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INTRODUCTION

The classical Stickelberger theorem says, that the class group of an abelian
extension F of Q is annihilated by the ideal in Z[G(F/Q)] generated by elements of the
form:

8= 6o(b) = (b- (b, F) X (da,0)a,F)", 0.1)
where fis the conductor of F, (a, F) denotes the restriction to F of the
automorphism of Q(&y), which sends &qto &2, {(a, 5) is the partial zeta function
and (b; 2f) = 1. Coates and Sinnott [9], defined analogous Stickelberger elements with
the values of partial zeta function at negative integers:

6,= 0,(b) = (B™' - b, F) XL (fa,-n)a,F)? 0.2)
They proved, that ©, € Z[G(F/Q)] and 6,(b) annihilates the odd part of K,(Op)
for b relatively prime to the conductor and the order of K,(Op). Inspired by the
Lichtenbaum conjectures they conjectured, that 8,(b) annihilates the odd part
of K,,(Op) for n odd and b relatively prime to the conductor and w,,(F). The
purpose of this presentation is to give some evidence for their conjecture. This
presentation is organized in the following way. Chapter I gives basic definitions and
results concerning the Stickelberger elements. Chapter II on the other hand carries some
basic definitions and results from algebraic K - theory, Chapter III gives a construction
(under some additional conditions) of a map:

$ : Kopalky)i = Kop ) (Op)
which splits the natural map if / does not divide n and has some " Galois property",
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where E is a number field, / is a prime number, w is a place of E relatively prime
to ! and k,, is the residue field. If ! divides n, then the map s is defined on the
subgroup of index Inl} in K,, (k). I would like to thank to prof. G. Mislin who has
shown to me how to construct such a map using the K- theory with coefficients. The
map s is used in chapter IV to define a map A. By theorem 1 in chapter IV, the map
A splits the boundary map in the Quillen localization sequence (more precisely
its I torsion part), up to the action of 6,(b) (n®,(b) resp.) if I does not divide n
(lIn. resp.). This gives the résult, that the Stickelberger elements 6,(b) ( n®,(b) resp.)
annihilate the subgroup of divisible elements in K,,(F); with b relatively prime
to /, fand the order of K,,(Of). The existence of such a map A with the above
properties, was suggested to me by my thesis advisor prof. W. Sinnott. Chapter V gives
an application of theorem 1 to get some splitting examples in the Quillen localization
sequence. Chapter VI describes the construction of the Chern class map of Soul€é. Result
of Soulé [27] theorem 6 iii and application of some spectral sequences in étale
cohomology, as in the paper of Lichtenbaum [20], leads to a construction in chapter VII
(for F totally real abelian and n odd) of a surjective map:

Ko, (F) > HL(F, Z(n+1)),.
This map, results of Schneider [26], theorem of Mazur and Wiles (main conjecture in
Iwasawa theory) and results of Soulé [27], give in chapter VIII (theorem 2), the
following lower bound of the number of elements of the / torsion part of the group of

divisible elements in K,,(F); Namely for [ > n:
| wari( F)C, ()1

#(QK%(”)I > AR

(0.3)

This result and corollaries of chapter V, make it possible to determine for each odd prime
number [, except irregular prime numbers such that! < n and I | nw,1(Q){(-n),

whether or not the short exact sequence:




0 - K, (Z) > K,,(Q) = GB Ky,q(k,) = 0

splits for the / torsion part. Also the theorem 2 and corollary 1 in chapter IV, give the
evidence for the conjecture of Coates and Sinnott. Take F = Q and I > n. Then
theorem 1 shows that the numerator in the formula of theorem 2 is divisible by the
exponent of the / torsion part of the group of divisible elements in K,,(Q). On the other
hand Iw,,(Q,)I',l =1 (n odd). Hence in this case the lower bound for the group of
divisible elements in K,,(Q) is given also by the numerator of the formula in the
theorem 2.

I would like to thank to my thesis advisor prof. W. Sinnott for introducing me to the
problems relating the Stickelberger ideal to algebraic K- theory and for all his help and

support he gave me during my work at Ohio State University.



CHAPTER I
STICKELBERGER IDEAL

§ 1. BASIC PROPERTIES OF STICKELBERGER ELEMENTS

Let F/Q be an abelian extension of the field of the rational numbers Q. G = G(F/Q)
will denote its Galois group. Letfbe the smallest natural number such that F is
contained in Q(&p). Such anfis called the conductor of F. &rdenotes the f - power
root of unity. Let o, denote the element of G(Q(&/Q) such that ¢, (&) = &F for
(a,f) =1.Let us define (a, F) to be the restriction of o,to F. Let f> 1. The

Stickelberger element ©,(b) = ©, € Z[G] is defined [9] in the following way:

O, =™ - (b F)) X fda;-n)(a; FYL, (1.1)
a<f

(af)=1;1<

where Cf (a; 5) = 2 k*is the partial zeta function, s is a complex number.
kma mod f

k21,
When n =0 then 6 is essentially the classical Stickelberger element. We can write
the Stickelberger element &, in the following way:

= -1
6, = (m_%qu,m(a,b,f)oa (1.2)

Where A,,,(a,bf) = b"“Cj(a; -n) - Cl(ab; -n). By Coates and Sinnott [9] theorems
1.2 and 1.3 we have:
A, .1(a,bf) are integer numbers if (b, w,,+1(Q(§f))) =land (1.3)
Ap1(@:bf) = (abY'A(abf) mod f,where fu=f ILp%®  (1.4)

V

» is the valuation corresponding to the prime number p.

4



§ 2. STICKELBERGER ELEMENTS FOR Q.

Letf= 1. Then F = Q. In this case the Stickelberger element is defined in the

following way.
DEFINITION 1. 8, = (b™*! - I)CQ(-n) denotes the Stickelberger element for Q.

NOTATION. From now on let us write { instead of {o- If E and F are finite Galois
extensions of Q with E D F, then Res denotes the restriction

map Res : G(E/Q) — G(FIQ).

LEMMA 1. Letf= 1. Let & be the I¥ power root of unity. Let ©) be the
Stickelberger element for Q(&). Then Res €)= (1 - I)®,,.
PROOF: Put g = Ik, Res@f, = (b"*1- 1) 2 Cg(a ; -n). Hence

$

(a; g)=1;1%a<

L G@o= X mr=Ila-pot=a-19¢s. QED. (1.5)

(a; g)=1;1%a<g



CHAPTER I
ALGEBRAIC K-THEORY

§ 1. BASIC DEFINITIONS AND RESULTS
Let A be a commutative ring with identity. Algebraic K-groups were defined by Quillen
[24] in the following way:

K,(A) =7, 1(BQP(A)) forn 2 0. (2.1)
In the above formula the notation is as follows:

P(A) denotes the category of finitely generated, projective A - modules,

QP(A) denotes the Quillen Q construction for P(4),

BQP(A) is the classifying space of the category QP(A),

7,1 denotes the n+1 homotopy group.

If n 2 1 then by [12] p. 228.

