo-
ral representation of the dyadic spectral components buried in signals. The short-time
HRV measures were then reflected by the LF to HF spectral power ratio i, calcu-
lated using Eq. 3.9. It should be noted that since the dyadic wavelet analysis only can
be applied to an RR signal with the length of 2's power, in order to get as many short-
time power ratios as possible for the entire RR signal the analysis approach applied
here needs to be designed based on further modifications on the WT-based analysis

schemes 2. Such a modified approach is then able to overcome the analysis-length
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limitation problem (z.e., limited to 2's power) resulted from dyadic WT analysis so
that the RR data might be utilized with maximum efficacy. Modification of this

approach is described in the following.

4.3.2 Analysis Unit (AU) Based Scheme

Here, we define a block with the length of 512 seconds as an analysis unit (AU).
Generally speaking, an AU can be visualized as a window used to monitor an RR
signal in a shorter segment for signal analysis. Similar to the computational structure
of the analysis scheme 2, FWT is computed for an AU first. The conceptual diagram
of the time-frequency structure in wavelet space for an AU is given in Fig. 4.4. Once
the FWT has been computed and the window length (or known as the PCU length)
M is determined, the total number of windows (or PCU’s) at each level, Nf,;’;-il, is
thus determined by N;/M, where N; represents the total number of WT coefficients
at level 27. The short-time spectral power calculation is then performed on each of
these windows using the WT coefficients. After power calculation, the instantaneous
ABS can be then measured simply by finding the LF to HF spectral power ratios.
Here, we chose window length as M = 4 and the number of FWT analysis levels as
L =5 for an AU. This resulted in the numbers of the analysis windows N,S;,f) =128,
NGD =64, NP =32, NGD =16and NP = 8 at levels 27!, 272, 2%, 24 and 23,
respectively. These are also illustrated in Fig. 4.4. Recall that LF=[0.03125,0.0625]
Hz and HF=[0.125,0.5] Hz. The short-time HRV measures 7y, for an AU were
calculated using Eq. 3.9 with (¢,!,m) = (1,1,1),(1,1,2),...,(8,32,63), (8, 32,64),

yielding 64 ABS values equally distributed in the 512-second period.
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Figure 4.4: The structural plot of an analysis unit (AU). It can be seen that varying
real-time intervals occupied by the tiles at different levels. Note that here an AU
contains 8 windows at the lowest level (level 27°). Each tile (or window) contains 4
WT coefficients. In addition, the enumerative numbers (in italic style) for the windows
at the levels of interest (j = —2, —3, —5) are used to describe the window movement,
expressed as: (1,1,1) — (1,1,2) — (1,2,3) = --- — (8,31,61) — (8,31,62) —
(8,32,63) — (8,32,64).
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Before processing the next AU further, we need to carefully choose the time-shift
for the moving block so that the location next AU can be determined. Observing the
structure in Fig. 4.4, first we see that there are 8 ABS values corresponding to an
LF power value and also, an AU contains 8 LF power values. Since each fixed LF
power value was calculated from a window at the lowest dyadic level (i.e., level 273),
in order to preserve all the LF, HF power values and ABS values in the intersectional
region of any two consecutive AU’s we thus shifted the block by a step of real-time
interval S, where S is a multiple of the time period occupied by a window at level 275,
That is, the next AU could be obtained by shifting the block by S = kAT_; = 64k
seconds, where k is an integer. Here, we chose £k = 1 so that the real-time shift
interval S = 64 seconds. Then, we redid the power ratio computation, as described
above, for this new AU. Consequently, another 64 power ratios or ABS values would
be obtained. Such a shift-and-computation process was repeated until the AU finally
reached to the onset of NSVT. Illustration of this process is given in Fig. 4.5. Group
the 8 ABS values corresponding to the p-th LF power (i.e., the LF power measured
from the p-th window at level 27°) into a column vector, denoted as r‘(,"), for the g-th
AU. Knowing that there existed 8 windows at level 275 (or Né;,f) = 8) for an AU and

S = 64, we then have

l.gz) l.§q+1)

+1
rgq) _ rgq ) 1)
rg") r$"+1)

Eq. 4.1 indicates that the vectors 1%, . ..., r{® obtained from the g-th AU should

be identical to the vectors r{™ ri™V, .. r¥*V obtained from the (g + 1)-th AU,
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respectively. This is because both groups of vectors reflected the ABS evolution in
the intersectional region between the ¢g-th and (g + 1)-th AU’s.

As noted in Chapter 3, we see that the power ratio estimates involved in the
very last windowed region (i.e., rg’), for ¢ =1,2,...) may not be so reliably accurate
as the others since the zeros padded after the ending point may cause inaccurate
power estimates of the signals at all levels in the last windowed region. However,
according to Eq. 4.1 it can be inferred that rg') may be replaced by a more accurate
estimate rg,‘”'”. Therefore, to accurately track ABS evolution over the entire RR
signal before NSVT we first performed the shift-and-computation process and then,
adopted rgl),rén, - .,rg,l) from the first AU and successively took r(72),r(73), ... from
the second, third, ... AU’s, respectively, to yield the ABS evolution estimate. This
successive ABS padding process is illustrated in Fig. 4.5. It can be also formulated as

follows. Suppose we have n AU’s for an RR signal, the corresponding ABS evolution

estimate, denoted as rey., can be simply formed by

T T T T T nT T T
e = [T 0T o T T T om0 T 0T ()

Note that Eq. 4.2 is not the only path to achieve the estimate of ABS evolution reyq.
(@ (@ (9)

According to Eq. 4.1, we can see that r;”, rg’, ..., ry’ may be also replaced by a
e @t e+ respectively, and these would result in 6 more paths to attain

the identical estimate of re,q.

