
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the tmct directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter free, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Infonnation Company

300 North Zed) Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

EXPLOITING COHERENCY IN PARALLEL ALGORITHMS FOR
VOLUME RENDERING

DISSERTATION

Presented in Partial Fulfillment o f the Requirements for
the Degree Doctor of Philosophy in the Graduate

School of the Ohio State University

By

Asish Law, B.Tech., M.S.

* * * * *

The Ohio State University

1996

Dissertation Committee:

Roni Yagel, Adviser

Richard Parent

Dhabaleswar Panda Adviser

Dept of Computer and Information Science

UMI Number: 9710599

UMI Microform 9710599
Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

Copyright by

Asish Law

1996

ABSTRACT

Volume visualization has emerged as a prominent off-shoot of graphics for viewing and manipulating scien

tific datasets, such as those obtained from MRI, CT-scans, and CFD, or volumes which are generated by

voxelizing geometric models. Direct volume rendering has the mechanisms for allowing simple manipula

tion techniques and easy viewing of the inside of objects. However, the size o f these volumes tends to be so

large that even the most powerful uniprocessor machines are unable to provide the much desired interactiv

ity in such environments.

In this dissertation, we have designed and implemented three scalable parallel volume rendering algorithms

on the Cray T3D. Our methods suggest new paradigms and alternatives to traditional ways o f parallel ren

dering in general, and parallel volume rendering in particular. They are designed in such a way that the com

plete local memory is used only for that data which are required by a processor. Most earlier algorithms

made use of the hardware cache only for exploiting spatial coherency; the performance of these algorithms

are prone to degrade with increasing dataset sizes or decreasing cache sizes. Utilizing the local memory as

another level o f cache, i.e. software cache, was not explored for parallel rendering. In addition, ways to hide

latency and minimize network congestion in each o f these algorithms are novel approaches in themselves. In

addition, previous algorithms are not applicable to render colossal datasets (possibly in compressed form),

as they are prone to thrashing. We propose a new algorithm that combines the advantages of both the object-

order algorithms and image-order algorithms to solve the problem of thrashing and provide the most coher

ent screen traversal scheme.

In summary, this research has primarily focussed on some o f the as yet unexplored problems in parallel vol

ume rendering, e.g.. latency hiding, optimal local memory utilization, optimal screen traversal, reducing net

work congestion, and portability, and has suggested exclusive ways to eliminate some or all o f these. Our

coherent algorithms demonstrate scalability to a very high degree, with potential to improve even further.

With the advent o f high-resolution scanners, the dataset sizes approach the limits o f disk storage. The coher

ent algorithms developed in this dissertation will provide state-of-the-art methods for visualizing such large

datasets in the future.

I l l

To My Family

IV

ACKNOWLEDGMENTS

I would like to express sincere appreciation to Dr. Roni Yagel for his guidance and insight throughout the

research. Dr. D.N. Jayasimha's critical comments during the initial stages gave a solid building block to this

research. Thanks to the other members of my advisory committee, Drs. R. Parent and D. Panda, for their

valuable suggestions and comments. I am very grateful to the staff at the Ohio Supercomputer Center, espe

cially Tim Rojmajzl and A1 Stutz. without whose help this work would not have been possible. The support

and recommendations provided by all the members of our Volume Visualization group have helped me

improve the quality of my research and dissertation. And finally, to my wife. Anandi, I offer sincere thanks

for your unshakable faith in me and your willingness to endure with me the vicissitudes of my endeavors.

VITA

March 25. 1965 Bom - Calcutta, India

1988 B.Tech. (Hons.). Indian Institute of Technol
ogy. Kharagpur. India

1991 M.S., Biomedical Engineering, The Ohio
State University

1994 M.S., Computer and Information Science,
The Ohio State University

PUBLICATIONS

1. R. Yagel, D. Reed, A. Law, P.W. Shih, N. Shareef, “Hardware Assisted Volume Rendering o f Unstruc
tured Grids by Incremental Slicing”, Proceedings IEEE Symposium on Volume Visualization 96, San
Francisco, October 1996, pp. 55-62.

2. A. Law, R. Yagel, “The Active-Ray Approach to Rendering on Distributed Memory Multiprocessors",
Proceedings IEEE Eighth Symposium of Parallel and Distributed Processing, SPDP 96, New Orleans,
October 1996, pp. 414-421.

3. A. Law. R. Yagel, D.N. Jayasimha. “Parallel Volume Rendering for Scientific Visualization". ISC A Jour
nal of Computers and Their Applications. Vol. 3, No. 3, December 1996.

4. A. Law, R. Yagel, “An Optimal Ray Traversal Scheme for Visualizing Colossal Medical Volumes". Pro
ceedings o f Visualization in Biomedical Computing VBC 96. Hamburg, Germany, September 1996, pp.
33-42. Karl H. Hoehne, Ron Kikinis (ed.). Springer, 1996. Lecture notes in computer Science Vol. 1131.

5. A. Law. R. Yagel. "Exploiting Spatial. Ray. and Frame Coherency for Efficient Parallel Volume Render
ing", Proceedings of GraphiCon 96, The 6th International Conference on Computer Graphics and Visual
ization in Russia, St. Petersburg, Russia, July 1996, pp. 93-101.

6. A. Law. R. Yagel, “Multi-Frame Thrashless Ray Casting with Advancing Ray-Front", Proceedings o f
Graphics Interface, G I96, Toronto, Canada, May 1996, pp. 70-77.

VI

7. R. Yagel. D. Stredney, G. Wiet. A. Law. “PARAVOL: Parallel Volume Rendering for Virtual Medicine".
The Cray User Group Meeting, Fairbanks. Alaska. Sept 1995. pp. 131-138.

8. A. Law. R. Yagel. “CellFlow: A Parallel Rendering Scheme for Distributed Memory Architectures". Pro
ceedings of International Conference on Parallel and Distributed Processing Techniques and Applica
tions. PDPTA 95, Athens. Georgia. November 1995. pp. 3-12.

9. A. Law. R. Yagel. D.N. Jayasimha. “VoxelFlow: A Parallel Volume Rendering Method for Scientific
Visualization”. Proceedings of the ISCA Conference o f Computer Application in Engineering and M edi
cine, Indianapolis. Indiana, March 1995. pp. 260-264.

10. A. Law. R. Yagel. “Voxel-Based Morphing”. Tech. Report # OSU-CISRC-4/93-TR15.

FIELDS OF STUDY

Major Field: Computer and Information Science

Field o f Specialization: Computer Graphics

Minor Field: Parallel Computing

Minor Field: Algorithms

VI I

TABLE OF CONTENTS

Pas

A bstract... ü

D edication...iv

Acknowledgments... v

Vita.. vi

List of Tables.. xi

List o f F igu res..xii

Chapters:

I. INTRODUCTION ... l
1.1. Volume R endering.. 3
1.2. Acceleration Techniques for Volume Rendering ... 6

1.2.1. Software Based Acceleration ..7
1.2.2. Hardware Based Acceleration..9
1.2.3. Acceleration Via Indirect Volume R endering... 10
1.2.4. Acceleration With Low-Quality Images ...11
1.2.5. Acceleration With Parallel P rocessing ..11

1.3. Problem Statem ent...12
1.3.1. Motivation ... 12
1.3.2. Issues in Parallel Rendering ..13

1.4. Overview o f the Dissertation..14
1.4.1. Exploiting Temporal Coherency ..14
1.4.2. Exploiting Spatial Coherency..14
1.4.3. Exploiting Volume Coherency... 15

1.5. Summary o f Contributions and Significance ... 15

vni

2. PARALLEL VOLUME RENDERING ALGORITHMS .. 18
2.1. Types o f Paralle lism ...19

2.1.1. Image Partition .. 19
2.1.2. Object Partition ...20
2.1.3. H ybrid ..22
2 .1.4. Shear-Scale-W arp..22

2.2. Issues in Parallel Volume Rendering ..23
2.2.1. A rchitecture ... 23
2.2.2. Embedding T opology...25
2.2.3. Scalab ility ...28
2.2.4. Data Partitioning ...30
2.2.5. Partition D istribution.. 31
2.2.6. Load Balancing ...33
2.2.7. C oherency...34
2.2.8. Latency H id in g ..36
2.2.9. Network C ongestion... 37
2.2.10. Portability ...38

2.3. Summary of the Issues in PVR Algorithms ...38
2.3.1. Summary o f the Features of PVR Algorithms ... 42
2.3.2. Summary o f Performance of PVR Algorithms .. 45

2.4. Open Issu es..48

3. EXPLOITING TEMPORAL COHERENCY: THE CellFlow A LG O RITH M50
3.1. CellFlow: The General M ethod... 51
3.2. Design Issues ...53

3.2.1. Screen and Scene Subdivision...53
3.2.2. Load Balancing ...54
3.2.3. Algorithm Em bedding..54
3.2.4. Network Congestion... 54
3.2.5. Memory M apping..54
3.2.6. Latency H id in g ..55

3.3. Volume Rendering Incremental Rotation... 55
3.4. Implementation Details ...58
3.5. Results ..58

3.5.1. Scene and Screen Description...59
3.5.2. Load Balancing ...61
3.5.3. O verheads...61
3.5.4. Scalab ility ...63
3.5.5. Effect of P R A ..65

3.6. Discussion and Future Work ..65
3.7. C onclusion...67

4. EXPLOITING SPATIAL COHERENCY: THE ActiveRay A LG O RITH M 68
4.1. Distributed Memory Implementation of Parallel R endering.. 68
4.2. Illumination Model for Active Ray Tracing .. 73
4.3. Design Issues ...76

4.3.1. Load Balancing ...76
4.3.2. Network C ongestion... 76
4.3.3. Latency H id in g .. 76

IX

4.3.4. Memory O verheads...77
4.3.5. Deadlock Avoidance ...77

4.4. Results ..78
4 .4 .1. Load Balancing ... 78
4.4.2. Effect o f Irregular Anim ation.. 78
4.4.3. Effect o f Software-Cache Size .. 80
4.4.4. Effect o f Cell Size ...80
4.4.5. Scalability ...82

4.5. Discussion and Future Work .. 84
4.6. C onclusion ...85

5. EXPLOITING VOLUME COHERENCY: THE RayPront ALGORITHM 86
5.1. Exploiting Coherency for Efficient R endering.. 87
5.2. M ethod ..88

5.2.1. Screen and Scene Subdivision... 89
5.2.2. Preprocessing .. 89
5.2.3. Ray Casting ..89

5.3. Results ..95
5.3.1. Number of Frames per Phase .. 95
5.3.2. Comparison ..96
5.3.3. Load B alance ... 98
5.3.4. Scalability ...99

5.4. Discussion and Future Work ... 99
5.5. C onclusion ... 100

6. THE UNIPROCESSOR RayFront ALGORITHM FOR VISUALIZING COLOSSAL MEDICAL VOL
UMES ... 102

6.1. Introduction ..102
6.2. M ethod ...104

6.2.1. Multi-Frame Thrashless Volume Rendering Revisited...105
6.2.2. Enhancem ents..106
6.2.3. Extension to Arbitrary Frame A nim ation... 106

6.3. Results ...108
6.3.1. Timings for Non-Compressed Volumes .. 108
6.3.2. Effect of Cell Size ..109
6.3.3. Cost o f Overheads ..109
6.3.4. Simultaneous Multi-Frame Rendering of Compressed Volumes112

6.4. D iscussion... 113

7. CONCLUSIONS .. 114
7.1. CellFlow vs ActiveRay vs R ayFront..117
7.2. Cray T3D vs Convex SPP ... 120
7.3. Cluster o f Workstations (COWs) ..123
7.4. Extensions and Future Research..124
7.5. C onclusion ... 130

List of R eferences...131

LIST OF TABLES

Table Page

2 .1. Summary o f the features of the PVR algorithms (continued on next
page)..43

2.2. Summary o f performance of the PVR algorithms (continued on next
page)..46

3.1. Description of various volumes and respective screen sizes...59
3.2. Frame rendering times for various volumes as a function of number of processors. All

times are in seconds.. 64
4.1. Rendering times as a function of cell size...80
4.2. Frame rendering times for various volumes as a function o f number of processors. All

times are in seconds.. 83
5.1. The first 5 passes of the ray-casting algorithm with advancing ray-front for the example

shown in Figure 5.5...94
5.2. Frame rendering times for various volumes as a function of number of processors. All

times are in seconds...101
6 .1. The volumes, along with reading, rendering, and total times

(in seconds)...109
6.2. Total times (reading -t- rendering) in seconds, as a function of Cell Size. The minimum

times are shown in bold...111
6.3. Degradation factor of our algorithm as compared to a normal

ray-caster... 111
6.4. Average rendering times (decompressing + reading + rendering) in seconds, as a function

o f number of frames in a phase. Total number of frames = 20 ...111
7.1. Summary o f the features and performance o f the CellFlow, ActiveRay, and RayFront

algorithms described in Chapter 3. Chapter 4. and Chapter 5. respectively, (continued on
next page)..115

7.2. Comparison of frame times (in seconds) for the ActiveRay algorithm on Cray T3D and
Convex SPP.. 121

7.3. Comparison of frame times (in seconds) for the RayFront algorithm on Cray T3D and
Convex SPP.. 121

7.4. Frame times (in seconds) for the ActiveRay algorithm on a cluster of DEC-alpha
workstations, with Ethernet and FDDI connections...123

7.5. Frame times (in seconds) for the RayFront algorithm on a cluster of DEC-alpha
workstations, with Ethernet and FDDI connections...123

XI

LIST OF HGURES

Figure Page

1.1. A 3D volume consisting of 8x6x5 voxels. Each voxel is a single unit in each dimension.
The volume is rendered onto an 8x8 screen. A ray is shot from each screen pixel. Only
one ray is shown in the figure. The circles along the ray shows the sampling points of the
volume along the ray...5

1.2. An example o f forward projection rendering. Each voxel is projected onto the screen
using a transformation matrix (T). and its contribution is combined with all the pixels it
affects. Only one voxel projection is shown in the figure, and the screen area it effects is
shown by the checkered pattern.. 5

2.1. Bus-based configuration of the network, connecting the processors and the shared
memory. Each node is provided with a processor and a hardware cache.............................26

2.2. Different topologies: (a) 4x4 2D mesh, (b) 4x4x3 3D mesh, (c) 15-node full binary tree,
(d) 16-node (24) hypercube. (e)8-node ring.. 27

2.3. A 4-processor multistage interconnection network (MIN) as used in Omega..................... 29
2.4. Distributed memory architecture for PVR algorithms..29
2.5. Volume partitions: (a) slices, (b) slabs, (c) shafts, (d) cells... 32
2.6. Summary o f the methods and issues arising in the design o f PVR algorithms, (a)

methods used for PVR. (b) volume partition schemes, (c) image or screen partition
schemes, (d) partition distribution methods, (e) load balancing schemes, (f) types of
coherency exploitation, (g) ways to hide latency, (h) network topologies. Summary of the
methods and issues arising in the design of PVR algorithms, (i) communication patterns,
(j) architectures, (k) programming models. (Continued on next two pages).......................39

3.1 Object space is divided into cells. If all dark cells are locally available, the screen region
R can be rendered from viewpoint A without any communication, but not from point B.
If padding is also locally available (light grey cells) rendering from A. B and many other
points in between does not require any communication. Some top white cells may be
needed when the viewer moves to point C..52

3.2 A set o f 2D objects being projected on a ID image plane, which is divided into 4 disjoint
parts and assigned to 4 processors (PI, P2, P3, P4). The object data is distributed in such
a way that the ith slab o f data is sufficient to generate the final image for that processor
without communication..52

3.3 (a) When the viewpoint moves from the initial screen position to the final position the
grey area contains the data elements that need to be brought in from other processors, the
striped area can be discarded, and the black area the data that need not be moved, (b) If
the processor contains all the information in the shaded area then all viewpoints in the
25° range can be accommodated without any communication.. 57

XU

3.4 An object of size 16x16 is divided into cells o f size 4x4 each. Each cell thus contains 16
voxels. The top-left cell is extruded into a 3D cell, which contains 4x16x4 voxels 57

3.5 (a) SOD 128, (b) Simple 128. (c) Head256. (d) Capsid256 and Capsid512............................ 60
3.6 Frame times for (a) for Simplel28 and (b) for Capsid256 volumes on 8 processors, and

with cyclicity varying from 1 to 4 ... 62
3.7 (a) Average Sending, Receiving, and Postprocessing overheads for each frame with a

fixed PRA of 10 (P=8. C=4). (b) Aerage Sending. Receiving, and Postprocessing
overheads with varying PRA (P=8. C =4).. 62

3.8 The speedups o f the parallel incremental rotation algorithm for different number of
processors..64

3.9 (a) Average number of cells sent, received, and retained per phase of rotation (P=8.
C=4). The topmost curve is the total number o f cells in memory at a time, which is the
sum o f the number of cells retained and the number of cells received. The bottom curve
shows both the number of sends and receives, (b) Fraction of cells received at the end of
each phase relative to the number of cells retained.. 66

4.1. (a) A volume made up of 32x24x15 voxels is divided into 8x6x5 cells each o f size
4x4x3 voxels. Each processor is home to 60 random cells in a 4-processor system, (b) A
screen divided into 64 tiles of equal size and distributed cyclically to 4 processors. PI.
P2. P3. and P4. For example, the black cells and the dark tiles are assigned to P I 70

4.2. (a) A 3-hop system for requesting data (cells) from other processors. R is the requesting
processor. H the home node, and D is the closest processor containing the requested cell,
(b) A 2-hop invalidation process for discarding a cell from a processor’s memory 70

4.3. Average times spent by each processor for rendering each frame as a function o f tile size,
(a) for simple 128. and (b) for capsid256 scenes..79

4.4. Communication overhead when the eye ’jum ps’ after every ten frames, compared to a
smooth animation.. 79

4.5. Rendering time as a function of software-cache size on 16 processors. The total amount
o f cache in all sixteen processors is equal to CS*volume size (CS = cache size)...............81

4.6. (a) Number o f iterations through the ray list as a function of software-cache size while
rendering twenty frames, (b) Average number of cells received by each processor as a
function o f software-cache size... 81

4.7. Speedup results for rendering several volumes on 1 to 128 processors..................................83
5.1. (a) A volume made up of 32x24x15 voxels is divided into 8x6x5 cells each o f size

4x4x3 voxels. Each processor is home to 60 random cells in a 4-processor system, (b) A
screen divided into 64 tiles of equal size and distributed cyclically to 4 processors. PI.
P2. P3. and P4. For example, the black cells and the dark tiles are assigned to P I 89

5.2. Ray-casting algorithm with advancing ray-front.. 91
5.3. Illustration of the linked list data structure used for efficiently advancing only certain

rays through a cell. The example shows that there are 3 rays entering cell [10.12.4]. they
are 42. 27. and 10...93

5.4. The modified ray-casting algorithm with advancing ray-ffont.. 93
5.5. An example o f advancing ray-ffont with 11 rays. The figure shows the advancement of

the ray-front for the first 5 passes only. The 2D object space is divided into cells, and the
numbers in each cell indicate its position in the FTBL..94

5.6. For all viewing positions in region I. and when viewed towards the center o f the volume,
the FTB order o f the cells are as shown, x denotes the center o f the volume..................... 95

5.7. (a) Times and (b) Number of cells received with number of frames generated in each
phase o f the algorithm for generating 30 frames.. 97

Xlll

5.8. Comparison o f four different screen traversal schemes - scan-line, spiral, hilbert. and
rayfront. The graph shows the times taken for generating 30 frames in the animation 97

5.9. Time spent by each processor for rendering 30 frames as a function o f tile size, (a) for
simple 128. and (b) for capsid256 volumes...98

5.10. Speedups exhibited o f the ray-front algorithm for different volumes............................... 101
6.1. For all viewing positions in region I. and when viewed towards the center o f the volume,

the FTB order o f the cells are as shown, x denotes the center o f the volume. A ray is also
shown which traverses cells 13. 19. 20. 26. 27. 33, 34. in o rd e r.. 105

6.2. (a) An FTB order for eye in the left bottom side (red arrow) that requires the
maintenance of arbitrary number o f ray segments for some other eye positions (black
arrow), (b) An FTB order that requires at most two ray segments for any ray
orientation... 107

6.3. (a) Effect of cell size for different datasets, (b) A closer look at the lower left part of the
graph.. 110

6.4. Speedups achieved for different volumes as FPP is varied between 1 and 20. Total
number of frames remains the same at 20... 112

7.1. Graphs comparing the speedups of the CellFlow. ActiveRay, and RayFront algorithms on
four datasets, (a) simple 128. (b) sod 128. (c) head256. and (d) capsid256.........................118

7.2. Graphs comparing the speedups o f four datasets on Cray T3D and Convex SPP. (a)
simple 128. (b) sod 128. (c) head256. and (d) capsid256..122

XIV

CHAPTER 1

INTRODUCTION

The field of 3D graphics has become very prevalent in the past few years for comprehension and manipula

tion o f computer simulated 3D scenes. The realistic images generated in graphics come at an enormous com

putational expense; an anti-aliased image with reflections, refractions, shadows, and texture mapping o f a

moderately complex scene taking minutes or even hours to generate. Furthermore, the size and complexity

o f such 3D scenes has grown more rapidly than the computing power o f uniprocessor machines.

One important source o f large 3D scenes is the volumetric datasets. Volume visualization has emerged as a

prominent off-shoot o f graphics for viewing and manipulating scientific datasets, such as those obtained

from Magnetic Resonance Imaging (MRI), Computed Tomography (CT-scans). and Computational Fluid

Dynamics (CFD), or volumes which are generated by voxelizing geometric models. Unlike surface-based

graphics, direct volume rendering has the mechanisms for allowing simple manipulation techniques (like

cutting, sculpting, etc.) and easy viewing of the inside of objects (for transparent objects). However, the size

o f these volumes tends to be several magnitudes larger than that used in surface graphics. Even the most

powerful uniprocessor machines are unable to provide the much desired interactivity in such environments.

In this dissertation, we have designed and implemented three coherent algorithms on the Cray T3D, which

have proven to be extremely scalable. These algorithms are primarily based on efficient utilization o f local

memory and attempt to hide the latency of locally unavailable objects. They suggest new paradigms and

alternatives to traditional ways of parallel rendering. Optimization o f local memory usage has largely been

neglected in the past, as previous algorithms have concentrated on small to medium sized datasets. Our algo

rithms are designed in such a way that the complete local memory is used only for that data which are

required by a processor. These methods present the most efficient memory usage paradigms. Most earlier

algorithms made use o f the hardware cache only for exploiting coherency; the performance of these algo

rithms are prone to degrade with increasing dataset sizes or decreasing cache sizes. Utilizing the local mem

ory as another level o f cache, i.e. the software cache, was not explored for parallel rendering. In addition,

ways to hide latency and minimize network congestion in each o f these algorithms are novel approaches in

themselves.

Designing a parallel algorithm to render colossal datasets (e.g.. the Visible Human) needs a complete para

digm shift. Previous algorithms are no longer applicable to render such large datasets (possibly in com

pressed form), as they are prone to thrashing, a phenomenon which should be avoided at all costs. A new

algorithm is sought that will provide the required efficiency and remove the problem of thrashing for render

ing colossal datasets. The RayFront algorithm combines the advantages o f both the object-order algorithms

(e.g.. no thrashing, regularity of access, object space coherency) and image-order algorithms (e.g.. opacity

clipping, better image quality, simplicity, and usage of other acceleration techniques) to solve the problem of

thrashing and provide the most coherent screen traversal scheme.

In summary, this research has primarily focussed on some of the as yet unexplored problems in parallel vol

ume rendering, e.g., latency hiding, optimal local memory utilization, optimal screen traversal, reducing net

work congestion, and portability, and has suggested exclusive ways to eliminate some or all of these. Our

coherent algorithms have demonstrated scalability to very high degrees, with potential to improve even fur

ther. With the advent of high-resolution scanners, the dataset sizes approach the limits of disk storage. The

coherent algorithms developed in this dissertation will provide state-of-the-art methods for visualizing such

large datasets in the future.

In this chapter, we start with a brief introduction to volume rendering, along with the various schemes used

to accelerate this time consuming process. Multiprocessing machines provide a viable platform for effi

ciently gaining speedup to render large volumes. The crux of this dissertation deals with the design of effi

cient parallel algorithms for volume rendering. Later in this chapter, we provide the issues involved in

designing parallel rendering algorithms, and the motivation behind this research. It should be stated that

although we have implemented our algorithms for volumes, they are equally applicable to polygonal based

models as well. In the following discussion, objects may thus refer to voxels (in the case o f volumetric mod

els). or to polygonal objects (in case of polygonal models).

In the following chapter (Chapter 2). we have done a comprehensive survey o f existing parallel volume ren

dering methods. The survey reveals some o f the as yet unexplored issues, and we have attempted to provide

efficient solutions to overcome these drawbacks. Chapter 3. Chapter 4. and Chapter 5 discuss these methods

in sufficient detail, while Chapter 6 describes a classical uniprocessor application of one of the methods (the

RayFront in Chapter 5).

1.1 Volume Rendering

In the past few years, volume visualization has emerged as a powerful technique for the representation,

manipulation, and rendering of volume data. Unlike traditional graphics techniques, which represent 3D

objects as geometric surfaces and edges commonly approximated by polygons and lines, volume data are 3D

entities that may have information inside them. One one hand, these volumetric entities might not consist of

surfaces and edges, and on the other, they may be too voluminous to be represented geometrically. Volume

visualization techniques provide the mechanisms that make it possible to reveal and explore the inner or

unseen structures of volumetric data and allow visual insight into transparent and complex datasets.

A Volume is a regular 3D grid of voxels. A voxel is the 3D equivalent o f the 2D pixel. Figure 1.1 shows a

volume made up of 8x6x5 voxels, each of size 1x1x1. Each voxel is characterized by its position in the 3D

grid, and may have associated with it a color and opacity. Medical data obtained from MRI (magnetic reso

nance imaging) and CT-scanners (computed-tomography) act as good sources for volume visualization

applications. This technique may also be applied to studies in CFD (computational fluid dynamics) where

powerful computers simulate natural phenomena in 3D. Volume representation is very effective for other

applications in which the acquired data are in an inherently volumetric form. These applications include

biology (e.g., confocal microscopy), geoscience (e.g., seismic measurements), industry (e.g., inspection),

meteorology, molecular systems (e.g., electron density maps), and 3D image processing (e.g., time varying

2D images). A comprehensive treatment of the field of volume visualization can be found in [53).

In one approach to volume rendering (Figure 1.1) [75][110], rays are cast into the volume through the screen

pixels. For each ray, the volume is sampled at regular intervals along the ray. The values of the samples

(color and opacity) are composited from front-to-back (FTB) until either the composited opacity becomes

larger than some pre-specified threshold value, or until the ray exits the volume. The composited color of the

ray is the final color o f the screen pixel. This approach to volume rendering is referred to as backward pro

jection. image order, or ray casting. Ray casting was first adopted by Tuy and Tuy for rendering binary vol

umes [110], and then extended to multi-valued ray-casting by Levoy [75][76], Upson and Keeler [112], and

Sabella [97].

The other popular approach to volume rendering is the forward projection suggested by Frieder. et al. [33|.

and later improved to splatting by Westover [I16][117]. In this approach (Figure 1.2), each voxel is pro

jected on the screen, and the final color o f a pixel is the accumulated effect o f all the voxels which project on

this pixel. This approach is also known as object order. Examples of forward projection volume rendering of

binary volumes can be found in [33] and [40].

A third approach to volume rendering adopts the advantages of both object-order and image-order algo

rithms. and is known as hybrid projection. Herman and Liu [47] used this approach for binary volumes,

whereas Drebin. et al. [28]. Upson and Keeler [112]. and Wilhelms and van Gelder [122] used it for render

ing multi-valued volumes. Wittenbrink and Somani [126] used their permutation warp to implement a

hybrid method on SIMD parallel machines.

Generating a reasonable quality image o f a volume is extremely computation and memory intensive. For

each pixel on the screen, a ray is cast into the volume and samples are taken at regular interx als along the

ray. In order to generate an image of reasonable quality, approximately O(N^) samples have to be generated

and composited, where is the total number o f voxels in the volume. This problem is even more exacer

bated when higher quality images are desired, as in anti-aliasing. Anti-aliasing can be done by any of the fol

lowing methods:

1. supersampling the pixels in the image lattice, by shooting multiple rays from each pixel.

2. supersampling the volume, by taking closer samples along the ray.

3. applying higher-order filters, e.g.. tri-linear or cubic interpolation filters, during volume sampling.

4. applying filters to the pixels in the image lattice.

Applying any o f the above anti-aliasing methods involves a several-fold increase in computation time. In

general, the sampling rate along the ray is kept at the smallest distance required to obey Shannon’s sampling

theorem. The theorem’s requirement that the sampling rate be above the Nyquist rate implies that t <

0.5xvo.xel_size, where t is the distance between adjacent ray origins in screen space and distance between

samples along a ray. Incorporating illumination effects, shadows, and texture mapping on the fly demands

even more computation power. All these factors contribute to increase the image generation time of reason

able sized volumes (256^ or 512^ volumes) to minutes or even hours.

3D Volume
(8x6x5 voxels) y fy r

2D Screen
(8x8

Voxel
(1x1x1)

Figure 1.1. A 3D volume œnsisting o f 8x6x5 voxels. Each voxel is a single unit in each
dimension. The volume is rendered onto an 8x8 screen. A ray is shot from each screen pixel. Only
one ray is shown in the figure. The circles along the ray shows the sampling points o f the volume
along the ray.

V

2D Screen
(8x8 pixels)

\ \ \ \ \ \ \ ? \

\
\

\

g

S 3
\

\
s
\
\

3D Volume
(8x6x5 voxels)

Figure 1.2. An example o f forward projection rendering. Each voxel is projected onto the screen
using a transformation matrix (T), and its contribution is combined with all the pixels it affects.
Only one voxel projection is shown in the figure, and the screen area it effects is shown by the
checkered pattern.

1.2 Acceleration Techniques for Volume Rendering

Brute force volume rendering, as illustrated above, involves enormous computational effort for quality ren

dering of volumes with medium to high resolutions. For example, consider a volume o f resolution NxNxN

used for generating an image o f size MxM. For forward projection algorithms, four steps are involved in

generating the image: traversal, transformation, rasterization, and display. Let us assume that on an average,

a voxel projects on k screen pixels. Thus the brute-force volume rendering process will need f(XN' opera

tions for transforming all the voxels in the volume, where f, is the number o f operations needed for trans

forming each voxel. In addition. f^xkxN^ operations are needed to composite the effects of all the voxels,

where f ̂is the number of operations needed for compositing with each pixel. This gives the total rendering

time for object-order methods as (ft+kxf^)xN^. In case of volume rendering using ray-casting, let us assume

that on an average there are n samples along each ray. where n will be dependent on the volume resolution.

N. Let fg be the number o f operations spent on acquiring and compositing each sample. This gives the total

rendering time for ray-casting algorithms as nxf^xM".

The number of operations, k. fg. and fg. used above depends on the quality o f rendering desired, and also on

the features included, like illumination. To determine the enormous computational power needed by the ren

dering process, let us consider generating a 512" image of a 256^ volume using ray-casting with zero-order

interpolation, and with 256 samples along each ray. Each sample requires at least 3x3 = 9 floating point cal

culations (for all the three color channels, rgb). Generating images at real-time rates require the frame gener

ation time to be less than 0.03 secs, implying 256x9x512“ IT operations in 0.03 secs. This poses a demand

for more than 20x10'^ FLOPS! This figure will surely escalate by several orders of magnitude, when addi

tional features like illumination, shadowing, or texture mapping, and higher order interpolation filters, like

trilinear or cubic, are introduced for generating images of better quality. Object-order methods for volume

rendering also demand similar machine power. Clearly, even the fastest uniprocessor machines currently

available are unable to provide such high computational power.

As a result, much research has been devoted to reducing the time required for generating images of volumes.

