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In t r o d u c t io n

The classical Stickelberger theorem says, that the class group of an abelian 

extension F  of Q is annihilated by the ideal in Z[G(F/Q)] generated by elements of the 

form:

e o = 0 o(b) = ( b - ( b , F ) )  X  C /a ,0 )(fl,F )-1, (0.1)

w h e r e / i s  the conductor of F , (a, F)  denotes the restriction to F  of the 

automorphism of Q(£y), which sends £yto Eft, £y(a, s) is the partial zeta function 

and (6; If) = 1. Coates and Sinnott [9], defined analogous Stickelberger elements with 

the values of partial zeta function at negative integers:

0 n = 0 n(b) = (bn+1 - (b, F))  X  C /a .-n X a .F ) '1 (0.2)

They proved, that 0 n e  Z[G(F/Q)] and 0 l (b) annihilates the odd part of K2(Op) 

for b relatively prime to the conductor and the order of K2(Of ). Inspired by the 

Lichtenbaum conjectures they conjectured, that 0 n(b) annihilates the odd part 

of K2n(Op) for n odd and b relatively prime to the conductor and wn+1(F). The 

purpose of this presentation is to give some evidence for their conjecture. This 

presentation is organized in the following way. Chapter I gives basic definitions and 

results concerning the Stickelberger elements. Chapter II on the other hand carries some 

basic definitions and results from algebraic K - theory. Chapter in gives a construction 

(under some additional conditions) of a map:

s ' K2n-i(kw)i -» K2n. i(PE)b 

which splits the natural map if I does not divide n and has some " Galois property",
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where E is a number field, / is a prime number, w is a place of E relatively prime 

to I and kw is the residue field. If I divides n, then the map s is defined on the 

subgroup of index 1/zl"/ in K2n.i(&*)/• I would like to thank to prof. G. Mislin who has 

shown to me how to construct such a map using the K- theory with coefficients. The 

map s is used in chapter IV to define a map A. By theorem 1 in chapter IV, the map 

A  splits the boundary map in the Quillen localization sequence (more precisely 

its / torsion part), up to the action of &n{b) (n 0 n(b) resp.) if / does not divide n 

(/In. resp.). This gives the result, that the Stickelberger elements &n{b) ( n©n(b) resp.) 

annihilate the subgroup of divisible elements in K2n(F){ with b relatively prime 

to / ,/a n d  the order of K 2n(Op). The existence of such a map A  with the above 

properties, was suggested to me by my thesis advisor prof. W. Sinnott. Chapter V gives
. .v

an application of theorem 1 to get some splitting examples in the Quillen localization 

sequence. Chapter VI describes the construction of the Chern class map of Sould. Result 

of Sould [27] theorem 6 iii and application of some spectral sequences in dtale 

cohomology, as in the paper of Lichtenbaum [20], leads to a construction in chapter VII 

(for F totally real abelian and n odd) of a suijective map:

K in iF h-*  HlJ.F,ZAn+l))t.

This map, results of Schneider [26], theorem of Mazur and Wiles (main conjecture in 

Iwasawa theory) and results of Sould [27], give in chapter VIII (theorem 2), the 

following lower bound of the number of elements of the / torsion part of the group of 

divisible elements in K2n(F)t. Namely for I >n:

#( n  k ^ f S) * i ^ ^ i;
^  1 n w » ( F v) /

This result and corollaries of chapter V, make it possible to determine for each odd prime 

number /, except irregular prime numbers such that I <, n and / 1 nwn+i(Q)£(-n), 

whether or not the short exact sequence:



0 -> K2n(Z) -> K 2n(Q) -> ©  K 2n.1(kv) -> 0
V

splits for the I torsion part. Also the theorem 2 and corollary 1 in chapter IV, give the 

evidence for the conjecture of Coates and Sinnott. Take F = Q and I > n. Then 

theorem 1 shows that the numerator in the formula of theorem 2 is divisible by the 

exponent of the I torsion part of the group of divisible elements in K ^ Q ) .  On the other 

hand Iwn(Qi)l'f = 1 (n odd). Hence in this case the lower bound for the group of 

divisible elements in K2n(Q) is given also by the numerator of the formula in the 

theorem 2.

I would like to thank to my thesis advisor prof. W. Sinnott for introducing me to the 

problems relating the Stickelberger ideal to algebraic K- theory and for all his help and 

support he gave me during my work at Ohio State University.



C h a pt e r  i  

S t ic k e l b e r g e r  id e a l

§ 1. BASIC PROPERTIES OF STICKELBERGER ELEMENTS

Let FIQ be an abelian extension of the field of the rational numbers Q.G = G(F/Q) 

will denote its Galois group. L e t/b e  the smallest natural number such that F is 

contained in (?(£/). Such an /is  called the conductor ofF . denotes th e / -  power 

root of unity. Let aa denote the element of G(Q(^)/Q)  such that for

(a , f )  -  1. Let us define (a, F)  to be the restriction of Ga to F . L e t />  1. The 

Stickelberger element &n(b) = Qn e  Z[G] is defined [9] in the following way:

0 n = (bn+1 -  (b ; F )) X  Ua\  -«)(«; F ) \  (1.1)

where £ V ( a ;  s) = X  k~s is the partial zeta function, s is a complex number.
J kZl-.kma m o d f

When n = 0 then 0 O is essentially the classical Stickelberger element. We can write 

the Stickelberger element 0„in the following way:

e » = , « ? L  A n f o W K - 1 « -2)

Where An+l(a ,b f )  = bn+1̂ a \  -n) - £fiab\ -n). By Coates and Sinnott [9] theorems

1.2 and 1.3 we have:

An+i(a’b J )  are integer numbers if (b, w„+1(£>(£/))) = 1 and (1.3) 

An+i ( a ,b / )  = ( a b y A ^ b J )  mod f n where f n = f T I p vpM (1.4)
p\f

vp is the valuation corresponding to the prime number p.



§ 2. Stickelberger  elements for  Q.

L et / =  1. T hen F  = Q. In this case the Stickelberger elem ent is defined in the 

following way.

D efin itio n  1. 0 n= (bn+l - l)£g(-n) denotes the Stickelberger element for  Q.

NOTATION. From now on let us write £ instead o f If  E and F  are finite Galois 

extensions o f Q with E~z> F, then Res denotes the restriction 

map Res : G(EIQ) -»  G(FIQ).

LEMMA 1. Let  f  = 1. Let  £ be the lkpower root o f  unity. Let  &* be the 

Stickelberger element for Q(£). Then Res 0* = (1 - /")©„.

PROOF: Put g = lk. Res&* = (bn+1 - 1) E  £Ja \  -n). Hence
fa *)-l;lSa<J



C h a pt e r  n  

A l g e b r a ic  K -T h e o r y

§ 1. Basic  definitions a n d  results

Let A be a commutative ring with identity. Algebraic K-groups were defined by Quillen 

[24] in the following way:

K n{A) = x n+1(BQP(A)) for n Z 0. (2.1)

In the above formula the notation is as follows:

P(A) denotes the category of finitely generated, projective A - modules, 

QP(A) denotes the Quillen Q construction for P(A),

BQP(A) is the classifying space of the category QP(A), 

nn+1 denotes the n+1 homotopy group.

I f « >  1 then by [12] p. 228.

K n(A) = Kn(BGL(A)+) (2.2)

Where BGL(A)+ is the plus construction described in [21]. Browder [3] has defined 

algebraic K- theory with coefficients in the following way. Let m be a natural number. 

