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CHAPTER 1
INTRODUCTION

Due to rapid advances in computing and communications
technology and its potential role in the areas of office automation and
distributed processing, computer networking has drawn considerable
attention over the past decade. As more and more computer networks
are installed in government agencies, universities, factories, corporations
and many other areas, the desirability of interconnecting computer
networks to obtain more versatile and extensive network services will

become even more critical.

While at present the technology of constructing individual networks
is well understood, the problems associated with network interconnections
are just beginning to receive attention. According to the characteristics
of the networks involved, network interconnection can be classified into

three types:
1. local area network (LAN) to long haul network

communications; .



2. long haul network to long haul network communications; and

3. local area network to local area network communications.

For type (1) network communications, CCITT (International
Telegraph and Telephone Consultative Committee) recommendation X.25
has been adopted as the international standard interface for individual
node to packet-mode Public Data Networks (PDNs). Recommendation
X.25 specifies the interface between the customer’s equipment (called
DTE - data terminal equipment) and the network equipment (called
DCE - data circuit-terminating equipment). A virtual circuit approach

is implied in Recommendation X.25.

For type (2) network communications, TCP/IP of DoD DARPA is
one of the most popular internet protocols accepted in user communities.
The [P (Internet Protocol) is a datagram protocol designed to transmit
blocks of data from a source to a destination. The IP does not provide
a reliable communication facility and thus has no provision for flow
control and error control. The TCP (Transmission Control Protocol) is
a transport protocol built on top of the I[P and uses end-to-end
mechanisms (e.g., flow control, positive acknowledgments with timeout
and retransmission, sequence numbers, etc.) to ensure reliable sequenced
data delivery over a logical connection. For networks which are PDNs,

CCITT has adopted Recommendation X.75 to define the interface
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between the PDNs. This recommendation is quite similar to
Recommendation X.25. The equipment on either side of this interface is
called a signaling terminal (STE). - The STE-STE interface is much like
the DTE-DCE interface and consists of a split gateway with each
gateway-half in a physical device controlled by each connecting PDN

[24].

For type (3) network communications, depending on the distances
between the LANs, a LAN can communicate with another LAN through
either a long haul network (which also falls into the type (1)
communications class) or some dedicated software/hardware switching
device. It is this type of network communications that we are

specifically addressing in this dissertation.

1.1 Characteristics of Campus-wide Internet

Local area networks have been a major driving force in office
automation from which users at a single location can access a wide
variety of computational resources and communication services.
However, a LAN normally is restricted to a relatively small area ranging
in a distance from several hundred meters to one or two kilometers. The

number of nodes that can be attached to a single LAN is also limited to
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an upper bound. All of these limitations severely handicap many

present-day and potential user applications.

On a typical university campus, many separate buildings are spread
over an area too wide for coverage by a single LAN, but the buildings
are not so geographically dispersed as to justify usiﬁg long haul network
technology. On such a campus, there usually exist many LANs that are
developed over several years using different technologies to cover various
buildings. The interconnection of LANs in this environment is called a
campus-wide internet, which can be characterized by the following

properties (25, 6]:

1. Geographically, it normally spans more than a single building,
but administratively, it still belongs to one organization,
thereby allowing inter-communications to be achieved over its
own privately installed equipment without resort to a public
data network. This property is the most essential one because
communicating over privately installed equipment can be
much more economical than wusing public data network
facilities (The cost difference may be a factor ranging from 10

to 100.).

2. Within this boundary, numerous nodes (e.g., computers, data
sources and data sinks) must be interconnected. At the
present time, there may be fewer than a hundred nodes to be
interconnected, but as hardware costs keep dropping and
personal computers and workstations gain more popularity,
the number of nodes to be interconnected may soon reach

into hundreds or even thousands.
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The first property duly justifies the economic incentive to construct
a privately owned internet within a campus-wide area, while the second
property advocates the necessity to construct such an internet to cope
with the ever-growing number of computing devices. It should be noted
that the term ”campus-wide internet,” which will be used frequently in
the following discussions, actually stands for any internet with the above
properties. Hence, it is equally applicable to any industrial or corporate
internets  which  have  similar  organizational and geographical

characteristics.

Several approaches to constructing a campus-wide internet have
been proposed. Saltzer [25] suggests that under a relatively loose
administration, with no single wuser or user group responsible for
coordination and maintenance, source routing can be a good choice for a
campus-wide internet environment. (Under natural growth conditions,
meshed topology seems the most likely internet configuration.) Although
this approach is relatively simple and economical, it has several
limitations. First, the internet users are held responsible for making
route selection, which may become cumbersome and time-consuming as
the internet expands. Second, source routing réquires a static path to
be selected before transmission; hence, a packet would be lost if there is
any faulty condition en route. Third, because a longer packet header is
needed to specify the transmission path, source routing is not suitable

for handling integrated voice/data traffic.
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Danthine [6] recommends that an internet be constructed by
connecting each LAN to a backbone network through a dedicated
gateway. In this approach, a gateway is only used to mediate between
a LAN and a backbone network, thus the functionality of the gateway is
very simple. The backbone network runs throughout the whole internet
area, and broadband technology is most likely to be deployed. While
this approach can provide satisfactory integrated voice/data services, it is
definitely a very costly solution. Furthermore, since all the internet
traffic is routed via the backbone network, transmission control and
reliability issues must be properly addressed to prevent internet

performance degradation or service interruptions.

1.2 Motivation, Objectives and Contributions of Research

In network communication, the traffic bottleneck cycles between
transmission elements and switching elements. In the past several
decades, communication links have always been the bottlenecks; thus, a
great deal of research has been oriented toward optimizing the utilization
of communication links. Many sophisticated adaptive routing schemes
have been proposed to maximize the link utilization at the cost of
iﬁcreased processing time. However, due to rapid advances in

microelectronics and fiber optic systems in recent years, the situation has
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changed dramatically. The scarcity of transmission bandwidths no
longer exists; however, the processing elements now become too slow to
cope with their tasks. As a consequence of this trend, the installation of
very fast and effective gateways at network interconnection points is
necessary so that the gateways will not become the internet traffic

bottlenecks.

Furthermore, because of advances in voice digitization techniques
and the potential economic benefits, interest and demand for integrated
voice and data services through the same communication system have
grown rapidly. Substantial research and experimental work has
demonstrated the feasibility of LANs supporting voice/data integrated
services. Most of the work, however, has concentrated on the extent of
a LAN boundary. To make the integrated services even more valuable
and extensive, it would be highly desirable for users to be able to

receive voice/data services beyond a single LAN’s boundary.

One of the central issues involved in providing internet voice
communication is the fact that voice communication requires stringent
transmission delays to facilitate smooth conversations among distant
users. Unfortunately, due to the dynamics of packet switched
environments, carrying voice traffic across the boundaries of different

LANs is likely to be subject to various delay and throughput conditions
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en route. Several internetwork protocols have been designed and used to
achieve internetwork communications. However, all of these existing
protocols are oriented toward data communications and as a consequence
do not support well for the voice traffic.  Thus, a new design of
communication protocols becomes necessary in order to meet the

requirements of integrated voice and data communication systems.

In light of the above considerations, we feel that the current
network interconnection technology is both insufficient and inefficient to
serve the existing and future voice/data communication needs.
Therefore, the main objective of this research has been to design an
internet transport system so that satisfactory voice and data
communication services can be achieved in a cost-effective way. As a
result, a new network interconnection architecture is proposed, together
with its supporting communication protocols. Our approach, instead of
following the conventional ad hoc approaches to interconnecting LANs,
merges the roles of the backbone network and gateways into a single
unit called GATEway-NETwork (GATENET) in order to facilitate the
design of a voice/data internci transport system. As the performance
evaluations show, GATENET is a feasible and effective approach to meet

the future communication needs.



1.3 Organization of Dissertation

This dissertation 1is concerned with the system design and
performance evaluations of a voice/data internet transport system within
a campus-wide environment. Each chapter addresses a distinct topic

involved in the design of such an internet transport system.

Chapter 2 serves as the basis for this research. It first discusses
various characteristics of local area networks, and then briefly describes
the various technologies involved in interconnecting local area networks.
In particular, several possible methods to implement a gateway are
explored. Next, it introduces the ISO seven-layered protocol hierarchies
and the standardization efforts in LAN protocols. Also presented are

the various features needed to support packetized voice communications.

In Chapter 3, a detailed discussion of and comparisons between the
conventional! internetworking approach and the GATENET approach are
presented. Further, the chapter discusses GATENET’s topology as well
as its addressing and routing schemes. Three different ways to
implement GATENET are also discussed in addition to a summary of

the advantages and disadvantages of the GATENET approach.

On the basis of the GATENET hierarchical structure, Chapter 4
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defines various communication protocols to support the internet data and
voice traffic.  Data Transport Protocol (DTP) and Voice Transport
Protocol (VTP) are treated separately. Two levels of flow and congestion
control mechanisms are also introduced in order to prevent internet
performance degradation when the internet becomes overloaded. Also
discussed is the enhanced transport layer protocol support to facilitate

resolving incompatibilities among connecting LANs.

Chapter 5 is concerned with the reliability aspect of the
GATENET design. To avoid the internet partitioning problems under
faulty conditions, a ”buddy link” scheme is presented as a cost-effective
means to improve GATENET reliability, followed by several case studies

with respect to various link failure conditions.

Chapter 6 discusses the performance evaluations of GATENET.
The GATESIM network communication simulator together with sote of
the assumptions and parameters are briefly described. Next, a thorough
simulation study with respect to GATENET delay and throughput
characteristics and the impact of flow and congestion control are

conducted and discussed.

Chapter 7 summarizes the results of this research, and directions

for future research are also suggested.



CHAPTER II
BACKGROUND

This chapter discusses various subjects related to network
interconnections and packetized voice communication. These subjects
include LAN architectures, internetworking techniques, communication

protocols and voice communication aspects.

Although many different technologies have been used in LAN
implementations, LANs in general can be classified according to three
distinct features: topologies, transmission media and transmission control
mechanisms. Section 2.1 gives a brief discussion of each of these
aspects. Depending on the characteristics of individual LANs, network
interconnections can be implemented through repeaters, bridges or
gateways.  Section 2.2 describes the differences among these various
techniques. Also discussed are four distinct ways to implement a
gateway. Since protocols are the kernel of any communication systems

and due to the complexity of modern communication requirements, the

1t
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layering approach is utilized in order to decompose complex
communication systems into a number of more manageable layer
protocols. Section 2.3 provides a brief overview of the ISO seven-layered
protocol hierarchies. It also summarizes the activities related to the
standardization process of LAN protocols. Several components are
needed to realize digital voice communication over packet switched
networks. Section 2.4 contains discussions for each of those components.

Finally, a summary is given in Section 2.5.

2.1 Basic Architectures of Local Area Networks

Due to the deployment of different hardware technologies, LLANs
and conventional long haul networks show many different characteristics
with respect to topological layout, transmission bandwidth and network
protocols. In particular, since long haul networks usually have a wide
geographical scope and since the processing time of the switching
processors is fast enough when compared to the traverse time across the
communication subnetwork, long haul networks tend to implement
complex protocols (which thus result in more processing time) to
optimize the link utilization. In contrast, local area networks, due to
their high channel bandwidths, tend to implement simple protocols to

minimize the processing time.
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Although a number of definitions of LANs have been proposed in

the field, because of the divergent applications and design technologies, it
is difficult to determine a single definition that can be universally
accepted.  As discussed in [26], however, a LAN generally has the
following features:

e geographically confined to a distance of up to a few miles;

e multiple services often possible on a single LAN, including

voice, data and video;

o high-speed transmission media normally in the range of 50

Kb/s to 150 Mb/s;
e some form of topological layout and access control;

e owned by a single organization.
Although most of the existing LANs are primarily used for data
communications, recent studies have demonstrated the feasibility of using
current technology to support a mixture of voice and data traffic. In
view of the recent advances made in microelectronics and fiber optics,
one can safely claim that in the near future LANs will become the core
of office automation, and integrated information services, including data,
voice, video, graphic and facsimile, will then all be available on a single

network system.

In general, the basic architectures of LANs can be classified
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according to their topologies, transmission media and transmission

control mechanisms. These areas are briefly discussed below.

2.1.1 Topology

Topology means the interconnection strategy of a network in which
a node can communicate with other nodes of the same network.

Generally, a LAN can be constructed as one of the following topologies

[27]:
e Star topology: one node forms the center, with a separate link
to each of the remaining nodes. All traffic is directed to and

from the center node.

¢ Ring topology: nodes are interconnected into a closed loop,
within which each node is connected to exactly two adjacent

nodes.

e Bus topology: nodes are connected to a common channecl,

through which all the nodes transmit and receive messages.

e Meshed topology: nodes are connected in an arbitrary pattern,

and there may be multiple paths between each pair of nodes.

e Hierarchical topology: nodes are connected as a tree structure;
each node, except the root node, has a unique parent and

possibly some children.
All of these topologies have been used by various networks, and each

has its pros and cons, depending on the particular applications and
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environments. Ring and bus topologies are most popular in commercial
systems, and many analytical and simulation performance studies over a

broad spectrum of parameters can be found in the literature.

2.1.2 Transmission Media

Transmission media are the physical connections between the source
and the destination nodes. These may differ in the characteristics of
bandwidth, geographical dispersion, connectivity, immunity to noise and
cost. The transmission media often used in local area networks include

the following [28, 21|
e Twisted pairs: typically used for low speed transmission; but,
with properly spaced repeaters, data rates of up to 10 Mbps
are achievable. Twisted pairs have long been used as a
relatively inexpensive means of data communication and are
most cost-effective when used in low traffic and single

building environments.

e Coaxial cables: can provide higher throughput and support a
large number of devices. Two transmission methods,
baseband and broadband, can be employed on a coaxial cable.
Baseband coaxial cables can provide data rates from one to
ten Mbps and are generally limited to a single building.
Because of their simplicity and low interfacing cost, baseband
cables have been widely used in many LAN implementations.
The bandwidth of broadband cables is somewhere between

that of baseband and fiber optic cables and can be in the



16

order of up to 300 Mbps. Unlike the baseband’s single data
path, broadband cables can have many data paths supporting
simultaneous transmissions of data, voice and video.
Broadband technology is more expensive when compared to
baseband technology, but due to its wider bandwidth and
greater geographical coverage, several commercial LANs using
off-the-shelf CATV (Community Antenna Television) hardware

have recently begun to appear on the market.

e Fiber optic cables: a very attractive medium for future
communication systems. These cables can run for several
miles without a repeater and provide extremely high data
rates of up to a few Giga bits per second. However, because
of the technical difficulties and high costs involved in cable
tapping and signal extracting, the present use of fiber optics
is limited to point-to-point communication, while multidrop

mode communication still needs further exploration.

2.1.3 Transmission Control Mechanisms

Quite a few transmission control mechanisms have been proposed
for use in building local area networks. Most of these mechanisms can

be categorized in one of the following classes [20, 19]:

e Fixed Assignment: the channel bandwidth is allocated to each
node of the network according to a predefined pattern. Two
well-known examples are time-domain multiplexing (TDM)
and frequency-domain multiplexing (FDM). Both TDM and
FDM work well under heavy buffered traffic when the number

of nodes is small and static. But if the traffic is bursty and



the number of nodes is large, much of the bandwidth may be

wasted.

Random assignment: no strict rule regulates the utilization of
the channel bandwidth; thus, nodes on the same network need
to compete with one another for channel access. As a result,
collisions are unavoidable, and some traffic control strategies
are required in order to avoid or recover from collisions.
Examples include ALOHA, CSMA and CSMA/CD. These
schemes perform well when traffic is light, but their
performance declines rapidly under heavy traffic loads which

greatly increase the possibility of collision.

Demand Assignment: channel bandwidth is allocated upon
demand; hence, there is no bandwidth waste due to collisions
or unnecessary allocation to idle nodes. Examples are
token-ring, token-bus and register-insertion. These schemes
perform well under heavy traffic conditions, and their
performance is predictable, although it suffers from some
overhead because of bandwidth reservation when traffic is

light.

17
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2.2 Network Interconnections

In a truly distributed computing environment, user processes
needing to communicate should be able to do so whether they are in the
same network or not. Thus, in order to accommodate the growing
demands for geographically distributed processing, eificient resource
utilization and secure voice and data communications, the issues of
network interconnections have in recent years drawn considerable

attention and interest.

One of the objectives of designing a network interconnection
strategy is to preserve freedom in the design of future computer
networks and still be able to interconnect with existing ones. Although
many design principles and the experience gained in developing computer
networks can be applied, with slight adaptation, to network
interconnections, there are still many problems which suggest that
different treatments must be devised in order to achieve internetworking.
In particular, the lack of a single controlling authority can make the

internet design problems more difficult to solve.

Depending on the characteristics of individual networks (or
subnetworks), there are currently three different approaches to

interconnecting them as an extended network [12, 3]:



1. Repeaters. These are used to interconnect several cable

segments within a LAN using identical software protocols and
hardware technologies. Being the simplest among the three
approaches, a repeater is usually used to extend the length of
the cable, amplifying and transmitting whatever signals it
receives  (including collisions). No filtering function is

performed by a repeater.

. Bridges (also called Data Link Relays). These are used to
interconnect several networks wusing different hardware
technologies (e.g., network topologies, data transmission rates,
etc.) but compatible software protocols (e.g., maximum packet
size, addressing scheme, available services, etc.). A bridge
performs the filtering function so that only selective packets
are forwarded to appropriate networks which it connects.
The bridge makes no attempt to modify the contents nor add

any additional headers to the packets.

. Gateways. These are used to interconnect networks using
different hardware technologies and incompatible software
protocols.  Since it is the most general and complicated
technology among the three approaches, a gateway may have
to address not only the protocol incompatibility problems (by
either translating the software protocols from one network into
another or by adding an extra internetwork header) but also
route selections based upon the network (or internet) layer

address supplied by the source node.
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As shown in Figure 1, a gateway, depending on the economical and
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performance requirements, may be implemented in one of the following

ways [18]:

1. A gateway is implemented as a physically isolated node,
which is equipped with appropriate software protocols and
hardware interfaces (Figure 1.a). This approach often incurs
higher installation costs; however, due to the continuing
downward trend in hardware cost and the increasing demand
for voice/data integrated services, its high performance
features will outweigh the extra cost. This approach,
however, may raise administrative issues when the

interconnecting networks belong to different organizations.

2. A gateway is split into two gateway halves, and each gateway
half is implemented as a physically isolated node (Figure 1.b).
This approach eliminates the administrative problems of the

gateway but with the penalty of additional hardware cost.

3. A gateway is split into two gateway halves, and each gateway
half resides on a host node of each connecting network
(Figure 1.c). This approach provides a tradeoff between the
performance and the hardware cost. If the internetwork
traffic is not intense and performance requirements are not
stringent, this approach can be a cost-effective method for

internetworking.

4. A gateway is implemented using a host node shared by
connecting networks (Figure 1.d). All  internetwork
communication software is placed on this single node; hence,
any changes on any connecting networks need to be properly

monitored and updated. Being the simplest and least
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expensive way to achieve internetwork communication, the
performance aspects are heavily dependent on the work load

of the residing host.

2.3 Protocol Hierarchies and Standardization

A protocol is a set of rules that govern the exchange of
information between communicating entities. Due to the inherent
complexity in protocol design, the ”layering” technique has been widely
adopted as an effective means of decomposing a large communication
system into a series of layers, each performing a well-defined set of

functions to support the communication activities.

As shown in Figure 2, each layer N provides certain services to
layers N+1 and higher, shielding the details of how the offered services
are actually constructed. Layer N is, in turn, constructed using the
services provided through interfaces with layers N-1 and lower. With
the services provided by each corresponding Layer N-1, layer N processes
on different communication systems can communicate with each other
through some communication paths. The rules used by layer N
processes in the communication are collectively called (N) protocol, and

the boundary between layers N and N-1 is called an (N-1) interface.
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An (N-1) interface defines a set of services which layer N can request

from layer N-1.

2.3.1 Protocol Hierarchies

Given a complex communication system  without proper
coordination and guidelines, each designer will form a layered structure
with different layer hierarchies, each with a distinct name and functions.
This unfortunate situation has proliferated for decades, thereby causing
great difficulty when different systems try to communicate with one
another. To overcome this problem, the International Standards
Organization (ISO) has defined the Reference Model of Open System
Interconnection (OSI) as a conceptual framework, based upon which an
end system of one design is able to interconnect and communicate with
any other end systems as long as the associated peer protocols follow the

same OSI standards.

The OSI Reference Model is divided into seven layers {7]. The
lower three layers handle the transmission of data among communicating
entities and, thus, are dependent on the hardware technology used for
transmission media. The higher three layers provide direct functional
support to the end users of the OSI environment and, thus, are
independent of the underlying network technology. The Transport Layer

is a liaison between the upper and lower layers to ensure that the
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services provided by the lower layers fulfill the requirements of the upper

layers.

1.

Physical Layer: concerned with mechanical, electrical,
functional and procedural interfacing so that unstructured bit

streams can be transmitted over physical media.

Data Link Layer: responsible for framing and possible error
detection and error recovery over a  point-to-point
communication link so that raw bits can appear free of

transmission errors to the network layer.

Network Layer: responsible for multiplexing, routing, error
control and congestion control in order to ensure that data
units are correctly routed to their destinations. Network
Layer provides the upper layers with independence from
concerns about the underlying transmission media and
switching technologies used to connect two end systems. It
should be noted here that internetwork data transport is part

of the function of this layer.

Transport Layer: responsible for providing reliable, transparent
end-to-end transport services so that session entities are free
from the details of how reliable and optimal transfer of data
can be achieved. This layer also handles the end-to-end

connection establishment and termination.

Session Layer: responsible for supporting the interactions
between two cooperating presentation entities, including
binding and unbinding them into a relationship and

synchronization of data operations.

The functions of each individual layer are described as follows:
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6. Presentation Layer: responsible for the representations of
information to facilitate the data exchange between two
application entities. In other words, the Presentation Layer
deals with the syntax selection and conversion of information
so that applications in an OSI environment need only

concentrate on the semantic aspects of data operations.

7. Application Layer: the highest layer in the OSI protocol
hierarchies. It is responsible for directly providing the
distributed information services to the end users of the OSI

environment.

It must be noted here that although the OSI Reference Model was
originally motivated by and defined for end systems using long haul
network technology, it is also applicable to LAN environments. The
only exception is that in many LAN environments, due to the inherent
"broadcast” capability, route selections are normally not necded, thereby

resulting in small or even empty network layer protocols.

2.3.2 Standardization of LAN Protocols

There have been many government agencies (e.g., NBS,! DoD),

organizations (e.g., [SO, ANSI and ECMA) and companies (e.g., GM,

INBS: National Bureau of Standards; DoD: Department of Defense; ISO: Inter-
national Standards Organization; ANSI: American National Standards Institute; ECMA:
European Computer Manufacturers Association.
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Xerox) involved in standardizing local area network protocols. It is
impossible for this dissertation to discuss this standardization process
thoroughly; therefore, only the work of the IEEE 802 Project (see Figure

3) will be summarized [9, 23, 29, 1].

An effort to develop local network standards was first initiated by
the Institute of Electrical and Electronics Engineers (IEEE) 802
committee in February 1980. Interest in this area quickly became a
concern both nationally and internationally.  The major goal of the
IEEE 802 committee is to deal with protocols for accessing and
controlling local network media of different technologies. As a result, its
local network reference model corresponds to the two lowest layers of the

OSI reference model.

The IEEE physical layer is concerned with bit transmission, device
attachment and electrical signaling over various types of local network
media. Since all devices in a LAN are connected to a common
transmission medium, the Medium Access Control (MAC) sublayer,
which constitutes the lower part of the IEEE data link layer, is defined
to deal with channel access among various devices connected to the same
local network medium. The Logical Link Control (LLC) sublayer, which
constitutes the higher part of the IEEE data link layer, is functionally

independent of the wunderlying MAC and physical layers and is
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responsible for establishing, maintaining and termin;ating a logical
connection between communicating devices. The IEEE subcommittee
802.2, which is responsible for LLC standards, has defined three types of
services (i.e., connectionless, connection oriented and acknowledged

connectionless) for the upper layers.

The IEEE 802 committee, after recognizing the fact that no single
standard would be suitable for all LAN applications and traffic patterns,
decided to adopt multiple standards. To date, three sets of

MAC-physical protocols have been accepted as IEEE standards:
e IEEE 802.3 CSMA/CD

o [EEE 802.4 Token Bus

e IEEE 802.5 Token Ring
The IEEE 802.1 Higher Layer Interface Standard subcommittee,
responsible for issuing recommendations and guidelines, is now actively
looking into a variety of higher layer design issues such as overall
organization of the standards, network management and internetworking.
To date, no protocol standards related to internetworking have been
brought up. The IEEE 802.6 subcommittee is responsible for
Metropolitan Area Networks (MAN) standards, although no standards

have yet been issued.
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2.4 Packet Voice Communication

Integrated packet switched networks have drawn considerable

interest from the research community in recent years because of a

number of potential benefits which they offer. These include:

they

Next,

reduced installation and operation costs through sharing of

transmission and switching facilities;

improved performance by dynamically sharing bandwidths
between voice and data traffic and by transmitting voice

packets only during talkspurts;

enhanced network services for users who nced access to both

data and voice communications;

capability to support multiplicity of the wvariable bandwidth

services of future communication systems;

more secure voice communication by applying data security

measures developed for data communication.

