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CHAPTER I

INTRODUCTION

This dissertation presents the results of investigations into the
interactions of diatomic molecules with solid surfaces using the quasi-
classical trajectory (QCT) method. In particular, studies have been made
on the scattering of HCl molecules from gold and of NO molecules from
lithium fluoride. In the former case, the object is to obtain at least a
qualitative understanding of the HCl/Au(lll) collision dynamics by find-
ing a model gas-surface interaction potential which produces results in
accord with recent experiments.1 In the latter case, the goal 1is to
evaluate a new reduced equations of motion (REOM) method2 for including
into a scattering calculation energy transfer between a gas molecule and
a surface. This assessment is made by comparing the REOM results to
those from detailed calculafions for the NO/LiF(001) system3 using the
stochastic trajectory method.4

The dissertation is divided into three parts, each containing two
chapters, The £first part, consisting of Chapters I and II, provides an
introduction to the work presented in the second and third parts. Chap-
ter I surveys the literature concerning gas-surface scattering theory.
Chapter II discusses the procedures employed to implement the quasiclas-
sical trajectory method in these studies. The second part of the disser-

tation, Chapters III and IV, discusses the work on scattering of HCl



from gold. Chapter III explains the construction of the gas-surface
interaction potentials used in the calculations and provides other rele-
vant numerical details, In Chapter IV, the calculations are presented
and compared with the experimental results. The final part, Chapters V
and VI, describes the calculations performed on the NO/LiF(00l1) system
using the REOM approach. The derivation of the REOM, a discussion of the
partial velocity reset procedure,5 a description of the gas-surface
interaction potential and an explanation of computational details com-
prise Chapter V. Chapter VI is devoted to the evaluation of the REOM
method by comparing results obtained from it to those obtained from the

stochastic trajectory method.

Overview of Gas-Surface Scattering Theory

The interactions of gases with solid surfaces occur in a broad spec-
trum of fundamentally important processes, such as catalysis, semicon-
ductor fabrication and lift and drag on airfoils. The prevalence of gas-
surface phenomena provides an incentive to understand these processes in
the greatest possible detail. In the last two decades or so, tremendous
progress in achieving such an understanding has been made, due to advan-
ces in both experimental and theoretical technidues. On the experimental
side, improvements in ultra-high-vacuum technology, laser and molecular
beam techniques and surface preparation and analysis methods have made
possible detailed studies of the interactions of atoms and molecules
with surfaces. These in turn have stimulated the development of theoret-

ical models to qualitatively, and sometimes quantitatively, understand



the experimental results. The advent of larger and faster computers has
also aided the growth of the theory. Comprehensive reviews concerning

the 'experiment:a16-8 and theoreticalg’10

techniques exist in the
literature.

The goal of the following discussion is to locate the present work
within the field of gas-surface interactions as a whole. Since these
studies involve theory, experimental studies will be mentioned only
briefly, in the context of their relation to particular theoretical
models. Furthermore, since the gas-phase species in this work are dia-
tomic molecules, emphasis will be given in the discussion to theory
dealing with molecular rather than atomic collisions with surfaces. The
overview begins by describing in Section A the exact quantum mechanical
treatment of the scattering problem, known as the "close-coupling" (CC)
method. Then Section B outlines the various approximate treatments, from

the quantum mechanical, semiclassical and classical mechanical regimes,

which have been used to model molecule-surface collisions.

A, The Exact Quantum-Mechanical Method: Close-Coupling

The exact quantum-mechanical solution for the scattering of a mole-
cule from a surface begins with the time-independent Schradinger equa-

tion (TISE), which, in the Born-Oppenheimer approximation, is given by

A

H . ®%0 v® 7D - B 9®REH , (1.1)

-
where ﬁ and r denote the center-of-mass and internal coordinates of the



molecule, 3 represents the coordinates of the surface atoms, ¥ is the

A

total wavefunction and E ot the total energy of the system, and H . 1is

the Hamiltonian operator, given by

A #2 92 82 92 A -
tot ~ T M [ axz t vz t a9z2 ] * Hine(

+ ﬁs(e) + VR,Z,9). (1.2)

M is the reduced mass of the molecule-solid system, R= (X,Y,2), H
A
and Hs are the Hamiltonians for the internal motion of the molecule and

int

the solid, respectively, and V is the gas-surface interaction potential.
Because the solid contains so many atoms, solution of equation (1.1) is
extremely difficult. Consequently, the rigid-surface approximation is
usually invoked. When this is done, ﬁs in equation (1.2) is zero, the E-
dependence of ¥ and V is suppressed and M becomes the mass of the
molecule. Wolken11 was the first to apply equation (1.1l) to molecule-

surface scattering. Assuming a rigid, perfectly periodic surface

lattice, he expanded the wavefunction ¥ and the potential V as

PR - ngkl(l/r) Uy (1) Yy (0,8) expi® + Cp)ep) £ 00 (D), (1.32)

VR = v (2T exp(iG+p), (1.3b)
kl

vhere T = (r,8,4), p = (X,Y,0) is the component of R parallel to the
surface, E= (kx,kY,O) is the component parallel to the surface of the

incident center-of-mass wavevector E, Ekl is a reciprocal lattice

vector, uvj(r) is a radial wavefunction, Y m(0,¢) is a spherical

]



-

harmonic, and fvjmkl(z) and vkl(Z,r) are the expansion coefficients,
which depend on Z, the component of R normal to the surface. The indices
v, (j,m) and (k,1) are the vibrational, rotational and diffraction

quantum numbers, respectively. The wavefunction xvjm(;) =

A

(l/r)uvj(r)ij(0,¢) is an eigenfunction of H with eigenvalue evj. By

int
substituting equations (1.3) into (1.1), multiplying each side by x:jm

exP(_iEk'l";) and integrating over T and ;, Wolken derived the coupled-

channel equations for the amplitudes fvjmkl(z)' written in matrix form

11
as

. 22] £(2) = W2) £(2), (1.4)

£
Ji=
E

where 1 is the unit matrix, £(Z) is the matrix whose columns are sets of
amplitudes fvjmkl(z) corresponding to different initial conditions, and

the elements of the diagonal matrix 2? and the square matrix V(Z) are

2
Dvlj 'm'k'l',vjmkl 8v/v 5:] /j Sm,m Sk,k 8111
2M - -+
X [—,;r (Epor —svj) - K+6. ], @3

2M -+
vv'j'm'k'l',vjmkl(z) T ThRT < Xe’i ‘m’ I vAkAl(r’z) l xvjm > (1.6

In equation (1.6), Ak = k’—k, Al = 1°—1, and the integration is over .
The scattering problem is solved by integrating the coupled equations

(1.4) according to the standard boundary conditions:ll’12

£(Z» =) ~ 0 (1.7a)



2
£(z » fm) ~ 0 for closed channels (vamkl < 0) (1.7b)
£(Z +40) ~ I+0 s for open channels (Dsjmkl < 0) (1.7¢)

where I and O are diagonal matrices of flux-normalized incoming and
outgoing asymptotic (plane-wave). solutions, and S is the scattering
matrix (S matrix), which contains all the scattering information. If i
and f denote the initial and final channel quantum numbers (that is,
sets of quantum numbers vjmkl), then the probability amplitude for the
i + f transition is given by |Sfi|2.

In principle, the expansion of the wavefunction 3 in terms of the
basis of internal and diffraction states, equation (1.3a), includes an
infinite number of basis functions (channels). In practice, however, it
suffices to employ a limited number of channels to obtain converged
transition probabilities; the size of the basis is determined empiri-
cally, based on the desired degree of accuracy and the available compu-
ter capacity. Since the computational effort scales as N?, where N is
the number of channels in the basis,13 the close-coupling method becomes
prohibitively expensive for systems having a large number of open chan-
nels. Thus, most of the applications of this technique have been to the
scattering of light molecules such as HZ’ D2 and HD at low energies (0.1
eV or so), for which a small number of internal-diffraction channels are
open. Wolken11 applied the CC formalism to H2/LiF(001) scattering, to
compare with the experiments of O0’Keefe et al.l4 He used basis sets
containing 16 and 34 channels at Eot ™ 104 meV, and found good

agreement with the experimental results. Schinke used a basis of 54

channels at 60 meV (nine diffraction states for each of three open and



three closed rotational states) in his thorough study of rotationally-
mediated selective adsorption (RMSA) resonances in HD/Pt(11ll) scatter-
ing,ls which had previously been experimentally observed by Cowin and
coworkers.l6 Lill and Kouril2 tested calculations for H2/corrugated-
surface collisions wusing approximate techniques against close-coupled
results obtained with a basis of 90 channels (15 diffraction for each of

six rotational states) at E = 0.1 eV, Drolshagen et a1.17 performed

tot

"benchmark" calculations wusing the same potential energy function as
Wolkenll, but at energies up to 0.7 eV, in order to evaluate approximate
techniques employed at these energies. This work involved several basis
sets, the largest containing 64 channels (which for normal incidence was
by symmetry equivalent to 340 channels). The largest CC calculation
reported for a molecule scattering from a corrugated surface, by Lill
and Kouri,18 contained 225 rotation-diffraction states.

Because of the experimental 1nterest6-8 in scattering of heavier
molecules from surfaces at higher energies, various close-coupled calcu-
lations for such systems have also been performed. For heavier molecules
the number of open diffraction and rotational states increases rapidly.
However, many of the experimental studies involve low-corrugation sur-
facgs, such as the (111) face of transition metals, and the experiments
do not resolve the closely-spaced diffraction peaks. Thus the flat-sur-
face approximation (in which there is no diffraction) 1is employed in
close-coupling studies of these systems. Of particular interest has been
the scattering of NO from Ag(lll), for which detailed experimental
measuremex'u:slg-25 have been conducted for a wide range of incident

energies, angles and surface temperatures. These have yielded final



19,24,25

rotational state distributions, angular distributions,20 spin-

orbit and A-doublet population521'25

22,23

and degree of polarization of the

rotational angular momentum. One of the most interesting results of

the experiments was a bimodal rotational state distribution.lg’25 At

low
final j, the distribution exhibited "statistical" behavior (linear
Boltzmann plot), while a broad maximum appeared at high j, which was
identified as a "rotational rainbow". Barker et a1.26 modeled NO/Ag(11l)
as a homonuclear molecule impinging on a flat surface, and performed CC
calculations using all even rotational states j < 54 (28 channels), and
obtained marginal success in reproducing the bimodality. Voges and
Schinke27 did better by using an asymmetric potential appropriate for a
heteronuclear diatomic 1like NO, and keeping both even and odd j
channels. Based on this work, they attributed the bimodal distribution
to rotational rainbows at both low and high j. Lauderdale et al.28 used

a 55-channel basis (all j =< 54) to investigate the observedzz’23

rotational polarization. The largest basis set yet feported for ciose—
coupling calculations using standard methods is that employed by Smedley
et al.zg to study collisions of 2I molecules (like NO) with a surface.
Their calculations were designed to properly include the spin-orbit and
A-doublet states of 'the molecule, and thus required 4 channels for a
given j; at an energy comparable to that used in the experiments of

Luntz et a1.21

this required j =< 70.5, or 282 channels. Brenig and
coworkers30 developed an alternative CC method by expressing the
Schrodinger equation as an integral equation in terms of Jost

functions,31 which for Morse-type potentials is wvery fast since the

necessary integrals for the Jost functions can be done analytically.



They performed a series of calculations on the NO/Ag(lll) sys-

m,30’32’33 using basis sets involving as many as 325 channels,33 in

te
which they found that surface corrugation rather than surface vibration
plays a major role in broadening the rainbow features in the rotational

state distribution.

B. Approximate Methods

As the discussion in the preceding section illustrates, the size of
coupled-channel basis sets has increased over the years, due to improve-
ments in computer capabilities and integration methods. Even so, the
solution of the coupled-channel equatioms including internal and dif-
fraction channels, not to mention phonon states of the solid, at typical
experimental energies 1is still beyond reach. The CC approach also suf-
fers from the disadvantagel3 that the potential must be perfectly peri-
odic, allowing the expansion (1.3b); surfaces with imperfections, such
as steps or adsorbates, are therefore excluded. Furthermore, numerical
integration of the coupled equations provides little physical insight
into the scattering process.34 Due to these limitations, development of
alternative methods for molecule-surface scattering calculations has
generated considerable interest, leading to a host of approximate tech-
niques which are quantal, semiclassical or classical in nature. The

present section provides an overview of these techniques.
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1. Quantum-Mechanical Approximations

Among the quantum-mechanical treatments, one of the most popular has
been the sudden approximation, which was first introduced for molecule-
surface scattering by Gerber et a1.35 The basic idea behind the sudden
approximation is that for large collision energies, such ‘that Etot >>
ﬁzcin/ZM and Etot >> evj’ the elements of the 22 matrix in equation
(1.5) become independent of the channel quantum numbers, Thus the
coupled-channel equations (l1.4) can be decoupled by a coordinate
transformation which diagonalizes the potential matrix (1.6). Applying
the inverse transformation to the S matrix obtained from the decoupled
equations yields the desired S matrix., This form of the sudden approx-
imation is known as the matrix-diagonalization sudden (MDS).35 Another
version, called the coordinate-representation sudden (CRS), can be

derived35’36

by considering the coordinate representation of the S
matrix, which is related to the probability for making a transition from
the coordinates (p,r) to the new set (p’,z°). In a "sudden" collision,
the coordinates do not change, so the S matrix is diagonal and given by
S(p,%) = exp[2in(p,%)], where n(p,¥) is the WKB phase shift. The §-

matrix element for the i = (vjmkl) + £ = (v'j’'m“k’1l’) transition is then

found by transforming g(;,?) to the quantum state representation:

Sfi = A I I exp(—dezlf-p) xv'j’m'(r)

x S(p,T) xvjm(_r’) exp(iGy,+5) dF dp, (1.8)

where the 3 integration is over the surface unit cell and A is the area
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of the unit cell. An intermediate approximation, the diffraction-sudden
close-coupled-rotation (DSCCR) method, has also been formulated.15 In
this case only the diffraction states are uncoupled, leaving equations
coupled in the internal quantum numbers v, j and m; these are solved for

the ;-dependent S matrix Sv (Z), from which the full S matrix is

'J ’m"‘vjm
*
found from an expression similar to equation (1.8), with fo(;,?)xi

replaced by S_. (;), and the T integration omitted. The

v’ ‘m ~vim
advantages of these methods are clear. First, they greatly reduce the
number of coupled channels and therefore the computational effort,
particularly at higher energies where the CC method 1is intractable.
Second, they offer significant physical insight into the scattering
process. The CRS approximation in particular allows for analytical
derivations of many properties of the S matrix, including scaling,
factorization and sum rules.>'3>"37

The sudden approximations have been employed frequently in the
literature. Gerber et a1.35 used the CRS to establish several properties
of the § matrix and associated transition probabilities, many of which
were verified by their calculations using the MDS, as well as the GC
calculations of Drolshagen et a1.17 Proctor, Kouri and Gerber37 used the
DSCCR to 1investigate Am transitions in scattering from square and
rectangular lattices, and found strong dependence of the Am » 0
probability on the corrugation and on the ratio of diatom bond length to
lattice parameter (which affects the effective corrugation). They also
observed strong Am selection rules for specular scattering,' which they

interpreted using the CRS. Motivated by the observation of a rotational

(Aj) rainbow in NO/Ag(11ll) scattering,19 Schinke38 émployed the CRS
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(evaluated wusing the stationary-phase approximation) to investigate
rainbow effects in molecule-surface collisions; Proctor and Kouri39 used
a similar method to analyze Am rainbows. By treating diffraction, rota-
tion and surface vibration in the sudden limit, Schinke and Gerber40
derived a theory for the surface temperature dependence of rotational
energy transfer in terms of a j-dependent Debye-Waller factor. (In
neutron-surface scattering, the DW factor gives the attenuation of the
zero-phonon diffraction spots due to the thermal motion of the lattice.)
They found that the DW attenuation of the Aj transition probability d-
ecreases as the final j increases, and that individual Aj transitions
are strongly dependent on surface temperature at low final j, though
averaging over initial states washes out this latter effect in the rota-
tional distributions. Tanaka and Sugano41 showed that the bimodal rota-
tional distribution in NO/Ag(1ll) collisions could be attributed to
rainbows at low and high j, if the potential has an isotropic attractive
well and an anisotropic repulsive wall; if the well is also anisotropiec,
at some value of the incident energy the anisotropies of the wall and
well cancel, leaving the molecule with low rotation after the collision,
This cancellation effect also appears in the CC and sudden calculations
of Voges and Schinke.34 In terms of assessing the numerical accuracy of
the sudden approximation, comparisons with close-coupling calculations
have shown that at high enough energies the sudden 1s quantitatively
correct;17 at lower energies it overestimates the high-order diffraction
and rotational excitation, but still qualitatively reproduces trends

seen in the exact results.l'r”l7'27’34
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Another approximate method, the multichannel distorted wave (MDW)

42 This

perturbative approach, has been formulated by Whaley and Light.
method is appropriate when the potential couéles states for one degree
of freedom more strongly than for any of the others. Whaley and Light
treat the case for which rotation is strongly coupled, and diffraction
is weakly coupled and treated perturbatively. The potential is split
into a zero-order part V(o) (in this case, the k = 1 = 0 term of equa-

tion (1.3b), corresponding to a flat surface) and a perturbative part

V(p) (the remaining terms in (1.3b)). Then equation (1.4) can be written

(2

where X(o) is the matrix whose only nonzero elements are those from

2

Ci-)lﬂ-
N| »
+
o

1@ ] o - 1P @, (1.9)

equation (1.6) with Ak = Al = 0 and m” = m, and where X(p) =V -V(O)

— -_— 14

with V given by (1.6). Let £(0)(z) be the matrix of scattering
amplitudes which satisfy the homogeneous (g(p) = 0) version of (1.9),
and 2(0) the corresponding S matrix. Then it can be shown42 that the
asymptotic form of the scattering amplifude matrix-g is

1, gOF

gy = £V + 308

x r;‘o)*(z’) vz £z dz”, (1.10)
0

where 0 is defined in equation (1.7¢) and ¥ denotes the adjoint matrix,
Equation (1.10) 1is exact; the distorted wave approximation consists of
replacing £ by g(o)in the integrand of (1.10). It is a true multichannel

distorted wave method since the zero-order amplitudes are solutions of a
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coupled-channel problem. In view of the boundary condition (1.7¢), the

MDW expression for the full S matrix is

(0)

i
1
Il

+

L sOF rg(o)*(z’) vP @, £ D@y ez, @

0
Equation (1.11) can be evaluated by simultaneous propagation of the
matrix £(0) and the integral on the right-hand side.42 Close-coupling
calculations12 were used to evaluate the accuracy of the MDW

37 for a model

calculations42 and the DSCCR results of Proctor et al.
Hz/corrugated-surface system. It was found that the MDW and DSCCR are of
comparable accuracy for non-specular peaks, while the MDW 1is 1less
accurate for specular scattering at higher corrugations, where the dif-
fraction is no longer perturbative. Another application of the distorted
wave approach was developed by Gerber, Beard and Kouri43 to investigate
vibrational deactivation in molecule-surface collisions. Theirs was not
a multichannel approach, since the equations for the zero-order solu-
tions were uncoupled using the sudden approximation. Applying their
2 D2 and HD43 and heavier diatoms44 with rigid
surfaces, they found deactivation probabilities as high as 10%, with the

model to collisions of H

dominant mechanism being near-resonant V-R energy transfer.
The quantum-mechanical techniques described so far are time-inde-
pendent methods, based on the TISE, equation (1.1). However, approaches

based on the time-dependent Schrsdinger equation (TDSE)

Heoo D) @ F,0 = 18 S w@E 0 (1.12)



15

have also been developed, most of which are based on the propagation of
wavepackets. These wavepacket methods have recently been reviewed by
Gerber et al.9 One approach recently developed to investigate molecule-
surface scattering is the close-coupling wavepacket (CCWP) technique of

Mowrey and Kouri.13'45

As its name implies, the CCWP formalism combines
close-coupling and wavepacket propagation in the following way. The

wavefunction ¥ is expanded as

prodoo@ 2 ey - ¥

—rvjm-»
I @ oo (1.13)

ij
where the coefficients F depend on R rather than Z because no expansion
into ;-dependent diffraction states has been made. This permits
application of the CCWP to scattering from imperfect 1attices.45 Insert-
ing (1.13) into (1.12) yields a set of coupled equations written in

matrix form as

2
in prodomo@ ey - [ =B 1v24 ¢ o+ u@d | Fodo®o@ ), (1.14)
at = Mt £ 2 E

where Ey°j°m° is a column vector, £ is a diagonal matrix whose diagonal

elements are the Cv , and the elements of the square matrix g(ﬁ) are
- -

Uv'jﬁm'vjm = &’ m?|V(R,r)|vim). Equation (1.14) 1is an initial-value

problem, as opposed to equation (1.4), which is a two-point boundary-

value problem. The initial condition at t = t, is £v°j°m°(§.to). The

0
wavepacket is evolved in time by expanding the propagator exp(—iHt/k) in
terms of Chebychev polynomials,46 and evaluating the 8 derivatives in

the Hamiltonian matrix H (the bracketed quantity on the right-hand side
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of (1.14)) wusing the fast-Fourier-transform algorithm.47 When the

wavepacket returns to the asymptotic region after the collision with the
surface (at t = tf), the column of the S matrix corresponding to the
initial state v=v,, j=j,, m=m,, k=1=0 is obtained by projecting out the
contribution of each channel eigenfunctioﬁ to the final wavefunction

¢(ﬁ,;,tf).45 Calculations using the CCWP formalism have demonstrated

that the method is just as accurate as a CC calculation.ls’45 However,
2
because the computational effort scales as Nint’ where Nint is the

number of internal states in the basis, and because the S matrix can be
extracted at several energies from a single propagation, the CCWP is
computationally more efficient.45 An example of the power of the method
is a calculation for scattering of N2 from a model corrugated surface,
in which 13923 channels were included at energies of 10, 25 and 40

meV.48

2. Semiclassical Methods

In addition to the fully quantal methods discussed so far, several
semiclassical approximations have been developed and applied to mole-
cule-surface collisions. The semiclassical pertubation (SCP) method of
Hubbard and Miller49 is one example. In this approach, the gas-surface
potential is divided into a zero-order term, VO(Z), plus a perturbation
Vp(ﬁ,;). This 1leads to a scattering phase shift of the form n = n, +
nl(;o,?o), where n, is the WKB phase shift due to VO(Z), and n, 1is the

time integral of the perturbation Vp:
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7, = -

N

r dt vp[iz'o(t),’r’o(t)]. (1.15)

In equation (1.15), ﬁo and ;o are trajectories determined by the zero-
order potential VO' The S matrix is found by suitable integrals of the
classical $§ matrix, exp(Zin), over the angle variables conjugate to the
classical actions corresponding to the quantum numbers; it can be

shown®” that the transition probabilities P, _ = ISfi|2 are then given

i-f
by sums of products of Bessel functions, which are easily evaluated.
Comparisons of SCP49 with CC11 and MDS35 probabilities show that the SCP
is both qualitatively and quantitatively accurate over a range of
collision energies and corrugation strengths.

Other semiclassical models consist of treating one or more degrees
of freedom quantum-mechanically, and wusing classical mechanics to
describe the rest of the system. The degrees of freedom are coupled
self-consistently in that the time propagation of the quantum part
involves the time-dependent classical motion, while the classical motion
is determined by an effective potential obtained from the wavefunction
of the quantum part of the system via Ehrenfest's theorem. Billing
developed a theory for molecule-surface scattering which treats the pho-
nons of the solid as a set of coupled quantum oscillators and the gas
species as a classical particle,so and extended the theory to include
electron-hole pair excitations using an electron-gas model for the elec-
trons of the solid.51 Application of the model to scéttering of CO from
metal and insulator surfaces showed that the coupling to phonons is the

dominant energy-loss channel and that electron-hole pair excitations can

be neglected completely for insulators and qualitatively for metals.
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Richard and DePristo52 formulated the semiclassical stochastic trajec-
tory (SST) approach, which handles the internal states of the molecule
(vibration and rotation) using quantum mechanics and the center-of-mass
and surface motion classically, the former via Hamilton’s equations and
the latter using the generalized Langevin equation (GLE) formalism of
Tully4 (discussed in detail below). The method was shown to be of quali-
tative and mnear quantitative accuracy,52 and has been used to obtain

state-to-state vibrational and rotational transition probabilities for

Hz scattering from f1at52'53 and corrugated surfaces,54 and to study
trapping and vibrational energy transfer in collisions of CO2 with
Pt(111)55 and Ag(lll).SG.The mean trajectory approximation (MTA) method

of Jackson and Metiu57

is similar to the SST approach, except that the
center-of-mass motion is treated using wavepackets instead of classical
‘trajectories, thus allowing for diffraction and other quantum effects
involving the center of mass. The MTA is a generalization of the power-
ful wavepacket method fof atom-surface scattering developed by Drols-
hagen and Heller.58 For Hz/corrugated-surface scattering the MTA results
are of comparable accuracy to those produced by the DSCCR and MDW tech-
niques,57 but differ from CC and CCWP results by as much as 29%.45 A
final example of the semiclassical methods is the self-consistent
eikonal method (SCEM) of Rice et a1.59 The SCEM is derived by applying
the "common eikonal® formalism of Micha60 to the close-coupled equations
for the system. This yields Hamilton’'s equations of motion for the
center-of-mass trajectory, and Hamilton-like equations for the time-

dependence of the real and imaginary parts of the quantum-state ampli-

tudes Cj(t) - Xj(t) + in(t). The transition probability to state j at
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any time t during the trajectory is given by |Cj(t)|2/2ﬁ. Thé method was
compared to the close-coupled calculations of Smedley et 81.29 for
rotational and fine-structure transitions in NO/Ag(11ll) collisions, and
found to give good agreement at higher collision energies (0.83 eV); at
lower energies (0.31 eV) the rotational excitation was overestimated.
‘The calculations also indicated that the NO/Ag interaction is not impul-

sive, since the probability distribution evolves slowly throughout the

trajectory.
3., Classical Methods

In addition to the quantal and semiclassical approaches, classical
mechanics has been used to model the gas-surface scattering process. The
classical techniques all involve integration of Hamilton'’s or Newton’s
equations of motion (EOM) for every degree of freedom in the model; the
models differ in how many degrees of freedom in the surface are consid-
ered. The simplest models involve rigid surfaces which are either flat
or corrugated; only the molecular degrees of freedom, which include
translation, rotation and perhaps vibration, are treated explicitly,
More complex approaches include motion of the atoms of the solid with
varying levels of sophistication. Classical techniques are usually (but
not always) applied to systems characterized by low-frequency motions
(or, alternatively, small energy spacings), for which one expects quan-
tum effects to be small. In some applications, correspondences are made
between the classical trajectory results and quantum numbers for the

system. This procedure 1is called the quasiclassical trajectory (QCT)
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method. As opposed to the semiclassical methods, no part of the actual
dynamics is treated with quantum mechanics in a QCT calculation.
Classical trajectory studies of molecule-surface scattering have
sought both to elucidate general features of the energy transfer and
dynamics and to model experimental results. In the former case, Hurst
et a1.61 have shown that final rotational distributions resulting from
impulsive collisions of a diatomic molecule with a hard repulsive wall
will exhibit some or all of the following features: "rainbow" peaks at
zero and high rotational energy, a "trapping cutoff" at the highest
rotational energy when the interaction poten;ial has an attractive well,
and a perfectly polarized rotational distribution if the surface is
flat. The rainbow features are due to extrema in the classical
"excitation function" jf(oi), that 1is, the final rotational angular
momentum as a function of the initial orientation of the molecule;
classically, such extrema cause singularities in the probability
distribution. The =zero-energy rainbow comes from a minimum in the
excitation function, which means that for some range of initial
orientations the mnet torque on the molecule due to the collision is
zero. Rainbows at higher energies result from maxima in the excitation
function, meaning that the collision with the éurface imparts a maximum
torque on the molecule. Two of these nonzero-energy rainbows may appear
if the molecule is heteronuclear, since a different maximum torque is
exerted depending on which end of the molecule strikes the surface; this
fact is the basis for the "double-rainbow" interpretations of the
NO/Ag(11l) rotational distribution, which have been discussed ear-

27,41
r.

lie If the potential has an attractive part, the effective
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impulsive collision energy 1s iIncreased by the well depth. If the
maximum torque is high enough, the molecule may temporarily become
trapped in the well due to T-R energy transfer. This produces a trapping
cutoff, that 1is, a degradation of the highest energy rainbow. Finally,
polarization of the rotational distribution occurs in scattering from
flat surfaces, since in this case the angular momentum component normal
to the surface is conserved. Other work has elaborated on these results.
Polanyi and Wolf62 have shown that multiple (more than two) rainbows,
due to multiple collisions, may occur for heteronuclear molecules if the
offset of the center of mass from the midpoint of the internuclear axis
is large enough; calculations by Elber and Gerber63 suggest that
multiple collisions may cause a double rainbow even for homonuclear
molecules under certain conditions. Park and Bowman64 have demonstrated
that surface corrugation broadens the high-energy rainbow features,
since the maximum torque 1is impact-site dependent. Corrugation also
wipes out the zero-energy rainbow in impulsive collisions and destroys
the perfect polarization of the rotational distribution at low but not
high final j values, as discussed by Wolf, Collins and Mayne.65
Inclusion of surface motion using simple models has indicated that this
motion broadens and diminishes the rainbow features and broadens the

trapping cutoff.61’66’67

The impulsive collision 1limit just described
pertains to scattering when the attractive part is isotropic (invariant
with respect to initial orientation of the molecule), or when the colli-
sion energy is much greater than the well depth. Bowman and Park68 have

shown that when the collision energy is low and the well anisotropic,

the well rather than the repulsive wall controls the dynamics. The
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excitation functions in this case are more complicated than those for
the impulsive collision regime, resulting in probability distributions
which deviate from the impulsive behavior described above. For example,
the anisotropies of the well and wall tend to cancel one another,
resulting in rotational distributions peaked at low final j. This effect

has also been observed before in quantal calculations,%’41

as discussed
previously.

