
INFORMATION TO USERS

This reproduction was made from a copy of a manuscript sent to us for publication
and microfilming. While the m ost advanced technology has been used to pho
tograph and reproduce this manuscript, the quality of the reproduction is heavily
dependent upon the quality of the material submitted. Pages in any manuscript
may have indistinct print. In all cases the best available copy has been filmed.

The following explanation of techniques is provided to help clarify notations which
may appear on this reproduction.

1. Manuscripts may not always be complete. When it is not possible to obtain
missing pages, a note appears to indicate this.

2. When copyrighted materials are removed from the manuscript, a note ap
pears to indicate this.

3. Oversize materials (maps, drawings, and charts) are photographed by sec
tioning the original, beginning at the upper left hand comer and continu
ing from left to right in equal sections with small overlaps. Each oversize
page is also filmed as one exposure and is available, for an additional
charge, as a standard 35mm slide or in black and white paper format.*

4. Most photographs reproduce acceptably on positive microfilm or micro
fiche but lack clarity on xerographic copies made from the microfilm. For
an additional charge, all photographs are available in black and white
standard 35mm slide format.*

*For more information about black and white slides or enlarged paper reproductions,
please contact the Dissertations Customer Services Department.

Dissertation
information Service

University Microfilms International
A Bell & Howell Information Company
300 N. Zeeb Road, Ann Arbor, Michigan 48106

8625198

Chiou, Ian Yiing-Shyang

DESIGN AND ANALYSIS OF A VOICE/DATA INTERNET TRANSPORT
SYSTEM

The Ohio State University Ph.D. 1986

University
Microfilms

International 300 N. Zeeb Road, Ann Arbor, Ml 48106

Copyright 1986

by
Chiou, Ian Yiing-Shyang

All Rights Reserved

DESIGN AND ANALYSIS OF A V O IC E/D A TA

IN T ER N ET T R A N SP O R T SYSTEM

DISSERTATION

Presented in Partia l Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the Graduate

School of The Ohio State University

By

Ian Yiing-Shyang Chiou, B.S.E.E., M.S.

The Ohio State University

1986

Reading Committee:

Prof. Ming T. Liu

Prof. Jerome Rothstein

Prof. Neelam Soundararajan

Approved By

Adviser
D epartm ent of Computer
and Information Science

Copyright by

Ian Yiing-Shyang Chiou

1986

D ed icated To M y P arents

A C K N O W L E D G M E N T S

I would like to express my sincere appreciation to my advisor Prof.
Ming T. Liu for his continuous guidance, advice and encouragement
during the course of my research. His dedication, scholarship and wis
dom have always made me feel humble in the pursuit of my future
career.

I am also grateful to Prof. Jerome Rothstein and Prof. Neelam
Soundararajan for serving on my reading committee and for their many
helpful suggestions and comments on my research.

Thanks also go to the members of our Advanced Communication
Systems research group. In particular, I would like to single out Nien-
Chen Liu for his many helpful discussions and friendship.

I have benefitted from interactions with my colleagues at the
IRCC/CIS Computing Laboratory. I am especially grateful to Delbert
Waggoner, Dennis Slaggy and Frank N orthrup for their support, con
sideration and friendship. It has been a pleasure to work with them.

Finally, no dissertation could ever be completed without the sup
port of one’s loved ones. Above all, I thank my wife, Mei-Mei, and my
son, Albert, for their patience, understanding and endurance during my
tenure at OSU. They have always been the source of the inspiration
tha t moves me forward.

The work reported herein was supported in part by U. S. Army
CECOM, Ft. M onmouth, NJ, under Contract No. DAAB07-83-K-K542.
The views, opinions a n d /o r findings contained in this paper are those of
the author and should not be construed as an official D epartm ent of the
Army position, policy or decision.

V IT A

Sept.

1981

1983 -

.4, 1954 Born, Tainan, Taiwan, Republic of China

1977 B.S., D epartm ent of Electrical Engineering
National Taiwan University,
Taipei, Taiwan, Republic of China

1979 G raduate Teaching Assistant,
Dept, of Computer and Information Science
The Ohio State University,
Columbus, Ohio

1980 G raduate Research Associate,
Dept, of Physiology
The Ohio State University,
Columbus, Ohio

1981 M.S., Dept, of Computer and Information Science
The Ohio State University,
Columbus, Ohio

— 1983 System Programmer,
AMF Logic Sciences, Inc., Houston, Texas &:
Chemical Abstracts Service, Columbus, Ohio

Present G raduate Research Associate,
IR C C/CIS Computing Laboratory
The Ohio State University,
Columbus, Ohio

P U B L IC A T IO N S

“ CAM PUSNET: A Gateway-Network Approach To Interconnecting
Cam pus-W ide In ternet,”
in Proc. of IE E E INFOCOM85 , pp. 168-177, Washington DC,
March, 1985. Co-author: Ming T. Liu

“ G A TENET: A V oice/D ata Internet T ransport System.”
in Proc. of IE E E INFOCOM86 , pp. 39-46, Miami, Florida,
April, 1986. Co-author: Ming T. Liu

FIE L D S OF S T U D Y

• Major Field

• Minor Field

• Minor Field

Computer Architectures and Organizations

Theory of Autom ata and Formal Languages

Programming Languages

TABLE OF CONTEXTS

DEDICATION"
ACKNOW LEDGMENTS
VITA
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES

1. INTRODUCTION
1.1 Characteristics of Campus-wide Internet
1.2 Motivation, Objectives and Contributions of Research
1.3 Organization of Dissertation

2. BACKGROUND
2.1 Basic Architectures of Local Area Networks

2.1.1 Topology
2.1.2 Transmission Media
2.1.3 Transmission Control Mechanisms

2.2 Network Interconnections
2.3 Protocol Hierarchies and Standardization

2.3.1 Protocol Hierarchies
2.3.2 Standardization of LAN Protocols

2.4 Packet Voice Communication
2.4.1 Functionality of Packet Voice Terminal
2.4.2 Vocoding Techniques
2.4.3 Protocol Functions for Voice Communication

2.5 Summary
3. GATENET: AN INTERNET TRA N SPO RT SYSTEM

3.1 Internetworking Approaches
3.1.1 The Conventional Gateway Approach
3.1.2 G A TEN ET Approach

ii
iii
iv
vi
ix
x

1
3
6
9

1L
12
14
15
16
18
22
24
26
30
31
33
34
35

36

37
3 *
40

vi

3.2 G A TE N E T Architectures 44
3.2.1 Topology of G A TE N E T 45
3.2.2 Addressing 47
3.2.3 Routing 51

3.3 Features of G A TE N E T 54
3.3.1 Advantages 54
3.3.2 Disadvantages 56

3.4 Summary 57
4. IN TERN ET COMM UNICATION PROTOCOLS 58

4.1 Interconnecting Incompatible LANs 59
4.2 G A TE N E T Communication Protocols 61

4.2.1 G A TE N E T D ata T ransport Protocol (DTP) 62
4.2.1.1 D TP For Data Packets 62
4.2.1.2 D TP For Control Packets 63

4.2.2 G A TEN ET Voice Transport Protocol (VTP) 64
4.2.3 G A TE N E T Flow and Congestion Control Protocols 67

4.2.3.1 Hop Level Flow Control 71
4.2.3.2 Entry-Gateway-To-Exit-Gateway (EGTEG) Level 73

Flow Control
4.2.4 Enhanced Protocol Support at Gateways 75

4.2.4.1 End-to-End Acknowledgment 78
4.2.4.2 Packetization and Reassembly Services 81

4.3 Summary 82
5. RELIABILITY OF IN TERN ET TR A N SPO R T SYSTEM 83

5.1 Buddy Link Reliability Scheme 84
5.2 Case Studies of Buddy Link Scheme 90
5.3 Summary 95

6. PE RFO RM A N C E EVALUATIONS OF G A TENET 96
6.1 Motivations 97
6.2 A Simulation Model of G A TENET 99
6.3 Simulation Assumptions and Parameters 100
6.4 Performance Measurements 106
6.5 Simulation Results 107

6.5.1 The Effect of Increasing the Offered Load 108
6.5.1.1 Normal conditions 108
6.5.1.2 Faulty conditions 115

6.5.2 The Effect of Increasing the Size of the Buffer Pool 119
6.5.3 The Effect of Increasing the Threshold Value 131
6.5.4 The Effect of Increasing the Window Size 133
6.5.5 The Effect of Increasing Incoming Data Limit 136

vii

6.6 Summary 145
7. SUMMARY AND CONCLUSIONS 146

7.1 Summary 146
7.2 Areas for future research 149
7.3 Conclusions 151

APPENDIX A. GATESIM: A N ETW O RK COMMUNICATION 153
SIMULATOR

REFERENCES 218

viii

T able 1.

T able 2.

LIST OF TABLES

Standard deviation of voice transit delay under 112
various offered load (normal conditions)
G A TE N E T control transit delay vs the offered load 113
(normal conditions)

ix

LIST OF FIGURES

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.

Figure 14.
Figure 15.
Figure 16.

Figure 17.
Figure 18.
Figure 19.
Figure 20.

Figure 21.

Figure 22.

Figure 23.

Figure 24.

Implementation of Gateway 20
Layers, interfaces and protocols 23
IEEE 802 Project [23] 28
Functionality of packet voice terminal [31] 32
The conventional gateway approach 38
Internet Reorganization 41
G A TE N E T internetworking approach 42
Topology of G A TENET 46
Example of G A TENET addressing scheme 50

Routing tables of G A TENET 52
T hroughput vs Flow Control [11] 68
The functionality of a gateway 76
Communication between LANs with different 80
end-to-end acknowledgment schemes
Buddy gateways, buddy link and buddy loop 86
Example of buddy link scheme 92
Sub-buddy routing tables (under normal 93
conditions)
Simulation model of GATENET 101
Simulation model of a gateway 102
Distribution of da ta packet length 103
G A TE N E T throughput vs the offered load 109
(normal conditions)
G A T E N E T voice transit delay vs the offered load 111
(normal conditions)
G A T E N E T da ta transit delay vs the offered load 114
(normal conditions)
G A TE N E T transit da ta blocking vs the offered 116
load (normal conditions)
G A TE N E T incoming da ta blocking vs the offered 117
load (normal conditions)

x

118

120

121

122

123

124

125

127
128

129

130

132

134

135

137
138

139
140

141
143

144

25. G A TEN ET incoming call blocking vs the offered
load (normal conditions)

26. G A TEN ET throughput vs the offered load (faulty
conditions)

27. G A TENET voice transit delay vs the offered load
(faulty conditions)

28. G A TENET da ta transit delay vs the offered load
(faulty conditions)

29. G A TENET incoming d a ta blocking vs the offered
load (faulty conditions)

30. G A TENET incoming call blocking vs the offered
load (faulty conditions

31. G A TEN ET transit da ta blocking vs the offered
load (faulty conditions)

32. G A TEN ET throughput vs size of the buffer pool
33. G A TEN ET da ta transit delay vs size of the

buffer pool
34. G A TEN ET transit data blocking vs size of the

buffer pool
35. G A TEN ET incoming d a ta blocking vs size of the

buffer pool
36. G A TE N E T throughput vs the threshold value of

input buffer limit
37. G A TE N E T transit da ta delay vs the threshold

value of input buffer limit
38. G A TEN ET transit da ta blocking vs the threshold

value of input buffer limit
39. G A TE N E T throughput vs the window size
40. G A TE N E T transit da ta blocking vs the window

size
41. G A TEN ET data transit delay vs the window size
42. G A TE N E T incoming da ta blocking vs the

window size
43. G A TE N E T throughput vs incoming da ta limit
44. G A TE N E T da ta transit delay vs incoming data

limit
45. G A TEN ET transit da ta blocking vs incoming

d a ta limit

xi

CHAPTER I
INTRODUCTION

Due to rapid advances in computing and communications

technology and its potential role in the areas of office automation and

distributed processing, computer networking has drawn considerable

attention over the past decade. As more and more computer networks

are installed in government agencies, universities, factories, corporations

and many other areas, the desirability of interconnecting computer

networks to obtain more versatile and extensive network services will

become even more critical.

While at present the technology of constructing individual networks

is well understood, the problems associated with network interconnections

are just beginning to receive attention. According to the characteristics

of the networks involved, network interconnection can be classified into

three types:

1. local area network (LAN) to long haul network

communications;

2

2. long haul network to long haul network communications; and

3. local area network to local area network communications.

For type (l) network communications, CCITT (International

Telegraph and Telephone Consultative Committee) recommendation X.25

has been adopted as the international s tandard interface for individual

node to packet-mode Public D ata Networks (PDNs). Recommendation

X.25 specifies the interface between the custom er’s equipment (called

DTE - da ta terminal equipment) and the network equipment (called

DCE - da ta circuit-terminating equipment). A virtual circuit approach

is implied in Recommendation X.25.

For type (2) network communications, T C P / I P of DoD DARPA is

one of the most popular internet protocols accepted in user communities.

The IP (Internet Protocol) is a da tagram protocol designed to transmit

blocks of da ta from a source to a destination. The IP does not provide

a reliable communication facility and thus has no provision for flow

control and error control. The TC P (Transmission Control Protocol) is

a transport protocol built on top of the IP and uses end-to-end

mechanisms (e.g., flow control, positive acknowledgments with timeout

and retransmission, sequence numbers, etc.) to ensure reliable sequenced

da ta delivery over a logical connection. For networks which are PDNs,

C CITT has adopted Recommendation X.75 to define the interface

between the PDNs. This recommendation is quite similar to

Recommendation X.25. The equipment on either side of this interface is

called a signaling terminal (STE). - The STE-STE interface is much like

the DTE-DCE interface and consists of a split gateway with each

gateway-half in a physical device controlled by each connecting PDN

[24].

For type (3) network communications, depending on the distances

between the LANs, a LAN can communicate with another LAN through

either a long haul network (which also falls into the type (1)

communications class) or some dedicated software/hardware switching

device. It is this type of network communications tha t we are

specifically addressing in this dissertation.

1.1 Characteristics o f Cam pus-wide Internet

Local area networks have been a major driving force in office

autom ation from which users at a single location can access a wide

variety of computational resources and communication services.

However, a LAN normally is restricted to a relatively small area ranging

in a distance from several hundred meters to one or two kilometers. The

num ber of nodes th a t can be a ttached to a single LAN is also limited to

an upper bound. All of these limitations severely handicap many

present-day and potential user applications.

On a typical university campus, many separate buildings are spread

over an area too wide for coverage by a single LAN, but the buildings

are not so geographically dispersed as to justify using long haul network

technology. On such a campus, there usually exist many LANs tha t are

developed over several years using different technologies to cover various

buildings. The interconnection of LANs in this environment is called a

campus-wide internet, which can be characterized by the following

properties [25, 6]:

1. Geographically, it normally spans more than a single building,

but administratively, it still belongs to one organization,

thereby allowing inter-communications to be achieved over its

own privately installed equipment without resort to a public

da ta network. This property is the most essential one because

communicating over privately installed equipment can be

much more economical than using public d a ta network

facilities (The cost difference may be a factor ranging from 10

to 100.).

2. Within this boundary, numerous nodes (e.g., computers, data

sources and d a ta sinks) must be interconnected. At the

present time, there may be fewer than a hundred nodes to be

interconnected, bu t as hardware costs keep dropping and

personal computers and workstations gain more popularity,

the num ber of nodes to be interconnected may soon reach

into hundreds or even thousands.

The first property duly justifies the economic incentive to construct

a privately owned internet within a campus-wide area, while the second

property advocates the necessity to construct such an internet to cope

with the ever-growing number of computing devices. It should be noted

tha t the term "campus-wide internet,” which will be used frequently in

the following discussions, actually stands for any internet with the above

properties. Hence, it is equally applicable to any industrial or corporate

internets which have similar organizational and geographical

characteristics.

Several approaches to constructing a campus-wide internet have

been proposed. Saltzer [25] suggests tha t under a relatively loose

administration, with no single user or user group responsible for

coordination and maintenance, source routing can be a good choice for a

campus-wide internet environment. (Under natural growth conditions,

meshed topology seems the most likely internet configuration.) Although

this approach is relatively simple and economical, it has several

limitations. First, the internet users are held responsible for making

route selection, which may become cumbersome and time-consuming as

the internet expands. Second, source routing requires a static path to

be selected before transmission; hence, a packet would be lost if there is

any faulty condition en route. Third, because a longer packet header is

needed to specify the transmission path, source routing is not suitable

for handling integrated voice/data traffic.

6

Danthine [6] recommends tha t an internet be constructed by

connecting each LAN to a backbone network through a dedicated

gateway. In this approach, a gateway is only used to mediate between

a LAN and a backbone network, thus the functionality of the gateway is

very simple. The backbone network runs throughout the whole internet

area, and broadband technology is most likely to be deployed. While

this approach can provide satisfactory integrated voice/data services, it is

definitely a very costly solution. Furtherm ore, since all the internet

traffic is routed via the backbone network, transmission control and

reliability issues must be properly addressed to prevent internet

performance degradation or service interruptions.

1.2 M otivation, O bjectives and C ontributions of Research

In network communication, the traffic bottleneck cycles between

transmission elements and switching elements. In the past several

decades, communication links have always been the bottlenecks; thus, a

great deal of research has been oriented toward optimizing the utilization

of communication links. Many sophisticated adaptive routing schemes

have been proposed to maximize the link utilization a t the cost of

increased processing time. However, due to rapid advances in

microelectronics and fiber optic systems in recent years, the situation has

changed dramatically. The scarcity of transmission bandwidths no

longer exists; however, the processing elements now become too slow to

cope with their tasks. As a consequence of this trend, the installation of

very fast and effective gateways at network interconnection points is

necessary so tha t the gateways will not become the internet traffic

bottlenecks.

Furtherm ore, because of advances in voice digitization techniques

and the potential economic benefits, interest and demand for integrated

voice and da ta services through the same communication system have

grown rapidly. Substantial research and experimental work has

dem onstrated the feasibility of LANs supporting voice/data integrated

services. Most of the work, however, has concentrated on the extent of

a LAN boundary. To make the integrated services even more valuable

and extensive, it would be highly desirable for users to be able to

receive voice/data services beyond a single LAN’s boundary.

One of the central issues involved in providing internet voice

communication is the fact tha t voice communication requires stringent

transmission delays to facilitate smooth conversations among distant

users. Unfortunately, due to the dynamics of packet switched

environments, carrying voice traffic across the boundaries of different

LANs is likely to be subject to various delay and throughput conditions

en route. Several internetwork protocols have been designed and used to

achieve internetwork communications. However, all of these existing

protocols are oriented toward da ta communications and as a consequence

do not support well for the voice traffic. Thus, a new design of

communication protocols becomes necessary in order to meet the

requirements of integrated voice and da ta communication systems.

In light of the above considerations, we feel tha t the current

network interconnection technology is both insufficient and inefficient to

serve the existing and future voice/data communication needs.

Therefore, the main objective of this research has been to design an

internet transport system so tha t satisfactory voice and data

communication services can be achieved in a cost-effective way. As a

result, a new network interconnection architecture is proposed, together

with its supporting communication protocols. Our approach, instead of

following the conventional ad hoc approaches to interconnecting LANs,

merges the roles of the backbone network and gateways into a single

unit called GATEway-NETwork (GATENET) in order to facilitate the

design of a voice/data internet transport system. As the performance

evaluations show, G A T E N E T is a feasible and effective approach to meet

the future communication needs.

1.3 O rganization of D issertation

9

This dissertation is concerned with the system design and

performance evaluations of a voice/data internet transport system within

a campus-wide environment. Each chapter addresses a distinct topic

involved in the design of such an internet transport system.

Chapter 2 serves as the basis for this research. It first discusses

various characteristics of local area networks, and then briefly describes

the various technologies involved in interconnecting local area networks.

In particular, several possible methods to implement a gateway are

explored. Next, it introduces the ISO seven-layered protocol hierarchies

and the standardization efforts in LAN protocols. Also presented are

the various features needed to support packetized voice communications.

In Chapter 3, a detailed discussion of and comparisons between the

conventional internetworking approach and the G A TEN ET approach are

presented. Further, the chapter discusses G A T E N E T ’s topology as well

as its addressing and routing schemes. Three different ways to

implement G A TENET are also discussed in addition to a summary of

the advantages and disadvantages of the G A TENET approach.

On the basis of the G A TENET hierarchical structure, Chapter 4

10

defines various communication protocols to support the internet da ta and

voice traffic. D ata T ransport Protocol (DTP) and Voice Transport

Protocol (VTP) are treated separately. Two levels of flow and congestion

control mechanisms are also introduced in order to prevent internet

performance degradation when the internet becomes overloaded. Also

discussed is the enhanced transport layer protocol support to facilitate

resolving incompatibilities among connecting LANs.

Chapter 5 is concerned with the reliability aspect of the

G A TENET design. To avoid the internet partitioning problems under

faulty conditions, a ’’buddy link” scheme is presented as a cost-effective

means to improve G A TE N E T reliability, followed by several case studies

with respect to various link failure conditions.

Chapter 6 discusses the performance evaluations of GATENET.

The GATESIM network communication simulator together with some of

the assumptions and parameters arc briefly described. Next, a thorough

simulation study with respect to GATENET delay and throughput

characteristics and the impact of flow and congestion control are

conducted and discussed.

Chapter 7 summarizes the results of this research, and directions

for future research are also suggested.

CHAPTER II
BACKGROUND

This chapter discusses various subjects related to network

interconnections and packetized voice communication. These subjects

include LAN architectures, internetworking techniques, communication

protocols and voice communication aspects.

Although many different technologies have been used in LAN

implementations, LANs in general can be classified according to three

distinct features: topologies, transmission media and transmission control

mechanisms. Section 2.1 gives a brief discussion of each of these

aspects. Depending on the characteristics of individual LANs, network

interconnections can be implemented through repeaters, bridges or

gateways. Section 2.2 describes the differences among these various

techniques. Also discussed are four distinct ways to implement a

gateway. Since protocols are the kernel of any communication systems

and due to the complexity of modern communication requirements, the

I t

12

layering approach is utilized in order to decompose complex

communication systems into a number of more manageable layer

protocols. Section 2.3 provides a brief overview of the ISO seven-layered

protocol hierarchies. It also summarizes the activities related to the

s tandardization process of LAN protocols. Several components are

needed to realize digital voice communication over packet switched

networks. Section 2.4 contains discussions for each of those components.

Finally, a sum m ary is given in Section 2.5.

2.1 Basic Architectures of Local Area Networks

Due to the deployment of different hardware technologies, LANs

and conventional long haul networks show many different characteristics

with respect to topological layout, transmission bandwidth and network

protocols. In particular, since long haul networks usually have a wide

geographical scope and since the processing time of the switching

processors is fast enough when compared to the traverse time across the

communication subnetwork, long haul networks tend to implement

complex protocols (which thus result in more processing time) to

optimize the link utilization. In contrast, local area networks, due to

their high channel bandwidths, tend to implement simple protocols to

minimize the processing time.

13

Although a number of definitions of LANs have been proposed in

the field, because of the divergent applications and design technologies, it

is difficult to determine a single definition th a t can be universally

accepted. As discussed in [26], however, a LAN generally has the

following features:

• geographically confined to a distance of up to a few miles;

• multiple services often possible on a single LAN, including

voice, da ta and video;

• high-speed transmission media normally in the range of 50

K b /s to 150 M b/s;

• some form of topological layout and access control;

• owned by a single organization.

Although most of the existing LANs are primarily used for data

communications, recent studies have demonstrated the feasibility of using

current technology to support a mixture of voice and da ta traffic. In

view of the recent advances made in microelectronics and fiber optics,

one can safely claim tha t in the near future LANs will become the core

of office automation, and integrated information services, including data,

voice, video, graphic and facsimile, will then all be available on a single

network system.

In general, the basic architectures of LANs can be classified

14

according to their topologies, transmission media and transmission

control mechanisms. These areas are briefly discussed below.

2.1.1 Topology

Topology means the interconnection strategy of a network in which

a node can communicate with other nodes of the same network.

Generally, a LAN can be constructed as one of the following topologies

[27]:

• Star topology: one node forms the center, with a separate link

to each of the remaining nodes. All traffic is directed to and

from the center node.

• Ring topology: nodes are interconnected into a closed loop,

within which each node is connected to exactly two adjacent

nodes.

• Bus topology: nodes are connected to a common channel,

through which all the nodes transmit and receive messages.

• Meshed topology: nodes are connected in an arb itrary pattern ,

and there may be multiple paths between each pair of nodes.

• Hierarchical topology: nodes are connected as a tree structure;

each node, except the root node, has a unique parent and

possibly some children.

All of these topologies have been used by various networks, and each

has its pros and cons, depending on the particular applications and

15

environments. Ring and bus topologies are most popular in commercial

systems, and many analytical and simulation performance studies over a

broad spectrum of parameters can be found in the literature.

2.1.2 Transmission Media

Transmission media are the physical connections between the source

and the destination nodes. These may differ in the characteristics of

bandwidth, geographical dispersion, connectivity, immunity to noise and

cost. The transmission media often used in local area networks include

the following [28, 21]:

• Twisted pairs: typically used for low speed transmission; but,

with properly spaced repeaters, d a ta rates of up to 10 Mbps

are achievable. Twisted pairs have long been used as a

relatively inexpensive means of da ta communication and are

most cost-effective when used in low traffic and single

building environments.

• Coaxial cables: can provide higher throughput and support a

large num ber of devices. Two transmission methods,

baseband and broadband, can be employed on a coaxial cable.

Baseband coaxial cables can provide da ta rates from one to

ten Mbps and are generally limited to a single building.

Because of their simplicity and low interfacing cost, baseband

cables have been widely used in many LAN implementations.

The bandwidth of broadband cables is somewhere between

tha t of baseband and fiber optic cables and can be in the

16

order of up to 300 Mbps. Unlike the baseband’s single da ta

path , broadband cables can have many da ta paths supporting

simultaneous transmissions of data , voice and video.

Broadband technology is more expensive when compared to

baseband technology, but due to its wider bandwidth and

greater geographical coverage, several commercial LANs using

off-the-shelf CATV (Community Antenna Television) hardware

have recently begun to appear on the market.

• Fiber optic cables: a very attractive medium for future

communication systems. These cables can run for several

miles without a repeater and provide extremely high da ta

rates of up to a few Giga bits per second. However, because

of the technical difficulties and high costs involved in cable

tapping and signal extracting, the present use of fiber optics

is limited to point-to-point communication, while multidrop

mode communication still needs further exploration.

2.1.3 Transmission Control Mechanisms

Quite a few transmission control mechanisms have been proposed

for use in building local area networks. Most of these mechanisms can

be categorized in one of the following classes [20, 19]:

• Fixed Assignment: the channel bandwidth is allocated to each

node of the network according to a predefined pattern . Two

well-known examples are time-domain multiplexing (TDM)

and frequency-domain multiplexing (FDM). Both TDM and

FDM work well under heavy buffered traffic when the number

of nodes is small and static. But if the traffic is bursty and

17

the num ber of nodes is large, much of the bandwidth may be

wasted.

• Random assignment: no strict rule regulates the utilization of

the channel bandwidth; thus, nodes on the same network need

to compete with one another for channel access. As a result,

collisions are unavoidable, and some traffic control strategies

are required in order to avoid or recover from collisions.

Examples include ALOHA, CSMA and CSM A/CD. These

schemes perform well when traffic is light, bu t their

performance declines rapidly under heavy traffic loads which

greatly increase the possibility of collision.

• Demand Assignment: channel bandwidth is allocated upon

demand; hence, there is no bandwidth waste due to collisions

or unnecessary allocation to idle nodes. Examples are

token-ring, token-bus and register-insertion. These schemes

perform well under heavy traffic conditions, and their

performance is predictable, although it suffers from some

overhead because of bandwidth reservation when traffic is

light.

18

2.2 Network Interconnections

In a truly distributed computing environment, user processes

needing to communicate should be able to do so whether they are in the

same network or not. Thus, in order to accommodate the growing

demands for geographically distributed processing, efficient resource

utilization and secure voice and d a ta communications, the issues of

network interconnections have in recent years drawn considerable

a ttention and interest.

One of the objectives of designing a network interconnection

strategy is to preserve freedom in the design of future computer

networks and still be able to interconnect with existing ones. Although

many design principles and the experience gained in developing computer

networks can be applied, with slight adaptation, to network

interconnections, there are still many problems which suggest tha t

different treatm ents must be devised in order to achieve internetworking.

In particular, the lack of a single controlling authority can make the

internet design problems more difficult to solve.

Depending on the characteristics of individual networks (or

subnetworks), there are currently three different approaches to

interconnecting them as an extended network [12, 3]:

1. Repeaters. These are used to interconnect several cable

segments within a LAN using identical software protocols and

hardware technologies. Being the simplest among the three

approaches, a repeater is usually used to extend the length of

the cable, amplifying and transm itting whatever signals it

receives (including collisions). No filtering function is

performed by a repeater.

2. Bridges (also called Data Link Relays). These are used to

interconnect several networks using different hardware

technologies (e.g., network topologies, da ta transmission rates,

etc.) but compatible software protocols (e.g., maximum packet

size, addressing scheme, available services, etc.). A bridge

performs the filtering function so tha t only selective packets

are forwarded to appropriate networks which it connects.

The bridge makes no a ttem pt to modify the contents nor add

any additional headers to the packets.

3. Gateways. These are used to interconnect networks using

different hardware technologies and incompatible software

protocols. Since it is the most general and complicated

technology among the three approaches, a gateway may have

to address not only the protocol incompatibility problems (by

either translating the software protocols from one network into

another or by adding an extra internetwork header) but also

route selections based upon the network (or internet) layer

address supplied by the source node.

As shown in Figure 1, a gateway, depending on the economical and

20

Nat A Nat B

<z>
a. single dedicated gateway

Nat A Nat a

K3— EH
b. two dedicated gateway halves

Nat A Nat B

c. two gateway halves residing on separate hosts

Nat a Nat B

!© !
d. single shared gateway

F ig u r e 1. Implementation of Gateway

performance requirements, may be implemented in one of the following

ways [18]:

1. A gateway is implemented as a physically isolated node,

which is equipped with appropriate software protocols and

hardware interfaces (Figure l.a). This approach often incurs

higher installation costs; however, due to the continuing

downward trend in hardware cost and the increasing demand

for voice/data integrated services, its high performance

features will outweigh the extra cost. This approach,

however, may raise administrative issues when the

interconnecting networks belong to different organizations.

2. A gateway is split into two gateway halves, and each gateway

half is implemented as a physically isolated node (Figure l.b).

This approach eliminates the administrative problems of the

gateway but with the penalty of additional hardware cost.