For voice signals to be carried over a packet switched network,
must first be encoded and packetized at a source voice terminal.

an underlying transport system is used to deliver the voice packets

within a reasonable time limit to a destination voice terminal which can

then

depacketize and decode the received voice packets [22]. Some of

the elements related to packet voice communication are briefly discussed

below.
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2.4.1 Functionality of Packet Voice Terminal

As shown in Figure 4, a packet voice terminal (PVT), which serves
as the interface between the user and the network, can be conceptually

decomposed into four functional modules [31]:
e The voice processor performs conversions between
analog/digital signals at speeds ranging from 2 Kbps to 64
Kbps and the marking of each parcel (which normally

contains 20-50 ms of speech) as either active or silent.

e The protocol processor is the control center of the PVT,
which must generate and interpret packets for call setup and
provide buffering and synthesis algorithms to ensure smooth

voice playout to the users.

e The network interface processor is responsible for
network-dependent hardware and software interfaces to access

the packet switched network.

e The telephone instrument serves as the user interface to the
PVT. It may be similar to the conventional telephone set
but usually provides more signaling capabilities.  Computer

terminals may also be used to enhance the user interface.

In earlier experimental work on packet voice communication, PVTs
were usually implemented on large general-purpose computers. But with
the advance of VLSI technology, one can expect that affordable compact

microprocessor-based PVTs will soon be on the market.
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2.4.2 Vocoding Techniques

Many vocoding (or voice encoding) techniques are available to
convert speech to proper digital forms, but they differ greatly in data
rates, processing requirements, hardware complexity, and quality of
output voice. In general, these vocoding techniques can be classified into
time and frequency domain classes [5, 8. The former class, called
waveform coding, is designed to reconstruct voice signals that ”look” as
much as possible like the original input signals. Examples include PCM
(Pulse Code Modulation), DPCM (differential PCM), ADPCM (Adaptive
Differential PCM), and CVSD (Continuously Variable Slope Delta
Modulation). The latter class, called vocoder, is designed to reconstruct
voice signals that "sound” as much as possible like the original input
signals. An example is LPC (Linear Predictive coding). (A third class
can also be formed by combining the above two techniques.) Waveform
coding normally requires data rates in the range of 8 to 64 kb/s,
whereas vocoder requires data rates from 1 to 16 kb/s. Generally, the
fidelity of the output speech is proportional to the data rates; however,
for a given fidelity, the required data rates can be reduced at the cost
of more computational processing. The PCM (Pulse Code Modulation)
method, which has been widely used in digital telephony, produces good
voice quality with high data rates and low processing complexity.

However, due to the scarcity of channel bandwidths in long haul
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networks, such techniques as CVSD and LPC have been adopted for

earlier experimental work on packetized voice communication to make

use of their low data rates.

2.4.3 Protocol Functions for Voice Communication

Interactive data communication tends to be bursty in nature, while
voice communication tends to be stream-like with a sustained duration
for each voice call. For data traffic, transmissions must be very reliable,
but occasional variations of transmission delay and throughput can be
tolerated. For voice traffic, however, the situation is quite the opposite;
transmission delay is very stringent, but a small percentage of packet
loss is harmless. As a consequence of these differences, separate
communication protocols need to be developed to support voice

communication.

In the early seventies, when packet voice communication was first
experimented over ARPANET, a separate Network Voice Protocol (NVP)
was designed to support the high throughput, low delay requirements of
voice communication. Later on, the NVP was revised and enhanced to
support internetwork communication, and the protocol functions were
separated into two levels. The higher level protocol, called NVP (2nd
generation), is concerned with call establishment, packetization and

reconstruction of digital voice signals, and dynamic conference control
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features. The lower level protocol, called ST (STream protocol), is
concerned with internet transport functions for both point-to-point and

conference communications.

ST, similar to IP, is an end-to-end internet transport protocol, but
it utilizes the virtual circuit approach instead of the datagram approach.
Hence for each voice call, a connection setup process must be carried out
before a speech conversation begins. NVP (2nd generation) calls on
both IP and ST to support voice communication: IP is used primarily
for voice control packet delivery and ST is used for voice packet

delivery.

2.5 Summary

In this chapter, three major design aspects of local area networks
were first presented, followed by a brief description of various
internetworking technologies and methods of implementing gateways.
Also discussed were ISO seven-layered protocol hierarchies together with
the functions of each individual layer. The LAN standardization process
was next reported. Finally, several components needed to support

packetized voice communication were discussed.



CHAPTER 111

GATENET: AN INTERNET
TRANSPORT SYSTEM

This chapter is concerned with the architectural aspects of the
GATENET internet transport system. In Section 3.1, we describe the
scenarios of an internet transmission using the trac tional gateway
approach and then compare and contrast them with our GATENET
approach. A detailed discussion of the GATENET structure with
respect to its topology, addressing and routing schemes is next presented
in Section 3.2. Advantages and disadvantages of the GATENET
approach are then identified in Section 3.3. Finally, Section 3.4

summarizes the chapter.
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3.1 Internetworking Approaches

Internetworking generally means interconnecting computer networks,
whether they are of similar types or not. As stated earlier, here we are
primarily interested in interconneccting LANs within a campus-wide area.
(For the sake of clarity, a single dedicated gateway approach is assumed

in the following discussions.)

3.1.1 The Conventional Gateway Approach

Figure 5 shows a typical internet interconnected with gateways.
Assume that Host 1 in LAN A tries to communicate with Host 2 in
LAN D. Normally, an internet packet will be transmitted across the

internet as follows:

1. Host 1 first prepares an internet packet (consisting of an
internet header, a data packet and possibly some trailer),
encapsulates it with a header of LAN A, looks up the routing
table, and then forwards it to the proper gateway (in this

example, gateway G1) en route to Host 2.

2. Upon reception of the packet, gateway G1 will decapsulate the
header of LAN A, examine the internet address (contained in
the internet header) and then decide that the next stop will
be gateway G2. Since LAN B lies between gateway G1 and
gateway G2, gateway G1 will encapsulate the internet packet
with a header of LAN B and forward it.
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(In general, this step can be repeated as many times as the
number of intermediate nodes between the source host and

the destination host.)

3. When the packet finally reaches Host 2, Host 2 will
decapsulate the header of LAN D and then process the packet

according to the information specified in the internet header.

During an internet transmission, if the size of an internet packet
exceeds the maximum packet size of the intermediate network,
fragmentation and reassembly processes must be invoked. For each
fragmented packet, proper internet headers and trailers also need to be
created. In general, two basic approaches can be used to handle such

problems:

e Internetwork fragmentation and reassembly: a packet may be
fragmented prior to the entry of a LAN (e.g., at a gateway)
and reassembled only when it gets to its destination. If the
maximum packet sizes are different in LANs en route, the
internet packets may have to be broken into even smaller
packets several times before they finally reach their

destination.

e Intranetwork fragmentation and reassembly: once an internet
packet is fragmented before the entry to a LAN, the
fragmented pieces will be reassembled immediately after being
delivered to another LAN boundary. In a huge internet, as
the internet packets travel through various LAN boundaries,
fragmentation and reassembly processes may be invoked

several times, thus incurring many overheads.
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In brief, there are three major functions that a gateway must

perform during an internet transmission:
1. The gateways are responsible for encapsulation and

decapsulation of LAN headers over the internet packets.

2. The gateways need to look up the routing tables and decide

on which path to forward the transit packets.

3. If the size of an arriving internet packet exceeds the
maximum allowable packet size, the gateways need to perform

fragmentation and subsequent reassembly processes properly.

Another important task of the gateway is monitoring and
controlling the internet traffic. However, since it is not relevant to our

present discussions, this task will not be elaborated on.

3.1.2 GATENET Approach

Traditionally, a gateway is used to mediate between different
networks. However, in our approach, the role of gateways is further
enhanced so that a gateway may be used to mediate not only between
LANs but also between a LAN and another gateway or even between

gateways.

After the interconnections among LANs and gateways are

reorganized (see Figures 6 and 7), the internet is logically separated into
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two parts: one consists of all LANs and the other consists of all
gateways which form a GATEway-NETwork (GATENET). Comparing
Figures 5 and 7, one can see that our approach has the following

advantages:

1. The internet packet sent from Host 1 to Host 2 essentially
bypasses LANs B and C. In other words, although the
internet packet goes through the boundaries of LANs B and
C via gateways G1 and G2, the local header processing for
these LANs is not needed during the internet communication.
Consequently, the internet packet transport is essentially
independent of the characteristics of the intermediate LANs
through which the packet passes, thereby eliminating many

processing overheads at the gateways.

2. With the integration of internet gateways into a
gateway-network, encapsulation/decapsulation of LAN headers
and possible fragmentation/reassembly processing for each
internet packet can only occur when the packet is at an entry

or an exit gateway.

3. Because of the hierarchical approach of GATENET, each
gateway maintains only the cluster routing information for its
descendants. Hence, the routing table is small and remains
essentially fixed as the size of the internet grows. Further, as
a result of the GATENET architecture, simple protocols can
be applied at the gateways, thereby reducing the possibility
that gateways may become internet traffic bottlenecks (to be

further explored in Section 3.2.3).
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4. All gateways are essentially interconnected into a
gateway-network. As a result, the GATENET structure can
facilitate the exercise of internet flow control as well as the
dynamic adjustment if there are any changes in the internet

topology or traffic characteristics (see Section 4.2.3).

As the number of nodes in the internet grows, our approach will
result in fewer processing overheads and a smaller routing table at each
gateway when compared with those of the conventional approaches.

These advantages will be discussed in more detail in section 3.3.

3.2 GATENET Architectures

In this section, we first show the general topology of GATENET
and discuss three differerllt methods to implement it. Based upon the
GATENET structure, we then define the addressing and routing schemes
to support the internet transport functions. For ease of explanation, the
end gateway of LAN X is defined as the gateway by which LAN X is

connected to the gateway-network.
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GATENET (see Figure 8) is a rooted hierarchically-structured

network consisting of gateways and LANs. Logically, all LANs are on

the same level (level 1), and all gateways are above the LANs (level 2

and up) forming a gateway-network.

can be built in three different ways:

1. distributed approach: gateways are spread over the campus

link

area and are interconnected through communication links.

centralized approach: all gateways are located in one location,
and all LANs are connected to the gateway-network by
remote access links. This approach is similar to the approach
used in the current Private Automated Branch eXchanges
(PABXs), where all incoming and outgoing traffic is first

routed to a centralized hub.

hybrid approach: gateways are clustered into several
sub-gateway-networks  according to a  hierarchical or
organizational structure, and only these sub-gateway-networks

are interconnected by remote access links.

Each gateway can connect two or more gateways or LANs.

Physically, the gateway-network

Each

is a full-duplex transmission line, one for transmitting packets

upward and the other for transmitting packets downward.

The highest level gateway is called the root gateway which

is
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equipped with the capability to communicate with other long haul
networks or LANs outside the campus boundary. Since GATENET is
designed to fulfill the inter-office data/voice communication needs within
a campus or a corporate boundary, special GATENET communication
protocols {to be discussed in Chapter 4) are thus specified to provide a
simple and efficient way for internetwork communication. Hence, the
root gateway may have to perform some translation of the internet
headers for packets going outside the internet boundary to ensure
compatibility with the internetwork protocols (e.g., TCP/IP) adopted by
the majority of the user community. The root gateway is also the
Internet Route Server for maintaining and providing internet addressing

and routing information.

3.2.2 Addressing

Various studies have shown that in many cases LANs are primarily
used for local traffic, with only a very small proportion of the traffic
routed outside the LAN boundary. As a result, although the flat global
address scheme has been adopted in several major national internets, it
is not particularly suitable in the GATENET environment. If the
population of the internet is large, the flat global address scheme
requires that a huge routing table be maintained at each gateway, and

route selections may be time-consuming. Further, the routing table at
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each gateway needs to be updated whenever there is any configuration

change within the internet, thereby incurring many overheads.

Since an organizational hierarchy often exists within a university
campus or any industrial corporation, it seems logical to choose a
hierarchical addressing scheme for internet addressing. (In [10, 15|, the
authors have concluded that, for a huge network, a hierarchical
addressing scheme is required to keep the routing capacity of each
switching node within bounds.) In the following, a hierarchical
addressing algorithm using Kleene’s notations is presented, with this
algorithm the internet address for each gateway or host in GATENET

can be established recursively from its immediate parent.

(Note that here a unit denotes either a gateway or a LAN, and it

is assumed that there are four levels in the hierarchy.)

1. (Basis}) The root gateway is 0.0.0.0.

2. (Recursion: for each unit in the internet)

a. Inherit the address from its immediate parent.

b. Obtain the sequence number of this unit under its
immediate parent and substitute the value of the
sequence number for the first zero subfield (from left to

right).

Subfield O can then be used to identify host addresses
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within a LAN. Each LAN is free to choose its own
topology and addressing scheme, except that the
addresses assigned must be nonzero. (Subfield 0 is zero

for all gateways.)
It must be noted that the height of the hierarchy in a campus-wide
environment is expected to remain essentially fixed even when the
internet continues to grow. Consequently, the number of subfields
required for specifying an internet address does not need to be changed

in most cases.

As an example, the internet address for Host H with local address
A (where A is nonzero) within Unit U (in this case the unit is a LAN)

can be generated as follows (see Figure 9):
1. UNIT U inherits address 4.1.0.0 from its immediate parent

node.

2. UNIT U’s address now becomes 4.1.2.0 since unit U is the

second son (from left to right) of its parent node.

3. Host H address becomes 4.1.2.A since its local address is A

and it is within UNIT U.



Figure 9.

Example of GATENET addressing scheme
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3.2.3 Routing

Because of GATENET’s hierarchical structure and hierarchical
addressing scheme, all addresses corresponding to the descendants of a
gateway can be described in just a few patterns. Accordingly, each
gateway maintains only such cluster routing information in its routing
table (see Figure 10). The routing table has an entry associated with
each outgoing link from the gateway. Each entry consists of an address
pattern and its associated link. Since the number of entries is the same
as that of outgoing links from the gateway, the size of the routing table

is small and remains essentially fixed even as the internet grows.

If a node is created or removed, only the routing table of its
parent node needs to be updated. No broadcast is needed in this case.
The parent node will be responsible for reporting this change to the

Internet Route Server, if such a server exists.

When an internet packet arrives, the gateway will first try to look
for a matching entry in the routing table (from the top down),
according to the destination address in the internet header. To be

specific,
1. if the packet belongs to one of the gateway’s descendants, the
packet will be routed downward to the next stop via the

corresponding link;
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2. otherwise, the packet will simply be routed upward to its

immediate parent. Undeliverable packets at the root gateway
will be discarded.

Therefore, during an internet transmission, the internet packet will,
in general, first climb zero or more levels up the gateway-network until
it arrives at the youngest ancestor of the destination node. The internet
packet will then descend zero or more levels from this ancestor to reach

its destination node.

It is possible that an internet packet might be hopping in a closed
loop (due to transmission errors or incorrect specifications of the
destination address) during an internet transmission. To avoid such a
problem, a special subfield MARK (part of the transport control option)
is specified in the internet header. Specifically, for each packet sent
downward from a level n gateway (i.e., to level n-1 or below), this
subfield will be marked as n. Thus, whenever a level n gateway receives
from its son a packet whose MARK subfield is already marked n, the
gateway can discard the packet accordingly to prevent such a packet

from circulating in a loop.
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3.3 Features of GATENET

To summarize, the features of GATENET that distinguish it from

the conventional internet approaches are as follows.

3.3.1 Advantages

1. Since the gateway-network is responsible for all the inter-LAN
routing,' the encapsulation/decapsulation of LAN headers for
each internet packet may only occur when the packet is at an
end gateway. For traffic between gateways, the internet
packets are the “universal” packets, which can travel in the
gateway-network  without incurring extra local header

processing.

2. When fragmentation/reassembly services are needed by the
internet, only the end gateways are required to perform such
services (In GATENET, all the packets have the same
maximum packet size.). Consequently, such services are
essentially independent of the characteristics of the

intermediate nodes through which the packet passes.

3. Since only cluster routing information is maintained at each
gateway, the routing table is small and remains essentially
fixed as the size of the internet grows. As a consequence, the
processing time for route selections can be significantly

reduced.

4. Since the gateway-network is responsible for all the internet



routing, inter-LAN communications become as easy as
intra-LAN communications and are transparent to LAN users.
As long as the address of a destination node is known ({This
can be obtained from Internet Route Server.), one can always
initiate the inter-LAN communications. This relieves each
LAN host from the burden of maintaining a huge routing
information table, which can be a problem when the number

of internet nodes becomes very large.

. All gateways are essentially interconnected into a
gateway-network. Therefore, effective schemes to control the
internet congestion problems can be devised to prevent
internet  performance from degrading under overload

conditions.

. Communications with networks outside the internet normally
involve charging activities and require special procedures, such
as converting the protocols to make them compatible with
those of public data networks. This can be conveniently
handled by the root gateway, which will be responsible for
such functions as management, maintenance and accounting of
external traffic. However, this does not exclude the possibility
that some nodes may still be able to communicate directly
with any host outside the internet when it is appropriate to

do so.
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3.3.2 Disadvantages

1. A few extra gateways and communication links need to be

installed, which means higher implementation costs.

2. A potential weakness of the hierarchical structure is the fact
that when one or more gateways or links become faulty, the
whole internet may be partitioned into several isolated parts

which cannot communicate with each other.

3. For communications among neighboring LANs, one or two
more hops may be needed in GATENET, as compared with

the conventional gateway approach.

Initially, the first problem might seem wundesirable. But as
hardware costs continue to decline, we believe that the high-performance
features and the versatile integrated voice/data services provided by the
GATENET approach will justify the extra costs of constructing such a

network.

The second problem of internet reliability can be improved through
redundancy. The "buddy link” solution to be discussed in Chapter 5 can
be used to overcome the link failures. Gateway failures can also be
overcome by using backup processors. However, since these processors
may be expensive, the installation of such backup components can be
limited to only those gateways whose functions are critical to the

internet communications.
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3.4 Summary

In this chapter, we have shown the superiority of the GATENET
approach over the conventional gateway approaches in supporting the
voice and data internet transport functions. Based upon GATENET’s
hierarchical structure and hierarchical addressing scheme, internet routing
becomes very simple and efficient. Under normal conditions, routing
between each source and destination pair is static, thereby eliminating
the need for sequencing. This characteristic is most favorable in the
support of the voice traffic. =~ However, if there should be any faulty
conditions in the path, the internet communications might be
interrupted. In Chapter 5, we present a “buddy link” solution to

alleviate such problems.



CHAPTER 1V

INTERNET COMMUNICATION
PROTOCOLS

In this chapter, several sets of protocols are defined to support
internet voice and data communications. In Section 4.1, we first
examine several possible approaches to resolve protocol differences in
interconnecting incompatible LANs and discuss their respective
advantages and disadvantages. Next, three sets of protocols supporting
GATENET internet transport functions are presented in Section 4.2. In
particular, Section 4.2.1 deals with the data transport protocol and
Section 4.2.2 deals with the voice transport protocol.  Section 4.2.3
presents two levels of flow and congestion control protocols to ensure
that satisfactory GATENET performance is maintained even under
overload conditions. Section 4.2.4 suggests several enhanced transport
layer protocols that might be helpful in constructing an internet.

Finally, Section 4.3 presents a summary of the chapter.
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4.1 Interconnecting Incompatible LANs

An internet normally consists of a wide variety of LANs
implemented with different hardware technologies and incompatible
protocols. Thus, in order for internetwork voice/data communications to
be supported, some common rules must be agreed upon and obeyed by
every LAN sharing the common resources. It is the function of internet

communication protocols to achieve this goal.

In gencral, there are three common ways for incompatible LANs to

communicate with one another within a campus-wide internet:
1. Augment the functionality of each LAN so that every LAN in

the internet supports equivalent protocols and services.

2. Augment the functionality of gateways so that gateways alone

resolve all the internet incompatibilities.

3. Augment the functionality of both gateways and LANs so
that there is a uniform internetwork service level (mostly

below the transport layer) across the overall internet.

In the first method, each LAN provides equivalent network services;
thus, the internet becomes simply an extended network, and internet
communication can be achieved via installation of physical links.

However, the development of appropriate software for all the
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participating LANs can be very complicated and costly, making this

method unattractive. This problem is further compounded when the

individual LANs are of heterogeneous types.

The second method may be a good choice when only a few LANs
are to be interconnected with one another and no further expansion is
needed. When there are many LANs to be interconnected, (e.g., within
a campus area), this method becomes impractical since each gateway
must be specially coded to handle the protocol incompatibilities of each

connecting LANs.

The third method, which is widely used, has the potential to
interconnect a vast number of LANs with a reasonable development cost.
It basically requires that each participating node add an internet header
(IH) for each internet packet, based upon which the switching nodes can
make routing decisions and take appropriate actions. The source and
the destination internet addresses as well as other control information
needed for internet communication are contained in the internet header.
This approach allows the protocol complexity to be reduced to a more
manageable level; hence, the same set of protocols developed for one
gateway can be migrated to another gateway with only a minor
adaptation to the environment of each connecting LAN. It is this

approach that we have adopted in the GATENET protocol design.
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4.2 GATENET Communication Protocols

In GATENET, each gateway may encounter three types of
incoming traffic: voice packets, data packets and control pacl;ets. Due to
the timeliness constraint imposed on voice communication, voice packets
receive the highest non-preemptive processing priority at gateway
processors, control packets the next highest and data packets the lowest
priority. Within each priority class, packets are processed according to

the order of arrivals.

Due to the varying performance and reliability requirements, two
different sets of protocols have been developed to handle voice and data
traffic separately. Since control packets share the same reliability
requirement as data packets, the control packets are transmitted using
the same data transport protocol, but they have a higher processing
priority at the gateway processors. Further, in order to minimize
GATENET transmission delays, inter-gateway transmissions would not
perform the retransmission function [13]. Should there be any error
detected during inter-gateway transmissions, the packet would simply be
discarded. As a remedy, the entry-gateway-to-exit-gateway (EGTEG)
positive acknowledgment and retransmission schemes are used to ensure
data integrity during the internet transmissions (The EGTEG positive
acknowledgment scheme also serves the purpose of flow control, which

will be discussed in Section 4.2.3.2.).
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4.2.1 GATENET Data Transport Protocol (DTP)

Data communication in GATENET is basically datagram-based,
and each packet is treated as an independent unit. Both data packets
and control packets are handled by GATENET Data Transport Protocol

(DTP).

4.2.1.1 DTP For Data Packets

To deliver a message via GATENET to a destination host located
at a different LAN boundary, the source host need first prepare an
internet data packet (i.e., a data segment plus an internet header),
encapsulates it with a local network’s header, and then routes it to the
entry gateway connected to the same LAN. If the message size exceeds
the maximum packet size allowed in GATENET, the packetization
process must be invoked. Packetization can be accomplished either at

the source host or the entry gateway (see Section 4.2.4.2).

After receiving the packet, the entry gateway will decapsulate the
local network’s header, examine the internet address, and then route it
to the next gateway en route. Once the packet enters the
gateway-network via the entry gateway, no more local header’s
encapsulation/decapsulation is needed until the packet reaches the exit

gateway. The entry gateway will keep a copy of the internet packet
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until a positive acknowledgment is returned from the exit gateway.
Otherwise, it will retransmit the packet after a timeout period (up to
some predefined number of times). This inter-gateway transmission step
will, in general, be repeated several times until the internet packet

finally reaches its exit gateway.

When the internet packet is routed to the exit gateway, the exit
gateway returns a positive acknowledgment to the entry gateway. Since
the internet packet leaves the gateway-network at this point, the exit
gateway encapsulates the packet with a local network’s header and then
forwards it to the destination host. This completes an internet

transmission.

4.2.1.2 DTP For Control Packets

There are two types of control packets in GATENET:

e voice control packets: These are mainly concerned with call
setup, arrangement of communication options (including
choices of vocoding techniques), monitoring, interrupts and

call termination.

e data acknowledgment packets: Most EGTEG positive
acknowledgments are piggybacked via data packets. However,
if, after a waiting period, no data packet is heading for the
same destination, a stand-alone acknowledgment will be sent

out as a control packet.
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Since the loss of control packets may cause more severe problems than
that of voice packets and since the timeliness of the control packets is
less critical than that of the voice packets, control packets and voice
packets are handled separately [4, 5|. Control packets are transmitted
across the internet the same way as data packets. However, before
control packets are forwarded to the next gateway in the path, the

receiving gateway may invoke some extra processing (see Section 4.2.2).

