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CHAPTER 1
INTRODUCTION

1.1 Objective

In this thesis, we propose a random environmental effects model for two component
systems and investigate some general properties of that model. Specific models which
are appropriate and useful for competing risks experiments are defined, and statistical
inference procedures for the model parameters are developed. Finally, estimators'

performance and properties are explored by a Monte Carlo study.

1.2 Motivation

Consider a two component system as the simplest example. Each component will
have a random life length, and the life of the entire system will depend on the failure
patterns of the components of the system such as serial failure pattern where failure of
any component causes the system to fail or a parallel failure pattern where the system
fails when all the components fail. One important practical problem is to infer the system
life length from knowledge of the individual component life times.

In most of the research done in the past, the failure distributions associated with
each component was assumed to be known, and the components were assumed to
actindependently of each other to arrive at the system failure distribution.This
common,although untestable assumption of independence, may be questionable in many
practical situations. For example, in engineering systems where the individual

1
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components are subject to greater probability of failure due to their close proximity the
assumption of independence may not be reasonable. In order to correctly analyze such
experiments when there are dependent competing risks, a multivariate model is needed
for the lifetimes of the components. The models proposed in the past have been justified
on the grounds of mathematical tractability with little or no practical justification.

In this thesis, we consider a model which is motivated by the way systems are tested
in the design and operating phase of development. Instead of assuming a specific
multivariate model, we derive a random environmental effects model which incorporates
a common environment acting on all components and then induces a dependent structure

between the failure times of components.

1.3 Model

In this section, we define models which are appropriate for a twoe component system
incorporating the knowledge of the lifetimes of the individual components and the
common environment under which the system operates.

We assume that under controlled conditions, as one may encounter in the testing or

design stage of development, the time to failure of the two components, to be linked in a

system, are X, and Y. We suppose that under these conditions, X, , Y, have survival
0 o PP o’ Yo

functions Fo, G, on [0,0).

Now suppose that the above two components are put into operation under usage
conditions. We suppose that under such conditions the effect of the environment is to
degrade or improve each component by the same random amount. That is, the effect of

the environment is to select a random factor, Z, from some distribution, Id(:), which

changes the marginal survival functions of the two components to Foz and Goz. A
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value of Z less than one means that component reliabilities are simultaneously improved,
while a value of Z greater than one implies a joint degradation. We assume that two
components in a system under fixed conditions (i.e. given Z) function independently.
Then the resulting joint survival function of the two components' lifetimes, (X,Y) in the

operating environment is
F(x,y)=E (FoZ(x)GoZ(y)) (13.1)

The specific choice of the model is based on both theoretical support and empirical

support. In Chapter 3, we discuss the general properties of this model in detail.

1.4 Inference

Statistical inference for the two component series system is carried out under the

assumption that X, and Y, have exponential distributions with the hazard rates 7L1, Ay

and Z has a gamma

(0

distributon with density h(z)= z“'lexp(—Bz). (1.4.1)

I'(cr)

Since the parameters A, A, are not identifiable when only data from series

systems is available, we incorporate sample information on each component under
contfrolled conditions. Maximum likelihood and method of moments estimators are
obtained and their properties are studied by Monte Carlo methods since no closed form
maximum likelihood estimates are available. Also a new estimator based on the scaled
total time on test transform is presented

Since this setting contains three sets of samples, two from components themselves

and the other from systems, an investigation is done to find the optimal scheme for



determining sample sizes subject to various cost constrain
In addition we discuss a graphical representation of this model which leads to not
only checking the model itself but also testing the strength of the dependence induced by

the common environment.
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CHAPTER I
BIVARIATE MODELS WITH THE FIXED ENVIRONMENTAL FACTOR

2.1 Introduction

In many reliability problems for multi-component systems, the conventional
methodology mentioned in section 1.2 often makes an assumption, for the sake of
simplicity, that the components in the system function independently. In other words,
the component lifetimes are statistically independent. However this assumption has been
questioned in many practical sifuations. For example, we can think of a critical shock to
a system which affects all the components in the system simultaneously, or of a patient
with a poor prognostic indication who may be removed from the study before death.

In order to correctly analyze the data from the dependent cases multivariate models
have been suggested for use in the reliability context. However most of these have been
justified only on the ground of mathematical tractability. In this chapter we review the
relevant literature on modeling bivariate survival functions for the two component
systems, specially focusing on their practical justification. In order to separate these
models from the random environmental effect models we call these models the fixed

environmental effects model,

2.2 Conyventional Models
In this section we shall consider bivariate survival functions which are motivated by
mimicing the properties of the univariate exponential or are mathematically contrived so

5



that the marginals are exponential. These models are commonly used since the

exponential distribution has played a central role in univariate reliability studies.
Gumbel (1960) suggested three bivariate distributions with exponential margins,

two of which are briefly considered here. The first is

F(x,y)=P(X>x,Y>y)

=exp(- Ayx - Aoy - SAjAyxy)  forx,y >0. (2.2.1)

where 0<d<A;"A,. The marginal survival function of X(Y) is exp(-A;x){exp(-Ayy)}

and the correlation between X and Y is decreasing from zero to -.4837 for increasing

values of & from 0 to ?»1'7\2. The second is

F(x,y) = exp(-?\.lx -Ay) [1+ o (1 - exp(- klx)} {1 - exp(- sz)}], forx,y >0

(22.2)

where -1<0<1. He found that the correlation between X and Y is a/4. Any practical
justification in reliability context for these models is not found.

Freund (1961) presented a different bivariate extension of the exponential
distribution which is designed for the life testing of a two component system, which can
function with different hazard rate even after one of the components has failed. Consider

a two component system. Let X and Y be the random variables denoting the component

lifetimes whose distributions are exponential with 1/ct and 1/f as the mean life times

respectively. If it is assumed that the failure of the one component, say A, changes the

mean life time of the other component, say B, from 1/B to 1/f' then the bivariate density



function f(x,y) is obtained as

f(x,y) = aflexp{-By - (0+B-f)x} forO<x<y (2.2.3)
Poexp{-a'x - (a+p-a')y} forO<x<y

where a,3,0',8 '>0. First we note that the marginals are not exponential. The
cotrelation between X and Y is shown to vary from -1/3 to 1, and estimation of the
parameters of the model is discussed by Freund (1961).

Another version of the bivariate exponential is suggested by Marshall and Olkin

(1967). They defined the Bivariate Exponential Distribution with parameters A{,A ;,

A 12{B.V.E.(7\.1,7\2 ,7\412)} as

F(x,y)=P(X>x, Y>y)

=exp(- M x- Ayy- Aypmax(x,y))  for x>0, y>0. 2.2.9

The physical motivation for this model is based on occurences of "shocks" to each or

both components. Consider a two component system with component lifetimes X and Y.

The components are subjected to three types of fatal shocks c{,c9, and ¢q9. Let U; be

the time until the shock c; occurs, i=1, 2 ,{1,2}. The random variable U1,Up,Uy, are
assumed to be independent exponential random variables with parameters A 1 A 1z and

A 126 respectively. The ¢ shock "kills" component 1; the ¢y shock "kills" component 2;

and the c17 shock "kills" both components. The B.V.E. distribution is obtained by

hn
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letting X=min(U,U{7) and Y=min(U2,U12).
Some important properties for the B.V.E.(A{, Ay, A ;) are as follows:
i) The B.V.E.( 7»1,7\.2,7\ 12) is not absolutely continuous since

P(X=Y)= A 5/( A+ g+hyp)

ii) The marginals are exponential;

iii) The distribution has the loss of memory property (L.M.P.) in the sense that

F(s1+t, sp+t) = F(s1, so) F(t, t) for all 5¢, s, t>0;

iv) The correlation between X and Yis Ajo/(A;+A o+Aq)).

Block and Basu (1974) showed that this distribution is the only one which has both

the exponential marginals and L.M.P. Basu and Klein (1982) have reviewed some

estimators of (A 1 7‘2 7L12). These are the maximum likelihood estimators obtained by

Bhattacharyya and Johnson(1971), the method of moment estimator of Bemis, Bain, and
Higgins (1972), an intuitive estimator of Proschan and Sullo (1976), and consistent
unbiased estimators of Arnold (1968).

Marshall and Olkin also obtained a bivariate Weibull distribution as

di dy d; d
F(x, y)=exp{-Ajx -Agy -ljpmax(x ',y 2)} ,dy,dy >0. 2.2.5)

/d; Udy
by transforming the bivariate exponential random variables (X,Y) into (X Y ).

Moeschberger(1974) has explored some properties of this bivariate Weibull distribution

and estimated its parameters in the competing risk framework. He has discussed

o
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maximum likelihood estimation for both the dy=d, and d{# d cases.

Lee and Thompson(1974) derived a bivariate Weibull distribution from the fatal

shock model. Let X and Y be the lifetimes of each component in a two component

system. The components are subject to three types of independent shocks, d;, dy, and
d9, with random occurence times U, Uy, and Uy respectively. The shocks dg, dy,

d;2 "kills" the X component, Y component, and both components, respectively. Let U;

have a Weibull distribution with survival function

Fj(u)=exp(- Kiudl) » A > d;>0, u>0, (i=1,2,{12}). The bivariate Weibull is obtained by
letting

X=min(U{, Uy9) and Y=min(Uy,U19) as

dq dy d12
F(x,y)=exp(-Ajx ~-Ayy “=Ajp[max(x,y)] (2.2.6)

for x, y>0. Here the marginals are not Weibull.

Block and Basu (1974) have derived, in two ways, an absolutely continuous
bivariate extension of the exponential distribution (A.C.B.V.E.). They have
shown(Corollary 2) that the assumptions of the L.M.P., exponential marginals, and
absolute continuity yields a bivariate distribution with independent exponential
marginals. By assuming that the marginals are mixtures or weighted average of

exponentials instead of exponential marginals they obtained the joint survival function as

F(x, y)={M( A 1+ A 9)lexp{- A 1x- A 9y - A {pmax(x,y)}

- {A 12/(A 1+ X p)Yexp{- A max(x,y)}, 227

=

A
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where A=A+ Ayt A4 Itis noted that the joint distribution, which has the L. M.P.,

turns out to be the absolute continuous part of B.V.E.(A;,A5,\{,) of Marshall and

Olkin (1967). They also showed this distribution is a variant of the distribution
suggested by Freund (1961). This model can also be obtained by a fatal and non-fatal
shock model suggested by Friday and Patil (1977).

Downton (1970) has derived another bivariate exponential distribution whose

density is
£(x,y)= {h" Ap/(1-p)}exp{-( A jx Myy)(1-p 1o {2:(p Ay Ayxp)V2(1-p)}  (2.2.8)

where Io(x)=2(x/2)2r/(r !)2 is the modified bessel function of the first kind of order
zero. The motivation for this model is based on the cumulative shock model generalized
from the one component situation. Let Ty, Ty, - - be the independent random variables

representing the time between the successive shocks to a system, each having
distribution function G(t) with Laplace transform ¢ (s) and let N be the random number

of shocks required to cause failure with probability generating function Il(z). Let X be
the lifetime of the component. He observed that if X has an exponential distribution with
mean lifetime 1/A , then the two identities, E, (e”5%)=IT( ¢(s)) and E(X)=E(N)"E(T;)
should hold for all s. As one of the possible combinations of distributions of T;'s and N,

satisfying the above two identities he considered an exponential distribution for Tj's and

a geometric distribution for N. Accordingly, he assumed in a two component system that



the intervals between successive shocks on each component are independent and
exponentially distributed, and that the numbers of shocks required to produce failure in
each component follows a bivariate geometric distribution. Then he arrived at the joint

density (2.2.8) by an elegant argument.

11
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CHAPTER III
BIVARIATE MODELS WITH RANDOM ENVIRONMENTAL FACTOR

3.1 Introduction

Instead of specifying the particular dependent model, some of which have been
reviewed in the previous chapter we would like o consider a very natural situation which
is encountered in the real world. As mentioned in section 1.3, the basic idea of the random
environmental effect model in an engineering context is that the system, which consists of
two componenis, is used under operating condition while the individual components are
tested under controlled condition, since they are not the final product the consumers will
use. Therefore the factors which are liable to affect the system survival function under
operating condition may be divided into three parts, the random lifetime of each component
under controlled condition, and the random stress characterizing the operating condition,
and impact of this random stress on the lifetimes of the components in the system under
operating condition.

In section two we present a general model and provide properties of the model. In
section three the random environmental factor is assumed to follow a gamma distribution.
Section four deals with the case when both components have Weibull lifetime distributions
and a random environmental factor has an arbitrary distribution.

Since the joint survival function induced by the random environmental effect model
provides a general dependence structure we shall discuss not only the properties of the
model for system reliability but also explore the general dependenc’e structure.