Comparisons of classical calculations have been made to the results
of both experiments and other theories. One of the first such applica-
tions was the QCT study by Ray and Bowman69 of the diffractive and rota-
tionally inelastic scattering of H2 and D2 from LiF(001) at low colli-
sion energy, using the rigid, corrugated surface model of Wolken.11 The
QCT results showed good qualitative agreement with the CC calculations

of Wolken11 and the experiments of Rowe and Ehrlich70

for this system,
which 1is somewhat surprising considering the low collision energy used
and the large rotational spacing of H2. Another set of QCT calculations
on the H2/L1F(001) system was performed by Saini et al.71 using higher
collision energies, for comparison with the sudden (CRS and MDS) results
of Gerber et 31.35 Saini et al. found that the QCT transition
probabilities conformed to most of the rules analytically derived using
the CRS, but differed quantitatively from numerical MDS values.
Drolshagen et al.17 compared these QCT and MDS values with CC results.
They found the QCT method to be more accurate than the MDS for 1low
corrugation strengths at 0.5 eV collision energy; at higher collision
energy (0.7 eV) the MDS became much better than the QCT results. Asada72

developed a classical model for linear molecules striking flat, moving
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surfaces, in which the molecular non-sphericity and the amplitude of
surface vibration are treated perturbatively. Using it he was able to

73 that the scattering

qualitatively reproduce his experimental finding
lobe for molecules is shifted toward the surface tangent relative to
that for atom-surface scattering, due to T-R energy transfer. Kubiak
et a1.25 applied the hard-cube formalism of Nichols and Weare74 to
obtain insight into the dynamics of the NO/Ag(1lll) system. They were
able to reproduce the collision-energy and surface-temperature depen-
dence of the average final NO rotational energy with this model, but
only by using values of the fitting parameters which implied trapping
probabilities much greater than those determined experimentally.
Recently, Coltrin and Kay75 employed a QCT study of ammonia scattering
from a flat, rigid gold surface to interpret an experimental investiga-
tion76 of the NHB/Au(lll) system. The QCT results qualitatively repro-
duced many of the experimental observations and demonstrated the dynam-
ical importance of long-range orienting forces in this system. The sue-
cess of this treatment provided motivation for the QGCT study of HCl/Au
scattering presented in Chapters III and IV, and further details of the
NH3/Au results as they relate to the present work are discussed in
Chapter IV,

To obtain greater insight into the role of the surface in the scat-
tering process, and to reproduce experimental results more quantita-
tively, realistic modeling of the motion of the atoms of the solid must
be employed. Classical mechanics has proven useful in this regard. One

obvious way to account for motion of the solid is to integrate classical

EOM for a number Ns of solid atoms using a molecular dynamics (MD)
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procedure. Early work along these lines, which explored the scattering
of rare gas atoms from surfaces, treated the solid as a small monolayer

of independent77a or nearest-neighbor coupled77b

harmonic oscillators,
embedded in a 1lattice of atoms frozen at their equilibrium positionms.
Barker et al.78 extended this model by integrating the EOM of a 5%5%5
slab of mnearest-neighbor coupled harmonic oscillatoré sitting atop a
frozen lattice, and using periodic boundary conditions in the X and Y
directions to obtain the motion of atoms in adjacent slabs. It is appar-
ent that MD can describe the gas-surface energy transfer and dynamics to
any desired degree of accuracy, given a sufficiently large NS, but such
a "bigger hammer" approach clearly requires a significant computational
effort, In addition, physical considerations have motivated the search
for alternatives to the MD approach. In a gas-surface collision, only a
few solid atoms interact strongly with the incoming molecule. These
"primary" atoms are the ones of physical interest; the remainder of the
solid is important chiefly for its influence on the primary atoms.
Furthermore, most experiments focus on the final state of the gas
molecule rather than on that of the solid. This means that an acceptable
procedure is one which treats the solid approximately but accurately
describes its effect on the molecule.

The most popular technique for inclusion of surface motion into a
gas-surface scattering calculation is the generalized Langevin equation
(GLE) approach developed by Adelman and Doll79 and by Tully,A who called
it the "stochastic trajectory method". Two assumptions are involved in
formulating this approach: that, as mentioned above, the gas molecule

interacts with only a few atoms (the "primary zone" or "P zone" atoms);
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and that the forces between the P zone and the remainder of the solid

the "secondary" or "Q zone") are harmonic. Under these conditions, the
Yy

EOM for thé atoms in the solid can be written in matrix form a580

Up = E(x,.up.u5=0) — 8po u, . (1.16)
Uy = —Opp Uy = Ooo Yo (1.17)

where up and EQ are column matrices containing the displacements of the
P and Q zone atoms, respectively, from their equilibrium positions, 2 is
the harmonic force constant matrix for the solid, and the P,Q subscripts
denote partitions of ® into the various submatrices that couple the P
and Q zones. The column matrix F contains all the forces (divided by
masses) on the primary atoms except those due to the secondary atom dis-
placements. These include the forces among the P zone atoms (which may
or may not be harmonic) and the forces due to the gas-surface
interaction potential, which depend on the gas molecule coordinates Eg’
the primary atom displacements and possibly the equilibrium positions of
the Q zone atoms. Equation (1.17) can be solved formally for u. in terms

~Q

of Yp, and the result substituted into (1.16) to obtain4 the GLE’'s for

the primary atoms:

t
Up(e) = E’(x,.up,up=0) — I ACt-t") up(t?) de” + R(t). (L.18)

In equation (1.18), the integral accounts for dissipation of energy from

the P zone to the Q zone, while the (Gaussian) fluctuating force R(t)
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accounts for energy transfer from Q to P due thermal motion of the
secondary atoms. R(t) and the "memory matrix" A(t) are related by the
"second fluctuation-dissipation theorem",81 which ensures that the
P zone remains at a constant temperature by requiring the net dissipa-
tion loss to balance the net thermal energy gain. The force matrix Ef
contains F from equation (1.16) plus some extra terms generated during
the derivation of equation (1.18).

As it stands, equation (1.18) is exact. Although the essentially
infinite number of solid atom EOM has been reduced to NP equations, mno
less work is involved in solving (1.18) than (1.16) and (1.17), since
the matrices A and R contain all of the information contained in
equation (1.17). The basic idea of the stochastic trajectory method is
thus to employ approximate forms for these matrices, which result in
considerable simplification of equation (1.18), while still adequately
representing the effects of the Q zone. These forms contain adjustable
parameters which may be fit to reproduce properties of the solid, such
as phonon densities or velocity autocorrelation functions. For modeling

metal surfaces, for which a typical P zone may contain N_ = 4 atoms,

P
‘ Tully4 derived an approximation to (1.18) which included the Q-zone
effects by coupling each primary atom to a "ghost atom" satisfying a
Brownian oscillator equation of motion. In this case, only 2 X NP (= 8)
surface atom EOM need be integrated along with those of the gas mole-
cule. In ionic crystals the long-range ionic forces require larger P

3 for example); this motivated Lucchese and

zones (NP = 32 for LiF,
Tully82 to formulate a method in which the primary atoms along the P-Q

interface are treated as Brownian oscillators.
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The many applications of the stochastic trajectory method to atom-
surface scattering have been reviewed by Tully.so Several studies of
diatom-surface scattering have also been reported. Tully, Muhlhausen and

Ruby83 examined the scattering of N, from Ag(1ll). They found that the

2
vibrational motion of the nitrogen molecule was only very weakly coupled
to its translation and rotation and to the vibration of the solid,
yielding vibrational deactivation probabilities of less than 5%. They
also saw evidence of rainbow structure in the rotational distribution,
though it was broadened considerably by the surface motion and corruga-
tion. Lucchese and Tully3 conducted extensive calculations on the NO/LiF
system. Their objectives were to evaluate the experimental results of
Zacharias et a1.84 for the NO vibrational deactivation, and to study the
general features of vibrational energy transfer in molecule-surface
collisions., With respect to the former, they found extremely low
deactivation prdbabilities (less than 1%), which conflicted with the
experimental result of essentially unit deactivation probability. (Sub-
sequent experiments85 found deactivation probabilities of 10%). The
results of the vibrational energy transfer calculations will be dis-
cussed thoroughly in Chapter VI, where they are used as a standard for
evaluating new calculations using the REOM technique.2 Finally, Muhl-
hausen et a1.86 performed an extensive study of scattering and
adsorption/desorption of NO from the (11l1) faces of Ag and Pt, for which
abundant experimental data exist.6’7 Using an interaction potential with
a strongly orientation-dependent attractive part, they were able to

reproduce all the experimental results for these two systems with quali-

tative and, in most instances, quantitative accuracy. It is interesting
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that this study reproduced the bimodal NO/Ag(1l1ll) rotational state dis-
tribution wusing an anisotropic potential, and attributed the Boltzmann-
like portion to averaging of many types of collisions rather than a low-
energy rainbow. This differs from the interpretations discussed

earlier27’33‘41

both counts, illustrating that the dynamics for the
NO/Ag(lll) system have not yet been resolved unambiguously.

The final topic in this overview involves work on improvements on
and alternatives to the stochastic trajectory approach. The methods

4,82

discussed above for reducing equation (1.18) to a smaller number of

EOM, as well as that of Adelman and Doll,79 invoke a Brownian oscillator
approximation at some point, Diestler and Riley87 proposed a simple mod-
ification to the Lucchese-Tully (LT) method82 as well as other approach-
es not based on the Brownian approximation, and tested the old and new
theories using various P-zone sizes against a (classically) numerically-
exact gas-surface scattering data base which they had previously gener-
ated.88 They found many of these approaches to be quite accurate, and
recommended their bond-corrected Debye (modified LT) approximation
(BCDA) as the best, considering both accuracy and ease of implementa-
tion. Recently, Riley, Coltrin and Diestler5 presented an alternative to
the GLE approach for simulation of the damping and thermal effects of
the secondary atoms, based on Andersen’s velocity-reset procedure for
constant-temperature MD simulations.89 The method of Riley et al. is
discussed great detail in section B of Chapter V; here let it suffice to
say that the approach involves integrating equation (1.16) for the P

zone motion, periodically resetting the velocities of the atoms accord-

ing to an algorithm which preserves a canonical velocity distribution
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and which incorporates damping and thermal effects. As shown in refer-
ence 88 and in Chapter V, this "partial velocity reset" reduces to the
LT procedure in the limit that the time interval between velocity resets
goes to zero. The method is easy to apply, compares well with the LT
method for all reset intervals and is not restricted to harmonic lat-
tices.

The accuracy of approaches involving a reduced number of surface
atom equations of motion in a gas-surface scattering calculation has
prompted inquiries into whether accurate results might be obtained by a
method in which the entire surface is treated as the Q zone and only the
gas molecule EOM are integrated explicitly. Such an approach, based on
Tully’s ghost-atom approximation, has been formulated recently by
Zeiri.go He showed that his "effective equations of motion" (EEM) gave
good quantitative agreement with the results of the ghost-atom method
for a one-dimensional model of Ar and Xe/Ag scattering. Diestler and
Riley2 derived reduced equations of motion (REOM) based upon an adia-
batic approximation for the surface atoms’ response to the presence of
the gas molecule, assuming the solid to be at T = 0 K. They tested the
model against the data base of numerically-exact atom scattering re-
sults, and found it to be reliable for sufficiently large values of the
ratio of gas to solid atom mass and of collision energy to potential
well depth. In section A of Chapter V the derivation of the REOM is
presented 1in detail. The method is applied in the present work to the
scattering of NO from LiF(001), with nonzero surface temperature
included via the velocity-reset procedure; In Chapter VI the results are

presented and compared with those of Lucchese and Tully.3



CHAPTER II

IMPLEMENTATION OF THE QUASICLASSICAL TRAJECTORY METHOD

This chapter explains how the quasiclassical trajectory method was
employed in this work to compute and analyze trajectories for gas diat-
oms colliding with a rigid surface. In particular, information applying
to both the HCl/Au and NO/LiF calculations is presented here. The NO/LiF
studies involve modifications to this general framework, related to the
implementation ofifhe REOM formalism using the velocity-reset procedure.
Details concerning those modifications are given in Chapter V. The dis-
cussion 1in Chapter II is organized as follows. Section A describes the
coordinate system and the canonical variables in terms of which the Ham-
iltonian is expressed, and summarizes the procedure for doing the tra-
jectory calculations. In section B, specifics related to selecting ini-
tial conditions for a trajectory are presented. Section C is devoted to
the numerical integration of Hamilton'’s equﬁtions, including a discus-
sion of the rigid-rotor constraint. Finally, section D concludes by out-
lining the methods used to analyze results from individual trajectories

and from sets of trajectories.

30
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A, Coordinate System and Canonical Variables

The method of quasiclassical trajectories involves integrating the
appropriate classical equations of motion for the system in question,
given some randomly or systematically selected set of initial condi-

tions. The equations of motion used here are Hamilton's equationsgla:

. dH . dH

qi - 8P1 ’ Pi - aqi ’ (2.1)

vhere the (qi) are the generalized coordinates of the system, the (pi)
their conjugate momenta, and H is the Hamiltonian (total energy func-
tion) of the system, expressed as a function of the (qi} and (pi). A dot
over a variable denotes the total derivative. of that variable with
respect to time. The set of variables (qi,pi) are called the canonical
variables of the system. In order to proceed, the coordinate system must
be specified.

For these calculations, a Cartesian coordinate system (the "labora-
tory frame") is chosen such that the Z axis is normal to the surface and
the X and Y axes lie in the plane of the surface; the solid occupies the
half-space Z =< 0. For a diatomic molecule moving above a rigid surface,
there are six Cartesian coordinates (the laboratory X, Y and Z coordi-
nates for each atom) and six Cartesian components of momentum conjugate
to them (Px, Py and Pz on each atom). Choosing these as the canonical

variables, the Hamiltonian is given by
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P P
1x 1y 1z 2% 2y 2z
H + + Vtot(xl’Y

. ,X,,Y,,2

1’ 1’ 20 2’ 2)’ (2'2)

in which m, is the mass of atom i and Vtot is the total potential energy
function for the system. In these calculations V is always a function of

the coordinates only. If ﬁi and 31 represent the position vector

Zi) and momentum vector (P, ,P ’Piz)' respectively, of atom i in

(Xi’Y iz’ iy

i’

the laboratory frame, then equation (2.2) may be written more compactly

in vector notation as

pi pg ..
H = > 4+ — Vtot(Rl'RZ)’ (2.3)
my 2m2

where Pi is the magnitude of 31.

The quantities of interest here are the - translational, vibrational
and rotational energies or quantum numbers of the diatom (both before
and after the collision with the surface); these various degrees of
freedom are not easily separated from each other when the Hamiltonian is
expressed as above. Thus it is convenient to form from the set of atomic
coordinates and momenta a new set involving center-of-mass and relative

Cartesian coordinates and momenta. In vector notation this transformat-

tion is given by

-+ -
- ql R1 + ", R2, (2.4a)

T =R =R (2.4b)
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- - -+
B~ B + B, (2.4¢)
P = 7 ﬁl + o, 32, (2.44)

where the "cm" subscripts denote center-of-mass quantities, and lower-
case unsubscripted letters represent relative quantities. The vectors
ﬁcm and icm give the position and momentum vectors of the center of mass
of the gas molecule in the laboratory frame. while T and ; give the
relative position and momentum with respect to a coordinate system whose
axes are parallel to those of the lab frame. The mass factors ny and 73

are defined by

m m
1 2

’71 - 'l2 = (2-53)
M M
- m
2 1

‘71 - ’ 12 - ~ (2.5b)
M M

where M = m +m,. The inverse transformation, which gives the lab frame
position and momentum vectors of atom i in terms of the center-of-mass

and relative quantities, is
= - -»
Ri - Rcm + 7y T (2.6a)

-+ -+
P -

i
: ng B+ (1) . (2.6b)

The following two paragraphs show how transforming to center-of-mass and

relative coordinates separates the various degrees of freedom.
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If one subjects equation (2.3) to the transformation given by equa-

tions (2.4), the Hamiltonian in the new canonical variables is

2 p2
cm e -,

H = + + Vv (R _,0), 2.7)
oM 2 tot' cm

where Pcm and p are the magnitudes of fcm and 3, respectively, and
po=mm, / M 1s the reduced mass of the diatom. The total potential Vtot
is the sum of the internal (vibrational) potential of the diatom and the

interaction potential of the diatom with the surface:

- -+ =+ >
Vtot(Rcm’r) vint(r) + Vgs(Rcm’r)' (2.8)
It is assumed that Vint depends only on the internuclear separation r,

which is the magnitude of T. When the diatom is far from the surface,
Vgs goes to zero and the Hamiltonian of equation (2.7) reduces to that

of an isolated diatom moving through space:

2 p2
cm ’
H - + + V (r) (2.79
iso oM 2% int

The first term on the right hand side of equation (2.7°) is the transla-
tional energy of the diatom, ET; the remaining terms contain the inter-

nal (vibrational plus rotational) energy of the molecule, E Changing

int’
from atom to center-of-mass/relative coordinates thus has automatically
separated the translational energy from the internal energies; the

vibrational and rotational energies can be found by expressing p2 in
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terms of the vibrational and angular momenta.

The vibrational momentum Sr is the component of the relative
momentum 3 along the direction of T. Using the definition of the scalar
product of two vectors one can easily find an expression for P the

magnitude of the vibrational momentum:

-

- X + + z
‘D _ P, Ty Py P, (2.9)
r r ! )

P.=Ppcosa=

where a is the angle between T and 3. The angular momentum is defined as

3 -7 x B, the vector product of T and 3, which gives the familiar

expressions for the X, y and z components of ]:

I, = Yyp, — ZP, (2.10a)
gy = 2P, — %P, (2.10b)

(2.10c)

Using equations (2.9) and (2.10) and a little bit of algebra, one can

show that the following equality holds:

2 2 2 2
P Pyt P+ P, P, ]
- - + 5 (2.11)
2 2p 2u 2ur

where j2 - ji + j; + ji is the square of the magnitude of the angular
momentum. The first term on the right hand side of equation (2.11) is
the vibrational kinetic energy; adding to it Vint(r) gives the classical

vibrational energy E, of the molecule. The second term on the right hand
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side is the classical rotational energy ER'

Having thus specified the coordinate system and the canonical varia-
bles, the procedure for implementing the quasiclassical trajectory
method can be outlined. To run a single trajectory, one starts with the
diatom very far from the surface, at which point initial values of Pcm’
P j and r for the isolated molecule are selected, given initial values
of the translational energy and the vibrational and rotational quantum
numbers. From these one determines the initial wvalues of the canonical

P

coordinates (X , Y ,Z , x, y, z) and momenta {Pcm,x’ cm,y’ Pcm,z’

cm cm cm

Py py, pz). Then equations (2.1) are numerically integrated from this

starting point, using the Hamiltonian given by equation (2.7), until the
collision with the surface is over and the molecule is again far from
the surface (or until some time limit has been reached, since in some
trajectories the diatom may stick to the surface). Finally, at the end
of the trajectory the final vibrational and rotational quantum numbers
and J

v g @s well as the final translational, vibrational and rota-

i, Eg and E;, are extracted from the final wvalues of

f

tional energies E
the canonical variables. To obtain useful information for comparison
with experiment, one runs sets of trajectories using the above proce-
dure, with each set characterized by fixed values of the experimentally-
controlled parameters, such as initial translational energy and quantum
numbers. The individual trajectories differ in their values of the
uncontrollable parameters, such as initial orientation and vibrational
phase; at the end of the set the results can be averaged over the
uncontrolled variables. In the studies reported here, this averaging is

92

done via the Monte Carlo technique, which utilizes random selection of
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the quantities to be averaged. The following sections explain each of

the above steps in greater detail.
uasiclassic Corres dence Selection of Initial Conditions

The quasiclassical trajectory method is so named because it attempts
to relate the results of a classical-mechanical calculation to their
quantum-mechanical analogues. This is done by specifying equations of
correspondence between the classical action variables and the quantum
numbers for the system. For a diatomic molecule the action variables are
the angular momentum j (defined above) and the vibrational action N,

defined byglb

N = I p, dr, (2.12)

where the integral is over one period of the vibrational motion. These
correspond to the angular momentum and vibrational quantum numbers J and

v, respectively. The equations of correspondence used in this work are

i =TI+ = af, (2.13a)

N = (v+%a, (2.13b)

in which Q1 is the electronic orbital angular momentum quantum number for
the electronic state of the diatom, and # is Planck’s constant. It 1is
assumed here that all trajectories are adiabatic (a single potential

energy surface applies throughout); in this case @ will be a constant
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for all trajectories. Most treatments of the quasiclassical correspon-
dence for the angular momentum omit the 012 term from equation (2.13a).
This is certainly appropriate for molecules in 13 electronic states,
such as HCl in its ground state, since for these states {1 is zero. Equﬁ-
tion (2.13a) arises from the formula for the rotational energy of a
Hund's case (a) diatomic molecule,93a of which NO in its ground state is
an example. The facts that such molecules do not have J less than 1 and
have half-integral J if O is half-integral are automatically accounted
for when (2.13a) is used.

Given the quasiclassical correspondence, one can obtain the initial
values of the relative coordinates and momenta for a vibrating, rotating
diatomic molecule from the quantum numbers v and J. To do this, equa-
tions (2.13) are employed to convert the quantum numbers to the corre-
sponding values of the classical total (internal) energy and rotational
angular momentum, which are conserved quantities for an isolated dia-
tomic molecule. The relative coordinates and momenta are then found by
specifying the 1isolated molecule’s vibrational phase and orientation
with respect to the laboratory coordinate system. The following para-
graphs describe this procedure in detail.

Consider an isolated diatomic molecule in the rovibrational state
(v,J), in a coordinate system (the "isolated frame") chosen so that the
molecular motion is in the xy plane. The classical angular momentum j
corresponding to the quantum number J is given immediately by equation

(2.13a) while the classical total (internal) energy E
93b

int maY be esti-

mated from the spectroscopic expression
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est 2
Eint = (v + %) w, . — (v + %) WX,

+ B [J@+1) —a2] — D, J2 + 1)2, (2.14)

invwhich B, =B —a (v+ %) andw , wx , B, a and D are the spec-
v e e e' "e"e' Te' e e
troscopic constants. The vibrational quantum number Veale corresponding

to any particular values of E1 and } may be calculated from equations

nt
(2.12) and (2.13b), as explained in the next paragraph; since equation

est

int will not

(2.14) is not exact, the value of Voale computed using E

equal v. To find the correct total energy corresponding to v, an

iterative procedure developed by Coltrin et. al.94 is wused. This
est
involves modifying Eint until Veale ~ V-

To find Veale from (2.13b), given values of j and Eint’ one must
solve equation (2.12) for the vibrational action N. A convenient way to

do this 1is to change the integration variable in (2.12) from r to t:

T T
dr 1 2
N = I p, dr = o P.gc it - m I p, dt (2.15)

where 7 is the vibrational period. Equation (2.15) 1is equivalent to
integrating the ordinary differential equation
> 1 2 4
N = Fpr’ (2.157)
with initial condition N = 0 at t = 0, over a cycle of the vibrational
motion. This is accomplished by integrating equation (2.157), using P,

given by (2.9), while the equations of motion (2.1) are integrated from
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one vibrational turning point (where P, equals zero) to the other, using

the internal Hamiltonian

2

.
Hint on + vint(r)’ (2.16)

Equation (2.16) differs from equation (7°) only in the absence of the
center-of-mass term. The turning point from which the integration begins
is found as follows. At an instant when the molecular axis lies along
the x axis and the internuclear separation r is equal to its equilibrium
value re, the relative coordinates and momenta in the isolated

coordinate system have the values (xX,y,z) = (re,0,0) and (p_,p.,p.) =

x'Vy'tz

(p:,j/re,O), where pi - pr(r - re) is obtained from (2.16) and (2.11)
using the given j and Eint' From these initial coordinates and momenta,
equations (2.1) are integrated until P, - 0. Then the integration of
(2.157) begins. The time required to integrate between turning points is
half the vibrational period and the result of integrating equation
(2.157) this far is N/2; since the integratiqn of the second half of the
cycle will be identical to that for the first half, it can be eliminated
and the period and action found instead by multiplying by two. Having
thus determined the wvalue of N, the vibrational quantum number v

cale

corresponding to the E and j of interest can be obtained from

int
equation (2.13b).

As mentioned above, the value of EE;: from (2.14) does not yield
Veale equal to the initial quantum number v. To obtain the proper value

of Eint’ the procedure given in the preceding paragraph is iterated,
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modifying the estimate of E each time, until v matches v to the

ale
desired accuracy. The algorithm for modifying the energy is

int

3E
E2 - E1 + (v -vl) 7~ (2.17a)
AE '
Ei+1 - Ei + (v -vi) [i;Ji' (2.17b)
where El’ the first guess at the energy, is given by E:;t and vy is the

corresponding Veale The slopes in (2.17) are

v - Y% 2 (v + %) w X, + @ [J(T + 1) — 2], (2.18a)

—_— — . (2.18b)
Av vi vi-l

[AE] s T
1

Equation (2.18a) is the partial derivative with respect to v of equation
(2.14). Typically four to six iterations are sufficient to match v to
six decimal places.

To this point the values of E and j corresponding to the quantum

int
numbers have been determined. However, the orienting procedure described
in the next two paragraphs requires values for r and P, along with j.

Since, for a given E and j, the values of r and P, vary depending on

int
where the molecule is in its vibrational cycle (that is, on 1its vibra-
tional phase), the next step in initializing the relative coordinates
and momenta is to choose the vibrational phase ¢vib and find the associ-

ated values of r and P This is done by integrating the equations of

motion (2.1), using Hint' for a time tp - (¢vib/2n) T, starting'from one
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of the turning points (at which the molecule with the correct total
energy was left at the end of the iteration procedure above). The value
of ¢ .. is selected either randomly or systematically. At the end of the
integration, r and p, are calculated.

Given j, P, and r at the start of the trajectory, the initial val-
ues of the relative variables are obtained by orienting the relative
Cartesian coordinate system of the isolated molecule with respect to the
"laboratory" relative Cartesian coordinate system, whose axes are paral-
lel to those of the laboratory frame. The orientation is described by

9lec 0, ¢ and ¥, which are selected either randomly or

the Euler angles
systematically. In what follows, primed coordinates refer to the isola-
ted frame and unprimed ones to the laboratory frame. The 1isolated
coordinate system 1is defined, as above, such that the molecular motion
is in the x“y’ plane. Assuming the molecular axis lies along the x’
axis, the values of the coordinates and momenta in this system are
x’,y",z’) = (x,0,0) and (px,,pyf,pz,) = (p,..3/x,0).

The transformation from the lab to the isolated coordinates is per-
formed via a series of rotations specified by the Euler angles. There
are various conventions for choosing these angles;91c these calculations
employ the "x convention" to define the transformation. In this scheme,
the isolated coordinate axes are oriented via successive counterclock-
wise rotations by an angle ¢ around the z axis, by § around the x° axis
and by ¢ around the z” axis. The result of this operation is shown in
Figure 1. The intersection of the xy and x“y’ planes is called the "line

91c

of nodes"; ¢ is the angle between the x axis and the line of nodes, ¥

the angle between the line of nodes and the x” axis, and f# the angle
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LINE OF NODES

Figure 1. Euler angle transformation between the isolated and laboratory
coordinate systems. The diatom lies along the x’ axis.

between the z and z’ axes., The ranges of the Euler angles are thus

0<¢d=<2x, 0<0 <= and 0 < ¥ < 2x. The transformation matrix A for

obtaining the ,isolaﬁed coordinates from the lab coordinates, and its
: "

inverse I = é“ = é? for finding the lab coordinates from the isolated

ones, have been worked out;91c the latter of these is needed here since

the isolated coordinates have been specified and the lab coordinates are

sought. The matrix is

cosycosg-cosfsingsiny -sinyPcos¢-cosfsingcosyp sinfsing
T = | cosysing+cosfcos¢siny -sinysing+cosfcosgcosy -sinficosd | (2.19)
- sinfsiny sinfcosy cosf
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and the transformation given by

X x
y] - T y’] (2.20)
z Tz’

with a similar expression for the momenta. Applying equation (2.20) to
the wvalues of the isolated coordinates and momenta from the preceding
paragraph thus specifies the initial values of the relative coordinates
and momenta in the laboratory frame.

This completes the determination of the initial values of the rela-
tive corrdinates and momenta when the diatom is a vibrating rotor.In the
case that the diatom is a rigid rotor, the above procedure can be great-
ly simplified. As before, the classical angular momentum j is calculated
using equation (2.13a). However, since the molecule cannot vibrate, one
simply sets the vibrational momentum P, equal to zero and the internu-
clear separation equal to r, before proceeding with the orientation pro-
cedure described in the.preceding two paragraphs.

Determining the initial wvalues of the canonical variables for the
center-of-mass motion of a trajectory is straightforward. The vectors
ﬁcm and ﬁcm describe the center-of mass motion in the laboratory frame.
Initial values of the components of ﬁcm are selected as follows. In the
HCl/Au calculations, which employ a flat-surface model, the coordinates
Xcm and ch parallel to the surface are (arbitrarily) set to zero; for

the rigid-lattice model used in the NO/LiF work, xcm and ch are

randomly or systematically assigned values xin and Yin within a surface



45

unit cell. In either case, the height Zcm of the center of mass above

the surface is set to some large positive value Z. at which the éas-

in
surface interaction potential Vgs is negligible. The initial center-of-
mass momenta can be found given values of the initial translational
energy and incidence angles. If 61 and Qi are the polar and azimuthal

incidence angles, respectively, then the following expressions can be

used to obtain the momenta:

P = P gine cost (2.21a)
cm,x cm
Pin - Pj'n sin® sind , (2.21b)
cm,y cm

In - el ose (2.21c)
cm,Zz cm

where Pn ™ (2MET);i and ET is the initial translational energy. The neg-

ative sign in (2.21c) is needed so that the molecule initially moves
downward toward the surface. In all the calculations done here the value

of @i is chosen to be zero.

In summary, then, to establish the initial values of the canonical

coordinates x, v, z, X , Y and Z , and momenta p_, p., P., P ,
cm’ “cm cm X y z cm,Xx

P and Pc for a particular trajectory, the following quantities

cm,y m,z

must be supplied: the vibrational and rotational quantum numbers v and
J; the vibrational phase ¢vib' for trajectories involving vibration; the
Euler angles #, ¢ and ¥; locations Xin and Yin of the center of mass
above the surface unit cell (for calculations not involving a flat-sur-

face model); the initial height Zin of the center of mass above the sur-

face; the initial translational energy ET; and the incidence angle 91.
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Some of these (v, zin’ and ET) are input to the computer program which
performs the trajectory calculations; others (¢vib’ 6, ¢, ¥, Xcm and
ch) are calculated as required by the trajectory code; the rest (J and
ei) are either input or calculated, depending on the trajectory. For

trajectories requiring random sampling of J or 8, from appropriate dis-

i
tributions, the values are selected by the program; when specific values
of J or ei are needed, they are input to the program., All of the
parameters generated by the trajectory code are selected either system-
atically or randomly. Systematic sampling is done using coded control
loops, whose limits and increments are given as input to the program.
Random sampling, for the purposes of Monte Carlo averaging, employs ran-
dom numbers gi, chosen uniformly from the standard rectangular distribu-
ti.on92a (that 1is, from the interval 0 < 51 < 1), in various algorithms
to calculate the desired quantities. These algorithms are discusssed
below.