Then:

K n(A; Zlm ) = [7” ; BGL(A)+] if  n > 0, (2.3)

where [7£; BGL(A)+] denotes the group of homotopy classes of maps (with a base

point) from to BGL(A)+. The space 7" is obtained by attaching the boundary of

the n - dimensional disk to an (n - 1) -dimensional sphere by the map:
^n-i ym )

6
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For n > 1:

K n(A; Z /m ) = [F£+1; BQP(A)) [12] p. 228. (2.4)

For n = 1 as in [27] p.259 we put (this differs from i<r1(A; Z/m) of Browder):

^ ( A ;  Z/m) ^  [ Y l ; BgP(A)], (2.5)

tf0(A; Z/m) ^ KQ(A)/mKQ(A). (2.6)

We have also the Bockstein exact sequence [27] p. 259:

-> K n(A) -> Kn(A) -> Kn(A; Z/m ) -*->  KnmX(A) -> 

obtained from the cofibration sequence

5«-i s*-i jr» .

The map /> is called the boundary map or the Bockstein map. For simplicity we 

introduce the following notation;

ATn(A; Z/m) = K n(A; m). (2.7)

In this presentation A will usually denote a number field, the ring of integers of a 

number field, or a finite field. Let F  be a number field, Op = O be the ring of

integers in F, kv be the residue field for a finite place v. We have the localization

sequence [24] corollary of theorem 5:

-»  K n(Op) -> K n(F) - ± 4  ®  *„.!(*„) -> K n.x{Op) -> K n_i(F ) ->
V

Sould [27] theorem 3, p. 274 proved that the above sequence splits into short exact 

sequences as follows

0 -» Kln 00 F) -> K 2n(F) -£-»  ©  K 2n.1(kv) -> 0
V

From now on / will denote an odd prime number. Because all groups in the above exact 

sequence are torsion we can consider only the / torsion part of the above exact sequence. 

In future all the calculation will be done for each / separately. Algebraic K-theory of 

finite fields was determined by Quillen [25] theorem 8, p. 583:
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K 0(kv) = Z, (2.8)

*2n-i(kv) = Z / W  - 1), (2.9)

K 2n(kv) = 0 for n > 0, (2.10)

where qv = #kv.

It was determined by Quillen that Kn(0F) has structure of a finitely generated abelian 

group. Borel [2] determined the rank of Kn(Op) as follows:

K n( 0 F) ®  Q = Q if  n = 0, (2.11)

K n( 0 F) ® Q  = Gri+rrl if n = 1, (2.12)

K„(Of )<8> Q = Q ' t i f  n = 3mod  4, (2.13)

^ n ( 0 f )  ® (2 = (2ri+r2 if /i = 1/nod 4, n * 1, (2.14)

K n( 0 F) ® (2 = 0 if  n is even and n > 0. (2.15)

Other results from K  - theory will be quoted later.



C h a p t e r  m  

G a l o is  S e c t io n

§ l .  in t r o d u c t o r y  c o m p u t a t io n s .

Let £  be a number field, O be its ring of integers. Let k > 1 be an integer. In this 

chapter we assume that £ e E, where £, is the lk power root of unity. For any finite 

place w or the associated prime ideal Pw = /? in O, the residue field kw = O/p 

has N e/q((5) = p f  = q elements, w herep  is a prime number and/  = [kw',Zlp\. 

Throughout this chapter we assume that lk\\(q -1). We have the following commutative 

diagram:

Kn( 0 ) ------> K n(0)- ■K ( 0 - l k) -Kn_i(O)

- * K n( ^ )  * K n(kw) * K n(kwU k)  ^ K n.x(kw)-

Diagram 3.1.

The horizontal sequences are the Bockstein sequences, K is the natural map induced by 

the map iz \ 0  —» O/p and is denoted in the same way. Take n = 2. Then the above 

diagram and the assumptions about O and kw give the following diagram:

9
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b

*■ K2( 0 ; l k) 0

0

n

v b

Diagram 3.2.

The element £ e  K ^O )  = 0 *  maps by 7ronto the generator of K l(kw)l = (A:*)/ that 

will be denoted by <£ too. If G is an abelian group then Gt denotes the torsion part 

of G. According to [3] theorem 1.7, K2 (O; /*) has exponent lk. So we can find an 

element x e  K2 (0; lk) of order lk such that b (x) = <fj. It is possible by diagram

3.2 above. Let us define y  =  jc (x) e K2 (kw; lk). Observe that bjc(x) = £. We can 

define a homomorphism on generator y  in the following way:

This is well defined section of the left vertical arrow jcin the diagram 3.2. Obviously the 

natural map jc : K ^ O ) ^  K1(kw)l is an isomorphism because of the root of unity. Let 

us call the inverse isomorphism s v  Using the composition of the maps:

s2 : K 2 (kw; /*)-> K 2 ( 0 ; l k), 

s 2 00 = x. (3.1)

K\(Q)i  - »  Ki (0) i  —>  Ki(kw)[ 

(where the first map from left i s s 1( second is o a , third is j c)  we get:

JC <*as i(£) = £fl- 

Let us consider the commutative diagram:

(3.2)



11

K 2(kw ; l k) K 2{ 0 \ l k) K 2( 0 - J k )  — — *■ K 2(kw ', l k)

b b

y

b b

s
^  K { k w\^  ^ ( 0 ),

Diagram 3.3.

Observe that we get:

it o a s2(y) = b - 1 tt <ra j j*  0 0  = b-1 n  o a s x^ )  =

(3.3)

Let us put 2n instead of n in the diagram 3.1. We need to consider two cases:

(i) I does not divide n ,

(ii) / divides n.

We will continue to consider only case (i). At the end of this chapter we will explain how 

to deal with the second case. Hence considering (i) we get the following diagram

for n andm non negative. For reference see [11] and [29]. The product structure is 

associative and commutative in graded sense. It makes KJA) into a graded ring. The 

same holds for K-theory with coefficients K+(A; Ik). Any homomorphism A —» B

it

Diagram 3.4.

There is a product structure on the K-theory:

* : K n(A) ®Km{A) Kn+m(A),
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induces naturally a ring homomorphism on both K-theory with coefficients and without. 

Observe that I torsion part of K2n.\(kw) is cyclic of order lk by [25] ( /  does not 

divide n ). Let us define:

z  =  y  * y  y ,  (3.4)

where on the right we have product of y  n-times by itself. As in [3] corollary 2.5 

z generates K 2n(kw\ lk).

Let us define a homomorphism:

*2n :K 2n(kw; l k) -> K 2n(0 ; lk),

s 2 n  00 = s 2 ( y ) * S2 ( y )  *...* s 2 ( y ) .  (3.5)

Observe that by product properties we get:

*  (S2n(z»  = *  (M )0 ) * — *1t (s2(y)) = y  * ... * y = z. (3.6)

So J ^ is  a section of n . Using the diagram 3.4, let us define the homomorphism: 

s : ^2n-\^w)l~* K2n-l(0)b

S ( £ J  = b (s2n(b-l(Zw))), (3.7)

where is the generator of K2n_l (kw)l such that b 'l(^w) = z.



§ 2. Properties of the m a p  s .

Proposition 1. it c a s ($w) = E,a*.

PROOF. First we want to prove that it <Ja s2n(z ) -  z°\ But we have:

X  a a s 2n ( z ) =  W U 2 OO * -  * ^ O O } )  =

n Qa *2(y) * • • •  * n °a s2 ŷ} -  y a *  • • • *  y a - ( y *  • • •  *  y)an = z f l n -

Let us consider the commutative diagram:

(3.8)

(3.9)

* 2.  <0 ; /*) « „  ;(*)

7T
^ 2 n - \^ w \  ^ 2r ^ 2 n - l ^ \  *“ ^2n-\^K>^l

Diagram 3.S.

From this we can get the following relations:

n  o a s (£w) = b it o a s2nb-HSw) = b { { b  -HSw))a* ) = ft". QED. (3.10)

Let us now consider the case (ii). Observe that lk+r II (qn - 1) where lk II {q - 1) 

and lr \\n . Then we do the same calculation as for the case (i). The difference is (as far 

as the above method is concerned) that we must use the coefficients in Z/lk. We cannot 

use the Z/lk+r coefficients because there are only lk power roots of unity available 

in O. As a result in this case we get the map s : 

s ' K 2n_x{kw)[lk] -> 

which splits it :

it : K ^ O W * ]  -» K ^ i k J U * ] ,  

where G[m\ denotes the elements of exponent m in an abelian group G.