K () = m,(BGL(A)*) 2.2)
Where BGL(A)* is the plus construction described in [21]. Browder [3] has defined
algebraic K- theory with coefficients in the following way. Let m be a natural number.
Then:

K, (A;ZIm) =[Y}; BGL(A)*]if n > 0, (2.3)
where [Y%; BGL(A)*] denotes the group of homotopy classes of maps (with a base
point) from Y7, to BGL(A)*. The space Y3 is obtained by attaching the boundary of
the n - dimensional disk to an (n - 1) -dimensional sphere by the map:

sn-1Xm_, on-1

6



Forn > 1:
K, (A; ZIm) = [Y™*; BQP(A)] [12] p. 228. (2.4)
For n =1 as in [27] p.259 we put (this differs from K(A; Z/m) of Browder):
Ky(4; Zim) % [Y2; BOP(4)], (2.5)
Ko(A; Zim) ¥ K o(A)mK o(A). (2.6)

We have also the Bockstein exact sequence [27] p. 259:

- K (A) = K, (A) = K,(A; ZIm) -2 K, (A) >
obtained from the cofibration sequence

N R £
The map b is called the boundary map or the Bockstein map. For simplicity we
introduce the following notation;

K, (A; ZIm) = K,(A; m). 2.7
In this presentation A will usually denote a number field, the ring of integers of a
number field, or a finite field. Let F be a number field, Op = O be the ring of
integers in F, k, be the residue field for a finite place v. We have the localization

sequence [24] corollary of theorem 5:
- K, (Of) > K,,(F)-—i-) GPK,,_I(I(,V) - K, 0> K, (F)->

Soulé [27] theorem 3, p. 274 proved that the above sequence splits into short exact

sequences as follows
0- K Orp)— K, (F)—> @ -
2n ( F) 2n( ) y K2n-l (kv) 0

From now on / will denote an odd prime number. Because all groups in the above exact
sequence are torsion we can consider only the / torsion part of the above exact sequence.
In future all the calculation will be done for each ! separately. Algebraic K-theory of
finite fields was determined by Quillen [25] theorem 8, p. 583:
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KO(kv) = Zv (2.8)
Kopa(ky)=2Zi(qy - 1), (2.9)
K,,(k,) =0 for n > 0, (2.10)

where q, = #k,.
It was determined by Quillen that X, (OF) has structure of a finitely generated abelian

group. Borel [2] determined the rank of K,,(OF) as follows:

K,(0p)® Q@ =Q0ifn=0, (2.11)
K,(0p)® Q=01*2lifn=1, (2.12)
K, (Op)® Q =Q"2if n=3mod 4, (2.13)
K,Op)®Q=0"""2ifn=1mod 4,n # 1, 2.19)
K,(Op)® Q=0if nis even and n > 0. (2.15)

Other results from K - theory will be quoted later.



CHAPTER I
GALOIS SECTION

§ 1. INTRODUCTORY COMPUTATIONS.

Let E be a number field, O be its ring of integers. Let k 2 1 be an integer. In this
chapter we assume that £ € E, where £ is the /¥ power root of unity. For any finite
place w or the associated prime ideal B, = B in O, the residue field k,, = O/
has Ng,o(B) = pf= q elements, where pis a prime number andf = [k,:Z/p].

Throughout this chapter we assume that /¥li(g - 1). We have the following commutative

diagram:

k
— > K,(0)—>K,(0)—>K,0:1") ——>K, (0) —>

> K (k) —m K (k) K (k1 15) — K ) ——>

Diagram 3.1,

The horizontal sequences are the Bockstein sequences, 7 is the natural map induced by
the map 7w : O — O/ and is denoted in the same way. Take n = 2. Then the above

diagram and the assumptions about O and k,, give the following diagram:
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b 1k
K,(0) — 0

Y

——— K,(0;1%)

Ik

0

b
0 —> K,(ks1% > K(k,),
Diagram 3.2,

The element & € K;(0) = O* maps by monto the generator of K(k,,); = (k,,); that
will be denoted by £ too. If G is an abelian group then G; denotes the torsion part
of G. According to [3] theorem 1.7, K, (O; I¥) has exponent ¥, So we can find an
element x € K, (O; I¥) of order I* such that b (x) = &. It is possible by diagram
3.2 above. Let us definey = 7 (x) € K, (k,,; I¥). Observe that ba(x) = £. We can
define a homomorphism on generator y in the following way:

sy: K, (ky; 1F) = K, (0; 19),

s2(¥) ==x. (3.1)
This is well defined section of the left vertical arrow 7 in the diagram 3.2. Obviously the

natural map x : K,(0),— K,(k,),is an isomorphism because of the root of unity. Let
Kl(kw)l - Kl(o)l - Kl(o)l -> Kl(kw)l

\aps:
(where the first map from left is s, second is g, third is 7 ) we get:
z 0,5,(8) = &2
get:
Let us consider the commutative diagram:
7 0,51(8) = &% (3.2)

Let us consider the commutative diagram:
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s o,
K, (k3 1%) —> K, (0;19 —>K,© ;%) — > Kk, 1%)

b b b b

s c, n
Diagram 3.3.

Observe that we get:

T O,s5,(0)=blmo,s:b(y)=blnoc,s (& =

b1(E%) = (b 1(E)* = y2. (3.3)
Let us put 27 instead of » in the diagram 3.1. We need to consider two cases:

(i) ! does not divide n ,

(ii) I divides n.
We will continue to consider only case (i). At the end of this chapter we will explain how
to deal with the second case. Hence considering (i) we get the following diagram

b *
—> K, (0; 1" — K, (0), —
n b3

0 —>K,,(k,; I)‘) — K4, 4( kw)l '—If—> 0

Diagram 3.4,

There is a product structure on the K-theory:

% 1 K (4) ®K (4) = Kypom(A),
for n and m non negative. For reference see [11] and [29]. The product structure is
associative and commutative in graded sense. It makes K,(A) into a graded ring. The

same holds for K-theory with coefficients K,(4; I¥). Any homomorphism A — B
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induces naturally a ring homomorphism on both K-theory with coefficients and without.
Observe that / torsion part of K,, ,(k,)is cyclic of order /¥ by [25] (! does not
divide n ). Let us define:

Z=Y kY kok Y, 3.4)
where on the right we have product of y n-times by itself. As in [3] corollary 2.5
z generates K,,(k,,; 1%).
Let us define a homomorphism:

San  Kon(kys 1) = K,,(0; 19,

S, (2) = 52(¥) * 55(¥) *...% 55(¥). @3.5)
Observe that by product properties we get:

T (52,(2)) = (52(0)) % ... *xW (5, (P)) =y *x ...xy =2z (3.6)
So 55, 1s a section of 7 . Using the diagram 3.4, let us define the homomorphism;

§ 1 Kopy(ky)i = K2,.1(0),

5 (84) = b (52,075, (3.7

where £, is the generator of X,, (k,,); such that b-1(£,) = z.



13
§ 2. PROPERTIES OF THE MAP s.
PROPOSITION 1. g, s (§,) = &4 (3.8)
PROOF. First we want to prove that 7 0, 5,,(z ) = z%". But we have:
T Oy82, (2) = (0, {52(9) * ...k 52(0)}) =
T O 852(¥) % oo ¥ T O 852(P) =¥% % coox Y2 = (¥ % ... % ¥)%" = 297, (3.9)

Let us consider the commutative diagram:

o, n
Ky, &, 18 ) =3 K, (0 1¥) =K, (0; 1% —>K,, (k_ ;1)
b b b b

s O, n
Diagram 3.5.

From this we can get the following relations:

T 0, s (E,) =b o, s0,bUE,) =b ((b-UEN) = E2°. QED. (3.10)

Let us now consider the case (ii). Observe that /5" Il (¢” - 1) where X Il (g - 1)
and "Il n. Then we do the same calculation as for the case (i). The difference is (as far
as the above method is concerned) that we must use the coefficients in Z/I*. We cannot
use the Z/I¥* coefficients because there are only /¥ power roots of unity available
in O. As a result in this case we get the map s :

8 : Kpp1(k)IF1 = Ky, 1(0)[1],
which splits 7 :

T Kyp (O] = Ko, 1(ky)I4,

where G[m] denotes the elements of exponent m in an abelian group G.



