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1. INTRODUCTION

1.1 Background

Mathematical modeling and simulation of biomechanical system
crash response play an economical and versatile role in the
understanding of injury mechanisms. 1In quantitative gross biodynamic
motion studies, cognizant of the high cost of conducting experimental
research with human <cadavers and/or anthropomorphic dummies,
biomechanicians have turned their attention to the utilization of
computer—-based mathematical models of the total human body since the
advent of high speed computer technology. Among these models, the
most popular and sophisticated versions are articulated and
multisegmented to simulate the total human body as a linked structure
made up of rigid bodies. Fig. 1.1 shows a typical three-dimensional
model <consisting of fifteen segments. Representative three—
dimensional models developed in various research centers include six-~
segment model of UMTRI‘(formerly called HSRI) (Robbins et al., 1972),
twelve-segment models of TTI (Young, 1970) and of UCIN (Huston et al.,
1974), and fifteen-segment model of Calspan (Fleck, 1975). With some .
additional features, the Calspan model is also being used by the U.S.
Air Force under the title of Articulated Total Body (ATB) model in

aerospace related applications.
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Fig. 1.1 A fifteen-segment model of the total human body



In these models, the equations of motion are formulated by using
either the Newtonian approach or Lagrange's equations, Euler's rigid
body equations, and Lagrange's form of d'Alembert's principle and
solved by various methods such as Runge-Kutta or Predictor-Corrector
numerical integration scheme. Joints are modeled as either the ball-
and-socket type with three degrees of freedom or the hinge type with
only one degree of freedom. Resistive force responses beyond the
joint stop contour (maximum range of motion) are modeled as one or a
combination of the following simple mechanical components: a linear
spring, a non-linear spring, a Coulomb friction Qdamper, and a viscous
damper . Furthermore, joint properties, i.e., stop contours and
resistive force characteristics are estimated and, in some cases, even
assumed. A thbrough review of both two- and three-dimensional
mathematical models simulating biodynamic response of the human body
along with the associated experimental validation studies performed,

was provided by King and Chou (1976).

Obviously, the effectiveness of these multisegmented mathematical
models in accurately predicting in-vivo biodynamic responses, depends
upon the individual segment properties such as center of gravity,
moment” of inertia, geometry, etc., and more heavily upon the
biomechanical joint properties between any two linked segments. 1In
particular, the resistive force properties of the joints play a direct
and significant role in the understanding of injury mechanisms as well
as in the prediction of injury. Although a number of studies have

supplied data for model segment properties (Hatze, 1980; McConville et



al., 1980), data on biomechanical joint properties are comparatively
sparse (Steindler, 1973) and limited (Engin, 1980; Engin, 1984). Of
course, a complete data base for the biomechanical joint properties
should undoubtedly include a statistical analysis to account for the
intra- and inter-subject variations. The more sound the joint
property data base is, the more realistically the multisegmented
anthropomorphic dummies and computer-based mathematical total-human-

body models can be constructed and formulated.

1.2 pefinitions of Joint Sinus and Globographic Representation

Throughout this dissertation, the terms Jjoint sinus and
globographic representation (first used by Dempster, 1965) will be
repeatedly used in the discussion of joint properties. Since these
two terms are not commonly known, let us give their definitions to

avoid possible confusion.

Joint Sinus: the maximum range of angular motion permitted by
the moving member of a joint while the other member is rigidly fixed.
The joint should possess at least two degrees of freedom such that the
moving member sweeps out a conical concavity within which the joint

structures permit all possible movements.

Globographic representation: a graphical method of representing
a joint sinus upon the surface of a globe with meridians and parallels
which define a grid pattern of the angular spherical coordinates with

respect to a fixed axis system attached to the rigidly fixed member;



the center of the globe is positioned at the functional center of the
joint.

In this study, we will also use another method to represent a
joint sinus, namely, a single-valued functional relationship between
the two spherical angles of the joint sinus. While the globographic
representation provides a physically meaningful plot for the joint
sinus, the single-valued functional relationship condenses the joint
sinus data into a functional expansion form for easy incorporation
into the existing three~dimensional multisegmented models of the total

human body.

1.3 Scope of Research

The primary goal of this research program is to provide/establish
proper biomechanical joint property data/databases pertinent to the
human shoulder, hip, and humero-elbow complexes for incorporation into
the existing three-dimensional multisegmented models. A recently
developed new kinematic data collection methodology by means of sonic
emitters and a data analysis technique based on selection of the "most
accurate"” axis system from an overdeterminate number of sonic emitters
on the moving segment (Engin et al., 1984a) were applied and extended.
The passive resistive force data were collected by utilizing a three-
dimensional multiple-axis force and moment transducers vwhose
calibration and application with sonic emitters were provided in a
previous work (Engin et al., 1984b). System accuracy of this data

acquisition technique was also previously documented by performing:



(1) Error analysis on two types of controlled linear translational
motion; a rather high degree of accuracy was attained (Engin et

al., 1984a).

(2) Joint sinus simulation tests on a mechanical revoluto-hinge
joint; even with high degrees of acoustic blockage, an average of
86.51% of the calculated joint centers fell within 1.46 cm. from

the true joint center (Engin and Peindl, 1986).

(3) Forced abduction simulation tests (sweeping-type motions) on the
same mechanical revolute-hinge joint; an average of 81.55% of the
calculated joint centers fell within less than 0.5 cm. from the

true joint center (Engin and Peindl, 1986).

The system accuracy tests described above, demonstrate that the
sonic digitizing technique can be employed to perform fairly
complicated three-dimensional rigid body kinematic analysis when used
in connection with an overdeterminate number of sonic emitters. 1In
this study, the performance of the data acquisition system and
efficacy of the associated data analysis methodology is culminatingly
assessed by observing good repeatability of the joint sinus sample

means from different runs on ten subjects.

Finally, a statistical data base for the biomechanical joint
poperties is established in a systematic way for a special population,
namely, the male population of ages 18 thru 32 possessing neither
musculoskeletal abnormalities nor any history of trauma in the joints

studied herein. Ten subjects were randomly chosen to form the sample



with emphasis placed on choosing subjects whose anthropometry
approximates the average for the above-defined population. Selected
anthropometric measurements of these subjects are given in Appendix A.
The sample mean and sample standard deviation as well as the
confidence intervals for the population mean and population standard
deviation were obtained in a systematic way and were expressed in
functional expansion form relative to a locally-defined joint axis
system as well as relative to the fixed-body axis system in the form
of globographic representation. It is believed that this is the first
attempt to establish a statistically meaningful data base for the
biomechanical properties of the major human articulating joints for
the purposes of incorporation into the multisegmented mathematical

models of the total human body.



2, KINEMATICS BY MEANS OF AN OVERDETERMINATE NUMBER OF SONIC EMITTERS

In this chapter, we shall discuss the general approach to
studying the three-dimensional kinematics of a typical joint complex,
which links two body segments, by means of an overdeterminate number
of sonic emitters. The following chapters will apply this methodology
to determine the maximum voluntary ranges of motion and passive
resistive properties beyond them for the shoulder, hip, and humero-

elbow complexes.,

2.1 Review of the Sonic Digitizing Technique

Sonic digitizing is the process of converting information or
position via sound waves to digital values in a form suitable for data
transmission, storage, and processing. The sound waves, which are
audible impulses of a specific frequency, are generated by an
electrical arc at the tip of the emitter powered by the GP6-3D Sonic
Digitizer manufactured by Science Accessories Corporation. "pPoint"
microphone sensors capable of detecting this specific frequency of
sonic impulses are used to receive the sound waves. By multiplying
the transit time required for a sound wave to reach a microphone
sensor with the speed of sound in still air, the sonic digitizer
converts the distance from the emitter tip to the "point" microphone

sensor (to be referred to as slange range distance) into digital



values. These digits are then transmitted to a PDP-11/34 minicomputer
for data analysis and storage.

By applying this sonic digitizing principle, a rigid planar
rectangular sensor board/assembly with four "point"
microphones/sensors (A, B, C, D) arranged at the corners, as shown in
Fig. 2.1, was constructed (Engin and Peindl, 1985). The purpose of
this set-up is to convert the four slange range distances of a sonic
emitter, which defines a point in the 3-D space, into regular
Cartesian coordinates suitable for performing kinematic analysis.
Note that only three slant range distances are needed for the
conversion. The fourth sensor is used for spare purposes. During
conversion analysis, the computer program is designed to examine all
four slant range distances, select the three smallest, and discard the
fourth. In the special case where one of the slant range distances is
zero, namely, the sonic emitter is totally blocked from being detected
by one of the four -microphone sensors, the =zero reading is

disregarded.

~=— SONIC EMITTER

y-AXIS

SENSOR
ASSEMBLY

B

—————

A(0) H x=AXIS

Fig. 2.1 Quantities used to convert slant range distances
(Pa, PB, PC) to Cartesian coordinates (x, y, 2)



With respect to the selected 3-D coordinate system (to be
referred to as the sensor assembly axis system) as shown in Fig. 2.1,
slant range distances PA, PB, and PC will be used to illustrate the

conversion procedure. Applying the law of cosines to triangle APB, we

have

(®B)2 = (PA)2 + (aB)2 - 2(PA) (AB) cosa (2.1.1)

where AB = 165 cm. is a calibrated dimension for the sensor assembly.

We also note that

X = AH = (PA) cosQ (2.1.2)
Therefore,

ee)% = (pa)2 + (aB)2 - 2(aB)x (2.1.3)
or,

X = [(pA)2 + (AB)2 - (PB)Z]/Z(AB) ' (2.1.4)

Similarly, by applying the law of cosines to triangle APC, one obtains
2 2 2
y =AE = [(PA)” + (AC)” - (PC)"1/2(AC) (2.1.5)

where AC = 110 cm. 1is also a calibrated dimension for the sensor

10



assembly. Finally, one obtains the z coordinate by

1/2

z = pp’ = [(PA)2 - (x2 + yz)] (2.1.6)

In like manner, similar equations for x, y, and z can be written for

any combination of three slant range distances.

2.2 Moving Rigid-Body Kinematics and Initialization

of a Baseline Data Set

Consider a typical joint complex connecting two body segments.
In order to facilitate the relative motion studies between the two
body segments, one of them is first rigidly fixed. To each body
segment an axis system can then be defined and affixed by mounted
sonic emitters, The six degrees of freedom permitted by a general
joint complex are completely determined if one point (e.g., the origin
of the moving body axis system) on the moving body and the
transformation (direction cosine) matrix of the moving-body axis
system with respect to the fixed-body axis system are known. The
coordinates of this point determine the location (three translational
degrees of freedom) and the transformation matrix determines the
orientation (three rotational degrees of freedom) of the moving body
segment. The orientation can be described in various ways, for
example, (1) a set of three successive rotations about the three axes
of the fixed-body axis system, (2) three Euler's angles, and (3) a

rotation about an arbitrary axis in space. A detailed derivation of

11



the transformation matrices resulting from the above three ways can be

found in Suh and Radcliffe (1978).

To define an axis system affixed to a body segment, three
noncolinear points (emitters) on or extended from the body segment are
needed. Normally, it is desirable to select one of the axes, e.g.,
the z-axis to coincide with the longitudinal axis of the moving body
segment and the origin to be a certain point on this axis. We shall
refer to this type of axis systems as the longitudinal {or long-bone)
axis systems. However, since the sonic digitizing technique is
applied in this study, total and partial acoustic blockage may occur
to produce zero and inaccurate readings for one, or two, or even all
three sonic emitters used., Note that in defining the fixed-body axis
system, this difficulty can always be avoided by adjusting the sensor
assembly to an optimal "view" of the three emitters since these
emitters are not moving. 1In the case of the moving body segment, it
is desirable to continuously monitor the moving body axis system while
performing joint property experiments. As a result, total or partial
acoustic blockage becomes inevitable for some "bad" positions where
sound waves must travel around the emitters' bases or the moving body
segment itself. Therefore, it is necessary to collect redundant data
so that zero readings from individual emitters would not affect
kinematic analysis. Obviously, we would select the "most accurate”
three emitters in cases where more than three emitters produce non-

zero readings.

From experimental experience, six emitters are most suitable for

12



the redundancy process. Seven or more emitters would dramatically
increase computing time without noticeable improvements in accuracy,
while four or five emitters do not provide a sufficient spare. Note
that if six emitters are used, a total of 20 (C(6, 3) = —S%éf )
different axis systems can be constructed; if seven emitters are used,
a total of 35 (C(7,3) = —z%%T) different axis systems can be

constructed.

It is advantageous to arrange the six sonic emitters
circumferentially and more or less equally-spaced around the moving
body segment. (In reality, the six emitters are first put on an
orthotic cuff which, in turn, is strapped circumferentially to the
moving body segment). The advantage is that, by doing so, we have
reduced the number of "bad" positions to a minimum and also provided
the moving body segment with the largest amount of freedom to reach
all allowable ranges of motion. However, such an arrangement of the
six emitters makes them unsuitable for direct construction of the
longitudinal axis system as normally desired. One way of resolving
this inconvenience is to establish the relationship (to be explained
later) between the six emitters and the longitudinal axis system
directly constructed by +three properly positioned emitters before
performing kinematic data collection and analysis. Since this
relationship is invariant, i.e., it does not depend upon the
orientation/location of the moving body segment or the sensor
assembly, its accuracy can be checked against pre-calibrated inter-

emitter distances to within 1% of error by adjusting the relative

13



orientation and location between the moving body segment and the
sensor assembly to an optimal "view". This procedure is called
initialization. The initialized data set, which is reliably accurate,
also provides a baseline for the selection of the "most accurate”
longitudinal axis systems (will be explained in detail in the next
section) for the «continuously collected kinematic data whose
accuracies are uncontrollable due to partial and/or total acoustic
blockage and motion during kinematic data collection. This baseline
contains the interrelationships among the six sonic emitters on the
moving body. The following explains how the interrelationships among
these nine emitters (three for defining the longitudinal axis system

and six on the moving body segment) are initialized.

First,. the coordinates of the nine emitters are calculated in
terms of the sensor assembly axis system. Next, a total of 20 axis
systems is defined by calculating the direction cosine matrices
Ais(l < i < 20) with respect to the sensor assembly axis system from
all possible combinations of any three out of the six moving-body
emitteré. Note that these axis systems can always be obtained since
all the six emitters are arranged in such a way that no three of them
are colinear, i.e., three mutually orthogonal unit vectors can always
be found. The 1longitudinal axis system is similarly defined by
calculating its direction cosine matrix, st, with respect to the
sensor assembly axis system. Next, the transformation (direction

cosine) matrix describing the ith axis system relative to the jth axis

-1

system (1 i is then calculated by A.. =
Y (L<i<3<20) | Y Bjs =A; Aa AjgByg
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= Ais A?S . ¢+ where Ais and Ajs are the transformation matrices
describing the ith and jth axis systems relative to the sensor
assembly axis system, respectively. Note that these 190
(C(20,2) = i%?%r) transformation matrices relating each of the 20 axis
systems relative to every other system are an intrinsic geometric
property of the six moving-body emitters and are independent of the
sensor assembly axis system. Second, the distances between the
origins of any two of the 20 axis systems, Dij (<i<j<20) are
initialized. Obviously, these 190 scalar gquantities are also
intrinsic and independent of the sensor assembly axis system. Third,
the coordinates (position vectors) of the origin of the longitudinal
axis system with respect to the 20 moving-body axis systems are also
initialized by &’i = A, “53 (1 < i, < 20), where &'s is the position
vector from the origin of the ith axis system to the origin of the
longitudinal axis system expressed in terms of the sensor assembly
axis system. Note that these 20 vectors are also intrinsic and
independent of the sensor assembly axis system during the
initialization process. Last, the transformation matrices of the
longitudinal axis system with respect to each of the 20 moving-body
axis systems are initialized by Bzi = st Asi = Bls A?s(l < i< 20).
Note that these 20 matrices are also independent of the sensor
assembly axis system, All the initialized data are stored in the
computer and retrieved for the selection process and determination of

the longitudinal axis system once the "most accurate" moving-body axis

system is selected.
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2.3 Selection of the "Most Accurate” Axis System on the Moving Body

The initialized data set discussed in the previous section forms
a baseline for the selection criterion since these data are obtained
in an optimal view of the sensor assembly and their accuracy can be
well controlled. However, for a typical kinematic test, with the
moving body segment in motion, the accuracy is uncontrollable. Since
the initialized data set is independent of the sensor assembly axis
system, it can be used for any position and orientation of the moving
body segment in selecting the "most accurate" moving-body axis system
for determination of the desired 1longitudinal axis system which
conveniently describes the complete kinematics of the moving body
segment. The sequential firing rate of the six moving-body emitters
is set at 7 records per second, and the motion speed of the moving
body segment is maintained at approximately 6° arc/sec. One record is
defined as a complete sequential firing of all the six moving-body
emitters from which one set of kinematic data with respect to th;
fixed body axis system is determined through coordinate transformation

and vector analyses.

The choice of the "most accurate" axis system on the moving body
segment during a kinematic test is made on a record by record basis.
For each record of the kinematic data, the coordinates of the six
moving-body emitters (assuming that all of them give good readings,
i.e., none of them is totally blocked from sensor view) are first used

to obtain the intrinsic interrelationships between any two of the 20
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axis systems as described in the initialization process. If there
were no errors in the kinematic measurements, and the orthotic cuff

remains rigid, then we should obtain the equalities:

@i kinematic = Pijlinitial * °F

(3;3) kinenatic ®i3)initial = I (l<i<jz20) (2.3.1)
and

P; ) kinematic = Pij’initial * ©F

®; ) kinematic = ®Pijinitiar =0 (1 21<3220) @2.3.2)

where I is the 3 x 3 identity matrix. This, however, is not the case
for a typical kinematic tests due to such factors as motion during
data collection, changes in the emitter's orientations with respect to
the sensor assembly, or the partial acoustic blockage of individual
emitters by the fixed body or the moving body segment itself.

Therefore, we obtain the following inequalities:

T _ C
(Aij)kinematic (Aij)initial - Gij =1 (1 <3z 20) (2.3.3)

and
(Dij)kinematic - (Dij)initial = Gij =0 (1 i< j<20) (2.3.4)
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where Gij is a general matrix with off-diagonal terms, and Gij is an
apparent dislocation (translational shift) between the origins of the
ith and jth axis systems. The general matrix can be considered as a
rotation matrix describing an apparent rotational shift between the
ith and the jth axis systems from their initialized interrelationship.
It should be pointed out that both the translational and rotational
shifts are a relative measure of the errors involved. These errors
are not correctable, i.e., we cannot pinpoint the absolute errors.
Nevertheless, we have at least a relative sense of how much they are
so that we can always select the "most accurate" data set. Therefore,
a good relative indication of the magnitude of the rotational shift is
to consider the amount of rotation , Yij' introduced by Gij about an
axis. To calculate Yij' we notice that the rotation matrix describing
a rotation of amount @ about an axis whose orientation is specified
by the direction cosines of a unit vector U = [ux, uy, uz] is (Suh and

Radcliffe, 1978)

R =
ui(IAcosu)+cosc uxpy(l-cosc)-uzsina uxuz(l-cosu)+uysina
uxpy(l-coaa)+uzsinc u?(l-cosa)+cosa uyuz(l-coaa)-uxsina (2.3.5)

2
uxuz(l-coaa)-uysina uyuz(l-cosu)+uxsina uz(l-cosa)+c?su
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Summing up the diagonal terms of the matrix R and noticing that

2 2 2 .
ux + uy + uz = 1, we obtain

o= cos-ll—]é'- (trR - 1)] (2.3.6)

where trR is the trace of R, i.e., the sum of all the three diagonal
terms of the matrix R. Applying this equation to the general matrix
Gij' we find

Y5 " cos™t [%(tr Gy - 1)] =Yy (2.3.7)

Since the orthotic cuff is made of rather rigid steel and during the
kinematic test there is essentially no force applied on it, we
attribute both the translational and rotational shifts to motion
during the emitter firing sequence and/or measurement inaccuracies due

to partial acoustic blockage.

For each kinematic data record, if one assumes the jth axis
system to be accurate, then the ith axis system has obviously
introduced both errors, i.e., 61j and Yij' If we then calculate, for

each axis system, the root mean square error; Ei, by assuming all the

other 19 axis systems are accurate, as

20 2 172
341

(Note that, in this equation, Yij should be thought of as the arc
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length obéained when Yij is multiplied by a unit length), the axis
system which exhibits the smallest ei has obviously undergone the
least apparent shift (rotational and translational) with respect to
all the other axis systems as initialized. From a statistical point
of view, this axis system has the highest probability of being the

most accurate as compared to the initialized geometry.