3. A gateway is split into two gateway halves, and each gateway

half resides on a host node of each connecting network

(Figure l.c). This approach provides a tradeoff between the

performance and the hardware cost. If the internetwork

traffic is not intense and performance requirements are not

stringent, this approach can be a cost-effective method for

internetworking.

4. A gateway is implemented using a host node shared by

connecting networks (Figure l .d) . All internetwork

communication software is placed on this single node; hence,

any changes on any connecting networks need to be properly

monitored and updated. Being the simplest and least

22

expensive way to achieve internetwork communication, the

performance aspects are heavily dependent on the work load

of the residing host.

2.3 Protocol Hierarchies and Standardization

A protocol is a set of rules tha t govern the exchange of

information between communicating entities. Due to the inherent

complexity in protocol design, the ” layering” technique has been widely

adopted as an effective means of decomposing a large communication

system into a series of layers, each performing a well-defined set of

functions to support the communication activities.

As shown in Figure 2, each layer N provides certain services to

layers N + l and higher, shielding the details of how the offered services

are actually constructed. Layer N is, in turn , constructed using the

services provided through interfaces with layers N-l and lower. With

the services provided by each corresponding Layer N-l, layer N processes

on different communication systems can communicate with each other

through some communication paths. The rules used by layer N

processes in the communication are collectively called (N) p r o to c o l , and

the boundary between layers N and N-l is called an (N-l) in te r fa c e .

23

(N+1)
Layer

(N) Interface with
(N) Services

(N)
Layer

(N) Protocol
(N) P rocess ----------- ► (N) P rocess

(N -1)
Layer

(N-1) Interface with
(N-1) Services

F i g u r e 2 . L a y e rs , in te r fa c e s a n d p ro to c o ls

24

An (N-l) in te r f a c e defines a set of services which layer N can request

from layer N-l.

2.3.1 Protocol Hierarchies

Given a complex communication system without proper

coordination and guidelines, each designer will form a layered structure

with different layer hierarchies, each with a distinct name and functions.

This unfortunate situation has proliferated for decades, thereby causing

great difficulty when different systems try to communicate with one

another. To overcome this problem, the International Standards

Organization (ISO) has defined the Reference Model of Open System

Interconnection (OSI) as a conceptual framework, based upon which an

end system of one design is able to interconnect and communicate with

any other end systems as long as the associated peer protocols follow the

same OSI standards.

The OSI Reference Model is divided into seven layers [7]. The

lower three layers handle the transmission of da ta among communicating

entities and, thus, are dependent on the hardware technology used for

transmission media. The higher three layers provide direct functional

support to the end users of the OSI environment and, thus, are

independent of the underlying network technology. The Transport Layer

is a liaison between the upper and lower layers to ensure tha t the

25

services provided by the lower layers fulfill the requirements of the upper

layers. The functions of each individual layer are described as follows:

1. Physical Layer: concerned with mechanical, electrical,

functional and procedural interfacing so tha t unstructured bit

streams can be transm itted over physical media.

2. Data Link Layer: responsible for framing and possible error

detection and error recovery over a point-to-point

communication link so tha t raw bits can appear free of

transmission errors to the network layer.

3. Network Layer: responsible for multiplexing, routing, error

control and congestion control in order to ensure tha t da ta

units are correctly routed to their destinations. Network

Layer provides the upper layers with independence from

concerns about the underlying transmission media and

switching technologies used to connect two end systems. It

should be noted here tha t internetwork da ta transport is part

of the function of this layer.

4. T ransport Layer: responsible for providing reliable, transparent

end-to-end transport services so tha t session entities are free

from the details of how reliable and optimal transfer of da ta

can be achieved. This layer also handles the end-to-end

connection establishment and termination.

5. Session Layer: responsible for supporting the interactions

between two cooperating presentation entities, including

binding and unbinding them into a relationship and

synchronization of d a ta operations.

26

6. Presentation Layer: responsible for the representations of

information to facilitate the da ta exchange between two

application entities. In other words, the Presentation Layer

deals with the syntax selection and conversion of information

so tha t applications in an OSI environment need only

concentrate on the semantic aspects of da ta operations.

7. Application Layer: the highest layer in the OSI protocol

hierarchies. It is responsible for directly providing the

distributed information services to the end users of the OSI

environment.

It must be noted here tha t although the OSI Reference Model was

originally motivated by and defined for end systems using long haul

network technology, it is also applicable to LAN environments. The

only exception is tha t in many LAN environments, due to the inherent

”broadcast” capability, route selections are normally not needed, thereby

resulting in small or even empty network layer protocols.

2.3.2 Standardization of LAN Protocols

There have been many government agencies (e.g., NBS,1 DoD),

organizations (e.g., ISO, ANSI and ECMA) and companies (e.g., GM,

^■NBS: N ational Bureau of Standards; DoD: Departm ent of Defense; ISO: Inter
national Standards O rganization; ANSI: American N ational Standards Institute; ECMA:
European Com puter M anufacturers Association.

27

Xerox) involved in standardizing local area network protocols. It is

impossible for this dissertation to discuss this standardization process

thoroughly; therefore, only the work of the IEEE 802 Project (see Figure

3) will be summarized [9, 23, 29, l].

An effort to develop local network standards was first initiated by

the Institute of Electrical and Electronics Engineers (IEEE) 802

committee in February 1980. Interest in this area quickly became a

concern both nationally and internationally. The major goal of the

IEEE 802 committee is to deal with protocols for accessing and

controlling local network media of different technologies. As a result, its

local network reference model corresponds to the two lowest layers of the

OSI reference model.

The IEEE physical layer is concerned with bit transmission, device

attachm ent and electrical signaling over various types of local network

media. Since all devices in a LAN are connected to a common

transmission medium, the Medium Access Control (MAC) sublayer,

which constitutes the lower part of the IEEE data link layer, is defined

to deal with channel access among various devices connected to the same

local network medium. The Logical Link Control (LLC) sublayer, which

constitutes the higher part of the IEEE data link layer, is functionally

independent of the underlying MAC and physical layers and is

28

802.3

802.1 ̂
__________ _ J

802.2 LLC

802.4 802.5 802.6

Data
Link

Lay or
MAC
Physical

Layar

802.1 Higher Layer Interfaces
802.2 Logical Link Control
802.3 CSMA/CD Bus
802.4 Token Bus
802.5 Token Ring
802.6 Metropolitan Area Networks (MAN)

F i g u r e 3 . I E E E 802 P r o j e c t [23j

29

responsible for establishing, maintaining and term inating a logical

connection between communicating devices. The IEEE subcommittee

802.2, which is responsible for LLC standards, has defined three types of

services (i.e., connectionless, connection oriented and acknowledged

connectionless) for the upper layers.

The IEEE 802 committee, after recognizing the fact tha t no single

s tandard would be suitable for all LAN applications and traffic patterns,

decided to adopt multiple standards. To date, three sets of

MAC-physical protocols have been accepted as IEEE standards:

• IEEE 802.3 CSM A/CD

• IEEE 802.4 Token Bus

• IEEE 802.5 Token Ring

The IEEE 802.1 Higher Layer Interface S tandard subcommittee,

responsible for issuing recommendations and guidelines, is now actively

looking into a variety of higher layer design issues such as overall

organization of the standards, network management and internetworking.

To date, no protocol standards related to internetworking have been

brought up. The IEEE 802.6 subcommittee is responsible for

Metropolitan Area Networks (MAN) standards, although no standards

have yet been issued.

2.4 Packet Voice C om m unication

30

Integrated packet switched networks have drawn considerable

interest from the research community in recent years because of a

num ber of potential benefits which they offer. These include:

• reduced installation and operation costs through sharing of

transmission and switching facilities;

• improved performance by dynamically sharing bandwidths

between voice and da ta traffic and by transm itting voice

packets only during talkspurts;

• enhanced network services for users who need access to both

da ta and voice communications;

• capability to support multiplicity of the variable bandwidth

services of future communication systems;

• more secure voice communication by applying da ta security

measures developed for da ta communication.

For voice signals to be carried over a packet switched network,

they m ust first be encoded and packetized at a source voice terminal.

Next, an underlying transport system is used to deliver the voice packets

within a reasonable time limit to a destination voice terminal which can

then depacketize and decode the received voice packets [22]. Some of

the elements related to packet voice communication are briefly discussed

below.

31

2.4.1 Functionality of Packet Voice Terminal

As shown in Figure 4, a packet voice terminal (PVT), which serves

as the interface between the user and the network, can be conceptually

decomposed into four functional modules [31]:

• The voice processor performs conversions between

analog/digital signals at speeds ranging from 2 Kbps to 64

Kbps and the marking of each parcel (which normally

contains 20-50 ms of speech) as either active or silent.

• The protocol processor is the control center of the PVT,

which must generate and interpret packets for call setup and

provide buffering and synthesis algorithms to ensure smooth

voice playout to the users.

• The network interface processor is responsible for

network-dependent hardware and software interfaces to access

the packet switched network.

• The telephone instrum ent serves as the user interface to the

PVT. It may be similar to the conventional telephone set

but usually provides more signaling capabilities. Computer

terminals may also be used to enhance the user interface.

In earlier experimental work on packet voice communication, PVTs

were usually implemented on large general-purpose computers. But with

the advance of VLSI technology, one can expect tha t affordable compact

microprocessor-based PV Ts will soon be on the market.

VOICE PROTOCOL NETWORK

PROCESSOR PROCESSOR IlfiC nrA C C
PROCESSOR

VOICE

HANDSET

CONTROL

DIAL.
DISPLAY

TO PACKET
NETWORK

TELEPHONE INSTRUMENT

F i g u r e 4 . F u n c t i o n a l i t y o f p a c k e t v o ice t e r m i n a l [31]

2.4.2 Vocoding Techniques

Many vocoding (or voice encoding) techniques are available to

convert speech to proper digital forms, but they differ greatly in data

rates, processing requirements, hardware complexity, and quality of

ou tput voice. In general, these vocoding techniques can be classified into

time and frequency domain classes [5, 8]. The former class, called

waveform coding, is designed to reconstruct voice signals tha t ’’look” as

much as possible like the original input signals. Examples include PCM

(Pulse Code Modulation), D PCM (differential PCM), ADPCM (Adaptive

Differential PCM), and CVSI) (Continuously Variable Slope Delta

Modulation). The latter class, called vocoder, is designed to reconstruct

voice signals tha t ’’sound” as much as possible like the original input

signals. An example is LPC (Linear Predictive coding). (A third class

can also be formed by combining the above two techniques.) Waveform

coding normally requires da ta rates in the range of 8 to 64 kb/s,

whereas vocoder requires da ta rates from 1 to 16 kb/s . Generally, the

fidelity of the ou tpu t speech is proportional to the d a ta rates; however,

for a given fidelity, the required da ta rates can be reduced at the cost

of more computational processing. The PCM (Pulse Code Modulation)

method, which has been widely used in digital telephony, produces good

voice quality with high da ta rates and low processing complexity.

However, due to the scarcity of channel bandwidths in long haul

34

networks, such techniques as CVSD and LPC have been adopted for

earlier experimental work on packetized voice communication to make

use of their low da ta rates.

2.4.3 Protocol Functions for Voice Communication

Interactive da ta communication tends to be bursty in nature, while

voice communication tends to be stream-like with a sustained duration

for each voice call. For d a ta traffic, transmissions must be very reliable,

but occasional variations of transmission delay and throughput can be

tolerated. For voice traffic, however, the situation is quite the opposite;

transmission delay is very stringent, but a small percentage of packet

loss is harmless. As a consequence of these differences, separate

communication protocols need to be developed to support voice

communication.

In the early seventies, when packet voice communication was first

experimented over A RPA N ET, a separate Network Voice Protocol (NVP)

was designed to support the high throughput, low delay requirements of

voice communication. Later on, the NVP was revised and enhanced to

support internetwork communication, and the protocol functions were

separated into two levels. The higher level protocol, called NVP (2nd

generation), is concerned with call establishment, packetization and

reconstruction of digital voice signals, and dynamic conference control

35

features. The lower level protocol, called ST (STream protocol), is

concerned with internet transport functions for both point-to-point and

conference communications.

ST, similar to IP, is an end-to-end internet transport protocol, but

it utilizes the virtual circuit approach instead of the datagram approach.

Hence for each voice call, a connection setup process must be carried out

before a speech conversation begins. NVP (2nd generation) calls on

both IP and ST to support voice communication: IP is used primarily

for voice control packet delivery and ST is used for voice packet

delivery.

2.5 Sum m ary

In this chapter, three major design aspects of local area networks

were first presented, followed by a brief description of various

internetworking technologies and methods of implementing gateways.

Also discussed were ISO seven-layered protocol hierarchies together with

the functions of each individual layer. The LAN standardization process

was next reported. Finally, several components needed to support

packetized voice communication were discussed.

CHAPTER III
GATENET: AN INTERNET

TRANSPORT SYSTEM

This chapter is concerned with the architectural aspects of the

G A TEN ET internet transport system. In Section 3.1, we describe the

scenarios of an internet transmission using the tra<; tional gateway

approach and then compare and contrast them with our G A TE N E T

approach. A detailed discussion of the GATENET structure with

respect to its topology, addressing and routing schemes is next presented

in Section 3.2. Advantages and disadvantages of the G A TEN ET

approach are then identified in Section 3.3. Finally, Section 3.4

summarizes the chapter.

36

3.1 Internetworking Approaches

37

Internetworking generally means interconnecting computer networks,

whether they are of similar types or not. As stated earlier, here we are

primarily interested in interconnecting LANs within a campus-wide area.

(For the sake of clarity, a single dedicated gateway approach is assumed

in the following discussions.)

3.1.1 The Conventional Gateway Approach

Figure 5 shows a typical internet interconnected with gateways.

Assume tha t Host 1 in LAN A tries to communicate with Host 2 in

LAN D. Normally, an internet packet will be transm itted across the

internet as follows:

1. Host 1 First prepares an internet packet (consisting of an

internet header, a da ta packet and possibly some trailer),

encapsulates it with a header of LAN A, looks up the routing

table, and then forwards it to the proper gateway (in this

example, gateway G l) en route to Host 2.

2. Upon reception of the packet, gateway G l will decapsulate the

header of LAN A, examine the internet address (contained in

the internet header) and then decide tha t the next stop will

be gateway G2. Since LAN B lies between gateway G l and

gateway G2, gateway G l will encapsulate the internet packet

with a header of LAN B and forward it.

38

G3G2

H ost 1

CHBH m OH

datacteta data datadatadata

□ -.Gateway XH : Header of LAN X
O : LAN IH : Internet header
A : Host

F i g u r e 5 . T h e c o n v e n t io n a l g a t e w a y a p p r o a c h

39

(In general, this step can be repeated as many times as the

num ber of intermediate nodes between the source host and

the destination host.)

3. When the packet finally reaches Host 2, Host 2 will

decapsulate the header of LAN D and then process the packet

according to the information specified in the internet header.

During an internet transmission, if the size of an internet packet

exceeds the m axim um packet size of the intermediate network,

fragmentation and reassembly processes m ust be invoked. For each

fragmented packet, proper internet headers and trailers also need to be

created. In general, two basic approaches can be used to handle such

problems:

• Internetwork fragmentation and reassembly: a packet may be

fragmented prior to the entry of a LAN (e.g., at a gateway)

and reassembled only when it gets to its destination. If the

maximum packet sizes are different in LANs en route, the

internet packets may have to be broken into even smaller

packets several times before they finally reach their

destination.

• Intranetwork fragmentation and reassembly: once an internet

packet is fragmented before the entry to a LAN, the

fragmented pieces will be reassembled immediately after being

delivered to another LAN boundary. In a huge internet, as

the internet packets travel through various LAN boundaries,

fragmentation and reassembly processes may be invoked

several times, thus incurring many overheads.

40

In brief, there are three major functions th a t a gateway must

perform during an internet transmission:

1. The gateways are responsible for encapsulation and

decapsulation of LAN headers over the internet packets.

2. The gateways need to look up the routing tables and decide

on which path to forward the transit packets.

3. If the size of an arriving internet packet exceeds the

m axim um allowable packet size, the gateways need to perform

fragmentation and subsequent reassembly processes properly.

Another im portant task of the gateway is monitoring and

controlling the internet traffic. However, since it is not relevant to our

present discussions, this task will not be elaborated on.

3.1.2 G A TE N E T Approach

Traditionally, a gateway is used to mediate between different

networks. However, in our approach, the role of gateways is further

enhanced so tha t a gateway may be used to mediate not only between

LANs but also between a LAN and another gateway or even between

gateways.

After the interconnections among LANs and gateways are

reorganized (see Figures 6 and 7), the internet is logically separated into

G3G2

Hoil 1

G2

G3

Hoat 2Hod 1

□ : Gateway
O : LAN
A : Host

F i g u r e 6 . I n t e r n e t R e o r g a n iz a t i o n

G2I

P»tJ

G3

badP«iH

Host 1

Host 2

□ - Gateway XH : Header of LAN X
O - LAN
A •' Host

IH : Internet header

F i g u r e 7 . G A T E N E T in t e r n e tw o r k in g a p p r o a c h

two parts: one consists of all LANs and the other consists of all

gateways which form a GATEway-NETwork (GATENET). Comparing

Figures 5 and 7, one can see tha t our approach has the following

advantages:

1. The internet packet sent from Host 1 to Host 2 essentially

bypasses LANs B and C. In other words, although the

internet packet goes through the boundaries of LANs B and

C via gateways G l and G2, the local header processing for

these LANs is not needed during the internet communication.

Consequently, the internet packet transport is essentially

independent of the characteristics of the intermediate LANs

through which the packet passes, thereby eliminating many

processing overheads at the gateways.

2. With the integration of internet gateways into a

gateway-network, encapsulation/decapsulation of LAN headers

and possible fragmentation/reassembly processing for each

internet packet can only occur when the packet is a t an entry

or an exit gateway.

3. Because of the hierarchical approach of G A TENET, each

gateway maintains only the cluster routing information for its

descendants. Hence, the routing table is small and remains

essentially fixed as the size of the internet grows. Further, as

a result of the G A TEN ET architecture, simple protocols can

be applied at the gateways, thereby reducing the possibility

tha t gateways may become internet traffic bottlenecks (to be

further explored in Section 3.2.3).

44

4. All gateways are essentially interconnected into a

gateway-network. As a result, the G A TEN ET structure can

facilitate the exercise of internet flow control as well as the

dynamic adjustm ent if there are any changes in the internet

topology or traffic characteristics (see Section 4.2.3).

As the number of nodes in the internet grows, our approach will

result in fewer processing overheads and a smaller routing table at each

gateway when compared with those of the conventional approaches.

These advantages will be discussed in more detail in section 3.3.

3.2 G A T E N E T Architectures

In this section, we first show the general topology of GATEiNET

and discuss three different methods to implement it. Based upon the

G A TE N E T structure, we then define the addressing and routing schemes

to support the internet transport functions. For ease of explanation, the

end gateway of LAN X is defined as the gateway by which LAN X is

connected to the gateway-network.

45

3.2.1 Topology of G A TE N E T

G A TENET (see Figure 8) is a rooted hierarchically-structured

network consisting of gateways and LANs. Logically, all LANs are on

the same level (level 1), and all gateways are above the LANs (level 2

and up) forming a gateway-network. Physically, the gateway-network

can be built in three different ways:

1. distributed approach: gateways are spread over the campus

area and are interconnected through communication links.

2. centralized approach: all gateways are located in one location,

and all LANs are connected to the gateway-network by

remote access links. This approach is similar to the approach

used in the current Private Autom ated Branch eXchanges

(PABXs), where all incoming and outgoing traffic is first

routed to a centralized hub.

3. hybrid approach: gateways are clustered into several

sub-gateway-networks according to a hierarchical or

organizational structure, and only these sub-gateway-networks

are interconnected by remote access links.

Each gateway can connect two or more gateways or LANs. Each

link is a full-duplex transmission line, one for transm itting packets

upward and the other for transm itting packets downward.

The highest level gateway is called the root gateway which is

46

Gataway-Natwork
0 .0 .0.0

3.0.0.0 4.0 .0 .02 . 0 .0.0

4.1.0.0 4.2.0.02 .2 .0.0Laval 2

Laval 1 (l .0.0.+ 1 2 .1 .0 .4 2.2.1.4 2 .2 .2 .4 M 3 .1 .0.+T 3 .2 .0 .4 4 .1 .1 .4 1 4 .1 .2.+ U .1 .3 .+ 14.2.1.4114.2.2.4 U .3 .0 .

□ : Gateway

O :LAN

F i g u r e 8 . T o p o lo g y o f G A T E N E T

47

equipped with the capability to communicate with other long haul

networks or LANs outside the campus boundary. Since G A TE N E T is

designed to fulfill the inter-office data/voice communication needs within

a campus or a corporate boundary, special G A T E N E T communication

protocols (to be discussed in C hapter 4) are thus specified to provide a

simple and efficient way for internetwork communication. Hence, the

root gateway may have to perform some translation of the internet

headers for packets going outside the internet boundary to ensure

compatibility with the internetwork protocols (e.g., T C P / IP) adopted by

the majority of the user community. The root gateway is also the

Internet Route Server for m aintaining and providing internet addressing

and routing information.

3.2.2 Addressing

Various studies have shown tha t in many cases LANs are primarily

used for local traffic, with only a very small proportion of the traffic

routed outside the LAN boundary. As a result, although the flat global

address scheme has been adopted in several major national internets, it

is not particularly suitable in the G A TEN ET environment. If the

population of the internet is large, the flat global address scheme

requires tha t a huge routing table be maintained at each gateway, and

route selections may be time-consuming. Further, the routing table at

48

each gateway needs to be updated whenever there is any configuration

change within the internet, thereby incurring many overheads.

Since an organizational hierarchy often exists within a university

campus or any industrial corporation, it seems logical to choose a

hierarchical addressing scheme for internet addressing. (In [10, 15], the

authors have concluded that, for a huge network, a hierarchical

addressing scheme is required to keep the routing capacity of each

switching node within bounds.) In the following, a hierarchical

addressing algorithm using Kleene’s notations is presented, with this

algorithm the internet address for each gateway or host in GATENET

can be established recursively from its immediate parent.

(Note tha t here a unit denotes either a gateway or a LAN, and it

is assumed tha t there are four levels in the hierarchy.)

1. (Basis) The root gateway is 0.0.0.0.

2. (Recursion: for each unit in the internet)

a. Inherit the address from its immediate parent.

b. Obtain the sequence number of this unit under its

immediate parent and substitu te the value of the

sequence num ber for the first zero subfield (from left to

right).

Subfield 0 can then be used to identify host addresses

49

within a LAN. Each LAN is free to choose its own

topology and addressing scheme, except th a t the

addresses assigned must be nonzero. (Subfield 0 is zero

for all gateways.)

It must be noted th a t the height of the hierarchy in a campus-wide

environment is expected to remain essentially fixed even when the

internet continues to grow. Consequently, the number of subfields

required for specifying an internet address does not need to be changed

in most cases.

As an example, the internet address for Host H with local address

A (where A is nonzero) within Unit U (in this case the unit is a LAN)

can be generated as follows (see Figure 9):

1. UNIT U inherits address 4.1.0.0 from its immediate parent

node.

2. UNIT U’s address now becomes 4.1.2.0 since unit U is the

second son (from left to right) of its parent node.

3. Host II address becomes 4.1.2.A since its local address is A

and it is within UNIT U.

I I : Gateway

O :UN
^ :H oat

F ig u r e 9 . Example of G A TEN ET addressing scheme

51

3.2.3 Routing

Because of G A T E N E T ’s hierarchical structure and hierarchical

addressing scheme, all addresses corresponding to the descendants of a

gateway can be described in jus t a few patterns. Accordingly, each

gateway maintains only such cluster routing information in its routing

table (see Figure 10). The routing table has an entry associated with

each outgoing link from the gateway. Each entry consists of an address

pa tte rn and its associated link. Since the number of entries is the same

as th a t of outgoing links from the gateway, the size of the routing table

is small and remains essentially fixed even as the internet grows.

If a node is created or removed, only the routing table of its

parent node needs to be updated. No broadcast is needed in this case.

The parent node will be responsible for reporting this change to the

Internet Route Server, if such a server exists.

When an internet packet arrives, the gateway will first try to look

for a matching entry in the routing table (from the top down),

according to the destination address in the internet header. To be

specific,

1. if the packet belongs to one of the gateway’s descendants, the

packet will be routed downward to the next stop via the

corresponding link;

52

(i) For gateway 4 . 0 . 0 . 0

I 4 . 1 . * . * \ A I

| 4 . 2 . * . * | B |

| 4 • 3 . 0 • + | C |

| * . * . * . * I Y |

(11) For gateway 4 . 2 . 0 . 0

I 4 . 2 • 1 . + | D |

I 4 . 2 . 2 . + | E |

| * .* .* .* | b |

+ : Nonzero I n t e g e r
* : Any I n t e g e r

F i g u r e 1 0 . R o u t in g t a b le s o f G A T E N E T

53

2. otherwise, the packet will simply be routed upward to its

immediate parent. Undeliverable packets a t the root gateway

will be discarded.

Therefore, during an internet transmission, the internet packet will,

in general, first climb zero or more levels up the gateway-network until

it arrives at the youngest ancestor of the destination node. The internet

packet will then descend zero or more levels from this ancestor to reach

its destination node.

It is possible th a t an internet packet might be hopping in a closed

loop (due to transmission errors or incorrect specifications of the

destination address) during an internet transmission. To avoid such a

problem, a special subfield MARK (part of the transport control option)

is specified in the internet header. Specifically, for each packet sent

downward from a level n gateway (i.e., to level n-1 or below), this

subfield will be marked as n. Thus, whenever a level n gateway receives

from its son a packet whose MARK subfield is already marked n, the

gateway can discard the packet accordingly to prevent such a packet

from circulating in a loop.

54

3.3 Features of G A T E N E T

To summarize, the features of G A TE N E T tha t distinguish it from

the conventional internet approaches are as follows.

3.3.1 Advantages

1. Since the gateway-network is responsible for all the inter-LAN

routing, the encapsulation/decapsulation of LAN headers for

each internet packet may only occur when the packet is a t an

end gateway. For traffic between gateways, the internet

packets are the ’’universal” packets, which can travel in the

gateway-network without incurring extra local header

processing.

2. When fragm entation/reassem bly services are needed by the

internet, only the end gateways are required to perform such

services (In G A TE N E T, all the packets have the same

maximum packet size.). Consequently, such services are

essentially independent of the characteristics of the

intermediate nodes through which the packet passes.

3. Since only cluster routing information is maintained at each

gateway, the routing table is small and remains essentially

fixed as the size of the internet grows. As a consequence, the

processing time for route selections can be significantly

reduced.

4. Since the gateway-network is responsible for all the internet

routing, inter-LAN communications become as easy as

intra-LAN communications and are transparent to LAN users.

As long as the address of a destination node is known (This

can be obtained from Internet Route Server.), one can always

initiate the inter-LAN communications. This relieves each

LAN host from the burden of maintaining a huge routing

information table, which can be a problem when the number

of internet nodes becomes very large.

5. All gateways are essentially interconnected into a

gateway-network. Therefore, effective schemes to control the

internet congestion problems can be devised to prevent

internet performance from degrading under overload

conditions.

6. Communications with networks outside the internet normally

involve charging activities and require special procedures, such

as converting the protocols to make them compatible with

those of public da ta networks. This can be conveniently

handled by the root gateway, which will be responsible for

such functions as management, maintenance and accounting of

external traffic. However, this does not exclude the possibility

th a t some nodes may still be able to communicate directly

with any host outside the internet when it is appropriate to

56

3.3.2 Disadvantages

1. A few extra gateways and communication links need to be

installed, which means higher implementation costs.

2. A potential weakness of the hierarchical s truc ture is the fact

tha t when one or more gateways or links become faulty, the

whole internet may be partitioned into several isolated parts

which cannot communicate with each other.

3. For communications among neighboring LANs, one or two

more hops may be needed in GATENET, as compared with

the conventional gateway approach.

Initially, the first problem might seem undesirable. But as

hardware costs continue to decline, we believe tha t the high-performance

features and the versatile integrated voice/data services provided by the

G A TEN ET approach will justify the extra costs of constructing such a

network.

The second problem of internet reliability can be improved through

redundancy. The ’’buddy link” solution to be discussed in Chapter 5 can

be used to overcome the link failures. Gateway failures can also be

overcome by using backup processors. However, since these processors

may be expensive, the installation of such backup components can be

limited to only those gateways whose functions are critical to the

internet communications.

3.4 Sum m ary

In this chapter, we have shown the superiority of the G A TEN ET

approach over the conventional gateway approaches in supporting the

voice and da ta internet transport functions. Based upon G A T E N E T ’s

hierarchical s tructure and hierarchical addressing scheme, internet routing

becomes very simple and efficient. Under normal conditions, routing

between each source and destination pair is static, thereby eliminating

the need for sequencing. This characteristic is most favorable in the

support of the voice traffic. However, if there should be any faulty

conditions in the path , the internet communications might be

interrupted. In Chapter 5, we present a ” buddy link” solution to

alleviate such problems.

CHAPTER IV
INTERNET COMMUNICATION

PROTOCOLS

In this chapter, several sets of protocols are defined to support

internet voice and d a ta communications. In Section 4.1, we first

examine several possible approaches to resolve protocol differences in

interconnecting incompatible LANs and discuss their respective

advantages and disadvantages. Next, three sets of protocols supporting

G A TE N E T internet transport functions are presented in Section 4.2. In

particular, Section 4.2.1 deals with the da ta transport protocol and

Section 4.2.2 deals with the voice transport protocol. Section 4.2.3

presents two levels of flow and congestion control protocols to ensure

tha t satisfactory G A TE N E T performance is m aintained even under

overload conditions. Section 4.2.4 suggests several enhanced transport

layer protocols tha t might be helpful in constructing an internet.

Finally, Section 4.3 presents a sum m ary of the chapter.

58

4.1 Interconnecting Incom patible LANs

59

An internet normally consists of a wide variety of LANs

implemented with different hardware technologies and incompatible

protocols. Thus, in order for internetwork voice/data communications to

be supported, some common rules must be agreed upon and obeyed by

every LAN sharing the common resources. It is the function of internet

communication protocols to achieve this goal.

In general, there are three common ways for incompatible LANs to

communicate with one another within a campus-wide internet:

1. Augment the functionality of each LAN so th a t every LAN in

the internet supports equivalent protocols and services.

2. Augment the functionality of gateways so tha t gateways alone

resolve all the internet incompatibilities.