CHAPTER 1V
STICKELBERGER SPLITTING

§ 1. THE MAP A.

Similarly as in Chapter III we will consider the case when I does not divide n. We will
state the results for both cases but the detailed proofs will be done only for / which does
not divide n. At the end of this chapter we will describe what happens when [

divides n. Let us consider the exact sequence :
0 = K3,(0p) = Kpu(F) = @ Kyppy(k) » 0

The direct sum in the sequence is over all finite places of Or. We always work with the [
part of the sequence even though it is not explicitly mentioned. Let &, be the element of

K3,.1(k,) of order I* where I%il(g" - 1) and q = # k,. Hence I¥= # K,,_;(k, ).

14



DEFINITION 2. Let us define a homomorphism A, as follows:
(1) if 1 does not divide n:

Ay Kop 1 (k) = K3, (F)jy

A, (5) = Trgip (Ay (B) * s (§57) if | divides f,

A, (&) =Trgir {4y (B) * s (EED)) if 1 does not divide f.
(ii) if I divides n:

Ay Kap (k)= Kon(F)y,

A, (&) =Trgip (A, (B) » s (§15") if I divides f,

A, (E) =Trgp ((Ay (B) * 5 (EDP}) if 1 does not divide f.

. We will now explain the notation used in the above formulas.
a) E = F(E) where £ is the /¥ power root of unity,

b) Tr: K, (E) — K, (F)is the trace homomorphism,

c) wis a finite place of E over vin F,

d) Bis the prime ideal corresponding to w,

15

(4.1)
4.2)

(4.3)
(4.4)

e) &, is any element of K,,_,(k,,) such that N (§,) = £, where N denotes the trace

homomorphism N: K,, (k) = K5, (k,)

f) s is the map from the previous chapter,

g) A, (P) denotes any generator of the principal ideal 8%, where Oy is the
Stickelberger element for the field E when n =0. The

ideal Bis principal by the classical Stickelberger theorem.
h) If [ does not divide f then G(E/Q) = G(F/Q) ® G(Q(£)/Q). Hence we can

consider the unique element (which we call g; for simplicity)

such that its restriction to G(Q(£)/Q) is the trivial automorphism

and its restriction to G(F/Q) is the automorphism (/, F). Now

we are ready to define ¥
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=1+ U0l + 2roj2+ Bro3 + . (4.5)

LEMMA 2. The map A, is well defined.

PROOF. It is enough to prove that &, has the same order as £,,. We will observe
that N: K,,,_1(ky); = K,.1(k,);1s an isomorphism. Let us notice that # K, ;(k,,) =
qh- 1 where q,, = # k,,. Observe thatE, = F (&) so O, = O,[&]. Hence £,
=0,/(x, ) =0,/(x,) = 0,[E/(n,) = k,(E). But I¥Il (g% - 1) so k,, is contained
in the finite extension of k, of degree n. Put q, = q. Hence [k,: k,] =7
divides n and # K, ;(k,,) = (¢")" - 1. Let log,denote the [l-adic logarithm. We get
that log;(q"") = n log;(1 + (¢" - 1)) = n (q" - 1)u; where u, is an /-adic unit.
But log; (¢™) = log;(1 + (¢"™" - 1)) = ("™ - 1)uy where u,is an l-adic unit too.
It follows that I¥li(g,, - 1) and ¥ll(g% - 1). Hence we see that N is an isomorphism

on [ torsion. QED.

REMARKS. E, and F, are the completions of E and F with respect to w and v
respectively, O, and O, are their rings of integers and #, and &, are their
uniformizers respectively. Observe that we can take &, = w, because E /F,is
unramified. Observe also that we can take £, to be the element constructed in the chapter

IIT and take &, = N(&,) to start with, It does not affect the definition of A, at all.

DEFINITION . Let us denote by A the following map :
A:® Kypath) = Kan(F)p
A=11A4, (4.6)

REMARK : In the theorem below &, will denote (by abuse of notation) the element

(...1..1,¢,,1..1.) of DK,, (k).
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§ 2. STICKELBERGER SPLITTING PROPERTY OF A. AUXILIARY COMPUTATIONS.
THEOREM 1. (i) 8 o A(E,) = £,%% if 1 does not divide n, @.7)
(i) 8p o A(E,) = O if I divides n. (4.8)

Before giving proof of this theorem let us prove some lemmas.
LEMMA 3. The following diagram commutes

Ky (E) —= > ® DK, (k)

v wh
Trm_ N
81’
K, (F) —> @Ky, (k)
v
Diagram 4.1.

where N is defined in the usual way. In the above diagram v ranges through all finite
primes which do not divide l.

PROOF. It is done in [27] p. 276.
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LEMMA 4. The following diagram commutes

85

K,,(E) @KM( k,)
Lk
Ky (E) — Ok, (&)

Diagram 4.2.

where 6 € G(E/Q) and induces naturally the maps on K- theory, denoted in the
diagram 4.2 in the same way.

PROOF. Let M(Og) be the category of finitely generated O -modules, let M(Og),,, be
the subcategory of torsion O - modules, let M(E) denote the category of finite
dimensional E - vector spaces and let M (k,) denote the category of finite
dimensional k,, - vector spaces for a valuation w. The lemma follows by the diagrams
4.3 and 4.4 below. Observe that the horizontal arrows in the diagram 4.4 are homotopy

equivalences by the devissage theorem [24] theorem 4. QED

M(0,),, —> M (O,) —> M(E)

tor

o (e} [+

M(OE)tor —-_»M(OE) _— M(E)

Diagram 4.3.




19

E )tor

DMk,) —— M(O

o o

DM (k,) —> M(O,

)IOY
Diagram 4.4,

Assume first that / divides f. Then by diagram 4.1:
Op o A(E,)) =N o 8g {2, (B) * 5 (£} (4.9)
To calculate g {4, (B) * s (EL") we use the following result of Gillet [11] p. 268.

There is the following commutative diagram:

K(E)x Ky, (0,)—>— K, (E)

O xid 8,

DK(k,) xKy, (0,) —2> ?Kz,.-l(’w
w
Diagram 4.5,

The boundary map 6g: K(E) —> @ Ky(k,) can be seen as:

85(x) = D w)k,, (4.10)
where [k,,] denotes the element of Ky(k,,), generated by the one dimensional vector
space k,, over k,,. Let f* denote the conductor of E and let ©) denote the
Stickelberger element for the field E. In addition let w,"! denote the place w shifted
by (a, E)! = (a’!, E). To make notation easier to read we will write o, instead

of (a, E). It does not lead to any confusion, because we consider only the Galois action

on E. Then we can define the section s, = 0,150, which gives the following diagram:
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s
K, (k,) ——> Ky, 0)
0'¢_, (‘J"I 1
Sa-l
Kpna(ky ) K, (0)
Diagram 4.6.

Hence s = 0,5,10,1. Moreover we have the following commutative diagram:

K,,,(0) - K, (k)

[ 281 [+ 81

T,
K (0) —————> Ky (K, )
Diagram 4.7.

Let 7,1 : O - k, -1be the residue map. We will denote also by 7.1 the natural map

induced on K-theory.

LEMMA 5. §,.1is a section of m,and %,.10, s 5.1 = raising to the c" power which
we denote in the proof by c”.