For each kinematic data record, the ™most accurate" axis system
on the moving body segment is then used to calculate the origin and
the direction cosine matrix of the longitudinal axis system via the
initialized data, i.e., 3; and Bzi' Or, stating it in another manner,
we are monitoring the desired longitudinal axis system via a versatile

medium, i.e., the six emitters on the moving body segment.
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3. BIOMECHANICAL PROPERTIES OF THE HUMAN SHOULDER COMPLEX

3.1 Introduction

In multisegmented mathematical models of the total human body,
the most complicated and least successfully modeled joint has been the
shoulder complex mainly due to the lack of an appropriate
biomechanical data base as well as the anatomical complexity of the
shoulder region. - The term "shoulder complex" refers to the
combination of the shoulder joint (the glenohumeral joint) and the
shoulder girdle which includes the clavicle and scapula and their
articulations, Therefore, in discussing the joint sinus of the
shoulder complex, it is more appropriate to use the term "shoulder
complex sinus" to designate the range of extreme allowable motion of
the humerus with respect to torso. It is important to make this
distinction since it is possible to define joint sinuses for various
skeletal components of the shoulder complex. An anatomical
description and a brief account of studies on the shoulder complex was
provided by Engin (1980) and more details can be found in standard
text books (Steindler, 1973; Gray's Anatomy, 1973; Norkin and

Levangie, 1983); thus they will not be repeated here.
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3.2 Determination of the Maximum Voluntary Shoulder Complex Sinus

The basic components of the data acquisition system used in the
study are the sonic digitizer, digitizer sensor assembly with four
microphones, torso restraint system, and the orthotic arm cuff with
sonic emitters as shown in Fig. 3.1. The emitter positioning for the
six arm cuff emitters and the three longitudinal-axis-system emitters

was provided by Engin et al. (1984a).

The procedure for determination of the shoulder complex sinus
involves the following basic steps: (1) immobilizing the body segment
(torso) to be treated as the fixed body and defining the fixed body
axis system as shown in Fig. 3.2(a), (2) having the subject move the
upper arm along the maximal voluntary range of motion (stop contour)
and monitoring, with respect to the fixed body axis system, the 3-D
coordinates of a distal point on the moving body segment; this point
on the elbow joint is selected as being on the humeral longitudinal
axis at the level of the humeral condylar maximal width, (3) fitting
the 3-D coordinates to a sphere ﬁsing a least-squares technique, thus
establishing a center for the best-fitted sphere and an idealized link
length (radius of the sphere), (4) fitting a plane to the same 3-D
coordinates using a least-squares technique; t.he normal to this plane
(specified by the spherical coordinates (¢n, en) as shown 1in
Fig. 3.2(b)) establishes the pole of a local joint axis system (zjt-
axis) about which the shoulder complex sinus, designated by the

spherical coordinates (¢, 8) of the vector connecting the center of
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the sphere with the distal elbow point, can be expressed as a single-

valued functional relationship, i.e., 0 = 0(d).

Fig. 3.1 Subject in the torso restraint system and the
arm cuff with six sonic emitters

Since the origin of the fixed body axis system is inaccessible, a

relative axis locator device (RALD) (Engin et al., 1984a) is used to
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locate the origin and define the transformation matrix of the fixed
body axis system in terms of the microphone/sensor assembly axis
system. The accuracy of these data can always be maintained within 1%
of error against pre-calibrated dimensions by adjusting the
orientation and location of the microphone/sensor assembly. of
course, this adjustment should also take into account the orientation
and/or position of the arm cuff in order to obtain the best kinematic
data even though an overdeterminate number of sonic emitters and a

"most accurate" selection criterion are used.

Table 3.1 lists the centers and radii of the best-fitted spheres
and (¢n, Gn) as well as their sample means and sample standard
deviations for all ten subjects. The mean values for (¢n, en) shall
be designated as (¢m, Bm) and the corresponding joint axis system

shall be referred to as the mean joint axis system.

Before the test, each subject was instructed to move his upper
arm along its maximum range of motion boundary in a counterclockwise
motion as viewed from the sensor assembly. He was also instructed to
displace the arm distally along its longitudinal axis as far as
possible at all times while circumscribing the joint sinus. Preferred
rotation of the upper arm about its longitudinal axis was left up to
the discretion of subjects in obtaining the maximal contour. Several
sweeps of this type were performed before data were collected so that
the subjects could experiment with obtaining the largest possible

range of motion. 1In order to help maintain a constant rate of motion,
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Table 3.1 Centers and radii of the best-fitted spheres and (¢

for all ten subjects

8 )

SUBJECT CENTER (cm) RADIUS n O
NO. Xy, Yep Zep (cm) (deg.) (deg.)
1l 8.85 14.92 -26.97 36.75 57.37 72.24
2 3.30 10.01 -25.25 35,37 56.52 77.32
3 5.45 15.50 -25.76 34.19 55.51 81.61
4 9.67 16.75 -33.67 36.28 59.72 83.20
5 2.53 13.78 -24.77 32.09 - 58.82 79.53
6 3.78 15.48 -25.39 32,83 62.58 77.86
7 7.10 16.51 ~24.68 32.18 59.43 78.87
8 4.51 12.59 -24.94 35.25 57.12 77.90
9 6.88 17.27 -24.62 31.77 60.98 84.31
10 1.88 16.25 -25.85 33.96 64.87 77.93
Sample 5.40 14.91 -26.19 34.07> 59.29 79.08
Mean
Sample 2.66 2.23 2.72 1.81 2,90 3.42
St. Dev.
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a large clock with an easily visible second hand was placed in front
of the subject. The subject was instructed to imagine his humerus as
the second hand, and to synchronize his joint sinus circumscription
with the clock's 60 second sweep. In this manner, three test runs

{sweeps) were collected for each subject.

To consolidate the enormous volume of experimental raw data into
a form readily usable by the multisegmented total-human-body models
currently in use, functional expansions for the shoulder complex
sinuses are desirable. This is also the reason why we want to
represent the shoulder complex sinus in a single-valued functional
relationship, i.e., © = 0(¢), with respect to the 1locally-defined
joint axis system. It will be shown in Section 3.4 that the
functional expansions also greatly facilitate the statistical
analysis.

The following trigonometric polynomial, with ten basis functions,

initially proposed by Herron (1974):
2 n-1
0(p) = nz=:1 cos” ~ plc, , +C, sind) (3.2.1)

will be used for the functional expansions by the method of least-
squares. Ten was chosen for the number of basis functions (or
coefficients) and determined as the smallest number for which the
criterion e 5_0.001e° is satisfied, where e is the square sum of
curve-fitting errors, 0.001 is the relative tolerance chosen, and e,

is the square sum of the experimental data (0) values. A detailed
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discussion of the above criterion can be found in Berztiss (1964).
Fig. 3.3 shows a sense of how "well" the expansion of Eq. (3.2.1) fits

the raw data for any of the three sinuses taken from the sample.

3.3 Passive Resistive Properties Beyond the Shoulder Complex Sinus

In general, the passive resistive properties in an articulating
joint may depend on at least three variables which define the
orientation of one segment of the joint with respect to the adjacent
one. For example, the three Euler angles, namely, ¢, O, and { can be
used to define the orientation of the upper arm with respect to torso.
If we exclude the rotational influence of the upper arm along its
long-bone axis with respect to the other two directions, then, the
passive resistive properties can be expressed as £ = £(¢, 0) where ¢
and O are the spherical coordinates with respect to the local joint

axis system defined in Section 3.2.

The basic components of the data acquisition system are shown in
Fig. 3.4. The major component of the system is the sonic digitizer
and the digitizer sensor assembly. The subject restraint/positioning
system was designed so that the subject's torso can be positioned in a
wide range of orientations. The force applicator is a hand-maneuvered
device which is constrained to motion in a level, horizontal plane by
a track-mounted trolley system located overhead. It utilizes a six-
component transducer which measures forces and moments in three
orthogonal directions. The orientation of the upper arm with respect

to torso is monitored by means of the arm cuff with six sonic emitters
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5) Fixed Body Axis Locator Device.

as was used for the shoulder complex sinus tests. This data

acquisition system thus enables one to perform a series of tests in
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which the upper arm is forced outward in the direction of increasing 6
for a constant-} value in the local joint axis system defined by
(¢n, Bn) (refer to Fig. 3.2). Furthermore, forces and moments at the
joint due to gravitational loading can be held relatively constant and
can be factored out by setting all the bridge circuits of the force-

moment transducer to zero at the start of each forced sweep.

The subject is first rotated by an angle -(90° - ¢n) about the
positioning system yaw axis, and then rotated -(90° - Sn) about the
roll axis. If the subject then extends his wupper arm in an
orientation parallel to the pitch axis of the positioning system, his
humeral longitudinal axis will be at (¢n, Gn) with respect to the
torso fixed body axis system. The force applicator is then positioned
vertically at the same level as the subject's upper arm, and the front
of the force transducer is strapped to the subject's arm near the
elbow joint. The subject is then asked to move his arm to its maximal
position in the constrained plane of motion of the force applicator.
The arm is "backed-off" from this position, and this then is the
starting location of the forced sweep. The subject's upper arm is
then abducted or adducted in a quasi-static manner until the subject
experiences discomfort or the upper arm can no longer be displaced
(i.e., adduction into the torso occurs). The forced angular velocity,
which is the same as the circumscription speed in obtaining the
shoulder complex sinus described in Section 3.2, is set at an average
of 6° of arc/sec for these tests. During the entire course of each
test, the subject is instructed to let his arm hang limply and not to

actively (muscularly) resist the motion of the test. The bridge
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circuits of the force-moment transducer are all set to zero at the
start of each test, so that the recorded values during the sweep are
departures from this "neutral" force orientation, or stating it in a

different manner, they are the passive resistive force values.

With respect to the joint axis system, these forced sweeps take
place in a direction of increasing 6, and at .an approximately
constant-p value. By then rotating the positioning system about its
pitch axis, a series of constant-$ sweeps are obtained. Each time,
the force applicator is vertically positioned at the proper level with
the humeral longitudinal axis in a level horizontal plane. In this
way the tests are performed as four sub-series with each sub-series
discernible by its own experimental set-up configuration. The
groupings consist of constant-¢ sweeps in: 1) the upper-rear gquadrant
(0°< ¢ < 90°), 2) the lower-rear quadrant (90° < ¢ < 180°), 3) lower-
front quadrant (180° < ¢ < 270°) and 4) the upper-front quadrant

(270° < ¢ < 360°).

The data obtained according to the procedure outlined above were
analyzed as follows. First, the force ?nd moment vectors obtained
from the force applicator data were used to calculate a total moment
.vector with respect to the instantaneous joint center which is chosen
to be the glenohumeral joint center location. Next, a moment arm
vector was calculated from the center of the best-fitted sphere
(described in Section 3.2) to the point of forc¢e application. Next,
the intersection of this vector with a sphere of radius equal to one

meter was selected as a "normalized" point of force application. The
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total moment vector was then resolved into components along the moment
arm and perpendicular to the moment arm vector. The component along
the position vector (moment arm vector) was then discarded, since it
does not serve to restore the moving segment to an orientation within
the voluntary shoulder complex sinus. From the remaining moment
component and the normalized position vector the resistive force
vector was then calculated. Since the moment arm is normalized to one
meter, the magnitude of the resistive force vector is the same as that
of the resistive moment vector. We shall refer to this magnitude as
the passive resistive force (moment) property. Note that this force
vector is always tangent to the surface of the selected normal sphere.
Fig. 3.5 depicts the vectors and coordinates specified in the
analysis. Finally, to consolidate the vast amount of passive resistive
force (moment) data and to facilitate the statistical analysis, the
functional expansion f£(¢, 6) must be established. A variety of basis
functions has been investigated by utilizing the GLM (General Linear
Model) program of the SAS (Statistical BAnalysis System) computer
package (SAS User's Guide,1982) of the Instruction and Research
Computer Center at The Ohio State University. It was found that the

functional expansion.

£($, 6) = (C1 + Czcos¢ + CBSin¢)6 + (c4cosz¢ + Cscos¢sin¢

+C sin2¢)62 + (c7cos3¢ +C cosz¢sin¢

6 8

+ C cos¢sin2¢ +C sin3¢)63 (3.3.1)

9 10

provides the best fit. Ten was used for the number of basis functions
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Fig. 3.5 1Illustration of the vector quantities used in the
calculation of resistive force values.

(or coefficients) and determined as the smallest number for which the

following criterion chosen

2 _ _SSE

R =1 SSTO 203 (3.3.2)

is satisfied, where

R™(0 < R® < 1) which is called the coefficient of multiple
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determination and measures the proportionate reduction of total
variation in £ associated with the use of the set of (¢, 9)

independent variables, SSE is the error (residual) sum of squares or

n
SSE = ) (£, 8;) = 2, (b, 91)]2 » and
i=1

SSTO is the total sum of squares, or
L -2
SSTO = géi [zi(¢i, ei) - 2]°, where

n = total number of experimental force (moment) data points collected,

zi(¢i, Gi) = the experimental force (moment) value collected at the

ith point (¢i, Gi), and

S

n
iz=:1 zi (q)il ei) .

A detailed discussion of the R2 and related regression analysis can

be found in Neter, et al. (1985).

Since 8(6 > 0) measures how far the upper arm departs'from the
z-axis of the local joint axis system, and ¢ goes from 0 to 2w, we can
treat O as the radial coordinate and ¢ as the angular coordinate in
the polar coordinate system (6, ¢). The pole is then the z-axis of
the 1local joint axis systenm,. Therefore, if we introduce the

following coordinate transformation

p = Ocosd

Osind (3.3.3)

q
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then (p, ¢q) can be regarded as the corresponding rectangular
coordinate system. Fig. 3.6 illustrates both coordinate systems and
the corresponding four test quadrants. We shall define the

combination of these two coordinate systems as the modified joint axis

q
A
OWER~REA -

LQUADRANTR UQPSAEgRgS#R
(w/2<p<w) (O<p<n/2)

/

: é

0 >P
Qs ol
(wr<¢p<3w/2) (3n/2<¢p<27)

Fig. 3.6 The modified joint axis system and the corresponding
four test quadrants.

system. Obviously in terms of the modified coordinates, (p, q)., the

expansion function now becomes
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I/ 2, 2 2
£(¢, 8) =F(p, @ =0C; Yp'+a" + Cyp + Cyq + Cyp” + Cgpq

2 3 2 2 3
+ CGq + c7p + C8p q + Cgpq + cloq (3.3.4)

With the help of the modified joint axis system, a physically

meaningful plot can be made for the above expansion function to give

us a visual aid to the understanding of the overall resistive force

(moment) properties of any articulating joint. Fig. 3.7 shows the

constant resistive force (moment) contour map for a subject and

q
A
(-2.5,2.5) —] (2.5,2.5)
§ 26\
T~"10" v
| m
(0,0) >P
(-2.5,-2.5) (2.5,-2.5)

Fig. 3.7 Constant resistive force (moment), in Newtons (Newton-

Meters), contour map for a subject in the modified joint
axis system, in radians.
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Fig. 3.8 shows a corresponding three-dimensional perspective view.

Fig. 3.9 illustrates the sense of how "well" the expansion £(¢, 9)

fits the raw data for several constant-¢ sweeps.

.
7

- . - —(2.5,2.5)
(-2.5,2.5) zJ—-{ %

ya ~
N} any N4 >P
‘ Z/%
A 18—
i o 4 / ﬁ 25 -2 5)

(_2.5,-2.5)( \ - e

-m;2
%

Fig. 3.8 Perspective view of Fig. 3.7.
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FPig. 3.9 Raw data and fitted curves drawn from £(¢, 6) for
various constant-¢ sweeps for the subject mentioned in

Figo 3.7.

3.4 Sstatistical analysis

Considering the vast quantities of sinus and force data for ten

subjects, it would be very cumbersome if one uses a direct statistical
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analysis technique. It is more desirable to develop a systematic and
easily manageable approach to deal with the extensive data.

Therefore, Egs. (3.2.1) and (3.3.1) will be utilized in an appropriate

manner to seek for a sample mean, sample variance, and the confidence
intervals for the population mean and variance. 1In this section we

shall derive the method in a general sense.

M
Let £(X) = Z Ci gi(i) be a functional expansion (by the method

i=l
of least squares in this study) for the experimental measurement of a

certain quantity £ having n independent variables, i.e., X = (xl, Xyr
Xgr e+er %), where {g, (®) | i =1, 2, 3, ..., M} is a set of mutually
independent basis functions, { Ci | i=1, 2, 3, ..., M } is the
corresponding set of independent expansion coefficients, and M is the
number of basis functions or coefficients. Consider now the
statistics of the quantity £ for a chosen population from which we
have a random sample of size N. Then, obviously, the coefficients,
Ci, become statistically independent random variables, and the non-
random basis functions become statistically constant. Furthermore, £
is now a linear combination of random variables, and, so, is itself a

random variable.

From probability theory, for each ;, the population mean, uf(;),

is

M
-> ->
Mg (X) = E[£(D)] = E[izl c; 9; (0]

Mo, Mo
- '21 g, (x) Elc;] = '21 9, (0 W (3.4.1)
il= 1=
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and the population variance, Gg(;), is

M
cg(':?) = VAR[£(x)] = VAR[ ) C; 94 (%]

i=l
’Z‘ 2
->
= g; (x) VAR[C
AR il
M
2> 2
= Z g.(x) o
is1 i ¢, (3.4.2)
where we have utilized
covic,, cj] =0 for all1<i< j<M (3.4.3)

since all the coefficients are mutually independent. Note that in Eq.
(3.4.1) the operator E stands for the mathematical expectation and in
Eg. (3.4.2) the operator VAR for the variance. Therefore, if we know
the population means, Mo v and the population variances, Gi ¢ for all

i i
the M coefficients, we can evaluate the population mean and variance

for £(X).

Sample Mean, E(x), and Sample Variance, s§(§)

Since the population means and variances of the coefficients can
rarely be obtained, we seek for statistical estimates, namely, the
sample means, ci’ and sample variances, si , from the given random

i

sample of size N. From statistical theory, an estimate for Moo g
i

S

- ]_ N
¢ =% j}=:l (ci)j (3.4.4.)
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where (Ci)j stands for the ith coefficient of the jth sample outcome,

and an unbiased estimate for 02 is

i

N N
2 1 2 1 2
s2 ) ¥ (cp2-% [ 3 (c.).] } (3.4.5)
Sy N-1 { j=1 iy N j=1 i’j

Thus, an estimate for uf(i) from Eq. (3.4.1) is

- M - -
£X) = ) g; (x) C; (3.4.6)
f=1

and an unbiased estimate for oé(?) from Eq. (3.4.2) is

. M
2 2 2
sf(x) = Z gi(x) ]

i1 ¢ (3.4.7)

Confidence Interval for u=(§)
g8

Ex) - uf(?e)
sf(?c)/m

From statistical theory, the random variable

has a t-distribution with N-1 degrees of freedom, regardless of the
-
parameter values uf(z) and oi(x). Therefore, the confidence interval

kY
of uf(x) can be obtained by

Pr -a < - <
VT sg/ /W Y

- = -
f£(x) - uf(x)
: 2y (3.4.8)

where Pr is the probability, Yy is the confidence level to be chosen,

and aY(:>0) is the solution of the equation
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®
az = Y .4.
/; ty-y (2)-dz 3 (3.4.9)
v

where tN lis the probability density function of the t-distribution

with N-1 degrees of freedom. Rearranging the inequalities, we obtain

>
the confidence interval for uf(x), at the confidence level ¥,

- >
_ > O S_(x) > - & S.(x)
CONF f(x) - X £ < uf(x) < E(x) + X £ (3.4.10)
/n T N
; 27
Confidence Interval for O (x) 2 +
N (N-1) Sg(x) 5
The fact that the random variable 3 has a x"-distribution
. o_(x)
£
with N-1 degrees of freedom enables us to have
2-)-
(N-1) Sf(x)
Pr QY < —F h B =y (3.4.11)
Og (x) Y
where aY is the solution of the equation
% 2 1
X5 . (z)dz = =X , (3.4.12)
N-1 2
0
and BY is the solution of the equation
-]
/ xg_l (z)dz = -1%1 ' (3.4.13)
B
Y
where x;_l is the probability density function of the Xz-distribution

with N-1 degrees of freedom. Rearranging the inequalities, we obtain

the confidence interval for Ui(;)' at the confidence level Y,
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Sog(x) < (3.4.14)
B a

2 - 2,
(N-1) sS_(x) (N-1) s.(x)
CONF { £ 2% —_— }
Y Y

3.5 Coordinate Transformations Among the Fixed Body, Individual Joint

and Mean Joint Axis Systems

Since we shall utilize the functional expansion forms, Egs.
(3.2.1) and (3.3.1), to perform statistical analysis for the shoulder
complex sinuses and ©passive resistive properties beyond them,
appropriate coordinate systems should be consistently used for the
purposes of statistically comparing the coefficients of the data sets
for ten subjects. In representing the Jjoint property data in
functional expansion form, different coordinate systems used will
result in different coefficients although the same basis functions are
used. Therefore, it is necessary to perform coordinate
transformations for the spherical angles, ¢ and 6, among the £fixed

body, individual local joint and mean joint axis systems.

