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CHAPTER I 

INTRODUCTION 

1.1 Objective 

In this thesis, we propose a random environmental effects model for two component 

systems and investigate some general properties of that model. Specific models which 

are appropriate and useful for competing risks experiments are defined, and statistical 

inference procedures for the model parameters are developed. Finally, estimators' 

performance and-properties are explored by a Monte Carlo study. 

1.2 Motivation 

Consider a two component system as the simplest example. Each component will 

have a random life length, and the life of the entire system will depend on the failure 

patterns of the components of the system such as serial failure pattern where failure of 

any component causes the system to fail or a parallel failure pattern where the system 

fails when all the components fail. One important practical problem is to infer the system 

life length from knowledge of the individual component life times. 

In most of the research done in the past, the failure distributions associated with 

each component was assumed to be known, and the components were assumed to 

actindependently of each other to arrive at the system failure distribution.This 

common.although untestable assumption of independence, may be questionable in many 

practical situations. For example, in engineering systems where the individual 

1 
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components are subject to greater probability of failure due to their close proximity the 

assumption of independence may not be reasonable. In order to correctly analyze such 

experiments when there are dependent competing risks, a multivariate model is needed 

for the lifetimes of the components. The models proposed in the past have been justified 

on the grounds of mathematical tractability with litde or no practical justification. 

In this thesis, we consider a model which is motivated by the way systems are tested 

in the design and operating phase of development Instead of assuming a specific 

multivariate model, we derive a random environmental effects model which incorporates 

a common environment acting on all components and then induces a dependent structure 

between the failure times of components. 

1.3 Model 

In this section, we define models which are appropriate for a two component system 

incorporating the knowledge of the lifetimes of the individual components and the 

common environment under which the system operates. 

We assume that under controlled conditions, as one may encounter in the testing or 

design stage of development, the time to failure of the two components, to be linked in a 

system, are X0 and YQ. We suppose that under these conditions, XQ , YQ have survival 

functions F 0 GQ on [0,°°). 

Now suppose that the above two components are put into operation under usage 

conditions. We suppose that under such conditions the effect of the environment is to 

degrade or improve each component by the same random amount. That is, the effect of 

the environment is to select a random factor, Z, from some distribution, H(-), which 

changes the marginal survival functions of the two components to FQ^ and GQ . A 
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value of Z less than one means that component reliabilities are simultaneously improved, 

while a value of Z greater than one implies a joint degradation. We assume that two 

components in a system under fixed conditions (i.e. given Z) function independently. 

Then the resulting joint survival function of the two components' lifetimes, (X,Y) in the 

operating environment is 

F(x,y)=E (F0
Z(x)-G0

Z(y)) (1.3.1) 

The specific choice of the model is based on both theoretical support and empirical 

support. In Chapter 3, we discuss the general properties of this model in detail. 

1.4 Inference 

Statistical inference for the two component series system is carried out under the 

assumption that XQ, and Y0 have exponential distributions with the hazard rates X^, A^ 

and Z has a gamma 

pa 
distributon with density h(z)= za"*exp(-pz). (1.4.1) 

T(a) 

Since the parameters A,J, A^ are not identifiable when only data from series 

systems is available, we incorporate sample information on each component under 

controlled conditions. Maximum likelihood and method of moments estimators are 

obtained and their properties are studied by Monte Carlo methods since no closed form 

maximum likelihood estimates are available. Also a new estimator based on the scaled 

total time on test transform is presented 

Since this setting contains three sets of samples, two from components themselves 

and the other from systems, an investigation is done to find the optimal scheme for 
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determining sample sizes subject to various cost constrain 

In addition we discuss a graphical representation of this model which leads to not 

only checking the model itself but also testing the strength of the dependence induced by 

the common environment 



CHAPTER n 

BIVARIATE MODELS WITH THE FIXED ENVIRONMENTAL FACTOR 

2.1 Introduction 

In many reliability problems for multi-component systems, the conventional 

methodology mentioned in section 1.2 often makes an assumption, for the sake of 

simplicity, that the components in the system function independently. In other words, 

the component lifetimes are statistically independent However this assumption has been 

questioned in many practical situations. For example, we can thinlc of a critical shock to 

a system which affects all the components in the system simultaneously, or of a patient 

with a poor prognostic indication who may be removed from the study before death. 

In order to correctly analyze the data from the dependent cases multivariate models 

have been suggested for use in the reliability context However most of these have been 

justified only on the ground of mathematical tractability. In this chapter we review the 

relevant literature on modeling bivariate survival functions for the two component 

systems, specially focusing on their practical justification. In order to separate these 

models from the random environmental effect models we call these models the fixed 

environmental effects model. 

2.2 Conventional Models 

In this section we shall consider bivariate survival functions which are motivated by 

mimicing the properties of the univariate exponential or are mathematically contrived so 

5 
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that the marginals are exponential. These models are commonly used since the 

exponential distribution has played a central role in univariate reliability studies. 

Gumbel (1960) suggested three bivariate distributions with exponential margins, 

two of which are briefly considered here. The first is 

F(x,y)=P(X>x,Y>y) 

= exp(- Xjx - A-2y - BXp^xy) for x, y > 0. (2.2.1) 

where 0<&<X^X2- The marginal survival function of X(Y) is exp(-A.jx){exp(-A2y)} 

and the correlation between X and Y is decreasing from zero to -.4837 for increasing 

values of 8 from 0 to X-I'XJ- The second is 

F(x,y) = exp(-A.̂ x - Xjy) [1 + a (1 - exp(- Xjx)} {1 - exp(- A,2y)}], for x, y > 0 

(2.2.2) 

where -l<a<l. He found that the correlation between X and Y is ct/4. Any practical 

justification in reliability context for these models is not found. 

Freund (1961) presented a different bivariate extension of the exponential 

distribution which is designed for the life testing of a two component system, which can 

function with different hazard rate even after one of the components has failed. Consider 

a two component system. Let X and Y be the random variables denoting the component 

lifetimes whose distributions are exponential with 1/cc and 1/p as the mean life times 

respectively. If it is assumed that the failure of the one component, say A, changes the 

mean life time of the other component, say B, from 1/p to 1/P' then the bivariate density 



function f(x,y) is obtained as 
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f(x,y) = ap'exp{-p'y - (a+p~P')x} for 0 < x < y (2.2.3) 

pa'exp{-a'x - (a+p-a')y> for 0 < x < y 

where a,P,a',p '>0. First we note that the marginals are not exponential. The 

coirelation between X and Y is shown to vary from -1/3 to 1, and estimation of the 

parameters of the model is discussed by Freund (1961). 

Another version of the bivariate exponential is suggested by Marshall and Olkin 

(1967). They defined the Bivariate Exponential Distribution with parameters X^,X 2, 

X I2{B.V.E.(A.J,A2 A12)} a s 

F(x,y)=P(X>x, Y>y) 

=exp(- A-jX- A-2y- A,j2max(x,y)) for x>0, y>0. (2.2.4) 

The physical motivation for this model is based on occurences of "shocks" to each or 

both components. Consider a two component system with component lifetimes X and Y. 

The components are subjected to three types of fatal shocks cj,C2, and Cj2- Let Uj be 

the time until the shock q occurs, i=l, 2 ,{1,2}. The random variable Ui ,U2,Ui2 are 

assumed to be independent exponential random variables with parameters X j , X^ 2
 and 

X yy, respectively. The c^ shock "kills" component 1; the c2 shock "kills" component 2; 

and the C|2 shock "kills" both components. The B.V.E. distribution is obtained by 



letting X=min(Ui,Ui2) and Y=min(U2 Ui2). 

Some important properties for the B.V.E.( X^, A ,̂ X ^2) are as follows: 

i) The B.V.E.( X^,X2,X j 2 ) is not absolutely continuous since 

P(X=Y)= Xl2/( A.j+ X 2+Xl2); 

ii) The marginals are exponential; 

iii) The distribution has the loss of memory property (L.M.P.) in the sense that 

F(sj+t, s2+t) = F(si, s2)-F(t, t) for all s j , s2, t>0; 

iv) The correlation between X and Y is X^2/( X^+ X 2+^-12^ 

Block and Basu (1974) showed that this distribution is the only one which has both 

the exponential marginals and L.M.P. Basu and Klein (1982) have reviewed some 

estimators of (X. j X2 X j 2). These are the maximum likelihood estimators obtained by 

Bhattacharyya and Johnson(1971), the method of moment estimator of Bemis, Bain, and 

Higgins (1972), an intuitive estimator of Proschan and Sullo (1976), and consistent 

unbiased estimators of Arnold (1968). 

Marshall and Olkin also obtained a bivariate Weibull distribution as 

dj d 2 di d 2 

F(x,y)=exp{-A.jx -X2y -li2max(x ,y ) } , d i , d 2 > 0 . (2.2.5) 

l/dx l/d2 
by transforming the bivariate exponential random variables (X,Y) into (X ,Y ). 

Moeschberger(1974) has explored some properties of this bivariate Weibull distribution 

and estimated its parameters in the competing risk framework. He has discussed 
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maximum likelihood estimation for both the di =d2 and di & d2 cases. 

Lee and Thompson(1974) derived a bivariate Weibull distribution from the fatal 

shock model. Let X and Y be the lifetimes of each component in a two component 

system. The components are subject to three types of independent shocks, d^, d2> and 

di 2 , with random occurence times Uj , U2 , and U j 2 respectively. The shocks dj, d2, 

d j 2 "kills" the X component, Y component, and both components, respectively. Let Uj 

have a Weibull distribution with survival function 

Fj(u)=exp(- AjU ) , X j , dpO, u>0, (i=l,2,{12». The bivariate Weibull is obtained by 

letting 

X=min(Ui, U ^ ) and Y=min(U2,Ui2) as 

dj d2 dj2 

F(x, y)=exp(-A.ix - X2y -A.i2[max(x, y)] (2.2.6) 

for x, y>0. Here the marginals are not Weibull. 

Block and Basu (1974) have derived, in two ways, an absolutely continuous 

bivariate extension of the exponential distribution (A.C.B.V.E.). They have 

shown(Corollary 2) that the assumptions of the L.M.P., exponential marginals, and 

absolute continuity yields a bivariate distribution with independent exponential 

marginals. By assuming that the marginals are mixtures or weighted average of 

exponentials instead of exponential marginals they obtained the joint survival function as 

F(x, y)= {X/( X 1+ A. 2)}exP(- X ix- X 2y - X j2max(x,y)} 

- {X 12/( X i+X 2))exP(- X max(x,y)}, (2.2.7) 
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where X = X^+ X2+ X^2 It is noted that the joint distribution, which has the L.M.P., 

turns out to be the absolute continuous part of B.V.E.( XuX2,X\2) of Marshall and 

Olkin (1967). They also showed this distribution is a variant of the distribution 

suggested by Freund (1961). This model can also be obtained by a fatal and non-fatal 

shock model suggested by Friday and Patil (1977). 

Downton (1970) has derived another bivariate exponential distribution whose 

density is 

f(x,y)= {X{- A.2/(l-p)}exp{-( X{x ^ / ( l - p )}-I0{2-(p- X1-A2-x-y)1/2(l-p)} (2.2.8) 

where I0(x)=Z(x/2)2l7(r !)2 is the modified bessel function of the first kind of order 

zero. The motivation for this model is based on the cumulative shock model generalized 

from the one component situation. Let Tj , T2," • • be the independent random variables 

representing the time between the successive shocks to a system, each having 

distribution function G(t) with Laplace transform <|> (s) and let N be the random number 

of shocks required to cause failure with probability generating function n(z). Let X be 

the lifetime of the component. He observed that if X has an exponential distribution with 

mean lifetime 1/A., then the two identities, Ex(e"sx)=n( <))(s)) and E(X)=E(N)-E(Ti) 

should hold for all s. As one of the possible combinations of distributions of Tj's and N, 

satisfying the above two identities he considered an exponential distribution for Tj's and 

a geometric distribution for N. Accordingly, he assumed in a two component system that 
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the intervals between successive shoclcs on each component are independent and 

exponentially distributed, and that the numbers of shocks required to produce failure in 

each component follows a bivariate geometric distribution. Then he arrived at the joint 

density (2.2.8) by an elegant argument 



CHAPTER m 

BIVARIATE MODELS WITH RANDOM ENVIRONMENTAL FACTOR 

3.1 Introduction 

Instead of specifying the particular dependent model, some of which have been 

reviewed in the previous chapter we would like to consider a very natural situation which 

is encountered in the real world. As mentioned in section 1.3, the basic idea of the random 

environmental effect model in an engineering context is that the system, which consists of 

two components, is used under operating condition while the individual components are 

tested under controlled condition, since they are not the final product the consumers will 

use. Therefore the factors which are liable to affect the system survival function under 

operating condition may be divided into three parts, the random lifetime of each component 

under controlled condition, and the random stress characterizing the operating condition, 

and impact of this random stress on the lifetimes of the components in the system under 

operating condition. 

In section two we present a general model and provide properties of the model. In 

section three the random environmental factor is assumed to follow a gamma distribution. 

Section four deals with the case when both components have Weibull lifetime distributions 

and a random environmental factor has an arbitrary distribution. 

Since the joint survival function induced by the random environmental effect model 

provides a general dependence structure we shall discuss not only the properties of the 

model for system reliability but also explore the general dependence structure. 

12 
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3.2 The General Model 

Let XQ and YQ be the random lifetimes of the components under controlled condition 

and let Z be the random stress for the operating environment. We suppose in this section 

that the three random variables involved follow general distributions, that is, X0, Y0 have 

the survival functions FQ(-), G0(-) respectively, and Z has a distribution H(-). We denote 

the cummulative hazard functions of XQ, YQ as Qxo(") and Qyo(0> and hazard rates as 

Qxo'(')=qxo(-)
 md Qyo'Oqyo(-). Then w e h a v e Fo(t)=exp(-Qxo(t)), 

G0(t)=exp(-Qyo(t)). 

Let (X,Y) be the pair of random lifetimes of the components in a system under 

operating environment. The resulting joint survival function of (X,Y) is 

F(x,y)=E{F0
Z(x) • G0

Z(y)} 

=E[exp{-(Qxo(x)+Qyo(y))Z}] (3.2.1) 

We note that this model can be introduced through Cox's regression model (1972) as 

described by Clayton (1978) in incidence studies. Suppose the operating environment 

under which the systems function allows'for one covariate v, such as temperature, 

pressure, etc. According to Cox's model we assume the survival functions of each 

component are exp{-QX0(x)ecv}, and exp{-Qyo(y)ecv}, and the joint survival function, 

conditional upon v, is F(x,y| v)=exp[-ecv{Qxo(x)+Qyo(y)}]. Hence the model we suggest 

can be thought of as being induced through a random covariate v which is commonly 

shared by two components in a system. 

Furthermore we may incorporate fixed effect covariates, if obtainable, into our model. 