3. Augment the functionality of both gateways and LANs so

tha t there is a uniform internetwork service level (mostly

below the transport layer) across the overall internet.

In the first method, each LAN provides equivalent network services;

thus, the internet becomes simply an extended network, and internet

communication can be achieved via installation of physical links.

However, the development of appropriate software for all the

60

participating LANs can be very complicated and costly, making this

method unattractive. This problem is further compounded when the

individual LANs are of heterogeneous types.

The second method may be a good choice when only a few LANs

are to be interconnected with one another and no further expansion is

needed. When there are many LANs to be interconnected, (e.g., within

a campus area), this method becomes impractical since each gateway

must be specially coded to handle the protocol incompatibilities of each

connecting LANs.

The third method, which is widely used, has the potential to

interconnect a vast number of LANs with a reasonable development cost.

It basically requires tha t each participating node add an internet header

(IH) for each internet packet, based upon which the switching nodes can

make routing decisions and take appropriate actions. The source and

the destination internet addresses as well as other control information

needed for internet communication are contained in the internet header.

This approach allows the protocol complexity to be reduced to a more

manageable level; hence, the same set of protocols developed for one

gateway can be migrated to another gateway with only a minor

adaptation to the environment of each connecting LAN. It is this

approach tha t we have adopted in the GATENET protocol design.

4.2 G A T E N E T Com m unication Protocols

61

In GATENET, each gateway may encounter three types of

incoming traffic: voice packets, da ta packets and control packets. Due to

the timeliness constraint imposed on voice communication, voice packets

receive the highest non-preemptive processing priority at gateway

processors, control packets the next highest and d a ta packets the lowest

priority. Within each priority class, packets are processed according to

the order of arrivals.

Due to the varying performance and reliability requirements, two

different sets of protocols have been developed to handle voice and data

traffic separately. Since control packets share the same reliability

requirement as da ta packets, the control packets are transm itted using

the same d a ta transport protocol, but they have a higher processing

priority a t the gateway processors. Further, in order to minimize

G A TEN ET transmission delays, inter-gateway transmissions would not

perform the retransmission function [13]. Should there be any error

detected during inter-gateway transmissions, the packet would simply be

discarded. As a remedy, the entry-gateway-to-exit-gateway (EGTEG)

positive acknowledgment and retransmission schemes are used to ensure

da ta integrity during the internet transmissions (The E G T EG positive

acknowledgment scheme also serves the purpose of flow control, which

will be discussed in Section 4.2.3.2.).

62

4.2.1 G A TE N E T D ata T ransport Protocol (DTP)

D ata communication in G A TE N E T is basically datagram-based,

and each packet is treated as an independent unit. Both d a ta packets

and control packets are handled by G A TEN ET D ata T ransport Protocol

(DTP).

4.2.1.1 D T P For D ata Packets

To deliver a message via G A TEN ET to a destination host located

at a different LAN boundary, the source host need First prepare an

internet d a ta packet (i.e., a da ta segment plus an internet header),

encapsulates it with a local network’s header, and then routes it to the

entry gateway connected to the same LAN. If the message size exceeds

the maxim um packet size allowed in G A TENET, the packetization

process must be invoked. Packetization can be accomplished either at

the source host or the entry gateway (see Section 4.2.4.2).

After receiving the packet, the entry gateway will decapsulate the

local network’s header, examine the internet address, and then route it

to the next gateway en route. Once the packet enters the

gateway-network via the entry gateway, no more local header’s

encapsulation/decapsulation is needed until the packet reaches the exit

gateway. The entry gateway will keep a copy of the internet packet

63

until a positive acknowledgment is returned from the exit gateway.

Otherwise, it will retransm it the packet after a timeout period (up to

some predefined num ber of times). This inter-gateway transmission step

will, in general, be repeated several times until the internet packet

finally reaches its exit gateway.

When the internet packet is routed to the exit gateway, the exit

gateway returns a positive acknowledgment to the entry gateway. Since

the internet packet leaves the gateway-network at this point, the exit

gateway encapsulates the packet with a local network’s header and then

forwards it to the destination host. This completes an internet

transmission.

4.2.1.2 D TP For Control Packets

There are two types of control packets in GATENET:

• voice control packets: These are mainly concerned with call

setup, arrangem ent of communication options (including

choices of vocoding techniques), monitoring, interrupts and

call termination.

• da ta acknowledgment packets: Most EG TEG positive

acknowledgments are piggybacked via d a ta packets. However,

if, after a waiting period, no da ta packet is heading for the

same destination, a stand-alone acknowledgment will be sent

out as a control packet.

64

Since the loss of control packets may cause more severe problems than

tha t of voice packets and since the timeliness of the control packets is

less critical than that of the voice packets, control packets and voice

packets are handled separately [4, 5]. Control packets are transmitted

across the internet the same way as data packets. However, before

control packets are forwarded to the next gateway in the path, the

receiving gateway may invoke some extra processing (see Section 4.2.2).

4.2.2 GATENEjT Voice T ranspo rt Protocol (VTP)

While interactive d a ta users can respond to internet traffic

congestion by slowing down their da ta exchange activities, voice users

require a smoother internet services. In order to minimize the dispersion

of internet transit delays, which is inherent because of the dynamics of

packet switching environments, a virtual circuit approach is thus adopted

for G A TEN ET Voice T ransport Protocol (VTP). With the virtual

circuit approach, a voice call, once accepted, is guaranteed to continue

the voice session without suffering from any significant delay fluctuation

due to other internet activities. Further, through the pre-established

path , the virtual circuit approach allows the use of abbreviated headers

which can lead to reduced header overheads. This approach is most

favorable in supporting the continuous long-lived high-bandwidth voice

packet streams.

65

Furtherm ore, due to the nature of voice traffic, in which short

delay variation is more desirable than speech integrity, no

acknowledgment is needed. When transmission errors are detected by

any receiving gateway en route, the voice packets will simply be dropped

from the internet. A tim estam p is associated with each voice packet so

tha t in case of occasional packet loss out-of-order arrivals of voice

packets may still be accepted as long as the timestamps are in an

upward direction. Another function of the timestam p (used by the

gateways) is to discard voice packets in transit whenever their lifetime

exceeds a predetermined period.

When two users on different hosts in the internet wish to initiate a

voice communication, an initial call setup is required to reserve buffers

(one for either direction) at each gateway en route. Only when all such

buffers are reserved can a voice call be allowed to proceed. A

disconnection request can be issued later by either participating user to

free all the resources reserved for such a voice session.

If a call setup request arrives at a gateway in the path but cannot

be immediately accepted, the request will be held for a given period

before a rejection message is initiated. If such a call setup request

cannot be honored until the holding time expires, a rejection message

will then be issued by the rejecting gateway. Such a rejection message

66

will also release those buffers reserved for this unsuccessful call setup

request.

A reserved buffer has two states: AVAIL means it is ready for the

next voice packet, and BUSY means it is holding a voice packet pending

a transmission. During a call setup process, da ta rates between the

source and destination ends must be properly established so tha t voice

packets arriving at a BUSY reserved buffer will be extremely rare. The

flow and congestion control mechanisms to be discussed in Section 4.2.3

can help prevent such undesirable situations. New voice packets will

overrun the old ones if such a situation does arise.

Based upon V TP, some voice-related higher level protocols, such as

the conference protocol, can then be added on top of it. For such

higher level protocols, the portion dealing with the transport of voice

contents still remains the same as VTP; the portion dealing with the

control aspects, however, needs to be further enhanced. In particular, a

control scheme must be devised to ensure fair floor assignment among

the conferencees. Interested readers are referred to [4] for a more

detailed discussion.

67

4.2.3 G A TENET Flow and Congestion Control Protocols

Flow and congestion control protocols are protocols used to regulate

network traffic flows so tha t the network can still provide satisfactory

da ta and voice services even under overload conditions. Rigorously

speaking, flow control is distinguished from congestion control. Flow

control is generally applied on an end-to-end basis to prevent the sender

from sending packets at a rate faster than the receiver can process it,

while congestion control is applied in the communication subnet to deal

with situations where there are more arriving packets than the available

buffers at the switching nodes. However, for the purposes of this

discussion, the term ’’flow control” will be used in a loose sense to s tand

for flow and congestion control.

As shown in Figure 11, in an uncontrolled network, as the offered

load increases, the network throughput usually increases correspondingly

up to a maximum level, and then the throughput degrades rapidly to a

very low level as the input traffic exceeds the network carrying capacity.

At first thought, one might suggest tha t the network be designed in

such a way tha t under no circumstances can the maximum allowable

offered load exceed the underlying network capacity. But due to the

bursty nature of the packet switched environments, such an approach

will result in an undesirable situation in which the network resources are

68

Ideal

Controlled3Q.
x :
O)

Uncontrolled
Deadlock

Offered Load

F i g u r e 1 1 . T h r o u g h p u t v s F lo w C o n t r o l [11]

69

underutilized most of the time. Hence, to avoid the shortcoming of the

aforementioned conservative approach, most networks are designed and

tuned to achieve the best performance under the projected average

traffic. As a direct consequence of this design principle, congestion

control mechanisms are thus needed to prevent network performance

degradation when the offered load occasionally exceeds the network

capacity.

In general, most of the congestion control mechanisms fall into the

following categories [30]:

1. Preallocating network resources before the communication

activities take place.

2. Allowing the switching nodes to drop packets when certain

predefined threshold conditions are met.

3. Setting up an upper bound for the total number of packets

tha t can be in the subnet at any given time.

4. Restricting or throttling off new input traffic when the

network is congested.

5. Applying flow control mechanisms to control the traffic

between a sender and a receiver. Note tha t flow control is a

means of congestion control, but using flow control alone is

not sufficient to prevent network congestion since end-to-end

traffic control can only affect a small portion of total network

traffic.

70

Congestion control is further compounded in an internet

environment where there may be many LANs of varying flow and

congestion control policies interconnected and interacting with one

another. Furtherm ore, if voice and da ta integrated services are to be

supported through the same internet, due to the differing performance

and reliability requirements of d a ta and voice traffic, new flow and

congestion control schemes, other than those conventional ones for either

da ta or voice traffic, m ust be designed in order to accommodate such

integrated internetwork services.

In most of the current internet technology, a gateway is normally

used to mediate between different networks; hence, gateways are spread

among the connecting LANs in an unstructured and uncoordinated way.

As a result, it is extremely difficult to apply an effective overall internet

congestion control, and the internet performance becomes unpredictable

and may degrade sharply when network overloading occurs. Therefore,

one of the goals of this research is to identify and propose a suitable

internet architecture tha t can facilitate the exercise of internet congestion

control. In our G A T E N E T approach, through the unique hierarchical

integration of internet gateways, all gateways are essentially

interconnected into a gateway-network. Such a gateway-network is

essentially separated from the connecting LANs and, thus, can provide a

better environment for internet congestion control.

71

During the course of this research work, several versions of flow

and congestion control mechanisms were studied using GATES IM

network communication simulator (which will be further discussed in

C hapter 6). On the basis of these simulation studies, we have concluded

th a t two levels of distributed flow and congestion control mechanisms

are needed to ensure the proper function of G A TENET under heavy

load conditions. These two levels are described as follows:

1. hop level: regulates the traffic between LANs and a gateway

as well as between a gateway and another gateway;

2. entry-gateway-to-exit-gateway (EGTEG) level: regulates the

traffic between an entry gateway and an exit gateway.

4.2.3.1 Hop Level Flow Control

GATE1NET hop level flow control uses the principle of the Input

Buffer Limit (IBL) strategy [it] , which classifies incoming traffic into

several priority classes and throttles the lower priority traffic based upon

buffer utilization at each individual entry node. IBL, which is a

distributed congestion control method, keeps track of the local congestion

rather than the global congestion at each entry gateway, thus providing

a simple and cost-effective way to achieve congestion control. The

rationale behind this strategy is that, through the backpressure effect,

entry node congestion can often provide reliable indication of internal

network congestion conditions.

72

There have been several versions of IBL strategy proposed to

achieve congestion control over da ta communication networks. All of

these methods basically distinguish between input traffic and transit

traffic and give priority to transit traffic when congestion conditions

occur at an entry node. In Lam ’s work [16, 17], an input packet is

dropped whenever the total number of input packets exceeds a

predefined quota. K am oun’s scheme [14], on the other hand, drops an

input packet once the total number of input and transit packets exceeds

a given threshold. Both of their studies show tha t with respect to a

given network topology and traffic pa tte rn an optimal input buffer limit

can always be found to maximize network throughput under heavy load

conditions. Input buffer limits higher or lower than the optimal value

will lead to a substantial throughput degradation.

In GATENET, due to its support of both data and voice traffic,

hop level congestion control is more complicated than the aforementioned

IBL schemes. The hop level congestion control applied at each

GATENEiT gateway can be summarized as follows:

• At any given time, no more than a predetermined number of

buffers (say, MAXVOICE) can be allocated for voice calls.

• When the total buffer utilization exceeds a predefined

threshold, no more input da ta traffic will be accepted unless

the total number of input packets in the gateway is less than

a given quota (say, MAXINDATA).

73

Due to the nature of voice communication, as mentioned earlier,

voice packets are given the highest processing priority. However, since

the number of buffers provided by a gateway usually exceeds the

number of calls a gateway can handle, to avoid voice traffic tying up a

gateway processor, the number of simultaneous voice calls through a

gateway m ust be restricted so tha t da ta traffic can have a fair share of

the processor time.

Further, in contrast to Lam’s scheme, the gateway limits the

amount of input traffic only as the threshold level is reached so as to

eliminate unnecessary flow constraints under light traffic conditions (see

Chapter 6 for further discussions of G A T E N E T ’s performance).

4.2.3.2 Entry-Gateway-To-Exit-Cateway (EGTEG) Level Flow Control

One of the most common problems in network operation is buffer

congestion at the exit point. When different LAN technologies are

involved, the exit gateway must resolve the speed mismatch between the

source and the destination ends so tha t a single source will not overload

the corresponding exit gateway or the global gateway-network. Since

voice calls are controlled through preallocation measures, the EGTEG

flow control is primarily designed to regulate internet da ta traffic.

The basic concept of the EG TEG flow control method is as

follows:

74

1. EG TEG flow control is exercised on an

entry-gateway-to-exit-gateway basis, and a path between each

entry gateway and exit gateway is considered a logical pipe.

2. Each pipe is individually flow controlled by a window

mechanism. Namely, at any given time, no more than a

fixed number of unacknowledged da ta packets can exist in

each pipe.

To be specific, each entry gateway will keep track of the s ta tus of each

outgoing pipe and m aintain a copy of each adm itted new da ta packet.

The exit gateway will re turn an acknowledgment for each correctly

received da ta packet. On receipt of the acknowledgment, the entry

gateway then removes the copy of the acknowledged da ta packet and

adjusts the transmission window of the associated pipe accordingly. If

the acknowledgment is not received within a certain time-out period, the

entry gateway will retransm it the packet (up to some predetermined

number of times).

When the internet becomes congested, the transit delays of the

acknowledgments will be prolonged. Hence, in addition to regulating the

traffic generated at a single entry gateway so as not to overload a

corresponding exit gateway, the EGTEG flow control also has the effect

of slowing down the traffic rate tha t the entry gateway will send into

the congested areas.

75

4.2.4 Enhanced Protocol Support at Gateways

Most of the current internetwork protocol research has focused on

the network layer (see Figure 12). Therefore, any two application layer

users who wish to communicate with each other m ust either choose

common protocols for layers 4 through 7 or find some way to perform

the protocol translation [2]. This requirement often needs substantial

development work and may impose unnecessary restrictions over many

user applications.

As mentioned in Chapter 2, several worldwide organizations (e.g.,

ISO, ANSI, NBS, and ECMA) have been working on standardization

issues. However, no worldwide agreement concerning LAN’s

organizational structures, layer functions or internetworking strategies has

yet been reached. Quite a few different standards have been proposed

(e.g., IEEE] Project 802), each one having its pros and cons both

technically and politically. Thus, it is commonly felt th a t the current

emerging diversity of local area networks will continue for a while [25].

As a result, gateways will continue to play an im portan t role in

achieving internetworking. However, there are still many controversial

design issues related to the functionality of gateways in internet

communications. When the gateway was first built in the DARPA

internet, the idea was to make it as simple as possible; consequently, it

76

lad D eere' B eeponeibllicy

Hose 2

Internetw ork
Service

UN B
Service

F i g u r e 1 2 . T h e f u n c t io n a l i t y o f a g a t e w a y

77

was basically implemented as a store and forward unit for datagrams.

In Saltzer’s source routing approach, gateways were also envisioned as

simple store and forward units (In a campus environment, these

gateways can be implemented by using specially designed microprocessor

devices.). However, because of the high bandwidth nature and differing

characteristics of LANs, a simple gateway seems inadequate to provide

the functionality needed for interconnecting many LANs within a campus

or corporate boundary. Hence, the traditional functionality of gateways

m ust be enhanced so as to facilitate internetwork communications.

Nevertheless, a gateway can not provide all the services needed by

each connecting LAN, since these services require a complicated set of

protocols which will transform the gateway itself into a bottleneck in the

internet system. Hence, when deciding if a service should be included or

not, one needs to carefully study the discretion criteria, such as whether

such a service is needed by a majority of connecting LANs (if not by

all) or to what degree such a service would degrade the gateway

performance.

In the G A TE N E T design, in order to resolve the internet

incompatibilities w ithout greatly sacrificing performance, gateways are

enhanced with some optional transport protocol support in addition to

current network layer protocol support. Such support will necessitate

78

additional LAN customized specifications be kept at each end gateway

(An end gateway table is used for maintaining these specifications.).

In the following, we present two examples which demonstrate tha t

this enhanced protocol support at gateways can be useful in achieving

internet communications in an incompatible environment.

4.2.4.1 End-to-End Acknowledgment

End-to-end acknowledgment2 schemes are normally provided by the

transport layer protocol. However, due to the diversity of LANs, some

reliability-oriented LANs may choose to support it, some

performance-oriented LANs may choose not to, while most LANs may

choose to allow either. If an internet is designed to allow either option

(a subfield in the internet header specifies this option), some problems

might occur when two LANs with different options wish to communicate

with each other (say, LAN A with an acknowledgment option and LAN

B with a no-acknowledgment option).

Our solution to this problem is to enhance the functionality of the

o
An end-to-end acknow ledgm ent is different from an entry-gatew ay-to-exit-gatew ay

acknowledgm ent, since an end-to-end acknowledgm ent is usually a m essage exchange be
tween tw o end users instead of two end gateways.

79

end gateways so tha t they will resolve such an incompatibility. Consider

the following two cases (see Figure 13):

1. Host 1 is the receiver, and Host 2 is the sender.

When Host 2 sends a packet to Host 1, Host 2 will expect an

acknowledgment from Host 1, bu t Host 1 will not

acknowledge. The solution is to enhance the gateway

functions so tha t the internet header will be checked when

the end gateway of LAN A receives a packet from LAN B. If

such a packet requires an acknowledgment and if LAN A has

set the no-acknowledgment option (this information is kept in

the end gateway table), the end gateway of LAN A will

complete the transaction by first forwarding the packet to

Host 1 and then issuing an acknowledgment to LAN B (The

end gateway is considered an end user under such a

situation.).

2. Host 1 is the sender, and Host 2 is the receiver.

When Host 1 sends a packet to Host 2, Host 2 will always

re turn an acknowledgment. When the acknowledgment arrives

a t the end gateway of LAN A, since LAN A has a

no-acknowledgment option, the end gateway will simply drop

such an acknowledgment.

As shown in the first strategy, a real end-to-end significance of

acknowledgment is not preserved as it is in most transport layer

protocols; consequently, this approach is sometimes controversial.

80

Ack

I <-

CM

Boat
Baealiar

I Maaaaga

I I
I I

II C21

©
(with Bo-Ack option)

\l
Want 2
A Bandar

(with Ack option)

Maaaaga

I
I <"

Ack

Boat 1/
Bandar

(with Bo* Ack option)

Boat 2
Bacalaar

(with Ack option)

F ig u re 13. Com m unication between LANs with different
end-to-end acknowledgment schemes

81

However, we think this approach is a good design tradeoff and should be

able to satisfy most LAN applications without incurring costly software

development efforts.

4.2.4.2 Packetization and Reassembly Services

In an internet environment with the interconnection of many

different LANs, packetization and reassembly services are often needed

for long messages. It is very likely tha t some LANs do not have such

capabilities bu t would like to receive such services from the internet.

Naturally, the end gateway is the best choice for providing this service

(If the connecting LAN is already equipped with such a function, the

end gateway will incur no overhead.).

• Packetization: In G A TE N E T, all the gateways have the same

maximum packet size (MAXSIZE). Whenever a gateway

receives a packet with a size exceeding MAXSIZE, a

packetization process will first be invoked and then a

reassembly service request will be initiated. The fragmented

packets can not be delivered until the destination end permits

the reassembly request.

• Reassembly: Under heavy load conditions, packet reassembly

at the destination end often leads to deadlocks if buffer

management is not properly designed. Hence, when a

reassembly service is needed, the source end (which can be a

host or a gateway depending on where packetization is

performed) needs first to send a reasonable buffer allocation

request to the destination end before transmission starts.

82

Once the destination end gateway receives the request, it

checks the end gateway table.

o If the destination LAN has set the reassembly option,

the end gateway will honor the allocation request and

take proper action according to its current buffer

utilization status. If the end gateway’s buffer usage is

high for the moment, the request can be rejected, and

the source end can then retransm it the request after a

pre-established time-out period.

o Otherwise, the end gateway simply passes the request to

the destination host and lets the destination host handle

such a request.

4.3 Sum m ary

In this chapter, separate protocols for da ta and voice traffic have

been defined. Two levels of flow and congestion control schemes have

been introduced to handle internet congestion problems. Enhanced

transport layer protocol support has also been suggested to reduce

protocol incompatibility problems. Based upon the support of these

protocols, G A TEN ET is capable of supporting many high level user

activities, such as data/voice file transfer, voice conferencing, da ta base

applications, etc.

CHAPTER V
RELIABILITY OF INTERNET

TRANSPORT SYSTEM

An internet usually consists of a large number of computing and

communication resources spread over some extended geographical area.

The reliability of such an internet transport system thus becomes an

im portant design concern. In this chapter, a ”buddy link” scheme is

presented to improve the reliability of the G A TEN E T design. Section

5.1 gives a description of the ’’buddy link” scheme. Based on the

’’buddy link” scheme, Section 5.2 then elaborates several case studies of

various link failure conditions. Section 5.3 presents a summary.

83

5.1 Buddy Link R eliab ility Schem e

84

As discussed in C hapter 3, the G A TEN ET design adopts the

hierarchical s tructure and hierarchical addressing scheme to support the

internet voice and da ta transport functions. While this hierarchical

approach reduces the size of the routing tables and minimizes the

processing time for route selections, it suffers from a potential problem

of internet partitioning under faulty conditions.

In general, reliability problems in G A TEN ET can be classified into

two types: gateway failures and link failures. Both types of failures can

be overcome by using backup components. However, a complete

redundancy solution is often not economically justified in a campus-wide

internet environment. Hence, a ’’buddy link” scheme is presented as a

cost-effective way to improve the internet reliability. Based upon such a

scheme, a single buddy link, if properly installed, can serve as the

backup link for any tree link in the associated ’’buddy loop.”

Depending on vitality, traffic load, and distance, a gateway may

choose to have certain gateways (other than its parent and sons) as its

’’buddy gateways” connected by extra ’’buddy links” which need not be

on the same hierarchical level (See Figure 14). The regular links, which

preserve the G A TEN ET hierarchical structure, are termed ’’tree links” to

85

distinguish them from buddy links. Assume th a t G2 and G3 are buddy

gateways connected by a buddy link BL and tha t GA is the youngest

common ancestor of G2 and G3. A ’’buddy loop” is then defined as a

closed path passing through G2, BL, G3 and GA. In general,

incorporating such buddy links will change the gateway-network from a

hierarchical structure to a meshed structure. However, with the

introduction of buddy routing tables, effective routing procedures can

still be maintained.

At each gateway, in addition to a normal routing table, a buddy

routing table (BRT) is needed to support route alternations under link

failure conditions. Since a gateway may be associated with several

buddy loops, the buddy routing table maintains a sub-buddy routing

table (SBRT) for each associated buddy loop. Each SBRT keeps an

entry for each tree link within the associated buddy loop. Each entry in

tu rn consists of four subfields:

• ENABLE, which shows if this entry is enabled or not;

• E’LINK, which shows the ID of the possible faulty link;

• ADDR, which gives a description of the cluster addresses to

be detoured;

• RLINK, which shows the link to be used for detouring.

86

GA Buddy
s. loop

G 2
Buddy
o^Jink

G 3

F ig u re 14. Buddy gateways, buddy link
and buddy loop

87

When a buddy link is installed, the youngest common ancestor of

the gateways on either side of the buddy link (i.e., GA) will be notified.

Appropriate detour information will then be sent by GA to each

gateway in the associated buddy loop to update its buddy routing table

to reflect such a change. Under normal conditions, the buddy link can

only be used to deliver those packets whose destination nodes are the

descendants of the buddy gateways (i.e., G2 or G3).

A special flag RED is maintained at each gateway to signal if

route alternations are in effect. When the RED flag is set to the ON

state, the gateway is reminded tha t when making route selections the

buddy routing table should be checked before the normal routing table.

Since the buddy link is used by both buddy gateways even under

normal conditions, the RED flag at either buddy gateway is set to the

ON state after the buddy gateway is installed.

When a link failure occurs, two situations may arise. First, if the

faulty link happens to be a buddy link, the only action th a t needs to be

taken is to disable the associated entry (making use of such a buddy

link) in the buddy routing table of either buddy gateway. The RED flag

is set to the O FF state if no more entries are enabled in the buddy

routing table. Second, if the faulty link is a tree link, the upper

gateway of the faulty link first chooses a proper buddy loop for

88

subsequent route alternations. Usually, the buddy loop with the smallest

num ber of links will be chosen, and an arbitration can be made if there

is a tie. A ”detour” control packet containing the ID of the faulty link

and the chosen buddy loop is then initiated and passed to each gateway

in the chosen buddy loop. If, unfortunately, the detour control packet

should encounter any further faulty conditions en route, a ’’detour

cancellation” would be returned all the way back to the upper gateway

to cancel such a detour action. The upper gateway then picks up the

next smaller buddy loop and repeats the same process until either the

detour announcement is successfully carried out or there is no more

available buddy loop.

Upon receiving a ’’detour” control packet, the gateway then sets

the RED flag to the ON state (if it is not on yet) and enables the

associated entry in the buddy routing table. It should be noted that

some packets may be lost during the detour transition, but they can be

recovered through the EG T EG positive acknowledgment and

retransmission schemes.

When a detour action is in effect, route selections at the gateway

on either side of the buddy link (i.e., G2 or G3) are more complicated,

since a nonlocal packet may be routed to either its parent gateway or

its buddy gateway. Unfortunately, since only local cluster address

89

patterns are maintained, the gateway is unable to make a choice

between the two alternate routes; thus, a nonlocal packet is always

forwarded to its parent gateway. If the parent gateway and its

associated ancestors and descendants cannot deliver such a packet to its

destination, the packet will eventually be returned to the gateway for

detouring. As a result, it is possible tha t a packet may visit a gateway

the second time. To facilitate handling such a detouring process, a

D ETO UR subfield is introduced in the internet header to provide

information pertaining to whether a packet has been detoured. The

D ETO UR subfield will be set to a value of YES when a packet is

detoured. However, since the D ETO UR subfield is used only to decide

if a nonlocal packet should be routed through a buddy link at a buddy

gateway, its value will be reset to NO once a packet is detourcd through

a buddy link.

When the faulty link has been repaired, depending on whether it is

a buddy link or tree link, each associated gateway will be notified, and

proper actions will be taken to restore normal operating conditions.

For da ta traffic, the above scheme is sufficient for route

alternations. For voice traffic, however, some refinements must be added

because of the virtual circuit approach. Since a buffer reservation must

be made a t each gateway en route for each voice session, after the link

90

failures and subsequent route alternations, a voice packet may be routed

to some gateway where no buffer reservation is made for such a voice

session. If this situation occurs and there are buffers available, the

gateway may accept such a voice packet and automatically initiate a

buffer reservation for this voice session. If the buffer reservation cannot

be honored at th a t time because of the limitations of the allowed active

voice sessions, a special request will be queued by the gateway. As soon

as the gateway has a free slot, the reservation will be honored with the

highest priority. This process continues until either such a voice session

finally secures a buffer reservation or a call termination request of this

voice session arrives.

5.2 Case Studies of B u dd y Link Schem e

In this section, scenarios of route alternations are presented with

respect to various link failure conditions. As shown in Figure 15,

Gateways G2 and G3 become buddy gateways through Buddy Link BL

(the youngest common ancestor being G4). The buddy loop associated

with buddy link BL is the closed path Y-X-BL-A. The SBRT of each

gateway associated with the buddy link BL is shown in Figure 16 where

NLOC denotes any nonlocal transit packets and NLOCDET denotes any

nonlocal transit packets w ith a value of YES in the subfield DETOUR

(of the internet header).

91

Since there are three tree links in the buddy loop, three distinct

link failure conditions may occur. Each of these conditions is discussed

below.

• Case 1: Link A fails.

1. Nonlocal transit packets at G2 (from its descendants)

are detoured via Link BL.

2. Transit packets at G l with the address pa ttern 4 .1.*.*

are detoured via Link Y.

3. Transit packets a t G4 with the address pa ttern 4.1.*.*

are detoured via Link X.

4. Transit packets at G3 with the address pattern 4.1.*.*

are detoured via Link BL.

• Case 2: Link X fails. This situation is similar to Case 1;

hence, it will not be detailed here.

• Case 3: Link Y fails.

1. Transit packets at G4 with the address pa ttern 4.*.*.*

are detoured via Link X.

2. Transit packets at G3 with the address pattern 4.*.*.*

are detoured via Link BL.