For vibrating-rotor trajectories, the wvibrational phase ¢vib is

needed. Since the phase is equally likely to have any value within its

range (0 to 2xn), it is simply calculated as

¢vib - 2w€p (2.22)

where fp is a ran@om number. This means that the integration time to
find r and P, as described above is tp - §p T.

For trajectories using a lattice model for the surface, Xin and Yin
are required. For the square lattice used in the NO/LiF calculations,

these must lie within the square formed by the four surface atoms at the
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center of the lattice. If the origin lies at the center of this square,

and if the sides of the square are of length £, then
xin -2 (€x - %), (2.23a)
Y- £ (€y - k), (2.23b)

where £x and €y are random numbers.

The Euler angles are selected using the random numbers £¢, 50 and
§¢. Since ¢ and P are both azimuthal angles, any value within their
ranges is equally likely. Thus these angles are simply found from the

equations
¢ = 2w§¢, (2.24a)
Y = 2n§¢. (2.24b)

However, the polar angle § has a sind weighting, and must be treated
differently. Since the portion of a sphere having polar angles between
zero and # contains a fraction f0 - %-(1 — cosf) of the total surface

area of the sphere, the correct way to randomly select § is via the

expression

9 = cos™ L (1 -2 £p). (2.24c)
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In the few instances when Monte Carlo selection of the initial rota-
tional quantum number J or the incidence angle ei from appropriate dis-
tributions is required, the method of cumulative probabilities is
used.95 This involves constructing for each of these quantities a cum-
ulative probability distribution, that is, a distribution Pa(a') which
gives the probability that quantity o has a value less than or equal to
a’. Having such distributions, the value of the desired quantity a« is
chosen to be that o’ for which Pa(a') first becomes greater than or
equal to the random number &a (for discrete distributions), or for which
Pa(a') - ea (for continuous distributions). The cumulative distribution
is built from the appropriate probability distribution for the: individ-
ual values of a.

The probability distribution used in this work to construct the
(discrete) cumulative distribution for J is either an experimentally-
determined distribution of rotational states (in a molecular beam, for
example), or a Boltzmann distribution at a rotational temperature Tr

ot’
The latter is given by

WI(J”) (2T "+1) exp[-B Ej«]

3% - ) (2.25)
). WI(J”) (23741) exp[-8 E;s]
J”

PBoltz

)-1, k is Boltzmann'’s constant, and EJ” is the rota-

tional energy of state J”, given by the last two terms on the right hand

in which 8 = (kTrot

side of equation (2.14). The sum in the denominator of (2.25) runs over
all possible values of J”. The weight factors WI(J”), in which I is the

nuclear spin quantum number, are equal to unity for all J” for a
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heteronuclear diatomic; their values for a homonuclear diatomic depend
on the parity of J” the value of I and the symmetry of the electronic
state wavefunction with respect to nuclear interchange.96 The cumulative
probability distribution corresponding to equation (2.25) is

JI

PJ(J') = Y P

3n. (2.26)
J =0

Boltz
The value of J corresponding to the random number EJ is J’ such that
7’ 4
PJ(J -1) < ﬁJ < PJ(J ).
Random selection of the incidence angle ei is based on a cos® proba-

bility distribution, that is, P(8”) = cos(8”); this is the appropriate
97a

distribution for a gas in thermal equilibrium with a surface. The
(continuous) cumulative distribution corresponding to P(8”) is
el
Pe(e’) - J P(8”) d8” = sin(8"). (2.27)
0

From equation (2.27) the value of ei corresponding to the random number

€g 1s evidently 8 = sin-l(ée).

C, Integration of Trajectories

Having established the initial values of the canonical variables
using the procedures outlined in section B, Hamilton'’'s equations may be
integrated, using the Hamiltonian H of equation (2.7). Given this form

for H, it is apparent that derivatives of H with respect to momenta only
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involve the first two terms on the right hand side of equation (2.7),
while derivatives with respect to coordinates only act on the potential

energy V Thus equations (2.1) simplify to

tot’

P
[ _'i_ L aV
U "o P T 3, (2.28)

where m, - M if q is a center-of-mass coofdinate and m, = p if 9 is a
relative coordinate.

Equations (2.1) and (2.28) are appropriate for the case of a vibrat-
ing, rotating molecule. For trajectories run with the diatom constrained

to be a rigid rotor, these must be modified to include the constraint.

For constraints which can be expressed mathematically as F((qi},(pi)) -

0, Hamilton's equations become98
. dH aF . dH dF ‘
q; = 72— + A=, P; = =3~ = A3~ (2.1
i api api i aqi 8qi

where A is a Lagrange undetermined multiplier. In the case of a rigid
rotor, the constraint equation is

Fax?ty? 422 -2 =0, (2.29)

in which the internuclear distance r is a constant, usually chosen as
the equilibrium separation r,. Clearly, the equations for the &i are
identical to those for the unconstrained case, since aF/api = (0; the
same is true of the equations for the time derivatives of the center-of-

mass momenta. The time derivatives of the relative momenta become
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. dH av
pg ac 22¢ = ac 2x¢, (2.30)

where { = %, y or z. The rightmost equality in equation (2.30) follows
since the only part of H dependent on the coordinates is V. The value of
A can be found as follows. Multiplying the second derivative with

respect to time of equation (2.29) by the reduced mass u, one obtains

E. 4+ xp. + yp. + zp. = 0. (2.31)

Substituting equations (2.30) into equation (2.31) and solving for A

yie1d598

2
1 [p° av av v
A = '2?-{2“ xax - }’3-}; - ZE-Z_} . (2.32)

Whenever rigid rotor trajectories are run, the only necessary change to
the procedure outlined in the preceding paragraph is to modify equations
(2.28) wusing equations (2.30) and (2.32). Another way to handle the
rigid-rotor case would be to express the Hamiltonian in terms of the
rigid-rotor action-angle variables j and §. Working in Cartesian coordi-
nates with a constraint is more convenient because it is usually easier
to express the potential in Cartesian coordinates (see section C of
Chapter V, for example).

Numerical integration of the trajectories is accomplished using
either the DEROOT integrator subroutine package99 or a simple fourth-

order Runge-Kutta algorithm,looa depending on the step size required.
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For very small step sizes a significant time savings is realized using
the latter of these. Both integrators call a subroutine which evaluates
equations (2.28) for the particular system being studied, including the
rigid rotor constraint where appropriate. Correct operation of the inte-
grators is verified by ensuring that the total energy of the system is
conserved throughout the course of a trajectory. Additional details
concerning the numerical integration (choice of integrator, step size,
and so on) relevant to the particular sets of calculations performed in
this work are given in section B of Chapter 3 for the HCl/Au system and

in section D of Chapter 5 for the NO/LiF system.

D, Analysis of Trajectory Results

When a trajectory reaches its end, the final values of the quanti-
ties of interest must be extracted from the values of the canonical
variables. In these calculations, only trajectories which end when the
gas molecule reaches some predetermined height above the surface after
the collision are analyzed. Trajectories ending because a time limit is
reached (which is the case if the molecule is trapped on the surface)
are not analyzed. This latter situation arises only in the NO / LiF
studies, in which there exists a mechanism for energy loss to the sur-
face.

At the end of a trajectory the quantities of interest include the
and J

final wvibrational and rotational quantum numbers v the final

£ £’

scattering angles 6. and &, and the final energies of translation,

£ f
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vibration and rotation (the latter two of these energies being refer-
enced to the equilibrium internuclear distance re). The calculations are

straightforward. To get the rotational quantum number J_, one finds the

fl

classical angular momentum 3 and its magnitude j, using equations

(2.10); from this Jf is evaluated using

Jf-%[[1+4(92+%§)]*—1]-n, (2.33)

which is the inverse of (2.13a). For the purposes of a histogram analy-
sis of a set of trajectories, Jf is rounded to the appropriate integer

value (see below). To obtain the wvibrational quantum number v one

f’

calculates Eint at the end of a vibrating-rotor trajectory from equation

(2.16), and wuses it along with the angular momentum j in the procedure
specified in the fourth paragraph of section B above., This gives the
ﬁalue of Ve corresponding to the particular E

trajectory. In the case of rigid-rotor trajectories, of course, v

int and j at the end of the

£ is

simply set to zero.
The final polar and azimuthal scattering angles ef and Qf are found
from the components of the center-of-mass momentum at the end of the

trajectory using the expressions

-1 Pcm z
ef = COS [ F___-] , (2.34a)
cm
-1 Pcm
Qf = tan [ 7 ] . (2.34b)
cm, X

In equation (2.34a), Pcm - (2ME£)2, and the final translational energy



54

Eg is given by the first term on the right-hand side of (2.7”). Equation
(2.34a) comes from inverting equation (2.21lc); equation (2.34b) arises
from dividing (2.21b) by (2.21a) and solving for &. Since Qi is always
zero and also since & 1is conserved during a collision with a flat
surface, ﬁf need not be calculated when a flat surface model is used.
The final energies of the various degrees of freedom of the gas mol-
ecule at the end of the collision also must be evaluated. The £final
translational energy Eg is eaéily computed as mentioned in the previous
paragraph. Specifying the final vibrational and rotational energies for
vibrating-rotor trajectories is complicated somewhat by the coupling of
the vibrational and rotational motion, which arises since r2 appears in
the denominator of the last term of equation (2.1l1). Because the values
of EV and ER depend on r, whose final value will not in general be the
same for different trajectories, some ambiguity arises as to how to
report these quantities. This problem is solved by referencing Eg and Eﬁ
to the equilibrium separation r, in the following way. The constants of
the motion for the gas molecule are its angular momentum j and energy
E, .. Thus, the rotational and vibrational energies referenced to r = r,

int

can be found using

2

E;‘; - —1-2— (2.35a)
2pre

£ £

E. - B, — Ep (2.35b)

Equation (2.35a) is just the last term on the right hand side of (2.11),

with r replaced by r,- Occasionally it may happen that the classical
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motion of the isolated gas diatom at the end of the trajectory will have
high rotational energy and very low vibrational energy. In such a case,
centrifugal distortion could result in the motion having a domain of
internuclear separations which does not include s application of

(2.35) would then yield E; greater than E and, thus, ES less than

int
zero and small in magnitude. When this occurs, Eg is simply set to zero.
For the case of a rigid rotor, no ambiguity arises; the rotational
energy is equal to Eint'

At the end of a set of trajectories, Monte Carlo analysis can be
done on the results for the set to extract the desired information. In
so doing, only direct trajectories are included in the analysis. Two
procedures are applied here, one for the quantum numbers and one for the
average final energies. In the former case a histogram analysis is used.
This involves counting how many times each particular final value of a
gquantum number, say J, arises in a set of N trajectories (similar consi-
derations would apply to the vibrational quantum number v). For counting
purposes, the wvalues of Jf found from equation (2.33) are placed into
bins of width 1 centered on integer values of J (that is, rounded to the
nearest integer), when the diatom is heteronuclear. For the homonuclear
case (which does not arise in the present work), the symmetry requires
that the only allowed rotational transitions are those having AJ = 0 or
even, so that the bins must be of width 2 centered on even or odd J,
depending on whether the initial J is even or odd. (There is no symmetry

restriction on vibrational transitions.) If NJ is the number of times

that Jf = J, then the probability for making a transition to final state
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J is just Py =N, / N. The Monte Carlo standard error in the probability

is given by92b

P. (1 —P.)
G, = J LA (2.36)

Thus, one can make the error as small as desired by increasing the num-
ber N of trajectories in the set, with aj decreasing as N_k. The calcu-
lated probability distribution {PJ) can be compared to the experimental
distribution directly, or a Boltzmann plot, that is, a plot of
log{PJ/(2J+1)) versus the energy ER(J), can be made,

When final average energies are the quantities of interest, these

can be calculated, as usual, from

N
£ 1 £
(B > = Tngl By o o (2.37)

where M = T, V or R represents the appropriate degree of freedom. The

Monte Carlo standard error in this calculation is given by92c

(2.38)

in which the standard deviation 9g of the set of final energies Eﬁ a is
92c

obtained from its usual estimator SE:
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(2.39)

Thus, again, the error in the desired value can be decresed by increas-
ing the number of trajectories N. For studies involving a surface at a
temperature Ts, another useful quantity, the energy accommodation coef-
ficient (EAC), can be calculated using the final average energy. The
EAC, which is given the symbol o, provides a measure of the extent of
thermal equilibration between the gas molecule and the surface. The EAC

for degree of freedom M, o, is defined by97b

- <E

- <Eg D

(2.40)

=
zmr-- Zml-“

where E& is the initial energy for degree M, and { E; > is the average
classical energy of a distribution in thermal equilibrium with a surface
at temperature TS. For the vibrational and rotational degrees of freedom
of a diatomic molecule, < E; > takes the gas-phase equipartition value
kTs, where k is Boltzmann'’s constant. For translational motion the gas-
phase equipartition wvalue 3kTs/2 is 1inappropriate because of the
"streaming correction" due to the presence of the surface97a; the
correct value97a is 2kTs. The initial energy in each degree of freedom
(referenced to r, for vibration and rotation) is calculated at the start

of each trajectory and saved for use in equation (2.40); in any set of

trajectories from which an ay is extracted, each trajectory has the same
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value for the corresponding Eﬁ.

Details concerning the number N of trajectories per set and the
resulting values for the error as well as the specific data analysis
procedures for the various studies carried out in this work are given in

section B of Chapter III and section D of Chapter V.



CHAPTER III

INTERACTION POTENTIALS AND METHODOLOGY FOR HCl/Au CALCULATIONS

This chapter and Chapter IV which follows present the application of
the quasiclassical trajectory method to the scattering of HC1 from a
gold surface, treating HCl as a rigid rotor and the gold surface as
rigid and perfectly flat. Recently Coltrin and Kay75 applied a similar
treatment to the scattering of ammonia from gold, and succeeded in
obtaining a qualitative understanding of the experiments performed by
Kay and coworkers76 on that system. The present work, which was motiva-
ted by the success of the NHB/Au study, aims at gaining an understanding
of recent HCl/Au scattering experiments1 by finding a model gas-surface
interaction potential for which the trajectory results, at least quali-
tatively, reproduce the experimental data. In pursuit of this goal,
three different model potentials have been constructed and their predic-
tions compared to the experimental findings. Chapter IV presents the
results of the trajectory calculations and compares them to the exper-
iments. The present chapter, which explains how the calculations were
performed, is divided into two sections. Section A describes the inter-
action potentials employed in the calculations. First the "building
blocks" used to comnstruct the potentials are discussed, then details
concerning each potential are presented. Section B enumerates other

computational details involved in the work.

59
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A. HC1/Gold Interaction Potentials

In these calculations, each of the interaction potentials used con-
sists of a sum of four terms: a long-range attraction with anisotropy, a
short-range repulsion referenced to the molecular center of mass, and an
atom-surface potential for both of the atoms in the HCl molecule. In
each case, the functional form of the first two of these terms is the
same (though values of parameters differ), while the forms chosen for
the atom potentials vary from one interaction potential to another. The
following paragraphs describe theée various "building blocks".

The first term to be discussed is the long-range attraction. There
are two contributions to this potential: the van der Waals (dispersion)
interaction and the dipole-image dipole interaction. The former of these
is treated first. An atom or molecule far from a solid surface experien-

ces a long-range dispersion potential of the form101

Vaisp = — 5 (3.1)

where Zcm is the height of the center of mass above the surface and 03

is a constant which depends on the polarizability of the atom or mole-
cule and the dielectric function of the solid. Because the polarizabil-
ity of a molecule is a tensor quantity, 03 for that case depends on the
orientation of the molecular axis with respect to the surface mnormal.

Harris and Feibelmanlo2 have shown that for molecules
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C§0) + ng) P, (cosd), (3.2)

where P2(c050) - %(3c0520 — 1) is the second Legendre polynomial, ¢ is

the angle between the molecular axis and the surface normal and

(1 fi e(lw) =1 (J)
C3 - Tl-;_': m o (iw) dw. (3.3)

In equation (3.3), a(j)(iw) and e(iw) are frequency-dependent molecular

polarizability and solid dielectric functions, respectively, evaluated

(0)

at the imaginary frequency iw. The quantity o - %(a" + 2al) in equa-

tion (3.3) is equal to a, the bulk polarizability of the molecule, while

a(2) - %{a" —-al) is ome-sixth of its polarizability anisotropy. The

symbols a, and al denote the components of the polarizability parallel

I
to and perpendicular to the molecular axis, respectively. Equations
(3.2) and (3.3) reduce to the Lifshitz formula101 when the gas species
is an atom, for which the polarizability anisotropy is zero.

Evaluation of the integral in equation (3.3) requires functional
forms for a(j)(iw) and e¢(iw). For the polarizabilities a(j)(iw) the

[1’0]ﬂ Pade approximant103 is used:

«3) 0y

)
e LA

(3.4)

where a(j)(O) denotes the static (zero-frequency) value of a(j). The
(0) (2)

parameter w, is assumed to be the same for both « and o and is

found from the expression (in Gaussian units)
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am

oy = e [—N--]’-/2 , (3.5)

in which e is the electron charge, m the electron mass and N the number

of electrons in the molecule. Equation (3.5) gives an upper bound on the

polarizability.103 For the dielectric function ¢(iw), the Drude (classi-

cal electron gas) theory gives the expressionloaa

e(iw) = 1 + (wp/w)2 \ (3.6)

where wp = (lmnce’-’/m);i is the plasma frequency of the metal, and n, its

free-electron density. If equations (3.4) and (3.6) are substituted into

equation (3.3) and the integration is performed using the 1dentity105

1 2 xy du
X+y ;'I: (xZ + u2) (y2 + u?) °’ (3.7

one obtains

&P
v w.o 0)
od) - —220 . (3.8)
B(wp + J‘z'wo)

It remains to evaluate the Céj) for the specific case of HCl/gold. For

106

HCl, Bridge and Buckingham measured the bulk polarizability and

olarizability anisotropy of HCl as a = 2.600 A3 and (a, —a,) = 0.311
P Y y i

il
A3, from which a{? = o = 2.500 A% and o'%) = 0.0518 As, Using « along

with N = 18- electrons for HClL yields w, = 4,187 X 1016 s—i. Taking

0
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104

22 cﬁ-a for gold

a gives the value wp = 1.37 X 1016 s_'1

n, = 5.90 x 10
for the plasma frequency. Putting these numbers into equation (3.8)
renders the values Cgo) - 1.683 eV A" and C§2) ~ 0.03366 eV A°.

The contribution to the long-range attraction due to the interaction
of the dipole moment of the molecule with its image in the solid caﬁ be
found by first considering the interaction of two dipoles in free space.
The potential energy of a dipole ZZ in the electric field El(r) of
another dipole Zl a distance r away 1is V”_p - -;2 . ﬁl(r), with El(r)

given by109

E(r) = 3 , (3.9)

A

where r is a unit vector along the 1line joining the centers of the

dipoles, directed from zl to ;2. ﬁl and V are, of course, dependent

on the relative orientation of Zl and 32. One can thus write VF'#

explicitly as

P eE =303 D@ D
V e : (3.10)

B-p 2

For simplicity the case of coplanar dipoles is considered. This situa-
tion 1is pictured in part (a) of Figure 2. The angle between r and 31 is
A

01 and that between r and z2 is 02, while the angle between 31 and ;2 is

(91 + 02). With these definitions equation (3.10) becomes



(a) O vt (b)

R \

Figure 2. Relative orientations of (a) two coplanar dipoles in free space, and (b)
a dipole near a solid and its image within the solid.

%9
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B By
V”_”(r,ﬂl,oz) - ——::?r-— [ cos(01 + 92) - 3 cosolcosﬂ2 ]
)
- —-———;3—— [ sin01 sin02 + 2 cosa1 c0302 ], (3.11)

where 4, = Izil. The force Fr(r;ol,oz) exerted by Hl on ;2 at r in the r

direction, with ¢, and 6§, fixed, is then

1 2

3V(r,01,02)

Fr(r;01,02) - -
ar

)
- —— [ sinf., sinf + 2 c0501 cosf

(3.12)
" 1 2

2 1
The force in equation (3.12) may be either attractive or repulsive,

depending on the values of #. and ¢

1 2° Given such an expression for the
force, the potential energy imparted to ZZ as it is brought from r’ = «
(vhere V=0) to r’=r is given by V(r) = —[© F (xr’;0,,0,) dar’.
Performing this integration on equation (3.12) yields equation (3.11),
as it should.

At this point one can discuss the dipole-image dipole situation,
which is depicted in part (b) of Figure 2. When a dipole lies a distance
Z above a metal surface, a mirror image is formed in the metal a dis-
tance Z below the surface, so that the distance between the center of
the dipole and the center of its image is 2Z. As Figure 5-1b shows, the
mirror-image geometry requires that 01 - 02 = §, In addition, the magni-
tudes of the dipole and its image are equal, so that By = By = b One

can therefore immediately write down the force in the Z direction exer-

ted on the dipole at Z by its image, using equation (3.12):
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- -———-3-E—( 1 + 00520 ) . (3'13)

This force is always attractive. The potential energy of the dipole-
image dipole interaction, that is, the potential energy imparted to the
dipole by bringing it from infinity to Z at some fixed #, can be found

by integrating equation (3.13):

2 z ..
v - 3B (1 4+ cos20) dz
p-ip 16 © 2,4
Cai
---791— (1 + cos?f ), (3.14)
z .

where Cdip = 142/16. The seemingly roundabout procedure of writing down
the force and integrating to find the potential is necessary to obtain
the correct final result; if one simply substitutes 01 - 02 = 0, By = By

= 4 and ¥ = 2Z into equation (3.11l) for V#_p, one obtains Cdip - u2/8,

which 1is wrong by a factor of two. Using the value g = 1.093 Debye for

108

HCl gives C = 0.04662 eV A3,

dip

Based on the above, the overall long-range attraction can be written

as

D + E cos?f
\'J = V + V - , 3.15
IR disp u-ip Z —2° (3.15)
cm 0
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in which

N (') I W ¢} - s
D Cy 7~ Cq + cdip 1.713 eV A3, (3.16a)

- 2 - s,
E 5=C3 + Cgyy = 0.09711 eV AS. (3.16b)

To arrive at the rightmost member of equation (3.15), it is assumed that
the distance Z of the center of the dipole from the surface in equation
(3.14) can be replaced by the height Zcm of the center of mass. The par-
ameter Z0 in the denominator has been included to give increased flexi-
bility in fitting the overall gas-surface potential, as discussed below.
In all the interaction potentials used for trajectory calculations, val-

ues of D and E from (3.16) are used; the only change in V

IR from poten-

tial to potential is in the value of ZO'
The second term used in constructing the HCl-gold potentials is the

short-range center-of-mass repulsion. It has the form

Cy

v - , (3.17)
SR (z -1z )9
cm 0

where C9 is a constant and Z0 is, in most cases, the same parameter that
appears in VLR' Such an expression arises if one assumes Lennard-Jones
repulsions (r_lz) between the gas species and the atoms of the solid,
then approximates the solid as a semi-infinite continuum and integrates
over Iits extent.105 Thevvalues of the parameters C9 and Z0 are deter-

mined by fitting the overall interaction potential Vgs to have certain

features. This 1is accomplished in two steps. First, a specific height
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and orientation of the molecule with respect to the surface are chosen,
and values are assigned to all but n of the potential parameters, where
n=2or 3. Then n equations are simultaneously solved for the n
remaining parameters. For example, if n = 2 then the two unknowms are C

9

and ZO' If n = 3 then some parameter appearing in one or both of the

atom potentials (see below) is determined along with C, and Z.. The

9 0
equations to be solved include in every case Vgs = § and avgs/azcm = 0.
The first of these equations fixes the depth § of Vgs at the specified
height and orientation. The second requires that the potential reach a
minimum with respect to Zcm at the selected height and geometry; this
minimum may or may not be the absolute minimum of vgs' When n = 3, a
third equation is added which establishes some other property of Vgs'
Further details concerning the fitting procedure for each of the inter-
actionlpotentials used in the calculations are provided 1later in - the
chapter.

Remaining to be examined are the various forms used for the atom
potentials. Three types of atom potentials are employed: repulsive expo-
nential, Morse and modified Morse. The exponential repulsion is simply

EXP

Vi - Ai exp(—-ai Zi) s (3.18)

where Zi is the height of atom i above the surface and Ai and a, are

parameters. The Morse potential is

v’f - B, { exp[— 28,(z; —2{N] - 2 exp[- 8,(z; — 2{D] } (3.19)
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in which B and Ziq are parameters., When Z, = Zeq, the Morse

i i
. The modified Morse function

i+ Py

potential obtains 1its minimum value, —Bi
differs from equation (3.19) only in that a factor of cos?f is included

in the attractive portion:

V?M - Bi { expE— zpi(zi -Ziq)] — 2 cos?§ expE— ﬂi(zi -Ziq)] }. (3.20)

This modified Morse potential was employed by Muhlhausen et a1.86 in

their stochastic trajectory study of NO interactions with Ag(lll) and
Pt(111l). The effect of the cos?§ term, where as usual § represents the
angle between the molecular axis and the surface normal, is to ensure
that the minimum of the overall potential occurs when the molecule is
aligned normal to the surface. Except for Bi’ all of the parameters
appearing in equations (3.18) through (3.20) are taken from the litera-
ture or reasonable estimates. Bi’ when it appears, is determined along
with 09 and Zo in the fitting procedure. It should be noted that for a
heteronuclear diatomic molecule such as HCl, the overall potential
should include a contribution from odd powers of cosf. In the present
case, the various atom potentials provide this contribution, as well as
one from even powers of cosf, through the dependence on cosf of the
atomic coordinates Zi which appear in the wvarious exponents.

With the above building blocks, overall interaction potentials for
the HCl-gold system can be put together for use in trajectory calcula-
tions. In this work three poténtials have been used to run trajectories.
The first of these, designated hereafter as the "strongly perpendicular"
EXP

+ V., +V + Vg?. The values of

(SP) potential, has the form VSP - VLR SR u



Table 1. Parameters for the SP potential.
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Potential Term Parameter Value
H atom exponential AH 634.45 eV
repulsion® oy 3.366 AT
BCl 0.2308 eV
Cl atom modified -
b By 1.887 A
Morse potential eq
ch 2.30 A
Center-of-mass 09 41.438 eV
repulsionc Z0 0.587 A

8see equation (5.18).

bsee equation (5.20).

Csee equation (5.17). Z0 also appears in the long-range attraction,

equation (5.15).
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the various parameters for VSP

and oy for the H atom repulsion were taken from the NH3-g01d calcula-

are given in Table 1. The wvalues of AH

tions of Coltrin and Kay75. The modified Morse exponential constant ﬂcl

109

is the same as that used by Ron et al. , while the Cl-surface equili-

brium distance Z:; was estimated from calculations of  Thalogen
interactions with copper110 and silver111 clusters. The modified Morse

depth BC1 was determined along with C9 and Z_ in the fitting procedure.

0
The third equation used in the fit was 82VSP/GZcm2 = k, where k is the
force constant for the molecule-surface vibration. The potential was
constrained to have § = 350 meV with the HCl molecule at Zcm = 2.5 A and
oriented perpendicular to the surface with the chlorine end down. This
is the absolute minimum of the SP potential. The HCl-gold vibrational
frequency was chosen to be 143 em L (for which k = 2.71 eV/A?). The
location and depth of the minimum were reasonable estimates in the
absence of any experimental data; the frequency was estimated from
reference 111.

A contour plot of the strongly perpendicular potential VS is pre-

P
sented in Figure 3, In this and similar figures to follow, 4 is the
angle between the molecular axis and the surface mormal (not to be con-
fused with the Euler angle ), and 6 = 0° means that the HCl molecule is
aligned normal to the surface with the chlorine end down. Only the range
0° = 6§ = 180° is presented because the potential is symmetric about
§ = 0°. The force on the molecule in the Zcm direction is given by
—BVSP/BZcm, while the torque around the center of mass is —6VSP/60;

hence, contour lines parallel to the # axis contribute to the force but

not to the torque, and the converse is true for lines parallel to the
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Ze= (Angstroms)

., .

0 (degrees)

Zea (Angstroms)

8 (degrees)

Figure 3. Contour plots of the SP potential. Contour lines are distin-
guished as follows: dotted, multiples of 500 meV; solid, mul-
tiples of 100 meV; short-dashed, odd multiples of 50 meV;
long-dashed, odd multiples of 25 meV; dot-dashed, multiples of
5 meV. A few contours are labeled (in meV) for reference.
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Zcm axis. The strength of the force and/or torque at a particular point
is determined by how closely spaced the contour lines are. Figure 3
indicates that the SP interaction exhibits relatively strong torques
toward f# = 0° at all values of # when Zcm is less than about 4 A (this
is the origin of the name "strongly perpendicular"). The strength of the

torque is indicated by the sharp increase in V_, as 6 increases through

SP
its range. At larger values of Zcm’ a much weaker torque toward § = 0°
or # = 180° (depending on whether § is greater or less than 90°) is
exerted on the molecule. The long-range torque is due to the anisotropic
part of the long-range term in the potential, VLR' The strength and
extent of the short-range torque is due to the magnitude of the H atom
exponential repulsion, while the fact that the torque is experienced for
all ¢ arises from the cos?f factor in the modified Morse potential.

The second potential used for trajectory calculations is the "weakly
perpendicular" (WP) potential, VWP - VLR + VSR + VEXP + V%?P. Here the
modified Morse potential on the Cl aﬁom has been replaced by an
exponential repulsion and the strength of the H atom repulsion has been
reduced, resulting in a decrease in the strength and range of the short-
range forces which align the molecule perpendicular to the surface
(hence the name "weakly perpendicular"). Constants for VWP are listed in
Table 2. The parameters in the exponential repulsions were determined by
calculating Morse parameters for each atom using chemisorption data,
then wusing only the repulsive part of the resultant Morse potentials,
with the equilibrium distances Ziq set to zero., Results of theoretical

calculations for the chemisorption of chlorine on silver111 and hydrogen

on gold112 were used in this process. The values of 09 and Z0 were found



Table 2. Parameters for the WP potential.
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Potential Term Parameter Value
H atom exponential AH 2.45 eV
repulsion® oy 2.12 A% P
Cl atom exponential ACl 2.59 eV
repulsion® agy ' 1.586 A2 b
Center-of-mass 09 6.76 eV
repulsion® Zo 0.75145 A

8see equation (5.18).

btwice the value of the Morse exponential parameter obtained from

chemisorption data.