Let V be a set of variables which characterizes an environment Since it is practically 
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impossible in many cases to observe all the elements in V let us assume that we observe a 

subset Vof V and that the ommitted variables may be captured by a single random variable 

Z, where Z has a distribution function H(z). Let us further suppose that two components in 

a system function independently given V (i.e.,V,Z) with hazard rates zqx0(x)exp(c/y.) 

and zqvo(y)exp(c/jO. Thus when c is a vector of constants, we have a joint survival 

function for the two components in a system as 

E[exp{-exp( c.-y.)Z (Qxo(x)+Qyo(y))}]. (3.2.2) 

Although the above model with covariates present is more general, we will discuss the 

model without covariates since the main focus of this dissertation is on the dependent 

structure of the survival function induced by a random environment, and all of our results 

can be easily extended to the covariate model. 

First we discuss positive dependence properties of the model. Before doing this, we 

review several alternative notions of positive dependence based on the material in Barlow 

and Proshan (1981). 

Definition 3.1. (Barlow and Proshan. 1981) 

For a pair of random variables (X, Y), 

1) (X,Y) is said to be TP2 dependent if the joint density function f(x,y) satisfies the 

condition 

f(x1>yi)-f(x2,y2) - f(xlfy2)-f(x2,yi)^0 (3.2.3) 

fOTallx1<x2,y1<y2-

2) X is stochastically increasing in Y if 

P(X>x | Y=y) is increasing in y for all x. 

3) X is right tail increasing in Y if 
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P(X>x | Y>y) is increasing in y for all x. 

4) X and Y are said to be associated if 

for functions gj and g2 nondecreasing in each variable 

COV(gl(X,Y),g2(X,Y)) ;>0 (3.2.4) 

5) X and Y are said to be positively quadrant dependent if 

P(X>x,Y>y)^P(X>x)-P(Y>y) forallx.y. (3.2.5) 

Theorem 3.2 (Barlow and Proshan. 1981) 

The notions 1) - 5) in the definition 3.1 can be arranged into a hierarchy as 

1) => 2) => 3) => 4) => 5). 

We are now in position to derive the dependence properties of the general model by 

showing that (X,Y) is TP2 dependent Even if TP2 dependence is not intuitively appealing 

theorem 3.2 does imply that the other more appealing notions of dependence do hold and 

hence gives insight into the dependence structure. 

Theorem 3.3 The random variables X, Y of the lifetimes of the two components in a 

system under the operating environment are TP2 dependent 

proof) Let fQ(x) and g0(y) be the density function of XQ and YQ respectively and 

f(x,y) be the joint density funtion of (X,Y). Then 

f(x,y)=E{Z2F0
Z-1(x)G0

z-1(y)f0(x)g0(y)} 

= fo«go(y) E{Z2F0
z-1(x)G0

z-1(y)} 

= f0(x)g0(y) Jz2F0
z-1(x)G0

z-1(y)dH(z). (3.2.6) 
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Noting that f0(x)=qX0(x)exp(-Qx0(x)), we have 

f(x,y)=qxo(x)qyo(y)Jz2F0
z(x)G0

z(y)dH(z). Then (3.2.7) 

f(xi,yi )-f(x2,y2) = J JqXo(xl)qyo(yi) qXo(x2)qyo(y2)u2 v2F0
u(x1)G0

u(y1) 
u>v F0

v(x2)G0
v(y2)dH(u)dH(v) 

+ J Jqxo(xi)qyo(yi) qxo(x2)qyo(y2)u2 v2F0
u(x1)G0

u(y1) 
v>u F0

v(x2)G0
v(y2)dH(u)dH(v) 

=1 Jqxo(
xl)qyo(yi) qXO(x2)qyo(y2) u 2 v2F0

U(xi)G0
u(y1) 

u>v F0
v(x2)G0

v(y2)dH(u)dH(v) 

+ J Jqxo(xi)qyo(yi) qXo(x2)qyo(y2)u2 v2F0
v(xi)G0

v(y1) 
u>v F0«(x2)G0

u(y2)dH(u)dH(v). 
(3.2.8) 

In the same manner, the other product f(xj,y2) * f(x2,yj) also can be written as 

integrals over the region u>v and f(xi ,yj) • f(x2>y2) - f(xj,y2)' f(x2»yi) can be 

written as 

I Ju2 v2[ qxo(x,) qxo(x2) F0«(Xl) FQ
v(x2) - qxo(Xl) qX0(x2)F0

v(x1) F0«(x2)]-
u > v [ qyo(yi) qyo(y2) GD

u(yi) G0
v(y2) 

- qy0(yi) qyo(y2)G0
v(yi) GG

u(y2)] dH(u)dH(v). 

(3.2.9) 

Rewrite the first blanketed term in the integrand as 

qXO(xl) qXo(x2> FoU(xl) FoU(x2){F0
v(x2) /F0»(x2) - F</(x,) /F0«(Xl)}. (3.2.10) 

We know that this term is always nonnegative over the region u>v since 
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F0
v(x) / F0

u(x) = exp [ - (v - u) Qxo(x) ] is increasing in x Similarly the second 

blanketed term is always nonnegative over the region u > v. 

Therefore the integrand is nonnegative over the region u > v so that 

f(xi,yj) • f(x2,y2) - f(xi,y2)' ^ 2 ^ 1 ) £ 0 for all xi<x2, yj < y2> which leads to TP2 

dependence. Q.E.D. 

As mentioned before, Theorem 3.3 provides useful properties of the dependence 

structure of the model so that one may use them to exploit related properties in the 

reliability context As a simplest case the two properties 2), 3) in definition 3.1 lead us to 

the following corollary. 

Corollary 3.3.1 Under the same setting as in theorem 3.3, the conditional hazard rates 

q(x I Y=y) and q(x |Y > y) are decreasing in y. 

Proof) Since the conditional survival function given Y=y , F(x | Y=y) is increasing 

in y for all x by theorem 3.3 q(x | Y=y) which is the derivative of -logF(x | Y=y), is also 

decreasing in y for all x. Similarly q(x | Y> y) is decreasing. Q.E.D. 

Intuitively this corollary implies that the longer one component functions, the more 

reliable the other component in the system is. 

From a different point of view we derive an inequality in terms of the conditional 

hazard rates which reflects the positive dependence of the model. 

Theorem 3.4 Under the same setting as in theorem 3.3, the model satisfies 

q(x|Y = y)>q(x|Y>y). 

Proof) LetGi(y) be the marginal survival function of y in the system exposed to the 

operating environment. Then 



3F(x,y) dG,(y) 
F(x|Y=y) = P(X>x |Y = y)= / -— 

dy dy 

E(ZF0
z(x)G0

z-1(y)g0(y)) 

18 

E(ZG0
z"1(y)-g0(y)) 

E(ZF0
z(x)G0

z(y)) 

q(x|Y>y) E2(Z-F0
z(x)-G0

z(y)) 

(3.2.11) 
E(ZG0

z(y)) 

since g0(y) = qy0(y)-G0(y). 

E(F 0
z(x)G 0

z(y)) 
Also F(x |Y > y) = P(X > x | Y > y) = = (3.2.12) 

E(G0
Z(y)) 

Hence, we obtain the following inequality, 

q(x |Y = y) E( Z 2 F 0
z (x)G 0

z (y) ) E( F0
z(x)G0

z(y)) 
> 1, (3.2.13) 

since q(x |Y=y) = 3 [- logF(x|Y=y)] / dx 

= E(Z2F0
z-1(x)-G0

Z(y)f0(x)) / E( ZFQ
Z(x)-G0

Z(y)) 

= qxo(x)E(Z2F0
z(x)-G0

z(y)) / E( ZF0
z(x)-G0

z(y)), and 

q(x|y>y) = qxo(x)E( Z-F0
z(x)G0

z(y)) / E( F0
z(x)-G0

z(y)). 

The inequality in (3.2.13) is obtained by Cauchy -Schwarz inequality and equality holds 

if and only if the random variable Z is constant Q.E.D. 

We note that this inequality should be compared with the notion of the quasi 

independence, which is defined as q(x |Y = y) = q(x |Y > y). Basu and Klein (1982) 

have reviewed this notion. We note that quasi independence is the necessary and 
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sufficient condition that the marginal distribution under the dependent model can be 

recovered from the minimum of X, Y and the knowledge of which component caused 

the system to fail. In this case there exists a set of independent random variables which 

yields the same minimum and indicater of system failure as the dependent system. 

Futhermore these equivalent independent random variables have the same marginals as 

the dependent system. For example, for the Marshall and Olkin's model holds one can 

generate the bivariate dependent distribution through the three independent random 

shocks. 

Up to now several properties have been explored in terms of the dependence 

structure induced by a random environment. Next we investigate the effects of the 

random environment on system reliability by comparing the reliability function with and 

without environmental effect. Conventional reliabilty theory commonly uses the 

knowledge of the component lifetimes and an assumption of independent component 

lifetimes in order to compute the system life distribution. In other words an investigator 

modeling system life, based on component information, may predict the reliability of the 

system, in our setting, with knowledge of FQ(x) and G0(y) only by Ros(t) = 

F0(t)-G0(t). The following theorem indicates how the two reliabilities are different in a 

series system. 

Theorem 3.5 Suppose a two component system is serial, i.e., the system fails if and 

only if any one of the two components fails. Let Rs(t) and Ros(t) denote 

the system reliabilities for the cases of a random environment and of a 

fixed environment 
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i) If E(Z)<£ 1 then Rs(t) 2_Ros(t) for all t 

ii) If E(Z) > 1 and P(Z < 1) = 0 then Rs(t) < Ros(t) for all t 

iii) If E(Z) >1 and P(Z > 1) > 0 then there exists a t* such that 

Rs(t) < Ros(t) for all t < t* and Rs(t) > Ros(t) for all t > t*-

Statement (iii) implies that even if the average operating environment is more severe than 

the controlled one but if there is a chance of better environment perhaps due to highly 

cautious maintenance, careful users, or an effective usage the reliability under a random 

environment becomes more reliable beyond a certain time. 

Proof) The ratio of reliabilities for variable to fixed environment Ros(t)/Rs(t) is 

E{exp(-Q0(t)Z)} 
where Q0(t)=Qxo(t)+Qyo(t). 

exp{-Qo(t)} * 

In the case of E(Z) <, 1, E{exp(-Q0(t)Z)}> exp{-Q0(t)-E(Z)} by Jensen's inequality 

since exp(-uz) is strictly convex function in z. Then i) follows immediately. Note that the 

equality holds if and only if Z is a constant, i.e. Z=l with probability l.The statement (ii) 

follows by noting that 

E{exp(-Q0(t)Z)} = J exp(-Q0(t)z)dH(z) < exp(-Q0(t)z) JdH(z) = exp{-Q0(t)}. 

To prove (iii), let 

E{exp(-Q0(t)Z)} 
r(t)= (3.2.14) 

exp{-Q0(t)} 

Then r'(t)=q0(t) E{exp(-Q0(t)Z)} exp{-Q0(t)}(l-s(t)) (3.2.15) 

where s(t) = E{Zexp(-Q0(t)Z)}/E{exp(-Q0(t)Z)} and q0(t)=dQ0(t)/dt 
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Noting that s(0)=E(Z) since Qo(0) = 0, E(Z)>1 implies that r'(0) < 0. Hence since r(t) is 

decreasing at t = 0 and r(0) = 1 this implies that r(t) < 1 for t in a neighborhood of t=0. 

To complete the proof it suffices to show that r(t) is increasing beyond a certain point, 

which is true if r'(t) is positive beyond that point. We claim s(t) is decreasing in t and s(t) 

< 1 for large t under the given condition.Let us express s(t) as 

E{Zexp(-Q0(t)Z)} exp(-Q0(t)z) 
s(t) = = J z -f dH(z) 

E{exp(-Q0(t)Z)} Jexp(-Q0(t)z) dH(z) 

= Jzp(z|T>t)dz (3.2.16) 

exp(-Q0(t)z)dH(z) 
where p(z|T>t) dz = and c(Qn(t)) = J exp(-Q0(t)z)dH(z). 

c(Qo(0) 

Noting that p(z|T>t) is a density function, s(t) can be expressed in terms of the 

conditional expection E(Z |T > t). Looking at the density p(z|T>t) we see that 

p(z|T>t) cCQo^)) 
= * exp{( Q0(ti) - QQ(t2) )z} for t, < t2 (3.2.17) 

p(z|T>t) c(Q0(t!)) 

is decreasing in z. Then it is an immediate consequence of the following lemma, due to 

Lehmann (1959) that E(Z| T > t) is decreasing in t 

Lemma (Lehmann(1954),pg74) Let pg(x) be a family of densities on the real line with 

monotone likelihood ratio in x. If \|/(x) is nondecreasing 

function of x, then EQ(\|/(X)) is a nondecreasing 

function of 9. 

Let 0 = 1/t Denote pg(z) = P(z|T>t). Then PQ(Z) has monotone likelihood ratio in z. So 
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E(Z) is nondecreasing in 8, which implies that E(Z|T>t) is decreasing in t. Now it 

remains to be shown that s(t) < 1 for some t > 0. Let p(z)=(z-l)exp(-Q0(t)-z) and note 

that p(0) = -1 and p(z) has maximum [Q0(t){exp(Q0(t)+l)}]_1 at z0=(l+Q0(t))-Q0"
1(t) 

and p(z) is increasing for z < zQ and decreasing z > z0. Suppose P(Z < 1) = e > 0.For 

any 0 < 8 < e, there exists a closed interval [u,v] contained in (0,1) such that A(u,v) = 

H(v) - H(u) > 5. Then E(Zexp(-Q0(t)Z)) - E(exp(-QQ(t)Z)) 

= Jo
1p(z)dH(z)+J~p(z)dH(z) 

^ Jvp(z)dH(z) +[ QoW-expd+Qod))]-1^!, oo) 
u 

*p(v)-A(u,v) + [ Q0(t)-exp(l+Qf)(t))]-
1-A(l, oo) 

<(v-l)exp(-Q0(t)v)5+[Q0(t)-exp(l+Q0(t))]-
1. * (3.2.18) 

Since the last term is negative if and only if (1-v) 8> [e-Q0(t)-exp{(l-v)Q0(t)}] there 

exists a t* such that E(Zexp(-Q0(t)Z)) - E(exp(-QQ(t)Z)) < 0, that is, s(t*) < 1. Q.E.D. 

This theorem implies that conventional methods which are based only on 

components' information overestimate the reliability at an earlier stage ignoring potential 

loss from a harsh environment which may be encountered in the beginning stage under 

the operating condition, while underestimating the possible gains in reliability at later 

stage from a better environment which meets requirement of each system's 

susceptibility. 



23 

The proof of the theorem yielded an interesting result about the conditional 

distribution H() of a random environmental factor. 

Theorem 3.6 The mean and variance of a random environmental factor Z among system 

survival to a given time t, E(Z | T > t) and V(Z| T > t) are decreasing in t. 