PROOF. 7,.1541= (6,47 0, )(04.1 8 O,) = 6,47 § O, = identity. Moreover
10, 851= (041 B 0,)0. (0418 O) = Oput O, 8 = Oauc 0, =c" (4.11)

QED.
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§ 3. PROOF OF THEOREM 1.
PROOF. Using the above information we will calculate the image of
O {A,(B) * s (5’;’,‘)} in each K, (k,) separately. Starting first with the case when
u=w,l
8 (Ap(B) x 5 ()} = 85 (Ap(B) % (0,5,10,1(E8))) =
= A1(@,bf*)kyy 1] * (410,8410,1(857) =
= A1(@,b )k, 1] * 0,1(6,)5"" = 0,1(,)3"0"0@E ) in Ky, 4 (K,), (4.12)

we get:

where u = w,l. We obtained the second equality from diagram 4.5. The last equality
follows, because A;(a,b*) is an integer and the product by [k,, 1] is the identity map,
because of the agreement of this product with the product defined in [24] p.103. On the
other hand if u is not a G(Q(éf-)/Q) conjugate of w then u (A,(f)) =0. So
O (Ap(B) % 5 (E5)) = u (A(B)Ik,] * m, (s (§87)) =1 by bilinearity of the
product. But Coates-Sinnott result [9] theorem 1.3 gives:

A, .1 (a,bf*) = a"b"A\(a,b.f*) mod f,, and by definition /¥ 1} s0

O (Ay (B) * s (§5)} = §,% and (4.13)

8 (Trsr (As(B) % s (§5))) =N (£,,%%). (4.14)

Observe that we have the following diagram in which the upper square commutes:
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O

K,(k,) —> K,( k)

N N
\/ 0,1 A

K,(k,) — K,

n

i i

g Y

— K, (k)

y
K,(k,)
Diagram 4.8.

Indeed the lower square commutes, the lower vertical maps are imbeddings by [25]
theorem 8 and the big rectangle commutes, becauseio N = X o, where the
summation is over respective Galois group. Using the diagram we get:

N (£,9%) = N (£,)R56 = £,6 because Res (6)) = 6, [9] p.159. (4.15)

Now let us discuss the case when ! does not divide the conductor f. In the same way as

above we need to calculate:
8p o Trg;p ({Ap(B) * s(E5)}) =N o 85 ({A4(B) * s(EH}IN) =
N((8g {Ap(B) * s(EEINM) = N(£,8) = N(&,)8r 10D = £ 6n, (4.16)

The first equality follows by diagram 4.1 and the second equality follows by diagram
4.2. The third equality is computed in the same way as the case Ilf and the forth equality
follows from the diagram 4.8 and by the following property [9] p.159 of Stickelberger
elements:

Res (8)) = (1 - I"o71)®,. QED. 4.17)

Let us now discuss the case /ln. Observe that the map A is well defined. Indeed
if I¥+7ll(g" - 1) for some k > O then I*li(g™ -1) where n = nyl", (n; ng) = 1.

Again, put E = F(£) where £ is the I¥ power root of unity. In the same way
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k, = k,(&) and k,, is contained in the the finite extension of k, of degree ny.
Hence [k,,:k,] = s for some s dividing ny. So using again the [ - adic logarithm we
can prove that I¥li(g®- 1) and I¥*"ll(g™ - 1) so the norm homomorphism will be an
isomorphism again. Repeating the proof of the case (i) we get the case (ii). Theorem 1

gives:

COROLLARY 1. LetD = Q K., (F) be the group of all divisible elements in
K;,(F) and let b be relatively prime to If. Then ©, = ©,(b) annihilates D, if | does
not divide n and n®, = n®,(b) annihilates D, if | divides n.
PROOF. Letd € D,. Take some big natural number ¢ such that d = x" where x is an
element of K,,(F). Hence

8p (X) = (...@,...) € EPKz,,_l(kv). (4.18)
Let us denote A, the map from theorem 1 for the place v. If K, (k,);is trivial then
we define A,=1. Let o = (...cx,...) and A = I;[Av. Hence 8p A() = a®» or
a8 if I does not divide n or I divides n respectively. But 8p(x) = (8z(x))8n =
a®»which is a consequence of diagram 4.2. In the same way &p(x"€») =
a8 Hence A(@) x°® e K,,(0) or A(@) x"E e K,,(O) respectively. Assume
that we have taken ¢ such that Iis the exponent of K,,(Q);. Then raising to the
power I we get A(eX)(x¥)€r =1 or A(a")(x")"O»=1 But a” =1 and x" = d.

QED.



CHAPTER V
EXAMPLES

We will now give some applications of our theorem 1 in the case when F = Q. Observe

that in this case theorem 1 says:

COROLLARY 2. 8p o A(§,) = £,&™1-D5™ if 1 does not divide n, (5.1)
8p © A(E,) = £ O™IDEM if | divides n. (5.2)

REMARK. For any fixed / we can assume that b is relatively prime to [ ,w,,;(Q) and
# K,,(Z). But by [6] p. 293:
GCD({b™* - 1; b prime and (b, ] w,1(Q Y#K,,(2)) = 1) = w,,1(0). (5.3)

COROLLARY 3. If l does not divide nw,,,.1(Q){(-n) then the I torsion part of the exact

sequence 0 = K,,(Z) = K,,(Q) > DPK,, ,(k,) > 0 splits.

REMARK. Iw,,1(Q){(-n)I! = # {[A ®Z,T (n)1%~} is equal to 1 if / is an odd regular
prime number. We denote by 7 the Tate module and we put %(1) = 7, 7(0) = Z,,
T(n) = t(n - 1)®er. Also A = IL"r?n A,, where A,, is the [ torsion part of the ideal
class group of F,, = Q(4»). In addition F,, = Q(um), G., = G(F../Q).
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PROPOSITION 2. If a prime number 1 is regular and lin then the exact sequence :

0 - K,,(2) =& Kpn(Q) — @KZH_I(kV) - 0
splits for the | torsion part.
PROOF. Let ¢ = q, = #k,. Let I¥*7li(g"-1) where n = ngl", (ng;) =1 and let
I¥li(g™ - 1). Let us consider the field E = Q(&) where & is the Ik power root of
unity. Call O its ring of integers and pick k,, a residue field for some place
w over v. By lemma 1, k,, = k,(€) and k,, is contained in a finite extension of k, of
degree nj. By the result of Harris-Segal [17] corollary 3.2, p.27 there is a section:

§' Kpp.1(ky) = K, 1(0)p,
of the natural map induced by the map O — k,,. Notice, that the conditions of the
corollary 3.2 are satisfied here. Let us consider the following map:

Ay Kgu (k) » Kon(Q),

AE,) = Treig (A(B,) * s'E N, (5.4
Where h is the class number of E, A(B,,)is a generator of the principal ideal
Blin O, h'! denotes an [ - adic unit. Notice that (h,!) =1 by regularity
assumption and by Iwasawa theory. This map is well defined because of the discussion
of the case Ilin following the proof of theorem 1. The proposition follows from the

following lemma. QED

LEMMA 6. 8p 0 A(&,) = &,. (5.5)
PROOF. The proof is done in the same way as the proof of theorem 1. Namely :

8g ° A,(E,) =N o g(A(B,) +s'(§,)"") = N(hlk,] +Eh) =N(,) = £, (56)
in K5, 1(k,) where the first equality is a consequence of lemma 3, the second equality
follows by diagram 4.5. Also 8y A,(&,) = N(0 *7,(s'(EBN) =1 in K,, ,(k,) for

any u # v as follows in the same way as above. QED.
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EXAMPLE 1. Take n =3. Then w4(Q) = 3x5x16, CQ(-3) = (3x5x8)"1. Hence

w4(@)45(-3) = 2. So proposition 1 and theorem 1 imply that up to 2-torsion:
Ks(Q)=K4(2)® G?Ks(kv). (5.7)

