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CHAPTER I

INTRODUCTION

1. Introduction

Quadruped locomotion has been of interest to researchers for many centuries now. The 

abundance of quadrupeds in nature and the ease with which they are able to negotiate 

unstructured terrain has fascinated many researchers. Thus, it is natural for quadrupeds to 

be strong contenders for man-made machines. Quadruped locomotion and in general 

legged locomotion has many advantages over wheeled/tracked locomotion. In legged 

locomotion, we can choose the appropriate locations to place the feet and thus traverse 

difficult terrain with lim ited num ber o f secure footholds. These legs also act as 

suspensions and are able to provide a smooth ride. Further, due to the limited contact 

between the machine and environment, legged locomotion is less damaging to the 

environm ent than wheeled locomotion. These advantages have m otivated many 

researchers in the past to study and construct quadruped machines. Others have performed 

simulation studies with models of varying complexity to understand the basics of 

quadruped locomotion.

Another approach to study this problem has been to observe the locomotions of animals. 

Most of the animals around us are quadrupeds. The study of their locomotion should 

enhance our understanding o f the quadruped locomotion. The success o f this approach



strongly depends upon our ability to gather data from the animals. Unfortunately, this is 

not always feasible due to the lack o f appropriate sensors. Still the lim ited data that has 

been obtained from the four legged animals have been vital to our study o f quadruped 

locomotion.

2. Overview

In this dissertation the lim ited quantitative data available from  the observations o f 

quadrupeds is used in conjunction with simulation studies and explains many o f the facts 

known about them. A sim ple m odel o f the quadruped has been developed for the 

sim ulation studies. Using the results from the sim ulation studies and principles o f 

symmetry, a controller has been designed for quadruped gallop. This controller enables 

the quadruped to gallop at a constant speed, change speed and further turn with a small 

curvature. Although many sim ulations and control schemes are available for quadruped 

trot, none have been conducted for quadruped gallop.

Chapter II starts with a simple mass spring model and continues with the development o f a 

technique to obtain stable solutions for various quadruped gaits ( trot, gallop and bound). 

There are no dissipative elem ents in the model. This chapter includes a qualitative 

discussion of the various gaits. The energy trade-offs are discussed and an attempt is made 

to generate the optimal gait (lowest energy gait). The energy expenditure in the various 

gaits is compared at different speeds and it is shown that the trot consum es the lowest 

energy at low speeds and the gallop uses the minimum energy at higher speeds.

Chapter III uses the results and insights developed in C hapter II to develop control 

strategies for a gallop at constant speed. A viscous damper combined with a force actuator
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has been added to each leg. Symmetry principles have been used to design a non-linear 

controller for the quadruped gallop. It is shown that an explicit controller is not required to 

control the pitch motion o f the body. The stability of the system is studied using Poincare 

maps. It has been shown that a chaotic behavior o f the system leads to instability. The 

stable system  shows either periodic or quasiperiodic behavior. The effect of different 

initial conditions on the system is studied. Further, parameter variation studies have been 

perform ed for the system. From these studies, it is shown that the system is stable for a 

range o f leg stiffness. For a leg stiffness outside this range, the system shows chaotic 

motion.

The controller described above is enhanced in Chapter IV to include changes in speed. 

This controller permits the quadruped to change speed without affecting the stability o f the 

system. The stability is again examined using Poincare maps. The controller developed in 

this chapter changes the speed linearly.

In Chapter V, the controller is extended to control a three dimensional quadruped machine. 

Additional controllers are developed to control the sideways speed, roll and yaw. A simple 

proportional-differential controller is used to control the sideways speed. To control yaw 

and roll w ithout affecting the pitch motion, proportional-differential controllers with 

feedforward terms are used. These additional controllers do not apply any moment in the 

pitch direction. This enables us to use the controller developed in the two dimensional case 

for the three dim ensional machine. Further, a control strategy is developed to enable the 

quadruped to turn. This strategy turns the quadruped with a relatively small curvature.
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3. Description o f the problem

The dynamic equations o f  quadruped locom otion are highly non-linear. Therefore, the 

problem of controlling quadruped gait is not very amenable to linear control techniques. 

Researchers, have in the past com e up with novel approaches to this problem (Raibert 

1984, W ong 1992). They have devised non-linear controllers for quadruped locomotion. 

These non-linear controllers are either based on symmetry principles, or assume super-real 

time simulations.

The other difficulty with this problem  is the definition of the desired output. In general 

terms, the quadruped should retain its balance with the control scheme. However, there is 

no mathematically precise definition o f balance. Does it imply that the the system should 

be periodic ? The obvious answ er is: not necessarily. Either a periodic or a quasiperiodic 

system should be able to retain balance. Is it possible that a chaotic system will also be 

able to retain its balance ? Are chaotic systems inherently unbalanced ?

Let us take the case o f quadruped trot. In this case, the diagonally opposite legs act 

together and, thus, the body does not undergo any angular displacement. Therefore, we 

could develop a controller for trot that will ensure that the main body does not undergo any 

angular displacement. Now let us consider the case of quadruped gallop. For gallop to be 

feasible, the body has to undergo a pitching motion. Roll and yaw are not essential and 

could be set to zero (assuming the quadruped is travelling in a straight line). The problem 

definition for this case becomes m ore complicated. We can design a controller to set the 

roll and yaw to zero but what should be the pitch angle ?

An added constraint to the problem  could be that the energy losses o f the gait should be
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minimized. That is, for a given speed, in addition ensuring that the system to retains its 

balance, the controller should ensure that the system is following the m inim um  energy 

path for that gait. This further com plicates the problem. Now what path will give us this 

optimal solution ? Does the system  now have to be periodic, quasiperiodic or chaotic ? 

This dissertation will try to answer these and related questions about the quadruped gallop.

4. Literature Survey

Locom otion o f terrestrial quadrupeds has a long history o f study. As early as 1779, 

Goiffon and Vincent conducted an aural study of gaits in horses. They attached bells, each 

with a specific ring, to each of the legs and developed the concepts o f gaits at different 

speeds. Marei ( 1875) devised a more perfect way of recording movements. He invented a 

recording apparatus which enabled him  to estim ate the duration o f support and aerial 

phase. At about the same time M uybridge (1887) analyzed animal movements by means of 

sequential still photographs. He stretched out threads across a track and attached these 

threads to the shutters o f a series o f cameras. As the animal moved along the track, it 

tripped these threads and photographs were taken by the cameras. This technique enabled 

him to study quadruped locomotion in greater detail.

More recently, with the advent o f better technology, more sophisticated techniques have 

been used to analyze quadruped motion. Pennycuick ( 1975) used a simple optical method 

to measure the stride frequencies o f various animals in the Serengeti National Park. The 

stride frequency in walk, trot and canter were analyzed for 14 mammal species. The stride 

frequency was found to vary with about the -0.5 power o f the linear dimensions (shoulder 

height) in all three gaits.
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Other researchers (Cavagna, Heglund and Taylor, 1977) have used force plates to measure 

the force exerted on the ground by quadrupeds during walking and running. They have 

found that the total energy stays alm ost constant during walking. There is an energy 

exchange between the potential energy and forward kinetic energy leading to an almost 

constant total energy. During running, the changes in potential energy and the forward 

kinetic energy are in phase with each other. Thus there are large variations in the total 

energy during each stride.

McM ahon (1975) used the treadmill and high speed cameras to study the locomotion o f 

various quadrupeds. H e found that many parameters o f gait including stride frequency, 

stride length, maximum speed, and the rate o f 0 2  uptake are power law functions of body 

weight of the quadruped. He has further shown that the theoretical model based on elastic 

sim ilarity makes the most successful prediction o f stride frequency, stride length, limb 

excursion angles, and the metabolic power required for running at the trot-gallop transition 

in quadrupeds ranging in size from mice to horses.

In another study M cM ahon et. al. (1989) have shown that the legs o f bipeds could be 

modelled as constant stiffness springs. They have shown that a constant non-dimensional 

stiffness spring could be used to model bipedal gaits at various running speeds.

Alexander et. al. (1985) have done significant work in the area o f quadruped locomotion. 

They have com pared trotting and galloping in quadrupeds from an energy expenditure 

perspective. Hoyt and Taylor (1981) trained small ponies to run on a treadm ill using 

different gaits on command. They measured the ponies rate of oxygen consum ption and 

found that trotting consum ed less oxygen than galloping at speeds below 4.5 m/s. 

However, at speeds above 4.5 m/s, galloping used less oxygen than trotting. W hen the
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ponies were allowed to move at will in a paddock, they trotted at 2.8-3.8 m/s but galloped 

at speeds over 5 m/s. They chose whichever gait was more energy efficient for the speed 

at which they were moving. A lexander et. al. (1985) have hypothesized that during 

galloping additional internal energy stored, due to the flexion of the back, is returned at an 

appropriate time during the stride. This additional energy storage mechanism is economical 

only above a certain range of speed and thus gallop is preferred only above certain speeds.

Pandy et. al. (1988) have used nubian goats to study the dynam ics o f quadruped 

locomotion. One o f the im portant conclusions from their work has been that the inertial 

effects o f the legs are negligible compared to the inertial effects o f the body.

In the late 1960's and 1970's, m any researchers started building com puter controlled 

quadrupeds. The first legged vehicle to walk by itself under com puter control was the 

"Phoney Pony", built by A. A. Frank and R. B. McGhee at the University o f California in 

1966 ( M cGhee, 1966). This machine had four legs powered by electric motors. The hip 

joints and the knee joints each had a single degree o f freedom. Tw o twelve-volt batteries 

supplied pow er through a trailing cable. The whole machine weighed about a hundred 

pounds and had a top speed of 0.5 mph. It was about the size of a small pony.

A larger vehicle was built by R. A. Liston and R. S. M osher at G eneral Electric 

Corporation in 1968. A 100 hp engine supplied the hydraulic pow er through trailing 

hydraulic lines. The driver was strapped into a seat and controlled each of the twelve joints 

by a system o f levers. The legs o f the operator controlled the hind lim bs o f the machine 

and the hands controlled the forelim bs o f the machine. Force feedback from the legs 

altered the feel o f the levers, aiding the driver in knowing what the legs were doing. A 

major problem with the machine was the strain on the operator; most operators could not
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operate the machine for more than one or two minutes.