®see equation (5.17). Zo also appears in the long-range attraction,

equation (5.15).
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by fitting the potential to have a well depth of 5 kcal/mole (%220 meV)
at 2 = 2.33 A and 4 = 110.7°. The 5 kcal/mole well depth was
determined in the HCl/Au experiments.1 (This wvalue was not used in
constructing the SP potential described previously, because the calcula-
tions for that potential were performed before the experiments were
done.) The choice of Zcm and @ corresponds to the orientation the
molecule would have 1if the distances of the H and Cl atoms from the
surface were equal to their equilibrium distances as determined from the
chemisorption data. The intention was that the global minimum would 1lie
at this geometry; however, the actual minimum was found to be 284 meV at
Zcm = 2.30 A and 0 = 0°. A contour plot of the WP potential comprises
Figure 4. Comparing this with Figure 3 shows that the magnitude of the

short-range orienting forces has been greatly reduced in Vw , Since the

P
potential does not rise nearly as abruptly as #§ increases for a given
value of Zcm' In addition, the fact that the contour lines in the poten-
tial well stop forming closed loops much closer to the surface in Figure
4 1indicates that the range of these torques has decreased. Also note-
worthy is that the anisotropy (the slope with respect to #) at the hard
wall for this interaction is much less than for the SP potential, par-
ticularly for # = 90°; this reflects the decrease in the strength of the
H atom repulsion. The smaller hard-wall anisotropy means that molecules
which actually strike the wall with the hydrogen end down experience
much less torque during the encounter.

The third gas-surface potential employed in these studies, labeled

v + V., +

as the "almost parallel" (AP) potential, is given by VAP = Vig SR
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Vg + Vgl. This potential 1is so0 named because the minimum of the
potential occurs with the HCl molecule oriented nearly parallel to the
surface; such an orientation at the minimum was achieved by putting

Morse potentials on both atoms. The comstants used in VAP are listed in

Table 3. The Morse parameters ﬂi and z°? are the ones calculated from

i
111,112

chemisorption data for use in the WP potential. The depth

parameter B = BH - BCl was determined along with C, and Z, in the fit-

9 0
ting procedure; in the fit the same depth B was used for each atom,

since the well depths determined from the chemisorption data were very

similar (compare the values of AH and Ac in Table 2). The third equa-

1
tion used in the fit was GVAP/a(cos0) = 0, which requires the specified

geometry to be a minimum with respect to 6. Also, for this potential the

parameter Z0 was set to zero in the long-range term VLR’ so that it

appears in the overall potential only through the VSR term. The AP

potential was fit to have § = 217 meV (the experimentalivalue) at Zcm =
2.33 A and 4 = 112.3°. It was found that the values of 09, Z0 and B were
very sensitive to the value of # used in the fit for # near 110.7°, so
that small changes in # produced large changes in the parameters. This

enabled # to be adjusted such that the value of Z, obtained in the fit

0
was very nearly zero (3 X 10_'5 A), which was convenient in that the

trajectory code did not have to be modified to remove Z, from the long-

0
range term in the potential. Figure 5 contains a contour plot of VAP'
The figure clearly shows that close to the surface (Zcm <3 A) this
potential turns the molecule toward a parallel alignment, especially for

6 2 45°, while at large distances the long-range anisotropy rotates the

molecule toward the normal. At intermediate heights (between about 3 and
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Table 3. Parameters for the AP potential.

Potential Term Parameter Value
BH 0.06229 eV
H atom Morse -
a ﬂH 1.06 A
potential eq
Zo1 1.89 A
BCl 0.06229 eV
Cl atom Morse -1
a ﬁCl 0.793 A
potential e
zc‘ll 2.34 A
Center-of-mass C9 89.094 eV
repulsion® Zo 0.0000 A

85ee equation (5.19).

bsee equation (5.17). Z0 is also set to zero in equation (5.15).
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6 A), the potential rotates the molecule toward § = 180° (H end down)
almost exclusively. The anisotropy at the hard wall is about the same as

that for the WP potential, although a little larger at high values of 4.

B, Computational Details

The actual implementation of the HCl-gold calculations 1s quite
straightforward. For each of the interaction potentials described in the
previous section, two groups of four sets of trajectories were run. Each
set in the first group, from which rotational state distributions were
- extracted for comparison with the experimental results, consisted of
4000 trajectories and employed Monte Carlo selection of the initial
diatom orientation. The set size was sufficient to bring the Monte Carlo
error in the probability, given by equation (2.36), to less than 10% for
any state having probability greater than 0.025. Each set in the second
group, from which excitation functions (final J as a function of initial
diatom orientation) were obtained, systematically selected the initial

polar orientation angle 01 from its range 0°s 6, < 180° in steps of 0.1°

i
(1801 trajectories total). Each trajectory had initial rotational quan-

tum number Ji = 0. In addition to these, another group of four 4000-

trajectory sets was run for the WP potential, which used Monte Carlo
selection for both the initial diatom orientation and the initiai rota-
tional quantum number. The four sets of trajectories in each of the
above groups were distinguished by the value of the incident energy ET;

the values of ET were 100, 350, 700 and 1000 meV. Each set used an
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initial incidence angle 91 = 0° (normal incidence). The diatom was in

all cases treated as a rigid rotor with internuclear distance con-

strained to be the equilibrium distance r, = 1.2746 A.93c The atomic
masses used in the calculations were my = 1.0078 amu and My = 34.9688
amu. The HCl spectroscopic constants93c were Be = 10.5909 cm_i,

a_ = 0.3019 em L and D_ - 5.32x10% cm L.

The procedure for computing a set of trajectories consists of the
following steps. At the start of the set, the molecular constants for
HCl and the parameters for the gas-surface interaction potential of
Interest are input to the trajectory code, along with the values of ET’
ei and Ji (unless Ji is selected using the Monte Carlo procedure). Then
the individual trajectories are run, To do this, initial conditions are
established as described in section B of Chapter 2, based on the values
of ET' 9i and Ji; the values of any other necessary quantities are ran-
domly or systematically assigned by the program, except for the initial

height Z vhich is 20 A for all trajectories. When J

in’ { is randomly
selected, the required cumulative probability distribution is built from
the experimental probability distribﬁtion of states in the incident HCl
molecular beam (given in section A of Chapter IV). To select the HCl
orientation angle 01 systematically, the Euler angles # and ¢ are set to
90° and 0°, respectively, and ¥ is varied from -90° to 90° in steps of
0.1°. After the initialization, Hamilton's equations of motion (2.28)
are integrated, with the rigid-rotor constraint given by equations
(2.30) and (2.32), using the appropriate gas-surface interaction poten-

tial. The end of the trajectory occurs when the diatom reaches a height

of 20 A above the surface after the collision; all HCl/Au trajectories
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end in this manner since in the rigid-surface approximation molecules
cannot become permanently trapped on the surface. When the trajectory is
over, the final rotational quantum number Jf and the final rotational
energy Eﬁ are extracted from the coordinates and momenta. After the
entire set of trajectories has completed, a histogram analysis is per-
formed to compute final rotatiomal étate distributions and Boltzmann
plots, and the average final rotational energy for the set is also eval-
uated. Section D of Chapter 2 describes the analysis procedures,
Numerical integration of the trajectories was accomplished using the
DEROOT integrator subroutine packagegg, which automatically adjusts its
order and step size to control the error. The integrator typically

achieved energy conservation of better than 0.005% at E_, = 100 meV and

T
better than 10_4% at the higher incident energies used. The calculations

were performed on the IBM 3081D at the Ohio State University and on the
Cray X-MP at the Ohio Supercomputer Center in Columbus, Ohio. A typical
set of 4000 trajectories at ET = 100 meV took roughly 32 CPU-minutes on
the IBM and about 5 CPU-minutes on the Cray; at ET = 1 eV these times

decreased to 15 minutes on the IBM and 2.3 minutes on the Cray.



CHAPTER IV

RESULTS OF HCl/Au TRAJECTORY CALCULATIONS

This chapter presents the results of the QCT calculations performed
on the scattering of HCl from gold using the model interaction poten-
tials described in the previous chapter, and compares them to the exper-
imental findings of Kay and Lykke.1 Section A contains an overview of
the experimental results. The results of the trajectory calculations are
tﬁen described in Section B. The discussion in that section begins with
a brief summary of the NHS/Au trajectory study of Coltrin and Kay,75
which provided a starting point for thinking about the HC1l/Au problem.
Then, for each of the interaction potentials, calculated final rota-
tional state distributions are analyzed, and the associated Boltzmann
plots and average final rotational energies are compared with the exper-

imental ones. Finally, Section C contains a discussion of the conclu-

sions which can be drawn from the work.

A. Experimental Results for HCl/Au Scattering

The experiments which motivated the present calculations are those
conducted by Kay and Lykke1 on the scattering of HCl from the Au(1lll)
surface. The incident HCl molecules were produced in seeded supersonic

molecular beams, wusing various carrier gases to obtain different

83
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incident energies, Velocities and internal states of the scattered mole-
cules were determined using time-of-flight (TOF) and multiphoton ioni-
"zation (MPI) spectroscopy, respectively. Experiments were conducted for
several surface temperatures between 100 K and 800 K, The pertinent
results of these experiments are presented in Figures 6 through 9, which
come directly from reference 1. The remainder of this section describes
these results.

Figure 6 shows the multiphoton ionization (MPI) spectra of the inci-
dent and scattered HCl molecules for a typical experiment, along with
the MPI spectrum of HCl gas at 300 K. In that experiment, the surface
temperature was 300 K, the incident beam (middle panel of Figure 6) had
a translational energy of 17.9 kcal/mole, or 776 meV, and the approxi-
mate rotational "temperature" of the molecules in the beam was about 10
K. The only rotational states with appreciable population in the inci-
dent beam were J = 0, 1 and 2; the percentages of each of these states
in the beam (determined from Figure 6) were 85.2%, 10.4% and 4.4%, re-
spectively. These percentages did not vary significantly over the range
of translational energies studied. The final state distribution of the
scattered HCl (bottom panel) appears Boltzmann-like, with a rotational
"temperature" somewhat in excess of the surface temperature of 300 K,
based on a comparison with the static gas spectrum (top panel). The fact
that the final rotational temperature does not equal the surface temper-
ature suggests that the scattering proceeds via a direct rather than a
trapping/desorption mechanism. Boltzmann plots of the experimental final
state distributions for several incident energies of motion normal to

the surface are presented in Figure 7. The fact that these are
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relatively 1linear reflects the resemblance of the distributions to
Boltzmann distributions. In light of the calculations to be discussed
later in the chapter, it is interesting to note that a slight peak at Jf
= 0, which evinces a zero-energy rotational rainbow, appears in the
Boltzmann plots at ET = 9,0 kcal/mole (390 meV) and at ET = 14,2
kcal/mole (616 meV), but not at all at ET = 2.4 kcal/mole (104 meV). At
higher values of Jf the Boltzmann plots show a very faint shoulder,
which may indicate the presence of a rotational rainbow at nonzero rota-
tional energy.

A plot of the experimental average final rotational energy of the
scattered HCl versus the incident kinetic energy of normal motion is
presented in Figure 8. The graph shows that the degree of rotational
excitation depends linearly on the incident energy of normal motion; the
slope of the least-squares line obtained from the data is 0.08, indica-
ting that about 8% of the incident translational energy is converted to
rotational energy in the scattering process. Also, the rotational exci-
tation is independent of the energy of motion tangential to the surface,
since Figure 8 indicates that experiments conducted with the same normal
energy but different tangential energies (different incidence angles)
yielded essentially the same value for the mean rotational energy. This
result indicates that the surface is relatively flat, since tangential
motion is unaffected by a collision with a flat surface. Thus the flat-
surface approximation used in these calculations would appear to be
acceptable for this case. Another important piece of information which

one can extract from Figure 8 is an estimate of the average well depth

of the gas-surface interaction potential. To do this, one assumes (by



700 T | T 1 T 1 LI
- ®
]
EE 600 |- v
> ®
>
500 |- | -
o d
w
&
400 |- -
ol | ¢
=
prem. . L
O 300 - HCI-Au (111)
" v Ty =300 K
5 200k 0=6, .| -
o° V¥ 30°
< | * ' 45° -
ﬁ 100 - 60°
= _ . .
0 1 L | ~ 1 1 | | |
0 2 4 6 - 8 10 12 14 16 18

NORMAL KINETIC ENERGY (kcal/mole)

Figure 8. Experimental dependence of the average final rotational energy of scat-

tered HC1 on the incident energy of normal motion. The figure is taken
directly from reference 1.

88



89

:é: | | | | T T‘"l
S 35 Mmerra (11 1) ]
o 0,=0,=4s°
<
S a0 [Ts=300k
> J=3
O
o
% 25| -
g
od
;; 20 |- -
o
=
- 15 | -
7
=
P
= 10 |- -
o ,
g E¢= (1.020.2) E;
w 5 - . -
-
-
<
QO 0 1 1 1 1 1 ]
» o 5 10 15 20 25 30
INCIDENT TRANSLATIONAL ENERGY
(kcal/mole)

Figure 9. Experimental dependence of the translational energy of scat-
tered HCl on the incident translational energy. The figure is
taken directly from reference 1.



90

analogy to the case of a square-well potential) that the molecule
strikes the surface with an energy equal to the sum of the incident
translational energy and the well depth. This suggests that the value of
<E§> where E, = 0 (i.e. the y-intercept of the least-squares line in
Figure 8) is 8% of the well depth, based on the sldpe of the least-
squares line in Figure 8. The value of the well depth obtained by this
procedure is 5 kcal/mole (217 meV). A plot of the final translational
energy of molecules scattered into Jf = 3 as a function of the incident
translational energy is shown in Figure 9. As noted on the figure, the
graph indicates that, to within *20%, the final translational energy is
the same as the incident energy. This suggests that only a small amount
of translational energy 1is transferred to the surface lattice, which

implies that using a rigid-surface model for the calculations may not be

a bad approximation for this system.

B, Results of Quasiclassical Trajectory Calculations

This section is devoted to a presentation of the results of QCT
calculations on the HCl/Au system. After an introductory discussion of

previous studies on the scattering of NH, from gold, computations

3
involving the SP, WP and AP potentials, respectively, are described in
some detail. The discussion for each potential starts by explaining how
features in the calculated probability distributions at various incident
energies are related to the interaction potential; then the computed

Boltzmann and average final rotational energy plots for that potential

are compared to the experimental ones given in Figures 7 and 8.
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1. Ammonia/Gold Scattering

In their experimental study of ammonia scattering from gold, Kay and
coworkers76 observed a zero-energy rotational rainbow, that is, a large
probability for scattering into states of low rotational energy. They
also found a dynamic propensity for scattering into rotational states
with low wvalues of the K quantum number; such states correspond to
end-over-end tumbling motion of the ammonia molecule. To qualitatively
explain these results, Coltrin and Kay75 employed a gas-surface inter-
action potential containing a long-range anisotropic term, plus short-
range atomic potentials (exponéntial repulsions for the H atoms and a
modified Morse for the N atom) designed to ensure that the potential
minimum occurred with the nitrogen end closest to the surface and the
molecular symmetry axis perpendicular to the surface. The resulting
trajectory calculations showed that the long-range anisotropy serves to
orient the molecule with its symmetry axis normal to the surface, lead-
ing to a ‘'"rocking" motion about this orientation. The amplitude and
period of this motion decrease as the ammonia molecule approaches the
surface, due to the increasing steepness of the rocking potential, so
that it impacts the repulsive wall iIn an essentially perpendicular
alignment. Since by symmetry such a collision can exert no torque around
the center of mass, the molecule 1leaves the 'surface without being
rotationally excited by the collision. Thus, for a large percentage of
initial orientations (increasingly large as the translational energy
decreases), molecules are scattered into states of low rotational

energy, vwhich leads to the experimentally-observed zero-energy
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rotational rainbow. The majority of the other initial orientations,
while 1lying so far away from the normal that there is not enough time
for the molecule to be aligned completely, are also sufficiently
affected by the long-range anisotropy to create the observed propensity
for preferential scattering into tumbling rotational states.

Like ammonia, HCl has a "hydrogen end" and an "electron-rich" end.
Hence it was tﬁought that, as in the ammonia case, a potential having a
long-range anisotropy and forcing the molecule to orient itself normal
to the surface at the minimum, with the electron-rich (chlorine) end
down, would adequately describe the HCl-gold interaction. Thus the
"strongly perpendicular" (SP) potential discussed in Chapter III was
developed, by analogy with reference 75, as an initial attempt to model
the interaction potential. It was anticipated that using this potential
function to govern the scattering would, by analogy to the ammonia case,
produce a zero-energy rainbow due to orientation of the HCl molecule by
the long-range anisotropic potential. However, it was also expected that
a peak would appear in the probability distribution at some high value
of the rotational quantum number, since the -short-range orientational
forces would cause the molecule to flip over if it approached with the
hydrogen end pointing toward the surface. This behavior was observed in
the éalculations by Muhlhausen et al. on the scattering of NO from
platinum and silver, in which a similar gas-surface potential was
used.86 Such a high-energy feature did not appear in the ammonia case,
due to the fact that the hydrogen atoms in NH3 do not lie on the sym-
metry axis. The repulsive interactions of these off-axis H atoms prevent

the ammonia molecule from flipping over, so that low-torque
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configurations are obtained in the case of NH3 scattering regardless of
which end of the approaching molecule is pointed toward the surface. As
the discussion in the remainder of Section B will dempnstrate, the fact
that no such barrier to reorientation between § = 0° and § = 180° exists
in the HCl case plays an important role in the scattering dynamics, at
léast for the potentials used in this work. First to be considered are
the results of calculations using the SP potential, for which the NH3/Au

work just discussed served as a starting point.

2. Calculations Using the SP Potential

Figure 10 presents final rotational state distributions computed
using the SP potential at various incident energies. As noted in Section
B of Chapter III, the initial rotational quantum number for these cal-
culations (as well as those discussed below involving the WP and AP

potentials) was J, = 0. The SP distributions largely bear out the expec-

i
tations mentioned in the previous paragraph. The prominent features of

the distributions are: a peak at low rotational energy (either at J 0

g™
or spread among the first few rotational states); a peak at higher rota-
tional energy; and a high rotational energy "tail" of sparsely populated
states. The dynamical origin of these features is discussed in the fol-
lowing paragraphs. To facilitate the analysis, the corresponding excita-
tion functions, which show the quasiclassical final rotational "quantum

number" Jf as a function of the initial orientation angle 01, are given

in Figure 11.
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The large peak at Jf = 0 in the distributions corresponds to a zero-
energy rotational rainbow. As mentioned in Chapter I, rainbows occur
whenever the excitation function has an extremum; the zero-energy rain-

bow arises when the extremum is a minimum having the value J_. = 0. As

£
Figure 11 indicates, the excitation functions do have such minima at 91
= 0°, and, except for ET = 1 eV, the rotational excitation remains very
small for a large range of 01 near 0°. (As in Chapter III, 4§ = 0° means
that the chlorine end points directly toward the surface.) The dynamical
origin of the zero-energy rainbow lies in the long-range and short-range

orienting forces, which align molecules having small §, so that they

i
strike the surface nearly perpendicularly with the chlorine end down.
Such collisionsg impart only a small torque to the diatom, as the contour
plot of the SP potential shows (see Figure 3, in Chapter III), leading
to small rotational excitation.

As the incident energy increases, the range of initial orientation
angles near 0° which leads to elastic scattering grows smaller. Thus,
for ET = 100 meV, the Jf = 0 feature is due almost entirely (90%) to
trajectories having 0i between 0°and 80°. For ET = 350 meV, the corre-
sponding range is 01 less than 49°, and at 1 eV it shrinks to 01 less
than 23°. Two factors contribute to this effect. One of these 1s that as
the velocity of the diatom increases, the orientational forces have less
time to turn the molecule toward the low-torque configuration. Second,
for a given anisotropy about the center of mass of the molecule, an
impact at higher velocity creates more torque, which leads to higher

excitation. The overall result is that the angle range that contributed

to elastic scattering at ET = 100 meV produces scattering into the first
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few rotational states at higher values of ET. This is easily seen by
comparing the 0° < 01 < 80° portion of the excitation functions, or by
looking at the low-Jf part of the rotational distributions. At ET = 350
meV, for example, 86% of the peak at Jf < 2 arises from trajectories
having initial orientations between 0° and 82°, while at ET = 1 eV the

0° to 80° range provides 72% of the peak at J 3.

£ =

Besides the alignment toward 1low-torque configurations, there is
another dynamical effect that contributes to low rotational excitation
for this interaction potential. This is the damping of rotational
excitation of the molecule by the strong short-range orientational for-
ces as the molecule leaves the surface after the collision. Because the
potential energy Increases so rapidly as § goes from 0° to 180° (see
Figure 3), molecules that are excited by the collision with the surface
can in many cases lose almost all of their rotational energy as they
rotate toward higher # while the molecule leaves the surface. This is an
~example of the cancellation of the anisotropies of the attractive and
repulsive parts of the interaction potential, which has been observed

34,41

previously in close-coupling and sudden calculations. In accord

with the previous work, the degree of cancellation depends on the col-

lision energy; nowhere is the behavior more evident than in the ET = 700

meV case. In addition to the Jf = 0 ninimum for 01 near 0°, the excita-
tion function for this energy shows another broad minimum for the range

104° < 01 < 135°, due to damping by the short-range forces of the inter-

action potential. No such minimum appears in the ET = 350 meV excitation
function; at 1 eV collision energy the minimum is much narrower. Only

42% of the large J,. = 0 peak at E

£ = 700 meV comes from low-torque

T
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collisions (initial 6 less than 350°); trajectories experiencing the
damping effect contribute 57% to this peak. (The fact that the damped
trajectories make a larger contribution, even though they come from a
narrower range of initial angles, is due to the sinf weighting of the
initial orientations in the Monte Carlo selection process.)

The peaks at higher values of J_. in the distributions of Figure 10

f

T ™ 100 meV, Jf =7 at ET = 350 meV and Jf =

9 at ET = 1 eV) are rainbow peaks which arise not from an interaction

(in particular, Jf =5 at E

with the repulsive part of the potential, but rather from rotational
excitation of the HCl1l molecule by the short-range orienting forces as
the molecule leaves the surface. In these cases, the details of the tra-
jectory before and during the collision with the surface are such that
the molecule stops rotating while still close enough to the surface that
the short-range forces can impart to it significant rotational excita-
tion as it recedes. Trajectories exhibiting this behavior contribute
86%, 97% and 98%, respectively, to the three peaks listed at the start
of this paragraph. It should also be noted that the range of Gi produ-
cing the Jf = 7 peak at ET = 350 meV (114° to 147°) is nearly twice as

large as that contributing to J_. = 5 at ET = 100 meV (101° to 119°) or

£
to Jf = 9 at ET =1 eV (90° to 107°), while the actual number of tra-

jectories 1is only greater by about 40 percent. Again, this reflects the

sinf weighting of the initial orientation angles. The peak at J_. = 3 and

£
4 in the ET = 700 meV rotational distribution is due primarily to two

contributions, which correspond to the two humps in the ET = 700 meV
excitation function between 01 = 50° and 01 = 105°. The 1leftmost of
these humps, which accounts for 50% of the scattering into J_ = 3 and 4,

f
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lies in what has earlier been referred to as the low-torque regime (0i <
80°); the right-hand hump, which contributes 42%, is in the same range
of 91 (between 85° and 98°) from which the rainbow peaks just described
for the other collision energies originate. The fact that the rainbow
due to rotational excitation by the short-range forces occurs in this
instance at such a small value of Jf (commensurate with the low-torque
excitation) is another manifestation of the greater degree to which the
anisotropies cancel at this collision energy.

The remaining outstanding feature of the distr;butions in Figure 10
is the "tail" of sparsely populated rotational states of high energy.
Trajectories ending up in these final rotational states begin with the
HC1 molecule oriented such that the hydrogen end is pointed almost
directly toward the surface (initial § greater than 143, 167, 150 and
162 degrees at ET = 100, 350, 700 and 1000 meV, respectively). These
molecules are rotated toward, or in some cases, past § = 180° by the
long-range orienting forces, until the molecule is about 4 A from the
surface. At this point the short-range forces take over, rotating the
diatom strongly toward the chlorine-end-down arrangement. However, the
resulting rotation is so fast that after the § = 0 point has been passed
the short-range forces cannot stop the rotation completely. Thus the
hydrogen end of the molecule has a strong repulsive interaction with the
surface, which sends it rotating the other direction toward another
hard-wall interaction. This kind of motion is called "chattering".62 As
the molecular center of mass approaches and leaves the surface, the
molecule may experience three or more such chattering collisions. The

final angular momentum imparted to a molecule which chatters 1is very
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sensitive to the initial orientation, as evidenced by the complicated
structure (many extrema) of the excitation functions in Figure 11 for
the appropriate range of angles. Similar excitation functions were cal-
culated by Polanyi and Woif62‘for HF/surface scattering using a model
repulsive potential. The extrema in the excitation function, which
produce singularities in the probability distribution, account for the
= 12 at E, = 700 meV and

£ T

Je =16 at E; =1 eV. Overall, the states arising from the chattering

behavior are sparsely populated, since the corresponding trajectories

peaks in the tail of high-Jf states, such as J

are less probable due to the sinf weighting of initial orientations. It
is evident that the multiple encounters with the surface ultimately
limit the amount of rotational excitation which can be obtained for the
SP potential, since the highest rotational state populated is lower than
that allowed by energy conservation at each of the collision energies
used here except the lowest, 100 meV. At this energy the scattering into

Jf = 7 and 8 is due to chattering collisions. The peak at J_. = 7 is due

f

i S 163° in the ET = 100 meV excitation

function. The population in J_ = 8 is reduced relative to J_. = 7 due to

f 3
61,62
In this case, the diatom acquires so much rota-

to the "plateau" at 144° < §

a trapping cutoff.
tional energy during the collision that not enough is left in transla-
tion to escape the potential well. The molecule is temporarily trapped
in the well until a subsequent interaction with the surface transfers
enough energy back linto translation that the molecule can escape. The
net result of this rotational trapping is to convert the highest J

f

state into a random distribution of rotational states whose average Jf

is smaller. The portions of the excitation function where the curve is
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~broken correspond to the 01 regions leading to rotational trapping (130°

= 01 < 140° and 6, = 173°).
i

In order to discover how important the long-range orientational for-
ces are in these calculations, sets of trajectories were run at the same
incident energies as.above, with the anisotropy constant E in the long-
range term of the potential, equation (3.15), set to zero. The resultant
probability distributions are presented in Figure 12. At the higher
incident energies, 700 meV and 1 eV, the distributions are essentially
the same as those in Figure 10. The major features are 1located in the
same places, with differences only in the relative heights of peaks. For
example, at E_ = 1 eV, the scattering into Jf = 0 drops by 40 percent,

T

and the low-energy peak is at J. = 2 instead of J. = 3; at E

f f

the Jf = 0 peak loses some intensity to Jf

at the expense of Jf = 3, At the lower incident energies, especially at

T 700 meV,

= 1 and 2, while Jf = 4 grows

100 meV, the changes are more pronounced, which is not surprising since
at the lower velocities the long-range forces have more time to exert
their influence on the molecule. At ET = 350 meV, the most noticeable
changes after turning off the long-range anisotropy are that the popula-
tion of the Jf = 1 state grows at the expense of those at 0 and 2, and

that the peak at Jf = 7 spreads out among J_. = 5 through 7. At ET = 100

£
meV, significant changes occur. Over half of the trajectories from the
low-torque orientation range which gave elastic scattering in the pres-
ence of the anisotropy contribute to Jf = 1 in its absence; also, over
half of the orientations that contributed to the peak at Jf = 5 now lead

to trajectories experiencing damping by the short-range forces, which

ield J_. = 0. The large peak at J. = 4 without the 1long-range forces
y £ £ g g
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comes mostly from the range of orientations that formerly yielded the
peak at Jf = 7. A consistent theme underlying all these changes is that
the scattering into states both at Jf = 0 and at the highest values of
Jf decrease in favor of scattering into states having intermediate Jf
values, This is easily explained by the fact that the long-range aniso-
tropy rotates the HCl molecule toward normal alignments (# = Q0 or 180°),
which lead to the production of the lowest or highest final rotational
states. Similar observations were made by Coltrin and Kay75 in their
study of ammonia/gold scattering.

Boltzmann plots for the rotational distributions caléulated using
the SP potential are presented in Figure 13, A comparison of these with
the experimental ones in Figure 7 clearly demonstrates that the SP po-
tential does not accurately reflect the true potential. The numerous
features in the calculated plots are absent in the experimental plots,
and the variation of the calculated populations as the rotational energy
is 1increased covers twice as many orders of magnitude as that for the
experimental results. Figure 14 contains a plot of the average final
rotational energy of the SP distributions versus the incident energy.
The slope of the least-squares line describing the calculated results
has a slope of 0.016, compared to 0.08 for the slope of the experimental
fit. This reflects an overestimation of elastic and nearly elastic scat-

tering by the SP potential, compared to the actual gas-surface interac-

tion.
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3. Calculations Using the WP Potential

Since the potential initially chosen to represent the HCl-gold
interaction did not yield results in accordance with the experimental
data, a second one was developed and tested. This is the "weakly perpen-
dicular" (WP) potential. Because the short-range forces seemed to play
the dominant role in the SP case, this was the part of the interaction
potential which was changed. As discussed in Chapter III, the magnitude
and extent of the short-range orienting forces has been greatly reduced
in the WP potential compared to the SP, and the anisotropy of the
repulsive wall 1is much less. The final rotational state distributions
resulting from the WP potential are presented in Figure 15, and Figure
16 contains the corresponding excitation functions. The most striking
features of the distributions in Figure 15 are the prominent Jf = 0
peaks that appear at the lower two incident energies, and the relative
smoothness of the distributions, particularly for collision energies
above 100 meV. These characteristics are discussed in the following
paragraphs. -

For ET = 100 and 350 meV, there is a peak at Jf = 0, corresponding
to a zero-energy rotational rainbow. As indicated by the excitation
functions for these incident energies, the peak in the ET = 100 meV
distribution is due entirely to initial orientations having 01 =< 84°,
while at E, = 350 meV it comes from the range #, < 53°. At the higher

T i

incident energies, the peak in the probability distribution at Jf -0

has disappeared, but the excitation functions do show that de/d0i = 0

at 0i = 0°, indicating the presence of a rainbow. This is manifested by
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the peaks at ER = 0 in the Boltzmann plots at these energies, shown in
Figure 17. The orientations contributing to Jf = 0 scattering at ET =-
700 meV and 1 eV are those having 01 less than 26° and 19°, respec-
tively. The reasons that the range of orientations leading to elastic
scattering steadily decreases as the incident energy increases are the
same as for the SP calculations: orienting forces have less time to work
as the incident energy increases, and more torque is exerted at higher
collision energies for a given anisotropy.