4.2.2 GATENET Voice Transport Protocol (VTP)

While interactive data wusers can respond to internet traffic
congestion by slowing down their data exchange activities, voice users
require a smoother internct services. In order to minimize the dispersion
of internet transit delays, which is inherent because of the dynamics of
packet switching environments, a virtual circuit approach is thus adopted
for GATENET Voice Transport Protocol (VTP).  With the virtual
circuit approach, a voice call, once accepted, is guaranteed to continue
the voice session without suffering from any significant delay fluctuation
due to other internet activities.  Further, through the pre-established
path, the virtual circuit approach allows the use of abbreviated headers
which can lead to reduced header overheads. This approach is most
favorable in supporting the continuous long-lived high-bandwidth voice

packet streams.
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Furthermore, due to the nature of voice traffic, in which short
delay variation is more desirable than speech integrity, no
acknowledgment is needed. When transmission errors are detected by
any receiving gateway en route, the voice packets will simply be dropped
from the internet. A timestamp is associated with each voice packet so
that in case of occasional packet loss out-of-order arrivals of voice
packets may still be accepted as long as the timestamps are in an
upward direction.  Another function of the timestamp (used by the
gateways) is to discard voice packets in transit whenever their lifetime

exceeds a predetermined period.

When two users on different hosts in the internet wish to initiate a
voice communication, an initial call setup is required to reserve buffers
(one for either direction) at each gateway en route. Only when all such
buffers are reserved can a voice call be allowed to proceed. A
disconnection request can be issued later by either participating user to

free all the resources reserved for such a voice session.

[f a call setup request arrives at a gateway in the path but cannot
be immediately accepted, the request will be held for a given period
before a rejection message is initiated. If such a call setup request
cannot be honored until the holding time expires, a rejection message

will then be issued by the rejecting gateway. Such a rejection message
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will also release those buffers reserved for this unsuccessful call setup

request.

A reserved buffer has two states: AVAIL means it is ready for the
next voice packet, and BUSY means it is holding a voice packet pending
a transmission. During a call setup process, data rates betwecen the
source and destination ends must be properly established so that voice
packets arriving at a BUSY reserved buffer will be extremely rare. The
flow and congestion control mechanisms to be discussed in Section 4.2.3
can help prevent such undesirable situations. New voice packets will

overrun the old ones if such a situation does arise.

Based upon VTP, some voice-related higher level protocols, such as
the conference protocol, can then be added on top of it. For such
higher level protocols, the portion dealing with the transport of voice
contents still remains the same as VTP; the portion dealing with the
control aspects, however, needs to be further enhanced. In particular, a
control scheme must be devised to ensure fair floor assignment among
the conferencees. Interested readers are referred to [4] for a more

detailed discussion.



67
4.2.3 GATENET Flow and Congestion Control Protocols

Flow and congestion control protocols are protocols used to regulate
network traffic flows so that the network can still provide satisfactory
data and voice services even under overload conditions.  Rigorously
speaking, flow control is distinguished from congestion control. Flow
control is generally applied on an end-to-end basis to prevent the sender
from sending packets at a rate faster than the receiver can process it,
while congestion control is applied in the communication subnet to deal
with situations where there are more arriving packets than the available
buffers at the switching nodes.  However, for the purposes of this
discussion, the term ”flow control” will be used in a loose sense to stand

for flow and congestion control.

As shown in Figure 11, in an uncontrolled network, as the offered
load increases, the network throughput usually increases correspondingly
up to a maximum level, and then the throughput degrades rapidly to a
very low level as the input traffic exceeds the network carrying capacity.
At first thought, one might suggest that the network be designed in
such a way that under no circumstances can the maximum allowable
offered load exceed the underlying network capacity. But due to the
bursty nature of the packet switched environments, such an approach

will result in an undesirable situation in which the network resources are
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Figure 11. Throughput vs Flow Control {11]
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underutilized most of the time. Hence, to avoid the shortcoming of the
aforementioned conservative approach, most networks are designed and
tuned to achieve the best performance under the projected average
traffic.  As a direct consequence of this design principle, congestion
control mechanisms are thus needed to prevent network performance
degradation when the offered load occasionally exceeds the nectwork

capacity.

In general, most of the congestion control mechanisms fall into the

following categories [30]:
1. Preallocating network resources before the communication

activities take place.

2. Allowing the switching nodes to drop packets when certain

predefined threshold conditions are met.

3. Setting up an upper bound for the total number of packets

that can be in the subnet at any given time.

4. Restricting or throttling off new input traffic when the

network is congested.

5. Applying flow control mechanisms to control the traffic
between a sender and a receiver. Note that flow control is a
means of congestion control, but using flow control alone is
not sufficient to prevent network congestion since end-to-end
traffic control can only affect a small portion of total network

traffic.
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Congestion control is further compounded in an internet
environment where there may be many LANs of varying flow and
congestion control policies interconnected and interacting with one
another. Furthermore, if voice and data integrated services are to be
supported through the same internet, due to the differing performance
and reliability requirements of data and voice traffic, new flow and
congestion control schemes, other than those conventional ones for either
data or voice traffic, must be designed in order to accommodate such

integrated internetwork services.

In most of the current internet technology, a gateway is normally
used to mediate between different networks; hence, gateways are spread
among the connecting LANs in an unstructured and uncoordinated way.
As a result, it is extremely difficult to apply an effective overall internet
congestion control, and the internet performance becomes unpredictable
and may degrade sharply when network overloading occurs. Therefore,
one of the goals of this research is to identify and propose a suitable
internet architecture that can facilitate the exercise of internet congestion
control. In our GATENET approach, through the unique hierarchical
integration of internet gateways, all gateways are essentially
interconnected into a gateway-network. Such a gateway-network is
essentially separated from the connecting LANs and, thus, can provide a

better environment for internet congestion control.
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During the course of this research work, several versions of flow
and congestion control mechanisms were studied using GATESIM
network communication simulator (which will be further discussed in
Chapter 6). On the basis of these simulation studies, we have concluded
that two levels of distributed flow and congestion control mechanisms
are needed to ensure the proper function of GATENET under heavy

load conditions. These two levels are described as follows:
1. hop level: regulates the traffic between LANs and a gateway

as well as between a gateway and another gateway;

2. entry-gateway-to-exit-gateway (EGTEG) level: regulates the

traffic between an entry gateway and an exit gateway.

4.2.3.1 Hop Level Flow Control

GATENET hop level flow control uscs the principle of the Input
Buffer Limit (IBL) strategy [11], which classifies incoming traffic into
several priority classes and throttles the lower priority traffic based upon
buffer utilization at each individual entry node. IBL, which is a
distributed congestion control method, keeps track of the iocal congestion
rather than the global congestion at each entry gateway, thus providing
a simple and cost-effective way to achieve congestion control. The
rationale behind this strategy is that, through the backpressure effect,
entry node congestion can often provide reliable indication of internal

network congestion conditions.
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There have been several versions of IBL strategy proposed to
achieve congestion control over data communication networks. All of
these methods basically distinguish between input traffic and transit
traffic and give priority to transit traffic when congestion conditions
occur at an entry node. In Lam’s work [16, 17], an input packet is
dropped whenever the total number of i;lput packets exceeds a
predefined quota. Kamoun’s scheme [14], on the other hand, drops an
input p.acket once the total number of input and transit packets exceeds
a given threshold. Both of their studies show that with respect to a
given network topology and traffic pattern an optimal input buffer limit
can always be found to maximize network throughput under heavy load
conditions. Input buffer limits higher or lower than the optimal value

will lead to a substantial throughput degradation.

In GATENET, due to its support of both data and voice traffic,
hop level congestion control is more complicated than the aforementioned
IBL schemes. The hop level congestion control applied at each

GATENET gateway can be summarized as follows:
e At any given time, no more than a predetermined number of

buffers (say, MAXVOICE) can be allocated for voice calls.

e When the total buffer utilization exceeds a predefined
threshold, no more input data traffic will be accepted unless

the total number of input packets in the gateway is less than
a given quota (say, MAXINDATA).
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Due to the nature of voice communication, as mentioned earlier,
voice packets are given the highest processing priority. However, since
the number of buffers provided by a gateway usually exceeds the
number of calls a gateway can handle, to avoid voice traffic tying up a
gateway processor, the number of simultaneous voice calls through a
gateway must be restricted so that data traffic can have a fair share of

the processor time.

Further, in contrast to Lam’s scheme, the gateway limits the
amount of input traffic only as the threshold level is reached so as to
eliminate unnecessary flow constraints under light traffic conditions (see

Chapter 6 for further discussions of GATENET’s performance).

4.2.3.2 Entry-Gateway-To-Exit-Gateway (EGTEG) Level Flow Control

One of the most common problems in network operation is buffer
congestion at the exit point.  When different LAN technologies are
involved, the exit gateway must resolve the speed mismatch between the
source and the destination ends so that a single source will not overload
the corresponding exit gateway or the global gateway-network. Since
voice calls are controlled through preallocation measures, the EGTEG

flow control is primarily designed to regulate internet data traffic.

The basic concept of the EGTEG flow control method is as

follows:
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1. EGTEG flow control is exercised on an
entry-gateway-to-exit-gateway basis, and a path between each

entry gateway and exit gateway is considered a logical pipe.

2. Each pipe is individually flow controlled by a window
mechanism. Namely, at any given time, no more than a
fixed number of unacknowledged data packets can exist in

each pipe.
To be specific, each entry gateway will keep track of the status of each
outgoing pipe and maintain a copy of each admitted new data packet.
The exit gateway will return an acknowledgment for each correctly
received data packet. On receipt of the acknowledgment, the entry
gateway then removes the copy of the acknowledged data packet and
adjusts the transmission window of the associated pipe accordingly. If
the acknowledgment is not received within a certain time-out period, the
entry gateway will retransmit the packet (up to some predetermined

number of times).

When the internet becomes congested, the transit delays of the
acknowledgments will be prolonged. Hence, in addition to regulating the
traffic generated at a single entry gateway so as not to overload a
corresponding exit gateway, the EGTEG flow control also has the effect
of slowing down the traffic rate that the entry gateway will send into

the congested areas.
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4.2.4 Enhanced Protocol Support at Gateways

Most of the current internetwork protocol research has focused on
the network layer (see Figure 12). Therefore, any two application layer
users who wish to communicate with each other must either choose
common protocols for layers 4 through 7 or find some way to perform
the protocol translation [2]. This requirement often needs substantial
development work and may impose unnecessary restrictions over many

user applications.

As mentioned in Chapter 2, several worldwide organizations (e.g.,
ISO, ANSI, NBS, and ECMA) have been working on standardization
issues. However, no worldwide agreement concerning LAN’s
organizational structures, layer functions or internetworking strategies has
yet been reached. Quite a few different standards have been proposed
(e.g., IEEE Project 802), each one having its pros and cons both
technically and politically. Thus, it is commonly felt that the current

emerging diversity of local area networks will continue for a while [25].

As a result, gateways will continue to play an important role in
achieving internetworking. However, there are still many controversial
design issues related to the functionality of gateways in internet
communications. = When the gateway was first built in the DARPA

internet, the idea was to make it as simple as possible; consequently, it
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Figure 12. The functionality of a gateway



77

was basically implemented as a store and forward unit for datagrams.
In Saltzer’s source routing approach, gateways were also envisioned as
simple store and forward units (In a campus environment, these
gateways can be implemented by using specially designed microprocessor
devices.). However, because of the high bandwidth nature and differing
characteristics of LANs, a simple gateway seems inadequate to provide
the functionality needed for interconnecting many LANs within a campus
or corporate boundary. Hence, the traditional functionality of gateways

must be enhanced so as to facilitate internetwork communications.

Nevertheless, a gateway can not provide all the services needed by
each connecting LAN, since these services require a complicated set of
protocols which will transform the gateway itself into a bottleneck in the
internet system. Hence, when deciding if a service should be included or
not, one needs to carefully study the discretion criteria, such as whether
such a service is needed by a majority of connecting LANs (if not by
all) or to what degree such a service would degrade the gateway

performance.

In the GATENET design, in order to resolve the internet
incompatibilities without greatly sacrificing performance, gateways are
enhanced with some optional transport protocol support in addition to

current network layer protocol support. Such support will necessitate
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additional LAN customized specifications be kept at each end gateway

(An end gateway table is used for maintaining these specifications.).

In the following, we present two examples which demonstrate that
this enhanced protocol support at gateways can be useful in achieving

internet communications in an incompatible environment.

4.2.4.1 End-to-End Acknowledgment

End-to-end acknowledgment? schemes are normally provided by the
transport layer protocol. However, due to the diversity of LANs, some
reliability-oriented LANs may  choose to support it, some
performance-oriented LLANs may choose not to, while most LANs may
choose to allow either. If an internet is designed to allow either option
(a subfield in the internet header specifies this option), some problems
might occur when two LANs with different options wish to communicate
with each other (say, LAN A with an acknowledgment option and LAN

B with a no-acknowledgment option).

Our solution to this problem is to enhance the functionality of the

2An end-to-end acknowledgment is different from an entry-gateway-to-exit-gateway
acknowledgment, since an end-to-end acknowledgment is usually a message exchange be-

tween two end users instead of two end gateways.
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end gateways so that they will resolve such an incompatibility. Consider

the following two cases (see Figure 13):

1. Host 1 is the receiver, and Host 2 is the sender.

When Host 2 sends a packet to Host 1, Host 2 will expect an
acknowledgment from Host 1, but Host 1 will not
acknowledge. The solution is to enhance the gateway
functions so that the internet header will be checked when
the end gateway of LAN A receives a packet from LAN B. If
such a packet requires an acknowledgment and if LAN A has
set the no-acknowledgment option (this information is kept in
the end gateway table), the end gateway of LAN A will
complete the transaction by first forwarding the packet to
Host 1 and then issuing an acknowledgment to LAN B (The
end gateway is considered an end wuser under such a

situation.).
2. Host 1 is the sender, and Host 2 is the receiver.

When Host 1 sends a packet to Host 2, Host 2 will always
return an acknowledgment. When the acknowledgment arrives
at the end gateway of LAN A, since LAN A has a
no-acknowledgment option, the end gateway will simply drop

such an acknowledgment.

As shown in the first strategy, a real end-to-end significance of
acknowledgment is not preserved as it is in most transport layer

protocols; consequently, this approach is sometimes controversial.
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However, we think this approach is a good design tradeoff and should be
able to satisfy most LAN applications without incurring costly software

development efforts.

4.2.4.2 Packetization and Reassembly Services

In an internet environment with the interconnection of many
different LANs, packetization and reassembly services are often needed
for long messages. It is very likely that some LANs do not have such

capabilities but would like to receive such services from the internet.

\

Naturally, the end gateway is the best cheice for providing this service
(If the connecting LAN is already equipped with such a function, the

end gateway will incur no overhead.).

o Packetization: In GATENET, all the gateways have the same
maximum packet size (MAXSIZE). Whenever a gateway
receives a packet with a size exceeding MAXSIZE, a
packetization process will first be invoked and then a
reassembly service request will be initiated. The fragmented
packets can not be delivered until the destination end permits

the reassembly request.

e Reassembly: Under heavy load conditions, packet reassembly
at the destination end often leads to deadlocks if buffer
management is not properly designed. Hence, when a
reassembly service is needed, the source end (which can be a
host or a gateway depending on where packetization is
performed) needs first to send a reasonable buffer allocation

request to the destination end before transmission starts.
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Once the destination end gateway receives the request, it
checks the end gateway table.

o If the destination LAN has set the reassembly option,

the end gateway will honor the allocation request and

take proper action according to its current buffer

utilization status. If the end gateway’s buffer usage is

high for the moment, the request can be rejected, and

the source end can then retransmit the request after a

pre-established time-out period.

o Otherwise, the end gateway simply passes the request to
the destination host and lets the destination host handle

such a request.

4.3 Summary

In this chapter, separate protocols for data and voice traffic have
been defined. Two levels of flow and congestion control schemes have
been introduced to handle internet congestion problems. Enhanced
transport layer protocol support has also been suggested to reduce
protocol incompatibility problems. Based upon the support of these
protocols, GATENET is capable of supporting many high level user
activities, such as data/voice file transfer, voice conferencing, data base

applications, etc.



CHAPTER V

RELIABILITY OF INTERNET
TRANSPORT SYSTEM

An internet usually consists of a large number of computing and
communication resources spread over some extended geographical area.
The reliability of such an internet transport system thus becomes an
important design concern. In this chapter, a "buddy link” scheme is
presented to improve the reliability of the GATENET design. Section
5.1 gives a description of the ”buddy link” scheme. Based on the
"buddy link” scheme, Section 5.2 then elaborates several case studies of

various link failure conditions. Section 5.3 presents a summary.
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5.1 Buddy Link Reliability Scheme

As discussed in Chapter 3, the GATENET design adopts the
hierarchical structure and hierarchical addressing scheme to support the
internet voice and data transport functions. While this hierarchical
approach reduces the size of the routing tables and minimizes the
processing time for route selections, it suffers from a potential problem

of internet partitioning under faulty conditions.

In general, reliability problems in GATENET can be classified into
two types: gateway failures and link failures. Both types of failures can
be overcome by using backup components. However, a complete
redundancy solution is often not economically justified in a campus-wide
internet environment. Hence, a "buddy link” scheme is presented as a
cost-effective way to improve the internet reliability. Based upon such a
scheme, a single buddy link, if properly installed, can serve as the

backup link for any tree link in the associated "buddy loop.”

Depending on vitality, traffic load, and distance, a gateway may
choose to have certain gateways (other than its parent and sons) as its
"buddy gateways” connected by extra "buddy links” which need not be
on the same hierarchical level (See Figure 14). The regular links, which

preserve the GATENET hierarchical structure, are termed “tree links” to
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distinguish them from buddy links. Assume that G2 and G3 are buddy

gateways connected by a buddy link BL and that GA is the youngest
common ancestor of G2 and G3. A ”buddy loop” is then defined as a
closed path passing through G2, BL, G3 and GA. In general,
incorporating such buddy links will change the gateway-network from a
hierarchical structure to a meshed structure. However, with the
introduction of buddy routing tables, effective routing procedures can

still be maintained.

At each gateway, in addition to a normal routing table, a buddy
routing table (BRT) is needed to support route alternations under link
failure conditions. Since a gateway may be associated with several
buddy loops, the buddy routing table maintains a sub-buddy routing
table (SBRT) for each associated buddy loop. FEach SBRT keeps an
entry for each tree link within the associated buddy loop. Each entry in

turn consists of four subfields:

e ENABLE, which shows if this entry is enabled or not;

FLINK, which shows the ID of the possible faulty link;

ADDR, which gives a description of the cluster addresses to
be detoured;

RLINK, which shows the link to be used for detouring.



Figure 14.

Buddy gateways, buddy link
and buddy loop
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When a buddy link is installed, the youngest common ancestor of
the gateways on either side of the buddy link (i.e., GA) will be notified.
Appropriate detour information will then be sent by GA to each
gateway in the associated buddy loop to update its buddy routing table
to reflect such a change. Under normal conditions, the buddy link can
only be used to deliver those packets whose destination nodes are the

descendants of the buddy gateways (i.e., G2 or G3).

A special flag RED is maintained at each gateway to signal if
route alternations are in effect. When the RED flag is set to the ON
state, the gateway is reminded that when making route selections the
buddy routing table should be checked before the normal routing table.
Since the buddy link is used by both buddy gateways even under
normal conditions, the RED flag at either buddy gateway is set to the

ON state after the buddy gateway is installed.

When a link failure occurs, two situations may arise. First, if the
faulty link happens to be a buddy link, the only action that needs to be
taken is to disable the associated entry (making use of such a buddy
link) in the buddy routing table of either buddy gateway. The RED flag
is set to the OFF state if no more entries are enabled in the buddy
routing table. Second, if the faulty link is a tree link, the upper

gateway of the faulty link first chooses a proper buddy loop for
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subsequent route alternations. Usually, the buddy loop with the smallest
number of links will be chosen, and an arbitration can be made if there
is a tie. A "detour” control packet containing the ID of the faulty link
and the chosen buddy loop is then initiated and passed to each gateway
in the chosen buddy loop. If, unfortunately, the detour control packet
should encounter any further faulty conditions en route, a ”detour
cancellation” would be returned all the way back to the upper gateway
to cancel such a detour action. The upper gateway then picks up the
next smaller buddy loop and repeats the same process until either the
detour announcement is successfully carried out or there is no more

available buddy loop.

Upon receiving a "detour” control packet, the gateway then sets
the RED flag to the ON state (if it is not on yet) and enables the
associated entry in the buddy routing table. It should be noted that
some packets may be lost during the detour transition, but they can be
recovered  through the EGTEG . positive acknowledgment and

retransmission schemes.

When a detour action is in effect, route selections at the gateway
on either side of the buddy link (i.e., G2 or G3) are more complicated,
since a nonlocal packet may be routed to either its parent gateway or

its buddy gateway. Unfortunately, since only local cluster address
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patterns are maintained, the gateway is unable to make a choice
between the two alternate routes; thus, a nonlocal packet is always
forwarded to its parent gateway. If the parent gateway and its
associated ancestors and descendants cannot deliver such a packet to its
destination, the packet will eventually be returned to the gateway for
detouring. As a result, it is possible that a packet may visit a gateway
the second time. To facilitate handling such a detouring process, a
DETOUR subfield is introduced in the internet header to provide
information pertaining to whether a packet has been detoured. The
DETOUR subfield will be set to a value of YES when a packet is
detoured. However, since the DETOUR subfield is used only to decide
if a nonlocal packet should be routed through a buddy link at a buddy
gateway, its value will be reset to NO once a packet is detoured through

a buddy link.

When the faulty link has been repaired, depending on whether it is
a buddy link or tree link, each associated gateway will be notified, and

proper actions will be taken to restore normal operating conditions.

For data traffic, the above scheme 1is sufficient for route
alternations. For voice traffic, however, some refinements must be added
because of the virtual circuit approach. Since a buffer reservation must

be made at each gateway en route for each voice session, after the link
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failures and subsequent route alternations, a voice packet may be routed
to some gateway where no buffer reservation is made for such a voice
session. If this situation occurs and there are buffers availahle, the
gateway may accept such a voice packet and automatically initiate a
buffer reservation for this voice session. If the buffer reservation cannot
be honored at that time because of the limitations of the allowed active
voice sessions, a special request will be queued by the gateway. As soon
as the gateway has a free slot, the reservation will be honored with the
highest priority. This process continues until either such a voice session
finally secures a buffer reservation or a call termination request of this

voice sesslon arrives.

5.2 Case Studies of Buddy Link Scheme

In this section, scenarios of route alternations are presented with
respect to various link failure conditions. As shown in Figure 15,
Gateways G2 and G3 become buddy gateways through Buddy Link BIL
(the youngest common ancestor being G4). The buddy loop associated
with buddy link BL is the closed path Y-X-BL-A. The SBRT of each
gateway associated with the buddy link BL is shown in Figure 16 where
NLOC denotes any nonlocal transit packets and NLOCDET denotes any
nonlocal transit packets with a value of YES in the subfield DETOUR

(of the internet header).
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Since there are three tree links in the buddy loop, three distinct
link failure conditions may occur. Each of these conditions is discussed

below.
o Case 1: Link A fails.
1. Nonlocal transit packets at G2 (from its descendants)

are detoured via Link BL.

2. Transit packets at G1 with the address pattern 4.1.%.*

are detoured via Link Y.

3. Transit packets at G4 with the address pattern 4.1.%.*

are detoured via Link X.

4. Transit packets at G3 with the address pattern 4.1.*.*
are detoured via Link BL.

e Case 2: Link X fails. This situation is similar to Case 1;

hence, it will not be detailed here.

e Case 3: Link Y fails.
1. Transit packets at G4 with the address pattern 4.%.*.*

are detoured via Link X.

2. Transit packets at G3 with the address pattern 4.% **

are detoured via Link BL.
3. Nonlocal transit packets at Gl are detoured via Link A.

4. At G2, nonlocal transit packets can be classified into
two different classes. The first class consists of those

packets whose destinations can be reached through Link
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A. The second class consists of those packets whose
destiﬁations can be reached through Link BL. The
subfield DETOUR in the internet header can be used to

help distinguish these two different classes of packets.

When a nonlocal transit packet P (say, with the
destination address 3.2.1.4) arrives at G2 with a value of
NO in the DETOUR subfield, there is insufficient
routing information for G2 to decide to which link it
must forward such a packet. Thus, packet P will be
sent through Link A to G2’s parent node G1.

When G1 receives packet P, the packet will be delivered
to a proper destination node if it is a local packet for
G1; otherwise, the packet will be detoured via Link A

(instead of going through faulty Link Y), setting a value
of YES in the DETOUR subfield.

When packet P arrives at G2 a second time, since it is

a nonlocal packet with a value of YES in the DETOUR
subfield, it will be detoured via Link BL to reach its

final destination.

Hence, a single buddy link BL can be used as the backup link for
tree links X, Y and A. The internet transport system may still be able
to maintain its integrity without suffering from any partitioning should

any one of the tree links in the associated buddy loop fail.
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5.3 Summary

In this chapter, a "buddy link” scheme has been shown to be a
cost-effective means to improve the reliability of the GATENET internet
transport system. When properly installed, a buddy link can be used to
provide route alternations for any faulty tree link in the associated
buddy loop, thereby significantly reducing the number of extra links

needed to prevent internet partitioning.