Software and hardware solutions that expedite the volume rendering process are collectively referred to as

acceleration techniques. Some o f these techniques have been borrowed from those used for traditional ray-

tracing of polygonal objects, e.g.. using bounding boxes. Others are applicable to volume rendering only.

Apart from software and hardware based acceleration methods, indirect volume rendering (e.g.. isosurfac-

ing) and generating approximate images may also be regarded as ways to speed up the rendering process.

Last, but not the least, parallel computers provide an efficient environment to obtain raw computation power

for attaining real-time rendering of large volume datasets. Although the focus o f this work is acceleration by

parallelism, we briefly survey other approaches also.

1.2.1 Software Based Acceleration

Software based acceleration techniques are those that either resort to efficient ways o f calculations (e.g.. by

avoiding floating-point calculations), or exploit some form of coherency (e.g.. inter-ray coherency). In the

case of forward projection, each voxel has to be first transformed to image space and then projected onto the

screen. Its effect on each pixel is then composited to the already available value for that pixel. The inherent

ordering of the voxels within the volume precludes the necessity to sort them in front-to-back fashion.

A popular method for accelerating the process o f ray casting involves the use o f octrees. Octrees are hierar

chical spatial decomposition graphs, and can be efficiently organized to skip empty sub-volumes since they

will not contribute to the final image. Levoy [76] used octrees for efficient ray-casting of volumes. Octrees

were also used by Laur and Hanrahan [64], where each node in the octree has an error approximation associ

ated with it. A node’s children are splat only if the representation error o f their parent is more than a thresh

old. Goldwasser [39] adopts a simWas divide-and-conqiier to avoid transforming each voxel in the

volume. The volume is organized in an octree structure, with similar voxels grouped into an octree leaf

node. The aggregate of voxels within a node are then treated as a single entity and transformation and com

positing calculations are applied to them as a whole.

Some acceleration techniques involve savings during transformation of voxels by avoiding repetitive float

ing point operations. The table driven transformation method adopted by Frieder. et al. [33] stores all the

multiplication calculations required for the transformation matrix multiplication into a look-up table (LUT).

The transformation o f a voxel can then be accomplished simply by accessing the LUT. the entry accessed in

the table depending on the xyz coordinates o f the voxel. Machiraju and Yagel [83] exploit coherency within

the volume to implement a novel incremental transformation scheme. A seed voxel is first transformed

using the normal matrix-vector multiplication. All other voxels are then transformed in an incremental man

ner with just three extra additions per coordinate.

Forward projection volume rendering can be accelerated by first transforming the volume from voxel space

to pixel space by employing a decomposition of the 3D affine transformation into five ID shearing transfor

mations [44]. Each o f these ID transformations require only one floating point addition. The transformed

voxel is projected onto the screen in a FTB order. Lacroutte and Levoy [62] use a similar approach. Their

shear warp method involves a warping step where the slices o f the volume are sheared and then warped so

that all the rays are then parallel to one o f the major axes. The transformed voxels then become aligned with

one o f the major axes, alleviating the task o f resampling. Vezina, et al. [113] has also adopted the shear/scale

operations for implementation o f volume rendering on SIMD MPPs like MasPar MP-1. and Lacroutte [63]

has implemented his shear-warp algorithm on the SGI Power Challenge.

Backward projection volume rendering methods can be also be accelerated by either exploiting some form

of coherency, or by resorting to efficient ways of ray calculations. Yagel [129] has proposed several efficient

methods for accelerated ray-casting o f volumes. For example, Yagel, et al. [130] use discrete versions of

rays for ray-casting o f volumes. A 26-connected ray is used for traversing most o f the empty spaces. .\s the

ray comes close to occupied voxels, it is changed to a 6-connected ray. Yagel and Kaufman’s [131] template

based approach also achieves good speedup for parallel projection ray casting. In this approach, a ray-tem-

plate is formed, which is used to generate an image for all the pixels on a base plane. This intermediate

image is then projected to form the final image.

The most popular acceleration methods rely on spatial coherency o f volumes to avoid sampling o f empty

spaces. Bounding boxes have been used in the past for expediting the process of ray tracing. This method

can also be used in case of volume rendering. The object is surrounded by a tightly fit box. Rays are first

intersected with the bounding box and start their actual volume traversal from this intersection point rather

than the volume boundary. Rays that do not hit any bounding box are simply assigned the background color.

Avila, et al. [8] strives to have a better fit by allowing a convex polyhedral envelope to be constructed around

the object.

Yagel and Shi [132] introduced a method called space leaping for skipping over empty spaces in the volume.

The method is not useful for rendering a single frame, but temporal coherency between slowly changing

frames is exploited to determine the empty spaces that can be skipped. During rendering o f a frame, the clos

est voxel encountered for each ray is recorded. These voxel locations are then transformed according to the

position o f the next frame. When the next frame is being generated, the position of the transformed voxels

are used to skip empty spaces. Information about empty spaces may also be recorded during a preprocessing

step. For example, Cohen and Shefer [20] used proximity clouds to skip over empty spaces in the volume.

With each voxel in the volume is associated the closest distance to an occupied voxel (in any direction).

While sampling a voxel, the coded distance can be safely skipped along the ray before another occupied

voxel can be encountered. In a contemporary work, Sramek [104] proposed a similar idea as proximity

clouds, but called his metric as chessboard distance. Zuiderveld, et al. [137] present an efficient technique,

using distance transforms, for computing a volume that contains the radial distance from each point in the

data volume to the closest “interesting” point.

From results reported in published articles, software based acceleration techniques have gone a long way in

reducing the rendering times for manipulation and interpretation o f volumes. Achieving real-time rendering

rates, though, is still a far-fetched goal. As processor speed doubles every year, so does the size of the vol

umes to be rendered. Hardware solutions become imperative under such situations. Another cost effective

way for achieving real-time rates would be to combine the software-based acceleration techniques with gen

eral purpose parallel computers, which offer teraflops of computation power. In the following section, we

see some ways by which available polygon rendering hardware can be utilized for volume rendering, and in

the following chapter, we will focus on several ways to take advantage o f massively parallel processing

machines for achieving high frame rates.

1.2.2 Hardware Based Acceleration

The hardware based polygon tenderers, like [2][84][34] are often utilized to render volumes as well. For

example, if sufficient texture memory is available, the volume is considered as solid texture and stored in the

texture memory. A number of planes, each parallel to the image plane, are used to slice the volume at regular

intervals. The texture-mapped planes (polygons) are then composited to form the final image. Cullip and

Neumann [25], and Cabral, et al. [15] use the texture memory available on high-performance graphics work

stations to render volumes. In another approach, the effect of each voxel can be considered to take the form

of a polygon (a splat [117]). Each splat is transformed (in hardware), and the individual splats are then com

posited (in hardware) in a front-to-back or back-to-ffont manner. Yagel. et al. [134]. Laur and Hanrahan

[64]. and Wilhelms and van Gelder [123] use this approach to utilize the graphics hardware.

Although these hardware based methods are extremely fast, a compromise has to be made with the quality of

the image. Hardware based methods are also limited by the flexibility of the rendering models, like using

different illumination models, incorporating realism like refractions, reflections, and shadows.

Although there are only a handful o f commercially available hardware volume tenderers (e.g.. Pixar/Vicom

Image Computer and Pixar/Vicom H [107]). several research prototypes are under investigation. Kaufman,

et al. [54] and Stytz. et al. [107] have done a survey of various hardware implementations of volume tender

ers. In the next chapter, we will survey some specific hardware volume rendering implementations that dem

onstrate a close resemblance with popular parallel rendering algorithms.

1.2.3 Acceleration Via Indirect Volume Rendering

As an alternative to the direct volume rendering techniques (e.g.. ray-casting and splatting). the volume data

can be first converted into geometric primitives in a process called surface-tracking. In this process, the user

specifies a seed voxel. Surface tracking begins with at the seed location, and traces the surface o f the object

in either depth-first o r breadth-first manner. Only one connected surface can be tracked with this method.

Several boundary detection methods proposed by Liu [77]. Artzy [6]. and Udapa [107][111] used surface

tracking using a user-specified seed.

In a similar approach, called isositrfacing, all the voxels in the volume are visited without any user interven

tion. A test is conducted at each voxel to determine whether the specified surface passes through it: the voxel

is approximated by a polygon in case the surface does pass through it. The geometric primitives (e.g.. poly

gon mesh, contours), resulting from either surface tracking or isosurfacing are then rendered to the screen by

conventional geometric rendering. The advantage of such an approach is that once the polygon mesh for the

isosurface is generated (as a preprocessing step), available graphics hardware may be utilized. Isosurfacing

also involves reduction in data size. On the other hand, surface extraction is associated with loss of inside

information of the volume. Whenever a different isosurface is required, the polygon mesh generation algo

rithm has to be invoked. Lorensen and Cline [79], Livnat. et al. [78]. Wilhelms and van Gelder [123]. Shen

and Johnson [101]. and Itoh and Koyyamada [50] are only a few authors who have proposed novel isosur

facing techniques for regular and irregular volume grids.

1 0

1.2.4 Acceleration With Low-Quality Images

Frequently, the quality of images is compromised for gaining rendering speed. Progressive refinement is the

technique o f producing “rough” images at high frame rates when a user is modifying view parameters and

progressively better images when user input ceases [13]. With a ray casting tenderer, a rough image is com

puted quickly by undersampling the image lattice. Undersampling can be done either by regular but sparse

sampling in all the three dimensions, o r by raising the threshold on the variance allowed in adaptive sam

pling, or by lowering the alpha cutoff threshold o f accumulated opacity. Laur and Hanrahan s hierarchical

splatting method [64] can also be accelerated by raising the error approximation threshold for generating

lower quality images.

Most shear-warp and shear-scale algorithms, like 3-pass affine transforms, also involve fast but slightly inac

curate image generation techniques. Only Wittenbrink [126] claims to have a more accurate image genera

tion scheme than other object order shearing algorithms. Wu and Brady [128] offers an approximate

computation method for generating volume rendered images used for animation. Their method takes advan

tage o f ray-to-ray coherency to store partial results from earlier frames to generate an image for the current

frame.

1.2.5 Acceleration With Parallel Processing

For generating high-quality images, not compromising flexibility at the same time, software renderers are

still the order o f the day. However, the size of the data may sometimes be too colossal to fit in a single com

puter memory and the time required for rendering can be unacceptable. Some software rendering methods

have been able to achieve interactive frame rates only for low resolution volumes [62] but, in general, they

compromise with flexibility. For example, they assume that illumination calculations are already applied to

the volume during a preprocessing step, and several copies of the volume exist simultaneously in memory.

Due to these reasons, it often becomes infeasible to apply direct volume visualization techniques for gener

ating numerous images for animation on a uniprocessor machine. Parallel computers become indispensable

in such situations. The various approaches taken to parallelize the volume rendering process and the issues

lying therein are surveyed in the next chapter.

11

1.3 Problem Statement

1.3.1 Motivation

The field of 3D graphics has become very prevalent in the past few years for comprehension and manipula

tion of computer simulated 3D scenes. Various illumination models have been proposed to provide lighting

effects and realism to the generated images. These images may also be enhanced using anti-aliasing tech

niques, and complex surface details can be handled using various texturing schemes. The inclusion of each

o f these features in the rendering algorithms comes at an enormous computational expense; a realistic image

with reflections, refractions, and shadows o f a moderately complex scene taking minutes or even hours to

generate. Furthermore, the size and complexity of such 3D scenes has grown more rapidly than the comput

ing power of uniprocessor machines.

One important source o f large 3D scenes is the volumetric datasets. Volume visualization has emerged as a

prominent off-shoot o f graphics for viewing and manipulating scientific datasets, such as those obtained

from Magnetic Resonance Imaging (MRI), Computed Tomography (CT-scans), and Computational Fluid

Dynamics (CFD), or volumes which are generated by voxelizing geometric models. Volumes can be seen as

a set o f sampled points in a 3D spatial grid, each sample indicating scalar, vector, or tensor elements. For

example, the value may stand for temperature or stress for datasets obtained from CFD or FEM (Finite Ele

ment Method) sources, or it may indicate density values when obtained from medical sources. Unlike sur

face-based graphics, direct volume rendering has the mechanisms for allowing simple manipulation

techniques (like cutting, sculpting, etc.) and easy viewing o f the inside o f objects (for transparent objects).

However, the size of these volumes tends to be several magnitudes larger than that used in surface graphics,

e.g.. the Visible Human dataset from the National Library o f Medicine [1] is 40 GB in size. Even the most

powerful uniprocessor machines are unable to provide the much desired interactivity in these environments.

General purpose parallel computers and dedicated parallel graphics accelerators have become indispensable

in such situations. Several parallel rendering algorithms have been proposed for different architectures, each

with its mechanisms to remove the overheads associated with the parallelization process. Although interac

tive display (5-10 frames/sec.) o f moderate sized volumes are now becoming feasible, real time animation

(30 frames/sec.) of high resolution volumes still remains a far-fetched goal.

1 2

In this dissertation, we have taken a leap towards achieving the goal of real-time animation of large volumes.

We take a closer look at some of the important factors that have a detrimental effect on a parallel tenderer’s

performance. Our survey of existing PVR algorithms surfaces new bottlenecks and we have proposed alter

nate parallel rendering methods that make efficient use of the local memory, incorporate effective latency

hiding, and minimizes network congestion. Results show that our system has the potential to perform better

than other existing parallel rendering systems for a variety o f scientific datasets. O ur implementations also

demonstrate scalability superior to existing parallel rendering algorithms.

1.3.2 Issues in Parallel Rendering

Designing parallel rendering algorithms poses some challenging problems. First, we note that this class of

problems falls under the purview of unstructured or irregular parallel algorithms, where the pattern of data

communication between processors is unpredictable. The most challenging o f all the problems is to design

an algorithm that minimizes the overheads associated with the parallelization process, e.g.. the communica

tion overhead. Data partitioning, load balancing, coherency exploitation, latency hiding, and portability are

the most important issues that a parallel rendering algorithm designer faces for efficient utilization of the

resources. All these factors combine to affect the scalability o f the algorithm, which provides an idea about

the amount of speedup gained by using a larger number of processors. Ideally one would expect to speed up

an algorithm by a factor that equals the number o f processors (linear speedup). Because of the associated

overheads, parallel rendering algorithms almost never achieve this ideal situation, although there is a con

tinuing effort to bring the scalability as close as possible to this goal.

Most previously proposed algorithms have focused on data distribution, load balancing, and coherency

exploitation, but have overlooked the effect o f communication latency, which proves to be a bottleneck in

improving scalability. Proposals for efficient local memory utilization is absent from literature, and the

effect of screen traversal has largely been neglected. Designing algorithms to run most efficiently on a par

ticular machine has also made them less portable to machines with different or heterogenous topologies. Our

methods take all these factors into account. It provides algorithms with an optimal screen traversal scheme,

ample latency hiding, efficient utilization o f local memory, and good static load balancing. In addition, our

algorithms are independent of the network topology, and they demonstrate high scalability with respect to

data and machine sizes.

13

1.4 Overview of the Dissertation

We have designed and implemented three coherent algorithms on the Cray T3D [Chapter 3. Chapter 4. and

Chapter 5], which have proven to be extremely scalable, with scope for further improvement. These algo

rithms are primarily based on efficient utilization o f local memory and attempt to hide the latency of locally

unavailable objects. The irregularity and unpredictability o f the problem at hand makes the incorporation of

these features all the more difficult. The issues underlying the design of parallel rendering algorithms are

discussed in detail in the next chapter.

1.4.1 Exploiting Temporal Coherency

In the first phase o f our research [Chapter 3], we looked at data distribution, memory allocation, and load

balancing issues. We determined that instead o f statically allocating parts of the volume to each processor,

the local memory utilization could be optimized if only the required data were made locally available, that

is. data which will be needed by a processor to generate its assigned portion of the screen. Depending on the

local memory availability, this data allocation scheme can be extended to provide what is termed as franie-

to-frame coherence, where data are allocated in such a way that a processor is self-sufficient to generate a

number of slowly changing frames [65][66][67] with no need for additional communication. If the animator

happens to have the knowledge of subsequent screen positions, then the data needed for the next set of

frames can similarly be fetched. This allows for effective overlapping of computation and communication

(latency hiding) as well, as data required for the next set o f frames may be fetched and be made available in

local memory while the current set of frames are being generated.

1.4.2 Exploiting Spatial Coherency

The above method finds good application when subsequent screen positions are known a priori and works

well for incremental rotations o f the screen. The second phase o f the research [Chapter 4] was concerned

with exploiting frame-to-ffame coherence in a more general way. i.e.. for real time animation where the

screen positions are not restricted to rotations only. Furthermore, this method is more amenable to be

extended to ray tracing as well. Several memory optimizations were made and a directory-based protocol

was designed to further optimize memory utilization [69]. Local memory was used to store only that data

which was needed by the processor. It was seen that with sufficient local memory size to hold all the objects

for a single frame, the data requirement for the next (close) frame was just 5% of the volume. No memory

14

was assigned for static data; objects migrated within the system; and a directory was used to trace an

object’s location. Latency hiding was achieved by queueing all the rays for which data needed to be fetched

from other nodes {inactive rays), while rays for which all the required data were locally available {active

rays) were traced to completion. Furthermore, our screen assignment scheme ensured that the non-available

data at a node were always available from one of its neighboring nodes. We also deviced a forwarding

scheme which minimized network congestion, thus taking advantage o f network coherency as well. The

overall system provided enough generalization and independence from the underlying network. Consider

able load balancing, sufficient latency hiding, network congestion control, and utilization of frame-to-frame

coherency all combine to make this algorithm scalable.

1.4.3 Exploiting Volume Coherency

Having optimized the memory utilization and scalability of our algorithms, we turned our attention to ren

dering colossal volumes [68]; datasets too large to fit in the total memory o f the ensemble of processors.

Sometimes such volumes are even stored on remote disks in a compressed form [71]. Thrashing is a phe

nomenon which is often encountered in such situations, where objects are fetched multiple times (either

from remote processors or from disk) during the generation of a single frame. In the third phase of our

research [Chapter 5 and Chapter 6], we deviced a method which is not only thrashless for a single frame

generation, but retains its thrashless property across a number of slowly changing frame positions. In short,

the sequence in which data are fetched and the way in which rays are traversed on the screen (ray coherency)

ensures that no data are fetched more than once for a number o f frames. Our scheme eliminates one of the

burning problems encountered in parallel rendering o f huge databases, viz., thrashing.

1.5 Summary of Contributions and Significance

Parallel rendering is by no means a mature field. Efficient parallel rendering is an elusive goal, with more

questions raised than answered. As parallel computers become more powerful and more affordable, integrat

ing graphics and parallel applications will be a central issue for the graphics and visualization community.

Efficient parallel rendering algorithms are a prerequisite to this process.

Previous algorithms for parallel volume rendering have mainly been divided into two categories, object-

order and image-order. The scene is partitioned and statically assigned to processors. Data that are required

15

but not available locally are fetched and cached (in hardware) only on demand. These are ultimately

removed based on some replacement policy.

The algorithms proposed in this dissertation suggest new paradigms and alternatives to traditional ways of

parallel rendering. Optimization o f local memory usage has largely been neglected in the past, as previous

algorithms have concentrated on small to medium sized datasets. Our CellFlow algorithm [Chapter 3] and

the all-cache approach [Chapter 4] optimizes the local memory usage such that it is used only for that data

which are required by the local processor. These methods present the most efficient memory usage para

digms. Most earlier algorithms made use of the hardware cache only for exploiting coherency, the perfor

mance of these algorithms are prone to degrade with increasing dataset sizes or decreasing cache sizes.

Utilizing the local memory as another level of cache, i.e. the software cache [Chapter 4], was not explored

for parallel rendering. In addition, ways to hide latency and minimize network congestion in each of these

algorithms are novel approaches in themselves.

Designing a parallel algorithm to render colossal datasets, like the Visible Human, needs a complete para

digm shift. Previous algorithms are no longer applicable to such large datasets (possibly in compressed

form), as they are prone to thrashing, a phenomenon which should be avoided at all costs. A new algorithm

is sought that will provide the required efficiency and remove the problem o f thrashing for rendering colos

sal datasets. The algorithm described in Chapter 5 combines the advantages of both the object-order algo

rithms (e.g.. no thrashing, regularity of access, object space coherency) and image-order algorithms (e.g..

opacity clipping, better image quality, simplicity, and usage o f other acceleration techniques) to solve the

problem of thrashing and provide the most coherent screen traversal scheme.

The versatility of the parallel thrashless rendering system opened new avenues for applications in the area of

rendering colossal medical volumes on uniprocessor machines as well. The basic algorithm remains

unchanged, except that the unavailable cells are fetched from disk (possibly in compressed form), rather

than from other processors. The enormously high cost involved in constantly thrashing to disk, and probably

decompressing the same cell multiple times adds undesirable overheads to the rendering system. The uni

processor RayFront algorithm described in Chapter 6 provides an effective solution to this problem. As in

the multiprocessor method, it minimizes the number of times data are read from disk, and consecutively, the

number of times they are decompressed for rendering a number o f frames in an animation sequence.

16

The accomplishments and contributions to the field o f parallel volume rendering is summarized below.

• An incremental rotation scheme [Chapter 3] that exploits temporal coherency to minimize communica

tion. accomplishes effective latency hiding, and utilizes local memory optimally.

• A method with the most efficient local memory utilization [Chapter 4], among the ones proposed in liter

ature. This "cache-only" scheme minimizes the communication overheads, and achieves effective

latency hiding, providing a general purpose animation algorithm at the same time.

• A thrashless method for visualizing colossal datasets [Chapter 5]. which also maintains its thrashless

property across a number of similar frames. This method has shown considerable promise for visualizing

compressed volumes as well [Chapter 6], i.e.. volumes so big that they have to be stored on disk in a

compressed form.

• The thrashless property of the above method also inherently provides an optimal screen traversal

method, and has outclassed the most efficient screen traversal scheme proposed so far. i.e.. the Hilbert

transform [136].

• The scalability demonstrated by the above algorithms are far superior to those reported in the literature.

• The algorithms are transparent to the underlying network topology and thus are portable to parallel

machines with any topology.

• Unlike previous methods, our algorithms are primarily designed to perform efficiently on DM architec

tures, so that the widely available and unused computing resources, like the NOWs and COWs. may be

effectively utilized for such enduring tasks like volume rendering.

In summary, this research has primarily focussed on some of the as yet unexplored problems in parallel vol

ume rendering, e.g.. latency hiding, optimizing local memory utilization, optimal screen traversal, reducing

network congestion, and portability, and has suggested exclusive ways to eliminate some or all of these. Our

coherent algorithms have demonstrated scalability to very high degrees, with potential to improve even fur

ther.

17

CHAPTER2

PARALLEL VOLUME RENDERING ALGORITHMS

The numerous acceleration techniques presented in Chapter 1 undoubtedly highlight the need to make vol

ume visualization more effective. Interactive or real time rendering algorithms are a precursor to this goal.

Rapid visualization techniques will provide the scientist with interactive exploration of the data sets. Alter

ing viewing parameters, changing opacity and other transfer functions, are some o f the features that can be

quickly modified to make crucial decisions. General purpose massively parallel processors (MPPs) provide

a highly viable platform for such an application. Parallel rendering has the potential for high-performance in

effectively producing real-time visual output. Realizing this potential requires careful analysis of the algo

rithms in light o f a system’s architectural parameters. As we will see later, significant obstacles remain, prin

cipally in the areas o f scalability, load balancing, and image composition.

In this chapter we focus on the parallel volume rendering (PVR) algorithms proposed in the past. We will

first discuss the various approaches taken to parallelize volume rendering, highlight some o f the important

issues underlying the design of these approaches, and finally give an insight into some of the open issues

tackled in this dissertation. This survey mainly focuses on the issues underlying the design of PVR algo

rithms for regular (rectilinear) volumes only. For sake of completeness, we have also included a few special

ized hardware implementations o f PVR which bears a close resemblance with general purpose

multicomputer algorithms. In particular, four such architectures are considered: Fuch’s Pixel-Planes 5. Kauf

man’s Cube. Goldwasser’s Voxel Processor, and Ohashi’s 3DP. A survey of parallel rendering in general can

be found in [23]. parallel polygon rendering on shared memory architectures in [118][120j. specialized

architectures for volume rendering in [54] and [107]. parallel ray-tracing in [72]. and a partial list of PVR

algorithms in [124].

18

2.1 Types of Parallelism

Parallelism exists both in image-order and object-order volume rendering methods, and it has been success

fully exploited by researchers to propose a variety o f algorithms. For example, the independence o f rays in

ray casting makes it a good candidate for parallel implementation. Similarly, the independence o f transform

ing voxels one at a time makes object-order methods amenable to parallelization.

In general, two types o f parallel machines have become popular - shared memory (SM) and distributed

memory (DM). In the former, data may be physically distributed among the nodes, but all the processors

view it as a single coherent data space. The data coherency management is transparent to the users. In con

trast. no notion o f shared data exists in DM machines; information exchange between processors is carried

out by explicit message passing between them. These machines will be discussed in more detail in Section

2 .2 . 1.

PVR algorithms can be grouped into two main categories: image partition (IP) and object partition (OP).

Two other categories are now becoming popular: hybrid and shear-scale-warp (SS). Below we discuss these

approaches to parallel rendering, their advantages and disadvantages, and their possible modifications. The

issues affecting the performance of these approaches will be dealt with in the next section (Section 2.2).

2.1.1 Image Partition

Image partition (IP) algorithms partition the screen into a number of regions (typically the number of

regions equals the number of processors), which are then assigned to processors. Although image partition

ing is equally applicable to object-order or image-order PVR methods, they are generally associated with the

latter. Processors concurrently and independently process rays in the image region(s) assigned to them. If the

complete volume is assumed to be replicated in the local memory of each processor, no interaction between

processors is necessary during the rendering stage. Communication takes place only during image gathering,

when each processor sends its image segment to the display processor. On the other hand, when the memory

is too limited to allow complete replication, communication during rendering becomes inevitable, the granu

larity of which is implementation dependant.

IP algorithms are well suited for shared memory (SM) or distributed shared memory (DSM) architectures,

where the complete volume is kept in shared memory. Examples of such implementations include those by

Challinger [17]. Nieh and Levoy [90]. Palmer, et al. [93]. and Goel and Mukherjee [37]. Uniprocessor vol-

19

urne rendering programs can be ported to these machines with minimal changes in the code. In these imple

mentations. required portions of the volume are fetched automatically (using hardware) by simply reading

the relevant data. Hierarchical hardware caches provide means for exploiting spatial coherency that helps to

reduce the latencies o f remote fetches. As we will see later, dynamic load balancing schemes can also be

easily applied to IP techniques. Several acceleration techniques (see Chapter 1). like early ray termination

and space leaping, can be applied to IP algorithms, and several types o f coherency (spatial and frame) can be

exploited to reduce communication overheads.

The disadvantage of this class of algorithms is the computationally expensive resampling that is required for

generating high quality images. A solution to this has been proposed and has given rise to the shear-scale-

warp algorithms (see Section 2.1.4). Also, these methods are prone to excessive amounts of data communi

cation between nodes, especially when screen positions change abruptly; the amount of data communicated

being highly view dependent.

Not many IP methods have been reported on message passing (MP) or distributed memory (DM) machines,

the primary reasons being the enormous cost associated with volume redistribution, and usage of compli

cated data fetching schemes. Corrie and Mackerras [22], Westermann [115], and algorithms described in

Chapter 3. Chapter 4. and Chapter 5 implement IP algorithms on DM machines. In all these cases, the local

memory is treated as another level o f cache (the software cache) to exploit spatial coherency and reduce

communication. Cohen and Fleishman [19] exploit temporal coherency for incremental rotations on DM

machines, while Shroder and Stoll’s parallel IP algorithm [100] is designed for DM SIMD architectures.

Fuch’s Pixel Planes 5 architecture [34] also can be used for volume rendering using the IP approach. Spe

cialized processors, called Renderers. are responsible for the initial classification and shading of the volume.

During rendering, rays are cast into the volume by another set o f processors, called the Graphics Processors,

and the required voxels are provided by the Renderers.

2.1.2 Object Partition

The second class of PVR algorithms are the object partition (OP) techniques, where the volume is divided

into several sub-volumes, and each sub-volume is assigned to a processor. Each processor generates an inde

pendent image (either by ray-casting, or by splatting or voxel projection) o f the sub-volume present locally.

The individual sub-images from all the processors are combined into a final image in a separate compositing

2 0

step. Although ray-casting also involves some sort o f object partitioning. OP parallel rendering algorithms

have been popularly associated to the method described above.

Goldwasser was one of the first authors to suggest a hardware implementation o f OP PVR on their Voxel

Processor machine [38]. A set o f processors (called Processing Elements) generate partial images of the sub

volume assigned to them. Another set o f processors (called Intermediate Processors) then composite the par

tial images from a cluster of PEs. An Output Processor finally generates the complete image from the sub

images received from the IPs. A similar hardware implementation was also adopted by Ohashi, et al. in their

3DP architecture [92], but uses only one hierarchical level for merging all the sub-images in a FTB order, no

IPs are involved in their case.

The ray-casting approach to generating partial images from the local sub-volumes has also been referred to

as segmented ray casting, and was adopted by Hsu [49], Ma, etal. [82], Cam abort and Chakravarty [16], and

Neumann [89]. The voxel projection (VP) approach, on the other hand, were used by Challinger [17], Stred-

ney, et al. [106], Machiraju and Yagel [83], and OP algorithms proposed by Wittenbrink [124], The partial

images generated by either of these approaches are then composited into a final image. Compositing can

either be done in a centralized manner [30], in a hierarchical tree-like manner as in Machiraju and Yagel

[83], or in a binary-swap manner as in Ma, et al. [81], in Wittenbrink and Harrington [125], in Hansen, et al.

[45], and in Rowlan, et al. [96]. The amount o f communication required in these methods is, in general,

much smaller than in case of IP algorithms, it is view independent, and more importantly, it is deterministic.

OP algorithms may also be implemented on DM machines with sufficient ease.

OP algorithms suffer from several drawbacks. First, the image compositing stage is generally not scalable.

The partial images have to be composited in a certain order. This requirement imposes some serialization

during the compositing stage. Moreover, compositing processors (especially in case o f centralized composit

ing) are targets of severe bottlenecks. As such, load balancing also becomes a concern during this stage. Sec

ond, although load balancing is automatically achieved during the rendering stage (as far as the number of

voxels processed is concerned), several volume regions may have only a few occupied voxels, making

actual load balancing a more difficult job. Equalizing load becomes even more complicated if we realize that

reducing the sub-volume sizes gives rise to many more partial images which have to be subsequently com

posited. Dynamic load balancing with these methods opens more problem avenues, such as for correct son-

2 1

ing of the partial images. Finally, acceleration techniques like early ray termination cannot be properly

applied, leading to a lot o f wasteful computations.

2.1.3 Hybrid

A third group of PVR algorithms try to utilize the advantages of both the IP and the OP approaches, and thus

is referred to as the hybrid approach. In Montani, et al.’s [85] hybrid method, the complete volume is repli

cated in clusters o f processors. Each cluster is also assigned with an image partition. The volume within a

cluster is partitioned among the processors that form the cluster. A cluster is responsible for generating the

sub-image of the screen segment assigned to it. Each cluster uses the OP approach to generate its image seg

mentes). The partial sub-images generated by the processors within a cluster are composited within the clus

ter to form the final image o f the screen segment(s). The final sub-image(s) from the clusters are then sent

directly to the display.

Hybrid algorithms seem to be more promising than OP mechanisms, as dynamic schemes for load balancing

is a possibility. Not many researchers have explored hybrid methods for PVR, but preliminary results

reported by Montani, et al. offer lucrative grounds for more active research in this area. On the other hand,

the requirement of volume replication in each cluster may prove to be a bottleneck when higher resolution

volumes are considered for rendering.