Since the early 1980's, Raibert et al. have built one-legged, two legged and four legged 

machines. Raibert started with the one legged machines since he was more concerned with 

studying the issues related to the dynamic balance of the machine. He later extended his 

work to two legged and four legged machines. These machines have a rigid body with 

springy telescoping legs connected to the body. He has shown that symmetry can simplify 

the control o f dynamic legged systems (Raibert, 1986). Using principles of symmetry, 

controllers were developed to separately control the hopping height, body attitude and 

forward running speed. The hopping height was controlled by determ ining the losses in 

the system during each cycle and adding the required amount of energy by applying thrust 

through the leg actuator during the stance phase. The body attitude was controlled by 

applying torques to the body during the stance phase using a sim ple proportional- 

d ifferential controller. The forw ard speed was controlled by properly choosing an 

appropriate forward position for the foot that accelerated the body properly during the next 

support phase. This control scheme was extended to bipedal running and quadruped trot, 

pace and bound using the concept o f a virtual leg developed by Sutherland and Ullner 

(1984).

Brandolino (1990) has assumed that the impact or the support phase during a quadruped 

trot can be modelled as controlled impulses delivered to the body. An impulse formulation 

of the dynamic equations has been used to model these impacts. These dynamic equations 

have been linearized and appropriate variables were chosen to control the quadruped while 

trotting.

Wong (1992) has shown that symmetry principles and super real time simulation can be
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used to control quadrupeds during standing and running jumps. During the aerial phase, 

open loop leg forces and leg touchdown angles are planned so that they will completely 

remove the linear and angular momentum of the body during landing. Using the principles 

of symmetry, it has been shown that the forces applied during landing can also be applied 

for a takeoff. The leg forces and leg touchdown angles are computed using super real time 

simulation.



CHAPTER II

STABLE SOLUTIONS FOR TROT, GALLOP AND BOUND

1. Introduction

In this chapter, the dynamics o f a simple spring and mass system will be examined. It will 

be shown that symmetry plays an important part in the locomotion of this simple system 

(Raibert, 1986). A technique will be developed to obtain a stable solution for the 

locomotion of this simple system. This method will be extended to quadrupeds and stable 

solutions will be computed for the quadruped trot, bound and gallop. The energy levels 

for these gaits will be computed at various speeds. These results will be compared with the 

experimental results obtained by observing quadruped gaits in nature. An attempt will be 

made to further extend the above technique to a model that includes body flexibility of the 

quadruped.

2. Modelling of a simple mass-spring system

Before the details of the model o f the quadruped gait are presented, it is essential to start 

from a simple mass and spring system. This system is shown in the Figure 2.1. It consists 

of a simple point mass which represents the body mass and a single leg modelled as a 

linear spring.

10
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Figure 2.1. Simple mass-spring system.

A typical gait of this system would consist of alternating stance phases and aerial phases. 

The stance phase refers to the period of the gait when the leg is in contact with the ground. 

When none of the feet are in contact with the ground, the phase will be referred to as the 

aerial phase. A combination of a stance phase followed by an aerial phase would be 

considered as a step. Two steps would constitute a stride.

Let v and u denote the vertical and horizontal velocities and F  denote the force applied by 

the spring. For a stable gait the trajectory generated over a stride ( or many strides) should 

be repeatable over time. If it is assumed that the trajectory of a single stride is repeated, 

then the states of the mass-spring system at the end of a stride should be the same as the 

ones at the beginning of a stride. To satisfy this condition, it helps to place a further 

restriction on the trajectory: to assume that the trajectory is symmetric. In mathematical 

terms this leads to:
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During the stance phase:

y(xi-8 ) = y(xi+ 8 ) 

u(xi-8 ) = u(xi+ 8 ) 

y(xi-8 ) = y(xi+8 ) 

v ( x j - 8 )  = - v(xj+ 8 )

where xi is the position of the mass at the middle of the stance phase. The last condition 

reflects the effect of gravity.

Similarly during the aerial phase:

y(x2 -8 ) = y(x2 +8 ) 

u ( x 2 - 8 )  =  u ( x 2 + 8 )  

v ( x 2 - 8 )  = - v(x2 +S)

where X2  is the position of the mass at the middle of the aerial phase. These conditions are 

trivially satisfied if the direction of v(x2 -8 ) is opposite to that of gravity.

To satisfy the symmetry condition during the stance phase the condition on the force 

applied by the spring is:

F (xi-8 ) = F(xi+ 8 )

This condition can be satisfied if the trajectory is symmetric about the y-axis (Figure 2.1) 

and the end of the spring is placed at xi as shown in the Figure 2.1.
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The above conditions can be satisfied by choosing appropriate initial conditions. One 

possible set of initial conditions that will satisfy the conditions for a stable gait are given 

below. At the middle of the stance phase:

y(xi) = yi 

v(xi) = 0  

u(xi) = Ui

ui and yi can have any value within certain bounds. These values should be such that, at 

the end of the stance phase, the vertical velocity o f the mass is zero, or is upwards 

(opposite to the direction o f gravity). This condition is discussed in more detail later in this 

section. If the values o f y, u, and v satisfy this condition then a stable gait is possible.

The equations for the simple mass-spring system are derived below.

Initial horizontal velocity = ui, and 

Initial vertical position of the mass = yj.

The free body diagram is shown in Figure 2.2 for any angle 0. The equations of motion 

are:

FSinG = m x 
F C o s 0 -m g  = m y

where

F = k L  —(x2 +  y 2) = spring force
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k = spring constant.

L = free length of the spring.

o

yi

Ui mg

0  /

Figure 2.2. Initial Conditions for stable solution.

Using non-dimensional variables

X = — ,Y = — ,T  = t J — 
L  L VL

the above equations are:

X

Y =

k L
m g

k L

X

m g

Vx 2 + y 2

Y

V x 2 + y 2

- X

- Y - 1

(2 . 1)

k L
Substitute Klee =  which gives the ratio of the spring force to the weight o f the leg.

B m g

The above equations suggest constraints on the initial conditions. The first condition is:
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If this condition is not satisfied then the initial acceleration in the y-direction is negative 

and the mass will never leave the ground. In fact, if this expression becomes less than one 

at any time during the contact phase, then the mass has negative acceleration in the y- 

direction. If the leg does not leave the ground before the velocity in the y-direction 

becomes zero, once again stable gait is not possible. Also since the maximum value of

^ 1 --^ -^  is one, we get the condition Kjeg > 1. This condition is reasonable since it

suggests that the ratio of the spring force to the weight of the mass should be greater than 

one. Thus the initial conditions are not completely arbitrary.

From the above equations note that the time is scaled as V L . Thus the stride frequency 

will be scaled as 1/V L . Figure 2.3 shows the stride frequency as a function of the 

shoulder height for a number of animals in a variety o f gaits (Pennycuick, 1975). This 

graph shows that the stride frequency in indeed scaled to 1/V L . This is encouraging since 

it shows that the modelling is consistent with the observed results.

An inherent assumption in the above simulation is that the angle made by the leg with the 

vertical at the end of the stance phase is the mirror image of the one it made at the 

beginning of the stance phase. This is approximately true of animals at low speeds. As the 

speed increases the difference between the angles also increases. Usually the angle at the 

beginning of the stance phase is smaller than the angle at the end of the phase. We can 

deduce from the equations of motion, that this accelerates the system. Animals probably
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use this to compensate for the energy losses in the system. If no external energy is added 

to the system, it gradually loses

• 5

10*
-  2.0

Canter:  Slope = -0 .4 9 35 °
7 o

Trot: Slope = -0 .5 2 7

> 4

6 *

7 •

0 .7 Walk: Slope = -0 .57 l

0.6

14a0.5

0.6 0.8 1.0 2.0
Shoulder height (m)

Figure 2.3.Stride frequencies versus shoulder heights in 14 species of mammals. Animals 

include: (1) Thom son’s gazelle; (2) warthog; (3) gnu (calf); (4) spotted hyaena; (5) 

Grant’s gazelle; (6 ) impala; (7) lion; (8 ) kongoni; (9) topi; (10) zebra; (11) gnu; ( 1 2 ) black 

rhinoceros; (13) giraffe; (14) elephant; (15) buffalo ( Pennycuick, 1975).

height and a stable gait is not possible. Thus in addition to above method of compensation 

some external energy has to be added to the system. The discrepancy in the angles is also 

probably used to decelerate the foot so that it reaches approximately zero speed before it 

touches the ground.
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3. Quadruped gait: Trot

Let us assume that there are two springs attached to the point mass. During successive 

stance phases, alternate legs then can be used for propulsion. The other leg could utilize 

this and the following aerial phase to reposition itself for the next stance phase. This 

scheme would lead to biped running. Note that a stable solution for this system would be 

the same as the one developed for the single spring above.

Let use extend this concept further and consider four springs attached to a rigid beam 

(Figure 2.4). The above solution translates into a fast trot for this system. This is 

explained further below.

Uniform bar represents the body

Leg 4 Leg 3 Leg 2 Leg 1

Figure 2.4. Model for a Quadruped.

In a fast trot, the diagonally opposite legs act together. After the stance phase of a pair of 

diagonally opposite legs is over, it is followed by an aerial phase, and then followed by 

the stance phase for the other pair of diagonally opposite legs. This can be represented by
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a support graph shown in Figure 2.5. In this figure, the circles represent the legs. Shaded 

circle signify that the corresponding foot is in contact with the ground and empty circle 

signifies that the foot is in the air.

O  •  O O  •  O  O O

•  O  O O  O  •  O O

Figure 2.5. Support Graph for Quadruped Fast Trot

Since the diagonally opposite pair of legs act together, there is no net moment acting on the 

body about the center o f mass. Thus the main body does not rotate. As a result, the above 

gait can be modelled by lumping the mass at the center of mass of the system and attaching 

the legs below the center of mass. This leads to the simple mass-spring system described 

earlier. The equations for kinetic energy, potential energy and internal energy are given by:

Kinetic energy = — M^x2 + y2) + — J02

Potential energy = Mgy

Internal energy = — KSj 
2

+ —K52 
2 2 

+ —K83 
2 

+ —K54 
2

L \  (  L \
x - - c o s 0 - p xl J  + | y - _ sin 0 j

^ x - y c o s 0 - p x2j  + ^ y - ~ sin 0 ^

/
2 \

J 
\ 2 \

V

^x + ^ c o s 0 - p x3j  + |V  + y s in 0 j

(  L  \ 2 f  L
jc + - c o s 0 - p x4J + | y  + —sin0J

(2 .2)
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where

(x,y) are the coordinates of the center o f mass,

0 is the angular orientation of the body,

M is the mass of the body,

J is the moment o f inertia of the body,

pxi is the x-coordinate o f the ith foot, and 
~ _ f 1 if  the ith  foo t is in con tact w ith the ground 
i ~ 1 0 i f  the ith  foo t is in the a ir

Consider the equations for obtaining stable solutions for the above system (equation 2.1). 