The local joint axis system, as shown in Fig. 3.10 is uniguely
obtained in this study by first rotating the fixed body axis system by

an angle ¢n about the z_ -axis and then rotating the intermediate

fb
(primed) axis system by an angle On about the y'-axis. The mean joint
axis system is obtained in a similar manner with (¢n, en) replaced by
(¢m, Gm). Since the joint sinus with spherical coordinates (¢, 8)
implies a unit vector with rectangular coordinates (sin® cosd, sind
sind, cosb), the coordinate transformation from (¢f, Of), relative to
the fixed body axis system, to (¢j, Sj), relative to the joint axis

system, can be obtained in the following manner:
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Fig. 3.10 Joint axis system as obtained by two successive
rotations, first about the sz-axis and then about
the intermediate (primed) y'-axis from the fixed
body axis system.

sinf, cosd, sin@. cosd, X
sinej 51n¢j = th/fb sinef sind ¢ = b4 (3.5.1)
cosb cosb z
I Ty £ T jt
cosen 0 -sxnen cos¢n sin¢n 0
where th/fb = 0 1 ] -sind)n costbn ]
sinen 0 cosen 0 0 1
cosen coscbn cosen sin¢n -sinen
= -sin¢n cos¢n 0
sinen coscbn sinen sind)n cosen
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is the transformation matrix defining the joint axis system relative
to the fixed body axis system, and X, y, 2 can be numerically
calculated with (¢n, en) and the joint sinus (¢f, ef) specified.

Comparing the left and right hand sides of Eq. (3.5.1), we have

{ $. = tan-l § and

ej = cos-l Z . (3.5.2)

The coordinate transformation from (¢f, Of) to (¢ 6_.), where

mj’ “mj
mj stands for the mean joint axis system, can be obtained in the same
way as above with (¢n, en) replaced by (¢m, em) so that the

transformation matrix defining the mean joint axis system relative to

the fixed body axis system now becomes

cosem cos¢m cosem sin¢m —sinem
a - 0
Mmj/fb Sin¢m c?s¢m
sinem cosd)m sinem 31n¢m cosem

If the joint sinus is given relative to the individual local
joint axis system, then the spherical coordinate transformation from

(¢j, Oj) to (¢mj’ emj) can be achieved by noting that
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sinemj cos¢mj sinej cos¢j

sin&mj sin¢mj = Mmj/ﬁb Lfb/jt sinej sin¢j

cosb c
n osﬂj
m3 jt
X
z
mj (3.5.3)
where L = N_l = NT since N, is a proper orthogonal
fb/jt jt/fb jt/fb jt/fb
matrix, i.e.,
H I, (3.5.4)

Nse/eb Nie/80 =

and X, ¥, 2 can be numerically calculated with (¢m, Gm), (¢n, Sn) and
the joint sinus (¢j, ej) specified. Comparing the left and right hand

sides of Eq. (3.5.3), we have

mj X

(3.5.5)

H]
o]
[*]
(7]
[
.

mj
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3.6 Statistical Data Base for the Biomechanical Properties of the

Human Shoulder Complex

Since each subject has an individual local joint axis system
specified by (¢n, Bn), in statistically comparing the functional
expansion coefficients of the joint property data, two different sets
of sample means and sample variances can be envisioned and obtained
from different points of view:

1. subject-Based Mean and Variance

Here, we consider each individual 1local joint axis systenm,
defined by (¢n, en), as an index attributable to the individual
anatomical variations in overall joint articulating structure as well
as muscle/ligament orientations, and subjective kinematic behavioral
variations in the circumscription mannerism. Then, not to be biased,
each individual joint sinus and the resistive force (moment) data
should be described by (¢j, Gj) with respect to the joint axis system

of each subject, namely,

<D
1]

ej(¢j) for the shoulder complex sinus, and

o]
[}

F(¢j, ej)' for the resistive force (moment).

The functional expansion coefficients obtained from these data

are called subject-based coefficients. Furthermore, the

population/sample means and variances obtained from the subject-based

coefficients will be called subject-based population/sample means and
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variances, respectively. Obviously, from a statistical point of view,
the most appropriate axis system for the subject-based
population/sample means and variances is the population/sample mean

joint axis system.

2. Space-Based Mean and Variance

In this case, the shoulder complex sinuses and the resistive
force (moment) data are described by (¢mj’ 6mj) with respect to a

common mean joint axis system for all subjects, namely,

emj = emj(¢mj) for the shoulder complex sinus, and

F = F(¢mj, emj) for the resistive force (moment).

The functional expansion coefficients obtained from these data

are now called sgpace-based coefficients. In addition, the

population/sample means and variances obtained from the space-based
coefficients will be called space-based population/sample means and

variances, respectively.

Maximum Voluntary Shoulder Complex Sinus

Table 3.2 1lists the ten subject-based coefficients of the
shoulder complex sinuses for all ten subjects. Table 3.3 lists the
corresponding ten space-based coefficients. These two tables also

list the sample means and variances for all ten coefficients.
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Table

3.2 Subject-based coefficients of the shoulder complex sinuses for all ten subjects

COEFFI- C C c c C Cc C C C Cc
CIENTS 1 2 3 4 S 6 7 8 9 10
1]1.59292 |-0.10675 |-0.24466 | -0.36233 | 0.19558 | 0.44395 10.49886 | 0.06685 |-0.62262 | -0.42877
211.18066 |-0.08909 |-0.07757 | -0.06084 | 0.11961 | 0.33650 |0.23417 |-0.34872 |-0.32021 -6.04841
3]1.42229 |-0.05486 |-0.18374 } -0.15690 | 0.28160 | 0.35114 |0.34084 |-0.26833 |~0.30699 | -0.12560
|suBJ¥. | 4]1.70121 |-0.10321 |{-0.27100 |-0.32562 |-0.02313 | 0.74636 |0.45572 | 0.19442 |-0.26271 | -0.79351
NO.
511.28393 [-0.07031 |-0.33344 | ~0.47247 |-0.04754 {0.67981 | 0.55630 6.44145 -0.12712 | -0.61977
611.57994 |-0.09393 |-0.33890 {~0.37299 0.39152 | 0.89132 [ 0.55373 0.05622 {-0.69396 | -0.86106
711.75422 }-0,06345 |-0,.32748 | -0.46664 |-0.15587 | 0.63602 | 0,62553 0.22174 |-0.22427 | -0.80867
81.53784 |-0.12414 |-0.26177 |-0.41879 | 0.35225 { 0.79143 | 0.50138 | 0.1725) |~0.60433 | -0.49631
911.50215 {-0.12424 |-0.12763 |-0.28346 0.47236 { 0.53337 | 0.27331 |-0.00376 |-0.63518 | -0.39607
101 1.43838 [-0.09574 |-0.29782 |-0.01552 | 0.28790 | 0.44899 | 0.51590 |-0.44247 [-0.49447 | -0.12844
Sample
Mean 1.49936 |-0.09257 |[-0.24640 |-0.29356 | 0.18743 | 0.58589 | 0.45557 | 0.00899 |-0.42918 { -0.47066
Sample
Variance | 0.03112 | 0.00057 | 0.00808 | 0,02666 | 0.04345 | 0.03684 | 0,01685 | 0.07865 | 0.04141 | 0.09062




TS

Table 3.3 Space-based coefficients of the shoulder complex sinuses for all ten subjects

COEFFI- c1 02 03 c4 c5 c6 c7 c8 c9 clo
CIENTS
1 1.18167 | -0.13492 | -0.10623 | -0.04934| 0.11099 } 0.29947 | 0.22508 | -0.37071 | -0.30969 | 0.01536
2 1.59502 | ~0.13343 | -0.36746 | -0.36963} 0.18949 | 0.38560 |} 0.49613 | 0.09209 | -0.61517 | -0.36522
3 1.42535 | -0.12051 | -0.14047 | -0.16509| 0.26499 | 0.37472 | 0.34033 | -0.26402 | -0.29337 | -0.16580
SUBJ. | 4 1.69959 | -0.09904 | -0.19982 | -0.31658]-0.01759 | 0.76733 | 0.45691 | 0.17579 | -0.26778 | -0.81237
NO. :
5 1.28512 | -0.07703 | -0.32588 | -0.47315|~0.05643 | 0.67388 | 0.55654 ] 0.43909 | -0.11917 | -0.61506
6 1.57365 | -0.04192 | -0.36103 | -0.36639| 0.42768 | 0.91880 | 0.55155| 0.03496 | -0.72275 | -0.88100
7 1.75407 | -0.06101 | -0.33126 | -0.46733|~-0.15494 | 0.63562 | 0.62551 ) 0.22275 | ~0.22494 | -0.80821
8 1.54165 | -0.16045 | -0.28826 | -0.42410| 0.33518 | 0.79179 | 0.50885| 0.18746 ]| -0.59228 | -0.50851
9 1.50088 | -0.09623 | -0.03463 | ~0.28225| 0.47499 | 0.54593 | 0.27331 | -0.00882 | -0.63813 | ~0.40824
10 1.43259 | -0.00208 | -0.31430 | -0.00739| 0.31598 | 0.45068 | 0.51082 | -0,.44820 | -0.51794 | -0.11297
Sample
Mean 1.49896 | ~0.09266 | -0.24693 | -0.29213| 0.18903 | 0.58438 | 0.45450 ] 0.00604 | -0.43012 | ~0.46720
Sample .
Variance 0.03091 0.00232 | 0.01395 | 0.02770| 0.04548 | 0.04255 | 0.01727 | 0.08065 0.04394 | 0.09848




Fig. 3.11 shows the best fitted curves for both space-based and

subject-based sinuses for the first subject who has the (¢n, en)

(57°.37, 72°.24) which depart the most from the mean values (¢m, em)
(59° .29, 79°.08). The more the individual joint axis system deviates
from the mean joint axis system, the bigger is the difference between

the space-based and the subject-based sinuses.

.75

| SUBJECT-BASED

~ 125k /
o ]

< |

x

19

TR
| SPACE-BASED

75k
.5 [ o 'l Il a 1 . L b o
0 | > 3 P 5 6 7

Fig. 3.11 Subject-based and space-based maximum voluntary
shoulder complex sinuses for the first subject
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Now let us apply the results obtained from the statistical
analysis developed in Section 3.4 to establish a statistical data base
for the shoulder complex sinus. In this case, the functional

expansion, Eq. (3.2.1), has only one independent variable, i.e., ¢.

From Eq. (3.4.6) one obtains the sample mean

5
= n-1 = .
0 b)) = Z cos ¢ (CZn-l + c2n smd)) (3.6.1)
n=1
and from Eg. (3.4.7) the unbiased sample variance

5
Sg(q)) = Z cosz(n—l) ¢ (Sg + Sé sin2¢) (3.6.2)
n=1 2n-1 2n

Fig. 3.12 displays the least-squares fitted data for the subject-based
sinuses of all ten subjects. This figure also shows curves for the
sample mean, 8()), and those corresponding to 8 (¢) + Se (). Fig. 3.13
shows their corresponding globographic representations in the torso-
fixed coordinate system, i.e., _the spherical coordinates on the globe
are referred to the £fixed body axis system. Therefore, the
coordinates (¢f’ ef) = (0°, 90°) on the globe corresponds to the
emergent point of the X fb-axis ' and the coordinates
(¢fr ef) = (90°, 90°) corresponds to the emergent point of the Ve~
axis. Note that, in this case, since each subject's sinus is defined
by its own 1local axis system designated by (d)n, Bn), from a

statistical point of view, the most "appropriate" local axis system
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Fig. 3.12 Curve-fitted data for subject-based sinuses of all
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Fig. 3.13 Globographic representations of 9

and § + s

0 (subject-based) .
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Fig. 3.14 Least-squares fitted data (dotted lines) for the
space-based sinuses for all ten subjects. The middle
solid curve 1is the space-based sample mean joint

sinus 5(¢). The upper and lower solid curves are
5(¢) + se(¢) and §(¢) - Se(¢), respectively.

for the subject-based 8 (¢) and Sg(¢) is the mean joint axis systenm,

designated by the sample mean, (¢m, 6m), taken from the sample.

Fig. 3.14 displays the least-squares fitted data for the space-
based sinuses for all ten subjects. This figure also shows curves for
the sample mean, 6(d), and those corresponding to B () + Se(¢).

Fig. 3.15 shows their corresponding globographic representations.
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(72°,90°)

Fig. 3.15 Globographic representations of §(¢)
and 6(¢) + Se(¢) (space-based).

Obviously, in this case, the mean joint axis system should be used for
the space-based 8($) and sg(¢), since all the sinuses are represented
in this axis system.

For the purposes of comparison, Fig. 3.16 displays the sample
mean, §(¢), and those corresponding to 8 () + Se(¢) for both space
based and subject-based sinuses. It should be remarked that, while
the space-based and subject-based sinuses may differ significantly for
an individual subject, their sample means and, 0 (¢) + Se(¢), may be

indiscernible as indicated in Fig. 3.16.

One of the most important ways of testing the ultimate overall
performance of the data acquisition system and efficacy of the

associated data analysis methodology is good repeatability of sample
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8,

means and sample standard deviations from different runs made on the
same sample. Fig. 3.17 displays the subject-based sample means, and 8
* Sy from three different runs for all subjects. Rather good
repeatability obviously exists if one realizes that most of the
deviations arise from the variations during circumscription type of

motion by the subjects.

2.1

o

N

0.9

) I U GNP G W S VR GNP SR SNPGRS |

0.6 ————rt————t—— y
0 ! 2 3 4 S S

¢ (RAD.)

Pig. 3.16 8(¢) and 8(p) + S, () for both space-based_and
subject-based sinuses. Note that the two 0 curves
coincide with each other in this figure.

For the confidence level of 95%, utilizing Eq. (3.4.8), we obtain
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Fig. 3.17 B8($) and 8 + se(¢) for three different runs
for all subjects.

from statistical table (Kreyszig, 1972) that

{ 8(0) = ug ()
Pr - 2026 <

€ e £ 2.26 } = 95% (3.6.3)
Sg($)/ /10

Rearranging the inequalities, we obtain

Pr{ [6() - 0.715 Sg®)] < Hg(d) < [5(¢$ + 0.715 se(¢)]}= 95%

(3.6.4)
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In other words, we are 95% confident that the population mean ue(¢) is
within the interval [B(¢) - 07155, (9), B(b) + 0.71555 ($)] at each

value of ¢.

Fig. 3.18 shows the confidence intervals for both the space-based
and subject-based population means for comparison. Fig. 3.19 displays

the globographic representation of the confidence interval for the

subject-based population mean, ue(¢).

2.1

§+0.715 3,

1.8 i |

Fig. 3.18 Confidence intervals (CI) for both the space-based
and subject-based population means.
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Fig. 3.19 Globographic representations for the sample mean, 8,
and the 95% Confidence Interval for the subject-based
population mean, Mg+

For the confidence interval of the population variance, from
Eq. (3.4.11), we have
2

9 59 @)

2
og ()

Pr { 2.70 < <19.,02 | = 95% (3.6.5)

with 2.5% of probability on both tails of the Xz—distribution curve.

Rearranging the inequalities, we have

Pro{ 0.473 82(6) < o2(4) < 3.33 S(0) | = 958 (3.6.6)
In other words, we are 95% sure that the population standard deviation
ce(¢) is bracketed by the interval [0.68889(¢), 1.8236(¢)] at each
value of ¢. Fig. 3.20 shows the plots of this interval as well as

se(¢) for the subject-based population standard deviation, ce(¢).
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Fig. 3.20 The 95% Confidence Interval (CI) for the
population standard deviation, 0,. The
subject-based sample standard deviation,
Se, is also shown.

Passive Resistive Force (Moment) Properties

Table 3.4 lists the subject-based coefficients, as well as their
sample means and sample variances, for the passive resistive force

{(moment) data for all ten subjects. Table 3.5 lists the corresponding

space-based coefficients.
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Table 3.4 Subject-based coefficients for the passive resistive force (moment) data for all

ten subjects

COEFFI- Cl 02 C3 C4 C5 C6 C7 C8 09 Clo
CIENTS
1]-21.36600 | -4.80500 | -0.72700 | 22,06600 { 4.38400 | 16.55500 | 0,51300 } -4.84200 | 1.79200 | -0.10900
2| -33.74500 0.23400 5.61000 | 31.49600 | 8.40000 22,99200 | -3.53400 | -8.05100 | 0.09300 } -1.57300
3| -30.76300 | -4.94500 | -0.35900 | 26.06300 | 7.38400 | 22.98300 | -0.91700 | -6.41200 | -0.49900 | ~1.71500
SUBJ . 4| -26.52200 3.19000 | 5.28400 ] 25.72400 | 6.65400 | 17.86100 | -3.62800 | -6.36300 | -2.08500 | -1.64000
NO.
5] -15.06400 | -2.25400 | -4.62300 | 19.08300 | 5.13200 12.21000 | -3.36300 | -2.72200 | 1.26600{ 1.03000
6 | -20,32000 { ~0.93700| 8.20800 | 16.10400 | 6.94600 16.73100 | -1.31900 | -3.95400 0.22300 | -1.62800
7]-19.38200 | -2.32700 | -1.02800 | 13.51900 | 2.13400 | 12.15200 | -0.16100 | ~1.02800 | -0,29300 | 0.34000
81-16.09600 | -0.92600 ] 4.27800| 10.56800 | 1.66300 | 12,45500 | -0.90400 | ~1.70600 1.03100 | -0.21500
9| -17.80500 | ~6.06200 2.62300 ) 17.43000 | 4.11000 { 13,35300| 0.85200] -2.15800 | 1.14300 | -0.08700
10 | -13.86800 | -1.53400 2.86600 ] 14.00700 | 4.75400 | 10.54000 | ~1.21800 | -4.11600 | -0.56000 | -0.46200
Sample
Mean -21.49310 | -2.03660 2,21320 | 19.60600 | 5.15610 | 15.78320 | ~1.36790 | ~4.13520 0.21110 | -0.60590
Sample
Variance | 45.48725 7.51404 | 14.91813 | 43.76720 | 4.90238 20.00472 | 2.68291 5.27504 1.31021} 0.94889
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Table 3.5 Space-based

coefficients for the passive resistive force (moment) data for all ten subjects

COEFFI-

Variance

1 C, s ¢, Cs Ce <, Cq Cy 0
CIENTS
1|-21.77200 | -0.49800| 0.53500 | 22.69200 | 3.95200 | 16.39900| 0.39000 | -4.08200| 1.00600 | -0.50400
2| -35.05500 | 2.27200] 6.50200 | 32.33400| 7.19800 | 23.12200| -3.86000 | -7.05000| 0.02700 | -1.58800
3| -31.81800 | -5.62700]-0.36800 | 27.31800| 7.13200 | 22.53100| -1.37600 | -5.83300]-0.01000 | -1.19700
suy. | 4| -24.80000 | 0.55200| 4.36000 | 25.49800| 7.21700 | 16.86000| -3.60000 | -6.66600|-1.48000 | -1.30600
NO.
5| -14.96100 | -2.44300|-4.64400 | 19.10400] 4.96000 | 12.10800| -3.39300 | ~2.63000] 1.36600 | 1.07700
6| -20.43000 | -1.66200] 7.42400 | 15.83900| 7.17000 | 17.24500] -0.87800 | ~3.88500 0.09300 | -1.81800
7| -19.40200 | -2.28600|-1.02700 | 13.52000 2.14500 | 12.17000| -0.15300| -1.03400|-0.30000 | 0.32900
8| -16.03200 | -0.45800| 4.93200 | 10.56600] 1.53100 | 12.35600] -0.96300 | -1.71900] 1.11200 | -0.23700
9| -17.44700 | -8.43000 1.56400 | 17.05700] 4.06400 | 13.25400]| o0.89800| -2.46100] 1.45700 | o0.15100
10 | -13.17800 | -2.31000| 2.13100 | 13.11400] 5.37400 | 10.94800| -0.69100 | -4.43800] -0.94400 | -0.69300
Sample | -21.49850 | -2.08900| 2.13990 | 19.70420{ 5.07430 | 15.69930| <1.36260 | -3.97980] 0.23270 | -0.57860
Mean
Sample | 51.73908 | 9.36730|13.86847 | 49.71848| 4.58202 | 19.00889| 2.87202| 4.24702| 0.98632 | o0.85544




From Eq. (3.4.6) one obtains the sample mean
E(4, 0) = (C + T,cosp + C,sind)@ + (C 008

+ Escos¢sin¢ +C sin2¢)62 + (E7cos3¢ +C cosz¢sin¢

6 8

+ Egcos¢sin2¢ +C osin3<|>)63 (3.6.7)

and from Eq. (3.4.7) the sample variance

1

cosz¢ + Sé sin2¢)62 + (Sg cos4¢

2 2 2
S.(, 0) = (8, + 8
£ ¢ 2 3 4

1 C

T4 s2 cosz¢sin2¢ + 52 sin4¢)64 + (sé cosG¢

S5 s 7
+ 52 cos4¢sin2¢ + 52 cosz¢sin4¢ + 52 sin6¢)96
Cc c Cc
8 9 10
(3.6.8)

Note that, in this case, the functional expansion for the force
(moment) properties, i.e. Eq. (3.3.1), has two independent variables,

¢ and 0.

Fig. 3.21 shows both the space-based and the subject-based sample
means for the passive resistive force (moment) property in the form of
a constant contour map. Since the difference between these two

contour maps is imperceptible they are shown in two separate figures

rather than in a superimposed format.
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Fig. 3.21 Constant contour maps of (a) space-based and (b)
subject-based sample means for the passive resistive
force (moment) in Newtons (Newton-Meters).