Proof) The results immediately follow the argument about s(t) in the proof of 

theorem 3.4. Q.E.D. 

As one might expect, this theorem indicates that average environmental factor of the 

surviving systems declines with time since the systems under harsher environments tend 

to fail first Also it is noted that the variability of environmental factor of the surviving 

systems is reduced with time. 

We conclude this section by mentioning an curious phenomenon of the hazard rate. 

In the series system problem the life system distribution after incorporating a random 

environmental factor has hazard rate qs(t) = c^t)- E(Zexp(-QQ(t)Z)) / E(exp(-QQ(t)Z)). 

However E(Zexp(-Q0(t)Z)) / E(exp(-QQ(t)Z)) has been shown to be decreasing in t. 

Thus the lifetime distribution can often have a decreasing hazard rate which the variable 

environment may cause while the component hazard rates are not decreasing. One 

plausible explanation is that the population is subject to an early heavy selection of 

systems under most severe environments. This should be contrasted to reliability of 

system operating in a fixed environment where the systems may have a variety of shapes 

for the hazard rates. 

3.3 The Model with a Gamma Environmental Factor Distribution 

While no particular distribution has been assumed in the previous section a gamma 
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distribution with two parameters is assumed in this section for the random environmental 

factor Z. The gamma distribution is chosen because it is analytically tractable, readily 

computable, and it is a flexible distribution that takes on a variety of shapes including 

exponential and bell-shaped. Since an environmental factor can not be negative the 

gamma distribution is one of the most commonly used to model a variable which is 

necessarily positive. 

Some authors have proposed this model along with the specified baseline 

distributions which play the same role as our FQ, and G0. Lindley and Singpurwalla 

(1985) have investigated .although not in depth, some properties of the model when FQ, 

GQ are exponentials and discussed bounds on reliability for this model. Hutchinson 

(1982) proposed a similar model when 

F0(t) = G0(t) = exp(-tTl). (3.3.1) 

In order to explore the properties of this model in this section, we first investigate 

the relationship between this model and Oakes' model. Oakes(1982) has suggested a 

model 

1_ 

F(x, y) =[ F ^ A x ) + Gok
1"e(y) - 1] (l'Q) <3-3-2) 

where F ^ , and GQ^ are the marginal survivals and 0 > 1. A reparameterizing of this 

model was first introduced by Clayton (1978) to model the association in a bivariate life 

table. Two physical interpretations were given. The first is based on the relation between 

the hazard functions q(x| Y = y) and q(x| Y > y) for the conditional distributions of X 

given Y = y, and Y > y. He showed that for all x and y this model gives the identity 
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q(x| Y = y) =0 q(x| Y > y). The second is in terms of random effects. Let W be a 

random variable with a gamma density h(w) = {r(l/(l-0))}"^exp(-w)w^^ " ®'~ . It is 

assumed that conditionally on W = w, X and Y are independent random variables with 

survival functions {exp(-F0jc^""(x)+l)}w and {exp(-Gok^""(y)+l)}w, respectively. 

Then the unconditional joint survival function is obtained as (3.3.1). He showed that as 

0—>1+, F(x, y) _ > Fok(x)-Gok(y) and 0—> ~, F(x, y) _ > min(Fok(x)> Gok(y)), 

the distribution with maximal association. Also the correlation between X and Y in this 

model varies from 0 to 1. 

We will show in this section that the gamma model is equivalent to the Oakes' model 

in the sense of a notion of dependence. For this purpose a nonparametric measure of 

dependence termed the Copula is introduced. Using this concept a partial ordering of 

positively quadrant dependence distributions is developed to this general case of unequal 

marginals in order to assertain how the joint survival function of the two components in 

a system under operating condition is changing according to variable parameter values of 

a gamma distribution 

Suppose a random environmental factor follows a gamma distribution with two 

parameters a, P 

whose density function is h(z) = {r(a)}"1Paexp(-z/P)zoc_1, a > 0 P > 0. Then the 

joint survival function for (X, Y) is 

pa 
F(x, y)= (3.3.3) 

(P+Qxo(x)+Q (y)}a 
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and the marginal survival functions are 

pa 
Fi(x)= , (3.3.4) 

{p+Qxo(x)}« 
pa 

Gi(y)= - (3-3.5) 
{P+Qyo(y)}a 

Here it is noted that the marginal also depends on the parameters of the random 

environmental factor distribution, while Oakes' model has fixed marginals. 

To begin with we point out that the two properties which Oakes' model satisfies are 

also obtained in our gamma model. In theorem 3.4 the two conditional hazard rates are 

shown to have inequality q(x|Y = y) > q(x|Y>y), for any H(-). It is easily calculated that 

q(x|Y = y) = (l+l/a)q(x|Y>y) when H(*) is a gamma distribution. This relationship has 

been used as a key assumption to establish Oakes' model by Clayton. Another 

investigation leads to the same results about the coefficient of concordance that Oakes 

(1982) has obtained. In both case the probability of concordance is computed as 

(a+l)/(2a+l). 

In order to show that both models have the same dependence structure we use a 

nonparametric measure, the Copula, which has been introduced by Sklar in 1959. This 

notion has been studied by Schweizer and Wolff (1981). They have set up the following 

definition and explored some properties. 

Definition 3.7 ( Schweizer and Wolff(1981)) A two dimensional coupla is a mapping C 

from the unit square [0,1] x [0,1] onto the unit interval [0, 1] such that 

1) Domain of C is [0,1] x [0,1], 

2) C is a two dimensional cumulative distribution, 

3) One dimensional marginals are uniform over [0,1]. 
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Property 3.8 ( Schweizer and Wolff(1981)) 

1) C is continous, 

2) max(u+v-l) ̂ _C(u, v) ^ min(u, v) for all u, v e [0,1], 

3) max(u+v-l) and min (u, v) are themselves copulas. 

Theorem 3.9 (Schweizer and Wolff(1981)) Let H be a two dimensional survival 

function with continous marginal survival functions F, G. Then there 

exists a unique copula C such that H(x, y) = C(F(x), G(y)). Thus the 

copula C is given by 

C(u,v) = H(F-1(u),G-1(v)). (3.3.6) 

As they noted in their paper, theorem 3.9 shows that since a copula itself is a bivariate 

distribution with uniform marginals the study of copulas can provide much knowledge 

of the joint distribution of x and y. Because our investigation is about the dependence 

structure, we shall discuss this matter rather than the overall properties of copulas which 

are of intrinsic interest. 

Regarding the dependence structure we illustrate how a copula works for a joint 

distribution by expressing a well known measure of dependence for (U, V), 

Spearman's p, in terms of C. Suppose Wi and W2 have a joint survival function H with 

marginal survival functions F, G. Let C be the copula of (Wj, W2). Then Spearman's p 

is 

p(W1; W2) = 12 J J[H(x, y) -F(x)G(y)] d (1 -F(x))-d(l - G(y)) (3.3.7) 

which can also be expressed, using the probability transformation, as 
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P(W1} W2) = 12 J J [C(u, v) - uv] du-dv. (3.3.8) 

Noting that the second expression is in terms of C alone, a nonparametric measure of 

dependence between W j , and W2 can be studied from thier copula alone. The above two 

authors have studied other measures as well as p. 

We shall show that our gamma model and Oakes' model which may be applied 

differently according to the situation have the same dependence structure in the sense of 

the copula. 

Property 3.10 The gamma model and Oakes' model both have the same copula, 

[
u - l / a + ' v - i / a , , l g <"•»> 

Proof) Let u = Fj(x), and v = Gi (y) where Fj, G^ are the marginal survivals. Then 

we obtain x = Ff^u) = Q^H p(u"1/a -1) ] and y = Gf^v) = Q ^ t p(V1 / a - 1) ], 

so that C(u, v) is computed. 

We list some properties of the gamma model through the copula we have obtained in 

property 3.10. 

1) Since the copula C(u, v) depends only on a, only the shape parameter a affects the 

dependence structure which is induced by the environment. 

2) Since the Copula 3.3.10 is decreasing in a, and two variables are independent if and 

only if their Copula is u-v, the larger the shape parameter a is, the less the 

dependence is induced. 
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3) As a goes to 0 the copula converges to min(u,v) which is the copula of maximal 

positive association, in other words, the copula of the two random variables one of 

which is a monotone function of the other. 

In 2), we note that usual comparisions of the strength of dependence of two random 

variables require that the marginals be fixed. However we note that the copula is a 

surface over the unit square and that a notion of distance between a given Copula and the 

one of independent case, u-v, can be used to compare the degree of dependence between 

distributions of arbitrary marginal structure. This idea is a generalization of the concept 

of partial ordering of positively quadrant dependence introduced by Ahmed, and et al 

(1979). They have considered a class of positively quadrant dependent bivariate 

distributions whose marginals are fixed. They have defined an ordering on this class by 

saying that one bivariate distribution is more positive quadrant dependent than another if 

its joint survival function is larger for any x, y. They also show that two independent 

random variables and two random variables of which one is the monotone function of 

the other one are the two extremes of this class with respect to this ordering.The Copula 

makes it possible to make similar comparisions of arbitrary pairs of positively quadrant 

random variables with respect to the degree of positively quadrant dependence. 

Since we have investigated properties of the general model in the previous section, 

we will observe what the assumption of a gamma distribution as a random environmental 

factor distribution yields. 

Property 3.11 The random environmental factor for those systems for which component 

A has functioned more than x time units and component B has functioned 

y time units also follows a gamma distribution with same shape parameter 
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a and scale parameter Qxo(x) + Qyo(y) + p. While for the population of 

the systems whose components failed at time X=x, Y=y the 

environmental factor follows a gamma distribution with shape parameter 

a+2 and scale parameter Qxo(x) + Qyo(y) + P-

Proof) The conditonal density of Z given X > x, Y > y, h(z | X > x, Y > y), is 

P ( X > x , Y > y | Z = z)-h(z) 

P( X > x, Y > y ) 

{QxoW + Qyo(y) +P>a e xPH Qxo(x) + Qyo(y) +P> z ] ' 2 " - 1 

(3.3.10) 
T(a) 

which is a gamma density with parameters a, { Qxo(x) + Qyo(y) +P}-

On the other hand the conditional density given X = x and Y = y, h(z | X = x Y = y) is 

h(z, x, y) h(x, y |z)-h(z) 

h(x, y) h(x,y) 

{ Qxo(x) + Qy0(y) +P}a+2-exp[-{ Qxo(x) + Q (y) +p} z ]z a + 1 

= _ y— _ iZ , (3.3.11) 
T(a+2) 

a gamma density with parameters a+2, { Qxo(x) + Qyo(y) +P>. Q.E.D. 

Property 3.11 indicates that the mean of the environmental factor for the population 

of systems whose components are functioning at time t is a decreasing function of t 

Another point to be noted from this property is that the density of the environmental 

factor for the population of the systems whose components' lifetimes have X > x, Y > y 

has the shape paramater a, which is identical to that in the unconeditional density of Z. It 
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can be interpreted that the dependence structure between the components of all the 

functioning system beyond a certain time t is of the same as the dependence structure 

between components of a system operating at time 0. 

We will conclude this section by presenting an interesting relationship between a 

component's survival function F0(-), and the reliability of the series system Rs(
-)- Klein 

and Moeschberger (1985) have obtained an expression for the marginal survival function 

of X in terms of the survival function of T, where T = min (X, Y), under the assumption 

that (X, Y) follows Oakes' bivariate survival function. In our gamma model, consider 

the crude density function pi (•) associated with one component, say A, whose lifetime is 

denoted by XQ. Now, 

d 
P l(t) = P ( T < t , X < Y ) 

dt 

d 
= l tJ°°f(u,v)dvdu 

dt ° u 

foo 5F^u, v; j 
= J f(t, v) dv = -

t du k=t,v=t 

= a - [ R s ( t ) ] ( « + 1 ) / a . - ^ . (3.3.12) 

9F(u, v) 

"au" 

f0(t) 

WO 
Consider the differential equation 

foW P 
Pl(t)- [R s ( t ) ] - ( 1 + a ) / a • (3.3.13) 

FQ(t) a 

Then the solution of the above equation for F0(t) is 

P f 
F0(t) = exp [ - _ J]• p,(t)- [R s(t)]-(1 + a) / a dt] . (3.3.14) 

a u 

As the above authors have done, this expression may be used to obtain bounds for the 
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survival function of a component of interest based on the data one can obtain in a 

competing risks experiment. Let T ] / • • ,Tn denote the observed test times of n two 

component systems and let 8j, i = l,"",n, be 1 or 0 according to whether the Tj was an 

observation on Xj or Yj, respectively. Then the usual estimators of Rs(t) and pj(t) 

enable us to have an estimator of FQ(t) provided that a, P are known. 

3.4 The Model When Both Components Have Weibull Lifetime Distribution 

In this section both components are assumed to have a Weibull form with parameters 

(rip X]) and (r |2 , X2), respectively. That is, FQ(X) = exp(- A^X^I) . The Weibull 

distribution, which may have increasing (T) > 1), decreasing (rj < 1) or constant failure 

rate (rj = 1) has been shown experimentally to provide a reasonable fit to many different 

types of survival data. (See Bain (1978)). The resulting joint reliability of the two 

components' lifetimes, (X,Y) in the operating 

environment is F(x,y) = E[exp(-Z(A1x
Tll+ A2y

T|2 )]. (3.4.1) 

The model described above for a general distribution of the environmental stress has 

a particular dependence structure which we summarize in the following lemmas. 

Lemma 1. Let (X,Y) follow the model (3.4.1) where Z is a positive random variable 

r s 
with finite ( + ) i n inverse moment Then 

^1 "H2 
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-r/rn -S/TI2 .(r/T1 s / r , ) 

E(X rYs) = A.i X T(l+ r/rji) T( l+ s/rj2) E(Z ) 
(3.4.2) 

The proof follows by noting that, given Z = z, (X,Y) are independent Weibulls with 

parameters (rij, Xi z) and (r|2, X2 z), respectively and 

-r/rij -r/r| 
E(Xr|Z=z) = A.j z T(l+ r/rji) with a similar expression for Ys. When the 

appropriate moments exist, we have 

-1/rii 
(A)E(X) = E(X0)E(Z ), 

-1/rii -1/rii 
(B) V(X) = E(X0

2) Var (Z ) + E(Z ) 2 Var(X0), 

-1/Tl! - l /n2 

(C) Cov (X,Y) = E(X0) E(Y0) Cov(Z , Z ) which is greater than 0. 

If rjj = TI2 = TJ then the correlation between (X,Y) is 

r(l+l/r|)2Var(Z-1 / rl) 

p= (3.4.3) 

Var(Z"1/rI) r(l+2/ri)+ (r(l+2/ri) - r(l+l/ri)2) E(Z"1/Tl)2 

In this case the correlation is bounded above by r( l+l/r | )2 / T(l+2/r\). Figure 1 shows 

the maximal correlation as a function of rj for r\ e (0, 10). Note that this maximal 

correlation is an increasing function of Tj. 