12
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3.2 The General Model
Let X, and Y, be the random lifetimes of the components under controlled condition
and let Z be the random stress for the operating environment. We suppose in this section

that the three random variables involved follow general distributions, that is, X, Y, have
the survival functions F(*), G4(*) respectively, and Z has a distribution H(*). We denote

the cummulative hazard functions of X, Y, as Qy(*) and Qyo(-), and hazard rates as
Qxo ()=0xo() and Qy'()=qy(")- Then we have Fo(t)=exp(-Qy (1)),

Go(t)=exp('Qyo(t))-
Let (X,Y) be the pair of random lifetimes of the components in a system under
operating environment. The resulting joint survival function of (X,Y) is

F(x,y)=E{FoZ(x) - G,Z(y)}

=E[exp{-(Qxo(*)+Qyo(¥)Z}] (3.2.1)
We note that this model can be introduced through Cox's regression model (1972) as
described by Clayton (1978) in incidence studies. Suppose the operating environment
under which the systems function allows for one covariate v, such as temperature,

pressure, etc. According to Cox's model we assume the survival functions of each

component are exp{-Q, ,(x)eV}, and exp{-Qyo(y)eCV}, and the joint survival function,

conditional upon v, is F(x,y| v)=exp[-ec"{on(x)+Qy0(y)}]. Hence the model we suggest

can be thought of as being induced through a random covariate v which is commonly
shared by two components in a system.
Furthermore we may incorporate fixed effect covariates, if obtainable, into our model.

Let V™ be a set of variables which characterizes an environment. Since it is practically
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impossible in many cases to observe all the elements in V* let us assume that we observe a
subset Vof V™ and that the ommitted variables may be captured by a single random variable

Z, where Z has a distribution function H(z). Let us further suppose that two components in

a system function independently given v* (i.e.,V,Z) with hazard rates zq,,(x)exp(c'v)

and zqyo(y)exp(gz). Thus when ¢ is a vector of constants, we have a joint survival

function for the two components in a system as

Efexp{-exp( £ ¥)Z (Quo(x)+Qyo@)1] (3.2.2)
Although the above model with covariates present is more general, we will discuss the

model without covariates since the main focus of this dissertation is on the dependent

structure of the survival function induced by a random environment, and all of our results

can be easily extended to the covariate model.

First we discuss positive dependence properties of the model. Before doing this, we
review several alternative notions of positive dependence based on the material in Barlow
and Proshan (1981).

Definition 3.1, (Barlow and Proshan.1981)

For a pair of random variables (X,Y),

O L S

1) (X,Y) is said to be TP2 dependent if the joint density function f(x,y) satisfies the
condition
f(xq y1)f(x9.y2) - f(x1,y2)f(x2,y1) 20 (3.2.3)
for all xq<x9, y1<y?.

2) X is stochastically increasing in Y if
P(X>x | Y=y) is increasing in y for all x.
3) X is right tail increasing in Y if



P(X>x | Y>y) is increasing in y for all x.

4) X and Y are said to be associated if
for functions g; and gy nondecreasing in each variable
COV(g1(X,Y), g2X,Y)) 20

5) X and Y are said to be positively quadrant dependent if
P(X>x, Y>y) > P(X>x) ' P(Y>y) forallx,y.

Theorem 3.2 (Barlow and Proshan. 1981)

15

(3.2.4)

(3.2.5)

The notions 1) - 5) in the definition 3.1 can be arranged into a hierarchy as

1) => 2) =>3) => 4) => 5).

We are now in position to derive the dependence properties of the general model by

showing that (X,Y) is TP2 dependent. Even if TP2 dependence is not intuitively appealing

theorem 3.2 does imply that the other more appealing notions of dependence do hold and

hence gives insight into the dependence structure.

Theorem 3.3 The random variables X, Y of the lifetimes of the two components in a

system under the operating environment are TP2 dependent.

proof) Let £ (x) and g (y) be the density function of X and Y, respectively and

f(x,y) be the joint density funtion of (X,Y). Then

£(x,y)=E{Z2F .2 1 ()G, Z L(y)f ,(x)go ()}

= o(x)go()') E{22F02- 1 (X)GOZ- l(y)}

— £, (0go(y) J22F 2 100G 2 L y)aHE).

(3.2.6)
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Noting that f,(x)=qy(x)exp(-Qx o(x)), we have

f(x,y)=qxo(x)qyo(y)f 22F,,2(x)GoX(y)dH(2). Then (3.2.7)

£ 1.y1)Fx232) =J Jaxo1)y0(y1) Gxoxa)ayov2) u? vZFoUxp) Gy
u>v FV(x2)G, Y (y)dH(u)dH(v)

+ ] Jaxo g0 1) axoaagoly2) 2 VEGP(x G (v
vsl FY(x9)G,V(y2)dH(u)dH(Y)

- quo<x1>qyo<yl> Axo(x2)dyo(y2) u2 v2F,U(x1)Go "y )
usv FyV(x2)GY (y2)dH(u)dH(v)

+ ] Lot Dayoy1) deoagoly2) 2 vZEeY(x)Go¥(ry)
u>v FU(x2)G Y (y)dH(u)dH(v).
(3.2.8)

In the same manner, the other product f(x1,y2) * f(x7,y1) also can be written as

integrals over the region u>v and f(xy,yq) * f(x9,y9) - f(x1,y9) * f(x9,y1) can be

written as

J 42 ¥20 ayoxp) axoxa) Folxg) Fo¥(xg) - ayolxy) ayolx)Fo" (xy) Fl(xo)l
u=v [ qyo()’l) qyo()’Z) Gou(y 1) GOV(YZ)

- qyo()'l) qyo(Y2)Gov(yl) Gou()'Z)] dH(u)dH(v).
(3.2.9)

Rewrite the first blanketed term in the integrand as
Uxo(X1) Gxo(*2) Fol(x ) Fl(x){FV(xg) / Fol(xg) - FoVix ) /Fol(x)}. (3.2.10)

We know that this term is always nonnegative over the region u>v since
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Fo¥(x)/ F'(x) =exp [ - (v - u) Qu(x) ] is increasing in x_Similarly the second
blanketed term is always nonnegative over the region u > v.

Therefore the integrand is nonnegative over the region u > v so that
f(x1,y1) * f(x9,y2) - f(xq,y2) - f(xp,y1) 2 0 for all xy<x5, y1 <y9, which leads to TP2

dependence. Q.E.D.

As mentioned before, Theorem 3.3 provides useful properties of the dependence
structure of the model so that one may use them to exploit related properties in the
reliability context. As a simplest case the two properties 2), 3) in definition 3.1 lead us to
the following corollary.

Corollary 3.3.1 Under the same setting as in theorem 3.3, the conditional hazard rates
q(x | Y=y) and q(x |Y > y) are decreasing in y.

Proof) Since the conditional survival function given Y=y , F(x | Y=y) is increasing
in y for all x by theorem 3.3 q(x | Y=y) which is the derivative of -logF(x |} Y=y), is also
decreasing in y for all x. Similarly q(x | Y> y) is decreasing. Q.E.D.

Intuitively this corollary implies that the longer one component functions, the more
reliable the other component in the system is.

From a different point of view we derive an inequality in terms of the conditional

hazard rates which reflects the positive dependence of the model.

Theorem 3.4 Under the same setting as in theorem 3.3, the model satisfies
qx [Y=y)>q(x| Y >y).
Proof) Let G (y) be the marginal survival function of y in the system exposed to the

operating environment. Then

v

Py
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dy dy

F(x | Y=y)=PX>x[Y=y)=

E(ZF,2(x)'GoZ Ly)goy))
E(Z-G,Z Ny) g ()

E(ZF,Z(x) G, Z(y))
- , (3.2.11)

E(Z'GZ(y))

since go(y) = gyo(y)"Go(y)-
E(F,Z(x)G,Z(y))
AlsoFx|[Y>y)=PX>x|Y>y)= 7 (3.2.12)
E(GoZ(y))
Hence, we obtain the following inequality,
qxIY =y) E( Z2F,Z(x) Gy Z(y)) E( FoZ(x)' Gy (y))
_ > 1, (3.2.13)

qx|Y >y) E2(Z:FZ(xy G 4(y))

since q(x [Y=y) = d [- logF(x|Y=y)] / ox
= E(Z2FZ 1) GoZy) f(x)) / E( ZF 4 Z(x) G Z(y))
= Qxo(EZZFgZ(x) GyZ(y)) / E( ZF 4 Z(x)G,Z(y)), and

Q(xly>y) = Qo (OE( ZF Z(x)GoZ(y)) / E( FoZ(x) G, Z(y))-

The inequality in (3.2.13) is obtained by Cauchy -Schwarz inequality and equality holds
if and only if the random variable Z is constant. Q.E.D.

We note that this inequality should be compared with the notion of the quasi
independence, which is defined as q(x |Y = y) =q(x |Y > y). Basu and Klein (1982)

have reviewed this notion. We note that quasi independence is the necessary and

PR
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sufficient condition that the marginal distribution under the dependent model can be
recovered from the minimum of X, Y and the knowledge of which component caused
the system to fail. In this case there exists a set of independent random variables which
yields the same minimum and indicater of system failure as the dependent system.
Futhermore these equivalent independent random variables have the same marginals as
the dependent system. For example, for the Marshall and Olkin's model holds one can
generate the bivariate dependent distribution through the three independent random

shocks.

Up to now several properties have been explored in terms of the dependence
structure induced by a random environment. Next we investigate the effects of the
random environment on system reliability by comparing the reliability function with and
without environmental effect. Conventional reliabilty theory commonly uses the
knowledge of the component lifetimes and an assumption of independent component
lifetimes in order to compute the system life distribution. In other words an investigator

modeling system life, based on component information, may predict the reliability of the

system, in our setting, with knowledge of F(x) and G(y) only by R4(t) =

F(t)Gy(t). The following theorem indicates how the two reliabilities are differentin a

series system,

Theorem 3.5 Suppose a two component system is serial, i.e., the system fails if and
only if any one of the two components fails. Let Ry(t) and R ;¢(t) denote

the system reliabilities for the cases of a random environment and of a

fixed environment.

ot
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i) If E(Z)< 1 then Ry(t) > R(t) for all ¢
ii) If E(Z) > 1 and P(Z < 1) = 0 then Ry(t) < Ry(t) for all t.
iii) F E(Z) >1 and P(Z > 1) > 0 then there exists a t~ such that
Rg(t) < Ryq(t) forallt <t* and Ry(t) > Ryg(t) forall t > t*

Statement (iii) implies that even if the average operating environment is more severe than
the controlled one but if there is a chance of better environment perhaps due to highly
cautious maintenance, careful users, or an effective usage the reliability under a random

environment becomes more reliable beyond a certain time.

Proof) The ratio of reliabilities for variable to fixed environment Ry¢(£)/R¢(t) is

E{exp(-Qy(1)Z)}
exp{-Q,(t)}

In the case of E(Z) < 1, E{exp(-Q,(1)Z)}> exp{-Qo(t)'E(Z)} by Jensen's inequality

where Q(t) =on(t)+Qyo(t).

since exp(-uz) is strictly convex function in z. Then i) follows immediately. Note that the
equality holds if and only if Z is a constant, i.e. Z=1 with probability 1.The statement (ii)
follows by noting that

E{exp(-Qo()2)} = | exp(-Qu(t)2)dH(z) < exp(-Qq(t)2) fdH(z) = exp{-Qo(®)}-

To prove (iii), let

E{exp(-Qy(1)Z)}

r(t)= (3.2.14)
exp{-Qy(t)}

Then r'(t)=q(t) E{exp(-Qp(1)Z)} exp{-Qu(D)}(1-s(t)) (3.2.15)

where s(t) = E{Zexp(-Qo(t)Z)}/ E{exp(-Q,(Z)} and qo(H=dQy(t)/dt
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Noting that s(0)=E(Z) since Q,(0) = 0, E(Z)>1 implies that r'(0) < 0. Hence since (t) is

decreasing at t = 0 and r(0) = 1 this implies that r(t) < 1 for t in a neighborhood of t=0.
To complete the proof it suffices to show that r(t) is increasing beyond a certain point,
which is true if r'(t) is positive beyond that point. We claim s(t) is decreasing in t and s(t)

< 1 for large t under the given condition.Let us express s(t) as

E{Zexp(-Q,(H2)} exp(-Qq(t)z)
s(t) = =) z ¢ (z)
E{exp(-Qq(12)} Jexp(-Qq(H2) dH(z)
=[zp@[T>t)dz (3.2.16)
exp(-Qq(t)z)dH(z)
where p(z|T>t) dz = and  ¢c(Qy(V) =,f exp(-Q,(t)2)dH(z).
c(Qq(t)

Noting that p(z|T>t) is a density function, s(t) can be expressed in terms of the

conditional expection E(Z |T > t). Looking at the density p(z|T>t) we see that

pT>t)  c(Qy(ty)
= - exp{( Qu(t1) - Qp(ty) )z} for t] <ty (3.2.17)
p(zT>t)  c(Qp(ty))

is decreasing in z. Then it is an immediate consequence of the following lemma, due to

Lehmann (1959) that E(Z] T > t) is decreasing in t

Lemma (Lehmann(1954),pg74) Let pg(x) be a family of densities on the real line with

monotone likelihood ratio in x. If y(x) is nondecreasing
function of x, then Eg(y(x)) is a nondecreasing

function of 0.