To more clearly demonstrate the above processes, a practical example is given in
the following descriptions. Table 4.1 provides the numerical power ratio estimates
obtained after applying the shift-and-computation process to an RR signal preceding
the onset of NSVT (given in Fig. 4.1). Obviously, from this table we may see that
there are 5 AU’s in this example. Also, we can represent these numerical results
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Figure 4.5: The schematic diagram for the AU-based approach. In this diagram, it
includes illustrations of both the shift-and-computation and ABS padding processes.
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0.7279 | 1.6900 | 10.2339 | 3.9723 | 1.8105 | 2.3222 | 7.1168 | 28.0719
0.7432 | 5.0830 | 1.6164 | 4.7796 | 2.0411 | 6.0344 | 80126 | 1.2167
0.6831 | 3.4568 | 4.0383 | 3.3106 | 3.3318 | 7.2164 | 7.2610 | 0.5138

Table 4.1: Numerical power ratio estimates obtained from 5 AU’s for the RR. signal
in Fig. 4.1; here, each row represents the power ratio vector obtained from an AU.
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simply by plotting them. Fig. 4.6 thus gives the plots of the power ratio vectors
corresponding to all these 5 AU’s, respectively. Using Eq. 4.2 with n =5, one of the

resultant ABS evolution estimate re., can be found as

T o T o o T T @ T T T 7T
Pt = (1 150 80 £ eS0T o) o0 P A T (03

Or, equivalently,
Tevol = [r(ll)T tgl)T rgl)T rﬁl)T rg)T rgl)T r?)T r?)T rg‘)T rgs)T r(75)T rgs)T]T(tL:&)
T T 0T T 07 T 0T O 0 07 0
R S S S R T S S SR UG U OY)
o T T T T T T T O 9T 7 0T
R S A S S S R SR S R Y

nT @7 T _@T )T 6T _6)T 5T 5T 6T 5T 57T
R i T

Egs. 4.3- 4.9 give the equivalent estimates of rp,,. In fact, these 7 equations are
resulted from the paths (a)-(g) in Fig. 4.7, respectively, used to achieve the same
estimates of rqyo- Therefore, the estimate of ABS evolution re,, can be determined
by any one of Egs. 4.3- 4.9, i.e., by any path in Fig. 4.7. Consequently, in this
example the waveform of the ABS evolution was then found and plotted in Fig. 4.8.

Similarly, applying the approach described above to the RR signals given in
Figs. 4.2 (ischemic) and 4.3 (normal) we can also find the ABS evolution waveforms
for an ischemic and normal episodes, as shown in Figs. 4.9 and 4.10, respectively.
Further, observing Figs. 4.8— 4.10 we may get a rough idea in morphological differ-
ence between the NSVT and non-NSVT groups, that is, while the ABS waveform
generally maintained certain level with no unusual large peaks for either the ischemic
or normal, significant spikes can be actually seen in ABS waveform of the NSVT.
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Figure 4.6: The ABS evolutions ([r{” r3 rg. |1, for ¢ =1,2,3,4,5) obtained
from all the AU’s extracted from an RR signal prior to the occurrence of NSVT (the
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abscissa represents the time before the onset of NSVT).
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Figure 4.7: Seven equivalent paths (from (a) to (g)) to achieve the estimate of royo.
Note that in each chart, a row represents the power ratio vector corresponding to an
AU.
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The instantaneous autonomic balance evolution (NSVT)
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Figure 4.8: The resultant instantaneous ABS evolution for the entire RR signal ob-
tained from Fig. 4.6 (an NSVT episode).
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The instantaneous autonomic balance evolution (ischemic)
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Figure 4.9: The instantaneous ABS evolution obtained from an ischemic episode.

94
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The instantaneous autonomic balance evolution (normal)
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Figure 4.10: The instantaneous ABS evolution obtained from a normal episode.
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4.3.3 Morphological Information Indication

Now that r.,, obtained by the above approach can provide an accurate ABS
evolution estimate, a careful inspection of the ABS waveform is thus performed next.
Since it was described previously that decreased HRV or increased ABS is usually
recognized as a long-term predictor of arrhythmic events, we thus postulated that the
ABS values would reach the highest or abruptly increase when measured immediately
before NSVT. Thus, it is necessary to observe ABS waveforms more closely to see if
there were any unusual large values found in the ABS evolution for NSVT. This is
because the above phenomenon may imply abrupt ANS imbalanced states. Therefore,
to decide whether or not an ABS evolution waveform has unusual large ABS values
relative to the remaining ones, a morphological information marker « used to indicate

the information about the behavior of ABS waveform can be thus defined as

Tevol > 0 - MaAT (reuol )

s 4.10
Tewol < 0 - maz(reuol ) ( )

where § represents a fraction factor used for the determination of threshold value.
Considering Eq. 4.10, we see that « is quantified as the ratio of the mean value of the
entries in ryy greater than the threshold to that of the entries in rg,, less than the
threshold. In fact, a large o would generally imply a trend of more frequent and/or
larger power ratio spikes relative to the entire ABS evolution.

An interpretation can be made simply by calculating the values of o for the ABS
waveforms as shown in Figs. 4.8- 4.10. The o computations performed on these three
Tevor'S are illustrated 