Exact expressions for competing risks quantities of interest can be computed when a 

particular model is assumed for the distribution of Z. We shall consider the gamma and 

uniform models. Consider first the gamma model with hz(z) = p a z a - * exp(-pz)/r(a), 

z > 0. For this model, the joint survival function is 
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F(x,y) = (3.4.4) 

Til Tb 
flJ+^x +X2y T 

which is a bivariate Burr Distribution (see Takahasi (1965)), the marginal 

distributions are univariate Burr distributions with 

-1/rh 
E(X) = (A /̂p) n i + l / r i j ^ a - 1/rj,) T(a), if a > 1/rj, 

-2/m r(l+2/rll)r(a-2/r|1) r(l+l/r|1)r(a-l/ri1)0 
Var(X) = (?lj/p) { [ ]2}, if a > 2/n x 

T(a) T(a) 

with similar expressions for E(Y), Var(Y). The covariance of (X,Y) is 

-l/rji -l/ri2r(a-l/ri ]-l/ri2) r(a-l/ri2)r(a-l/ri2) 
Cov(X,Y) = (VP) 02/P) f } 

T(a) T(a) 
r(i+i/ru)r(i+i/ri2) 

for a > 1/T]j + l/rj2. For the gamma model, the reliability function for a bivariate series 

system is given by 

Til ^2 
Rs(t) = (l+tVpH + (tyP)t )"a> (3-4-5) 
and for a parallel system by 

Tji rj2 T|2 Tl2 
Rp(t) = (l+(A.!/p)t + (1+ (A-2/p)t )"«- ( l+ (X^) t + (X2/P)t ) " a (3-4.6) 

Figures 2-5 are plots of the series system reliability for X,= \,X2 = 2 and several 

combinations of T| p r^ . Each figure shows the reliablity for a = 1/2,1, 2, 4, and the 

independent Weibull model. In all cases, p = 1. For these figures we note that for fixed 
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A.j, A.2Tjj, r\2, t, the series system reliability is a decreasing function of the shape 

parameter a. Figures 6-9 are plots of the parallel system reliability (3.4.6) for the above 

parameters. Again, the reliability is a decreasing function of a. Also in both the series 

and parallel system reliability, the shape of the reliability function is quite different from 

that encountered under independence. 

The gamma model is a reasonable model for the environmental stress due to its 

flexibility and the tractability of the model in obtaining close form solutions for the 

relevant quantities and in estimating parameters. However, in some cases, such as when 

the operating environment is always more severe than the laboratory environment, the 

support of H may be restricted to some fixed interval. A possible model for such an 

environmental stress is the uniform distribution over [a,b]. For this model, the joint 

survival function is 

•Hi T l2 'Hi Tl2 
[exp (-b(A.i x + X2y )) - exp(-a( A.ix + X2y ))] 

F(x,y) = (3.4.7) 
, ^1 , ^ 2 

(b-a)(A.ix +X2y ) 

-i/Tii Oii-i)/^ crn-iym 
E(X) = A.x ra+l/r i^lnCb -a )/{(Tirl)(b-a)] i f r i ^ l , 

= logOj/aJ/ftiCb-a)] i f r l l=l , 
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Var(X) =r\lXl {r(l+2/ru) T^ (b - a ) 
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(b-a) 

-r( l+ l /Ti 1) zn 1(b * * -a " *> 2n.,^-V^ J^l,r]l\2 

, } i f r i ^ l . 2 , 

(Tirl)
2(b-a) 

= 2/(A,2
2ab) - log(b/ a)2/[(b-a) X{\2 ifri1= 1, 

. log(b/ a) % 
= V 1 [ — m — I T ? - ? 1 i f T l l = 2 -

(b-a) (b1 / 2 + a 1 / 2 ) z 

For this model, the reliability function for a series system is 

* ^1 , ^2. „ 'Hi „ ^2 
Rs(t) = [exp(-b( Xxt +X2t 1) - exp[-a( A t̂ +X2t )]] (3.4.8) 

ill ^2 
(b-a)( A t̂ + X2 t f 

and for a parallel system is 

Til "Hi Tl2 Tl2 
R_(t) = [exp(-b(A-it ) -exp(-a A.jt ) + [exp(-b X2t ) -exp(-a X2t ) 

-Rs(t) 
Til ^2 

(b-a) A t̂ (b-a) X2t (3.4.9) 

Figures 10-13 show the rehabihty for a series system and figures 14-17 for a parallel 

system under the uniform model for various combinations of Xp X2,T[ j , TJ 2 a,b. 

Notice that when A = .25, B = .75, which corresponds to an operating environment 

which is less severe than the test environment, the system reliability is greater than that 

expected under independence, while when (a,b) = (1.25,1.75) or (1., 2), which 
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corresponds to an environment more severe than the test environment, the system 

reliability is smaller. Also when (a,b) contains 1, which corresponds to an environment 

which incurs the possibility of no differential effect from that found in the laboratory, 

there is little difference in the dependent and independent system reliability. 

Up to this point we have proposed a practically motivated random environmental 

effect model and have investigated this model from the points of view of both system 

reliability and the induced dependence structure. Even if the results are not as tractable as 

those of the other dependent models used in reliability studies and survival analysis the 

basis of our assumptions are so realistic that any one applying reliability methods in the 

practice may consider this model to detect the environmental effect and to 

resolvediscrepancies in estimating reliability under more standard models. Finally, we 

finish this chapter by noting that this model and its properties, which we explored from 

the point of view of engineering application, should be investigated in depth for 

biological application. 



CHAPTER IV 

INFERENCE 

4.1 Introduction 

In this chapter the problem of analyzing life tests of two component series systems 

which are assumed to follow the random environmental effects model described in the 

chapter 3 is discussed. We will focus on the model which assumes that the lifetimes of 

the components follow the Weibull lifetime distribution with same shape parameters, that 

is, rij = TI2 = TJ under laboratory condition. If ri is assumed to be known, then the 

lifetimes, after a suitable transformation, may be assumed to follow an exponential 

distribution. In section 4.2 we will briefly discuss the case when the random 

environmental factor follows an arbitrary distribution. In the remainder of this chapter a 

gamma distribution is assumed for the random environmental factor." Maximum 

likelihood estimators of the parameters are obtained in section 4.3 and we propose an 

optimal scheme for determining sample sizes subject to various cost constraints in 

section 4.4. In section 4.5 the method of moments estimators of the parameters 

associated with the random environmental factor are discussed together with a modified 

estimator. We present several new estimators in section 4.6 which are based on a 

graphical approach to the analysis of such experiment. In section 4.7 a comparision of 

the estimators obtained will be made through a small scale Monte Carlo study. Finally in 

section 4.8 we discuss how to test the dependence induced by the common environment 

47 
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under the Weibull - gamma model. 

Before describing the analysis we shall discuss the experimental design and some 

notation. Consider two components, say component A and B, which are linked into a 

series system, say S. The whole experiment consists of three distinct parts. One 

experiment is done on component A under controlled condition, such as found in the 

laboratory and another independent experiment is performed on component B under 

controlled conditions. The third experiment is carried out on the series systems S under 

operating conditions which allow for introducing the common environmental 

effects.Sample data from the first two parts consist of times to failure of each 

component. The last part consists of the failure times of the system and an indicator 

variable which tells us which component causes the system to fail. 

Now let us explain the following notations: Let 

XQ j = Lifetime of the i-th component A in part I, i = 1, 2, • • -,n; 

Y0 •• = Lifetime of the j-th component B in part II, j = 1,2,- • • ,m; 

n = Number of component A's put on the test under contorlled conditions; 

m = Number of component B's put on the test under controlled conditions; 

Xj = The potential lifetime of component A of the i-th system under operating 

conditions; 

Yj[ = The potential lifetime of component B of the i-th system under operating 

conditions; 

8j = An indicator variable whose value is equal to 1 if Xj < Yj and otherwise equal to 

0; 

Tj = Lifetime of the i-th system, (Tj = min [ Xj, Yj ] ) ; 
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s = Number of the systems put on the test under operating conditions; 

A.j = Hazard rate of the component A under controlled conditions; 

A^ = Hazard rate of the component B under controlled conditions; 

H(-) = Cummulative distribution function of the random environmental factor, Z; 

cc = The shape parameter of the gamma distribution assumed for H(-); 

P = The scale parameter of the gamma distribution assumed for H(*). 

4.2 The Model with a General Environmental Factor Distribution 

In this section, we consider the maximum likelihood estimators (M.L.E.) of the 

hazard rates of both components, X±, and X2 and the distribution function H(-) given 

three independent samples, 

(xo,l > xo,2> " ' ' xo,n) > ( Y o , l ' Yo,2> *' * > Yo,m) > md 

(T^Sp T2,52, • • * ,TS,5S). Let 

n m 
S 0 J = I X 0 J and S 0 2 = Z YQ : be the total times on test of both components in the 

i=l ' ' j=l ' 

s 
laboratory testing experiments, and M = E 5V. be the number of systems whose failures 

k=l 

are due to component A.Since the observations from different samples are independent 

the relevant likelihood is L = L^ 'L2'L^ where 
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Li = A.1
n-exp(-A.1*S0 ]), L2= A2m-exp(-A2*S0 2), and 

s 
L 3 = S C M - A - J M - A ^ - ^ T I J z-exp{-a1+^2)zTk} dH(z), 

k=l 

s! 
where sCjy[ = 

M!(s-M)! 

Hence the loglikelihood after a slight modification is 

logL = n-logA-i + m-logA/j - A.]S0 j - X2SQ 2 + log(sCjvj) + MlogA.̂  +(s - M)logA_2 

- s log(A.i + X2) + Z log J (A,I+X2) z-exp{-(A.j+A.2)zTk} dH(z). (4.2.1) 
k=l 

Since the last term of logL depends on X,, X2, and H(-) the usual technique of finding 

M.L.E.'s can not be directly applied here. One approach we suggest here is due to 

Jewell (1982). He has shown the existence of the M.L.E. of a mixing measure |i given a 

sample of n independent observations from the mixture distribution 

F(t) = 1(1- exp(-zt)) d|J.(z) and suggested an algorithm for computation of the M.L.E. 

Following Jewell, we suggest first obtaining the M.L.E. of H (•). That is, the 

distribution function of (X^ + X^)Z = Z . From the last term of logL we maximize 

Z log J z exp(-z"Tk) dH""(z), (4.2.2) 
k=l 

Jz 

and then obtain the M.L.E.'s of Xp X2 from the remaining terms solving the two 
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likelihood equations, 

n M s 
— " So,l + " = °» (4-2-3) 
A.1 A,i A.1+A.2 

m s-M s 
— - So,2 + " = ° (4-2-4) 
X2 ' X2 Xi+X2 

Since the M.L.E. of H (•) depends only on T^'s, the M.L.E. of H(-) can be obtained by 

the invariance property of the M.L.E. 

Since the estimators of A.j and A^ will be discussed in depth in the next two 

sections, we consider only the estimator of H (•) in this section. Jewell, in his paper, 

has shown that the M.L.E. of H (•) has finite support, containing at most s distinct 

points which are lying between the two extremes, the inverses of the largest and smallest 

Tk's. Thus he proposed a minor adjustment to an algorithm, which has been suggested 

by Hasselblad (1969) for maximizing the likelihood of a finite mixture of exponentials 

with the number of mass points known. The algorithm proceeds as follows. For each 

q = 1, "-,s we estimate the distribution of Z by finding the values of pj q and zj q , 

i = 1, 2, —,q where pj q = P( Z = zj q ) , which maximize (4.2.2). For fixed q these 

points are found iteratively as follows. Let p™\ zf™ be an initial guess at pj „, zj q . 
q 

Set g(k)(t) = Z pjCk). Zj(k).exp(-Zj(k)t) and fjCtyt) = Zj(k).exp(-Zj<k)t), 

j = 1,2 ,-,q. 

Then p ^ + 0 = P j(
k) [ £ fj^CTj) / g^CTj) ] / s , and 

j J i = 1 J 
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If j^OTi)/§(%•) 

i=r 
z(k+l)= , j = l,2,-,q. 

EETifiOOfTiJ/gCtyTi)] 
i=l J 

We continue untill convergence is obtained. As noted in Jewell this algorithm suffers 

from the limitations of a large variance and too many iterations. The relatively poor 

behavior of this estimation procedure was also noted by Heckman and Singer (1982) in 

somewhat differnt context In the sequel we shall describe improved estimators based on 

assumed parametric model for H(-). 

4.3 Maximum Likelihood Estimators for the Model with a Gamma Environmental 

Factor Distribution 

In this section we assume that the random environmental factor has a gamma 

distribution, whose distribution function is H(z) = J p a (r(a))"1 u a _ 1 e" u P du, with 

finite mean and study the method of maximum likelihood estimation for the parameters 

A.J, X2, a, and p. As noted in section 3.4, the reliability for this series system is Rs(t) = 

(1 + (X^+XQ) t / P)"a. Based on the three independent samples described in section 4.1, 

the relevant loglikelihood is 

logL = n-logA-j + m-logA-2 - A.JS0 J - X2SQ 2 + log(sC^j) + MlogA.̂  +(s - M)logA-2 

s 
+ slogoc - slogp - (a + 1) Z log {1 +(X.i +X2) Tk / p} . (4.3.1) 

k=l 
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The derivatives in X^,X2, a, and P are 

d logL n M (cc+1) s Tk 

= " S o, l + " S <43-2> 
dXl Xl Xl p k=l {l+(A.i+A.2)Tk/p} 

3 logL m s-M (a+1) s Tk 

= " S 0 2 + " 2 (4-3.3) 
dX2 X2 X2 p k=l {l+(A.i+A,2)Tk/p} 

9 logL s s 
= Z log {1 +(Xl+X2) Tk / p} (4.3.4) 

9 a a k=l 

3 logL 1 s (A.i+A.2)Tk/p 
= [ ( a + 1 ) 2 - s ] . (4.3.5) 

9 p p k= l l + (A.i+A.2)Tk/p 

The usual method of maximum likelihood is to set the above derivatives to 0 and to solve 

the system of four nonlinear equations which after some manipulation are: 

n M s 
i) " so,l+ =° 

A.j A,j A-i+A/j 

m s-M s 
ii) - S 0 ) 2 + = 0 

X2 ' Xi A.i+A-2 

s s 
iii) Z log {1 +(A.I+A,2) T k / p} = 0 

a k=l 

s T k sp 
IV) Z 

k = 1 l + (A.i+A.2)Tk/p (a+l)(A.i+A.2) 
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The first two equations are to be solved for A.j, X2 to obtain A.̂  j , A^ . We may obtain 

amle' Pmle ^ s ° l v u l g t n e las t t w o equations. More precisely, we separate the 

loglikelihood (4.3.1) into two parts after the one to one transformation, 

( A,J, X2, a, p) > (A.1? X2, a, 9) where 9 = (X±+ X2) I p. That is, 

logL = log Lj + log L2 where 

logLj = n-logA^ + nrlogA.2 - A ^ S ^ - A.2S02 + log(sCM) + MlogA-j +(s - M)logA.2 

-slog(A.i+A.2), 
(4.3.6) 

and, 
s 

logL2 = sloga + slog6 - (a + 1) Z log (1 + 6 Tk). (4.3.7) 
k=l 

Thus the problem of finding the parameter values maximizing logL consists of the two 

parts: the first to find the values of Xp X2 maximizing logLj and the second to find 

those values of a and 8 maximizing logL2 

It should be noted that the M.L.E's of X,, ^ depend on the samples of the 

components under controlled conditions and M, the number of systems which fail due to 

the component A only, while the actual system lifetimes are used to estimate a and 9. 