Let © = 1/t. Denote pg(z) = P(z|T>t). Then pg(z) has monotone likelihood ratio in z. So
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E(Z) is nondecreasing in 0, which implies that E(Z|T>t) is decreasing in t. Now it
remains to be shown that s(t) < 1 for some t > 0. Let p(z)=(z-1)exp(-Q(t) z) and note

that p(0) = -1 and p(z) has maximum [(;)o(t){exp(Qo(’t)H)}]'1 at zo=(1+Qo(t))'Qo‘1(t)
and p(z) is increasing for z < z,, and decreasing z > z,. Suppose P(Z < 1) = € > 0.For
any 0 < & < ¢, there exists a closed interval [u,v] contained in (0, 1) such that A(u,v) =

H(v) - H(u) 2 8. Then E(Zexp(-Q,(1)Z)) - E(exp(-Qy(1)Z))

=folp(z)dH(z) +f;°p(z)dH<z)

< j Yp(@)dH(z) +[ Qq(t)yexp(1+Qu()] A(L, )
u

<PV A,Y) + [ Qut)yexp(1+Qu() -A(1, o)

< (v-1) exp(- Qu(t)v) 8+ [ Qu®)-exp(1+Qu)I L. (3.2.18)

Since the last term is negative if and only if (1-v) 8> [e'Q(t)'exp{(1-v)Qy(t)}] there

exists at" such that E(Zexp(-Qy()Z)) - E(exp(-Qp(1)Z)) < 0, that is, s(t*) < 1. Q.E.D.

This theorem implies that conventional methods which are based only on
components' information overestimate the reliability at an earlier stage ignoring potential
loss from a harsh environment which may be encountered in the beginning stage under
the operating condition, while underestimating the possible gains in reliability at later
stage from a better environment which meets requirement of each system's

susceptibility.
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The proof of the theorem yielded an interesting result about the conditional

distribution H( ) of a random environmental factor.

Theorem 3.6 The mean and variance of a random environmental factor Z among system
survival to a given time t, E(Z | T > t) and V(Z| T > t) are decreasing in t.
Proof) The results immediately follow the argument about s(t) in the proof of

theorem 3.4. Q.E.D.

As one might expect, this theorem indicates that average environmental factor of the
surviving systems declines with time since the systems under harsher environments tend
to fail first. Also it is noted that the variability of environmental factor of the surviving
systems is reduced with time.

We conclude this section by mentioning an curious phenomenon of the hazard rate.

In the series system problem the life system distribution after incorporating a random

environmental factor has hazard rate qq(t) = q,(t)' E(Zexp(-Q,(t)2)) / E(exp(-Qq(t)Z)).

However E(Zexp(-Q,(t)Z)) / E(exp(-Q,(t)Z)) has been shown to be decreasing in t.

Thus the lifetime distribution can often have a decreasing hazard rate which the variable
environment may cause while the component hazard rates are not decreasing. One
plausible explanation is that the population is subject to an early heavy selection of
systems under most severe environments. This should be contrasted to reliability of
system operating in a fixed environment where the systems may have a variety of shapes

for the hazard rates.

3.3 The Model with a Gamma Environmental Factor Distribution

While no particular distribution has been assumed in the previous section a gamma

ke el
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distribution with two parameters is assumed in this section for the random environmental
factor Z. The gamma distribution is chosen because it is analytically tractable, readily
computable, and it is a flexible distribution that takes on a variety of shapes including
exponential and bell-shaped. Since an environmental factor can not be negative the
gamma distribution is one of the most commonly used to model a variable which is
necessarily positive.

Some authors have proposed this model along with the specified baseline

distributions which play the same role as our F, and G,. Lindley and Singpurwalla
(1985) have investigated ,although not in depth, some properties of the model when F,,

G,, are exponentials and discussed bounds on reliability for this model. Hutchinson

(1982) proposed a similar model when
Fo() =Gyt = exp(-t). (3.3.1)

In order to explore the properties of this model in this section, we first investigate
the relationship between this model and Oakes' model. Oakes(1982) has suggested a
model

_1
F(x, ) =[ Foic 100 + G 10y - 11 (1-9) (3.3.2)

where Fgy, and G are the marginal survivals and 0 > 1. A reparameterizing of this

model was first introduced by Clayton (1978) to model the association in a bivariate life
table. Two physical interpretations were given. The first is based on the relation between
the hazard functions q(x| Y = y) and q(x| Y > y) for the conditional distributions of X
given Y =y, and Y > y. He showed that for all x and y this model gives the identity

N e Patn o TV A
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q(x| Y=y) =0q(x] Y >y). The second is in terms of random effects, Let W be a

random variable with a gamma density h(w) = {l"(l/(l-e))}'lexp(-w)wll (1-6)-1 1¢5

assumed that conditionally on W = w, X and Y are independent random variables with

survival functions {exp(-Foy ! "®(x)+1)1W and {exp(-Goy1-8(y)+1)}W, respectively.

Then the unconditional joint survival function is obtained as (3.3.1). He showed that as

0—>1+, F(x, y) —> F i (x)'Goi(y) and 0—> oo, F(x, y) —> min(Fyp.(x)> G (y)),
the distribution with maximal association. Also the correlation between X and Y in this
model varies from O to 1.

We will show in this section that the gamma model is equivalent to the Oakes' model
in the sense of a notion of dependence. For this purpose a nonparametric measure of
dependence termed the Copula is introduced. Using this concept a partial ordering of
positively quadrant dependence distributions is developed to this general case of unequal
marginals in order to assertain how the joint survival function of the two components in
a system under operating condition is changing according to variable parameter values of
a gamma distribution

Suppose a random environmental factor follows a gamma distribution with two

parameters o, f3

whose density function is h(z) = {I‘(a)}'IBaexp(-z/B)za"l, o >0 B >0. Then the
joint survival function for (X, Y) is
B

F(x, y)= 5 (3.3.3)
{B+Qyo(X)+Qyo)}

L T e
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and the marginal survival functions are

B
Fi&¥)z —m4—MmM — (3.3.4)
{B+Qyo(x)3%
o
G(y)s ——mM8M (3.3.5)
B Q™

Here it is noted that the marginal also depends on the parameters of the random
environmental factor distribution, while Oakes' model has fixed marginals.

To begin with we point out that the two properties which Qakes' model satisfies are
also obtained in our gamma model. In theorem 3.4 the two conditional hazard rates are

shown to have inequality q(x|Y =y) > q(x|Y>y), for any H(*). It is easily calculated that

q(x|Y =y) = (1+1/0)q(x]Y>y) when H(*) is a gamma distribution. This relationship has
been used as a key assumption to establish Oakes' model by Clayton. Another
investigation leads to the same results about the coefficient of concordance that Oakes

(1982) has obtained. In both case the probability of concordance is computed as

(0+1)/(204+1).

In order to show that both models have the same dependence structure we use a
nonparametric measure, the Copula, which has been introduced by Sklar in 1959. This
notion has been studied by Schweizer and Wolff (1981). They have set up the following
definition and explored some properties.

Definition 3.7 ( Schweizer and Wolff(1981)) A two dimensional coupla is a mapping C
from the unit square [0, 1] x [0, 1] onto the unit interval [0, 1] such that
1) Domain of Cis [0, 1] x [0, 11,
2) C is a two dimensional cumulative distribution,

3) One dimensional marginals are uniform over [0, 1].
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Property 3.8 ( Schweizer and Wolff(1981))

1) C is continous,
2) max(u+v-1) < C(u, v) < min(u, v) for all u, v € [0, 1],

3) max(u+v-1) and min (u, v) are themselves copulas.

Theorem 3.9 ( Schweizer and Wolff(1981)) Let H be a two dimensional survival
function with continous marginal survival functions F, G. Then there
exists a unique copula C such that H(x, y) = C(F(x), G(y)). Thus the
copula C is given by

C(y, v) = HF 1 (u), G 1(v)). (3.3.6)

As they noted in their paper, theorem 3.9 shows that since a copula itself is a bivariate

distribution with uniform marginals the study of copulas can provide much knowledge

of the joint distribution of x and y. Because our investigation is about the dependence
structure, we shall discuss this matter rather than the overall properties of copulas which
are of intrinsic interest.

Regarding the dependence structure we illustrate how a copula works for a joint

distribution by expressing a well known measure of dependence for (U, V),

Spearman's p, in terms of C. Suppose W and W have a joint survival function H with

marginal survival functions F, G. Let C be the copula of (W, W5). Then Spearman'’s p

is

p(Wy, Wa) = 12 I j (H(x, y) -F(x)G(y)1d (1 - F(x))d(1 - G()) (3.3.7)

which can also be expressed, using the probability transformation, as
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p(W1, Wr) =12 j j [C(u, v) - uv] du-dv. (3.3.8)
Noting that the second expression is in terms of C alone, a nonparametric measure of

dependence between Wy, and W5 can be studied from thier copula alone. The above two

authors have studied other measures as well as p.
We shall show that our gamma model and Oakes' model which may be applied

differently according to the situation have the same dependence structure in the sense of

the copula.
Property 3.1Q The gamma model and Oakes' model both have the same copula,
1
| — (3.3.9)

u-l/a+ v-l/(l_ 1

Proof) Let u = F(x), and v = G| (y) where Fy, G are the marginal survivals. Then

we obtain x = F11w) = Qo 1 Bul/®- 1) Jand y = Gy "1(v) = Qo 1 B 1% - 1],
so that C(u, v) is computed.

We list some properties of the gamma model through the copula we have obtained in

property 3.10.

1) Since the copula C(u, v) depends only on ¢, only the shape parameter o affects the

dependence structure which is induced by the environment.
2) Since the Copula 3.3.10 is decreasing in ¢, and two variables are independent if and

only if their Copula is u'v, the larger the shape parameter o is, the less the

dependence is induced.

e
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3) As a goes to O the copula converges to min(u,v) which is the copula of maximal
positive association, in other words, the copula of the two random variables one of
which is a monotone function of the other.

In 2), we note that usual comparisions of the strength of dependence of two random
variables require that the marginals be fixed. However we note that the copula is a
surface over the unit square and that a notion of distance between a given Copula and the
one of independent case, u'v, can be used to compare the degree of dependence between
distributions of arbitrary marginal structure. This idea is a generalization of the concept
of partial ordering of positively quadrant dependence introduced by Ahmed, and et al
(1979). They have considered a class of positively quadrant dependent bivariate
distributions whose marginals are fixed. They have defined an ordering on this class by
saying that one bivariate distribution is more positive quadrant dependent than another if
its joint survival function is larger for any x, y. They also show that two independent
random variables and two random variables of which one is the monotone function of
the other one are the two extremes of this class with respect to this ordering.The Copula
makes it possible to make similar comparisions of arbitrary pairs of positively quadrant
random variables with respect to the degree of positively quadrant dependence.

Since we have investigated properties of the general model in the previous section,
we will observe what the assumption of a gamma distribution as a random environmental

factor distribution yields.

Property 3.11 The random environmental factor for those systems for which component
A has functioned more than x time units and component B has functioned

y time units also follows a gamma distribution with same shape parameter

PR S
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o and scale parameter Qy,(x) + Qyo(y) + B. While for the population of

the systems whose components failed at time X=x, Y=y the

environmental factor follows a gamma distribution with shape parameter

0+2 and scale parameter Quo(x) + Qyo(y) + B.

Proof) The conditonal density of Z given X > x, Y >y, h(z| X >x, Y > y), is
P(X>x,Y>y|Z=2)h(z)

P(X>x,Y>y)

1 Quo®) + Qyoy) +B1* exp[-{ Quox) + Qyoy) +B} 22!

(3.3.10)
I'(o)

which is a gamma density with parameters o, { Qy,(x) + Qyo(y) +B}.
On the other hand the conditional density given X =xand Y =y,h(z| X=xY =y)is
h(z, x,y) h(x, y |z)'h(z)

h(x, y) h(x,y)

£ Quo®) + Qo) +B}*+expl-{ Quo(x) + Qyoy) +B} 21:2%+1
- T(0+2)

, (3.3.11)

a gamma density with parameters o+2, { Qyo(x) + Qyo(Y) +B}. QE.D.

Property 3.11 indicates that the mean of the environmental factor for the population
of systems whose components are functioning at time t is a decreasing function of t.
Another point to be noted from this property is that the density of the environmental

factor for the population of the systems whose components' lifetimes have X > x, Y >y

has the shape paramater o, which is identical to that in the unconeditional density of Z. It
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can be interpreted that the dependence structure between the components of all the

functioning system beyond a certain time t is of the same as the dependence structure
between components of a system operating at time 0.

We will conclude this section by presenting an interesting relationship between a
component's survival function F ("), and the reliability of the series system R (). Klein
and Moeschberger (1985) have obtained an expression for the marginal survival function
of X in terms of the survival function of T, where T = min (X, Y), under the assumption
that (X, Y) follows Oakes' bivariate survival function. In our gamma model, consider
the crude density function p;() associated with one component, say A, whose lifetime is

denoted by X,. Now,

d
py(t) =—P(T<t,X<Y)
dt

5 fot ,[ :’f(u, v)dv du

J-oo JdF(u, v)
¢ f(t,v)dv = - ™ L:t, vet

f. (1)
= aRg)@De 7 (3.3.12)
BFo(t)
Consider the differential equation

f.(t)
Fo(t) - _E py(t) [Rs(t)]'(l""a)/a i (3.3.13)
o o

Then the solution of the above equation for F(t) is

F(t) = exp [-_B. _[:)pl(t)' Ry (1+oe g q (3.3.14)
o

As the above authors have done, this expression may be used to obtain bounds for the
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survival function of a component of interest based on the data one can obtain in a

competing risks experiment. Let Ty, - -, T, denote the observed test times of n two

component systems and let Si, i=1,,n, be 1 or 0 according to whether the T; was an

observation on Xj or Y;, respectively. Then the usual estimators of Rq(t) and py(t)

enable us to have an estimator of F(t) provided that o, §§ are known.