2.1.4 Shear-Scale-Warp

The shear-scale-warp (SSW) PVR algorithms were primarily designed to assuage the resampling expenses

in IP methods. This method is also primarily IP. but is preceded by a shear-scale step. The volume slices are

first sheared (and scaled, in case o f perspective), after which the rays can be traced as if they are parallel to

one of the major axes. This considerably simplifies the resampling process during rendering. Regular com

munication of volume data takes place between processors after the shearing, such that processors have the

voxels required for resampling. Following the shear-scale-warp step, the beam o f voxels perpendicular to

the image plane are simply composited to obtain the final color of a pixel: no resampling is needed. Shroder

and Salem [99] and Vezina, et al. [113] apply the shear/scale method for implementing rotations on SIMD

machines, while Amin, et al. [3] and Lacroutte [63] extend the latter’s shear-warp algorithm on DM and SM

(or DSM) MIMD machines respectively.

O ')

SSW algorithms are considered as one o f the fastest ways of rendering volume datasets. Their implementa

tion on parallel machines have accordingly attracted attention. The gain in speed comes at the cost of

slightly poorer quality images, and the possible requirement o f maintaining multiple copies o f the volume

simultaneously in memory [3].

2.2 Issues in Parallel Volume Rendering

In this section, we provide a comprehensive survey of the issues that affect the design, implementation, and

performance o f a PVR system. Highlighting the features and performance of each of the PVR algorithms in

literature not only gives one a quick overview of the popular approaches, but it also allows us to understand

the common trends followed by the researchers. It opens avenues to new and unresolved issues that need to

be tackled. Alternative schemes are thought of, and efficiency becomes the primary driving force for taking

these alternative routes. Of course, a thread joins all the issues together to form one complete efficient sys

tem, and efficiency has to be compromised in one aspect of the design to balance it with another. It may be

impossible to design a parallel algorithm with the most efficient individual features, but this survey reveals

some of the design choices made by researchers to achieve their goal in efficient parallel volume rendering.

Issues such as type of projection, illumination, shading, interpolation, etc. that effect the rendering speed on

uniprocessor machines, are not considered in this survey.

2.2.1 Architecture

Two types of parallel programming paradigms are often used for multiprocessor volume rendering: Single-

Instniction-Mulliple-Data (SIMD) and Multiple-lnstruction-Multiple-Data (MIMD). All the processors in

an SIMD machine perform the same instruction in lock-step fashion. SIMD implementations of PVR algo

rithms generally try to regularize communication so that it is restricted among neighboring nodes only. This

is because regular communication happens over fast networks (e.g., XNet on MasPar MP-1), as opposed to

point-to-point communication over slower global network. Designing algorithms to optimize these commu

nication patterns poses a difficult problem. Coherency that exist in volumes is often advantageously

exploited to make data transfer regular. Shear-scale methods for volume rendering has shown considerable

promise for implementation on SIMD machines, as can be found in several implementations like those

described in [99][113][126].

2 3

The restriction o f regularizing communication makes algorithms designed for SIMD machines not too scal

able. Moreover. SIMD machines are. in general, suitable for OP PVR methods. As seen earlier. OP methods

suffer from numerous drawbacks. Due to these limitations of SIMD machines and the difficulty that arise to

design efficient algorithms on these machines. MIMD machines have now become popular. As the name

suggests, no synchronization is required among the processors for running multiple instructions in parallel.

A special class o f MIMD programming paradigm is the Single-Program-Multiple-Data (SPMD) model. The

same program is spawned to all the processors: the processor in turn executes only a certain portion of the

code, depending on its responsibilities. The responsibilities are assigned based on the pids (processor ids) of

the processors. Most current PVR algorithms use this programming model.

MIMD multi-computers are available in various forms, most o f which can be grouped into the following

three categories: shared memory (SM). distributed shared memory (DSM). and distributed memory (DM)

(see Figure 2.4). DM machines are sometimes referred to as message passing (MP) machines.

Most shared memory MPPs are available with a globally shared bus. (Figure 2.1) which offers low scalabil

ity. It is important to realize which algorithms assume a global shared address space. As seen in the previous

section, these algorithms are less amenable to portability and scalability than those designed for DM archi

tectures.

DSM and DM machines may share the same topology and memory organization, as shown in Figure 2.4.

Nodes may be connected in any of the scalable topologies described in the previous section. In the former,

the physically distributed memory among the processors are accessed using a single address space, each pro

cessor maintaining a portion o f the total shared memory. Examples of a DSM machine is the Stanford

DASH or the Convex SPP multicomputer. Message passing between nodes is kept hidden from the user. The

scalability of the underlying network makes such architectures much more scalable than those which are

bus-based. For DM machines, the address space is local to each processor, and a processor cannot access any

processors’ memory except its own. Communication between nodes is carried out by explicit user-specified

message passing only, which, in general, is more expensive than the low level communication on DSM

machines. Explicit message passing requirements also puts a burden on the user to provide synchronizations

within their PVR programs.

With the advent of fast interconnection networks like FDDI and ATMs, distributed environments will

become the choice of parallel computing. Distributed volume rendering is now becoming popular on net

2 4

work of workstations (NOWs) [117], cluster o f workstations (COWs) and heterogenous environments

[81][135]. These environments generally do not assume shared memory, and thus DM PVR algorithms are

portable to distributed and heterogenous environments.

Object order volume rendering methods are quite amenable for implementation on vector or pipelined archi

tectures as well. Machiraju and Yagel [83] formulated a method that exploits voxel-to-voxel coherency to

reduce transformation calculations. Their method is extremely amenable to vectorization. Stredney, et al.

[106] have reported such an implementation on the vector machine, the Cray Y-MP.

As seen from the above discussion, the efficiency and portability o f PVR algorithms have a strong correla

tion to the kind o f MIMD multi-computer it is originally designed for. Design efforts continue as different

combinations o f topologies, architectures, and methods are tried. From the past efforts, it is evident that OP

methods can be implemented on DM parallel computing environment, while IP methods hold more ground

in SM (DSM) multiprocessors, primarily due to the simplicity and efficiency in portability and design.

Among the authors who have defied these general rules are the IP implementations by Ybo. et al. [135]. Cor

rie and Mackerras [22], Westermann [115], Cohen and Fleishman [19], Amin, et al. [3], and Law and Yagel

[67] [68] [69] on DM architectures, and the OP implementation by Challinger [17] on DSM architecture.

2.2.2 Embedding Topology

The underlying topology o f the interconnection network also has substantial impact on the performance of

the parallel renderer. For example, parallel algorithms designed for hypercubes will not perform optimally

when implemented on meshes, and algorithms optimized for meshes will perform sub-optimally when

ported to tree architectures. Some algorithms, for example, those designed for rings, may be portable, as

rings may be efficiently embedded into other scalable topologies with considerable ease.

Different network topologies evolved primarily to provide network scalability for designing MPPs with

thousands of processors. On one extreme, bus-based processor configurations (Figure 2.1) offer limited

architecture scalability. The processors are connected to each other and to the memory via a globally shared

bus. The memory is organized in an hierarchical manner. Each processor maintains a local hardware cache,

which is much faster than the globally shared memory. The primary reason for the unscalability o f such par

allel processing machines is that the shared bus quickly becomes a source of contention. This is exemplified

by implementations on SGI Power Challenge by Palmer, et al. [93] and then by Lacroutte [63]. Their algo

2 5

rithms show efficiencies of 75% (on 32 nodes) and 74% (on 16 processors) respectively. Machiraju and

Yagel [83] also used the shared bus architecture o f IBM PVS to achieve low efficiency of 60% on only 10

processors.

Shared Memory

cache cache cache cache

proc proc proc proc

globally
shared bus

Figure 2.1. Bus-based configuration o f the network, connecting the processors and the
shared memory. Each node is provided with a processor and a hardware cache.

On the other end of the spectrum lies the scalable networks, like meshes and hypercubes. These network

topologies have shown considerable promise for scalable performance. Literature reveals that the most pop

ular embedding topologies for PVR algorithms have been the 2D and 3D meshes (Figure 2.2a and Figure

2.2b, respectively). Several algorithms have been proposed on these machines, some examples of SIMD

implementations being Vezina [113] and Wittenbrink [126] on MasPar MP-1, and Hsu [49] on DECmpp

12000. Instances of MIMD implementations on meshes include Nieh and Levoy [90] and Lacroutte [63] on

DASH, Corrie and Mackerras [22] on Fujitsu AP 1000, Wu and Brady [128] on WaveTracer Zephyr, Neu

mann [89] on Touchstone Delta, Goel and Mukherjee [37] on MasPar MP 1200, and Law and Yagel [70] on

Cray T3D.

Hypercubes and trees (Figure 2.2d and Figure 2.2c respectively) are other popular topologies. Hypercube

implementations include Schroder and Salem [99] on CM-200, Montani, et al. [85], Wu and Brady [128],

and Elvins [30] on nCube-2, and Schroder and Stoll [100] on the Princeton Engine. Several instances of fat-

tree implementations can be found on CM-5, some of them being Ma, et al, [81], Camahort and Chakravarty

[16], Westermann [115], and Amin, et al, [3], The configuration of a fat-tree is the same as that o f a tree (Fig-

2 6

(a) (b)

(c) (d)

(e)
Figure 2.2. Different topologies: (a) 4x4 2D mesh, (b) 4x4x3 3D mesh, (c) 15-node full
binary tree, (d) 16-node (2̂ *) hypercube, (e) 8-node ring.

2 7

ure 2.2c), except that the former has more links between nodes located higher up in the tree. Multiple links

help to avoid congestion that may arise due to more messages traversing through the upper nodes o f the tree.

Interconnections demonstrating intermediate level scalability include the multi-stage interconnection net

works (MIN) (Figure 2.3) and rings (Figure 2.2e). As such, these architectures have not gained much impor

tance in the parallel rendering community. Only Schroder and Stoll [100] have reported a ID ring

implementation o f their PVR algorithm on CM-2. MINs provide an interim solution to the shared bus con

tention problem, where processors are connected to memory modules by a partially scalable interconnection

network, e.g., the Omega network (Figure 2.3). In order to provide accessibility from each processor to

every memory module, multiple stages of interconnection is required. For example, the number o f stages

required for the Omega network using 2x2 switches is log2P. P being the number of processors. There are P/

2 switches at each stage. The partially scalable interconnection network o f MINs provide partial scalability

to PVR algorithms implemented on them, as is shown by Challinger on Butterfly BEN TC 2000 [17], by

Wittenbrink and Harrington on Proteus [125], and by Rowlan, et al. on IBM SP-1 [96]. The efficiencies

reported by them are 46% (on 100 processors), 69% (on 32 processors), and 22% (on 64 processors), respec

tively.

2.2.3 Scalability

One of the most important issues in designing any parallel algorithm is its scalability. Although all parallel

algorithms follow the rule of diminishing returns, scalable algorithms provide increasingly superior through

put for large number o f processors. An associated term, speedup, is also often used for this measure.

Speedup and scalability are given as follows:

Speedup =
‘ p

Scalability =

where T / and Tp are the rendering times respectively on one and P processors.

While the raw frame generation time indicates the speed of the renderer, scalability o f a parallel algorithm

provides a rough estimate o f the amount of overheads influencing the parallel design. All the above issues.

2 8

cache

proc

proc

cache

proc

cache

proc

meml

mem2

mem4

mem3

cache

2X2 s/w

2X2 s/w

2X2 s/w

2X2 s/w

Figure 2.3. A 4-processor multistage interconnection network (MIN) as used in Omega.

Interconnection
Network

proc

proc

proc

proc

cache

cache

cache

cache

memory

memory memory

memory

Figure 2.4. Distributed memory architecture for PVR algorithms.

2 9

like load imbalance, latency, network congestion, etc. combine to bring down the scalability of a parallel

algorithm, and so measures have to be taken to minimize these parallelizing overheads.

Among the notable ones who demonstrate high scalability are Nieh and Levoy [90] with greater than 80%

scalability on 48 DASH processors. Corrie and Mackerras [22] with 83% utilization on 128 Fujitsu AP-1000

processors, and Montani. et al. [85] with 74% efficiency on 128 processors o f nCube 2. Our algorithms pre

sented in the next three chapters also offer high scalability o f about 75% on 128 processors of Cray T3D. On

the other hand, the parallel algorithm suggested by Elvins [30] is not scalable for more than 8-16 processors

on moderately sized volumes.

2.2.4 Data Partitioning

One of the prime issues in the design of a parallel renderer is the way to partition the data. Neumann [89] has

done a theoretical analysis (verified by experiments) on the relationship between data partitioning and com

munication costs on mesh connected multicomputers. The four most popular ways of partitioning the vol

ume data are: slices, slabs, shafts, and cells (see Figure 2.5). For OP methods. Neumann showed that cells

exhibit the maximum independence of performance to changes in view direction. Performance of the OP

algorithms are view dependent for all other partitioning techniques. This is due to the fact that while slices

and slabs are partitioned only in one dimension and shafts are partitioned by planes in two dimensions, cells

are partitioned in all three dimensions.

That cells offer the best performance among all OP alternatives is confirmed by the fact that it had been the

popular choice o f most OP methods reported in literature. Only Stredney. et al. [106] and Machiraju and

Yagel [83] used slabs for their object-order projection algorithms to take maximum advantage of voxel-to-

voxel coherency and vector processing, and Elvins [30] used slice based partitioning for dynamic load bal

ancing purposes.

Most IP methods have also used cells as the volume partitioning scheme. Shafts were used only by Vezina.

et al. [113] for their shear/scale SIMD implementation, while slices were used by Challinger [17] and Amin,

et al. [3] for dynamic load balancing purposes. Slabs found use in the hybrid MIMD algorithm of Montani.

et al. [85]. and the incremental rotation IP MIMD algorithms o f Cohen and Fleishman [19]. and Shroder and

Stoll [100]. Furthermore, in case of SM (or DSM) MIMD algorithms, the volume is automatically divided

3 0

into pages, as in Nieh and Levoy [90], and in Lacroutte [63], which is the granularity at which communica

tion takes place between processors.

Similar to the volume partitioning, the decision on image partitioning is also dictated by the desire to maxi

mize the amount o f coherency that can be exploited within a partition. Scan-lines. stripes (both vertical and

horizontal), or tiles emerged as the most popular choices. To maintain spatial coherency in IP methods. IPs

should be made as large as possible, which is achieved at the cost of poor load balance (see Section 2.2.6).

Thus a compromise is reached by losing coherency in order to equalize load more effectively. Tiles have

been shown to maintain more coherency than scan-lines, because of their compact space-filling attributes.

Tiles have been used by Nieh and Levoy [90] and also by Law and Yagel [68] [69] in the ActiveRay and

RayFront algorithms described in Chapter 4 and Chapter 5 respectively, while stripes were the choice of

Challinger [17], Yoo, et al. [135], and the CellFlow algorithm proposed by Law and Yagel [67] (described in

Chapter 3).

In several O P methods, image is not partitioned. Individual processors generate the complete image from the

sub-volume present locally. These partial images are then composited in the final compositing step. In case

the screen is partitioned, processors send the respective portions of the images to appropriate processors,

where the individual sub-images are first sorted and then composited to form the final image. Ma, et al. [81]

propose a recursive image partitioning technique that achieves good load balancing during the compositing

stage also.

2.2.5 Partition Distribution

Once the volume and the image are partitioned, they are distributed to the processors. Partition distribution

is generally done in such a way so as to exploit coherency and minimize communication and other parallel

ization overheads. It is to be noted that volume and image partition distributions do not function indepen

dently of each other. For example, for IP methods, the image is partitioned and distributed to processors,

while the required volume segments are fetched from other nodes on demand. Once the final image is com

plete for the image partition, the volume present locally will conform with the image partition.

Although partition distribution and load balancing are separate issues, there is a close resemblance between

the two. For both IP and OP methods, there are two ways of distributing partitions: static and dynamic. For

static distribution in IP methods, several IPs are generated (typically, # of IPs = k x # of processors, where k

31

(a) (b)

\

\

\

\

\

s

SI

N

(c) (d)

Figure 2.5. Volume partitions: (a) slices, (b) slabs, (c) shafts, (d) cells.

32

is an integer), these IPs are then distributed to the processors in a block manner (in case k= l). or in an inter

leaved or random manner (in case k > 1). This approach is taken in methods proposed by Hsu [491. Cohen

and Reishm an [19], and in several methods proposed by Law and Yagel [70]. Interleaved or random static

IP distributions are more apt for static load balancing among processors than block distribution.

Even interleaved or random IP distribution is often not sufficient to balance the load among processors.

Dynamic schemes for IP assignment are then adopted. For example, Corrie and Mackerras [22] and Wester-

mann [115] use the worker -arm paradigm to assign IPs on-demand to the working processors. In Nieh and

Levoy’s [90] proposal, IPs in the form o f tiles are initially distributed to the processors in a static manner.

During rendering, tiles belonging to one processor may be “stolen” by other idle processors depending on

the work load at the processors.

For OP methods, dynamic OP distribution is sometimes difficult to achieve, as the compositing stage

demands the images to be sorted in a certain order, although Challinger [17] does resort to this technique by

distributing blocks of volume (cells) to processors on-demand. and El vins [30] distributes slices of the vol

ume on-demand. Even static interleaved OP distributions are not particularly helpful, as the larger number of

partitions result in a large number o f partial images, proportionately slowing down the compositing stages.

2.2.6 Load Balancing

One o f the most crucial factors affecting the efficiency of a parallel algorithm is the load balance among the

participating processors. The unpredictability of the scene and ray paths in graphics makes the issue of data

and computation distribution a challenging task. Any trivial distribution scheme is prone to load imbalance

among the computing nodes. Some processors will be unfairly assigned more work than the other. This, in

turn, leads to unacceptably poor speedup (and thus low scalability). Two approaches have been taken for

attaining load balance: static and dynamic. Static load balancing schemes determine the computation distri

bution a priori, which remains unaltered during run-time. In contrast, dynamic load balancing schemes

assign computations to the processors as and when required.

The partition distribution schemes discussed above has a one-to-one relation to the way load balancing is

achieved. Static [106][69] and dynamic [22][90][115] load balancing schemes for IP methods are as

described above. Similarly, [17] and [30] provide examples of dynamic load balancing for OP methods.

3 3

In addition to the worker-farm and task stealing paradigms used for load balancing, coherency is often

exploited to predict the load on each processor. For example. Palmer, et al. [93] use their first moment o f

work-load distribution to determine the optimal IP that will balance load. Similarly. Montani. et al.'s hybrid

scheme [85] involves dynamic image partitioning based on the work-load estimated from earlier frames.

During the rendering stage, OP methods are automatically load balanced if all the voxels are processed, irre

spective o f whether they are occupied or empty. In cases where the empty voxels are skipped over, load

imbalance arises with CPs o f equal size. Unequal sized sub-volumes, determined in a preprocessing step,

partially alleviates the load imbalance problem in these algorithms. As an example. Rowlan. et al. [96]

adjust the location o f the OP cutting planes to improve performance.

A majority o f object decomposition methods neglect the load balancing issue during the image compositing

stage. Compositing of the sub-images is generally done in a centralized or a tree-based manner. These

approaches are prone to load imbalance particularly when the image size is large. For example, in the cen

tralized scheme [30]. all the processors except the compositing processor are idle during the compositing

stage. Similarly, during hierarchical compositing [83]. recursively half the number o f processors at each

level of the hierarchy becomes idle. Ma. et al. [82] propose a novel solution to load balancing during the

compositing stage using their binary-swap algorithm. In this method, the complete image at each processor

is recursively halved and sent to its partner processor. This continues in several stages (logiP). ultimately

each processor is left with the final image of just one small IP. .All the processors participate in the compos

iting procedure, and remain busy until the final image is generated.

2.2.7 Coherency

In graphics, coherency has been defined as the uniformity that exists in time and space [108]. Different types

of coherency pertaining to parallel rendering are spatial coherency, temporal coherency, volume coherency,

volume-space coherency, and network coherency. While spatial and temporal coherency pertain to IP algo

rithms. volume or voxel-to-voxel coherency are more applicable to OP approaches.

A fair amount of coherency exists between slowly changing frames in an animation sequence. Such tempo

ral coherency has been exploited by Cohen and Fleishman [19] and by Law and Yagel [67] (described in

Chapter 3) to minimize the data transferred between adjacent processors in case of incremental screen rota

tions around the volume. Both these algorithms determine the small amount of additional data which is

3 4

needed by each processor when the screen rotates around the volume by a small amount. Amin, et al. [3].

determine the incremental data transfer required for rotations using the Lacroutte-Levoy shear-warp algo

rithm [62].

SM (or DSM) multiprocessors provide a convenient platform for IP approaches, as uniprocessor volume

rendering codes are easily parallelizable on these machines. Such SM machines use their hierarchical hard

ware cache structure to exploit spatial coherency and reduce latency overheads. Challinger [17], Nieh and

Levoy [90], and Lacroutte’s [63] SM (or DSM) implementation of IP algorithms exploit spatial coherency

only to the level o f the (small) hardware cache. On SM machines. Palmer, et al. [93], exploit temporal coher

ency as well.

Due to the high cost of such hardware caches, they are generally small in size, and as such are prone to

thrashing with increasing volume sizes. To circumvent this undesirable situation, some authors like Corrie

and Mackerras [22], Law and Yagel [69] (Chapter 4), and Westermann [115] have extended the exploitation

level of spatial coherency by taking advantage o f the local memory as well. They use part of the local mem

ory as a software cache, where data fetched from remote nodes may be stored. This provides a much larger

local working cache area for exploiting spatial coherency.

In the object migration approach proposed by Law and Yagel [69], and described in Chapter 4, spatial coher

ency has been raised to yet another level, as no local memory is reserved for static data allocation. Volume

partitions migrate and replicate at nodes, and the complete local memory is available to be used as a soft

ware cache. They also propose a directory-based scheme for determining the location of volume segments in

the ensemble of processors.

The amount o f spatial coherency that can be exploited is a function of volume size. With colossal volumes,

thrashing begins to deteriorate the performance, as the same portions o f the volume has to be fetched multi

ple times across the slow network. To avoid such performance-limiting situations, several screen traversal

schemes, like scan-line, spiral. Hilbert curve. Peano curve, etc., have been proposed [7] [136] to exploit vol

ume coherency. These methods try to traverse the pixels on the screen in such a manner that objects once

fetched may be used over and over again before they are discarded using some replacement strategy. As vol

ume size increases compared to cache size, any of these screen traversal algorithms are prone to thrashing.

Law and Yagel [68] has proposed a method (Chapter 5) that exploit both volume , spatial, and temporal

coherency simultaneously to eliminate thrashing in parallel volume rendering o f colossal volumes.

3 5

Coherency also exists in volumes that can be utilized to reduce voxel processing times. This type o f coher

ency is not necessarily applicable to parallel implementation only, but has been adopted in several PVR sys

tems. For example. Machiraju and Yagel [83], and Stredney, et al. [106] use the voxel-to-voxel coherency

existing between adjacent voxels, beams, and slices to resort to incremental calculations for transforming

object-space voxels to screen-space. Similarly, Lacroutte [63] and Amin, et al. [3], exploit volume coherency

to skip over empty portions, and exploit volume coherency to skip over pixels which have already accumu

lated enough opacity. Such coherency helps speed the rendering o f sparse volumes by a factor o f more than

two.

2.2.8 Latency Hiding

The term latency hiding refers to the ability of the algorithm to overlap communication with useful compu

tation. Communication is the main source of overhead in any parallel algorithm design, and in most cases, it

is inevitable. Performance o f the parallel algorithm can be sufficiently improved by overlapping this com

munication with computation. Latency hiding can be achieved to some extent by either prefetching data or

by postponing processing.

Surprisingly enough, latency hiding has not gained much attention among the parallel graphics community.

This may be due to the fact that in these applications, latency hiding is difficult to achieve. As the scene and

the ray paths are unpredictable, it is difficult to either predict or prefetch objects. Coherency can sometimes

be exploited to predict which objects may be needed in the near future. For example. Law and Yagel

[67][69] have developed two schemes for hiding latency (Chapter 3 and Chapter 4). In [67], a look-ahead

scheme is used to fetch objects by predicting the motion of the screen, and in [69], computations of rays

waiting for a certain object are postponed while the requested object is being fetched. Overlapping is

achieved by immediately processing only those rays for which objects are locally available, while a request

is sent for objects that are missing. Montani, et al. [85] also hides latency by postponing ray processing,

while Westermann [115] exploits coherency to pre-fetch required data and hide latency.

Some authors, like Lacroutte [63], have opted to consider hardware caching as yet another way to hide

latency. In his SM implementation, volume segments are fetched and stored locally in extremely fast hard

ware caches. These data, in turn, can be used during the processing of other rays, or during the generation of

other frames, depending on the size o f the cache. Fetching data locally from the cache, instead o f from

remote memory, drops the latency of these fetches substantially.

36

2.2.9 Network Congestion

Only a few authors have taken the detrimental effect o f network congestion into account for designing their

parallel rendering systems. If possible, communication should be restricted to neighboring processors only.

Global communication patterns, all-to-all broadcasts, and non-neighbor communication are some incidents

that give rise to severe network congestion. Such communication patterns are sometimes regularized so that

the network bandwidth can be utilized to its maximum extent.

Most SIMD implementations [100][113] resort to regular communication between nodes. In these architec

tures. regular communication takes place over efficient channels (e.g.. XNet on M asPar-1). as opposed to

point-to-point communication over the slower global network. Goel and Mukheijee propose an optimal

algorithm [37] on M asPar-1200 that does the compositing o f the segmented images in logip^ steps on a

hypercube architecture, p^ being the total number of processors.

In case of MIMD machines, avoiding network congestion is a more difficult task. Some algorithms designed

for these machines exploit temporal coherency to accomplish nearest neighbor communication. The incre

mental rotation algorithms proposed by Law and Yagel [67] (in Chapter 3). Cohen and Fieshman [19], and

Amin, et al. [3] try to restrict the communication only between adjacent processors. They resort to regular

communication only by shifting incremental amounts o f data between adjacent processors. Moreover, if the

algorithms are carefully designed such that adjacent IPs are assigned to adjacent processors, the required

volume data is most likely to be available at close-neighboring processors only, as evidenced by Law and

Yagel in [69], and by Corrie and Mackerras in [22]. Wittenbrink [126] also achieved non-conflicting com

munication patterns with his parallel permutation-warp approach. In this method, all the source and the tar

get (transformed) processor pairs are connected by non-conflicting paths between them, thus avoiding

network congestion during the transformation stage.

OP methods generally do not resort to communication during the rendering stage. During the compositing

stage also, hierarchical image compositing methods can avoid congestion by mapping a tree in the underly

ing network. Binary-swap compositing involves some network congestion as the communication of the

image segments is generally global. But, at the same time, the size o f the image segments decreases as the

distance of communication increases, thus keeping the congestion under control. Centralized compositing

schemes perform the worst, as the channels near the compositing processor are targets o f severe congestion.

3 7

2.2.10 Portability

Last but not the least, portability plays an important role in the parallelization process. With a sea o f parallel

commercial machines, a parallel algorithm designer has to keep in mind the ease with which an algorithm

designed for a particular parallel machine can be ported to other parallel machines. For example, most

SIMD parallel volume rendering algorithms are portable to other SIMD machines with similar topology, and

uniprocessor algorithms can be easily ported to SM (or DSM) machines without much code modification.

Among the specific algorithms. Ma. et al.’s [81] binary swap algorithm is well suited for hypercube net

works. while methods using hierarchical compositing are suitable for tree architectures. In general. DM

implementations can be easily ported to DSM environments, but not vice versa.

2.3 Summary of the Issues in PVR Algorithms

Figure 2.6 summarizes the various issues discussed in the last section.

3 8

Method

(a)

Image
Partition

Object
Partition
(OP)

Hybrid Shear-Scale
Warp
(SS)

with Ray Casting (RC) with voxel projection (VP)

Volume Partition

(b)

Slices Slabs Shafts Cells

(c)

Screen Partition

Scan-Lines Slabs Pixels Tiles

(d)

Partition Distribution

Static Dynamic

Contiguous Random

Interleaved

On-Demand Task-Stealing

Figure 2.6. Summary o f the methods and Issues arising in the design o f PVR algorithms, (a)
methods used for PVR. (b) volume partition schemes, (c) image or screen partition schemes,
(d) partition distribution methods, (e) load balancing schemes, (f) types of coherency
exploitation, (g) ways to hide latency, (h) network topologies. Summary of the methods and
issues arising in the design o f PVR algorithms, (i) communication patterns, (j) architectures,
(k) programming models. (Continued on next two pages)

3 9

Figure 2.6 (contd.)

Load Balancing

(e)
IP methods

OP methods

Staticy
Interleaved
IP Distribution

Dynamic Static Dynamic

I I
IPs on-demand Task-Stealing Adjusting OP OPs on
(Worker-Farm) of IPs region boundaries demand

(f)

Coherency

Spatial Temporal Volume Image-Space
(frame-to-frame) (voxel-to-voxel) (ray-to-ray)

(g)

(h)

Pre-fetching

Unscalable

I

Latency Hiding

Bus-based

Postponing
Calculations

Network Topology

Rings

Hardware
Caching

Moderately scalable Highly scalable

MINs Meshes \ Clusters

Hypercubes

40

Figure 2.6 (contd.)

Communication

(i)
Regular

Nearest
Neighbor

Close
Neighbors

Random

I
Global

Ü)

Shared Memory
(SM)

Architecture

Distributed
Shared Memory
(DSM)

Distributed
Memory (DM) or
Message Passing (MP)

MPI
WANNOW

LANCOW

Programming Model

(k)

SingL
Multiple Data

:le Instruction Multiple Instruction
Multiple Data (MIMD)
Multiple Instruction

Single Program
Multiple Data (SPMD)

41

2.3.1 Summary of the Features of PVR Algorithms

In this section, we summarize the features o f a number of PVR algorithms proposed in literature. The tabular

representation o f the summary reveals some areas where sufficient attention has not been diverted in the

past. Table 2.1 gives a summary of the features o f the PVR algorithms. The following notations are used in

the table: IP (Image Partitioning), RC (Ray Casting). VP (Voxel Projection). Sp (Splatting). PW (Permuta

tion Warping). SS (Shear-Scale). SSW (Shear-Scale-Warp). For example. OPwVP means it is an object par

tition method where the partial images are generated by voxel projection o f the sub-volume available

locally. in the table indicates that either the information is not available in the paper, or the feature was

not considered in the reported implementation.

42

First
A uthor
[ren M ethod

Data
Part

Part
Distrib

Load
Balancing Coherency

Latency
Hiding Comm Portability

Gold-
was-wr [38]

OPwVP cells static - - - - -

Fuchs [34] IP - - - - - - -

Ohashi [92] OPwVP cells static - - - - -

Kaufman
[52]

VP beams inter
leaved

- - - - -

Schroder
[99]

SS vo.teIs to virtual
procs

- - - global -

Yoo[1351 IP cells dynamic spatial most paral
lel architec

tures

Challinger
[IT]

IP slices inter
leaved

scan-lineson
demand

spatial - global SM

OPwVP cells blocks on
demand

Vezina
[113]

SS shafts - automatic
during proj

spatial - nearest
neighbor

-

Momani
[85]

hybrid slabs based on
estimated
workload

postponing
ray pro
cessing

between
adjacent

nodes

Nieh [90] IP pages inter
leaved

dynamic
using tiles

queue

spatial only dur
ing adap

tive image
sampling

global SM

Schroder
[100]

IP slabs by pipelin
ing

nearest
neighbor
by circu
lar shifts

SIMD

Stredney
[106]

OPwVP slabs - automatic voxel-to-
voxel

- - -

Elvins [30] OPwSp slices on
demand

slices on
demand

image - global -

Hsu [49] OPwRC cells cyclic by cyclic
distribution

- - global -

Ma [81] OPwRC cells binary swap
ping during

1C

Corrie [22] IP cells - worker farm spatial - neighbor DM

Wiiten-
brink[l26]

OPwPW slabs
or

cells

static non con
flicting

Wu[128] summed
proj

- - - temporal - - binary tree

Table 2.1.Summary of the features o f the PVR algorithms (continued on next page)

43

Table 2 .1 (contd.)