EXAMPLE 2. Take n =5. Then wg(Q) = 7x8x%9, {5(-5) = -(4x7x9)"!. Hence

wg(Q)Cp(-5) =-2. So up to 2-torsion we have:
K10(@) = K10(2) ® DKy(k,). (5.8)

The same as in example 1 and 2 is true for n =7 and n =9. Let n = 11. Then
w12(0){(-11) = 2x691. So for K,(Q) there is a problem with splitting only for one
odd prime number, namely 691. It will be shown later in this presentation, that the short

exact sequence does not split for 691,



CHAPTER VI
CHERN CLASS MAP

§ 1. CHERN CLASSES.
Let A be a commutative ring with identity. Let P be a finitely generated projective
module. Let p :G — Aut(P) be a representation. We also assume that G acts
on X = specA. The module P determines a sheaf E on X. In the notation of [18] p.
110, E = P which is a G sheaf [13] p.195. It is clear that E is a locally
free Oy module, so it determines an algebraic projective bundle P(E) over X. In this
way P(E) is a scheme with G action. Let O(1) denote the invertible sheaf O rE)(1)
on P(E). Again O(1) is a G sheaf. In addition let Pic(Y,G) denote the group of
isomorphisms classes of invertible G sheaves on a scheme Y on which G operates.
If @ is a sheaf for étale or Zariski topology on the scheme Y, then by [13] p. 200:
H*(Y,G;®) Y R’ (@) (6.1)
To avoid confusion we should write in the above formula H, or H,,,, respectively.
This cohomology group is called the G equivariant cohomology group or simply
equivariant cohomology. All computational details about these groups (Zariski topology
case) are in [13]. The étale topology case is treated similarly. Let C.(G) denote the bar
resolution, C.(®P) denote the Godement resolution for étale or Zariski topology
respectively. Let S(Y,,,G) (S(Yz,,,G) resp.) denote the category of G sheaves on

Y, (Yz,, resp.). Letl. be an injective resolution of @ in S(¥,G).

27
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Then we have:
H*(Y,G; @) = H*(Homg(C.(G); I'y(1.))) = H'(HomG(C.(G); I'y(C.(d)))). (6.2)

In the above formula I'y = I'(Y,-). If Y = specA then we write I'4. Put g = I™.
If p is a representation as above, then the Chern class c/(p) € HZ(A,G;1) is defined
in the following way.
Let r be the max of all rangs for P at all prime ideals of A. Grothendieck [14] p. 246
proves that there is a natural isomorphism:

HE(PE)G; ) ~ D HIrNAG; uphug. (6.3)
This gives us the linear dependence for & with coefficients being the Chern classes:

Z cp)E =0, colp) = 1. (6.4)
& is defined in the following way.
Let O(1) be as defined above for the scheme P(E). Then £ is the image of

cl(0(1)) € Pic(specA, G) in H3(A,G; p,) via maps given below.
Pic(specA, G) - Hzlar(A,G; G,)— H},(A G; Gp) — H%,(A,G; [,lq)

The first map from the left is the composition of natural isomorphisms:
Pic(specA, G) > HL(A,G; G,;) - HL (A,G; G,),
the second is the edge homomorphism in the Leray spectral sequence for the map:
(specA,G)4 — (specA,G),,,,
induced by the identity and the third map from left is the boundary map.
We write the total class asc(p) =1 + ¢;(p) + co(p) + ... + ¢, (p) (6.5)
The Chern classes have the following basic properties [14] p. 247, [27] p. 256.
a) (Functoriality). For a map f: (specA’, G') = (specA, G), projective A~module
P and a representation p : G — Aut(P), letf*(p) denote the induced representation

G' = Aut(P®4A"). Then c,(f*(p) =f'ci(p).
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b) (Normalization) c;(p) = B(E(det(p))) where &(det(p)) is the image in
Hl(A,G; G,,) and Bis the boundary homomorphism in the long exact sequence
associated to the exact sequence: 0 — u, > G,, = G,, = 0.
c) (Additivity) If0 — P' -5 P —» P" — 0is an exact sequence of G- modules

which are projective A modules and if p',p ,p" are the respective representations

then c(p) = c(p') U c(p").

§ 2. DEFINITION AND PROPERTIES OF THE CHERN CLASS MAP.
In this paragraph we will describe the Soulé [27] p. 256 - 261 construction of the Chern
class map:

Tik: Koix(A, @) > HEA, pnh)
We keep the same notation as in § 1. Let us now assume tl‘\a:G acts trivially
on specA. Put C.(G) = C.(G)®;Z/q. Then:

Homg(CAGY; Ty(C.(1i)) = Hom(C.(GY; Ty(C.(i))). (6.6)
Hence:

HH(A,G; pf) = HE(Hom(C.(G); T1(C.(ud))). (6.7)
By [5] IV §6 prop.6.1a) there is a natural homomorphism:

¢ : H¥(Hom(C.(G); TAC.())) — D Hom(Hy (G ZIq), Hi(A; pi)

Let G =GL,(A),let P = A" and p = id,. As shown in [27] p. 257 there is the
following stability property of the Chern class:

ci(id,) = ir(cid, ), (6.8)
where:

in : HHAGL,,,(A); pi) » HHAGLLA); pl),
is the natural map. Using it and the functoriality of ¢ [5] IV §6 prop. 6.1a) in both
variables of the Hom's involved, Soulé [27] p. 258 first defined the map:



30
c;x(id) : Hy ((CL(A); Z/q) — HE(A; 1))
and then composed it with the Hurewicz homomorphism:
hq: Ky (A; @) = Hyi ((GL(A); Z/q),
to get the Chern class map:

Eik : K2i-k(A’ Q) - ng(A; ﬂ:l).

LEMMA 7. Let A — B be a homomorphism of commutative rings with identity. Then

the following diagram commutes:

Ky [(A;q) . Ky (B;q)

lcl. x l" Lk

HE (A5 ph) —"> HE (B; )
Diagram 6.1.

PROOF. The Hurewicz map h, commutes with the natural maps of ring change hence it

is enough to prove that c; ;(id) commutes with these maps. Consider the following map:
f:(specB, GL,(A)) — (specA, GL,(A)).

Take the A-module P = A” and the representation id, : GL,(A) — GL,(A). Observe

that *(id,) equals to the natural imbedding GL,(A) = GL,(B). By the property a) of

the Chern class and functoriality of the map ¢ in the second variable, the following

diagram commutes:
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Hy (GL,(A);Z /q)

[c W\v*ﬁd,»)
ik

k i nat k i
Hg (Asy) —> H; (B 1)
Diagram 6.2

On the other hand consider the following map induced by the identity map:

g : (specB, GL,(A)) — (specB, GL,(B)).
Take the B—module P = B” and the representation id, : GL,(B) — GL,(B). In this
case g*(id,) equals to the natural imbedding GL.(A) - GL,(B) too. Again by the
property a) and functoriality of the map ¢ in the first variable, we have the following

commutative diagram:

Hy (GL,(A); Z Jg) —T"Hm_k(GL,(B}, Z/g

C; k
p(ck g*(id_ ) 1

Hyf (B3 1)
Diagram 6.3,

Because g*(id,) = f*(id,), we can paste diagrams 6.2 and 6.3 along the diagonals. Now
the lemma follows by the stability of the Chern class. QED.