3.4 The Model When Both Components Have Weibull Lifetime Distribution

In this section both components are assumed to have a Weibull form with parameters
My ?Ll) and (1,, ?»2), respectively. That is, Fp(x) = exp(- Xlxnl). The Weibull

distribution, which may have increasing (1 > 1), decreasing (1 < 1) or constant failure

rate (N = 1) has been shown experimentally to provide a reasonable fit to many different
types of survival data. (See Bain (1978)). The resulting joint reliability of the two

components' lifetimes, (X,Y) in the operating

environment is F(x,y) = E[exp(-Z(h{x"11+ A,y"2)]. (3.4.1)

The model described above for a general distribution of the environmental stress has

a particular dependence structure which we summarize in the following lemmas.

Lemma 1. Let (X,Y) follow the model (3.4.1) where Z is a positive random variable

r ]
with finite (— + —)th inverse moment. Then

m M2

P
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Ty sy -ty 4SMy)
EX'Y)=A; A I+ wvmy) I+ smy) EZ 64 %)

The proof follows by noting that, given Z = z, (X,Y) are independent Weibulls with

parameters (11, A z) and (19, Ay z), respectively and
-I‘/T]l -1
E(XNZ=z) =)\ z I"(1+ r/my) with a similar expression for YS. When the

appropriate moments exist, we have

-1/1']1
AYEX)=EXpEZ ),

-1m -1m

B) V) =EXgd) Var @ D+EEZ 2 Var(Xp),

-Imp -1mp
(C) Cov (X,Y) = E(Xg) E(Y() Cov(Z , Z ) which is greater than 0.

If Ny =Ny =1 then the correlation between (X,Y) is

T'(1+ 1/m)2 Var(Z-1/M)
p= . (3.4.3)
Var(Z 1M T(1+2m)+ C+2m) - T(1+1m)2) E@Z-1M)2

In this case the correlation is bounded above by I‘(1+1/'r1)2 /T (1+2M). Figure 1 shows
the maximal correlation as a function of 1 for 1 € (0, 10). Note that this maximal

correlation is an increasing function of 1.
Exact expressions for competing risks quantities of interest can be computed when a

particular model is assumed for the distribution of Z. We shall consider the gamma and

uniform models. Consider first the gamma model with h,(z) = Ba 291 exp(-Bz)/T (),

z > 0. For this model, the joint survival function is
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g
F(x,y) = (3.4.4)
yl n
[B+ 7\.1)( 1 + 7\.2y 2]0(,

which is a bivariate Burr Distribution (see Takahasi (1965)), the marginal
distributions are univariate Burr distributions with
-1m
EX)=(A/B) l]‘(1+1/n1)I‘(oc- Imyp) (o), if oo > 1/,

2/y  T(2mpCe-2my)  T+ImpTe-1my),
VarX) = (A/B)  { [ 12}, if o > 2

I (o) (o)
with similar expressions for E(Y), Var(Y). The covariance of (X,Y) is

-1my _ -1my T(a-1m1-1/my)  T(a-1/m,) T(o-1/m5)
Cov(X,Y) = A/B) (Ay/B) 12 - 2
(o) (o))

T(1+1m;) T(1+1/m5)

for o> 1/m; + 1/my. For the gamma model, the reliability function for a bivariate series

system is given by

n m
Ry(t) = 1+ /B)t + Ag/B)t > )0, (3.4.5)

and for a parallel system by

n n n n
Rp(t) = (1+(A/B)t 1+ (1+ (Ap/P)t 2 Y- (1+( A/l 2+ A/B)t 2)‘0‘ (3.4.6)
Figures 2-5 are plots of the series system reliability for A;= 1, A, = 2 and several
combinations of 1, N,. Each figure shows the reliablity for o= 1/2, 1, 2, 4, and the

independent Weibull model. In all cases, B = 1. For these figures we note that for fixed

g e G R
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7L1, ?»2 TM1> Ny, t, the series system reliability is a decreasing function of the shape

parameter . Figures 6-9 are plots of the parallel system reliability (3.4.6) for the above

parameters. Again, the reliability is a decreasing function of o.. Also in both the series
and parallel system reliability, the shape of the reliability function is quite different from
that encountered under independence.

The gamma model is a reasonable model for the environmental stress due to its
flexibility and the tractability of the model in obtaining close form solutions for the
relevant quantities and in estimating parameters. However, in some cases, such as when
the operating environment is always more severe than the laboratory environment, the
support of H may be restricted to some fixed interval. A possible model for such an
environmental stress is the uniform distribution over [a,b]. For this model, the joint
survival function is
Ficy) =[exp (-brq x111 + kzynz )) - exp(-a( llxn1+ 7\.2}’“2))] 34T

(b-a)(?»lxn 1+ Y ynz)

-1my Mp-Ump -1y _
A C(1+1mypmny (b -a YH{(My-D(b-a)] ifny =1,

log(b/a)/[A;(b-a)] ifn=1,

E(X)
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- 1]1
Var(X) =mq A {r+2mpn; b

(b-a)

M-Vnp)  Mp-1/ny)
-T(1+1mp2n; b -a )2

}

M-D%(b-a)
= 2/(\;2ab) - log(b/ 2)2/[(b-a) 1,12

_1[ log(b/ a) T
=M (b-2) 12 +a1/2)2]

For this model, the reliability function for a series system is

n n n n
R(t) = [exp(-b( At 1+ Ayt %) - exp[-a( At 1 +Apt 2 )]

n n
(b-a)(Aqt 41-12!; %

and for a parallel system is

n n n
Rp(t) = [exp(-b(A;t 1) -exp(-a Aqt ]) + [exp(-b At 112) -exp(-a Aot 2)

Mq1-2)ny M1-2)my
-a )

n n
(b-a) At 1 (b-a) Ayt

41

if my %12,
ifT]1= 1,

ifﬂ1= 2.

(3.4.8)

-Rs(t)
(3.4.9)

Figures 10-13 show the reliability for a series system and figures 14-17 for a parallel

system under the uniform model for various combinations of 4,4, M 1,M 2 a,b.

Notice that when A = .25, B = .75, which corresponds to an operating environment

which is less severe than the test environment, the system reliability is greater than that

expected under independence, while when (a,b) = (1.25, 1.75) or (1., 2), which

B

w2 O A B
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corresponds to an environment more severe than the test environment, the system
reliability is smaller. Also when (a,b) contains 1, which corresponds to an environment
which incurs the possibility of no differential effect from that found in the laboratory,

there is hittle difference in the dependent and independent system reliability.

Up to this point we have proposed a practically motivated random environmental
effect model and have investigated this model from the points of view of both system
reliability and the induced dependence structure. Even if the results are not as tractable as
those of the other dependent models used in reliability studies and survival analysis the
basis of our assumptions are so realistic that any one applying reliability methods in the
practice may consider this model to detect the environmental effect and to
resolvediscrepancies in estimating reliability under more standard models. Finally, we
finish this chapter by noting that this model and its properties, which we explored from
the point of view of engineering application, should be investigated in depth for

biological application.



CHAPTER IV
INFERENCE

4.1 Introduction
In this chapter the problem of analyzing life tests of two component series systems
which are assumed to follow the random environmental effects model described in the
chapter 3 is discussed. We will focus on the model which assumes that the lifetimes of

the components follow the Weibull lifetime distribution with same shape parameters, that

is, N; =N, =1 under laboratory condition. If 1 is assumed to be known, then the

lifetimes, after a suitable transformation, may be assumed to follow an exponential
distribution. In section 4.2 we will briefly discuss the case when the random
environmental factor follows an arbitrary distribution. In the remainder of this chapter a
gamma distribution is assumed for the random environmental factor. Maximum
likelihood estimators of the parameters are obtained in section 4.3 and we propose an
optimal scheimc for determining sample sizes subject to various cost constraints in
section 4.4. In section 4.5 the method of moments estimators of the parameters
associated with the random environmental factor are discussed together with a modified
estimator. We present several new estimators in section 4.6 which are based on a
graphical approach to the analysis of such experiment. In section 4.7 a comparision of
the estimators obtained will be made through a small scale Monte Carlo study. Finally in
section 4.8 we discuss how to test the dependence induced by the common environment

47
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under the Weibull - gamma model.

Before describing the analysis we shall discuss the experimental design and some
notation. Consider two components, say component A and B, which are linked into a
series system, say S. The whole experiment consists of three distinct parts. One
experiment is done on component A under controlled condition, such as found in the
laboratory and another independent experiment is performed on component B under
controlled conditions. The third experiment is carried out on the series systems S under
operating conditions which allow for introducing the common environmental
effects.Sample data from the first two parts consist of times to failure of each
component. The last part consists of the failure times of the system and an indicator
variable which tells us which component causes the system to fail.

Now let us explain the following notations: Let

Xo,i = Lifetime of the i-th component A inpartI,i=1,2,* n;

Y, ; = Lifetime of the j-th component B in part IT, j = 1,2, - - ,m;

0,]

n = Number of component A's put on the test under contorlled conditions;

m = Number of component B's put on the test under controlled conditions;

X; = The potential lifetime of component A of the i-th system under operating
conditions;

Y; =The potential lifetime of component B of the i-th system under operating

conditions;

8; = Anindicator variable whose value is equal to 1 if X; < Y; and otherwise equal to

0,

T; = Lifetime of the i-th system, (T;j=min [ Xj, Y;])
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s =Number of the systems put on the test under operating conditions;

?\.1 = Hazard rate of the component A under controlled conditions;

7\2 = Hazard rate of the component B under controlled conditions;

H(*) = Cummulative distribution function of the random environmental factor, Z;
o = The shape parameter of the gamma distribution assumed for H(*);

B = The scale parameter of the gamma distribution assumed for H(").

4.2 The Model with a General Environmental Factor Distribution

In this section, we consider the maximum likelihood estimators (M.L.E.) of the
hazard rates of both components, A 1 and ?\2 and the distribution function H(:) given
three independent samples,

(Xo’l s XO,Z’ Ty Xo,n) ) (Yo,l > Y0,2’ T, Yo,m) ’ and

(T8, Tp.89, * ** T, 8. Let

n m
So,l =2 Xo,i and So,2 =X Yo,j be the total times on test of both components in the
i=1 j=1

s
laboratory testing experiments, and M = Z &) be the number of systems whose failures
k=1

are due to component A.Since the observations from different samples are independent

the relevant likelihood is L = Ll'Lz'L_o, where
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L= Xln-exp(-M'SO,l), Ly= Mm-exp(-lz'so,z), and
s
L3y= SCM~7\.1M-7;2(S'M)-IIZI_J‘1 z-exp{-(A1+Ap)zTy } dH(z),

s!
where .Cpj= ——o— .
SMT M-
Hence the loglikelihood after a slight modification is
logL = n'loghq + mrloghy - }“lso,l - KZSo,2 + log(;Cpp) + Mlogh{ +(s - M)logh,

S
- SklOgO\.1+ lz) + X log I (7\.1+7\,2) Z'exp{-(k1+7Lz)sz} dH(z). “4.2.1)
=1

Since the last term of logL depends on A{, A,, and H(') the usual technique of finding

M.L.E.'s can not be directly applied here. One approach we suggest here is due to

Jewell (1982). He has shown the existence of the M.L.E. of a mixing measure jL given a

sample of n independent observations from the mixture distribution

F(t) = fa- exp(-zt)) du(z) and suggested an algorithm for computation of the M.L.E.

Following Jewell, we suggest first obtaining the M.L.E. of H*(:). That is, the

distribution function of (A + 7\,2)2 = Z*. From the last term of logl. we maximize

S
% log f 2" exp(-2*Ty) dH  (2), (4.2.2)
k=1

and then obtain the M.L.E.'s of ll, 12 from the remaining terms solving the two

e et £ e
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likelihood equations,

n M S

— -So1+—- =0, 4.2.3)
7\,1 ’ Kl 7\,1+7\.2

m s-M S

— -Soa+ - =0 4.2.4)
7\.2 ’ 7\.2 7\.1+7\.2

Since the M.L.E. of H*(°) depends only on Ty's, the M.L.E. of H(") can be obtained by

the invariance property of the M.LL.E.

Since the estimators of ?»1 and 7\2 will be discussed in depth in the next two

sections, we consider only the estimator of H*(') in this section. Jewell, in his paper,
has shown that the M.L.E. of H*(') has finite support, containing at most s distinct

points which are lying between the two extremes, the inverses of the largest and smallest
Ty's. Thus he proposed a minor adjustment to an algorithm, which has been suggested

by Hasselblad (1969) for maximizing the likelihood of a finite mixture of exponentials

with the number of mass points known. The algorithm proceeds as follows. For each

q =1, ~-,s we estimate the distribution of vAl by finding the values of Pi,q and Zj g
i=1,2,,qwhere Pigq= P( y A Zi,q)’ which maximize (4.2.2). For fixed q these

points are found iteratively as follows. Let pi(o), zi(o) be an initial guess at Pi,q Zi,q-

Set g(k)(t) ='g %)j(k). zj(k).exp(-zj(k)t) and fj(k)(t) = zjac).exp(-zj(k)t) ,
=

i=12,"q.