CHAPTER VI

PERFORMANCE EVALUATIONS
OF GATENET

This chapter presents performance characteristics of the GATENET
design utilizing the architectures and protocols discussed in Chapters 3
and 4. Section 6.1 briefly describes the motivations for conducting such
a performance study. Section 6.2 outlines a simulation model of
GATENET, and Section 6.3 shows the parameters and assumptions used
in the simulation runs. Performance indices of interest are described in
Section 6.4. Section 6.5 presents a detailed discussion of GATENET
performance under various operating and traffic conditions. Finally, a

summary is presented.
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6.1 Motivations

Flow and congestion control has been a major research topic in the
design of local area networks because of its substantial impact on the
performance of the underlying network operations. Due to the varying
network technologies and traffic patterns involved with each installation,
it is very difficult to obtain a good control strategy which will solve the
network congestion problems. The congestion problem is further
complicated in an internet environment where there are many LANs of
different characteristics interconnected and interacting with one another.
In addition, if both data and voice communication services are to be
supported by the same internet, special mechanismns must be devised to

accommodate the different requirements of data and voice traffic.

Performance optimization is often the most important goal when
designing a communication system. Many features, such as throughput,
delay, reliability, fairness, cost and expansibility, can be used as the
evaluation indices of network performance. Frequently, however, a
design strategy chosen to optimize a performance index may lead to the
degradation of other performance indices. It is therefore unrealistic to
expect that a single design choice will optimize the performance in all
ways. Thus, a tradeoff is unavoidable in the process of reaching a design

decision.
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Due to the inherent complexity of modern communication systems,
the interactions among different design parameters are often difficult to
analyze or predict without conducting a detailed simulation study or
actually measuring the performance of the target system. Thus, to aid
our design work during the course of this research, a network
communication simulator, called GATESIM, was developed as a tool to

study the performance of GATENET.

GATESIM is written in SIMSCRIPT using discrete event-driven
simulation techniques. Although GATESIM has been used primarily to
evaluate the performance of GATENET, it is, in fact, a rather general
purpose network communication simulator. In GATESIM, each major
network feature is defined as a separate routine; hence, with some
modifications, GATESIM can easily be reconfigured to model different

network topologies, routing, or flow and congestion control mechanisms.

Initially, GATESIM was used to investigate and compare the
various flow and congestion control mechanisms. After thoroughly
studying the behavior of GATENET, we determined that two levels of
flow and congestion control mechanisms would be required to improve
GATENET’s performance under heavy load conditions (see Section
4.2.3). Later, GATESIM was further used to evaluate GATENET’s

performance under various traffic patterns and to show how the
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parameters related to the proposed flow and congestion control
mechanisms affect the performance. It is the latter part of the

performance study that will be covered in this chapter.

6.2 A Simulation Model of GATENET

As shown in Figure 17, our simulation model of GATENET
consists of seven gateways, 12 regular links and two buddy links, with
each link in a simplex mode. Gateways and links are modeled as

follows:

Each gateway G (see Figure 18) is modeled as a single server with
three priority FCFS queues and a bounded buffer pool. The first queue,
which has the highest processing priority, contains the voice packets.
The second queue, which has the next highest processing priority,
contains the control packets.  The third queue, having the lowest
processing priority, contains the data packets. The bounded buffer pool
is shared by all types of packets and is subject to the specified flow and

congestion control schemes.

Each gateway is also associated with a source generator, voice

generators, and a sink. At a specified rate, the source generator
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generates new incoming traffic, including data packets and voice setup
control packets. Once a voice session is established, each speaker on
either side is modeled with a voice generator, which generates voice
packets at a fixed rate. The sink consumes all the packets delivered to

it.

Each communication link (in simplex mode) is modeled as a single

server with one FCFS queue. No buffer pool is associated with a link.

6.3 Simulation Assumptions and Parameters

This section describes the assumptions and the parameters used in

the simulation.
1. The buffer pool at each gateway is structured into a number
of segments, each consisting of 72 bytes. Packets arriving at

a gateway without allocation of sufficient segments are

discarded.

2. The length of a data packet is determined according to the
distribution shown in Figure 19. The maximum length of a
data packet is 512 bytes, each with an extra internet header
of 26 bytes. The length of a voice packet is 128 bytes, each
with an extra abbreviated internet header of 16 bytes. The
length of a control packet is 32 bytes, including the internet

header.
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. Let the total number of segments in the buffer pool at each
gateway be TOTALBUF. According to the flow and
congestion control mechanisms specified in Section 4.2.3, no
more than MAXVOICE segments can be allocated to voice
traffic at any given time. When the buffer utilization exceeds
THRESHOLD, no more input data packets will be accepted
unless the total number of input data packets is less than

MAXINDATA.

. Since the size of the control packets is rather small, it is
assumed that the control packets are always accepted by the
gateways, accounting for no wusage of the aforementioned

buffer pool.
. The window size for the EGTEG flow control is WINDOW.

. The rate of the new incoming packets generated by a source
generator is assumed to be a poisson process with a mean IR.
Among the new packets, 0.14% are voice setup control
packets; the rest are data packets. It is also assumed that

the destinations of the generated traffic are distributed
uniformly across the GATENET.

. With proper vocoding and silence detection techniques, each
voice generator is assumed to generate voice data at the rate
of 16 Kbps. Since the length of a voice packet is 128 bytes,
16 voice packets per second will be generated by each voice

generator.

. In real environments, an EGTEG positive acknowledgment is
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11.

12.

13.

14.

15.

usually piggybacked through a data packet; hence, no extra
processing time is incurred at the intermediate gateways. In
order to account for delayed acknowledgments, we have
treated an EGTEG acknowledgment as a special data packet
which requires no processing time. Such a data packet is
placed in the third queue waiting to be serviced when it
arrives at a busy gateway. By doing so, we can get a more
accurate estimate of the transit delay of the EGTEG

acknowledgment.

The gateway processes a packet at a speed of 1/1800 of a
second. Each interrupt for either an acknowledgment timeout
or a call holding timeout takes 1/10,000 of a second. Note
that due to the amount of the traffic load, the root gateway
is assumed to have twice the processing speed and twice the

size of the buffer pool as do the rest of the gateways.

It is assumed that all the packets will be consumed at their

respective exit gateways.

The length of a voice call is assumed to be exponcntially

distributed with a mean of 150 seconds.

The transmission speed at each link 1is 1,500,000 bps.

Transmission errors are assumed to be negligible.

The timeout period is 3.5 seconds. A data packet may be

retransmitted up to three times.

The maximum holding period for each voice connection

request is 0.5 seconds.
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6.4 Performance Measurements

The performance indices of concern in this study are as follows:
1. Throughput (packets/sec): the number of packets per second
delivered to all the sinks in GATENET. Throughputs for

data traffic and voice traffic are measured separately.

2. Transit delay (sec): the time period between the arrival of a
packet at the source gateway and its delivery to the exit
gateway. Transit delays for data, control, and voice packets

are measured separately.

3. Transit data blocking probability: the ratio of the number of
dropped transit data packets to the total number of data
packets admitted in the GATENET.

4. Incoming data blocking probability: the ratio of the number
of admitted incoming data packets to the total number of

incoming data packets.

5. Incoming call blocking probability: the ratio of the number
of rejected call requests to the total number of incoming call

requests in the GATENET.
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6.5 Simulation Results

In this section, the results of five sets of experiments are examined.
Section 6.5.1 describes GATENET’s performance with respect to various
offered loads, including normal and faulty conditions. Section 6.5.2
shows the effect of different sized buffer pools on the performance of
GATENET, while section 6.5.3 discusses the impact of different threshold
values on the system. The effect of using different MAXINDATA values
with respect to a fixed TOTALBUF is presented in Section 6.5.4. Next,
Section 6.5.5 shows GATENET’s performance under different window

sizes. A summary is given in Section 6.5.6.

During each simulation run, many statistics were gathered, but
only the indices described in Section 6.4 will be discussed in the
following experiments. Samples collected for both data and voice traffic
statistics are in the order of five; thus, the results of the simulation

should be sufficiently accurate.
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6.5.1 The Effect of Increasing the Offered Load

In this experiment, we studied GATENET’s behavior under various
offered loads. Cases of normal and faulty conditions are addressed.
The parameters used are as follows: WINDOW = 5, THRESHOLD =
0.75, TOTALBUF = 440, MAXVOICE = 180 and MAXINDATA = 40.
The values used for the offered load range from 875 to 14,000 packets
per second. One thing to be noted here is that the offered load refers
to all of thé load applied to the GATENET, and it is assumed that

each gateway has an equal share of the total offered load.

6.5.1.1 Normal conditions

As shown in Figure 20, GATENET’s throughput grows as the
offered load increases; but as the offcred load goes beyond a certain
amount, the throughput gradually saturates and maintains a rather
steady level thereafter. This behavior conforms to the requirements of
an ideal flow and control mechanism which is applied to prevent

throughput degradation from occurring as a result of overloading.

Figure 21 shows the average transit delay of the voice traffic,
classified according to the number of hops traversed during the internet
transmission. It shows that the voice transit delay fluctuates within a

rather small range and is insensitive to the increase of the offered load
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once the offered load exceeds a certain limit (Standard deviation of the
voice transit delay is shown in Table 1.). As discussed in previous
chapters, minimization of the voice transit delay and its associated
variance are the most critical performance requirements for the support
of voice communication in a packet switched system. The results shown
here support our claim that the congestion and control measures
proposed in Section 4.2.3 can very effectively handle the GATENET

congestion conditions.

Table 2 shows the transit delay of the control traffic, and Figure
22 shows the transit delay of the data traffic. Due to the lowest
processing priority assigned to the data traffic, the data transit delay
increases as a result of the increased offered load; however, since the
delay increases at such a relatively slow rate, it should be able to fulfill

most of the data communication requirements.

Because of the flow and congestion control, most of the excessive
incoming data packets are rejected at the entry gateways. As a result,
the probability of discarding the transit data packets at busy gateways is
reduced, and waste of internet resources is also avoided. Figure 23
shows the transit data blocking probability, which remains at an
extremely low and stable level irrespective of the amount of the offered
load. This is also a good indication of the effectiveness of our proposed

flow and congestion control mechanisms.
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Table 1. Standard deviation of voice transit delay
under various offered load (normal conditions)

| Load | 1t hop | 2 nops | 3 nops | 4 hops | S-ngf-l
| 875 1 05 | 07 | g8 | 1 | 07 |
12275 | 07 | 1.6 | v | 13 | 16 |
T'ZESB"TTE"T"?H I 1___1__1-3_“1“1;3“_1
| 7000 | 0.8 | 1.z | 1.2z | 1.3 | 1.7 |
| Baoo | 0.8 I 1.0 | 1.5 | 31 13
I 0500 | 0.8 | 1.0 [ 1.3 | 1.4 | 1.3 |

- " - - — - - — - - T = - - -
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Table 2. GATENET control transit delay vs
the offered load (normal conditions)

" Load | ' hop | 2 hops | 3 nops | 4 hops | S hops |
Vers 1 2 1 4 1 s 1 e 1 7 1
V225 1 v 1 a7 1 e 1 8 1 a7
| a200 | 7 | 24 | 19 1 25 | 26 |
| 7000 | 23 | 3z | 25 | 37 | 25 |
| saoo | 27 1 a1 | 26 1 a3 1 a1 |
| voso0 | 27 | a8 | a3z | a1 | 29 |
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Blocking probabilities for incoming data packets and incoming voice

calls are shown in Figures 24 and 25, respectively.

6.5.1.2 Faulty conditions

As discussed in Chapter 5, with properly installed buddy links, the
integrity of internet communication can still be maintained even when
there are link failures. This section describes GATENET’s performance

under various link failure conditions.

1. Link A (fails. At light traffic, GATENET’s throughput
appears to not be affected by the failure of Link A (see
Figure 26), since the buddy link can provide appropriate
alternate routing for those packets that should have travelled
through Link A. However, as the offered load continues to
grow, the adverse effect of losing Link A becomes more
apparent, resulting in lower data and voice throughput, higher
data and voice transit delay, higher incoming data and
incoming call blocking probability (see Figures 26-30).
However, the transit data blocking probability is lower than
that of normal conditions (see Figure 31). Because of the
higher incoming data and incoming call blocking probabilities,
less traffic is admitted to the GATENET. As a result, the
probability of discarding the transit data packets will be
relatively lower when compared with that of normal

conditions.

2. Link Y fails. Because Link Y is directly connected to the
root gateway, the throughput (especially the voice throughput)
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in the previous case (see Figure 26). Because of the dramatic
decrease in the amount of voice traffic, the data throughput
increases, and the incoming data blocking probability is lower
(see Figure 29). Also, because of significantly reduced traffic
in the GATENET, both the data and voice transit delays are
lower than those under normal conditions (see Figures 27 and
28). Further, due to the large amount of traffic that needs
to be rerouted via the buddy link, the transit data blocking
probability is much higher (see Figure 31).

6.5.2 The Effect of Increasing the Size of the Buffer Pool

This experiment studied GATENET’s performance with respect to
different sizes of the buffer pool. The parameters used in this experiment
are as follows: WINDOW = 5, THRESHOLD = 0.75, MAXVOICE =
180 and the offered load = 1575 packets per second. The values used
for TOTALBUF range from 260 to 560, and MAXINDATA is assumed

to be 15% of (TOTALBUF-MAXVOICE).

As the size of the buffer pool increases, more incoming data
packets will be admitted to the GATENET, thus leading to the increase
of the data throughput (see Figure 32). However, the rate of
throughput increase quickly slows down as the pool size exceeds a
certain value. The voice throughput is not affected by this change.

This is in accordance with the GATENET design, which gives voice
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traffic the highest processing priority and subjects it to an upper bound

of buffer utilization at any given time.

Figure 33 shows that the average data transit delay increascs as
the size of the buffer pool becomes larger. This situation is also as
expected, since the larger the buffer size, the more incoming data
packets will be admitted into the GATENET. However, the processing
speed at the gateways remains the same. Hence, on the average, more

queueing time is needed to service each data packet.

Observations from Figures 32 and 33 suggest that once the size of
the buffer pool has grown to a certain value increasing the buffer size is
no longer a good strategy to improve GATENET’s performance. This is
because such a move produces only a small gain in throughput and

significantly increases the data transit delay.

Figures 34 and 35 show the respective blocking probabilities for the

transit data and incoming data traffic.
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6.5.3 The Effect of Increasing the Threshold Value

In this experiment, the effect of increasing the threshold value on
GATENET’s performance was studied. The parameters used in the
experiment are as follows: WINDOW = 5, TOTALBUF = 440,
MAXVOICE = 180, MAXINDATA = 40 and the offered load = 1575
packets per second. The values used for THRESHOLD range from 0.60

to 1.00.

Figure 36 shows that the data throughput increases slightly as the
threshold value becomes larger. This is due to the fact that a larger
threshold value allows more incoming data packets to be admitted to the
GATENET. The voice throughput is not affected when the threshold

value is changed.

Figure 37 shows the data transit delay. Since more incoming data
traffic will be admitted into the GATENET as a result of the increased
threshold value, the data transit delay will increase accordingly. But as
the threshold value approaches a certain limit, the transit delay
decreases rapidly. This situation may look strange at first glance, but
it, in fact, highlights a serious problem which often appears in a
congested network. Due to the lack of proper congestion control, when
congestion occurs, only the data packets requiring fewer hops can be

delivered to their destination hosts, and the data packets requiring more
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hops to get to their destination are more likely to be discarded en route.
As a result, the average transit data delay decreases as the network
congestion is aggravated. Figure 38 shows the blocking probability of

the transit data traffic.

Observations from this experiment show that the data throughput
can be slightly increased if the threshold value is set higher. However,
such a threshold value should be carefully chosen so that it will not go

beyond a limit at which the data transit delay begins to deteriorate.

6.5.4 The Effect of Increasing the Window Size

In this experiment, we studied the effect on GATENET’s
performance of increased window size. The parameters used in this
experiment are as follows: THRESHOLD = 0.75, TOTALBUF = 440,
MAXVOICE = 180, MAXINDATA = 40 and the offered load -- 1575
packets per second. The values used for the window size range from

one to 12.

Initially, GATENET’s throughput increases as the window size
becomes larger (see Figure 39). However, after the window size reaches
a certain value, the throughput begins to decline. The explanation for
this behavior is the fact that more incoming data traffic (than the

amount the GATENET can handle) will be admitted to GATENET as a
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result of the larger window size. The larger window subsequently leads
to significantly higher blocking probability for the transit data traffic

(see Figure 40).

The data transit delay increases as the window size becomes larger
(see Figure 41) because the larger size allows more incoming data traffic
to be admitted to GATENET. Thus, on the average, more queueing
time is needed for each data packet to be serviced. Figure 42 shows the

blocking probability of the incoming data traffic.

6.5.5 The Effect of Increasing Incoming Data Limit

This experiment studied the impact on GATENET’s performance of
increased incoming data limit. The parameters used in this experiment
are as follows: WINDOW = 5, THRESHOLD = 0.75, TOTALBULI =
440, MAXVOICE = 180 and the offered load = 1575 packets per

second. The values used for MAXINDATA range from 0 to 260.

As shown in Figure 43, GATENET’s throughput grows slightly as
the value of MAXINDATA increases. The voice throughput is not
affected by this change until MAXINDATA increases to a value that will
affect the buffer utilization for voice traffic. Such a case is not

encountered with the range chosen for this experiment.
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Figure 44 shows the behavior of data transit delay. Initially, as

MAXINDATA increases, more incoming data packets are admitted to
GATENET, which subsequently increases the average data transit delay.
But as MAXINDATA continues to increase, even more incoming data
traffic is admitted to GATENET. Consequently, the buffer segments
originally available for the transit data traffic are depleted, leading to a
significantly higher transit data blocking probability (see Figure 45). As
a result, only the data packets with fewer hops can be delivered to their

destinations, and thus the average transit delay becomes smaller.

Tuning MAXINDATA is very closely related to the setting of the
threshold value. Depending on the setting of the threshold value,
MAXINDATA can be tuned to maximize the system performance.
However, such tuning should be carefully performed so that satisfactory
performance can be constantly maintained. One possible usage of
MAXINDATA is to allow a certain portion of the system resources
accessible at any given time to incoming new traffic. By enforcing the
incoming data limit, during the heavy traffic period the new data traffic
will still have a fair chance of entering the GATENET instead of being

blocked out as most flow control mechanisms usually do.
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6.6 Summary

In this chapter, we have described a GATENET simulation model.
Furthermore, simulation results with respect to various operating
conditions have been presented and discussed. All the results support
the GATENET behavior predicted by our proposed flow and congestion
control mechanisms. Thus, we conclude that the GATENET design is a
feasible and cost-effective method to achieve satisfactory voice and data

communication services in a campus-wide area.



CHAPTER VII
SUMMARY AND CONCLUSIONS

This chapter summarizes the main research results presented in the

previous chapters. Possible directions for future research are also

identified.

7.1 Summary

The objective of this rescarch has been to design an internct
transport system within a campus-wide area so that voice and data
communication services can be achieved in a cost-effective and elegant

way.

Driven by the recent rapid advances in computing and
communication technologies and the growing demands of integrated data,

voice, facsimile and video services in an office environment, network
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interconnection is receiving more and more recognition as a necessary
element to meet such demands in the future. Existing internets are
generally constructed out of the natural growth of demands from the
user community. Consequently most internets are oriented toward
fulfilling the immediate application requirements. While this approach
can provide a quick solution, it inevitably leaves many constraints on

the ability of the internet system to adapt to evolving technologies.

In this dissertation, a new network interconnection strategy, called
GATENET, is presented as an effective means to achieve satisfactory
voice and data communication services. In Chapter 3, GATENET is
presented from an architectural point of view. Based upon the
hierarchical structure of GATENET, the addressing and routing schemnes
are then defined to support the internet transport functions. Advantages
and disadvantages of GATENET compared with the conventional

gateway internetworking approaches are also discussed.

Communication protocols are the kernel of a communication
system. [Efficiency of protocols can often greatly enhance or degrade the
internet performance. Since the majority of data and voice traffic within
a campus-wide area is for inter-office communication, special data
transport and voi(;e transport protocols have been developed in Chapter

4 to meet such communication needs. In an internet environment, with
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many users engaging in various types of applications, it is likely that,
from time to time, instantaneous traffic loads will greatly exceed the
internet capacity. To prevent serious performance degradation due to
occasional overloaded conditions, flow and congestion control is called
for. In GATENET, two levels of flow control mechanisms are used to
regulate the internet traffic flow so that voice and data communications
can proceed smoothly under various traffic conditions. Interconnecting
incompatible networks is often a complicated and tedious task. In order
to minimize the software development overheads, optional transport layer

protocol support is also included in the GATENET design.

An internet usually consists of a wide variety of equipment and is
accessed by many users every day. Therefore, the reliability of such an
internet must be properly addressed to ensure that internet service
interruptions are reduced to a minimum. Although a redundancy
approach can be employed to improve internet reliability, it s
nevertheless a rather costly solution and is often not economically
justified in a campus-wide environment. Hence, Chapter 5 presents a
"buddy link” scheme as a cost-effective means to improve GATENET

reliability.

Performance is the most important index in designing a

communication system. Every design parameter should be chosen to
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improve one or more performance aspects such as delay, throughput,
cost, distance, etc. At the various stages of designing a communication
system, a simulation model can often provide many helpful insights into
the target system. In Chapter 6, a network communication simulator,
called GATESIM, is presented as a tool to study the performance
aspects of GATENET. Simulation results with respect to various

operating and traffic conditions are then presented.

7.2 Areas for future research

As mentioned in Chapter 1, because of rapid advances in fiber
optics, traffic bottlenecks in modern communication systems have moved
from transmission elements to switching elements. In order to keep pace
with the extremely high data rates of fiber optical transmission media,
very fast packet switching processors must be devised. The traditional
store and forward approach is inadequate to cope with such voluminous,
high speed incoming traffic because the approach «calls for both a
tremendous amount of memory to buffer the incoming packets and the
use of very fast (and thus costly) memory systems to keep up with its
processing speed. To handle the high speed incoming traffic, several
schemes have been proposed using non-buffering and non-blocking

interconnection network (IN) techniques and have produced encouraging
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results. However, the fact that these schemes are too costly and
complicated to be built suggests that more research work is needed in

this area.

This dissertation has concentrated on the design of an internet
transport system, and in Chapter 4 protocols are defined to support the
internet transport functions. However, to access GATENET, an interface
protocol specific to each connecting LAN must also be properly defined
to synchronize the speed mismatch between the connecting LAN and the
entry gateway. Further investigations in this area will enhance ‘the
GATENET design. In addition, development of high level application
protocols, such as file transfer protocols, conferencing protocols and
remote access protocols, are also needed to make the GATENET design

even more complete.

In Chapter 6, our simulation results have shown that the
GATENET design can provide satisfactory voice and data communication
services under various traffic conditions. However, the design has not
been tested in real environments. It would be a worthwhile endeavour
to apply the GATENET design in some prototype systems. Currently,
there are several existing networks at the IRCC/CIS Computing
Laboratory; experimental work built on top of these networks would

provide solid groundwork for such prototyping efforts.
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7.3 Conclusions

During the past decade, the price-performance revolution in
computing and communication technologies has transformed the world
into a new information age. As the momentum of office automation
continues to grow, more and more local area networks will multiply. As
a result, the capability to interconnect and communicate with other
networks will become an indispensable aspect of any future network
design. In the meantime, after a decade’s debate and study, the
economic incentive and the technical advantages of the integration of
voice and data traffic over the same communication system have also
gained worldwide recognition, moving from the conceptual to the

realization stage.

Because of this trend, it is expected that the distinction between
the functionality of a computer network and a telephone network will be
blurred in the years to come. In the telephone industry, the Integrated
Services Digital Networks (ISDN) project, which aims to provide
cost-effective end-to-end digital connectivity supporting a wide range of
voice and nonvoice services, has already gone into the planning and
deployment phases. It is projected that by the turn of the century such
services will be available to most commercial and residential users. On

the other hand, due to the abundant bandwidth made available by fiber
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optics technology, many computer vendors also have undertaken efforts
to enhance their network capabilities to support integrated data and
voice communication services. @ We believe that an efficient internet
providing integrated voice and data services will soon become a reality.
We also believe that the GATENET approach is suitable for meecting

such a challenge.



APPENDIX A.