There are two initial conditions: the initial speed ui and the initial position yi. For a given

speed, ui can be fixed. But it is still possible to obtain an infinite number of stable

solutions by varying the initial displacement yj. The initial displacement yj controls the

1.9-

1. 8 -

1.7-
£

1. 6 --CbO• H<Ux: 1.5-

1 .4-

1 .3-

0.08 0.16 
time (sec)

0.24 0.32

Figure 2.6. Trajectory of the center of mass in quadruped trot (equation 2.1).
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initial compression of the spring and thus the energy level of the system. Thus for a given 

speed, a unique stable solution can be obtained by fixing an optimal energy level. The 

optimal energy level can be evaluated by considering the energy losses in the system.

There are two main energy dissipation processes in the mass-spring system. One of these 

includes the friction losses, impact losses, etc and these can be assumed to be proportional 

to the total energy in the system. The other energy loss is associated with repositioning the 

legs in the air for the next stance phase. For a simple mass-spring system being driven by 

a sinusoidal forcing function, this power loss is given by (assuming that the energy during 

the return cycle is not re-used):

20000

18000-:

16000 ̂

14000^

potential energy

Ui
CDC
(D 8000 — kinetic energy

6000-^

40 0 0 -
internal energy2000 t

0.08 0.16 0.24 0.320
time (sec)

Figure 2.7. Energy variations in quadruped trot (equation 2.2).
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Power required «*= A(£22 - co2)£2

where A = Amplitude

Q = Forcing frequency 

co = Natural frequency

If the energy level o f the system is low, the time for the aerial phase reduces and thus the 

power required to reposition the legs for the next stance phase is high, and vice versa. The 

optimum solution can be obtained by minimizing the sum of the two energy losses. Some 

simulations were done with the above theory. The result did not agree too well with the 

actual data for horses. Thus the model for power losses in the system used above is not a 

good one.

Since a satisfactory model for the energy losses in the system could not be obtained, 

experimental data were used to fix the energy level of the system ( initial condition yj) at 

any given speed. The simulation results for a typical case are shown in Figures 2.6 and 

2.7. The animal was assumed to be a 680 kg horse with a leg length of 1.5 m. The non- 

dimensional spring stiffness Kieg was assumed to be 14 ( McMahon, 1981). From 

experimental results (Heglund et. al., 1974), it is known that the stride frequency for this 

horse is 100 min-1 at a speed of 15 mph. This data was used to fix the initial compression 

of the spring. Figure 2.6 shows the height o f the center o f mass for a single stride. Figure 

2.7 shows the energy exchange between the kinetic energy, gravitational potential energy 

and the internal spring energy. From the graph, it can be seen that the variations in these 

energy components are approximately equal.



If yi is reduced to a low enough value (low energy gait), then the above gait changes to the 

gait shown in Figure 2.8. This gait is observed in the animals at slow trot. In this case, the 

aerial phase disappears.

O •  • •  • O  • •

•  O  • •  O  •  • •

Figure 2.8. Support Graph for Quadruped Slow Trot.

Stage 3Stage 2Stage 1

Stage 4 Stage 6Stage 5
•  O  O O  O  •  O O

•  O  O O  O  •  O O

Figure 2.9. Bound for Quadruped and its Support Graph.
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Ui

Figure 2.10. Initial Conditions for a Stable Solution for Quadruped Bound.
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Figure 2.11. Trajectory of the quadruped in a typical bound (equation 3.1).
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Figure 2.12. Energy variations in a typical quadruped bound (equation 2.2).

No experimental data reliable data is available at this time for comparison. The stride 

frequency for this gait can be used to fix the value of Kieg.

4. Quadruped gait: Bound

The above model can be used to generate other gaits for a quadruped. One of those is the 

bound. In this gait, the front two legs and the back two legs act together. This gait is 

shown in Figure 2.9. This leads to a rocking motion of the main body. To obtain a stable 

solution, the simulation is again started from the middle of the stance phase. The rear legs 

are compressed and the main body is given some initial horizontal velocity. The angular 

velocity of the main body is set to zero (using symmetry arguments) and the body is given 

some inclination. This is illustrated in Figure 2.10.
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The only unknown in the above set of initial conditions is the initial body angle 0. This 

can be obtained by trial and error. There is also a systematic method of obtaining this 

value. The simulation is run for some body angle for a single stride. For the next run, the 

new guess of the body angle is taken to be the body angle obtained at the end of the stride 

from the previous run. This procedure is repeated till the solution converges. This method 

fails if the difference between the initial guess of the body angle and the actual body angle 

is large. In our simulations, the method failed if the difference was more than 10 to 20 

degrees.

The results for a typical simulation run are shown in Figures 2.11 and 2.12. The speed for 

this run was set at 25 mph and the stride frequency at 120 m in'^H eglund et. al., 1974). 

Figure 2.11 shows the trajectories for the center of mass, the front end of the horse and 

the rear end of the horse. Figure 2.12 shows the kinetic energy, the gravitational potential 

energy and the internal spring energy. Note that, from this graph, most o f the energy 

exchange takes place between the kinetic energy and the internal energy. This can be 

compared with the results for a trot. In that case, the energy exchange was between all of 

the three types of energy. Other investigators (Alexander, 1988) have speculated about this 

result but they have not been able to quantitatively verify it. Also the mean internal energy 

is larger in this case than in that o f the trot.

Another variation of this gait is shown in Figure 2.13. In this case, the potential energy is 

minimized by eliminating the aerial phase.
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•  O  • •  O  •  • •

•  O •  •  O •  • •

Figure 2.13. Support Graph for Quadruped Slow Bound.

5. Quadruped gait: Gallop

Figure 2.14. Initial Conditions for a Stable Solution for Quadruped Gallop.
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Figure 2.15. Support Graph for Quadruped Gallop.
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Stage 3Stage 2Stage 1

Stage 6Stage 4 Stage 5

Figure 2.16. Quadruped Gallop (Legs not in contact with the ground are not shown).
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Figure 2.17. Trajectories for a typical quadruped gallop (equation 3.1).
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Figure 2.18. Energy variations for a typical quadruped gallop (equation 2.2).

The primary difference between gallop and bound is that the rear legs and the front legs do 

not act together in gallop. This adds another variable to the simulation (in the case of a 

two-dimensional model). Fortunately, this can be accommodated easily in the simulation 

by choosing appropriate initial conditions. Now the starting position is that shown in 

Figure 2.14.

The legs are separated by an angle a  in the initial position. The feet are placed 

symmetrically on the ground with respect to the rear end of the body and the simulation is 

started by setting initial height yi and speed uj. As each foot leaves the ground the angle 

made by that leg with the vertical is stored. When the body starts descending, the legs are
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again placed at the same angle at which they left the ground. If the setting for the body 

angle is correct, then a stable solution can be obtained. In this case also only the body 

angle has to be tuned, which can be accomplished as was described in the previous 

section. This gait is shown in Figures 2.15 and 2.16.

Unlike the case of a bound, a unique solution can no longer be obtained by fixing the 

energy level and the speed. For a given energy level, an infinite number of solutions are 

possible by appropriately varying the angle a  and yj.

To observe the effect of a  on the gait, simulations were conducted based on the above 

model. It was observed that at the same energy level, an increase in a  resulted in a 

decrease in the stride frequency. The results are tabulated below:

For bound: speed = 25 kph, stride frequency = 120 m in '1

For gallop: speed = 25 kph,stride frequency = 90 m in '1, a  = 0.429 rad.

A lower stride frequency implies a lower energy loss to repostiion the legs. Thus, the the 

gallop is more energy efficient than the bound at the given speed. The energy was then 

reduced to obtain a stride frequency of 120 min-1. The simulation results for this case are 

shown in Figures 2.17 and 2.18. These can be compared to the results for the bound in 

the previous section. It is observed that the trajectory of the center of gravity is flatter in 

the case of a gallop. This is also observed in the graph for the potential energy. Also the 

magnitudes of the variations in both the kinetic energy and the internal energy are reduced.

If the energy is minimized in the case of gallop, the aerial phase disappears and the gait 

shown in figure 2.19 is obtained.
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Figure 2.19. Support Graph for Quadruped Slow Gallop.

6. Energy Comparison between trot, bound and gallop

The above results were compared to the actual results shown in Figure 2.20 (Heglund et. 

al., 1974). From this figure, stride frequency as a function o f the speed was obtained for a 

horse. The weight of the horse was set at 680 kg (given in the graph) and the leg length 

and body length were set at 1.5 m  (not given in the reference, thus an approximate number 

was assumed).

In the first experiment, the trot and gallop simulations were run at their appropriate speed 

and frequency. The energy levels were obtained for these simulations at four preset speeds 

(10, 15, 25, 40 kph). All the three gait (trot, gallop and bound) simulations were then run 

at each speed with the same energy level as that obtained previously. The stride frequency 

was noted at each speed and plotted against speed. A polynomial curve was fitted through 

these data points. This is shown in Figure 2.21. Note that, at the trotting speeds, the stride
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Figure 2.20. Stride frequency as a function of speed for a mouse, rat, dog and horse 

running on a treadmill (McMahon, 1975). The circles show the transition speed between 

trotting and galloping.

frequency of the trot simulation is the least, and at galloping speeds the stride frequency of 

the gallop is the least. This confirms the graph shown in Figure 2.20. Also this plot 

predicts a trot-gallop transition speed of 21 kph. The actual transition speed is about 18 

kph (from Figure 2.20).

In another experiment, all the simulations (trot, gallop and bound) were forced to follow 

the speed-stride frequency curve shown in Figure 2.20. The energy level were obtained 

from these runs and plotted against speeds. Again, a polynomial curve was fitted through 

the data points. This is shown in Figure 2.22. From this figure, observe that the energy
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Figure 2.21. Stride frequency as a function of speed for trot, bound and gallop at the same

energy level for a horse.

level of the trot is the least at trotting speeds, and the energy level of the gallop is least at 

the galloping speeds. From this graph the trot-gallop transition speed is 21 mph which is 

the same as that obtained from the previous experiment.

This simulation experiment was repeated for a dog. The weight of the dog is 9.2 kg and 

the length of the legs is assumed to be 0.5 m. The dog was forced to follow the stride 

frequency-speed curve shown in Figure 2.20. The results are shown in Figure 2.23. This 

figure shows that the energy level for the trot is the least at low speeds and the energy level 

for gallop is the least at faster speeds. The trot-gallop transition speed from this graph is 

15 kph and the actual trot-gallop transition speed from Figure 2.20 is 16 kph.
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Figure 2.22. Maximum internal energy as a function of speed for trot, bound and gallop at

the same stride frequency for a horse.