3. Nonlocal transit packets at G l are detoured via Link A.

4. At G2, nonlocal transit packets can be classified into

two different classes. The first class consists of those

packets whose destinations can be reached through Link

92

G4

G3

BL

G2

4.3.0.+

3.0.0.0

4.1.0.0 4.2.0.0

0 .0 .0.0

4.0.0.0

Buddy loop : X-BL-A-Y

F i g u r e 1 5 . E x a m p l e o f b u d d y l ink s c h e m e

93

I 0 I X | 3. • . • . • I A |

I 0 I V I NLOC I A |
I 0 I A | 4. 1 . • . • | V |

a. a t Gateway 4.0.0.0 (G l)

| i | x | I bl I

| O | V | NLOCDET | BL |

| 0 I A | NLOC I BL |

b. a t Gateway 4.1.0.0 (G2)

| 0 | X | NLOC I BL |

I 0 I V | 4.*.•.• | BL |

| 1 | A | 4.1.•.• | BL |

c. a t Gateway 3.0.0.0 (G3)

I 0 I X | 3. • . • . • | V |

I 0 I V | 4. • . • . • | X |

I 0 I A | 4.1.*.* | X |

d. a t Gateway 0.0.0.0 (G4)

F ig u r e 16. Sub-buddy routing tables
(under norm al conditions)

94

A. The second class consists of those packets whose

destinations can be reached through Link BL. The

subfield D ETO UR in the internet header can be used to

help distinguish these two different classes of packets.

When a nonlocal transit packet P (say, with the

destination address 3.2.1.4) arrives a t G2 with a value of

NO in the D ETO UR subfield, there is insufficient

routing information for G2 to decide to which link it

must forward such a packet. Thus, packet P will be

sent through Link A to G2’s parent node G l.

When G l receives packet P, the packet will be delivered

to a proper destination node if it is a local packet for

G l; otherwise, the packet will be detoured via Link A

(instead of going through faulty Link Y), setting a value

of YES in the DETOUR subfield.

When packet P arrives at G2 a second time, since it is

a nonlocal packet with a value of YES in the D ETO UR

subfield, it will be detoured via Link BL to reach its

final destination.

Hence, a single buddy link BL can be used as the backup link for

tree links X, Y and A. The internet transport system may still be able

to maintain its integrity without suffering from any partitioning should

any one of the tree links in the associated buddy loop fail.

95

5.3 Sum m ary

In this chapter, a ” buddy link” scheme has been shown to be a

cost-effective means to improve the reliability of the G A TEN ET internet

transport system. When properly installed, a buddy link can be used to

provide route alternations for any faulty tree link in the associated

buddy loop, thereby significantly reducing the num ber of extra links

needed to prevent internet partitioning.

CHAPTER VI
PERFORMANCE EVALUATIONS

OF GATENET

This chapter presents performance characteristics of the G ATENET

design utilizing the architectures and protocols discussed in Chapters 3

and 4. Section 6.1 briefly describes the motivations for conducting such

a performance study. Section 6.2 outlines a simulation model of

G A TENET, and Section 6.3 shows the parameters and assumptions used

in the simulation runs. Performance indices of interest are described in

Section 6.4. Section 6.5 presents a detailed discussion of G A TENET

performance under various operating and traffic conditions. Finally, a

sum m ary is presented.

96

97

6.1 M otivations

Flow and congestion control has been a major research topic in the

design of local area networks because of its substantial impact on the

performance of the underlying network operations. Due to the varying

network technologies and traffic patterns involved with each installation,

it is very difficult to obtain a good control strategy which will solve the

network congestion problems. The congestion problem is further

complicated in an internet environment where there are many LANs of

different characteristics interconnected and interacting with one another.

In addition, if both da ta and voice communication services are to be

supported by the same internet, special mechanisms must be devised to

accommodate the different requirements of da ta and voice traffic.

Performance optimization is often the most im portant goal when

designing a communication system. Many features, such as throughput,

delay, reliability, fairness, cost and expansibility, can be used as the

evaluation indices of network performance. Frequently, however, a

design strategy chosen to optimize a performance index may lead to the

degradation of other performance indices. It is therefore unrealistic to

expect tha t a single design choice will optimize the performance in all

ways. Thus, a tradeoff is unavoidable in the process of reaching a design

decision.

98

Due to the inherent complexity of modern communication systems,

the interactions among different design parameters are often difficult to

analyze or predict w ithout conducting a detailed simulation study or

actually measuring the performance of the target system. Thus, to aid

our design work during the course of this research, a network

communication simulator, called GATESIM, was developed as a tool to

s tudy the performance of GATENET.

GATESIM is written in SIM SCRIPT using discrete event-driven

simulation techniques. Although GATESIM has been used primarily to

evaluate the performance of GATENET, it is, in fact, a rather general

purpose network communication simulator. In GATESIM, each major

network feature is defined as a separate routine; hence, with some

modifications, GATESIM can easily be reconfigured to model different

network topologies, routing, or flow and congestion control mechanisms.

Initially, GATEISIM was used to investigate and compare the

various flow and congestion control mechanisms. After thoroughly

studying the behavior of GATENET, we determined tha t two levels of

flow and congestion control mechanisms would be required to improve

G A T E N E T ’s performance under heavy load conditions (see Section

4.2.3). Later, GATESIM was further used to evaluate G A T E N E T ’s

performance under various traffic patterns and to show how the

99

parameters related to the proposed flow and congestion control

mechanisms affect the performance. It is the latter part of the

performance study th a t will be covered in this chapter.

6.2 A Sim ulation M odel of G A T E N E T

As shown in Figure 17, our simulation model of G A TE N E T

consists of seven gateways, 12 regular links and two buddy links, with

each link in a simplex mode. Gateways and links are modeled as

follows:

Each gateway G (see Figure 18) is modeled as a single server with

three priority FCFS queues and a bounded buffer pool. The first queue,

which has the highest processing priority, contains the voice packets.

The second queue, which has the next highest processing priority,

contains the control packets. The third queue, having the lowest

processing priority, contains the data packets. The bounded buffer pool

is shared by all types of packets and is subject to the specified flow and

congestion control schemes.

Each gateway is also associated with a source generator, voice

generators, and a sink. At a specified rate, the source generator

100

generates new incoming traffic, including da ta packets and voice setup

control packets. Once a voice session is established, each speaker on

either side is modeled with a voice generator, which generates voice

packets a t a fixed rate. The sink consumes all the packets delivered to

it.

Each communication link (in simplex mode) is modeled as a single

server with one FCFS queue. No buffer pool is associated with a link.

6.3 Sim ulation A ssum ptions and Param eters

This section describes the assumptions and the parameters used in

the simulation.

1. The buffer pool at each gateway is structured into a number

of segments, each consisting of 72 bytes. Packets arriving at

a gateway without allocation of sufficient segments are

discarded.

2. The length of a da ta packet is determined according to the

distribution shown in Figure 19. The maximum length of a

d a ta packet is 512 bytes, each with an extra internet header

of 26 bytes. The length of a voice packet is 128 bytes, each

with an extra abbreviated internet header of 16 bytes. The

length of a control packet is 32 bytes, including the internet

header.

101

Buddy!
link

a : Simplex link server

□ : Gateway server

F i g u r e 1 7 . S im u la t io n m o d e l o f G A T E N 'E T

u
o

u
u

102

Transit
traffic

Source generator
< Data packets
I P a l l co t t in na Voice queue Outgoing

traffic
Control queue

Voice generators
Voice packetŝ

Voice packets
Data queue

Voice packets(

Voice packets, Bounded buffers

Sink

F i g u r e 1 8 . S im u la t i o n m o d e l o f a g a te w a y

103

% A
22/64 - -

14/64

8/64 ■■

6/64

—I-----------------(------------------1----------------- 1----------------- 1------------------1----------------- 1------------------— ►

64 128 192 256 320 384 448 512
Bytes

F i g u r e 1 9 . D i s t r i b u t io n o f d a t a p a c k e t l e n g th

4. Let the total num ber of segments in the buffer pool at each

gateway be TOTALBUF. According to the flow and

congestion control mechanisms specified in Section 4.2.3, no

more than MAXVOICE segments can be allocated to voice

traffic at any given time. When the buffer utilization exceeds

THRESHOLD, no more input da ta packets will be accepted

unless the total number of input d a ta packets is less than

MAXINDATA.

5. Since the size of the control packets is ra ther small, it is

assumed th a t the control packets are always accepted by the

gateways, accounting for no usage of the aforementioned

buffer pool.

6. The window size for the E C T E G flow control is WINDOW.

7. The rate of the new incoming packets generated by a source

generator is assumed to be a poisson process with a mean IR.

Among the new packets, 0.14% are voice setup control

packets; the rest are da ta packets. It is also assumed tha t

the destinations of the generated traffic are distributed

uniformly across the G ATENET.

8. With proper vocoding and silence detection techniques, each

voice generator is assumed to generate voice da ta at the rate

of 16 Kbps. Since the length of a voice packet is 128 bytes,

16 voice packets per second will be generated by each voice

generator.

9. In real environments, an EG T EG positive acknowledgment is

usually piggybacked through a da ta packet; hence, no extra

processing time is incurred at the intermediate gateways. In

order to account for delayed acknowledgments, we have

treated an EG T EG acknowledgment as a special da ta packet

which requires no processing time. Such a da ta packet is

placed in the th ird queue waiting to be serviced when it

arrives at a busy gateway. By doing so, we can get a more

accurate estimate of the transit delay of the EG TEG

acknowledgment.

10. The gateway processes a packet at a speed of 1/1800 of a

second. Each in terrupt for either an acknowledgment timeout

or a call holding timeout takes 1/10,000 of a second. Note

tha t due to the am ount of the traffic load, the root gateway

is assumed to have twice the processing speed and twice the

size of the buffer pool as do the rest of the gateways.

11. It is assumed tha t all the packets will be consumed at their

respective exit gateways.

12. The length of a voice call is assumed to be exponentially

distributed with a mean of 150 seconds.

13. The transmission speed at each link is 1,500,000 bps.

Transmission errors are assumed to be negligible.

14. The timeout period is 3.5 seconds. A d a ta packet may be

retransm itted up to three times.

15. The maximum holding period for each voice connection

request is 0.5 seconds.

.4 Perform ance M easurem ents

The performance indices of concern in this s tudy are as follows

1. Throughput (packets/sec): the num ber of packets per second

delivered to all the sinks in G A TE N ET. Throughputs for

da ta traffic and voice traffic are measured separately.

2. T ransit delay (sec): the time period between the arrival of a

packet at the source gateway and its delivery to the exit

gateway. T ransit delays for data, control, and voice packets

are measured separately.

3. T ransit da ta blocking probability: the ratio of the number of

dropped transit d a ta packets to the total num ber of da ta

packets adm itted in the GATENET.

4. Incoming d a ta blocking probability: the ratio of the number

of adm itted incoming da ta packets to the total number of

incoming d a ta packets.

5. Incoming call blocking probability: the ratio of the number

of rejected call requests to the total num ber of incoming call

requests in the G A TEN ET.

107

6.5 Sim ulation R esults

In this section, the results of five sets of experiments are examined.

Section 6.5.1 describes G A T E N E T ’s performance with respect to various

offered loads, including normal and faulty conditions. Section 6.5.2

shows the effect of different sized buffer pools on the performance of

G A TENET, while section 6.5.3 discusses the impact of different threshold

values on the system. T he effect of using different MAXINDATA values

with respect to a fixed TO TA LBU F is presented in Section 6.5.4. Next,

Section 6.5.5 shows G A T E N E T ’s performance under different window

sizes. A sum m ary is given in Section 6.5.6.

During each simulation run, many statistics were gathered, but

only the indices described in Section 6.4 will be discussed in the

following experiments. Samples collected for both da ta and voice traffic

statistics are in the order of five; thus, the results of the simulation

should be sufficiently accurate.

108

6.5.1 The Effect of Increasing the Offered Load

In this experiment, we studied G A T E N E T ’s behavior under various

offered loads. Cases of normal and faulty conditions are addressed.

The parameters used are as follows: WINDOW = 5, THRESHOLD =

0.75, TO TA LBU F = 440, MAXVOICE = 180 and MAXINDATA = 40.

The values used for the offered load range from 875 to 14,000 packets

per second. One thing to be noted here is tha t the offered load refers

to all of the load applied to the G A TENET, and it is assumed that

each gateway has an equal share of the total offered load.

6.5.1.1 Normal conditions

As shown in Figure 20, GATEiNET’s throughput grows as the

offered load increases; but as the offered load goes beyond a certain

am ount, the th roughput gradually saturates and maintains a rather

steady level thereafter. This behavior conforms to the requirements of

an ideal flow and control mechanism which is applied to prevent

throughput degradation from occurring as a result of overloading.

Figure 21 shows the average transit delay of the voice traffic,

classified according to the number of hops traversed during the internet

transmission. It shows th a t the voice transit delay fluctuates within a

ra ther small range and is insensitive to the increase of the offered load

L
S

U
K

U
J

^
I/tM

n
iU

U

109

THRUPUT VS OFFERED LOAD
WINDOW=5

TH RE5H -0.75
B U F -4 4 0 /1 6 0 /4 0

10000-
9500'

9000'

esoo'
6000 '

7500-

7000 '

R 6500 '

U 6000
2 5500 '

5000-

MS00-

3500-
9000<
2500-
2000

3500

1000 '

S00-
1 11 1 1

O F FERE D LORO I P R C K E T S / S E C l

LEGEND V : VOICE D : DATA T : TOTAL

F i g u r e 2 0 . G A T E N E T t h r o u g h p u t vs t h e o ffe red lo ad
(n o r m a l c o n d i t io n s)

110

once the offered load exceeds a certain limit (Standard deviation of the

voice transit delay is shown in Table 1.). As discussed in previous

chapters, minimization of the voice transit delay and its associated

variance are the most critical performance requirements for the support

of voice communication in a packet switched system. The results shown

here support our claim tha t the congestion and control measures

proposed in Section 4.2.3 can very effectively handle the GATENET

congestion conditions.

Table 2 shows the transit delay of the control traffic, and Figure

22 shows the transit delay of the data traffic. Due to the lowest

processing priority assigned to the da ta traffic, the da ta transit delay

increases as a result of the increased offered load; however, since the

delay increases at such a relatively slow rate, it should be able to fulfill

most of the da ta communication requirements.

Because of the flow and congestion control, most of the excessive

incoming data packets are rejected at the entry gateways. As a result,

the probability of discarding the transit da ta packets at busy gateways is

reduced, and waste of internet resources is also avoided. Figure 23

shows the transit d a ta blocking probability, which remains at an

extremely low and stable level irrespective of the amount of the offered

load. This is also a good indication of the effectiveness of our proposed

flow and congestion control mechanisms.

I l l

VOICE TRANSIT DELAY VS OFFERED LOAD
*IN‘D0Ws5

THRE>Hi0.75
BVF *440/180/40

v0
I
c
E

7ft
Ah
S
IT
0EIftT
IN
ft
S

10 12I 3 5 6 7 6 9

O F F E R E D L O A D l F * : r . E T 5 / 5 E C l

LEGEND N : NUMBER OF HOPS

F i g u r e 2 1 . G A T E N E T v o ice t r a n s i t d e la y vs
t h e o ffe red lo ad (n o r m a l c o n d i t io n s)

112

T a b le 1. S tandard deviation of voice transit delay
under various offered load (normal conditions)

1 L o a d 1 h o p 2 h o p s 3 h o p s 4 h o p s 5 h o p s |

1 8 7 5 0 . 5 0 . 7 0 . 8 1 . 1 0 . 7 . |

1 2 2 7 5 0 . 7 1 . 0 1 . 1 1 . 3 1 .6 |

I 4 2 0 0

COo

1 . 1 1 . 1 1 . 2 1 . 3 |

1 7 0 0 0 o CD 1 . 2 1 . 2 1 . 3 1 . 7 |

1 8 4 0 0

COO

1 . 1 1 . 5 1 . 3 1 . 3 I

1 1 0 5 0 0

CDO

1 . 0 1 . 3 1 . 4 1 . 3 |

1 1 4 0 0 0

CDO

1 . 2 1 . 3 1 . 5 1 .9 |
t

T a b le 2. G A T E N E T control transit delay vs
the offered load (normal conditions)

r L o a d | 1 h o p I 2 h o p s I 3 h o p s I 4 h o p s | 5 h o p s

8 7 5 | 2 | 4 | 5 I 6 | 7

2 2 7 5 I 1 1 | 17 | 1 6 I 18 I 17

4 2 0 0 | 17 | 2 4 | 19 I 2 5 | 2 6

7 0 0 0 | 2 3 | 3 2 | 2 5 I 3 7 | 2 5

8 4 0 0 | 2 7 | 3 1 I 2 6 I 3 3 I 31

1 0 5 0 0 | 2 7 | 3 8 | 3 2 | 31 | 2 9

1 4 0 0 0 I 3 2 | 3 6 I 3 7 | 4 9 | 3 3

114

DATA TRANSIT DELAY VS OFFERED LOAD
VIN'DOWsS

THRESH=0.75
B IT -4 4 0 /1 8 0 /4 0

T 150

100-

1 1 1 1 1

O FFE R E D L O f i r I P A C K E T S ' S E C I

LEGEND N : NUMBER OF HOPS

F i g u r e 2 2 . G A T E N E T d a t a t r a n s i t d e la y vs
t h e o ffe red lo ad (n o r m a l c o n d i t io n s)

115

Blocking probabilities for incoming data packets and incoming voice

calls are shown in Figures 24 and 25, respectively.

6.5.1.2 Faulty conditions

As discussed in Chapter 5, with properly installed buddy links, the

integrity of internet communication can still be maintained even when

there are link failures. This section describes G A T E N E T ’s performance

under various link failure conditions.

1. Link A fails. At light traffic, G A T E N E T ’s throughput

appears to not be affected by the failure of Link A (see

Figure 26), since the buddy link can provide appropriate

alternate routing for those packets tha t should have travelled

through Link A. However, as the offered load continues to

grow, the adverse effect of losing Link A becomes more

apparent, resulting in lower data and voice throughput, higher

d a ta and voice transit delay, higher incoming data and

incoming call blocking probability (see Figures 26-30).

However, the transit da ta blocking probability is lower than

tha t of normal conditions (see Figure 31). Because of the

higher incoming d a ta and incoming call blocking probabilities,

less traffic is adm itted to the G ATENET. As a result, the

probability of discarding the transit da ta packets will be

relatively lower when compared with tha t of normal

conditions.

2. Link Y fails. Because Link Y is directly connected to the

root gateway, the throughput (especially the voice throughput)

116
TRANSIT DATA BLOCKING VS OFFERED LOAD

WINDOW=5
T H R E3H *0.7S

B U F -= 4 4 0 /l 8 0 / 4 0

J .O -

0 . 9 -

0 . 8

1
A
AN
S
I
T

D
A1
A

BL0
CK]NC
IN

0 . 3Z

0.2

0 . 0 -

1M1311 12107 95 6 6321

OFFERED LORD IPRCKE1S/SECI

F i g u r e 2 3 . G A T E N E T t r a n s i t d a t a b lo c k in g vs
th e o ffe red lo ad (n o r m a l c o n d i t i o n s)

117

INCOMING DATA BLOCKING VS OFFERED LOAD
WIND0W=5

TH RESH =0.75
B U F M 4 0 / I 8 0 / 4 0

1 0 0 -

1N
C0H1NC
0fl
n
eL0cK
IN
C

1
N

20

10 11 12 14132 9 5 6 7 e 91 >1

OFFERED LOBO IPBCKE1S/SECI

F i g u r e 2 4 . G A T E N E T in c o m in g d a t a b lo c k in g vs
t h e o ffered lo ad (n o r m a l c o n d i t io n s)

INCOMING CALL BLOCKING VS OFFERED LOAD
W1ND0W=5

T H P.ESH -0.75
B l 'F = 4 4 0 / l 8 0 /4 0

1 0 0 -

9 0 -

70

5 0

10 -

]210]1 13 1
>41 2 3 5 E 7 8 9

OFFERED LORD IPRCKE7S/SECI

F i g u r e 2 5 . G A T E N E T in c o m in g ca l l b lo c k in g vs
t h e o ffe red lo a d (n o r m a l c o n d i t io n s)

119

in the previous case (see Figure 26). Because of the dramatic

decrease in the am ount of voice traffic, the da ta throughput

increases, and the incoming d a ta blocking probability is lower

(see Figure 29). Also, because of significantly reduced traffic

in the G A TENET, both the d a ta and voice transit delays are

lower than those under normal conditions (see Figures 27 and

28). Further, due to the large am ount of traffic th a t needs

to be rerouted via the buddy link, the transit da ta blocking

probability is much higher (see Figure 31).

6.5.2 The Effect of Increasing the Size of the Buffer Pool

This experiment studied G A T E N E T ’s performance with respect to

different sizes of the buffer pool. The parameters used in this experiment

are as follows: WINDOW = 5, THRESHOLD = 0.75, MAXVOICE =

180 and the offered load — 1575 packets per second. The values used

for TO TA LBU F range from 260 to 560, and MAXINDATA is assumed

to be 15% of (TOTALBUF-M AXVOICE).

As the size of the buffer pool increases, more incoming da ta

packets will be adm itted to the G A TEN ET, thus leading to the increase

of the da ta throughput (see Figure 32). However, the rate of

throughput increase quickly slows down as the pool size exceeds a

certain value. The voice throughput is not affected by this change.

This is in accordance with the G A TE N E T design, which gives voice

120

T H R U P U T VS O F F E R E D LOAD
WINDOVsS

THRE5H-0.75
B U F -4 4 0 /1 0 0 /4 0

9500 '

900 0 ’

esoo-

6000 '

75C0-

7000'

fl 6500-

6000 '

5S00<

5000'

3000-

2500'

20 0 0 '

1500-

1000 '

B2 2 5 7 7 61 1 3 3 5 6 6

OFFERED LORD IPRCHET5/SEC)

LEGEND (VOICE) 1 : NORMAL 4 : Y FAILS 7 : A FAILS
(DATA) £ : NORMAL 5 : Y FAILS 6 ; A FAILS
(TOTAL) 0 : NORMAL 0 : Y FAILS 9 : A FAILS

F i g u r e 2 6 . G A T E N E T t h r o u g h p u t vs
t h e o ffe red lo ad (f a u l ty c o n d i t io n s)

121

V O ICE T R A N S IT DELAY V S O F F E R E D LOAD
WIND0W=5

THR£SH=0.?5
BUF**40/180/40

1 0 . 0 -

9.5-

9.0-

e.s

7.5*

7.0*
V0
1 6.5*
C
E

6 . 0*
7
n
ft 5.5*
N
S
I 5.0*
7
0

3 . 5

H 3.0*
S

2.5*

2 . 0

0 . 5

0 . 0 -

887 765 6533

OFFERED LORD IPRCKE75/5EC)

LEGEND 1 : NORMAL 2 : Y FAILS 3 : A FAILS

F i g u r e 2 7 . G A T E N E T v o ice t r a n s i t d e la y vs
t h e o ffe red lo a d (f a u l ty c o n d i t io n s)

122

DATA T R A N S IT DELAY VS O F F E R E D LOAD
¥IND0W=5

THRESHs0.75
B U F -4 4 0 /1 0 0 /4 0

100 -

90

80-

70-0fl7
A

7A
ANS1
7

0
EL
A
7

1N
H
S

25

e6 7 7 83 5 5 62 2 3 M1 1

0FFERE0 LORO (PRCKET5/SEC)

LEGEND I : NORMAL 2 : Y FAILS 9 : A FAILS

F i g u r e 2 8 . G A T E N E T d a t a t r a n s i t d e la y vs
t h e o ffe red lo ad (fau l ty c o n d i t io n s)

123

INCOMING DATA BLOCKING VS OFFERED LOAD
WJNDOW=S

THRESH-0.7S
B U F = 4 4 0 /IB 0 /4 0

90

1
N
C0H1
N
C

0
ni
R

BI0
CK1
NC
1N

20>

10-

2 3 7 B B2 3 S 5 6 6 71 1

OFFERED LORD IPRCKE7S/SEC)

LEGEND 1 : NORMAL 2 : V FAU£ 3 : A FAILS

F i g u r e 2 9 . G A T E N E T in c o m in g d a t a b lo c k in g vs
t h e o ffe red lo a d (f a u l ty c o n d i t i o n s)

124

INCOMING CALL BLOCKING VS OFFERED LOAD
WINDOWS®

TBRESHs 0.75
BUF= 4 4 0 /1 6 0 /4 0

100-

00

1
N
c
0H1MC
C
n
L
L

BL
0
CK1NC
IN

6 86 7 75 5 62 3 3 421

OFFERED LORO (PACKETS/SEC)

LEGEND 1 ; NORIUL 2 : Y FAILS 3 ; A FAILS

F i g u r e 3 0 . G A T E N E T in c o m in g ca ll b lo c k in g vs
t h e o ffe red lo ad (f a u l ty c o n d i t i o n s

125

TRANSIT DATA BLOCKING VS OFFERED LOAD
TO fD O¥s5

THRESH=0.75
8 U F = 4 4 0 /1 8 0 /4 0

1 . 0 -

0 .9

0 .8

7 0 .7 -R
R
N S 1
T 0 .6-

0
n7n o.s-B
L0
cft] 0.N-N
C

1
N

0 .3 -l

0 . 2*

0.1

°'H"
s00

LEGEND I : NORMAL 2 : Y FAILS 3 : A FAILS

F i g u r e 3 1 . G A T E N E T t r a n s i t d a t a b lo c k in g vs
t h e o ffe red lo ad (f a u l ty c o n d i t io n s)

/ 'v
I I I

...... ..i, ■■■ ii..... .
1 1 2 2 3 3 4 <4 5 s 6 6 7 7 8 8
0 s 0 5 0 5 0 S 0 5 0 5 0 5 0 S
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0

OFFERED LORD (PACKET5/SEC)

126

traffic the highest processing priority and subjects it to an upper bound

of buffer utilization at any given time.

Figure 33 shows th a t the average da ta transit delay increases as

the size of the buffer pool becomes larger. This situation is also as

expected, since the larger the buffer size, the more incoming da ta

packets will be adm itted into the G A TENET. However, the processing

speed at the gateways remains the same. Hence, on the average, more

queueing time is needed to service each d a ta packet.

Observations from Figures 32 and 33 suggest th a t once the size of

the buffer pool has grown to a certain value increasing the buffer size is

no longer a good stra tegy to improve GATENElT’s performance. This is

because such a move produces only a small gain in throughput and

significantly increases the d a ta transit delay.

Figures 34 and 35 show the respective blocking probabilities for the

transit da ta and incoming d a ta traffic.

asg)eu»-tf)N
V

)w
u

127

DATA THRUPUT VS TOTAL BUFFERS
WINDOW=5

T H R ESH =0.79
INLOAD=1575

11 8 0

1160

D 1140

H 1120

1100-

1060-

1020

1000 -

3 6 0 3 8 0 4 0 0 4 2 0 4 4 0 4 6 0 4 8 0 5 0 0 5 2 0 5 4 0 5 60

TOTAL BUFFERS (SEGMENTS)

F i g u r e 3 2 . G A T E N E T t h r o u g h p u t vs
s ize o f t h e b u f fe r poo l

ms

x*
-*

-<
sr

-m
o

-4
»t

nx
sa

-4

fi
*4

so

128

DATA TRANSIT DELAY VS TOTAL BUFFERS
W N D O »=S

TH RESH =0.75
»L O A D = 1 5 7 5

100-

9 0 '

BO

3 0 -

20 -

2B 0 3 0 0 3 2 0 3 4 0 3 6 0 3 6 0 4 0 0 4 2 0 4 4 0 4 6 0 4 8 0 5 0 0 5 2 0 5 4 0 5 6 0

TOTRl BUFFERS (SEGMENTS!

F i g u r e 3 3 . G A T E N E T d a t a t r a n s i t d e la y vs
size o f t h e b u f fe r poo l

129

TRANSIT DATA BLOCKING VS TOTAL BUFFERS
*IN T0W =5

TH RESH =0.75
INU>AD=1575

3 .0 -1

2.8

2.8

T
n
A
N
S1
T

0
AT
A

8
L0
CK]
N
C

I
N

X
0 .8

0 . 6<

0 . 4

0 . 2 '

0 . 0-

2 8 0 3 0 0 3 2 0 3 4 0 3 6 0 3 8 0 4 0 0 4 2 0 4 4 0 4 6 0 4 8 0 5 0 0 5 2 0 5 4 0 5 8 0

TOTAL BUFFERS (SEGMENTS)

F i g u r e 3 4 . G A T E N E T t r a n s i t d a t a b lo c k in g vs
s ize o f t h e b u f fe r pool

INCOMING DATA BLOCKING VS TOTAL BUFFERS
WINDOW=5

T H R ESH =0.75
INLOAD=JS75

50H

N 35 '

R 30-

N 25-

20 -

10 -

2 6 0 2 0 0 3 0 0 3 2 0 3 4 0 3 6 0 3 8 0 4 0 0 4 2 0 4 4 0 4 6 0 4 8 0 5 0 0 5 2 0 5 4 0 5 6 0

TOIRL BUFFERS (SEGMENTS!

F i g u r e 3 5 . G A T E N E T in c o m in g d a t a b lo c k in g vs
size o f t h e b u f fe r pool

131

6.5.3 The Effect of Increasing the Threshold Value

In this experiment, the effect of increasing the threshold value on

G A T E N E T ’s performance was studied. The parameters used in the

experiment are as follows: WINDOW = 5, TOTALBUF = 440,

MAXVOICE = 180, MAXINDATA = 40 and the offered load = 1575

packets per second. The values used for THRESHOLD range from 0.60

to 1.00.

Figure 36 shows th a t the d a ta throughput increases slightly as the

threshold value becomes larger. This is due to the fact tha t a larger

threshold value allows more incoming da ta packets to be adm itted to the

G A TEN ET. The voice th roughput is not affected when the threshold

value is changed.

Figure 37 shows the d a ta transit delay. Since more incoming data

traffic will be adm itted into the G A TE N E T as a result of the increased

threshold value, the d a ta transit delay will increase accordingly. But as

the threshold value approaches a certain limit, the transit delay

decreases rapidly. This situation may look strange at first glance, but

it, in fact, highlights a serious problem which often appears in a

congested network. Due to the lack of proper congestion control, when

congestion occurs, only the da ta packets requiring fewer hops can be

delivered to their destination hosts, and the data packets requiring more

132

DATA THRUPUT VS INPUT THRESHOLD
TOrt)OW=S

BUF=MO/1BO/40
1NL0AD=1575

1200 -

1160'

11 6 0 '

0 1140

H 1120

1100

C 1 0 6 0 -

S 1060 '

10 4 0 '

1020

1000 -

1.000 .7 5 0 .6 0 0 .6 5 0 .9 0 0 .9 50 .6 0 0 .6 5 0 .7 0

INPUT THRESHOLO

F i g u r e 3 6 . G A T E N E T t h r o u g h p u t vs
t h e t h r e s h o ld v a lu e o f i n p u t b u f fe r l im it

133

hops to get to their destination are more likely to be discarded en route.

As a result, the average transit da ta delay decreases as the network

congestion is aggravated. Figure 38 shows the blocking probability of

the transit da ta traffic.