C h a p t e r  iv  

S t ic k e l b e r g e r  S p l it t in g

§ 1. THE MAP A.

Similarly as in Chapter HI we will consider the case when I does not divide n. We will 

state the results for both cases but the detailed proofs will be done only for / which does 

not divide n. At the end of this chapter we will describe what happens when / 

divides n. Let us consider the exact sequence :

0 K 2n( 0 F) -> K 2h(F)  -> ©  K 2nA(kv) 0
V

The direct sum in the sequence is over all finite places of 0 F. We always work with the I 

part of the sequence even though it is not explicitly mentioned. Let £v be the element of 

K 2n.i(kv) of order lk where lk\\(qn - 1) and q = # kv. Hence lk = #

14
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Definition 2. Let us define a homomorphism Av as follows:

(i) if I does not divide n:

Av (£v) = TrEIF a b (P) * s (&")) i f  I divides / ,  (4.1)

Av (£v) = TrEIF ({Xb ( P) * s  (££")} r0 I does not divide f. (4.2)

(ii) i f  I divides n:

Av* K2n.i(kv)i^> K 2n(F)l,

Av ( | v) = TrEIF (Xb (0) * s ($»*")) i f  I divides / ,  (4.3)

Av (£v) = TrE/F ({Xb {p) * s (& bnm  if  I does not divide f.  (4.4)

.. We will now explain the notation used in the above formulas.

a) E = F(£) where £ is the lk power root of unity,

b) Tr: Kn(E) -> Kn(F ) is the trace homomorphism,

c) w is a finite place of E over v in F,

d) P is the prime ideal corresponding to w,

e) £wis any element of K2nA(kw) such thatN (£„) = £v where N  denotes the trace

homomorphism N: K2n_x{kw) -> K2nA(kv)

f) s is the map from the previous chapter,

g) Xb (p) denotes any generator of the principal ideal /J®6, where Gq is the

Stickelberger element for the field E when n = 0. The 

ideal is principal by the classical Stickelberger theorem.

h) If I does not divide/then G(EIQ) = G(F(Q) © G(Q(^)/Q). Hence we can

consider the unique element (which we call ojfor simplicity) 

such that its restriction to G(Q(lf)/Q) is the trivial automorphism 

and its restriction to G(F/Q) is the automorphism (/, F). Now 

we are ready to define //:



y{ = 1 + /"cry1 + /2no y 2 + /3no y 3 + .

16

(4.5)

LEMMA 2. The map Ay is well defined.

PROOF. It is enough to prove that £ v has the same order as We will observe 

that/V: K2n_i(kw)i —> K2n_1(kv)l is an isomorphism. Let us notice th a t# K2nA(kw) = 

q” - 1 where qw = it kw. Observe that Ew = F v(£) so Ow = Ov[t; ]. Hence kw 

= Ow/(juw ) = Ow/(nv) = Ov[£]/(ttv) = kv(l;). But lk II O7” - 1) so kw is contained 

in the finite extension of kv of degree n. Put q v = q. Hence [kw: k v] =r 

divides n and # K2n.\(kw) = (qr)n - 1. Let log{ denote the /-adic logarithm. We get 

that log[(qnr) = n log[( 1 + (qr - 1)) = n (qr - 1 )Mj where Mj is an /-adic unit. 

But log 1 (qrn) = log ii 1 + (qrn - 1)) = (qrn - 1 )u2 where w2is an /-adic unit too. 

It follows that/*II(<7W - 1) and /*ll(<?£- 1). Hence we see that /V is an isomorphism 

on / torsion. QED.

REMARKS. Ewand Fy&TQ the completions of E and F  with respect to w and v 

respectively, O w and Ov are their rings of integers and n w and ttv are their 

uniformizers respectively. Observe that we can take jvw = n v because £ W/Fvis 

unramified. Observe also that we can take ^  to be the element constructed in the chapter 

m  and take £v = N(%w) to start with. It does not affect the definition of Av at all.

DEFINITION. Let us denote by A the following map :

A  : ©  K 2n.l (kv)l K2n(F)[,
V

A  = n  Ay. (4.6)
V

REMARK : In the theorem below £v will denote (by abuse of notation) the element 

( ...l .. .l ,£ v ,l...l..)  of ® K 2nA{kv).



§ 2. Stickelberger  splitting  property  o f  a . Aux iliary  com pu tation s. 

THEOREM 1. (i) Sp ° A(ZV) = ^v&n i f  I does not divide n, (4.7)

(ii) 8P o A (£ v) = £vn0» i f  I divides n. (4.8)

Before giving proof o f this theorem let us prove some lemmas.

LEMMA 3. The following diagram commutes

K ^ i E )  -----— > © © ^ 2n - l ^ ^
v wW

TrEF N
» g V

K2n(F) -  »  © ^ - l ( ^ )
V

Diagram 4.1.

where N  is defined in the usual way. In the above diagram v ranges through all finite 

primes which do not divide I.

PROOF. It is done in [27] p. 276.



LEMMA 4. The following diagram commutes
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k ^ e ) — - — ►
W 2n-l w

a
V

o

K ^ ( E )

Diagram 4.2.

where a  e  G(E/Q) and induces naturally the maps on K- theory, denoted in the 

diagram 4.2 in the same way.

PROOF. Let M(Oe) be the category of finitely generated 0 E -modules, let M (0E)tor be 

the subcategory of torsion 0 E - modules, let M(E)  denote the category of finite 

dim ensional E - vector spaces and let M( k w) denote the category of finite 

dimensional kw - vector spaces for a valuation w. The lemma follows by the diagrams 

4.3 and 4.4 below. Observe that the horizontal arrows in the diagram 4.4 are homotopy 

equivalences by the devissage theorem [24] theorem 4. QED

M (°E)tor ------ > M (0 £ )  >M( E )

a a

Y V f
M  (0 E)tof ------ ► M  (0 E)  M(E)

Diagram 4.3.
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© M ( L ) M{0P)E 'to r

t  y
® M ( k w)  * M (O e )ur

Diagram 4.4.

Assume first that / divides /. Then by diagram 4.1:

SF o A(£v) = IV o {Xb (/J) * * (&")}. (4 .9 )

To calculate SE [Xb (p) * s (££"} we use the following result of Gillet [11] p. 268. 

There is the following commutative diagram:

K l(E )x K 2nA(0 ' )•

Diagram 4.5.

The boundary map SE: K X{E) > ©  K0(fcw) can be seen as:
W

5£(x) = ®  w(x) [kw], (4.10)
W

where [kw] denotes the element of K0(kw), generated by the one dimensional vector 

space kw over kw. Let f*  denote the conductor of E and let 0*  denote the 

Stickelberger element for the field E. In addition let wa~l denote the place w shifted 

by (a , E)‘l = (a ' 1, E). To make notation easier to read we will write oa instead 

of (a, E). It does not lead to any confusion, because we consider only the Galois action 

on E. Then we can define the section s^i = ^ scra which gives the following diagram:
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Diagram 4.6.

Hence s = C gS^ 10^ 1. Moreover we have the following commutative diagram:

Diagram 4.7.

Let 7ra-i : O -» fc^-i be the residue map. We will denote also by %a.\ the natural map 

induced on K-theory.

LEMMA 5 . s a.i w a s e c t io n  o f  Ka.\ and i ta.\O c s a.\ = r a is in g  to  th e  c n p o w e r  w h ic h  

w e  d e n o te  in  th e  p r o o f  b y  c".

PROOF. 7ta.i s a.i = (crfl.i^ <7a )(ca-i s  Ga ) = crfl-i7r s  <Ta-i = identity. Moreover 

X a-lG c Jo-1 = ( ^ . i  7C O a ) O c ( O a.i 5 <7a ) = G a.\JC <JC S  CTfl = 0^1  c" CTa = c". (4 .11)

QED.