GATESIM: A NETWORK
COMMUNICATION SIMULATOR

In this appendix, a network communication simulator called
GATESIM is presented. GATESIM is written in SIMSCRIPT using
discrete event-driven simulation techniques. It consists of seven
gateways, 12 regular links and two buddy links, with each link in a
simplex mode. Although GATESIM has been used primarily to evaluate
the performance of GATENET, it is, in fact, a rather general purpose
network communication simulator. In GATESIM, each major network
feature is defined as a separate routine; hence, with some modifications,
GATESIM can easily be reconfigured to model different network

topologies, routing, or flow and congestion control mechanisms.
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A DSTNO, A PACKCLASS, A PACKLENG, A PACKSEG,

All ENTRYMARK, A RETRYTIMES, A TIMESTAMP, A SUBSEQID,
All ACKTAG, A HOLDTAG, A DETOUR, A HOPCOUIT,

MAY BELONG TO A LIKQUEUE,

MAY BELONG TO A GATEQUEUE.1ST,

MAY BELONG TO A GATEQUEUE. 2D,

MAY BELONG TO A GATEQUEUE.3RD,

MAY BELONG TO A BUFQUEUE, AND

MAY BELONG TO AN ACKQUEUE
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DEFIIE ARRIVALTIME,SEQID, TIMEID, TIMESTAMP AS REAL VARIABLES

EVERY

SESSION HAS A SESSTAG, A SESSSEQ, A SESSTID,

A SESSTIMESTAMP, A SESSSRC, A SESSDST,A SESSHODE,
A SESSSTATUS,

MAY BELO!G TO All ACTIVESESSQUEUE

DEFINE SESSSEQ, SESSTID, SESSTIMESTAMP AS REAL VARIABLES

PERMANENT E
EVERY

DEFIIIE
DEFIIIE
DEFIIE

NTITIES
GATEWAY HAS A GATESTATUS, AN INTRTIME, A BUF,
A BUF.TRAN, A BUF.IN, A BUF.VOICE, AN OVERRUM,
A PACK.TRAN, A PACK.IN, A RED, A BDLIK,
AN UPLNK, A DNLNK1, A DNLNK2, A DHLNK3,
GCOUNT.VOICE.THRUPUT, A GCOUMNT.DATA.THRUPUT,
GCOUNT.VOICE.INLOAD, A GCOUNT.DATA.INLOAD,
GCOUNT.VOICE. IN,
GCOUNT.VOICE.SUCCESS, A GCOUNT.DATA.II,
GCOUNT.DATA.ADMIT, A GCOUNT.DATA.SUCCESS,
GCOUNT .DATA . ADMITLD,
GCOUNT.DATA.ACK, A GCOUNT.CONTROL.ACK,
GCOUNT.VOICE.SESSIN, A GCOUIIT.VOICE.SESSACC,
GCOUNT.VOICE.SESSE!D,
GCOUNT.RETRY.PACK, A GCOUNT.RETRY.FRER,
GCOUNT.RETRY.SUCCESS, A GTRAIISDELAY.VOICE,
GCOUNT.DATA.REJECT, A GCOUIT.VOICE.SESSREJ,
GTRANSDELAY .DATA,
GTRA!SDELAY.CONITROL, A UPPERVO, A UPPERIN, A BUFIIO,
PACKTO, A PHOLDTG, A PEXEC,
OwWNS A GATEQUEUE. 1ST,
OwWNS A GATEQUEUE.2!ID,
0wNS A GATEQUEUE.3RD,
owlls ANl ACKQUEUE,
QwMNS A BUFQUEUE,
ovwls Al ACTIVESESSQUEUE

GCOUNT.DATA.ADMITLD AS A REAL VARIABLE
PACKTO,PHOLDTO,PEXEC,PIl AS REAL VARIABLES
INTRTIME, PRTIME AS REAL VARIABLES

E A - A

DEFINE GTRANSDELAY.VOICE, GTRANSDELAY.DATA,

DEFINE

GTRANSDELAY.CONTROL AS REAL VARIABLES
GCOUNT.VOICE.THRUPUT, GCOUNT.DATA.THRUPUT,
TCOUNT.VOICE.THRUPUT, TCOUNT.DATA.THRUPUT AS
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REAL VARIABLES

DEFINE GCOUNT.VOICE.INLOAD, GCOUNT.DATA.INLOAD,
TCOUNT.VOICE.INLOAD, TCOUNT.DATA.INLOAD,
TCOUNT.DATA.ADMITLD AS REAL VARIABLES

EVERY LINK HAS A LNKSTATUS, A FROMGATE, A TOGATE,
A LUKSPEED AND 0WlS A LNKQUEUE

EVERY DSTGATE HAS AN ADDR
DEFINE ADDR AS A TEXT VARIABLE

EVERY HOPCLASS HAS A HOPDELAY.D, A HOPSUC.D, A HOPREJ.D,
A HOPDELAY.V, A HOPSUC.V, A HOPREJ.V,
A HOPDELAY.C, A HOPSUC.C,
A HOPSESSDELAY, A HOPSESSACC, A HOPSESSREJ
DEFINE HOPDELAY.D, HOPDELAY.V, HOPDELAY.C AS REAL VARIABLES
DEFINE HOPSESSDELAY AS A REAL VARIABLE
DEFIIE TCOUNT.VOICE.IN,
TCOUNT.VOICE.SUCCESS, TCOUNT.DATA.IN,
TCOUNT.DATA.ADMIT, TCOUNT.DATA.SUCCESS,
TCOUNT.RETRY.SUCCESS,
TCOUNT.DATA.ACK AS INTEGER VARIABLES
DEFINE TCOUNT.VOICE.SESSTI!I, TCOUNT.CONTROL.ACK,
TCOUNT.VOICE.SESSE!D,
TCOUNT.DATA.REJECT, TCOUlT.VOICE.SESSREJ,
TCOUNT.VOICE.SESSACC AS INTEGER VARIABLES
DEFINE TCOUNT.RETRY.PACK, TCOUNT.RETRY.FREQ AS IlITEGER
VARIABLES
DEFINE TRANSDELAY.VOICE, TRANSDELAY.DATA, TRANSDELAY.CONTROL,
TRANSDELAY.VOICE.CONIECT AS REAL VARIABLES
DEFINE WINDOYW AS A 2-DIMENSIOINAL INTEGER ARRAY
DEFINE EGTEG AS AN INTEGER VARIABLE
DEFI!IE TVOCKT, DATASEG AS IlITEGER VARIABLES

IIORMALLY MODE IS REAL

TALLY AVG.HOPDELAY.D AS THE MEAI,
MAX.HOPDELAY.D AS THE MAXIMUM,
STDDEV.HOPDELAY.D AS THE STD.DEV OF
HOPDELAY.D

TALLY AVG.HOPDELAY.V AS THE MEAN,
MAX.HOPDELAY.V AS THE MAXIMUM,
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TALLY

TALLY

TALLY

TALLY

TALLY

TALLY

TALLY

TALLY

TALLY

STDDEV.HOPDELAY.V AS THE STD.DEV OF
HOPDELAY.V

AVG.HOPDELAY.C AS THE MEAN,
MAX.HOPDELAY.C AS THE MAXIMUM,
STDDEV.HOPDELAY.C AS THE STD.DEV OF
HOPDELAY.C

AVG.HOPSESSDELAY AS THE MEAN,
MAX.HOPSESSDELAY AS THE MAXIMUM,
STDDEV.HOPSESSDELAY AS THE STD.DEV OF
HOPSESSDELAY

AVG.GTRANSDELAY.VOICE AS THE MEAN,
MAX.GTRANSDELAY.VOICE AS THE MAXIMUM,
STDDEV.GTRANSDELAY.VOICE AS THE STD.DEV OF
GTRANSDELAY.VOICE

AVG.TRANSDELAY.VOICE AS THE MEAN,
MAX.TRANSDELAY.VOICE AS THE MAXIMUM,
STDDEV.TRANSDELAY.VOICE AS THE STD.DEV OF
TRANSDELAY.VOICE

AVG.GTRANSDELAY.DATA AS THE MEAN,
MAX.GTRAISDELAY.DATA AS THE MAXIMUM,
STDDEV.GTRANSDELAY.DATA AS THE STD.DEV OF
GTRANSDELAY.DATA

AVG.GTRAISDELAY.CONTROL AS THE MEAIN,
MAX.GTRAINSDELAY.COITROL AS THE MAXIMUM,
STDDEV.GTRAIISDELAY .COlTROL AS THE STD.DEV OF
GTRAIISDELAY . COl'TROL

AVG. TRAINSDELAY.DATA AS THE MEAN,
MAX.TRANSDELAY.DATA AS THE MAXIMUM,
STDDEV.TRA!ISDELAY.DATA AS THE STD.DEV OF
TRANSDELAY.DATA

AVG.TRAISDELAY.CONTROL AS THE MEAI,
MAX.TRANSDELAY.CONTROL AS THE MAXIMUMN,
STDDEV.TRAISDELAY.COlTROL AS THE STD.DEV OF
TRANSDELAY . COIITROL

AVG. TRANSDELAY.VOICE.CONNECT AS THE MEAN,
MAX.TRANSDELAY.VOICE.CONNECT AS THE MAXIMUM,

STDDEV . TRANSDELAY.VOICE.CONNECT AS THE STD.DEV

OF
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TRANSDELAY.VOICE.CONNECT
TALLY AVG.DATASEG AS THE MEAN OF DATASEG

ACCUMULATE AVG.GATEQUEUE.1ST AS THE MEAN,
STDDEV.GATEQUEUE. 18T AS THE STD.DEV,
MAX.GATEQUEUE.1ST AS THE MAXIMUM OF N.GATEQUEUE.1ST

ACCUMULATE AVG.GATEQUEUE.2ND AS THE MEAN,
STDDEV.GATEQUEUE.2!D AS THE STD.DEV,
MAX.GATEQUEUE.2ND AS THE MAXIMUM OF N.GATEQUEUE.2ND

ACCUMULATE AVG.GATEQUEUE.3RD AS THE MEAN,
STDDEV .GATEQUEUE.3RD AS THE STD.DEV,
MAX.GATEQUEUE.3RD AS THE MAXIMUM OF Il.GATEQUEUE.3RD

ACCUMULATE AVG.TVOCKT AS THE MEAl,
MAX.TVOCKT AS THE MAXIMUM,
MIll.TVOCKT AS THE MINIMUM OF TVOCKT

ACCUMULATE MAX.BUF AS THE MAXIMUM,

AVG.BUF AS THE MEAl,

MINI.BUF AS THE MINIMUWM OF BUF
ACCUMULATE MAX.BUFTRAN AS THE MAXIMUM,

AVG.BUFTRAIl AS THE HEAN,

MIN.BUFTRAN AS THE MINIMUM OF BUF.TRAN
{AX.BUFIIl AS THE MAXIMULN,

AVG.BUFIN AS THE HEAN,

MI!l.BUFIN AS THE MINIMUM OF BUF.Il
ACCUMULATE MAX.BUFVO AS THE MAXIMUWM,

AVG.BUFVG AS THE HEAN,

MIN.BUFVO AS THE MINIMUM OF BUF.VOICE
ACCUMULATE MAX.PACKTRAIl AS THE MAXIMUL,

AVG .PACKTRA!l AS THE LEAI,

MIN.PACKTRA!Nl AS THE MIIIMUM OF PACK.TRAN
ACCUMULATE WAX.PACKIN AS THE MAXIMUM,

AVG.PACKIN AS THE MEAII,

MIN.PACKIN AS THE MINIMUM OF PACK.IN
ACCUMULATE AVG.UTILIZATION.GATE AS THE MEAN OF GATESTATUS

ACCUHULATE

ACCUMULATE AVG.UTILIZATION.LINK AS THE MEAN OF LNKSTATUS
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NORMALLY MODE IS INTEGER
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' THIS PROCESS SIMULATES THE INCOMING TRAFFIC AT EACH GATEWAY.
**« THE SOURCE GENERATOR GENERATES INCOMING DATA PACKETS AND VOICE

**+ SETUP PACKETS AT THE RATE .INPACKRATE. *

*

%

* *

PROCESS GENERATOR GIVEIl GATEI!O

DEFINE ID AS A REAL VARIABLE

LET ID = 1 + 0.1 % GATENO

UNTIL TIME.V GT .TIMELIMIT

DO
CREATE A PACKET CALLED INPACK
LET ARRIVALTIME(INPACK) = TIME.V
LET TIMEID(INPACK) = TIME.V
LET TIMESTAMP(INPACK) = TIME.V
LET SEQID(INPACK) = ID
IF ID >= 99999998

LET ID = 1 + 0.1 = GATE!O
ELSE

LET ID = ID + 1
ALYAYS
LET SRCIO(INPACK) = GATENO
LET DSTHO(INPACK) = RAHDADDR

LET HOPCOUNT(INPACK) = 1

IF DSTNO(INPACK) = 8
LET DSTHO(INPACK) = GATENO

ALYAYS

IF RANDOM.F(1) < .CALLRATE
LET PACKCLASS (TINPACK)
LET ENTRYMARK (IIIPACK)
LET TCOUNT.VOICE.SESSIlIl = TCOUNT.VOICE.SESSIl + 1
LET GCOUNT.VOICE.SESSIII(GATEND) =

GCOUNT.VOICE.SESSIN(GATEND) + 1

LET PACKLENG(INPACK) = 32

ELSE
LET PACKCLASS(INPACK) = .DATA.CONTENTS

.VOICE.COHIECT
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END

LOOP

LET
LET
LET
LET
LET
LET

LET
LET

ALVIAYS

ENTRYMARK (INPACK) = 1
PACKLENG (IIIPACK) = INT.F(RANDLENG) + 26
PACKSEG (INPACK)=INT.F (PACKLENG (INPACK) / . SECLENG+0.5)
DATASEG = PACKSEG (INPACK)
TCOUNT.DATA.IN = TCOUNT.DATA.IN + 1
GCOUNT. DATA. IN(GATEND) =
GCOUNT. DATA. IN(GATENO) + 1

TCOUNT.DATA . INLOAD=TCOUIIT . DATA . TNLOAD+PACKLEIIG ( IPACK) -26
GCOUNT.DATA. INLOAD(GATEINQ) =

GCOUNT. DATA . TIILOAD (GATE!0) +PACKLENG ( TIIPACK ) ~26

LET RETRYTIMES(INPACK) = O

LET SUBSEQID(INPACK) = 0

SCHEDULE A GATEARRIVAL GIVING INPACK AND GATE!NO NOv
WAIT EXPOUENTIAL.F (1/.INPACKRATE, 4) UNIT
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l'* *
PPk THIS PROCESS SIMULATES THE TRAFFIC GENERATED BY A VOICE *
**x SPEAKER. THE VOICE GENERATOR GE!IERATES VOICE PACKETS ACCORDING =
'*+ TO THE PREDETERMINED DATA RATES. ®
vy %

P sk ok ok s ke ke e ke s ok ok K okt ot R sl s o s SRR B8 R R ek e ol sk oot R R Rk etttk s sk R ok R R KR R R R R R R R
PROCESS VOICESESSION GIVEIl SESSIIO, GATENO
DEFINE PERIOD, WAITTIME AS REAL VARIABLES

LET TVOCKT = TVOCKT + 1
IF SESSHODE(SESS!I0) = .SENDER

LET SID = O
ELSE

LET SID = 1
ALYAYS

LET WAITTIME = 1/16
LET PERIOD = EXPONENTIAL.F (.TALKTIME, 7)
LET SESSSTATUS(SESSNO) = .TALKING
WHILE PERICD > O AND TIME.V <= .TIMELIMIT
DO
CREATE A PACKET CALLED VOICEPACK
LET ARRIVALTIME(VOICEPACK) = TIME.V
LET TIMESTAMP(VOICEPACK) = TIME.V
LET SEQID(VOICEPACK) = SESSSEQ(SESSII0)
LET TIMEID(VOICEPACK) = SESSTID(SESSI!O)
LET HOPCOUMNT(VOICEPACK) = 1
LET SRCNO(VOICEPACK) = GATE!O
IF SESSMODE(SESSNO) = .SENDER
LET DSTNO(VOICEPACK) = SESSDST(SESS!IO)
LET ACKTAG(VOICEPACK) = .SEIDER
ELSE
LET DSTHO(VOICEPACK) = SESSSRC(SESSII0)
LET ACKTAG(VOICEPACK) .RECEIVER
ALYAYS
LET PACKCLASS(VOICEPACK) .VOICE.CONTE!TS
LET PACKLENG(VOICEPACK) = .VPACKLENG
LET SUBSEQID(VOICEPACK) = SID
IF SID >= 99999998
LET SID = 1
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ELSE
LET SID = SID + 1
ALWAYS
LET ENTRYMARK(VOICEPACK) = 0
LET RETRYTIMES(VOICEPACK) = O
SCHEDULE A GATEARRIVAL GIVING VOICEPACK AND GATENQ HNOW
LET TCOUNT.VOICE.IN = TCOUNT.VOICE.IN + 1
LET GCOUNT.VOICE.IN(GATENOD) =
GCOUlT.VOICE. IN(GATENO) + 1
LET TCOUNT.VOICE.INLOAD=TCOUNT.VOICE.INLOAD+PACKLE!G(VOICEPACK)
LET GCOUNT.VOICE.INLOAD(GATENQ) =
GCOUNT. VOICE. INLOAD(GATENQ) +PACKLENG (VOICEPACK)
LET PERIOD = PERIOD - WAITTIME
WAIT WAITTIME UNIT
LooP
CREATE A PACKET CALLED DISCPACK
LET ARRIVALTIME(DISCPACK) = TIME.V
LET TIMESTAMP(DISCPACK) = TIME.V
LET TIMEID(DISCPACK) = SESSTID(SESSIIO)
LET SEQID(DISCPACK) = SESSSEQ(SESS!O0)
LET SRCHO(DISCPACK) = GATENO
LET HOPCOUNT (DISCPACK) = 1
IF SESSMODE(SESS!0) = .SENDER
LET DSTNO(DISCPACK) = SESSDST(SESS!O)
ELSE
LET DSTNO(DISCPACK) = SESSSRC(SESSIO)
ALVAYS
LET PACKCLASS(DISCPACK) = .VOICE.DISCONNECT
LET PACKLENG(DISCPACK) = 32
LET SUBSEQID(DISCPACK) = SESSMODE (SESSIO)
LET ENTRYMARK(DISCPACK) = 0
LET RETRYTIMES(DISCPACK) = O
SCHEDULE A GATEARRIVAL GIVIIHG DISCPACK AND GATElNO 10OY
LET SESSSTATUS(SESSII0) = .DISCONNECTIIG
LET TVOCKT = TVOCKT -~ 1
LET TCOUIIT.VOICE.SESSEID = TCOUNT.VOICE.SESSE!ID + 1
LET GCOUNT.VOICE.SESSEID(GATE!NQ) =
GCOUNT.VOICE.SESSEID(GATEND) + 1

END
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L *
PP THIS ROUTINE SIMULATES A PACKET ARRIVAL EVENT AT A *
'*% COMMUNICATION LINK. *
LR *

%% s s sk ok sk ok o ok R o ok o ok ok ok ok ok sk ok s ke s sl ok ol sk st sk o ik ok o ok o ok s e s ol e sl sk ok ok sk s ok kool ok sl e e sk ok ek

EVENT LNKARRIVAL GIVE!l PACKNO, LNK!UO

IF LMKSTATUS(LNKNO) = .IDLE
SCHEDULE A LNKENDSERVICE GIVING PACKNO, LNKHO Il
PACKLENG (PACKNO) /LNKSPEED (LIIKIO) UNIT
LET LUKSTATUS(LNKNO) = .BUSY
ELSE
FILE THIS PACKNO IN LNKQUEUE (LIIK!IQ)
ALWAYS

ElD

165



166
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P *
Pk THIS ROUTINE SIMULATES A PACKET TRAISMISSIOIH EVENT AT A =
'*x COMMUINICATION LINK. *
'k #

P sk ok sk ok sk ok s st s siesfe s obeskesfe skt stesde s sk e sttt sk e sdeskolesteokokokote ook s skokokokok ok sokor Rokokok kR sk dok ok

EVENT LUKEIDSERVICE GIVEN PACKNO, LNKNO

LET HOPCOUNT(PACKNO) = HOPCOUNT(PACKNO) + 1
IF PACKCLASS(PACKNO) = .DATA.CONTENTS AND ENTRYMARK(PACK!O) = O
LET BUF.TRAN(FROMGATE (LIKIIO) )=BUF . TRAlI (FROMGATE (LNKNO) ) -
PACKSEG (PACKIIO)
LET PACK.TRAN (FROMGATE (LIK!O) )=PACK. TRAN (FROMGATE (LIKNO)) -1
CALL BUFRLSE GIVINIG FROMGATE(LNKNO),PACKSEG(PACK!IOD)
ALYVAYS

IF ENTRYMARK(PACKNO) = 1
LET ENTRYMARK (PACKNO) = O
ALVAYS

SCHEDULE A GATEARRIVAL GIVIMNG PACK!O, TOGATE(LUKHQ) NOY
IF LUKQUEUE(LNKHO) IS lIOT EMPTY
REMOVE THE FIRST PACKET FROM LNKQUEUE(LIKIIQ)
SCHEDULE A LNKENDSERVICE GIVING PACKET AlD LHKNO IN
PACKLENG (PACKET) /LUKSPEED (LNKIIO) UNIT
ELSE
LET LNKSTATUS(LUK!O) = .IDLE
ALWAYS

EID
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* *
& THIS ROUTINE SIMULATES A PACKET ARRIVAL EVENT AT A =
*'x GATEVAY. *

# kg

PP e e sk o e ok she s sk o st ofe ot sde ok s sk s o o sk ke ok ok sk ok s sfe ol sl e sk o e sl ook sl ok sk sl sk skl sk sk ok skl il sk

EVEIT GATEARRIVAL GIVE!l PACKNO, GATELO

DEFINE ADMFLAG AS AN INTEGER VARIABLE

IF PACKCLASS(PACKNO) = .DATA.CONTENTS
CALL FLOWCTL1 GIVING PACKIIO, GATE!NO YIELDING ADMFLAG
ELSE
IF PACKCLASS(PACKNO) = .VOICE.CONTENTS
FOR EACH PACKET IN GATEQUEUE.1ST(GATE!O)
WITH SEQID(PACKET) = SEQID(PACKNO) AlD
TIMEID(PACKET) = TIMEID(PACKNO) AND
ACKTAG(PACKET) = ACKTAG(PACKNO) AND
DSTHO(PACKET) = DSTHO(PACKIIG)
FIIID THE FIRST CASE
IF FOUND
RENOVE THE PACKET FROM GATEQUEUE.1ST(GATE!IO)
LET OVERRUN (GATENO) = OVERRUI(GATENO) + 1
CALL REJRT! GIVING PACKET,2
DESTROY THE PACKET
ALWAYS
ALYVAYS
GO TO ADMIT
ALYWAYS
IF ADMFLAG = 0
IF SRCNO(PACKIO) NE GATENO
LET TCOUNT.DATA.REJECT = TCOUNT.DATA.REJECT + 1
LET GCOUNT.DATA.REJECT(GATENQ) =
GCOUNT.DATA.REJECT(GATE!Q) + 1
CALL REJRTII GIVING PACKNO,1
ALVAYS
DESTROY THE PACKET CALLED PACKNO
RETURN
ALWAYS
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IF EGTEG = .YES AlD
ENTRYMARK (PACKIIO) = 1 AlD
SRCIO(PACK!ID) = GATELO AlID
SRCHO(PACKNO) HE DSTLO(PACKIIO)
CALL UPDWI GIVING SRCiIO(PACKIIO) ,DSTHO(PACKHO),-1

ALVAYS

IF ENTRYMARK(PACKINOQ) = 1 AND RETRYTIMES(PACKIIO) = O AlD
SRCHO(PACKNO) = GATE!O
LET TCOUNT.DATA.ADMIT = TCOUNT.DATA.ADMIT + 1
LET TCOUNT.DATA.ADMITLD=TCOUIT.DATA.ADMITLD+PACKLENG (PACKIIO) -26
LET GCOUNT.DATA.ADMIT(GATE!NQ) = GCOUNT.DATA.ADMIT(GATENO) + 1
LET GCOUNT.DATA.ADMITLD (GATE!NO)=GCOUNT.DATA.ADMITLD(GATENO) +

PACKLENG (PACKMNO) -26
ALYAYS

* ADMIT®
IF GATESTATUS(GATENO0) = .IDLE
IF PACKCLASS(PACKNO) = .DATA.ACK
LET PRTIME = O
ELSE
LET PRTIME = PEXEC(GATE!O)
ALVAYS
SCHEDULE A GATEENDSERVICE GIVIHG PACK!UO AND GATENO Ii
INTRTIME(GATENO) + PRTIME UNIT
LET THTRTIME(GATENG) = O
LET GATESTATUS(GATENO) = .BUSY
ELSE ,
IF PACKCLASS(PACKNO) = .VOICE.COUTENTS
FILE PACKNO Il GATEQUEUE.1ST(GATENO)
ELSE
IF PACKCLASS(PACK!O) = .DATA.CONTENTS OR
PACKCLASS (PACK!IO) = .DATA.ACK
FILE PACKNO IN GATEQUEUE.3RD(GATEL!O)
ELSE
FILE PACK!O Il GATEQUEUE.Z2IID(GATE!O)
ALYAYS
ALWAYS
ALVAYS

ElD
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l* %
P THIS ROUTINE SIMULATES GATENET’S HOP LEVEL FLOY CONTROL =
"'+ AT A GATEVAY. ®
R #