First
Author
[ref] Method

Data
P art

Part
Distrib

Load
Balancing Coherency

Latency
Hiding Comm Portability

Cinuhoct
[16]

OPwRC cells static - - - nearest
neighbor

-

Neumann
[89]

OPwRC cells static - - - global -

Machiraju
[83]

OPwVP slabs static automatic voxel-to-
voxel

- non con
flicting

binary tree

Rowlan
[96]

OPwRC blocks static adjusting
cuning
planes

global DM
machines

Wester
mann [115]

IP cells

■
dynamic;
tiles on
demand

spatial pre-fetch
ing

global MIMD

Goel [37] IP cells static - - - tegular hypercubc

Palmer [93] IP replicated
in clusters

dynamic
workload

distribution

temporal only to
display
images

Cohen [19] IP slabs dynamic static temporal - adjacent
procs only

MIMD

Amin [3] SSW slices dynamic dynamic
with scan

lines

temporal
and volume

local
neighbor

hood

MP
machines

Lacroutte
[531

SSW pages inter
leaved

interleaved
and task
stealing

spatial and
volume

global SM and
DSM

machines

Law [67] IP cells dynamic static with
cyclic tile

distribution

temporal pre-fetch
ing

adjacent
procs only

MIMD

Law [68] IP random volume pre-fetch
ing

random

Law [69] IP dynamic spatial and
temporal

by post
poning ray
processing

nearest
neighbor

Witten
brink [125]

OPwPW cells static - - - global MIMD
machines

44

2.3.2 Summary of Performance of PVR Algorithms

Table 2.2 summarizes the performance of all the PVR algorithms mentioned in the last section. We have

tried to be as comprehensive as we could. For example, because of space constraints, not all results pre

sented in the paper are reported here. Interested readers are referred to the corresponding papers for detailed

information, like the lighting model (if used), filter size used (for anti-aliasing), and number o f iso-surfaces

rendered. Also, memory compromises made are not reported here. For example, several authors like Yoo, et

al. [135] and Lacroutte [63] compromise memory for speed. They store various features like normals, or

even pre-shaded volumes to gain speed during parallel rendering. Attempt has also been made to be as con

sistent as possible across papers, so as to provide a fair comparison between different methods. For example,

similar dataset sizes are reported wherever possible.

In Table 2.2, the following notations are used: In the Arch column, SM (Shared Memory), DM (Distributed

Memory or Message Passing), DSM (Distributed Shared Memory), SIMD (Single Instruction Multiple

Data), MIMD (Multiple Instruction Multiple Data), MIN (Multi-stage Inter-connection Network). DM is

synonymous with machines which use explicit message-passing (MP) to communicate between them.

4 5

First
Author
[ref] M achine Topology Arch

o f
Nodes

Volume
Size

Image
Size

Tlme
(secs/
frame)

Efliden
cy

Goldwasser
[38]

Voxel Pro
cessor

hierarchical - 64 256^ 512- 0.04 -

Fuchs [34] Pixel-
Planes 5

ring SIMD/
MIMD

32 256^ 1280X
1024

0.10 -

Ohashi [92] 3DP hierarchical - -

Kaufman
[52]

Cube - SIMD 512 512^ 512- 0.062 -

Schroder
[99]

CM-200 toroidal hyper
cube

DM/SIMD 64k 128^ 128- 0.324 0.96

Yoo [135] Pixel-
Planes 5

ring DM/SIMD/
MIMD

7 rend
16 GP

128^ 640x512 0.70 -

Challinger
117]

BBN
TC2000

MIN DSM/MIMD 100 500x600x
80

512^ 12 0.46

Vezina [113] MasPar
MP-I

2D mesh DSM/SIMD 16k 256^ 256^ 2.52 -

Montani
[85]

nCube-2 hypercube
(cluster of

rings)

DM/MIMD 128 97^116 350x250 5.14 0.74

Nieh [90] DASH cluster/mesh DSM/MIMD 48 256^ 416- 0.70 0.83

Schroder PE hypetcube DM/SIMD 32k 128^ - 0.25 0.584
[too] CM-2 ID ring 1024 0.028 -

Stredney
[106]

Cray Y-
MP

- Vector - 256^ - 0.71 -

Elvins [30] nCube 2 hypercube DM/MIMD 32 256^x90 2007 2.14 -

H su[49] DECmpp
12000

2D mesh DSM/SIMD 16k 128^112 128^ 0.24 0.36

Ma [81] CM-5 fat tree DM/MIMD 512 256^ 256- 0.90 0.875

Hetero - 32 9.00 -

Corrie [22] Fujitsu
APIOOO

2D torus mesh DM/MIMD 128 256^x109 512- 45.00 0.83

Wittenbrink
[126]

MasPar
MP-1

2D mesh DSM/SIMD 16k 128^ 128^ 0.50 -

Wu[128] WaveTrac
er Zephyr

3D mesh DSM 8k 128^ - 0.19 -

nCube hypercube SPMD 16 0.10

Camahort
[16]

CM-5 fat tree DM/SPMD 64 256^ 23.72 0.935

Neumann
[89]

Touch
stone
Delta

2D mesh DM/MIMD 216 192^ 256- 0.20 0.27

Table 2.2.Summary of performance of the PVR algorithms (continued on next page)

4 6

Table 2.2 (contd.)

First
Author
[ref] Machine Topology Arch

o f
Nodes

Volume
Size

Image
Size

Timc
(secs/
frame)

Efhcicn
cy

Machiraju
[83]

IBM PVS global bus SM/MIMD/
Vector

10 100^ 173- 1.672 0.60

Rowlan [96] IBM SP-1 Otnega switch
(MIN)

DM/MIMD 64 128^ 512- 3.58 0.22

Wester
mann [115]

CM-5 fat tree DM/MIMD 64 256^ 256- 6.60 1.05

Goel [37] MasPar
MPI 200

2D mesh
(hypercubc)

DSM/SIMD 4096 256^ - 11.11 -

Paitner [93] Power
Challenge

global bus SM/MIMD 32 375 MB of
VH

640x486 0.40 0.75

Cohen[19] sim ID ring DM/MIMD - 500^ - - -

Amin [3] CM-5 fat tree DM 128 256^167 256- 0.085 0.29

Lacroutte
[63]

SGI
Power

Challenge

global bus SM/MIMD 16 2 5 6 ^ x 2 2 5 256- 0.077 0.74

DASH clusters/2D
mesh

DSM/MIMD 32 0.17 0.61

Law [67] 0.38 0.62

Law [68] Cray T3D 3D torus DM/SPMD 128 256^ 256- 0.20 0.58

Law [69] 0.16 0.78

Wittenbrink
[125]

Proteus
(Intel
i860)

clusters/cross
bar

DM/MIMD 32 256’ 256- 4.32 0.69

4 7

2.4 Open Issues

Table 2.1 and Table 2.2 reveal some of the unexplored issues in parallel rendering. For example, the empty

entries in the “Latency Hiding” column of Table 2.1 indicates that this important issue has largely been

neglected in earlier systems. In this dissertation, we propose two ways to achieve considerable latency hid

ing of locally unavailable objects - first, by predicting and prefetching data [Chapter 3], and second, by post

poning computations [Chapter 4].

The “Comm” column also shows that most researchers did not consider the communication factor in their

design. Global communication o f data is prevalent, which leads to higher latencies and higher network con

gestion. Near neighbor communication tends to bring down these overheads. Our communication schemes

exploit spatial and network coherency such that global communication o f large data is avoided and data

movement is restricted to near neighbor only.

Portability is yet another factor which has not gained satisfactory attention. Algorithms that are particularly

designed for shared memory machines cannot be easily ported to distributed memory architectures. Several

systems have been optimized to work better on certain topological networks, that do not perform well when

ported to other architectures. Our algorithms do not assume any underlying topology, and are well suited for

distributed memory implementations, even on such communication limited environments like NOWs and

COWs.

A closer look at the performance table (Table 2.2) also leads to several unexplored avenues in parallel ren

dering. First, most of the researchers have restricted themselves to rendering low to medium resolution vol

umes (128^ to 256^). The primary reason may be the inefficiency caused by constant thrashing in relatively

small memory systems. Large resolution volumes (>5I2^). like the Visible Human dataset (32 GBytes),

require new methods that avoid the thrashing problem. In Chapter 5 and Chapter 6. we propose a versatile

scheme that has provided optimal performance in such cases on both uniprocessor and multiprocessor

machines.

The most vital issue is the efficiency of a parallel algorithm. Algorithms that do not take sufficient measures

to remove the parallelization overheads are prone to lower efficiencies on larger machines (with more pro

cessors). On the other hand, a careful scrutiny for removing these overheads results in higher scalability, as

evidenced by our algorithms.

4 8

As Neumann mentions in [89], parallel volume rendering with object migration has not been explored

before. Nieh and Levoy [90] point out that an implementation of PVR on COMA machines may be useful.

We show such an implementation on DM machines (Chapter 4). With NOWs becoming more popular, our

implementations are more amenable to be ported to such multicomputer and heterogenous environments. By

exploiting various types of coherency, like temporal, spatial, and network, the proposed algorithms try to

improve the computation to communication ratio, attempt to hide the latency of locally unavailable objects,

reduce network congestion, optimize the use o f local memory, and provides independency to the underlying

topology. Our solutions to these issues have brought the performance o f shared memory and distributed

memory implementations of rendering algorithms closer; we report almost real-time speeds of 20 frames/

sec. and interactive speeds o f 5 fnunes/sec. for 128^ and 256^ volumes respectively. In addition, eliminating

these overheads have resulted in the scalability o f our algorithms far superior to those reported in literature.

Certainly, several other areas like dynamic load balancing and optimal algorithm embedding need to be

addressed, but in this dissertation, we have tried to eliminate some o f the more daring overheads infesting a

parallel rendering system. Alternative schemes are proposed and an attempt has been made to bring the scal

ability as close to linear as possible. Future research must be dedicated to alleviating these overheads, so as

to improve the efficiency and scalability o f the parallel rendering system.

49

CHAPTERS

EXPLOITING TEMPORAL COHERENCY: THE CellFlow ALGORITHM

In the first phase of our research, we focussed our attention on data distribution. local memory utilization,

and load balancing issues. Previous IP algorithms distributed data statically to processors, which where then

fetched and cached locally only on demand. We determined that instead of statically allocating parts of the

volume to each processor, the local memory utilization could be optimized if only the required data were

made locally available; that is. data which will be needed by a processor to generate its assigned portion of

the screen. Depending on the local memory availability, this data allocation scheme can be extended to pro

vide what is termed as frame-to-frame or temporal coherence, where data are allocated in such a way that a

processor is self-sufficient to generate a number of slowly changing frames with no need for additional com

munication. In this chapter, we describe an IP PVR method, called CellFlow. In addition to exploiting tem

poral coherency, it achieves effective latency hiding by pre-fetching non-local objects, and attains significant

load balance using an interleaved IP distribution mechanism.

CellFlow is an animation system that exploits frame coherency to implement a look-ahead scheme of object

dataflow. The implementation of this scheme uses the communication features o f modem scalable multi

computers to achieve good speedup by means of latency hiding. We demonstrate the performance of our

approach in the field o f volume rendering by implementing incremental rotation o f the volumetric object

about its center. The main advantages o f the algorithm are: its simplicity, its optimal embedding in popular

network topologies, and minimal, congestion-free communication among processors. Results are shown for

implementation on the Cray T3D. a distributed memory 3 0 torus architecture. Computation and communi

cation load balancing issues among processors are also addressed.

5 0

3.1 CellFlow: The General Method

CellFlow is a distributed memory parallel animation system which is used to generate a sequence o f images

by slightly changing the view position in each step. We have implemented one specific aspect o f CellFlow -

the incremental rotation o f voxel-based objects, where the frames are rendered using parallel projection ray

casting (Section 3.3), and shown how various types o f coherency can be exploited to attain good speedup.

We assume that during an animation process, the screen position changes in a smooth o r incremental man

ner. The type o f objects one needs to render (e.g, surfaces, volumes) and the rendering algorithm (e.g. z-

buffer. ray casting) used to render the volume are not restricted by the CellFlow scheme.

In the CellFlow approach, each processor is responsible for producing the final image o f exclusive screen

partitions, called regions o f the 2D screen. The 3D model (e.g. polymesh, volume) is divided into cells by

embedding the model in a 3D regular grid (similar to [17] [22]). These cells are the basic unit o f communica

tion. much like the notion of pages in memory systems. Whenever a processor determines that the extent of

a cell lies within the space rendered to its screen region, this cell is transferred as a single unit to the proces

sor. hence the name CellFlow. The initial data distribution is done in such a way that each processor has all

the data required to generate the image for its region o f the screen. In Figure 3.1. the dark grey squares rep

resent those cells available locally at the processor that are assigned to render the region R from the view

point A. Thus, for screen position A no communication is needed between processors to generate the final

image in region R.

In order to avoid the need for communication in the case o f slight changes in rendering parameters, padding

is provided around the initial data distribution (light grey squares in Figure 3.1). so that even if the viewer

changes its position slightly, each processor can still generate the complete image of the region assigned to it

with no need for data communication. The amount o f padding which can be provided depends on the addi

tional memory available at each node, and determines the range of viewing positions and orientations that

can be rendered without the need of additional cells. This range o f views is referred to as a phase. As the

viewer position changes in small increments, it approaches the boundary of the phase. When this boundary

is crossed, not all the data needed is available locally and communication between processors becomes inev

itable.

Depending on the direction of movement o f the viewer, we propose a look-ahead data acquisition scheme

for latency hiding. As soon as the amount of effective padding falls below a certain limit, additional cells are

51

cell

object
space

Figure 3.1 Object space is divided into cells. If all dark cells are locally available, the screen region R
can be rendered from viewpoint A without any communication, but not from point B. If padding is also
locally available (light grey cells) rendering from A. B and many other points in between does not
require any communication. Some top white cells may be needed when the viewer moves to point C.

2D object-space

\ slab4 \

1D image plane
(screen)

Figure 3.2 A set o f 2D objects being projected on a ID image plane, which is divided into 4 disjoint
parts and assigned to 4 processors (PI. P2, P3, P4). The object data is distributed in such a way that
the ith slab of data is sufficient to generate the final image for that processor without communication.

5 2

acquired from other processors. A minimum padding is thus dynamically maintained, and most o f the com

munication latency is hidden by the rendering process. The processors continuously send requests to other

processors for data required to maintain their padding. While these requests are carried out in the back

ground by a dedicated communication processor (router), the processor is free to render the data that it cur

rently has. If we assume gradual changes in viewing parameters, the padding will always guarantee that a

processor never has to wait for a missing cell. In Figure 3.1. when the user moves from A to B. the system

will request some o f the top white cells in anticipation o f continued motion towards point C.

Some replacement policy is used for discarding cells that are not needed. Depending on the direction of

movement of the viewer, data which are outside the padding region and farthest away from the direction of

viewer movement are discarded first. In Figure 3.1. when the user moves from A to B. the bottom part o f the

pad (light-grey area) will be discarded first.

In the next section, we discuss some design issues such as screen subdivision, optimal selection o f the pad

ding. load-balancing among processors, elimination o f network congestion, and efficient algorithm embed

ding. The main motive for considering these issues is to minimize the overheads inherent in the

parallelization process, thus attaining better scalability.

3.2 Design Issues

3.2.1 Screen and Scene Subdivision

Figure 3.2 shows a ID screen that has been equally divided into four contiguous disjoint segments. Adjacent

image space segments are assigned to adjacent processors (PI. F2. P3, and P4). The object space is parti

tioned into cells which are then distributed to processors in a way such that each processor will have in its

local memory all the cells required to generate the final image of its screen segment (for parallel projection

ray-casting). It is assumed that the ID screen is oriented along the x-axis. with the z-axis perpendicular to

the screen as shown in Figure 3.2. The portion of object-space contained within two parallel lines — signify

ing the object partition boundaries of two adjacent processors - is referred to as a slab o f the object (grid).

The thickness of the slab is given by the width of the screen divided by the number of processors. In addi

tion. some padding is also provided to each processor on either side o f its slab (not shown in Figure 3.2). The

amount of padding depends on the amount of local memory available.

5 3

3.2.2 Load Balancing

It is imperative that the rendering and communication load among the processors will be unbalanced with

block distribution o f the screen (as described above). Instead, a fine grain block-cyclic distribution scheme is

used here. The screen is divided into many more parts than the number of processors. Then, these screen

subspaces are distributed to the processors in a cyclic fashion. This static block-cyclic distribution of data

provides a simple but efficient solution to load balancing. With increasing cyclicity, good load balancing can

be achieved both in communication and computation.

3.2.3 Algorithm Embedding

The computational mapping of the CellFlow algorithm to an underlying topology is done in such a way that

the dilation, congestion and expansion of the embedding is optimal. The block partitioning of the image and

the object space fits best to a linear array of processors. In the linear array, adjacent processors are assigned

adjacent screen segments. A ring of processors fits best for the block-cyclic partitioning described above (for

load balancing). The embedding of our algorithm is critical as a linear array or a ring can be optimally

embedded in most popular topologies like the 2D and 3 0 meshes or the hypercube.

3.2.4 Network Congestion

Network congestion is avoided by observing that all the cells needed by a processor to set up a subsequent

phase are either already available at its nearest neighbors, or they will be available at the nearest neighbors

before the end o f the current phase. This implies that before the culmination o f the current phase, every pro

cessor’s needs can be fulfilled by its nearest neighbors only, irrespective of the size of the phase. This infor

mation is also useful for avoiding deadlock due to filling up o f buffers.

3.2.5 Memory Mapping

An efficient method o f data storage in memory must be devised. The cells received at the end o f a phase

should be placed in memory along with the cells which are already present locally. The memory update

scheme should ensure that cell retrieval during the rendering phase does not become very complicated and

time consuming. We use a scheme similar to a complete directory for keeping track of all the available cells

in memory, and a LIFO stack to keep track of free cell space in memory. Each processor maintains the local

5 4

availability information about all the cells in object-space and the location o f all the cells which are present

locally.

3.2.6 Latency Hiding

The algorithm utilizes the communication routers available with most modem multi-computers to hide the

latency. Such routers provide a valuable resource for data acquisition in our method. Depending on the

direction of movement of the screen, we resort to a look-ahead data acquisition scheme (also called a pre

fetching scheme). A processor predetermines the required cells (i.e.. cells not available to maintain a mini

mum padding) using this information and initiates the communication process between the processors. The

processors use their routers to send the requested data, so that at the end of the current phase, the requested

data for the next phase has already arrived at the receive buffers of the requesting processors. This sort of

look-ahead data acquisition eliminates communication time altogether (except message start-up times),

effectively achieving wire-hiding or latency-hiding.

3.3 Volume Rendering Incremental Rotation

The parallel volume visualization technique described here for animating rotations o f objects, exploits

coherence between scenes (temporal coherence) when there is little change in the viewing parameters. To

reduce the complexity in the description o f the algorithm, we illustrate the method for the case o f a 2D grid

projected on a ID “screen” as shown in Figure 3.3. The 3D extension of the algorithm is described at the end

of this section.

The image and the object space partitioning described above achieve a situation where neither communica

tion of data nor combining of images is necessary to generate a single image. This condition holds as long as

the screen remains static at the current position. Now we extend this method to generate a sequence of

images by rotating the screen in small incremental angles about the center of the object. It minimizes com

munication by requesting from other processors only those cells that are not currently available in the local

memory. As seen in Figure 3.3a. when only a small change in the view angle is desired, most o f the data are

already available in the processor (black area). Some small amount of information is needed from other pro

cessors (grey area) and some information can be discarded after passing them to other processors that might

need it (striped area). The two wedge shaped grey areas in Figure 3.3 correspond to the padding in the Cell

Flow scheme. This flow of voxel data between adjacent processors gave our earlier method its name: Voxel-

55

Flow [65]. As the rotation angle increases, the size o f the black area decreases, that is, most o f the data has to

be brought in (communicated) from other processors.

Depending on the availability of local memory, we can assign and store additional data in each processor in

a way such that the processors now hold cells needed for generating images for a range of rotational angles.

Instead of assigning a slab o f object-space to a processor, we assign a cross-section of the object-space

which looks like a skewed X, as shown in Figure 3.3b. For generating a sequence o f images in small rota

tional increments between the initial and the final screen positions, the only part o f the object needed by this

processor is shown by the shaded area. A larger range of angles would demand a larger memory to store a

wider X-like cross-section o f the object, and will inflict larger amounts o f data replication.

The range of rotations where all the images can be generated with the available data is referred to as a rota

tion phase, which is a special case of the general phase we defined previously. The maximum angle by

which the screen can be rotated within a rotation phase is referred to as the phase rotation angle (PRA). In

Figure 3.3b a phase with PRA=25° is supported. As all the required cells are available at each processor for

generating images within this range, no communication of cells is required within a phase. Communication

takes place only after the screen reaches its final position in the PRA, when redistribution of data is needed.

The communication is kept to a minimum by requesting and transferring only those cells which are not

locally available but will be needed in the next rotation phase.

The 2D incremental rotation scheme described so far is extended to 3D by extruding the 2D object (see Fig

ure 3.4). There is no subdivision of the volume in the extruded dimension (Y-dimension in this case). Each

cell now contains a beam o f voxels. The screen is divided in the form of stripes and distributed to the proces

sors in the same manner as the segments in the ID screen case. The advantage of this type of object and

screen subdivision is that the storage and computational complexity o f the postprocessing is independent of

the Y dimension. A processor has to calculate the cell requirement for one slice of the volume only, and this

remains the same for all the other slices. Rotations about the three axes can also be considered indepen

dently. For example, rotations purely about the Y-axis are handled exactly as in the ID screen case. Abso

lutely no extra communication is required for screen rotating purely about the X-axis. Rotations about the

screen’s Z-axis can be attained simply by rotating the image itself.

56

Final screen
position

Initial screen
position sial Y

Final screen
position

Initial screen
position

(a) (b)

Figure 3.3 (a) When the viewpoint moves from the initial screen position to the final
position the grey area contains the data elements that need to be brought in from other
processors, the striped area can be discarded, and the black area the data that need not
be moved, (b) If the processor contains all the information in the shaded area then all
viewpoints in the 25° range can be accommodated without any communication.

16 voxels

Figure 3.4 An object of size 16x16 is divided into cells of size 4x4 each. Each cell thus
contains 16 voxels. The top-left cell is extruded into a 3D cell, which contains 4x16x4 voxels.

5 7

3.4 Implementation Details

The parallel incremental rotation system is implemented on the 128-processor Cray T3D available at the

Ohio Supercomputer Center. It is a scalable massively parallel system, using PVM as the message-passing

library. The animation process is distinctly divided into three stages. Each processor goes through a prepro

cessing stage, where the initial data distribution and screen assignments take place. Each subsequent phase

is divided into two stages - the rendering stage and the postprocessing stage.

In the preprocessing stage, each processor assigns itself some contiguous regions o f the screen. The number

o f regions equals the cyclicity of data distribution, and the position of the regions depends on the processor’s

id. A host processor reads the data from disk and distributes the cells to the appropriate processors. Each

processor then requests additional cells to get ready for the first phase. During the rendering stage, the pro

cessors generate images for all the frames in the phase. The postprocessing stage is involved with the deter

mination and acquisition of all the cells which will be needed for the next phase. To hide latency, the request

for the cells needed for the next phase is sent before a processor enters the current rendering stage. Each pro

cessor sends some o f the requested cells to the appropriate processors at the end o f each frame generation.

The processors also poll and empty their receive buffers using non-blocking receives at this time. By the end

of the current rendering stage, all the cells needed to set up the next phase are available at the requesting pro

cessor. and they are now ready to enter the next phase without waiting for any more messages. In this way.

the communication latency is totally hidden by the computation process (rendering stage), except the start

up costs.

The other effect of the interleaving process is to avoid deadlock due to filling up o f buffers. By constantly

polling and emptying the buffers, a processor avoids the indefinite filling up o f its buffers. By sending only a

small number of cells at the end of each rendering stage, a processor also avoids hot-spot congestion at other

processors.

3.5 Results

The object migration parallel rendering method discussed in the previous sections has been implemented on

Cray T3D. a scalable massively parallel system (MPP). The system currently supports 128 processing ele

ments at The Ohio Supercomputer Center. Each PE is a DEC chip 21064. having 64 MBytes of memory per

node. The PEs are connected by a very fast bidirectional 3D torus interconnection network that has four vir-

5 8

tuai lanes per node in each direction. The system can be used either in message-passing mode or in shared-

memory mode; we chose the first paradigm to incorporate our algorithm. Each processor runs at a peak

clock speed o f 150 MHz (clock cycle time = 6.67 nsec.). The Cray T3D supports deterministic wormhole

routing, and communication takes place at 150MB/sec/link/direction. the message start-up time being 1.5

microseconds.

3.5.1 Scene and Screen Description

Table 3.1 summarizes the volume datasets used in the remainder of this dissertation. It shows the volume

and screen sizes, the opacity used for each occupied voxel, and indicates whether the occupied voxels were

illuminated. High opacity values indicate that the ray traversal will be halted as soon as the first occupied

voxel is encountered, while low opacity values ensures that the ray will traverse its entire path inside the vol

ume boundaries. In case of illuminated scenes, voxels were illuminated on the fly using three light sources.

Image produced by each o f the three algorithms described in this chapter and in Chapter 4 and Chapter 5 are

exactly of the same quality and are shown in Figure 3.5. Only one ray was processed per pixel; volume sam

pling was done at unit intervals along the ray; and sample values were determined with zeroeth order inter

polation.

Volume Volume Size Cell Size Screen Size Opacity Illumination Im age

SOD 128 128^ 8^ 128- 1.00 Y Figure 3.5a

Simple 128 128^ 8^ 128- 0.01 N Figure 3.5b

Head256 256^ 16^ 256- 1.00 V Figure 3.5c

Capsid256 256^ 16^ 256- 0.01 N Figure 3.5d

Capsid512 512^ 16^ 5 12- 0.01 N Figure 3.5d

Table 3.1. Description o f various volumes and respective screen sizes

Simple 128 is a 128^ volume consisting of two spheres and a cube. SOD 128 is another 128^ volume consist

ing of electron densities, and was obtained from UNC Chapel Hill volume repository. The volumes

Capsid256 and C apsid512 each consist of 252 spheres. The spheres are organized in the shape o f the molec

ular structure o f a capsid. taking the shape of a dodecahedron. Head256 is a 256^ volume obtained from CT-

scan also taken from the UNC Chapel Hill volume repository.

5 9

(a) (b)

% %

% % %

(c) (d)

Rgure 3.5 (a) SOD 128, (b) Simple 128. (c) Head256, (d) Capsid256 and Capsid5l2

6 0

The screen is rotated 120° about the y-axis in steps o f 1°. the phase size being 10°, resulting in 12 phases.

The timings for a complete rotation of 360° will be proportionally increased. The results shown below do

not include the preprocessing time or the time taken to display the final images.

3.5.2 Load Balancing

Figure 3.6 shows the rendering times taken by each processor for various cyclicities to render the simple 128

and capsid256 scenes described above. These results are shown for the animation process on 8 processors. It

is evident that the rendering times reduce with increasing cyclicity.

For both the volumes, almost a 100% improvement can be seen in rendering times when cyclicity increases

from one to four. In short, the static block-cyclic distribution scheme adopted in our method attains signifi

cant load balancing, and helps to reduce the total rendering times. From the graphs in Figure 3.6, it can also

be seen that cyclicity 4 is sufficient for considerable load-balancing among processors for these objects.

3.5.3 Overheads

There are three kinds o f overheads introduced by our parallelization process: a) postprocessing overheads,

b) overheads due to sending the requested cells to the requesting processors, and c) overheads due to receiv

ing and updating the local memory with cells obtained from other processors. These overheads are shown in

Figure 3.7a. Compared with the rendering times (Figure 3.6), the timings shown in this figure are not very

significant. This implies that except the start-up (receiving and sending), the wire latency o f the cells trans

ferred between processors are totally hidden by the rendering process. The sending times shown in Figure

3.7a are only the start-up times taken by each processor to send cells to other processors. The receiving

times include both the receiving start-up times and the time taken to place the received cell at an appropriate

place in memory. Because of this, the receiving times are slightly higher than the sending times, even though

the number o f cells sent and the number of cells received at the end of each phase are almost the same. The

postprocessing time consists o f the time to determine all the needed cells for the next phase and the start-up

times to send these request messages to other processors.

Figure 3.7b shows the overheads incurred with a change in PRA (phase rotation angle). As expected, the

total time taken for sending or receiving is independent o f PRA. This is because for a total rotation of 120°.

the total number o f cells transferred between processors remains the same, irrespective of the size of a

6 1

Frame Time (secs) Frame Time (secs)
1.4

Cyc=I1.2 C y c ^

1.0
Cvc=30.8 Cyc=4

Cyc=40.6

0.4
Cyc=2 Cyc=3Cyc=20.2

0.0
7

Processor PIDProcessor PID

Figure 3.6 Ram e times for (a) for Simple 128 and (b) forCapsid256
volumes on 8 processors, and with cyclicity varying from 1 to 4.

Time (msecs)
6

Overheads (msecs)

2 3 4 5
Processor PID

6

5
Receiving \

; 4
-------- -

------------ ---- 3 ■"T ------- ^\»___Sencling

2

Postprocessing 1 Postprocessing

0
0

PRA

Figure 3.7 (a) Average Sending, Receiving, and Postprocessing overheads
for each frame with a fixed PRA o f 10° (P=8, C=4). (b) Average Sending,
Receiving, and Postprocessing overheads with varying PRA (P=8. C=4)

62

phase. If the phase size is large, then a large number o f cells will be transferred a small number of times, and

vice versa. The figure also shows that as the PRA increases (and therefore the number o f phases decreases),

the postprocessing time decreases proportionally. At the end of each phase, the postprocessing stage deter

mines all the cells to set up the next phase. The time taken in this stage is independent o f the size of the

phase and approximately remains constant. Therefore, the total postprocessing time is directly proportional

to the number o f phases (or inversely proportional to the PRA). This suggests that the PRA should be main

tained as large as possible depending on the memory availability at each node.

3.5.4 Scalability

Table 3.2 gives the frame times for several datasets on different number of processors, and Figure 3.8 deals

with the scalability of our algorithm. An efficiency o f more than 60% is seen for up to 128 processors.

Almost real-time speeds of 20 frames.sec. for 128^ volume and interactive speeds of 2.5 frames/sec. for

256^ volumes have been achieved. The efficiency can be further improved by reducing the overheads. One

way to reduce the sending and receiving times would be to combine a number o f cells before sending. For

example, if the send/receive buffers allow space for 4 cells to be packed into a single message, then 3 send/

receive start-ups can be saved, leading to a reduction o f sending cost by 3/4ths o f the current value. As men

tioned in Section 3.5.3. the total postprocessing time by each processor is directly proportional to the num

ber o f phases. Thus, although the rendering time is inversely proportional to the number o f processors, the

total postprocessing time by each processor remains independent of the number o f processors. This situation

tends to make the algorithm unscalable, as for a very high number o f processors, the postprocessing time

begins to dominate over the rendering time.

In more practical situations, the width o f the slabs required by each processor decreases with increasing

number o f processors. Thus, for the same size o f the object, the memory requirement o f each processor

reduces as the number of processors increases, allowing for a higher PRA. This reduces the total postpro

cessing time. In our experiments, we have just studied the effect of changing the number of processors with

all other parameters remaining unaltered. The PRA dependency on memory availability will require a more

detailed study o f larger objects

6 3

Number of
Processors Simple 128 SOD128 Head256 Capsid256

I 3.98 7.55 30.20 29.89
2 2.00 3.90 15.87 16.09
4 1.04 1.97 8.30 7.85
8 0.53 1.01 4.27 4.05
16 0.27 0.52 220 2.08
32 0.14 027 1.17 1.10
64 0.08 0.15 0.72 0.63
128 0.05 0.08 0.45 0.38

Table 3.2. Frame rendering times for various volumes as a function of number o f processors. All times
are in seconds.

Speedup

120

ideal
100

simple 128 sodl28

bead2S6

capsid256

0 20 40 60 80 100 120

Number of Processors

Figure 3.8 The speedups o f the parallel incremental
rotation algorithm for different number of processors.