K2n-\(K>)

2n-lv V ;



§ 3. PROOF OF THEOREM 1.

PROOF. U sing the above inform ation we w ill calcu la te  the im age o f 

SE [Xb(f5) * s (£*£)} in each K 2 n.\(ku) separately. Starting first with the case when 

u = wa~l we get:

8e [Xb(P) * s (£*")} = SE [ X M  * (<7flv ic ra. i ( 0 ) }  =

=  A l (a ,b j* )[ k Wa.i]  *  (7Ca-i(Tasa-i<Ta.i(& n) =

= Ax(a,bJ*)[k Wa.{\ * <ra- i ( U anbn = oa. ^ wr nbn̂ b^  in K2n.x(ku), (4.12)

where u = w,,'1. We obtained the second equality from diagram 4.5. The last equality 

follows, because Al(a ,b f,t) is an integer and the product by [kW(.i] is the identity map, 

because of the agreement of this product with the product defined in [24] p. 103. On the 

other hand if u is not a G(Q(%f)IQ) conjugate of w then u (Xb(p)) = 0. So 

8E i h ( P )  * s (£w)) = u i^b(P))\.ku\ * Ku (ft")) = 1 by bilinearity of the 

product. But Coates-Sinnott result [9] theorem 1.3 gives:

An+l(a,bj*) = anbnAx(a,bf*) m o d fn and by definition lk \ fn so  

SE {&b (P) * s (f t"  )) = ft®" and (4.13)

8F (TrEIF [Xb(p) * s (ft")} ) = (ft« S ). (4.14)

Observe that we have the following diagram in which the upper square commutes:



M U
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M M

N

M O

M U

or-i

-  M M

<*-i
♦  M M

Diagram 4.8.

Indeed the lower square commutes, the lower vertical maps are imbeddings by [25] 

theorem 8 and the big rectangle commutes, because / ° N  = 2  <r, where the 

summation is over respective Galois group. Using the diagram we get:

N  (£„*-) = N  ($w)Res&* = £v®» because Res (0*) = 0 n, [9] p.159. (4.15)

Now let us discuss the case when / does not divide the conductor/. In the same way as 

above we need to calculate:

SF ° T r ElF ( { X M  * s O F ' )  = N o 5e {{Xbm  * ') =

N((Se {Xb(P) * *(&")})*) = = N(Zw)e*«-ln<’r 1)Yl = (4.16)

The first equality follows by diagram 4.1 and the second equality follows by diagram 

4.2. The third equality is computed in the same way as the case l\f and the forth equality 

follows from the diagram 4.8 and by the following property [9] p. 159 of Stickelberger 

elements:

Res (0*) = (1 - lncrfl)&n. QED. (4.17)

Let us now discuss the case /In. Observe that the map A  is well defined. Indeed 

if  lk+r\\(qn - 1) for some k > 0  then lk\\(qn* - 1) where n = n0lr , (n; nQ ) = 1 . 

Again, put E = F(£) where t, is the lk power root of unity. In the same way
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kw = Jfcv(£) and kw is contained in the the finite extension of kv of degree /i0. 

Hence [£w:fcv] = s for some s dividing /i0. So using again the / - adic logarithm we 

can prove that Z*II(<7S- 1) and lk̂ r\\(qns -1 ) so the norm homomorphism will be an 

isomorphism again. Repeating the proof of the case (i) we get the case (ii). Theorem 1 

gives:

COROLLARY 1. Let D = C \ K 2n(F)r be the group o f all divisible elements in
1

K2n(F) and let b be relatively prime to If. Then 0 n = 0 n(b) annihilates Dt i f  I does 

not divide n and n 0 n = n 0 n(Jb) annihilates Dt i f l  divides n.

PROOF. Let d e  D[. Take some big natural number t such that d = x l> where x is an 

element of K ^ F ) .  Hence

SF (x ) = ( . . .a v...) e ©  K2n_x(kv). (4.18)
V

Let us denote A v the map from theorem 1 for the place v. If K2n_l(kv)l is trivial then 

we define A v = 1. Let a  = ( . . .a v...) and A = I I  A v. Hence SF A (a ) = a 0 * or
V

a n0n if / does not divide n or I divides n respectively. But SF(xe») = (SF(x))0’' = 

a 0* which is a consequence of diagram 4.2. In the same way 5F(xn0*) = 

a n0*. Hence A (a ) x  e K2n(0)  or A (a) x  n0» e  K2n(0 )  respectively. Assume 

that we have taken t such that/'is  the exponent of AT2„(0 )/. Then raising to the 

power /'w e get A ( a l‘)(xlly 0» = 1 or A (a l‘)(xl,y n0* = 1 But a l‘ = 1 and x l‘ = d. 

QED.



C h a pt e r  v  

E x a m p l e s

We will now give some applications of our theorem 1 in the case when F = Q. Observe 

that in this case theorem 1 says:

REMARK. For any fixed / we can assume that b is relatively prime to I ,wn+1((2) and 

# K2n(Z). But by [6] p. 293:

GCD{bn+1 - 1 ;b  prim e and (b, / wn+1(Q )#K2n(Z)) = 1 } = wn+l(Q). (5.3)

COROLLARY 3. I f  I does not divide nwn+l(Q)£(-n) then the I torsion part o f the exact 

sequence 0 -> K2n(Z) -» K2n(Q) -» © K 2n.i(kv) -» 0 splits.

REMARK. lwB+1(fi)£’(-/t)l7l = # (M ® z,'r (n)]G“ } is equal to 1 if / is an odd regular 

prime number. We denote by rth e  Tate module and we put t(1) = T, t(0) = Z b 

x(n) = r(/t - 1)®Z;T. Also A = l i ^ A m where Am is the I torsion part of the ideal 

class group of Fm = QiPim). In addition = Q(pr ), CM = G (FJQ ).

COROLLARY 2. o A(£v) = y /  divide n,

Sq o A(Zv) = £v'»(i’n+1-i)?(-'») ,y / divides n.

(5.1)

(5.2)

24
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PROPOSITION 2 . I f  a prime number I is regular and l\n then the exact sequence :

0 -> K 2n(Z) K 2n{Q)  -> ® K 2nA(kv) 0
V

splits for the I torsion part.

P R O O F .  Let q = q v = #kv. Let /*+rll(<7w- l )  w here n = n0Zr, (n0;/) = 1 and let 

lk\\(qno - 1). Let us consider the field E = Q(%) where ^  is the lk power root of 

unity. Call O its ring of integers and pick kw a residue field for some place 

w over v. By lemma 1, kw = &v(£) and kw is contained in a finite extension of kv of 

degree n0. By the result of Harris-Segal [17] corollary 3.2, p.27 there is a section:

s<: K 2n- l ( fcw)l K 2n- l(0)l>

of the natural map induced by the map O —> kw. Notice, that the conditions of the 

corollary 3.2 are satisfied here. Let us consider the following map:

: * 2 « . l ( * v ) /  % 2 n ( Q ) l >

^ v(£v) = TrEIQ a ( P w) * ■s'(U)/rl. (5.4)

W here h is the class number of E, A(/Jw) is a generator of the principal ideal 

P*in O , h '1 denotes an I - adic unit. Notice that (h , /) = 1 by regularity 

assumption and by Iwasawa theory. This map is well defined because of the discussion 

of the case l\n following the proof of theorem 1. The proposition follows from the 

following lemma. QED

LEMMA 6. SQ o A'v(£v) = £v. (5.5)

PROOF. The proof is done in the same way as the proof of theorem 1. Namely:

SQ o  A'v( 0  = N  o SE{ X 0 w) *s'(Zw)h '} = N(h[kw] *£V ) = (5.6)

in K2n_l{kv) where the first equality is a consequence of lemma 3, the second equality 

follows by diagram 4.5. Also 8q A'v(^v) = N (0 * xu(s'(ghyv1))) = 1 in K 2nA{ku) for 

any u *= v as follows in the same way as above. QED.