Observations from this experiment show tha t the da ta throughput

can be slightly increased if the threshold value is set higher. However,

such a threshold value should be carefully chosen so th a t it will not go

beyond a limit at which the d a ta transit delay begins to deteriorate.

6.5.4 The Effect of Increasing the Window Size

In this experiment, we studied the effect on G A T E N E T ’s

performance of increased window size. The parameters used in this

experiment are as follows: THRESHOLD = 0.75, TOTALHLT' — 440,

MAXVOICE = 180, MAXINDATA — 40 and the offered load -- 1575

packets per second. The values used for the window size range from

one to 12.

Initially, G A T E N E T ’s throughput increases as the window size

becomes larger (see Figure 39). However, after the window size reaches

a certain value, the throughput begins to decline. The explanation for

this behavior is the fact tha t more incoming da ta traffic (than the

amount the GATENET can handle) will be adm itted to G A TEN ET as a

DATA TRANSIT DELAY VS INPUT THRESHOLD
WINDOW=5

B U F = * 4 0 /1 8 0 /4 0
INLOAD=1575

6 0 -

0 SO'

T 45'

35

3 0 -

0 . 9 S 1 .000 .7 5 o.eo 0 .6 5 0 .9 00 .6 5 0 . 7 00 .6 0

INPUT THRESHOLD

F i g u r e 3 7 . G A T E N E T t r a n s i t d a t a d e la y vs
t h e t h r e s h o ld v a lu e o f i n p u t b u ffe r l im it

135

TRANSIT DATA BLOCKING VS IN PU T THRESHOLD
WINDOW=5

BUF=440/18 0 /40
DU0AD=1575

5. OH

4.5

4 .0 '

7
nn
NsiT

2 .5 -
BL0
CK)
N
G

I
N

X

0 .5

0 . 0-
1.000.950 .900 .950.75 0.900 .700.650.60

1NPU7 THRESHOLD

F i g u r e 3 8 . G A T E N E T t r a n s i t d a t a b l o c k i n g vs
t h e t h r e s h o l d v a l u e o f i n p u t b u f f e r l imi t

136

result of the larger window size. The larger window subsequently leads

to significantly higher blocking probability for the transit d a ta traffic

(see Figure 40).

The da ta transit delay increases as the window size becomes larger

(see Figure 41) because the larger size allows more incoming da ta traffic

to be adm itted to G A TE N E T. Thus, on the average, more queueing

time is needed for each da ta packet to be serviced. Figure 42 shows the

blocking probability of the incoming da ta traffic.

6.5.5 The Effect of Increasing Incoming Data Limit

This experiment studied the impact on G A T E N E T ’s performance of

increased incoming d a ta limit. The parameters used in this experiment

are as follows: WINDOW = 5, THRESHOLD = 0.75, T O T ALB UF =

440, MAXVOICE = 180 and the offered load = 1575 packets per

second. The values used for MAXINDATA range from 0 to 260.

As shown in Figure 43, G A T E N E T ’s throughput grows slightly as

the value of MAXINDATA increases. The voice throughput is not

affected by this change until MAXINDATA increases to a value tha t will

affect the buffer utilization for voice traffic. Such a case is not

encountered with the range chosen for this experiment.

137

DATA THRUPUT VS WINDOW SIZE
INLOAD=1573
TH RESH =0.75

BUF= 4 4 0 /1 8 0 /4 0

1180 '

1160

0 11U0

H 1120 '

1100

C 1 0 8 0 -

S 1 0 6 0 -

1000 '

1210 115 6 7 8 92 3
H1N00H SIZE

F i g u r e 3 9 . G A T E N E T t h r o u g h p u t vs t h e w i n d o w s ize

138

TRANSIT DATA BLOCKING VS WINDOW SIZE
INLOAD=1575
T H R ESH =0.75

B U F = 4 4 0 / l 8 0 /4 0

3.0
2.9
2.8
2.7
2 . 6 '

2.5-

2.1
2.3
2 . 2

T
R
n
Ns1
T

0
R
T
R

8
L0
CK
I
NC
1N

0 . 9
Z

0.8

0 .7 -

0 . 6-

0.5

0.1

0 .3

0.2

0 . 0'

8 107 9 115 64
MINDOH SIZE

F i g u r e 4 0 . G A T E N E T t r a n s i t d a t a b l o c k i n g vs
t h e w i n d o w s ize

139

DATA TRANSIT DELAY VS WINDOW SIZE
1NL0AD=1S75
THRESH=0.75

BUFs«40/180/40

BO-

7 5

70

R 50

0 MS

L 35

5 2 5

6 7 B 9 10 123 5 111 2
H1N00H SIZE

F ig u re 4 1 . G A T E N E T d a t a t r a n s i t d e l a y vs
t h e w i n d o w s ize

140

INCOMING DATA BLOCKING VS WINDOW SIZE
INL0AD=1575
THRESH=0.75

B U F = « 4 0 /1 8 0 /4 0

50-

MO-

N 30 '

fl 25

K 20-

N 15

M1ND0M SIZE

F i g u r e 4 2 . G A T E N E T i n c o m i n g d a t a b l o c k i n g vs
t h e w i n d o w s ize

a.au
jx

iu
r-tn

'v
in

u
ju

141

DATA TH RUPUT VS INCOMING DATA LIMIT
WIND0W=5

T H R IS H -O .B
B U F M 4 0 /1 B 0
INLOAD= 1 5 7 5

1200 -

11 BO

1160

o i mo

H 1120 '

1100

1000 '

1 060 '

1000 -

1 00 120 1V0 1 60 100 2 0 0 2 2 0 2 1 0 2 6 06 0 BO
INCOMING DOTH LIMIT ISEGHENTSI

F i g u r e 4 3 . G A T E N E T t h r o u g h p u t vs
i n c o m i n g d a t a l im i t

142

Figure 44 shows the behavior of da ta transit delay. Initially, as

MAXINDATA increases, more incoming d a ta packets are adm itted to

G A TEN ET, which subsequently increases the average da ta transit delay.

But as MAXINDATA continues to increase, even more incoming da ta

traffic is adm itted to G A TEN ET. Consequently, the buffer segments

originally available for the transit data traffic are depleted, leading to a

significantly higher transit da ta blocking probability (see Figure 45). As

a result, only the da ta packets with fewer hops can be delivered to their

destinations, and thus the average transit delay becomes smaller.

Tuning MAXINDATA is very closely related to the setting of the

threshold value. Depending on the setting of the threshold value,

MAXINDATA can be tuned to maximize the system performance.

However, such tuning should be carefully performed so tha t satisfactory

performance can be constantly maintained. One possible usage of

MAXINDATA is to allow a certain portion of the system resources

accessible at any given time to incoming new traffic. By enforcing the

incoming da ta limit, during the heavy traffic period the new da ta traffic

will still have a fair chance of entering the G A TE N E T instead of being

blocked out as most flow control mechanisms usually do.

DATA TRANSIT DELAY VS INCOMING DATA LIMIT
WINDOWS

T H R ESH =0.6
B U F = 4 4 0 /1 B 0
INLOAD=1575

60-J

6 5 -

R 60 '

R 55

5 0 '

10 -

35-

20 -

100 1 20 110 1 60 1 6 0 2 0 0 2 2 0 2 1 0 2 6 0606 010
INCOMING DfiTB LIMIT ISEGHENTSI

F i g u r e 4 4 . G A T E N E T d a t a t r a n s i t d e l a y vs
i n c o m i n g d a t a l im i t

144

TRANSIT DATA BLOCKING VS INCOMING DATA LIMIT
HNDOT=S

THRESH=0.75
BUF=*40/180
1NU>AD=1575

1.5-

1 . 4 -

1 .3-

TRRN
S1
7

0
R
7
R

BI0
CK
I
N
C

1
N

Z
0 .4 -

0 . 3 -

0.2

0 . 0 -

100 120 140 160 180 200 220 240 26060 600 20
INCOMING DR7R L1N17 ISEGHEN7SI

F i g u r e 4 5 . G A T E N E T t r a n s i t d a t a b l o c k i n g vs
i n c o m i n g d a t a l im i t

6.6 Sum m ary

In this chapter, we have described a G A TEN ET simulation model.

Furtherm ore, simulation results with respect to various operating

conditions have been presented and discussed. All the results support

the G A TE N E T behavior predicted by our proposed flow and congestion

control mechanisms. Thus, we conclude tha t the G A TE N E T design is a

feasible and cost-effective method to achieve satisfactory voice and data

communication services in a campus-wide area.

CHAPTER VII
SUMMARY AND CONCLUSIONS

This chapter summarizes the main research results presented in the

previous chapters. Possible directions for future research are also

identified.

7.1 Sum m ary

The objective of this research has been to design an internet

transport system within a campus-wide area so tha t voice and data

communication services can be achieved in a cost-effective and elegant

way.

Driven by the recent rapid advances in computing and

communication technologies and the growing demands of integrated data,

voice, facsimile and video services in an office environment, network

146

147

interconnection is receiving more and more recognition as a necessary

element to meet such demands in the future. Existing internets are

generally constructed out of the natural growth of demands from the

user community. Consequently most internets are oriented toward

fulfilling the immediate application requirements. While this approach

can provide a quick solution, it inevitably leaves many constraints on

the ability of the internet system to adap t to evolving technologies.

In this dissertation, a new network interconnection strategy, called

G A TEN ET, is presented as an effective means to achieve satisfactory

voice and da ta communication services. In Chapter 3, G A TENET is

presented from an architectural point of view. Based upon the

hierarchical s tructure of GATENET, the addressing and routing schemes

are then defined to support the internet transport functions. Advantages

and disadvantages of GATENET compared with the conventional

gateway internetworking approaches are also discussed.

Communication protocols are the kernel of a communication

system. Efficiency of protocols can often greatly enhance or degrade the

internet performance. Since the majority of d a ta and voice traffic within

a campus-wide area is for inter-office communication, special da ta

transport and voice transport protocols have been developed in Chapter

4 to meet such communication needs. In an internet environment, with

148

many users engaging in various types of applications, it is likely that,

from time to time, instantaneous traffic loads will greatly exceed the

internet capacity. To prevent serious performance degradation due to

occasional overloaded conditions, flow and congestion control is called

for. In G A TENET, two levels of flow control mechanisms are used to

regulate the internet traffic flow so th a t voice and da ta communications

can proceed smoothly under various traffic conditions. Interconnecting

incompatible networks is often a complicated and tedious task. In order

to minimize the software development overheads, optional transport layer

protocol support is also included in the G A TE N E T design.

An internet usually consists of a wide variety of equipment and is

accessed by many users every day. Therefore, the reliability of such an

internet m ust be properly addressed to ensure th a t internet service

interruptions are reduced to a minimum. Although a redundancy

approach can be employed to improve internet reliability, it is

nevertheless a ra ther costly solution and is often not economically

justified in a campus-wide environment. Hence, Chapter 5 presents a

” buddy link” scheme as a cost-effective means to improve G A TEN ET

reliability.

Performance is the most im portan t index in designing a

communication system. Every design param eter should be chosen to

149

improve one or more performance aspects such as delay, throughput,

cost, distance, etc. At the various stages of designing a communication

system, a simulation model can often provide many helpful insights into

the target system. In Chapter 6, a network communication simulator,

called GATESIM, is presented as a tool to study the performance

aspects of G A TENET. Simulation results with respect to various

operating and traffic conditions are then presented.

7.2 Areas for future research

As mentioned in Chapter 1, because of rapid advances in fiber

optics, traffic bottlenecks in modern communication systems have moved

from transmission elements to switching elements. In order to keep pace

with the extremely high data rates of fiber optical transmission media,

very fast packet switching processors must be devised. The traditional

store and forward approach is inadequate to cope with such voluminous,

high speed incoming traffic because the approach calls for both a

tremendous am ount of memory to buffer the incoming packets and the

use of very fast (and thus costly) memory systems to keep up with its

processing speed. To handle the high speed incoming traffic, several

schemes have been proposed using non-buffering and non-blocking

interconnection network (IN) techniques and have produced encouraging

150

results. However, the fact tha t these schemes are too costly and

complicated to be built suggests tha t more research work is needed in

this area.

This dissertation has concentrated on the design of an internet

transport system, and in Chapter 4 protocols are defined to support the

internet transport functions. However, to access GATENET, an interface

protocol specific to each connecting LAN m ust also be properly defined

to synchronize the speed mismatch between the connecting LAN and the

entry gateway. Further investigations in this area will enhance the

G A TE N E T design. In addition, development of high level application

protocols, such as file transfer protocols, conferencing protocols and

remote access protocols, are also needed to make the G A TENET design

even more complete.

In Chapter 6, our simulation results have shown tha t the

G A TE N E T design can provide satisfactory voice and da ta communication

services under various traffic conditions. However, the design has not

been tested in real environments. It would be a worthwhile endeavour

to apply the G A TEN ET design in some prototype systems. Currently,

there are several existing networks at the IRCC/CIS Computing

Laboratory; experimental work built on top of these networks would

provide solid groundwork for such prototyping efforts.

151

7.3 Conclusions

During the past decade, the price-performance revolution in

computing and communication technologies has transformed the world

into a new information age. As the m om entum of office automation

continues to grow, more and more local area networks will multiply. As

a result, the capability to interconnect and communicate with other

networks will become an indispensable aspect of any future network

design. In the meantime, after a decade’s debate and study, the

economic incentive and the technical advantages of the integration of

voice and da ta traffic over the same communication system have also

gained worldwide recognition, moving from the conceptual to the

realization stage.

Because of this trend, it is expected tha t the distinction between

the functionality of a computer network and a telephone network will be

blurred in the years to come. In the telephone industry, the Integrated

Services Digital Networks (ISDN) project, which aims to provide

cost-effective end-to-end digital connectivity supporting a wide range of

voice and nonvoice services, has already gone into the planning and

deployment phases. It is projected tha t by the turn of the century such

services will be available to most commercial and residential users. On

the other hand, due to the abundan t bandwidth made available by fiber

152

optics technology, many computer vendors also have undertaken efforts

to enhance their network capabilities to support integrated da ta and

voice communication services. We believe th a t an efficient internet

providing integrated voice and da ta services will soon become a reality.

We also believe tha t the G A TENET approach is suitable for meeting

such a challenge.

APPENDIX A.
GATESIM: A NETWORK

COMMUNICATION SIMULATOR

In this appendix, a network communication simulator called

GATESIM is presented. GATESIM is w ritten in SIM SCRIPT using

discrete event-driven simulation techniques. It consists of seven

gateways, 12 regular links and two buddy links, with each link in a

simplex mode. Although GATESIM has been used primarily to evaluate

the performance of G A TE N E T, it is, in fact, a rather general purpose

network communication simulator. In GATESIM, each major network

feature is defined as a separate routine; hence, with some modifications,

GATESIM can easily be reconfigured to model different network

topologies, routing, or flow and congestion control mechanisms.

153

* *
* THIS PREAMBLE SECTIOtl DEFINES THE FOLLOWING ITEMS: *
He *
* 1. CONSTANTS, VARIABLES AND PARAMETERS *
* 2. PROCESSES AND EVENTS *
* 3. PERMANENT AND TEMPORARY ENTITIES *
* 4. STATISTICAL VARIABLES *
He *

HeHeHeHeHeHeHeHeHeHeHjHeHeHeHeHeHeHeHeHcHeHeHeHsHeHeHeHeHeHeHeHeHeHeĤ HeHeHeHeHeHcHeHejfcjfcHeHeHeHeHeH^HeHeHeHeHe

PREAMBLE LAST COLUMN IS 72 ”
NORMALLY MODE IS INTEGER
DEFINE .VOICE.CONNECT TO MEAN 1
DEFINE .VOICE.CONTENTS TO MEAN 2
DEFINE .VOICE.DISCONNECT TO MEAN 3
DEFINE .VOICE.ACCEPT TO MEAN 4
DEFINE .VOICE.REJECT TO MEAN 5
DEFINE .VOICE.DISCACK TO MEAN 6
DEFINE .DATA.CONTENTS TO MEAN 7
DEFINE .DATA.ACK TO MEAN 8

DEFINE .IDLE TO MEAN 0
DEFINE .BUSY TO MEAN 1
DEFINE .SENDER TO MEAN 0
DEFINE .RECEIVER TO MEAN 1
DEFINE .TALKING TO MEAN 0
DEFINE .DISCONNECTING TO MEAN 1
DEFINE .STARTPT TO MEAN 60
DEFINE .SEGLENG TO MEAN 72
DEFINE .VSEG TO MEAN 4
DEFINE .VPACKLENG TO MEAN (.VSEG*.SEGLENG)/2
DEFINE .BUFIIO TO MEAN 440
DEFINE .UPPERIN TO MEAN 40
DEFINE .UPPERVO TO MEAN 180
DEFINE .YES TO MEAN 1
DEFINE .HO TO MEAN 0
DEFINE .ON TO MEAN 1
DEFINE .OFF TO MEAN 0
DEFINE .THRESHOLD TO MEAN 0.75
DEFINE .WINDOWSIZE TO MEAN 5

DEFINE .FAIL TO MEAN 0

DEFINE .ACKTOTIME TO MEAN O.OOOl
DEFINE .HOLDTOTIME TO MEAN 0.0001
DEFINE .HOLDTIME TO MEAN 0.05
DEFINE .PROCESSORTIME TO MEAN 1/1800
DEFINE .TIMELIMIT TO MEAN 180
DEFINE .TIMEOUT TO MEAN 3.5
DEFINE .TALKTIME TO MEAN 150.0
DEFINE .INPACKRATE TO MEAN 225
DEFINE .CALLRATE TO MEAN .0014
DEFINE .NETLEVEL TO MEAN 3
DEFINE .LINESPEED TO MEAN 1500000

THE SYSTEM HAS A RANDADDR RANDOM STEP VARIABLE
THE SYSTEM HAS A RAMDLENG RANDOM LINEAR VARIABLE
DEFINE RANDADDR AS AN INTEGER, STREAM 8 VARIABLE
DEFINE RAMDLENG AS AN REAL, STREAM 9 VARIABLE

PROCESSES
EVERY GENERATOR HAS A GATE1I01
EVERY VOICESESSION HAS A PACKN02, A GATEH02, A IDEMTN02

EVENT NOTICES INCLUDE OUTPUT, BEGIMSTAT
EVERY LNKARRIVAL HAS A PACKN03, A LNKN03
EVERY LNKEHDSERVICE HAS A PACKN04, A LNKN04
EVERY GATEARRIVAL HAS A PACKN05, A GATEN05
EVERY GATEENDSERVICE HAS A PACKN06, A GATEN06
EVERY ACKTIMEOUT HAS A PACKN07, A GATEN07
EVERY HOLDTIMEOUT HAS A PACKM08, A GATEN08

TEMPORARY ENTITIES
EVERY PACKET HAS AN ARRIVALTIME, A TIMEID, A SEQID, A SRCMO,

A DSTNO, A PACKCLASS, A PACKLENG, A PACKSEG,
AN ENTRYMARK, A RETRYTIMES, A TIMESTAMP, A SUBSEQID,
AN ACKTAG, A HOLDTAG, A DETOUR, A HOPCOUNT,
MAY BELONG TO A LNKQUEUE,
MAY BELONG TO A GATEQUEUE.1ST,
MAY BELONG TO A GATEQUEUE.2ND,
MAY BELONG TO A GATEQUEUE.3RD,
MAY BELONG TO A BUFQUEUE, AND
MAY BELONG TO AN ACKQUEUE

156

DEFINE ARRIVALTIME,SEQID, TIMEID, TIMESTAMP AS REAL VARIABLES

EVERY SESSION HAS A SESSTAG, A SESSSEQ, A SESSTID,
A SESSTIMESTAMP, A SESSSRC, A SESSDST.A SESSMODE,
A SESSSTATUS,
MAY BELONG TO AN ACTIVESESSQUEUE

DEFINE SESSSEQ, SESSTID, SESSTIMESTAMP AS REAL VARIABLES

PERMANENT ENTITIES
EVERY GATEWAY HAS A GATESTATUS, AN INTRTIME, A BUF,

A BUF.TRAN, A BUF.IN, A BUF.VOICE, AN OVERRUN,
A PACK.TRAN, A PACK.IN, A RED, A BDLHK,
AN UPLNK, A DNLNK1, A DNLNK2, A DNLNK3,
A GCOUNT.VOICE.THRUPUT, A GCOUNT.DATA.THRUPUT,
A GCOUNT.VOICE.INLOAD, A GCOUNT.DATA.INLOAD,
A GCOUNT.VOICE.IN,
A GCOUNT.VOICE.SUCCESS, A GCOUNT.DATA.IN,
A GCOUNT.DATA.ADMIT, A GCOUNT.DATA.SUCCESS,
A GCOUNT.DATA.ADMITLD,
A GCOUNT.DATA.ACK, A GCOUNT.CONTROL.ACK,
A GCOUNT.VOICE.SESSIN, A GCOUNT.VOICE.SESSACC,
A GCOUNT.VOICE.SESSEND,
A GCOUNT.RETRY.PACK, A GCOUNT.RETRY.FREQ,
A GCOUNT.RETRY.SUCCESS, A GTRANSDELAY.VOICE,
A GCOUNT.DATA.REJECT, A GCOUNT.VOICE.SESSREJ,
A GTRANSDELAY.DATA,
A GTRANSDELAY.CONTROL, A UPPERVO, A UPPERIN, A BUFNO,
A PACKTO, A PHOLDTO, A PEXEC,
OWNS A GATEQUEUE.1ST,
OWNS A GATEQUEUE.2ND,
OWNS A GATEQUEUE.3RD,
OWNS AN ACKQUEUE,
OWNS A BUFQUEUE,
OWNS AN ACTIVESESSQUEUE

DEFINE GCOUNT.DATA.ADMITLD AS A REAL VARIABLE
DEFINE PACKTO,PHOLDTO,PEXEC,PIN AS REAL VARIABLES
DEFINE INTRTIME, PRTIME AS REAL VARIABLES
DEFINE GTRANSDELAY.VOICE, GTRANSDELAY.DATA,

GTRANSDELAY.CONTROL AS REAL VARIABLES
DEFINE GCOUNT.VOICE.THRUPUT, GCOUNT.DATA.THRUPUT,

TCOUNT.VOICE.THRUPUT, TCOUNT.DATA.THRUPUT AS

157

REAL VARIABLES
DEFINE GCOUNT.VOICE.INLOAD, GCOUNT.DATA.INLOAD,

TCOUNT.VOICE.INLOAD, TCOUNT.DATA.INLOAD,
TCOUNT.DATA.ADMITLD AS REAL VARIABLES

EVERY LINK HAS A LNKSTATUS, A FROMGATE, A TOGATE,
A LNKSPEED AND OWNS A LNKQUEUE

EVERY DSTGATE HAS AN ADDR
DEFINE ADDR AS A TEXT VARIABLE

EVERY HOPCLASS HAS A HOPDELAY.D , A HOPSUC.D, A HOPREJ.D,
A HOPDELAY.V, A HOPSUC.V, A HOPREJ.V,
A HOPDELAY.C, A HOPSUC.C,
A HOPSESSDELAY, A HOPSESSACC, A HOPSESSREJ

DEFINE HOPDELAY.D, HOPDELAY.V, HOPDELAY.C AS REAL VARIABLES
DEFINE HOPSESSDELAY AS A REAL VARIABLE
DEFINE TCOUNT.VOICE.IN,

TCOUNT.VOICE.SUCCESS, TCOUNT.DATA.IN,
TCOUNT.DATA.ADMIT, TCOUNT.DATA.SUCCESS,
TCOUNT.RETRY.SUCCESS,
TCOUNT.DATA.ACK AS INTEGER VARIABLES

DEFINE TCOUNT.VOICE.SESSIN, TCOUNT.CONTROL.ACK,
TCOUNT.VOICE.SESSEND,
TCOUNT.DATA.REJECT, TCOUNT.VOICE.SESSREJ,
TCOUNT.VOICE.SESSACC AS INTEGER VARIABLES

DEFINE TCOUNT.RETRY.PACK, TCOUNT.RETRY.FREQ AS INTEGER
VARIABLES

DEFINE TRANSDELAY.VOICE, TRANSDELAY.DATA, TRANSDELAY.CONTROL,
TRANSDELAY.VOICE.CONNECT AS REAL VARIABLES

DEFINE WINDOW AS A 2-DIMENSIONAL INTEGER ARRAY
DEFINE EGTEG AS AN INTEGER VARIABLE
DEFINE TVOCKT, DATASEG AS INTEGER VARIABLES

NORMALLY MODE IS REAL
TALLY AVG.HOPDELAY.D AS THE MEAN,

MAX.HOPDELAY.D AS THE MAXIMUM,
STDDEV.HOPDELAY.D AS THE STD.DEV OF
HOPDELAY.D

TALLY AVG.HOPDELAY.V AS THE MEAN,
MAX.HOPDELAY.V AS THE MAXIMUM,

158

STDDEV.HOPDELAY.V AS THE STD.DEV OF
HOPDELAY.V

TALLY AVG.HOPDELAY.C AS THE MEAN,
MAX.HOPDELAY.C AS THE MAXIMUM,
STDDEV.HOPDELAY.C AS THE STD.DEV OF
HOPDELAY.C

TALLY AVG.HOPSESSDELAY AS THE MEAN,
MAX.HOPSESSDELAY AS THE MAXIMUM,
STDDEV.HOPSESSDELAY AS THE STD.DEV OF
HOPSESSDELAY

TALLY AVG.GTRANSDELAY.VOICE AS THE MEAN,
MAX.GTRANSDELAY.VOICE AS THE MAXIMUM,
STDDEV.GTRANSDELAY.VOICE AS THE STD.DEV OF
GTRANSDELAY.VOICE

TALLY AVG.TRANSDELAY.VOICE AS THE MEAN,
MAX.TRANSDELAY.VOICE AS THE MAXIMUM,
STDDEV.TRAHSDELAY.VOICE AS THE STD.DEV OF
TRANSDELAY.VOICE

TALLY AVG.GTRANSDELAY.DATA AS THE MEAN,
MAX.GTRANSDELAY.DATA AS THE MAXIMUM,
STDDEV.GTRANSDELAY.DATA AS THE STD.DEV OF
GTRANSDELAY.DATA

TALLY AVG.GTRANSDELAY.CONTROL AS THE MEAN,
MAX.GTRANSDELAY.CONTROL AS THE MAXIMUM,
STDDEV.GTRANSDELAY.CONTROL AS THE STD.DEV OF
GTRANSDELAY.CONTROL

TALLY AVG.TRANSDELAY.DATA AS THE MEAN,
MAX.TRANSDELAY.DATA AS THE MAXIMUM,
STDDEV.TRANSDELAY.DATA AS THE STD.DEV OF
TRANSDELAY.DATA

TALLY AVG.TRANSDELAY.CONTROL AS THE MEAN,
MAX.TRANSDELAY.CONTROL AS THE MAXIMUM,
STDDEV.TRANSDELAY.CONTROL AS THE STD.DEV OF
TRANSDELAY.CONTROL

TALLY AVG.TRANSDELAY.VOICE.CONNECT AS THE MEAN,
MAX.TRANSDELAY.VOICE.CONNECT AS THE MAXIMUM,
STDDEV.TRANSDELAY.VOICE.CONNECT AS THE STD.DEV OF

159

TRAHSDELAY.VOICE.CONNECT
TALLY AVG.DATASEG AS THE MEAN OF DATASEG

ACCUMULATE AVG.GATEQUEUE.1ST AS THE MEAN,
STDDEV.GATEQUEUE.1ST AS THE STD.DEV,
MAX.GATEQUEUE.1ST AS THE MAXIMUM OF N.GATEQUEUE.1ST

ACCUMULATE AVG.GATEQUEUE.2ND AS THE MEAN,
STDDEV.GATEQUEUE.2ND AS THE STD.DEV,
MAX.GATEQUEUE.2ND AS THE MAXIMUM OF N.GATEQUEUE.2ND

ACCUMULATE AVG.GATEQUEUE.3RD AS THE MEAN,
STDDEV.GATEQUEUE.3RD AS THE STD.DEV,
MAX.GATEQUEUE.3RD AS THE MAXIMUM OF N .GATEQUEUE.3RD

ACCUMULATE AVG.TVOCKT AS THE MEAN,
MAX.TVOCKT AS THE MAXIMUM,
MIN.TVOCKT AS THE MINIMUM OF TVOCKT

ACCUMULATE MAX.BUF AS THE MAXIMUM,
AVG.BUF AS THE MEAN,
MIN.BUF AS THE MINIMUM OF BUF

ACCUMULATE MAX.BUFTRAN AS THE MAXIMUM,
AVG.BUFTRAN AS THE MEAN,
MIN.BUFTRAM AS THE MINIMUM OF BUF.TRAN

ACCUMULATE MAX.BUFIN AS THE MAXIMUM,
AVG.BUFIN AS THE MEAN,
MIN.BUFIN AS THE MINIMUM OF BUF.IN

ACCUMULATE MAX.BUFVO AS THE MAXIMUM,
AVG.BUFVO AS THE MEAN,
MIN.BUFVO AS THE MINIMUM OF BUF.VOICE

ACCUMULATE MAX.PACKTRAN AS THE MAXIMUM,
AVG.PACKTRAN AS THE MEAN,
MI1I.PACKTRAN AS THE MINIMUM OF PACK.TRAN

ACCUMULATE MAX.PACKIN AS THE MAXIMUM,
AVG.PACKIM AS THE MEAN,
MIN.PACKIN AS THE MINIMUM OF PACK.IN

ACCUMULATE AVG.UTILIZATION.GATE AS THE MEAN OF GATESTATUS

ACCUMULATE AVG.UTILIZATION.LINK AS THE MEAN OF LNKSTATUS

NORMALLY MODE IS INTEGER

161

1 ’
i i .•, .*.