64

3.5.5 Effect of PRA

Figure 3.9 shows the effect of PRA on the number of cells sent, received, and retained in each phase. From

Figure 3.9a it can be seen that only a few cells are transferred at the end o f each phase, compared to the num

ber o f cells which are already present (retained) at a node. The average fraction o f the number of cells

received at the end of a phase compared to the number of cells retained is shown in Figure 3.9b. As

expected, the fraction increases with PRA, and for higher PRAs the curve tends to flatten, implying that for

higher PRAs, the fraction of cells required does not change much. The reason for this is the fact that as the

PRA is increased, an overlapping occurs between the various X-like slabs with a processor. With this over

lap, some more cells can be found locally. This is also the reason why the “retained” curve in Figure 3.9a

also begins to increase slightly for PRAs above 12°.

The replication factor is given by the ratio o f the total number of cells in the entire system to the total num

ber o f cells in the entire volume. We have observed that the replication factor increases linearly, but not as

fast as the PRA.

3.6 Discussion and Future Work

The main drawback of the system is that it is not particularly suited for rotations with large rotational steps.

However, in most general purpose animation systems, abrupt changes in screen positions are rather rare. The

primary advantage o f the system lies in the simplicity by which good speedup is achieved. Another advan

tage of the method is its design for optimal embedding in most popular topologies. The screen and scene

subdivision is done in such a way that there are no issues of image overlap, eliminating the need for image

combining. The interleaving process between rendering and sending/receiving cells offers effective latency

hiding and avoids deadlock due to filling up o f buffers.

Since we have implemented the general CellFlow approach for one case of volume rendering, obvious

future extensions include the exploration o f arbitrary volume rotation, perspective volume rendering, and the

application o f the CellFlow approach to polygon rendering. Extensions to the basic CellFlow method

include providing mechanisms to deal with non-incremental abrupt change in viewing parameters, and deal

ing with dynamic scenes. The idea of “rotational padding”, as used in this chapter, can also be extended to

provide “general padding” to each processor, so that they maintain additional data for generating images for

some frames which are close enough from the current frame.

65

Cells Faction
035
030
0.45
0.40
035
030
0.25
0.20
0.15
0.10
0.05
0.00

160

140
Total

120

100
Retained

Received

Sent

20
PRAPRA

(a) (b)

Figure 3.9 (a) A v e rse number o f cells sent, received, and retained per p b ^ o f rotation (E ^ , C=4).
The topmost curve is the total number of ceils in memory at a time, whi<± is the sum of the num ber o f
cells retained and the number o f cells received. The bottom curve shows both the number o f sends and
receives, (b) Fraction of cells received at the end o f each phase relative to the number of cells retained.

6 6

3.7 Conclusion

In this chapter, we have proposed a distributed memory parallel animation scheme and implemented one of

its specific applications - the incremental rotation of voxel-based objects with parallel projection ray cast

ing. This rendering scheme finds good application in the fields of medicine (to view data from MRI or CT-

scans) and CFD. which incorporate voluminous data impossible to fit in a general purpose uniprocessor

memory. This scheme should be extended to perspective and polygonal models, in a way so as to reduce the

overheads inherent in the postprocessing step o f the current method, leading to better processor/channel uti

lization and speedup.

6 7

CHAPTER 4

EXPLOITING SPATIAL COHERENCY: TWE. ActiveRay ALGORITHM

The CellFlow method, presented in the previous chapter, finds good application when subsequent screen

positions are known a priori and works well for incremental rotations of the screen. The second phase of the

research aimed at removing some os the deficiencies o f the CellFlow algorithm and was concerned with

exploiting ffame-to-frame coherence in a more general way. i.e.. for real time animation where the screen

positions are unpredictable.

In earlier object dataflow parallel rendering systems, the data representing the 3D scene is statically distrib

uted among processors and objects are fetched and cached only on demand. Most previous object dataflow

methods were implemented on shared memory architectures and exploited spatial coherency only to reduce

hardware cache misses. In this chapter, we propose an efficient model for object dataflow parallel volume

rendering on message passing machines. The “Active Ray Tracing’ algorithm is introduced and its ray stor

age mechanism is used to support latency hiding by postponing computation on inactive rays. Memory

usage is optimized by letting objects migrate and replicate at different processors rather than the common

static assignments. Our cache-only-memory approach uses a distributed-directory scheme to trace the loca

tion o f objects at other nodes. A mechanism to minimize network congestion was implemented which opti

mizes channel utilization. Unlike previous methods, our approach can benefit from temporal coherence and

effectively minimizes communication costs in successive frames. Finally, we propose an extension o f the

Active Ray approach to recursive ray tracing also.

4.1 Distributed Memory Implementation of Parallel Rendering

In this work, we have adopted an object dataflow approach to parallel rendering on a distributed memor>'

parallel machine. The screen is divided into several regions (in the form of tiles) which are assigned to the

processors in a cyclic manner (Figure 4.1b). The object space is partitioned into equal-sized cells containing

6 8

the objects in the 3D scene. For example, when we render a 128^ volume, we may divide it into (4096) cells

each of size 8x8x8 voxels (Figure 4.1a). Each processor maintains the local status of all cells in the 3D

space. If a cell is available locally, its status is valid, otherwise it is in an invalid state. A processor can use

only those cells whose status is marked valid. As a side benefit o f cell decomposition, all empty cells in the

volume may be detected and marked. At rendering time, the rays may skip the empty cells along their paths.

Each processor keeps track of a random, disjoint, subset of the cells, in a data structure called the directory.

It records in the directory the list o f all processors holding a copy of the cells. The randomization process

alleviates hot-spotting at specific nodes. The processor holding the directory for a cell is referred to as the

home node for that cell. Each cell has a home in exactly one processor. Whenever a cell is unavailable

locally, a request is first passed to the home node o f that cell. The home node searches its directory to deter

mine the node closest to the requesting node that has a copy of the requested cell. It then instructs that pro

cessor to send a copy of the cell to the requesting processor.

During the rendering stage, a processor is responsible for generating the image of the assigned screen

regions only. All the rays to be traced are queued up in a ray list. Each ray in the list is advanced through the

3D space as long as all the cells along its way are available locally.

If the progress o f a ray is interrupted due to unavailability of a (non-empty) cell, the ray becomes inactive

and is therefore put back in the ray-list. At the same time, a request is sent to the home node o f the missing

cell. The processor then proceeds to the next active ray in the list, that is, a ray that was waiting for some cell

and has now arrived. The algorithm repeatedly scans the ray-list until an active ray is found (in which case it

is traced), or until the list becomes empty (in which case the algorithm moves to generate the next frame). In

the case o f recursive ray tracing a special illumination model, described in Section 4.2, has to be formulated

to support this model of stopping the processing o f one ray while computing another.

Now we describe how the cell requests are handled in this distributed directory parallel tenderer. The infor

mation corresponding to each cell in the directory is a list of all processors that has a copy of the cell. No

state information is needed, as the cells are always read-only. This assumes that the animation takes place by

altering the viewing parameters only (position and direction o f the screen) - the objects do not move in the

scene. Such animations are prevalent in computer graphics and scientific visualization. The handling of the

more general case when objects are allowed to move in the scene, is suggested in the Section 4.5.

6 9

Cell = 4x4x3 voxels

(a) (b)

Figure 4.1. (a) A volume made up of 32x24x15 voxels is divided into 8x6x5 cells each of
size 4x4x3 voxels. Each processor is home to 60 random cells in a 4-processor system, (b)
A screen divided into 64 tiles of equal size and distributed cyclically to 4 processors, P I.
P2. P3, and P4. For example, the black cells and the dark tiles are assigned to PI.

2. FRWD

3. DATA

l.R Q ST

(a)

5. INV
(if multiple copies of cell)

r T ~ (H
4. INVRQST

6. DINV
(if only copy of cell)

(b)

Figure 4.2. (a) A 3-hop system for requesting data (cells) from other processors. R is the
requesting processor. H the home node, and D is the closest processor containing the requested
cell, (b) A 2-hop invalidation process for discarding a cell from a processor’s memory.

7 0

Six kinds o f messages are used for maintaining the directories in the animation process. The first three corre

spond to a cell request, while the last three are used for cell invalidations.

1. RQST: This message is used for requesting a cell not available locally. The requesting processor passes

the request for the cell to the home node. The home node, upon receiving this request, traverses its direc

tory looking for the processor closest to the requesting processor that holds a copy of the requested cell.

2. FRWD: The home node forwards the request to the closest processor, instructing it to pass the requested

cell to the requesting processor. Upon receiving a FRWD message, a processor sends the appropriate cell

(a DATA message) to the requesting processor.

3. DATA: This message type indicates that a requested cell has arrived. The processor receives the data and

updates its memory accordingly.

These three steps are shown as a graph in Figure 4.2a. This procedure o f acquiring a cell from another node

is termed a 3-hop request system, as 3 hops are required to finally receive a requested cell. When the home

node is itself the closest to the requesting processor, it becomes a 2-hop request system. All the steps are per

formed asynchronously. This is important as the processors do not wait to receive particular messages.

Moreover, the RQST and ETIWD messages are typically very small and do not affect network data traffic.

The above method of acquiring non-local data differs from previous object dataflow algorithms. In earlier

algorithms, the home node always contains the requested data, so no E^W D message is needed. This

adversely affects the system ’s performance in two ways. First, the home node always expends some memory

for statically storing some data not needed by it. Second, sending o f the (possibly large) requested data uses

larger network bandwidth by traversing more channels in the network. With data migration, a local memory

stores only that data which are required during its own animation process, thus utilizing the local memory

efficiently. By forwarding the cell request to the closest processor, it utilizes the network channels in an effi

cient manner also. A short message (FRWD) travels across the network to the closest processor, while a

large message (DATA) travels a short distance to the requesting processor. In the results section, we will see

that the time required to determine the closest node and the time spent for the extra hop (FRWD message)

are negligible in our application. As far as network congestion is concerned, forwarding o f a cell to the clos

est processor may not exhibit significant advantages when implemented on MPPs with fast and tightly cou

pled communication networks (like the Cray T3D). At the same time, such considerations may prove

beneficial when wide area distributed parallel renderers are designed with high latency interconnections.

71

In various instances, animations take place by making minor alterations to the viewing parameters. In such

animation sequences, if one is careful to assign adjacent screen segments to adjacent processors, it is very

likely that the requested cells will be found at and fetched from adjacent processors. This is the unique

attribute o f our approach that allows for the efficient exploitation of spatial, temporal, and network coher

ency.

In addition to the 3-hop mechanism for fetching cells, a 2-hop procedure is needed (Figure 4.2b) for invali

dating cells that are no longer required locally, and to make space for other cells in turn. A processor that

would like to discard a cell requires permission to do so from the home-node, since it might have the only

copy o f this cell in the system.

4. INVRQST: Whenever a processor’s local memory exceeds a pre-specified limit, an LRU scheme is used

to purge some locally available cells. Before removing a cell, it asks the home node’s permission to do so

by sending an INVRQST message. When a home node receives the invalidation request, it checks

whether this is the last copy of the cell in the system. If other copies exist, it sends an invalidation mes

sage (INV) to the processor to purge the cell from its memory. Otherwise, it sends a message (DINV) to

the processor, not to purge the cell. Deadlocks which may arise in these situations are averted as

described in Section 4.3.5.

5. INV: Upon receiving this message, a processor is sure that it can purge the cell from its memory, and

does so.

6. DINV: Upon receiving this message, the processor puts back the cell at the end o f the LRU list.

The different types of messages described above are handled similarly to polling-based Active Messages

[29]. While proceeding from one ray to the next in the list, buffers are polled to check for any pending mes

sages using non-blocking probes. The messages, if any, are received and appropriate action taken immedi

ately. Home nodes forward the requests for cells to the appropriate nodes. A forwarded message is handled

by immediately sending the requested cell to the requesting processor, and invalidation messages are han

dled accordingly. All such pending messages are dealt with before proceeding with the next ray.

This interleaving process has a two-fold effect on the performance o f the algorithm. First, the communica

tion latency is hidden by the computation process (rendering), except start-up costs. This is described further

in Section 4.3.3. Second, it avoids deadlock due to filling up of buffers. By constantly polling and emptying

7 2

the buffers, a processor avoids the indefinite filling up of its receive buffers, and by sending only a small

number of messages after tracing each ray. a processor avoids hot-spot congestion at other nodes.

4.2 Illumination Model for Active Ray Tracing

In the basis o f the ‘active ray tracing’ approach lies our ability to postpone the computation of an inactive

ray. In the case of ray casting this poses no major problem. However, in the case of recursive ray tracing,

where the value o f the primary ray (shot from the eye) depends on the values computed by the secondary

rays, we must be able to render these rays independently and then be able to update the pixel value when

their partial results become available.

The intensity at a screen pixel { P P ^ ,) is denoted by (f*^, P^_) . where X indicates wavelength (e.g.,

RGB). If the ray that passes through {P ^ ,P ^ .) does not intersect any object. {P^ ,P^ .) is set to some

background intensity. If that ray intersects some object O, then (P ^ , P ^) is assigned the intensity o f O's

surface at the intersection point. This is typically computed by some rendition o f the Global Illumination

Equation:

- ^aX^a^dX'^

(I)
I V/x, (W ■ i,) +(:, (W ■//,)"] + +1/,,

i = I

where:
O , O , O , coordinates of the 3D point that we illuminate.
T ’ambient light intensity,

diffuse color of object.
m number of light sources.
k^, k^, k^, k^ ambient, diffuse, specular, and transmission coefficients.
5 ; light-source / occlusion factor.

light-source i attenuation factor,
light-source i intensity.

N surface normal at O^ , O^,, O , .
L . direction to light-source / from O ^, O^., O . .
H - half-way vector between N and the viewer.
n specular reflection exponent,

intensity of the reflected ray.
intensity of the transmitted ray.

73

The first two terms in Equation I compute what is commonly called local illumination. The last two expres

sions compute the global illumination', they model the influence of other objects in the environment. The

terms are computed by following shadow feelers to the light sources. The values o f and

are computed by recursively tracing secondary rays (such as reflection and transmission rays,

respectively). As long as this recursive computation o f the global illumination is not complete, no value can

be assigned to the pixel at (P ^) . The illumination equation used by our active ray tracer is basically a

reordering o f the summation in Equation 1 which allows for non-recursive handling o f secondary rays. Like

wise. the processing o f the shadow-feelers differs from the way traditional ray tracers handle these rays

since the active ray tracer might defer processing shadow feelers until a later time.

In the active ray tracing approach, we give each ray a unique identifier number Given a ray v)/. its parent is

denoted by P(\|/). For primary rays P(ty) is undefined.

We associate, with each ray. a weight (0(V) and defined:

CO(V|/) =

1 primary ray

reflection ray (i)

< (V) transmission ray

We denote by T (\J/) the coordinate of the pixel the ray \)/ belongs to. That is. a primary ray traced through

the pixel at (P ^ , P^,) and all its descendants will have the same value of C (Vj/) = (P ^ , P^.) . We denote

by the intensity contributed by the local illumination components in Equation 1 at the point where a

ray first intersects an object. We also assume that = I ; that is. for the time being we do not deal with
V|/

shadowing effects. We can now extract from Equation 1 the following expression for :

«r = W.0,% + I c: ■ 4) +*.("■ «/) 1 '3)
i= I

If we expand the recursive terms in Equation 1 .1 and we will eventually have a large sum solely con

sisting of terms similar to the ones in Equation 3. namely, local illumination computations at the intersection

points o f all the rays in the ray tree. Therefore, the intensity of the pixel (P ^ , P^.) can be formulated

as the sum of all the local illuminations, as defined in Equation 3. computed by all the rays of the ray tree

rooted at (P ^ , P^.) . That is

7 4

Vy: C(V) = (P,. PJ

At run time, when a ray V|/ is popped from the queue and traced, the resulting value is added to the pixel

value by;

= / ^ (C (v)) + m (i { f) / ; % (5)

In Equation 3 we assume that no occlusion exists between the point o f ray-object intersection and any o f the

light sources i. hence the unity assumption for 5,. At a later stage, shadow-feelers are processed. At that

time, if a light source i is (partially) occluded, some light intensity should be subtracted from the pixel.

Each shadow ray. when spawned by ray ty and sent to light source i. is associated with light intensity
Y

denoted by which we define to be

' I = (N H ,) "] (6)

that is. [^- is the intensity contributed by the light source / to ray V|/ (following the assumption S- = 1).

Now Equation 3 becomes:

m

Xi
i = 1

which can be re-written as:

! = I I = I

Therefore, at run time, when a shadow-feeler. spawned by ray t|f towards light source i. is traced, it returns

the value denoted by 5,. Then, the value of the pixel at C(v|/) is adjusted by:

=/;^(C(V|/)) - t ù (\ | /) (1-S.)/J^. (9)

7 5

4.3 Design Issues

4.3.1 Load Balancing

Rendering and communication times for different processors indicated that the load among the processors is

unbalanced with block distribution o f the screen (see Section 4.4.1). We resort to a static block-cyclic screen

distribution to attain considerable load-balancing among processors. Results show that the amount of com

putational and communicational load balancing increases with increasing cyclicity for various scenes.

4.3.2 Network Congestion

Network congestion is reduced by forwarding the cell request to the processor closest to the requesting pro

cessor containing a copy o f the requested cell. The request (RQST) and forward (FRWD) messages just con

tain information about the requested cell and the requesting processor. These small messages do not

consume much network bandwidth. Moreover, by forwarding the requested message to the closest proces

sor. a small number of links are used to deliver the cell (possibly a large message) to the requested processor.

Since communication overhead can be extremely low on some architectures, it could be the case that such

optimization is not really necessary.

4.3.3 Latency Hiding

The latency o f the unavailable cells is hidden by not allowing a processor to explicitly wait for a requested

cell. A list of unfinished rays is used for this purpose. At the start o f a frame generation, a local ray-list con

tains all the incomplete rays to be traced by the processor. Rays which traverse to completion using the

locally available cells are removed from the list. If, at any time, a ray is blocked due to the unavailability of

a cell, the processor sends a request for the required cell, and proceeds with the next unfinished ray in the

list. It iterates through the list until all the rays finish tracing. While the processor traverses the list of unfin

ished rays, the requested cell travels to the node. Results for ray-casting show that after the initial frame, 2-3

iterations of the list are sufficient to advance all the rays to completion.

Earlier distributed memory object dataflow algorithms did not hide the latency of these requests. Some

implementations (shared memory in particular) may use pre-fetch mechanisms to hide latency, but for ren

dering algorithms, it often becomes difficult to determine which objects need to be fetched, and so the pro

cessor must explicitly wait for the requested cell.

7 6

4.3.4 Memory Overheads

The maintenance o f the directory, the hiding o f the latency, and the memory management of cells pay a toll

as memory overheads in the algorithm. These overheads can be put into two categories: overheads for main

taining the objects, and overheads for maintaining the rays. We discuss each o f these below.

Local memory available for data Is segmented into contiguous regions, and each region is used to store the

contents o f a cell. The object overheads consist o f maintaining the directory for the home cells, for keeping

track o f free regions in data memory, and for storing all the information o f each cell in the volume. A list is

also used to maintain the LRU (Least Recently Used) for cell replacement.

The size of a local directory is the number o f cells a node is home to. which equals the total number of cells

in the volume divided by the number of processors. Each cell can potentially be shared by all the processors.

The width o f the directory thus equals the number o f processors. The total memory overhead for maintaining

the directory in the entire system therefore becomes proportional to the number o f cells in the volume.

To keep track o f free regions available to store newly fetched cells, a list of free pointers is maintained. The

size o f the list equals the total number of cells that can fit in the local data memory. For each cell in the vol

ume. a processor stores its home node, its local status (valid, invalid, or requested), a pointer to the location

where it is stored in local memory, and a pointer to its location in the directory (if it is itself the home node).

The memory overheads due to the rays consist o f maintaining the ray list, and some additional information

stored for each ray. The ray list is an array o f pointers indicating all the unfinished rays. As the rays are not

traced to completion, information like their starting point, direction, and accumulated opacity need to be

retained in addition to their accumulated colors. The length of the ray-list and the ray information list equals

the total number o f rays to be traced by a local processor. The number of rays traced by each processor is

given by the screen size divided by the number o f processors.

4.3.5 Deadlock Avoidance

As mentioned earlier, deadlock due to filling up o f communication buffers is avoided by frequently polling

and emptying the buffers. Deadlock can also happen due to filling up of the software cache. The potential for

such a situation is detected when a certain percentage of local memory is filled by the cells. In this case,

instead of sending an invalidation request to the home node, the cell itself is sent back to the home node. In

7 7

the worst case, all the cells will be sent back to their respective home nodes. We keep two levels for cell

replacement in local memory, first (about 80%) to invoke the LRU replacement of cells, and the other (about

95%) to avoid deadlock. This means that when the local memory is 80% full, cells are removed using the

INVRQST-INV protocol, and when the local memory is 95% full, then the cells are simply sent to their

home nodes. For ray casting, it is seen that the above figures are sufficient to avoid this type o f deadlock.

4.4 Results

To analyze the attributes o f our implementation we tested various aspects o f it by varying some o f the

parameters that control its performance. We have tested the impact on performance of cache size, cell size,

number of processors, and volume resolution. We measured rendering times and number of cells fetched in

various scenarios.

4.4.1 Load Balancing

Figure 4.3 shows the times spent by each processor for rendering the simple 128 and capsid256 volumes on 8

processors. Severe load imbalance exists for larger tile sizes, while it gets equally distributed as tile size

becomes smaller. Load balance also results in decreasing the average time required to generate each frame.

From these figures we see that tile size of 8x8 is sufficient to attain ample load balancing.

4.4.2 Effect of Irregular Animation

It is obvious that our method benefits from temporal coherency. That is. when the change in viewing param

eters is incremental, only small number of cells will be fetched and this communication cost can be hidden.

We tested the behavior of our system in a case where the animation is not smooth; after every ten frames the

eye is made to ‘jum p’ to an arbitrary new position in space. The number of cells fetched is shown in Figure

4.4. This test was conducted on sixteen processors rendering the capsid256 volume. Despite the extended

communication, most o f this overhead can be effectively hidden by the ray storage mechanism. Rendering

times were 1.99 seconds per frame for the smooth animation (3° per frame), compared to 2.33 seconds per

frame for the jum py’ one. We also observed that in either case the number of ray-list traversals never

exceed four.

7 8

Tune (secs) Time (secs)
2.2

0.48 2x32 2.1

0.46 2.02x2
0.44 2x2

1.98x80.42
1.8 32x320.40
1.7038 64x32
1.6036 64x32

034
7

E*rocessor #Processor#

Figure 4.3. Average times spent by each processor for rendering each ham e
as a function of tile size, (a) for simple 128. and (b) for capsid256 scenes.

Ceils Received

300

250

200

150

Jumps Smooth100

oJL
10 5040 600 3020

EiTtme #

Figure 4.4. Communication overhead when the eye ‘jum ps’
after every ten hames. compared to a smooth animation.

79

4.4.3 Effect of Software-Cache Size

When cache size (CS) is decreased we expect more thrashing to happen since some cells that are removed

from a small cache might be needed again while rendering the same frame. Figure 4.5 shows the normalized

rendering times for generating images for the simple 128 and capsid256 volumes on 16 processors. Times are

normalized with respect to the time taken with complete replication, i.e., with CS = 16. We observe that

when the total amount o f cache in all sixteen processors approach 4-6 times the volume size, processing time

stabilizes. This indicates that in the case o f rendering a 256^ volume (16MB) on 16 processors, we will not

need more than 4MB software-cache at each node to perform optimally. As a comparison to a parallel ray

caster with static memory allocation, frame times were 1.64 seconds at cache size 1.2 and 0.71 seconds at

cache size 3.0 while rendering the simple 128 volume on 8 processors. The corresponding times for the

ActiveRay algorithm were 1.05 seconds and 0.632 seconds, respectively.

There are two main reasons for the time penalty suffered when cache size decreases. The first is thrashing

which can be measured by looking at the number of cells fetched. The second is the overhead of our algo

rithm for scanning the ray-list many more times. The cost involved in these two sources of slowdown are

demonstrated in Figure 4.6.

4.4.4 Effect of Cell Size

We also tested the algorithm’s performance as a function o f the cell size. Cell sizes, as used here, are analo

gous to the size of cache lines in SM or DSM machines. In Table 4.1 times are shown for cell size o f 8^ and

up to 32^ voxels (because of communication buffer size limitations, larger cell sizes are extremely ineffi

cient). Times decrease and then increase as cell size increases. Average frame times (in seconds) are shown

for rendering the capsid256 volume on 16 processors using software-cache size (CS) o f 3.5 times the vol

ume size and for rendering the capsid512 volume on 32 processors. The reasons for the time decrease are

because

Cell Size
Capsid256
on 16 nodes

Capsid512
on 32 nodes

8̂ 2.1! -
16̂ 1.33 4.04

32^ 2.97 2.89

Table 4.1. Rendering times as a function o f cell size.

8 0

Normalized Urnes

1.8

1.7 Simple 128

1.6

13

1.4

I J

Head2S61.2

1.0

0.9
148 10 12 162 4 60

Cache Size

Figure 4.5. Rendering time as a functioD of software-cache size on 16 processors. The total
amount o f cache in ail sixteen processors is equal to CS*voIume size (CS = cache size).

Iterations
20000

Cells Received
300

18000

14000
12000
10000

above

above

Frame # Frame #

Figure 4.6. (a) Number of iterations through the ray list as a function of
software-cache size while rendering twenty fiâmes, (b) Average number of
cells received by each processor as a function o f software-cache size.

81

rays have to intersect less cells, ray-list management is reduced, less communication start-ups are needed,

and less LRU list maintenance is needed. However, when cell size increases even further, less cells are

labeled as empty cells and therefore less cells are skipped. Also, communication o f larger cells may lead to

increase in network congestion. Thus, a compromise must be reached which gives optimal performance.

4.4.5 Scalability

Table 4.2 shows the average frame times (in seconds) taken to render the simple 128. sod 128. head256.

capsid256. and capsid5I2 volumes, respectively. Times for small number o f processors are not available in

the case of capsid512 volume due to lack of memory.

For volumes employing early ray termination (e.g.. head256). the algorithm shows 15%-20% improvement

in timing, compared to the times reported in Table 4.1. attributed mainly to early ray termination and less

cell communication. The graph in Figure 4.7 demonstrate the excellent speedup achieved with our algo

rithm. The fastest known algorithms achieve 75% speedup on 16 processors [63]. or 50% and 30% on 64

processors and 128 processors [3], respectively. Our implementation surpasses these as well as all other

recently reported algorithms. We attribute this speedup to two main reasons: the first is our ability to conceal

communication overhead by effective latency hiding based on ray storage; the second is the fact that other

overheads, such as, send and receive start-ups. and directory maintenance are negligible and amount to

approximately 4% o f the total time. The maintenance of the LRU replacement policy is somewhat costly

(about 5%) and tuning the system to the optimal cell and software-cache sizes can yield significant benefits

as shown in Section 4.4.3. The efficiencies for the capsid512 volume are measured relative to the timing for

8 processors.

8 2

N um ber of
Processors Simple 128 SOD128 Head256 Capsid256 C apsid5l2

I 3.47 5.86 16.25 15.62 -

2 1.76 2.92 7.98 7.66 -

4 0.89 I J l 4.07 3.89 -

8 0.45 0.80 2.18 1.94 13.97

16 0.23 0.42 1.14 1.01 7.19

32 0.12 023 0 J 9 0.53 3.69

64 0.07 0.13 0.33 0.29 1.98

128 0.04 0.07 0.17 0.16 1.09

Table 4.2. Frame rendering times for various volumes as a function o f number o f processors. Ail
times are in seconds.

Speedup

120

ideal100 capsidSI2
capsid256

sodI28
bead256

simple 128

12040 60 80 1000 20

Number of Processors

Figure 4.7. Speedup results for rendering several volumes on 1 to 128 processors.

83

4.5 Discussion and Future Work

Object-dataflow approaches are known to take advantage of spatial coherency to reduce the number of

misses [22] [42]. For sufficient local memory sizes, this helps to reduce the amount o f communication

between processors compared with ray-dataflow approaches. The hit ratio can further be increased if frame-

to-ffame coherence is also exploited in an animation sequence. The hit ratio directly effects the overheads

incurred by the system. Each object fetched from non-local memory incurs a start-up cost, and if it is not a

pre-fetch data acquisition scheme, it also incurs a latency cost. These costs are very low if shared memory

machines having the ability to pre-fetch non-local data are used - and as such, these overheads are small

compared to the rendering cost. On distributed memory machines, the start-up cost is significant and rapidly

becomes a performance degradation factor if coherency is not exploited. A distributed memory algorithm

should thus be designed in a manner so as to reduce start-up costs (or the number of times non-local objects

are fetched). Combining this with the data acquisition scheme described here brings the performance o f the

shared memory and the distributed memory systems closer.

In the algorithm presented in this chapter no memory is used for static data allocation as used in earlier

object dataflow schemes. This implies that our algorithm can exploit spatial and temporal coherency to a

much higher degree than the earlier algorithms. With increasing scene sizes, the earlier algorithms will have

decreasing software-cache sizes. Our algorithm, on the other hand, utilizes the complete local memory more

efficiently by storing only that data required for the generation o f the current frame.

The primary advantage of the distributed-directory algorithm lies in its ability to attain comparable speedup

with shared memory implementations. It exploits both spatial and temporal coherency to minimize network

communication. It also uses a ray storage mechanism to hide latency altogether.

We have used the distributed directory scheme for animating volumes by incrementally changing the view

parameters. Future extensions o f the method include allowing changes in the volume, and implementation

for ray tracing of polygonal objects. Changes in the volume can be incorporated by invalidating all the cop

ies of the effected cells, except the one at the processor that updates the cell.

We implemented our approach on the Cray T3D. Nevertheless, we make the claim that this approach is

rather general. First, it is obvious that it can be implemented on any distributed memory architecture, includ

ing distributed shared memory, and NOWs (Network O f Workstations). We plan to demonstrate that the

8 4

unique ability of our methodology to avoid communication penalty by latency hiding has an even greater

impact on these architectures when rendering high resolution volumes.

The extra hop used by the algorithm for requesting cells may prove quite detrimental when ActiveRay is

implemented on NOWs connected by a shared medium (like the Ethernet or FTDDI). The shared interconnec

tion precludes any distance relationship between workstations, and thus the 3-hop cell request mechanism

becomes meaningless. On the brighter side, the 3-hop system will be highly beneficial in non-shared inter

connection medium as evidenced in distributed computing across WANs. This will also be advantageous in

ATM-connected workstations, where switches decouple the communication taking place in parallel in dis

joint parts of the network. The difference between an Ethemet-connection environment and an ATM-con

nection environment is the same as that between SM (using a globally shared bus) and DSM (using a

scalable interconnection, with routers at each node).

Although we have implemented a volumetric variation of the ray casting algorithm, our approach is cer

tainly applicable to ray casting (and ray tracers as shown in Section 4.2) o f polygon-based models. We plan

to extend our algorithm and evaluate its performance in these scenarios.

4.6 Conclusion

In this chapter, we have described a distributed memory scheme for rendering animations o f 3D scenes. The

method uses a distributed directory organization for tracking the cells required by a processor for generating

images during an animation sequence. Unlike existing methods, it exploits spatial, temporal, and network

coherency in an animation sequence to reduce communication between nodes. The main advantages of the

method are that the data are not statically distributed among the processors, leading to better local memory

utilization. Effective latency hiding, reducing network congestion, and static load balancing are some other

factors contributing to the good speedup. The method is easily extendible to ray tracing o f polygonal objects

also.

8 5

CHAPTERS

EXPLOITING VOLUME COHERENCY: THE RayFront ALGORITHM

Having optimized the memory utilization and scalability of our algorithms (Chapter 4), we turned our atten

tion to rendering colossal volumes; datasets too large to fit in the total memory o f the ensemble o f proces

sors. Sometimes such volumes are even stored on remote disks in a compressed form. Thrashing is a

phenomenon which is often encountered in such situations, where the same objects are fetched multiple

times (either from remote processors or from disk) during the generation o f a single frame. In the third phase

of our research, we deviced a method which is not only thrash less for a single frame generation, but retains

its thrashless property across a number of slowly changing frame positions.