This is somewhat obvious if we recall our assumption that the two components in a 

system under any fixed environment are functioning independently. 

Going back to the estimation problem, the M.L.E.'s of A.j, A2 are easily calculated 
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by solving the quadratic equation 

r2 Xx
2 + riA-! - rQ = 0 (4.3.8) 

where r2 = s o , l ' s o , 2 - s o , l 2 ' 

r1 = (nc + n A ) S 0 j l + ( s - n A ) S 0 ) 2 , 

ro = nC ' nA> 

n£ = n + m; number of both components put on tests 

n A = n + M ; number of component A's used in the whole experiment. 

The estimator A.JQ = {-rj + (r j 2 + 4t0T2y^2} / 2r2 if r2 > 0,and 

{~rl " (rl + 4r0r2) } / 2r2 otherwise. The other estimator X2Q is computed as 

(n c - SolA.1Q) / So 2 . 

Looking at how the M.L.E.'s were obtained a natural question is " How much are these 

estimators improved by adding information from the system experiment ?" Since this 

question is of independent interest we will discuss this problem in the next section. 

Prior to calculating the MX.E.'s of a and 0, we would like to check their existence 

in the allowable parameter space ( a > 0, 9 > 0) since some authors (see Harris and 

Singpurwalla (1969)) have found M.L.E. in similar settings without a thorough 

investigation. Noting that logL2 is a function of a and 9, the two likelihood equations 

are 
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3 logL2 s s 

= Z log {1 +9Tk} = 0 , and (4.3.9) 
3 a a k=l 

3logL2 s s Tk 
= — - ( a + l ) Z = 0 . (4.3.10) 

3 9 9 k=l 1 + 9Tk 

Solving 4.3.9 for a we obtain ocrnje=s/{Z log{l + 9Tk)}. Substituting this value into 

4.3.10 we obtain the following equation which is to be solved for 9: 

s s 
_ -f2(9)[ + 1 ] = 0 (4.3.11) 
e fj.(e) 

where s s Tk 

f,(9) = 2:iog(l + 9Tk) , f2(9) = S 
k=l k=l (l + 9T k ) 

This equation can not be shown to have a positive and finite root. Thus we provide a 

sufficient condition under which there is a M.L.E. of 9. 

Let logL0 = s log s -s + s log 6 - s log (Z log(l + 9Tk)) - £ log (1 + 0Tk) be the 

loglikelihood of (9,a) evaluated at a = a ^ g . Then 

s 
lim logLa = slogs - s - slog( Z Tk) 
9_>0 k=l 

lim logLa = -oo 
9->oo 

dlogLQ s Z T k
2 - 2 ( Z T k ) 2 

lim = 
9->0 d 9 2 (ZTk) 

d logLe 
lim = 0 , 

9_>oo d 9 
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We note that if the observation Tk's satisfies 

s s 
s E T k

2 - 2 ( S Tk)2 > 0 (4.3.12) 
k=l k k=l k 

then logL0 is increasing in a neighborhood of 0. Noting that lim logL0 = -oo, and 
0->oo 

lim logLo is 
9 - > 0 

finite, it follows that the smallest root of the equation (4.3.11) is a M.L.E. of 9. 

Thus if the sample satisfies (4.3.12), a M.L.E. 9 m j e of 9 is obtained by solving the 

equation (4.3.11) numerically and a M.L.E. of a is computed as s/[Elog(l + 9 ^ tk) ]. 

In the case that the data does not satisfy the condition (4.3.12) we would have a M.L.E. 

of 9 at 0 = 0 which leads to oo as a M.L.E. of a. In such a case the reliability for the 

series system becomes 

lim Rs(t) = Urn (1 + (A,1+X2) /1 )" a = exp (-|X (A,I+A.2) t ) (4.3.13) 
a->oo a->oo 

a/P->|i a/P->|j. 

so that we conclude that the series system has constant hazard rate and it seems 

reasonable to carry out the inference procedure accordingly. 

A practical meaning can be given if the condition (4.3.12) is expressed as 

s s 
[ S T k

2 - T 2 ] / s > T 2 where T= { S T k } / s . (4.3.14) 

k=l k=l 

The above expression shows that the condition is satisfied if the sample deviation is 

larger than the sample mean. 
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In addition the existence problem of maximum likelihood estimation we note that the 

estimate of a can be less than one, which implies that the mean system reliability is 

infinite. To study the properties of the estimators as well as some others which will be 

discussed in the next sections a small scale Monte Carlo study will be presented in 

section 4.7. 

4.4 A Note on the Estimation of the Components' Hazard Rates 

As discussed in the previous section the M.L.E.'s of Xu X2, the components' 

hazard rates under controlled condition are obtained through the likelihood function 

logLj which is constructed from three independent samples, one based on each 

component tested separately and one based on system data. However the only 

contribution from the system data to the likelihood function for X j , X2 is the information 

as to which component has caused the system failure, while the contribution from the 

component data consists of their lifetimes. 

The framework of this problem is combining component and system information. 

Eastering and Prairie (1971) have discussed this problem when there is data from both 

components and systems consisting of several identical, but independent components in 

series or in parallel. In case of attribute testing and life testing they have obtained 

estimators of the components hazard rates and have investigated how much information 

about the hazard rate of the components is obtained from the system sample using the 

asymptotic variances of the maximum likelihood estimators. Mastran (1975) has 

considered this problem from a Bayesian point of view. Miyamura (1982) has 

investigated the systems of independent but not-identically distributed components and 



59 

suggested a maximum likelihood estimation procedure. In the framework discussed in 

this section the components are not identically distributed and we combine lifetimes of 

both components and information of the cause of system failures to estimate component 

parameters. 

First, we compute the asymptotic variances of M.L.E.'s of Xp A^ obtained in the 

previous section and compare them with the variances of the M.L.E. computed only 

from the component samples. Second, we investigate some possible strategies for 

determining sample sizes under cost constraints which may occur if it costs to check 

which component caused the system to fail. 

We assume that the sample sizes of both components are same, that is, n = m = N. 

Suppose 

that the ratio of the component sample size to the total sample size, N/(2N + s), goes to c 

as both N and s go to <*>. Now 

I (A.) =c I i (A . )+c I 2 (A . ) + (l-2c)I3(A.) (4.4.1) 

where A. = (A.j, X )̂ and Ij (X) is the information matrix based on the density function 

corresponding to i-th sample. 

To obtain Ij (A.) the loglikeUhood logLj should be divided into the three different parts 

corresponding to a sample of size one from each phase of the experiment. Let 

l o g L l ^ l o g A - j - X ^ Xl 

logL12 = logX2-Y0)2A2 
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logLi3 = 5 log Xj + (1 - 5) log X2 - log (Xj + X2). 

3 2 logLi: Xi 
Noting that Ij (X) = - E [ ] , (i = 1, 2, 3 ) andE ( M ) = 

3 Xj 3 X2 

we obtain 

lift) = 

I/X12 

0 

0 

0 

w = 

Xi + X2 

\ 
0 

1/X2
; i 

1 1 1 

13ft) = 

X!(X!+X2) (Xi + X2)2 

1 

(Xj+X2)z 

1 1 

\ 

I ( X ) = 

L 0.1+ty2 

c ( X 1
2 + X2

2) + X1-X2 

Xi 2 (Xi+X 2 ) 2 

- ( l - 2 c ) 

X2(X! + X2) (X! + X2)2J ,so 

- (1 - 2c ) 

(Xi+X2)
2 

c(Xl
2 + X2

2) + Xl-X2 

cxl+x2y X2
2 (Xx + X2)2 

(4.4.2) 

d e t ( I ( X ) ) = | I ( X ) I 

c2 (X12 - X2
2 ) 2 + 2 c X{ X2 (Xi + X2)2 

X 1
2 X 2

2 (X 1 +X 2 ) 4 ' 

Thus the variance - covariance matrix !"*( X) of M.L.E.S of (Xj , X2 ) is 

(4.4.3) 



Xi2 (Xj+ X2)2{ c (X,2+ X2
2) + X1X2} Xi2 X2

2 (Xi + X2)2(l - 2c) 

^ c2(X!2 - X2
2)2 + 2cXjX2 (Xi + X2)

2 c2(Xi2- X2
2)2 + 2cXiX2 (Xx + X2)2 

Xi2X2
2 (X{ + X2)2(l - 2c) X2

2 (Xx + X2)
2{c (Xi2 + X2

2) + XiX2} 

K c 2 (Xi 2 -X 2
2 ) 2 + 2cXiX2(Xi + X2)2 c 2(X 2

2-X 2
2) 2 + 2cXiX2(Xx + X2)2 

(4.4.4) 

We obtain, by Theorem 6.1 of Lehmann (1983), 

V 2 N T s ~ ( X 1 1 - X 1 ) > N ( 0 , I i f 1 ), (4.4.5) 

V2N + S ( X^j - Xj ) > N (0 , I22"1 ), (4.4.6) 

where Ijj~•*- is the i-jth entry in the matrix J."*(X). 

Next we study how much the estimator Xj j , incorporating the information from the 

system improves on the estimator XJQ of Xj computed from the component sample by 

computing the asymptotic relative efficiency (A.R.E.) of X JQ of Xi to Xj 1. Since 

V~N (X1Q - Xi) > N (0, X2), we obtain the A.R.E. &i as 

ll f 1 (Xi + X2)
2 XiX2 + c (Xi + X2)2 (X12 + X2

2) 
ei = c =5— = = =5—. (4.4.7) 

Xj 2 2 (Xx + X2)2 Xi X2 + c (Xi + X2)2 (Xi - X2)2 

If we assume that X2 = k Xj , then 

k + c (k 2+l) 
e i = . (4.4.8) 

2k + c (k -1 ) 2 
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Figure 18 shows the A.R.E. of X j j to X JQ at varying ratios of component sample size to 

total sample size for five different k values. Notice that for fixed ratio the more similar 

the hazard rates of the two components are, the smaller the A.R.E. is. That is, the more 

the information from the system sample contributes to reducing the variance. Figure 19 

shows the A.R.E. at varying k's for given ratio of sample sizes.Note that c=0 

corresponds to the situation where N is very small compared to s, c=l/6 to the case 

where s is of the order 4 times N, c=l/3 to the case where s is almost same as N, c=2/5 

to the case where N of the order 1/2 times N and c=l/2 to the case where s is very small 

compared to N. The above result is also valid for the estimators, X2i and X2Q since all 

the formulae are symmetric in Xi and X2. 

In the previous section we saw that estimating the scale parameter P of the gamma 

distribution involves estimating X j + X2 rather than X j or X2 themselves so that we shall 

turn to comparision of the variances of Xj j + X21 and XJQ + X^Q. Using the same 

procedure as before we are led to the A.R.E. of XJQ + X20 to ^11 + ^21 w n* c n *s 

(Xi + X2)2 { XiX2 + c (Xi - X 2 ) 2 } 
e2 = , « = (4.4.9) 

(X12 + X2
2) {2 XjX2 + c (Xx - X 2 ) 2 } 

Setting again X^ = k X2 , 
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(k + l ) 2 {c (k -1) 2 + k } 

e 2 = — 9 9 ' 
(k 2 + 1) {c (k -1) 2 + 2k } 

2k k 
= ( 1 + — ^ ) d - ~ )• (4.4.10) 

(k 2 + 1) c (k -1) 2 + 2k 

The plots of the A.R.E.'s are shown for various k's and c's in figure 20 and 21. 

Surprisingly it is found that when the hazard rates of two components are identical or 

very similar the information from the system does not contribute to a reduction of the 

asymptotic variance. Since Xji and X21 are correlated it is not easy to explain this 

finding analytically. However, an intuitive explanation is that when the two hazard rates 

are similar the information from the system, which only contributes information on the 

amount of difference between the hazard rates through the numbers of systems which 

fail from each type of component failure, contributes least to the inference on the relation 

between the two components in the system. 

In order to check the above results for finite sample sizes, as encountered in practice, 

we have investigated the ratios of the mean square errors of estimates, 

MSE(X n ) MSE(X n +X 2 i ) 
elhat = — = 7 7 : — - ' a n d e2hat = m „ T , / , : — : > 

MSE (X2 0) MSE (Xj 0+ X2o) 

through a Monte Carlo study. The sufficient statistics for a random sample from the 

above sampling scheme consist of three random deviates: one from a gamma distribution 

with parameters (N, Xi), another from a gamma distribution with parameters (N, X2), 

and the other from a binomial distribution with parameters [ s, X̂  / (X1+X2) ]. 1000 sets 

of sufficient statistics were generated to obtain the estimates of ei^at, and &2h?A ^or e a c n 
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combination of the component sample size N=20,50,100,500, and the sample fraction 

c*= N / (2N+s) = .1, .2, .3, .4 with Xj = 1 and X2 = 1, 2,10. The estimates for each 

case are reported in the following table 1 for ejj,a t , and table 2 for e2nar,. From these 

tables we can see generally agreement with the asymptotic results for these combinations 

of moderate sample sizes. Also it is confirmed that the information from the system 

sample contributes very little to the reduction of the mean square error of X j j + X21 

since the first line of each box(i.e. X2 = 1) in the table 2 is about 1.0. 

There are several problems which may be considered in the light of the above 

results. We will discuss two of these: 

i ) If we suppose that it costs to check the cause of system failure, when is it resonable to 

check the systems? 

ii) If we are allowed to check randomly some of systems how many systems should be 

checked to achieve minimum variance under some constraints? 