ROUTIHE FLOWCTL1 GIVE! PACKNO, GATENO YIELDING ADMFLAG

LET ADMFLAG = 1
IF EGTEG = .YES AID
ENTRYMARK (PACKIIO) = 1 AND
SRCNO(PACKNO) = GATENO AND
SRCNO (PACK!IO) IE DSTIO(PACKNQ)
IF WINDOW(SRCNO(PACK!O) ,DSTNO (PACKNO)) <= 0
LET ADMFLAG = O
RETURN
ALVAYS
ALWAYS
IF BUF(GATENO) > (1-.THRESHOLD) #* BUFII0(GATE!NO)
LET BUF (GATE!I0) = BUF (GATEIIO) - PACKSEG(PACK!O)
IF ENTRYMARK (PACKIQ) = 1
LET BUF. Il (GATEIO)=BUF.IN(GATE!I0)+PACKSEG (PACK!IO)
LET PACK.IN(GATE!OQ)=PACK.I!(GATE!ND)+1
ELSE
LET BUF.TRAl(GATE!IO)=BUF.TRA!l (GATE!ID) +PACKSEG (PACKIID)
LET PACK.TRAI(GATEIO)=PACK.TRA!I (GATEND)+1
ALVAYS
ELSE
IF BUF (GATE!NQ) >= PACKSEG(PACKNO)
IF ENTRYMARK(PACKIIQO) = O
LET BUF (GATE!I0)=BUF (GATE!I0) -PACKSEG (PACK!I0)
LET BUF.TRAII(GATE!IQ)=BUF . TRAl (GATENO) +PACKSEG (PACKIIO)
LET PACK.TRAII(GATENQ)=PACK.TRAI (GATE!Q) +1
ELSE
IF ENTRYMARK (PACKNO) = 1 AND
BUF . Il (GATENO) +PACKSEG (PACKNO) <= UPPERI! (GATE!NO)
LET BUF (GATENQ)=BUF (GATE!0) -PACKSEG (PACK!O)
LET BUF.IN(GATENO)=BUF.IlI(GATENO)+PACKSEG(PACKNO)
LET PACK.IN(GATENO)=PACK.IN(GATEND)+1
ELSE



170

> *CALL TRACE4 ("BLOCKIN",PACKNO,GATE!D)
LET ADWFLAG = O
ALVAYS
ALYAYS
ELSE
**CALL TRACE4("BLOCK ",PACKNO,GATENO)
LET ADMFLAG = C
ALYAYS
ALYAYS
ElID
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* THIS ROUTINE SIMULATES A PACKET PROCESSING EVE!T AT A
' % GATEVAY. ®

L E3

W

EVE!T GATEENDSERVICE GIVEI PACKIIO AND GATENO

IF ENTRYMARK(PACK!IO)=1 AID PACKCLASS(PACKNO) = .DATA.CONTENTS AND
SRCII0 (PACKIIO) = GATE!O
CREATE A PACKET CALLED DUPPACK
LET ARRIVALTIME(DUPPACK) = ARRIVALTIME(PACK!O)
LET HOPCOUNT(DUPPACK) = HOPCOUNT(PACK!IO)
LET SRCNO(DUPPACK) = SRClIO(PACKNO)
LET DSTIO(DUPPACK) = DSTHO(PACK!O)
LET TIMESTAMP(DUPPACK) = TIMESTAMP (PACKIIO)
LET TIMEID(DUPPACK) = TIMEID(PACK!O)
LET SEQID(DUPPACK) = SEQID(PACKIO)
LET PACKCLASS(DUPPACK) = PACKCLASS(PACK!IO)
LET PACKLENG(DUPPACK) = PACKLE!G(PACK!IO)
LET PACKSEG(DUPPACK) = PACKSEG(PACK!IO)
LET SUBSEQID(DUPPACK) = SUBSEQID(PACKIIO)
LET ENTRYMARK(DUPPACK) = ENTRYMARK (PACKINO)
LET RETRYTIMES(DUPPACK) = RETRYTIMES (PACKIIQ)
FILE DUPPACK Il ACKQUEUE(GATEND)
IF SRCHNO(PACK!O) NIE DSTIIO(PACKI!IO)
SCHEDULE A ACKTIMEOUT CALLED ACK!O GIVIIG DUPPACK AlD
GATE!NO I .TIHMEOUT UNIT
LET ACKTAG(DUPPACK) = ACK!O
ALYWAYS
ALYAYS
CALL PACKPROCESSI!IG GIVINIG PACKIIO AND GATE!O

IF GATEQUEUE.1ST(GATE!IO) IS lIOT EMPTY
REMOVE THE FIRST PACKET FROM GATEQUEUE.1ST(GATE!O)
SCHEDULE A GATEENDSERVICE GIVING PACKET AND GATENO IN
INTRTIME (GATENG) + PEXEC(GATENO) UNIT
LET INTRTIME(GATENGQ) = O
ELSE
IF GATEQUEUE.2ND(GATENO) IS NOT EMPTY
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REMOVE THE FIRST PACKET FROM GATEQUEUE. 21D (GATENO)
SCHEDULE A GATEENDSERVICE GIVING PACKET AND GATENQ IN
INTRTIME(GATENO) + PEXEC(GATEIIO) UNIT
LET INTRTIME(GATEND) = O
ELSE

IF GATEQUEUE.3RD(GATENO) IS NOT EMPTY
REMOVE THE FIRST PACKET FROM GATEQUEUE.3RD(GATE!N0)
IF PACKCLASS(PACKET) = .DATA.ACK

LET PRTIME = O
ELSE

LET PRTIME = PEXEC(GATElQ)
ALYAYS

SCHEDULE A GATEENDSERVICE GIVING PACKET ANID GATENO IN
INTRTIME(GATENO) + PRTIME UNIT

LET INTRTIME(GATENO) = O

ELSE
LET GATESTATUS (GATE!I0) = .IDLE

ALYAYS

ALVAYS
ALYAYS
ENID



ES
THIS ROUTINE SIMULATES A DATA ACKNOYWLEDGMENT TIME-OUT *
EVEIT AT All EIITRY GATEYAY. *

Ed

EVEIT ACKTIMEOUT GIVEN PACKNO AlUD GATE!NO

IF PACKHO IS IN ACKQUEUE

REHOVE PACKIO FROM ACKQUEUE (GATEL!O)

ELSE

CALL TRACE1("NULAKTO",PACK!O,GATE!0)
DESTROY THE PACKET CALLED PACKIIO
RETURN

ALYAYS
LET INTRTIME(GATENO) = INTRTIME(GATENG) + PACKTO(GATENO)
IF RETRYTIMES(PACKNO) < 3

LET TCOUNT.RETRY.FREQ = TCOUINT.RETRY.FREQ + 1
LET GCOUNT.RETRY.FREQ(GATE!!0) = GCOUIT.RETRY.FREQ(GATEII0) +1
IF RETRYTIMES(PACK!NO) = O
LET TCOUNIT.RETRY.PACK = TCOUNIT.RETRY.PACK + 1
LET GCOUIIT.RETRY.PACK(GATENO)=GCOUNT.RETRY.PACK (GATE!IQ) +1
ALVAYS
LET ENTRYMARK(PACK!NO) = 1
LET RETRYTIMES(PACKIIO) = RETRYTIMES(PACKIIO) + 1
LET TIMESTAMP(PACK!NO) = TIME.V
**CALL TRACE1("RETRY " ,PACKUIO,GATElO)
CREATE A PACKET CALLED DUPPACK
LET ARRIVALTIME(DUPPACK) = ARRIVALTIVME(PACKIIO)
LET HOPCOUIIT(DUPPACK) = HOPCOUIIT(PACK!IO)
LET SRCIO(DUPPACK) = SRCLIO(PACKIIO)
LET DSTIIO(DUPPACK) = DSTIHO(PACKIIO)
LET TIMESTAMP(DUPPACK) = TIMESTAMP(PACK!O)
LET TIMEID(DUPPACK) = TIMEID(PACKLD)
LET SEQID(DUPPACK) = SEQID(PACK!O)
LET PACKCLASS(DUPPACK) = PACKCLASS(PACKNO)
LET PACKLENG(DUPPACK) = PACKLENG(PACKNO)
LET PACKSEG(DUPPACK) = PACKSEG(PACKNO)
LET SUBSEQID(DUPPACK) = SUBSEQID(PACKNO)
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LET ENTRYMARK (DUPPACK) = ENTRYMARK (PACKNO)

LET RETRYTIMES (DUPPACK) = RETRYTIMES(PACKNO)

FILE DUPPACK IN ACKQUEUE(GATENO)

SCHEDULE A ACKTIMEOUT CALLED ACKHNO GIVING DUPPACK AND GATEND IN
.TIMEQUT UNIT

LET ACKTAG(DUPPACK) = ACKINO

CALL ROUTER GIVING PACKIIO AND GATE!O

ELSE

IF EGTEG = .YES AlD
SRCHO(PACKIIQ) NE DSTIO(PACKlO)
CALL UPDWI GIVING SRCNO(PACKIOQ),DSTHO(PACKNO), 1
ALYAYS
'*CALL TRACE1("RDUMP " ,PACKNO,GATENO)
LET BUF.IN(GATENQ) = BUF.IN(GATENG)-PACKSEG(PACKI!IO)
LET PACK.IN(GATENO) = PACK.IN(GATEND)-1
CALL BUFRLSE GIVIliG GATENO,PACKSEG(PACKIIO)
DESTROY THE PACKET CALLED PACKNO

ALYAYS

END
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* *
Pk THIS ROUTINE DEFINES THE GATENET SYSTEM CONFIGURATIONS. *
S ®
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ROUTINE SYSGEIl

RESERVE WIIDOYW AS 7 BY 7
LET EGTEG = .YES

CREATE EVERY DSTGATE(7)
LET ADDR(1) = "0.0.0.0"

LET ADDR(2) = "2.0.0.0"
LET ADDR(3) = "3.0.0.0"
LET ADDR(4) = "4.0.0.0"
LET ADDR(5) = "2.2.0.0"
LET ADDR(6) = "4.1.0.0"
LET ADDR(7) = "4.2.0.0"

CREATE EVERY GATEWAY(7)

FOR I = 1 TO lI.GATEWAY

D
LET GATESTATUS(I) = .IDLE
LET BUFIIO(I) = .BUFNO
LET UPPERI!(I) = .UPPERIl
LET UPPERVG(I) = .UPPERVO
LET BUF(I) = .BUFIO
LET BUF.III(I) = O
LET BUF.TRAI(I) = 0
LET PACK.TRAN(I) = ©
LET PACK.IN(I) =0
LET BUF.VOICE(I) = ©
LET PACKTO(I) = .ACKTOTIME
LET PHOLDTO(I) = .HOLDTOTIME
LET PEXEC(I) = .PROCESSORTIME

LET RED(I) = .OFF
LOOP
LET UPPERVO(1) = 2 % .UPPERVO
LET UPPERIN(1) = 2 * .UPPERIl
LET BUFNO(1) = 2 * .BUFNO
LET BUF(1) = 2 * ,BUFNO
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LET PACKTO(1) = .ACKTOTIME/2
LET PHOLDTO(1) = .HOLDTOTIME/2
LET PEXEC(1) = .PROCESSORTIME/2

LET UPLHNK(1) = O
LET DNLNK1(1) = 1
LET DHLIK2(1) = 3
LET DNLNK3(1) = §
LET BDLHIK(1) = O
LET RED(1) = .FAIL

LET UPLNK(2) = 2
LET DHLNK1(2) =7
LET DHLNK2(2) = O
LET DULUK3(2) = 0
LET BDLIK(2) = O

LET UPLNK(3) = 4
LET DILNK1(3) = O
LET DNLIK2(3) = 0
LET DILIK3(3) =0
LET BDLIK(3) = 13
LET RED(3) = .0ON

LET UPLIK(4) = 6
LET DULIK1(4) = 9
LET DILIK2(4) = 11
LET DILIK3(4) = O
LET BDLIK(4) = 0
LET RED(4) = .FAIL

LET UPLUK(5) = 8
LET DIILHK1(5) = O
LET DNLIK2(5) = O
LET DIILIK3(5) = 0O
LET BDLIK(5) = 0

LET UPLNK(6) = 10
LET DULUK1(6) = O
LET DIILNK2(6) = 0
LET DNLNK3(6) = 0
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LET BDLNK(6) = 14
LET RED(6) = .0l

LET UPLHK(7) = 12

LET DNLNK1(7) = O
LET DNLNK2(7) = 0
LET DNLNK3(7) = O

LET BDLNK(7) =0

FORI=1T07
FOR J=1TO 7
LET WINDOW(I,J) = .WINDOWSIZE

CREATE EVERY HOPCLASS(7)

CREATE EVERY LINK(14)
FOR I = 1 TO M.LINK
DO
LET LNKSTATUS(I) = .IDLE
LET LNKSPEED(I) = .LI{/ESPEED
L.OOP

LET TOGATE(1) =
LET TOGATE(2) =
LET TOGATE(3) =
LET TOGATE(4) =
LET TOGATE(5) =
LET TOGATE(6) =
LET TOGATE(7) =
LET TOGATE(8) =
LET TOGATE(9) =
LET TOGATE(10)
LET TOGATE(11)
LET TOGATE(12)
LET TOGATE(13)
LET TOGATE(14)

DN P, R, WA N

[
W o e N

LET FROMGATE(1)
LET FROMGATE(2)
LET FROMGATE(3) =
LET FROMGATE(4) =

1
2
1
3
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]
[

LET FROMGATE(S)
LET FROMGATE(6)
LET FROMGATE(7)
LET FROMGATE(8)
LET FROMGATE(9)
LET FROMGATE(10)
LET FROMGATE(11)
LET FROMGATE(12)
LET FROMGATE(13)
LET FROMGATE(14)

0 | T ||
&= 0N

]
A W N O

READ RANDADDR
SKIP 1 INPUT LINE
READ RANDLENG
RETURH

END
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* #
'’ THIS ROUTINE SIMULATES THE ROUTIIIG PROCESS AT A GATEWAY. =
Tk ®
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ROUTIHE ROUTER GIVING PACKI!O AND GATENO

IF RED(GATENOQ) = .0l
CALL REROUTER GIVING PACK!IO, GATENO YIELDING DETOURTAG
IF DETOURTAG = .YES
RETURL
ALYAYS
ALYAYS
LET INDEX = O
FOR I = 1 TO .NETLEVEL*2+1 BY 2
WHILE IUDEX = O
DO
IF SUBSTR.F (ADDR(GATENO),I,1) HE
SUBSTR.F (ADDR (DST!IO(PACK!I0)) ,I,1)
LET IlDEX = 1

ALWAYS
LOoapP
IF IIIDEX = O
CALL TRACE1("BUGROUT",PACK!O,GATE!O)
ALYAYS

IF DHLUK1(GATE!NO) lIE O AlD
SUBSTR.F (ADDR(DSTIO(PACKIIO)), INDEX, 1) =
SUBSTR.F (ADDR (TOGATE(DIILIIK1(GATENO))), INDEX, 1)
SCHEDULE A LIUKARRIVAL GIVING PACKNO AND DNULNK1(GATENQ) MNOV
ELSE
IF DILIK2(GATE!NO) IIE O AlD
SUBSTR.F (ADDR(DSTIIO(PACKINIO)) , INDEX, 1) =
SUBSTR.F (ADDR(TOGATE (D!ILIIK2 (GATENIO))) , INDEX, 1)
SCHEDULE A LUKARRIVAL GIVING PACKNO AND DILNK2(GATEIO) 1O
ELSE
IF DNLHK3(GATENO) NE O AND
SUBSTR.F (ADDR (DSTNO (PACKNO)) , INDEX, 1)=
SUBSTR.F (ADDR (TOGATE (DNLNK3(GATENO))), INDEX, 1)
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AL
ALWAYS
RETURN
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SCHEDULE A LNKARRIVAL GIVING PACKNO AND DNLNK3(GATENO) NOW
ELSE
IF UPLHK(GATENG) IIE O
SCHEDULE A LNKARRIVAL GIVING PACKNO AlD UPLUK (GATENO) HOW
ELSE .
CALL TRACE1("UNDELVR",PACK!O,GATENQO)
DESTROY THE PACKET CALLED PACKIO
ALYAYS
ALWAYS
WAYS
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P THIS ROUTINE SIMULATES THE REROUTING PROCESS OF THE =
*’% BUDDY LINK SCHEME UNDER !IORMAL CONDITIOIIS. *

LR x®

ROUTINE REROUTER GIVEN PACK!O, GATENO YIELDI!G DETOURTAG

LET DETOURTAG = .NO
IF GATE!NO = 3 AND
SUBSTR.F (ADDR(DSTNO(PACKIIO)),1,3) = "4.1"
LET DETOUR(PACKNO) = .10
LET DETOURTAG = .YES
SCHEDULE A LNKARRIVAL GIVIIHG PACK!NO, BDLIK(GATE!NO) NOW
ELSE
IF GATENO = 6 AlD
SUBSTR.F (ADDR (DSTIIO (PACKIID)),1,1) = "3"
LET DETOUR(PACK!IO) = .10
LET DETOURTAG = .YES
SCHEDULE A LUKARRIVAL GIVI!NG PACK!O, BDLIK(GATENO) oYW
ALYAYS
ALVAYS
EID
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"*
**+  THIS ROUTINE SIMULATES THE REROUTING PROCESS OF THE

*'x BUDDY LINK SCHEME WHEN LINK A FAILS.
l’*

E3

X

x

E3
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ROUTINE REROUTA GIVE! PACKIIO, GATE!O YIELDINIG DETOURTAG

LET DETOURTAG = .10
IF GATENO = 1 AlD
SUBSTR.F (ADDR(DSTHO(PACK!I0)) ,1,3) = "4.1"
LET DETOUR(PACKIIG) = .YES
LET DETOURTAG = .YES
SCHEDULE A LUKARRIVAL GIVING PACKNO, 3 lOW
ELSE
IF GATENO = 3 AlID
SUBSTR.F (ADDR(DSTIO(PACKIi0)),1,3) = "4.1"
LET DETOUR(PACK!O) = .10
LET DETOURTAG = .YES
SCHEDULE A LUKARRIVAL GIVING PACKIIO, 13 NOY
ELSE
IF GATEHNO = 4 AID
SUBSTR.F (ADDR(DSTIIO(PACKIIO)) ,1,3) = "4.1"
LET DETOUR(PACK!IO) = .YES
LET DETOURTAG = .YES
SCHEDULE A LUKARRIVAL GIVIIG PACKIIO, 6 NOV
ELSE
IF GATE!NO = 6 A!ID
SUBSTR .F (ADDR(DSTNO(PACK!I0)),1,3) NE "4.1"
LET DETOUR(PACK!O) = .10
LET DETOURTAG = .YES
SCHEDULE A LIKARRIVAL GIVIING PACKIIO, 14 HOv
ALYAYS
ALYAYS
ALYAYS
ALVAYS
END

182



183

P ook sie o s e o ok s sk ok ok ok sk ke ok ode ok o e s sfe s fe sk ok sfe e sk e ke s o s s sk sk e s st sk ke ok e sk ok sl ok sk s ok sk sk ko R

'y &
Tk THIS ROUTIUE SIMULATES THE REROUTING PROCESS OF THE =
'+ BUDDY LINK SCHEME WHEN LINK X FAILS. ®

Pk ®
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ROUTINE REROUTX GIVEN PACKNO, GATENO YIELDING DETOURTAG

LET DETOURTAG = .li0
IF GATENO = 1 AlD
SUBSTR.F (ADDR(DSTNO(PACK!IO)),1,1) = 3"
LET DETOUR(PACKNO) = .YES
LET DETOURTAG = .YES
SCHEDULE A LUKARRIVAL GIVING PACK!O, S HOW
ELSE
IF GATENQO = 3 AND
SUBSTR.F (ADDR(DSTIO(PACKIID)) ,1,1) HE "3"
LET DETOUR(PACKNO) = .10
LET DETOURTAG = .YES
SCHEDULE A LIKARRIVAL GIVINIG PACKIlIO, 13 HOV
ELSE
IF GATEI!NO = 4 AlD
SUBSTR.F (ADDR(DSTNO(PACKlO)),1,1) = "3"
LET DETOUR(PACKIIO) = .YES
LET DETOURTAG = .YES
SCHEDULE A LUKARRIVAL GIVING PACKNO, 9 1OW
ELSE
IF GATENO = 6 AlID
SUBSTR.F (ADDR (DST!IO (PACKII0)) ,1,1) = "3"
LET DETOUR(PACK!IO) = .10
LET DETOURTAG = .YES
SCHEDULE A LIKARRIVAL GIVING PACKNO, 14 (oW
ALYAYS
ALYWAYS
ALYAYS
ALYAYS
END
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P THIS ROUTINE SIMULATES THE REROUTING PROCESS OF THE

'*x BUDDY LINK SCHEME WHEN LIUK Y FAILS.

*

*

®

*
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ROUTINE REROUTY GIVEN PACKNO, GATENO YIELDI!G DETOURTAG

LET DETOURTAG = .10
IF GATENO = 1 AND
SUBSTR.F (ADDR(DSTIHO(PACKNOD)) ,1,1) = m4»
LET DETOUR(PACKNO) = .YES
LET DETOURTAG = .YES
SCHEDULE A LNKARRIVAL GIVING PACKNO, 3 oY
ELSE
IF GATENO = 3 AND
SUBSTR.F (ADDR (DST!NO(PACKIIO)) ,1,1) = "4"
LET DETOUR(PACK!IO) = .10
LET DETOURTAG = .YES
SCHEDULE A LNKARRIVAL GIVING PACKNO, 13 HOY
ELSE
IF GATENQ = 4 AlD
SUBSTR.F (ADDR (DST!O(PACK!I0)) ,1,1) lIE "4"
LET DETOUR(PACKIIO) = .YES
LET DETOURTAG = .YES
SCHEDULE A LUKARRIVAL GIVI!IG PACKNO, 9 HOY
ELSE
IF GATENO = 6 AlD

SUBSTR.F (ADDR(DSTIIO(PACK!0)),1,3) lIIE "4.1" AlD

(DETOUR (PACKNO) = .YES OR

(PACKCLASS(PACKNO) = .VOICE.CONTENTS AlD
SUBSTR.F (ADDR(DSTIIC (PACKIIOD)) ,1,1) lIE "4"))

LET DETOUR(PACKIIO) = .10
LET DETOURTAG = .YES

SCHEDULE A LNKARRIVAL GIVING PACKNO, 14 lQVY

ALYAYS
ALYAYS
ALYAYS
ALYAYS
END
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* THIS ROUTINE SIMULATES THE PROCESSI!NG OF EACH TYPE
'*+ OF PACKETS AT A GATEYAY. %

LI %

*
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ROUTINE PACKPROCESSI!IG GIVE! PACKIO AlD GATENO
GO TO VOICE.COINECT, VOICE.COUTENTS, VOICE.DISCONNECT,
VOICE.ACCEPT,VOICE.REJECT, VOICE.DISCACK, DATA.COlNTENTS,
DATA.ACK PER PACKCLASS(PACK!O)
'VOICE.COINECT’

CALL VOICECON!l GIVING PACKNO, GATEHNO
RETURI

'VOICE.DISCONNECT’

CALL VOICEDISC GIVIIIG PACKNO, GATE!IO
RETUR!

’VOICE.REJECT’

CALL VOICEREJ GIVING PACKIO, GATE!O
RETURI

'VOICE.ACCEPT’

CALL VOICEACC GIVIIIG PACKIIO, GATENOC
RETURI!

'VOICE.DISCACK’

CALL VODISACK GIVIIIG PACKIIO, GATENO
RETURH

'DATA.ACK’

CALL DATAACK GIVING PACKNO, GATENGC
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RETUR!