The RayFront scheme proposed here is an IP method implemented with object-dataflow. The algorithm cap

italizes on the advantages o f both the image-order and the object-order traversal schemes. The method is

basically image-order. and thus all the advantages of the image-order scheme are preserved. In addition, the

proposed voxel fetching mechanism totally eliminates thrashing, and thus exploits object-space coherency

as in the object-order methods. We have also been able to avoid thrashing across a number o f images gener

ated for several screen positions. The combination of these attributes results in a system with most coherent

screen traversal so much so that voxels once fetched and used are not needed again for a number of frames.

Our scheme eliminates one o f the burning problems encountered in parallel rendering of huge datasets, viz..

thrashing. For colossal volumes, this provides significant advantage over existing methods. The algorithm

also predetermines the order of the non-local cells to be processed, which facilitates effective latency hiding

for even minimal cache sizes. Finally, the data structures we employ circumvent the need to search for the

rays that should be traversed next.

8 6

5.1 Exploiting Coherency for Efficient Rendering

In their classic paper, Sutherland, et al„ [108] have described coherency as the extent to which the environ

ment, o r the picture o f it, is locally constant. In the present context, coherency refers to the degree to which

an object required for one ray is used again for other rays, or objects used for the generation of one image

(frame) are used again for another frame. In object-dataflow parallel ray-tracing systems, non-local objects

are fetched from other processors on demand and are cached locally. With a coherent screen traversal, these

objects are likely to be used again for subsequent rays in the current frame. If the cache is large enough, then

the system can even take advantage o f frame-to-fnune coherency.

If the cache is not large enough, then it begins to thrash. Thrashing is manifested as the repeated transfer of

the same data to the same processing node [22]. If a processor's cache cannot hold the number o f blocks that

it needs to render a single ray. then a cyclic refill of the cache will occur for each ray. As the size of the data

base increases, the effect of thrashing becomes more visible. In this respect, databases acquired from scien

tific sources, like sampled data from MRI, CT-scan, or CFD, are enormous, and rendering such scenes on a

uniprocessor machine becomes extremely time consuming. To make the visualization of such databases

more feasible, efficient parallel algorithms are being designed and implemented. The communication over

heads depend on how much coherency is exploited by the algorithm, and thus how much thrashing is

avoided.

Thrashing of objects in cache influences the performance in uniprocessor ray casting systems as well since

the same objects can be cached a number o f times. For each cache miss, a penalty has to be paid for fetching

the required object from main memory into the cache. The situation is even more aggravating when process

ing very large datasets that do not fit into the processor’s main memory, and has to be fetched from disk. One

would like to avoid thrashing to improve the performance of the tenderer. This penalty also becomes promi

nent when objects are fetched from remote memories in parallel rendering systems. Additional factors crop

in when objects travel across the network. The latency is effected by network speed, which is particularly

detrimental in case o f distributed implementations where communication between computers are sometimes

carried over slow links (e.g., Ethernet). In addition, network contention and size o f the fetched data all play

a combined role to increase latency and decrease performance, and therefore the scalability of the algorithm.

In view of this, it becomes particularly important to exploit object-space coherency so that objects once

fetched are maximally utilized, and to ensure that objects once replaced in the cache will not be required

8 7

again, thus avoiding thrashing. Replacement in this context, is not due to different virtual addresses map

ping to the same cache location {conflict replacements), but due to unavailability o f space in the cache

{capacity replacements).

Visualizing colossal databases, as in the case of scientific visualization, on limited memory multiprocessor

systems are prone to thrashing. Equivalently, the performance o f shared memory systems with very small

caches also degrade for the same reason. These databases sometimes become so huge that they have to be

stored in a compressed form on remote disks. Objects needed are decompressed and fetched on demand

using the bottleneck I/O channels. Finally, there is an increasing demand for rendering multiple databases

simultaneously. In all these cases, thrashing becomes unavoidable, thereby warranting a need for a thrash

less visualization system.

5.2 Method

The RayFront visualization method is a distributed memory implementation of parallel volume rendering.

The scene is initially distributed among all the participating processors. Each processor employs the image-

order scheme (forward projection) for casting rays through each pixel assigned to it. Voxels that are needed

in the process but are not available locally, are fetched from other processors using explicit message passing

- no data is shared among the processors. We chose this distributed memory paradigm as it provides control

to the programmer for mapping the fetched data in local memory, so that conflict replacements are avoided

and only capacity replacements take place. By restricting the size o f locally available memory, we can dem

onstrate the effect of capacity misses even with smaller databases.

Although our algorithm is essentially an image-order method, it exploits the advantages of both the image-

order algorithm (like opacity clipping and adaptive sampling) and object-order algorithm (like object-space

coherency and no thrashing due to capacity replacements) to implement a caching system which totally

eliminates thrashing across a number o f frames by efficiently traversing the image plane and caching data in

an efficient manner. In the method discussed below, we first describe how thrashing is avoided for a single

frame, and then extend it to preserve its thrash-free property across multiple frames.

8 8

5.2.1 Screen and Scene Subdivision

The volume is subdivided into cubical cells (Figure 5.1a) similar to [17][22][63]. The cells are statically dis

tributed to the processors in a pseudo-random m anner to avoid hot-spotting. A cell is assigned to exactly one

processor, referred to as the cell’s home node. The screen is subdivided into tiles that are distributed cycli

cally to the processors (Figure 5.1b) to accomplish partial static load-balancing among processors.

Cell = 4x4x3 voxels

(a) (b)

Figure 5.1. (a) A volume made up of 32x24x15 voxels is divided into 8x6x5 cells each of
size 4x4x3 voxels. Each processor is home to 60 random cells in a 4-processor system, (b)
A screen divided into 64 tiles o f equal size and distributed cyclically to 4 processors, PI,
P2, P3, and P4. For example, the black cells and the dark tiles are assigned to PI.

5.2.2 Preprocessing

The first step in the preprocessing stage is to divide the volume and image among the processors as

described above. The local memory is partitioned into two segments: the first segment is used to store the

home cells, while the other segment is used as a cache [11]. The size of the home memory in number of cells

equals the total number of cells in the volume divided by the number of processors. The home region of the

memory is static as cells residing in this region (home cells) are never replaced. The rest of the memory, in

number o f cells is denoted by C, and is used as cache.

5.2.3 Ray Casting

For generating an image the following procedure is executed. Each processor computes which cells lie

inside the view frustum defined by its image segment(s). The list of these cells is then ordered in a front-to-

8 9

back manner depending on the position and orientation of the screen. This list is referred to as FTBL (Front-

To-Back-List). Each processor also detennines the first cell entered by each ray assigned to it. Next, each

processor sends a request to fetch the first C non-home cells in its FTBL.

The ray casting algorithm with advancing ray-ffont is given in Figure 5.2. All the rays are initially marked as

unfinished. A ray is finished if it had either accumulated enough opacity or if it exited the volume. Each ray

is also marked with the cell it initially enters and is linked to a list of rays waiting for the same cell as we

describe later. The algorithm traverses all the cells in FTB order, but has only one cell active at a time. All

rays waiting for the active cell are advanced until they exit the cell. The active cell is then removed from the

cache memory (if it is not a home cell) and a request is sent for the next non-home cell in the FTBL.

If there is space for exactly one cell in the cache (i.e., C = I), then the latency o f the requested cell may not

be completely hidden. But if there is enough space for a few cells, then the latency of fetching non-home

cells can be hidden, except for the first few cells. This is done by sending requests for the next few cells in

the FTBL, while working on the currently active cell.

After advancing each ray through a cell, the buffers are polled for messages with a non-blocking probe. A

software handler is provided for each kind o f message [29]. Depending on the type of message a correspond

ing action is taken. For example, if the message contains cell information, it is read from the buffers and

directly put in a proper place in memory (software-cache). If the message is a request for a cell, it is immedi

ately serviced by sending the requested cell to the requesting processor using a non-blocking send. The

interleaving of these non-blocking sends and receives provides ample latency hiding of data in the network.

At the same time, it prevents deadlock due to filling up of communication buffers.

The method described above traverses the screen in the most coherent manner, as all the rays entering a cell

are advanced before any other rays are processed. This implies that cells once used will not be required

again for the current frame. The raw algorithm given in Figure 5.2 requires one to traverse the complete list

o f rays and advance only those rays which are waiting for the currently active cell. This gives the search

complexity of the rendering process as 0{NumCellsxNumRays), where NumCells is the total number o f cells

in the volume and NumRays is the total number of rays to be traced by a processor. The traversal of the com

plete set o f rays can be partially avoided by limiting the search to the bounding box of the cell’s projection

on the screen. A simpler and more efficient scheme is used here.

9 0

Preprocessing:

Divide the volume into cells.
Randomly distribute the cells to the processors.
Divide the screen into tiles.
Distribute the tiles to the processors in a cyclic manner.

Rendering on each processor:

/* Initialization */
Determine the FTBL o f all the cells in the volume.

for each ray r do
determine the first cell renters - call this Ray[r].entering_cell
if r does not hit the volume then Ray[r].finished = true
else Ray[r|.finished = false

/* Rendering.... */___
for each cell c in FTBL order do

for each ray r do
if Ray[r].finished = false then

if Ray[r].entering_cell = c then
advance ray r through cell c
update Ray[r].entering_cell
if ray r exits volume or Ray[r].opacity > thresh_opacity then

Ray[r].finished = true

Figure 5.2. Ray-casting algorithm with advancing ray-front.

91

We use a linked list to keep track o f all the rays entering a cell (Figure 5.3). Initially, rays are inserted into

the list o f cells they enter. Whenever a particular cell becomes active (i.e., a cell brought into the cache), its

list is traversed, and all the rays present in its list are advanced until they exit the cell. Rays exiting the cell

are inserted into the list for the cells they enter next. This data structure precludes the necessity for traversing

all the rays in the screen for determining the ones entering a cell. If no rays enter a cell, its list is o f size zero,

as shown for cell [21,8,13] in Figure 5.3. This reduces the search complexity of the algorithm to OCNunt-

Rays). The alternate algorithm is given in Figure 5.2.

The complete image generation process can be viewed as being composed o f several passes, as shown in

Figure 5.5. In the first pass, all the rays will proceed (advance) approximately the same distance from the

screen. In the next pass, the rays continue approximately the same distance again. In this manner, a "ray-

ffont” moves through the volume like a wave, refining the image in each pass. The image converges to the

final image with each pass. The first few passes o f the thrashless advancing ray-ffont method are exemplified

in Figure 5.5 and in Table 5.1.

92

C ell

#of cells in
the volume

rm.iw

I2I.8.I3I

42 NULL

-NULL

Figure 5.3. Illustration of the linked list data structure used for efficiently
advancing only certain rays through a cell. The example shows that there
are 3 rays entering cell [10.12,4], they are 42, 27, and 10.

Preprocessing:

Divide the volume into cells.
Randomly distribute the cells to the processors.
Divide the screen into tiles.
Distribute the tiles to the processors in a cyclic manner.

Rendering on each processor:

/* Initialization */
Determine the FTBL o f all the cells in the volume.

for each ray r do
determ ine the first cell c that r enters
if r hits the volume then

insert r in list o f c

/* Rendering.... */___
for each cell c in FTBL order do

for each ray r in list o f c do
advance ray r through cell c
if ray r exits volume o r Ray[r].opacity > thresh_opacity then

do nothing
else

determ ine cell Cg that ray r enters next
insert r in list o f Cg

Figure 5.4. The modified ray-casting algorithm with advancing ray-front.

9 3

2D Object Space
16 22 11 31 34 36

11 n 23 28 32 35

18 2̂ 29 33

19 25 3C

Vx*tjlU 2C 26

13 21
/ 1r t

1D Screen

Advancing
Ray-Fronty

Figure 5.5. An example of advancing ray-ffont with 11 rays. The figure shows the
advancement of the ray-ffont for the first 5 passes only. The 2D object space is
divided into cells, and the numbers in each cell indicate its position in the FTBL.

Pass#
Active cells in
pass (in order)

Rays advanced
in pass

Ray-Front
at line

I 1 5 -7
—

2 2 -3 3 -9

3 4 -6 1 - 11

4 7 - 10 I - 11

5 12-14 1 - 11
. ■ ■

Table 5.1. The first 5 passes o f the ray-casting algorithm with advancing ray-front
for the example shown in Figure 5.5.

9 4

The algorithm as described so far is thrashless within a single frame. Now we extend the method so that such

coherency can be exploited across a number of similar frames also. By similar frames, we mean those screen

positions for which the FTBL order remains the same. For example, in Figure 5.6, if the screen position

remains in region I while viewing towards the center o f the volume, then the FTBL order remains the same

for all the frames, and thus the cells will be processed in the same order. The algorithm can now be followed

for updating all such frames in the same pass. A frame number is attached to each ray to be processed. All

the rays for all frames in a region are advanced simultaneously before the currently active cell is given up.

This provides an algorithm which is thrashless across several frames. All the frames with the same FTBL is

referred to as a phase.

IV

2D Object Space

I

m
31 32 33 34 35 36

25 26 27 28 29 30

19 20 21 22 23 24

13 14 15 16 17 18

7 8 9 10 11 12

I 2 3 4 5 6
n

Figure 5.6. For all viewing positions in region I. and when viewed towards the center of
the volume, the FTB order of the cells are as shown. X denotes the center of the volume.

5.3 Results

5.3.1 Number of Frames per Phase

Figure 5.7 shows the times and number o f cells received as the number of frames in a phase increases. Tim

ings are taken for generating 30 incrementally changing frames for the simple 128 volume. Frames/phase

indicates the number o f frames across which thrash-free operation is preserved. Figure 5.7a shows a consis

tent decrease in total animation time with increase in frames/phase. This is mainly due to the savings in the

communication required to fetch the drastically reduced number o f cells, along with other associated over

heads. like less frequent updating of local memory with the fetched cells, and reduced network contention.

95

The improvement in timing performance is not significant as the Cray T3D uses extremely fast and efficient

communication channels for transferring data. The communication o f extra cells has minimal effect of the

performance of the system. We expect the savings in time to be much more significant when the communi

cation is not as efficient, especially on a network o f workstations with slower Ethernet links.

Although the improvement in time is not considerable, the total number o f cells fetched decreases drasti

cally. When all 30 frames in the animation process are processed all in the same phase, then a cell is fetched

only once during the whole process. From Figure 5.7b. we can see that when only a single frame is pro

cessed in a pass (phase), then about 4000 cells are fetched from distant memory. In contrast, if all 30 frames

can be processed in the same pass, then this figure drops down to the minimum required (about 200). The

algorithm is much more effective when it is used with compression caches or when data is being fetched

from disk on demand. In such cases, thrash-free operation across a number o f frames will have an enormous

impact on the performance of the system. For example, for rendering using compression caches. 4000 cells

will undergo decompression in the case of 1 frame/phase as opposed to 200 cells in the case of 30 frames/

phase (see Chapter 6).

5.3.2 Comparison

Figure 5.8 compares the performance o f the RayFront algorithm with three o f the most common screen-tra

versal algorithms: scan-line, spiral, and Hilbert [7]. In each o f these, the screen regions were distributed to

the processors in exactly the same manner as in our algorithm. The only difference was the way in which the

pixels in each region were traversed by each algorithm. Out o f these, the Hilbert is believed to be the most

coherent screen-traversal scheme [136]. It is evident from this graph that the screen traversal used for the

RayFront algorithm outclasses the others for all cache sizes for parallel projection ray casting. The perfor

mance gain at lower cache sizes is particularly noteworthy. The primary advantage is the algorithm’s thrash-

free property even for minimal cache sizes.

The consistent improvement in the timings at all cache sizes can be attributed to two main reasons. First, for

parallel projection ray casting, the RayFront algorithm predetermines the order in which the cells should be

processed. It further culls all the cells which do not fall within its view frustum. A processor thus fetches

exactly those cells that are needed, and in the correct order. Second, the predetermination of the cells facili

tates latency hiding - an attribute which cannot be exploited advantageously by the other algorithms.

96

Time (secs) # Cells Received

4500
4000

3500

3000

2500

2000
1500

1000

500

225
22.0
21.5
21.0
20.5
20.0
19.5
19.0
18.5
18.0
17.5

Erames/phaseFrames/phase
(•) (b)

Hgure 5.7. (a) Times and (b) Number o f cells received with number of
f r ^ e s generated in each phase of the algorithm for generating 30 frames.

Time (secs)

160

140

120

100

Scan-Line

Spiral

Hilbert

1200200 400 600 800 10000
Cache Size

Rgure 5.8. Comparison o f four different screen traversal schemes - scan-line, spiral, hilbert,
and rayfront. The graph shows the times taken for generating 30 frames in the animation.

97

That the latency is significantly hidden is manifested by number of cells fetched. The pattern of the number

of transferred cells as a ftinction of cache size is similar to what is shown in Figure 5.8. Previous algorithms,

like scan-line, spiral, and Hilbert, fetch cells only if and when needed. The RayFront algorithm, on the other

hand, makes a conservative estimate of the cells which may be required in the future. For higher cache sizes,

the number of cells fetched becomes more than that of the other algorithms. This is because it is difficult to

pre-detennine the nature of the object's transparency properties, making it impossible to predict if a back-

cell will be traversed by a ray or noL As a result, some unneeded back-cells are also fetched. In spite of

fetching these extra cells, the total animation time remains constant, implying total latency hiding of these

cells.

5.3.3 Load Balance

Rgure 5.9 shows the times spent by each processor for rendering the simple 128 and capsid256 volumes on 8

processors. Severe load imbalance exists for larger tile sizes, while it gets equally distributed as tile size

becomes smaller. Load balance also helps in decreasing the average time required to generate each frame.

From these figures we see that tile size of 8x8 is sufficient to attain ample load balancing. As tile size

decreases further, other overheads start to adversely affect the fiame times. One reason for this degradation

is the loss of coherency introduced for generating images of several different portions of the screen, as

opposed to one contiguous region. Thus, there is a compromise between load balance and the amount of

coherency that can be exploited.

Time (secs) Time (secs)
23

32x320.52 2.2
0.50 8x84x4 2.1
0.48

8x8 2.0
0.46

1.9 32x320.44
1.80.42
1.7 64x320.40

0.38, 1.6,

Processor# Processor #

Rgure 5.9. Tune spent by each processor for rendering 30 frames as a
function of tile size, (a) for simple 128, and (b) for capsid256 volumes.

9 8

5.3.4 Scalability

Table 5.2 shows the frame times for rendering several volumes on different number of processors. The tim

ings are averaged over 30 frames rotating around the object. The FTP was set to 5. signifying that the system

was thrashless over 5 consecutive frames. Almost real-time speeds of 20 ffames/sec. and interactive speeds

of 5 ffames/sec. were achieved for simple 128 and capsid256 volumes respectively on 128 processors. The

speedup graphs of the RayFront algorithm for different volumes are shown in Figure 5.10. The algorithm

demonstrates about 80% efficiency for 32 processors for all these test volumes. The good speedup also sug

gests that considerable load-balancing has been achieved using the static block-cyclic scheme as described

in Section 5.2.1.

5.4 Discussion and Future Work

The RayFront algorithm provides the most coherent screen traversal scheme to avoid thrashing in object

dataflow parallel ray casting systems. Its main advantage lies in the arena of rendering colossal databases,

where thrashing is bound to occur due to shortage of main memory. Thrashing manifests itself in the

degraded turn-around time of the rendering system. Our method is particularly applicable in such cases, and

shows significant advantages over existing screen traversal schemes. In the next chapter we show that the

RayFront method is advantageous for rendering colossal volumes even on uniprocessor systems. This is

because with the proposed advancing RayFront scheme, the cache efficiency improves, and thrashing is

avoided even in uniprocessor machines. This can be asserted by verifying that the improvement gained by

efficient caching of cells is not offset by the traversal of the data structures employed by our algorithm.

We have retained the thrash-free property across a number o f frames also. Our efficient data structures opti

mize the complexity o f the ray search, and our cell ordering scheme facilitates effective latency hiding mak

ing the algorithm scalable. Finally, we have brought the two classes of volume rendering algorithm, image-

order and object-order. together, and successfully exploited the advantages of both these approaches.

The main disadvantage o f this method is the additional memory expended for maintaining the data struc

tures. Also, as the rays are not traversed to completion, the attributes of all the rays have to be stored. This is

not required in traditional approaches as the ray currently being processed traverses to completion before

starting the next ray. The parallel-projection system developed here should also be extended to include per

99

spective projection. It will not be trivial to determine the FTBL of cells when viewed in perspective, making

it more difficult to hide the latency for non-local fetches.

With this space-time trade-off, we want to extend the proposed parallel projection ray casting method to ray

tracing also. In this sense, we suggest a breadth-first processing of rays instead of the commonly used depth-

first approach. In existing parallel ray-tracing systems, the primary ray and all its secondary rays are pro

cessed before proceeding to the next pixel. For huge databases, or with sufficient depth of the ray-tree. this

method is prone to thrashing. If a breadth-first approach is adopted instead, all the primary rays entering a

cell can be processed before moving on to the next level o f secondary rays. Data structures similar to the one

used here can be employed to efficiently keep track of all the primary and secondary rays entering a cell. .-Ml

the rays waiting for a particular cell should be advanced once this cell has been fetched. Of course, this

method is not free from thrashing, but the number of thrashing instances will reduce. The determination of

which cell to bring next is an open issue, as for ray-tracing systems, a ffont-to-back order cannot be assigned

to the cells.

5.5 Conclusion

We have presented a distributed memory ray-casting scheme which incorporates the advantages of both

object-order (no thrashing, regularity o f access, object-space coherency) and image-order (opacity clipping -

avoiding extraneous calculations, higher image quality, simplicity, and usage o f other acceleration tech

niques) algorithms. We have shown that our most coherent screen traversal method exploits coherency far

more efficiently than the traditional counterparts. For rendering colossal databases, this provides significant

improvement by making the system thrashless. The algorithm has been extended to avoid thrashing for a

number of frames also. Efficient data structures have been suggested to improve the time complexity, and to

facilitate effective latency hiding. This makes the method scalable to a number of processors. In the future,

we would like to extend the algorithm to view in perspective and to use a similar scheme for ray tracing also.

1 0 0

Number of
Processors Sbnplel28 SOD128 Head256 Capsfd256 Capsid5l2

I 3.59 5.03 12.38 14.74 115.71

2 1.89 3.12 6.64 7.94 58.79

4 1.01 1.86 337 4.28 31.86

8 053 0.96 1.90 2.17 15.83

16 028 030 1.03 1.25 8.48

32 0.15 029 0.57 0.69 4.30
64 0.08 0.16 0.30 0.36 2.32

128 0.05 0.09 0.18 0.20 1.31

Table 5.2. Frame rendering times for various volumes as a function of number of processors.
All times are in seconds.

Speedup

120

ideal100
capsid256

capsidSl2

simple 128

128

bead256

20 100 1200 40 60 80

Number of Processors

Figure 5.10. Speedups exhibited of the ray-front algorithm for different volumes.

1 0 1

CHAPTER 6

THE UNffROCESSOR RayFront ALGORITHM FOR VISUALIZING
COLOSSAL MEDICAL VOLUMES

In the last chapter, we presented the RayFront thrashless multiprocessor rendering system that maintains its

thrashless behavior across a number of frames. In this chapter, we provide a classical application of this

algorithm, which is used for thrashless uniprocessor rendering o f colossal volumes, possibly in compressed

form.

Modem computers are unable to store in main memory the complete data of high resolution medical images.

Even on secondary memory (disk), such large datasets are sometimes stored in a compressed form. At ren

dering time, parts o f the volume are requested by the rendering algorithm and are loaded from disk. If one is

not careful, the same regions may be (decompressed and) loaded to memory several times. In this chapter

we present a coherent algorithm that minimizes this thrashing and optimizes the time and effort spent to

(uncompress and) load the volume. The volume is divided into cubic cells, each (compressed and) stored on

disk, in contrast to the more common slice-based storage. At rendering time, each cell is allocated a queue of

rays. For a sequence of images, all rays are spawned and queued at the cells they intersect first. Cells are

loaded, one at a time, in front-to-back (FTB) order. A loaded cell is rendered by all the rays found in its

queue. We analyze the algorithm in detail and demonstrate its advantages over existing ray casting volume

rendering methods.

6.1 Introduction

There has been a growing interest in visualizing extremely large medical databases, one classic example

being the Visible Human, comprising of more than 30 gigabytes. This database was created by the National

Library of Medicine's Visible Human Project [1]. with the intention o f creating anatomical atlases. This vox-

elized human provides a new level o f educational value to anatomical visualization. Real time or interactive

software rendering of such large databases still looks like an unattainable goal. A more immediate require-

1 0 2

ment is to reduce the rendering time as far as possible, so that the frame generation time decreases. Several

attempts have been made to “conquer” the visible human, some notable ones been described in

[48][56][80][93][109]. In [56], an attempt has been made to develop a comprehensive virtual environment,

including efficient segmentation and realistic ray tracing of the volume. In [109] the Visible Human is used

as a basis for a comprehensive medical atlas. Palmer, et al., [93] have gained speed by implementing a paral

lel volume renderer on clusters of shared-memory multiprocessors. Apart from using parallel computers,

some researchers have taken a different route to improve the performance o f the rendering algorithm by sug

gesting coherent algorithms, as in [7][42]. Similarly, direct rendering of compressed volumes have also

gained attention [35][57][91][114].

In the method discussed below, the volume is divided into cubic cells, each (compressed and) stored on disk.

This is in contrast to the more common slice-based storage. The uniprocessor RayFront method proceeds in

exactly the same manner as the multiprocessor algorithm, except that cells required by a processor are not

fetched from other processors; they are (decompressed and) read from disk as and when needed. At render

ing time, each cell is allocated a queue of rays. For a sequence of images, the front-to-back (FTB) order of

cells is determined. For all frames that share the same FTB order, all rays are spawned and queued at the

cells they intersect first. Cells are loaded, one at a time, in FTB order. A loaded cell is rendered by all rays

found in its queue. The end result is that the costly operation o f decompressing and loading a cell into mem

ory is done once for all the frames that share the same FTB order.

The coherent ray casting method proposed here can be used in three ways. First, it can be used to render

compressed volumes by explicitly decompressing small blocks o f the volume (cells in our case). The images

produced in this manner are exactly the same as would be produced by a direct volume renderer. The algo

rithm is independent o f the compression technique used, thus allowing higher compression ratios. The only

assumption is that the compression is lossless [32] and that the corresponding decompression routine is

available at render-time. Second, it can be used in conjunction with the methods for direct rendering of com

pressed volumes (e.g.. [91]) to exploit coherency to a far higher degree. The image quality will be the same

as guaranteed by the respective algorithms. Finally, the algorithm can simply be used advantageously to

improve cache efficiency, for volumes that do fit in main memory.

In the next section, we describe our method in more detail and some optimizations we implemented (Section

6.2.2). We also propose an extension (Section 6.2.3) that will enable us to render a cell exactly once even

1 0 3

when the images do not share the same FTB order. In Section 6.3. we analyze the uniprocessor implementa

tion with several compressed and uncompressed datasets, and suggest our conclusions in Section 6.4.

6.2 Method

Volumes are compressed because they do not fit in secondary or primary memory. Efficient compression

techniques [114] and direct volume visualization of compressed volumes [35][57][91] have been suggested.

These algorithms generally compromise with accuracy, but with an a priori knowledge of the behavior o f

the data, very efficient schemes can be developed. We have taken a different approach to visualize com

pressed volumes. We believe that the pain and effort taken in acquiring high resolution and high quality data,

such as in the Visible Human Project, cannot be compromised at rendering time by employing lossy com

pression techniques. Our algorithm preserves the accuracy of the direct volume renderer by employing loss

less compression [32] (or no compression) while trying to optimize rendering time.

The idea of multi-frame thrashless volume rendering was introduced in the last chapter. Here we extend the

scope of this novel approach to the visualization of compressed or colossal volumes on uniprocessor

machines. The algorithm described in [68] preserves the thrashless property across all the frames that share

the same FTB order. In the next section, we briefly explain the idea o f multi-frame thrashless volume render

ing. followed by a proposal (in Section 6.2.3) to extend the method to work for arbitrary sets of frames, i.e..

frames that do not share the same FTB order o f cells. The net effect o f this proposed feature will make the

algorithm limited only by the memory required to store the frames since every cell will be decompressed

and fetched exactly once for all images.

The only requirement of our algorithm is that volume is divided into cells that can fit in the machine's main

memory. Each cell is optionally compressed and stored onto a disk. We assume that the corresponding

decompression routine is available at rendering time. Compressing cells instead of the whole volume may

lead to lower compression ratios [32]. Alternatively, very large volumes can also be divided and stored, as

uncompressed cells, on distributed remote disks. The algorithm basically renders the original data, but uses

an efficient ray traversal scheme to ensure that each cell is decompressed exactly once for a number of

frames. It takes advantage o f coherency between slowly changing frames to eliminate thrashing. In Section

6.2.3. we propose an extension to this method, so that the thrashless property is maintained even for arbi

trary jumps of the screen during the animation.

1 0 4

6.2.1 Multi-Frame Thrashless Volume Rendering Revisited

In this section, we briefly describe the idea of multi-frame thrashless ray-casting. Refer to Chapter 5 for a

detailed discussion. During preprocessing, the volume is divided into equal-sized cells and stored on a

remote disk, possibly in a compressed form. The size o f a cell is fixed at the size of the main memory. Before

rendering begins, the list o f cells is ordered in a front-to-back (FTB) manner depending on the position and

orientation o f the screen. This list is referred to as FTBL (Froni-To-Back-List). For example. Figure 6.1

shows a 24" 2D raster divided into 36 2D cells o f size 4" voxels each. The number in each cell indicates its

position in the FTBL for any screen position in region I. when viewing towards the center of the volume. We

also determine the first cell entered by each ray and push the ray into the queue associated with that cell.

rv in
31 32 /4 35 36

25 26 / 7 28 29 30

/ q 21 22 23 24

/
I

2D Obje

14 15 16 17 18

II

7 8 9 10 11 12

I 2 3 4 5 6

:ct Space

Figure 6.1. For all viewing positions in region I. and when viewed
towards the center of the volume, the FTB order of the cells are as
shown. X denotes the center o f the volume. A ray is also shown
which traverses cells 13. 19. 20. 26. 27, 33. 34, in order.

When rendering begins, the first cell in FTB order is (decompressed and) fetched from disk. This cell is

referred to as the active cell. Since the cell size is the same as the size of main memory, only one cell can be

active at a time. Also, as the cells are processed in FTB order, a cell becomes active at most once during the

generation o f a frame. All the rays associated with the queue of this active cell are advanced until they exit

the cell. These rays are then dequeued from the currently active cell and. in turn, are queued into the list of

the respective cells they enter. Figure 6.1 shows an example of a ray which is initially queued into the list of

cell 13. then queued and dequeued from cells 19. 20. 26. 27, 33, 34 (in order) as these cells become active

and inactive. Rays which either exit the volume or accumulate enough opacity during their traversal, are

considered done, and are not queued into the list o f any cell. Once all the rays in a cell’s queue are traced, the

active cell is removed from main memory, and the next cell in FTB order is brought in. In this manner, the

1 0 5

rest of the cells in the volume are (decompressed and) fetched from disk one at a time and all the rays asso

ciated with the fetched cell (now the active cell) are advanced accordingly.

The algorithm as described so far is thrashless within a single frame. We can extend the method so that such

coherency can be exploited across a number of similar frames also. By similar frames, we mean those screen

positions for which the FTB order o f cells remains the same. The algorithm can now be followed for updat

ing all such frames in the same pass. A frame number is attached to each ray to be processed. All the rays for

all frames which are associated with the currently active cell, are advanced through the cell before the active

cell is given up. This provides an algorithm which is thrashless across several frames. The set o f all the

fhunes with the same FTBL is referred to as a phase.