CHAPTER VII
ETALE COHOMOLOGY

In this chapter we assume that F/Q is totally real abelian and [ > n.

§ 1. NOTATIONS.
We will use the following notation in this chapter.
1 = the group of all I power roots of unity, 7.1

Eom = Wm@Um®...B1m Where L1 is tensored with itself i-times,(7.2)

F.=F(ue), G.. = G(F/F), (71.3)
U4, 14 denote the respective sheaves on specA,
wr = Q[/Zl®z,7(n)s (7.4)

W% denotes the sheaf for the étale topology on speck, where k is field,

H¥(A, @) = HE(specA, ®) where & denotes a sheaf for the étale

topology on specA. (7.5)
From now on let O;denote the ring of / integers in the field F. We can observe that:

O;={xe F:v(x) 20 for all v not overl}. (7.6)
Let S be the finite set of primes of OF, over a finite set of prime numbers including /.
Let us put:

Og={xe F:v(x)20forve S}. 7.7

It is the ring of S - integers in F. From now on S will always denote such a finite set.

32
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§ 2. APPLICATION OF THE CHERN CLASS MAP.
The following diagram 7.1 introduces notation of maps between spectra of corresponding

rings.

(1
spec F ——— spec O

id B
J
spec F ——> spec O,
Diagram 7.1.

By lemma 7 we have the following commutative diagram:

H 2(01 ;]Jl;:'-l) —H 2(Os;a¢#[':'+l)
Diagram 7.2.

The upper horizontal map is the natural map in K-theory. The lower horizontal map can
be identified with the edge homomorphism in the Leray spectral sequence:

0 = HP(O, R1fu(autBt))) = HPH(Og, aupti))) (7.8)
for the map fin the diagram 7.1. The vertical maps in diagram 7.2 are the Chern class
maps. We can identify the edge homomorphism with the appropriate map for the second

cohomology, induced by diagram 7.3:
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il _id ntl
Joupst 2> po,pn

P

I. — p‘u’.

In the above diagram, I. and J. are some injective resolutions of ju+1 and orupfit!
respectively. It is easy to see, that there are natural isomorphisms jufj! = (u}+1)o, and
ontfF! = (U)o, [27] p. 267, which we used in the diagram 7.2.

Note that we can consider the following commutative diagram:

KO 2)) ——> K, 0532))

H*Q;j,2,@+1) ——= H*(O; 0, Z,6+1)
Diagram 7.4,

obtained from diagram 7.2 upon taking the inverse limit on coefficients. It is proven in
[27] theorem 6 iii, that the vertical maps in diagram 7.4 are surjective.
The remaining paragraphs of this chapter are devoted to identification of the lower

horizontal map in the diagram 7.4,
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§ 3. APPLICATION OF ETALE COHOMOLOGY.

Observe that we have the following commutative diagram:

HZ(O[ ;jtp]n:l) _— H2(OS; at“]n:l)

Hl(ol;thp"H-l) —_— HI(OS;a.WF"H)
Diagram 7.5.

where the vertical arrows are the boundary maps obtained in the long exact cohomology
sequences associated with the short exact sequences:

0 > jouitl = jJWpH = juWptl 5 0

0= auuit! » auWp o a.WEH 5 0
The lower horizontal map in the diagram 7.5 is the edge homomorphism in the Leray
spectral sequence:

EY = HP(O}, R1Bu(0uWBH1)) = HP*9(Og, atu WE) (7.9)
for the map B. We can describe this edge homomorphism in the same way as we did it
for edge homomorphism of the spectral sequence from the § 2. We can also see this edge
homomorphism arising from the morphism of Leray spectral sequences shown below on

the following diagram:
H? (0 RGWEY) = HPY(F, wi)
id

HP (G Riaw™) = HPU(F, W)

Diagram 7.6.



We will discuss the construction of the morphism later in § 4.

36

Let us also observe that the boundary maps in the diagram 7.5 are mappings into the

projective systems:
(H2(Oy, jolt#E")) m and (HX(Og, 0upti1) ) im
respectively.

Hence we have the following commutative diagram:

HX0,; j, Z+)) ———H%(Q, ; 0, Z, (1+D)

H' (0 j Wi ——— H'(0 ;00 WP
Diagram 7.7.

where by definition:
H*(0y; joZ((n+1)) = Ié,,f" H%(Op; jopf")

The same for Og.

LEMMA 8. The vertical arrows in the diagram 1.7 are isomorphisms.

(7.10)

PROOF. This is proven in [27] p. 289 but let us see the argument. We will only consider

the right vertical arrow. The following diagram:

1

0 n+l ml 1™ Wn+l
—-——»a‘#lm——>a.wp —> o W —>0

! id

Iﬂ
0 ——»a_#l’:f'l-——>atw;,”'l

Diagram 7.8.

a Wt —>0
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gives the following commutative diagram:

0 —H'(Og; W) ®Z11™' > HX(0y; 0, 1ty — HXOg; o, WrDI™]
!

0 — HY(O; o, W) ®ZI™ — H*(Og:a, uY) — H*(Og; 0, WrHI™]
Diagram 7.9.

But H¥(Og; auWp+1) =0 by theorem 5 of [27] and H1(Og; a.Wp*!) is finite.
Finiteness of the last group follows by finiteness of H1(0,; j.Wﬁ“) because by [20] p.
355 and [7] p. 115 HY(O; juWE) =~ m(n)C~ ~ [A ®7 T (n)]%~. The last group is
finite by the theorem of Mazur and Wiles (Main conjecture in Iwasawa theory) [8] p.
225. Hence finiteness of H1(Og; auW§!) follows by collapsing of the Leray spectral
sequence:

EY = HP(O,, R1Bu (s WE*1)) = HPY(Og, an W)
for the map B. More precisely E5 = 0 for ¢ > 1[10] p. 530. QED.
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§ 4. PASSAGE TO THE LIMIT.
Let B; and Bg be the integral closures of O; and Og in F_, respectively.
Let Oy, and Og ,, be the integral closures of O; and Og in F (i) respectively. Let
us observe that B, = I%z O,nand Bg = Ig"r?n Ogs m-Let G, = G(F(um)/F). The
following picture introduces the notation of the maps between spectra of corresponding

rings:

spec F T specF,

AN

spec F <——— spec F .,

spec 0, 5 spec B,
4 -& /
/ /
spec O; <~ spec Bg
Diagram 7.10.

Let us use the following spectral sequence for finite Galois covering [23] p. 105:

ER = HP(G,,; H1(Og ,; oW ) = HPH(Oy; aa WE). (7.11)
Taking the injective limit with respect to m we get the following Artin-Hochshield-Serre
spectral sequence [1] p. 92, [23] p. 106:

ER? = HP(G..; HY(Bg; GuWE)) = HP(Og; o W), (7.12)
Let us take the short exact sequence of first terms. We get q:e following exact sequence

[20] p. 355:
HY(G.; W™y > HY(Og; a.WEY) 25 HY(Bg; EWEHC- - HAG,.; W),

Using the spectral sequences for finite coverings we identified the middle arrow as the
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restriction map and in addition we know [20] p. 355 that:
HY(G_; W) = HX(G; W™1) = Q. (7.13)

Hence the restriction map is an isomorphism. We also have the following commutative

diagram:
m S | res m ~ 41O
H™O0;jWg) ——> H™B; «WE )
~ G..
H™(Og; aWp') —=—  H™Bg; aWp)
Diagram 7.11.