"DATA.CONTEHTS’

CALL DATACONTS GIVING PACKNO, GATENO
RETURN

'VOICE.CONTENTS®
CALL VOICECONTS GIVI!NG PACKIIO, GATENO

RETURN
END
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* *
Pk THIS ROUTINE SIMULATES THE PROCESSIIG OF A CALL =*
**% SETUP PACKET AT A GATEWAY. *
LY *

P ¥ skt kot ok e ke ke sk st st ot e ke e ok sk sl e e s e e e s e s s s s o R R kol sk ek
ROUTINE VOICECOII GIVEl!l PACKIIO, GATELO

IF DSTHO(PACKIIO) = GATENO
LET TRANSDELAY.CONTROL = TIME.V - TIMESTAMP (PACKNO)
LET GTRANSDELAY.CONTROL(GATENO) = TIME.V - TIMESTAMP(PACK!IO)
CALL SUCRT! GIVING PACKIO,TIME.V-TIMESTAMP (PACKNO),3

ALVIAYS

IF BUF(GATENO) >= .VSEG AlD

(EGTEG = .NO OR BUF.VOICE(GATE!O0)+.VSEG <= UPPERVO(GATEIID))
LET BUF (GATE!NO) = BUF (GATENO) - .VSEG
LET BUF.VOICE(GATENO) = BUF.VOICE(GATENO)+ .VSEG
CREATE A SESSION CALLED SESSO
LET SESSTID(SESSO) = TIMEID(PACK!IO)
LET SESSTIMESTAMP(SESSO) = TIMESTAMP(PACKNO)
LET SESSSEQ(SESS0) SEQID(PACK!IO)
LET SESSTAG (SESS0) 0
LET SESSSRC(SESSO) SRCIO(PACK!IO)
LET SESSDST(SESS0) DSTII0 (PACK!IO)
FILE SESSO Ill ACTIVESESSQUEUE(GATE!OQ)
IF DSTHIO(PACK!NG) = GATELNOD

LET PACKCLASS(PACK!I0) = .VOICE.ACCEPT

LET HOPCOUNT(PACKIIO) = 1

LET PACKLE!NG(PACK!IO) = 32

LET ENTRYMARK (PACKIO) = O

IF SRCIO(PACKIIO) = DSTIIO(PACK!IO) OR SRCNO(PACKINO) = GATENO

LET SESSHMODE(SESSO) = .SEIIDER
ELSE
IF DSTHO(PACKNO) = GATEIO
LET SESSMODE(SESS0) = .RECEIVER

ALVAYS
ALYWAYS
LET DSTNO(PACKNO) = SRCNO(PACKNO)
LET SRCNO(PACKNO) = GATENO
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IF DSTHO(PACKNO) = GATENO
FILE PACKNO IN GATEQUEUE.2ND(GATENO)

ELSE
CALL ROUTER GIVING PACKIO AID GATE!NO
ALYVAYS
ELSE
CALL ROUTER GIVIING PACKIIO AlID GATEINO

ALYAYS
ELSE "
FILE PACKIO Il BUFQUEUE(GATE!O)
SCHEDULE A HOLDTIMEOUT CALLED HOLD1 GIVING PACK!O, GATE!NO
IN .HOLDTIME UNIT
LET HOLDTAG(PACK!O) = HOLD1
ALVAYS
RETURI
ElD
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*’+«  THIS ROUTINE SIMULATES THE PROCESSING OF A CALL =*
'?x DISCONNHECTION PACKET AT A GATEYAY. ®

LA Y E3

ROUTINE VOICEDISC GIVElN PACKNO, GATEIO

IF DSTIIO(PACK!IO) =GATE!O
LET TRANSDELAY.CONTROL = TIME.V - TIMESTAMP (PACK!O)
LET GTRANSDELAY.CONTROL(GATE!NO) =
TIME.V - TIMESTAWMP (PACKLO)
CALL SUCRTN GIVING PACK!O,TIME.V-TIMESTALP(PACKNO),3
' *CALL TRACE1("SUCDISC",PACK!O,GATE!D)
LET DSTNO(PACKNO) SRCII0(PACKNO)
LET SRCHO(PACK!NQ) GATENO
LET PACKCLASS(PACK!I0) = .VOICE.DISCACK
LET HOPCOUNT(PACK!NO) = 1
LET ENTRYMARK(PACK!NO) = O
FOR EACH SESSION Il ACTIVESESSQUEUE(GATE!O)
WITH SESSSEQ(SESSION) = SEQID(PACKIIO) AlD
SESSTID(SESSIO!N) = TIMEID(PACKNO) AlD
SESSIODE (SESSION) = 1 - SUBSEQID(PACKIIO)
FIiID THE FIRST CASE
IF FOUND
LET CURRSESS = SESSIOIl
IF SESSSTATUS(CURRSESS) lIE .DISCONNECTIIG
FOR EACH VOICESESSION Il EV.S(I.VOICESESSIOl)
WITH VOICESESSIO!N = SESSTAG(CURRSESS)
FIIID THE FIRST CASE
IF Foulp
CAICEL THE VOICESESSION CALLED SESSTAG(CURRSESS)
DESTROY THE VOICESESSIOI!I CALLED SESSTAG(CURRSESS)
LET TVOCKT = TVOCKT - 1
ALYAYS
IF SRCHO(PACKI!O) IIE DSTHO(PACKNO)
LET BUF.VOICE(GATENO) = BUF.VOICE(GATENO) - .VSEG
CALL BUFRLSE GIVING GATENG, .VSEG
ALVAYS
REMOVE CURRSESS FROM ACTIVESESSQUEUE (GATENO)
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' *CALL TRACE2("ENDVOSD",PACKNO,GATEND, CURRSESS)
DESTROY THE SESSION CALLED CURRSESS
ELSE
IF SRCHO(PACKNO) = DSTUO(PACKIIO)
REMOVE CURRSESS FROM ACTIVESESSQUEUE (GATEND)
**CALL TRACE2("ENDVSDD",PACKlIO,GATEIIO, CURRSESS)
DESTROY THE SESSIO!! CALLED CURRSESS
FOR EACH SESSION Ill ACTIVESESSQUEUE (GATE!NO)
WITH SESSSEQ(SESSIO!) SEQID(PACKNO) AlID
SESSTID(SESSION) TIMEID(PACKIIO) AlD
SESSHODE (SESSIOI) = SUBSEQID(PACKIIO)
FIND THE FIRST CASE
IF FOUND
LET CURRSESS2 = SESSIOl
REMOVE CURRSESS2 FROM ACTIVESESSQUEUE (GATE!O)
> *CALL TRACE2("ENDVDDD",PACK!I0,GATE!IO, CURRSESS2)
DESTROY THE SESSION CALLED CURRSESS2
ALYAYS
LET BUF.VOICE(GATE!O0)=BUF.VOICE (GATENO)-.VSEG
CALL BUFRLSE GIVINIG GATENO, .VSEG

ALWAYS
ALVAYS
ELSE
**CALL TRACE1("DISCIHUL" ,PACKIIO,GATENO)
ALYAYS
ALVAYS
IF DSTHO(PACKIIO) = GATENO
FILE PACKIIO Ill GATEQUEUE.2!D(GATE!O)
ELSE
CALL ROUTER GIVING PACKNO AlID GATE!O
ALWAYS
RETURI
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’ g *
P THIS ROUTINE SIMULATES THE PROCESSING OF A CALL =*
**%x REJECTION PACKET AT A GATEWAY. *
0y %k

ROUTINE VOICEREJ GIVEN PACKNO, GATEIO

FOR EACH SESSION IN ACTIVESESSQUEUE (GATE!O)
WITH SESSSEQ(SESSION) = SEQID(PACKNO) AND
SESSTID(SESSION) = TIMEID(PACKIIO)
FIIID THE FIRST CASE
IF FOUlD
LET CURRSESS = SESSION
IF SESSTIMESTAMP (CURRSESS) <= TIMESTANP (PACKNO)
LET BUF.VOICE(GATE!0) = BUF.VOICE(GATENO) - .VSEG
CALL BUFRLSE GIVI!G GATElO, .VSEG
REMOVE CURRSESS FROM ACTIVESESSQUEUE (GATENO)
IF DSTHO(PACKNO) = GATEI!C
LET TCOU!T.VOICE.SESSREJ = TCOUUT.VOICE.SESSREJ + 1
LET GCOUIIT.VOICE.SESSREJ(GATE!NO) =
GCOUNT.VOICE.SESSREJ(GATEINIO) + 1
CALL REJRTU GIVIUG PACK!O,4
ALYWAYS
DESTROY THE SESSION CALLED CURRSESS
AL™AYS
ELSE
IF DSTIO(PACKNG)=GATE!IO AND SRCHO(PACK!Q)=GATEIO
LET TCOUNT.VOICE.SESSREJ = TCOUIIT.VOICE.SESSREJ + 1
LET GCOUNT.VOICE.SESSREJ(GATE!Q) =
GCOUNT.VOICE.SESSREJ(GATE!NOD) + 1
CALL REJRTIl GIVIIIG PACKIIO,4
ALWAYS
ALYAYS
IF DSTHIO(PACKIO) = GATElNO
LET TRANSDELAY.CONTROL = TIME.V - TIMESTAMP (PACK!O)
LET GTRANSDELAY.CONTROL(GATE!I0) = TIME.V - TIMESTAMP (PACK!IO)
CALL SUCRTN GIVING PACKNO,TIME.V-TIMESTAMP(PACKNO),3
DESTROY THE PACKET CALLED PACKIIO
ELSE
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CALL ROUTER GIVING PACKNO AND GATENO
ALYAYS
RETURN
END
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R *
Pk THIS ROUTINE SIMULATES THE PROCESSING OF A CALL *
**+ ACCEPTAIICE PACKET AT A GATEWAY. ®
e ®

ROUTINE VOICEACC GIVEIl PACKIIO, GATEIO

IF DSTHO(PACKNO) = GATENO
LET TCOUNT.VOICE.SESSACC=TCQUIT.VOICE.SESSACC+1
LET GCOUNT.VOICE.SESSACC(GATENQ) =
GCOUNT.VOICE.SESSACC (GATENO) +1
LET TRANSDELAY.VOICE.CONNECT=TIME.V-ARRIVALTIME (PACK!IO)
CALL SUCRTN GIVING PACKIO,TIME.V-ARRIVALTIME (PACKNO),4
FOR EACH SESSION IN ACTIVESESSQUEUE(GATENQ)

WITH SESSTID(SESSIOl) = TIMEID(PACKIIO) AND
SESSSEQ(SESSION) = SEQID(PACKNO) AND
SESSMODE(SESSION) = .SENDER

FI!ID THE FIRST CASE

IF FOUHD

ACTIVATE A VOICESESSIO!I CALLED NEWSESS1 GIVIIIG
SESSIOl, GATE!O oW
LET SESSTAG(SESSIOl) = NEWSESS1
ELSE
' *CALL TRACE2("VACCBUG",PACK!IO,GATEIO, SESSION)
ALYAYS
ALVAYS
IF DSTNO(PACKHO) = GATE!O
LET TRANSDELAY.CONTROL = TINE.V - TIMESTAMP(PACK!IO)
LET GTRA!SDELAY.CONTROL(GATE!0) = TIME.V - TIMESTAMP(PACKNQO)
CALL SUCRT!l GIVI!G PACKI!IO,TIME.V-TIMESTAMP (PACKIIO),3
DESTROY THE PACKET CALLED PACKIIO
ELSE
CALL ROUTER GIVIIIG PACKIIO AlID GATE!IO
ALWAYS
RETUR!
END
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*  THIS ROUTINE SIMULATES THE PROCESSIIG OF A CALL *
**x  DISCONIIECTION ACK!IOWLEDGHENT PACKET AT A GATEWAY. *
LY *

ROUTINE VODISACK GIVE! PACKIO, GATENO

FOR EACH SESSIO!N IN ACTIVESESSQUEUE(GATE!NO)
WITH SESSSEQ(SESSION) = SEQID(PACK!NO) AND
SESSTID(SESSION) = TIMEID(PACKHNO)

FI!ID THE FIRST CASE

IF FOUND
REMOVE THE SESSION FROM ACTIVESESSQUEUE(GATENO)
IF DSTHO(PACKIIO) = GATE!NO

**CALL TRACE2("ENDVOSA",PACKIIO,GATENO, SESSION)

ALYAYS

DESTROY THE SESSIOIl
LET BUF.VOICE(GATENO) = BUF.VOICE(GATE!IO) - .VSEG
CALL BUFRLSE GIVI!IG GATENO, .VSEG

ALYAYS

IF DSTIO(PACK!IIO) = GATENO
LET TRANSDELAY.CONTROL = TIME.V - TIMESTAMP (PACKNO)
LET GTRANSDELAY.CONTROL(GATE!NQ) = TIME.V - TIMESTAMP(PACK!O)
CALL SUCRTN GIVING PACKNO,TIME.V-TIMESTAMP(PACKIIO),3
DESTROY THE PACKET CALLED PACKNO

ELSE
CALL ROUTER GIVIIG PACKNO AUD GATENOD

ALVAYS

RETURM

ElD
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ACKIOWLEDGHEINT PACKET AT A GATEYAY. ®
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ROUTI!E DATAACK GIVE!N PACKNO, GATEIO
IF DSTIIO(PACKIIO) = GATEIO
FOR EACH PACKET Il ACKQUEUE(GATE!OQ)

WITH SEQID(PACKET) = SEQID(PACK!NO) AND
TIMEID(PACKET) = TIMEID(PACKNO) AND
PACKCLASS(PACKET) = .DATA.CONTENTS

FIND THE FIRST CASE
IF FOULID

LET CURRPACK = PACKET
REHOVE CURRPACK FROM ACKQUEUE (GATE!NO)
FOR EACH ACKTIMEOUT IN EV.S(I.ACKTIMEOUT)
WITH ACKTIMEOUT = ACKTAG(CURRPACK)
FIND THE FIRST CASE
IF FOUlD
CAlIICEL THE ACKTIMEOUT CALLED ACKTAG(CURRPACK)
DESTROY THE ACKTIMEOUT CALLED ACKTAG(CURRPACK)
ALYAYS
IF EGTEG = .YES AlD SRCHO(CURRPACK) IE DSTIIO(CURRPACK)
CALL UPDWI GIVING SRClIO(CURRPACK) ,DST!I0(CURRPACK),1
ALYWAYS
LET BUF.Il(GATE!NO)=BUF.I!I(GATE!I0)-PACKSEG(CURRPACK)
LET PACK.IN(GATENO)=PACK.III(GATE!Q)-1
CALL BUFRLSE GIVING GATEIIO,PACKSEG(CURRPACK)
DESTROY THE PACKET CALLED CURRPACK

ALWAYS
DESTROY THE PACKET CALLED PACK!O
LET TCOUNIT.DATA.ACK = TCOUINIT.DATA.ACK + 1
LET GCOUIIT.DATA.ACK (GATENO)=GCOUIT.DATA.ACK(GATE!ID) +1

CALL ROUTER GIVI!G PACKNO AND GATEMNO
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® THIS ROUTINE SIMULATES THE PROCESSING OF A DATA =
**sx  CONTENTS PACKET AT A GATEVAY. ®

’ Ik *

ROUTIIIE DATACONTS GIVEN PACKLIO, GATENO

IF DSTHO(PACKIO) =GATEIIO

LET TCOUIIT.DATA.THRUPUT=TCOUIT.DATA. THRUPUT+PACKLENG (PACK1I0) -26
LET GCOUIIT.DATA.THRUPUT (GATE!0)=GCOUIIT.DATA . THRUPUT (GATEHNO) +
PACKLENG (PACK!I0) -26

LET TCOUNT.DATA.SUCCESS = TCOU!T.DATA.SUCCESS + 1

LET GCOU!NT.DATA.SUCCESS (GATE!IO)=GCOUNT.DATA.SUCCESS (GATENO) +1

**CALL TRACE1("SUCDATA",PACK!O,GATENO)
IF RETRYTIMES (PACK!Q) lE O

LET TCOUNT.RETRY.SUCCESS = TCOUNT.RETRY.SUCCESS + 1

LET GCOUNT.RETRY.SUCCESS(GATENQ) =

GCOU!T.RETRY.SUCCESS (GATEIID) + 1

ALVIAYS
LET TRAISDELAY.DATA = TIME.V - TIMESTAMP(PACKIO)

LET GTRA!ISDELAY.DATA(GATE!Q) = TIME.V - TIMESTAMP (PACKIIO)

CALL SUCRTU GIVING PACKIO,TIME.V-TIMESTAWMP (PACKIIO),1
IF SRCIO(PACKIIO) NE DSTIO(PACK!IO)

LET BUF.TRAHN (GATE!I0)=BUF . TRAII (GATE!NQ) -PACKSEG (PACK!I0)

LET PACK.TRAI(GATEINIO)=PACK. TRA! (GATEIID) -1
CALL BUFRLSE GIVING GATENO,PACKSEG(PACK!ID)
ALVAYS
LET DSTIIO(PACKIIO) SRCII0 (PACK!IO)
LET SRCIIO(PACKIO) GATE!O
LET PACKCLASS(PACKNIO) = .DATA.ACK
LET HOPCOUNT(PACKIIO) = 1
LET PACKLENIG(PACKHOQ) = O
LET ENUTRYMARK(PACKNIO) = O
IF DSTIO(PACKNO) = GATElO
FILE PACKNO IN GATEQUEUE.3RD(GATENQ)
ELSE
CALL ROUTER GIVI!IIG PACKNO AND GATENO
ALVAYS
ELSE
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CALL ROUTER GIVING PACKNO AND GATENO
ALYAYS
RETURII
END
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L *
Tk THIS ROUTINE SIMULATES THE PROCESSIHG OF A VOICE =
Pk CONTENTS PACKET AT A GATEWAY. #*
L *
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ROUTINE VOICECONTS GIVE!N PACKIIO, GATEIO

IF DSTHO(PACKNO)=GATENO

LET TRANSDELAY.VOICE = TIME.V - TIMESTAMP (PACKNO)

LET GTRAIISDELAY.VOICE(GATE!Q) = TIME.V - TIMESTAMP(PACKNO)

CALL SUCRTN GIVING PACK!O,TIME.V-TIMESTAMP (PACKIO),2

LET TCOU!T.VOICE.THRUPUT=TCOUNT.VOICE. THRUPUT+.VPACKLE!G-16

LET GCOUI!IT.VOICE.THRUPUT(GATENO)=GCOUNT.VOICE. THRUPUT (GATEND) +

.VPACKLENG-16

LET TCOUMNT.VOICE.SUCCESS = TCOUNT.VOICE.SUCCESS + 1

LET GCOU!NT.VOICE.SUCCESS (GATE!ND)=GCOUNT.VOICE.SUCCESS (GATENOD) +1
ALVAYS

IF SUBSEQID(PACKIIO) O AlID DSTIO(PACKIO) = GATE!NO

IF SRCHO(PACKIIO) DSTHO (PACKNO)
CREATE A SESSION CALLED SESS1
LET SESSTID(SESS1) = TIMEID(PACKIID)
LET SESSTIMESTAMP(SESS1) = TIMESTAMP (PACK!IO)
LET SESSSEQ(SESS1) SEQID(PACKIIO)
LET SESSSRC(SESS1) SRCNO (PACK!IO)
LET SESSDST(SESS1) DSTHO (PACKIIO)
FILE SESS1 Ill ACTIVESESSQUEUE (GATEIO)
LET SESSMODE(SESS1) = .RECEIVER
ACTIVATE A VOICESESSION CALLED lNEWSESS2 GIVIIIG SESS1,
GATENO lI0%
LET SESSTAG(SESS1) = lIEWSESS2
ELSE
FOR EACH SESSION Il ACTIVESESSQUEUE (GATE!NO)
WITH SESSTID(SESSION) = TIMEID(PACKIIO) AlD
SESSSEQ(SESSION) = SEQID(PACKNO) AND
SESSHODE (SESSIOl) = .RECEIVER
FIND THE FIRST CASE
IF FOUND



END

ACTIVATE A VOICESESSION CALLED NEYSESS4 GIVIIG

SESSIOHN, GATENO NOW
LET SESSTAG(SESSIOlN) = lEWSESS4

ELSE
CALL TRACE1("VCTSBUG",PACKNO,GATELD)
ALVWAYS
ALYWAYS
ALVIAYS

IF DSTIO(PACKNQ) = GATEIO

DESTROY THE PACKET CALLED PACK!IO
ELSE

CALL ROUTER GIVIIG PACKNO AlD GATE!O
ALWAYS
RETURI
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'k #*
T THIS ROUTINE SIMULATES THE PROCESSI!IG OF RELEASI!G =
'*'+x BUFFER SEGMENTS AT A GATEWAY. *
L E3

ROUTI!IE BUFRLSE GIVE!N GATENO,SEGIO

LET BUF (GATElIO) = BUF(GATE!IO) + SEGIIO
IF BUFQUEUE(GATENIO) IS EMPTY OR
BUF (GATENOQ) < .VSEG OR
(EGTEG = .YES AND BUF.VOICE(GATENO)+.VSEG > UPPERVG(GATENOD))
RETURII
ALWAYS

REMOVE THE FIRST PACKET FROM BUFQUEUE(GATE!Q)
LET HLDPACK = PACKET
LET BUF (GATE!O)=BUF (GATE!I0) - .VSEG
LET BUF.VOICE (GATE!ID)=BUF .VOICE (GATE!IO) +.VSEG
FOR EACH HOLDTIMEOUT Il EV.S(I.HOLDTIMEOUT)
WITH HOLDTIMEOUT = HOLDTAG(HLDPACK)
FIIID THE FIRST CASE
IF FoulD
CAIICEL THE HOLDTIMEGOUT CALLED HOLDTAG(HLDPACK)
DESTROY THE HOLDTIMEOUT CALLED HOLDTAG(HLDPACK)
ELSE
CALL TRACE1("HLDBUG2",6HLDPACK,GATE!O)
ALYAYS
’*CALL TRACE4 ("HLDACC " ,HLDPACK,GATENO)
CREATE A SESSION CALLED SESS3
LET SESSTID(SESS3) = TIMEID(HLDPACK)
LET SESSTIMESTAMP(SESS3) = TIMESTALP (HLDPACK)
LET SESSSEQ(SESS3) SEQID (HLDPACK)
LET SESSTAG(SESS3) 0
LET SESSSRC(SESS3) SRClI0 (HLDPACK)
LET SESSDST(SESS3) DSTIO(HLDPACK)
FILE SESS3 Ill ACTIVESESSQUEUE (GATEIO)

IF DSTHO(HLDPACK) = GATEND
LET PACKCLASS(HLDPACK) = .VOICE.ACCEPT
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LET HOPCOUNT(HLDPACK) 1
LET PACKLENG(HLDPACK) 32
LET ENTRYMARK(HLDPACK) = O
IF SRCIO(HLDPACK) = DSTNO(HLDPACK) OR SRCHO(HLDPACK) = GATEIO
LET SESSMODE(SESS3) = .SENDER
ELSE
IF DSTHO(HLDPACK) = GATEIO
LET SESSMODE(SESS3) = .RECEIVER

ALYAYS
ALYAYS
LET DSTNO(HLDPACK) = SRCNO(HLDPACK)
LET SRCNO(HLDPACK) = GATElIO

ALYAYS
IF DSTIO(HLDPACK) = GATENO
FILE HLDPACK IN GATEQUEUE.2!D(GATENO)
ELSE
CALL ROUTER GIVING HLDPACK AlND GATEINO
ALYAYS
RETURI
END
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’ ey %
**+  THIS ROUTINE SIMULATES THE TIME-GUT EVENT OF A CALL *
**% SETUP HOLDING AT A GATEVAY. *
'k *

EVENT HOLDTIMEOUT GIVEN PACKNO AIND GATELIO

**CALL TRACE4("HLDTO ",PACKNO,GATEI!O)
LET TNTRTIME(GATE!NOQ) = INTRTIME(GATE!IO) + PHOLDTO(GATE!G)
IF PACKNO IS IN BUFQUEUE

REMOVE PACKNO FROM BUFQUEUE(GATENO)
ALYAYS
LET PACKCLASS(PACK!II0) = .VOICE.REJECT
LET HOPCOUNT(PACKNO) = 1
LET PACKLE!NG(PACKIIO) = 32
LET DSTIIO(PACKIIO) = SRCHO(PACKNO)
LET SRCHO(PACKNG) = GATENO
LET ENTRYMARK (PACKIID) = O
IF DSTHO(PACKIIO) = GATEIIO

FILE PACK!NO Il GATEQUEUE.2ID(GATE!O)
ELSE

CALL ROUTER GIVI!NG PACKIIO AND GATE!NO
ALYWAYS

RETURI!
ElD



MATI

ElD

MAI} ROUTINE DEFINES THE SYSTEM CONFIGURATIONS, ACTIVATES
THE SOURCE GENERATOR OF EACH GATEWAY, SETS THE BEGIIHIING AlD
ENDING POIINTS FOR THE STATISTICS COLLECTION PERIGD, AlD

STARTS THE SIMULATION RUN.

N

CALL SYSGEN

FOR I = 1 TO N.GATEYWAY
DO

ACTIVATE A GENERATOR GIVIIIG I lOW
Laop

IF .STARTPT IlIE O

SCHEDULE All BEGINSTAT IN .STARTPT UNIT
ALWAYS
SCHEDULE AN OUTPUT Il .TIMELIMIT UUIT
START SIMULATIOlN

*

*

x*

£
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oy *
P THIS ROUTIIE RESETS ALL THE STATISTICAL VARIABLES AT =
**% THE BEGINNING OF THE STATISTICS GATHERING PERIOD. ®
LI E3
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EVENT BEGINSTAT

RESET TOTALS OF TRANSDELAY.DATA, TRANSDELAY.CONTROL, DATASEG,
TRANSDELAY.VOICE, TRAUSDELAY.VOICE.COUNECT, TVOCKT

LET TCOUNT.VOICE.THRUPUT = O

LET TCOUNT.DATA.THRUPUT = O

LET TCOUNT.VOICE.INLOAD = O

LET TCOUNT.DATA.INLOAD = O

LET TCOUNT.VOICE.IN = O

LET TCOUNT.VOICE.SUCCESS = 0

LET TCOUNT.DATA.IN = O

LET TCOUNT.DATA.ADMIT = O

LET TCOUNT.DATA.ADMITLD = O

LET TCOUNT.DATA.SUCCESS = O

LET TCOUIIT.RETRY.SUCCESS = O

LET TCOUNUT.DATA.ACK = 0O

LET TCOUNT.VOICE.SESSIN = O

LET TCOUlT.COINTROL.ACK = O

LET TCOUIIT.VOICE.SESSEND = 0
LET TCOUNIT.DATA.REJECT = O

LET TCOUNT.VOICE.SESSREJ = 0O
LET TCOUIIT.VOICE.SESSACC = 0O

LET TCOUNT.RETRY.PACK = 0
LET TCOUNT.RETRY.FREQ = 0
FOR EACH LINK
RESET TOTALS OF LNKSTATUS(LIIIK)

FOR EACH GATEWAY
DO
RESET TOTALS OF GTRAISDELAY.DATA(GATEWAY),
GTRAISDELAY . CONTROL (GATEVAY) ,
GTRAIISDELAY . VOICE (GATEVAY) ,
N.GATEQUEUE. 1ST (GATEWAY) ,
N.GATEQUEUE. 2D (GATEVAY) ,



Loop

LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET

GCOUNIT.
GCOUNT.
GCOUNT.
GCOUNT.
GCOUNT.
GCOUlIT.
GCOUlIT.
GCOULIT.
GCOUNT.
GCOUNT.
GCOUlIT.
GCOUNT.
GCOUHT.
GCOUNIT.
GCOUNT.
GCOUlIT.
GCOUlIT.
GCaulT.
GCOUlT.
GCOUIIT.