To investigate the above two problems we assume that the sample size of the system 

sample is fixed at s and that the sample sizes and the unit price of testing both 

components are the same. Let Pp be the total remaining allowable cost after 

administrative costs and the costs of collecting system life data are removed and, let PTJ 

be the cost of testing a component, and let Pc be the additional cost of checking a system 

to determine its failure mode. Suppose these costs Pf , PTJ, and P c are predetermined. 
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Table 1: Monte Carlo Estimation of the efficiency of X JQ to X j j based on 1000 samples 

N 

20 

50 

100 

500 

x2 

1 
2 
10 

1 
2 
10 

1 
2 
10 

1 
2 
10 

.1 
.56534 
.56225 
.62437 

.58265 

.60692 

.70346 

.59245 

.59418 

.69286 

.63320 

.61353 

.68270 

.2 

.67647 

.67686 

.76877 

.67777 

.70019 

.82000 

.69637 

.70775 

.83290 

.72681 

.69582 

.81903 

.3 

.82189 

.79254 

.87676 

.76197 

.78153 

.91630 

.81654 

.78777 

.90202 

.81371 

.81650 

.90938 

.4 

.90085 

.93825 

.92083 

.88336 

.90748 

.96813 

.89781 

.91425 

.95081 

.92221 

.91505 

.97090 

Table 2: Monte Carlo Estimation of the efficiency of X1Q+X2Q to Xj j+X^jbased on 

1000 samples 

N 

20 

50 

100 

500 

h. 
1 
2 
10 

1 
2 
10 

1 
2 
10 

1 
2 
10 

.1 
.89377 
.85409 
.78360 

.93494 

.91066 

.81203 

1.01925 
.97199 
.76529 

1.04136 
.94269 
.80495 

c 
.2 
.91940 
.88025 
.87069 

.95313 

.94605 

.88544 

1.02397 
.98356 
.88264 

1.03872 
.97442 
.87426 

.3 

.95326 

.95558 

.89873 

.96733 

.97147 

.92727 

1.03229 
1.02168 
.95298 

1.03979 
.96699 
.93227 

.4 

.98167 

.97752 

.96726 

.98379 

.99287 

.99362 

1.03585 
1.01971 
.97951 

1.04268 
1.00756 
.96923 
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The sample sizes are assumed to be reasonably large so that asymptotic variance results 

hold. 

We consider question (i). We see that 

N c = P-p / 2PTJ : The maximum number of each component we could test 

when systems are not checked. 

Let 

R = P C / P T J : The ratio of the costs, 

Q = Nc / s : The ratio of the component sample size if systems are not checkedto the 

system sample size. 

Then 

P T = 2PTJN + S P C , and N = N c - R - s / 2 . 

Our goal is to find the maximum value of R such that 

V ( X 1 L N + X 2 1 > N ) < V ( X 1 0 ) N c + X 2 0 j N c) (4.4.11) 

where the subscripts N, N c denote the component sample sizes when the estimators are 

computed. 

Noting that V(X^ j ^ + X2i j^) is approximated by 

1 (Xi + X2)2 Cf(Xj - X2)2 + XiX2 

I =j ] where Cf = N/(2N+s), and 
2N +s Cf Cf(Xi - X2) + 2Xi X2 

v(^10 N + ^20 N ) ^v $•! + ^2 ) / Nc , we obtain the following approximate ratio 
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Q - 0.5 R _ 
V ( X 1 1 N + X 2 i N ) Q (k+1) 2 ( k - l ) 2 + k 

' * 2Q + (1-R) 
= [ ( ) ] . 

, Q - 0 . 5 R 
V ( X 1 0 N + X 2 O N ) Q - 0.5R k 2 + l ( k - l ) 2 + 2k 

IIMN c zu, IN c 2 Q + ( 1 R ) 

(4.4.12) 

If we let r(R, Q, k) denote the above ratio of variances, after some algebraic 

manipulation we see that 

r(R,Q,k) < 1 implies 

R2(k + l ) 2 - R (2Qk2 +4Qk + 4k + 2Q) + {(k-1)2 / (k2+l)}4Qk > 0 . (4.4.13) 

The left hand side of the inequality has positive value for small R and then a negative 

value for large value of R. R must be less than 2Q to assure a positive value of N. The 

smaller root of the corresponding quadratic equation is the maximum value of R for 

which V(Xj i js^ + X2i j ^ ) is smaller than V ^ i o j\j + X^Q Ĵ T) and hence determination 

of the cause of system failure is advisable. That is, the maximum value of R is 

=- (B - V B 2 - 4 Q k ( k - l ) 2 ) , where B = Qk2 + 2Qk + 2k +Q 
( k + 1 ) 2 

(4.4.14) 

Figure 22 shows the maximum value of R for each Q at different It's. For example, 

suppose we have the idea that Q is equal to 10 computed using the predetemined values 

s, P-p, and PTJ. We also assume that the ratio of the hazard rates is ,3 say, which might 

be guessed through past experience. Then this figure tells that if the relative cost, R, is 

less than 0.1 then it is recommended to check the systems. As discussed before, if the 

two components have the same hazard rates it is not recommended to do it. 

Considering the question (ii), we find the number of systems to be checked to 
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under the given constraints. Let s be the number of systems to be checked among the s 

systems, and set y = s / Nc. Noting that 

N = N c - 0.5 R s , and recalling that the ratio of component sample to complete 

sample size c is N/(2N+s ), we obtain the asymptotic variance of V (X j , j^+ X21 J\T) as 

( k + 1 ) 2 X i 2 { c ( k - l ) 2 + k } 

* "• 1—Z 779—~Z. 7. •• ' 2N + s* c {c (k - 1) 2 + 2k } 

1 , , { c ( k - l ) 2 + k } 
[ ( k + 1 ) 2 X,2 , ] , 

N {c (k -1) 2 + 2k } 

1 1 { c ( k - l ) 2 + k } 
= ( k + l ) 2 X , 2 [ g ] . (4.4.15) 

N c 1 - 0.5Ry {c (k -1) 2 + 2k } 

Before calculating the value of R we note the followings: 

(i) Since 1 - 0.5Ry > 0, y <_min(s, 2 / R ) . 

(ii) c = N / (2N + s*) = [ 2 + { y / ( 1 - 0.5Ry ) } j " 1 

(iii) [ {c (k - 1) 2 + k } / {c (k - 1 ) 2 + 2k } ] > C 5 . 

Ignoring { (k + l ) 2 Xj2 } / Nc term in (4.4.15) we let 

1 {c (k - 1 ) 2 + k } 
q (y ,R ,k ) = [ ] . (4.4.16) 

1 - 0.5Ry { c ( k - l ) 2 + 2k } 

The derivative of q with respect to y after substituting (ii) for c is, 

d q Q l ( y ) 
= « * » 5 - (4.4.17) 

d y (1 - 0.5Ry)2 [ (k + l ) 2 + y (2k - kR - 0.5k2R - 0.5 R ) ] 2 
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where q j ( y ) = y2 [0.5R ( k 2 + 1 ) - k ] [ 0 . 5 R ( k + l ) 2 - 2 k ] (R/2) 

+ y [ R ( k 2 + 1) (2k - 0.5R (k + l ) 2 ) ] 

+ [0.5(k + l)2(k2 + 1)] R - k ( k - l ) 2 . 

In order to minimize q (y, R, k) , it is necessary to study the function q^(y) in detail. Let 

2k 4k 
d2 = , d3 = 

H , -
2k (k -1 ) 2 

~l (k+l)2(k2-f 

and note that dj < d2 < 

1) 

d3. 

(k2 + 1) (k + l ) 2 

For R in the interval (0, d^) the coefficient of y2 assumes positive value and the 

constant term of qj (y ) is negative, and the discriminant function, 

D = R [ 2k - 0.5R (k + l ) 2 ] [2k2 (k -1 ) 2 ] is positive. So the larger root of the 

equation obtained by setting qi (y ) to be zero is what minimizes q (y, R, k) , and 

hence the asymptotic variance of Xj j ^ + X2 j jsr • Additionally it is found that this 

root is less than 1/R. For R larger than dp the same steps as the above show that 

q( y, R, k) is minimized aty = 0. This means that no contribution is made by checking 

the system failure mode if the relative cost Pc / PTJ is larger than 

[ 2k (k - 1 ) 2 ] / [ (k + l)2(k2 + 1) ] . Finally we conclude that if the relative cost is 

smaller than the above ratio the optimal number of systems to be checked is, 

V~2 k (k -1) (k2 + 1) 
N c [ ^ - _— - , ] .(4.4.18) 

(k - 0.5R (k2 + 1)) V R (2k - 0.5R (k + l ) 2 ) k - 0.5R (k2 + 1) 
Figure 23 shows the optimal fraction y = s /Nc at the allowable R's for k = 2, 3, and 5. 

For example, suppose we have the idea that the ratio of the hazard rates, k is equal to 5, 

and that the relative cost R is equal to .1. Then this figure tells that the optimal number of 

the systems to be checked is 1.5 times as much as Nc. 
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4.5 Other Conventional Estimators. 

In section 4.3 and 4.4 we have discussed estimation schemes for the component 

hazard rates Xp X2 as well as the problem of experimental design. Also we have studied 

M.L.E.'s of the parameters a and 9 in section 4 and have noted that these estimators 

depend only on the system failure times. In this section we describe two other estimators 

of a and 9, one of which is the Method of Moment Estimators (M.M.E.). These 

estimators may be used as an initial values for the iterative solution of the likelihood 

equations. 

Recall that the system reliability, the mean and variance of system lifetime are 

R s ( t ) = ( 1 + 9 t ) - a 

E ( T ) = [ ( a - l ) 9 ] " 1 if a > 1, 

V ( T ) = a / [ ( a - l ) ( a - 2 ) 9 2 ] if a > 2 . 

The M.M.E.s, found by equating the first two sample and theoretical moments, 

s E 2 
amine = l + r- i f s E 2 > 2 E 1 > a n d (4-5-!) 

s E 2 - 2 E i Z 

s E 2 - 2 E i 2 s s 
emme = — — w h e r e E l = , S , T

k , E 2 - Z Tk
2 . (4.5.2) 

Ej • E2 k=l k=l 

Hui and Berger (1983) have suggested estimators in a different context To avoid 

difficulties of maximizing the loglikelihood function with two unknown parameters they 

have suggested a modified method of moments estimator. From the mean of system 

lifetime, we have [ ( a - l ) 6 ] " * = E j / s . Solving this equation with respect to 9, and 
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replacing ( a - 1) by a to make 9 positive we obtain 9 = [ a Ej / s ] , which is used 

as the true value of 9 in the likelihood function (4.3.7) so that the estimator of a is the 

solution to 

s s s ( a + 1 ) s T: 
- S log( 1 + T{) + ==_ E 1 = 0. (4.5.3) 

i=l E ^ Ej^a^ i=l 1 + sTi/CEi-cc) 

It is possible that there is no finite solution to this equation. With an argument similar to 

that used in M.L.E. case it can be shown that a sufficient condition for a finite solution to 
(4.3.7) is that s E 2 > 2 E t

2 , (4.5.4) 

which is the same one for M.L.E. and M.M.E. cases. 

4.6 Graphical Inference 

In the previous sections conventional estimating procedures for the parameters of 

interest have been considered. While discussing related problems we have learned that 

the existence of these estimators in the allowable parameter space depends on the data 

collected. Accordingly, it is not so simple to have an estimator of the degree of 

dependence induced by a random environmental factor. In this section, we discuss a 

graphical approach which is helpful in visualizing the condition of existence of the 

estimators and also the degree of dependence as well as in checking feasibility of the 

model. Later in this section we suggest estimators based on this graphical approach. 

Throughout this section we assume the same model as in the section 4.2. However we 

shall handle the model as if the component hazard rates X̂  and X2 were known, based 

on data from the laboratory experiment, since the estimation of Xj and X2 presents little 
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difficulty and has been discussed in detail in section 4.4. Thus, the model in this section 

is that the lifetime, T, of a system in the operating environment has a survival function 

R s ( t ) = ( 1 + 9 t ) " a . (4.6.1) 

The method we present in this section is based on the scaled total time on test 

(STTOT) plot of Barlow and Campo (1975). They have presented a graphical approach 

to failure data analysis for arbitrary distributions, using the total time on test transforms 

introduced and discussed in chapter 5 and 6 of Barlow, Bartholomew, Brenner, and 

Bunk(BBBB) (1972). To begin with, we review the concept of total time on test 

transforms. Suppose that we have an ordered sample 

0 = Un 0 < • • • < Un n from a distribution function A (•) with the finite mean. 

Then the total time on test up to the r-th failure is defined as 

V n , r = n U n > 1 + (n- 1) (Un> 2 - U n > 1) + • • • + ( n - r + 1) (Un>r- U ^ j ) 

(4.6.2) 

and the total time on test transform is defined as 

A-^t) 

T O T A ( t ) = j [1 - A ( u ) ] d u , O ^ t ^ l . (4.6.3) 
0 

The relation ships between these two can be shown through 

An"l (r/n) 

TOTA(r/n) = J [ 1 - A n ( u ) ] d u 
n 0 

r G - D 
= 2 ( 1 - )(Unj-Un M ) 

j=l n J ' J 

V vnr 
(4.6.4) 
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where An is the emprical distribution of U's and 

A n ' ^ u ) = i n f { x | A n ( x ) < u }. 

A-!(t) 

Note that Urn TOTA(r/n) = J ( 1 - A ( u ) ) d u = T O T A ( t ) . (4.6.5) 

n->oo,r/n->t 0 

Since TOTA( 1) is just the mean of H, STA ( t ) which is the standardized total time on 

T O T A ( t ) V n r 
test, i.e., is termed scaled total time on test transform and — is called 

TOTA ( 1 ) Vn>n 

the emperical scaled total time on test (STTOT). 

Let T^, T2, • • -,TS be the system failure times collected in the operating 

environment. Suppose A( t ) is the cummulative distribution function of T, that is, 

A( t ) = 1 - R s ( t ) 

= 1 - ( l + 9 t r a . (4.6.6) 

The STTOT transform for T is computed as 

i A-!(t) 

o 
R s ( u ) du 

ST A ( t ) = 
fA-kl) 
J Rs (u) du 

o 

= 1 - (1 -1 )(a-l)/oc f0r a > i, (4.6.7) 

where A"1 ( t ) = 9"1 (-1 + (1 -1) " 1 / a ) . Here we note that STA( t ) depends only on 

the shape parameter a. Figure 24 shows the form of the STTOT transform for several 
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FIGURE 24 

SCALED TOTAL TIME 
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ON TEST TRANSFORM 
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values of a. Notice that for all a, the STTOT transform is below the 45 ° line (which 

corresponds to exponential system life) since the hazard rate of the series system is 

decreasing. Regarding the dependence structure induced by a random environmental 

factor this figure tells us that the smaller the shape parameter is, the more depndence is 

induced, which has also been mentioned in terms of copula in section 3.3. 

Computing the total time on test, and plotting Vs r/Vs s versus r/s for r = 1, 2, —,s, 

we obtain so called the emprical STTOT plot. Since Vg I/Vs s converges to STA( t ) 

with probability one and uniformly i n O ^ t ^ l a s s —> °° and r/s —> t, the STTOT plot 

can be compared to the figure 24 for a graphical check of the model's validity. 