It should be mentioned that the force (moment) data were
collected beyond the maximum voluntary sinus up to the point, which

will be referred to as the maximum forced sinus, where the subject

starts experiencing discomfort or the upper arm can no longer be moved
(i.e., adduction into the torso occurs). The raw data for the maximal
forced sinus are curve fitted by the same functional expansion used
for the maximal voluntary sinus. Table 3.6 lists the subject-based
coefficients as well as their sample means and sample variances for
the ten subjects' maximal forced sinuses. The statistical analysis
procedure is also applied to the maximum forced sinuses. Fig. 3.22,
for comparison, displays the space-based as well as the subject-based

sample means for the maximal forced sinuses. With the exception of
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Table 3.6 Subject-based coefficients

of the maximum forced sinuses for all ten subjects

COEFFI- C1 C2 C3 C4 C5 » C6 C7 C8 C9 Clo
CIENTS
1] 1.95847 | -0.13361 | -0.42477 |{ ~0.19760 | -0.06931 | 0.86523 ] 0.71596 | -0.33193 |-0.38737 -0.§0224
2] 2.05970 | -0.15205 | -0.44746 | ~0.37028 | 0.18673 | 0.71718 0;92062 0.10291 | -0.72357 | -0.76177
3] 2.02944 | 0.04465 | ~0.02249 | -0.05501 | -0.01525 | 0.78285 | 0.27618 ]} -0.60899 | -0.21055 | -0.43102
SUBJ. 4] 2.06142 | ~-0.06659 | -0.14934 | -0.22026 | 0.01678 | 0.23767 | 0.38708 | -0.21028 |~-0.20828 | -0.05278
NO.
5| 2.02973 | -0.04433 | 0.13719 | -0.42731 { -0.17474 | -0.30285 | ~-0.07285 | -0.11544 | -0.30782 | 1.04693
6] 2.02761 | -0.11431 | -0.22517 } -0.13266 § 0.09089 | -0.30028 | 0.54808 | ~0.26533 | -0.24242 | 0.74863
7| 2.14849 | -0.12938 | 0.12166 | 0.05062} 0,06783 ]| 0.08645 | 0.15261 | ~0.99712 | -0.69896 | 0.21765
8] 1.95496 | ~0.29534 | -0.26107 | -0.08081 | 0.49858 | 0.42557 | 0.84891 | -0.79603 | ~-0.58480 | 0.19829
9 1.83864 | -0.15643 | 0.14464 | -0.12550 | 0.46590} 0.16682 | -0.31702 | -0.41109 | -1.26334 {-0.78313
10} 1.99501 |-0.15882 | -0.26241 | -0.56146 | -0.36536 | -0.01707 | 0.61799 | 0.20085 | 0.11311 | 0.98942
Sample
Mean 2.01035 |-0,12062 | -0.13892 | -0.21203 | 0.07020 § 0.26616 | 0.40775 | -0.34324 | -0.45140 | 0.03700
Sample
Variance | 6.00674 | 0.00784 | 0.05030 | 0.03538| 0.07038 | 0.18028 | 0.16174] 0.14207 | 0.14629 | 0.52602
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Fig. 3.22 space-based and subject-based sample means for the
maximal forced sinuses.

Fig. 3.23 Globographic representations. of the subject-based
mean maximal voluntary (inner curve) and mean maximal
forced (outer curve) sinuses.

the region 0 < ¢ < g, these two sample means have indistinguishable
difference. Finally, Fig. 3.23 shows the globographic representations

of the subject-based mean maximal voluntary and mean maximal forced

sinuses.

In computing the sample means, we found two different

alternatives to represent the individual joint sinus and passive
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resistive property. For the shoulder complex investigated in this
study, it was established that the difference between the subject-
based and the space-based sample means is indicernible even though
each one possesses a particular anatomical or physical significance.
In the next two chapters, for simplicity, we shall adopt the subject-
based approach in representing the joint properties for the hip and

humero-elbow complexes.

To obtain some physical insights into the nature of the joint
property of the human shoulder complex, let us superimpose the three
most important results, i.e., the (subject-based) sample means of the
passive resistive force (moment), maximum voluntary sinus, and maximum
forced sinus, on the same figure as shown in Fig. 3.24. First,

several observations concerning the passive resistive properties

beyond the maximal voluntary shoulder complex sinus can be made:

1. The constant resistive force (moment) contours are not
simply an outward conformal expansion of the maximal
voluntary sinus as one might surmise and adopt to use in

currently existing multisegmented total-human-body models.

2. The shoulder complex is 1least resilient in the two rear
quadrants (0< ¢ <), In this region, more or 1less
constant force (moment) values [between 14 and 18 Newtons

(Newton-Meters)] were observed to initiate discomfort.

3. The lower front portion (m < ¢ < %n) of the plot exhibits

the most resilient behavior due to adduction of the upper
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Pig. 3.24 Subject-based sample means of the passive resigtive

4'

force (moment), maximum voluntary sinus (inner dashed),
and maximum forced sinus (outer dashed).

arm into the torso. No real discomfort was observed and the
maximal forced sinus in this region is based on the 0 values
reached as far as possible during the constant-p sweeps for

the force (moment) levels which were applied.

The upper front region (%1r< ® < 21) exhibits an
intermediate (transitional) characteristic in terms of
resilience. In this region, discomfort initiates at the
force (moment) level of about 26 Newtons (Newton-Meters).
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Second, the maximum voluntary and forced sinuses specify the

applicable domain of the passive resistive property. The resistive

forces (moments) below the maximal voluntary sinus are appreciably
lower in magnitude and thus can be neglected. Therefore, the maximal
voluntary sinus can be considered as the lower limit of the applicable
range for the expansion function E(¢, 6). In fact, Figqg. 3.9 shows
that in the neighborhood of the origin (pole), dashed curves indicate
both lacking good fit and being outside the applicable domain. In the
strict sense, the upper limit is the maximal forced sinus for the
applicability of (¢, 6). However, the extrapolated values by E(d, 0)
beyond this upper limit are most likely predictions and can be used up
to the point of impending injury for the simulation studies of

multisegmented mathematical models.
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4. BIOMECHANICAL PROPERTIES OF THE HUMAN HIP COMPLEX

4.1 Introduction

This chapter deals with the in-vivo biomechanical properties of
the human hip complex in the sitting position with the torso being
fixed. The data so obtained are suitable for simulating a seated

pilot as well as an occupant in a car.

The term "hip complex" refers to the combination of the hip
joint, pelvis, lumbar spine, and their articulations. Fig. 4.1 shows
the principal bones and ligaments of the hip complex. Since the
femoral motion, while sitting with torso being fixed, is normally
accompanied by 1lumbar flexion and pelvie tilting, it is more
appropriate to use the term "hip complex sinus," rather than "hip
joint sinus,"™ to designate the range of extreme allowable motion of
the femur with respect to torso. The human hip has been normally
modeled as a three-degree-of-freedom ball and socket Jjoint by most
researchers (Dempster, 1955; Johnston and Smidt, 1969; Chao et al.,
1970; Lamoreux, 1971), although in some cases it has also been
simplified by neglecting the axial rotation (Saunders et al., 1953;
Paul, 1965). In planar motion studies, it is even assumed as a one-
degree-~of-freedom revolute (or hinge) joint (Clayson et al., 1966;

Beckett and Chang, 1968).

71



ILIOLUMBAR
~ LIGAMENT

/INTERVERTEBRAL
FIBROCARTILAGE

s ILIUM N
( 2Qaremon
<—— ANTERIOR
LIGAMENT SACROILIAC
SACROSPINOUS LIGAMENT
LIGAMENT
<« SYMPHYSIS
N PUBIS
ILIOFEMORAL
LIGAMENT
ISCHIOCAPSULAR
SACROTUBEROUS LIGAMENT
LIGAMENT
FEMUR
POSTERIOR VIEW ANTERIOR VIEW

Fig. 4.1 Principal bones and ligaments of the hip complex.

Functionally, unlike the shoulder which has sacrificed stability
in favor of mobility, the hip provides essential stability for support
of the body as well as a certain degree of mobility. Structurally,
the pelvis is more rigid than the rather freely movable scapula. The
interplay among the hip joint, pelvis, and lumbar spine is similar to

~that between the shoulder joint (the glenohumeral joint) and the
shoulder girdle which includes the clavicle and the scapula. However,
the articulations of the sacroiliac joint and symphysis pubis provide
muchbless mobility than those of the shoulder girdle. Furthermore,
the joint capsule, the ligaments, and the muscles have reduced the
freedom of the hip joint whose bony structure permits almost as much

mobility as is found in the glenohumeral joint. For example, hip
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hyperextension is practically insignificant mainly due to the
ligamentous check of the iliofemoral (Y) ligament. Finally, it should
be noted that hip flexion is also dependent upon the amount of knee
flexion due to the interaction of the two-joint muscles between the
hip and knee joints. With the knee in full extension, hip flexion is
limited by the hamstrings. More detailed anatomical and
kinesiological descriptions are available in standard textbooks
(Steindler, 1973; Norkin and Levangie, 1983; Gray's Anatomy, 1973)

and, therefore, will not be made here.

4.2 Determination of the Hip Complex Sinus

The major components of the data acquisition system used in this
study are the sonic digitizer which is 1linked with the PDP-11/34
minicomputer, digitizer sensor assembly, torso restraint system, and
six sonic emitters mounted on a cylindrical thigh cuff as shown in
Fig. 4.2. The thigh cuff is, in turn, attached to an orthotic brace,
which is held onto the thigh by three Velcro straps. The front part
of the brace is shaped so that the patella can move freely.

The quantitative determination of the hip complex sinus involves
the following basic steps: (1) immobilizing the torso to be treated as
the fixed body and defining the fixed body axis system as shown in
Fig. 3.2(a), (2) having the subject move the upper leg along the
maximal voluntary range of motion and monitor, with respect to the
fixed body axis system, the 3-D coordinates of a distal point on the

moving body segment; this point (to be referred to as the knee joint
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Fig. 4.2 Major components of the data acquisitions system,
1) Sonic Digitizer, 2) Digitizer Sensor Assembly,
Torso Restraint System, 4) Thigh Cuff with Six
Sonic Emitters,

reference point) is selected as being on the mechanical axis of the
femur at the level of the femoral lateral epicondyle, (3) fitting the
knee joint reference point coordinates to a sphere using the least-
squares method, thus establishing a center for the best-fitted sphere
and an idealized link length (radius of the sphere), (4) fitting a
plane to the same knee joint reference point coordinates to a sphere
using the least-squares method; the normal to this plane (specified by
the spherical coordinates (¢n, en) as shown in Fig. 4.3) establishes

the pole (zjt-axis) of a local joint axis system with respect to which
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Fig. 4.3 Relative orientation between the fixed body (xfb’

Yep? sz) and locally-defined joint (xj
zjt) axis systems.

t! Yy’

the hip complex sinus, designated by the spherical coordinates (¢, 9)
of the vector connecting the center of the best-fitted sphere with the
knee joint reference point, can be expressed as a single-valued

functional relationship, i.e., 0 = 0($).
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Since only the knee joint reference point is monitored in this
study, only the relationships between this point and the six sonic
emitters on the thigh cuff need to be initialized. The calculations
are the same as those used for the origin of the longitudinal axis
system thoroughly discussed in Section 2.2, However, since the knee
joint reference point is 1inaccessible, two emitters are needed to
interpolate it as being located at the center. The emitter
positioning for this initialization process is schematically shown in

Fig. 4.4.

Before the hip complex sinus test, the subject was instructed to
move his upper leg along its maximal voluntary range of motion in a
counterclockwise motion as viewed from the sensor assembly. He was
also instructed to displace the wupper leg distally along its
longitudinal axis as far as possible at all times while circumscribing
the hip complex sinus. Preferred rotation of the upper leg about its
longitudinal axis as well as preferred knee flexion were left up to
the discretion of the subject in obtaining the maximal contour.
Several sweeps of this type were practiced before data were collected
so that the subject could exﬁeriment with obtaining the 1largest
possible range of motion. In order to help maintain a constant rate
of motion during data collection, a large clock with an easily visible
second hand was placed in front of the subject. The subject was
instructed to imagine his upper leg as the second hand, and to
synchronize his hip complex sinus circumscription with the clock's 60

second sweep.
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Table 4.1 lists the centers and radii of the best-fitted spheres
and (¢n, en) values of the best-fitted planes for all ten subjects.
With respect to each individual local joint axis system, Figs. 4.5-4.7
show the hip complex sinuses for three subjects and their
corresponding least~squares fitted functional expansions of
Eq. (3.2.1). Figs. 4.8-4.10 display the corresponding globographic
representations of these three subjects' functional expansion sinuses

with respect to the fixed body axis system.

Table 4.1 Centers and radii of the best-fitted spheres and
and (¢n, en) for all ten subjects.

SUBJECT CENTER (cm) RADIUS ¢y 8,
No. Rep Yep Zg), (cm) (deg.) (deg.)
1 1.77 6.14 20,85 47.82 47.22 64.85
2 3.63 5.98 27;45 43.76 53.78 52.18
3 5.26 8.49 28.80 47.35 42.37 60.04
4 -0.10 5.64 31.39 45,50 47.06 52.54
5 3.24 5.96 27.57 43.79 55.17 51.40
6 3.93 6.94 26.78 46.61 37.17 52.83
7 -0.50 5.08 29.85 46.81 49.39 53.77
8 3.12 7.01 |- 29.30 47.87 33.46 57.18
9 ~1.70 6.26 18.07 50.07 36.78 68.34
10 3.84 4.40 25.16 - 48.90 34.54 55.35

Sample

Mean 2,25 6.19 26.52 46.85 43.19 56.85

Sample

St. Dev. | 2.28 1.12 4.15 2.04 7.96 5.81
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Pig. 4.5 Raw data and the functional expansions of the hip
complex sinus for subject No. 1.
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Fig. 4.6 Raw data and the functional expansions of the hip
complex sinus for subject No. 2.
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Fig. 4.7 Raw data and the functional expansions of the hip
complex sinus for subject No. 3.
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Fig. 4.8 Globographic representations of the hip complex
sinuses for subject No. 1.
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Fig. 4.9 Globographic representations of the hip complex
sinuses for subject No. 2.



Fig. 4.10 Globographic representations of the hip complex
sinuses for subject No. 3.

4.3 Determination of the Passive Resistive Properties

As is the case for the forced tests on the shoulder complex, it
is also desirable to perform a series of forced tests in which the
upper leg is forced outward in the direction of increasing 6 for a

constant-$ value with respect to the local joint axis system,

For a typical forced kinematic test, the subject's torso is first
rotated by an a&angle - (90° - ¢n) about the positioning system yaw
axis, and then rotated - (90° - Bn) about the roll axis. If the
subject then extends his upper leg in an orientation parallel to the
horizontal pitch axis of the positioning system, the mechanical axis

of the femur will be at (4>n, en;, i.e., coincide with the zjt-axis
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with respect to the torso fixed body axis system. To factor out the
gravitational loading of the leg, an adjustable pulley-cable system is
used to hold the leg with the pulley positioned directly above the hip
joint so that the horizontal component of the cable force passes
through the hip joint and does not serve to either abduct or adduct
the upper leg. The subject is first instructed to move his leg to its
maximal voluntary position in the constrained plane of motion of the
upper leg. The leg is backed~off from its maximal voluntary position,
and this then is the starting orientation of the forced sweep. The
force applicator is then positioned vertically at the same level as
the subject's upper leg, and the transducer front is pointed near the
knee joint. The subject's upper leg is next abducted or adducted in a
quasi~static manner until the subject starts experiencing discomfort
or the upper leg can no longer be displaced (e.g., adduction into the
torso occurs). During the entire course of each test, the subject is
instructed to let his leg hang limply and not to actively (muscularly)
resist the motion of the test. The bridge circuits of the force-
moment transducer are all set to zero at the start of each test, so
that recorded values during the sweep are departures from this
"neutral" force-moment orientation, or stating it in a different

manner, they are the passive resistive force-moment values.

With respect to the joint axis system, as mentioned earlier,
these force sweeps take place in a direction of increasing 6, and at
an approximately constant-¢ value. By then rotating the restraint

positioning system about its pitch axis, a series of constant-¢ sweeps
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are obtained. In this way the tests are performed as four sub~series
with each sub-series discernible by its own experimental set-up
configuration as shown in Fig. 4.11. The groupings consist of
constant-}¢ sweeps in: 1) the upper-rear quadrant (0°< ¢ < 90°), 2)
the lower-rear quadrant (90° < ¢ < 180°), 3) the lower-front gquadrant
(180° < ¢ < 270°,and 4) the upper-front quadrant (270° < ¢ < 360°).
The data obtained according to the procedure outlined above are
analyzed as follows. First, the force (f) and moment (ﬁ) vectors
obtained from the force applicator transducer are used to calculate a

total moment vector with respect to the center of the best-fitted

sphere
- <> - ->
Miggay =M+ EXF

where ¢ is the moment arm vector from the center of the best-fitted
sphere to the point of force application. Next, the total moment
vector is resolved into components along and perpendicular to the
moment arm vector. The component along the moment arm vector is then
discarded, since it does not serve to restore the moving segment to an
‘orientation within the maximal voluntary hip complex sinus. Finally,
a "normalized" moment arm vector of unit length, i.e., one meter,
along the moment arm vector is used together with the remaining moment
component (the passive resistive moment vector) to calculate the
passive resistive force vector. Since the moment arm is normalized to
one meter, the magnitude of the resistive force vector is the same as

that of the resistive moment vector. We shall refer to this magnitude
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Fig. 4.11 Representative test configurations in each of the four quadrants:
1) upper-rear, 2) lower-rear, 3) lower-front, 4) upper-front



as the passive resistive force (moment) property, which is assumed to
be a function of ¢ and 8 in this study with respect to the local

joint axis system.

Figs. 4.12~4.14 show the constant resistive force (moment)

contour maps for three subjects on the modified joint axis system.

(-2.5,2.5) (2.5, 2.5)

(-2.5,-2.9) (2.5,-2.5)

Fig. 4.12 Constant resistive force (moment), in Newtons
(Newton-Meters), contour map on the modified joint
axis system, in radians, for subject No. 1. The maximal
voluntary hip complex sinus (inner dashed) and the
maximal forced sinus (outer dashed) are also indicated.
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Fig. 4.15 displays the "goodness" of the curve fitting for the raw

data of

several constant-$) sweeps for the first subject. In

Figs. 4.12-4.14, the respective maximal voluntary hip complex sinuses

(-2.5,2.5)

(-2.5,-2.5)

Fig. 4.13

q
1\
(2.5, 2.5)
—--:?5° 80_19Q 120 \\
406" )
N
!
) , S
] >p
/
(2.5,-2.5)

Constant resistive force (moment), in Newtons
(Newton-Meters), contour map on the modified joint
axis system, in radians, for subject No. 2. The
maximal voluntary hip complex sinus (inner dashed)
and the maximal forced sinus (outer dashed) are
also indicated.
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and maximal forced sinuses are also indicated. PFinally, Figs. 4.16-
4.18 show the globographic representations of the maximal forced
sinuses together with the maximal voluntary sinuses (run No. 1) Efor

the three subjects.

(-2.5,2.5) (2.5,2.5)

(-2.5,-2.5) (2.5,-2.5)

Fig. 4.14 Constant resistive force (moment), in Newtons
(Newton-Meters), contour map on the modified joint
axis system, in radians, for subject No. 3. The
maximal voluntary hip complex sinus (inner dashed)
and the maximal forced sinus (outer dashed) are also
indicated.
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Fig. 4.15 Raw data and the fitted curves (drawn from Fig. 4.12)

for several constant-) sweeps.
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(inner curve) and forced (outer curve) sinuses for

Fig. 4.16 Globographic representations of the maximal voluntary

ct No. l.
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o
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Fig. 4.17 Globographic representations of the maximal voluntary

(inner curve) and forced (outer curve) sinuses for

2.

subject No.
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Fig. 4.18 Globographic representations of the maximal voluntary
(inner curve) and forced (outer curve) sinuses for
subject No. 3.

4,4 Statistical Data Base for the Biomechanical Properties of

the Human Hip Complex

Since the functional expansions used herein are the same as those
used for the shoulder complex, the statistical analysis is the same as

presented in Section 3.6; thus it will not be repeated here.