.GATEQUEUE . 3RD (GATEYAY) ,

BUF (GATEVAY) ,

PACK. IlI(GATEYAY),

BUF . IN (GATEYAY),

BUF . TRAN (GATEWAY) ,

PACK. TRAN (GATEVAY) ,

BUF . VOICE (GATEWAY),

GATESTATUS (GATEWAY)
VOICE.THRUPUT(GATEWAY) = 0O
DATA. THRUPUT (GATEWAY) = O
VOICE.INLOAD(GATEVAY) = O
DATA.INLOAD(GATEWAY) = 0
VOICE. I (GATEVAY) = 0O
VOICE.SUCCESS (GATEWAY) = 0
DATA. TN (GATEWAY) = 0
DATA.ADMIT (GATEWAY) = O
DATA.ADMITLD (GATEYAY) 0
DATA.SUCCESS (GATEWAY) 0
RETRY.SUCCESS (GATEWAY) = O
DATA.ACK(GATEVAY) = 0O
VOICE.SESSIN(GATEYAY) = 0
COHTROL . ACK (GATEVAY) =
VOICE.SESSE!D (GATEVAY)
DATA.REJECT (GATEWAY) =
VOICE.SESSREJ(GATEYAY)
VOICE.SESSACC(GATEWAY)
RETRY.PACK (GATEVWAY) = 0
RETRY.FREQ(GATEWAY) = 0

]

o o
o O o

FOR EACH HOPCLASS

DO

RESET TOTALS OF HOPDELAY.D(HOPCLASS),

LET HOPSUC.D(HOPCLASS)
LET HOPSUC.V(HOPCLASS)
LET HOPSUC.C(HOPCLASS)
LET HOPREJ.D(HOPCLASS)

HOPDELAY . C (HOPCLASS) ,
HOPDELAY .V (HOPCLASS) ,
HOPSESSDELAY (HOPCLASS)

I
o O © O
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LET HOPREJ.V(HOPCLASS) = 0
LET HOPSESSACC(HOPCLASS)
LET HOPSESSREJ(HOPCLASS)
LOoP
END

non
o O
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*

THIS ROUTI!E OUTPUTS ALL THE STATISTICS AT THE END OF =*
THE STATISTICS GATHERIIG PERIOD. *
£

EVEIT OUTPUT

LET STARTTIME = .STARTPT
LET STOPTIME = .TIMELIMIT
START lIEYW PAGE
PRINT 2 LINVE WITH STARTTIME, STOPTIME THUS
### STATISTICS FOR TIME PERIOD (SEC) = sk, % TO #wwk o+ #i#

PRINT 47 LINES WITH AVG.TRANSDELAY.VOICE, IMAX.TRA!SDELAY.VOICE,

STDDEV. TRANSDELAY.VOICE, AVG.TRAISDELAY.DATA, MAX.TRA!ISDELAY.DATA,
STDDEV.TRANSDELAY.DATA, AVG.TRANSDELAY.CONTROL,
MAX.TRANSDELAY.COUTROL, STDDEV.TRA!NSDELAY.COHTROL,
AVG.TRAIISDELAY.VOICE. COIIIECT,

MAX.TRAISDELAY.VOICE.CONIECT, STDDEV.TRAISDELAY.VOICE.COIINECT,
TCOUNT.VOICE. Ill/(.TIMELIMIT-.STARTPT),
TCOUNT.DATA.IN/(.TIMELIMIT-.STARTPT),

(TCOUNT.VOICE. IN+TCOUNT.DATA.II) /(. TIMELIMIT-.STARTPT),
TCOUUT.DATA . ADMIT/ (. TIMELIMIT-.STARTPT),

(TCOULT.VOICE. III+TCOUNT.DATA .ADMIT) /(. TIMELIMIT-.STARTPT),
TCOU!IT.VOICE.SUCCESS/ (. TINELIMIT~.STARTPT),
TCOUNT.DATA.SUCCESS/ (. TIMELIMIT-.STARTPT),
(TCOUlIT.VOICE.SUCCESS+TCOUNT.DATA.SUCCESS) /(. TIMELIMIT-.STARTPT),
TCOUIIT.VOICE. IlILOAD*8/ (. TIMELIMIT-.STARTPT),
TCOULIT.DATA. TIILOAD+8/ (. TIMELIMIT-.STARTPT),

(TCOUNT.VOICE. INLOAD+TCOUNIT.DATA. IIILOAD) #8/ (. TIMELIMIT~.STARTPT),
TCOU!IT.DATA . ADMITLD+8/ (. TIMELIMIT-.STARTPT) ,

(TCOUNT.VOICE. IIILOAD+TCQOUIIT. DATA . ADMITLD) %8/ (. TIMELIMIT-.STARTPT),
TCOUIIT.VOICE. THRUPUT#8/ (. TIMELIMIT-.STARTPT),

TCOULIT.DATA . THRUPUT*8/ (. TIMELIMIT-.STARTPT) ,

(TCOUNT.VOICE. THRUPUT+TCOUNT .DATA. THRUPUT) #8/ (. TIMELIMIT-.STARTPT) ,
MAX.TVOCKT/2, AVG.TVOCKT/2,

MIN.TVOCKT/2, AVG.DATASEG, TCOUNT.VOICE.IN,

TCOUNT.VOICE.SUCCESS, TCOUNT.VOICE.SESSIN, TCOUNT.VOICE.SESSEIID,
TCOUNT.VOICE.SESSACC, TCOUNT.DATA.IN, TCOUNT.DATA.ADMIT,
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TCOUNT.DATA.SUCCESS, TCOUNT.DATA.ACK,
TCOUNT.RETRY .PACK, TCOUNT .RETRY.FREQ, TCOUIIT.RETRY
TCOUNT .DATA.REJECT, TCQUNT.VOICE.SESSREJ THUS

AVG.TRAIISDELAY.VOICE
MAX.TRAIISDELAY.VOICE
STDDEV. TRAIISDELAY.VOICE
AVG.TRAISDELAY.DATA

MAX. TRAIISDELAY.DATA
STDDEV. TRANSDELAY.DATA
AVG.TRAIISDELAY.CONTROL
MAX.TRANSDELAY.CONTROL
STDDEV. TRANSDELAY.COlITROL

= k| gk
= ko,
= itk kool

= omRor kK

= ckeksk | ckskokckh

AVG.TRAIISDELAY.VOICE.CONIECT sk,

MAX.TRAIISDELAY.VOICE.CONNECT
STDDEV. TRAISDELAY.VOICE.CONIECT

AVG.VOICE.INLOAD(PACK/S)
AVG .DATA. IIILDAD (PACK/S)
AVG.TOTAL . TNLDAD (PACK/S)
AVG .DATA.ADMIT(PACK/S)
AVG . TOTAL . ADMIT (PACK/S)
AVG.VOICE. THRUPUT (PACK/S)
AVG.DATA. THRUPUT (PACK/S)
AVG.TOTAL . THRUPUT (PACK/S)
AVG.VOICE. II/LOAD(BPS)

AVG .DATA. TIILOAD (BPS)

AVG . TOTAL . TIILOAD (BPS)

AVG .DATA.ADMITLD (BPS)

AVG . TOTAL . ADMITLD (BPS)
AVG.VOICE. THRUPUT (BPS)
AVG.DATA . THRUPUT (BPS)
AVG.TOTAL . THRUPUT (BPS)

MAX.TVOCKT = %=
AVG.TVOCKT = ##
MIN.TVOCKT = ##=

]
bl
*
%

AVG .DATASEG
TCOUNT.VOICE.IN
TCOUNT.VOICE.SUCCESS
TCOUNT.VOICE.SESSIN
TCOUNT.VOICE.SESSEND
TCOUNT.VOICE.SESSACC

]

1
%
%
*
*
A
X
*
¥

1
*
%
*
%
%
*
¥
*
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.SUCCESS,

208



TCOUNT.
TCOUNT.
TCOUNT.
TCOUNT.
TCOUNT.
TCOUNT.
TCOUIT.
TCOUIIT.
TCOUUT.

DATA.IN
DATA.ADMIT
DATA.SUCCESS
DATA.ACK
RETRY.PACK
RETRY.FREQ
RETRY.SUCCESS
DATA.REJECT
VOICE.SESSREJ

START lIEW PAGE
PRINT 1 DOUBLE LINE THUS
GT MAXQ.1 AVGQ.1 SDEV.1 MAXQ.2 AVGQR.2 SDEV.2 MAXQ.3 AVGQ.3 SDEV.3

UTL

FOR EACH GATEWAY
PRINT 1 DOUBLE LIIE WITH GATEWAY, UAX.GATEQUEUE.1ST(GATEWAY),
AVG.GATEQUEUE. 1ST(GATEVAY),
STDDEV.GATEQUEUE. 1ST (GATEVAY),
MAX.GATEQUEUE. 2lID (GATEVAY) ,
AVG.GATEQUEUE. 2IID(GATEVAY) ,
STDDEV.GATEQUEUE. 21ID (GATEWAY)-,
MAX.GATEQUEUE. 3RD (GATEYAY) ,
AVG.GATEQUEUE. 3RD (GATEVAY) ,
STDDEV.GATEQUEUE. 3RD (GATEYAY) ,
AVG.UTILIZATIO!N.GATE(GATEYWAY) THUS
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= dokokokkokckkokk

= ckakockkkokkokkk

= keckokoieoskokokokook

= ckkikkkckR Rk

= ekl

= mkkokskdorkkk

= ckokokeoskokokok skok sk

= ke ook ek ok

= mmckdkvgokEw

s ek sk Rk | kR sedeskoksk sk | sksk sk |k

PRINT 1 DOUBLE LINIE THUS
VSU VSEIll VSEAC VSREJ VSEED DIl DAD DsuU

GTE VIl

DREJ  DACK

RTYP  RTYF

FOR EACH GATEYAY
PRIIT 1 DOUBLE LINE WITH GATEWAY,GCOUNT.VOICE.IN(GATEVAY),

RTYS

GCOoUlT

GGOUNT

OVRUII

.VOICE.SUCCESS (GATEWAY) ,
GCOUIT.
GCOUNT.
GCOUNT.
GCOUNT.

VOICE.SESSIII(GATEVAY) ,

VOICE.SESSACC (GATEYAY),
VOICE.SESSREJ(GATEWAY),
VOICE.SESSE!D(GATEYAY) ,

.DATA. Il (GATEVAY),
GCOUNT.

DATA.ADMIT(GATEVAY),



GCOUNT.DATA . SUCCESS (GATEYAY) ,
GCOUNT .DATA.REJECT (GATEWAY) ,
GCOUNT.DATA. ACK (GATEWAY) ,
GCOUNIT. RETRY . PACK (GATEVWAY) ,
GCOUNT.RETRY.FREQ (GATEVAY) ,
GCOUNT.RETRY . SUCCESS (GATEYAY) ,
OVERRU!I (GATEWAY) THUS

o ek Sk sockdek kR kol

ok ok ook R % ckokok

B keskokck skok 3k KK bk 4

PRINT 2 DOUBLE LINES THUS

HOP DAVGDLY DWAVDLY DSTDDLY DSUCNO DREJNO VAVGDLY VMAXDLY VSTDDLY
VSUCHIO VOVRUI VSAVGDLY VSMAXDLY VSSTDDLY  VSACC VSREJ
FOR EACH HOPCLASS
PRINT 1 DOUBLE LINE WITH HOPCLASS,AVG.HOPDELAY.D(HOPCLASS),
MAX .HOPDELAY .D (HOPCLASS) ,
STDDEV . HOPDELAY.D (HOPCLASS) ,
HOPSUC . D (HOPCLASS) ,
HOPREJ.D (HOPCLASS) ,
AVG . HOPDELAY .V (HOPCLASS) ,
MAX .HOPDELAY .V (HOPCLASS) ,
STDDEV . HOPDELAY .V (HOPCLASS) ,
HOPSUC.V(HOPCLASS) ,
HOPREJ .V (HOPCLASS) ,
HOPSESSDELAY (HOPCLASS) ,
MAX . HOPSESSDELAY (HOPCLASS) ,
STDDEV . HOPSESSDELAY (HOPCLASS) ,
HOPSESSACC (HOPCLASS) ,
HOPSESSREJ(HOPCLASS) THUS
doockek o ckekekck chesk | dedeskor R dokakk EES T £ Mook k| sk skok | sheseslek ek ckekoek

dsddedek EE RS TR L I I e [ e sk ok

PRINT 2 LINES THUS

HOPIIO CAVGDLY CMAVDLY  CSTDDLY csuclio
FOR EACH HOPCLASS
PRINT 1 LINE WITH HOPCLASS,AVG.HOPDELAY.C(HOPCLASS),
MAX . HOPDELAY . C (HOPCLASS) ,
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STDDEV.HOPDELAY . C (HOPCLASS) ,
HOPSUC.C(HOPCLASS) THUS

% owdckd Aok kEkk, KRk kskkk | Rk EXLTET
PRINT 2 LINES THUS
LINK UTILIZATIOlI

FOR EACH LIlIK
PRINT 1 LINE WITH LINK, AVG.UTILIZATION.LINK(LINK) THUS
*3% T T
START lIEW PAGE
PRINT 1 DOUBLE LINE THUS
GT MAXBUF AVGBUF MINBUF MAXIN AVGIH MININ MAXTR AVGTR MINITR MAXVO AVGVO
MINVO BUF BUFIll BUFTR BUFVO

FOR EACH GATEYAY
PRIIIT 1 DOUBLE LINE WITH GATEWAY,MAX.BUF (GATEVAY) ,AVG.BUF (GATEVAY),

MIIN.BUF (GATEYAY) ,MAX.BUFIII(GATEWAY) ,AVG.BUFIII(GATEYAY),
MIN.BUFIN(GATEYWAY) , MAX.BUFTRAII(GATEWAY) ,AVG.BUFTRA!N(GATEYAY),
MII.BUFTRAlI(GATEYAY) ,MAX.BUFVO(GATEYAY) ,AVG.BUFVO(GATEYAY),
MII.BUFVO(GATEYAY) ,BUF (GATEWAY) ,BUF . III(GATEYAY),
BUF . TRAII (GATEWAY) ,BUF . VOICE (GATEYAY) THUS

#3% EET I E I ok T T T e T EE EEES T T
PRINT 1 LIIIE THUS

GT MAXIUP AVGINP HININP MAXTRP AVGTRP LIIITRP 1P TRP

FOR EACH GATEYWAY
PRINT 1 LINE YWITH GATEWAY,HMAX.PACKIN(GATEYAY) ,AVG.PACKIN(GATEVAY),
MII.PACKTII(GATEYAY) ,MAX.PACKTRAl (GATEWAY) ,AVG.PACKTRAII (GATEYAY),
MI.PACKTRAI (GATEYAY),
PACK . III (GATEYAY) ,PACK . TRAII(GATEYAY) THUS

s omalkodraek odeshsk | skok gudedrshiiih deheskciok ik ook chadnkoinhedh ok e

PRINT 1 DOUBLE LIIE THUS
GT VAVGI!LOAD DAVGIIILOAD TAVGINLOAD  DAVGADMIT  TAVGADMIT VAVGTHRUPUT
DAVGTHRUPUT TAVGTHRUPUT
FOR EACH GATEWAY
PRIIT 1 DOUBLE LINE WITH GATEWAY,
GCOUNT.VOICE.INLOAD(GATEYAY) /(. TIMELIMIT-.STARTPT),
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GCOUNT.DATA. INLOAD(GATEVAY) /(. TIMELIMIT-.STARTPT) ,
(GCOUIIT.DATA. INLOAD(GATEWAY) +GCOULT. VOICE . IHLOAD(GATEWAY) ) /
(. TIMELIMIT-.STARTPT),
GCOU!T.DATA.ADMITLD (GATEWAY) /(. TIMELIMIT-.STARTPT),
(GCOUNLT.DATA. ADMITLD (GATEWAY) +GCOUlT . VOICE. INLOAD (GATEYAY)) /
(.TIMELIMIT-.STARTPT),
GCOUMIT.VOICE. THRUPUT (GATEYAY) /(. TIMELIMIT-.STARTPT),
GCOUNT.DATA. THRUPUT (GATEWAY) / (. TIMELIMIT-.STARTPT),
(GCOUlIT.DATA. THRUPUT (GATEWAY) +GCOU!IT . VOICE . THRUPUT (GATEYAY) ) /
(.TIMELIMIT-.STARTPT) THUS
w dkdkksclolkok kdokskoR Rkl ok Rl R R seleloiololokoloioRek kaloksoRdoioloiok solok ol ok kR R
Bk Aok ok ok R kR Kk
PRINT 1 DOUBLE LINE THUS
GT VAVGIILOAD DAVGINLOAD TAVGIILOAD  DAVGADMIT  TAVGADMIT VAVGTHRUPUT
DAVGTHRUPUT TAVGTHRUPUT
FOR EACH GATEWAY
PRINT 1 DOUBLE LINIE WITH GATEVAY,
GCOUNT.VOICE. IN(GATEWAY) /(. TIMELIMIT-.STARTPT),
GCOUNT.DATA . IN(GATEWAY) /(. TIMELIMIT~.STARTPT),
(GCOUNT.DATA. IN (GATEWAY) +GCOUNT. VOICE. Il (GATEVAY) )/
(.TIMELIMIT-.STARTPT),
GCOUNIT.DATA . ADMIT(GATEYAY) /(. TIMELIMIT-.ETARTPT),
(GCOUNT.DATA.ADMIT(GATEWAY)+GCOUINIT.VOICE. Il (GATEYAY) )/
(.TIMELIMIT-.STARTPT),
GCOUIIT.VOICE.SUCCESS (GATEWAY) /(. TIMELIMIT-.STARTPT),
GCOUIIT.DATA.SUCCESS (GATEWAY) /(. TIMELIMIT-.STARTPT),
(GCOUIT.DATA. SUCCESS (GATEWAY) +GCOUIIT . VOICE . SUCCESS (GATE%AY) ) /
(.TIMELIMIT-.STARTPT) THUS

ook koockodokok cokkockokskokdeok skekskoioldokskkok ekokdokckaokkiock ddtkokokdnbidokkok soksokshokkdkokpedk

EIID



g x®
P THIS ROUTI!IE ADJUSTS THE WIlIDOW SIZE OF THE EGTEG FLOY =
'*x CONTROL MECHA!NISM. ®

ROUTINE UPDYWI GIVEN SRC, DST, INDEX
LET WINDQW(SRC,DST) = WINDOW(SRC,DST) + INIDEX
IF WINDOY(SRC,DST) < O OR WINDOW(SRC,DST) > .WINDOWSIZE
PRINT 1 LINE WITH SRC, DST, WIUDOW(SRC,DST), TIME.V THUS
WIFLOW SRC % DST # WI % TIM #xskxk sk
ALWAYS
END
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PP s s e sk sde ok afe sl ok e w o e s ok ot o ke s e o o ok ok s s ofe e e ok s s sl ok sl e ok ot s sfe e sl ok ok ok sk sk e sk sk skl sk sk ekl sk sk ok dokok

vy *
PPk THIS ROUTINE GATHERS STATISTICS REGARDING TO THE ACCEPTANCE *
**% TIMES OF VARIOUS TYPES OF PACKETS. ®
LR I8 *

ROUTIIE SUCRTIH GIVEN PACK!O,DELAY,PACKMODE
DEFIIIE DELAY AS A REAL VARIABLE
LET INDEX = HOPCOUNT(PACK!O)
IF PACKMODE = 1
LET HOPDELAY.D(INDEX) = DELAY
LET HOPSUC.D(INDEX) = HOPSUC.D(I!DEX) + 1
ELSE
IF PACKMODE = 2
LET HOPDELAY.V(INDEX) = DELAY
LET HOPSUC.V(INDEX) = HOPSUC.V(INDEX) + 1
ELSE
IF PACKMODE = 3
LET HOPDELAY.C(INDEX) = DELAY
LET HOPSUC.C(IIDEX) = HOPSUC.C(INDEX) + 1
ELSE
IF PACKMODE = 4
LET HOPSESSDELAY(INDEX) = DELAY
LET HOPSESSACC(I!IDEX) = HOPSESSACC(IIDEX) + 1
ALYWAYS
ALYAYS
ALYAYS
ALYAYS
RETUR!
EID
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PP e ske s ok s sl ok sk ol ok e ok e ok ke s ok ok st it sl ofe st ok i ke sk o ok ok ke ok s ke v e o ok ok ok s ofe ok s ok s ke ok skeofe ok sl sk sk sk ok ok Rk sk ke sk sk

Tk THIS ROUTINE GATHERS STATISTICS REGARDING TO THE REJECTION =
**» TIMES OF VARIOUS TYPES OF PACKETS. *

P e e e sfe e s e ot e s oo ot ofe ke ot ok ok s sl o e s e ofe sk ook ol o sk o e e e sl sl s vl ke s e ok e sk st kR sl sk ok sk skok e e sk sl ek ek

ROUTINE REJRTI GIVE! PACK!IO, PACKMODE
DEFINE DELAY AS A REAL VARIABLE
LET INDEX = HOPCOUIT(PACKIIO)
IF PACKMODE = 1
LET HOPREJ.D(IIIDEX) = HOPREJ.D(INDEX) + 1
ELSE
IF PACKMODE = 2
LET HOPREJ.V(INDEX) = HOPREJ.V(IIDEX) + 1
ELSE
IF PACKMODE = 4
LET HOPSESSREJ(IIIDEX) = HOPSESSREJ(I!DEX) + 1
ALYAYS
ALWAYS
ALYAYS
RETURI!I
ElID
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P ook s s s s o e sk o ok ok ook ok 2 KR Rt ket st e s stk ot o ol sk sk ok ot e e sk ok sk ok sk o okl ke sk sk ok ok Rt Rk ook ok
R *
'’  THE FOLLOWING ROUTINES ARE USED FOR DEBUGGING PURPOSES. =

PP ook st sk sie o ok oo st s ok o ol ok ok sk ok e ok o ok sl s ofe sl ok o ale sl oo sk ol s e ik ade e ok ok s ok ok ok ok s st ofk ods e ok o sl ek sk sl ke sk ok

ROUTINE TRACE1l GIVEN MSGTXT, PACKNO, GATE!NO

DEFIIE MSGTXT AS A TEXT VARIABLE
PRINIT 1 DOUBLE LINE WITH MSGTXT,GATE!NO,PACKNO,SEQID(PACKIQ),
TIHEID(PACK!IO) , TIME.V,SRCHO(PACKINO) ,DSTIHO (PACKIIO) ,
PACKCLASS (PACK!I0) ,RETRYTIMES (PACKIIO) THUS

wdskakx GT % PACK ssxsoxsx SEQ sxksxs & TID skrsdorsk sk TIM sk ok
S #* D % ¢ % R %
ElD

ROUTINE TRACE2 GIVEN MSGTXT, PACK!O, GATENO, SESSION

DEFIIIE MSGTXT AS A TEXT VARIABLE
PRINT 1 DOUBLE LINE WITH MSGTXT,GATE!IO,PACKIlO,
SESSSEQ(SESSIO!I) ,SESSTID(SESSIOlN) , TIME.V,
SESSSRC (SESSIO!I), SESSDST(SESSION), RETRYTIMES(PACK!IO),
SESSTAG (SESSIOI) , SESSMODE (SESSION) , ARRIVALTIHE (PACKIIO) THUS
EXEE x GT #= PACK #% S8Q %% i,k QTD dewckmtem o QT seoskdwson | dohsk
S % D % R x STAG wmwxxxxxsx SHOD #» ARR ek e
ElID

ROUTINE TRACE3(MSGTXT,PERIOD,GATE!Q,SESSION)

DEFIIE MSGTXT AS A TEXT VARIABLE

PRINT 1 DOUBLE LIIE WITH MSGTXT, GATE!O,PERICD,
SESSSEQ(SESSIOI) , SESSTID(SESSIOlN) , TIME.V,

SESSSRC (SESSIO!N) , SESSDST(SESSIO!) , SESSTAG (SESSIOLN),

SESSMODE (SESSION) THUS

wxxkxkt QT # PERD #%s&ssix §8Q #wwxwn & SID #xdrds sid GTH wsdkssok s
S % D % STAG ##xkxxxx SMOD =

END
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ROUTINE TRACE4 GIVEN MSGTXT, PACKNO, GATENO

DEFIHE MSGTXT AS A TEXT VARIABLE
PRINT 1 DOUBLE LINE WITH MSGTXT,GATENO,PACK!O,SEQID(PACKNOD),
TIMEID(PACKNO) ,TIME.V,SRCHNO(PACKNO) ,DSTIO(PACKNO),
PACKCLASS (PACKNO) ,RETRYTIMES (PACK!NO) ,BUF (GATELOD) ,
BUF . Il1(GATENQ) ,BUF . VOICE (GATE!Q) ,BUF . TRAN (GATENQ) THUS
sxxskns QT % PACK #kssxssk SEQ wssons s TID sk, g TIM sk swx
S +* D =% C x R % BUF %% BUFIN #x BUFVQ =% BUFT ==
END
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