The above results are similar to those obtained by Hoyt and Taylor, 1981. They trained 

small ponies to run, using different gaits on command on a treadmill. They then measured 

the ponies rate o f oxygen consumption and found that trotting consumed less oxygen than 

galloping at speeds below 4.5 m/s. However, at speeds above 4.5 m/s, galloping used 

less oxygen than trotting. When the ponies were allowed to move at will in a paddock, 

they trotted at 2.8-3 .8  m/s but galloped at speeds over 5 m/s. They chose whichever gait 

was more energy efficient for the speed at which they were moving. Alexander et. al. 

(1985) had hypothesized that the flexion of the back played a significant role in the above 

results. The results from the above simulation suggest that even without the body flexion, 

there are significant energy advantages in choosing an appropriate gait at a given speeds.
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Figure 2.23. Maximum internal energy as a function of speed for trot, bound and gallop at

the same stride frequency for a dog.

7. Bound/Gallop with body flexibility

To model body flexure during bounding or galloping, a torsional spring was introduced in 

the body (Figure 2.24). The initial conditions for this case are shown in Figure 2.24. The 

legs are given some initial compression (yj and a )  and an initial horizontal velocity. The 

initial angular velocity for both the segments is set to zero and the angular positions are set 

to the same value. The stiffness of the torsional spring and the initial angular positions ( 0i 

= 8 2 ) are varied until a stable solution is obtained.
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Torsional spring
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Figure 2.24. Initial Conditions for Quadruped gallop for Model with Body Flexibility.

The equations of motion for this system are given by:
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where

(x,y) = coordinates o f the center o f the torsional spring 

m = total mass

L = length of the legs and the body

J = mass moment of inertia each segment o f the body

a, b, c and d are given by the expressions: 

a = f2» +<1* + ^ ( - 9 ?  Cos0, + 8 i  Cos02)
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b = f 2 y  +  f l y  + ̂ ( - 0 ?  Sin0i + 02 Sin02) -  mg
mT

c = k b(02 — 0 j) H— —— g CosG} -  0 .5L^fiy C o s 0 i- f ix Sin©^ 

d = - k b(e2 -  e , ) + Cos82 + 0.25L((f2y -  fly) Cos02 + (f„  -  f2*) Sine2) +

where

kj, = stiffness of the torsional spring

f i x  = force applied by the legs at the rear end in the x-direction 

fly = force applied by the legs at the rear end in the y-direction 

f2x = force applied by the legs at the front end in the x-direction 

f2y = force applied by the legs at the front end in the y-direction

An attempt was made to find a solution for an example case. The various stages of the gait 

are shown in Figure 2.25. Note that between stages 2 and 3 and stages 5 and 6, there is an 

aerial phase. The arrows indicate the direction of the moment applied to the body by the 

legs. From the directions of these moments, it is clear that the moments will try to increase 

the angle (0i - 02). The initial conditions were: yj = 1.39 m and ui=25 kph. The following 

two approaches were tried in an effort to obtain the solution:

It was assumed that the stages 1 to 3 are symmetrical with stages 4 to 6 (Figure 2.25). 

This is a reasonable assumption because the loading is symmetrical over the two stages. In 

stage 1, it was assumed that the body angles 0 i and 02 are equal to each other. Their 

angular velocities were assumed to be zero. These conditions are as the same as that for 

gallop without the torsional spring. The simulation was allowed to proceed till stage 4 

where it was stopped and the system variables were examined.
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This was done repeatedly until the following conditions were obtained at stage 4.

(0l)4 = (62)4 = (9 l)l = (02)l

The subscript outside the bracket denotes the stage at which the variable is measured. With 

these tuned initial conditions and torsional spring stiffnesses the simulation was repeated 

until the end o f stage 6 (which should be the same as stage 1). The results are shown in 

Figures 2.26, 2.27, 2.28 and 2.29. These results were obtained with the following 

settings:

Stage 1 Stage 2 Stage 3

Stage 4 Stage 5 Stage 6

Figure 2.25. Quadruped Gallop with Body Flexibility (Legs not in contact with the ground

are not shown).
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Kjj = (1.225 mg/L) N/m

(01)i = 0.0828 radians.

(02)i = 0.0828 radians.

Stride frequency = 248.0 strides/min.

The body angles are shown in Figure 2.26. It can be seen from this figure that the body 

angles at successive strides do not go back to the initial body angles. We need this 

repeatibility for a stable gait. Initially it was suspected that the simulation was not being 

done with sufficient accuracy. However, a decrease in the time step did not have any 

significant effect on the results. Also it was observed that the errors in the system 

increased with any increase in the energy level of the system. Thus, this simulation could 

not be repeated for a lower stride frequency. Figure 2.29 shows the energy variations 

during the stride. The potential energy curve is flatter when compared to the potential 

energy curve for a gallop without the body flexibility. Most of the energy exchange is 

taking place between the kinetic energy and the internal energy.

Upon further investigation, it was found that the angular velocities are not zero at stage 4. 

Also the system seems to be highly sensitive to errors in the angular velocities. An 

increase in the accuracy of the simulation did not decrease these angular velocities to zero. 

This indicated the need for a different approach to solve the problem.

The simulation was repeated with different conditions at stage 4. The system was now 

tuned with the following conditions.

(01 >4 = (02)4

e , = 0 2 = o
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Figure 2.26. Angular orientations o f the body segments during the stride (equation 2.3).
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Figure 2.27. Angular velocities o f the body segments during the stride (equation 2.3).
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Figure 2.28. Trajectories of the front and rear end of the body for a stride (equation 2.3)
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Figure 2.29. Energy variations during the stride (equation 2.2).
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The condition on the body angles is easy to satisfy, but the conditions on angular 

velocities could not be satisfied. The angular velocities can be made to be small (0.2 to 0.3 

rad/s), but they do not disappear. Some simulations were conducted with minimized 

angular velocities. The error increased as compared to the previous approach.

8. Discrepancies between an actual gallop and the above simulations

An actual gallop with body flexibility is shown in Figure 2.30.

Stage 1 Stage 2 Stage 3

Stage 4 Stage 5 Stage 6

Figure 2.30. An Actual Quadruped Gallop with Body Flexibility (Legs not in contact with

the ground are not shown).
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The differences between an actual gallop and our simulation are in stages 5 and 6. Observe 

the moment applied to the main body by the legs in stages 5 and 6. The body seems to be 

flexing in opposition to the moments. This is possible if the angular velocities at stage 4 

are not equal to zero, or if the torsional spring is not a passive actuator. An attempt was 

made to obtain a stable solution by removing the condition that the angular velocities at 

stages 1 or 4 have to be equal to zero. The results were not encouraging enough to pursue 

this approach any further.

9. Note on Numerical Solutions

The differential equations in this thesis were solved using a commercially available 

simulation package called Advanced Continuous Simulation Language (ACSL). A time 

step of 1 msec was found to be sufficient for an accurate simulation. Runge-Kutta fourth 

order was used to solve these equtaions in ACSL. For later simulations involving Poincare 

maps, a stand alone fortran program was also developed. This program used Runge- 

Kutta-Fehlberg to solve the differential equations. The time step used was 1 msec except 

in the viccinity o f the leg touchdown phase. During these periode the time step was 

reduced to 10 |isec. To obtain data for each Poincare map from this program, it was not 

unusual to run the program for upto 10 cpu hours on a VAX-8550.

The results from the simulations were displayed using a stick figure animation on the 

VAX-8550. The body was represented by a wire frame model of a . Each of the legs in 

contact with the ground were represented by two links. The position of the knee was 

computed using a kinematic constraint. The legs not in contact with the ground were not 

shown.
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10. Summary

In this chapter, a simple model for the quadruped has been used to obtain trajectories 

(stable trajectories) o f a single stride for trot, gallop and bound. These trajectories are 

assumed o be symmetric over a stride. It has been shown that, for a given speed, an 

infinite number of stable trajectory can be obtained. The exact trajectory is obtained using 

the stride frequency data from field observations conducted by earlier researchers. These 

trajectories have been compared at various speeds. It has been shown that in the case of a 

trot, the energy exchange takes place between the gravitational potential energy, kinetic 

energy and the internal energy (stored in springs). In contrast, during a gallop, the energy 

exchange takes place between the internal energy and the kinetic energy only. Further, it 

has been shown that a trot is more energy efficient at slower speeds and a gallop is 

efficient at faster speeds. Two sample cases of a horse and a dog have been considered. 

An effort was made to consider the flexibilty of the body by including a torsional spring. It 

was difficult to compute the stable trajectory. It was laborious to compute the stiffness of 

the torsional spring and the results were dubious at best. In the later chapters, it will be 

shown that a stable gallop is possible without the flexion of the back. These results 

suggest that from a design point o f view, it is not a good idea to have flexion in the back.



CHAPTER III

CONTROLLER FOR CONSTANT SPEED (TWO DIMENSIONAL MODEL)

1 Introduction

A dynamic model for the two dimensional quadruped has been developed. The main body 

is modelled as a rigid bar and each leg consists of a constant stiffness spring, a viscous 

damper and a force actuator. Using the techniques developed in the previous chapter, we 

will devise a controller that will enable the quadruped to gallop at constant speed. It will be 

shown that symmetry principles can be used to devise simple control strategies for a two- 

dimensional gallop. The controller consists o f two parts: an energy controller which will 

apply the required amount o f force through the legs, and the speed controller that will 

control the forward speed by appropriately placing the legs. It will be shown that the body 

pitch need not be explicitly controlled. The stability of this controller will be examined 

using Poincare maps. Stable systems show either periodic or quasi-periodic response. 

Further, a chaotic response leads to an unstable system. The stability of the system with 

changes in the initial conditions, as well as variations in the system parameters, will also 

be examined. It will be shown that the system is stable for a range of leg stiffnesses. 

Outside this range, the system shows chaotic behavior.

44
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2. Problem statement

The gallop consists of two phases: aerial phase and the stance phase. During the stance 

phase, one or more legs are in contact with the ground. At the end of this phase, the legs 

push the body off the ground and the legs are no longer in contact with the ground. This is 

the beginning of the aerial phase. During the aerial phase, the quadruped repositions its 

legs for the next stance phase. This process is repeated and we obtain a stable gait. The 

period from the beginning of the stance phase to the end of the aerial phase will be referred 

to as a step.