The vertical arrows are the edge homomorphisms in the appropriate Leray spectral
sequences. More precisely the right vertical arrow is the edge homomorphism restricted
to the G, invariant subgroups.
Now we discuss the construction of the morphism of spectral sequences from the
diagram 7.6. The upper (resp. the lower) spectral sequence is constructed by taking the
normal injective resolution /.. ( J.. resp.) [4] p. 178, [19] p. 301 of the complex:

JWEL o julg = jul; >

(resp. Wil = auly = audy = )

where

Wl s Iy > I, -
is an injective resolution. The natural map:

BYisl. > a.l.

induces naturally a homomorphism [4] p. 183:
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ﬂ‘j‘]- ““’(Z,..I.

.

Br. — J.
Diagram 7.12,

between these double complexes. It gives us the homomorphism:

il Zspal.

1o

I. — BJ.
Diagram 7.13.

which leads immediately to the morphism of spectral sequences. We want to use the
above construction to build the following morphism of spectral sequences of G,

modules:

HP(B; RIJWZY) = HP(R, Wi
id
HP(Bg; R'aaWp) = H'(Eswph)
Diagram 7.14,

To obtain 7.14 we need to apply the functor 8 (see the diagram 7.10) to 7.13. By [1]
chap. III. §3 we know that 8" is exact, preserves flasque sheaves and if @ is a sheaf
on (spec Oy )4, then for an étale open U on spec Oy,

8" D(Ux, spec B) = 1%1 B(Uxo, spec O,,,) (7.14)
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We also have the natural isomorphisms:
8u = Ju7' , 8 Bu =~ Bu8* , YW = wp 7.15)
All these data give us the morphism 7.14. This morphism of spectral sequences gives us

the following commutative diagram of G, modules with exact rows:

0 —>HYB,; JWWE) —> H\F W™ —= HOB,; R W™
id
0 —>HYBg; aWp, ) —> H'(Fu; Wi™) —>= HO (B R G Wi™)

Diagram 7.15.

§ 5. IDENTIFICATION OF SOME MAPS VIA CONTINUOUS COHOMOLOGY.
Consider the exact sequence [7] p. 101:
05 mg— Fi®QYZ— Js®QJZ; — 0,
where Jgis the ideal group of Bg. Twisting with ©(n) we get:
0 - mg(n) > FLOW" - Qi wr - 0,
where the direct sum is over all places w of Bg. Taking G, invariants we get the

following commutative diagram:

G . G.
0 —>m, (n) = — FEOW") —> @ wW™E)
v

id proj

0 —>m (0 — EOWN — @ W)
veS

Diagram 7.16.
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PROPOSITION 3. The map:

HY(F.; W) - HOBg R'a. WD),
can be identified (after composition with an imbedding on the right) with the natural map:

F.@w" - 6? we,
where w runs through all points of specBg but the generic one (or in other words w
runs over all places of F., not over L.). Similarly for the map with 7
PROOF. Investigating the bicomplex for the Leray spectral sequence for the map & we
find out that the map can be seen as the map:

Z,(specBg)/im dy — Z,/By(specBg)
The notation in the above formula can be described as follows:
1. is the flasque resolution of Wp*1. Applying . to this resolution we get a complex
whose 1- cocycles are Z, and zero coboundary are B,. Evaluating the
complex ol on specBg we get another complex whose zero differential is dg. If w is
as above, let w be the corresponding geometric point. Let V be an étale neighborhood

of w over specBg. If we evaluate ./ on V, we will get the following commutative

diagram:

Z(specBg)/imdy ——> Z,/B(specBy)

Z,(VYimdy, ———> Z,/By(V)
Diagram 7.17.

dy denotes the zero differential of the complex aul.(V). Diagram 7.17 gives us the

following commutative diagram:
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H\FsWg)  ———— H%B;R'aWe™

res res

Iér_)n H'(spec F.,, XV W,f-_'fl) —> R'a WEI)W

Diagram 7.18.

Observe that the left vertical arrow in the diagram 7.18 equals to:

H'(specF..; WptY) = H(specF3h; W;fé),
because by [1] Chap. III. §3:

zivm H'(specF xp V; WE') = H\(specF Sh; W), (7.16)
In the above formulas F3% denotes the strong henselization of F., at w. More
precisely F5h, = F_®p B§", where B§# is the strong henselization of Bg at w. We
can also see that F3A is the inertia field for a place of F., over w. Hence the strong
henselization equals to F¥,, NF_,, where F..,, is the completion of F, at w. On the
other hand we see that the right vertical map in the diagram 7.18 factors naturally
through:

HYBgR'@Wp1) — iy, R'&WE(speck,),
where k,, is the residue field of Bg for the place w.
But by [15] p. 31 we have the natural isomorphism of sheaves on specBg:

Rlawpt E? iy R1GWEH,
We used i, to be the natural map i, : speck,, > specBg. Hence evaluating this
isomorphism on specByg, utilizing the above explanation and the diagram 7.18 for
each w, we can identify our map from the lemma with the map:

H(specF ..; Witl) =2 QE H(specF3h, W,?fé)
We used above the following fact. If K is a field and @ is a sheaf on specK than the

natural map @ (speck) — &, is an imbedding. We denote ¥ = specK. It is the place
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in the proof where we comply to identify our map up to an imbedding. It is enough for
our purpose because we are interested in the kernel of the map. Let us observe that the
map:

H'(specF.; WEY) 225 H(specFsh; Wi,
is given by the following map of complexes:

UR)CE-FD — (1.5)CFFR)
To finish we need to check that for eachn 20, I;; is G(ﬁ oJF..) as well as
G(f',JFf,’,'”) — acyclic in the sense of continuous cohomology. But the continuous
cohomology of a profinite group G and a discrete G - module can be computed as the
right derived functor of I"C (G-invariants functor) in the category of discrete G —
modules. Hence putting G = G(F../F..) and taking m > 1 we get:

0 = H™(specF,,; 1.) =R™"T'C(l.; ) = H®(G; L), (7.17)
because /. is a flasque sheaf. The middle equality follows from theorem 1.9 [23] p. 53
or proposition (4.4) [16] p. 25. We have the same explanation for the group G(F./Ft).
We need to pull back the resolution . to specF 5k to obtain again a flasque resolution.
It is so because F,f,{:, is a sum of finite extensions of F, so the passage to the limit
theorem {1] p. 80 applies. The proof of the proposition is finished by the following
lemma. QED.

Before stating the lemma let us introduce some notation. For a profinite group G and
a G discrete module M let:

HomZ*(CAG); M) ¥ I%n Homgy(C.(G/U); MY), (7.18)
where as usual {U}is the injective system of all normal, open subgroups
of G and C.(G/U) denotes the standard resolution for the finite group G/U. We
observe that Homg‘(C,,(G); M) = C*"(G, M) (identified as sets) where the last is the

set of all continuous functions from G" to M.
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LEMMA 9. Let H c G be two profinite groups. Let I. be an exact complex of G as
well as H discrete and acyclic modules (in the continuous cohomology sense) with an
augmentation map M — I,. In addition assume that cohomology of the
complex IS (I resp.) computes the continuous G (H resp.) cohomology. Then the
following diagram commutes and the horizontal maps induce isomorphisms on

cohomology:

cls cls

Homg (C.(G); M) — Homg (C.(G), 1) <——Hom(Z ;1)

|

(C.(HY% M) —> Homy *(C.(H); 1) <—— Homy (Z;1.)

cls

Homy,

Diagram 7.19.

PROOF. It is enough to observe, that the functor Homgs(C.(G); —) is exact for any
profinite group G. Hence by assumptions both bicomplexes Hom&"(C.(G); I.) and
Homf{*(C.(H); L) have vertical and horizontal differentials exact. QED.