We can also obtain crude estimators of the shape parameter a comparing the 

empirical and theoretical STTOT plots. Let Cj = log(l-i/s) and Dj = log(l- Vg j / Vg s ), 

i = 1,..., s-1. From STA( t ) = 1 (1 - t ) ( a _ 1 ) / a we have log (1 - STA(t)) = (1 - 1/a) 

log (1 -1) so that 

Dj = ( l - l / a )q , i = 1 s-1, (4.6.8) 

First we consider, as a reasonable estimator of a , the value of a which minimizes the 

squared distances between Dj and (1 - 1/a) Cj. That is, 

S " 1 9 
I (Dj-(l-l/cc)Cj)2, 
i=l 

sq2 

ScT^lCjDj 
The resulting estimator is a j s = = (4.6.9) 
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which is in the parameter space if £ Cj2 > £ Cj Dj. A better estimator should be 

obtained by weighting the Dj's differently since for i < j , Var (Dj) < Var (Dp. The 

variance of Dx depends on the unknown parameter a so we weight by the variance of Dj 

computed under an assumed exponential distribution. If T j , T 2 / " ' , Tg are assumed to 

follow an exponential distribution, then [ 1 -Vs r /Vg s ] follows a beta distribution with 

parameters s-r and r for r = 1,2,...,s-1.Noting that the r-th order statistics of a sample of 

size s-1 from a uniform distribution follows a beta distribution with parameters r and s-r 

one can show that - Dj is the i-th order statistics of a sample of size s-1 from a standard 

exponential distribution. Hence the variance of Dj in that case is 

i 1 
Vj = £ T_, i = l,...,s-l (4.6.10) 

j=l (s-j)2 

so that the weighted least squares estimator of a is 

X C-2/V-
"wis = T " tf £ c i 2 / v i > 2 C i D i / v i - <4-6-l D 

Q 2 CjD: 

(2—-Z-J-L) 
V- V-
v l v l 

Once we have obtained an estimator of a by either of the two least squares estimators, 

we substitute this value into (4.3.7) and solve this equation numerically for 9j s or 9w j s . 

We note that the unique root of the equation lies between l/(a Ts s) and l/(cc Ts j). 

Due to the computational complexity of these estimators the analytic properties of 

these estimators are not available so a small scale Monte Carlo study was performed in 

the next section to compare these estimators with the other three estimators, M.L.E., 

and M.M.E., and one suggested by Hui and Berger. 
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4.7 Monte Carlo Study 

In this section we compare the estimators of the shape parameter a and the scale 

parameter 9 through a small scale Monte Carlo study. Before describing the main study 

we present graphically some data simulated from our model which do or do not meet the 

sufficient condition for reasonable parameter values based on scaled total time on test 

plots. 

Figures 25 and 26 are scaled total time on test plots from two simulated samples of 

size 30 from the model Rs(t) = (1 + 9t)"a with a = 3, 9 = 1. Looking at figure 25, we 

see that the estimated scaled total on test doesn't look too different from the 45° so that 

an exponential model might not be unreasonable. For this data set only the weighted 

least squares estimator exists and it yields ccwj = 45.33 and 9wjg = .0567. For the data 

in figure 26 all estimates exist, and we have 

0mle = -9 3 «mle = 2 - 9 8 

"mme = 4 - 8 6 

a b e r = 7.02 

a I s = 3.58 

«wls = 2 - 8 9 

0mme = - 4 9 1 

9 b e r = .720 

9 l s = .739 

9 w l s = .970 
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FIGURE 25 

SCALED TOTAL TIME ON TEST PLOT 
FOR SIMULATED DATA. 
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FIGURE 26 

SCALED TOTAL TIME ON TEST 
FOR SIMULATED DATA. 
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We notice that the first sample of figure 25, which satisfies the condition Z Cj2/Vj > Z 

Cj Dj/Vj but fail to meet the condition (4.2.12) for other estimators, yields a very large 

estimate of a. Since a reasonable model for T when 9 and a are not estimable is the 

independent exponential series system which has system reliability very close to that of 

our random effects model when a is very large, this is not a problem. 

The main comparisions of interest are done in terms of the bias, standard deviation 

of the estimates of a and 9, and the number of samples where the reasonable estimators 

exist. Also the estimators of the system reliabilty at tQ = 0.1006 are compared. Random 

samples of size s = 15, 30, 50,75, or 100 were generated with Xj + X2 = 3, (5 = 3, so 9 

= 1 and a = 2, 3,5. 1000 samples were generated for each combination of s and a. 

The bias, standard deviation of the estimates and NS, the number of samples where the 

estimator exists is reported in table 3 for a, table 4 for 9, and in table 5 for an estimator 

of the system reliabiHty obtained from (4.6.1) at tg = 0.1006. The true system reliability 

at tQ is .8255 when a = 2, .75 when a = 3, and .619 when a = 5. Also reported in 

each table is the bias and standard deviation of the weighted least square estimators when 

they are restricted to those samples where the other estimators exist. 

From these tables we note that Berger's modified estimator performs very poorly. 

Also the weighted least squares estimator allows for estimation of parameters in many 

more samples when s is small. In general the maximum likelihood estimator 

outperforms the other estimators, however, when the weighted least squares estimator is 
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Table 3: Bias and Standard Deviation (SD) of Estimators of a 

Sampl 
Size 

15 

30 

50 

75 

100 

e Esti­
mator 

mle 
wis 
* 
Is 
mme 
ber 

mle 
wis 
* 
Is 
mme 
ber 

mle 
wis 
* 
Is 
mme 
ber 

mle 
wis 
* 
Is 
mme 
ber 

mle 
wis 
* 
Is 
mme 
ber 

NS 

769 
852 
766 
762 
770 
770 

916 
953 
912 
877 
916 
916 

979 
981 
976 
956 
979 
979 

996 
998 
996 
974 
996 
996 

999 
1000 
999 
989 
999 
999 

a = 
Bias 

4.5 
4.8 
1.3 
6.8 
9.1 
14.4 

2.8 
4.7 
1.1 
6.4 
6.1 
10.0 

5.8 
1.7 
1.0 
4.0 
8.5 
15.4 

0.9 
1.0 
1.0 
2.4 
2.2 
4.5 

0.5 
1.7 
0.6 
1.5 
1.7 
3.7 

2 
SD 

29. 
41. 
5. 
49. 
37. 
65. 

20. 
37. 
3. 
52. 
32. 
52. 

114 
10. 
3. 
16. 
131. 
241. 

4. 
5. 
5. 
12. 
4. 
8. 

3. 
35. 
2. 
9. 
5. 
8. 

NS 

642 
753 
636 
653 
643 
643 

809 
870 
804 
768 
809 
809 

916 
935 
912 
864 
916 
916 

963 
977 
958 
925 
963 
963 

978 
989 
978 
956 
978 
978 

a = 3 
Bias 

7.3 
36.4 
1.3 
13.1 
16.8 
26.0 

5.7 
13.8 
1.8 

11\9 
9.9 
17.7 

3.6 
6.9 
2.9 
6.4 
6.6 
12.5 

2.5 
2.8 
1.3 
11.6 
4.7 
9.6 

1.7 
2.1 
1.3 
3.7 
3.0 
7.2 

SD 

39. 
843. 
9. 

149. 
77. 
114. 

30. 
141. 
6. 

100. 
104. 
68. 

18. 
65. 
29. 
33. 
25. 
42. 

14. 
17. 
5. 

144. 
24. 
38. 

7. 
12. 
5. 
19. 
9. 
15. 

NS 

522 
665 
516 
558 
522 
522 

674 
752 
660 
669 
674 
674 

801 
850 
787 
756 
801 
801 

893 
915 
878 
823 
893 
893 

892 
913 
879 
835 
892 
892 

a =5 
Bias 

38.7 
8.2 
-0.7 
30.3 
69.8 
112.9 

20.4 
9.3 
3.2 
13.7 
31.7 
56.3 

7.6 
9.0 
2.0 
13.4 
11.4 
23.4 

12.8 
8.0 
2.9 
6.6 
15.3 
32.6 

9.5 
19.6 
13.7 
11.0 
13.0 
27.1 

SD 

573. 
53. 
5. 

493. 
925. 
1505. 

148. 
68. 
29. 
109. 
202. 
347. 

39. 
97. 
10. 
88. 
52. 
91. 

139. 
94. 
16. 
22. 
122. 
260 

84. 
307. 
273. 
81. 
120 
203. 

'*' represents the weighted least squares estimator restricted to those samples where all 
estimators exist 



Table 4: Bias and Standard Deviation (SD) of 9 

Sampl 
Size 

15 

30 

50 

75 

100 

e Esti­
mator 

mle 
wis 
* 

Is 
mme 
ber 

mle 
wis 
* 
Is 
mme 
ber 

mle 
wis 
* 
Is 
mme 
ber 

mle 
wis 
* 
Is 
mme 
ber 

mle 
wis 
* 
Is 
mme 
ber 

NS 

769 
852 
766 
782 
770 
770 

916 
953 
912 
877 
916 
916 

979 
989 
976 
956 
979 
979 

996 
998 
996 
974 
996 
996 

999 
1000 
999 
989 
999 
999 

a = 2 
Bias 

0.356 
-.102 
-.027 
-.192 
-.683 
-.803 

0.112 
-.135 
-.100 
-.254 
-.623 
-.798 

0.016 
-.126 
-.115 
-.263 
-.575 
-.792 

-.025 
-.125 
-.124 
-.247 
-.541 
-.790 

-.019 
-.101 
-.100 
-.216 
-.508 
-.785 

SD 

1.702 
0.742 
0.025 
0.729 
0.205 
0.122 

0.919 
0.580 
0.567 
0.586 
0.192 
0.095 

0.648 
0.492 
0.486 
0.514 
0.184 
0.079 

0.522 
0.432 
0.431 
0.275 
0.174 
0.065 

0.437 
0.381 
0.401 
0.423 
0.153 
0.052 

NS 

642 
753 
636 
653 
643 
643 

809 
870 
804 
769 
809 
809 

916 
935 
912 
864 
916 
916 

963 
977 
958 
925 
963 
963 

978 
989 
978 
956 
978 
978 

a = 3 
Bias 

0.691 
0.210 
0.390 
0.119 
-.513 
-.705 

0.175 
0.000 
0.074 
-.096 
-.469 
-.725 

0.075 
-.012 
0.011 
-.112 
-.404 
-.718 

0.030 
-.027 
-.010 
-.144 
-.375 
-.717 

-.028 
-.075 
-.055 
-.165 
-.345 
-.716 

SD 

1.900 
1.049 
1.040 
1.031 
0.348 
0.203 

1.049 
0.757 
0.740 
0.745 
0.338 
0.160 

0.766 
0.618 
0.609 
0.663 
0.333 
0.135 

0.624 
0.555 
0.546 
0.603 
0.322 
0.120 

0.515 
0.472 
0.465 
0.511 
0.297 
0.104 

NS 

522 
665 
516 
558 
522 
522 

674 
752 
660 
669 
674 
674 

801 
850 
787 
756 
801 
801 

893 
915 
878 
827 
893 
893 

892 
913 
879 
835 
892 
892 

a =5 
Bias 

1.352 
0.715 
1.084 
0.578 
-.238 
-.546 

0.558 
0.366 
0.523 
0.180 
-.199 
-.584 

0.256 
0.184 
0.267 
0.105 
-.193 
-.615 

0.128 
0.112 
0.153 
0.014 
-.189 
-.628 

0.033 
0.020 
0.055 
-.064 
-.206 
-.644 

SD 

3.109 
1.609 
1.599 
1.536 
0.601 
0.348 

1.609 
1.118 
1.104 
1.026 
0.576 
0.282 

1.559 
0.869 
0.850 
0.863 
0.541 
0.232 

0.817 
0.728 
0.715 
0.747 
0.535 
0.210 

0.683 
0.628 
0.615 
0.666 
0.494 
0.185 

'*' represents the weighted least squares estimator restricted to those samples where all 
estimators exist 
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Table 5: Bias and Standard Deviation (SD) of Estimators of System Rehabihty at 
t = .1006 

Sampl 
Size 

15 

30 

50 

75 

100 

e Esti-
matoi 

mle 
wis 
* 

Is 
mme 

mle 
wis 
* 
Is 
mme 
ber 

mle 
wis 
* 

Is 
mme 
ber 

mle 
wis 
si-

Is 
mme 
ber 

mle 
wis 
* 

Is 
mme 
ber 

• NS 

769 
852 
766 
762 
770 
769 

916 
953 
912 
877 
916 
916 

979 
989 
976 
956 
979 
979 

996 
998 
996 
974 
996 
996 

999 

a = 2 
Bias 

-.012 
-.004 
-.006 
0.002 
0.037 
0.064 

-.005 
0.002 
0.001 
0.010 
0.037 
0.069 

-.001 
0.003 
0.003 
0.010 
0.035 
0.071 

0.000 
0.004 
0.003 
0.010 
0.034 
0.072 

0.001 
1000 0.004 
999 
989 
999 
999 

0.004 
0.010 
0.034 
0.075 

SD 

.0647 

.0586 

.0577 

.0588 

.0503 

.0463 

.0473 

.0424 

.0426 

.0434 

.0357 

.0335 

.0372 

.0349 

.0348 

.0359 

.0300 

.0233 

.0290 

.0274 

.0274 

.0292 

.0244 

.0238 

.0243 

.0234 

.0233 

.0248 

.0223 

.0216 

NS 

642 
753 
636 
653 
643 
643 

809 
870 
804 
769 
809 
809 

916 
935 
912 
864 
916 
916 

963 
977 
958 
925 
963 
963 

978 
984 
978 
956 
978 
978 

a = 3 
Bias 

-.018 
-.010 
-.015 
-.006 
0.031 
0.067 

-.007 
-.007 
-.006 
0.002 
0.024 
0.062 

-.003 
-.001 
-.002 
0.005 
0.022 
0.066 

-.001 
0.000 
0.000 
0.007 
0.021 
0.067 

0.001 
0.002 
0.002 
0.008 
0.019 
0.067 

SD 

.0815 

.0767 

.0764 

.0748 

.0661 

.0616 

.0577 

.0552 

.0544 

.0551 

.0490 

.0472 

.0429 

.0412 

.0411 

.0431 

.0366 

.0340 

.0372 

.0356 

.0357 

.0374 

.0327 

.0313 

.0309 

.0299 

.0299 

.0311 

.0267 

.0261 

NS 

522 
665 
516 
558 
522 
522 

674 
752 
660 
669 
674 
674 

801 
850 
787 
756 
801 
801 

893 
915 
878 
827 
893 
893 

892 
913 
879 
835 
892 
892 

a =5 
Bias 

-.029 
-.024 
-.030 
-.020 
0.012 
0.054 

-.022 
-.020 
-.027 
-.013 
0.001 
0.045 

-.006 
-.006 
-.008 
-.002 
0.010 
0.055 

-.005 
-.005 
-.006 
-.002 
0.007 
0.051 

-.002 
-.001 
-.002 
0.003 
0.008 
0.052 

SD 

.1011 

.0967 

.0968 

.0977 

.0926 

.0921 

.0691 

.0674 

.0665 

.0651 

.0613 

.0608 

.0545 

.0530 

.0528 

.0532 

.0494 

.0485 

.0442 

.0436 

.0430 

.0431 

.0406 

.0380 

.0375 

.0392 

.0390 

.0380 

.0353 

.0345 

'*' represents the weighted least squares estimator restricted to those samples where all 
estimators exist 
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restricted to those samples where the maximum likehhood estimator exists, this estimator 

performs much better when s is small. The somewhat better performance of the M.L.E 

in terms of bias is deceptive since some of the estimates of a are less than one, which 

implies that the mean system reliability is infinite. Also the weighted least squares 

estimator of system rehabihty seems to outperform the other estimators of the system 

reliability in spite of its relatively poor performance as an estimator of 9. Our 

recommendation is to use the weighted least squares estimator since it more often 

provides estimators of the relevant parameters and is somewhat easier to compute. 