The decreased strength and range of the short-range orienting forces
in the WP potential manifest themselves by the relative smoothness of
the final state distributions; absent are the abrupt peaks at higher
values of Jf which appeared in the SP case. Those sharp features arose
in the previous calculations because of the competing tendencies of the
strong short-range forces of the SP potential to damp and excite rota-
tion. In the present calculations, however, the weaker short-range
forces contribute only to rotational excitation, for trajectories having
initial orientation angles greater than the cutoff for scattering into
Jf = 0. This occurs because outside of the Jf = 0 range, the short-range
forces, which act less strongly over a shorter distance than in the
previous case, cannot spin the molecule all the way to 4 = 0 degrees
before it collides with the surface. Consequently, not only does the
diatom strike the repulsive wall with a geometry that excites rotation
toward the normal, but it continues to be rotated toward § = 0 by the
short-range forces as it recedes from the surface (see the contour plot
of the WP potential, Figure 4, in Chapter III). Even if the molecule

passes the perpendicular configuration after the impact, the net effect
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of the short-range forces is to enhance any rotational excitation cre-
ated by the collision with the hard wall. The contributions to rota-
tional excitation created by the orientatioﬁal forces and by the impact
with the repulsive wall both increase uniformly as the initial orienta-
tion increases, for all the incidence energies used except 100 meV; the
shapes of the excitation functions for these energies reflect this fact.
The result of this uniform behavior is a relatively smooth variation of
the distribution of final J states. The maxima at intermediate J values
are due both to the deviations of the excitation functions from 1linear-
ity and to the fact that these states are produced from trajectories
having initial orientations near # = 90°, where sinf is largest.

The considerations of the previous paragraph apply in general to the
ET = 100 meV case, although matters are complicated somewhat by the
stronger influence of the orienting forces at this eﬁergy, as well as by
the fact that trajectories starting with 91 greater than abouﬁ 130° are
rotated past ¢ = 180° by the long-range orienting forces. The more pro-
nounced structure in the ET = 100 meV excitation function results from
this added complexity. The two extrema in the excitation function
between #, = 90° and §

i i

tribution at Jf = 4 and 5, arise from competing excitation and damping

of rotation as the molecule leaves the surface. The structure of the

= 120°, which contribute to the peak in the dis-

excitation function for 0i = 120° is due to the effect of the long-range
orienting forces of the potential. As mentioned above, the short-range
forces of the WP potential produce rotational excitation, the magnitude
of which depends on the orientation of the diatom when these forces

become dominant (at roughly 4 A above the surface). As 01 increases from



111

120°, the long-range forces have rotated the molecule to near § = 180°
by the time it reaches 4 A, so that the rotational excitation increases
dramatically, finally leading to rotational trapping. As 01 continues to
increase, Jf decreases to a minimum wvalue (at 01 = 148°), since the
molecule rotates past § = 180° on approach, and has some smaller value
of § when it reaches 4 A. Finally, as 01 approaches 180°, the orienting
forces at long range become very weak, so that again the molecule has ¢
nearer to 180° at 4 A, and the rotational excitation increases. The
large population in Jf = 6 is due to the minimum at 01 = 148°; the
population in Jf = 8 is cut off by the rotational trapping, as it was
for the SP potential at ET = 100 meV.

Comparing the Boltzmann plots for the WP potential, in Figure 17,
with the experimental results from Figure 7 shows a few similarities,
particularly between the ET = 700 meV plot in Figure 17 and the ET -
14.2 kcal/mole (616 meV) plot in Figure 7. These are both relatively
linear at higher rotational energy, and show a small peak near ER - 0,
Also, the WP result shows about the same number of populated states
(Jmax = 16) as the experiment (Jmax = 15). However, the slope of the
calculated plot is greater in magnitude than the experimental one, indi-
cating that the overall rotational excitation is not As great for the
calculated distribution. This is consistent with the fact that the plot
of the average final rotational energy versus incident energy for the WP
potential, given in Figure 18, shows that this interaction generally
underestimates the rotaotational excitation produced by higher collision

energies. Examination of the contours of the WP potential in Figure 4

shows that this underestimation occurs because the repulsive wall
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becomes more isotropic as the energy increases.

Boltzmann plots for the lower incident energies are less similar to
the experimental results, most notably in the 1large zero-energy peak
which appears in the calculated plots but not the experimental ones.
Both the SP and WP potentials, for which the equilibrium geometry has
the molecule normal to the surface with the chlorine end down, predict
that the zero-energy peak should increase as the collision energy
decreases; the same observation was made in the case of NHB/gold scat-
tering.75 In each of these cases, this behavior occurs because the
forces which orient the molecule into the low-torque perpendicular
configurations become more influential as the collision energy
decreases. The fact that the magnitude of the zero-energy peak in the
experimental results for HCl decreases as the collision energy decreases
suggests that the true potential may be one in which the equilibrium
geometry is not the Ilow-torque normal orientation. To test this
possibility, the "almost parallel" (AP) potential was developed and

applied in trajectory calculations.

4, Calculations Using the AP Potential

Probability distributions and excitation functions calculated using
the AP potential are shown in Figures 19 and 20. For the three energies
350 meV, 700 meV and 1 eV the distributions are remarkably similar. Each
has a slight peak at Jf = 0, a larger feature at low Jf and a large peak
at high Jf. The qualitative similarity of the excitation functions for

these three incident energies indicates that the dynamical origin of
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each of these features is the same in each case. The dynamics at ET =
100 meV, while similar in some ways to that at the higher energies, is
again complicated by the increased effects of the attractive portion of
the potential. 1In the folloﬁing discussion, the behavior of the higher
energy scattering will be considered first, then that at ET = 100 meV.
For collision energies greater than or equal to 350 meV, the slight
peak in the distributions at Jf = 0 reflects, as before, a zero-energy
rotational rainbow at 01 = 0°. The excitation functions show that the

largest contribution (82% on average) to the population in J_ = 0 is due

£

to trajectories having 6, < 21°. As seen in the contour plot in Figure

i
5, the AP potential in this region is almost completely independent of
angle (the contour lines are parallel to the # axis). Thus, in these
trajectories the molecules experience essentially no torqﬁe, and are not
rotationally excited.

The structured hump at 21° $ 0, < 60° in the excitation functions

i
for each of these collision energies causes the rainbow feature in the
probability distributions at low rotational energy (Jf - 4,5,6). This
hump is due to the attractive part of the potential, as evidenced by the
fact that the same rotational excitation is obtained for the different

incident energies. As #, increases from 21°, the molecule receives a

i
small amount of rotational excitation as it approaches the surface,
because the potential rotates it toward larger @ at intermediate and
short distances above the surface. Since the hard wall is still fairly
isotropic in this angle range, the diatom gains essentially no angular

momemtum from the collision with the surface. As it recedes from the

surface it adds more rotational excitation as it passes over the deepest
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part of the potential well. The maximum classical J_. acquired by the HCl

£

through this process is about 5.5; this occurs for #, = 40° at 350 and

i
700 meV incident energy, and 0i = 45° for 1 eV. For initial angles
larger than those which lead to the maximum, the molecule receives
enough angular momentum that it spins past 180° while still close enough
to the surface that the deeper part of the potential well begins to slow
the rotatiom. The shoulder on the hump in the excitation functions as
Oi approaches 60° occurs because the molecules begin to feel the
anisotropy of the repulsive part of the potential. For trajectories
having 01 = 58°, 61° and 64° at 350 meV, 700 meV and 1 eV, respectively,
the approaching diatom is spun around by the orienting forces of the
potential far enough that it strikes the repulsive wall with § » 100°,
At this orientation, the anisotropy of the repulsive wall is sufficient
to impart a torque in the direction opposite to the rotation of the
molecule which is strong enough to stop the rotation. Thus a small range
of initial orientations near 60° for each of these incident energies
yilelds elastic scattering; this contribution makes up the rest of the
peak at J_ = 0.

£

The rainbow peak at high J_. in the distributions for E_ = 350 meV

f T

and above 1s caused by trajectories having initial orientation angles
greater than the range near 60° which leads to elastic scattering. These
trajectories lead to relatively high rotational excitation because the
HC1 molecule strikes the surface with the hydrogen end down, that is,
with orientations for which the repulsive wall of the potential is most

anisotropic according to Figure 5. The shape of excitation functions for

0i 2 60° bears a strong qualitative resemblance to that for 01 2 120° in
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the ET = 100 méy SP excitation function (see Figure 16); it has a broad
minimum between two narrow maxima. In the SP case, this shape was due to
how the long-range forces had oriented the molecule at the point where
the short-range orienting forces take effect. For the AP potential, the
structure is determined by how the 1long- and short-range orienting
forces (both of which rotate the HCl toward # = 180°) have oriented the
molecule by the time it strikes the repulsive wall, Thus, as 01 incréas-
es from 60°, the molecule is spun about on its approach to the surface,
so that it strikes the repulsive wall with higher and higher values of 4§
and therefore receives increasing amounts of angular momentum from the
collision. For some 1initial orientation range (81°-83° at 350 meV,
99°-103° at 700 meV and 113°-120° at 1 eV), the collision occurs with
the H atom pointed almost directly at the surface. These trajectories
impart the largest amount of angular momentum possible to the diatom and
produce the largest values of Jf, namely 22 at 1 eV, 20 at 700 meV and
16 (thebenergy conservation limit) at 350 meV incident energy. In fact,
at 350 meV so much rotation is excited that rotational trapping occurs.
Past this small interval leading to the maximum excitation, the molecule
on approach spins past 180° before striking the surface, so that as oi
increases, the H atom is pointed less and less directly toward the sur-
face on impact, resulting in decreasing wvalues of Jf. This produces the
broad minimum in the excitation function, which is the source of the
large rainbow in the distributions. Finally, as 01 approaches 180°, the
molecule begins again to strike the surface with # = 180°, since the

orienting forces become weaker. The value of the minimum J_. obtained in

f

this process decreases with decreasing collision energy, since the
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orienting forces have more time to operate on the slower molecules,
pushing them further past 180°. Consequently, the resulting rainbow
feature 1is collision-energy dependent, and largely determines the
magnitude of the mean rotational excitation as a function of collision
energy. It should also be noted that the maxima which sandwich the
minimum in the excitation function give rise to a rainbow at the highest

rotational states in the distribution, when E_ = 700 meV or 1 eV; at E

T
= 350 meV the trapping cutoff at Jf = 16 is clearly evident.

T

The probability distribution for ET = 100 meV appears very regular
in shape, but the various features in it are a much more complicated
function of 01 than those in the distributions for larger translational
energy. The added complexity of the excitation function for this colli-
sion energy is a consequence of the lower velocity of the incoming mole-
cule, which makes it more strongly influenced by the orientational
'forces of the potential well at both long and short range, and which
enables multiple interactions with the hard wall of the potential. This
latter behavior did not occur for the AP potential at the higher inci-

dent energies discussed above. Some parts of the E, = 100 meV excitation

T
function, namely the oi < 74° and 01 > 104° regions, are qualitatively
similar to those for the higher energies, and give rise to the same fea-
tures In the probability distribution. The 01 < 74° range contains a
low-excitation region (0i < 49°) which causes the zero-energy rainbow; a
maximum due to excitation by the attractive part of the potential (at 01
= 56°), which contributes to the population in Jf = 5; and a sharp in-

crease in the rotational excitation, leading to rotational trapping. The

0i 2 104° part of the excitation function shows a broad region of
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decreased excitation sandwiched by two narrow ranges of 01 which lead to

rotational trapping. All of these features have analogues in the ET -

350 meV excitation function, and similar dynamical origins. The value of

Jf in the 110° g 01 < 160° region ranges between 4.4 and 6; thus, the

large peak at high Jf in the probability distribution for ET = 100 meV
represents a merging of the low- and high-Jf rainbows observed at the
higher incident energies.

The complicated structure of the E_ = 100 meV excitation function

T

between the rotational trapping features at §, = 74° and 108°, which has

i
no analogue at the higher energies, arises from multiple encounters with
the surface. For 01 > 74°, so much rotation is imparted to the diatom
during the initial collision that before it moves away from the surface
the hydrogen end grazes the surface again. The second contact with the
surface is not sufficient to make the diatom chatter, but converts
enough rotation back to translation.that it is not rotationally trapped.
This type of multiple interaction, in which the direction of rotation
does not change, is callgd "cartwheeling".62 For trajectories with ini-
tial orientation angles in the range 74° to 108°, the effects of cart-
wheeling collisions and excitation and damping of rotation by the poten-
tial well combine to make the value of Jf a complicated function of 01,
having various maxima and minima. These trajectories contribute to scat-
tering into essentially all the possible Jf values, including 7% of the
scattering into Jf = 5 and 18% of that into Jf = 6. Cartwheeling and

potential well effects also complicate the stucture of the excitation

function in the broad "minimum" at high 01. At E_ = 100 meV, this fea-

T

ture 1is actually composed of two minima and a maximum, rather than a
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single minimum as at higher collision energies.

In Figure 21 the plot of average final rotational energy versus
incident energy for the AP potential is presented. The translational-to-
rotational energy transfer 1is seen to be linear, but its magnitude of
roughly 27% (the slope of the least-squares line) is considerably larger
than that obtained from the SP and AP potentials, and is much too high
compared to the experimental results in Figure 8. This is not surprising
in view of the maximum values of Jf attained and the large peaks at high
Jf in each of the distributions of Figure 19. The rotational state dis-
tributions calculated for the AP potential are markedly mnon-Boltzmann,
as the Boltzmann plots in Figure 22 demonstrate, and bear little
resemblance to the experimencal distributions. As mentioned at the end
of the discussion on the WP calculations, the AP potential was employed
to see whether the magnitude of the zero-energy rainbow would be
decreased if the equilibrium geometry has the HCLl parallel to the
surface. Comparison of the AP probability distributions in Figure 19
with those in Figures 10 and 15 shows that the zero-energy peak at ET -
100 meV is halved in the AP results compared to the others; however, the
peak still increases as the collision energy decreases. Furthermore,
constraining the potential minimum to occur at a parallel geometry
introduces short-range aligning forces which, for large numbers of ini-
tial orientations, cause the HCl to strike the surface with the hydrogen
end down, in the maximum-torque configuration. This produces the signif-

icant overestimation of the average rotational excitation for the AP

potential compared to the experimental results.
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C. Discussion

0f the various potentials used in these calculations, the weakly
perpendicular potential produced results that most closely resembled the
experimental findings for HCl/gold scattering, particularly in the maxi-
mum value of Jf obtained and in the relative linearity of the Boltzmann
plots at higher incident energy. If the WP interaction is at least qual-
itatively similar to the true HCl-gold interaction, then HCl binds to
gold normal to the surface with the chlorine end down at equilibrium,
and the anisotropy of the potential is fairly weak. This latter state-
ment implies that the molecule appears to be relatively spherical. Such
a conclusion is also suggested, for example, by the polarizabilty data
for HCl. The ratio of its polarizability anisotropy to its orientation-
ally-averaged (bulk) polarizability is only 12%, compared to 27% for CO,
39% for N,, 48% for NO and 69% for 0,.'° The picture of HCL that emer-
ges 1s that of a roughly spherical chlorine atom having a small blister
corresponding to the hydrogen atom. From this point of view, the short-
coming of the SP potential is that its anisotropy is much too large, due
to the very strong repulsive interaction of the hydrogen atom with the
surface (the pre-exponential constant AH for the H-atom repulsion in the
SP potential is 634 eV).

However, as the previous section pointed out, the WP potential pre-
dicts an increasingly large peak in the probability distributions at
Jf = 0 as the incident energy decreases, which is the opposite of the

experimental trend. 1In £fact, all of the potentials used in this work,

including the AP potential, give such a result. This occurs due to the
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combined effect of forces that orient the molecule toward perpendicular,
Cl-down collision geometries and kinematic constraints resulting from
the large difference between the masses of H and Cl. The orienting
forces, which exist at short and long range for the WP and SP potentials
and at long range for the AP case, grow more influential as the colli-
sion energy decreases, so that increasing numbers of trajectories
experience nearly end-on collisions. If the center of mass were at the
geometric center of the molecule, these chlorine-end-down (4 = 0°) col-
lisions would produce large rotational excitation about the center of
mass. However, due to the mass disparity, the center of mass lies essen-
tially at the chlorine atom. In this case, the molecule appears almost
spherical with respect to excitation of rotation about the center of
mass for a relatively large # interval near § = 0°, Thus, the increasing
number of Cl-down collisions as E, decreases create a larger Je = 0
’peak. If the WP potential is qualitatively correct, some explanation
must be found for the decreasing magnitude of the zero-energy rainbow. A
likely one is the effect that statistical averaging has on the final
state distributions.

The results of a molecular beam-surface scattering experiment inher-
ently reflect statistical averaging over the quantities which lie beyond
the control of the experimenter. In the present case, such quantities
include the initial orientation of the molecule, 01; the initial rota-
tional quantum number Ji’ for which some probability distribution in the
incident beam exists; the iImpact site within the surface unit cell,
since the actual surface is corrugated; and thermal motion of the atoms

of the solid, which in the experiment is non-rigid and at non-zero
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temperature. In the calculations reported in the preceding section, the
first of these, 01, was averaged using the Monte Carlo procedure, while
Ji was not averaged but simply set to zero, due to the preponderance of
this state in the incident beam. In the rigid, flat surface approxima-
tion, meither corrugation nor surface motion were considered at all; as
indicated in Section A, the experimental results suggest that this
approximation is not a bad one for this system. To investigate the
effect of averaging over the HCl rotational state distribution in the
incident molecular beam, sets of trajectories were run at various
incident energies using the WP potential, with Monte Carlo selection of
Jg from the probability distribution given in Section A. The resulting
final state distributions are compared in Figure 23 with those from

Figure 15 for the WP potential with J, = 0. Figure 23 shows that this

i
averaging decreases the size of the zero-energy peak, while leaving the
rest of the distribution relatively unchanged. The magnitude of the the
peak decreases by slightly larger amounts (percentage-wise) as ET
decreases. This is the correct trend, but is far too small an effect to
make up the discrepancy between the experimental and calculated results.

No calculations which include the effects of surface corrugation and
thermal motion. of the solid have been performed in this work on HCl/Au
scattering. Based on the results of previous diatom-surface scattering
calculations reported in the literature, one might conclude that the
former of these would have the larger impact on the magnitude of the
zero-energy rqtational rainbow. Bowman and Park64’68 have shown that

trajectories producing low rotational excitation for a flat surface can

produce high excitation in the presence of corrugation, due to trapping
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L]
and multiple collision effects. Wolf et a1.65 demonstrated that
sufficiently large corrugation can completely destroy the zero-energy

rainbow. Brenig and o::oworkem:"o'32'33

found that corrugation rather than
surface vibration plays the major role in broadening rainbow features
- for NO collisions with the Ag(11ll) surface, whose corrugation is rela-
tively small. Also, both Hurst et a1.61 and Muhlhausen and coworkers86
have pointed out that the high-Jf rainbows produced by the repulsive
part of the potential are more sensitive to thermal averaging than the
zero-energy rainbow. It would be instructive to conduct further
calculations which include corrugation and surface motion. A simple way
to do the former would be to multiply the WP potential by a corrugation
factor [1 + B Q(Xcm,ch)], as Wolken11 and several others have done. The
latter could be done, for example, using the one-dimensional simple har-

monic oscillator (SHO) or generalized Langevin oscillator (GLO) pre-

scriptions given by Polanyi and Wolf.67



CHAPTER V

THEORY AND IMPLEMENTATION OF NO/LiF CALCULATIONS

The third part of this dissertation, consisting of Chapters V and
VI, describes the calculations done in this work on the scattering of NO
from LiF(001)., These calculations employ the reduced equations of motion
V(REOM) formalism developed by Diestler and Riley.2 This theory, which
includes the effects of the motion of a solid into a gas-surface scat-
tering calculation which does not explicitly integrate equations of
motion for the solid, is incorporated into the QCT procedure discussed
in Chapter II wvia the wvelocity reset technique.5 The object of this
study is to test the performance of the REOM for the case of diatom-
surface scattering. This assessment, which is the topic of Chapter VI,
is made by comparing the REOM results with those of detailed stochastic
trajectory calculations by Lucchese and Tully on the NO/LiF system.3 The
present chapter develops the theory required to do the calculations and
explains how the theory was actually applied in the present case. Sec-
tions A and B discuss the theory of the REOM and of the velocity reset
~ procedure, resbectively. Section C describes the potential energy sur-
face wused to model the NO/LiF interaction. Finally, section D presents

the details of the computational procedure.
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A, Derivation of the Reduced Equations of Motion

In‘this section the formalism is derived for including energy trans-
fer between a gas-phase molecule and a surface into a calculation in
which equations of motion of the atoms of the solid are not considered.
This is accomplished by replacing the full set of EOM, which involve
coordinates of both the gas molecule and Fhe solid, with a reduced set
containing only the gas-molecule coordinates. The reduced equations con-
tain a frictional damping term which accounts for the effects of the
motion of the solid. The discussion in this section, which closely
follows that given by Diestler and Riley in reference 2, is divided into
two parts. The first part shows how the solid-atom EOM are replaced by
the damping term in the gas-molecule EOM; the second part describes the
approximations made to obtain the simplified damping matrix actually

used in the calculations.

1. Derivation of the Damping Matrik

The starting point for the derivation is the set of Newton'’s equa-
tions of motion (NEOM) for the gas molecule and the solid, which is
assumed to be harmonic. If the molecule has NA atoms and the surface NS

atoms, then these EOM can be expressed in matrix form as

int £88

Br = £mol + ~mol’ (5.1a)
Mi - g8, gBS (5.1b)

=surf =surf’
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In equation (5.1a), r is the column matrix containing the SNA Cartesian
coordinates of the atoms in the gas molecule (the first element being
the x coordinate of atom 1 and the last element the z coordinate of atom’
NA); m is the 3NA X 3NA diagonal matrix of gas atom masses (the first
three diagonal elements being the mass m

1
int gs
columm matrices f and £ contain the Cartesian components of the
=mol =mol

of atom 1, and so on); the

forces acting on the gas atoms due to the internal potential of the

isolated molecule, V , and the gas-surface interaction potential, Vgs’

int
respectively. In equation (5.1b), u is the column matrix of the 3NS
Cartesian displacements the atoms of the solid from their equilibrium

lattice positions; M is the diagonal matrix of surface atom masses;

harm gs ’
gsurf and Esurf contain the forces on the solid atoms due to the

harmonic potential of the isolated solid and the gas-surface interaction
potential, respectively. The force on the atoms of the solid due to the

harmonic potential is given by

harm
=surf

1]

u, A (5.2a)

in which 2 is the force-constant matrix (3NS X SNS) of the isolated
solid. The other force matrices in equations (5.1) are found from the

gradients of the appropriate potential functions:

int int
frol,i ~ = 5r, (5.2b)
g8 av s
fmol,i - T ar ’ (3.2¢)
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av
&S - -8
fsurf,i aui ! (5.2d)

where the i subscript denotes the ith element of the corresponding
matrix.

Equation (5.1b) can be solved using Fourier transforms.113

Of par-
ticular interest in this case is the transform between the time, t, and
the frequency, w. The Fourier transform F[a(t)] of a function a(t) and
its inverse, F_l[;(w)], are for the purposes of this derivation defined

by113

A 400
A(w) = F[a(t)] = J a(t) exp(—iwt) dt, (5.3a)

at) = Fllaw)] - (2ﬂ)‘1‘[ A(w) exp(iwt) dt. (5.3b)

(Other definitions exist which differ from (5.3) in the constant multi-
plying the integral and in the sign of i in the exponential.llha) In
what follows, an upper-case letter with a caret denotes the frequency

representation of a function. The Fouriler transform of equation (5.1b)

is
LLJ gs
urFfue)y ] + grlwey] = FLEC (0] . (5.4)
Using the differentiation property of the Fourier transform114a, this

becomes
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[—w"’ g+¢] ﬁ(w) - _I'El(w), | (5.9

where the superscript and subscript on the force matrix have been
dropped for convenience. To ensure that the time integrals for the Four-
ier transform converge and that the boundary terms involved in the dif-
ferentiation property are zero at t = iw, two conditions are specified:
that u(t) and its time derivative go to zero as t goes to -, and that
the frequency variable w in equations (5.3) has a small negative
imaginary part =-ie. The former involves the limit at t = —w, and the
latter that at t = 4o, (The physical significance of these requirements
will be discussed below.)

Solving equation (5.5) for U(w) yields

U - —[er-2] P - -gw Ew. (5.6)

A
G(w) 1is the Fourier transform of the response function (Green'’s
function) for the solid, g(t-f), which appears in the formal

solv.t;i.onllab of equation (5.1b),

t
we = = [ g £ ar, 5.7)

where £ is the gas-surface force of equation (5.2d). Applying . the
convolution property of the Fourier transformllaa to (5.6), one obtains
(5.7), except that the upper limit on the integral is +«= rather than t.
The wupper limit in (5.7) is correct since the response function g(t—f).

is zero for 7 > t; otherwise the solid would be responding to forces
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f(r) which have not yet been applied. This is a manifestation of the
principle of causality. To see this explicitly, one can invert equation

(5.6) using (5.3b):

—1 "'w A A
u(t) = (2nx) I exp(iwt) G(w—ie) F(w) dw. (5.8a)

In this expression, the negative imaginary part of the frequency is in-
cluded explicitly in the argument of the response matrix, because é(w)
is not well-defined along the real w axis. As the definition of é(w) in
equation (5.6) shows, it has poles at w = Wo g * vhere Woy is the
frequency of the ith normal mode of the 1attice.113 The effect of
including —ie¢ 1is to move these poles off the real axis into the upper
half of the complex plane (to w = w01+ie), so that the integration along
the real axis is well-defined. By virtue of equation (5.3a), equation

(5.8a) becomes
-1 oo A 00
u(t) = (2n) I exp(iwt) g(w—ie) I exp(—iwr) £(7) dr dw
+0 4 N
= I { (2n) I exp[iw(t=r)] G(w-ie) dw } £(r) ar. (5.8b)

The integral in braces in equation (5.8b) is G(t—r). It may be evaluated
using contour integration. When t—r < 0 (i. e. 7 > t), the contour can
be closed in the lower half-plane [Im(w) < 0]; since there are no poles
in the lower half-plane, the integral yields zero. Thus the upper limit
on the 7 integration may be changed from +w to t; as causality requires.

When t—r > 0, the contour can be closed in the upper half-plane. Since
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the poles of é(w—ie) lie in this region, the integral 1is mnonzero, and
(5.8b) thus reduces to (5.7). At this point the physical significance of
the imaginary part —ie is clear. Without its presence in the argument of
é(w), the response function is not well-defined. Furthermore, the sign
of the imaginary part is determined by causality. If the imaginary part
were +ie¢ rather tﬁan ~ie¢, the poles of é would lie in the lower half-
plane, and the solutions u(t) would be anti-causal (that is, the solid
would respond before the force is applied).

Before continuing with the derivation, one other point should be
discussed. In equation (5.6) the only contributions to the displacements
of the atoms of the solid come from the harmonic 1lattice interactions
and the gas-surface iﬁteraction forces. However, if the lattice is not
initially at zero temperature, then thermal motion of the free lattice
also contributes to Eﬂt), in the form of a "random force" originating

from the initial conditions for the thermal motion.2’4’79

In a Laplace
transform approach4’79 to solving equation (5.1b), this random force
arises naturally from the boundary terms (involving u(t=-0) and éﬂt—O))
which are generated when the differentiation property of the Laplace
transform114c is applied. In the Fourier transform approach, the
analogous boundary terms (involving u(t=-«) and éﬂt—-w)) are infinite,
unless forced to be zero by imposing the aforementioned condition that
u(t=-w) = é‘t—-w) = 0. Physically, these conditions on u and é'mean that
the solid 1is initially at zero surface temperature. This means that an
additional term must be added on the right-hand side of equation (5.6)

2,113

to account for the effects of thermal motion. The derivation which

follows assumes that no such extra term is present, which imposes the
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condition that the 1lattice is initially at T = 0. Effects due to the
thermal motion of a lattice at nonzero temperature will be incorporated
using the velocity-reset technique to be discussed in section B below.
To proceed, then, one makes a crucial assumption:2 that the surface
adjusts adiabatically to the motion of the gas molecule. That is, one
assumes that the forces on the solid atoms due to the presence of the
gas molecule vary slowly on the time scale of the vibrational motion of
the solid; the solid thus is assumed to respond instantaneously to the
collisional force. In general, one would expect this to be the case when
the gas atoms are large and massive, the solid atoms small and light and
the collision energies not too great. If the adiabatic approximation
holds, then the high frequency motion of the solid will not respond to
the presence of the gas molecule; only frequencies near w = 0 will con-
tribute to the response. Thus the response function é(w) is approximated
by a Taylor expansion truncated after the linear term. ‘In particular,

one expands G around w = —ie (at which point W the real part of the

frequency, equals zero) to find

é(w) - é_(—ig) FOAG(He) (0 +1e) + 0(w?), (5.9)

where the prime denotes the derivative with respect to w. Looking ahead
to the perturbative treatment which follows, an ordering parameter A
also has been inserted into equation (5.9). Dropping the quadratic and

higher terms from (5.9) and substituting into equation (5.6) yields

ﬁﬂw) - —-[ é(—ie) + A w é'(—ie) + 1e¢ A é'(—ie) ] éﬁw). (5.10)
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To find the displacement matrix u(t), one applies the inverse Fourier
transform to equation (5.10), and then takes the ¢ + 0 limit. Noting

A A
that G(—ie) and G“(~ie) are constants, the inversion gives

u(t) = — [ é(—ie) + ie A é’(—u)] £(£) — A é'(—ie) F o _i:*_(w)]. (5.11)

Applying the differentiation property of the Fourier transform to the
second term on the right hand side of equation (5.11), and taking the

limit ¢ =+ 0, one finds

u(t) = —é(O) £t) + 12 é'(O) i(t). (5.12)

Since the surface is initially at T = 0, the elements of the force
matrix £(t) are given by equation (5.2d); the chain rule thus shows the

total time derivative of the kth element to be

N N

: av A av
k(&) = Z aukau a,(e) - Z 3u.k3rj j(t) (5.13)
This can be expressed in matrix notation as
Bey = ¥ wey - g o, (5.14a)

in which the elements of the coupling matrices §SS and §SA are specified

by
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SS v S SA av s
K7 - B85 K% - B (5.14b)

mn aumaun ! mn 3\1marn
The S and A superscripts denote partial differentiation with respect to
solid and gas atom coordinates, respectively, and therefore specify the
dimensionality of the matrix. Thus _l__(__ss is a 3NS X 3NS matrix and _l(:SA is
a SNS X 3NA matrix. Both these matrices are time-dependent, since the
coordinates uy and r, depend on time.