’’* THIS PROCESS SIMULATES THE INCOMING TRAFFIC AT EACH GATEWAY. *
” * THE SOURCE GEIIERATOR GEIIERATES IIJCOMItlG DATA PACKETS AND VOICE *
’’* SETUP PACKETS AT THE RATE .IHPACKRATE. *
’ ’ * *

PROCESS GENERATOR GIVEN GATENO

DEFINE ID AS A REAL VARIABLE

LET ID = 1 + 0.1 * GATENO
UNTIL TIME.V GT .TIMELIMIT
DO

CREATE A PACKET CALLED INPACK
LET ARRIVALTIME(INPACK) = TIME.V
LET TIMEID(INPACK) = TIME.V
LET TIMESTAMP(INPACK) = TIME.V
LET SEQID(INPACK) = ID
IF ID >= 99999998

LET ID = 1 + 0.1 * GATENO
ELSE

LET ID = ID + 1
ALWAYS

LET SRCNO(INPACK) = GATENO
LET DSTNOUNPACK) = RANDADDR
LET HOPCOUNT(INPACK) = 1
IF DSTNO(INPACK) = 8

LET DSTNOUNPACK) = GATENO
ALWAYS
IF RANDOM.F(l) < .CALLRATE

LET PACKCLASSUNPACK) = .VOICE.CONNECT
LET ENTRYMARKUNPACK) = 0
LET TCOUNT.VOICE.SESSIN = TCOUNT.VOICE.SESSIN + 1
LET GCOUNT.VOICE.SESSIN(GATENO) =

GCOUNT.VOICE.SESSIN(GATENO) + 1
LET PACKLENG(INPACK) = 32

ELSE
LET PACKCLASSUNPACK) = .DATA.CONTENTS

162

LET ENTRYMARK(INPACK) = 1
LET PACKLENG(IIIPACK) = INT.F(RANDLENG) + 26
LET PACKSEG(INPACK)=INT.F(PACKLENG(INPACK)/.SEGLENG+O.5)
LET DATASEG = PACKSEG(INPACK)
LET TCOUNT.DATA.IN = TCOUNT.DATA.IN + 1
LET GCOUNT.DATA.IN(GATENO) =

GCOUNT.DATA.IN(GATENO) + 1
LET TCOUNT.DATA.INL0AD=TC0U1IT.DATA.INLOAD+PACKLENG(INPACK)-26
LET GCOUNT.DATA.INLOAD(GATENO) =

GCOUNT.DATA.INLOAD(GATENO)+PACKLENG(INPACK)-26
ALWAYS
LET RETRYTIMES(INPACK) = 0
LET SUBSEQID(INPACK) = 0
SCHEDULE A GATEARRIVAL GIVING IHPACK AND GATENO NOW
WAIT EXPONENTIAL.F (1/.INPACKRATE, 4) UNIT

LOOP
END

163

* * * *
” * THIS PROCESS SIMULATES THE TRAFFIC GENERATED BY A VOICE *
” * SPEAKER. THE VOICE GENERATOR GENERATES VOICE PACKETS ACCORDING *
’'* TO THE PREDETERMINED DATA RATES. *
> ■ * *

PROCESS VOICESESSION GIVEN SESSIIO, GATENO

DEFINE PERIOD, WAITTIME AS REAL VARIABLES
LET TVOCKT = TVOCKT + 1
IF SESSMODE(SESSIIO) = .SENDER

LET SID = 0
ELSE

LET SID = 1
ALWAYS
LET WAITTIME = 1/16
LET PERIOD = EXPONENTIAL.F (.TALKTIME, 7)
LET SESSSTATUS(SESSIIO) = .TALKING
WHILE PERIOD > 0 AND TIME.V <= .TIMELIMIT
DO

CREATE A PACKET CALLED VOICEPACK
LET ARRIVALTIME(VOICEPACK) = TIME.V
LET TIMESTAMP(VOICEPACK) = TIME.V
LET SEQID (VOICEPACK) = SESSSEQ (SESSIIO)
LET TIMEID(VOICEPACK) = SESSTID(SESSIIO)
LET HOPCOUNT(VOICEPACK) = 1
LET SRCNO(VOICEPACK) = GATENO
IF SESSMODE (SESSIIO) = .SENDER

LET DSTNO(VOICEPACK) = SESSDST(SESSIIO)
LET ACKTAG(VOICEPACK) = .SENDER

ELSE
LET DSTNO(VOICEPACK) = SESSSRC(SESSIIO)
LET ACKTAG(VOICEPACK) = .RECEIVER

ALWAYS
LET PACKCLASS(VOICEPACK) = .VOICE.CONTENTS
LET PACKLENG(VOICEPACK) = .VPACKLENG
LET SUBSEQID(VOICEPACK) = SID
IF SID >= 99999998

LET SID = 1

164

ELSE
LET SID = SID + 1

ALWAYS
LET EMTRYMARK(VOICEPACK) = 0
LET RETRYTIMES(VOICEPACK) = 0
SCHEDULE A GATEARRIVAL GIVING VOICEPACK AND GATENO NOW
LET TCOUNT. VOICE. Ill = TCOUNT. VOICE. IN + 1
LET GCOUNT.VOICE.IN(GATENO) =

GCOUNT.VOICE.IN(GATENO) + 1
LET TCOUNT.VOICE.INLOAD=TCOUMT.VOICE.INLOAD+PACKLENG(VOICEPACK)
LET GCOUNT.VOICE.INLOAD(GATENO) =

GCOUNT.VOICE.INLOAD(GATENO)+PACKLENG(VOICEPACK)
LET PERIOD = PERIOD - WAITTIME
WAIT WAITTIME UNIT

LOOP
CREATE A PACKET CALLED DISCPACK
LET ARRIVALTIME(DISCPACK) = TIME.V
LET TIMESTAMP(DISCPACK) = TIME.V
LET TIMEID(DISCPACK) = SESSTID(SESSNO)
LET SEQID(DISCPACK) = SESSSEQ(SESSNO)
LET SRCNO(DISCPACK) = GATENO
LET HOPCOUNT(DISCPACK) = 1
IF SESSMODE(SESSNO) = .SENDER

LET DSTNO(DISCPACK) = SESSDST(SESSNO)
ELSE

LET DSTNO(DISCPACK) = SESSSRC(SESSNO)
ALWAYS
LET PACKCLASS(DISCPACK) = .VOICE.DISCONNECT
LET PACKLENG(DISCPACK) = 32
LET SUBSEQID(DISCPACK) = SESSMODE(SESSNO)
LET ENTRYMARK(DISCPACK) = 0
LET RETRYTIMES(DISCPACK) = 0
SCHEDULE A GATEARRIVAL GIVING DISCPACK AND GATENO NOW
LET SESSSTATUS(SESSNO) = .DISCONNECTING

LET TVOCKT = TVOCKT - 1
LET TCOUNT.VOICE.SESSEND = TCOUNT.VOICE.SESSEND + 1
LET GCOUNT.VOICE.SESSEND(GATENO) =

GCOUNT.VOICE.SESSEND(GATENO) + 1

END

165

* * * *

•’* THIS ROUTINE SIMULATES A PACKET ARRIVAL EVENT AT A *
■’* COMMUNICATION LINK. *
• * * *

EVENT LNKARRIVAL GIVEN PACKNO, LNKNO

IF LNKSTATUS(LNKNO) = .IDLE
SCHEDULE A LNKENDSERVICE GIVING PACKNO, LNKNO IN

PACKLENG(PACKNO)/LNKSPEED(LNKNO) UNIT
LET LNKSTATUS(LNKNO) = .BUSY

ELSE
FILE THIS PACKNO IN LNKQUEUE(LNKNO)

ALWAYS

END

166

1 1 * *

” * THIS ROUTINE SIMULATES A PACKET TRANSMISSION EVENT AT A *
” * COMMUNICATION LINK. *
’ ’ * *

EVENT LNKENDSERVICE GIVEN PACKNO, LNKNO

LET HOPCOUNT(PACKNO) = HOPCOUNT(PACKNO) + 1
IF PACKCLASS(PACKNO) = .DATA.CONTENTS AND ENTRYMARK(PACKNO) = 0

LET BUF.TRAN(FROMGATE(LNKNO))=BUF.TRAN(FROMGATE(LNKNO))-
PACKSEG(PACKNO)

LET PACK.TRAM(FROMGATE(LNKNO))=PACK.TRAN(FROMGATE(LNKNO))-1
CALL BUFRLSE GIVING FROMGATE(LNKNO).PACKSEG(PACKNO)

ALWAYS

IF ENTRYMARK(PACKNO) = 1
LET ENTRYMARK(PACKNO) = 0

ALWAYS

SCHEDULE A GATEARRIVAL GIVING PACKNO, TOGATE(LNKNO) NOW
IF LNKQUEUE(LNKNO) IS NOT EMPTY

REMOVE THE FIRST PACKET FROM LNKQUEUE(LNKNO)
SCHEDULE A LNKENDSERVICE GIVING PACKET AND LNKNO IN

PACKLENG(PACKET)/LNKSPEED(LNKNO) UNIT
ELSE

LET LNKSTATUS(LNKNO) = .IDLE
ALWAYS

END

167

* *
* THIS ROUTINE SIMULATES A PACKET ARRIVAL EVENT AT A *
* GATEWAY. *
& #

EVENT GATEARRIVAL GIVEN PACKNO, GATENO

DEFINE ADMFLAG AS AH INTEGER VARIABLE

IF PACKCLASS(PACKNO) = .DATA.CONTENTS
CALL FL0WCTL1 GIVING PACKNO, GATENO YIELDING ADMFLAG

ELSE
IF PACKCLASS(PACKNO) = .VOICE.CONTENTS

FOR EACH PACKET IN GATEQUEUE.1ST(GATENO)
WITH SEQID(PACKET) = SEQID(PACKNO) AND

TIMEID(PACKET) = TIMEID(PACKNO) AND
ACKTAG(PACKET) = ACKTAG(PACKNO) AND
DSTNO(PACKET) = DSTNO(PACKNO)

FIND THE FIRST CASE
IF FOUND

REMOVE THE PACKET FROM GATEQUEUE.1ST(GATENO)
LET OVERRUN(GATENO) = OVERRUN(GATENO) + 1
CALL REJRTIF GIVING PACKET,2
DESTROY THE PACKET

ALWAYS
ALWAYS
GO TO ADMIT

ALWAYS
IF ADMFLAG = 0

IF SRCNO(PACKNO) ME GATENO
LET TCOUNT.DATA.REJECT = TCOUNT.DATA.REJECT + 1
LET GCOUNT.DATA.REJECT(GATENO) =

GCOUNT.DATA.REJECT(GATENO) + 1
CALL REJRTN GIVING PACKNO,1

ALWAYS
DESTROY THE PACKET CALLED PACKNO
RETURN

ALWAYS

168

IF EGTEG = .YES AND
ENTRYMARK(PACKNO) = 1 AND
SRCtlO (PACKNO) = GATENO AND
SRCNO(PACKNO) ME DSTNO(PACKNO)
CALL UPDWI GIVING SRCNO(PACKNO).DSTNO(PACKNO),-1

ALWAYS
IF ENTRYMARK(PACKNO) = 1 AND RETRYTIMES(PACKNO) = 0 AND

SRCNO(PACKNO) = GATENO
LET TCOUNT.DATA.ADMIT = TCOUNT.DATA.ADMIT + 1
LET TCOUNT.DATA.ADMITLD=TCOUNT.DATA.ADMITLD+PACKLENG(PACKNO)-26
LET GCOUNT.DATA.ADMIT(GATENO) = GCOUNT.DATA.ADMIT(GATENO) + 1
LET GCOUNT.DATA.ADMITLD(GATENO)=GCOUNT.DATA.ADMITLD(GATENO) +

PACKLENG(PACKNO)-26
ALWAYS

•ADMIT'
IF GATESTATUS(GATENO) = .IDLE

IF PACKCLASS(PACKNO) = .DATA.ACK
LET PRTIME = 0

ELSE
LET PRTIME = PEXEC(GATENO)

ALWAYS
SCHEDULE A GATEEIIDSERVICE GIVING PACKNO AND GATENO IN

INTRTIME(GATENO) + PRTIME UNIT
LET INTRTIME(GATENO) = 0
LET GATESTATUS(GATENO) = .BUSY

ELSE
IF PACKCLASS(PACKNO) = .VOICE.CONTENTS

FILE PACKNO IN GATEQUEUE.1ST(GATENO)
ELSE

IF PACKCLASS(PACKNO) = .DATA.CONTENTS OR
PACKCLASS(PACKNO) = .DATA.ACK
FILE PACKNO IN GATEQUEUE.3RD(GATENO)

ELSE
FILE PACKNO IN GATEQUEUE.2ND(GATENO)

ALWAYS
ALWAYS

ALWAYS

END

169

* ' * *
■•* THIS ROUTINE SIMULATES GATENET'S HOP LEVEL FLOW CONTROL *
” * AT A GATEWAY. *
■1 * *

ROUTINE FLOWCTL1 GIVEN PACKNO, GATENO YIELDING ADMFLAG

LET ADMFLAG = 1
IF EGTEG = .YES AND

ENTRYMARK(PACKNO) = 1 AMD
SRCNO(PACKNO) = GATENO AND
SRCNO(PACKNO) HE DSTNO(PACKNO)
IF WINDOW(SRCNO(PACKNO).DSTNO(PACKNO)) <= 0

LET ADMFLAG = 0
RETURN

ALWAYS
ALWAYS
IF BUF(GATENO) > (1-.THRESHOLD) * BUFNO(GATENO)

LET BUF(GATENO) = BUF(GATENO) - PACKSEG(PACKNO)
IF ENTRYMARK(PACKNO) = 1

LET BUF.IN(GATENO)=BUF.IN(GATENO)+PACKSEG(PACKNO)
LET PACK.IN(GATENO)=PACK.IN(GATENO)+1

ELSE
LET BUF.TRAN(GATENO)=BUF.TRAN(GATENO)+PACKSEG(PACKNO)
LET PACK.TRAN(GATENO)=PACK.TRAN(GATENO)+1

ALWAYS
ELSE

IF BUF(GATENO) >= PACKSEG(PACKNO)
IF ENTRYMARK(PACKNO) = 0

LET BUF(GATENO)=BUF(GATENO)-PACKSEG(PACKNO)
LET BUF.TRAII (GATENO)=BUF.TRAN(GATENO)+PACKSEG(PACKNO)
LET PACK.TRAN(GATENO)=PACK.TRAN(GATENO)+1

ELSE
IF ENTRYMARK(PACKNO) = 1 AND

BUF.IN(GATENO)+PACKSEG(PACKNO) <= UPPERIN(GATENO)
LET BUF(GATENO)=BUF(GATENO)-PACKSEG(PACKNO)
LET BUF.IN(GATENO)=BUF.IN(GATENO)+PACKSEG(PACKNO)
LET PACK.IN(GATENO)=PACK.IN(GATENO)+1

ELSE

’ ’CALL TRACE4("BLOCKIN'1 .PACKNO,GATENO)
LET ADMFLAG = 0

ALWAYS
ALWAYS

ELSE
’’CALL TRACE4("BLOCK ".PACKNO,GATENO)
LET ADMFLAG = 0

ALWAYS
ALWAYS

171

• * * *

• ’ * THIS ROUTINE SIMULATES A PACKET PROCESSING EVENT AT A *
” * GATEWAY. *
’ ’ * *

EVENT GATEENDSERVICE GIVEN PACKNO AND GATENO

IF ENTRYMARK(PACKNO)=1 AND PACKCLASS(PACKNO) = .DATA.CONTENTS AND
SRCNO(PACKNO) = GATENO
CREATE A PACKET CALLED DUPPACK
LET ARRIVALTIME(DUPPACK) = ARRIVALTIME(PACKNO)
LET HOPCOUNT(DUPPACK) = HOPCOUNT(PACKNO)
LET SRCNO(DUPPACK) = SRCNO(PACKNO)
LET DSTNO(DUPPACK) = DSTNO(PACKNO)
LET TIMESTAMP(DUPPACK) = TIMESTAMP(PACKNO)
LET TIMEID(DUPPACK) = TIMEID(PACKNO)
LET SEQID(DUPPACK) = SEQID(PACKNO)
LET PACKCLASS(DUPPACK) = PACKCLASS(PACKNO)
LET PACKLENG(DUPPACK) = PACKLENG(PACKNO)
LET PACKSEG(DUPPACK) = PACKSEG(PACKNO)
LET SUBSEQID(DUPPACK) = SUBSEQID(PACKNO)
LET ENTRYMARK(DUPPACK) = ENTRYMARK(PACKNO)
LET RETRYTIMES(DUPPACK) = RETRYTIMES(PACKNO)
FILE DUPPACK IN ACKQUEUE(GATENO)
IF SRCNO(PACKNO) NE DSTNO(PACKNO)

SCHEDULE A ACKTIMEOUT CALLED ACKNO GIVING DUPPACK AND
GATENO IN .TIMEOUT UNIT

LET ACKTAG(DUPPACK) = ACKNO
ALWAYS

ALWAYS
CALL PACKPROCESSING GIVING PACKNO AND GATENO

IF GATEQUEUE.1ST(GATENO) IS NOT EMPTY
REMOVE THE FIRST PACKET FROM GATEQUEUE.1ST(GATENO)
SCHEDULE A GATEENDSERVICE GIVING PACKET AND GATENO IN

INTRTIME(GATENO) + PEXEC(GATENO) UNIT
LET INTRTIME(GATENO) = 0

ELSE
IF GATEQUEUE.2ND(GATENO) IS NOT EMPTY

172

REMOVE THE FIRST PACKET FROM GATEQUEUE.2ND(GATENO)
SCHEDULE A GATEEIJDSERVICE GIVING PACKET AND GATENO IN

INTRTIME(GATENO) + PEXEC(GATENO) UNIT
LET INTRTIME(GATENO) = 0

ELSE
IF GATEQUEUE.3RD(GATENO) IS NOT EMPTY

REMOVE THE FIRST PACKET FROM GATEQUEUE.3RD(GATENO)
IF PACKCLASS(PACKET) = .DATA.ACK

LET PRTIME = 0
ELSE

LET PRTIME = PEXEC(GATENO)
ALWAYS
SCHEDULE A GATEENDSERVICE GIVING PACKET AND GATENO IN

INTRTIME(GATENO) + PRTIME UNIT
LET INTRTIME(GATENO) = 0

ELSE
LET GATESTATUS(GATENO) = .IDLE

ALWAYS
ALWAYS

ALWAYS
END

173

» ' * *
” * THIS ROUTINE SIMULATES A DATA ACKNOWLEDGMENT TIME-OUT *
••* EVENT AT AN ENTRY GATEWAY. *
• • * *

EVENT ACKTIMEOUT GIVEN PACKNO AND GATENO

IF PACKNO IS IN ACKQUEUE
REMOVE PACKNO FROM ACKQUEUE(GATENO)

ELSE
CALL TRACE1("NULAKTO",PACKNO,GATENO)
DESTROY THE PACKET CALLED PACKNO
RETURN

ALWAYS
LET INTRTIME(GATENO) = INTRTIME(GATENO) + PACKTO(GATENO)
IF RETRYTIMES(PACKNO) < 3

LET TCOUNT.RETRY.FREQ = TCOUNT.RETRY.FREQ + 1
LET GCOUNT.RETRY.FREQ(GATENO) = GCOUNT.RETRY.FREQ(GATENO)+1
IF RETRYTIMES(PACKNO) = 0

LET TCOUNT.RETRY.PACK = TCOUNT.RETRY.PACK + 1
LET GCOUNT.RETRY.PACK(GATENO)=GCOUNT.RETRY.PACK(GATENO)+1

ALWAYS
LET ENTRYMARK(PACKNO) = 1
LET RETRYTIMES(PACKNO) = RETRYTIMES(PACKNO) + 1
LET TIMESTAMP(PACKNO) = TIME.V
’’CALL TRACE1("RETRY ".PACKNO,GATENO)
CREATE A PACKET CALLED DUPPACK
LET ARRIVALTIME(DUPPACK) = ARRIVALTIME(PACKNO)
LET HOPCOUNT(DUPPACK) = HOPCOUNT(PACKNO)
LET SRCNO(DUPPACK) = SRCNO(PACKNO)
LET DSTNO(DUPPACK) = DSTNO(PACKNO)
LET TIMESTAMP(DUPPACK) = TIMESTAMP(PACKNO)
LET TIMEID(DUPPACK) = TIMEID(PACKNO)
LET SEQID(DUPPACK) = SEQID(PACKNO)
LET PACKCLASS(DUPPACK) = PACKCLASS(PACKNO)
LET PACKLENG(DUPPACK) = PACKLENG(PACKNO)
LET PACKSEG(DUPPACK) = PACKSEG(PACKNO)
LET SUBSEQID(DUPPACK) = SUBSEQID(PACKNO)

174

LET ENTRYMARK(DUPPACK) = ENTRYMARK(PACKNO)
LET RETRYTIMES(DUPPACK) = RETRYTIMES(PACKNO)
FILE DUPPACK IN ACKQUEUE(GATENO)
SCHEDULE A ACKTIMEOUT CALLED ACKNO GIVING DUPPACK AMD GATENO IN

.TIMEOUT UNIT
LET ACKTAG(DUPPACK) = ACKNO
CALL ROUTER GIVING PACKNO AND GATENO

ELSE
IF EGTEG = .YES AND

SRCNO(PACKNO) HE DSTNO(PACKNO)
CALL UPDWI GIVING SRCNO(PACKNO).DSTNO(PACKNO), 1

ALWAYS
’’CALL TRACE1("RDUMP ".PACKNO,GATENO)
LET BUF.IN(GATENO) = BUF.IN(GATENO)-PACKSEG(PACKNO)
LET PACK.IN(GATENO) = PACK.IN(GATENO)-1
CALL BUFRLSE GIVING GATENO.PACKSEG(PACKNO)
DESTROY THE PACKET CALLED PACKNO

ALWAYS
END

175

* ’ * *
” * THIS ROUTINE DEFINES THE GATENET SYSTEM CONFIGURATIONS. *
* * * *

ROUTINE SYSGEII

RESERVE WINDOW AS 7 BY 7
LET EGTEG = .YES
CREATE EVERY DSTGATE(7)
LET ADDR(l) = "0.0.0.0"
LET ADDR(2) = "2.0.0.0"
LET ADDR(3) = "3.0.0.0"
LET ADDR(4) = "4.0.0.0"
LET ADDR(5) = "2.2.0.0"
LET ADDR(6) = "4.1.0.0"
LET ADDR(7) = "4.2.0.0"

CREATE EVERY GATEWAY(7)
FOR I = 1 TO N.GATEWAY
DO

LET GATESTATUS(I) = .IDLE
LET BUFHO(I) = .BUFNO
LET UPPERIN(I) = .UPPERIN
LET UPPERVO(I) = .UPPERVO
LET BUF(I) = .BUFNO
LET BUF.IN(I) = 0
LET BUF.TRAN(I) = 0
LET PACK.TRAN(I) = 0
LET PACK.IN(I) = 0
LET BUF.VOICE(I) = 0
LET PACKTO(I) = .ACKTOTIME
LET PHOLDTO (I) = . HOLDTOTIIIE
LET PEXEC(I) = .PROCESSORTIME
LET RED(I) = .OFF

LOOP
LET UPPERVO(1) = 2 * .UPPERVO
LET UPPERIN(1) = 2 * .UPPERIN
LET BUFNO(1) = 2 * .BUFNO
LET BUF(l) = 2 * .BUFNO

LET PACKTO(l) = .ACKTOTIME/2
LET PHQLDTO(l) = .HOLDTOTIME/2
LET PEXEC(1) = .PROCESSORTIME/2

LET UPLNK(l)
LET DNLHKl(l)
LET DIILI1K2 (1)
LET DNLNK3(1)
LET BDLNK(l)
LET RED(l) =

LET UPLMK(2)
LET D1ILHK1 (2)
LET DIILHK2(2)
LET DNLIIK3 (2)
LET BDLtIK(2)

LET UPL1IK(3)
LET D1JLNK1 (3)
LET DML1IK2 (3)
LET D1IL11K3 (3)
LET BDL!!K(3)
LET RED(3) =

LET UPL1IK (4)
LET DIILIIK1 (4)
LET D1IL1IK2 (4)
LET DIIL1IK3 (4)
LET BDLIIK(4)
LET RED(4) =

LET UPL1IK(5)
LET DlILtlKl (5)
LET DIILHK2 (5)
LET DIFLNK3 (5)
LET BDLIIK(5)

LET UPLIJK(6)
LET DNLI1K1 (6)
LET DNLNK2(6)
LET DHLNK3(6)

= 0
= 1
= 3
= 5

= 0
.FAIL

= 2
= 7
= 0
= 0

= 0

= 4
= 0
= 0
= 0
= 13
.ON

= 6
= 9
= 11
= 0

= 0
.FAIL

= 8
= 0
= 0
= 0

= 0

= 10
= 0
= 0
= 0

LET BDLNK(6) = 14
LET RED(6) = .ON

LET UPLHK(7) = 12
LET DNLNK1(7) = 0
LET DNLMK2(7) = 0
LET DNLNK3(7) = 0
LET BDLMK(7) = 0

FOR I = 1 TO 7
FOR J = 1 TO 7

LET WINDOW(I,J) = .WINDOWSIZE

CREATE EVERY H0PCLASS(7)

CREATE EVERY LINK(14)
FOR I = 1 TO N.LINK
DO

LET LNKSTATUS(I) = .IDLE
LET LNKSPEED(I) = .LIHESPEED

LOOP

LET TOGATE(l) = 2
LET T0GATE(2) = 1
LET T0GATE(3) = 3
LET T0GATE(4) = 1
LET TOGATE(5) = 4
LET T0GATE(6) = 1
LET T0GATE(7) = 5
LET T0GATE(8) = 2
LET T0GATE(9) = 6
LET TOGATE(IO) = 4
LET TOGATE(ll) = 7
LET T0GATE(12) = 4
LET T0GATE(13) = 6
LET T0GATE(14) = 3

LET FROMGATE(1) = 1
LET FROMGATE(2) = 2
LET FR0MGATE(3) = 1
LET FROMGATE(4) = 3

178

LET FROMGATE(5) = 1
LET FROMGATE(6) = 4
LET FROMGATE(7) = 2
LET FROMGATE(8) = 5
LET FROMGATE(9) = 4
LET FROMGATE(10) = 6
LET FROMGATE(11) = 4
LET FROMGATE(12) = 7
LET FROMGATE(13) = 3
LET FROMGATE(14) = 6

READ RANDADDR
SKIP 1 ItlPUT LINE
READ RANDLENG
RETURN

END

179

1 '
* * * *
” * THIS ROUTINE SIMULATES THE ROUTING PROCESS AT A GATEWAY. *
• * * *

ROUTINE ROUTER GIVING PACKNO AND GATENO

IF RED(GATENO) = .ON
CALL REROUTER GIVING PACKNO, GATENO YIELDING DETOURTAG
IF DETOURTAG = .YES

RETURN
ALWAYS

ALWAYS
LET INDEX = 0
FOR I = 1 TO .NETLEVEL*2+1 BY 2

WHILE INDEX = 0
DO

IF SUBSTR.F(ADDR(GATENO),1,1) NE
SUBSTR.F(ADDR(DSTNO(PACKNO)),I,1)

LET INDEX = I
ALWAYS

LOOP

IF INDEX = 0
CALL TRACE1("BUGROUT",PACKNO,GATENO)

ALWAYS

IF DMLNK1 (GATENO) IIE 0 AND
SUBSTR.F(ADDR(DSTMO(PACKNO)), INDEX, 1) =
SUBSTR.F(ADDR(TOGATE(DNLNK1(GATENO))), INDEX, 1)

SCHEDULE A LNKARRIVAL GIVING PACKNO AND DNLNK1(GATENO) NOW
ELSE

IF DNLNK2(GATENO) NE 0 AND
SUBSTR.F(ADDR(DSTNO(PACKNO)), INDEX, 1) =
SUBSTR.F(ADDR(T0GATE(DNLNK2(GATENO))), INDEX, 1)

SCHEDULE A LNKARRIVAL GIVING PACKNO AND DNLNK2(GATENO) NOW
ELSE

IF DNLNK3(GATENO) NE 0 AND
SUBSTR.F(ADDR(DSTNO(PACKNO)),INDEX,1)=
SUBSTR.F(ADDR(TOGATE(DNLNK3(GATENO))), INDEX, 1)

180

SCHEDULE A LNKARRIVAL GIVING PACKNO AND DNLNK3(GATENO) NOW
ELSE

IF UPLNK(GATENO) NE 0
SCHEDULE A LNKARRIVAL GIVING PACKNO AND UPLNK(GATENO) NOW

ELSE
CALL TRACE1("UNDELVR",PACKNO,GATENO)
DESTROY THE PACKET CALLED PACKNO

ALWAYS
ALWAYS

ALWAYS
ALWAYS
RETURN

END

181

* * * *
” * THIS ROUTINE SIMULATES THE REROUTING PROCESS OF THE *
” * BUDDY LINK SCHEME UNDER NORMAL CONDITIONS. *
1 * * *

ROUTINE REROUTER GIVEN PACKNO, GATENO YIELDING DETOURTAG

LET DETOURTAG = .HO
IF GATENO = 3 AND

SUBSTR.F(ADDR(DSTNO(PACKNO)),1,3) = "4.1"
LET DETOUR(PACKNO) = .NO
LET DETOURTAG = .YES
SCHEDULE A LNKARRIVAL GIVING PACKNO, BDLNK(GATENO) NOW

ELSE
IF GATENO = 6 AND

SUBSTR.F(ADDR(DSTNO(PACKNO)),1,1) = "3"
LET DETOUR(PACKNO) = .NO
LET DETOURTAG = .YES
SCHEDULE A LNKARRIVAL GIVING PACKNO, BDLNK(GATENO) NOW

ALWAYS
ALWAYS

182

• * *
'* THIS ROUTINE SIMULATES THE REROUTING PROCESS OF THE *
’* BUDDY LINK SCHEME WHEN LINK A FAILS. *
* * *

* *

ROUTINE REROUTA GIVEN PACKNO, GATENO YIELDING DETOURTAG

LET DETOURTAG = .NO
IF GATENO = 1 AND

SUBSTR.F(ADDR(DSTNO(PACKNO)),1,3) = "4.1"
LET DETOUR(PACKNO) = .YES
LET DETOURTAG = .YES
SCHEDULE A LNKARRIVAL GIVING PACKNO, 3 NOW

ELSE
IF GATENO = 3 AND

SUBSTR.F(ADDR(DSTNO(PACKNO)),1,3) = "4.1"
LET DETOUR(PACKNO) = .NO
LET DETOURTAG = .YES
SCHEDULE A LNKARRIVAL GIVING PACKNO, 13 NOW

ELSE
IF GATENO = 4 AND

SUBSTR.F(ADDR(DSTNO(PACKNO)),1,3) = "4.1"
LET DETOUR(PACKNO) = .YES
LET DETOURTAG = .YES
SCHEDULE A LNKARRIVAL GIVING PACKNO, 6 NOW

ELSE
IF GATENO = 6 AND

SUBSTR.F(ADDR(DSTHO(PACKNO)),1,3) NE "4.1"
LET DETOUR(PACKNO) = .NO
LET DETOURTAG = .YES
SCHEDULE A LNKARRIVAL GIVING PACKNO, 14 NOW