Then p&c+D) = 0 [ 2 609(Ty) 1 g®HT) 1 /5, and
i=1

P

s @ ww
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S
2 50y /g0y

zj(k+1)— » i=12,q.
S
2 [T 150Ty)
1=

We continue untill convergence is obtained. As noted in Jewell this algorithm suffers
from the limitations of a large variance and too many iterations. The relatively poor
behavior of this estimation procedure was also noted by Heckman and Singer (1982) in
somewhat differnt context, In the sequel we shall describe improved estimators based on

assumed parametric model for H(").

4.3 Maximum Likelihood Estimators for the Model with a Gamma Environmental
Factor_Distribution

In this section we assume that the random environmental factor has a gamma

distribution, whose distribution function is H(z) =,f Ba (1"(0())'l u®—le-upB du, with

finite mean and study the method of maximum likelihood estimation for the parameters

7‘1’ 12, a, and 3. As noted in section 3.4, the reliability for this series system is Ry(t) =

1+ (7\,1+)\2) t/ B)"%. Based on the three independent samples described in section 4.1,

the relevant loglikelihood is
logL = n'logh; + mloghy - A1Sq 1 - X3S, 2 + log(sCpp) + Mlogh +(s - M)loghy

)
+ sloga. - slogf - (o + 1) Zlog {1 +(Ay+Ay) Ty / B} . 4.3.1)
k=1

W 5D vt v e o

——



The derivatives in 7\.1,7\.2, o, and [} are

d logL n M (o+l) s Tk
= —=-S51+ —- X
0 7\.1 7\.1 ’ 7\,1 B k=1 {1 +(A.1+7\.2) Tk/ﬁ}
0 logL m s-M  (o+1) s Tk
= —=-Spp+ - Z
0 7\,2 7\,2 ’ 7\.2 B k=1 {1 +(7\.1+7\.2) T/ B}
dlogL s S
=—- X log {1 +(A{+Ap) Ty / B}
oo o k=1

(A+A9) Ty /
[(a+1)ZS 12 T/ B

1
—_ -s]
o B k=1 1+ QA+Ap) Ty /B
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(4.3.2)

(4.3.3)

(4.3.4)

(4.3.5)

The usual method of maximum likelihood is to set the above derivatives to 0 and to solve

the system of four nonlinear equations which after some manipulation are:

n M s
i =S 1+ — - =0
1) 7\.1 0’1 7\.1 Kl+7\.2
m s-M )
) ——-S.9+ - =0
Ay 7T Ay
S s
iii) —- Z log {1+(A+A) T /B} =0
o k=1
s T s
iv) X k =0.

k=1 1+ (K1+7\.2) Tk/B ) (o+1)(A1+A0)

otk
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The first two equations are to be solved for 7‘1’ 12 to obtain ?»1 0 7\21. We may obtain

oler Bmle by solving the last two equations. More precisely, we separate the

loglikelihood (4.3.1) into two parts after the one to one transformation,

(A, 29,0, B > (Aq, Ay, 0, 0) where 6 = (A+A,) / B. That is,

logL =1log L.{ + log Ly where
logLy =nloghy + mrloghy - A1S, 1 - 225, 2 +10g(;Cpyp) + Mloghy +(s - M)logh,

-slog(A1+My), 436

and,

s
logLy = sloga +slogB - (x + 1)  log (1 +6 Ty). 4.3.7)
k=1

Thus the problem of finding the parameter values maximizing logL consists of the two

parts: the first to find the values of A, A, maximizing logL; and the second to find
those values of o and 8 maximizing logLy

It should be noted that the M.L.E's of ?\.1, 7»2 depend on the samples of the

components under controlled conditions and M, the number of systems which fail due to

the component A only, while the actual system lifetimes are used to estimate o and 6.
This is somewhat obvious if we recall our assumption that the two components in a

system under any fixed environment are functioning independently.

Going back to the estimation problem, the M.L.E.'s of A, M, are easily calculated
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by solving the quadratic equation

rp A2 +1hy-15=0 (4.3.8)
where r3=501502 " 50,12 »
1] = (g +np) So,l +(s-ny) So,2’

To =0C " 1A,
nc =n + m; number of both components put on tests

np =n+ M ; number of component A's used in the whole experiment.
The estimator 7&10 ={r + (rl2 + 4r0r2)1/ 2} / 2ry ifry > 0,and
{r- (rl2 + 4ryr9) 1% 2} / 2rp otherwise. The other estimator 7\20 is computed as

(nc - So1210) / So2-
Looking at how the M.L.E.'s were obtained a natural question is " How much are these
estimators improved by adding information from the system experiment ?"" Since this

question is of independent interest we will discuss this problem in the next section.
Prior to calculating the M.L.E.'s of o and 0, we would like to check their existence

in the allowable parameter space ( o > 0, © > 0) since some authors (see Harris and

Singpurwalla (1969)) have found M.L.E. in similar settings without a thorough

investigation. Noting that logL, is a function of & and 9, the two likelihood equations

arg

P



dlogl, s s
=——-% log {1+6Ty}=0,and (4.3.9)
on o k=
0 log s $ T
L2=___-(oz+1) r X _o. (4.3.10)
00 0 k=1 1+ 0Ty

Solving 4.3.9 for 0 we obtain amle=s/{2 log{1 + 6T})}. Substituting this value into

4.3.10 we obtain the following equation which is to be solved for 6:

S S
— -HO) [ +11]1=0 “4.3.11)
0 £1(0)

where S S Ty

f1(8) = X log (1 + 6Ty ), fr@)=% —— .
k=1 k=1 (1+6Ty)

This equation can not be shown to have a positive and finite root. Thus we provide a

sufficient condition under which there is a M.L.E. of 0.

Let logLg = slogs-s+slog®-slog (Xlog(l+0Ty)) - X log (1 + OTy) be the
loglikelihood of (8,0) evaluated at ¢ = 0t1e. Then

)
lim loglg = slogs - s - slog( Z Ty)
6->0 k=1

lim loglg = -oo
0—>00

dlogly SETZ -2(ZTy)?

lim

>0 do 2Ty
dlogL

lim 0 =0,

0>~ dO
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We note that if the observation Tk's satisfies

] S
s T T2 -2(Z T?>0 (4.3.12)
k=1 k=1
then logLg is increasing in a neighborhood of 0. Noting that lim logLg = -0, and
—> 00
lim loglg is
0—->0

finite, it follows that the smallest root of the equation (4.3.11) is a M.L.E. of 0.

Thus if the sample satisfies (4.3.12), a M.L.E. 6, of 0 is obtained by solving the

equation (4.3.11) numerically and a M.L.E. of o is computed as s/[Zlog(1 + emletk) ]

In the case that the data does not satisfy the condition (4.3.12) we would have a M.L.E.

of 0 at 0 = 0 which leads to e as a M.L.E. of . In such a case the reliability for the

series system becomes

lim Ryt = lim (1+Aq+h) /t)%* = exp (-t Ay+Ay) t) (4.3.13)
O—>00 O—>00
o/f—>p o/f->p

so that we conclude that the series system has constant hazard rate and it seems
reasonable to carry out the inference procedure accordingly.

A practical meaning can be given if the condition (4.3.12) is expressed as
s S
[Z T2 -T21/s > T2 where T={ X Tc}/s. (4.3.14)
k=1 k=1

The above expression shows that the condition is satisfied if the sample deviation is

larger than the sample mean.
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In addition the existence problem of maximum likelihood estimation we note that the

estimate of o can be less than one, which implies that the mean system reliability is
infinite. To study the properties of the estimators as well as some others which will be
discussed in the next sections a small scale Monte Carlo study will be presented in

section 4.7.

4.4 A Note on the Estimation of the Components' Hazard Rateg

As discussed in the previous section the M.L.E.'s of ?»1, 7&2, the components'

hazard rates under controlled condition are obtained through the likelihood function
logL.; which is constructed from three independent samples, one based on each

component tested separately and one based on system data. However the only

contribution from the system data to the likelihood function for )»1, )\2 is the information

as to which component has caused the system failure, while the contribution from the
component data consists of their lifetimes.

The framework of this problem is combining component and system information.
Eastering and Prairie (1971) have discussed this problem when there is data from both
components and systems consisting of several identical, but independent components in
series or in parallel. In case of attribute testing and life testing they have obtained
estimators of the components hazard rates and have investigated how much information
about the hazard rate of the components is obtained from the system sample using the
asymptotic variances of the maximum likelihood estimators. Mastran (1975) has
considered this problem from a Bayesian point of view. Miyamura (1982) has

investigated the systems of independent but not-identically distributed components and
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suggested a maximum likelihood estimation procedure. In the framework discussed in
this section the components are not identically distributed and we combine lifetimes of
both components and information of the cause of system failures to estimate component

parameters.

First, we compute the asymptotic variances of M.L.E.'s of A{, A, obtained in the

previous section and compare them with the variances of the M.L.E. computed only
!

from the component samples. Second, we investigate some possible strategies for
determining sample sizes under cost constraints which may occur if it costs to check
which component caused the system to fail.

We assume that the sample sizes of both components are same, that is,n =m =N.
Suppose
that the ratio of the component sample size to the total sample size, N/(2N + s), goesto ¢

as both N and s go to co. Now

I(A) =cIj(A)+cIp(A)+(1-2)I3(A) (44.1)

where A = (7\1, 7\.2) and I; (A ) is the information matrix based on the density function

corresponding to i-th sample.

To obtain I; (A ) the loglikelihood logL; should be divided into the three different parts

corresponding to a sample of size one from each phase of the experiment. Let

IOngl = log7\.1 - Xo,l 7\.1

IOgLIZ = log?\.z - Y0,2 >\.2

A

g G
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logL13 =0 log A +(1-8)log),-log (A +1y).

azlongi A
Noting that L A)=-E[—— 7, (i=1,2,3)andE(M)= .
FYVERY A+2g
we obtain
/A2 0 0 0
I = IA) =
0 0} , 0 13
1 1 1
A‘l (7\.1 + A’Z) (A'l + 7\,2)2 (Kl + 7\,2)2
I(\) =
3 1 1 1
(A +2A9)? M +h) A +AZ) Lso
¢ (M2Z+M2)+01 Ay -(1-2¢)
A2 (A +29)2 (g +2p)?
I(L) =
-(1-2c) c (A2 +092)+A Ay
(A +A9)2 A2 (A1 + Ao)2 ,
1m52 2 T2 (4.4.2)
det (I(A))=]I(A) |
2(02-2,2)2 + 2¢A Ay (A +29)2
C -+ C
_ 1”2 172 ™r"2 (4.4.3)

7»12 7\.22 (7\.1 + ?‘.2)4

Thus the variance - covariance matrix I'l( A)of ML.Esof (A1 ,Ap)is

o GIOAChe S

! a
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M2 A+ A% ¢ A2 02) + 400} A2 22 (A + 2201 - 20)

020\.12 - 7\,22)2 +2c¢ A’IAZ (A.I + )\.2)2 02(112 - 7\.22)2 +2c 7\.1?\.2 (7\.1 + 12)2

2202 (4 + 0921 - 20) M2 Ay +A2e A2+ 052 + A A0

02122 +2c Mhy A +A)2 A2 D2+ 2¢ Ay (b + A

“4.4.4)
We obtain, by Theorem 6.1 of Lehmann (1983),

VZN=+s (A3 -}) >N (0, Ijy'1), (4.4.5)

VaN+5 (A —2y) > N(0, Iy1), (4.4.6)

where Iij'l is the i-jth entry in the matrix I"L(A).

Next we study how much the estimator 7\.1 1» incorporating the information from the
system improves on the estimator X, of A; computed from the component sample by
computing the asymptotic relative efficiency (A.-R.E.) of k{5 of A;to X ;. Since
VN (Mg=-Ry) —> N(0, 4,%), we obtain the ARE. e} as

17! M +22)2 AAg +c (b + 2902 A2 +2p2)

er==c = . (44.7)
! 7\.12 20+ 7\.2)2 AMAg +c (A + 7\.2)2 A - 7\.2)2

If we assume that 7\.2 =k ll , then

k+c (k2+ 1)

[+ =
1 2%k +c (k- 1)2

(4.4.8)

o e—m T
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Figure 18 shows the AR.E. of A{ to A at varying ratios of component sample size to

total sample size for five different k values. Notice that for fixed ratio the more similar
the hazard rates of the two components are, the smaller the A.R.E. is. That is, the more
the information from the system sample contributes to reducing the variance. Figure 19
shows the A.R.E. at varying k's for given ratio of sample sizes.Note that c=0
corresponds to the situation where N is very small compared to s, c=1/6 to the case
where s is of the order 4 times N, c=1/3 to the case where s is almost same as N, ¢=2/5

to the case where N of the order 1/2 times N and c=1/2 to the case where s is very small

compared to N. The above result is also valid for the estimators, A, and X, since all
the formulae are symmetric in A and A,.
In the previous section we saw that estimating the scale parameter 3 of the gamma

distribution involves estimating A + A, rather than A or A, themselves so that we shall
turn to comparision of the variances of L, + A, and A;( + X5. Using the same .

procedure as before we are led to the AR.E. of Ay +Ayqt0 Ayq + Ay whichis ;

A +22 {Adg +¢ g =Ap?}
ey = s — (4.4.9) :
(7\.1 +7»2 ) {2 7\,112 +c (A'l —7»2) }

Setting again Ay =k Ay, .
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(k+12 fck-1D2+k }

e =
2 (k2+1) {fck-1)2+2k }
2k k
=(l+— )l - — ) (4.4.10)
(k2 + 1) c(k-1)2+2k

The plots of the A.R.E.'s are shown for various k's and ¢'s in figure 20 and 21.
Surprisingly it is found that when the hazard rates of two components are identical or

very similar the information from the system does not contribute to a reduction of the

asymptotic variance. Since A and A, are correlated it is not easy to explain this

finding analytically. However, an intuitive explanation is that when the two hazard rates
are similar the information from the system, which only contributes information on the
amount of difference between the hazard rates through the numbers of systems which
fail from each type of component failure, contributes least to the inference on the relation
between the two components in the system.