E xam ple  1. Take n = 3. Then w4(Q) = 3x5x16, Cq(-3) = (3X5X8)'1. Hence 

w4G2)£g(-3) = 2. So proposition 1 and theorem 1 imply that up to 2 -torsion:

K 6«2) =  K 6(Z)(S @ K s(kv). (5.7)
V

EXAMPLE 2. Take n = 5. Then w6(Q) = 7x8x9, Ce (-5) = -(4X7X9)'1. Hence 

w>6(0Cg(-5) = -2. So up to 2-torsion we have:

K l0(Q) s  K 10(Z) © ® K 9(kv). (5.8)
V

The same as in example 1 and 2 is true for n = 7 and n = 9. Let n = 11. Then 

WwCOCO-H) = 2x691. So for/if22(G) there is a problem with splitting only for one 

odd prime number, namely 691. It will be shown later in this presentation, that the short 

exact sequence does not split for 691.



C h a p t e r  VI 
C h e r n  c l a ss  m a p

§ 1. Chern classes.

Let A be a commutative ring with identity. Let P be a finitely generated projective 

module. Let p  :G —> Aut(P ) be a representation. We also assume that G acts 

onX  = spec A. The module P determines a sheaf E on X. In the notation of [18] p. 

110, E = P  which is a G sheaf [13] p.195. It is clear that E is a locally 

free Ox  module, so it determines an algebraic projective bundle P{E) overX. In this 

way P(E) is a scheme with G action. Let 0(1) denote the invertible sheaf 0 P^ (  1) 

on P(£). Again 0(1) is a G sheaf. In addition let Pic(Y,G) denote the group of 

isomorphisms classes of invertible G sheaves on a scheme Y on which G operates. 

If 0  is a sheaf for dtale or Zariski topology on the scheme Y, then by [13] p. 200:

H\Y,G;<P) ^ R * r °  (0 )  (6.1)

To avoid confusion we should write in the above formula H*t or HXar respectively. 

This cohomology group is called the G equivariant cohomology group or simply 

equivariant cohomology. All computational details about these groups (Zariski topology 

case) are in [13]. The 6tale topology case is treated similarly. Let C.(G) denote the bar 

resolution, C .(0 )  denote the Godement resolution for 6tale or Zariski topology 

respectively. Let S(Yet,G) (S iY ^^G )  resp.) denote the category of G sheaves on 

y *  {Yzar resp.). L et/, be an injective resolution of 0  in S(Y,G).

27
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Then we have:

H*(Y,G; 0 )  = H*(HomG(C.(G); />(/.))) = H*(HomG(C.(G); r y(C.(d>)))). (6.2)

In the above formula rY = F(K,-). If Y = specA then we write rA. Put q = lm.

If p is  a representation as above, then the Chern class c,(p) e  H2i(A,G',plq) is defined

in the following way.

Let r be the max of all rangs for P at all prime ideals of A. Grothendieck [14] p. 246 

proves that there is a natural isomorphism:

H%(P(E),G; p rq) » ©  H % "\A,G ; p f i v g .  (6.3)
1 OSi'Sr-l ’

This gives us the linear dependence for £  with coefficients being the Chem classes:

X  c ,(p )^  = 0 ,  c0(p) = I- (6.4)
0£ i£ r

E, is defined in the following way.

Let 0(1) be as defined above for the scheme P(E). Then £ is the image of 

c 1(0(1)) e Pic(specA, G) in H%(A,G; p q) via maps given below.

Pic(specA, G) -> H}ar(A,G; G J  -> H \t(A,G ‘, Gm) -> H 26t(A,G; p q)

The first map from the left is the composition of natural isomorphisms:

Pic(specA, G) -> H ^ G ;  G J  -> H*ar(A,G; G J ,  

the second is the edge homomorphism in the Leray spectral sequence for the map:

(specA,G)it -> (specA,G)zar, 

induced by the identity and the third map from left is the boundary map.

We write the total class as c(p) = 1 + cx(p) + c2(p) + ... + cr(p) (6.5)

The Chem classes have the following basic properties [14] p. 247, [27] p. 256.

a) (Functoriality). For a m ap /: (specA', G') -» (specA, G), projective /1-module 

P  and a representation p : G  —»Aut(P), let f  (p) denote the induced representation 

G' -> Aut(P®AA'). Then ct( f ( p )  = /c ,(p ) .
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b) (Normalization) c x(p)  = /?(£(der(p))) where %(det(p)) is the image in 

H\t{A,G\ Gm) and /J is the boundary homomorphism in the long exact sequence 

associated to the exact sequence: 0 —» p q -» Gm —> Gm -> 0.

c) (Additivity) If 0 —» P ’ —> P -> P" -> 0 is an exact sequence of G- modules 

which are projective A modules and if p ' ,p ,p" are the respective representations 

then c(p) = c(p') u  c(p").

§ 2. DEFINITION AND PROPERTIES OF THE CHERN CLASS MAP.

In this paragraph we will describe the Sould [27] p. 256 - 261 construction of the Chem 

class map:

*i,k ’ k 2i.h(A * <?) “ > H UA ,  Jij)

We keep the same notation as in § 1. Let us now assume thatG acts trivially 

on specA. Put C.(G) = C.(G)®cZ/q. Then:

HomG(C.(G); rA(C.(p‘))) = Hom{C.(G)\ r A(C.(A£‘))). (6.6)

Hence:

//|'(A ,G ; p ‘) = H2i(Hom(C.(G); r A(C.(p‘))). (6.7)

By [5] IV §6 prop.6.1a) there is a natural homomorphism:

<t>: H2i(jHom(C.(G); rA(C.(p‘))) J B .  Hom(H2i.k(G; Z/<?), tf*,(A; p‘))

Let G = GLr(A), let P = A r and p  = idv  As shown in [27] p. 257 there is the 

following stability property of the Chem class:

Ci(idr) = i*(c,(idr+1)), (6 .8)

where:

i* : H f{(A,GLr+1(A); p ‘) -> //||(A ,G Lr(A); p ‘), 

is the natural map. Using it and the functoriality of <p [5] IV §6 prop. 6.1a) in both 

variables of the Horns involved, Sould [27] p. 258 first defined the map:
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ci>k(id ): H2i.k(CL(A); Z/q) -> //* t(A; // ')  

and then composed it with the Hurewicz homomorphism: 

hq : K2i.k(A; q) -> H 2i.k(GL(A); Z/?), 

to get the Chem class map:

c iJfe: K 2i_k{A, q) -> tf|,(A ; jt‘).

LEMMA 7. Lef A -* B  be a homomorphism o f commutative rings with identity. Then 

the following diagram commutes:

^2i-ti'A\q') ► K 2i mk̂ B'f q)

^l.k
4 v

Hit (A ; Mp -  > (b  ; m?)

Diagram 6.1.

PROOF. The Hurewicz map hq commutes with the natural maps of ring change hence it 

is enough to prove that ci k(id) commutes with these maps. Consider the following map: 

/ :  (specB, GLr(A)) —» (specA , GLr(A)).

Take the A-module P =Ar and the representation idr : GLr(A) —> GLr(A). Observe 

that f  (idr) equals to the natural imbedding GLr(A) —> GLr(B). By the property a) of 

the Chem class and functoriality of the map <J> in the second variable, the following 

diagram commutes:
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Hn-k (GLr(A) ;Z/q)

cu tW X id ,)))

not

Diagram 6.2

On the other hand consider the following map induced by the identity map: 

g : (specB, GLr{A)) -» (specB, GLr(B)).

Take the 5-m odule P = Br and the representation idr : GLr(B) —> GLr(B). In this 

case g*(idr) equals to the natural imbedding GLf(A) -» GLr(B) too. Again by the 

property a) and functoriality of the map <p in the first variable, we have the following 

commutative diagram:

not
Hv_k (GLr (A); Z / q )  ----^ H ^ .k(GLr (B>, Z/q)

Diagram 6.3.