ALWAYS
ALWAYS

ALWAYS
ALWAYS

END

183

» • *
” * THIS ROUTINE SIMULATES THE REROUTIMG PROCESS OF THE
” * BUDDY LINK SCHEME WHEN LIMK X FAILS.
* * *

ROUTINE REROUTX GIVEN PACKNO, GATENO YIELDING DETOURTAG

LET DETOURTAG = .NO
IF GATENO = 1 AND

SUBSTR.F(ADDR(DSTNO(PACKNO)),1,1) = "3"
LET DETOUR(PACKNO) = .YES
LET DETOURTAG = .YES
SCHEDULE A LNKARRIVAL GIVING PACKNO, 5 NOW

ELSE
IF GATENO = 3 AND

SUBSTR.F(ADDR(DSTNO(PACKNO)).1,1) NE "3"
LET DETOUR(PACKNO) = .NO
LET DETOURTAG = .YES
SCHEDULE A LNKARRIVAL GIVING PACKNO, 13 NOW

ELSE
IF GATENO = 4 AND

SUBSTR.F(ADDR(DSTNO(PACKNO)),1,1) = "3"
LET DETOUR(PACKNO) = .YES
LET DETOURTAG = .YES
SCHEDULE A LNKARRIVAL GIVING PACKNO, 9 NOW

ELSE
IF GATENO = 6 AND

SUBSTR.F(ADDR(DSTNO(PACKNO)),1,1) = "3"
LET DETOUR(PACKNO) = .NO
LET DETOURTAG = .YES
SCHEDULE A LNKARRIVAL GIVING PACKNO, 14 NOW

ALWAYS
ALWAYS

ALWAYS
ALWAYS

END

184

* *
* THIS ROUTINE SIMULATES THE REROUTING PROCESS OF THE *
* BUDDY LINK SCHEME ''/HEN LINK Y FAILS. *
£ ^

ROUTINE REROUTY GIVEN PACKNO, GATENO YIELDING DETOURTAG

LET DETOURTAG = .NO
IF GATENO = 1 AND

SUBSTR.F(ADDR(DSTNO(PACKNO)),1,1) = "4"
LET DETOUR(PACKNO) = .YES
LET DETOURTAG = .YES
SCHEDULE A LNKARRIVAL GIVING PACKNO, 3 NOV/

ELSE
IF GATENO = 3 AMD

SUBSTR.F(ADDR(DSTNO(PACKNO)),1,1) = "4"
LET DETOUR(PACKNO) = .NO
LET DETOURTAG = .YES
SCHEDULE A LNKARRIVAL GIVING PACKNO, 13 NOV/

ELSE
IF GATENO = 4 AND

SUBSTR.F(ADDR(DSTNO(PACKNO)),1,1) NE "4"
LET DETOUR(PACKNO) = .YES
LET DETOURTAG = .YES
SCHEDULE A LNKARRIVAL GIVING PACKNO, 9 NOW

ELSE
IF GATENO = 6 AND

SUBSTR.F(ADDR(DSTNO(PACKNO)),1,3) NE "4.1" AND
(DETOUR(PACKNO) = .YES OR

(PACKCLASS(PACKNO) = .VOICE.CONTENTS AND
SUBSTR.F(ADDR(DSTNO(PACKNO)),1,1) NE "4"))

LET DETOUR(PACKNO) = .NO
LET DETOURTAG = .YES
SCHEDULE A LNKARRIVAL GIVING PACKNO, 14 NOW

ALWAYS
ALWAYS

ALWAYS
ALWAYS

END

185

* *

* * * *

” * THIS ROUTINE SIMULATES THE PROCESSING OF EACH TYPE *
” * OF PACKETS AT A GATEWAY. *
’ ’ * *

* *

ROUTINE PACKPROCESSING GIVEN PACKNO AND GATENO
GO TO VOICE.CONNECT, VOICE.CONTENTS, VOICE.DISCONNECT,

VOICE.ACCEPT,VOICE.REJECT, VOICE.DISCACK, DATA.CONTENTS,
DATA.ACK PER PACKCLASS(PACKNO)

’VOICE.CONNECT’

CALL VOICECON1I GIVING PACKNO, GATENO
RETURN

’VOICE.DISCONNECT’

CALL VOICEDISC GIVING PACKNO, GATENO
RETURN

’VOICE.REJECT'

CALL VOICEREJ GIVING PACKNO, GATENO
RETURN

’VOICE.ACCEPT’

CALL VOICEACC GIVING PACKNO, GATENO
RETURN

'VOICE.DISCACK’

CALL VODISACK GIVING PACKNO, GATENO
RETURN

’DATA.ACK’

CALL DATAACK GIVING PACKNO. GATENO

186

RETURN

’DATA.CONTENTS’

CALL DATACONTS GIVING PACKNO, GATENO
RETURN

’VOICE.CONTENTS’

CALL VOICECONTS GIVING PACKNO, GATENO
RETURN

END

187

:•< *

* THIS ROUTINE SIMULATES THE PROCESSING OF A CALL *
* SETUP PACKET AT A GATEWAY. *
* *

ROUTINE VOICECONN GIVEN PACKNO. GATENO

IF DSTNO(PACKNO) = GATENO
LET TRANSDELAY.CONTROL = TIME.V - TIMESTAMP(PACKNO)
LET GTRANSDELAY.CONTROL(GATENO) = TIME.V - TIMESTAMP(PACKNO)
CALL SUCRTN GIVING PACKNO.TIME.V-TIMESTAMP(PACKNO).3

ALWAYS

IF BUF(GATENO) >= .VSEG AND
(EGTEG = .NO OR BUF.VOICE(GATENO)+.VSEG <= UPPERVO(GATENO))
LET BUF(GATENO) = BUF(GATENO) - .VSEG
LET BUF.VOICE(GATENO) = BUF.VOICE(GATENO)+ .VSEG
CREATE A SESSION CALLED SESSO
LET SESSTID(SESSO) = TIMEID(PACKNO)
LET SESSTIMESTAMP(SESSO) = TIMESTAMP(PACKNO)
LET SESSSEQ(SESSO) = SEQID(PACKNO)
LET SESSTAG(SESSO) = 0
LET SESSSRC(SESSO) = SRCNO(PACKNO)
LET SESSDST(SESSO) = DSTNO(PACKNO)
FILE SESSO IN ACTIVESESSQUEUE(GATENO)
IF DSTNO(PACKNO) = GATENO

LET PACKCLASS(PACKNO) = .VOICE.ACCEPT
LET HOPCOUNT(PACKNO) = 1
LET PACKLENG(PACKNO) = 32
LET ENTRYMARK(PACKNO) = 0
IF SRCNO(PACKNO) = DSTNO(PACKNO) OR SRCNO(PACKNO) = GATENO

LET SESSMODE(SESSO) = .SENDER
ELSE

IF DST1JO (PACKNO) = GATENO
LET SESSMODE(SESSO) = .RECEIVER

ALWAYS
ALWAYS
LET DSTNO(PACKNO) = SRCNO(PACKNO)
LET SRCNO(PACKNO) = GATENO

188

IF DSTIJO (PACKNO) = GATENO
FILE PACKNO IN GATEQUEUE.2ND(GATENO)

ELSE
CALL ROUTER GIVING PACKNO AND GATENO

ALWAYS
ELSE

CALL ROUTER GIVING PACKNO AND GATENO
ALWAYS

ELSE
FILE PACKNO IN BUFQUEUE(GATENO)
SCHEDULE A HOLDTIMEOUT CALLED HOLD1 GIVING PACKNO, GATENO

IN .HOLDTIME UNIT
LET HOLDTAG(PACKNO) = HOLD1

ALWAYS
RETURN

END

189

* * * *
’•* THIS ROUTINE SIMULATES THE PROCESSING OF A CALL *
11 * DISCONNECTION PACKET AT A GATEWAY. *
* * * *

ROUTINE VOICEDISC GIVEN PACKNO, GATENO

IF DSTIIO (PACKtlO) =GATEtlO
LET TRANSDELAY.CONTROL = TIME.V - TIMESTAMP(PACKNO)
LET GTRAHSDELAY.CONTROL(GATENO) =

TIME.V - TIMESTAMP(PACKNO)
CALL SUCRTN GIVING PACKNO,TIME.V-TIMESTAMP(PACKNO),3
’’CALL TRACElC'SUCDISC".PACKNO.GATENO)
LET DSTNO(PACKNO) = SRCNO(PACKNO)
LET SRCNO(PACKNO) = GATENO
LET PACKCLASS(PACKNO) = .VOICE.DISCACK
LET HOPCOUNT(PACKNO) = 1
LET EHTRYMARK(PACKNO) = 0
FOR EACH SESSION IN ACTIVESESSQUEUE(GATENO)

WITH SESSSEQ(SESSION) = SEQID(PACKNO) AND
SESSTID(SESSION) = TIMEID(PACKNO) AND
SESSMODE(SESSION) = 1 - SUBSEQID(PACKNO)

FIND THE FIRST CASE
IF FOUND

LET CURRSESS = SESSION
IF SESSSTATUS(CURRSESS) HE .DISCONNECTING

FOR EACH VOICESESSIOM IN EV.S(I.VOICESESSION)
WITH VOICESESSION = SESSTAG(CURRSESS)
FIND THE FIRST CASE
IF FOUND

CANCEL THE VOICESESSION CALLED SESSTAG(CURRSESS)
DESTROY THE VOICESESSION CALLED SESSTAG(CURRSESS)
LET TVOCKT = TVOCKT - 1

ALWAYS
IF SRCNO(PACKNO) NE DSTNO(PACKNO)

LET BUF.VOICE(GATENO) = BUF.VOICE(GATENO) - .VSEG
CALL BUFRLSE GIVING GATENO,.VSEG

ALWAYS
REMOVE CURRSESS FROM ACTIVESESSQUEUE(GATENO)

190

’'CALL TRACE2("EIIDVOSD",PACKNO,GATENO,CURRSESS)
DESTROY THE SESSION CALLED CURRSESS

ELSE
IF SRCNO(PACKNO) = DSTNO(PACKNO)

REMOVE CURRSESS FROM ACTIVESESSQUEUE(GATENO)
’’CALL TRACE2("ENDVSDD",PACKNO,GATENO,CURRSESS)
DESTROY THE SESSION CALLED CURRSESS
FOR EACH SESSION IN ACTIVESESSQUEUE(GATENO)

WITH SESSSEQ(SESSION) = SEQID(PACKNO) AND
SESSTID(SESSION) = TIMEID(PACKNO) AND
SESSMODE(SESSION) = SUBSEQID(PACKNO)

FIND THE FIRST CASE
IF FOUND

LET CURRSESS2 = SESSION
REMOVE CURRSESS2 FROM ACTIVESESSQUEUE(GATENO)
’’CALL TRACE2("ENDVDDD",PACKNO,GATENO,CURRSESS2)
DESTROY THE SESSION CALLED CURRSESS2

ALWAYS
LET BUF.VOICE(GATENO)=BUF.VOICE(GATENO)-.VSEG
CALL BUFRLSE GIVING GATENO,.VSEG

ALWAYS
ALWAYS

ELSE
’’CALL TRACElO'DISCNUL".PACKNO,GATENO)

ALWAYS
ALWAYS
IF DSTNO(PACKNO) = GATENO

FILE PACKNO IN GATEQUEUE.2ND(GATENO)
ELSE

CALL ROUTER GIVING PACKNO AND GATENO
ALWAYS
RETURN

END

191

J k > k ’k ’k 5 k 5 k > k : k 5 k 5 k > k : k :k 5 k : k 5 k 5 k 5 k 5 k 5 k ’k ’k 5 k : k : k 5 k 5 k 5 k 5 k > k 5 k 5 k ’k 5 k :k 5 k 5 k 5 k 5 k 5 k } k > k 5 k 5 k 5 k 5 k > k 5 k > k 5 k 5 k 5 k 5 k

£ 5k

* THIS ROUTINE SIMULATES THE PROCESSING OF A CALL *
* REJECTION PACKET AT A GATEWAY. *
* *

5 k 5 k * 5 k : k 5 k * * ; k * : k 5 k : k 5 k * 5 k 5 k > k 5 k :,k s k > k 5 k > k 5 k * 5 k * : k * :T : : k 5 k 5 k * 5 k * > k 5 k 5 k 5 k 5 k * > k 5 k * * > k * 5 k * * 5 k

ROUTINE VOICEREJ GIVEN PACKNO, GATENO

FOR EACH SESSION IN ACTIVESESSQUEUE(GATENO)
WITH SESSSEQ(SESSION) = SEQID(PACKNO) AND
SESSTID(SESSION) = TIMEID(PACKNO)
FIND THE FIRST CASE
IF FOUND

LET CURRSESS = SESSION
IF SESSTIMESTAMP(CURRSESS) <= TIMESTAMP(PACKNO)

LET BUF.VOICE(GATENO) = BUF.VOICE(GATENO) - .VSEG
CALL BUFRLSE GIVING GATENO,.VSEG
REMOVE CURRSESS FROM ACTIVESESSQUEUE(GATENO)
IF DSTNO(PACKNO) = GATENO

LET TCOUNT.VOICE.SESSREJ = TCOUNT.VOICE.SESSREJ + 1
LET GCOUNT.VOICE.SESSREJ(GATENO) =

GCOUNT.VOICE.SESSREJ(GATENO) + 1
CALL REJRTN GIVING PACKNO,4

ALWAYS
DESTROY THE SESSION CALLED CURRSESS

ALWAYS
ELSE

IF DSTNO(PACKNO)=GATENO AND SRCNO(PACKNO)=GATEIIO
LET TCOUNT.VOICE.SESSREJ = TCOUNT.VOICE.SESSREJ + 1
LET GCOUNT.VOICE.SESSREJ(GATENO) =

GCOUNT.VOICE.SESSREJ(GATENO) + 1
CALL REJRTN GIVING PACKNO.4

ALWAYS
ALWAYS

IF DSTNO(PACKNO) = GATENO
LET TRANSDELAY.CONTROL = TIME.V - TIMESTAMP(PACKNO)
LET GTRAHSDELAY.CONTROL(GATENO) = TIME.V - TIMESTAMP(PACKNO)
CALL SUCRTN GIVING PACKNO,TIME.V-TIMESTAMP(PACKNO),3
DESTROY THE PACKET CALLED PACKNO

ELSE

CALL ROUTER GIVIIJG PACKNO AND GATENO
ALWAYS
RETURN

193

» ' * *

” * THIS ROUTINE SIMULATES THE PROCESSING OF A CALL *
” * ACCEPTANCE PACKET AT A GATEWAY. *
• • * *

ROUTINE VOICEACC GIVEN PACKNO, GATENO

IF DSTNO(PACKNO) = GATENO
LET TCOUNT. VOICE.SESSACC=TCOUNT.VOICE.SESSACC+1
LET GCOUNT.VOICE.SESSACC(GATENO) =

GCOUNT.VOICE.SESSACC(GATENO)+1
LET TRAHSDELAY.VOICE.CONNECT=TIME.V-ARRIVALTIME(PACKNO)
CALL SUCRTIJ GIVING PACKNO,TIME.V-ARRIVALTIME(PACKNO),4
FOR EACH SESSION IN ACTIVESESSQUEUE(GATENO)

WITH SESSTID(SESSION) = TIMEID(PACKNO) AND
SESSSEQ(SESSION) = SEQID(PACKNO) AND
SESSMODE(SESSION) = .SENDER

FIND THE FIRST CASE
IF FOUND

ACTIVATE A VOICESESSION CALLED HEWSESS1 GIVING
SESSION, GATENO NOW

LET SESSTAG(SESSION) = NEWSESS1
ELSE

'’CALL TRACE2("VACCBUG",PACKNO.GATENO,SESSION)
ALWAYS

ALWAYS
IF DSTNO(PACKNO) = GATENO

LET TRANSDELAY.CONTROL = TIME.V - TIMESTAMP(PACKNO)
LET GTRANSDELAY.CONTROL(GATENO) = TIME.V - TIMESTAMP(PACKNO)
CALL SUCRTN GIVING PACKNO,TIME.V-TIMESTAIIP(PACKNO),3
DESTROY THE PACKET CALLED PACKNO

ELSE
CALL ROUTER GIVING PACKNO AND GATENO

ALWAYS
RETURN

END

194

1 * * *

” * THIS ROUTIIIE SIMULATES THE PROCESSING OF A CALL *
” * DISCONNECTION ACKNOWLEDGMENT PACKET AT A GATEWAY. *
’ • S ic *

ROUTINE VODISACK GIVEN PACKNO, GATENO

FOR EACH SESSION IN ACTIVESESSQUEUE(GATENO)
WITH SESSSEQ(SESSION) = SEQID(PACKNO) AND

SESSTID(SESSION) = TIMEID(PACKNO)
FIND THE FIRST CASE
IF FOUND

REMOVE THE SESSION FROM ACTIVESESSQUEUE(GATENO)
IF DSTNO(PACKNO) = GATENO

'’CALL TRACE2("ENDV0SA",PACKNO.GATENO.SESSION)
ALWAYS

DESTROY THE SESSION
LET BUF.VOICE(GATENO) = BUF.VOICE(GATENO) - .VSEG
CALL BUFRLSE GIVING GATENO..VSEG

ALWAYS

IF DSTNO(PACKNO) = GATENO
LET TRANSDELAY.CONTROL = TIME.V - TIMESTAMP(PACKNO)
LET GTRANSDELAY.CONTROL(GATENO) = TIME.V - TIMESTAMP(PACKNO)
CALL SUCRTM GIVING PACKNO.TIME.V-TIMESTAMP(PACKNO).3
DESTROY THE PACKET CALLED PACKNO

ELSE
CALL ROUTER GIVING PACKNO AND GATENO

ALWAYS
RETURN

END

195

* * 5k *
” * THIS ROUTINE SIMULATES THE PROCESSING OF A DATA *
’•* ACKNOWLEDGMENT PACKET AT A GATEWAY. *
• ’ * *

ROUTINE DATAACK GIVEN PACKNO, GATENO
IF DSTNO(PACKNO) = GATENO

FOR EACH PACKET IN ACKQUEUE(GATENO)
WITH SEQID(PACKET) = SEQID(PACKNO) AND

TIMEID(PACKET) = TIMEID(PACKNO) AND
PACKCLASS(PACKET) = .DATA.CONTENTS

FIND THE FIRST CASE
IF FOUND

LET CURRPACK = PACKET
REMOVE CURRPACK FROM ACKQUEUE(GATENO)
FOR EACH ACKTIMEOUT IN EV.S(I.ACKTIMEOUT)

WITH ACKTIMEOUT = ACKTAG(CURRPACK)
FIND THE FIRST CASE
IF FOUND

CANCEL THE ACKTIMEOUT CALLED ACKTAG(CURRPACK)
DESTROY THE ACKTIMEOUT CALLED ACKTAG(CURRPACK)

ALWAYS
IF EGTEG = .YES AND SRCNO(CURRPACK) NE DSTNO(CURRPACK)

CALL UPDWI GIVING SRCNO(CURRPACK),DSTNO(CURRPACK),1
ALWAYS
LET BUF.IN(GATENO)=BUF.IN(GATENO)-PACKSEG(CURRPACK)
LET PACK.IN(GATENO)=PACK.III (GATENO)-1
CALL BUFRLSE GIVING GATENO.PACKSEG(CURRPACK)
DESTROY THE PACKET CALLED CURRPACK

ALWAYS
DESTROY THE PACKET CALLED PACKNO
LET TCOUNT.DATA.ACK = TCOUNT.DATA.ACK + 1
LET GCOUNT.DATA.ACK(GATENO)=GCOUNT.DATA.ACK(GATENO)+1

ELSE
CALL ROUTER GIVING PACKNO AND GATENO

ALWAYS
RETURN

END

196

1 ' * *

’’* THIS ROUTINE SIMULATES THE PROCESSING OF A DATA *
” * CONTENTS PACKET AT A GATEWAY. *
’ ’ * *

ROUTINE DATACOIITS GIVEN PACKNO, GATENO

IF DSTNO(PACKNO) =GATENO
LET TCOUNT.DATA.THRUPUT=TCOUNT.DATA.THRUPUT+PACKLENG(PACKNO)-26
LET GCOUNT.DATA.THRUPUT(GATENO)=GCOUNT.DATA.THRUPUT(GATENO)+

PACKLENG(PACKNO)-26
LET TCOUNT.DATA.SUCCESS = TCOUNT.DATA.SUCCESS + 1
LET GCOUNT.DATA.SUCCESS(GATENO)=GCOUNT.DATA.SUCCESS(GATENO)+1
•’CALL TRACE1("SUCDATA".PACKNO.GATENO)
IF RETRYTIMES(PACKNO) HE 0

LET TCOUNT.RETRY.SUCCESS = TCOUNT.RETRY.SUCCESS + 1
LET GCOUNT.RETRY.SUCCESS(GATENO) =

GCOUNT.RETRY.SUCCESS(GATENO) + 1
ALWAYS
LET TRANSDELAY.DATA = TIME.V - TIMESTAMP(PACKNO)
LET GTRANSDELAY.DATA(GATENO) = TIME.V - TIMESTAMP(PACKNO)
CALL SUCRTN GIVING PACKNO.TIME.V-TIMESTAMP(PACKNO),1
IF SRCNO(PACKNO) HE DSTNO(PACKNO)

LET BUF.TRAN(GATENO)=BUF.TRAN(GATENO)-PACKSEG(PACKNO)
LET PACK.TRAN(GATENO)=PACK.TRAN(GATENO)-1
CALL BUFRLSE GIVING GATENO,PACKSEG(PACKNO)

ALWAYS
LET DSTNO (PACKNO) = SRCIIO (PACKNO)
LET SRCNO(PACKNO) = GATENO
LET PACKCLASS(PACKNO) = .DATA.ACK
LET HOPCOUNT(PACKNO) = 1
LET PACKLENG(PACKNO) = 0
LET ENTRYMARK(PACKNO) = 0
IF DSTNO(PACKNO) = GATENO
. FILE PACKNO IN GATEQUEUE.3RD(GATENO)
ELSE

CALL ROUTER GIVING PACKNO AND GATENO
ALWAYS

ELSE

197

CALL ROUTER GIVING PACKNO AND GATENO
ALWAYS
RETURN

END

198

* *

* THIS ROUTINE SIMULATES THE PROCESSING OF A VOICE *
* CONTENTS PACKET AT A GATEWAY. *
* *

ROUTINE VOICECOIITS GIVEN PACKNO, GATENO

IF DSTNO(PACKNO)=GATENO
LET TRANSDELAY.VOICE = TIME.V - TIMESTAMP(PACKNO)
LET GTRANSDELAY.VOICE(GATENO) = TIME.V - TIMESTAMP(PACKNO)
CALL SUCRTN GIVING PACKNO,TIME.V-TIMESTAMP(PACKNO),2
LET TCOUNT.VOICE.THRUPUT=TCOUNT.VOICE.THRUPUT+.VPACKLENG-16
LET GCOUNT.VOICE.THRUPUT(GATENO)=GCOUNT.VOICE.THRUPUT(GATENO)+

.VPACKLENG-16
LET TCOUNT.VOICE.SUCCESS = TCOUNT.VOICE.SUCCESS + 1
LET GCOUNT.VOICE.SUCCESS(GATENO)=GCOUNT.VOICE.SUCCESS(GATENO)+1

ALWAYS

IF SUBSEQID(PACKNO) = 0 AND DSTNO(PACKNO) = GATENO

IF SRCNO(PACKNO) = DSTNO(PACKNO)
CREATE A SESSION CALLED SESS1
LET SESSTID(SESSl) = TIMEID(PACKNO)
LET SESSTIMESTAMP(SESS1) = TIMESTAMP(PACKNO)
LET SESSSEQ(SESS1) = SEQID(PACKNO)
LET SESSSRC(SESS1) = SRCNO(PACKNO)
LET SESSDST(SESSl) = DSTNO(PACKNO)
FILE SESS1 IN ACTIVESESSQUEUE(GATENO)
LET SESSMODE(SESS1) = .RECEIVER
ACTIVATE A VOICESESSION CALLED NEWSESS2 GIVING SESS1,

GATENO NOW
LET SESSTAG(SESS1) = NEWSESS2

ELSE
FOR EACH SESSION IN ACTIVESESSQUEUE(GATENO)

WITH SESSTID(SESSION) = TIMEID(PACKNO) AND
SESSSEQ(SESSION) = SEQID(PACKNO) AND
SESSMODE(SESSION) = .RECEIVER

FIND THE FIRST CASE
IF FOUND

199

ACTIVATE A VOICESESSION CALLED NEWSESS4 GIVING
SESSION, GATENO MOW

LET SESSTAG(SESSION) = NEWSESS4
ELSE

CALL TRACE1("VCTSBUG",PACKNO,GATENO)
ALWAYS

ALWAYS
ALWAYS
IF DSTNO(PACKNO) = GATENO

DESTROY THE PACKET CALLED PACKNO
ELSE

CALL ROUTER GIVING PACKNO AND GATENO
ALWAYS
RETURN

END

200

1
’ * * *
” * THIS ROUTINE SIMULATES THE PROCESSING OF RELEASING *
” * BUFFER SEGMENTS AT A GATEWAY. *
* * :{« jf:

ROUTINE BUFRLSE GIVEN GATENO.SEGNO

LET BUF(GATENO) = BUF(GATENO) + SEGNO
IF BUFQUEUE(GATENO) IS EMPTY OR

BUF(GATENO) < .VSEG OR
(EGTEG = .YES AND BUF.VOICE(GATENO)+.VSEG > UPPERVO(GATENO))
RETURN

ALWAYS

REMOVE THE FIRST PACKET FROM BUFQUEUE(GATENO)
LET HLDPACK = PACKET
LET BUF(GATENO)=BUF(GATENO)-.VSEG
LET BUF.VOICE(GATENO)=BUF.VOICE(GATENO)+.VSEG
FOR EACH HOLDTIMEOUT III EV.S(I.HOLDTIMEOUT)

WITH HOLDTIMEOUT = HOLDTAG(HLDPACK)
FIND THE FIRST CASE
IF FOUND

CANCEL THE HOLDTIMEOUT CALLED HOLDTAG(HLDPACK)
DESTROY THE HOLDTIMEOUT CALLED HOLDTAG(HLDPACK)

ELSE
CALL TRACE1("HLDBUG2".HLDPACK,GATENO)

ALWAYS
’’CALL TRACE4("HLDACC ",HLDPACK.GATENO)
CREATE A SESSION CALLED SESS3
LET SESSTID(SESS3) = TIMEID(HLDPACK)
LET SESSTIMESTAMP(SESS3) = TIMESTAMP(HLDPACK)
LET SESSSEQ(SESS3) = SEQID(HLDPACK)
LET SESSTAG(SESS3) = 0
LET SESSSRC(SESS3) = SRCNO(HLDPACK)
LET SESSDST(SESS3) = DSTNO(HLDPACK)
FILE SESS3 IN ACTIVESESSQUEUE(GATENO)

IF DSTNO(HLDPACK) = GATENO
LET PACKCLASS(HLDPACK) = .VOICE.ACCEPT

201

LET H0PC0UNT(HLDPACK) = 1
LET PACKLENG(HLDPACK) = 32
LET ENTRYMARK(HLDPACK) = 0
IF SRCNO(HLDPACK) = DSTNO(HLDPACK) OR SRCNO(HLDPACK) = GATENO

LET SESSMODE(SESS3) = .SENDER
ELSE

IF DSTNO(HLDPACK) = GATENO
LET SESSMODE(SESS3) = .RECEIVER

ALWAYS
ALWAYS
LET DSTNO(HLDPACK) = SRCNO(HLDPACK)
LET SRCNO(HLDPACK) = GATENO

ALWAYS
IF DSTNO(HLDPACK) = GATENO

FILE HLDPACK IN GATEQUEUE.2ND(GATENO)
ELSE

CALL ROUTER GIVING HLDPACK AND GATENO
ALWAYS

RETURN
END

202

* *
* THIS ROUTINE SIMULATES THE TIME-OUT EVENT OF A CALL *
* SETUP HOLDING AT A GATEWAY. *
* *

EVENT HOLDTIMEOUT GIVEN PACKNO AND GATENO

’’CALL TRACE4("HLDTO ".PACKNO.GATENO)
LET INTRTIME(GATENO) = INTRTIME(GATENO) + PHOLDTO(GATENO)
IF PACKNO IS IN BUFQUEUE

REMOVE PACKNO FROM BUFQUEUE(GATENO)
ALWAYS
LET PACKCLASS(PACKNO) = .VOICE.REJECT
LET HOPCOUNT(PACKNO) = 1
LET PACKLENG(PACKNO) = 32
LET DSTNO(PACKNO) = SRCNO(PACKNO)
LET SRCNO(PACKNO) = GATENO
LET ENTRYMARK(PACKNO) = 0
IF DSTNO(PACKNO) = GATENO

FILE PACKNO IN GATEQUEUE.2ND(GATENO)
ELSE

CALL ROUTER GIVING PACKNO AND GATENO
ALWAYS

RETURN
END

203

MAIM ROUTINE DEFINES THE SYSTEM CONFIGURATIONS, ACTIVATES
THE SOURCE GENERATOR OF EACH GATEWAY, SETS THE BEGINNING AND
ENDING POINTS FOR THE STATISTICS COLLECTION PERIOD, AND
STARTS THE SIMULATION RUN.