6.2.2 Enhancements

Before proposing a couple o f major extensions to the original algorithm, we describe a few minor enhance

ments we have incorporated for tuning it to perform well with compressed volumes. As a preprocessing

step, we break the volume into cells, and each cell is marked empty if none of the voxels in it are occupied.

This allows us to totally skip all the empty cells (not even decompress or read) during rendering. For even

better performance, the empty cells can be combined during pre-processing and the whole volume may be

put into a hierarchical structure (e.g.. octree). In addition, early ray-termination for opaque volumes saves

the decompression times o f cells lying totally behind an opaque object.

In order to save ray and queue storage space, we allocate queues only for non-empty cells. Therefore, when

a ray intersects (enters) an empty cell, we look for the next cell rather then queue it there. This saves some

time in pushing and popping rays from queues but. more importantly, rays that eventually hit the background

go through a series a ray-cell intersection calculations without ever being allocated memory and without

ever being queued.

6.2.3 Extension to Arbitrary Frame Animation

The method of multi-frame thrashless ray-casting described above can be extended to work for any arbitrary

frame sequence with a minor extension. Firstly, we realize that the FTB order of cells, which remains unal

tered for a set o f frames, is also the BTF (back-to-front) order for a different set o f frames. As a 2D example,

the order of cells shown in Figure 6.1 conforms with the FTB order for all screen positions in region I. while

1 0 6

looking towards the center o f the volume. Similarly, the same order is maintained as a BTF order for all

screen positions in region III, while looking towards the center of the volume. The drawback o f the latter is

that early-ray termination can no longer be applied, and so all the cells in the volume have to traversed.

Working with colossal or compressed volumes, it may be worthwhile to stick to this drawback than to

decompress a cell more than once.

For parallel viewing o f a 3D volume, there are eight FTB orders of cells, one for each octant. With the above

extension, we can divide the stream of frames into four sets, frames with same FTB o r BTF falling in the

same se t This reduces the method to just four phases, implying that a cell in the volume would be decom

pressed at most four times for generating all the frames in any animation sequence.

Now, we propose another extension which reduces the number of times a cell is decompressed to exactly

once, irrespective o f the order of frames. It is evident firom the description o f the original rayfront method

that, at any time, each ray tnaintains exacdy one segment of traversed volume, starting from the entering

point in the volume to the current sampling point along the ray. This claim holds as long as cells are pro

cessed in an FTB o r a BTF order.

We claim that if two segments of each ray are maintained, then there is a thrashless order for any arbitrary

set of frames. This implies that for a single order o f cells (which is not necessarily FTB), all the frames in the

animation can be generated by decompressing a cell exactly once in the whole process.

y

1 10 13 15 16

6^ s? 12 14

3 r S? 11

I 2 4^ w7

(b)

1 13 14 15 16

V̂ ÎO 11 12

5 8

1 2 s?

Figme 6.2. (a) An FTB order for eye in the left bottom side (red arrow) that requires the
maintenance of arbitrary number o f ray segments for some other eye positions (black
arrow), (b) An FTB order that requires at most two ray segments for any ray orientation.

1 0 7

Let us consider the an FTB order as shown in Figure 6.2a. When some cells (i.e. 1-6 in Figure 6.2a) have

been rendered, the image from some other orientation will have to save the information o f several rays seg

ments (e.g.. in Figure 6.2a, for cells 4. 5. and 6) so that when other cells (8 and 9) are rendered, their results

could be properly composited in FTB order. However, there is one order, the one that scans row by row and

plane by plane, as shown in Figure 6.2b. that will require maintaining at most two ray segments for each ray.

We call this method ZZ-buffer to portray the correspondence between Z-buffer and ray-casting. In normal

ray casting, a single segment of the ray is maintained, and so is in Z-buffer. In our method, two segments are

maintained corresponding to two Z values in a ZZ-buffer.

6.3 Results

The algorithm was implemented on a single 90 MHz R8000 processor o f Silicon Graphics Power Challenge.

Our machine, located in The Ohio Supercomputer Center, has 16 processors. 2 Gbytes main memory (8-way

interleaved), and 4 Mbytes secondary cache. In this section, we investigate some of the important aspects

that influence the performance and behavior of our algorithm.

6.3.1 Timings for Non-Ccmpressed Volumes

We experimented with several volumes described in Chapter 3. and gathered timings by varying a number of

parameters, e.g.. cell size and the number of flames across which the thrashless property was maintained. As

means o f comparison, we have also shown the raw rendering times for each of these volumes in Table 6.1. In

addition to the volumes described in Chapter 3. a subset o f the Visible Human dataset was also used in our

experiments. “VH” is the cryosection o f the head, taken from the Visible Human dataset. We took only 250

slices of the head which originally took a total of 1.3 Gbytes. The images were cropped to size 600x700. and

quantized to one color band (gray-scale), yielding a 113Mb dataset. Since we save our data in a compressed

form large data sets such as Capsid512 and VH occupy fraction o f disk space — 1MB and 16Mb. respec

tively.

Table 6.1 shows the raw times for rendering non-compressed volumes, as signified by the almost insignifi

cant time taken for reading in the cells

1 0 8

Render
Time
(secs.)

Read
Time
(secs.)

Total
Time
(secs.)

Simple 128 3.57 0.11 3.68

SOD 128 3.08 0.19 3.27

Capsid256 17.84 0.16 18.00

Head256 12.01 0.10 12.11

Capsid512 49.74 0.07 49.81

VH 78.00 1.12 79.12

Table 6.1.The volumes, along with reading, rendering, and total times (in seconds).

6.3.2 Effect of Cell Size

As a preprocessing step, the volume is divided into cells. Each cell is marked empty if none o f the voxels in

it is occupied. Needless to say. a smaller cell size will result in more empty cells in the volume and vice

versa. The advantage of having smaller cell size is that a better portion of the empty space can be skipped.

On the other hand, extraneous computation is involved with smaller cells, offsetting some of its advantages.

Entry and exit points have to be calculated for each cell along with the extra time needed for reading a larger

number of cells one at a time. Most o f the volumes show optimal timings in the vicinity o f cell size 16 ̂ or

32^

Table 6.2 shows the timings obtained for various cell sizes. In Figure 6.3. the times are normalized with

respect to the time taken to render the complete volume as a single cell. i.e.. a cell with the size of the vol

ume itself. For large datasets we did not measure for small cell sizes due the immense number of files

required.

6.3.3 Cost of Overheads

If one has access to memory that can store the whole dataset, then there is no need for the maintenance and

management of cells. To verify the additional cost o f this overhead, we compared the performance of our

algorithm with a ray tracer that stores all the data in the memory. Table 6.3 shows the cost of our algorithm

compared with a normal ray caster. The increase in times will be compensated by the amount o f time saved

109

formalized Times Normalized Times

TOO 200 300 400
CeU Size

(a)

500 600

2
simple-128

sod-128
capsid-256

1

bead-256 Visible Human0
1008 16 32 64

Cell Size
(b)

Rgure 6.3. (a) Effect of cell size for different datasets, (b) A closer look at the lower left part of the graph.

when a number of frames are generated in each phase (see Section 6.3.4). A phase includes all the frames for

which a cell is decompressed only once. The tides change when decompression times are also included in

the total animation time. With decreasing size of memory, or equivalendy, with increasing volume size, our

method will show much better speedup than normal ray casting of compressed volumes. The average frame

generation times are also comparable. The number of cells used for timings in the second column of Table

6.3 are the same as used in Table 3.1 (Chapter 3). From Table 6.3, we see that our algorithm closes on the

performance of a normal ray-caster for larger volumes or for larger cells.

1 1 0

2^ 4^ 8^ 16^ 32^ 64^ 128^ 256^ 512^

Simple 128 20.3 7.1 3.7 2.4 23 3.8 3.7 - -
SOD 128 14.5 5 j 3.3 3.0 3.3 3.6 3.6 - -
Capsid256 164.5 55.4 27.6 18.0 15.4 15.4 27.6 27.1 -

Head255 112.5 39.7 19.3 12.1 10.8 19.9 29.5 28.8 -
Capsid512 - - 230.5 127.6 49.8 97.6 106 208 218.7

VH - - - 65.9 62.9 79.1 86.1 85.2 163.5

Table 6.2.TotaI limes (reading + rendering) in seconds, as a function of Cell Size. The
minimum times are shown in bold.

Time with volume as
a single cell (normal
ray-casting)

Time with several
cells (our algorithm) Degradation Factor

Simple 128 3.69 6.32 1.71

SOD 128 3.58 5.43 1.52

Capsid256 27.10 36.00 1.33

Head256 28.78 37.66 1.31

Capsid512 218.70 242.56 1.11

VH 85.18 87.36 1.03

Table 6.3.Degradation factor of our algorithm as compared to a normal ray-caster

1 2 4 5 10 20

Simple 128 33.31 19.02 11.85 10.41 7.55 6.13

SOD 128 89.67 48.19 27.24 23.03 14.48 10.25

Capsid256 69.63 46.89 35.34 33.02 28.40 25.90

Head256 43.74 29.60 22.53 21.09 18.23 16.72

Capsid512 92.60 76.10 67.38 65.47 61.33 58.87

VH 262.40 175.36 131.50 122.65 104.68 95.52

Table 6.4.Average rendering times (decompressing + reading + rendering) in seconds, as
a function of number of frames in a phase. Total number of frames = 20

1 1 1

6.3.4 Simultaneous Multi-Frame Rendering of Compressed Volumes

The term Phase is used to denote a collection of hames for which the thrashless property is preserved. Table

6.4 shows the variation in total rendering time for generating 20 frames. All the frames had the same FTBL

of cells. Most of the time was spent in decompressing the cells to be read in. This time is amortized over all

the frames as the number of ftames in a phase (FPP) increases. On the extremes, each cell is decompressed

20 times when FPP is 1, while a cell is decompressed only once when FPP is 20. The graph in Figure 6.4

shows the speedup gained for different volumes for various FPPs between 1 and 20. The occupancy of the

SOD volume is higher than the other volumes, signifying a higher number of non-empty cells, thus leading

to more time spent for decompressing. This is the reason for the higher gain for this densely occupied vol

ume. For higher density volumes, even higher speedup can be expected. For sparser volumes, the speedups

is lower. The speedups shown in Figure 6.4 are relative to the case where no thrashing happens whatsoever,

i.e., for the case when FPP equals 20. For example, the rendering for sodl28 is about 9 times slower with an

FPP of I compared to an FPP of 20. It must be stressed here that even with FPP of 1, the thrashless property

is preserved across individual frames. Normal ray casting algorithms, when applied to such large datasets,

are unable to maintain the thrashless property even across rays. It will be highly impractical to use normal

ray casting with these datasets. Our algorithm will show speedups of enormous magnitude when compared

with normal ray casting, especially in cases when main memory (cache) is extremely limited compared with

the size of the complete volume.

Normalized Times
9

sod-128

Simple-128

capsid-512

Visible Human
capsid-256

bead-256

2 4 6 8 10 12 14 16 18 20
Frames/Phase

Figure 6.4. Speedups achieved for different volumes as FPP is varied
between I and 20. Total number of frames remains the same at 20.

112

6.4 Discussion

In this chapter we have given a classical application o f the RayFront algorithm for efficiently handling the

rendering of colossal (possibly compressed) datasets. Our method is based on subdivision into cells. At ren

dering time, cells are brought, one at a time, to main memory and rendered from several viewpoints, so that

a sequence of images can be generated without loading the same cell more than once. The only limit is the

memory required to save the multiple frames. This is quite demanding since each frame is a 2D array of

rays, each ray requesting -40 bytes rather than an R G B a tuple (4 bytes).

The main advantages of our approach is that it exploits the benefits of both object-order methods (for the

FTB order) and image-order methods (for early ray termination and other optimizations). It also provides a

completely thrashless method for rendering from an arbitrary set of views.

Although we didn’t measure cache utilization, we believe that the emphasized localization of memory

accesses typical to our method also enhances cache hit ratio. The timings compare well with those reported

for direct rendering o f compressed volumes; in addition our algorithm does not compromise with accuracy.

1 1 3

CHAPTER?

CONCLUSIONS

In the last few chapters, we proposed three PVR algorithms and presented some results o f their implementa

tion on Cray T3D. In order to validate our claim about the coherent nature of the algorithms, we tested their

scalability on another scalable massively parallel machine, the Convex SFP, and also on a cluster of DEC-

alpha workstations. Comparable performance and scalability in these environments will consolidate the

latency hiding, load balance, and other positive features o f our algorithms.

In the next section, we first provide a summary and comparative analysis o f the CellFIow, ActiveRay, and

RayFront algorithms. In Section 7.2, we compare the performance o f our algorithms on Cray T3D with that

on the Convex SPP. Finally, in Section 7.4, we provide some directions to future research, and some possible

extensions to our work.

114

CellFIow ActiveRay RayFront

Type of Parallelism image partition image partition image partition

Rendering Algorithm object-order or image-order image-order only hybrid

Data Partitioning

1. Volume

2. Screen

1. cells

2. smpes

1. cells

2. tiles

1. cells

2 . tiles

Partition Distribution

!. Volume

2. Screen

1. dynamic

2. static/interleaved

1. dynamic

2. static/interleaved

1. static

2. static/interleaved

Load balancing static - interleaved IP distribu
tion

static - interleaved IP distribu
tion

static - interleaved IP distribu
tion

Coherency temporal, network spatial, temporal, network spatial, temporal, volume

Latency Hiding pm-fetching postponing ray processing pre-fetching

Communication nearest-neighbor only close-neighbor global

Embedding Topology ID ring any any

Architecture MIMD MIMD MIMD

Programming Model SPMD SPMD SPMD

Portability to MIMD machines to MIMD machines to MIMD machines

Portability most scalable network topolo
gies

most scalable network
topologies

most scalable network
topologies

Current Limitations 1. not good for perspective
projection

2. not good for dynamic load
balancing

1. only for ray-casting

2. only for parallel projection

3. not too good latency hiding

Disadvantages 1. not suited for ray-tracing

2. not suitable for arbitrary
jumps in screen positions

1. large memory requirements
for holding ray data structures

2. extra message required by
the algorithm for requesting
cells

3. some extra overheads for
management of cells

1. large memory requirements
for holding ray data structures

2. global communication

Advantages 1. good latency hiding

2. nearest-neighbor comm

1. good latency hiding

2. good for reasonable sized
memory machines

3. near-neighbor comm

4. good for dynamic load bal
ancing

1. totally thrashless across
multiple frames

2. best for extremely small
memory sizes or colossal
datasets

3. capitalizes on the advan
tages o f both object-order and
image-order rendering meth
ods

Table 7 .1.Summary of the features and performance o f the CellFIow, ActiveRay. and RayFront
algorithms described in Chapter 3. Chapter 4, and Chapter 5. respectively, (continued on next page)

115

Table 7.1 (contd.)

CellFIow ActiveRay RayFront

Applicalions I. incremental rotation of
screen around the volume

1. general purpose animation

2. animations that involve
changes only in the classifica
tion function

3. generating images from
TVVDs from the same view
point

4. easily extendible to ray-
tracing

1. rendering of compressed
volumes

2. rendering colossal datasets

3. improving cache efficiency
for uniprocessor rendering

Future Research I. extend to polygon-based
scenes

1. extend to polygon-based
scenes

2. dynanuc load balancing

3. extend to ray-tracing

1. extend to polygon-based
scenes

2. dynamic load balancing

3. extend to perspective

4. extend to ray-tracing

5. SM implementation

116

7.1 CellFIow vs ActiveRay vs RayFront

It is quite evident from the discussions in previous chapters that all three algorithms exploit one form of

coherency or the other. Effective latency hiding, considerable load balancing, and proper data and computa

tion distribution have combined to make them quite scalable on MPP machines like Cray T3D. Table 7 .1

summarizes some o f the important features o f these algorithms

From the above table, we realize that the CellFIow algorithm is the most restrictive in its current form. It is

limited to pure rotations only, and may not be extendible to ray-tracing with ease. Dynamic load balancing,

extension to perspective, and allowance for non-smooth animation sequence cannot be handled by this

incremental rotation method. The ActiveRay algorithm attempts to provide the much desired generalization,

it is the most suitable for general purpose animation, it is quite amenable to dynamic load balancing, and can

be extended to perspective and ray-tracing. On the other hand, it starts to thrash when local memory size

becomes small compared to the volume size. The RayFront method provides the solution in such situations.

It employs a screen traversal scheme that guarantees that a cell is needed only once for a set of frames.

A common thread that ties these three algorithms together is the coherency exploitation. Temporal, spatial,

and network coherency have been the primary driving force in their design. All these methods try to opti

mize the use o f local memory in one way or the other. To achieve this CellFIow restricts the animation to

pure rotations only, ActiveRay uses its object migration and directory scheme, and RayFront resorts to a

coherent screen traversal mechanism. Hiding latency, avoiding network congestion, and restricting commu

nication to near neighbors are common features to each of these systems. .As mentioned in the respective

chapters, each o f these algorithms is capable o f outclassing the other if the assumptions for their designs

apply. In order to optimally make use o f all these methods, a scheme may be adopted so that one can switch

from one method to the other depending on the situation. For example, if a part o f the animation takes place

with pure rotations, the CellFIow routine can be invoked; as the animator makes a non-smooth Jump from

one viewing position to the other, it can automatically switch over to the ActiveRay method, that handles

such situations more efficiently; as the size of the dataset increases, thrashing causes the performance of the

ActiveRay algorithm to deteriorate; RayFront turns out to be the most suitable choice in these cases.

Figure 7.1 compares the efficiencies of the three algorithms, CellFIow. .ActiveRay, and RayFront for four

datasets, simple 128, sod 128, head256, and capsid256. With respect to volume size, larger volumes, like

capsid256 and head256, are expected to provide higher efficiencies for larger number o f processors. This is

117

Speedup Speedup

120 Simple 128

ICO ideal.
ActiveRai

:ayFroot
CellFIow

100 120
Number of Processors

120 SOD128 ideal

100
CellFIow

ActiveRay.

RayFront

100 120
Number of Processors

(a) (b)

Speedup Speedup

120
ideal

100 ActiveRay

CeUFlôw

100 120
Number of Processors

Capsid256120

ideal100 ActiveRay

layFronr

CellFIow

100 12040 60 80
Number of Processors

(c) (d)

Figure 7.1. Graphs comparing the speedups of the CellFIow, ActiveRay, and RayFront
algorithms on four datasets, (a) simple 128, (b) sodl28, (c) head256, and (d) capsid256.

118

because o f the increase In the computation time with respect to communication. ActiveRay consistently

demonstrates the most superior scalability. This may be attributed to its efficient latency hiding mechanism

using the ray stack. This may also be the reason for RayFront’s poor scalability, as it does not employ any

latency hiding scheme in its current implementation. CellFIow shows mediocre scalability for all the

datasets.

11 9

7.2 Cray T3D vs Convex SPP

Table 7.2 and Table 7.3 compares the frame times o f the ActiveRay and the RayFront algorithms respec

tively on Cray T3D and Convex SPP. Comparison results are shown only for 8 processors, as only these

many processors were available for users at a time on the Convex SPP located at the Ohio Supercomputer

Center. These tables reveal a few interesting features o f the algorithms. First, we see that due to the faster

speed of the Convex processors, it consistently provides better frame times for all the volumes. Frame times

on the Convex decrease almost by a factor of 2 when compared to those on the Cray T3D. One exception to

this is the time taken for rendering capsid256 volume on a single processor o f the SPP. For the ActiveRay

algorithm, this time is almost as much as that taken on the T3D. but the timings using the RayFront method

follows the earlier trend. The reason for this may be the cache thrashing. Capsid256 is a transparent volume,

and rays have to traverse through the entire volume along its path. As the complete volume is unable to fit in

a single processor’s cache at the same time, it starts to thrash. Similar behavior is not present for the head256

dataset, as this volume is completely opaque, where the rays halt as soon as the first occupied voxel is

encountered. Thus, in most cases, only one cell has to be brought in. i.e.. the one containing an occupied

voxel. Most other cells are marked empty and therefore are not read into the cache. The corresponding num

bers for the RayFront algorithm also delineates its advantages for rendering larger datasets. As this is a

thrashless system, the timings are consistent with the others.

The speedup graphs in Figure 7.2 shows that Convex has the potential to provide comparable or better

speedup than on the Cray T3D for the datasets tested. Convex SPP’s cluster architecture is quite useful for

utilizing network coherency. In the machine available at the Ohio Supercomputer Center, 8 processors are

grouped together in each hypemode. Message passing takes place via shared memory reads and writes

between processors in the same hypemode, as opposed to through sockets for processors across hypernodes.

Use of shared memory data transmission circumvents the expensive traversal by the messages through sev

eral network layers, and thus helps to bring down the communication costs considerably. While ActiveRay

scales better on the T3D. RayFront seems to be more efficient on the SPP. One caveat in these graphs is the

superscalar curve for the capsid256 volume with the ActiveRay algorithm on the SPP. The superscalability

can be attributed to the abnormally high time taken on a single processor, as shown in Table 7.2

1 2 0

Simplel28 SOD 128 Head256 Capsid256

T3D SPP 7t 3D
/TsPP

T3D SPP 7T3D
/Tspp

T3D SPP 7 t3D
^SPP

T3D SPP 7 t3D
/Tspp

I 3.47 2.01 1.73 5.86 2.48 2.36 16.25 6.90 2.36 15.62 15.30 1.02

2 1.76 1.00 1.76 2.92 1.25 2.34 7.98 3.50 2.28 7.66 4.33 1.77

4 0.89 OjO 1.78 1.51 0.65 2.32 4.07 1.84 2.21 3.89 2.21 1.76

8 0.45 0.26 1.73 0.80 0.36 2.22 2.18 101 2.10 1.94 1.15 1.69

Table 7.2.Comparison o f frame times (in seconds) for the ActiveRay algorithm on Cray T3D and
Convex SPP.

SImpleI28 SOD128 Head256 Capsid256

T3D SPP Tt3D
TTspp

T3D SPP 7 t 3D
/7 sp p

T3D SPP 7 t3D
/T spp

T3D SPP Tt3D
/T spp

1 3.59 2.18 1.65 5.03 2.44 2.06 12.38 7.45 1.66 14.74 9.31 1.58

2 1.89 1.13 1.67 3.12 1.44 2.17 6.64 4.02 1.65 7.94 4.95 1.60

4 1.01 0.55 1.84 1.86 0.79 2.35 3.57 2.18 1.64 4.28 2.69 1.59

8 0.53 0.29 1.83 0.96 0.41 2.34 1.90 1.13 1.68 2.17 1.43 1.52

Table 7.3.Comparison o f frame times (in seconds) for the RayFront algorithm on Cray T3D and
Convex SPP.

121

Speedup
ActiveRav on T3Simplel28

RayFront
on T3D

Number of Processors

ActiveRay on SPP
ActiveRay on "HD

lyFront on T3D

RayFront on SPP

Number of Processors

(a) (b)

S

7

6

5

4

3

2

I

Head256 ,
ActiveRay on T 3 D / ^

ActiveRay on SPP

RayFront
on T3D

Ra^ront
on SPP

3 1 2 3 4 5 6
Number of Processors

7 8

(c)

Igeedup

Capsid256 RayFront
on T3D

ActiveRay
on SPP,

RayFront
on SPP

ActiveRay
onT3D

Niunber of Processors

(d)

Figure 7.2. Graphs comparing the speedups of four datasets on Cray T3D and
Convex SPP, (a) simple 128, (b) sod 128, (c) head256, and (d) capsid2S6.

122

7.3 Cluster of Workstations (COWs)

The ActiveRay and RayFront algorithms were also ported to a cluster o f DEC-alpha workstations (model

3CXX)/300), located at the Ohio Supercomputer Center. A group of 8 such workstations are connected using

Ethernet (10 Mbits/s) and EDDI (100 Mbits/s). Neither network is switched although the FDDI network is

completely isolated, and the ethemet is bridged from the rest o f the OVL (Ohio Visualization Lab) network.

The EDDI is token ring which results in slowdown in its communication rates. The performance of the

above algorithms were tested for both these interconnections to verify their coherent nature and latency hid

ing capabilities. Table 7.2 and Table 7.2 give the frame times for these algorithms on the COWs.

Simplel28 SOD 128

Ethernet FDDI Ethemet FDDI

1 2.5 2.5 3.8 3.8

2 1.4 1.5 2.8 3.0

4 1.0 1.0 2.9 2.9

8 0.6 0.6 1.9 1.9

Table 7.4. Frame times (in seconds) for the ActiveRay algorithm on a cluster o f DEC-alpha workstations,
with Ethemet and FDDI connections.

Simplcl28 SOOI28

Ethernet FDDI Ethemet FDDI

1 3.6 3.6 4.0 4.0

2 3.2 3.1 4.8 4.7

4 2.6 2.5 4.5 4.4

8 1.9 1.9 3.1 2.9

Table 7.5. Frame times (in seconds) for the RayFront algorithm on a cluster o f DEC-alpha workstations,
with Ethemet and FDDI connections.

The above tables demonstrate comparable performance for both Ethemet and FDDI interconnections. From

the ActiveRay results, it seemed that our claim about coherent nature and the latency hiding capabilities of

our algorithms were justified, as the speed of the underlying network had little influence on their perfor

mance. On the other hand, the RayFront algorithm, which employs no latency hiding, also showed only mar

ginal improvement on the FDDI network. The slight drop in timings for FDDI (for the RayFront algorithm)

is due to faster communication, and may be influenced by several factors. First, the message start-up latency

1 2 3

may be dominating the communication times, when compared to actual wire latency, nullifying the effect of

network speed. Second, these timings may also imply that the communication is minimized to such an

extent that it does not have an effect on the performance, signifying the coherent nature o f our algorithms.

The tables also show that the scalability is poor on a cluster o f 8 workstations, primarily because o f the

absence o f switches. As such, sending and receiving between different processors cannot be carried on con

currently. The speedups are particularly poor for rendering the SOD 128 dataset with the RayFront algo

rithm. mainly due to lack o f latency hiding. Frame times rise when two or four workstations are employed in

place of one.

7.4 Extensions and Future Research

Parallel rendering as a whole is by no means a mature field. Efficient parallel rendering is an elusive goal,

with more questions raised than answered [119]. As parallel computers become more powerful and more

affordable, integrating graphics with parallel applications will be a central issue for the visualization com

munity. Efficient parallel rendering algorithms are a prerequisite to this process. Although we have provided

effective solutions to some of the open issues, much more remains to be done. Below we propose directions

to future research both with respect to this dissertation and to parallel rendering in general. Future extensions

to the work presented in this dissertation may be classified in the following areas:

• alternative data types

• alternative volume rendering algorithms

• other architectures

• load balancing

• extension to ray tracing

• hardware implementation

In general, the following research areas in parallel rendering deserve special attention:

• dynamic load balancing

• minimizing network congestion and latency hiding

1 2 4

• heterogenous rendering

• algorithm embedding

• other architectures

• hardware implementation

In this dissertation, we have implemented three algorithms for rendering volume datasets, although they are

not limited to rendering these models only. The general description of the parallel systems equally applies to

rendering polygon-based scenes, with changes just in the rendering portion o f the algorithm. Polygonal

scenes may be partitioned into cells, each cell consisting of all the polygons residing within it. In contrast to

volume-cells. polygon-cells may be o f different sizes and thus may need a more sophisticated memory map

ping strategy. Some research may be devoted in this area.

In addition to being independent o f the scene modeling method. CellFIow and RayFront methods are also

independent of whether the rendering is image-order or object-order. For example, either voxel projection,

z-buffer. shear-warp. or ray-casting may alternatively be used to render each cell with these parallel algo

rithms. The current system, which uses ray casting, can be extended to incorporate these rendering tech

niques as well.

Coherent algorithms minimize communication overheads by exploiting spatial and temporal coherency.

This, combined with latency hiding and congestion control, have made our methods extremely powerful in

providing almost real-time animations and linear scalability on MPPs (Massively Parallel Processor) like the

Cray T3D. The high-bandwidth network available on such MPPs also helps to keep latency low. This is not

the case for other parallel environments such as a NOW (Network of Workstations) or a COW (Cluster of

Workstations), which are known for their limited bandwidth network connections. To make matters worse,

the workstations and network links are not exclusively reserved for a single application, other users may be

using the links to add congestion to the network. The performance of our algorithms is bound to deteriorate

in such environments (as seen in the previous section). In the future, we wish to study the effect of our algo

rithms. evaluate the bottlenecks, and device alternate methods to work efficiently in such environments. It

will be interesting to evaluate the effect (if any) of different networks like Ethemet, FDDI. and the newly

emerging network technology. ATM (Asynchronous Transfer Mode). Using different network specific APIs

12 5

(Application E^ogramtning Interface) like PVM. MPI (Message Passing Interface), and ATM-API. we

expect to improve the performance of the parallel renderer on NOWs and COWs.

Results shown by several authors and those shown in Chapter 3, Chapter 4, and Chapter 5 verify the fact that

block IP distribution schemes are prone to severe load imbalance. Interleaved or cyclic screen segment

assignments improves the situation to a certain extent, but for certain scenes, even this distribution may offer

modest performance improvement. Dynamic methods provide a versatile solution to the load balancing

problem. Some authors have adopted these methods for SM machine implementations, but the high message

passing overheads associated with DM machines may prove disadvantageous if dynamic methods are

adopted. Prospective solutions to dynamic load balancing on DM parallel systems is thus another area of

research. While ActiveRay can be extended in this direction with sufficient ease, CellFIow and RayFront

algorithms are more rigid in nature.

The final goal o f a graphics renderer is to incorporate all the features for realistic imagery. Volume visualiza

tion is an arena where the intent is to study and analyze scientific and medical databases. Although transpar

ent objects are easily comprehensible, reflections and refractions are generally avoided due to the enormity

and complexity o f the datasets. Ray tracing algorithms, on the other hand, can handle these phenomena very

conveniently by using simplified versions of the light-transport phenomenon. Introducing these features in

parallel rendering is yet to be explored by us. The simplified assumption that the ray-paths are predictable in

ray-casting algorithms (as in volume visualization) does not hold for ray tracing. Parallel algorithm design

has to be made much more intricate. Several other factors, like load imbalance and severe network conges

tion start dominating the performance of the algorithm. In our research so far, we have strongly established

that our algorithms work very efficiently for a special case of ray-tracing, i.e., ray-casting. We are exploring

ways that will provide similar speedups and performance for ray-tracing using the concepts developed here,

like memory optimization, maintenance of the thrashless property, minimization of network congestion,

latency hiding, and optimal screen traversal scheme. Achieving similar speedups and performance for ray-

tracing is a challenging proposition needing further research.

A hardware realization o f the object-dataflow parallel algorithms is distinctly another area o f future work. In

their current form, it is difficult to determine which approach is the stronger candidate for hardware imple

mentation. While ActiveRay is more general in nature, RayFront and CellFIow provide efficient solutions

1 2 6

for more restrictive applications. The easiness with which these software parallel implementations can be

transformed to hardware remains to be seen.

Among the general drawbacks in parallel rendering systems, fruitful schemes for dynamic load balancing

for IP methods on DM machines, and for OP methods are sull lacking. It has almost been confirmed that

none of the static load balancing schemes will be able to balance the load in all situations. Dynamic load bal

ancing schemes offer a more versatile solution, but is infested with associated overheads. Several proposals

have been made that try to reduce these overheads and make dynamic schemes more beneficial. Dynamic

load balancing is simpler to implement on DSM machines like DASH [90]. but is more difficult on message-

passing machines like Cray T3D and CM-5. Similarly. OP methods have not been too compliant with

dynamic load balancing schemes, so some research in this area is in order.

Only a handful of researchers have dealt with the problem of controlling network congestion, some o f the

notable ones being Neumann [89]. Wittenbrink and Somani [127]. Vezina. et al. [113]. Cohen [19]. and the

algorithms described in Chapter 3 and Chapter 4. On a similar note, latency hiding for IP approaches have

not gained much attention. In Chapter 3 and Chapter 4. we suggest two ways to hide latency, but much

remains to be done to verify the validity and consistency of these methods.