In order to check the above results for finite sample sizes, as encountered in practice,
we have investigated the ratios of the mean square errors of estimates,

MSE (7\.11) MSE (7\.11+ 7\.21)

e =— ,and e = s
that = UISE iy 2hat = THISE oot Ao
10 10+ 220

through a Monte Carlo study. The sufficient statistics for a random sample from the

above sampling scheme consist of three random deviates: one from a gamma distribution

with parameters (N, 7»1), another from a gamma distribution with parameters (N, 12),

and the other from a binomial distribution with parameters [ s, 7»1 / (7Ll+7\2) 1. 1000 sets

of sufficient statistics were generated to obtain the estimates of €}y, and €y, for each

T w5 g

e
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combination of the component sample size N=20,50,100, 500, and the sample fraction

=N/ (2N+s) = .1, .2, .3, .4 with ?\.1 =1 and ?\2 =1, 2, 10. The estimates for each

case are reported in the following table 1 for e, and table 2 for eoy, 4. From these

tables we can see generally agreement with the asymptotic results for these combinations

of moderate sample sizes. Also it is confirmed that the information from the system

sample contributes very little to the reduction of the mean square error of A + Xy

since the first line of each box(i.e. 12 = 1) in the table 2 is about 1.0.

There are several problems which may be considered in the light of the above
results. We will discuss two of these:
i) If we suppose that it costs to check the cause of system failure, when is it resonable to
check the systems?
ii) If we are allowed to check randomly some of systems how many systems should be
checked to achieve minimum variance under some constraints?
To investigate the above two problems we assume that the sample size of the system

sample is fixed at s and that the sample sizes and the unit price of testing both

components are the same. Let Py be the total remaining allowable cost after
administrative costs and the costs of collecting system life data are removed and, let Pyy
be the cost of testing a component, and let P, be the additional cost of checking a system

to determine its failure mode. Suppose these costs P, Pyj, and P, are predetermined.

e 3

Bl e e
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Table 1: Monte Carlo Estimation of the efficiency of ?»10 to 7»11 based on 1000 samples

N

20

50

100

500

Table 2: Monte Carlo Estimation of the efficiency of A j+Ay to A+, based on

20

50

100

500

— 0 — N = — D

— D e

— D = — DD b= — D =

e

56534
56225
62437

58265
.60692
.70346

.59245
59418
.69286

.63320
.61353
.68270

1.01925
97199
76529

1.04136
.94269
.80495

.1
.89377
.85409
.78360

.93494
.91066
.81203

67647
67686
76877

67777
.70019
.82000

.69637
70775
.83290

72681
69582
.81903

1000 samples

2

91940
.88025
.87069

.95313
94605
.88544

1.02397
.98356
.88264

1.03872
97442
87426

.82189
79254
.87676

76197
78153
.91630

.81654
18777
.90202

81371
.81650
.90938

3

95326
95558
.89873

.96733
97147
92727

1.03229
1.02168
.95298

1.03979
96699
93227

.90085
93825
.92083

.88336
.90748
96813

.89781
91425
95081

92221
91505
.97090

4

98167
97752
96726

98379
99287
99362

1.03585
1.01971
97951

1.04268
1.00756
96923
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The sample sizes are assumed to be reasonably large so that asymptotic variance results
hold.

We consider question (i). We see that
N¢ = P/ 2Pyj : The maximum number of each component we could test

when systems are not checked.

Let
R =P, /Py :The ratio of the costs,

Q=N./s :Theratio of the component sample size if systems are not checkedto the

system sample size.

Then
Pr=2PyN+sPc, and N=N; - Rs/2.

Our goal is to find the maximum value of R such that
V(MIN + 221, N) < V(AN * Ao,N ) (4.4.11)

where the subscripts N, N, denote the component sample sizes when the estimators are

computed.
Noting that V(A; py + A1 ) is approximated by

1 O +M2 ch-Ap2 + 040
2N +s cf ce(Ag - Kz)z +2A A9

] where ¢ = N/(2N+s), and

VoN + 7‘20,N) by (?»12 + 122) / N , we obtain the following approximate ratio

e S el e
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V(A A Q K+ 1)2 _____Q-O'SR(k 1)2 4+ 1
+ ) (k+ - +k
1N*M1, N TR
= [ ( ).
V(A A ) Q-05R k2+1 ___.Q-O'SR k-12+2k
+ - 0. + -
10,N .+ A20,N) TVES

(4.4.12)
If we let r(R, Q, k) denote the above ratio of variances, after some algebraic
manipulation we see that
rR,Qk) < 1 implies
R2(k + 1)2- R (2Qk2 +4Qk + 4k + 2Q) + {(k-1)2/ (k2+1)}4Qk > 0.  (4.4.13)
The left hand side of the inequality has positive value for small R and then a negative
value for large value of R. R must be less than 2Q to assure a positive value of N. The

smaller root of the corresponding quadratic equation is the maximum value of R for

which V(?&l IN* 7\.21 ,N) is smaller than VO"IO N+ 7\20 N) and hence determination

of the cause of system failure is advisable. That is, the maximum value of R is

1
(B - VB2 - 4Qk(k-1)2 ), where B = Qk2 + 2Qk + 2k +Q

(4.4.14)

(k + 1)2

Figure 22 shows the maximum value of R for each Q at different k's. For example,

suppose we have the idea that Q is equal to 10 computed using the predetemined values
s, P, and Pyj. We also assume that the ratio of the hazard rates is ,3 say, which might

be guessed through past experience. Then this figure tells that if the relative cost, R, is
less than 0.1 then it is recommended to check the systems. As discussed before, if the
two components have the same hazard rates it is not recommended to do it.

Considering the question (ii), we find the number of systems to be checked to

.

o
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under the given constraints. Let s” be the number of systems to be checked among the s

systems, and sety = s*/ N,. Noting that

N =N, - 05R s*, and recalling that the ratio of component sample to complete

sample size c is N/(2N+s*), we obtain the asymptotic variance of V. (L{; N+ Ap1 N) @S

1 [(k+1)2 MEc@-D2+k}

N +s" c {ek-1)2+2 }

1 fck-1)2+k}
_N-_[(k+1)2 A2 i

{ck-1)2+2k }

1 1 fck-1)2+k }
— (k+ 12 A2
N, 1-05Ry {ck-1)2+2k}

Before calculating the value of R we note the followings:
(i) Since 1 - 0.5Ry > 0, y < min(s, 2/R).

(i)c =N/(2N + s%) = [2+{y/(1-05Ry)} 711
i) [ {ck-1D2+k }/{ck-1)2+2k }1>C5.

Ignoring { (k + 1)2 4,2 } /N, term in (4.4.15) we let

1 {fck-1)2+k }
Q(Y,R,k) =

[
1-05Ry {c(k-1)2+2k}
The derivative of q with respect to y after substituting (ii) for c is,

dq q; (y)

dy (1 - 05Ry)2[(k+1)%2+y (2k-kR - 0.5k2R - 0.5R ) 1%

(4.4.15)

(4.4.16)

(4.4.17)

PR,
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where q1 (y) = y2[0.5R (k2 + 1)-k ][ 0.5R (k + 1)? - 2k ] (R/2)

+y[R(k%+1)(2k-05R (k+ 1)2)]
+[0.5k + 122+ 1) TR - kk- 1)2.
In order to minimize q (y, R, k), it is necessary to study the function q (y) in detail. Let
2%k (k - 1)2 2k 4k

d= s d= d=..______
! & + 1202 + 1) 2 &2 + 1) 3 k + 1)2

b4

and note that dy < d2 < d3.

For R in the interval (0, dy ) the coefficient of y2 assumes positive value and the

constant term of q; (y ) is negative, and the discriminant function,
D =R[2k-0.5R (k + 1)2 1 [2k2 k- 1)2 ] is positive. So the larger root of the

equation obtained by setting q (y ) to be zero is what minimizes q (y, R, k ), and

hence the asymptotic variance of ?‘,11 N + 7L21 N - Additionally it is found that this

root is less than 1/R. For R larger than d, the same steps as the above show that
q(y, R, k) is minimized aty = 0. This means that no contribution is made by checking
the system failure mode if the relative cost P, / Pyy is larger than

[2k (k-1)21/[ (k+ 1)2(k2 + 1) ]. Finally we conclude that if the relative cost is

smaller than the above ratio the optimal number of systems to be checked is,

V2k(k-1) &2+ 1)

(k-05R(k2+1))VR(2k-05R(k+1)2)  k-05RKZ+1)
Figure 23 shows the optimal fractiony = S*/Nc at the allowable R's fork = 2, 3, and 5.

N[

c 1.(4.4.18)

For example, suppose we have the idea that the ratio of the hazard rates, k is equal to 5,
and that the relative cost R is equal to .1. Then this figure tells that the optimal number of

the systems to be checked is 1.5 times as much as N..

o ag
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4.5 QOther Conventional Estimators.

In section 4.3 and 4.4 we have discussed estimation schemes for the component
hazard rates A1, 7&2 as well as the problem of experimental design. Also we have studied

M.L.E.'s of the parameters o and © in section 4 and have noted that these estimators

depend only on the system failure times. In this section we describe two other estimators

of o and 0, one of which is the Method of Moment Estimators (M.M.E.). These

estimators may be used as an initial values for the iterative solution of the likelihood

equations.

Recall that the system reliability, the mean and variance of system lifetime are

Re(t) =(1 + 6t)y% :

E(T)

[(=1)01"1 if a>1,

V(T) = a/[(e~1)(a-2)02] if a> 2.

il

The M.M.E.s, found by equating the first two sample and theoretical moments,

sE9

- ; 2
Uyme = 1 + m—_ if sE9 > 2E* , and “4.5.1)
2 1
sEp - 2E12 )3 § 2 )
0 =_ ., whereE; = T, Ey =2 Ty <. (4.5.2)
mme E, E, 1 kel k 2 el k

Hui and Berger (1983) have suggested estimators in a different context. To avoid
difficulties of maximizing the loglikelihood function with two unknown parameters they

have suggested a modified method of moments estimator. From the mean of system

lifetime, we have [ (0t —1) 0] -1_g 1/ s. Solving this equation with respect to 0, and

P N
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replacing (o — 1) by o to make 0 positive we obtain® = [ E{ /s ]'1, which is used

as the true value of 0 in the likelihood function (4.3.7) so that the estimator of o is the

solution to

) s s(a+1) s Tj
- X log(1l + T;) + z = 0. (4.5.3)
i=1 E; o Eje? =1 1 + sTj/(E;'e)

It is possible that there is no finite solution to this equation. With an argument similar to

that used in ML.L.E. case it can be shown that a sufficient condition for a finite solution to
(4.3.7)is thats Ey > 2E;2%, (4.5.4)

which is the same one for M.L.E. and M.M.E. cases.

4.6 Graphical Inference

In the previous sections conventional estimating procedures for the parameters of
interest have been considered. While discussing related problems we have learned that
the existence of these estimators in the allowable parameter space depends on the data
collected. Accordingly, it is not so simple to have an estimator of the degree of
dependence induced by a random environmental factor. In this section, we discuss a
graphical approach which is helpful in visualizing the condition of existence of the
estimators and also the degree of dependence as well as in checking feasibility of the
model. Later in this section we suggest estimators based on this graphical approach.

Throughout this section we assume the same model as in the section 4.2. However we

shall handle the model as if the component hazard rates ?\.1 and ?\2 were known, based

on data from the laboratory experiment, since the estimation of 7»1 and )\2 presents little
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difficulty and has been discussed in detail in section 4.4, Thus, the model in this section

is that the lifetime, T, of a system in the operating environment has a survival function

Rg(t) =(1+08t)% (4.6.1)

The method we present in this section is based on the scaled total time on test
(STTOT) plot of Barlow and Campo (1975). They have presented a graphical approach
to failure data analysis for arbitrary distributions, using the total time on test transforms
introduced and discussed in chapter 5 and 6 of Barlow, Bartholomew, Brenner, and
Bunk(BBBB) (1972). To begin with, we review the concept of total time on test

transforms. Suppose that we have an ordered sample
0= Un, o< " <Uy n from a distribution function A (*) with the finite mean.