Table 4.2 lists the expansion coefficients of the hip complex
sinuses for all ten subjects. This table also lists the sample means
and sample variances of the ten coefficients. Fig. 4.19 displays
these ten sinuses as well as their sample mean, 5(¢), and B

¢) + Se(¢). Fig. 4.20 shows the globographic representations of the

latter three. Fig. 4.21 shows the 6 and B + Se curves for two
different runs. Again, this figure reveals good repeatability of the

hip complex sinus tests.
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Table 4.2 Expansion coefficients of the hip complex sinuses

for all ten subjects

COEFFI-

Cc

1 2 Cs Cy Cs Cs ¢ Cs Cq 10
CIENTS
1l 0.39571 ﬂ0.08703 -0.00428 | -0.11163 0.56715| -0.02082§ -0.00608] -0.55837 | -0.13548| 0.13040
2 0.41498 -0.03727 | -0.03586 | -0.15646 0.26460 0.25202 0.02128 0.15108 { -0.08600!-0.31333
3 | o0.66374| -0.01989| 0.01311}-~0.14792 | 0.33131| 0.04340| 0.00400| -0.43214 | 0.03317| 0.19523
suBJ.) 4 | 0.64836 0.05747 | ~0.09878 | -0.27652 | 0.38494| 0.01268] 0.09635| -0.13057 | -0.15474|-0.00942
NO.
5 0.41728 -0.03587 | -0.01455 | -0.21832 0.38268} -0.02453| .0.00890] -0.00675 | -0.19582| 0.14766
6 0.57179 0.05677 0.13936 | -0.10665 0.25711| -0.42213 | -0.09643| -0.26946 | ~0.23603| 0.77554
7 0.58089 0.01795 | -0.11139 | ~0.23718 0.52750 0.06738 0.11461} ~-0.22175 | -0.26809] 0.02208
8 | 0.56665| 0.07304 | 0.07290 | -0.04798 | 0.21822| -0.11714| -0.08476 | -0.30503 | 0.35835]| 0.29331
9 | 0.42387 | -0.04199 | -0.11612 | -0.13343 | 0.28786 | ~0.21253 | 0.09007 | -0.27206 | 0.16308| 0.37762
10 | 0.54724 0.04135 { 0.18202 | 0.05549 | 0.31620| -0.01822] -0.17311 | -0.52484 | 0.16224} 0.21174
Sample
Mean 0.52305 _0.00245 0.00264 | ~0.13806 0.35376 1 -0.04399 | -0.00252 | -0.25699 0.01127] 0.18308
Sample
Variance | 0.01029 | 0.00292 | 0.01057 | 0.00924 | 0.01327| 0.03213| 0.00861] 0.04915| 0.04409| 0.07949
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Fig. 4.19 Hip complex sinuses for all_ten subjects (dotted curves).
solid curves are for 0 and 8 + SB‘

Fig. 4.20 Globographic representations of § and 8 + Se.
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Pig. 4.21 8 ana 8 t 5 for two different runms.

For the confidence level of 95%, Fig. 4.22 shows the confidence
interval of the population mean, and Fig. 4.23 its corresponding

globographic representation.

Table 4.3 lists the expansion coefficients as well as their
sample means and sample variances of the passive resistive £force
(moment) data for all ten subjects. Table 4.4 lists the expansion

coefficients of the maximum forced sinuses for all ten subjects.
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Fig. 4.22 Confidence Interval (CI) for the population mean, ue.

Fig. 4.23 Globographic representation of the Confidence Interval
for the population mean.
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Table 4.3 Expansion coefficients of the passive resistive
force (moment) data for all ten subjects.

COEFFI-

1 2 3 4 5 6 7 8 9 10

CIENTS

) | -4.93 -1.37 15.12 59.24 94.97 143.89 -7.94 -3.70 16.63 -11.34

2 -8.67 -7.68 57.96 59.73 49.13 87.61 5.85 18.72 18.19 -14.19

3 -9.11 -6.55 12.47 50.23 40.16 75.25 -2.09 -5.58 13.33 18.98
SUBJ.| 4 -7.13 -0.64 14.65 83.48 69.25 81.22 -2.24 -23.48 -29.01 -24.03
NO. i

5 ~14.45 7.85 34.81 66.84 60.81 106.39 3.81 14.80 11.74 -13.59

6 -2.18 -2.84 20.29 45.56 46.48 89.29 1.30 -20.55 -27.34 -14.46

7 -17.84 5.44 18.03 72.58 39.33 73.49 2.92 14.38 22.40 -4.73

8 -1.49 -7.80 11.03 39.68 47.88 79.22 2.56 5.13 10.72 -10.57

9 -12.48 3.12 17.87 63.94 71.45 102.09 2.17 9.04 15.20 -13.51

0 -5.86 -6.18 20.98 53.17 54.48 112.70 1.28 -19.82 -26.17 -18.85
Sample
Mean -8.41 -1.66 22,32 59.44 57.39 95.11 0.76 -1.11 2.57 -10.63
Sample 27.72 31.61 200.61 170.33 296.83 473.58 15.39 253.70 442.067 133.73

Variance
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Table 4.4 Expansion coefficients of the

maximum forced sinuses

COEFFI- Cl C2 c3 C4 C5 C6 C7 C8 09 C10
CIENTS
1 ]| 0.86022 -0.29444) 0.43908 | -0.89108 | -0.01064] 0.37849 | -0.53381| 0.60123 | 0.37733 | -0.35817
2 | 0.87910 -0.16396] 0.21117 | -0.61168 | 0.02493}-0.03323 | -0.28160} 0.29654 | 0.0711l4 0.03164
3 | 0.95953 -0.30142} 0.37933 | -0.52935} 0.12908} 0.16419 | -0.33168{ 0.35897 | 0.00000 0.00000
SUBJ.| 4 0.95015 -0.06743| 0.02830 | -0.46765] 0.20000}{-0.16934 | -0.07731} 0.12608 | 0.00000 0.00000
NO.
5 | 0.79477 -0.11009 |-0.01419 | -0.36841 | 0.30207} 0.22030 0.15289}-0.05182 | 0.12805 | -0.26038
6 | 0.96264 -0.00587 0.17370 | -0.45350} 0.81117] 0.50267 | ~-0.02478}-0.50541 | -0.22958 | -0.07306
7 | 0.76140 0.02475| 0.01770 | -0.30282| 0.67457}-0.10819 0.03962}-0.27926 | -0.30765 | -0.17010
8 | 0.82154 -0.05859 ) 0.43567 | -0.62290 0.30109|-0.45838 | -0.31269} 0.42118 | -0.00489 0.31648
9 }0.61995 -0.17743| 0.36143 | -0.61903 | 0.70729]|-0.34451 | -0.49297] 0.38546 |-0.27602 0.37877
10 | 1.05702 0.01582 0.33113 | -0.14915| 0.34016f 0.67845 | -0.43865(~0.33994 {-0.18280 | -1.04720
Sample
Mean 0.86663 -0.11387} 0.23633 | -0.50156} 0.34797| 0.08304 | -0.23010| 0.20238 | ~-0.06805 | -0.11820
Sample
Variance | 0.01560 0.01414 0.03159 0.04200| 0.08416} 0.13700 0.05662( 0.10691 | 0.04161 0.15910




Fig. 4.24 superimposes the sample means of the passive resistive
property, the maximum voluntary and forced sinuses. Finally, Fig. 4.25
shows the globographic representations of the sample means of the
maximum voluntary and forced sinuses.

Based on the numerical results shown in Fig. 4.24, several
observations and remarks concerning the passive resistive properties
of the human hip complex beyond the maximal voluntary sinuses can be

made:

1. The constant resistive force (moment) contours are not
simply an outward conformal expansion of the maximal
voluntary sinus as one xnigﬁt surmise and adopt to use in
currently existing multisegmented total-human-body models.

2. The two rear quadrants (0 < ¢ < T) are the most important
regions in terms of pain threshold and injury potential. 1In
this region, discomfort was observed at the force (moment)
levels of approximately 60 to 80 Newtons (Newton-Meters),
which are about 4.5 times those found on the shoulder

complex.

3. In the two front quadrants (r < ¢ < 2r), no real discomfort
was observed due to adduction of the upper leg into the
opposite leg or the torso. In this region, the maximal
forced sinus is based on the O values reached as far as
possible during constant-¢ swéeps for the force (moment)

levels which were applied.
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(-2.5, -2.5)
Fig. 4.24 sSample means of the passive resistive property,
maximum voluntary sinus (inner dashed), and
maximum forced sinus (outer dashed).
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Fig. 4.25 Globographic representations of the sample means of
the maximum voluntary and forced sinuses.
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5. BIOMECHANICAL PROPERTIES OF THE HUMAN HUMERO-ELBOW COMPLEX

5.1 Introduction

Two types of data are considered in this chapter: (1) the
maximum voluntary humero-elbow complex sinus, or, the angular range of
the extreme allowable motion of the lower arm with respect to the
upper arm whose axial rotation is permitted, and (2) the passive
resistive properties beyond the full elbow extension with the lower

arm in pronation.

The elbow complex is composed of three articulations: the
humeroradial, the humeroulnar, and the superior radioulnar; it has
been modeled as a trochoginglymus joint possessing two rotational
degrees of freedom (flexioﬁ-extension and pronation-supination) by
most investigators (Dempster, 1955; Steindler, 1973; Youm et al.,
1979). By utilizing the inserted Kirschner wires for defining
coordinate axes and biplanar radiographs, Chao and Morrey (1979) were
able to accurately isolate the three-dimensional rotation of cadaver
forearms under passive elbow motion} the translatory components of the
joint motion were ignored by assuming that the tight 1ligamentous
constraints would 1limit such motion to small magnitudes. The
additional component of rotation is referred to as the carrying angle

(or abduction-adduction). Chao et al. (1980) also developed a device
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similar to the electrogoniometer for determining the three-dimensional
angular motion occurring at living normal subject's elbow joint while
performing different daily functions. The carrying angle normally
disappears when the lower arm is pronated with the elbow in full
extension. Due to the articular check (between the olecranon process
and fossa) and the ligamentous constraints, excessive elbow extension

beyond the maximum voluntary range may cause serious injuries.

5.2 Determination of the Humero-Elbow Complex Sinus

Both kinematic and force application tests for the elbow joint
are shown in Fig. 5.1. This figure also shows the upper arm restraint
fixture. The fixed longitudinal axis of the upper arm with respect to
the torso is chosen tocoincide with the z~axis of the statistical mean
joint axis system established for the shoulder complex in Section 3.2.
In the author's opinion, by positioning the upper arm in this
orientation, the shoulder complex is in a state of maximum laxity. As
shown in Fig. 5.2, the mean Jjoint axis system is uniquely obtained by
first rotating the torso axis system by the mean angle ¢m(= 59°) about
the zts-axis and then rotating the intermediate (primed) axis system
by the mean angle 9m(= 7§>) about the y'-axis. 1In this study, this
mean joint axis system 1is also naturally selected as the fixed
reference frame (fixed-body axis system) for performing the kinematic
analyses of the forearm; the origin of this fixed-body axis system is
conveniently chosen to be the center of the humeral head.

Since the upper arm is only permitted to rotate about its

longitudinal (long-bone) axis, its translational degrees of £freedom
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.fig; 5.1 KRinematic and force application tests for the
elbow complex.

are prohibited by the shoulder part of the torso restraint shell, and
the other two rotational degrees of freedom are eliminated by
fastening the upper arm onto a rigid fixture (whose direction, of
course, is along the sz-axis of the fixed reference frame) with three

Velcro straps.
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Fig. 5.2 Relative orientation of the mean joint axis system,
or the fixed-body axis system, (xfb' yfb' sz) and
the torso axis system, (xts' Yts' zts)'

An orthotic brace made of heat-moldable orthoplast is used in
order to mount the six sonic emitters on the lower arm to monitor its
rigid-body kinematics. Two Velcro straps are used to hold the brace
on the lower arm. 1In addition, by letting the hand hold a pole which

extends from the brace, the wrist complex is fixed so that the forearm
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muscles are held in a stable configuration. This orthotic device thus
eliminates the relative shifting motion between the forearm and the
brace. The forearm cuff with six emitters affixed to it is then
rigidly attached to the brace by two screws. The forearm cuff is made
of a rigid, cylindrical, plastic. shell which extends about three-
quarters of the way around the lower arm. It is believed that this
orthotic configuration comes as close as possible to rigid. body

conditions, and ©provides for accurate measurement of forearm

kinematics.

The procedure for quantitative determination of the humero-elbow
complex sinus consists of the following steps: (1) immobilizing the
torso and upper arm, and defining the fixed body axis system as

described before (also refer to Fig. 5.2), (2) having the subject move

his forearm along the maximum voluntary range of motion and
continuously monitoring, with respect to the fixed-body axis system,
the 3-D coordinates of a distal point on the moving body segment; this
point (to be referred to as the wrist Jjoint reference point) is
selected as being on the longitudinal axis of the forearm at the level
of the styloid process, (3) fitting the wrist joint reference point
coordinates to a sphere wusing the least-squares method, thus
establishing a center for the best-fitted sphere and an idealized link
length (radius of the sphere), (4) fitting a plane to the same wrist
joint reference point coordinates using the least~squares method; the
normal to this plane (specified by the spherical coordinates (¢n, en)

as shown in Fig. 5.3) establishes the pole (zjt-axis) of a local joint
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Fig. 5.3 Relative orientation of the fixed-body (x_.,, Y.
. s fb’ “fb
sz) and the locally-defined joint (x.t, yjt'

z..) axis systems. J

jt

axis system (for the humero-~elbow complex) with respect to which the
humero-elbow complex sinus, designated by the spherical coordinates
(¢, 0) of the vector connecting the center of the best-fitted sphere

with the wrist joint reference point, can be expressed as a single-

valued functional relationship, i.e., 8 = 0(d).
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Since only the wrist joint reference point is monitored, the same

initialization procedure as that used for the hip complex is employed.

Before the humero-elbow complex sinus test, the subject was
instructed to move his forearm along its maximum voluntary range of

motion in a counter-clockwise direc¢tion as viewed from the sensor

assembly. Preferred rotation of the forearm about its longitudinal
axis was left up to the discretion of the subject in obtaining the
maximum sinus. Several sweeps of this type were practiced before data
were collected so that the subject could experiment with obtaining the
largest possible range of motion. In order to help maintain a
constant rate of motion during data collection, a large clock with an
easily visible second hand was placed in front of the subject. The
subject was instructed to imagine his forearm as the second hand, and
to synchronize his circumscription with the clock's 60 second sweep.
The firing rate of the sonic emitters was set at seven data records
per second (as used for the shoulder and hip complexes) so that a
total of 420 wrist joint reference points was collected for each

complete humero-elbow complex sinus.

Table 5.1 lists the centers and radii of the best-fitted spheres
and (¢n, en) values of the best-fitted planes for all ten subjects.
With respect to each individual local joint axis system designated by
(¢n, en), Figs. 5.4-5.6 show both the raw data and least-squares
fitted wvalues of the single-~valued functional relationship, 1i.e.,
O = 0(d) of the humero-elbow complex sinus for three subjects. In

these figures, only 72 raw data points (approximately equally spaced)
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Table 5.1 Centers and radii of the best-fitted spheres
and (¢n, en) for all ten subjects.

SUBJECT CENTER (cm) RADIUS ¢n en
No. xfb be sz {cm) {deg.) (deg.)
1 -0.06 0.19 28.76 29.58 -57.25 74.47
2 0.43 0.12 25.90 29.62 -40.57 71.42
3 " 0.69 0.96 27.11 29.72 -57.51 70.92
4 1.62 -0.20 28.14 31.12 -43.44 70.21
5 -1.22 -0.30 22.09 28.38 -67.33 58.75
6 -0.72 -1.51 25.00 - 29.93 -55.06 66.69
7 -0.77 0.88 26.79 30.96 -42.73 75.45
'8 -0.43 0.66 27.73 30.24 -53.74 68.01
9 -1.27 1.01 26.90 29.39 =-37.92 73.99
10 ~1.10 0.21 26.51 28.69 -55.70 59.94

Sample

Mean -0.42 0.20 26.49 29.76 -51.14 68.98

Sample

St. Dev. 0.89 0.76 1.88 0.87 9.46 5.78

were plotted and used for curve-fitting of the functional expansion,
BEq. (3.2.1). Figs. 5.7-5.9 display the globographic representations
of these three functional expansion sinuses with respect to the fixed-

body axis system.
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Fig. 5.4 Raw data and the functional expansions of the
humero-elbow complex sinus for subject No. 1.
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Fig. 5.5 Raw data and the functional expansions of the
humero-elbow complex sinus for subject No. 2.
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Fig. 5.6 Raw data and the functional expansions of the
humero-elbow complex sinus for subject No. 3.
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Fig. 5.7 Globographic representation of Fig. 5.
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Fig. 5.8 Globographic representation of Fig. S.
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Fig. 5.9 Globographic representation of Fig. 5.6.

5.3 Determination of the Passive Resistive Properties

Beyond the Full Elbow Extension

Since the force applicator is constrained to motion in a level
horizontal plane by a track-mounted trolley system located ovg;head,
it is necessary to tilt the torso, while sitting, if’£= 90° - em)
about xts-axis so that the upper arm is also parallel to the.ground.
The subject was first instructed to pronate his forearm to face the
ground and to fully extend it. The force applicator was then
positioned vertically at the same level as the subject's forearm, and
the transducer £front was positioned near the wrist joint. The
subject's forearm was next forced beyond its full extension in a

quasi-static manner until the subject started experiencing discomfort.

During the entire course of the test, the subject was instructed to
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let his forearm hang limply and not to actively (muscularly) resist

the motion of the test.

The data collected according to the foregoing procedure were
analyzed as follows. First, the force (-1;) and moment (ﬁ) vectors
obtained from the force applicator transducer were used to calculate a
total moment vector with respect to the center of the best-=fitted

sphere (described in Section 5.2):

- - ->
) 4

Mtotal =H+TxF

where  is the moment arm vector from the center of the best-fitted
sphere t§ the point of force appliAcation. Next, the total moment
vector was resolved into components along and perpendicular to the
moment arm vector. The component along the moment arm vector was then
discarded, since it does not serve to restore the forearm towards its
full extension position. Finally, a "normalized" moment arm vector of
unit length, i.e., one meter, along the moment arm vector was used
together with the remaining moment component (the passive resistive
moment vector) to calculate the passive resistive force vector. Since
the moment arm is normalized to unit length, the magnitude of the
resistive force vector is the same as that of the resistive moment
vector. We shall refer to this magnitude as the passive resistive
force (moment) property, which is expressed as a function of ¢, or the
angular displacement from the full elbow extension. 1In calculating
this angle, the line connecting the center of the best-fitted sphere
and the distal wrist joint reference point is used as the longitudinal

axis of the forearm.
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Figs. 5.10-5.12 show two runs of both the raw data and the curve-
fitted function values of the passive resistive £force (moment)

properties for three subjects. The expansion function used is of the

following polynomial form:

2 3 ‘
f(a) = Cl + Cza + C3C! + C4G {5.3.1)

5.4 Statistical Data Base for the Biomechanical Properties of

the Human Humero~Elbow Complex

Since the functional expansion used for the humero-elbow complex
sinus is the same as that used for the shoulder complex sinus, the
statistical procedure 1is the same as discussed in Section 3.6.
Table 5.2 lists the expansion coefficients of the humero-elbow complex
sinuses for all ten subjects. Fig. 5.13 shows the ten sinuses as well
as their sample mean, 8(4), and_5(¢) + Se(¢). Fig. 5.14 displays the
globographic representations of & and 8 + Se in the fixed-body axis
system. Fig. 5.15 shows the 8 and 8 * Se curves for two different
runs. Good repeatability is observed. Finally, Fig. 5.16 shows the

confidence interval for the population mean and Fig. 5.17 shows its

corresponding globographic representation.

Table 5.3 1lists the expansion coefficients of the passive
resistive properties beyond the full elbow extension for all ten
subjects. From Egs. (5.3.1), (3.4.6), and (3.4.7), one obtains the

sample mean,

f(a) =C, + C.a + C.a° +C,a (5.3.2)
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Fig. 5.12 Raw data’and functional expansions of the passive
resistive property for subject No. 3.

and the unbiased sample variance,

o (5.3.3)

Fig. 5.18 shows f(a) for all ten subjects as well as their sample mean

fand £ +s,.

The £fast-increasing feature of the passive resistive property
reveals the characteristic of the articular check occurring at the
elbow joint. Human tolerance beyond the full elbow extension, based

on the ten subjects tested, is found to be about 10 to 15 N(N-M) at

about 10 to 15 degrees of hyperextension.
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Table 5.2

Expansion coefficients of the humero-elbow complex
sinuses for all ten subjects.

COEFFI-

1 2 3 4 Cs Cs ¢, Cs Cy 10
CIENTS
1 0.94660 | -0.20931 | 0.35965) ~0.11399 | 0.09762 }{ -0.03984 | ~0.30936 | -0.02223 | 0.04501} 0.16160
2 1.00298 | -0.11922 | 0.11995| 0.05758 | 0.04369 | 0.15991 | -0.12879 | -0.03236 | -0.09795] 0.31772
3 1.06830 | -0.08237 | 0.27826 | 0.10650 |-0.,02804 | 0.06418 | -0.29654 |-0.34261 | 0.01997} 0.11073
SUBJ .| 4 1.35042 | ~0.09649 | 0.23392 ) 0.00335 | ~0.00341 | 0.05962 | -0.24854 | -0.15328 | 0.08454| 0.17998
NO.
5 0.83271 | -0.33242 | 0.40520 { -0.05891 | -0.01626 | -0.08224 { -0.31606 | -0.11071 ] 0.20727| 0.20206
6 1.19426 | -0.27498 | 0.40907 | 0.03315 | 0.14440 | -0.28925 | ~-0.24968 {~-0.03632 | -0.17170{ 0.70481
7 1.20455 | -0.13006 | 0.51425 | -0.05006 { 0.02719 | 0.18983 | ~0.15035 [ -0.15804 | -0.16461 ] 0.13516
8 1.17002 | -0.05783 | 0.13041 | -0.03669 |~0.04236 0.08745 | -0.13670 | -0.10281 | ~0.13730 ] 0.11914
9 1.01306 | -0.08750 0.23569 | -0.06580 | 0.08852 | -0.17986 | -0.22606 | -0.19725 | -0.08117| 0.51515
10 1.03835 | ~0.38860 0.46054 | -0.15291 |~-0.10472 | -0.16720 | -0.36231 |-0.40137 0.13013 | 0.66868
Sample
Mean 1.08213 | -0.17788 0.27869 |-0.02780 |-0.02066 { -0.01974 | -0.24244 1-0.15570 | -0.01658 } 0.31150
Sample
variance | 0.02233 0.01364 | 0.01546 | 0.00623 | 0.00560 | 0.02504 0.00668 | 0.01657 | 0.01759 | 0.05377
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Table 5.3 Expansion coefficients of the passive

resistive properties beyond the full elbow

extension for all ten subjects.