Because g*(idr) = f  (idr), we can paste diagrams 6.2 and 6.3 along the diagonals. Now 

the lemma follows by the stability of the Chem class. QED.



C h a pt e r  v ii 

St a l e  c o h o m o l o g y

In this chapter we assume that FIQ is totally real abelian and l>  n.

§ 1. NOTATIONS.

We will use the following notation in this chapter.

Him = the group of all ln power roots of unity, (7.1)

..&H 1* where Hi* is tensored with itself i-times,(7.2) 

= F(Hi-), Goo = G(FJF) ,  (7.3)

Ha , Ha denote the respective sheaves on specA,

Wn = G A ® Z(t(«), (7.4)

W{ denotes the sheaf for the 6tale topology on speck, where k  is field, 

H k{A, 0 )  = H kt(specA, 0 )  where 0  denotes a sheaf for the 6tale 

topology on specA. (7.5)

From now on let Ot denote the ring of / integers in the field F. We can observe that:

0[ = [x e F : v(*) > 0 for all v not over /) . (7.6)

Let S be the finite set of primes of Op, over a finite set of prime numbers including /.

Let us put:

O j = | t E  F : v(x) £  0 for v * S ) . (7.7)

It is the ring of S - integers in F. From now on S will always denote such a finite set.
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§ 2. APPLICATION OF THE CHERN CLASS MAP.

The following diagram 7.1 introduces notation of maps between spectra of corresponding 

rings.

spec F
a

spec Os

id

spec F spec Ol

Diagram 7.1.

By lemma 7 we have the following commutative diagram:

 * H H o s\a>ppl)

Diagram 7.2.

The upper horizontal map is the natural map in K-theory. The lower horizontal map can 

be identified with the edge homomorphism in the Leray spectral sequence:

F%! = HP(Oh Rip*(cc*p'i£1)) => HP+«(Os , a * ^ 1)) (7.8)

for the map /? in the diagram 7.1. The vertical maps in diagram 7.2 are the Chem class 

maps. We can identify the edge homomorphism with the appropriate map for the second 

cohomology, induced by diagram 7.3:
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i I
/. ------ >► p * J .

Diagram 7.3.

In the above diagram, /. and J. are some injective resolutions of j*f/}m1 and 1

respectively. It is easy to see, that there are natural isomorphisms 1 ~ and

a*/J.rlm1 ® [27] p. 267, which we used in the diagram 7.2.

Note that we can consider the following commutative diagram:

----------- * * 2 „ (a .;Z z)

j

H \ q  -J.Zj (n+1))------ ► / / 2(Oy jc^z^+ i))

Diagram 7.4.

obtained from diagram 7.2 upon taking the inverse limit on coefficients. It is proven in

[27] theorem 6 iii, that the vertical maps in diagram 7.4 are suijective.

The remaining paragraphs of this chapter are devoted to identification of the lower 

horizontal map in the diagram 7.4.



§ 3. Application  o f  Stale  cohom ology .

Observe that we have the following commutative diagram:

35

H \O l- h W ^ ) ------------- ► H \O s- a J V ^ 1)

Diagram 7.5.

where the vertical arrows are the boundary maps obtained in the long exact cohomology 

sequences associated with the short exact sequences:

0 j . u f t 1 -> j.W $ +l -> j*WJ}+1 -» 0 

0 -> a * / /# 1 -» a*W]}+l -> a*Wj!+1 0

The lower horizontal map in the diagram 7.5 is the edge homomorphism in the Leray 

spectral sequence:

E% = HP{Ob => HP+%Os, a*W£+1) (7.9)

for the map (5. We can describe this edge homomorphism in the same way as we did it 

for edge homomorphism of the spectral sequence from the § 2. We can also see this edge 

homomorphism arising from the morphism of Leray spectral sequences shown below on 

the following diagram:

Hp (O/, Rqj*W^ ) => WjT1)

id

H p ( q ;  Rqa*WFn¥l) => W ^ 1)

Diagram 7.6.
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We will discuss the construction of the morphism later in § 4.

Let us also observe that the boundary maps in the diagram 7.5 are mappings into the 

projective systems:

{H H O iJ .u fi1)}*  and {H2(Os, a ^ ) ) lm

respectively.

Hence we have the following commutative diagram:

’H 2(Os ;a>Zl (n+1))

H \ Q \ a * W p * )

Diagram 7.7.

where by definition:

HHOi,j*Z£n+1)) = lim H H O iJ .u fc 1)
w

The same for Os.

(7.10)

LEMMA 8. The vertical arrows in the diagram 7.7 are isomorphisms.

PROOF. This is proven in [27] p. 289 but let us see the argument. We will only consider 

the right vertical arrow. The following diagram:

0 ----- ► cr, f t f i l-----► cĉ Wp*1 ----- > 0

I

0  --------► or,  >  0

Diagram 7.8.
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gives the following commutative diagram:

0 h \ os ; a+W'p'1) <8>Z/lm -► H 2(Os ; a , ^ x)

Diagram 7.9.

H 2(0S ',<X.WT1) Um]

But H2(Os\ a*Wfi+1) = 0 by theorem 5 of [27] and H x{Os \ cc*Wp+l) is finite. 

Finiteness of the last group follows by finiteness of j*Wfi+1) because by [20] p. 

355 and [7] p. 115 H l(Oi,j*W$+x) ~ m/(n)G“ => [A ®Zj x (n)]G-. The last group is 

finite by the theorem of Mazur and Wiles (Main conjecture in Iwasawa theory) [8] p. 

225. Hence finiteness of Hl(Os\ a*W£+1) follows by collapsing of the Leray spectral 

sequence:

E% = HP(Oh Rqp*(a*Wj}+1)) => Hp+q(C>s, a*W£+1) 

for the map p. More precisely Efg = 0 for q > 1 [ 10] p. 530. QED.
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§ 4. PASSAGE TO THE LIMIT.

Let B t and Bs be the integral closures of 0 ; and Os in F„ respectively.

Let Olm and 0 S m be the integral closures of 0 { and Os in F (plm) respectively. Let 

us observe that B t = lijjji O l m and Bs = lijg 0 S m. Let Gm = G(F(p.lm)/F). The 

following picture introduces the notation of the maps between spectra of corresponding 

rings:

spec F ■specFa

spec FspecF <■
specO[ spec Bt

spec Bs

Diagram 7.10.

Let us use the following spectral sequence for finite Galois covering [23] p. 105:

EPf = HP(Gm; tf*(Os>w; a*W£+1)) =* HP+i(Os; a.W £+1). (7.11)

Taking the injective limit with respect to m we get the following Artin-Hochshield-Serre 

spectral sequence [1] p. 92, [23] p. 106:

EP$ = Hp(G„; HQ(BS", 8*W$+J ) )  => HP+i(Os, a*Wj}+1). (7.12)

Let us take the short exact sequence of first terms. We get the following exact sequence

[20] p. 355:

HHGb0; Wn+1) -> H \O s ; a,W £+1) - ^  HHBs ; ff.WJP1)®- HHG„', Wn+1). 

Using the spectral sequences for finite coverings we identified the middle arrow as the
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restriction map and in addition we know [20] p. 355 that:

Wn+!) = / / 2(G00; Wn+1) = 0. (7.13)

Hence the restriction map is an isomorphism. We also have the following commutative 

diagram:

H m{Oi, j .W ? 1) — H m(Br, J i W f -)°“

H m{Os - , a . w f )  — Les— > H m{Bs -~a .W £)G-

Diagram 7.11.

The vertical arrows are the edge homomorphisms in the appropriate Leray spectral 

sequences. More precisely the right vertical arrow is the edge homomorphism restricted 

to the Go, invariant subgroups.