MAIN

CALL SYSGEN

FOR I = 1 TO N.GATEWAY
DO

ACTIVATE A GENERATOR GIVING I NOW
LOOP

IF .STARTPT ME 0
SCHEDULE AN BEGIMSTAT IN .STARTPT UNIT

ALWAYS
SCHEDULE AH OUTPUT IN .TIMELIMIT UNIT
START SIMULATION

END

204

* * * *
” * THIS ROUTIIIE RESETS ALL THE STATISTICAL VARIABLES AT *
” * THE BEGINNING OF THE STATISTICS GATHERING PERIOD. *
• ’ * *

EVENT BEGINSTAT

RESET TOTALS OF TRANSDELAY.DATA, TRAHSDELAY.CONTROL, DATASEG,
TRANSDELAY.VOICE, TRANSDELAY.VOICE.CONNECT, TVOCKT

LET TCOUNT.VOICE.THRUPUT = 0
LET TCOUNT.DATA.THRUPUT = 0
LET TCOUNT.VOICE.INLOAD = 0
LET TCOUNT.DATA.INLOAD = 0
LET TCOUNT.VOICE.IN = 0
LET TCOUNT.VOICE.SUCCESS = 0
LET TCOUNT.DATA.IN = 0
LET TCOUNT.DATA.ADMIT = 0
LET TCOUNT.DATA.ADMITLD = 0
LET TCOUNT.DATA.SUCCESS = 0
LET TCOUNT.RETRY.SUCCESS = 0
LET TCOUNT.DATA.ACK = 0
LET TCOUNT.VOICE.SESSIN = 0
LET TCOUNT.CONTROL.ACK = 0
LET TCOUNT.VOICE.SESSEND = 0
LET TCOUNT.DATA.REJECT = 0
LET TCOUNT.VOICE.SESSREJ = 0
LET TCOUNT.VOICE.SESSACC = 0
LET TCOUNT.RETRY.PACK = 0
LET TCOUNT.RETRY.FREQ = 0
FOR EACH LINK

RESET TOTALS OF LNKSTATUS(LINK)

FOR EACH GATEWAY
DO

RESET TOTALS OF GTRANSDELAY.DATA(GATEWAY),
GTRANSDELAY.CONTROL(GATEWAY),
GTRANSDELAY.VOICE(GATEWAY),
N .GATEQUEUE.1ST(GATEWAY),
N .GATEQUEUE.2ND(GATEWAY),

II. GATEQUEUE. 3RD (GATEWAY) ,
BUF(GATEWAY),
PACK. Ill (GATEWAY) ,
BUF . Ill (GATEWAY) ,
BUF. TRAII (GATEWAY) ,
PACK.TRAN(GATEWAY).
BUF.VOICE(GATEWAY),
GATESTATUS(GATEWAY)

LET GCOUNT.VOICE.THRUPUT(GATEWAY) = 0
LET GCOUNT.DATA.THRUPUT(GATEWAY) = 0
LET GCOUNT.VOICE.INLOAD(GATEWAY) = 0
LET GCOUNT.DATA.IHLOAD(GATEWAY) = 0
LET GCOUNT.VOICE.IN(GATEWAY) = 0
LET GCOUNT.VOICE.SUCCESS(GATEWAY) = 0
LET GCOUNT.DATA.IN(GATEWAY) = 0
LET GCOUNT.DATA.ADMIT(GATEWAY) = 0
LET GCOUNT.DATA.ADMITLD(GATEWAY) = 0
LET GCOUNT.DATA.SUCCESS(GATEWAY) = 0
LET GCOUNT.RETRY.SUCCESS(GATEWAY) = 0
LET GCOUNT.DATA.ACK(GATEWAY) = 0
LET GCOUNT.VOICE.SESSIII(GATEWAY) = 0
LET GCOUNT.CONTROL.ACK(GATEWAY) = 0
LET GCOUNT.VOICE.SESSEND(GATEWAY) = 0
LET GCOUNT.DATA.REJECT(GATEWAY) = 0
LET GCOUNT.VOICE.SESSREJ(GATEWAY) = 0
LET GCOUNT.VOICE.SESSACC(GATEWAY) = 0
LET GCOUNT.RETRY.PACK(GATEWAY) = 0
LET GCOUNT.RETRY.FREQ(GATEWAY) = 0

LOOP

FOR EACH HOPCLASS
DO

RESET TOTALS OF HOPDELAY.D(HOPCLASS),
HOPDELAY.C(HOPCLASS),
HOPDELAY.V(HOPCLASS),
HOPSESSDELAY(HOPCLASS)

LET HOPSUC.D(HOPCLASS) = 0
LET HOPSUC.V(HOPCLASS) = 0
LET HOPSUC.C(HOPCLASS) = 0
LET HOPREJ.D(HOPCLASS) = 0

206

LET HOPREJ.V(HOPCLASS) = 0
LET HOPSESSACC(HOPCLASS) = 0
LET HOPSESSREJ(HOPCLASS) = 0

LOOP
END

207

» * * *

” * THIS ROUTINE OUTPUTS ALL THE STATISTICS AT THE END OF *
” * THE STATISTICS GATHERING PERIOD. *
• ’ * *

EVENT OUTPUT

LET STARTTIME = .STARTPT
LET STOPTIME = .TIMELIMIT
START NEV.' PAGE
PRINT 2 LINE WITH STARTTIME. STOPTIME THUS

STATISTICS FOR TIME PERIOD (SEC) = ****.* TO ****.*

PRINT 47 LINES V/ITH AVG.TRANSDELAY.VOICE, MAX.TRANSDELAY.VOICE,
STDDEV.TRANSDELAY.VOICE, AVG.TRANSDELAY.DATA, MAX.TRANSDELAY.DATA,
STDDEV.TRANSDELAY.DATA, AVG.TRANSDELAY.CONTROL,
MAX.TRANSDELAY.CONTROL, STDDEV.TRANSDELAY.CONTROL,
AVG.TRANSDELAY.VOICE.CONNECT,
MAX.TRANSDELAY.VOICE.CONNECT, STDDEV.TRANSDELAY.VOICE.CONNECT,
TCOUNT.VOICE.IN/(.TIMELIMIT-.STARTPT),
TCOUNT.DATA.IN/(.TIMELIMIT-.STARTPT),
(TCOUNT.VOICE.IN+TCOUNT.DATA.IN)/(.TIMELIMIT-.STARTPT),
TCOUNT.DATA.ADMIT/(.TIMELIMIT-.STARTPT),
(TCOUNT.VOICE.IN+TCOUNT.DATA.ADMIT)/(.TIMELIMIT-.STARTPT),
TCOUNT.VOICE.SUCCESS/(.TIMELIMIT-.STARTPT),
TCOUNT.DATA.SUCCESS/(.TIMELIMIT-.STARTPT),
(TCOUNT.VOICE.SUCCESS+TCOUNT.DATA.SUCCESS)/(.TIMELIMIT-.STARTPT),
TCOUNT.VOICE.INL0AD*8/(.TIMELIMIT-.STARTPT),
TCOUNT.DATA.INL0AD*8/(.TIMELIMIT-.STARTPT),
(TCOUNT.VOICE.INLOAD+TCOUNT.DATA.INLOAD)*8/(.TIMELIMIT-.STARTPT),
TCOUNT.DATA.ADMITLD*8/(.TIMELIMIT-.STARTPT),
(TCOUNT.VOICE.INLOAD+TCOUNT.DATA.ADMITLD)*8/(.TIMELIMIT-.STARTPT),
TCOUNT.VOICE.THRUPUT*8/(.TIMELIMIT-.STARTPT),
TCOUNT.DATA.THRUPUT*8/(.TIMELIMIT-.STARTPT),
(TCOUNT.VOICE.THRUPUT+TCOUNT.DATA.THRUPUT)*8/(.TIMELIMIT-.STARTPT),
MAX.TVOCKT/2, AVG.TVOCKT/2,
MIN.TVOCKT/2, AVG.DATASEG, TCOUNT.VOICE.IN,
TCOUNT.VOICE.SUCCESS, TCOUNT.VOICE.SESSIN, TCOUNT.VOICE.SESSEND,
TCOUNT.VOICE.SESSACC, TCOUNT.DATA.IN, TCOUNT.DATA.ADMIT,

TCOUIIT. DATA. SUCCESS , TCOUNT . DATA. ACK,
TCOUNT.RETRY.PACK,TCOUNT.RETRY.FREQ, TCOUNT.RETRY.SUCCESS,
TCOUNT.DATA.REJECT,TCOUNT.VOICE.SESSREJ THUS

AVG.TRANSDELAY. VOICE
MAX.TRANSDELAY.VOICE = :

STDDEV.TRANSDELAY.VOICE
AVG.TRANSDELAY.DATA 22 s-c

MAX.TRANSDELAY.DATA = sf:

STDDEV.TRANSDELAY.DATA =2 & &

AVG.TRANSDELAY.CONTROL = # sj: :j:

MAX.TRANSDELAY . CONTROL = :jc t >fc sfc >*: :•<

STDDEV . TRANSDELAY . CONTROL ZZ ji; ;i• -I; \}f. ji* ji{

AVG.TRANSDELAY.VOICE.CONNECT = * * * . * * * * *

MAX.TRANSDELAY.VOICE.CONNECT = * * * . * * * * *

STDDEV.TRANSDELAY.VOICE.CONNECT = ***.*****
AVG . VOICE . INLOAD(PACK/S)
AVG . DATA . INLOAD(PACK/S)
AVG.TOTAL . INLOAD(PACK/S) = $ # # Jfc sf: s{< if: % #

AVG.DATA.ADMIT(PACK/S) 22 & >ri % & sf: & & % £ sfc # £ & £ #

AVG.TOTAL.ADMIT(PACK/S) 22 -Jfi :■« :fc :Jc if: sfc jfc jfc % % >j< :j<

AVG.VOICE.THRUPUT(PACK/S) = t i c } : : * : # # #

AVG . DATA . THRUPUT(PACK/S) =

AVG.TOTAL.THRUPUT(PACK/S) = :fc # } ■ : sf? :f: >•: j}«

AVG.VOICE.INLOAD(BPS) 22 :-c jj: :f; :■« % sj; sj< :jc ?■< :■<

AVG.DATA.INLOAD(BPS) — # :*c :-c :jc ;jc sjc if: #

AVG.TOTAL.INLOAD(BPS) = :j: j-: ;jc :'f. •%. :f: . - j ; ^

AVG.DATA.ADMITLD(BPS) s :«i -Jfi 'Jfi -Jf :-i % :?c 'Jfi •<: if: #

AVG.TOTAL.ADMITLD(BPS)
AVG.VOICE.THRUPUT(BPS)
AVG . DATA . THRUPUT(BPS)
AVG . TOTAL.THRUPUT(BPS) = .'f.'.-i % :j: # :ft # 'Jfi & % !?: if:

MAX.TVOCKT = ***
AVG.TVOCKT = * * *

MIN.TVOCKT = ***
AVG . DATASEG = * * . *

TCOUNT.VOICE.IN = -Jfi. & £
TCOUNT.VOICE.SUCCESS = 5$: :}c

TCOUNT.VOICE.SESSIH 22 ^ ‘4:

TCOUNT.VOICE.SESSEND =

TCOUNT.VOICE.SESSACC

TCOUtlT. DATA. Ill = **********
TCOUMT.DATA.ADMIT = **********
TCOUtlT.DATA.SUCCESS = **********
TCOUIIT. DATA. ACK = **********
TCOUtlT. RETRY. PACK = **********
TCOUtlT. RETRY. FREQ = **********
TCOUtlT.RETRY.SUCCESS = **********
TCOUIIT.DATA.REJECT = **********
TCOUtlT.VOICE.SESSREJ = **********
START !IEW PAGE
PRIIIT 1 DOUBLE LINE THUS

GT MAXQ.l AVGQ.l SDEV.l MAXQ.2 AVGQ.2 SDEV.2 MAXQ.3 AVGQ.3 SDEV.3
UTL

FOR EACH GATEWAY
PRINT 1 DOUBLE LINE WITH GATEWAY. MAX.GATEQUEUE.1ST(GATEWAY).

AVG.GATEQUEUE.1ST(GATEWAY).
STDDEV.GATEQUEUE.1ST(GATEWAY),
MAX.GATEQUEUE.2ND(GATEWAY).
AVG.GATEQUEUE.2ND(GATEWAY).
STDDEV. GATEQUEUE .2ND (GATEWAY)-,
MAX.GATEQUEUE.3RD(GATEWAY).
AVG.GATEQUEUE.3RD(GATEWAY),
STDDEV.GATEQUEUE.3RD(GATEWAY),
AVG.UTILIZATION.GATE(GATEWAY) THUS

:«c # # : » : : • : :jc & # : |c ;fs ^ # sfc # # # :!c s |c & 5$: # £ £ % ;?e s*c sft

PRINT 1 DOUBLE LINE THUS
GTE VIII VSU VSEIN VSEAC VSREJ VSEED DIN DAD DSU

DREJ DACK RTYP RTYF RTYS OVRUN

FOR EACH GATEWAY
PRINT 1 DOUBLE LINE WITH GATEWAY,GCOUNT.VOICE.IN(GATEWAY).

GCOUNT.VOICE.SUCCESS(GATEWAY),
GCOUNT.VOICE.SESSIN(GATEWAY).
GCOUNT.VOICE.SESSACC(GATEWAY),
GCOUtIT. VOICE. SESSREJ (GATEWAY) ,
GCOUNT.VOICE.SESSEND(GATEWAY),
GCOUNT.DATA.IN(GATEWAY),
GCOUNT.DATA.ADMIT(GATEWAY),

GCOUNT.DATA.SUCCESS(GATEWAY),
GCOUMT.DATA.REJECT(GATEWAY),
GCOUMT.DATA.ACK(GATEWAY),
GCOUNT.RETRY.PACK(GATEWAY),
GCOUNT.RETRY.FREQ(GATEWAY),
GCOUNT.RETRY.SUCCESS(GATEWAY),
OVERRUN(GATEWAY) THUS

^ ^ ^ i f t 5yc r*s & :j« >•: }j< >J: : j c :'•:%%% : ? « ^ :{< :Js

:js % % :■< 5}s jf: # ;f: sfs sj? :Js # ifc % # # % jjc

PRINT 2 DOUBLE LINES THUS

HOP DAVGDLY DMAVDLY DSTDDLY DSUCNO DREJNO VAVGDLY VMAXDLY VSTDDLY
VSUCIIO VOVRUN VSAVGDLY VSMAXDLY VSSTDDLY VSACC VSREJ

FOR EACH HOPCLASS
PRINT 1 DOUBLE LINE WITH HOPCLASS,AVG.HOPDELAY.D(HOPCLASS),

MAX.HOPDELAY.D(HOPCLASS),
STDDEV.HOPDELAY.D(HOPCLASS),
HOPSUC.D(HOPCLASS),
HOPREJ.D(HOPCLASS),
AVG.HOPDELAY.V(HOPCLASS),
MAX.HOPDELAY.V(HOPCLASS),
STDDEV.HOPDELAY.V(HOPCLASS),
HOPSUC.V(HOPCLASS),
HOPREJ.V(HOPCLASS).
HOPSESSDELAY(HOPCLASS),
MAX.HOPSESSDELAY(HOPCLASS),
STDDEV.HOPSESSDELAY(HOPCLASS),
HOPSESSACC(HOPCLASS),
HOPSESSREJ(HOPCLASS) THUS

:j: :•< ̂ ‘Jf. £ % * & , * * * # :«i :?c & ^ ;fc * # :•: % * * # :fc ̂ :fc * jjc ̂ # &

'.'f. * :fc ; >•: s*: £ s j: % v j: > % % % s$: # >■: # &

PRINT 2 LINES THUS

HOPNO CAVGDLY CMAVDLY CSTDDLY CSUCNO
FOR EACH HOPCLASS

PRINT 1 LINE WITH HOPCLASS,AVG.HOPDELAY.C(HOPCLASS),
MAX.HOPDELAY.C(HOPCLASS),

STDDEV.HOPDELAY.C(HOPCLASS),
HOPSUC.C(HOPCLASS) THUS

^ £ : & ; * (si< >jc jjc # # * * ;}c >>c jfc

PRIIIT 2 LINES THUS

LINK UTILIZATIOII

FOR EACH LI1IK
PRIIIT 1 LIME WITH LIIIK, AVG.UTILIZATION.LINK(LINK) THUS

* -Ja s j: #

START HEW PAGE
PRINT 1 DOUBLE LIME THUS

GT MAXBUF AVGBUF MINBUF MAXIN AVGIN MININ MAXTR AVGTR MINTR MAXVO AVGVO
MINVO BUF BUFIN BUFTR BUFVO

FOR EACH GATEWAY
PRINT 1 DOUBLE LINE WITH GATEWAY,MAX.BUF(GATEWAY),AVG.BUF(GATEWAY),

MIN.BUF(GATEWAY),MAX.BUFIN(GATEWAY),AVG.BUFIN(GATEWAY),
MIN.BUFIN(GATEWAY).MAX.BUFTRAN(GATEWAY),AVG.BUFTRAN(GATEWAY),
MIN.BUFTRAN(GATEWAY),MAX.BUFVO(GATEWAY).AVG.BUFVO(GATEWAY),
MIN.BUFVO(GATEWAY),BUF(GATEWAY),BUF.IN(GATEWAY).
BUF.TRAN(GATEWAY).BUF.VOICE(GATEWAY) THUS

£ # # # £ # £ * * # sf: > £ :f: * £ if: ̂ _ :f;
•<: :jc # :■<

PRIIIT 1 LINE THUS
GT MAXINP AVGINP MININP MAXTRP AVGTRP MIMTRP IMP TRP

FOR EACH GATEWAY
PRINT 1 LINE WITH GATEWAY.MAX.PACKIN(GATEWAY).AVG.PACKIN(GATEWAY).

MIN.PACKIN(GATEWAY),MAX.PACKTRAN(GATEWAY),AVG.PACKTRAN(GATEWAY).
MIN.PACKTRA1I(GATEWAY) ,
PACK.IN(GATEWAY).PACK.TRA1I (GATEWAY) THUS

PRIIIT 1 DOUBLE LINE THUS
GT VAVGINLOAD DAVGINLOAD TAVGI1IL0AD DAVGADMIT TAVGADMIT VAVGTHRUPUT
DAVGTHRUPUT TAVGTHRUPUT

FOR EACH GATEWAY
PRINT 1 DOUBLE LINE WITH GATEWAY,
GCOUNT.VOICE.INLOAD(GATEWAY)/(.TIMELIMIT-.STARTPT),

212

GCOUNT.DATA.INLOAD(GATEWAY)/(.TIMELIMIT-.STARTPT),
(GCOUNT.DATA.INLOAD(GATEWAY)+GCOUNT.VOICE.INLOAD(GATEWAY))/

(.TIMELIMIT-.STARTPT),
GCOUNT.DATA.ADMITLD(GATEWAY)/(.TIMELIMIT-.STARTPT),
(GCOUNT.DATA.ADMITLD(GATEWAY)+GCOUNT.VOICE.INLOAD(GATEWAY))/

(.TIMELIMIT-.STARTPT),
GCOUNT.VOICE.THRUPUT(GATEWAY)/(.TIMELIMIT-.STARTPT),
GCOUNT.DATA.THRUPUT(GATEWAY)/(.TIMELIMIT-.STARTPT),
(GCOUNT.DATA.THRUPUT(GATEWAY)+GCOUNT.VOICE.THRUPUT(GATEWAY))/

(.TIMELIMIT-.STARTPT) THUS
:j: >}c % # ^ £ :jc # :*c >•: i|c -Jfi :j; >j: '■& £ * * # ❖ £ ^ # * # # # # & £ £ # # # 'k * # £ # '<• # # &

PRINT 1 DOUBLE LINE THUS
GT VAVGINLOAD DAVGINLOAD TAVGIIILOAD DAVGADMIT TAVGADMIT VAVGTHRUPUT
DAVGTHRUPUT TAVGTHRUPUT

FOR EACH GATEWAY
PRINT 1 DOUBLE LINE WITH GATEWAY,
GCOUNT.VOICE.IN(GATEWAY)/(.TIMELIMIT-.STARTPT),
GCOUNT.DATA.IN(GATEWAY)/(.TIMELIMIT-.STARTPT),
(GCOUNT.DATA.IN(GATEWAY)+GCOUNT.VOICE.IN(GATEWAY))/

(.TIMELIMIT-.STARTPT),
GCOUNT.DATA.ADMIT(GATEWAY)/(.TIMELIMIT-.STARTPT),
(GCOUNT.DATA.ADMIT(GATEWAY)+GCOU1IT.VOICE.IN(GATEWAY))/

(.TIMELIMIT-.STARTPT),
GCOUNT.VOICE.SUCCESS(GATEWAY)/(.TIMELIMIT-.STARTPT),
GCOUNT.DATA.SUCCESS(GATEWAY)/(.TIMELIMIT-.STARTPT),
(GCOUNT.DATA.SUCCESS(GATEWAY)+GCOU1IT.VOICE.SUCCESS(GATEWAY))/

(.TIMELIMIT-.STARTPT) THUS
& £ 'Jfi ;jc # % £ % '■& "k & # & & Jfc # # # % & & # sfc -5< # & & sfc # # & sjs & & s|c # # £ '■& £ :fc 'Jfi :}< '■% # # ^ # & # # #

:-c ;j: ;■< # & Jrt *-5c :{c :jc >■:

STOP
END

213

* * * *

” * THIS ROUTIIIE ADJUSTS THE VJIIIDOV/ SIZE OF THE EGTEG FLOW *
” * CONTROL MECHANISM. *
1 * * *

ROUTIIIE UPDWI GIVEII SRC, DST, IIIDEX
LET WIIIDOW(SRC,DST) = WIIIDOW(SRC,DST) + IIIDEX
IF WIHDOW (SRC, DST) < 0 OR WIIIDOW (SRC, DST) > .WIIIDOWSIZE

PRIIIT 1 LIHE WITH SRC, DST, WIIIDOW (SRC, DST) , TIME.V THUS
WIFLOW SRC * DST * WI ** TIM ******.**

ALWAYS
END

214

****************** **#*****>!<
* *
* THIS ROUTIIIE GATHERS STATISTICS REGARDING TO THE ACCEPTANCE *
* TIMES OF VARIOUS TYPES OF PACKETS. *
* *
************************************** ***********5fc*3jo|<*j<>l<&sfc:fc:ir:£:fc#3fc>fc*

ROUTIIIE SUCRTII GIVEN PACKIIO,DELAY,PACKMODE
DEFINE DELAY AS A REAL VARIABLE
LET INDEX = HOPCOUNT(PACKNO)
IF PACKMODE = 1

LET HOPDELAY.D(INDEX) = DELAY
LET HOPSUC.D(INDEX) = HOPSUC. D(IIIDEX) + 1

ELSE
IF PACKMODE = 2

LET HOPDELAY.V(INDEX) = DELAY
LET HOPSUC.V(INDEX) = HOPSUC.V(INDEX) + 1

ELSE
IF PACKMODE = 3

LET HOPDELAY.C(INDEX) = DELAY
LET HOPSUC.C(IIIDEX) = HOPSUC.C(INDEX) + 1

ELSE
IF PACKMODE = 4

LET HOPSESSDELAY(INDEX) = DELAY
LET HOPSESSACC(IIIDEX) = HOPSESSACC(INDEX) + 1

ALWAYS
ALWAYS

ALWAYS
ALWAYS
RETURN

END

215

* THIS ROUTIIIE GATHERS STATISTICS REGARDING TO THE REJECTION
* TIMES OF VARIOUS TYPES OF PACKETS.

ROUTINE REJRTN GIVEN PACKNO, PACKMODE
DEFINE DELAY AS A REAL VARIABLE
LET INDEX = HOPCOUNT(PACKNO)
IF PACKMODE = 1

LET HOPREJ.D(INDEX) = HOPREJ.D(INDEX) + 1
ELSE

IF PACKMODE = 2
LET HOPREJ.V(INDEX) = HOPREJ.V(INDEX) + 1

ELSE
IF PACKMODE = 4

LET HOPSESSREJ(INDEX) = HOPSESSREJ(INDEX) + 1
ALWAYS

ALWAYS
ALWAYS
RETURN

END

216

* * * *

” * THE FOLLOWING ROUTINES ARE USED FOR DEBUGGING PURPOSES. *
11 * *

ROUTIIIE TRACE1 GIVEN MSGTXT, PACKNO, GATENO

DEFINE MSGTXT AS A TEXT VARIABLE
PRINT 1 DOUBLE LINE WITH MSGTXT,GATENO,PACKNO,SEQID(PACKNO),

TIMEID(PACKNO).TIME.V.SRCNO(PACKNO),DSTNO(PACKNO),
PACKCLASS(PACKNO).RETRYTIMES(PACKNO) THUS

$$$$$»{<$ gt * PACK ******* SEQ ******,* TID ******.*** TIM ******.***
S * D * C * R *
END

ROUTINE TRACE2 GIVEN MSGTXT, PACKNO, GATENO, SESSION

DEFINE MSGTXT AS A TEXT VARIABLE
PRINT 1 DOUBLE LINE WITH MSGTXT,GATENO,PACKNO,
SESSSEQ(SESSION),SESSTID(SESSION).TIME.V,
SESSSRC(SESSION), SESSDST(SESSION) , RETRYTIMES(PACKNO),
SESSTAG(SESSION).SESSMODE(SESSION).ARRIVALTIME(PACKNO) THUS
******* GT * PACK ******* SSQ ******,* SID ******.*** STM ******.***
S * D * R * STAG ******** SHOD * ARR ******.***
END

ROUTINE TRACE3(MSGTXT,PERIOD.GATENO,SESSION)

DEFINE MSGTXT AS A TEXT VARIABLE
PRINT 1 DOUBLE LINE WITH MSGTXT, GATENO,PERIOD,
SESSSEQ(SESSION),SESSTID(SESSION).TIME.V,
SESSSRC(SESSION),SESSDST(SESSION),SESSTAG(SESSION),
SESSMODE(SESSION) THUS
******* GT * PERD ******* SSQ ******.* SID ********** STM ******.***
S * D * STAG ******** SMOD *
END

217

ROUTIIIE TRACE4 GIVEN MSGTXT, PACKIIO, GATEUO

DEFINE MSGTXT AS A TEXT VARIABLE
PRIIIT 1 DOUBLE LINE WITH MSGTXT,GATEUO,PACKIIO.SEQID(PACKNO) ,

TIMEID(PACKIIO) ,TIME.V.SRCHO(PACKIIO) .DSTIIO(PACKIIO) ,
PACKCLASS(PACKNO).RETRYTIMES(PACKIIO),BUF(GATENO),
BUF.IN(GATENO),BUF.VOICE(GATENO),BUF.TRAN(GATENO) THUS

:*** GT * PACK ******* SEQ ******.* TID ******.*** TIM **********
S * D * C * R * BUF ** BUFIN ** BUFVO ** BUFT **
END

R E F E R E N C E S

[1] Burg, F., Chen, C., Folts, H.
Of Local Networks, Protocols, and The O SI Reference Model.
D ata Com m unications, November, 1984.

[2j Callon, Ross.
Internetw ork Protocol.
In Proceedings of IEEE, pages 1388-1393. IEEE, December, 1983.

[3] Clark, D., Pogran, K., Reed, D.
An Introduction to Local Area Networks.
Proc. of The IE E E 66(11): 1497-1517, November, 1978.

[4] Cohen, D.
A Protocol for Packet-Switching Voice Com m unication.
Computer Networks :320-331, 1978.

[5] Cohen, D.
Packet Com m unication of Online Speech.
National Computer Conference :169-176, 1981.

[6] D anthine, A. S.
Network Interconnection.
Proceedings of IF IP TC6 on Local Computer Networks :289-308,

April, 1982.

[7] Folts, H.
A T utorial on T he Open Systems Interconnection Reference Model.
Open Systems Data Transfer :2-21, June, 1982.

[8] Forgie, J.
Speech Transm ission in Packet-Switched Store-and-Forw ard Net

works.
National Computer Conference :137-141, 1975.

218

219

[9] Freem an, H., T hurber, K. (editor).
Local network Standards.
Local Network E quipm ent, IEEE Com puter Society Press, 1985.
PP . 25-30.

[10] Fultz, G.
Adaptive Routing Techniques for Message Switching Computer

Communication Networks.
Technical Report, UCLA School of Engineering and Applied

Science, R eport No. UCLA-ENG-7252, July, 1972.

[l 1] Gerla, M., Kleinrock, L.
Flow Control: A C om parative Survey.
IE E E Transactions on Communications :553-574, April, 1980.

[12] Hawe, B., K irby, A., S tew art, B.
T ransparen t Interconnection of Local Area Networks w ith Bridges.
Journal o f Telecommunication Networks 3(2):116-130, 1984.

[13] H oberecht, W.
A Layered Network Protocol for Packet Voice and D ata Integra

tion.
IE E E Journal on Selected Areas in Communications

SAC-1(6): 1006-1013, December, 1983.

[14] Kam oun, K.
A Drop and T hro ttle Flow Control Policy for Com puter Networks.
IE E E Transactions on Communications :444-452, April, 1981.

[15] Kleinrock, L., Kam oun, F.
Hierarchical R outing for Large Networks.
Computer Networks :155-174, January , 1977.

[16] Lam, S., Reiser, M.
Congestion C ontrol of Store-and-Forw ard Networks by Input Buff

er Limits - An Analysis.
IE E E Transactions on Communications COM-27:127-134, January ,

1979.

[17] Lam, S., Lien, Y.
Congestion C ontrol of Packet Com m unication Networks by Input

Buffer Limits - A Sim ulation Study.
IE E E Transactions on Computers C-30:733-742, O ctober, 1981.

220

[18] Lampson, B., Paul, M., Sieg, H.
Distributed Systems: Architecture and Implementation.
Springer-Verlag, 1983.

[19] Lissack, T ., M aglaris, B., Frisch, I.
Digital Switching in Local Area Networks.
IE E E Communication Magazine :26-37, May, 1983.

[20] Liu, M., Hilal, W ., Groomes, B.
Perform ance Evaluation of Channel Access Protocols for Local

C om puter Networks.
IE E E Proceedings of the COM PCON Fall 82 Conference :417-426,

1982.

[21] NBS Special Publication 500-96.
The Selection of Local Computer Networks.
P P . 35-50, 1982.

[22] O ’Leary, G.C., B lankenship, P .E ., Tierney, J ., Feldm an, J.A.
A M odular Approach to Packet Voice Term inal Hardware Design.
National Computer Conference :183-189, 1981.

[23] P itt, D.
C urrent and F u tu re Medium Access Control Standards.
Proc. IE E E IN F O C O M :319-322, April, 1986.

[24] Postel.
Internetw ork Protocol Approaches.
IE E E Transactions on Communications :604-611, April, 1980.

[25] Saltzer, J.H ., Reed, D.P. and Clark, D.D.
Source Routing For Cam pus-W ide Internet T ransport.
Proceeding of IF IP Working Group 6.4 International Workshop on

Local Networks : 1-23, August, 1980.

[26] Sm ith, D.
Digital Transmission Systems.
Van N ostrand Reinhold Co., 1985.

[27] Stack, T ., D illencourt, K.
Protocols for Local Area Networks.
IE E E Proceedings of the Trends and Applications Conference

:83-93, M ay, 1980.

Stallings, W.
Local Network Overview.
Signal magazine :39-44, January , 1983.

Stallings, W.
IE E E Project 802.
Com puterw orld, F ebruary , 1984.

Tanenbaum , A.
Computer Networks.
Prentice Hall, 1981.
Chap. 5.

W einstein, C., Forgie, J.
Experience w ith speech Com m unication in Packet Networks.
IE E E Journal on Selected Areas in Communications

SAC-1 (6)-.963-980, December, 1983.