As described earlier, there are two free variables in this system. One of them is the 

horizontal speed, u, and the other is the total energy, E, o f the system. At any given 

speed, the only free variable is the total energy of the system. The energy level for a 

particular speed is set to minimize the energy lost in the system. At this optimum energy 

level, the quadruped has an optimum stride frequency. Since we have not modelled the 

energy required to reposition the leg for the next stance phase, we cannot calculate the 

optimum energy or the optimum stride frequency for a given speed. Thus the stride 

frequency at a particular speed will be set from the experimental data.

The control problem for this system can be stated as follows: The problem is to generate a 

control scheme for this system that will provide a stable gait for a given energy level and 

speed. The important objective here is to obtain a stable gait; the speed and energy level are 

of secondary importance. The speed and the energy of the system are not constant during 

the stance phase, but they are constant over the aerial phase. Thus we will try to 

approximately control the speed and energy level during the aerial phase.
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The two dimensional model for the quadruped is shown in Figure 3.1. The main body is 

modelled as a rigid beam. Two legs are attached to the front end of the beam and the other 

two legs are attached to the rear end of the beam. Each leg is modelled as a massless 

spring and damper in parallel. Let the coordinates of the center of mass of the quadruped 

(the center o f the main body) be (x, y) and the velocity of the center of mass denoted by 

the pair (u, v). The angular orientation of the body is given by the pitch angle 0. Let the 

coordinates of the front end of the body be (xj, y j) and the coordinates of the rear end of 

the body be (x2 , y2 )- The legs are attached to these points. Then

(x,y)

Figure 3.1. Two dimensional model of the quadruped.



Let the front two legs be placed at the coordinates (pxi» 0) and (px2 , 0), and the rear two 

legs be placed at coordinates (px3 , 0) and (px4 , 0). Then the force acting on the main body 

due to the spring in the front legs is given by

ŝi Ksp ̂ ( p xi xj"j +yi~ i = 1,2

Similarly the force acting on the main body due to the spring in the rear legs is given by 

ŝi — ■̂ •sp‘̂ (Pxi — ^ 2 ) +Y2 i = 3,4

The forces generated by the damper in the legs are proportional to the velocity component 

of the leg ends relative to the body directed along the legs. These velocity components are:

V,: =
_  (u -  L/2 sin 0)(x1 -  p xi) + (v + L/2 cos 0)y1

V(xi -P x i)2 + yf
\2 , ..2

i =  1,2
 (u + L /2sin0)(x2 - p xi) + (v -L /2 c o s 0 )y 2

vh  ------------------- p — T ^ T ---------------
V ( x 2 - P x i )  + y  2 i =  3 4

Therefore the damping force exerted by each leg is given by



fdi =  5 v u i = 1,.., 4

where £, is the damping coefficient.

The total force acting on the body is given by

2

f x = I
i=l

2

f y = X
i=l

(X j-P x i)

V(xi _ Pxi)2 + yi

yi

V(xi - Pxi)2 + yi

4

i-3

4

i=3

(fs i-fd i)

( f s i - f d i )

(x 2 ~  Pxi)

V ( x 2 “ Pxi)2 + y 2

y2

V (x 2 - P x i )  + y 2

The total moment x acting on the body is given by

2

i=l
(fs i- f di) (v Pri)(" ' f sin2e ) k i

V(xi~ p x i)  + yi I i=3
( f s i - f d i )

(* 2 ~  Pxi )(L/2 sin0)

V(x2 -P x i f  + y i\2 , ..2

2

i=l
(Esi-fdi)

y! (L/2 cos 0)

V(xi “ Pxi)2 + yi V (X2 — Pxi) + y 2

The equations o f motion are given by

Mil = fv

Mv = f„

10 = x

where
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M = mass of the body 

I = moment o f Inertia

4. Overview of the control scheme

These equations are highly nonlinear. Further, these equations change depending on 

whether none of the legs or a single leg or multiple legs are in contact with the ground. 

The controller for this system should generate a stable gait. A "stable" gait is difficult to 

define in the traditional sense. Since we expect the gait to repeat itself, the control scheme 

should generate limit cycles in the phase planes. However, this requirement need not be 

strict. If the cycles in the phase plane lie within a narrow band, the gait will be stable. 

Therefore a non-traditional approach is used to solve this problem.

Figure 3.2. Constant speed trajectory.



Figure 3.3. The speed increases with Figure 3.4. The speed decreases with this

trajectory this trajectory

Consider a simple mass and spring system as shown in Figure 2.1. A stable gait for this 

system is shown in Figure 3.2. In this case, the speed at the beginning of the stance phase 

is the same as that at the end of the stance phase. Let the leg angle at the beginning of the 

stance phase be Yeq- Figures 3.3 and 3.4 show unstable cycles. In Figure 3.3, the speed at 

the end of the stance phase is greater than the speed at the beginning of the stance phase. 

In this case the leg angle, y, at the beginning of the stance phase is less than Yeq- Similarly 

if the leg angle at the beginning of the stance phase is greater than Yeq, the speed decreases. 

This case is shown in Figure 3.4. These results suggest a convenient method to control the 

speed. If the speed has to be reduced the leg angle for the next stance phase is increased 

and vice versa. We can make another important observation from these results. If the leg 

angle for the next stance phase is set to be the same as the leg angle at the end of the
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previous stance phase, then from symmetry, the speed at the end of the next stance phase 

should be close to the speed at the beginning of the previous stance phase. Therefore, this 

will enable us to keep the average speed approximately constant. The similarity between 

the previous trajectory and the next trajectory also ensures stability. If the previous step 

was stable, then the next step will also be stable. This set of observations forms the 

backbone of the control scheme.

The above arguments hold for a quadruped gallop also. The gallop introduces a pitching 

motion of the body. Again from the symmetry arguments, it is hoped that the pitching 

motion will not require additional control. This will be confirmed from simulations.

5. Control scheme

The above scheme essentially allows us to learn from the previous step and predicts the 

outcome of the next step without solving the highly nonlinear equations. The above 

scheme is shown in terms of a block diagram in Figure 3.5. During the aerial phase two 

important control variables are computed. The first one is the leg angle, y, at landing. This 

angle is set equal to the leg angle at the end of the previous stance phase. The other 

variable is the amount of actuator force, F, required to compensate for the losses in the 

energy. During the next stance phase, this constant actuator force will be generated by the 

leg in addition to the spring force. The equations for this scheme are:

Yn+l — Yn

Fn+1 = Kpp (Ed - En)

where



Yn+i = leg angle for the next step

Yn = leg angle for the present step

Fn+i = extra actuator force for the next step

Kp f  = constant

Ed = desired energy level

En = Energy level for the present step

Yes

Aerial Phase ?

No

Modify Landing Angle

Compute Force Required 
at Next Step

Quadruped Dynamics

Figure 3.5. Block diagram for the control scheme

The above strategy was used to control a quadruped with the parameters
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M = 680 kg, L = 1.5 m, Ksp = 62260.8 N/m, £ = 0.05.

The control gains were set to be 

Kpp = 15

The results of this strategy is shown in Figures 3.6. This figure shows the speed of the 

quadruped, the leg actuator force necessary to overcome the viscous losses, the leg angle 

at the beginning of every stance phase and the desired energy level and the actual energy 

level. These plots indicate that the energy controller is stable, but there is a steady state 

error. The speed controller is performing as expected. The speed is the same for every 

other step. There is a tendency for the speeds at consecutive steps to diverge. This will 

ultimately lead to instability. This is not unexpected as there is no direct speed feedback in 

the system.

To remedy this, a speed feedback was added to the system. The leg angle at the beginning 

of the next stance phase is set equal to the leg angle at the end of the previous stance phase 

plus an error value. This error value is equal to a constant multiplied by the difference in 

the desired speed and the speed during the previous aerial phase. Note that it is not the 

current speed but the speed during the previous aerial phase which is used for feedback. 

Since the leg angle is set so that the speed during the next aerial phase will be 

approximately the same as that during the previous aerial phase, we have to feed back the 

speed during the previous aerial phase in order to modify the speed. Speed feedback of the 

current aerial phase leads to an unstable control scheme.
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The energy controller is modified to remove the steady state error. This is achieved by 

adding an integral control. The actuator force is set equal to a constant multiplied by the 

difference between the current energy level and the desired energy level, plus the actuator 

force used in the previous stance phase. This leads to an accumulation of the error term 

and removes the steady state error. The above equations are now modified to:

Yn+1 = Yn ■ Ky (u j - un.j)

Fn+1 =  K PF (E d -  E n ) +  K IF £ ( E d ~  E i )
i=l

where

Ud = desired speed

un-i = horizontal velocity during the aerial phase of the previous step 

K if , Ky = constants

The control constants were set to be 

Ky = 0.2, Kif  = 0.2

The results from these modifications are shown in Figures 3.7. The speed controller is 

now stable and there is no steady state error in the energy controller. Thus we have been 

able to construct a controller that seems to generate a stable gait. This controller was 

successfully tested for different speeds and initial conditions.
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6. Stability of the control scheme

Recent investigations in nonlinear dynamics have shown that it is not always possible to 

predict the behavior o f relatively simple dynamical systems, far into the future using 

computer simulations. These systems have been labelled as chaotic. They should not be 

confused with random systems. These systems do not have any random inputs and their 

parameters are deterministic. Nevertheless, they are extremely sensitive to initial 

conditions. Small differences in initial conditions grow exponentially for these systems 

and this property makes any long term prediction difficult.

The systems that exhibit chaos typically have the following properties (Moon, 1989).

1) They consist o f a nonlinear element like a nonlinear spring, nonlinear damping, 

nonlinear feedback, etc. A linear system cannot exhibit chaos.

2) They do not have any random inputs.

3) The time history of the signal should not show any pattern or periodicity. This does not 

ensure that the system is chaotic. The system may have a long period or may be 

quasiperiodic. A quasiperiodic system consists o f two or more incommensurate 

frequencies, thus the signal may appear to be non-periodic, but it could be broken down 

into a sum of periodic signals.

4) The phase plane plots of chaotic motions never close or repeat. Thus, the trajectory of 

the orbits in the phase plane will tend to fill up a section of the phase space. Periodic



m
ag

ni
tu

de
 

(ra
d)

 
pit

ch
 

an
gl

e 
(r

ad
)

58

Time Spectrum0.4

0 .3 --

0 . 1-

0 -

-0 .3 -

-0.4

time (sec)

Phase Plane Plot

3 -

2 -

^  -1 
H :\

•  H  _  I

-3-f

0 0.2 0.4-0.4 -0.2

Fourier Spectrum
I 1 * 1  T400

300-■

200

100

600400200

pitch angle (rad) 

Poincare Map

frequency (strides/min) pitch angle (rad)

Figure 3.8. Response o f a typical periodic quadruped gallop.
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signals will exhibit limit cycles. Again, it is not possible to distinguish between 

quasiperiodic and chaotic signals from the phase plane plots.