Now we discuss the construction of the morphism of spectral sequences from the 

diagram 7.6. The upper (resp. the lower) spectral sequence is constructed by taking the 

normal injective resolution/.. ( / . .  resp.) [4] p. 178, [19] p. 301 of the complex: 

j* w p '  - >  j j 0 - >  y . / j  - >

(resp. a*Wfi+1 -» a* /0 a*Ix -> )

where

W$+1 -> / 0 -> / x -» 

is an injective resolution. The natural map:

P j+I. —> u+I. 

induces naturally a homomorphism [4] p. 183:
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P*h /. —► a* /.

I I
P*I- — *■ J..

Diagram 7.12.

between these double complexes. It gives us the homomorphism:

• r ^  .h i .  — *-p„OC*I-

V
.. ► pi, J~

Diagram 7.13.

which leads immediately to the morphism of spectral sequences. We want to use the 

above construction to build the following morphism of spectral sequences of 

modules:

Hy(Bs ; R Ha* Wj?1)

id

I f* I F *  Wj?)

Diagram 7.14.

To obtain 7.14 we need to apply the functor & (see the diagram 7.10) to 7.13. By [1] 

chap. HI. §3 we know that S* is exact, preserves flasque sheaves and if & is a sheaf 

on (spec Of )it, then for an 6tale open U on spec Oln:

5*®(Ux0ljp e c  Bf) = lig. <^JUx0j p e c  Ol<m) (7.14)



We also have the natural isomorphisms:

5*j* -  , 5*0* -  0*5'* , r*W0+1 = W0+1 7.15)

All these data give us the morphism 7.14. This morphism of spectral sequences gives us 

the following commutative diagram of modules with exact rows:

0  j . W £ l) ----- ► h \ F ^  W £ l) ----- ► H °(B 1;R 1j\ W ^ 1)

id

> >
0  * H \B s ; Z .W £ l)  »  H 1(Foa; W ^ 1) ----- ► H° (Bg \R l Z * w £ X)

Diagram 7.15.

§ 5. IDENTIFICATION OF SOME MAPS VIA CONTINUOUS COHOMOLOGY.

Consider the exact sequence [7] p. 101:

0 —> m g  —> F e a Q Q i / Z i  —> J s ® Q J Z i  —> 0 , 

where Js is the ideal group of Bs. Twisting with %(n) we get:

0 -> ms (n) -» F l® W n -» ®  W n -> 0,
w

where the direct sum is over all places w o f Bs. Taking Gm invariants we get the 

following commutative diagram:

G

0 — ( n )

id

v n

'
G

\' _ G_ >
(F«*®W")

proj

v g S

Diagram 7.16.
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PROPOSITION 3. The map:

H l{Fo.\ Wn+1) -> H°(BS; R l a*Wn£ } ) ,  

can be identified (after composition with an imbedding on the right) with the natural map:

F t® W n 0 W n,

where w runs through all points o f specBs but the generic one (or in other words w 

runs over all places ofFM not over /.). Similarly for the map with J  

PROOF. Investigating the bicomplex for the Leray spectral sequence for the map a w e  

find out that the map can be seen as the map:

Z x(specBf)Hm d0 -> Z fB 0(specBs)

The notation in the above formula can be described as follows:

7. is the flasque resolution of W#*1. Applying a* to this resolution we get a complex 

whose 1- cocycles are Z 2 and zero coboundary are B 0. Evaluating the 

complex a j  on specBs we get another complex whose zero differential is dQ. If w is 

as above, let w be the corresponding geometric point. Let V be an dtale neighborhood 

of w over specBs . If we evaluate a*I on V, we will get the following commutative 

diagram:

w

Z 1(specBs )/im d0 -------- >- Z l/B0(specBs )

res

v
res

v

Z x(V ) l im d l *  Z x/Bq(V )

Diagram 7.17.

do denotes the zero differential of the complex a*I.(V). Diagram 7.17 gives us the 

following commutative diagram:
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H X(F„; w£l) -► / /  °(jBS ;R ' a . w f )

lim H \sp e c  F ^ x V ;  W ? 1) --------------► (/? Ja .  W ^1) -
V  s

Diagram 7.18.

Observe that the left vertical arrow in the diagram 7.18 equals to:

H l(specFm; W ^ 1) H \sp ecF !k  W$&), 

because by [1] Chap. HI. §3:

ljrpHHspecFaoxBsV ; W pJ) = H \s p e c F l^  W $ ) .  (7.16)

In the above formulas f £^  denotes the strong henselization of F „  at w. More 

precisely F^w = where is the strong henselization of Bs at w. We

can also see that F is the inertia field for a place of F„ over w. Hence the strong 

henselization equals to F*w n F where F ^w is the completion of F M at w. On the 

other hand we see that the right vertical map in the diagram 7.18 factors naturally 

through:

-> i* Ri& .W fcHspeckJ, 

where kw is the residue field of By for the place w.

But by [15] p. 31 we have the natural isomorphism of sheaves on specBs:

-> ©  iw* C R l &.W]l+1.*° w **
We used iw to be the natural map iw : speckw -> specBs. Hence evaluating this 

isomorphism on specBs , utilizing the above explanation and the diagram 7.18 for 

each w, we can identify our map from the lemma with the map:

H \ s p e c F ©  H \sp e c F l^
w w

We used above the following fact. If K  is a field and is a sheaf on specK than the 

natural map (specK) -» is an imbedding. We denotes = specK. It is the place
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in the proof where we comply to identify our map up to an imbedding. It is enough for 

our purpose because we are interested in the kernel of the map. Let us observe that the 

map:

HHspecF^; W pJ) Hl(specF i^ W f# ) ,

is given by the following map of complexes:

To finish we need to check that for each n ^  0, In̂  is G (F00/F00) as well as 

G iF JF ^) -  acyclic in the sense of continuous cohomology. But the continuous 

cohomology of a profinite group G and a discrete G - module can be computed as the 

right derived functor of F G (G-invariants functor) in the category of discrete G -  

modules. Hence putting G = G iFJFJ) and taking m £ 1 we get:

0 = Hm( s p e c F /.) = Rmr G{I.^ ) = H ^ G ;  /.»), (7.17)

because /. is a flasque sheaf. The middle equality follows from theorem 1.9 [23] p. 53 

or proposition (4.4) [16] p. 25. We have the same explanation for the group G{FJF£*,). 

We need to pull back the resolution I. to s p e c F to obtain again a flasque resolution. 

It is so because f £^ is a sum of finite extensions of FM so the passage to the limit 

theorem [1] p. 80 applies. The proof of the proposition is finished by the following 

lemma. QED.

Before stating the lemma let us introduce some notation. For a profinite group G and 

a G discrete module M  let:

Hom^s(C.(G); M) lijji HomG/u(.C.(G/U); M u), (7.18)

where as usual {t/} is the injective system of all normal, open subgroups 

of G and C.{G/U) denotes the standard resolution for the finite group G/U. We 

observe that Hom^s(Cn(G); M) = Cn(G, M) (identified as sets) where the last is the 

set of all continuous functions from Gn to M.
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LEMMA 9. Let H a  G be two profinite groups. Let I. be an exact complex o f G as 

well as H discrete and acyclic modules (in the continuous cohomology sense) with an 

augmentation map M  —» 70. In addition assume that cohomology o f the 

complex I? (I1? resp.) computes the continuous G (H resp.) cohomology. Then the 

following diagram commutes and the horizontal maps induce isomorphisms on 

cohomology:

HomCQS(C.(G); M ) ---- ► Homg(C.(G>, I )  ■* HomG(Z  , I )

Homll (C.(JHX M ) -----► Hom„ (C.(H)\ I.) **----- HomH ( Z ;/.)

Diagram 7.19.

PROOF. It is enough to observe, that the functor HomQS(C.(G); -)  is exact for any

profinite group G. Hence by assumptions both bicomplexes HomCQ (C.(G); I.) and

Homfjs(C.(H)\ I.) have vertical and horizontal differentials exact. QED.