COEFFI-

CIENTS ! 2 3 4
1 -0.29505 0.97641 -0.04239 0.00167
2 2.62520 0.12251 -0.01258 0.00397
3 1.21570 0.41974 0.04335 -0.00077
4 0.99568 0.36091 0.06439 -0.00104
sggf. 5 0.97960 0.40776 -0.03570 0.00224
6 2.99000 0.47401 0.03703 -0.00111
7 -0.38531 0.51571 -0.01229 0.00029
8 1.00290 0.48261 -0.00950 0.00143
9 -0.28201 0.81601 -0.04942 0.00465
10 1.25800 0.22501 -0.00158 0.00031
Sample . o o
Mean 1.01047 0.51007 -0.00187 0.00116
Sample
Variance 1.32818 0.07543 0.00148 0.00000
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6. CONCLUDING REMARKS

In biomechanics research, many random variables associated with
the human body are either normally distributed or have approximately
normal distributions. Therefore, a sample of size ten utilized in
this research is expected to provide reasonably good statistical
estimations from the analyses presented herein. All the results were
presented in a compact format and can thus be easily incorporated into
the joint complex regions of the currently existing multisegmented

models of the total human body.

From a safety design point of view, the maximal forced sinus data
presented in this work can be considered as a prelude towards
establishment of a criterion for the impending injury on the joint
complexes studied. Any support/restraint or protective device should
have the capability of restricting the range of motion of the moving
body segment below the maximal forced sinus under most types of

external loading conditions.

In conclusion, it 1is important to point out that biological
materials, especially soft tissues, display nonlinear viscoelastic
behavior. If we assume that the passive resistive response of the
soft tissues in the joint complexes can be modeled similar to the

Kelvin viscoelastic material, i.e., elastic and viscous forces are
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additive, results presented in this work can lead one to the

determination of the elastic component of the passive
(moment) on a particular soft tissue. Thus, the
research endeavor should be the determination of
dependent viscous component of the passive resistive

properties.
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APPENDIX A: SELECTED ANTHROPOMETRIC MEASUREMENTS OF TEN SUBJECTS

Subject No. 1 2 3 4 s 6 ? 8 9 10
DIMENSIONS (cm ’
Weight (Nawtons) 800 778 800 689 832 734 801 734 734 690
Stature 17%.2 188 17%.2 183 173 182 133 180 184 187.6
Shoulder ciccumfecence 126.53 127 123.8 113 120.6 114.3 119.5 106.7 113 104.1
.Haist circunference 93 86 89 73.7 94 79 a8 83.8 81 73.7
HWrist circumference 16.8 18.4 18.9 17.8 17.8 17.8 17.8 17.8 17.8 17.8
Lower arm cizcumference 1.2 29.9 31.3 26.7 29.8 27.9 28.5 27.9 26.7 24.1
Biceps circumfarance 35.4 34.3 36.5 26.7 34.9 30.5 30,5 27.9 26.7 25.4
Thigh, upper circumference 61.3 8 56 $3.3 . 58.4 53.3 60 54.6 52 50.8
Thigh, lower circumference 42.5 42 44 8.l 43.2 43.2 47 38.1 39 39.4
Calf citcumference 39.8 37 39.5 34.9 40.6 40.6 42 39.4 36.5 35.6
Ankle circumference 25.4 26.3 26.7 26.7 25.4 26.7 27 25.4 28 25.4
roreatrn - wrist length 20.5 23 20.3 25.4 24.1 24 25.4 22.9 25.4 22.9
Shoulder - elbow length 36 40 3.5 33 27.9 34 37 38.1 35.5 37
Shoulder - height, sitting 60 63 59.5% 66 62 60 70 58.4 66 64
gShoulder breadth 51 50 S0 44 46 [1] 44 42 46 42
Chest breadth 32 .5 31 33 33 2 k13 33 34 31
Chest depth ) 28 27 26 24 23 24 26 24 21 18
Waist depth 27 24.5 23 20 24 18 24 21 21 18
Buttock = knee length 61 65.5 6L 56 s7 60 58 61 59 61
Buttock - popliteal length 49 54 50 55 50 S0 52 S0 56 s7
Knee height, sitting 54 67 $5.7 57 53 $6 L1 58 56 57
Blbow-to-elbow breadth 47 46 50.5 44 51 45 45 43 44 39
Hip breadth, sitting 39 37 38 37 39 35 41 k] 37 34
Knee-~to-knae breadth, sitting 28 22.5 23 20 23 25 23 22 22 19
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APPENDIX B: COMPUTER PROGRAMS FOR DATA ACQUISITION AND ANALYSIS

The following computer programs were used for the data
acquisition and the associated data analysis described in this
research work. They are derived from their prototypes used for
studying the shoulder complex (Engin and Peindl, 1985), and can be
used to study any joint complex as discussed in Chapter 2. F¥Fig. B.l
shows the flowchart for executing these programs. Data acquisition
programs include LOCATE, INITLZ, IEEKIN, and FORCIO; data analysis
programs include KINF4P, FORCMO, and CALEXP. A brief description for

each program is provided below.

LOCATE: Calculates the direction cosine matrix and origin of the
RALD axis system in terms of the sensor assembly axis system.
Output from this program is used for determining the fixed-body

axis system by both KINF4P and FORCMO.

INITLZ: Performs the initialization procedure as described in
Section 2.2 for the interrelationships between the moving-body
axis system and the six emitters on the moving body segment.
Output from this program is used for selection of the "most

accurate" system by both KINF4P and FORCMO.
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LOCATE INITLZ

/

IEEKIN V FORCIO
\/ \\N\\\ 7
KINF4P FORCMO
'/
CALEXP

Fig. B.1 Flowchart for data acquisition and associated
data analysis.

IEEKIN: Collects slant range data from the six emitters on the
moving-body segment. This program is used for the joint complex
sinus tests in this work, and can also be applied to collect any
kind of kinematic data. Data from this program are analyzed by

KINF4P.
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FORCIO: Collects slant range data from the six emitters on the
moving-body segment and the three emitters on the force
applicator. It also collects digital data from the force/moment
transducer by means of a FORTRAN-callable macro subroutine OSUATD
which exercises the Data Translation DT-1712 Analog-to-Digit

converter. Data from this program are analyzed by FORCMO.

KINF4P: Analyzes the kinematics of a moving-body segment with
respect to a fixed-body segment by selecting the "most accurate”

axis system on the moving-body segment.

FORCMO: Analyzes the kinematics (sweeping~type) of the moving-body
segment with respect to the fixed-body segment and calculates the
passive resistive forces (moments). It requires the input of the

coordinates of the best-fitted sphere center obtained by CALEXP.

ICALEXP: Calculates the center and radius of the best-fitted sphere
to the joint complex sinus "by least-squares method. It also
calculates the best-fitted plane to the sinus and then transforms
the sinus data into functional relationship with respect to the
local joint axis system. Finally, the functional expansion of
Eq. (3.2.1) is used to obtain the expansion coefficients for the

joint complex sinus.
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FROGRAM LODCATE

THIS PROGRAM USES EMITTER DATA FROM THE °"RALD® TO
CALCULATE THE DIRECTION COSINE MATRIX AND ORIGIN OF
AN AXIS SYSTEM IN SPACE WITH RESPECT TO THE SENSOR ROARD

AXIS SYSTEMN

LOGICALX1 RECDAT(88,5)sTEMF(88)

LOGICALX1 FINAME(13)

DIMENSION RECRIN20)sFOINT(453)sFTAVG(4y3)sDEV(4,3)

DIMENSION AVGPT(453)sPT1(3)sPT2(3)sPT3I(3)sPT4(3)»RALDAX(3»3)
DIMENSION CNTPT(3)0UTFUT(24)sV(653)sA(3)1E(3)

REAL L1sL2

INTEGER IFARAM(4»S5)»DSWyI0ST(2)sI0SB(2)»FRLA(S)»CHDA(2)
COMMON /AC/ L1sL2

DATA IREC/1/CMDA/7_7'y'ZF’/N/0/KDIV/1/FTAVG/12%0.0/

DATA AVGPT/12%0.0/

CREATE & OFEN OUTFUT FILE

WRITE(SyD)

REALNS,10) (FINAME(I)»I=1513)
CALL ASSIGN (1,F1INAME»13)
DEFINE FILE 1 (2,48,UsIREC)

GET THE RUFFER ADDRESSES

CALL GETAIR(IFARAM(1s1)sRECDAT(151))
CALL GETADR(IFARAM(1s2) yRECDAT(1+2))
CALL GETADR(IFARAM(1s3)sRECDAT(1+3))
CALL GETADR(IPARAM(1s4)»RECDAT(1,4))
CALL GETADRCIFARAM(1»3)»RECIAT(153))
IPARAN(2,1)=88
IFARAM(Z2,2)=88
IFARANM(2,3)=88
IPARAM(2,4)=88
IFARAN(2,5)=88

ATTACH IEEE RUS

CALL WTRIO ("1420+2+1y5I05TyDSW)
IFCOSW.NE.1)TYPE %9/ IEEE RUS WILL NOT PICK YOU UP TODAY!'

IFC(OSW.NE.1) GO TO 2000
IF(IOST(1).NE.1)TYPE %y’ IEEE EBUS WILL NOT PICK YOU UP TODAY!’

IF(IOST(1).NE.1) GO TO 2000
CALL GETADR (FRLA(1)»CHDA(1))
PRLA(2)=4

SET UF DIGITIZER AS TALKER

CALL WTRIO (*420+2+155105T»PRLASDISW)
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IF(DSW.NE.1)TYPE ks’ IEEE BUS IS NOT TALKING TODAY!’
IF(DSW.NE.1) GO TO 2000

IF(IOST(1) NE.1)TYFE %»’ IEEE RUS IS NOT TALKING TODAY!’
IF(I08T(1).NE.1) GO TO 2000

READIl FIVE SETS OF FOINT VALUES

KOUNT=1

GO TO 30

CALL WAITFR(10)

CALL QI0("1000s2910ssI0SE(1)s IPARAN(1sKOUNT)»DSH)
KOUNT=KOUNT+1

IF (KOUNT.EQ.6) GD TO 50

GO TO 20

CALL WAITFR(10)

CALL WTQID("2000s2915sI05Ty DISW)

CALL CLREF(10)

CALCULATE THE AVERAGE VALUES FOR THE FOUR POINTS

D 100 KNT=1,5
KDIV=KNT-N

[0 60 11=1,88

TEMF(II)=RECDAT(IIsKNT)

CONTINUE

DECOLE (885300, TENF) (RECRD(KK) yKK=1520)
IF(K.6T.1) GO TO 65

TYFE %»‘SLANT RANGE VALUES FOR FIRST RECORI:
WRITE(55900) (RECRD(LK) sLK=1520)

CALL COORD(RECKDyPOINTsKNT)

10 70 JK=1s4

IF (FDINT(JKs1) WNE.0,0)60 TD 70
WRITE(S»560)KNT

N=N+1

IF(N.EQ.2) TYFE %s/ THO RECORD'S CONTAIN ZERD VALUES,
%  »’JOB FAILED!

IF(N.EQ.2)60 TO 2000

G0 TO 100

CONTINUE

00 90 J=1,4

I0 80 I=1,3 |

PTAVG(Jy 1)=PTAVG (Js 1)4FOINT(Js 1)
AVGPT(Jy 1)=PTAVG(Js 1) /KDIV

DEV(Js 1)=ABS(AVGFT (Jy 1) -FOINT(Jy 1))
IF(DEV(JsI).LT,0,25) 6O TO 80
WRITE(5»540)

CONTINUE

CONTINUE

CONTINUE

0 110 JJ=1s3

PT1(JJ)=AVGPT (15 JJ)
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120

130

149

FT2(JJ)=AVGPT(2:JJ)
PT3(JJSI=AVGPT(3»JJ)
FTACJI)=AVGFT (4, JJ)
CUNTINUE

[0 111 I=1,3

V(1 1)=FT2(I}~PTI(D)
W2y D=PTI(D)~FTI(I)
V(3 D) =FT4(I)~PTLI(I)
V{4 11=FTI(D)~PT2(])
V(G 1) =FTA(I)~PTI(I)
V(6 1 =FT2{1)~FT4(1)
CONTINUE

[0 112 I=1s6
VIIy1y=V(Ir 1) RK24V (I 20 Xk24V (T2 3) %2
V(I 1)=8ART(V(Is1))
CONTINUE

CALCULATE THE AXIS SYSTEM (RALDAX) AND ORIGIN (CNTFT)

N0 120 I=1,3

ACD) =PTA(I)-PT2(I)
B(I)=PT3(I)-FT2(I)
CONTINUE

CALL DRCMAT (AyByRALDIAX)
RO 130 J=1,3
CNTFT(J)=FT1(J)~B,491KRALDAX(1+J)
CONTINUE

D0 140 R=1.3
OUTPUT(K)=PT1(K)
ODUTPUT(K+3)=RALDAX (1K)
OUTRUT(K+8)=CNTPT(K)
DUTPUT(K$92)=PT2(K)
QUTPUT (K+12)=RALDAX(2sK)
DUTFUT(K+15)=FT3(K)
OUTPUT(K+18)=RALDAX(3sR)
OUTFUT(R+21)=FT4(K)
CONTINUE

FLACE INFORMATION IN DATA FILE

WRITE(S5>3580)

WRITE(55600) (OUTPUT(I)»I=1+9)
WRITE{5,700) (OUTPUT(I)» I=10s15)
WRITE(Ss700) (OUTFUT(I)y I=16+21)
WRITE(S,800) (DUTPUT(I)» I=22,24)

WRITE(S5:820)
WRITE(S:840)V(1s1)sV{4s1)9V(291)sV(551)sV(3+1)sV(4s1)

WRITE (1/IREC) (QUTPUT(I),I=1524)
CLOSE (UNIT=1)

CALL CLREF(10)
FORMAT(’$s 'Enter the name to be diven to the data
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$file [S-13137)

10 FORMAT(13A1)

300 FORMAT(4(F1.0+4F3.2+1X))

540 FORMAT(’0’s "INACCURATE COORDINATE--UEV. EXCEEDS ,25CM’)

560 FORMAT(’0’s/RECORD NUMBER: ‘,ISy’ CONTAINED ZERO VALUES AND
$ HAS EEEN DELETED.)

580 FORMAT(’0s‘T14,/FOINT COORDINATES’sT52y 'FLATFORM AXES werst.
$ROARD ‘s T?6s 'CENTERPOINT (BASE)“»/)

600 FORMAT(’ “»yT1093(F8.,2)rTS5093(FP.4)+T72+3(F8.2))

700 FORMAT(’ “»T1053(F8.2)9T5023(F9.4))

BOO FORMAT(’ ’»T1053(F8.2))

820 FORMAT('0’»T14y/DIMENSIONAL CHECK’//TS5s’LGTH (1-2+1-3»1-4)=4,
883cm’ s T40s ‘LBTH (2-3+3-454-2)=7.67cm’s/)

840 FORMAT(’ “9T10s’LGTHI12='yT18sF5.29T45s ‘L6TH23="T339F5.2/
&T10s'LOTHI3='yT18+F5.2+T45» ‘LGTH34=" 9 TS3sF5. 2/
&T10y ‘LGTH14="sT18sF5.2sT45y ‘L6TH42="yT53sF5.2)

900 FORMAT(’0’s4(F3,054F7.2+4X))

2000 STOF
END

00

SUBRDUTINE DRCMAT(AsE+C)

THIS SUERROUTINE CALCULATES THE DIRECTION COSINE MATRIX
FOR AN AXIS SYSTEM BASED ON TWO COPLANAR VECTORS (A and B).
THE RESULTING MATRIX» Cy IS ORTHOGONAL AND' UNITARY.

Lar o B B B

DIMENSION A(3)sB(3),LC(3+3)
AMAG=SORT (A (1) X¥2+A{2) XX2+A(3) XX2)
RHMAG=SORT(B(1)kk2+B(2)%k2+E(3)k%2)
C(2s1)=A(1)/ANAG
C(292)=A(2)/ANAG
C(2+3)=A(3)/ANAG
C(3s1)=R(1)/BMAG
C(3s2)=R(2)/EHAG
C(313)=R(3)/RHAG
C(1s1)=(C(2s2)XKC(3»3))=(C(Ty2)%C(2+3))
C(1:2)=(C(321)%C(253))-(C(2y1)%XC(3+3))
C(123)=(C(2s1)KC(392))-(C{3r1IXC(2+2))
C(3r1)=(CC1y2)%C(2y3))~(C(292)XC(1+3))
C(392)=(C(291)XC(1»3))-(CCL1»1)KC(2+3))
C(393)=(CC1s1)KC(2+2))-(C(291)%C(1+2))
o 10 J=1,3
CHAG=SART(C{Jr 1 DXR2+C(Jr 20k%2+C(J»3) XK2)
B0 5 I=1,3
C(Js1)=C(Js1)/CHAG
CONTINUE
10 CONTINUE

RETURN

END

(4]
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EUEROUTINE COORD{RC2DAT ¢ FOINTsKNT)

THIS SUBROUTINE COMPUTES THE X»YsZ COORDINATES FOR THE SFARK
GAPS IN THE BOARD REFERENCE SYSTEM BY PERFORMING CALCULATIONS
ON THE SLANT RANGE DATA FROM THE FOUR CORNER MICROPHONES

DIMENSION RC2DAT(20)sFOINT(453)

INTEGER CASEsKNT,SUW

REAL L1yL2sK1

DATA L1/167.75/7y L2/111.80/y K1/3.90/
CASE=0

J=1

D 110 I=1416+5

SW=1

Kk=1

IFC(RC2DAT(I+1) JERs 0.0) KK=KK+1
IF(RC2DAT(I+2) .EQ, 0.0) KK=KK+1
IF(RC2DAT(I+3) EQ. 0.03 KRK=KK+1
IF(RC2DAT(I+4) LEQs 0.0) KK=KK+1
IF(KK.6T.2) GO TO 115

FA=RC2Z2DAT(I+1)

FR=RCZIAT(1+2)

FC=RC20AT(I+3)

FI=RC2DAT(1+4)
IF(PDGEFALANDFLILGEFE«ANDFD,GE.FC) CASE=1
IF(PC.GE.PA+ANDPC.GE+FB.AND.PC.GE.PD) CASE=2
IF(FR.GE.FA+AND,FE.GE.FC,AND,FB,GE.FI!) CASE=3
IF(FA.GE,PR.ANLII.PA.GEPC,AND.PAGE.PI) CASE=4
IF(FTt JEG., 0.0) CASE=1

IF(PC EQ. 0.,0) CASE=2

IF(FE +EQ, 0.0) CASE=3

IF(FA +EQ. 0.0) CASE=4

GO TO (460970280+90) +CASE

XC=( (PAFK1) K2~ (PBHR1 ) X%2)+L1%%2) /(2. 0%L1)
IF(ABS(XC).GTARS(FA+K1)) GO TO 114
YC=((PATRI Y RK2-((PCHR1 D XX2) +L2%k%2) /(2. 0%L2)
FP=80RT { (FA+K1) X¥2-XCkX2)

IF (ARS(YC).GT.FF) GO TO 114

ZC=SART ((FF)Xk2-YC%%2)

GD TO 100

XC={ (FATR1) X2~ ((FR+R1) ¥X2)+L1%%2)/(2,0%L1)
IF(ABRS(XC}.GT+ABS(FPA+K1)) GO TO 114

YC=( (PRER1YKX2-((FPIHK1 ) XX2)+L2%%2)/(2,0%L2)
FP=SQRT ( (FA+K1)%%2-XCx%2)

IF (ARS(YC).GT.FF) GO TO 114

ZC=SART ((PP)XX2-YCXX%2)

G0 TO 100
XC=((FCHK1YRK2-( (FIHKL ) XX2)+L1%%2) /(2.0%L1)
IF(RBS(XC) GT.ABS(PCHK1)) GO TO 114

YC=( (PA+K1)R¥2-( (FCHR1 ) Xk2)+L2%%2) /(2. 0%L2)
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PP=SORT((PCHK1 ) kk2-XCk¥2)
YCCOMP=L2-YC
IF(ARS(YCCOMF).GT.FF) GO TO 114
ZC=SORT((FFIX%2-YCCOMPX%2)
60 TO 100
90  XC=((FCHKI)xx2~-( (FIMHK1)Rk2)+L1%%2) /(2.,0%L1)
IF(ARS(XC).GT,ABS(PC+K1)) GO TO 114
YC=({PRIK1Y%X2~( (FI+K1 ) k%k2)+L2k%2) /(2. 0%L2)
FP=SART( (PC+K1 Y X%k2-XCk%2)
YCCOMF=L2-YC
IF (ARS(YCCOMF).6T.FF) GO TO 114
ZC=8ORT( (PF)YXX2-YCCOMP%2)
106 FOINT(Jdy1)=XC
FOINT(Js2)=YC
FOINT{J»3)=ZC
J=Jd+1
GO TO 110
i14 SW=-1
WRITE(S»200)JrKNT
200 FORMAT(’0’y’SFARKER’sI4y’ IN REC.‘»I3s/ INVALID')
115 POINT(J»1)=0.0
FOINT(Js2)=0.,0
FOINT(J»3)=0.0
J=d+l
IF(SW +EQ. -1)60 TO 110
WRITE(S»130)JsKNT
130 FORMAT(’0’s'SPARKER’sI4y’ IN REC.’yI13»’ IS ZERO’)
110 CONTINUE
RETURN
END
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FROGRAM INITLZ

THIS FROGRAM SFECIFIES THE INITIAL POSITIONING OF THE ARM

CUFF WITH RESPECT TO THE HUMERUS. IT CALCULATES THE JOINT
CENTERs LONG HONE AXISs AND' HUMERAL AXIS SYSTEM WITH RESPECT
TO ALL THE AXIS SYSTEMS WHICH CAN BE OBTAINED BY THE VARIOUS
COMEINATIONS OF THREE CUFF EMITTERS., IT ALSO ESTARLISHES A
CRIVERINON FOR THE CHOICE OF THE THREE FOINTS BY MEANS OF

INTER-EMITTER DISTANCES AND' AXIS SYSTEM SKEW ANGLES.