With fast networks now becoming available for NOWs and COWs (like FDDI and ATM), the parallel pro

cessing platform is slowly but steadily shifting to these environments. O f course, these loosely coupled net

works may never provide as high bandwidths as can be found with closely coupled connections on MPPs.

but the cost-performance ratio of NOWs and MPPs suggest that despite the slower network. NOWs will be

the choice of future massively parallel computing [4]. Much effort is being diverted to make these environ

ments more acceptable within the PVR community.

Similarly, heterogenous implementation o f PVR algorithms may prove beneficial. This will need a closer

look at these algorithms to exmact some level of functional parallelism. For example. Stredney. et al. [106]

and Machiraju and Yagel [83] has already demonstrated the use o f vector computers in doing incremental

transformations of voxels in OP methods. By applying a functional decomposition to the rendering pipeline,

different parts of the pipeline can be executed on machines that are most suitable for the function. Yoo. et al.

[135] are the only ones to take this bold step. They have utilized both the SIMD and the MIMD portions of

Pixel Planes-5 to implement their DM parallel volume renderer. Ma. et al. [81] has also reported the imple

1 2 7

mentation o f their binary-swap algorithm on a heterogenous environment, but without any functional

decomposition.

Even when functional decomposition is not the goal, heterogenous environments can be utilized when simi

lar computing resources are scarce. In certain cases, each machine can be used to generate some frames in an

animation sequence. More popularly, the rendering job is decomposed and distributed to individual

machines, which cooperate to generate a final image. Although the same operations are carried out on each

machine, differences in hardware specifications and floating point precisions will result in slight differences

in the generated sub-images. For example, in case o f an IP decomposition, differences will be evident along

the partition boundaries (producing seams along the boundaries). The situation is even more aggravated

when one attempts to apply different rendering algorithms on different machines, depending on their capa

bilities. For example, a machine equipped with rendering hardware may use a slicing based approach, while

a vector computer may be utilized for its vector calculation capabilities to perform shearing or splatting.

Such heterogenous implementations will definitely give rise to differences in the generated sub-images. An

even pressing problem is the load imbalance that arises in these situations. Seamless multi-platform comput

ing is now becoming popular in distributed database queries, but the sophistication o f our visual system

makes such artifacts unacceptable in visualization applications, and more research is called for removing

these artifacts.

The embedding of these algorithms in the underlying architecture has largely been neglected. Independence

of the underlying architecture is definitely advantageous. Some algorithms designed for certain topologies

may also be ported to other topologies with proper embedding. For example, algorithms designed for ring

networks can be conveniently embedded in a hypercube using Gray codes. Efficient methods are also avail

able to embed trees and meshes in other topologies.

One architecture that is slowly gaining popularity is the cluster. Several processors are clustered in the same

node, while clusters are connected using some scalable interconnection network. Due to their improved

locality characteristics, cluster architectures are being used in current MPPs, like Cray T3D, Convex SPP,

and Stanford DASH. For example, the cluster architecture of Convex SPP uses fast shared-memory reads

and writes for communicating between processors within the same hypemode, while the more expensive

sockets are used for sending messages across nodes. It will be interesting to see how coherent PVR systems

can exploit the good locality feature as envisaged in this class of machines.

1 2 8

It is clear that hardware implementation of volume rendering like Cube, Voxel Processor, and Pixel-Flanes

5. using multiple processors offers the fastest solution for achieving real-time frame rates. These architec

tures sacrifice implementation flexibility for gaining rendering speed. A dedicated parallel processing envi

ronment for volume rendering, including the desired features in hardware is a challenging proposition. Such

specialized hardware will find immense usage in the fields o f medical imaging and for virtual reality appli

cations in medicine. As it stands now, providing complete flexibility in hardware seems to be an unattainable

task. A consolidation o f the most compute-intensive but general operations like compositing and texture

mapping in hardware with additional desired features in software is a more realizable goal.

1 2 9

7.5 Conclusion

In conclusion, this research has primarily focussed on some of the as yet unexplored problems in parallel

volume rendering, e.g.. latency hiding, optimizing local memory utilization, optimal screen traversal, reduc

ing network congestion, and portability, and has suggested exclusive ways to eliminate some or all of these.

Our coherent algorithms have demonstrated scalability to very high degrees, with potential to improve even

further. The accomplishments and contributions to the field of parallel volume rendering is summarized

below.

• An incremental rotation scheme [Chapter 3] that exploits temporal coherency to minimize communica

tion. accomplishes effective latency hiding, and utilizes local memory optimally.

• A method with the most efficient local memory utilization [Chapter 4], among the ones proposed in liter

ature. This “cache-only” scheme minimizes the communication overheads, and achieves effective

latency hiding, providing a general purpose animation algorithm at the same time.

• A thrashless method for visualizing colossal datasets [Chapter 51. which also maintains its thrashless

property across a number of similar frames. This method has shown considerable promise for visualizing

compressed volumes as well [Chapter 6], i.e.. volumes so big that they have to be stored on disk in a

compressed form.

• The thrashless property o f the above method also inherently provides an optimal screen traversal

method, and has outclassed the most efficient screen traversal scheme proposed so far. i.e.. the Hilbert

transform [136].

• The scalability demonstrated by the above algorithms are far superior to those reported in the literature.

• The algorithms are transparent to the underlying network topology and thus are portable to parallel

machines with any topology.

• Unlike previous methods, our algorithms are primarily designed to perform efficiently on DM architec

tures. so that the widely available and unused computing resources, like the NOWs and COWs. may be

effectively utilized for such enduring tasks like volume rendering.

1 3 0

List of References

1. M J. Ackerman, “The Visible Human Project”, National Library o f Medicine, http://www.nlm.nih.gov/
extramural_research.dir/visible_human.html.

2. K. Akeley, "Reality Engine Graphics”, Computer Graphics, 1993. pp. 109-116.

3. M.B. Amin, A. Grama, V. Singh, “Fast Volume Rendering Using an Efficient, Scalable Parallel Formu
lation o f the Shear-Warp Algorithm”, Proceedings 1995 Parallel Rendering Symposium. October 1995.
pp. 15-22.

4. T. Anderson, D.E. Culler, D.A. Patterson, “A Case for NOW (Networks o f Workstations” . IEEE Micro.
February 1995, pp. 54-64.

5. C. Bajaj, V. Anupam, D. Schikore, M. Schikore, “Distributed and Collaborative Volume Visualization".
IEEE Computer. 27, 7, (July, 1994) 37-43.

6. E. Artzy, G. Frieder, G. Herman, “The Theory, Design, Implementation, and Evaluation of a Three-
Dimensional Surface Detection Algorithm”, Computer Graphics and Image Processing. 15, Januarv'
1981, pp. 1-24.

7. J. Arvo, “Space-Filling Curves and a Measure o f Coherence”, Graphics Gems It. Chapter 1.8, pp. 26-
30.

8. R. Avila, L.M. Sobierajski, A.E. Kaufman, “Towards a Comprehensive Volume Visualization System".
Proceedings Visualization 92. October 1992, pp. 13-20.

9. D. Badouel, K. Bouatouch, T. Priol, “Ray Tracing on Distributed Memory Parallel Computers: Strate
gies for Distributing Computations and Data”, in SIGGRAPH ‘90 Parallel Algorithms and Architecture
fo r 3D [mage Generation Course Notes, pp. 185-198.

10. D. Badouel, T. Priol, “An Efficient Parallel Ray Tracing Scheme for Highly Parallel Architectures", pp.
93-106.

11. D. Badouel, K. Bouatouch, T. Priol, “Distributing Data and Control for Ray Tracing in Parallel", IEEE
Computer Graphics & Applications, July 1994, pp. 69-77.

12. S. Badt Jr., “Two Algorithms for taking Advantage o f Temporal Coherence in Ray Tracing", The Visual
Computer. April 1988, pp. 123-132.

13. L. Bergman, H. Fuchs, E. Grant, S. Spach, “Image Rendering by Adaptive Refinement”, Computer
Graphics, 2 0 ,4 , November 1986, pp. 29-37.

14. H. Burkhardt HI, S. Frank, B. Knobe, J. Rothnie, “Overview o f the KSRl Computer System", Techni
cal Report KSR-TR-9202001, Kendall Square Research, Boston, February 1992.

15. B. Cabral, N. Cam, J. Foran, “Accelerated Volume Rendering and Tomographic Reconstruction Using
Texture Mapping Hardware”, Symporm/M o f Volume Visualization 94. p p ..

1 3 1

http://www.nlm.nih.gov/

16. E. Camahon. I. Chakravany, “Integrating Volume Data Analysis and Rendering on Distributed Mem
ory Architectures”, Proceedings 1993 Parallel Rendering Symposium. October 1993. pp.89-96.

17. J. Challinger. “Parallel Volume Rendering on a Shared-Memory Multiprocessor” . Department o f Com
puter and Information Science. University of California at Santa Cruz technical report # UCSC-CRL-
91-23 (revised March 1992).

18. J.G. Cleary. B. Wyvill. G.M. Birtwistle. R. Vatti. “Multiprocessor Ray Tracing”. Research Report 83/
128/17. University of Calgary, October 1983.

19. D. Cohen. S. Fleishman. “An Incremental Alignment Algorithm for Parallel Volume Rendering". Pro
ceedings Eurographics 95. September 1995. pp. 123-133.

20. D. Cohen. Z. Shefer. “Proximity Clouds - An Acceleration Technique for 3D Grid Traversal”. Tech
Report PC 93-01. Math & Computer Science. Ben Gurion University. Beer-Sheva. 1993.

21. R.L. Cook. T. Porter. L. Carpenter. “Distributed Ray Tracing”. Computer Graphics. 1984. pp. 137-145.

22. B. Corrie. P. Mackerras. “Parallel Volume Rendering and Data Coherence” . Proceedings 1993 Parallel
Rendering Symposium, October 1993. pp. 23-26.

23. T.W. Crockett. “Parallel Rendering”. NASA CR-195080 ICASE Report No. 95-31.

24. T. W. Crockett. T. Orloff. “A MIMD Rendering Algorithm for Distributed Memory Architectures” .
Proceedings 1993 Parallel Rendering Symposium. October 1993. pp. 35-42.

25. T J . Cullip. U. Neumann. “Accelerating Volume Reconstruction with 3D Texture Hardware”. Technical
Report #TR93-027. Department of Computer Science. University o f North Carolina at Chapel Hill.
1993.

26. H Deguchi.. H. Nishimura. H. Yoshimura. T. Kawata. I. Shirakawa. K. Omura. “A Parallel Processing
Scheme for Three-Dimensional Image Generation”. ISCAS. 1984. pp. 1285-1288.

27. M. Dippe. J. Swensen. ".An Adaptive Subdivision Algorithm and Parallel Architecture for Realistic
Image Synthesis”. Computer Graphics. 18. 3. July 1984. pp. 149-158.

28. R. A. Drebin. L. Carpenter. P. Hanrahan. “Volume Rendering”. Computer Graphics. 22. 4. August
1988. pp. 65-74.

29. T. von Eicken, D.E. Culler. S.C. Goldstein. K.E. Schauser. “Active Messages: a Mechanism for Inte
grated Communication and Computation”. Proceedings 19th International Symposium on Computer
Architecture. May 1992. pp. 256-266.

30. T. T. El vins. “Volume Rendering on a Distributed Memory Parallel Computer”. Proceedings Visualiza
tion 92. October 1992. pp. 93-98.

31. J.D. Foley. A. van Dam. S.K. Feiner. J.F. Hughes. “Computer Graphics, Principles and Practice ". sec
ond edition. Addison Wesley. 1992.

32. J.E. Fowler. R. Yagel. “Lossless Compression of Volume Data”. Proceedings 1994 Symposium on Vol
ume Visualization. October 1994. pp. 43-50.

33. G. Frieder. D. Gordon. R.A. Reynolds. “Back-to-Front Display o f Voxel-Based Objects”. IEEE Com
puter Graphics and Applications. 5. 1. January 1985. pp. 52-60.

34. H. Fuchs. J. Poulton. J. Eyles. T. Greer. J. Goldfeather. D. Ellsworth. S. Molnar. G. Turk. “Pixel-Planes
5: A Heterogenous Multiprocessor Graphics System Using Processor Enhanced Memories”. Computer
Graphics. 23 .4 . July 1989. pp. 79-88.

35. M.H. Ghavamnia. X.D. Yang. “Direct Rendering of Laplacian Pyramid Compressed Volume Data” .
Proceedings Visualization 95. pp. 192-199.

36. A S. Glassner. “An Introduction to Ray Tracing”. Academic Press. 1989.

1 3 2

37. V. Goel, A. Mukherjee, "An Optimal Parallel Algorithm for Volume Ray Casting". Proceedings Inier-
national Parallel Processing Symposium, 1995. pp. 707-711.

38. S.M. Goldwasser. "A Generalized Object Display Processor Architecture". Proceedings l l th Annual
International Symposium on Computer Architecture, May 1984. pp. 38-47.

39. S.M. Goldwasser. “Rapid Techniques for the Display and Manipulation of 3D Biomedical Data". Pro
ceedings NCGA '86 Conference, II. May 1986. pp. 115-149.

40. D. Gordon, R_A. Reynolds, “Image Space Shading of 3-DImensional Objects". Computer Graphics
and Image Processing, 29, 3. March 1985. pp. 196-214.

41. S A . Green. D J . Paddon. “A Highly Flexible Multiprocessor Solution for Ray Tracing". The Visual
Computer, 1990. pp. 62-73.

42. S.A. Green. D.J. Paddon. “Exploiting Coherence for Multiprocessor Ray Tracing". IEEE Computer
Graphics and Applications, 9. 6. November 1989. pp. 12-26.

43. E. Hagersten. S. Haridi. D.H.D. Warren. “The Cache-Coherence Protocol of the Data Diffusion
Machine". Michel Dubois and Shreekant Thakkar. eds.. Cache and Interconnect Architectures in Multi
processors. Kluwer Academic Publishers. 1990.

44. P. Hanrahan. “Three-Pass Affine Transforms for Volume Rendering". Computer Graphics. 24. 4,
November 1990. pp. 71-78.

45. C. Hansen, M. Krogh. J. Painter. C. Verdiere. R. Troutman. “Binary-Swap Volumetric Rendering on the
T3D”. Proceedings Cray User Group Meeting. March 1995. pp. 61-69.

46. C. Hansen. M. Krogh. W. White. “Massively Parallel Visualization: Parallel Rendering". Proceedings
7th SIAM Conference on Parallel Processing fo r Scientific Computing, February 1995. pp. 790-795..

47. Herman. Liu.

48. L. Hong. A. Kaufman. Y.C. Wei. A. Viswambharan. M. Wax. Z. Liang. “3D Virtual Colonoscopy".
Proceedings Biomedical Visualization 95, October 1995. pp. 26-32.

49. W.M. Hsu. “Segmented Ray Casting for Data Parallel Volume Rendering". Proceedings 1993 Parallel
Rendering Symposium, October 1993, pp. 7-14.

50. T. Itoh. K. Koyyamada. “Isosurface Generation by Using Extrema Graphs”. Proceedings Visualization
94, pp. 77-83.

51. T. Joe. J.L. Hennessy. “Evaluating the Memory Overhead Required for COMA Architectures". IEEE
Computer. September 1994, pp. 82-93.

52. A. Kaufman. “The Cube Workstation: A 3D Voxel Based Graphics Workstation". The Visual Computer.
4 .4 . October 1988. pp. 210-221.

53. A. Kaufman. "Volume Visualization", IEEE Computer Society Press. 1991.

54. A. Kaufman. R. Bakalash. D. Cohen, R. Yagel. “A Survey o f Architectures for Volume Rendering".
IEEE Engineering in Medicine and Biology, 9 .4 , December 1990, pp. 18-23.

55. M.J. Keates. R J . Hubbold. “Interactive Ray Tracing on a Virtual Shared-Memory Parallel Computer".
Computer Graphics Forum, 14.4, 1995, pp. 189-202.

56. J. Kerr. P. Ratiu, M. Sellberg. “Volume Rendering o f Visible Human Data for an Anatomical Virtual
Environment". Chapter 44 in Health Care in the Information Age, H. Sieburg, S. Weghorst. K. Morgan
(eds.). IQS Press and Ohmsha. 1996.

57. R. Knittel. “High-Speed Volume Rendering Using Redundant Block Compression". Proceedings Visu
alization 95, October 1995. pp. 176-183.

58. H. Kobayashi, T. Nakamura, Y. Shigei, “Parallel Processing of an Object Space for Image Synthesis
Using Ray Tracing". The Visual Computer, 1987. pp. 13-22.

1 3 3

59. H. Kobayashi. H. Kubota. S. Horiguchi. T. Nakamura. “Effective Parallel Processing for Synthesizing
Continuous Images”. New Advances in Computer Graphics, Proceedings CGI '89. pp. 343-352.

60. H. Kobayashi. S. Nishimura. H. Kubota. T. Nakamura. Y. Shegei. “Load Balancing Strategies for a Par
allel Ray-Tracing System Based on Constant Subdivision”. The Visual Computer, 1988. pp. 197-209.

61. M.F. Krogh. C.D. Hansen. “Visualization on Massively Parallel Computers using CM/AYS”. Proceed
ings AVS Users Conference, May 1993..

62. P. Lacroute. M. Levoy, “Fast Volume Rendering Using a Shear-Warp Factorization of the Viewing
Transformation”. Computer Graphics, 1994. pp. 451-458.

63. P. Lacroute. “Real-Time Volume Rendering on Shared Memory Multiprocessors Using the Shear-Warp
Factorization”. Proceedings 1995 Parallel Rendering Symposium, October 1995. pp. 15-22.

64. D. Laur. P. Hanrahan. “Hierarchical Splatting: A Progressive Refinement Algorithm for Volume Ren
dering”. Computer Graphics, 2 5 ,4. July 1991. pp. 285-288.

65. A. Law. R. Yagel. D. N. Jayasimha. “VoxelFlow: A Parallel Volume Rendering Method for Scientific
Visualization”. Proceedings ISCA International Conference, March 1995. pp. 260-264.

66. A. Law. R. Yagel. D. N. Jayasimha. “Parallel Volume Rendering for Scientific Visualization", ISCA
Journal o f Computers and Their Applications, 3. 3. December 1996.

67. A. Law, R. Yagel. “CellFlow: A Parallel Rendering Scheme for Distributed Memory Architectures”.
Proceedings International Symposium on Parallel and Distributed Processing Techniques and Applica
tions, November 1995. pp. 3-12.

68. A. Law. R. Yagel. “Multi-Frame Thrashless Ray Casting with Advancing Ray-Front”. Proceedings
Graphics Interface 96, May 1996. pp. 70-77.

69. A. Law. R. Yagel. “An Active-Ray Approach to Parallel Rendering on Distributed Memory Multipro
cessors”. Proceedings Eighth Symposium o f Parallel and Distributed Processing, SPDP 96, October
1996. pp. 414-421.

70. A. Law. R. Yagel. “Exploiting Spatial. Ray. and Frame Coherency for Efficient Parallel Volume Ren
dering”. Proceedings 6th International Conference on Computer Graphics and Visualization in Russia,
GraphiCon 96, July 1996. pp. 93-101.

71. A. Law, R. Yagel. “An Optimal Ray Traversal Scheme for Visualizing Colossal Medical Volumes".
Proceedings Visualization in Biomedical Computing '96, September 1996. pp. 33-42, Karl H. Hoehne.
Ron Kikinis (ed.). Springer. 1996. Lecture notes in computer Science Vol. 1131.

72. A. Law. R. Yagel. “Parallel Ray Tracing Algorithms: A Survey”, in preparation.

73. T.Y. Lee. C.S. Raghavendra. J.B. Nicholas. “Parallel Implementation o f Ray-Tracing Algorithm on the
Intel Delta Parallel Computer”. Proceedings International Parallel Processing Symposium, 1995. pp.
688-692.

74. W. Lefer. “An Efficient Parallel Ray Tracing Scheme for Distributed Memory Parallel Computers” .
Proceedings 1993 Parallel Rendering Symposium, October 1993. pp. 77-80.

75. M. Levoy. “Display o f Surfaces from Volume Data”. IEEE Computer Graphics and Applications, 8. 5.
May 1988. pp. 29-37.

76. M. Levoy, “Efficient Ray Tracing o f Volume Data”. ACM Transactions on Graphics, 9, 3. July 1990,
pp. 245-261.

77. H.K. Liu. “Two- and Three-Dimensional Boundary Detection”, Computer Graphics and Image Pro
cessing, 6, 1977. pp. 123-134.

78. Y. Livnat. H.W. Shen. C.R. Johnson. “A Near Optimal Isosurface Extraction Algorithm Using The
Span Space”, IEEE Visualization and Computer Graphics, 2, 1. March 1996, pp. 73-84.

1 3 4

79. W.E. Lorenson. H £ . Cline. “Marching Cubes: A High Resolution 3D Surface Construction Algo
rithm”, Computer Graphics, 21,4, July 1987, pp. 163 - 169.

80. W.E. Lorensen, “Marching Through the Visible Human”, Proceedings Visualization 95. pp. 368-373.

81. K.L. Ma, J.S. Painter, C D. Hansen, M.F. Krough, “A Data Distributed, Parallel Algorithm for Ray-
Traced Volume Rendering”, Proceedings 1993 Parallel Rendering Symposium, October 1993, pp. 15-
22.

82. K.L. Ma, J.S. Painter, C D . Hansen, M.F. Krogh, “Parallel Volume Rendering Using Binary-Swap
Compositing” , IEEE Computer Graphics <& Applications, July 1994, pp. 59-68.

83. R. Machiraju, R.Yagel, “Efficient Feed-Forward Volume Rendering Techniques for Vector and Parallel
Processors” , Proceedings Supercomputing '93, pp. 699-708.

84. S. Molnar, J. Eyles, J. Poulton, “PixelFIow: High-Speed Rendering Using Image Composition” . Com
puter Graphics, 26, 2, 1992, pp. 231-240.

85. C. Montani, R. Perego, R. Scopigno, “Parallel Volume Visualization on a Hypercube Architecture".
Proceedings 1992 Workshop on Volume Visualization, October 1992, pp. 9-15.

86. K. Nemoto, T. Omachi, “An adaptive subdivision by sliding boundary surfaces for fast ray tracing".
Proceedings Graphics Interface, 1986, pp. 43-48.

87. U. Neumann, “Volume Reconstruction and Parallel Rendering Algorithms: A Comparative Analysis".
Doctoral Dissertation, 1993.

88. U. Neumann, “Parallel Volume-Rendering Algorithm Performance on Mesh-Connected Multicomput
ers”, Proceedings 1993 Parallel Rendering Symposium, October 1993, pp. 97-104.

89. U. Neumann, “Communication Costs for Parallel Volume-Rendering Algorithms”, IEEE Computer
Graphics & Applications, July 1994, pp. 49-58.

90. J. Nieh, M. Levoy, “Volume Rendering on Scalable Shared-Memory MIMD Architecture”. Proceed
ings 1992 Workshop on Volume Visualization, pp. 17-24.

91. P. Ning, L. Hesselink, “Fast Volume Rendering o f Compressed Data”, Proceedings Visualization 93,
October 1993, pp. 11-18.

92. T. Ohashi, T. Uchiki, M. Tokoro, “A Three-Dimensional Shaded Display Method for Voxel-Based Rep
resentation”, Proceedings Eurographics 85, 1985, pp. 221-232.

93. M.E. Palmer, S. Taylor. B. Totty, “Interactive Volume Rendering on Clusters o f Shared-Memory Multi
processors”. Proceedings Parallel Computational Fluid Dynamics, Elsevier Science Publishers B.V.,
1995.

94. T. Priol, K. Bouatouch, “Static load balancing for a parallel ray tracing on a MIMD hypercube". The
Visual Computer, 1989. pp. 109-119.

95. D. Rogers, “Procedural Elements fo r Computer Graphics", McGraw-Hill, 1985.

96. J.S. Rowlan, G.E. Lent, N. Gokhale, S. Bradshaw, “A Distributed, Parallel, Interactive Volume Render
ing Package”, Proceedings Visualization 94. October 1994, pp. 21-30.

97. P. Sabella, “A Rendering Algorithm for Visualizing 3D Scalar Fields”, Computer Graphics, 22, 4.
August 1988, pp. 51-58.

98. I.D. Scherson, E. Caspary, “Multiprocessing for Ray Tracing: a Hierarchical Self-Balancing
Approach” , The Visual Computer, 1988, pp. 188-196.

99. P. Schroder, J.B. Salem. “Fast Rotation of Volume Data on Data Parallel Architecture”, Proceedings
Visualization 91, pp. 50-57.

100. P. Schroder, G. Stoll, “Data Parallel Volume Rendering as Line Drawing”, Proceedings 1992 Workshop
on Volume Visualization, October 1992, pp. 25-32.

1 3 5

101. H. Shen, C.R. Johnson. “Sweeping Simplicies: A Fast Iso-Surface Extraction Algorithm for Unstruc
tured Grids”, Proceedings Visualization 1995. October 1995, pp. 143-150.

102. C.T. Silva, A.E. Kaufman, “Parallel Performance Measures for Volume Ray Casting”. Proceedings
Visualization 94, October 1994, pp. 196-204.

103.J.P. Singh, A. Gupta, M. Levoy, “Parallel Visualization Algorithms: Performance and Architectural
Implications”, IEEE Computer, 27, 7, July 1994, pp. 45-55.

104. M. Sramek, “Fast Surface Rendering from Raster Data by Voxel Traversal Using Chessboard Dis
tance”, Computer Graphics, 25 ,4 , July 1991, pp. 188-195.

105. P. Stenstrom. T. Joe, A. Gupta, “Comparative Performance Evaluation of Cache-Coherent NUMA and
COMA Architectures” , Proceedings !9th Annual International Symposium on Computer Architecture.
20, 2, May 1992, pp. 80-91.

106. D. Stredney, R. Yagel, S. F. May, M. Torello, “Supercomputer Assisted Brain Visualization with an
Extended Ray Tracer”, Proceedings 1992 Workshop on Volume Visualization, pp. 33-38.

107. M.R. Stytz, G. Frieder, O. Frieder, “Three-Dimensional Medical Imaging: Algorithms and Computer
Systems” , ACM Computing Surveys, 23, 4, December 1991, pp. 421-499.

108. I.E. Sutherland, R.F. Sproull, R.A. Schumacker. “A Characterization o f Ten Hidden-Surface Algo
rithms”, ACM Computing Surveys, 6, 1. March 1974, pp. 1-55.

109. U. Tiede, T. Schiemann, K.H. Hohne, “Visualizing the Visible Human” . IEEE Computer Graphics and
Applications, 16, 1, January 1996, pp. 7-9.

110. H.K. Tuy, L.T. Tuy, “Direct 2D Display o f 3D Objects”, IEEE Computer Graphics and Applications. 4.
10, November 1984, pp. 29-33.

111. J.K. UdupaD. Odhner, “Interactive Surgical Planning: High-Speed Object Rendition and Manipulation
Without Specialized Hardware”, Proceedings First Conference on Visualization in Biomedical Com
puting, May 1990, pp. 330-335.

112. C. Upson, M. Keeler, “V-BUFFER: Visible Volume Rendering”, Computer Graphics, 22, 4, August
1988, pp. 59-64.

113. G. Vezina, PA. Fletcher, P.K. Robertson, “Volume Rendering on the MasPar MP-1”, Proceedings 1992
Workshop on Volume Visualization, October 1992, pp. 3-8.

114. R. Westermann, “Compression Domain Rendering of Time-Resolved Volume Data”, Proceedings Visu
alization 95, October 1995, pp. 168-175.

115. R. Westermann, “Parallel Volume Rendering”, Proceedings 1995 International Parallel Processing
Symposium, October 1995, pp. 693-699.

116. L. Westover, “Footprint Evaluation for Volume Rendering”, Computer Graphics, 24, 1990, pp. 367-
376.

117. L. Westover, "Splatting: A Parallel, Feed-Forward Volume Rendering Algorithm", Doctoral Disserta
tion, Department of Computer Science, University of North Carolina at Chapel Hill, July 1991.

118. S. Whitman, "Utilizing Scalable Shared Memory Multiprocessors fo r Computer Graphics Rendering".
Doctoral Dissertation, The Ohio State University, 1991.

119. S. Whitman, C D. Hansen, T.W. Crockett, “Recent Developments in Parallel Rendering”, IEEE Com
puter Graphics and Applications, July 1994, pp. 21-22.

120. S. Whitman, "Multiprocessor Methods fo r Computer Graphics Rendering", A.K. Peters, Ltd. Welles
ley, MA. 1992.

121. S. Whitman, P. Li, J. Tsiao, “Volume Rendering of Scientific Data on the T3D” , personal communica
tions.

1 3 6

122. J. Wilhelms. A. Van Gelder. "A Coherent Projection Approach for Direct Volume Rendering". Com
puter Graphics, 25 .4 . 1991. pp. 275-284.

123. J. Wilhelms. A. Van Gelder. “Octrees for Faster Isosurface Generation”. ACM Transaction on Graph
ics, 11. 3. July 1992. pp. 201-227.

124. C. Wittenbrink. "Designing Optimal Parallel Rendering Algorithms", Doctoral Dissertation. University
of Washington. 1993.

125. C. Wittenbrink. M. Harrington. "A Scalable MIMD Volume Rendering Algorithm”. Proceedings
Eighth International Parallel Processing Symposium, April 1994. pp. 916-920.

126. C. Wittenbrink. A. Somani. “Permutation Warping for Data Parallel Volume Rendering” . Proceedings
1993 Parallel Rendering Symposium, October 1993. pp. 57-60.

127. C. Wittenbrink. A. Somani. “2D and 3D Optimal Parallel Image Warping” , Journal o f Parallel and
Distributed Computing, 25. 1995. pp. 197-208.

128. T. K. Wu. M. L. Brady. "Parallel Approximate Computation of Projections for Animated Volume Ren
dered Displays". Proceedings 1993 Parallel Rendering Symposium, October 1993. pp. 61-66.

129. R. Yagel. "Efficient Methods fo r Volume Graphics". Doctoral Dissertation. Department of Computer
Science. SUNY at Stony Brook. December 1991.

130. R. Yagel. D. Cohen. A. Kaufman. “Discrete Ray Tracing”. IEEE Computer Graphics & Applications,
12. 5. September 1992. pp. 19-28.

131. R. Yagel. A. Kaufman. “Template Based Volume Viewing”. Computer Graphics Forum, 11.3. Septem
ber 1992. pp. 153-157.

132. R. Yagel. Z. Shi. “Accelerating Volume Animation by Space-Leaping”. Proceedings Visualization 93,
October 1993. pp. 62-69.

133. R. Yagel. D. Stredney. G. Wiet. A. Law. “PARAVOL: Parallel Volume Rendering for Virtual Medi
cine”. Proceedings Cray User Group Meeting, September 1995. pp. 131-138.

134. R. Yagel. D. Stredney, G J . Wiet. P. Schmalbrock. L. Rosenberg. D J. Sessanna. Y. Kurzion. S. King.
“Multisensory Platform for Surgical Simulation”, Proceedings IEEE Virtual Reality Annual Interna
tional Symposium 96, March 1996. pp. 72-78.

135. T.S. Yoo. U. Neumann. H. Fuchs. S.M. Pizer. T. Cullip. J. Rhoades. R. Whitaker. “Achieving Direct
Volume Visualization with Interactive Semantic Region Selection”. Proceedings IEEE Visualization
91, pp. 58-65.

136. H. Zhang. S. Liu. “Order of Pixel Traversal and Parallel Volume Ray Tracing on the Distributed Vol
ume Buffer”. Presented at the Eurographics Workshop on Volume Visualization, 1995.

137. K. Zuiderveld. A. Koning. M. Viergever. “Acceleration of Ray Casting Using 3D Distance Trans
forms”. Proceedings Visualization in Biomedical Computing, SPIE Vol. 1808. October 1992. pp. 324-
335.

1 3 7