5) The Fourier spectrum of the signal should show a broad spectrum of frequencies in the 

output when the input is a single frequency harmonic motion, or a constant. Often, if there 

is a dominant frequency component coo> a precursor to chaos is the appearance of 

subharmonics coo/n in the frequency spectrum.

6) A useful tool in the study o f nonlinear systems is the Poincare map. One of the 

variables in the system and its derivative is sampled once during every period. A graph is 

then plotted between the value of the variable and the its derivative. The Poincare map of a 

periodic system consists of a finite number of points. For a quasiperiodic system, the 

Poincare map consists of a closed curve. Finally if the system does not consist of either a 

finite number o f points or a closed curve, then the system could be chaotic.

7) The behavior o f the system varies with the changes in the initial conditions and the 

parameters. The system might show periodic or quasiperiodic behavior for some range of 

input and parameter space. This will ensure that there are no random inputs to the system.

The system under study in this thesis is a nonlinear system with nonlinear feedback. There 

are no random inputs to the system. It will be shown that the above system shows periodic 

as well as chaotic behavior. Simulations will be conducted for the two cases and a detailed 

analysis follows. The two set of initial conditions are:

1) Uj = 20 kph, 0j =0.3 rad, yj = 1.32 m
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Figure 3.9. Response of a typical chaotic quadruped gallop.
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2) uj = 20 kph, 0j =0.5 rad, yj = 1.32 m

The nondimensionalized leg stiffness was assumed to be 14. The pitch of the quadruped is 

conveniently chosen to study the behavior of the system. The pitch angle for case 1 is 

shown in Figure 3.8. This can be compared with the response shown for case 2 shown in 

Figure 3.9. The time history for the first case is shown after the transients have died off. 

The time history for the first case shows periodic behavior while the second case does not 

show any periodicity. This is confirmed further from the phase plane plots shown in the 

figure. These phase plane plots show the pitch rate versus the pitch angle of the 

quadruped. Case 1 shows a single curve in the phase plane plot while case 2 fills up the a 

section of the phase plane. The frequency of the periodic system in case 1 can be obtained 

from the fourier spectrum analysis of the pitch angle. This frequency from Figure 3.8 is 

120.0 strides/min which is the stride frequency of the quadruped. The fourier spectrum of 

the second system again shows a broad spectrum of frequencies. Note that there is still a 

dominant frequency which corresponds to the stride frequency. The final test for the 

system is the Poincare map.

To construct the Poincare maps for the above system, the pitch angle is chosen as the 

Poincare variable. The pitch angle and the pitch rate will be sampled at a specific event 

once during every period. The specific event is chosen to be the beginning of the stance 

phase during which the rear legs support the body. These Poincare maps for case 1 and 

case 2 are shown in Figures 3.8 and 3.9 respectively. From these Poincare maps, it is 

clear that case 1 is periodic (single point) and case 2 is a chaotic system (the points are 

spread over the map).
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From the above study, an important conclusion can be drawn. The control scheme is 

stable for some initial conditions and chaotic for the others. The chaotic system is 

unstable. Thus for the system to be stable, it should not be chaotic. An interesting study 

would be to examine the route to chaos. This can be examined by means of the response 

of the system at the marginally stable stage. This will be referred to as case 3 and the initial 

conditions are shown below.

3) uj = 20 kph, 0, =0.42 rad, yj = 1.32 m

The response of this system is shown in Figure 3.10. The time spectrum is almost 

periodic. This can be examined further in the phase plane plot. Again the trajectories fill up 

a band in the phase plane plot. The fourier spectrum o f the system shows two dominant 

frequencies. These are marked out in the plot shown in Figure 3.10. This response is 

typical of quasiperiodic systems. The Poincare map confirms the quasiperiodic nature of 

the response. The points fill up a band in the Poincare map. This response results from 

two incommensurate frequencies in the response.

From the above analysis, it has been shown that the system shows quasiperiodic response 

before entering chaos. This is a well documented route to chaos (Moon, 1989).

The above analysis was extended further to study the effect of the initial conditions on the 

system. The control scheme should be robust enough to handle a variety of initial 

conditions and generate stable gaits.

The first set of simulations were conducted by varying the initial body pitch angle y. The 

results are shown in Figure 3.1 la  and Figure 3.1 lb. It is clear that the control scheme is
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stable for a variety o f initial pitch angles. At a speed of 20 kph, the system is stable for a 

range of body pitch angles from 0.2-0.45 rad. The results are shown in Table 3.1.

The simulations were then conducted for the system by varying the initial compression of 

the spring. This controls the energy level of the system. Again there is a minimum and 

maximum energy level of the system for which it will generate stable solutions. For the 

other cases the system is chaotic. These results are shown in Figure 3.12 and Table 3.2.

The simulations were studied by varying the nondimensional leg stiffness, Kieg. The 

nondimensional leg stiffness, Kjeg was varied from 10 to 70. For this set of simulations, 

the total energy of the system was set to a constant value to ensure that the energy 

variations did not induce chaos. This was achieved by varying the initial compression of 

the leg springs with variation o f the leg stiffness. It can again be seen that there is a 

minimum and maximum value o f the leg stiffness (15-50) within which the system is 

stable. If K^g is outside this range, chaos results. These results are shown in Figure 3.13 

and Table 3.3.

The above results are shown for a constant speed of 20 kph. The speed was increased to 

study the effect of higher speeds on the stability of the system. It was observed that at 

higher speeds, the system was stable for larger values of Kieg. These results are given in 

Table 3.4. The speed was increased to 35 kph and it was found that stable solutions could 

not be generated for Kieg < 18. At a speed of 45 kph, stable solutions were possible only 

for Kieg > 2 1 . This indicates the need for a minimum leg stiffness if the quadruped is 

expected to gallop for a range of speeds.
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Table 3.1 Gallop with variation in the initial pitch angle

initial speed, 

ui (kph)

initial length 

o f leg spring, 

yi(m )

initial body 

pitch angle, 

0i (rad)

non -

dimensional 

leg stiffness, 

Kieg

stride

frequency

(strides/min)

nature of 

system

20 1.32 0.15 14 130 unstable

20 1.32 0.2 14 134 stable

20 1.32 0.25 14 127 stable

20 1.32 0.3 14 121 stable

20 1.32 0.35 14 116 stable

20 1.32 0.4 14 111 stable

20 1.32 0.45 14 106 unstable

20 1.32 0.5 14 102 unstable

7. Summary

In this chapter, a non-linear controller has been developed for a gallop. The controller 

consists of two sub-controllers; one of them controls the total energy of the system and the 

other controls the speed of the machine. It has been shown that the controller is stable and 

that the pitch motion of the body does not have to be explicitly controlled. The stability of 

the system has been examined using Poincare maps. The system has been shown to be 

stable for a variety of initial conditions and parameters. The stable system shows either
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periodic or quasiperiodic behavior. For some initial conditions and parameters, the system 

is unstable. It has been shown that this instability of the system is due to chaos. Further, it 

has been shown that there is a range of leg stiffnesses for which the system will always 

exhibit chaotic and thus unstable behavior. Thus, from a designer point of view, the leg 

stiffnesses should be kept within a certain range of values for a given range of galloping 

speeds.

Table 3.2 Gallop with variation in the initial leg spring compression.

initial speed, 

uj (kph)

initial length 

of leg spring, 

Yi (m)

initial body 

pitch angle, 

0i (rad)

non -

dimensional 

leg stiffness, 

Kiee

stride

frequency

(strides/min)

nature of 

system

25 1.24 0.3 14 89 unstable

25 1.26 0.3 14 87 unstable

25 1.28 0.3 14 105 unstable

25 1.32 0.3 14 120 stable

25 1.34 0.3 14 128 stable

25 1.36 0.3 14 135 stable

25 1.38 0.3 14 141 stable

25 1.4 0.3 14 99 unstable
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Table 3.3 Gallop with variation in the leg stiffness.

initial speed, 
Ui

VgL

initial length 

o f leg spring, 

yi(m )

initial body 

pitch angle, 

0i (rad)

non -

dimensional 

leg stiffness, 

Kieg

stride

frequency

(strides/min)

nature of 

system

1.4483 1.2637 0.3 10 107 unstable

1.4483 1.2841 0.3 12 113 unstable

1.4483 1.3 0.3 14 114 stable

1.4483 1.3128 0.3 16 114 stable

1.4483 1.3234 0.3 18 114 stable

1.4483 1.3324 0.3 20 115 stable

1.4483 1.3401 0.3 22 115 stable

1.4483 1.3468 0.3 24 115 stable

1.4483 1.3527 0.3 26 115 stable

1.4483 1.358 0.3 28 115 stable

1.4483 1.3628 0.3 30 115 stable

1.4483 1.3671 0.3 32 116 stable

1.4483 1.371 0.3 34 116 stable

1.4483 1.3746 0.3 36 116 stable

1.4483 1.3779 0.3 38 116 stable

1.4483 1.3837 0.3 42 116 stable

1.4483 1.3888 0.3 46 116 stable

1.4483 1.3933 0.3 50 116 stable
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Table 3.3 (continued)

initial speed, 
Ui

VgL

initial length 

of leg spring, 

yi(m )

initial body 

pitch angle, 

0i (rad)

non -

dimensional 

leg stiffness,

Kieg

stride

frequency

(strides/min)

nature of 

system

1.4483 1.3972 0.3 54 112 unstable

1.4483 1.4008 0.3 58 110 unstable

1.4483 1.404 0.3 62 110 unstable

1.4483 1.4069 0.3 66 112 unstable

1.4483 1.4095 0.3 70 122 unstable

Table 3.4 Gallop with variation in the initial speed.

initial speed, , '
vgL non - dimensional leg 

stiffness, Kieg

nature of system

1.81 (25 kph) > 14 and < 52 stable

2.5345 (35 kph) > 18 stable

3.2586 (45 kph) > 2 4 stable
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Figure 3.11 Poincare maps with variation of the initial pitch angle.
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CHAPTER IV

CONTROLLER TO CHANGE SPEED

1. Introduction

This chapter will improve upon the controller developed in the Chapter III. In its present 

state, the controller generates stable gait at a constant speed set at the beginning of the gait. 