LOGICALX1 RECIAT(198+3) s TEMF(198)

LOGICAL%X1 FINAME(13)

DIMENSION RECRI(43)+FOINT(?+3)»FTAVG(993)»DEV(Fy3)

DIMENSION AVGPT(993) »VECHAG(13) »COSMAT (609 3)

DIMENSION DRCOS(3»3)sNVEC(2094) sLRVEC(3)» JNTVEC(20+3)

DIMENSION JTVEC(Ss3)sH1(3)»H2(3)sH3(3) sHUMAX(3s3) sHUMDRC(60,3)
DIMENSION TEMP2(353)sF1(3)s61(3)s¥(5+4)

REAL LRVECs JTVECs JNTVECLBMAGYL1sL2

INTEGER IFARAM(4»5)sDSW»I0QST(2)» IOSR(Z) sFRLAC(S) sCHIA(2)

DATA IREC/L/CHDA/“ .77y ZF*/N/O/KDIV/1/PTAVG/27%0,0/

DATA AVGRT/27%0,0/JTVEC/15%0.0/

DATA NVEC/1919191929292539394969696979718s1051091191356971849
91091191 2913914915+10511912513+14+15y13v14915915+253541539314+5y
8455155 7181918:99901191251271452929292+43939394545593935354145594
142395/

COMMON /AC/ VEC(15,3)

CREATE 3 OFEN OUTRUT FILE

WRITE(S+3)

READ(S510) (FINAME(I)»I=1+13)
CALL ASSIGN (1sF1NAMEsS13)
DEFINE FILE 1 (874,2yUsIREC)

GET THE BUFFER ADIDIRESSES

CALL GETADR(IFARAM(151)yRECIAT(1,1))
CALL GETADR(IFARAM(1,2)sRECDAT(1,2))
CALL GETADR(IPARAM(1+3)sRECDAT(1,3))
CALL GETADR(IFARAM(1+4) yRECDAT(1+4))
CALL GETADR(IFARAM(1s5)sRECDAT(1+3))
IFARAM(2,1)=:198
IFARAN(2y 2)=198
IFARAM(Z53)=198
IFARAM(2,4)=198
IPARAM(2,5)=198

ATTACH IEEE RUS

CALL WTRIO (*1420+2»1,»I05Ty»DSW)
IF(DSW.NE.1)TYPE %,/ IEEE BUS IS NOT ATTACHED!’
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IF(DSW.NE.1) GO TO 2000

IF(IOST(1).NE.1)TYPE %y’ IEEE EUS IS NOT ATTACHED!’
IF(I0ST(1).NE.1) GO TO 2000

CALL GETADR (FRLA(1),CMDACL))

FRLAC2)=4

SET UP DIGITIZER AS TALKER

CALL WTQID (*420+2+1+»I0STyPRLAYDSW)
IF(DSW.NE.1)TYPE %y’ DIGITIZER IS NOT TALKING!’
IF(DSW.NE.1) GO TO 2000

IF(IOST(1)NEL1)TYFE %+’ DIGITIZER IS NOT TALKING!’
IF(IO8T(1).NE+1) GO TO 2000

READ FIVE SETS OF NINE FOINT VALUES

KOUNT=1

GO0 TO 30

CALL WAITFR(10)

CALL QIO("1000y2510+yI0SR(1)sIFARAM(1sKOUNT)»DSW)
KOUNT=KOUNT+1

IF (KOUNT.EQ.6) GO TO 50

GO TO 20-

CALL WAITFR(10)

CALL WTRID(*200092»1yy10STs»DSW)

CALL CLREF(10)

CALCULATE THE AVERAGE VALUES FOR THE NINE FOINTS

00 100 KNT=15
RDBIV=KNT-N

[0 60 II=1,198
TEMP(II)=RECIATC(IIsKNT)

CONTINUE
DECODE (198s300»TENF) (RECRD(KK)»KK=1,43)

WRITE(S,1003) KNT»(RECRD(KK)sKK=1,20)
WRITE(S21004) (RECRD(KK) sKK=21543)
CALL COORD(RECRDsFOINT»SWsKNT)

[0 70 JK=1,9

IF(FOINT(JK»1) NE.0,0) GO TO 70
URITE(SyS60) KNT

N=N+1

IF(N.EQ.2)TYPE %s’ TWD SWEEFS CONTAIN ZERD VALUESs JOR FAILED!'
IF(N.EQ.2) GO TO 2000

60 TO 100

CONTINUE

DO 20 J=149

N0 80 I=1,3

FTAVG(Jr 1) =FTAVG(Jy I)+FOINT(Js 1D
AVGPT(JsI)=PTAVG(Js»I)/KDIV

LHEV(Jy I)=ABS(AVGFT(Jy I)-FOINT(J»I))
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IF(REV(JsI),LT,0.25) GO TO 80
WRITE(Sr540)

CONTINUE

CONTINUE

CONTINUE

WRITE(S3)

FORMAT(’0")

TYFE %+’ AVERAGE COORDINATES W.R.T. SBENSOR EOARD?

TYPE %2/ X Y
TYFE %» /

no 101 I=1,9

TYFE %»/ SPARKER #7915 {(AVGFT(IsJ)y J=1,3)
CONTINUE

0g 1001 I=1,3

V1, 1)=AVGFT(2sI)~AVGPT(1+1)
V(2yI1)=AVGPT (42 I)-AVGPT(3y1)
V(3s1)=AVBFT (6 1) -AVGFT(S+1)

V(45 1)=AVGPT(8sI)-AVGPT(7s1)

V(S 1)=AVBFT(P+1)-AVGFT (8, I)

CONTINUE

DO 1002 I=1,5
V(I,4)=8ART(V(Is1IRK2+V(Ty2)XR24+V(T5 3) %%2)
CONTINUE

WRITE(S+B800)
WRITE(S:801)V(1+4)sV(254)5V(3+4)1V(454)2V(5+4)

CALCULATE THE 20 POSSIRLE VECTOR TRIADS FOR THE
VARIOUS COMBINATIONS OF 3 CUFF EMITTERS
18Ty CALCULATE ALL THE VECTORS

KK=1

L=1

JJ=L+1

00 104 M=Jbsb
VEC(KK»1)=AVGFT(M»1)-AVGFT(Ls1)
VEC(KK»2)=AVGPT(M»2)-AVGPT(Ly2)
VEC(KK»3)=AVGFT(M»3)-AVGFT(L+3)
RK=KR+1

CONTINUE

L=L+1

IF(L.,LT.6)G0 TO 102

o 105 I=1+15
VECMAG(I)=VEC(I+1)kX24VEC(I»2)%k2+VEC(Is3) kX2
VECHAG(I)=SQRT(VECMAG(I))

CONTINUE

Do 109 I=1s15

00 108 J=1,3

VEC(I»J)=VEC(IsJ)/VECHAG(I)

CONTINUE
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109 CONTINUE
c
c CALCULATE THE FOSSIELE AXIS SYSTEMS
C

KK=0

[0 150 H=1,20

K=NVEC(M»1)

L=NVEC(Hs2)

CALL DIRCMAT(K,L,DRCOS)

0o 140 J=1,3

DO 130 N=1,3

COSMAT (KK+JsN)=DRCDS(JsN)
130 CONTINUE
140 CONTINUE

RK=RK+3
150 CONTINUE
C
C CALCULATE THE JOINT CENTER, WHICH IS LOCATED AT
c THE CENTER OF SPARKER 7 & 8y AND STORE IT IN AVGPT(7s1)
C

Do 145 I=1,3
145 AVGPT(7y1)=(AVGPT(7+I)+AVGFT(8,1))/2.0

CALCULATE THE VECTORS FROM THE ORIGINS OF THE VARIOUS
AXIS SYSTEMS TO THE JOINT CENTER

OO0 E

0 180 I=2»5

JTVEC(Iy1)=AVGPT(791)-AVGFT(I+1)

JTUEC(Is2)=AVGFT(7,2)-AVGPT (1+2)

JTVECC( Iy 3)=AVGFT(7s3)-AVGFT(Is3)
180 CONTINUE

C CALCULATE THE HUMERAL AXIS SYSTEM

Lo 181 1=1,3
H3(I)=AVGFT(9s1)-AVGFT(7»1)
H2(I)=AVGPT(ByI)-AVGPT(7,1)
181 CONTINUE
CALL CROS(H2yH3yH1)
0 182 I=1,3
HUMAX (1, 1)=H1(I)
HUMAX (25 1)=H2(1)
82 HUMAX(3,I)=HI(I)

CALCULATE EACH JDINT CENTER AND HUMERAL AXIS SYSTEM IN TERMS
OF EACH LOCAL AXIS SYSTEM

CICICCY Y

k=0

CALL MINV(HUMAXs3sD1sF1sG1)
0o 190 I=1,20

N0 185 J=1,3
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DRCOS(J»1)=COSMAT (K+Jy 1)

DRCOS(Jy2)=COSKAT(K+J»2)

DRCOS(Jr3)=COSHAT(K+Js3)

CONTINUE

L=NVEC(Is4)
JNTVEC(Is1)=DRCOS(1s1)%JTVEC(Ly1)+DRCOS(1+2)XJTVEC(Ly2)+
&DRCOS (15 3)XJTVEC(Ly3)
JINTVEC(I,2)=0RCOS(2»1)XJTVEC(L»1)+DRCOS(222)XJTVEC(L2)+
&DRCOS (29 3)XJTVEC(Ly3)

JNTVEC( I+ 3)=IIRCOS(3s 1) ¥JTVEC(L s 12+DRCOS(3+2)XJTVEC(Ls2)+
SDRCOS(3s3)XJTVEC(L 3}

CALL GMFPRD(DIRCOSsHUMAXy TEMP29353+3)

00 187 J=1,3

HUMDRC(K+1»J)=TEMF2(Js 1)

HUMDRC (K425 J)=TEMP2(J»2)

HUMDRC (K435 J)=TEMF2(Js3)

K=k+3

CONTINUE

WRITE DATA TO LATA FILE

10 750 I=1s6

N0 749 J=1,3
WRITE(1/IREC)AVGFT(IyJ)
CONTINUE

CONTINUE

Do 760 I=1560

N0 759 J=1,3
WRITE(1/IREC)COSMAT(I+J)
CONTINUE

CONTINUE

[0 780 I=1,20

[0 779 J=1,3
WRITE(1/IREC)JNTVEC(IsJ)
CONTINUE

CONTINUE

My 790 I=1,60

no 789 J=1,3
WRITE(1‘IREC)HUMDRC(IsJ)
CONTINUE

CONTINUE

CLOSE (UNIT=1)

CALL CLREF(10)
FORMAT(’$’s’Enter the name to be diven to the data

$file £5-13317)
FORMAT (13A1)
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FORMAT(9(F1,094F3,2+1X))

FORMAT(’0y "INACCURATE COORDINATE--DEV. EXCEEDS .25CM’)
FORMAT(’0’» ‘RECORD NUMBER: “sISy’ CONTAINED ZERO VALUES AND
¢ HAS BEEN DELETELD.)

FORMAT( "0’ » ‘DIMENSIONAL CHECK--LGTH(1-2)=%.48cm’» TS50y 'LGTH
£(3-4)=9.58cm’ s T80y 'LETH(5-6)=9.52cm " »T110y 'LETH(7-8)=21,92CH' »
§T140y 'LGTH(B-9)=153.,10CH")

FORMAT( 0’ 9TSs 'CALCULATED LENGTHS:="»T30sF5.,2+T57+F5.2+T8%9s
4F5,2,T1209F5.2:T1509F5.2)

FORMAT( /0’y '"RECORLI{ SWEEF) NO.’»I2/1Xy4(F3.0s4F7.2y2X))
FORMATC(’ 7»5(F3.094F7.2+2X))

STOF

END

SURROUTINE COORI(RC2DAT»FOINTSWyKOUNT)

THIS SUBROUTINE COMFUTES THE X»Y»Z COORDINATES FOR THE SPARK
GAFS IN THE BOARD REFERENCE SYSTEM BY PERFORMING CALCULATIONS
ON THE SLANT RANGE DATA FROM THE FOUR CORNER MICROPHONES

DIMENSION RC2DAT(45) »FOINT(7,3)

INTEGER CASEsKOUNT,SW

REAL L1,L2yK1

DATA L1/167.75/y L2/111.80/y K1/3.90/

CASE=0

J=1

[0 110 I=1441,5

Sli=1

Kk=1

IF(RC2DAT(I+1) +EQs 040) KK=KK+1
IF(RC2ZDAT(I+2) .E@. 0.0) KK=KK+1
IF(RC2DAT(I+3) EQs 0.0) KR=KK+1
IF(RC2DAT(I+4) .E@. 0,0) KK=KK+1

IF(KKN.GT.2) GO TO 115

FA=RC2DAT(I+1)

FR=RC2DAT(I+2)

PC=RC2DAT(I+3)

FI=RC2DAT(I1+4)

IF (PTI.GE . FAAND, L. GE . FR.ANDLFLLBE.PC) CASE=1
IF(PC.GE.FA,AND,PC.GE.FB.AND.PC.GE.FD) CASE=2
IF(FR.GE FA.ANII FR.GE+FC.ANDFE.GE.FIV) CASE=3
IF(FAJGE.FE.ANDPA.GE.PC.AND.FA.GE.FD) CASE=4
IF(FD +EQ. 0.0) CASE=]

IF(PC EQ, 0.0) CABE=2

IF(FB +EQ. 0.0) CASE=3

IF(PA4 ER. 0.0) CASE=4

GO TO (60+70y80,90)yCASE
XC=((PATK1IXK2- ((FREK1 ) %%2) +L1%%2)/(2,0%L1)
IF(ARS(XC),GT.ARS(PA+K1)) GO TO 114
YC=((PA+R1 ) RK2- ((PCIK1 ) R¥2) +L2%k2) /7 (2, 0%L2)
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FF=8ORT ( (FA+K1) X¥2-XCk%2)

IF(ABS(YC).GT.PP) GO TO 114
ZC=SART((FP)Xk2-YCkX2)

GO TO 100
XC=((FATK1) k%2 (FB+K1)%k2)+L1%%2)/(2,0%L1)
IF(ARS(XC) .GT.ABS(PAK1)) GO TO 114
YO=C((PR+K1 ) kk2=- C(FIHRL) kk2) +L2%k2) /(2. 0kL2)
PF=SORT ( (PA+K1) Xk2-XCk%2)

IF (ARG(YC) .6T.FP) GO TO 114
ZC=SORT( (PP ) Rk2-YCKX2)

GO TD 100

XC=((PCHR1 kX2~ ((FD+K1) k%2)+L1%%2) /7 (2, 0%L1)
IF(ABS(XC) .GTABS(PC+K1)) GO TO 114
YC=((PATK1 a2~ C (FCH+K1) X%2) +L2%%2) /(2. 0XL.2)
PP=8ART((PC+K1) k%k2-XCk%2)

YCCOMP=L2~YC

IF (ARS(YCCOMF).GT.FF) GO TO 114
ZC=8ART ( (FF)¥X2-YCCOMNPXX2)

GO 7O 100
XC=((FCHRL I KK2- ((PDHR1) %%k2) +L1%k%2) /(2. 0%L1)

IF(ABS(XC) .GT.ARS(PC+K1)) GO TO 114
YC=((FR+K1)%%k2-( (PIK1 ) %%2) +L2%%2) /(2. 0%L2)
PP=SART( (FCHK1) Xk2-XCk¥2)

YCCOWP=L2~YC

IF (ABS(YCCOMF) .GT.FP) GO TO 114

ZC=8ART( (FF)X%2-YCCOMP*X2)

FOINT(Js1)=XC

FOINT(Js2)=YC

FOINT(Js3)=ZC

GO TO 117

SW=-1

WRITE(Ss200)RC2DAT (1) y KOUNT
FORMAT( /0’ s “SPARKER’sF3.0s’ IN REC.’,I3y’ INVALID’)
FOINT(Js1)=0.0

FOINT(J»2)=0.0

FOINT(J¢3)=0.0

IF(3W .EQ. -1)GO TO 117
WRITE(Ss»130)RC2DAT (1) yKOUNT
FORMAT(’0' s 'SPARKER‘sF3.,0s’ IN REC.’+13s’ IS ZERO')
J=J+1

CONTINUE

RETURN

END

SUBRDUTINE CROS(ArE.C)

THIS SUBRROUTINE CALCULATES A UNIT VECTOR (C) WHICH IS PERPEN-
DICULAR TO THE PLANE CONTAINING THE VECTORS A AND B. NOTE
THAT THE VECTORS A AND B ARE RETURNEDN AS UNIT VECTORS!

DIMENSION A(3)sB(3)C(3)
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ANAG=SORT (AC1 ) RKk2HA(2) KX2+A(T) K%2)
EMAG=SART (R(1)X¥2+E(2)%X2+K(3) k%2)
A(1)=A(1)/AKAG

A(2)=A(2)/AMAG

A(3)=A(3)/ANAG

E(1)=R(1)/RHAG

R(2)=B(2)/RHAG

B(3)=R(3)/BEMAG
C(1)=(A(2)XB(3))-(B(2)%A(3))
C{DI=(AIXRR(1))-(B(3)XA(1))
C(3I=C(AC1IRB(2))~(B(1IXA(2))
RETURN

END

SUBRODUTINE LRCMAT(KsLC)

THIS SURROUTINE CALCULATES THE DIRECTION COSINE MATRIX

FOR AN AXIS SYSTEM BASED ON TWO COFLANAR VECTORS (SPECIFIER
RY K and L)+ THE RESULTING MATRIX» Cs» IS ORTHOGONAL AND
UNITARY.

DIMENSION 6(3);3(3)1C(393)
INTEGER KoL
COMMON /AC/ VEC(15+3)

o 2 1=1,3

A(I)=VEC(K,I)

R(1)=VEC{LsI)

CONTINUE
AMAG=SART (A(1) Xk2+A(2) Xk¥k2+A (3 K%2)
BMAG=SORT (R(1)kk2+R(2)X¥k2+B(3)kX2)
C(1,1)=A(1)/ANAG

C(1,2)=A(2)/ANMAG

C(1,3)=A(3)/AKAG

C(2s1)=B(1)/RKAG

C(2s2)=R(2)/LHAG

C(2s3)=R(3)/BNAG
C(391)=(C(1s2)%C(293))-(C(292)%C(1»3))
C(312)=(C(1,3)%C(251))-(C(293)%C(1+1))
C(3s3)=(C1y1IRC(292))-(C(2,1)%C(1s2))
C(291)=(C(3+2)XC(1+3))-(C(1»2)XC(3y3))
C(252)=(C(3931%C(151))-(C(3s1)%XC(1+3))
C(2y3)=(C(321)%KC(1+2))-(T({1s1)%C(3+2))
00 10 J=1,3
CHMAG=SART(C(Jr 1) kk24C(Js 2) XKk24C(J9 32 %%2)
0o 5 I=1,3

C(JrI)=C(Js1)/CHAG

CONTINUE

CONTINUE

RETURN

END
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FROGRAM IEEKIN

THIS FROGRAM COLLECTS THE SLANT RANGE VALUES FROM THE SONIC
DIGITIZER FOR SIX EMITTERS USING THE IEE-488 INTERFACE. THIS
DATA IS USED' FOR KINEMATIC ANALYSIS OF THE MOVING BOIY SEGMENT.