4.8 Test for Dependence Induced bv a Common Environmental Factor 

In this section we discuss the problem of determining whether there is a dependence 

structure induced by an environmental factor. In our setting, we observe only the system 

failure times Tj with the assumption that the survival function of Tj is 

Rs(t) = (1+ 9t) " a . As pointed out in section 4.6, the graphical presentation as well as 

the copula indicates that the shape parameter, a only affects the dependence structure. 

This idea is supplemented by looking at the correlation computed in section 3.4. 

Accordingly we will call the quantity y= 1/a a measure of dependence induced by the 

environmental factor. Since our model assumes finite mean system lifetime, that is, a is 

assumed to be greater than 1, y varies from 0 to 1. If there is no dependence induced y is 

equal to 0 and the more dependence is induced the closer to 1 the value of y is. 

One possible statistics is constructed from the weighted least square estimator, 
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SC-2/V-
<*wls = 2 ' i f 2 Cj2/Vj > 2 CjDj/Vj. 

i i i 

(E-L-s-LL) v- v-v i v i 

From this statistic we consider 

7,-

I 

CjDj 

V i 

C-2 
^ i 

V: 

Qc = * • (4.8.1) 

Under the null hypothesis of independence, - Dj follows the distribution of the i-th order 

statistics among the sample of size s-1 from an exponential distribution so that Q s is just 

a linear combination of order statistics from exponentials. Hence Qs has the same 

distribution as a linear combination, Qs(z), of identically independent exponential 

random variables since the i-th exponential order statistics can be expressed as a linear 

function of s-1 independent standard exponentials. Correspondingly we have 

s-1 
Qs(z) = E pjZj (4.8.2) 

i=l 

where Zj is a random variable following the standard exponential distribution, 

1 s-1 C:/V: 
and pj = S i—i . (4.8.3) 

s - i j=i s-1 

k=l k k 

The exact distribution of Qs(z) is found in David (1981) as the mixture of exponentials, 
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s-1 W: -t 
f Q ( z ) (t) = S exp ( ) , (4.8.4) 

^ i=l pj P j 

PiS"2 

where Wj = . 

hnj(Ph-Pi) 

On the other hand we can note that if y goes to 1, Q s tends to have smaller value. Table 6 

shows the critical values of the standardized Qs for different sample sizes with the type 

one error probability a = .01, .05, .1. Since the distribution under alternatives is hard to 

obtain a simulation study has been constructed to study the tests power which is 

discussed later. 

Table 6: Critical Values of the StandardizedStatistics of Q„ 

Sample Size 

s=15 

s = 20 

s = 25 

s = 30 

s = 35 

s = 40 

s = 50 

1% 

-1.8880 

-1.9382 

-1.9796 

-2.0010 

-2.0334 

- 2.0526 

-2.0816 

5 % 

-1.4540 

-1.4815 

-1.5000 

-1.5140 

-1.5243 

-1.5322 

-1.5453 

10% 

-1.1968 

-1.2106 

-1.2194 

-1.2260 

-1.2307 

-1.2345 

-1.2404 

We have tried to prove the asymptotic normaity of the test statistic Qs analytically in 
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vain. However we are still very sure of its asymptotic normality with the following 

arguments. Consider the characteristic function (pg (t) of 

EpjZj - \is 

°s 
where |0.s = £ p j , and <rs = "vEp j 2 . 

S Pi Z- - |J.S 

cps(t) = E [ e x p { i t ( i _ ) } ] 

°s 
s-1 p: ns 

= n E (exp ( i t — Zj)-exp(-i t ) 
j=l a s c s 

s-1 Pj 1 Hs 

= n (1 - i t ^ L ) " 1 exp(-it ) (4.8.5) 
j=l c s a s 

Taking the log on the both sides we obtain 

S"1 Pj h, 
log(ps(t) = - E log (1 - i t _ i - ) - it . (4.8.6) 

j=l a s CTS 

Noting that 

s-1 pj s-1 Pj t2 

E log (1 - it _ ) = -it £ —— + + p s (t), where 
j=l c s j=l tjs 2 

I Ps (t) I s J - s i :L=— s i t3 (4.8.7) 
3 rjg-3 3 a s a s

z 3 as 

£ pj3 t3 max pj £ p j 2 t 3 max pj 
. ^ _ . £_ _ t-

3 a s
3 3 a s a s

2 3 a s 

we have (ps(t) > exp(-12 / 2) if and only if [ max Pj / 0"s ] > 0. 

From the above condition it suffices to show that [ max p: / "VZ pj2 ] > 0. However 

Pj's are so comphcated that the convergence has not been proved analytically. Instead of 

doing this we try to show the performance of pj's and [ max pj / VZpT2 ] by 
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computation for various s's. First it seems that Pi > P2 > * ' ' > Ps-1> m a t *s> 

max p: = pi. Second it seems that 

P22 P32 Ps-12 

+ — + •••+ + 1 diverges to infinite faster than log s. In table 7 the 
P i 2 Pi Pi 

divergence rate is compared with that of log s. 

Table 7: Divergence Rate of Vz pj2 /maxpj 

s 

200 

220 

240 

260 

280 

300 

320 

340 

360 

380 

400 

420 

440 

460 

480 

500 

V Z pj^/max pj 

9.54030 

10.01179 

10.46207 

10.89376 

11.30900 

11.70953 

12.09682 

12.47209 

12.83640 

13.19065 

13.53564 

13.87205 

14.20050 

14.52152 

14.83561 

15.14317 

logs 

5.29832 

5.39363 

5.48064 

5.56068 

5.63479 

5.70378 

5.76832 

5.82895 

5.88610 

5.94017 

5.99146 

6.04025 

6.08677 

6.13123 

6.17379 

6.21461 
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A second test is based on the cummlative total time on test statistic, which has been 

introduced by (BBBB). The cummulative total time on test statistics (CTTS) which they 

have defined is 

s v s r 
Bc = £ — where Vc r is the total time on test defined in section 4.7. 

r=lV s > s 

They have shown, in the chapter 6 of their book, that if the underlying distribution A has 

the finite 2nd moment then 

V s r a 2 (A) 
s 1 / 2 [ s"1 Z '— - k (A) ] > N (0, _ ) (4.8.9) 

V 2 

vs,s \i 

where k(A) = 1ST A (u) du , and JJ. = l°x dA(x), 

and o2(A) = 2 J J {2 [1 - A(u)] - k(A)} {2 [1 - A(v)] - k(A)} A(u) [1 - A(v)] du dv. 
u< v 

They have suggested using this statistic for the problem of testing the null 

hypothesis that the underlying distribution A is exponential versus the alternative that A 

has increasing hazard rate or decreasing hazard rate. Since the dependence structure of 

our setting causes the system hazard rate to be decreasing, it might be reasonable to use 

Bs as a test statistic. Some computation leads us to 

a - 1 
k(A) 

2a - 1 

a2(A) a - l 0 1 a - 1 a— 1 a - 1 a - 1 
= 2( ) 2 [ _ + - 2( ) ] + ( ) [ 3 - 2 ] 

(j.2 2a -1 2 a - 2 3a - 2 2a - 1 3a -2 

a - 1 
- 4 ( ) . 

3 a - 2 
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We note that under the null hypothesis, y = 0, k (A) = 1/2, and [ o2(A) / | i2] = 1/12 so 

that the exact test statistics Rs is 

s V 1 
(12 s ) 1 / 2 [ s '1 E S ' r - ] , (4.8.10) 

r=l Vs,s 2 

which has smaller values as ygoes to 1. 

A third test statistic was introduced by Klefsjo (1983). He has used the property of 

convexity of the STTOT, STA(t) and obtained the statistic, 

s ( s - j + 1) (Ts i -T s i_i) 
Ks = E a: S J S , j l (4.8.11) 

j=! Vs,s 

{ ( s - l ) 3 j - 3 ( s + l ) 2 j 2 + 2 ( s + l ) j 3 } 
where a; = , which has smaller values as 

J 6 

ygoes to 1. 

Using the asymptotic properties of linear combination of order statistics he has shown 

that under the null hypothesis, the test statistic Ks is asymptotically normally distributed. 

In addition to that, he has constructed a list of critical values from the exact distribution 

of Ks under the null hypothesis. 

We have, by simulation, estimated the powers for the various shape parameter 

values. Sample sizes 20 and 50 have been studied.In figure 27 and figure 28 the 

estimated power curves for the three tests mentioned above are obtained by the following 

scheme. The total number of replication for each investigated y-value, measure of 

dependence, which increases from .00 to .75 is 1000. The significance levels are equal 

to .05. The three powers at each y-value have been estimated from the same set of data. 
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^ . 0 0 0.15 0.30 0.M5 
DEPENDENT 

0.60 0.75 

FIGURE 27 

ESTIHRTED POWERS OF TESTS FOR 
INDEPENDENCE FOR S = 20 
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^.00 0.15 0.30 0.U5 0.60 
DEPENDENCE PflRflMETER 

75 

FIGURE 28 

ESTIMATED POWERS OF TESTS FOR 
INDEPENDENCE FOR S = 50 
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Both figures indicate that the two test statistics Rs and Qs perform better than the 

other test statistics Ks in terms of the power at all positive y. Since the statistics Rs, and 

Q s seem to have almost the same power at most y levels we have tested the equality of 

the two statistics with respect to their powers. Let Mj denote the i-th sample and let IT be 

thetotal number of replication. We define the rejection rules of both tests correspondingto 

the statistics Rs and Qs, R(Mj) and Q(Mj), as R(Mj) = 1 if rejected and 0 if not rejected, 

and Q(Mj) = 1 if rejected and 0 if not rejected. Thus we obtain estimators p R and pQ of 

the powers PR and P Q as 

IT R(Mj) • IT Q(M:) 
p R = £ , and P 0 = £ (4.8.12) 

i=l IT v i=l IT 

In order to test Hg: P R = pQ versus Hj : P R ^ pQ, we have used the usual Z - statistics, 

PR - PQ 
Z R Q = , *i • (4.8.13) 

^ V ( p R " PQ) 

Noting that R(Mj) and Q(Mj) are not independent we need to compute an estimator of 

COV (PR, pq) to obtain V( p R - p g ) . 

1 IT IT 
E (PR-PQ) = T E [ E R(Mj) • £ Q(Mj) ] 

v IT2 i=l j=l J 

= [ ITE{ R(MX) Q(Mj) } + IT (TT - 1) E(R(Mj)) E(Q(Mj)) ] / IT2. 

(4.8.14) 
IT 

Letting COM = £ R(Mj) Q(Mj) be denote an estimator of ITE{ R ^ ) QfMj)}, we take 
i=l 



1 COM 
— ( - PR'PO)

 a s an estimator of COV( pR , PQ). Thus we obtain an estimator 

IT IT v v 

of V(PR - P Q ) as 2[ p-q + p2 - COM/IT ] / IT, (4.8.15) 

where p = (pR + PQ) / 2 and q = 1 - p. 

The powers and the Z - values at some y levels for sample sizes 20,50 are reported in 

the table 8. Our investigation leads us to the conclusion that the test statistics Qs, which 

has been developed only for this specific model, is not better than Rs which can detect 

more general alternatives than Qs. However, the test statistics Qs, is simple to obtain 

while we are making a graphical inference on the shape parameter and is guaranteed to 

keep power as high as Rs. 

4.9 Future Study 

In this thesis, we have considered a dependent reliability model which is induced 

through a random environment under which the systems are operated. We have 

discussed the properties of the model and its infernce procedures only for a two 

component system in terms of engineering application. 

Since the dependent structure introduced by the model is expected to be found not 

only in an engineering setting but also in biological, medical and demographic settings 

as well, we plan a thorough investigation of this structure with the experts in each special 

field. Also a natural generalization of the model can be to a multi- component system 

rather than only a two component system. We are currently investigating how to apply 

this model to accelerated life tests. Accelerated life tests are often used to obtain 

information on item's performance under normal operating conditions from the test data 

collected under condition more severe than usually encountered in normal usage. This 

model is suited to explaining the different environmental effects that occur at different 



8: Comparision of Powers of Test Statistics, Qs and Rs 

Y 
.05 
.10 
.15 
.20 
.25 
.30 
.35 
.40 
.45 
.50 
.55 
.60 
.65 
.70 
.75 
.05 
.10 
.15 
.20 
.25 
.30 
.35 
.40 
.45 
.50 
.55 
.60 
.65 
.70 
.75 

PQ 
.07550 
.12400 
.16800 
.22150 
.27050 
.33750 
.39050 
.43800 
.51150 
.54300 
.60200 
.66145 
.69150 
.72300 
.76800 
.10400 
.17000 
.26300 
.35700 
.50200 
.58400 
.69100 
.76000 
.80100 
.87100 
.89700 
.92600 
.95100 
.96900 
.96800 

PR 
.07550 
.12350 
.16450 
.22000 
.27050 
.34000 
.39000 
.44200 
.50850 
.54900 
.60700 
.66300 
.70000 
.72900 
.77300 
.10100 
.17500 
.25900 
.35300 
.49500 
.58000 
.68400 
.75800 
.79800 
.86800 
.89800 
.92500 
.95300 
.96600 
.96900 

| Z | - value 

0.00000 
0.10310 
0.17636 
0.23079 
0.28043 
0.87040 
0.40141 
0.44909 
0.52268 
0.55424 
0.62295 
0.67208 
0.70183 
0.73301 
0.77744 
0.71573 
0.18188 
0.27692 
0.37215 
0.51781 
0.59959 
0.70561 
0.77351 
0.81363 
0.88160 
0.90661 
0.93428 
0.95783 
0.97448 
0.97357 



stress levels. 

With regards to inference, we first plan to extend the results to censored data. Since 

the inference we have done strongly depends on the parametric distribution we feel that 

robustness studies of the environmental factor distribution may be appropriate for the 

next stage of this problem. 
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