Then the total time on test up to the r-th failure is defined as

Vn,r = “Un,l + (n- 1)(Un,2‘Un, P+ +(n‘r+1)(Un,r'Un,r-1)

4.6.2)
and the total time on test transform is defined as
Al
TOTA(t)=I [1-A(Cu)]du, O<t<l, 4.6.3)
0
The relation ships between these two can be shown through
An'1 (r/n)
TOTp (t/n) = j [1-A,(u)]ldu
n 0
)r_: G-1
= Z(1- ) (Upj-Up i1)
i=1 0 n,j n, j-1
V.
= (4.6.4)
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where A is the emprical distribution of U's and
Ayt (u) = inf{x|A (x) <u}

Al

Note that lim TOT p (r/n) = J. (1-A(u))du = TOTy (). 4.6.5)
n->oo,1/n_.>t 0

Since TOT 5 (1) is just the mean of H, ST (t) which is the standardized total time on

TOT, (t) Vv
test, i.e.,, — — is termed scaled total time on test transform and

W i called
TOTA (1) Van

the emperical scaled total time on test (STTOT).
Let Tq, Ty, - - -, T be the system failure times collected in the operating
environment. Suppose A( t ) is the cummulative distribution function of T, that is,

At) = 1 - Rg(t)

=1-(l+6t)y%, (4.6.6)
The STTOT transform for T is computed as
1

Rg(u)du
0

-1y
Rg (u)du

STA (t)=

(o)

= 1-(1-t)o-D/o  forg > 1, (4.6.7)
where A™! (t) = g1 (-1+(1-1) -l/o ). Here we note that ST (t ) depends only on

the shape parameter o. Figure 24 shows the form of the STTOT transform for several
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values of o.. Notice that for all o, the STTOT transform is below the 45 © line (which
corresponds to exponential system life) since the hazard rate of the series system is
decreasing. Regarding the dependence structure induced by a random environmental
factor this figure tells us that the smaller the shape parameter is, the more depndence is

induced, which has also been mentioned in terms of copula in section 3.3.

Computing the total time on test, and plotting Vg /Vs,s versus 1/s forr=1,2, s,

we obtain so called the emprical STTOT plot. Since VSJN 5, converges to STA(t)

with probability one and uniformly in 0 <t <1 as s —> ee and r/s —> t, the STTOT plot
can be compared to the figure 24 for a graphical check of the model's validity.

We can also obtain crude estimators of the shape parameter & comparing the

empirical and theoretical STTOT plots. Let C; = log(1-i/s) and D; = log(1- Vs,i / Vs,s ),

i=1,..5-1. From ST(t)=1(1-t)® 1/ we have log (1- STA(®) = (1 - l/oY)

log (1 - t) so that

D; = (1-1/0)C;, i=1,..,s-1, (4.6.8)
First we consider , as a reasonable estimator of o , the value of o which minimizes the
squared distances between D; and (1 - 1/a) C;. That is,

s-1
Z ;- (1-1/0) ;2.
1=

¥ 2
The resulting estimator is oyg = e R e 4.6.9)
XC4-X C; b,

PR

o
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which is in the parameter space if 3, Ci2 > 2% C; D;. A better estimator should be

obtained by weighting the D;'s differently since fori < j, Var (D;) < Var (Dj). The
variance of D, depends on the unknown parameter o so we weight by the variance of D;
computed under an assumed exponential distribution. If Ty, T, - *, Ty are assumed to
follow an exponential distribution, then [ 1 ‘Vs,r IAY 5,8 ] follows a beta distribution with
parameters s-r and r for r = 1,2, ...,s-1.Noting that the r-th order statistics of a sample of
size s-1 from a uniform distribution follows a beta distribution with parameters r and s-r
one can show that - D; is the i-th order statistics of a sample of size s-1 from a standard

exponential distribution. Hence the variance of Dj in that case is

i 1
Vi=z

_ ——  i=1,..,51 (4.6.10)
=1 (D)

so that the weighted least squares estimator of ¢ is

2 Ci2/V i . 5
Owls = > ifY Ciolv; > h CDy/V;. 4.6.11)
LI
V: \'Z

1 1

Once we have obtained an estimator of o by either of the two least squares estimators,

we substitute this value into (4.3.7) and solve this equation numerically for els or ewls‘

We note that the unique root of the equation lies between 1/(c Ts,s) and 1/(a Ts,l)-

Due to the computational complexity of these estimators the analytic properties of
these estimators are not available so a small scale Monte Carlo study was performed in
the next section to compare these estimators with the other three estimators, M.L.E. ,

and M.MLE,, and one suggested by Hui and Berger.

W s
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4.7 Monte Carlo Study

In this section we compare the estimators of the shape parameter o and the scale

parameter 6 through a small scale Monte Carlo study. Before describing the main study
we present graphically some data simulated from our model which do or do not meet the
sufficient condition for reasonable parameter values based on scaled total time on test
plots.

Figures 25 and 26 are scaled total time on test plots from two simulated samples of
size 30 from the model Ry(t) = (1 + 0t)"* with o =3, @ = 1. Looking at figure 25, we

see that the estimated scaled total on test doesn't look too different from the 45° so that

an exponential model might not be unreasonable. For this data set only the weighted

least squares estimator exists and it yields Oy 1 = 45.33 and 8,15 = -0567. For the data

in figure 26 all estimates exist, and we have

Ople =93 1o =2.98

Omme =491 o . =4.86

Oper =720 0= 7.02

915 = .739 OLIS = 358

Ou1s=-970 0o =2.89

wls
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We notice that the first sample of figure 25, which satisfies the condition Ci2/Vi >3

C; D;/V; but fail to meet the condition (4.2.12) for other estimators, yields a very large

estimate of o. Since a reasonable model for T when 0 and o are not estimable is the

independent exponential series system which has system reliability very close to that of

our random effects model when o is very large, this is not a problem.

The main comparisions of interest are done in terms of the bias, standard deviation

of the estimates of o and 0, and the number of samples where the reasonable estimators

exist. Also the estimators of the system reliabilty at t, = 0.1006 are compared. Random

samples of size s = 15, 30, 50, 75, or 100 were generated with 7\,1 + 7\2 =3,B=3,500

=1and o =2, 3,5. 1000 samples were generated for each combination of s and c.

The bias, standard deviation of the estimates and NS, the number of samples where the

estimator exists is reported in table 3 for o, table 4 for 0, and in table 5 for an estimator

of the system reliability obtained from (4.6.1) at tg = 0.1006. The true system reliability

at tg is .8255 when o = 2,.75 when . = 3, and .619 when o = 5. Also reported in

each table is the bias and standard deviation of the weighted least square estimators when
they are restricted to those samples where the other estimators exist.

From these tables we note that Berger's modified estimator performs very poorly.
Also the weighted least squares estimator allows for estimation of parameters in many
more samples when s is small. In general the maximum likelihood estimator

outperforms the other estimators, however, when the weighted least squares estimator is

i Dedn aeh

g s w e e

"
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Table 3: Bias and Standard Deviation (SD) of Estimators of o.

Sample Esti- o =2 o=3 o =5

Size mator NS Bias SD NS Bias SD NS Bias SD
15 mle 769 45 29 642 73 39. 522 38.7 573.
wls 852 4.8 41. 753 364  843. 665 82 53

* 766 1.3 5. 636 1.3 9. 516 -0.7 5.

Is 762 6.8 49. 653 13.1  149. 558 303 493.
mme 770 9.1 37. 643 16.8 77. 522 69.8 925.

ber 770 144 65. 643 260 114 522 112.9 150s.

30 mle 916 28 20 809 5.7 30 674 20.4 148.
wls 953 4.7 37. 870 138 141. 752 93 68.

* 912 1.1 3. 804 1.8 6. 660 3.2 29.

Is 877 64 52. 768 11°.9  100. 669 13.7 109.
mme 916 6.1 32. 809 9.9 104 674 31.7 202.

ber 916 100 52. 809 17.7  68. 674 56.3 347.

50 mle 979 58 114 916 3.6 18. 801 7.6 39.
wls 981 17 10 935 69  65. 850 9.0 97.

* 976 1.0 3. 912 29 29, 787 2.0 10.

Is 956 4.0 16. 864 64  33. 756 134  88.
mme 979 85 131 916 66  2S. 801 114 52.

ber 979 154 241. 916 125 42. 801 234 91

75 mle 996 0.9 4. 963 2.5 14. 893 12.8 139.
wls 998 1.0 5. 977 2.8 17. 915 80 9%4.

* 996 1.0 5. 958 13 5. 878 29 16.

Is 974 24 12 925 11.6 144. 823 6.6 22.
mme 996 2.2 4. 963 4.7 24. 893 153 122.

ber 996 4.5 8. 963 9.6  38. 893 32.6 260

100 mle 999 05 3. 978 1.7 7. 892 95 84.
wls 1000 1.7  35. 9289 2.1 12. 913 19.6 307.

* 999 0.6 2. 978 1.3 5. 879 13.7 273.

Is 989 1.5 9. 956 3.7 19. 835 11.0 8l.
mme 999 1.7 5. 978 3.0 9. 892 13.0 120

ber 999 37 8. 978 7.2 15. 892 27.1 203.

"' represents the weighted least squares estimator restricted to those samples where all
estimators exist.
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Sample Esti- o =2 =3 o =5

Size mator NS Bias SD NS Bias SD NS Bias SD
15 mle 769 0356 1.702 642 0.691 1900 522 1.352 3.109
wls 852 -.102 0.742 753 0210 1.049 665 0.715 1.609

* 766 -.027 0.025 636 0390 1.040 516 1.084 1.599

Is 782 -192 0729 653 0.119 1.031 558 0.578 1.536
mme 770 -.683 0.205 643 -513 0.348 522 -238 0.601

ber 770 -.803 0.122 643 -705 0.203 522 -546 0.348

30 mle 916 0.112 0919 809 0.175 1.049 674 0.558 1.609
wls 953 -.135 0.580 870 0.000 0.757 752 0.366 1.118

* 912 -100 0.567 804 0.074 0.740 660 0.523 1.104

Is 877 -254 058 769 -096 0.745 669 0.180 1.026
mme 916 -623 0.192 809 -469 0.338 674 -.199 0.576

ber 916 -.798 0.095 809 -725 0.160 674 -584 0.282

50 mle 979 0.016 0.648 916 0.075 0.766 801 0.256 1.559
wls 989 -.126 0492 935 -012 0.618 850 0.184 0.869

* 976 -.115 0.486 912 0.011 0.609 787 0.267 0.850

Is 956 -263 0.514 864 -.112 0.663 756 0.105 0.863
mme 979 -575 0.184 916 -404 0333 801 -.193 0.541

ber 979 -.792 0.079 916 -.718 0.135 801 -615 0.232

75 mle 996 -.025 0.522 963 0.030 0.624 893 0.128 0.817
wls 998 -.125 0.432 977 -027 0555 915 0.112 0.728

* 996 -.124 0431 958 -010 0.546 878 0.153 0.715

Is 974 -247 0.275 925 -.144 0.603 827 0.014 0.747
mme 996 -541 0.174 963 -375 0.322 893 -.189 0.535

ber 996 -.790 0.065 963 -.717 0.120 893 -628 0.210

100 mle 999 -019 0437 978 -.028 0.515 892 0.033 0.683
wls 1000 -.101 0.381 989 -075 0.472 913 0.020 0.628

* 999 -.100 0.401 978 -055 0.465 879 0.055 0.615

Is 989 -216 0423 956 -.165 0.511 835 -064 0.666

mme 999 -508 0.153 978 -345 0.297 892 -206 0.494

ber 999 -785 0.052 978 -716 0.104 892 -644 0.185

"' represents the weighted least squares estimator restricted to those samples where all

estimators exist.
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Table 5: Bias and Standard Deviation (SD) of Estimators of System Reliability at

t=.1006
Sample Esti- o=2 a=3 o =5
Size mator NS Bias SD NS Bias SD NS Bias SD

15 mle 769 -012 .0647 642 -018 .0815 522 -029 .1011
wls 852 -.004 .0586 753 -010 .0767 665 -.024 .0967

# 766 -.006 .0577 636 -015 .0764 516 -.030 .0968

Is 762 0.002 .0588 653 -006 .0748 558 -.020 .0977
mme 770 0.037 .0503 643 0.031 .0661 522 0.012 .0926

769 0.064 .0463 643 0.067 .0616 522 0.054 .0921

30 mle 916 -.005 .0473 809 -007 .0577 674 -.022 .0691
wls 953 0.002 .0424 870 -.007 .0552 752 -.020 .0674

* 912 0.001 .0426 804 -006 .0544 660 -.027 .0665

Is 877 0.010 .0434 769 0.002 .0551 669 -.013 .0651
mme 916 0.037 .0357 809 0.024 .0490 674 0.001 .0613

ber 916 0.069 .0335 809 0.062 .0472 674 0.045 .0608

50 mle 979 -001 .0372 916 -003 .0429 801 -.006 .0545
wls 989 0.003 .0349 935 -001 .0412 850 -.006 .0530

* 976 0.003 .0348 912 -002 .0411 787 -.008 .0528

Is 956 0.010 .0359 864 0.005 .0431 756 -.002 .0532
mme 979 0.035 .0300 916 0.022 .0366 801 0.010 .0494

ber 979 0.071 .0233 916 0.066 .0340 801 0.055 .0485

75 mle 996 0.000 .0290 963 -001 .0372 893 -.005 .0442
wls 998 0.004 .0274 977 0.000 .0356 915 -.005 .0436

¥ 996 0.003 .0274 958 0.000 .0357 878 -.006 .0430

Is 974 0.010 .0292 925 0.007 .0374 827 -.002 .0431
mme 996 0.034 .0244 963 0.021 .0327 893 0.007 .0406

ber 996 0.072 .0238 963 0.067 .0313 893 0.051 .0380

100 mle 999 0.001 .0243 978 0.001 .0309 892 -002 .0375
wls 1000 0.004 .0234 984 0.002 .0299 913 -.001 .0392

* 999 (0.004 .0233 978 0.002 .0299 879 -.002 .0390

1s 989 0.010 .0248 956 0.008 .0311 835 0.003 .0380
mme 999 0.034 .0223 978 0.019 .0267 892 0.008 .0353

ber 999 0.075 .0216 978 0.067 .0261 892 0.052 .0345

" represents the weighted least squares estimator restricted to those samples where all
estimators exist.

e
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restricted to those samples where the maximum likelihood estimator exists, this estimator

performs much better when s is small. The somewhat better performance of the M.L.E

in terms of bias is deceptive since some of the estimates of o are less than one, which
implies that the mean system reliability is infinite. Also the weighted least squares

estimator of system reliability seems to outperform the other estimators of the system

reliability in spite of its relatively poor performance as an estimator of 8. Our
recommendation is to use the weighted least squares estimator since it more often

provides estimators of the relevant parameters and is somewhat easier to compute.