The modified controller developed in this chapter will enable the quadruped to make a 

transition from a stable gait to another stable gait at a different speed. The energy controller 

and the speed controller will be modified to smoothly change the speed. Again the body 

pitch will not be controlled explicitly. The effect of this controller on the stability of the 

quadruped will be examined in detail using Poincare maps.

2. Controller to change speed

In the previous chapter a scheme was developed to control a quadruped in gallop and 

maintain constant speed. A similar scheme is described in this chapter that will allow the 

quadruped to change its speed. The technique described in this chapter is based on 

heuristic principles developed from simple observations. The initial part of this section will 

describe a controller to increase the speed, and in the later part, this controller will be 

modified to include the decrease in speed.
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The controller manipulates the leg angle and the leg actuator force to increase the speed. 

The leg angle with the vertical at the beginning of the stance phase is decreased by a preset 

value and held constant during the phase of speed increase. The energy controller is 

disconnected and a comparatively larger actuator force is applied during the successive 

steps. This results in a steady increase in speed. When the desired speed has been 

achieved, the controller for the speed increase is disconnected, the new energy level and 

speed are sensed, and the constant energy controller is connected again. This generates a 

stable gait at the new speed and energy level. The mathematical descriptions o f the 

controllers are as follows:

The energy controller is an on-off controller. The magnitude of the actuator force is set 

equal to a constant gain multiplied by the difference between the desired speed and the 

present speed. The leg angle is also decreased by an amount equal to a constant multiplied 

by the difference between the desired speed and the present speed. The equations for the 

controller are

Yn+l =  

Fn+l =

Yi — 5

K f (u(1 ~ ui) if

max if
K F ( u d - U i )  

K p ( ud ~ ui)

> F,max

< F,max

where

5 = constant

Yi = leg angle for the initial speed 

Ud = desired final speed

Fmax = constant (maximum allowable force input).
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K'p = constant

Note that yn+1 and Fn+1 are constant till the final, speed has been achieved

The above controller was implemented on the quadruped described in the earlier chapters. 

The control gains were found by manual iterations. The results from  this controller are 

shown in Figure 4.1. Figure 4.1 shows the speed o f the quadruped, the actuator forces 

applied by the legs, the pitch angle of the quadruped and the leg angle at the beginning of 

the stance phase. We can observe from this figure, that the am plitude o f the body pitch 

reduces with the increase in speed. If the maximum body pitch drops below a certain 

critical value, it could lead to instability. One technique to prevent this reduction in the 

maximum body pitch angle is to manipulate the leg angle further. Figure 4.1 shows that 

the leg angle increases with the increase in speed. Thus the leg angle, which is reduced at 

the beginning o f the acceleration phase to facilitate the increase o f speed, is not held 

constant for the duration o f the acceleration phase. It is increased by a constant amount 

until the end of the speed increase. The equation for the leg angle now is given by

Yi+l =  Y i - S

Yn + l = Y n + e  for n = i + 1 , .....

where

e = constant

The new results are shown in Figure 4.2. This figure displays the increase in speed, the 

actuator forces, the leg angle during the beginning of the stance phase and the magnitude 

o f the m axim um  body pitch angle. Now the body pitch angle does not reduce by a
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Figure 4.2. Response of the quadruped using a modified speed controller.
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significant amount. Thus the transition to the new speed is smoother. All the gains for the 

controllers were set by manual iteration. The new controller can be represented by the 

block diagram shown in Figure 4.4.

A similar controller can be used to reduce the speed of the quadruped. The gains for the 

speed reduction are slightly different than those for the increase in speed. But the same 

controller works for both the cases. The results for a typical case are shown in Figures 

4.3. This figure displays the decrease in speed, the leg angle and the actuator forces. The 

final equations for the controller are summarized below.

Controller for constant speed:

F„+1 = Kpf (Ed -  E„) + Kjf i ( E d -  Ei)
i=l

Yn+1 = Yn '  Ky (ud - un-i).

Controller during the transition period:

_  jK p (u d -  iii) if  I 

n+1 |Fmax if 1

Yi+i =  Y i“ 5 sig n (u d -U i)

Yn+1 = Y n  + es ig n (u d - Ui)

Figure 4.4 shows the block diagram for the complete controller. The above controller was 

tested for a variety of speed changes. Figure 4.5 shows the results for different ranges of 

speed.

ECF(ud -U i)  

KF(ud -  ui)

> F,max

< F,max

for n = i+1,
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3. Stability o f the system

As discussed earlier, the change in speed should not disturb the stability o f the system. 

The controller should generate a stable gait at the new speed. This will be possible if the 

controller does not move the system too far from the stable gait at the new speed. This can 

be examined in detail using the Poincare maps. The Poincare maps for different ranges of 

speed changes are shown in Figure 4.6. These maps show that the system does stabilize at 

the new speed. These maps are for a leg stiffness, K[eg of 26. A lower value of leg 

stiffness would still enable the quadruped to make the transition to the new speed, but then 

it will enter chaos and destabilize. This was shown earlier in Chapter III.

4. Summary

In this chapter, a controller has been developed that enables the quadruped to change its 

speed while galloping. The controller is simple to implement. It accomplishes the change 

in speed by exerting appropriate forces at the legs and manipulating the leg angle at the 

beginning of the stance phase. The pitching motion of the body is not explicitly controlled. 

Using Poincare maps, it has been shown that the changes in speed do not affect the 

stability of the system. This also shows that the controller for a gallop at constant speed is 

a robust controller.
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CHAPTER V

CONTROLLER FOR THREE DIMENSIONAL MODEL

1. Introduction

In this chapter, the two dimensional model o f the quadruped will be extended to model a 

three dimensional quadruped. The dynamic equations for the three dimensional model will 

be developed in the beginning of this chapter. The controller will be adapted to control the 

three dimensional model of the quadruped. The additional variables to be controlled now 

are the sideways speed, roll and yaw. It must be ensured that the controllers for these extra 

variables do not affect the functionality o f the controllers for the forward speed and the 

pitch. In the later part of the chapter additional controllers will be developed to enable the 

quadruped to turn.

2. Dynamic model for the three dimensional quadruped

The three dimensional model of the quadruped is shown in Figure 5.1. The coordinate 

system (x, y, z) is fixed to an inertial frame. The coordinate system (1, m, n) is fixed to the 

body of the quadruped with the origin of the coordinate system at the center of mass and 

the axes aligned with the principal axes. At any instant of time, the coordinate system (x', 

y', z') is coincident with the coordinate system (1, m, n) but fixed with respect to (x, y, 

z). The velocity of the quadruped is denoted by (u, v, w) where u is the speed in the x-
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direction, v is the speed in the y-direction and w is the speed in the z-direction. The 

orientation of the body is given by the Euler angles (a, P, y) where a , P and y are the roll, 

yaw and pitch respectively. The angular rates of the body are given by 0 j , 02 and %  in 

the x', y' and z' directions respectively. The rotation matrix R corresponding to the above 

Euler angles is given by

R =
CospCosy + SinaSinpSiny -CospSiny + SinaSinpCosy CosaSinP 

CosaSiny CosaCosy -S in a
-S inpC osy + SinaCospSiny SinpSiny + SinaCosPCosy CosaCosP

m

(x, y, z)

z

Figure 5.1. Three dimensional model of the quadruped

The equations of motion for the quadruped are given by
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Mu = fx 

Mv = fy -  Mg

Mw = fz

Ii0i = t ; + ( i m - i n)02e3

where

M = mass o f the body, 

g = acceleration due to gravity.

Il = moment o f inertia about the 1 axis.

Im = moment of inertia about the m axis.

In = moment o f inertia about the n axis.

fx, fy and fz are the forces exerted on the main body by the legs in the x, y and z direction 

respectively, i ' j ,  x '2 and x'3 are the torques exerted on the main body by the legs about 

the x', y* and z’ axes respectively.

The quadruped consists o f four legs which are each connected to the body at the hips 

whose coordinates are (xb  y b  zj), (x2, y2 , z2), (x3, y3, z3) and (x4, y4, z4) respectively. 

Each leg of the quadruped consists of a constant stiffness spring with a damper and a force 

actuator in parallel. Let the coordinates of the feet when they are placed on the ground be 

(Pxi’ pzi). The force exerted on the body by the spring in the ith leg given by

f s i  =  K s p ( l - V ( x j  - p x i f  +  y ?  +  ( Z i  - p z i f  j
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where

L = free length o f the spring

The force applied by the damper in the ith leg is given by 

f di =  S  v ii

where £, is the damping coefficient and vjj is the component of the velocity of the leg end 

relative to the body along the leg axis, vjj is given by the expression

v — vxi(xi Pxi)~*~ vyiyj vzi(zi Pzi) 

a/(xi — Pxi )2 yf + (zi -  Pzi )2

where vx,, vyj, vzj are the x, y and z components of this velocity.

Thus the force components exerted by each leg on the body in the x, y and z directions are 

given by

f xi =  { f si -  f di }
( X i ~ P x i )

' \ j ( x -i P x i )  "h Yi "h ( ^ i  P z i )  

yj

V(x i - Pxi)2 + y ? + (zi - P z i ) 2 

( Zi - P z i )

V ( X i - P x i ) 2 +  y f  +  (Zi  -  P z i ) 2
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The total force acting on the body is given by

4
fx =  X n ifxi

i =  1 
4

fy = Snjfyi
i = 1 

4
fz = Z n ifzi 

i = l

fO if  the leg is in the air 
where n: ,

II if  the leg is on the ground

The torques about the center of mass exerted by each leg on the body is given by 

Si = n i(ri x f i )

where I; is the difference between the position vectors of the hip on the ith leg and the 

center of mass

The above equation gives the torque in the fixed coordinate system (x, y, z) and is 

converted to the torques in the coordinate system (x\ y', z’) by the following equations

s'i = RT*i

This completes the development of the equations of motion.
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3. Control Scheme

The control scheme used to control the two dimensional model is implemented for this 

three dimensional model. This will enable us to control the forward speed and the pitching

motion. The extra degrees of freedom that have to be controlled in the three dimensional

model besides the one present in the two dimensional model are

1) sideways velocity: should be set to zero

2) ro ll : should be set to zero

3) yaw: should be set to zero

Unlike the two dimensional model where the leg placement could be fixed by a single 

coordinate, the leg placement for the nth step is now fixed by two coordinates ((pxj)n, 0, 

(Pzi)n)* Similarly to the two dimensional case, (pxj)n will be used to control the forward 

speed of the quadruped. The other coordinate (pzj)n will be used to control the sideways 

velocity.