To proceed with the derivation using equation (5.12), expansions of

u(t) and f£(t) in terms of A are required. Formally one can write

ue) = uP@ ¢ 2uP@ ¢ 22 0@y &+ e, (5,15

(k)

where u is the correction of order k. The zeroth-order term 2(0)(t)
gives the =zero-frequency displacements of the lattice atoms due to the
presence of the gas molecule (see equation (5.17&) below). The other
terms reflect the frequency-dependent response of the solid; of
particular interest in what follows will be the first-order correction

9_(1)(1:). Considering f(t) as a function of u(t) and expanding it around

u = 2(0) yields

g0y = £ - S5Oy ~u Py + .on

£ D@ - A5 Dy 4 002, (5.16)

where equation (5.15) was used. The (0) superscript on f and _K_SS means

that they are evaluated using g(o) . Substituting equations (5.l4a),

(5.15) and (5.16) into equation (5.12) and equating coefficients of
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powers of ) results in the following expressions for 2‘0) and (1):

2@ = —go £, | (5.17a)

uPry = g B uWiey — 170y g5 5O

~ 1670 K*® iy, (5.17b)

(0)

As mentioned above, u gives the zero-order displacement of the solid
atoms due to the presence of the diatom. In particular, since in the
adiabatic approximation the solid adjusts instantaneously to the
presence of the gas molecule, the zero-order response g}o) describes the
distortion of the lattice to its new equilibrium geometry in the pre-
sence of the force field of the fixed diatom, To see this, one can
consider a one-dimensional harmonic oscillator (with force constant k)
under the influence of a fixed force of magnitude f. The potential
energy of this oscillator is V(x) = hkx2 + ax, and the value of x which
minimizes V(x) is easily shown to be Xiin ™ —a/k. Equation (5.17a) is a
many-dimensional generalization .of this expression for X 1,0 Since
é(O) = gfi is the just the inverse of the force-constant matrix of the
solid. As will be shown next, the first-order term gﬂl) gives a
correction to the zero-order result due to the motion of the diatom
(note the presence of é_in equation (5.22) below).

To obtain a simplified expression for 3(1), one begins by finding
é‘o)(t) from the time derivative of equation (5.17a), wusing equation

(5.14a):
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i@ - -5 2O

- _é(o) [_§SS(O) Q(O)(t) _ §SA(O) ) ]

- [2-

The third line in (5.18) follows from the second after collecting terms
* (0)

in'g

e >

(0) §ss(o) ]—1 é(o) §SA(O) i(t). (5.18)

. If the 3NS X 3NS matrix D is defined as

o
|
’r—

1 - gy g55©® ]‘1, (5.19)

then substituting equation (5.18) into equation (5.17b) and rearranging

terms yields

e >

WPy = —1pg"O [; + 55O p g0 ] 540ty (5.20)

The factor in parentheses on the right hand side of equation (5.20) can

be simplified as follows:

[; + gS8(0) gé(O) ] . KSS(O) 2{2—1 (_SS(O))-l + é(o) }

i 5ss<0) 2{[; _é(o) ESS(O)] (§SS(0))-1 + é(o)}

§SS(O)

ol
[

D (KSS(O))-I

n=

$5(0) [1 _é(o) §SS(0) ] <§SS(O))—l ]—1

1 _gss(o) é(o) ]—1

T

]
o

) (5.21)
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where the T superscript denotes the transpose of the matrix. The last

equality in (5.21) follows from (5.19), since gss(o)

and g(O) are
symmetric matrices. Thus equation (5.20) may be written

) pf k5O iy, (5.22)

ey >

WDy = -1 p

To complete the derivation of the reduced EOM, one must consider the
EOM for the gas molecule, which are given in equation (5.1a). It is
apparent that the only term in (5.la) containing any dependence on the
This can

surface atom displacements u(t) is the gas-surface force, fiz

be expanded around u = u(o)

1°
to obtain, by analogy with equation (5.16),

gs . g0 _ S(0) . (1) .
fnol | frol A éA utti(e) + 0(a%), (5.23)

KBS SA
where K is the transpose of K . Setting A =1 and substituting

equations (5.22) and (5.23) into equation (5.la) gives

.- int 0 .
L - £mol * Eéto'i - Bir (5.24)
with the damping matrix 8 identified as‘
B - -1 ﬁ_l KAS(O) D g'(O) DT §FA(0)' (5.25)

Given the dimensions of the various matrices on the right hand side of
equation (5.25), B is evidently a 3NA X 3NA matrix. Thus, the result of

the above derivation has been to replace the original set of 3NA + 3NS
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NEOM, equations (5.1), with the set of BNA NEOM, equations (5.24), which
differ in form from (5.la) due to the inclusion of the damping term
-m g‘i. This term includes, in an approximate manner, the effects of the
omitted NEOM (5.1b).

As it stands, equation (5.24) is not independent of the surface
coordinates, since both S;gi and g depend on the zeroth-order displace-
ments 2‘0)(t) of equation (5.17a). Diestler and Riley2 have mnamed the
set of coupled equations (5.17a) and (5.24) the "full adiabatic" or "FA"
approximation. To completely eliminate the surface-motion dependence and
so obtain a set of reduced EOM for the'gas molecule, the further assump-
tion is made that the effects of the zeroth-order displacement on the
gas molecule are are minimal. This allows EFO)(t) to be set to zero for
all t, that 1is, for the atoms of the solid to be "frozen" at their
equilibrium positions. In this "zero-displacement adiabatic”" or "ZDA"
approximation,2 f;gi and B now depend only on the degrees of freedom
r(t) of the gas atoms and the positions of the atoms of the frozen
solid. All of the effects of the surface dynamics on the motion of the
gas molecule in equation (5.24) are included in the damping matrix, 8.
Diestler and Riley2 have wused both the FA and ZDA approximations to
simulate the dynamics of atom-surface collisions. The present work
contains the first application of the ZDA to study energy transfer

between a surface and a diatomic molecule, for which internal degrees of

freedom exist.
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2, Simplified Expression for the Damping Matrix

In order to use equation (5.25), one must evaluate the various
matrices it contains. The coupling matrices §§A and §SS involve partial
derivatives of the gas-surface interaction potential, which are not
difficult to compute. However, evaluating the elements of the response
matrix é and its derivative é' is, in general, very involved, and not
practical except for certain idealized cases,2 such as the one-dimen-

sional harmonic chain115 and the three-dimensional Rosenstock-Newell

latticells. Thus it remains to approximate these matrices in order to
obtain a workable expression for the damping matrix.

One approximation that results in considerable computational simpli-
fication is to assume that the atoms of the solid respond independently
of each other. In this case, the response matrix and its derivative
become block-diagonal, each block being 3 X 3 and involving a particular
atom s of the solid. If the further approximation is made that the
response is isotropic (in the same direction as the applied force), then
each of these 3 X 3 blocks is also diagonal, with each of the diagonal
elements of a given block having the same value. This is essentially the
"weak-coupling approximation" previously used by Diestler and Riley87 in
gas-surface scattering calculations. The following expression for the

A

diagonal matrix elements of the sth block of G(w), denoted gs(w), can be

found from the Debye approximation:87

A 3
X (1l-x) inx
By =~ [1 tralnasy T2 ] o (5.26)
s “D
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where MS is the mass of atom s, wn is the Debye frequency of the solid,

and x = w / w For LiF, w, = 502 cﬁ_i = 94.65 radians/psec;3 In the

D’ D
low-frequency regime where the adiabatic approximation holds, =x ap-

proaches zero and equation (5.26) becomes

g.(0) = - 5 - (5.27)

Taking the low-frequency limit of the derivative with respect to fre-

quency of equation (5.26) yields

3ni

g (0) = (5.28)

3
ZMSwD

With this approximation for the response matrix, one can proceed to
find the matrix D. If the gas-surface interaction is dominated by
pairwise interactions between the gas molecule and the surface, then the
coupling matrix §SS’ whose elements are second partlal derivatives of
Vgs with respect to surface coordinates, must be block-diagonal with
each block being 3 x 3 (this is not true for K>, however). Since 1 is
diagonal and é(O) is approximated as diagonal, D must also be block-
diagonal. Replacing each of these 3 x 3 blocks in D with a. scalar
multiple of 1 would simplify the computation of the damping matrix g;
calculations on an idealized atom-surface scattering system2 have shown
that doing so i§ not a bad approximation. The definition of ESS

suggests117 approximating gs (the block corresponding to atom s of the

solid) by
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. 2 -1
D, - (@ — g OV V)" L (5.29)

‘(0) 2? is, in this approximation, a diagonal

e >

Thus the matrix product D

matrix; the sth 3 X 3 block along its diagonal is given by

g (0)

- 2 2
1 = g (0 V7))

[
]
=

1 (5.30)

Finally, using equation (5.30), one can write down the expression
used for the damping matrix g in these calculations. If the rows and
columns of g and ESA are labeled by the atom (lower case Roman) and
Cartesian component (lower case‘Greek) to which each corresponds, then
use of equation (5.30) in equation (5.25) yields for the elements of the
damping matrix

-1
- m Y —iw

S

yRAS  gSA
s p aa,sy sy,a’a

B (5.31)

aa,a’a’
with WS defined in (5.30). The matrix elements of § are real numbers,
since, from (5.30) and (5.28), the product (-iWs) is real. The sum over
s in equation (5.31) includes those atoms-of the solid with which the
gas molecule has a significant interaction. One should note that because :
the elements of the coupling matrix ng are, according to (5.14b), just
mixed second partial derivatives of the gas-surface interaction poten-
tial with respect to the gas and surface atom Cartesian coordinates, the

matrix B whose elements are given by equation (5.31) can be expressed in
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the form g8 = gfi g?ym. where ggym is a symmetric matrix whose elements
are given by (5.31) without the factor mzl. This fact is important in
developing a partial velocity reset scheme which can employ the damping
given by equation (5.31).

To conclude this gection, it should be pointed out that vibrational
energy transfer directly to the lattice is not very efficient when the
frequency of the vibrational mode in question is much greater than the
Debye frequency for the lattice. Thus one expects that in such cases the
damping of the vibrational motion derived from the adiabatic approxima-
tion wused in these calculations will be too great. As Chapter VI will
show, the calculations on the NO/LiF system, for which the diatom vibra-
tional frequency is about four times the lattice Debye frequency, bear
out this statement. This situation can be remedied by applying the damp-
ing in such a way that the vibrational mode in question is not affected,
so that any vibrational energy transfer happens via coupling to transla-
tional and rotational motion.2 The procedure used here to accomplish
this modified damping, which is easily implemented with the velocity

reset technique, is explained in section D of this chapter.

B, Partial Velocity Reset Procedure

As discussed in the previous section, the derivation of the reduced
equations of motion is valid if the lattice is initially at temperature
T = 0. Clearly, it would be desirable to somehow account for the effects
of the thermal motion of a lattice having a nonzero temperature T. This

has been done in these calculations using the partial velocity reset
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technique developed by Riley, Coltrin and Diestler (RCD),5 who modified
Andersen’s method for performing molecular dynamics simulations at con-
stant tempera;ture.89 RCD implemented the procedure to simulate energy
transfer (damping and thermal agitation) between a dynamical subset of
lattice atoms ("P zone") and a surrounding reservoir ("Q zone") in
molecular dynamics calculations by applying the reset to the P zone
atoms along the P-Q 1nterface.5 The discussion in this section is
divided into three parts. The first part offers a general overview of
the velocity reset procedure and how it is used in the present work. The
second part discusses the behavior of the procedure in the 1limit that
the resets are frequent and weak. The final part presents a derivation
of the form of the reset procedure actually employed in the NO/LiF

scattering calculations described in the next chapter.

1. General Considerations

The velocity reset method in general involves replacing the veloci-
ties of some or all of the atoms whose equations of motion are being
integrated with new velocities, chosen by some algorithm, at wvarious
intervals during the integration. Andersen'’s procedure89 sequentially
reset the velocity of each atom at random intervals to a value selected
from a Maxwellian distribution at temperature T; this, in effect, served
as a "thermostat" to keep the system at a constant temperature. RCD's
method5 involves simultaneously replacing the velocities of some or all
the atoms, at regular intervals, with new velocities given by the fol-

lowing expression:
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Ve - - ai'n)" Vil )y + o;‘ VL@, (5.32)

?

in which the reset parameter 0 n (0 < ¢ n < 1) governs the strength of

i, i,
the reset for the velocity of atom i at the time tn of the nth reset.
vI(&) - (kT/mi)k €, where k 1is Boltzmann's constant, is a velocity
chosen randomly from a one-dimensional Maxwellian velocity distribu;ion
at temperature T, according to a Gaussianly-distributed random number
from the sequence £. The 1 subscript on vI(é) emphasizes that the ran-
domly-selected Maxwellian velocity is uncorrelated for different compo-
nents i. When 0i,n is set equal to unity for all i and n, one obtains
essentially the Andersen reset procedure (the only differences being the
simultaneous reset and the regular reset interval); any other value of
oi,n yields what RCD have labeled the partial velocity reset, in which
the atoms retain some "memory" of their old velocities.5

As discussed in reference 5, the full (§ = 1) and partial velocity
reset procedures described in the preceding paragraph may be employed to
facilitate a molecular dynamics simulation of a solid at temperature T.
The full reset 1s wuseful before the start of a trajectory as a
thermostat to select initial conditions for the motion of the P zone.
The thermostating procedure consists of integrating the EOM for one
reset interval, resetting the velocities of all the atoms, and then
repeating this cycle many times. During the course of the trajectory,
the partial reset may be used to account for energy transfer between the

P and Q zones by applying it to the atoms along the P-Q interface. This

application 1is justified by the fact that the partial reset becomes
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equivalent to explicit inclusion of damping and Gaussian random force
terms in the EOM, in the limit that the reset is frequent and weak. This
equivalence is demonstrated in subsection 2 below.

As mentioned earlier, RCD have incorporated the velocity reset
method into molecular dynamics calculations.5 In that work, both the
full and partial resets were used, in the manner described in the pre-
vious paragraph. In the present work, however, only the partial reset is
needed. The full reset is not employed because in the calculations per-
formed here, which involve the ZDA approximation derived in section A,
the atoms of the solid are fixed at their equilibrium positions; conse-
quently, no thermostating procedure to determine their initial condi-
tions is required. Conceptually speaking, in the ZDA approximation the
gas molecule comprises the P zone and the entire solid constitutes the
reservoir. Thus, in this work the partial velocity reset is applied to
the atoms of the gas molecule, to account for energy transfer between
the molecule and the solid. The reset is linked to the ZDA model through

the relationship of the reset parameter 01 n to the damping matrix g.

2, Limiting Behavior of the Reset

The form of the velocity reset algorithm in equation (5.32) ensures
that the reset procedure has the following important property:5 in the
limit that the Velocity resets are frequent and weak, the procedure
reduces to inclusion of damping and random force terms in the EOM
(equivalent to the GLE formalism of Lucchese and Tu11y82), provided that

the reset parameter ai n and the damping coefficient B are correctly

’
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related. This may be shown as follows.5 Newton’'s equation of motion for

the ith atom is

m, v, = F (5.33)

where m, is the mass of and F, the total force on atom i. After integra-

i

ting from time tn to time t

"y the velocity before resetting at tn+ is

1
given in terms of the velocity after resettiﬁg at tn by equation (5.33)

as
-1

2
(tn) + mi Fi. At + o(Atr), (5.34)

old new
vi () = vy

where the reset interval Atr =t

frequent. Subtracting vzld(tn) from both sides of equation (5.32) and

-~ t_ is small, since the reset is
n+l n

combining with equation (5.34) gives

old old -]
vi (tn+1) - vi (tn) - mi Fi Atr =
% old k T 2
[ - ai’n) -1] veo(e) ”1,n vi(§) + 0(At). (5.35)

Since the reset is weak, 01 n is small and the binomial expansion can be
1

used on the first term on the right hand side of equation (5.35). After

doing so and then dividing through by Atr one obtains

old old -1 old
(tn+1) - Vi (tn) ] / Atr -y Fi - (0i,n / 2Atr) Vi (tn)
b

+ (0i,n

T 2
/ Atr) vi(f) + O(Atr) + o(oi,n/Atr)' (5.36)

If B is defined by
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ﬂi - 0i,n / 2 Atr, (5.37)

n

then in the limit that 01

n and Atr approach zero at fixed ﬁi,n' equa-

tion (5.36) becomes

Vo= ompE = B(0) v, + (2 B(e) / At vI(E)
- m;]' F, = B(E) v, + mzl FR(t), (5.38a)
where
F(e) = [%ﬂ];"'{@) - [ﬁf‘;—i e (5.38b)
X

is the random force. The n dependence of B8 becomes time dependence in
the 1limit. The expression for the random force, equation (5.38b), is
precisely the same118 as that used in Tully'’s "ghost atom" GLE model;4
the Lucchese-Tully model82 eliminates the ghost atoms and attaches the
damping and random force terms from the ghost atoms to the atoms along
the P-Q interface. Thus, the limit of the velocity reset procedure, as
specified by equation (5.38a), is indeed equivalent to the Lucchese-
Tully approach, since the reset is applied only to the atoms along the
P-Q interface.

Two items should be noted at this point. First, equation (5.37) is
very important in the partial velocity reset scheme because it provides

the connection between the reset parameter § and the damping coeffi-

i,n

cient B, which allows the reset to be parametrized in terms of available
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damping theories.2’79'87

In particular, for these calculations the
damping coefficient is given by equation (5.31) in the previous section,
Second, it should be recognized that the partial velocity reset takes
Brownian form as the reset interval goes to zero because the factor
old

5
Ai,n = (1 -0i,n) , which multiplies vy (tn) in equation (5.32), has

the limiting value

lim
Atr40 Ai,n - 1 - Atr ﬂi,n' (5.39)
If this were not so, one could not go from equation (5.35) to equation
(5.36). The 1limit (5.39) will be useful in the generalization of equa-

tion (5.32) which follows,

3. Generalization of the Velocity Reset Procedure

When RCD used the partial velocity reset in reference 5, they em-
Ployed an approximation in which each component of the velocity of each
atom is damped independently. If equation (5.32) is expressed in matrix

form as

+ v, (5.40)

in which the velocities are column vectors of length 3N, and the iden-
tity and ¢ matrices are of dimension 3N x 3N, where N is the number of
atoms involved in the reset, then this independent damping implies that

the matrices g? and (; -i)h are diagonal. This must be true, since from
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equation (5.37)

& = 28t 8, (5.41)

and the damping matrix 8 is diagonal for the independent damping case,
In general, however, B8 1is not diagonal; in particular, the damping
matrix given by equation (5.31), which is used in these calculations, is
not diagonal. Thus, a more general form for the velocity reset, which
reduces to equation (5.40) when g is diagonal, is required. This takes
the form

new !?ld + g Z?(ﬁ)- (5.42)

1
>

Rileyll9 has derived expressions for the matrices A and B, wusing the

conditions that the reset preserve a canonical velocity distribution and
that the 1limit as Atr -+ 0 of the matrix A, by analogy with equation

(5.39), be given by

lim

At -0 (5.43)
r

1>
[

fe=
1
4

o

The following discussion sets forth this derivation.
The condition that the velocity reset is to preserve a canonical
distribution means that the ensemble-averaged probability distribution

after the reset, Pnew = P, must be canonical if the probability distri-

bution before the reset, P m P’ was canonical.119 Mathematically

old

this can be expressed as:
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P(p,g) = Id”‘pf fdmp’ fqu’ P(p'g) my expt=ghT M p€ / 2um)

x §0q—q") 6 (2~A, p ~B 5. (5.44)

In equation (5.44), the € superscript refers to a quantity randomly cho-
sen from a Maxwellian at temperature T; the T superscript denotes the
transpose of a wvector or matrix. M is the 3N x 3N diagonal matrix of
masses m, for the atoms whose velocities are being reset, k 1is Boltz-
mann’s constant, and "p = I (ZwmikT)—& is a normalization factor for the
Maxwellian momentum distribution in the integrand. The matrix ép -
MA g?l is the matrix corresponding to A when equation (5.42) is
expressed in terms of momenta rather than velocities; gp is defined
similarly. Equation (5.44) is expressed in terms of momenta p rather
than velocities v, as 1is customary when dealing with ensembles in
classical mechanics. The exponential and the 3N-dimensional delta
functions with matrix arguments are a shorthand notation for products of
exponentials and delta functionms.

The integrals over the coordinates gf can be done trivially using
63N(g_-gf). This reflects the fact that the reset only affects the vel-

ocities (momenta), while leaving the coordinates unchanged. Equation

(5.44) then becomes (upon changing from momenta to velocities)

P(v,q) = _[ a3,€ I Ny piv’,g) n, expl~vH)T 1 v* / 2k

« N -

é), (5.45)

">
<

v -8B

£ £

where n_ = II (mi/2wkT)k. In changing dp> and dp” to dv® and dv’, two

factors py = 11 m, are produced; one of these converts np to Ny while the
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other 1is canceled by a factor #-i generated by changing the argument of
the delta function. For the sake of clarity, it should be pointed out
that the shorthand notation xﬁ represents the same quantity as the
symbol g?(&) appearing in equation (5.42),

If now the pre-reset probability distribution P’ is chosen to be of

canonical form, that is,

Py @) = expl—~(x)' MY/ AT x By(Q), (5.46)

then the desired form for the post-reset distribution P is

P(r,@) = exp(-v’ My / 2KT) X By(g), (5.47)

which requires that A and B satisfy

exp(~v My / %) = I a3yt j N’ expi~vHT M v’/ )

x n, exp—y) MYt /) SN —av —BY).  (5.48)

>
{<

Making the change of variable s = (2kT)_& gﬁ v, with similar definitions

¢

for s’ and s*, equation (5.48) can be written more compactly as

expl-s! 5) . = J‘ 3N E J‘ 3N - exp(—(s )" 8 n, exp(_(ié)T is}
3N . _ £
x 67 (s—a, 8" —B s, (5.49)
“—3N/2’ - A g“’ el g"*’

in which n_ = and B = M" B
s =g =
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The solution of equation (5.49) for és and gs is in general

difficult, but fairly straightforward in the special case that A and gs

can be diagonalized by the same orthogonal transformation T,119 that is,
ad - AT, (5.50a)
=g = =g =
B¢ - T T, (5.50b)
=g = =g =
' - L (5.50c)

where the d superscript denotes that the matrix is diagonal. As will be
shown below, this case applies for the damping matrix specified by equa-
tion (5.31). Given this extra condition on és and gs’ making the change

of variable s = T x (and similarly for gf and €) changes equation

(5.49) to

expl—=® x) - J’ G336 J‘ %’ expt=xT x) " exp(—G5) T )
x 6Nx — a0 x* =S x5). (5.51)
Because the matrices in the argument of the delta function are diagonal,

equation (5.51) is the product of 3N equations of the form

exp(—-x? ) = I dx§ I dx5 exp(—-x52 ) e exp[—-x§2 )

- ‘ §
X 6(xj aj xj bj xj), (5.52)

where aj = (é:)jj and bj is similarly defined. One of the two integrals

in equation (5.52) can be performed immediately wusing the delta

function; the remaining integral can be easily evaluated after
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completing the square in the exponent of the integrand. The result is

exp{— x§ } o= ( a§ +b§ ™ exp{—x§ / a§ +b§ Y1),  (5.53)
which demands that a§ + b§ = ], or, in matrix form,
@h? + @H? - 1. (5.54a)

This condition is equivalent to the following two expressions:

+
]
I

(5.54b)

(5.54¢)

>
+

1=
I

|

Equation (5.54b) follows from (5.54a) by doing the inverse of the
transformation (5.50), since és and gs are both diagonalized by I;
equation (5.54c) follows from (5.54b) using the definitions of és and gs
in terms of A and B, which were given after equation (5.49). Fulfilment
of the condition (5.54) will ensure that the velocity reset of equation
(5.42) preserves a canonical distribution, provided that (5.50) is
valid. Thus, for example; a canonical distribution is maintained by the
velocity reset used in reference 5, since A and B in equation (5.40)
satisfy (5.54c) and (5.50) (with I = 1.

It remains to choose a form for A and B which satisfies the
conditions given by equations (5.43), (5.50) and (5.54). From equation
(5.43) and the definition of és in terms of A, one can see that in the

Atr + 0 limit,
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0
=

|

>

(33
uz'r
Irk»
IIZ&

) (5.55)

Since the damping matrix whose elements are given by equation (5.31) is

of the form g = g:l gsym’ where gsym is a symmetric matrix, for this

case one can express (5.55) as

]
=

|
&
=
m’m

E
=

’ (5.56)

Thus, as Atr approaches zero, és is a symmetric matrix and can be
diagonalized by an orthogonal transformation. In light of this, T of
equation (5.50) is chosen119 as the orthogonal matrix which diagonalizes

és of equation (5.56):

il el A el I S (5.57)
whence
1lim d d
At_+0 A, = 1 — ot g (5.58)

If now, by analogy to equation (5.41), one defines the diagonal matrix

0d by

e - 2 g% (5.59)

then choosing é: and 2: to be of the form
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ad - [; ~ 8¢ ];‘ (5.60a)

3t - [gd ]*’ "~ (5.60b)

ensures that equation (5.54a) is valid. Equation (5.60a) also satisfies
the limiting condition (5.58), as is easily shown using (5.59) and the
binomial expansion. A consequence of the relation (5.59) is that the
strength of the reset, governed by §, will vary over the course of the
trajectory if the damping matrix g is time dependent. Such is the case
for the ZDA damping matrix, by virtue of its dependence on the gas-
surface interaction potential.

All that remains is to recover from equations (5.60) the original
matrices A and B. Inverting the orthogonal transformation in (5.60)

gives for A and B
=s Ss

g
]
{13
£
=
{
=
—
Ny
13

(5.61a)

-1 [9 ]“ 7T (5.61b)

Equations (5.61) evidently satisfy (5.50) and (5.54b); (5.6la) also must

fulfill (5.56), since (5.60a) meets the requirement (5.58). Finally,

a -z - O] - s - ) e
- 3 Wl i G RN I (5.63)
where S = g;& I. Equations (5.63) satisfy (5.43) and (5.54c) for a

damping matrix of the form given in equation (5.31), as desired. They

also reduce to equation (5.40) when g is diagonal, for which case ; - é.
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The remainder of Chapter V discusses the implementation of the
theory presented in this and the previous section. The next section is
devoted to a description of the potential energy surface wused in the
calculations for NO scattering from lithium fluoride. Section D outlines
the computational procedure for applying the reduced equations of motion

via the partial velocity reset.

C., Potential Energy Surface

The potential energy surface for the gas-surface interaction in
these studies 1is the same one employed by iucchese and Tully3 to
investigate the scattering of NO from the (001) face of LiF. It consists
of three parts: a long-range dispersion, an ion-dipole interaction and a
short-range repulsion. The LiF crystal is modeled as a lattice of 128
ions (two layers of eight rows of eight ions each) sitting atop a bulk
continuum. The various terms in the gas-surface potential include pair-
wise interactions of the gas diatom with each ion in the lattice, plus
integral approximations for the interactions with the bulk. This par-
ticular potential was chosen because it affords the opportunity to com-
pare the results of calculations using the reduced equations of motion
(ZDA approximation) for the NO/LiF(00l1) system with the extensive calcu-
lations of Lucchese and Tully in reference 3. This section defires the
coordinate system used in the calculations and describes the functional
form of each term of the potential.

The laboratory coordinate frame for this work is established as

shown in Figure 24, The origin is placed in the plane of the surface
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Figure 24. Surface model and coordinate system for NO/LiF calculations.
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layer of the crystal, at the center of the square formed by the four
central ions of the layer. The XY plane is taken to be the surface
plane, with the positive Z axis pointing upward. The X and Y axes lie
parallel to the rows of surface atoms in the lattice. Since there are
eight.rows of eight ions each in a given plane of the surface 1lattice,
this choice of 6rigin and orientation of the coordinates means that the
lattice extends a distance *7a/4 from the origin in both the X and Y
directions, where a is the lattice constant (the distance between ions
of the same type in a given row of the lattice). The row spacing, which
equals the nearest-neighbor distance, is a/2. Since thé lattice contains
only - two layers, the surface of the bulk continuum is assumed to lie at
zbulk = =3a/4, which would be halfway between the second and third
layers if the latter were present. The bulk extends to *x in the X and Y
directions and to -« in the Z direction, and is assumed to contain a
number density Nulk of ions of each type. For LiF, a = 4.02
Angst:romsloab and n_ ., = 0.061297 atoms/As.3

The expression used for the long-range dispersion potential between

the gas diatom and an ion s in the surface lattice is3

-3

mol s 1
Vdisp - 6 { %m01%s * §-as(a" _'al)mol Pz(coso) }’ (5.64)
2(Umol + US)R

where Umol and Us are the ionization potentials of the gas diatom and

the surface ion, respectively, @0l and a, their total polarizabilities,

(a" - al)mol is the polarizability anisotropy of the diatom, and

P2(coso) is the Legendre polynomial %(3c0520 —1). R denotes the
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magnitude of the distance vector R from the surface ion to the diatom
center of mass, and # is the angle between R and the diatom relative
position <wvector ;. Equation (5.64) arises as the first term in the

dispersion part of the multipole expansion of the long-range interaction

potential between an atom and a linear molecule in the gas phase.120

Calculation of R and cosé is straightforward. One obtains B as the

difference between the laboratory f£frame position vectors ﬁcm of the

diatom center of mass and ﬁs of the surface ion, while cosf is found

from the definition of the dot product of two vectors, expressed a586

-+ -
r « R xX + yY + z 2
cosf = R " R , (5.65)

where x,y,z and X,Y,Z are the Cartesian components of T and ﬁ,
respectively, and r, the diatom internuclear distance, is the magnitude
of 7. The dependence of the diatom total polarizability upon r 1is

included using the expression3

a(r) = alr) + g% (r—r), (5.66)

where r, is the equilibrium separation of the diatom. A similar expres-
sion 1is wused for the variation of the polarizability anisotropy. Since
the perpendicular component a of the polarizability does mnot change
very much as r changes, one can approximate the derivative of the aniso-

tropy as the derivative of the parallel component a, of the polariza-

]
bility. From the definition a = (a" + 2al) / 3, it 1s apparent that

(da"/dr) = 3(da/dr) if al is taken to be a constant. Thus it is easy to
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estimate the derivative of @, from that of a. To get the total
dispersion potential due to the surface lattice, equation (5.64) is
summed over the surface ions s.