We also observe, that we can do the identifications in proposition 3 in such a way, that 

when we put the identified maps to the diagram 7.15, all maps in this diagram will 

be G„ equivariant. We observe also that the right vertical arrow in the diagram 7.11 

for m = 1 is just the left vertical arrow in the diagram 7.15 after the identification and 

taking GM invariants, hence it equals to the left vertical arrow in the diagram 7.16.
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§ 6. GOING BACK TO THE K-THEORY.

It is easy to observe that in the paragraphs 1-5 we have proven the following lemma. 

LEMMA 10. The following diagram commutes:

K 2
not

not
^2n (Os’* ^7^

«*/(«)
G_

m J  n)

Diagram 7.20.

We observe that by computation in this chapter and by [27] theorem 6, the compositions 

of the vertical maps in the diagram 7.20 arc suijective. These compositions are (up to 

isomorphisms which we saw before) the Chem class maps which in [27] p. 261 are 

denoted c„+1_2. Moreover by Quillen localization theorem [24] (corollary of theorem 5) 

and by diagram 7.16 we have:

lip  K 2n(Os), = K 2n(F)l and l i p  ms(n)G-  = (F^OW"1)0-. (7.19)

Hence the diagram 7.20 and the above equalities give us the following suijective map 

upon taking the injective limit with respect to S: 

c n+i,2 :K 2n(F )t-^  ( F > m G- 

Observe that by [28] prop. 2.3:

H l(F; W"+1) ~ H 2ts(F; Zrfn+1)). (7.20)

Hence we have constructed a suijective map:

C n+i.2 : K 2 n ( F ) i  -> H l s ( F ; Z^n+l)).
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Let us now apply some Galois cohomology. Consider the following commutative 

diagram:

(F j ® W nf ~

res

h H f ; W'*1)

-> © ( w nf “
v n

-> 0 / / 1( F oo;W ,h'1) Gv"
v ft

Q re s

-► © Z /1^ ;  W'*1) 
v //

Diagram 7.21.

The upper vertical isomorphisms are given by Kummer pairings. In the above diagram 

Gvoo = G(FvoJF v) where F voo = Fv(fitJ). We also have the following commutative 

diagram:

h H f ; W**1)

id

©  ( H H F v ^ W ^ / D i v  )

0 —^ / W F )  — *~H1(F; W**1) —► ©  (z /1 ( ^ ;  W * l)/Div >
V

Diagram 7.22.

In the lower horizontal exact sequence Drt+1(F) denotes the group of all divisible 

elements in Z/J(F; Wn+1)/Div, [26] §4 satz 8. Z)/v denotes the maximal divisible 

subgroup in a respective group. The middle horizontal, exact sequence in the diagram 

7.23 below shows that D iv  in / /* (F ; Wn+1) is trivial. It is so, because
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wz(«)G“ ~ [A ®zt T(rt)]G~ [7] p. 115 which is finite by the theorem of Mazur and Wiles 

(main conjecture in Iwasawa theory). For reference see [8] p. 222 and 225 or [22].

0 *~K2n (Ot )t KfcCF),

0 — >~ml ( n)G~ — ► ( F J ® W nf ' *  ©
V / /

0 — r 1) —^ © ( / / H / ;
V

Diagram 7.23.

W n(Fv )
A

]r ,W * l )/D iv)



C h a p te r  v m  

WILD KERNEL

In this chapter we still assume that F/Q is totally real abelian and I >n 

§ 1. TWO LEMMAS.

LEMMA 11. The kernel o f the map c n+12 is finite.

PROOF. We have the following commutative diagram:

id
*  *2»<*■>/

lim 
—> s Cm+\,2

lim t f 2(0J ;cs*Z/ (n+D) ------> H 2{ F jZ ^/i+ l))
s

Diagram 8.1.

Hence it is clear by the previous chapter that the map c rt+12 is a composition of the left 

vertical arrow in the diagram 8.1 and some isomorphisms. So it is enough to prove that 

the left vertical map has finite kernel and eventually it suffices to prove that the right 

vertical arrow has finite kernel.

Let us consider the following diagram, which commutes up to homotopy:

49
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52/1-1 - /M- >  s 2"-1------- ►

i2n-l 2 n -l w  y 2 n

Diagram 8.2. 

It gives the following commutative diagram:

.  m+1
K z,( .F )

I id

T ' F >

K?n(F)  —-— *■ K j „ ( F ) -------► K ^ F - , 1 - )

Diagram 8.3.

The right vertical arrow in the diagram 8.1 factors by definition in the following way: 

K 2n(F  ) ,  - »  K 2n(F; Zj)  - *  H 2(F; Z { n + 1 ) )

We see by the diagram 8.3 that the kernel of the map:

K2n(F  )/ —> K 2n(F ; Z/)

is equal to:

{C \ {K2n{F ) ) * " ) ,  =  n ^ F  ) , ) * “  ( 8 . 1 )m̂l m21
which is finite because it is contained in K^Op. So we need to prove that the kernel of 

the map

^ „ + i . 2  : K 2n(F; Z , )  - >  H 2(F ; Z £ n + 1 ) )  

is finite. But *cn+li2 is the inverse limit on coefficients of the maps:

r»+i.2 : K2n(F; n  -> H 2(F;

Now we can use the following commutative diagram [27] p. 288, with exact rows:
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K T n W ” )  - ^ ( F j D  -------► ©  K ^ i k ^ r )
V j7

V > ' >

/ / 2( 0 / ; ^« (n+ l)) —  H 2(F;iL-(n+V)  — ► ©  H \ k v; ft ,.(  n))
V Jf /

Diagram 8.4.

Because / > n, the right vertical arrow is an isomorphism [27] proposition 5. In this 

case simple diagram chasing shows that the kernel of c n+12 (the middle one) is 

contained in the image of K2n(0 F; lm). The Bockstein exact sequence gives us the 

following short exact sequence:

0 -4 K 2n(Op )llm -4 K2n{0 F\ lm) -4 K 2nA(0 F)lm -4 0 

The groups K2n( 0 F; lm) have bounded orders independently of lm because the 

group Ar2n(pp ) is finite and K2n.i(0 F) is finitely generated abelian group. Hence the 

kernels of the maps cn+12 have bounded orders independently of P .  Since the inverse 

limit is left exact, the kernel of *cn + \ %2  *s equal to the inverse limit of the kernels of the 

maps it2. Such an inverse limit must be finite. QED.

LEMMA 12. Let A and B be l-torsion groups. In addition let the following 

homomorphism f: A - ^ B b e  surjective and have finite kernel. Then for every divisible 

element b in B there is at least one divisible element a in A such that fid) = b. 

PROOF. Observe that it is enough to check only /-divisibility. For any m ,b  = bl” for 

some element bm. B ecause/is surjective, there is for each m, an element am 

in B such th a t /(a m) = b m. But f i a j ”) = b £  = b.  Hence e  ker(f) for 

each m. But the kernel is finite so infinitely many elements of the form must be 

equal to each other. Hence infinitely many elements of the form a% must be equal to 

each other and it means that they define a divisible element a. Clearly fia) = b. QED.



52

§ 2. DIVISIBLE ELEMENTS IN K-THEORY.

THEOREM 2. I f F / Q  i s  to ta l ly  r e a l  a b e l ia n  a n d l > n  t h e n :

# ( n K ^ ( . F h  a  r ^ ^ i;1 ( 8 2 )
ai •» n » ,(F ,) ' (8-2)

vl/

PROOF. It follows by lemma 11, diagram 8.1 and [27] theorem 6 iii, that the

map cn+i' 2  satisfies all conditions of lemma 12. Hence it follows by the bottom part of 

the diagram 7.23 and the last lemma that:

# ( n K 2n(Fy){ Z # D n+1(F) (8.3)r21

But by [26] §8 and §5 satz 5:

X D ^ X F )  =  1
" fl n w f l(Fv) 1 (8>4)

vl /

because the following Lichtenbaum conjecture:

= — n r  (8-5)
1 #H  (Ol;j*Wpi' )

follows from the theorem of Mazur and Wiles [8] p. 222 and 225, [22] .QED
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