When any of the legs is lifted off the ground, the following quantities are measured: The 

location of the hip can be calculated knowing the rotation matrix and the position of the 

center of mass of the main body.

(dxi)n (Xi ) n (Pxi )n 

(dzi )n ~  (z i )n ~  (Pzi )n
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These displacements are measured in the fixed coordinate system and do not account for 

the orientation of the body. To overcome this problem, we set up a new coordinate system 

(x", y", z"). The y"-axis is aligned along the fixed y-axis. The x"-axis is the projection of 

the x'-axis on to the xz-plane. The third axis z" completes the right handed set.

y "  ~  y
R ( l , l ) i - R ( 3 , l ) k  

V R (U )R (U ) + R(3,1)R(3,1)

z" -- x"  x  y"

where i , j and k are unit vectors along the x, y and z-axes respectively.

The displacements can now be computed in the new coordinate system (x", y", z").

(< r0  (d ,j)n R (l,l)H -(d,i)n R(3,l)

n VR(1, 1)R(I,i)  + R(3,1)R(3.1)
- ( d , i ) nR(3.1) + (dzi)„R (l.l)

" VR(1.1)R(1.1) + R(3,1)R(3.1)

The two dimensional control scheme can now be implemented to control the forward 

speed. The above displacements for the (n+l)th step is given by

« i ) n+1= K i ) n + Ke ( u d - < - i )

where (u', v', w') is the velocity o f the quadruped in the (x', y', z’) coordinate system 

and is given by the equation
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V u

v ' = Rt V

w ' w

The other displacem ent (d 'zj)n+i can be used to control the sideways speed. A 

proportional-integral controller is used for this purpose since it is desirable to have zero 

steady state error.

(d 2 )n+1 = KIw ; + K iIni 1w5
j=0

where Ks and Kjs are constants and will be determined by trial and error.

The foot placement can now be completely determined by the following equations 

/ j  \ _  (dxi)n+i R0 > l) - ( d zi)n+1R(3,l)

 ̂ xiAl+1 VRC1-1) ^ 1-1) +  R(3,1)R(3,1)

/d ) +
1 zJn+1 j R ( l , l ) R ( l , l )  + R(3,l)R(3,l)

( P x i ) n+i = ( Xi ) n+l + (d xi )n+1

(P z i ) n +i = ( z i ) n+i + ( (i z i )n+1

The above two equations completely determine the foot placement. This controller was 

tested for the three dimensional model and the result is shown in Figure 5.2. This figure 

displays the sideways speed of the quadruped and it is clearly small and decaying.
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Roll and yaw are controlled by moments applied at the hip joints by the appropriate legs 

during the stance phase. This controller is a simple proportional-differential (PD) 

controller with a feedforward term. This controller is expressed by

M x' =  — M x' — + K(ja d j

My' = -M 'y' - ( K ppP + Kdpp)

where

time (sec)

Figure 5.2. Sideways speed of the quadruped.
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Mxs My- are moments applied to the main body in the (x\ y', z') coordinate system, M'x*, 

M'y' are estimates of disturbance moments in the (x1, y', z') coordinate system, and Kpa, 

Kda, Kpp, Kdp are constants.

a  and |3 can be calculated from the following equation:

a cos (3 0 -S inP e r

P = TanaSinP 1 TanaCosP R 02

y_ SecaSinP 0 SecaCosp 03

The feedforward terms ensure that the moments applied to the main body do not get too 

large. A linear PD controller can then be used to control the body attitude for small angles. 

The above controller also ensures that the moments about the z1 axis are not disturbed. 

This enables the controller developed for the two dimensional case to be used for this three 

dimensional model. The algorithms developed for the two dimensional case were 

successfully tested for the above three dimensional model. The results are shown in Figure 

5.3. In these cases, small random disturbance moments were applied to the quadruped in 

the roll and yaw directions. The moments and their effects on the roll and yaw angle are 

shown in Figure 5.3.

4. Control Scheme for turning maneuver

The objective of this section is to develop a controller that will permit the above three 

dimensional model to perform turning maneuvers at approximately constant speed. This 

can be achieved by manipulating the foot placement appropriately. In the above controller,



97

the sideways velocity component is minimized by appropriately changing (d"z)n. Turning 

can then be achieved by permitting a sideways velocity component

For the duration of the turn 

(d"z)n+l = 8Z sign(w')n 

where 8Z is a constant.

If 8Z is small, the forward speed controller will not be greatly disturbed and the forward 

speed will be constant. As the quadruped turns, its orientation has to be changed. This can 

be achieved by the controller described in the previous section. The controller is modified 

to

M x> = — M x' — ^K p^a + K ^ocj

We want the orientation of the quadruped to be in the direction of travel. To ensure this, (3̂  

is computed at every stance phase by the equation

This controller permits the quadruped to turn with a large radius of curvature. The large 

radius of curvature ensures that the forward speed is almost constant and the quadruped 

gait is stable. The rate of turn depends on the 8Z.

My. = - M ' . - ( K pP( P - P d) + K dpp)
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The results o f a typical turn are shown in Figure 5.4. These results are for a turn through 

about 45 degrees at a constant speed of 25 kph. Figure 5.4 shows the speed in the fixed 

coordinate system, the forward speed of the quadruped, the sideways speed of the 

quadruped and the desired and actual yaw angle of the quadruped. The forward speed 

stays constant and the sideways speed is negligible. The yaw angle closely follows the 

desired yaw angle.

5. Summary

In this chapter, the controller developed in the earlier chapters for a two-dimensional 

machine has been extended to control a three-dimensional quadruped machine. Additional 

controllers have been developed to control the roll motion, yaw motion and the sideways 

speed of the machine. These controllers have been designed in such a manner so that they 

do not disturb the controllers for the speed and energy control. Further, these additional 

controllers have been modified to permit the quadruped to change its direction of motion. 

This controller permits the quadruped to turn by about 45° in 4 seconds while galloping at 

approximately 25 kph.
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Figure 5.4. Turning maneuver for the quadruped.



CHAPTER VI

CONCLUSIONS

1. Conclusions

In this thesis, the dynamics of the quadruped gaits have been examined. The quadruped 

has been modelled as a rigid body with constant stiffness springs as legs. In the first 

chapter, a method was described to generate stable solutions for trot, bound and gallop 

gaits. The various issues involved in these gaits were discussed in detail. It was shown 

that a trot is more energy efficient at lower speeds, and a gallop is more energy efficient at 

higher speeds. These results were compared with actual observations made in the field. An 

attempt was made to model the flexion of the body using a torsional spring. Various 

strategies to obtain the stable solution for gallop met with limited success. Further, it was 

shown that a passive torsional spring does not accurately model the flexion of the body 

while galloping.

In the next two chapters, a controller was designed to control the speed of a two- 

dimensional quadruped while galloping. Symmetry principles were used to develop a non

linear controller for a gallop. It was shown that the pitch of the body need not be explicitly 

controlled. The stability o f the controller was examined using Poincare maps. It was 

shown to be stable for different initial conditions and parameters. The stable system shows 

either periodic or quasiperiodic behavior. The system was shown to be stable only for a

100
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range of leg stiffnesses. Outside this range, the system is unstable. It has been shown that 

this instability of the system is due to chaos. This has important implications while 

designing a controller for a range of speeds. If the leg stiffness is below a certain critical 

value, the system will become unstable at higher speeds and changes in control gains will 

not restore stability.

The two-dimensional model was extended to a three-dimensional model. Additional 

controllers were designed to control the sideways speed, roll and yaw. The sideways 

speed was controlled by foot placement and roll and yaw were controlled by appropriately 

applying moments at the hip during the stance phase. The control scheme was extended to 

enable the quadruped to turn.

2. Recommendations

An extension of the work done in Chapter I would be modelling of the energy losses to 

reposition the leg for the next stance phase and the impact losses. One could then 

theoretically predict the stride frequency and compare it with the results for various 

animals. Another area that could be explored further is the modelling of the flexion of the 

back. An effort was made in this thesis to model the flexion but our attempt was not 

successful. This could have been due to the chaotic nature of the system and needs to be 

investigated further. It would be interesting to see if the flexion of the back lowered the 

energy level of the gallop further. This would result in additional energy savings.

Another area that should be explored further would be the location of the center of mass of 

the body. In this thesis, the body is assumed to be a uniform bar. Thus the center of mass 

is in the center of the body. In animals, the center of mass is close to the front legs due to



102

the additional mass o f the head. The methods described in this thesis can be easily 

modified to compute the stable solutions for different locations of the center of mass. Thus 

an extension of this work would be to quantify the effect o f the location of the center of 

mass on various gaits.

In this thesis, the legs have been modelled as constant stiffness massless springs. The 

effect of legs with masses could be explored further. Pandy et. al. (1989) have shown, 

using goat studies, that the inertial effect of the legs is negligible compared to the inertial 

effects of the body. This could be confirmed in this simulation by adding masses to the 

legs. The control scheme in this thesis does not require constant stiffness springs in the 

legs. Nevertheless, there are symmetry requirements that the spring stiffnesses must 

satisfy. One of the obvious requirements is that the stiffness during the extension of the 

spring should be the same as that during the compression o f the spring. This should be 

explored further. The type of non-linearities in the spring that can be tolerated by the 

controller should be investigated. This would be extremely helpful while selecting 

actuators for a four-legged running machine. The non-linearities of the leg spring will 

probably modify the chaotic nature of the system, and it would be interesting to observe its 

effect on chaos.

Another interesting area, that can be explored further is the effect of the center of mass on 

the controller. Since the controller relies on the symmetry of the model, a change in the 

location of the center of mass will affect the controller. In the present controller, the leg 

angle during the takeoff stage of the previous stance phase is used to set the leg angle for 

touchdown phase of the next stance phase. Thus, the takeoff angle for the front legs is 

used to set the touchdown angle for the rear legs and vice versa. If the center of mass is 

offset from the center of the body, then in order to satisfy the symmetry requirements, the
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leg angle during touchdown of the front legs will have to be set using the leg angle during 

takeoff from the front legs. Similarly,the leg angle during touchdown of the rear legs will 

have to be set using the leg angle during takeoff from the rear legs. This would involve 

storing the leg angles for the next aerial and stance phase, and then using them to set the 

leg angles for the next stance phase.

The m ost im portant recom m endation for future work on this thesis w ould be an 

experimental validation o f the control scheme developed in this thesis. Control schemes 

designed by other researchers using similar principles have been successful in the past. 

This should provide sufficient incentive to proceed with an experimental validation of this 

work.
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