To evaluate the contribution to the dispersion energy due to the

ions in the bulk, one can integrate equation (5.64) over the extent of

the bulk., The resulting expression is3

vb - =T hulk Umol Us
disp _ 3
4(Umol + Us)(zcm Zbulk)

1
X {amolas + 3 as(a" - al)mo]_ Pz(coson) } ’ (5.67)

where Zcm is the distance of the diatom center of mass above the crystal
and an i1s the angle between Y and the surface normal (laboratory 2
axis).

If the gas diatom has a dipole moment, this dipole will interact
with the ions in the surface. The form of the ion-dipole potential Vid
used here3 treats the dipole as two equal and opposite charges separated

by a distance r, each of which interacts with each ion in the surface

via a Coulomb potential:

X q; q
j,»s  _ s
vCoul st ! (5.68)

where qj is the charge (in esu) on atom j in the diatom (j = 1 or 2), 9

the charge of ion s in the surface lattice, and R s the magnitude of the

3

distance vector R a from ion s to atom j. The charges 9 and 9, of the

J
atoms Iin the dipole are found £from 9 5 - F u(r) / r, in which the
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dipole moment u(r) as a function of r 1is given by an expression
analogous to equation (5.66). The ion-dipole potential due to the
surface lattice is calculated by summing equation (5.68) over both j and
s. In the integral approximation, the contribution of the positive ions
in the bulk of the crystal exactly cancels that of the negative ions, so
that the contribution of the bulk to the ion-dipole interaction is zero.

The short-range potential used here is based on a pairwise repulsive

interaction of the form3

3 cl;

S _

Vrep Rlz , (5.69)
is

where the Ci; are constants. Since there are two atoms in the molecule
and two types of ion in the surface, four such C{; are required.
Recalling that the Lennard-Jones C12 coefficient is proportional to 012,

where o is the Lennard-Jones distance parameter, one can relate any pair

of these constants by the expression3

Cj's' - 12

12 _ [ _J_-‘i_] (5.70)
js o ! '
C12 js

where ajs is the Lennard-Jones distance parameter for the repulsive

interaction of atom j in the diatom and ion s in the lattice. The

various ajs can be estimated from the arithmetic combining rule105 o, =

is

%(aj + as), using for aj the van der Waals radius of gas atom j and for

o the ionic radius of surface ion s. This work, following reference 3,
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uses o ;4 = 0.68 A and op- = 1.33 A, and assumes oy = 06 = 1.8 A. This
latter assumption means that each atom in the diatom interacts identi-
cally with a given surface ion, thus reducing to two the number of
repulsive constants to be determined. Since these are related by equa-
tion (5.70), there is only one independent parameter, which is chosen
using a nonlinear Ileast-squares fit so that the overall potential has
the desired well depth.3 The contribution to the repulsive potential due
to the surface lattice is calculated by summing equation (5.69) over j

and s. Integrating (5.69) shows the contribution from the bulk to be105

i+, -
b 5 "nbulk{012+012}
rep j 45 (2, — )9 !
5~ Zbulk

(5.71)

where Zj is the distance of atom j above the crystal, and +/- designates
the type of surface ion.

In addition to the gas-surface interaction, a potential for the free
diatom must be chosen to completely describe the overall potential
energy surface. In these calculations the diatom potential selected is a
Morse function, using the experimentally-determined gas-phase values of
the equilibrium separation r, and the dissociation energy Dg. The Morse
well depth De and exponential parameter S are found from these values

using the standard formulae93d

0
R 0~ T % (5.72)

- w -3’-&1‘—;! - 0.121821 —{em _ amw) (5.73)
B e . X w D .
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where Wy is the vibrational frequency»of the diatom, p is iﬁs reduced
mass, c is the speed of light and # is Planck’s constant divided by 2r«.
Equation (5.73) produces g8 in A~1 if v, and De are in cm'1 and yg is in
amu, These two equations provide an easy means for calculating De and B
for a given @, . This proves useful in sets of calculations that vary W, -

Table 4 contains the values of the various parameters used in the
gas-surface interaction potential. The sources from which these quanti-
ties were obtained are given in reference 3. Lucchese and Tully3 fit
their NO/LiF potential to a well depth of 90 meV, and observed that this
minimum occurred when the NO molecule was lying nearly parallel to the
surface, in a plane containing the surface normal and the two Li* ioms
nearest the origin, with the center of mass at a height Zcm =1.6 A
above the surface. These observations were confirmed in this work as a

check.

D. Computational Details

This section completes Chapter V with a discussion of the computa-
tional procedure actually used in the calculations. First, an outline of
the structure of the trajectory code is presented, and then specific
details within that framework are given.

In general, calculations are performed in sets of 100 trajectories,
in order to allow direct comparison with the results of Lucchese and
Tully.3 At the start of a set of trajectories, the spectroscopic con-

stant5121 and masses for the NO molecule and the parameters for the gas-

surface interaction potential are input to the trajectory code, along
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Potential Term Parameter Value
Up g+ 75.619 eV
Up- 3.465 eV
Uno 9.26436 eV
a4 0.0286 A
Vais 3
P o 0.759 A
a 3
%o 1.74 A
a 3
(a" - a_l_)NO 0.759 A
2
daNo / dr 3.0 A
b
qpq+ 0.97 e ©
a
Vid o - 0.1474 D
dpy, / dr 2.19 p/A
+
(N, 0-1L%) 8.5083 ev®
12
v
rep
c (M. 0F7) 139.00 ev®

12
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Table 4 (continued)

: re : 1.15077 A
NO Morse 0
D0 6.496 eV
potential e Y
Wy 1904.20 cm

a
value at ¥ = re.

Qp- = = Q4+
e = 4.803 x 1010 esu.

dthe corresponding value in reference 3 is larger by a factor of 12,
due to an error.

®this is the experimental value; in some calculations, other values
of w, are employed - see Chapter VI,
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with the initial values of quantum numbers v and J, collision energy ET

and incidence angle 6, which characterize that set. In some cases, J

i
and/or 91 for a set is determined by Monte Carlo selection. The
coordinates of the atoms of the surface lattice are also established at
the start of the set. After this set-up procedure, the trajectories are
run. To calculate a single trajectory, the following scheme is applied.
The initial conditions for the trajectory are selected using the
procedures given in section B of Chapter II, based on the supplied
values of v, J, ET and 91;
initialization are selected randomly, except for the initial height Z

the other necessary quantities needed for the
in’
which is always 9.5 A, following reference 3. In sets of trajectories in
which J is randomly selected, the required cumulative probability
distribution is constructed from a Boltzmann rotational distribution at

temperature T the value of Trot is input to the code. After the

rot’
initialization procedure, Hamilton’'s equations of motion (2.28) are
integrated, using the potential energy function discussed in section C,
for a time Atr. At this point, the velocities are reset by calling a
subroutine .which is described in the next paragraph.

The reset subroutine performs the following algorithm. The Laplacian
of the gas-surface potential with respect to the coordinates of each
surface atom 1is calculated, and the weight factors Ws are found using

equation (5.30). The elements of the coupling matrix KSA, given by

equation (5.14b), are also evaluated. (In the calculations reported in
Chapter VI, all 128 ions of the surface lattice are included in the
calculation of the weight factors and coupling-matrix elements, unless

explicitly stated otherwise.) From these quantities the matrix elements
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of the symmetric matrix ggym are calculated using (5.31) (without the
factor of m;1). Then the matrix product Erkg?ymérh is diagonalized to
obtain the matrices gﬁ and T, according to (5.57). Using these, equation
(5.59) yields g@ and equation (5.63) S and g:i. The atom velocities are
obtained from the center-of-mass and relative momenta (the integration
variables) using .(2.6b), and reset according to equations (5.42) and
(5.63). The Maxwellian velocities used in the reset are found from
vg - (kT/m)& §G, where £G is a Gaussian random number generated from an
inverse-error-function approximation subroutine supplied by J. C.
Tully.122 Finally, the mnew velocities are converted back to momenta
using equations (2.4c-d).

After the resetting is complete, the EOM are integrated for another
reset interval and again reset. This cycle is repeated until the end of
the trajectory has been reached. A trajectory is considered over either
when the center of mass of the gas molecule reaches a height of 10 A
above the surface in less than 10 picoseconds (a "direct" trajectory by
the definition of Lucchese and Tu11y3), or wﬁen the trajectory has been
integrated for 15 picoseconds. In the 1latter case the trajectory is
flagged as a "trapped" tra.jectory3 after 10 picoseconds, but the inte-
gration is continued for up to five picoseconds more, in order to obtain
final quantities of interest for at least some of these instances. If a
trajectory does not reach 10 A within 15 picoseconds, no final analysis
is performed. Quantities of interest include the final quantum numbers v

and J, the final scattering angles 6, and &_, and the final energies of

f £’

translation, vibration and rotation. After the entire set of trajecto-

ries has been run, it is analyzed in terms of final average energies and
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Table 5. Final energies for various Runge-Kutta integrator step sizes
in the absence of the gas-surface potential. Initial energies
were E, = 217.000 meV, EV = 349,504 meV and ER = 0.739850 meV.

T

h (psec) EL (meV) EL (meV) EE (mev)
0.00050 217.000 348.652 0.739845
0.00033 217.000 349.392 0.739850
0.00025 217.000 349.478 0.739850
0.00020 217.000 349.495 0.739850

accommodation coefficients for the various degrees of freedom, for
direct comparison with the results of reference 3. Procedures for the
final analysis of each trajectory and for the set of trajectories are
outlined in section D of Chapter II.

The reset interval for these calculations was chosen to be 0.001
picoseconds, in order to give a maximum value for the matrix elements of
gﬁ of about 0.25. For this small a steé size, the computational overhead
in the DEROOT integrator subroutine package99 used for the vibrational
quantum number initialization procedure makes it too slow to use for
integrating the trajectories. Thus a simple fourth-order classical
Runge-Kutta integratorlooa was employed. The routine is coded to make n
steps per reset interval, where n> 1 can be chosen as desired to

minimize the error. The integrator was tested in several ways. First,
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Hamilton's equations were integrated for 1.65 picoseconds in the absence
of the gas-surface potential for several step sizes h, to test energy
conservation. Based on the resulté, which are contained in Table 5,
further tests were performed only on the two smallest values of h,
0.00025 and 0.00020 picosecond. Next a single trajectory with a typical

set of initial conditions (v=1, J = 1.5, E, = 217 meV, 8, = 30°) was

T i
integrated in the presence of the gas-surface interaction to test
against exact results. Table 6 shows the result without application of
the velocity reset, for which the exact result is the initial energy,
which should be conserved; Table 7 contains results with resetting, for
which the "exact" result is taken as integration by DEROOT, since the
damping is non-conservative. For a Runge-Kutta algorithm of order r, the
global error is O(hr),100b so that the ratio of errors for the two step
sizes considered here should be approximately (25/20)4 % 2.4; the error
ratios from Tables 6 and 7 are ~1.7 and ~4.3, indicating that the
integrator works properly. Based on the results of Tables 6 and 7, the
0.00020 picosecond step size (5 steps per reset) was chosen. With this
value of h, the integrator is roughly forty to fifty percent faster than
DEROOT for the 0.001 picosecond reset interval used here. The calcula-
tions were performed on the Cray X-MP at Sandia National Laboratories in
Albuquerque, New Mexico, and the Cray X-MP at the Ohio Supercomputer
Center in Columbus, Ohio. A typical direct trajectory took 28 seconds of
CPU time; a typical trapped trajectory took 131 seconds.

Since the model used for the LiF surface is a lattice of only 128

ions sitting atop a bulk continuum, some provision must be made to keep"

the gas molecule above the center of the lattice. In particular, the
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Table 6. Comparison of integrators for trajectories without velocity

resetting.
Trial® E§0T (meV) Errorb (10_'6 eV) CPU minutes®
Exact? 567.003 — S
DERCOT 566.984 19 294
0.00020 566.981 22 160
0.00025 566.966 37 127

8humerical entries are step sizes in picoseconds,
bError = (exact result) — (result for this trial).
®for a VAX 11/750.

dexact result is the initial value of ETOT'
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Table 7. Comparison of integrators for trajectories with velocity

resetting.
Trial? EiOT (méV) Errorb (10_6 eV) CPU minutes®
Exactd 266.266 _— 612
0.00020 266.263 3 377
0.00025 266.253 13 301

®humerical entries are step sizes in picoseconds.

bdefined as in Table 6.
®for a VAX 11/750.

dexact result is the DEROOT calculation,
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center of mass of the diatom is constrained to 1lie above the square
formed by the four ions nearest the origin (the "central square"). In
order to do this, the location of the center of mass is checked once per
reset interval; if the center of mass has moved out of the central
square, the code calls a subroutine which adjusts the coordinates and
momenta of the diatom accordingly. Since there are two types of ion in
the lattice, at alternating lattice sites, there are two distinct cases
which must be considered.

The first case is shown in part (a) of Figure 25. Here the diatom
moves in such a way that it crosses boundaries in both the X and Y
directions in the same reset interval, so that the new square over which
it moves is identical to the central square. Thus, to return the mole-
cule to the central square, the row spacing a/2 is added to or subtrac-
ted from each of the coordinates xcm and ch as necessary. No adjust-
ments of the momenta are necessary in this case.

Part (b) of Figure 25 depicts the more common situation, in which
the gas molecule only crosses one boundary of the central square, Now
the new square is not identical to the central square, but rather to the
central square rotated by ninety degrees. Therefore, to return the
diatom to the central square, the relative and center-of-mass position
and momentum vectors are rotated around the Z axis by (—-1)n X 90°, where
n = 0 is the number of previous rotations, after which either xcm or Yﬁm
is adjusted by *a/2 as necessary to obtain the required positioning. For
example, in the figure the molecule has moved out of the central square
in the X direction, to point A. To correct this, the position and

momentum vectors are first rotated by +90° (that is, counterclockwise)
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Illustration of the procedure for keeping the diatom above the central
square of the lattice for (a) the case that boundaries in both the X
and Y directions are crossed, and (b) the case that only one boundary
is crossed. Solid arrows represent diatom positions and velocities.
Straight dashed arrows denote displacement of position vectors by a/2
in the specified direction; curved dashed arrows denote rotation of
position and momentum vectors by 90° in the specified direction.
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around Z, to point B. The relative as well as center-of-mass vectors
must be rotated since both sets are used to calculate the atom position
and momentum vectors. At this point, what was X motion now lies along Y,
and the Y motion lies along -X. To get back to the central square at
point C, a/2 is subtracted from the new value of ch. From here the
integration can be continued. Eventually the molecule will again cross a
boundary, say at point D. To return to the central square, the vectors
are this time rotated by -80° (that is, clockwise) to reach point E, and
then a/2 subtracted from xcm to reach point F, from which the integra-
tion continues. As a consequence of using this procedure, one can see
that the coordinates and momenta which are being integrated do not
necessarily represent the actual coordinates and momenta in the 1lab
frame, which are in some cases useful to have. Thus, a record is main-
tained by the computer program of how many times a/2 has been added to
or subtracted from each center-of-mass coordinate, so that the actual
coordinates and momenta can be extracted from the integrated set, using
another subroutine provided for this purpose.

The final topic to be discussed is the implementation of a modified
velocity reset procedure which may be used for rigid-rotor trajectories
or in cases for which the vibrational frequency of the gas diatom is
much larger than the Debye frequency of the surface. In these situations
one desires to ensure that the component of the relative momentum along
the internuclear axis is the same after the velocity reset as it was
before. In these calculations this is done in a very straightforward
way. Before the center-of-mass and relative momenta are converted to

atom velocities in the reset procedure, the vector component of the
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relative momentum along the internuclear axis, led, is calculated
according to the following equation:

A A ’

Pl - (ue PP, (5.74)

A
where 3°1d is the relative momentum before the reset and u = ¢ / ris a

unit vector along the internuclear axis. Next the velocities are reset
as usual, and converted back to center-of-mass and relative momenta.
Then the component of the new relative momentum perpendicular to the

internuclear axis, ;;ew, is found from

-“mew

Y - P o~ (uw e ™)y, (5.75)

where ;new is the relative momentum after the reset. Finally, the

relative momentum in the modified reset scheme, ;mod’ is calculated as

Bmod - -0ld +new’ (5.76)

thus ensuring that the component of 3 along the axis is not changed by

the velocity reset.



CHAPTER VI

EVALUATION OF THE REDUCED EQUATIONS OF MOTION FORMALISM

This chapter presents an evaluation of the reduced equations of
motion model for the case of diatom-surface scattering, based on the
regults of applying the REOM (in the ZDA approximation) to the scatter-
ing of NO from LiF(00l1). Extensive calculations on this system have been
performed by Lucchese and Tully (LT) using the stochastic trajectory
method;3 these calculations provide a reliable standard by which to
measure the accuracy of the REOM results. Section A of this chapter
compares the ZDA and LT results and section B discusses the evaluation

of the ZDA approximation.

A, Comparison of ZDA and LT Results

As discussed in Chapter I, the NO/LiF study by LT had a twofold pur-
pose: to evaluate the experimental results of Zacharias and coworkers,84
who reported measurements of the vibrational deactivation probability of
NO(v=1) scattering from LiF(00l), and to investigate general features of
vibrational energy transfer in molecule-surface collisions. In their
calculations, LT employed a shell model123 for the forces among the ions
of the LiF lattice. They used a P-zone of 32 ions, four rows of four

ions in each of two layers, and included in the gas-surface interaction
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potential contributions from the 96 ions encirecling the P-zone, 48 in
each of the first and second layers. Their gas-surface interaction for.
the resulting lattice of 128 ions (eight rows of eight ions in two lay-
ers) is the one described in section C of Chapter V; the only difference
is that in LT the central sixteen ions of each layer are not frozen at
their equilibrium positions. LT chose their initial conditions for the
internal motion of the NO molecule using different procedures than those
described in Chapter II. Consequently the initial energies reported in
the following discussion in some cases differ slightly from those given
by LT.

Six sets of calculations (labeled I through VI in the present dis-
cussion) have been performed in this work for direct comparison to the
corresponding sets in reference 3. Calculation I involves initial condi-
tions to match those in the experiments of Zacharias et al. Calculation
II examines rotational and translational energy accommodation of the NO
molecule to the surface. Calculations III through VI probe the
dependence of the energy transfer in a diatom-surface collision upon the
diatom vibrational frequency, the temperature of the surface and the
initial translational and vibrational energies of the diatom, respec-
tively.

Listed in Table 8 is a comparison of ZDA and LT results for calcula-
tion I. In these sets of trajectories, the initial translational energy
is 217 meV and the initial incidence angle 30°. The initial NO wvibra-
tional energy is 349.5 meV, corresponding to v = 1. The initial rota-

tional quantum number was selected from a Boltzmann distribution at 8,5



183

Table 8. Comparison of LT, ZDA and MZDA results for Calculation I.

(a) vibrational accommodation coefficients o,

T (K) LT ZDhA MZDA
300 0.0044 * 0.002 0.73 + 0.03 0.0093 * 0.002
600 —_— 0.76 £ 0.04 0.019 * 0.003
900 0.014 % 0.007 0.73 £ 0.04 0.025 + 0.007

(b) average final translational energy <E£> (meV)

T (K) LT ZDA MZDA
300 107 £ 6 87 £ 6 87 £ 6
600 —_— 149 + 11 137 + 10

900 161 = 9 186 + 14 181 + 14




Table 8 (continued)
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(c) average final rotational energy <E§> (meV)

T (K) LT ZDA MZDA
300 26 £ 2 21 £ 3 25+ 3
600 —_— 354 324
900 57 £ 6 60 £ 7 49 7
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Kelvin, which resulted in an average initial rotational energy for the
direct trajectories of 0.6 meV. Sets of trajectories were performed with
these initial conditions at surface temperatures of 300, 600 and 900 K.
The important result from part (a) of Table 8 is that the ZDA greatly
overestimates the vibrational energy accommodation of the NO to the sur-
face, 1indicating much too great a degree of damping of the vibrational
motion. This occurs because the vibrational frequency of NO (1904.20
cd_l) is very much larger than the Debye frequency for LiF (502 cﬁ-i);
as mentioned at the end of section A of Chapter V, in this case the
adiabatic approxiﬁation is inappropriate. For this reason, Calculation I
was also performed using the modified velocity-reset procedure outlined
in Chapter V, and the results included in Table 8, under the heading
"MZDA"., It is apparent that the MZDA is a much better approximation than
the ZDA when the vibrational frequency is much greater than the Debye
frequency; however, in a range of vibrational frequencies comparable to
the Debye frequency, where the adiabatic approximation 1s not valid but
appreciable damping of the vibration should occur, neither the ZDA nor
the MZDA work very well. Both the MZDA and LT results show an approxi-
mately threefold increase of a the wvibrational energy accommodation
coefficient (EAC), as Ts changes from 300 K to 900 K.

Parts (b) and (c) of Table 8 show the LT, ZDA and MZDA values for
the average final translational and rotational energies of the NO mole-
cule from Calculation I. Both of the ZDA results show a stronger depen-
dence of the final translational energy on the surface temperature than
that of LT. The (M)ZDA result at 900 K is unusual compared to the cal-

culations discussed below, in which the ZDA consistently overestimates



186

the damping of the translational motion, resulting in a smaller value of
<E£) compared to LT. The ZDA calculations of <E§> agree with those of LT
to within the standard error at both temperatures.

Figure 26 presents angular distributions for NO scattered from LiF,
for the Calculation I initial conditions with a surface temperature of
300 K. Part (a) shows the LT distribution of the final polar scattering
angle ef, while (b) through (d) contain the MZDA results for ef for var-
ious ranges of the azimuthal scattering angle ¢f. For the purposes of
Figure 4, @f is referenced to either the positive or negative X axis,

whichever is nearer; forward scattering is then indicated by positive

values of ef and backward scattering by negative 6_.. The LT result has

£
|@f| < 15°; the distribution is broad but definitely peaked around the

specular angle (+430°). Of the 94 direct trajectories from which the

124
LT distribution is taken, 47 of them fell within the +15° acceptance
window on Qf'125 In contrast, only eight of the 76 direct trajectories

from the MZDA calculation fell within this window, while a window of
+30° contained 23 trajectories (an increase of 15) and the #45° window
35 (an increase of 12, and 46% of the total). From this it is clear that
the MZDA predicts much more out-of-plane scattering than LT's method. In
fact, Figures 26(b-d) indicate that the MZDA result favors forward scat-
tering, but both the forward and backward scattering are evenly distri-
buted in the azimuthal angles. Similar results are obtained for the ZDA
calculation. This uniformity reflects randomization, due to the use of
the wvelocity vreset technique, of the Y component of the center-of-mass
momentum, which was originally zero since the initial motion is in the

XZ plane.
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Figure 26. Comparison of LT and MZDA angular distributions (Calculation
I). Part (a) is the LT result, which has an out-of-plane
acceptance of I@fl < 15°, Parts (b)-(d) are MZDA results with
Iéfl = 15°, 30° and 45°, respectively. The specular angle is

ef - +30°.
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Figures 27 and 28 display the computed final translational and rota-
tional energy distributions, respectively, from Calculation I with a
surface temperature of 300 K. In each figure, partv(a) is the LT result
and part (b) 1is the MZDA result. The distributions are normalized so
that they integrate to unity,126 which accounts for the units of meV—i.
In both figures the MZDA distribution is cooler than that given by LT. A
cooler translational energy distribution indicates that the damping of
the translational energy is too great, since the molecule started with
an initial translational energy, 217 meV, which is gfeater than the
average energy of an equilibrium translational distribution, 2kTS = 51.7
meV, A cooler rotational distribution in this context means that the
MZDA underestimates the rotational excitation produced by the collision
with the surface, since the initial rotational energy 1is small. This
underestimation is due to excessive damping of the rotational motion by
the surface and/or loss to the surface of some translational energy that
otherwise would have contributed to rotational excitation via T = R
energy transfer in the collision. As the ensuing paragraphs will show,
these results are typical of most of the calculations performed here,
for which the initial conditions are large translational energies
(compared to 2kTs) with nearly zero rotational energies.

Calculation II investigates the degree of NO translational and rota-
tional énergy accommodation to the LiF surface. To do this, two sets of
rigid-rotor trajectories were run with the surface temperature set to
900 K. One of these sets had the initial translational energy set equal

to twice the thermal average value, that is, Eé - 4kTs = 310 meV, while
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Table 9. Comparison of LT and ZDA results for Calculation II,

quantity LT Z2DA

% 0.43 £ 0.06 0.64 + 0.09
op 0.62 + 0.08 0.40 £ 0.11

the rotational energies (quantum numbers) were selected from a Boltzmann
distribution at 900 K; from this a translational EAC, an, was extracted.
The other set of trajectories had the initial translational energy set
to the average value of 155 meV, and the initial rotational quantum
number chosen to be J = 26.5, to give a rotational energy of 154 meV,
which is roughly twice the thermal average value, 2kTs. This yielded a

rotational EAC, a,. In both calculations the initial incidence angle 6

R’ i
was selected from a cos® distribution. The accommodation coefficients
from LT and from this work are given in Table 9. It is evident that the
translational motion is damped too much by the ZDA, since the accommoda-
tion coefficient ap is larger than the LT value. This is in accord with
the result of Calculation I mentioned above. Table 9 also shows that the
ZDA mnoticeably underestimates the rotational energy accommodation to the
surface. It is not immediately obvious why this is the case, but it does

suggest, at least, that the more important cause of the underestimation

of the rotational excitation by the ZDA in calculation I and elsewhere
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Table 10. Initial conditions for vibrational motion in Cal—
culation ITII.

Wy (cm-i) Eé (meV)a quantum number
500 92.7 1.00
625 144.9 1.38
750 208.5 1.76
875 284.4 2.15
1000 371.6 2.54

aenergies differ from LT's by less than 0.7 meV at each @, -

is the decreased T -+ R energy transfer due to the overdamping of trans-
lational motion by the surface.

Calculation III 1is a study of the effect on the vibrational energy
accommodation of varying the NO vibrational frequency. To do this, sets
§f trajectories were run with an initial translational energy of 217
meV, incidence angle of 30° and rotational quantum number J = %u The
vibrational frequency and initial vibrational energy were given the val-
ues listed in Table 10; also shown are the values of the +vibrational

quantum number v used to obtain the energy at each frequency. These

energies were chosen such that the classical vibrational amplitude was
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the same in all five sets of trajectories.3 Since the vibrational accom-
modation is of interest here, the ZDA rather than the MZDA approximation
was used., The resulting vibrational accommodation coefficients are
plotted in Figure 29. This calculation clearly shows the breakdown of
the ZDA approximation in treating the vibrational motion. The plot of
the LT values shows an exponential decay of the vibrational relaxation
rate with increasing frequency,3 while the ZDA plot is insensitive to
the vibrational frequency. Also, the ZDA values for the vibrational
accommodation are too large. This behavior can be traced to the failure
of the adiabatic approximation used to derivebthe ZDA model, due to the
relative sizes of the surface and gas molecule vibrational frequencies.
Calculation III also reveals that the final average translational and
rotational energies of the scattered NO molecules, computed by both LT
and ZDA, are insensitive to the diatom frequency, although the ZDA again
overestimates the translational damping and underestimates the rota-
tional excitation.

Calculation IV illustrates the effect on the energy transfex of
varying the surface temperature. The initial translational energy was
again chosen to be 217 meV, the incidence angle was 30°, and the initial
rotational quantum number was J = %z The ZDA approximation was used,
with the diatom vibrational frequency set at 750 cm-'1 and the initial
vibrational energy fixed at 209 meV (as in the third set of trajectories
in Calculation III). Four sets of trajectories were computed. For the
first of these the ions of the surface were, in the LT case, frozen at
their equilibrium positions; for the present calculations this means

that the velocity reset was not applied during the trajectory. The other
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Table 11. Comparison of LT and ZDA values of the average final
energies for various degrees of freedom, from the
set of fiked-surface trajectories in Calculation IV.

average energy LT ZDA
£
<ET> 168 £ 6 171 * 6
<Dy 201 + 4 197 + 4
£
<ER> 56 + 5 57 %5

three sets of trajectories set the surface temperature at zero, 300 and
900 Kelvin, respectively. The "frozen surface" results, as contained in
Table 11, show clearly that the integration procedures used in these
calculations and in LT's work were equivalent, since for each degree of
freedom the final average energies from each method were within one
standard error of each other, The outcome of the surface temperature
variation is plotted in Figure 30. The ZDA does very well for botﬁ the
translational and rotational motion as far as reproducing the trend
shown in the LT calculations. 1In fact, the ZDA average final rotational
energy lies within one standard error of the LT result at each of the
surface temperatures, although the deviations indicate that the ZDA
again underestimates the rotational excitation. The damping of the
translational motion by the ZDA at lower temperatures is overestimated,

as before, although at 900 K the values are identical.
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Figures 31 and 32 present comparisons of results for Calculation V,
which investigates the initial translational energy dependence of the
energy transfer. The four sets of trajectories run in this calculation
all had a surface temperature of 300 K, an incidence angle of 30°, an
initial rotational quantum number of %- and vibrational frequency and
initial vibrational energy of 750 cd-l and 209 meV, respectively. The
initial translational energy had the values 217, 434, 650 and 867 meV,
As Figure 31 demonstrates, the ZDA reproduces the LT trend of insensi-
tivity of the final translational energy to changes in the initial
translational energy, but overestimates the damping of tramslation by
about 30%. The final rotational energies are within one standard error
of each other for all these initial translational energies, although
just barely so at 434 meV, as Figure 32 shows. Figure 32 also indicates
that the rotational excitation is underestimated (slightly) by the ZDA
calculation in this case as well.

Calculation VI looks at the effect of varying the initial vibra-
tional energy of the diatom while holding its frequency fixed (which is
complementary to Calculation III). The initial conditions for the tra-
jectories were the same as those in Calculation V, except that the ini-
tial translational energy was fixed at 217 meV and the initial vibra-
tional energy set at 209, 371 and 742 meV. Figure 33 shows that the same
behavior of the ZDA approximation as observed in the previous calcula-
tions manifests itself here as well. The ZDA reproduces the LT trend of
insensitivity to the initial vibrgtional energy, but overestimates the
damping of translation and underestimates the rotational excitation. The

average final rotational energy from the ZDA calculation matches the LT
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result to within one standard error, except at 371 meV.