We also observe, that we can do the identifications in proposition 3 in such a way, that
when we put the identified maps to the diagram 7.15, all maps in this diagram will
be G, equivariant. We observe also that the right vertical arrow in the diagram 7.11
for m =1 is just the left vertical arrow in the diagram 7.15 after the identification and

taking G, invariants, hence it equals to the left vertical arrow in the diagram 7.16.
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§ 6. GOING BACK TO THE K-THEORY.
It is easy to observe that in the paragraphs 1-5 we have proven the following lemma.

LEMMA 10. The following diagram commutes:

nat
K3, (0;), ——> Ky, (0g),

\j Y
nat
KQn(OI; ZI) _—— KQ,, (OS; Z,)

Y \j

G. G.
m,(n) = ———> mg(n)
Diagram 7.20.

We observe that by computation in this chapter and by [27] theorem 6, the compositions
of the vertical maps in the diagram 7.20 are surjective. These compositions are (up to
isomorphisms which we saw before) the Chern class maps which in [27] p. 261 are
denoted ¢, 2. Moreover by Quillen localization theorem [24] (corollary of theorem 5)
and by diagram 7.16 we have:

Ii?m K2n(Os); = K2,(F); and [ !gl mg(n)®= = (FL@WMC=,  (7.19)
Hence the diagram 7.20 and the above equalities give us the following surjective map
upon taking the injective limit with respect to S:

Cni1,2 : K2n(F) = (FL®W™)Cm,
Observe that by [28] prop. 2.3:

HY(F; Wn+ly = H2 (F; Z(n+1)). (7.20)
Hence we have constructed a surjective map:

Cns1,2  Kon(F) > HZ,(F; Z(n+1)).
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Let us now apply some Galois cohomology. Consider the following commutative

diagram:

® wn) -
v il

> ow™’-
A

== =

G G
H I(Foo; Wm-l) - %HI(FV-“;W’H-I) (O
v
A

={res @res

HY F;w*) —— E?H‘(f;;w"“)
v

Diagram 7.21.

The upper vertical isomorphisms are given by Kummer pairings. In the above diagram

Gy = G(F,./F,) where F,_ =F (4;.). We also have the following commutative
diagram:
HYCF; W) —= @ (HY (B W™) piv )
v

id
0 —> Dp(F) —HYF; w™) — @ (' (§; w™) /piy )
v
Diagram 7.22.

In the lower horizontal exact sequence D, ;(F) denotes the group of all divisible
elements in H1(F; W**1)/Div, [26] §4 satz 8. Div denotes the maximal divisible
subgroup in a respective group. The middle horizontal, exact sequence in the diagram

7.23 below shows that Div in H1(F; Wn*1)is trivial. It is so, because
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m,(n)G“' =[A ®Z, T (n)1%= [7] p. 115 which is finite by the theorem of Mazur and Wiles

(main conjecture in Iwasawa theory). For reference see [8] p. 222 and 225 or [22].

0 —=K,,(0);, "5 K, (F),

Cm12 Cni2

Y Y
G
0 —>m (% — Erow™™

D w
A 1\ v i ]

"E)

=

\.
0 —> Dy (F) —>HYF, w*) — D (5 E, w™)/piv)

Diagram 7.23.



CHAPTER VIII
WILD KERNEL

In this chapter we still assume that F/Q is totally real abelian and [ >n

§ 1. TWO LEMMAS.
LEMMA 11. The kernel of the map €, » is finite.

PROOF. We have the following commutative diagram:

lim
? Cas12

lim H*(05; 0uZ (n+)) ——> H?*(F;Z,(n+D)
S

Diagram 8.1.

Hence it is clear by the previous chapter that the map &, 5 is a composition of the left
vertical arrow in the diagram 8.1 and some isomorphisms. So it is enough to prove that
the left vertical map has finite kernel and eventually it suffices to prove that the right
vertical arrow has finite kernel.

Let us consider the following diagram, which commutes up to homotopy:

49
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Diagram 8.2.

It gives the following commutative diagram:

ml
Kp(F) ——> K, (F) —> K, (F; 1™

l id

Ky (F) ——> K, (F) ——> K, (F;I™)
Diagram 8.3.

The right vertical arrow in the diagram 8.1 factors by definition in the following way:

Kyn(F ) = Kyu(F; Z)) - HX(F; Zi(n+1))

We see by the diagram 8.3 that the kernel of the map:

Kon(F ) = Kon(F; Z))
is equal to:

(K 2F D™ = W KoolF )Y 8.1)
which is finite because it is contained in K,,,Of. So we need to prove that the kernel of
the map

Cri1,2 : KonlF3 Z)) = HA(F; Z(n+1))
is finite. But ‘En+1,2 is the inverse limit on coefficients of the maps:

Thi1,2 : Kon(F; I™) = HA(F; pitt)

Now we can use the following commutative diagram [27] p. 288, with exact rows:
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Ko (OpI™) —= Ko (F; 1) —— @ K, (k,51™)

v i

Canrz2 Can12 -nc,,
H2(O; pyn(n+D) —> HA(F;pyna(n+D) —> Qil H'(k,; tm (1))
Diagram 8.4,

Because ! > n, the right vertical arrow is an isomorphism [27] proposition 5. In this
case simple diagram chasing shows that the kernel of T, , (the middle one) is
contained in the image of K,,(OF; I™). The Bockstein exact sequence gives us the
following short exact sequence:
0 - K3,(Op YI™ - K9,(Op; I™) = K9 1(Op)im — 0

The groups K,,(Of; I™) have bounded orders independently of I because the
group K,,(Of ) is finite and K,,, 1(Op) is finitely generated abelian group. Hence the
kernels of the maps ¢, , have bounded orders independently of /. Since the inverse
limit is left exact, the kernel of ‘En+1,2 is equal to the inverse limit of the kernels of the

maps T, 2. Such an inverse limit must be finite. QED.

LEMMA 12. Let A and B be I-torsion groups. In addition let the following
homomorphism f: A — B be surjective and have finite kernel. Then for every divisible
element b in B there is at least one divisible element a in A such that f(a) = b.

PROOF. Observe that it is enough to check oaly [-divisibility. For any m, b = b%, for
some element b,,. Because fis surjective, there is for each m, an element a,,
in B such that f(a,,) = b,,. But f(al) = b,’: = b. Hence aila’,: € ker(f) for
each m. But the kernel is finite so infinitely many elements of the form a'lla’,: must be

"

equal to each other. Hence infinitely many elements of the form a,, must be equal to

each other and it means that they define a divisible element a. Clearly {a) = b. QED.



§ 2. DIVISIBLE ELEMENTS IN K-THEORY.

THEOREM 2. If F/Q is totally real abelian and | > n then:

> | Wart( F)E, ()|
IIw, (E)
vil

#(0) Ky, (F)
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8.2)

PROOF. It follows by lemma 11, diagram 8.1 and [27] theorem 6 iii, that the

map C 4 2 satisfies all conditions of lemma 12. Hence it follows by the bottom part of

the diagram 7.23 and the last lemma that:
# (QKZn(F)r)I 2 # Dn+l(F)

But by [26] §8 and §5 satz 5:
_ [MelFX o))

#D (F
n+1( ) IIIIWn(E) !

because the following Lichtenbaum conjecture:
¢! #HYO; W)
.’z -_

R A )

follows from the theorem of Mazur and Wiles [8] p. 222 and 225, [22].QED

(8.3)

8.4)

(8.5)
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