4.8 Test for Dependence Induced by a Common Environmental Factor
In this section we discuss the problem of determining whether there is a dependence

structure induced by an environmental factor. In our setting, we observe only the system

failure times T; with the assumption that the survival function of T} is

Rq(t) = (1+61) -O, As pointed out in section 4.6, the graphical presentation as well as

the copula indicates that the shape parameter, o only affects the dependence structure.

This idea is supplemented by looking at the correlation computed in section 3.4.
Accordingly we will call the quantity 'y= 1/0. a measure of dependence induced by the
environmental factor. Since our model assumes finite mean system lifetime, that is, o is
assumed to be greater than 1, y varies from 0 to 1. If there is no dependence induced v is

equal to 0 and the more dependence is induced the closer to 1 the value of vy is.

One possible statistics is constructed from the weighted least square estimator,

[ES R
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2CiPV; if ¥ C:2/V: > ¥ C:D:/V
- 1 s 5> 1) .,
Ohwls Ci2 CiDi 1V i~ Vi
E— -2 )
Vi Vi

From this statistic we consider

Q = (4.8.1)

5 &
vV

i
Under the null hypothesis of independence, - D; follows the distribution of the i-th order
statistics among the sample of size s-1 from an exponential distribution so that Qg is just

a linear combination of order statistics from exponentials. Hence Qg has the same

distribution as a linear combination, Qg(z), of identically independent exponential

random variables since the i-th exponential order statistics can be expressed as a linear

function of s-1 independent standard exponentials. Correspondingly we have

s-1
Q@) = _El P (4.8.2)
1=

where Z; is a random variable following the standard exponential distribution,

and p; = - L . (4.8.3)

The exact distribution of Qg(z) is found in David (1981) as the mixture of exponentials,

e

e
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fom® =% 1 exp(t) (4.8.4)
t) = I —_), 0.
Qe ® =2 e (-

pis-z

where wp = T )
hzi Ph Pi

On the other hand we can note that if ¥ goes to 1, Qg tends to have smaller value. Table 6
shows the critical values of the standardized Qg for different sample sizes with the type

one error probability a = .01, .05, .1. Since the distribution under alternatives is hard to
obtain a simulation study has been constructed to study the tests power which is

discussed later.

Table 6: _Critical Values of the StandardizedStatistics of QS.

Sample Size 1% 5% 10 %
s=15 -1.8880  -1.4540  -1.1968
s=20 -1.9382  -1.4815 -1.2106
§=25 -1.9796  -1.5000  -1.2194

s =30 -2.0010 -1.5140 -1.2260
s=35 -2.0334 -1.5243 -1.2307
s =40 -2.0526 -1.5322 -1.2345
s§=50 -2.0816 -1.5453 -1.2404

We have tried to prove the asymptotic normaity of the test statistic Qg analytically in
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vain. However we are still very sure of its asymptotic normality with the following

arguments. Consider the characteristic function @ (t) of

2piZ; - B
1% where Hg=Xp;, and oy = VX pjz.
Os
. ZDiZi- Ky
¢s()=E[exp{it(————) 1]
Cs
s-1 ) pj . Mg
=TI E(exp(lt_._Zj)'exp(-lt_-)
j=1 [ o
s-1 p_] Hg
=TI (1-it—)"1 exp(-it ) (4.8.5)
j=1 Cg Oy

Taking the log on the both sides we obtain

sl Pj B
log g (1) = - X log (1 -it—) -it—> . (4.8.6)
J=1 Os Os
Noting that
s-1 D; s-1 p; t2
Z log (1 -it_J..)= ity 3 + ——+pg (t), where
=1 o j=1 o 2
Zp3 3 max pj }ilpj2 t3 max p;j 3
lps ®) < < < t (4.8.7)

3 2
Oy 3o Oy 3o

we have (g(t) ——> exp(- £2/2) if and only if [ max p;/ o] > 0.

From the above condition it suffices to show that [ max Pj /NZ pj2 ] ——> 0. However

pj's are so complicated that the convergence has not been proved analytically. Instead of

doing this we try to show the performance of pj's and [ max Pj INZ pjz 1 by

sy



computation for various s's. First it seems that p; >py >* - * > pg_1, that is,

max p; =pj. Second it seems that

pp?  p3? Ps.

1

T g ey T

P12  pi? P1

2

2

+ 1 diverges to infinite faster than log s. In table 7 the

divergence rate is compared with that of log s.

Table 7: Divergence Rate of \Z pj2 / max Pj

200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500

\/_}.:.?jzlmax Pj
9.54030
10.01179
10.46207
10.89376
11.30900
11.70953
12.09682
12.47209
12.83640
13.19065
13.53564
13.87205
14.20050
14.52152
14.83561
15.14317

logs

5.29832
5.39363
5.48064
5.56068
5.63479
5.70378
5.76832
5.82895
5.88610
5.94017
5.99146
6.04025
6.08677
6.13123
6.17379
6.21461
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A second test is based on the cummlative total time on test statistic, which has been

introduced by (BBBB). The cummulative total time on test statistics (CTTS) which they

have defined is
S VS r
Bg = x ’ where V ;. is the total time on test defined in section 4.7.
r=1V ’
S,S

They have shown, in the chapter 6 of their book, that if the underlying distribution A has
the finite 2nd moment then

o? (A)
2

4
12 11z 3 _x(A)] > N (0,

Vss 1)

) (4.8.9)

where k(A) = I[I)ST A (Wdu, and B = f0°§2 dA(x),
and 62(A) = 2J I {2[1-A@)]-kA)}{2[1-AMV)]-k(A)} AQ)[1- A(v)]dudv.
u<v
They have suggested using this statistic for the problem of testing the null
hypothesis that the underlying distribution A is exponential versus the alternative that A
has increasing hazard rate or decreasing hazard rate. Since the dependence structure of

our setting causes the system hazard rate to be decreasing, it might be reasonable to use

By as a test statistic. Some computation leads us to

o -1
k(A) =
200 - 1
o2(A) a-1, 1 a-l a-1 a-1 -1
=2(—)[— + — - 2( )]+ ( )[3 -2 ]
p2 20-1 2 a-2 30-2 20— 1 3002
o-1
-4 ).

3002
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We note that under the null hypothesis, Y= 0, k (A) = 1/2, and [ 02(A) / uz] =1/12 so

that the exact test statistics Ry is
Vs,r 1

S
2H)l21sly 22 ., (4.8.10)
r=1 Vs,s 2

which has smaller values as y goes to 1.

A third test statistic was introduced by Klefsjo (1983). He has used the property of

convexity of the STTOT, ST 5 (t) and obtained the statistic,

s (s-j+ 1) (Tg;-Tg: 1)
K= g Sd7 sl (4.8.11)
j=1 Vs,s
{G6-1D3j-3@6+1)212 +26+1)j3}
where aj = , which has smaller values as
6
Y goes to 1.

Using the asymptotic properties of linear combination of order statistics he has shown
that under the null hypothesis, the test statistic K is asymptotically normally distributed.
In addition to that, he has constructed a list of critical values from the exact distribution
of K under the null hypothesis.

We have, by simulation, estimated the powers for the various shape parameter
values. Sample sizes 20 and 50 have been studied.In figure 27 and figure 28 the

estimated power curves for the three tests mentioned above are obtained by the following

scheme. The total number of replication for each investigated y-value, measure of

dependence, which increases from .00 to .75 is 1000. The significance levels are equal

to .05. The three powers at each y-value have been estimated from the same set of data.

7 s s



0.60 0.70 0.80

0.50

=

OWE
0.

D0.30

.

0.20

. 00 0,10

.00

0.15 0. 30 0.4 0. 60

5
DEPENDENT

FIGURE 27

ESTIMRTED POWERS OF TESTS FOR
INDEPENDENCE FOR S = 20

0.75

97

e a w et wr e e w e

N



P, 00

0.15 0. 30 D. 45 0. 60 0.75
DEPENDENCE PARAMETER

FIGURE 28

ESTIMRTED POWERS OF TESTS FOR
INDEPENDENCE FOR S = 50

98

o

B

g



99

Both figures indicate that the two test statistics R¢ and Qg perform better than the
other test statistics K in terms of the power at all positive 7. Since the statistics Rg, and

Qg seem to have almost the same power at most ¥ levels we have tested the equality of

the two statistics with respect to their powers. Let M; denote the i-th sample and let IT be
thetotal number of replication. We define the rejection rules of both tests correspondingto

the statistics R¢ and Qg, R(M;) and Q(M), as R(M;) = 1 if rejected and 0 if not rejected,

and Q(M;) = 1 if rejected and 0 if not rejected. Thus we obtain estimators P‘R and 15Q of

the powers pR and PQ as
IT RM)) - IT QM)
PR=2 Y, and Pq= ): v (4.8.12)

i=1 IT IT
In order to test Hy: pg = pQ versus Hyi:pr# pQ, we have used the usual Z - statistics,

PR - PQ

7RO = (4.8.13)
Q" V(rR - Q)

Noting that R(M;) and Q(M;) are not independent we need to compute an estimator of

COV (pR, PQ) to obtain V(pR - pQ)-

1
E (pR'PQ) = 2 F [EIR(MI) 3 QMp]
= [IT'E{ RM;) QM) } + IT (IT - 1) ERM)) EQQM)) 1/ IT2.
(4.8.14)
IT

Letting COM = X R(M;) Q(M;) be denote an estimator of IT-E{ R(M;) Q(M1)}, we take
i=1

i

P
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1 COM

—_ (— - p'R'p'Q) as an estimator of COV( pg, p'Q). Thus we obtain an estimator
1T IT

of V(pR - PQ) as 2 p'q + p - COMAT /1T, (48.15)
wherep:(pli+p'Q)/2andq= 1-p.

The powers and the Z - values at some 7y levels for sample sizes 20, 50 are reported in

the table 8. Our investigation leads us to the conclusion that the test statistics Qg, which
has been developed only for this specific model, is not better than Rg which can detect

more general alternatives than Q. However, the test statistics Q, is simple to obtain
while we are making a graphical inference on the shape parameter and is guaranteed to

keep power as high as R,

4.9 Future Study

In this thesis, we have considered a dependent reliability model which is induced
through a random environment under which the systems are operated. We have
discussed the properties of the model and its infernce procedures only for a two
component system in terms of engineering application.

Since the dependent structure infroduced by the model is expected to be found not
only in an engineering setting but also in biological, medical and demographic settings
as well, we plan a thorough investigation of this structure with the experts in each special
field. Also a natural generalization of the model can be to a multi- component system
rather than only a two component system. We are currently investigating how to apply
this model to accelerated life tests. Accelerated life tests are often used to obtain
information on item's performance under normal operating conditions from the test data
collected under condition more severe than usually encountered in normal usage. This

model is suited to explaining the different environmental effects that occur at different
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Table 8: Comparision of Powers of Test Statistics, Qg and R

20

50

10
15
20
25
30
35
40
45
S0
55
.60
.65
70
75
.05
10
A5
20
25
.30
35
40
45
50
55
.60
.65
.70
15

PQ
.07550
.12400
.16800
22150
.27050
33750
.39050
43800
51150
.54300
.60200
.66145
.69150
72300
.76800
.10400
.17000
.26300
.35700
50200
.58400
.69100
.76000
.80100
.87100
.89700
.92600
95100
.96900
.96800

PR
.07550
12350
.16450
.22000
27050
.34000
.39000
44200
.50850
54900
.60700
.66300
.70000
.72900
77300
.10100
.17500
.25900
.35300
49500
.58000
.68400
.75800
.79800
.86800
.89800
92500
.95300
.96600
.96900

| Z |- value

0.00000
0.10310
0.17636
0.23079
0.28043
0.87040
0.40141
0.44909
0.52268
0.55424
0.62295
0.67208
0.70183
0.73301
0.77744
0.71573
0.18188
0.27692
0.37215
0.51781
0.59959
0.70561
0.77351
0.81363
0.88160
0.90661
0.93428
0.95783
0.97448
0.97357
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stress levels.
With regards to inference, we first plan to extend the results to censored data. Since
the inference we have done strongly depends on the parametric distribution we feel that
robustness studies of the environmental factor distribution may be appropriate for the

next stage of this problem.
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