B. Discussion and Evaluation of the Reduced Equations of Motion Model

In assessing the ZDA reduced equations of motion model as applied in
this work several points can be discussed. These include the ability of
the ZDA approximation to reproduce trends seen in the more exact LT cal-
culation; the inability to handle vibrational motion accurately when the
vibrational frequency is on the order of the Debye frequency of the
solid; the tendency of the ZDA results to overestimate damping of the
translational motion and underestimate rotational excitation, compared
to the LT results; and the amount of CPU time required for a typical
calculation of 100 trajectories using the ZDA approximation as compared
to using the stochastic trajectory method of LT. The following para-
graphs address these issues.

As noted in the preceding section, the ZDA calculations did very
well in reproducing the trends observed in the LT results with respect
to the dependence of the average final translational and rotational
energies on the various initial conditions. In fact, the agreement in
the results for the rotational motion is remarkably good, often within
the standard error of the computations. The rotational period T ot for
an NO molecule having a rotational energy of 50 meV, which is typical of
the largest values of the final average rotational energy presented in

section A, is roughly ten times the vibrational period Ty of LiF (as

ib
estipmated from the Debye frequency). Thus one could expect that the

adiabatic approximation is valid with respect to the rotational motion.
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This suggests that the ZDA approximation should do a good job on the

rotational motion, which appears to be the case. In a similar vein, one

can estimate whethér the translational motion should be adiabatic by

comparing the collision time tc to the vibrational period Toib" In

particular, if the ratio tc/rvib (called the adiabaticity parameter &)
127

has a value £ = 1, then the collision is adiabatic. For ET = 217 meV,
which was most commonly used in these calculations, and assuming the
"range" of the gas-surface interaction to be 3 A, one finds that & ~ 4.
This suggests that the adiabatic approximation should hold for the
translations as well.

Another way to evaluate the performance of the ZDA approximation
with respect to the translational motion is to use the results of
Diestler and Riley,2 who applied the FA and ZDA models to scattering
from a Rosenstock-Newell lattice via a Morse interaction potential, and
compared them to their numerically exéct results88 for the same system.
Table 1 of reference 2 contains "figures of merit" for judging the
approximations against the exact results for wide ranges of the colli-
sion parameters (the ratio E* of the incident energy to the well depth,
the ratio m* of the gas species mass to the surface species mass, and
the ratio k" of the force constant of the gas-surface interaction to
that of the lattice interaction). For all the calculations done in this
work, the energy ratio lies in the range 1 < E* < 10; the ratio of the
mass of NO to the mass of the surface species is m" ~ 2 or 4, depending
on whether the average or reduced mass of LiF is used. To find a rough

estimate of k*, the second derivative of the gas-surface interaction

potential with respect to Zcm at the minimum was calculated as an
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estimate of the gas-surface force constant. The lattice force constant

128

was estimated from™ = k - %-p wi, where g is the reduced mass of LiF,

lat
by setting the cutoff frequency wy equal to the Debye frequency. The

above expression for k reduces to that used in reference 2 when all

lat
the surface atoms have the same mass. The resulting estimate for k" is
0.23. The corresponding figures of merit from reference 3 for these E*,
k* and two m* are "+/0" or "+", where "+" indicates an error of between
10% and 25%, "O" an error of between 25% and 200%, and the / indicates a
change in the figure of merit as E* varies over its range. Thus one can
see that the error in the translational energies for the ZDA calculation
done here, which are typically around 30% compared to the "exact" LT
results, 1is about as good as could be expected for the set of collision
parameters corresponding to the NO/LiF system. It is interesting to
note, however, that in reference 2 the FA and ZDA approximations under-
estimate the loss of translational energy to the surface; this 1is not
the case in the present work.

As well as the reduced equations of motion seem to do for the trans-
lation and rotation, the results of the preéeding section also show that
this model breaks down for diatom vibrational frequencies which are on
the order of or larger than the Debye frequency. This, again, is due to
the fact that the adiabatic approximation used to derive the ZDA model
is not valid for the vibrational motion in such situations. It has been
shown in this work that when the vibrational frequency is very much lar-
ger than the Debye frequency, in which case direct transfer of vibra-
tional energy to the solid is expécted to be minimal, the ZDA approxima-

tion can be "repaired" in a rather ad hoc fashion by applying the
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velocity reset in such a way that the vibrational momentum is unchanged.
Calculation I shows that this procedure works fairly well for the NO/LiF
system, but it may be difficult to predict &a priori when such a
procedure is applicable. In the regime where the diatom and surface fre-
quencies are comparable, no such convenient method to fix the reduced
equations of motion presents itself. The REOM should handle the vibra-
tional m;tion acceptably for cases in which the vibrational frequency is
small compared to the Debye frequency. However, at least for diatomic
molecules, such cases almost never occur, since LiF has one of the high-
est Debye frequencies of solids of practical interest,104c and most dia-
tomic molecules of interest have vibrational frequencies on the order of
or larger than that of NO. It should be mnoted that because the
vibrational mode is only very weakly coupled to the translational and
rotational modes in this system,3 the fact that the ZDA calculation does
poorly on the vibrational motion does not have a significant effect on
its perxformance for the rotational and translational motion.

One trend that persisted throughout the discussion of section A was
that the ZDA calculation overestimated the damping of translational
motion and underestimated the rotational excitation. This implies that
for this model the surface is too "soft", so that too much of the trans-
lational energy is absorbed by the surface during the collision, instead
of remaining in translation or being transformed into rotational energy.
In other words, the motion of the gas molecule is too strongly damped by
the solid in this model. The reason for this behavior is that the “"weak-
coupling approximation” (WCA) used to reduce the ZDA damping matrix,

equation (5.25), to the computationally more tractable form used here,
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equation (5.31), is not a <very accurate approximation for an ionic
crystal. The WCA assumes that the atoms of the lattice are only weakly
coupled to each other and essentially respond independently in the
presence of the gas molecule. However, in an ionic solid the Coulomb
forces between the various ions are strong, long-range forces. Thus the
result of invoking the WCA in this application is to underestimate the
stiffness of the crystal, or, in other words, to make the lattice seem
too soft. Since the Debye frequency serves as a measure of the stiffness
of the crystal, a simple way to verify this diagnosis would be to treat
the Debye frequency as an adjustible parameter and to look af the‘final
translational and rotational energies as wp increases. The results of
such a procedure are plotted in Figure 34. The calculations all had
initial conditions identical to those in the first set of trajectories

for calculation III, except that here the value of w, was varied. The

abscissa in Figure 34 is labeled in units of wgo = 502 cm—'1

experimental Debye frequency for LiF. The figure clearly shows that less

, the

energy 1is absorbed by tﬁe lattice as the stiffness is increased. As the
stiffness is initially increased, the final average rotational energy
increases rapidly while the final average translational energy increases
slowly; for solid frequencies greater than 2w§o the translational energy
rises more rapidly and the rotational energy less quickly. The initial
behavior suggests that the underestimation of rotational excitation by
the ZDA model is due to absorption of energy by the lattice that
otherwise would have gone into T + R energy transfer. As the stiffness
increases more, some constraint limits the amount of T -+ R transfer, and

the amount of translational energy lost to the surface steadily
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decreases as well. The lines marked "exact" in Figure 34 indicate the
energies calculated by LT for these initial conditions. From these it is
apparent that this simple adjustment of the Debye frequency does not
make the ZDA result match that of LT, although it is a step in the right
direction. Perhaps applying the damping matrix (5.25) would do a better
job, although this would be a much more difficult computational task.

In addition to the above considerations about the strength of the
damping, one might also ask which parts of the potential and which atoms
of the lattice contribute most significantly to 8. To answer the first
of these questions, sets of trajectories were run in which various parts
of the potential were mnot included in the calculation of the damping
matrix in equation (5.31). The initial conditions for these trajectories
were the same as the Ts = 600 K ZDA set from Calculation I, and the
results of the calculations for the various sets of contributions to g
are presented in Table 12. The results clearly show that the most
important contribution to the damping of fhe NO motion comes from Vid’
the ion-dipole part of the potential. When this term is included in B,
the average final energies resemble those for inclusion of the full
potential; when this term is absent, the final energies look like those
for the fixed-surface set (from Calculation IV). This effect is most
clearly seen in the values of <E§> in Table 1. LT noticed a similar
relationship between Vid and <E5>, which they explained by pointing out
that distortions of the lattice from its equilibrium geometry change the
force due to V d from an exponentially-decreasing function of Zcm to one

i
that falls off as slowly as 1 / sz.B
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Table 12, Effect of eliminating various parts of the gas-surface inter-
action potential in calculating the ZDA damping matrix.

Parts of Vgs included in calculation of 8

Degree
of
rep rep a
Freedom none rep + + all
disp id
<ty 171+ 6© 1678 166 £8 155+ 10 149 * 10
<E§> 364 +1° 268 9 272 £ 9 133 #11 123 %5
£ b
(ER> 57 5 555 59 6 28 + 4 35+ 4

87DA values from Calculation I, TS = 600 K (Table 8).
bvalue taken from fixed-surface set in Calculation IV.

°MZDA value from Calculation I, T, = 600 K (Table 8).

To address the second question mentioned in the preceding paragraph,
concerning the number of atoms of the solid which make important contri-
butions to the gas-surface energy transfer, calculations were performed
in which the number of lattice ions used to compute 8 was reduced from
128 (the whole 1lattice) to 32 (the central 16 ions of each type,
corresponding to the P zone used by LT). This procédure was applied to
the sets of trajectories from Calculations I and IV; the 32-ion results

for each case (I and IV) are compared to their 128-ion counterparts in
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Figures 35 and 36, respectively. As the figures indicate, there is very
little difference between the 32- and 128-ion results over the range of
surface temperatures involved. This means that the éffects of the outer-
most 96 1ions of the lattice make only a small contribution to the gas-
surface energy transfer, which appears to justify LT'’s use of a 32-ion P
zone.

A final point worth mentioning in evaluating the reduced equations
of motion formalism concerns the issue of computer CPU time necessary to
perform the calculations. Part of the reason for developing a method
which does not include integrating the equations of motion of the sur-
face atoms 1is the hope that computational effort will be saved in the
process. For the present application to the NO/LiF scattering systen,
integrating the reduced equations of motion took considerably longer
than the corresponding LT calculation, which involved integrating equa-
tions of motion for 32 ions of the lattice in addition to tﬁose for the
gas molecule. The particular example for which information is available
for comparison is the set of trajectories from calculation I having I, -
300 K. This computation took LT 3760 CPU-seconds on a Cray 1 computer,
using a step size of 0.0002 picosecond.125 This set of trajectories
included 94 direct ones and 6 trapped ones.124 A calculation from this
work most comparable with that is the result for the 600 K ZDA set from
Calculation I, which had 95 direct trajectories and 5 trapped ones. Two
of the trapped trajectories were integrated for the full trajectory time
of 15 psec, so they would count as three LT trapped trajectories (since
LT quit after 10 picoseconds). Thus, for comparison purposes, this set

had six trapped trajectories. The step size used here was also 0.0002
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picosecond, and the required CPU time was 4792 seconds (+10%) on a Cray
X-MP; the ZDA computation took 27% longer. This is due almost entirely
to the fact that the numerical integrator used in the present calcula-
tions is significantly less efficient than that wused by LT. This is
shown by comparing the CPU times for the fixed-surface trajectory set
from Calculation IV. This set required 2271 CPU-seconds here, but only
593 seconds in the LT work.125 A major factor causing the moving-surface
calculation to take six times longer than the frozen-surface one in the
LT case was the need to evaluate random forces for the 28 atoms along
the P-Q interface at every time step. LT estimate that this’extra work
required 30-40% of the total computational effort in their moving-sur-
face caiculations.125 In contrast, the ZDA calculation for the moving
surface only required random forces for two atoms at every fifth time
step.

To obtain a qualitative estimate of whether, for a given integrator
efficiency, the REOM approach is faster than the stochastic trajectory
method, the following reasoning may be applied. A flowtrace applied to
the trajectory code used here revealed that 80.3% (+0.05%) of the CPU
time is spent in the integrator, while the reset subroutine accounts for
18.9% (+0.1%). (The percentages were determined by averaging the results
for a single direct (2.8 psec.) trajectory and a single trapped (12.3
psec,) trajectory; the uncertainties reflect the deviations of the
individual results from the average in each case.) This means that for
the set mentioned in the previous paragraph, 906 of the 4792 CPU-seconds
were spent in the reset subroutine and would be required regardless of

the integrator. Essentially all of the remaining 3886 CPU-seconds were
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spent performing the integration, Taking the ratio of fixed-surface
integration times as an estimate of the relative efficiencies of the
integrators, the LT integrator would have only required 1015 CPU-seconds
to do the same amount of work. Therefore, the present calculation with
an Iintegrator as efficient as LT’'s would only take 1015 + 906 = 1921
CPU-seconds, or 51% of the LT result. Although wuncertainties in the
reported CPU times and differences in the computers used imply that the
above value of 1921 CPU-seconds is not accurate to 4 significant fig-
ures, it is reasonable to estimate that, in the present application, the
REOM approach 1is roughly twice as fast as the stochastic trajectory
method used by LT.

Based on the above discussion, the following evaluation of the
reduced equations of motion formalism can be offered. The method can
reasonably be applied to diatom-surface collision systems for which the
diréct vibrational energy transfer between the diatom and the lattice is
expected to be small, if the collision energy is on the order of or
smaller than the depth of the gas-surface interaction and if the mass of
the gas molecule is on the order of or larger than the average mass of
the surface atoms. The results should give good qualitative predictions
of the dependence of the translational and rotational energy transfer
with respect to the various system parameters, but the quantitative
results are not necessarily reliable. An advantage of the method is that
it provides significant computer time savings (~50% in the present
application) compared to the stochastic trajectory method. The reduced
equations of motion will not work very well in cases where the vibra-

tional motion is strongly coupled to the surface, since for these cases
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neither the adiabatic approximation nor the modified velocity-reset pro-
cedure provide a reasonable physical picture for the vibrational energy

transfer.



10.

11.

12.
13.

14.

15.

16.

17.

REFERENGES

. B. D. Kay and K. R, Lykke, to be published.

. D. J. Diestler and M. E, Riley, J. Chem. Phys. §2, 4137 (1988).
. R. R, Lucchese and J. C. Tully, J. Chem. Phys. 80, 3451 (1984),
. J. C. Tully, J. Chem. Phys. 73, 1975 (1980).

. M. E. Riley, M. E. Coltrin and D. J. Diestler, J. Chem. Phys. 88,

5934 (1988).

. J. A, Barker and D. J. Auerbach, Surf. Sci. Rep. 4, 1 (1984).
. M. C. Lin and G. Ertl, Ann. Rev. Phys. Chem. 37, 587 (1986).
. P. L. Houston and R. P. Merrill, Chem. Rev. 88, 657 (1988).

. R. B. Gerber, R. Kosloff and M. Berman, Comput. Phys. Rep. 5, 59

(1986).
R. B. Gerber, Chem., Rev. 87, 29 (1987).

G. Wolken, J. Chem. Phys. 59, 1159 (1973); Chem. Phys. Lett. 21,
373 (1973).

J. V., Lill and D, J, Kouri, Chem. Phys. Lett. 112, 249 (1984).

R. C. Mowrey and D. J. Kouri, Chem. Phys., Lett. 119, 285 (1985).
D. R. O'Keefe, R. L. Palmer, J. N. Smith, Jr. and H. Saltsburg, J.
Chem. Phys. 49, 5194 (1968); D. R. O'Keefe, J. N. Smith, Jr., R. L.
Palmer and H., Saltsburg, ibid. 52, 4447 (1970); Surf. Seci. 20, 27
(1970).

R. Schinke, Surf. Sci. 127, 283 (1982).

J. P. Cowin, C.-F. Yu, S§. J. Sibener and J. E. Hurst, J. Chem.
Phys. 75, 1033 (1981).

G. Drolshagen, A. Kaufhold and J. P. Toennies, J. Chem., Phys. 83,
827 (1985).

215



18.

19

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.
31.
32.
33.
34.

35.

36.

37.

216

J. V. Lill and D. J. Kouri, unpublished work (cited in ref. 47).

A, W. Kleyn, A. C. Luntz and D. J. Auerbach, Phys. Rev. Lett, 47,
1169 (1981).

A. W. Kleyn, A. C. Luntz and D, J. Auerbach, Surf. Sci. 117, 33
(1982).

A. C, Luntz, A, V. Kleyn and D. J. Auerbach, J. Chem. Phys. 76, 737
(1982).

A. C. Luntz, A, W. Kleyn and D. J. Auerbach, Phys. Rev. B 25, 4273
(1982).

A, W. Kleyn, A. C. Luntz and D. J. Auerbach, Surf. Sci. 152, 99
(1985).

G. M. McClelland, G. D. Kubiak, H. G. Rennagel and R. N. Zare,
Phys. Rev. Lett. 46, 831 (1981).

G. D. Kubiak, J. E. Hurst, Jr., H. G. Rennagel, G. M. McClelland
and R. N, Zare, J. Chem. Phys. 79, 5163 (1983).

J. A. Barker, A. W. Kleyn and D. J. Auerbach, Chem. Phys. Lett. 97,
9 (1983).

H, Voges and R. Schinke, Chem. Phys. Lett. 100, 245 (1983).

J. G. Lauderdale, J. F. McNutt and C. W. McCurdy, Chem. Phys. Lett.
107, 43 (1984).

J. E. Smedley, G. C. Corey and M. H. Alexander, J. Chem. Phys. 87,
3218 (1987).

W. Brenig, H. Kasai and H. Muller, Surf. Sci. 161, 608 (1985).
R. Jost and A. Pais, Phys. Rev. 82, 840 (1951).

W. Brenig, H. Kasai and H. Muller, Z. Phys. B 60, 489 (1985).
T. Brunner and W. Brenig, Surf. Sci. 201, 321 (1988).

H. Voges and R. Schinke, Chem. Phys. Lett. 95, 221 (1983).

R. B. Gerber, A. T. Yinnon, Y. Shimoni and D. J. Kouri, J. Chem.
Phys. 73, 4397 (1980).

J. E. Adams, Surf. Sci. 97, 43 (1980).

T. R. Proctor, D. J. Kouri and R. B. Gerber, J. Chem. Phys. 80,
3045 (1984).



38.
39.
40,
41.
42,

43,

44,

45,
46.
47.

48.

49,
50.
51.
52.
53.

54,

55.
56.
57.

58.

59.

60.

217

R. Schinke, J., Chem. Phys. 76, 2352 (1982).

T. R. Proctor and D. J. Kouri, Chem, Phys. Lett. 106, 175 (1984).
R. Schinke and R. B. Gerber, J. Chem. Phys. 82, 1567 (1985).

S. Tanaka and S. Sugano, Surf. Sci. 136, 488 (1984).

K. B. Whaley and J. G. Light, J. Chem. Phys. 81, 3334 (1984).

R. B. Gerber, L. H. Beard and D. J. Kouri, J. Chem. Phys. 74, 4709
(1981).

A. 0. Bawagan, L. H. Beard, R. B. Gerber and D. J. Kouri, Chem.
Phys. Lett. 84, 339 (1981).

R. C. Mowrey and D. J. Kouri, J. Chem. Phys. 84, 6466 (1986).
H. Tal-Ezer and R. Kosloff, J. Chem. Phys. 81, 3967 (1984).
D. Kosloff and R. Kosloff, Jr., J. Comput. Phys. 52, 35 (1983).

R. C. Mowrey, H. F. Bowen and D. J, Kouri, J. Chem. Phys. 86, 2441
(1987).

L. M. Hubbard and W. H. Miller, J. Chem. Phys. 78, 1801 (1983).
G. D. Billing, Chem. Phys. 70, 223 (1982),

G. D. Billing, Chem. Phys. 116, 269 (1987).

A. M. Richard and A, E. DePristo, Surf. Sei. 134, 338 (1983).
A. E. DePristo, Surf. Seci. 137, 130 (1984).

C.-Y. Lee, R. F. Grote and A. E. DePristo, Surf. Sci. 145, 466
(1984).

D. C. Clary and A. E. DePristo, J. Chem. Phys. 81, 5167 (1984).
A. E, DePristo and L. C. Geiger, Surf. Sci. 176, 425 (1986).
B. Jackson and H. Metiu, J. Chem. Phys. 84, 3535 (1986).

G. Drolshagen and E. J, Heller, J. Chem. Phys. 79, 2072 (1983);
Surf. Sci. 139, 260 (1984).

B. M. Rice, B. C, Garrett, P. K. Swaminathan and M. H. Alexander,
J. Chem. Phys. 90, 575 (1989).

D. A. Micha, J. Chem. Phys. 78, 7138 (1983).



61.

62.

63.
64,

65.

66.
67.
68.
69.
70.
71.
72.
73.

74,

75.

76.

77.

78.

79.
80.

81.

218
J. E. Hurst, Jr., G. D, Kubiak and R. N, Zare, Chem. Phys. Lett.
93, 235 (1982).

J. C. Polanyi and R. J. Wolf, Ber. Bunsenges. Phys. Chem. 86, 356
(1982).

R. Elber and R. B. Gerber, J. Chem. Phys. 79, 4087 (1983).
S. C. Park and J. M. Bowman, J. Chem. Phys. 80, 2183 (1984).

R. J. Wolf, D. C. Collins and H. R. Mayne, Chem. Phys. Lett. 119,
533 (1985).

S. Tanaka and S. Sugano, Surf. Sei. 143, L371 (1984).

J. G. Polanyi and R. J. Wolf, J. Chem. Phys. 82, 1555 (1985).

J. M. Bowman and S. C. Park, J. Chem. Phys. 77, 5441 (1982).

C. J. Ray and J. M, Bowman, J. Chem. Phys. 66, 1122 (1977).

R. G. Rowe and G. Ehrlich, J. Chem. Phys. 63, 4648 (1975).

S. Saini, D. A. Dows and H. S. Taylor, Chem. Phys. 90, 87 (1984).
H. Asada, Surf. Sci. 110, 270 (1981).

H. Asada, Japan J. Appl. Phys. 20, 527 (1981).

W. L. Nichols and J. H. Weare, J. Chem. Phys. 62, 3754 (1975);
ibid. 63, 379 (1975); ibid. 66, 1075 (1977).

M. E. Coltrin and B. D. Kay, J. Chem. Phys. 89, 551 (1988).

B. D. Kay, T. D. Raymond and M. E. Coltrin, Phys. Rev. B 36, 6695
(1987).

a) R. A. Oman, J. Chem, Phys. 48, 3919 (1968); J. D. McClure, ibid.
57, 2810 (1972).

b) J. Lorenzen and L. M. Raff, ibid. 49, 1165 (1968); ibid. 52,
1133 and 6134 (1970).

J. A, Barker, D. R. Dion and R. P. Merrill, Surf. Sci. 95, 15
(1980).

S. A, Adelman and J. D. Doll, J. Chem. Phys. 64, 2375 (1976).
J. C, Tully, Acc. Chem, Res. 14, 188 (1981).

R. Kubo, Rep. Prog. Theor. Phys. 29, 255 (1966).



82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

219

R. R. Lucchese and J. C. Tully, Surf. Sei. 137, 570 (1983).

J. C. Tully, C. W. Muhlhausen and L. R. Ruby, Ber. Bunsenges. Phys.
Chem. 86, 433 (1982).

H. Zacharias, M. M. T. Loy and P. A. Roland, Phys. Rev. Lett. 49,
1790 (1982).

J. Misewich, H. Zacharias and M. M. T. Loy, Phys. Rev. Lett. 53,
1919 (1985).

C. W. Muhlhausen, L. R. Williams and J. C. Tully, J.- Chem. Phys.
83, 2594 (1985).

D. J. Diestler and M. E. Riley, J. Chem. Phys. 86, 4885 (1987).
M. E. Riley and D. J. Diestler, Surf. Sci. 175, 579 (1986).

H. C. Andersen, J. Chem. Phys. 72, 2384 (1980).

Y. Zeiri, J. Chem. Phys. 86, 7181 (1987).

H. Goldstein, "Classical Mechanics," 2nd ed. (Addison-Wesley,

Reading, MA, 1980).

a) Chapter 8, specifically equations (8-12).

b) Equation (10-65).

c) Section 4-4; the transformation matrices are equations (4-46)
and (4-47).

J. M. Hammersley and D. C. Handscomb, "Monte Carlo Methods" (Wiley,
New York, 1964).

a) Equation (2.3.21).

b) Equation (5.2.11).

c) Equations (2.4,10) and (2.4.11).

G. Herzberg, "Molecular Spectra and Molecular Structure II. Spectra
of Diatomic Molecules," 2nd ed. (Van Nostrand Reinhold, New York,
1950).

. a) Chapter V, section 2a.

b) Equations (III,121), (III,150) and (V,12).
c) Table 39,
d) Equations (III,94) and (III,100).

M. E. Coltrin, M. L. Koszykowski and R. A. Marcus, J. Chem. Phys.
73, 3643 (1980).

R. N. Porter and L. M. Raff, in "Dynamics of Molecular Collisions,
Part B," edited by W. H. Miller (Plenum, New York, 1976), chapter
1, section 5.



96.

97.

98.

99.

100.

101.
102.
103.

104,

105.

106.

107.

108.

109.

110.

111.

220

J. I. Steinfeld, "Molecules and Radiation" (Harper and Row, New
York, 1974), pp. 97-98.

F. 0. Goodman and H. Y. Wachman, "Dynamics of Gas-Surface Interac-
tions" (Academic, New York, 1976).

a) Section 2.1.

b) Equation (10.1).

R. A. LaBudde and R. B, Bernstein, J. Chem. Phys. 55, 5499 (1971).

M. K. Gordon, Sandia Laboratories Report, SAND75-0211. For a dis-
cussion of the algorithm, see L. F. Shampine and M. K. Gordon,
"Computer Solution of Ordinary Differential Equations" (Freeman,
San Francisco, 1975).

C. W. Gear, "Numerical Initial Value Problems in Ordinary Differen-
tial Equations" (Prentice-Hall, Englewood Cliffs, NJ, 1971).

a) Subroutine RK1l on page 84.

b) page 25.

E. M. Lifshitz, Sov. Phys. - JETP 2

73 (1956).

J. Harris and P. J. Feibelman, Surf. Sci. 115, L133 (1982).
P. W.' Langhoff and M. Karplus, J. Chem. Phys. 53, 233 (1970).
N. W. Ashcroft and N. D. Mermin, "Solid State Physics" (Holt,
Rinehart and Winston, Philadelphia, 1976).

a) Equations (1.37) and (1.38), and Table 1.1.

b) Table 4.5. '

c) Tables 23.1 and 23.3.

W. A. Steele, "The Interaction of Gases with Solid Surfaces"
(Pergamon, Oxford, 1974), chapter 2,

N. J. Bridge and A. D. Buckingham, Proc. Roy. Soc. London A295, 334
(1966) .

J. D. Jackson, "Classical Electrodynamics" (John Wiley and Sons,
New York, 1962), equation (4.13).

M. Kobayashi and I. Suzuki, J. Mol. Spectrosc. 116, 422 (1986),
column 1 of Table IV(b). ‘

S. Ron, Y. Shima and M. Baer, Chem. Phys. 101, 45 (1986).

L. G. M. Petterson and P. S. Bagus, Phys. Rev. Lett. 56, 500
(1986).

F. Illas, J. Rubio, J. M. Ricart and J. A. Garrido, J. Electroanal.
Chem. 200, 47 (1986).



112,

113,

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124,

125.

126.

221

P, Nordlander, S. Holloway and J. K. Norskov, Surf. Sci. 136, 59
(1984) .

D. J. Diestler and M. E. Riley, J. Chem. Phys. 83, 3584 (1985).

E. Butkov, "Mathematical Physics" (Addison-Wesley, Reading, MA,
1968). -

a) Chapter 7, particularly sections 7.1, 7.3 and 7.7,

b) Section 12.1.

c) Section 5.3.

N. B. Cabrera, Discuss. Faraday Soc. 28, 16 (1959); R. W. Zwanzig,
J. Chem. Phys. 32, 1173 (1960).

H. B. Rosenstock and G. F. Newell, J. Chem. Phys. 21, 1607 (1953);
E. W. Montroll and R. B. Potts, Phys. Rev. 102, 72 (1956).

M. E. Riley, private communication.

The equivalence of equation (5.38b) to Tully’s result (equation
(3.7) of reference 4) is not immediately obvious, since the latter
is expressed in terms of the autocorrelation function of the random
force. The ghost-atom equation of motion is written out explicitly
by Polanyi and Wolf in section IIA of reference 67; their expres-
sion for the random force, there denoted by W(At), is the same as
(5.38).

M. E. Riley, private communication.

A. D. Buckingham, in "Intermolecular Interactions: from Diatomics
to Biopolymers," edited by. B. Pullman (Wiley, New York, 1978),
chapter 1.

K. P, Huber and G. Herzberg, "Molecular Spectra and Molecular
Structure IV. Constants of Diatomic Molecules" (Van Nostrand
Reinhold, New York, 1979), p. 476.

J. C. Tully, private communication.

G. Dolling, H. G. Smith, R. M. Nicklow, P. R. Vijayaraghavan and
M. K. Wilkinson, Phys. Rev. 168, 970 (1968),.

In reference 3, LT state that this set had 96 direct trajectories.
However, summing the translational and rotational distributions
(parts (b) and (c) of their Figure 3) indicates that there were
actually 94 direct trajectories.

R. R. Lucchese, private communication.
If n, is the number of (direct) trajectories in the ith bin, the

total number of (direct) trajectories and A¢ the bin width, then
(N/NO)i = n, / (nT Ae). LT mistakenly used n, = 100 (the total



222

number of trajectories in the set) rather than n,, = 94 (the total
number of direct trajectories for the set) when normalizing their
distributions (Figure 3 of reference 3). This error has been cor-
rected in the LT results shown in Figures 27 and 28.

127. R. D. Levine and R. B. Bernstein, "Molecular Reaction Dynamics and
Chemical Reactivity" (Oxford, New York, 1987), p. 315.

128. A. A. Maradudin, E. W. Montroll, G. H. Weiss and I. P. Ipatova,
"Theory of Lattice Dynamics in the Harmonic Approximation," 2nd ed.
(Academic, New York, 1971), equation (8.8.31).