DIMENSION OUTPUT(S5,30)yRECORD(24)

DIMENSION ONEREC(30)

VIRTUAL ERIGEUF(1000s24)

LOGICALX1 TRANS(660)

LOGICALX1 RECIAT(640+2)

LOGICALX1 FNAME(13)

INTEGER IPARAM(692)s10SB(2y2)sFRLA(S)»CHECKZ
INTEGER IPARM(46)sI0STOP(2)sDSWsCMDA(2)
INTEGER COLUMNsTEST(1)»CHECK»SWsyKOUNT» IOST(2)
DATA TEST/-1/CHECK/0/COLUMN/1/KOUNT/0/

DATA CHDA/ /779 ‘AP’ /

DATA MODE/1/LMOLE/2/KREC/1/

INFUT DATA FILENAME ANDX # OF RECORDS

WRITE(Sy4)

WRITE(S»3)

READ(S»10) (FNAME(I)»I=1,13)
HWRITE(Sy15)

READl (5y20) NREC
NDIV=NREC/Z

OFEN TEMFORARY DATA FILE FOR INCOMING SLANT RANGE LATA
OFEN (UNIT=1sTYFE='SCRATCH'sFORM='UNFORMATTELD')

GET THE BUFFER ALDIRESSES

CALL GETADR(IFARAM(irl)s>RECDAT(1+1))
CALL GETADR(TPARAM(1:2)»RECDAT(1+2))
IFARAM(2y 1)=660

IPARAM(222)=660

CALL GETADR(IFARM(1).TEST(1))
IFARM(2)=1

ATTACH IEEE BUS

CALL WTRID (*1420+2+1y5I0STysDISW)
IF(DSW.NE.1) TYPE %,/ IEEE BUS WILL NOT PICK YOU UP TODAY! *

IF(DSW.NE.1) GO TO 2000
IF(I0OST{1).NE,1) TYFE %’ IEEE BUS WILL NOT FICK YOU UF TODAY! '

IF(I0ST(1).NE.1) GO TO 2000
CALL GETADR (FRLA(1),CMDIA(1))
PRLA(2)=4
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C SET UF DIGITIZER AS TALKER

C
CALL WTQID (*420+2+15510STsFRLAYDSW)
IF(DSW.NE.1) TYPE %»’ IEEE BUS IS NOT TALKING TODAY! ‘
IF(DSW.NE.1) GO TO 2000
IF(IOST(1).NE.1) TYPE %y’ IEEE BUS IS NOT TALKING TODAY! *
IFCI08T(1).NE.1) GO TO 2000

C

C QUEUE THE FIRST 1/0

C
CALL QI0(*100052y10+sI0SB(151)sIFARAM(Ls1)s05H)

C

C INITIALIZE THE NUMBER OF RECORDS TRANSFERRED

c

100 NMOLE=MODE

MODE=LMODE
LMODE=NMODE

WAIT FOR THE BUFFER TO FILL

Lar B oo o

CALL WAITFR(10)
CALL QID(*1000+2510>»I0SE{1sMDDE)» IFARAN(1sMODE)» DSW)

IF(CHECKN .EQ. NDIV)GO TO 1200
WRITE(1) (RECIAT(I,LMODE) »I=11660)

INCREMENT THE NUMBER OF RECORDS

{3 B v B ]

COLUMN=COLUMN+1
CHECK=COLUMN-1
GOTO 100

1200 CHECK2=CHECKXS
WRITE(Ss45)CHECK2

READ SLANT RANGE [ATA FROM DISK AND CONVERT TO
XrYeZ COORDINATES

[ o B B s }

REWIND 1

D 980 K=1sCHECK
READ(1) (TRANSCI) s I=1+660)
LECODE (4660:530s TRANS) ((DUTFUT(JsKK) sKK=1530)rJ=1+3)
IF(K.NE.CHECK) GO TO 901
TYFE %»’SLANT RANGE DATA FOR FINAL RECORD:’
WRITE(S,1010) COUTPUT(SsLL)»LL=1,13)
WRITE(Sy1015) (OUTPUT(SsLL) »LL=16+30)

9?01 IF(K.GT.1) GO TD 902
TYFE %»’SLANT RANGE DATA FOR FIRST RECORD:’
WRITE(S5,1010) (QUTPUT(1,LL)sLL=1+13)
WRITE(S5s1015) (OUTFUT{(1,LL)»LL=16+30)

202 L0 960 II=1,G
o 910 JJ=1,30
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920

930

240

950

2460

970
280
1500

[ep B or Mo}

1550

10
15

20

45

530
535
540
345
ass

ONEREL (JJ)=0UTPUT(II,JJ)
CONTINUE
CALL COORI{ONEREC,RECORIls SWyKDUNT)
IF(KOUNT .6T. 0) GOTO 920
WRITE(Sy533) (FNAME(I)»I=1,13)
WRITE(5+540) (RECORD(I),I=1,20)
WRITE(5s545) (RECORL(I)»I=21y24)
no 930 J=1,24
RIGRUF ( (KOUNT+1) s J)=RECORLI( J)
CONTINUE
B0 940 I=1,30
ONEREC(I)=0.0
CONTINUE
[0 950 I=1+24
RECORD(I)=0.0
CONTINUE
KOUNT=KOUNT+1
CONTINUE
[0 970 I=1+660
TRANS(I)=/ ¢
CONTINUE
CONTINUE
CLOSE (UNIT=1)

OFEN DATA FILE FOR CONVERTED DATA AND WRITE
EMITTER COORDINATE DATA TO DISK

CALL ASSIGN (1sFNAME,13)

DEFINE FILE 1 (NREC»48sUyKREC)

0 1550 I=1sNREC

WRITE(1/KREC) {RIGEUF(I+J)»J=1,24)

CONTINUE

CLOSE (UNIT=1)

CALL WTRIO(*2000y251ys10STysD5W)

WRITE(SsS55) (FNAME(I)»I=1513) yKOUNT

CALL CLREF(10)

FORMAT(/0’y'NOTE?! Maximum allowable # of records is 1000!

% (arrrox, 108 seconds)’s/s’ Records must be allocated in

& increments of S17y//)

FORMAT(’$’y 'Enter the name to be diven to the data file [5-133! /)
FORMAT(13A1)

FORMAT(‘%°y‘Enter the number of records (diditizer sweers) to b
$e zllocated to the data file [N-SJ% /)

FORMAT(IS)

FORMAT{ ‘0’ y 'SUCCESS.'+16y’ SWEEFS RECORDELD IN TEMFORARY FILE.’)
FORMAT(IO(FL1.0r4F5.2,1X))

FORMAT(’0’y 'FROCESSEI' I'ATA FOR FILE! ‘913A1)
FORMATC(’ 0/ yS(F3.093F7.2))

FORMAT(/0’y1(F3,053F7.2)) :
FORMAT( Gy '1ATA WRITTEN TO DISK. ’»13A41,/CONTAINS’»I5,’ RECORD

$58.7)
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2000
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60

70

FORMAT(’0’y '"RECORDI NUMEER! ’»I5Ss’ CONTAINED ZERO VALUES AND
$ HAS BEEN DELETED,’)

FORMAT( 0 93(F3.094F7.,254X))

FORMAT(’ “»3(F3,0+4F7.,2+4X))

STOF

END

SUEROUTINE COORL(RC2DATyRC3DATy SWyKOUNT)

THIS SUBROUTINE COMPUTES THE X»YsZ COORDINATES FOR THE SPARK
GAPS IN THE ROARD REFERENCE SYSTEM BY PERFORMING CALCULATIONS
ON THE SLANT RANGE DATA FROM THE FOUR CORNER MICROPHONES

DIMENSION RCZDIAT(30)RC3NAT(24)

INTEGER CASEsKOUNT»SU

REAL L1sL2+K1

DATA L1/167.75/y L2/111.80/y K1/3.90/

CASE=0

K=0

N0 110 I=1+26,5

Sh=1

KK=1

IF(RC2DAT(I+1) EQ. 0.0) KK=RK+1
IF(RCZDAT(I+2) +EQ. 0.0) KK=KK+1
IF(RC2DAT(I43) ERs 0,07 RK=KK+1
IF(RC2DAT(I+4) .E@. 0.0) KK=RK+1

IF (KK.GT.2) GO TO 115

FA=RC2DAT(I+1)

FR=RC2DAT(142)

FC=RC2DAT(I+3)

FI=RC2DAT(I1+4)

IF (FI1,GE.FA.AND,FI.GE.FB.ANDLFINGEWFC) CASE=1
IF(PC.GE.FA.AND.PC.GE.PB.AND.PC.GE.PDY) CASE=2
IF(FR.GEFA.ANDFR.GE .FCoANDFR.GEJFI) CASE=3
IF(PA.GE.FPB+ANDPA.GE.PC.AND,PA,GE.PD) CASE=4
IF(FD «ER. 0.0) CASE=1

IF(FC .EQ. 0.0) CABE=2

IF(FE +EQ. 0.0) CASE=3

IF(FA L,EQ. 0.0) CASE=4

GO TO (40570580590)sCASE

XC=( (PA+K1 ) %%2-((FR+R1)KK2) +L1%%2)/(2,0%L1)
IF¢ARS{XC).GT ARS(FA+K1)) GO TO 1i4

YC={ (FA+K1)%k2~( (PCHK1 ) kK2) +L2XK2) /7 (2.,0%L2)
FF=SART ( (FAHR1 Y k2-XCX%2)

IF(ABS(YC).GT.PF) GO TO 114

ZC=SQRT ((FF)¥¥2-YCk%2)

G0 TO 100
XC=((PA+R1) k2~ ( (FEK1) kk2)+L1%k%2)/(2,0%L1)

IF(ABS(XC) .GT,ABS(PA+K1)) GO TO 114
YC=C (PREK1 ) ¥K2- ((FOHR1 ) kk2) +L2%%2) /7 (2, 0%L2)

FP=SORT ((PATK1)%%2-XCk%2)
IF(ABS(YC).BT.FF) GO TO 114
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ZC=5QRT( (PP ) %¥2-YCk%2)
GO TO 100

BO  XC=({PCIRIIR¥2-C(FIHK1)XX2)+L1%%2)/(2,0%L1)
IFCARS(XC) .GT,ABRS(PC+K1)) GO TO 114
YC=((PA+KL) Xk2- ((PCHR1IKk2)+L2%%2) /(24 0%L2)
PP=SART ((PCHK1)Xk2-XCk%2)
YCCOWF=L2-YC
IF(ABRS(YCCOMF) .GT.FF) GO TO 114
ZC=8ORT((FP)%%2-YCCOMPXX2)

G0 TO 100
90 XC=((FC+K1)k*2- ((PDHK1) Xk2)+L1k%k2)/(2,0%L1)

IF (ARS(XC).GT.ARS(PC+K1)) GO TO 114
YC=((PEHK1)%%2~ C(FIHK1 ) kK2)+L2%%2) /(2,0kL2)
FP=SART ( (PCHK1) xk2-XCkk2)
YCCOMP=L2-YC
IF (ARS{YCCOMF) .GT.FF) GO TO 114
ZC=SART({PP)x¥2-YCCOMPX%2)
100 RC3DAT(I-K)=RC2DAT(I)
RC3DAT(I-K+1)=XC
RCIDAT(I-K+2)=YC
RC3DAT(I-K+3)=ZC
GO 10 117
114 SW=-1
WRITE(S»200IRC2DAT (1) s KOUNT
200 FORMATC’0’y’SFARKER’»F3.0s’ IN REC.’»I3s’ INVALID')
115 RC3DAT(I-K)=RC2DAT(I)
RCIDAT(I-K+1)=0.0
RE3DAT(I-K+2)=0.0
REIDAT(I-K+3)=0,0
IF(SW .ER. -1)GO0 TO 117
WRITE(Ss130IRCIDAT (I-K) s KOUNT
130 FORMAT(’0’»‘SPARKER’sF3.0s’ IN REC.’+I3»’ 1§ ZERD')
117 K=K+l
110 CONTINUE
RETURN
END
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FROGRAM FORCIO

THIS PROGRAM COLLECTS THE SLANT RANGE VALUES FROM THE SONIC

DIGITIZER AND SIX CHANMELS FROM THE A-TO-DI' BOARD AND USES
THE IEEE-488 INTERFACE. THIS DATA IS5 USED FOR FORCED
KINEMATIC ANALYSIS OF THE MOVING RODY SEGMENT.

DIMENSION OUTFUT(45)sRECORI33)

VIRTUAL RIGBUF(198,136)sATIDAT(6,156)
LOGICAL¥1 RIGEUF» TRANS(198)

LOGICALX1 RECDAT(198,2)

LOGICAL%1 FNAME(13)

INTEGER IFARAM(692)yI0SB(252)sPRLACS) »CHKMNL
INTEGER IFARM(6)sIDSTOP(2),DSW,CHDAC2)
DIMENSION SUM(4»2) YATDOUT(6)

INTEGER COLUMNyTEST(1)sCHECKySWsKOUNT» IOST(2)
DATA TEST/~1/CHECK/0/COLUMN/1/KOUNT/0/

DATA IREC/1/CHDA/ .77 2 "2P7/

DATA MODE/1/LMODE/2/

CREATE & OFEN OUTFUT FILE

TYPE %»'NOTE! The maximum number of records sllowable is 155.°

TYPE %»’ This is arrrox. 19.5 seconds.’
WRITE(S:S)

READ(Sy10) (FNAME(I)sI=1,13)

WRITE(S3s13)

REAL' (3520) NREC

MREC=NRECX2

CALL ASSIGN (1sFNAMEs13)
DEFINE FILE 1 (MRECs&6sUsIREC)

GET THE RUFFER ALLKESSES

CALL GETADIR(IFARAM(1s1)sRECDAT(151))
CALL GETADR(IPARAM(1s2}sRECDAT(1,2))
IFARAM(2,1)=198

IPARAM(2,2)=198

CALL GETADR(IFARM(1)sTEST(1))
IFARM(2)=1

ATTACH IEEE BRUS

CALL WTRIO (1420925192 I0STssDSW)

IF(DSW.NE.1) TYPE %»’ IEEE BUS WILL NOT PICK YOU UP TODAY! *
IF(DOSW.NE.1) GO TO 2000

IF(I0S5TC(1).NE.1) TYFE %s’ IEEE BUS WILL NOT PICK YOU UP TODAY! ’
IF(IOST(1).NE.1) GO TO 2000

CALL GETADR (FRLAC1),CHDACL))

PRLA(2)=4
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c SET UF DIGITIZER AS TALKER

CALL WTQIO (*4205251y+I0STsPRLALIISH)

IF(DSW.NE.1) TYPE %»’ IEEE BUS IS NOT TALKING TODAY! /
IF(DSW.NE.1) GO TO 2000

IF(IOST(1).NE.1) TYPE %»’ IEEE RUS IS NOT TALKING TODAY!
IF(I08T(1).NE.1) GO TO 2000

QUEUE THE FIRST I1/0

[ B we B e |

CALL QID(*100052510yyI0SE(1s1)sIPARAM(1s1)+D5W)
[0 25 I=1,12
[0 25 J=32+37
R=J-31
CALL OSUATDMJ»OsIDATAYISTAT)
DATA=IDATAX0, 00030571578
SUM(K» 1)=BUN(K»s1)+ATA
CONTINUE

(4]

INITIALIZE THE NUMBER OF RECORDS TRANSFERRED

=00 0r

00 NMOIE=MODE
HODE=LMODE
LMODE=NMOLE

WAIT FOR THE RUFFER TO FILL

Ly I o]

CALL WAITFR{(10)
CALL QI0(*1000s2+10y»I0SE(1syHODE) » IPARAN(1MODE) »DISH)
1 DO 90 I=1,198
BIGERUF (I»COLUMN)=RECDIAT(IsLMOLE)
90  CONTINUE
o 30 I=1s12
DO 30 J=32+37
K=J-31
CALL OSUATINJ»0»IDATAsISTAT)
DATA=IDATA%0.00030571578
SUM(K»MODE)=SUM(KyMODE)+DIATA
30  CONTINUE
2 0 35 I=1y6
ATODAT (T COLUNMN)=SUM(I»LHODE)
SUM(Is1.MODE)=0.0
35 CONTINUE
IF(CHECK .EQ. NREC+1)GOTO 1200

INCREMENT THE NUMEER OF RECORLDS

o0

COLUNN=COLUMN+1
CHECK=COLUMN-1
GOT0 100

1200 CHKMN1=CHECK-1
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WRITE (5y45)CHKMNI
DO 999 K=1,CHECK
Do 998 1=1,198
TRANS(I)=BIGEUF (IsK)
998 CONTINUE

G
C DELETE 1ST RECORD FOR SETTLING FURFOSES
c
IF(K.EQ.1)G6D TO 3
C
C

DECODE (198:530,TRANS) (OUTFUT(J)»J=1s45)
DO 997 I=1:6
ATROUT(I)=ATRDAT(I+K)
RECORD(2741)=ATDOUT(I)%0,.083333
997 CONTINUE
CALL COORD(DUTFUTsRECORD»SWsKOUNT)
IF(KOUNT .GT. 0) GOTO 993
994 WRITE(SyS535) (FNAME(I)+I=1+13)
WRITE(S+540) (RECORIMI)sI=1,1%5)
WRITE(S5y545) (RECORD(I)»I=16+27)
WRITE(S»3550) (RECORDCI)»I=28,33)
993 WRITE(1/IREC) (RECORD(I)»I=1,33)
D0 899 I=1,45
OUTPUT(I)=0,0
899 CONTINUE
[0 888 I=1+6
ATIOUT(I)=0.,0
888 CONTINUE
o 300 I=1+33
RECORD(I)=0.0
300 CONTINUE
L0 887 I=1,198
TRANS(I)=" '/
887 CONTINUE
KOUNT=KOUNT+1
3 CONT INUE
299 CONTINUE
1500 CLOSE (UNIT=1)
CaLl WTQRIO("200092+1y»I0STDSW)
WRITE(S»555) (FNANE(I)»I=1+13)sKOUNT
CALL CLREF(10)
% FORMAT(’$’s’Enter the name to be given to the data file [5-133}: /)
10 FORMAT(13A1)
15 FORMAT(’$’y’Enter the number of records (diditizer sweeps) to b
$e allocated to the dats file IN-S11 /)
20  FORMAT(IS)
45 FORMAT(’0’s SUCCESS,'s1éy’ SWEEPS RECORLELD. /)
530 FORMAT(2(F1.0s4F5,2+1X})
535 FORMAT(’0’/FROCESSED! DATA FOR FILE? ‘s13A1)
540 FORMAT(’07»5(3F7.2))
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545
950
955

2000

ODaOm

60

70

FORMAT(’094{(3F7.2))

FORMAT( 0/ 96F17.9)

FORMAT(’0’s ‘IIATA WRITTEN TO DISK., “»13A1s 'CONTAINS’s1Ss’ RECORD
$8.7)

FORMAT(’ 7y ‘RECORD NUMEER: ‘»I5»° CONTAINED' ZERD VALUES AND

% HAS REEN DELETED.)

STOP

END

SUEROUTINE COORD(RC2I'ATsRCIDATySHyKOUNT)

THIS SUBROUTINE COMFUTES THE X»VsZ COORDINATES FOR THE SFARK
GAPS IN THE BOARD REFERENCE SYSTEM BY PERFORMING CALCULATIONS
ON THE SLANT RANGE I'ATA FROM THE FOUR CORNER MICROFHONES

DIMENSION RC2DAT(45) RCIDAT(33)

INTEGER CASE»KOUNTsSW

REAL L1sL2,K1

DATA L1/167.75/y L2/111.80/y K1/3.90/

CASE=0

J=0

00 110 I=1541+5

Shi=1

KK=1

IF(RC2DAT(I+1) +EQ. 0.0) KK=KK+1
IF(RC2DAT(I+2) .EQ. 0.0) KK=KK+1
IF(RC2DAT(I4+3) EQ. 0,0) KK=KK+1
IF(RC2DAT(I+4) .EQ. 0.0) KK=KR+1

IF(KK.GT+2) GO TO 115

PA=RC2DAT(I+1)

FE=RC2DAT(I+2)

FC=RC2DAT(I+3)

FO=RC2DAT(I+4)
IF(PLNGE.FAANDLFOLGE.FB.AND,FD.GE.FC) CASE=1
IF(PC+GE+FA,ANDFC.GE.FB.AND.PC.GE.FD) CASE=2
IF (FR.GE.FA.AND FR.GE.FC+AND.FE.GE.F[Y) CASE=3
IF(PA.GE,FB.AND.PA.GE.PC.AND.PA.GE.PD) CASE=4
IF(FD JEQ. 0,0) CASE=1

IF(FC .EQ. 0.0) CASE=2

IF(FE +EQ, 0.0) CASE=3

IF(PA +ER. 0.0) CASE=4

GO TO (60+70:80+90)sCASE

XC=C(FATKL ) *X2- C (PRHK1) KX2) +L1X%2) /7 (2,0%L1)
IF(ARS(XC).GT.ABS(FA+K1)) GO TO 114

YC=( (FATK1 Y Xkk2-((PCHK1) XK2) +L.2%%2) /(2,0%L2)
FF=8QRT ( (FA+R1)kk2-XCkk2)

IF(ARS(YC).GT.PP) GO TO 114
ZC=SQRT ( (FP)kk2-YCkk2)

GO TO 100

XC=((FA+K1 I KX2- ( (FBHKL1 ) RX2) L 1kk2)/(2,0%L1)
IF(ARS(XC) GT.ARS(PA+K1)) GO TO 114

YC=( (FREK1) k2= C(POHK1 ) Xk2) +L2%%2) /(2,0%L2)
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FP=SORT ( (PA+K1 ) X%2-XCKX2)
IF(ARS(YC) .GT.FF) GO TO 114
ZC=SART ((FP)kX2-YCkX2)

GO TO 100
BO  XC=((PCHK1)X¥2-((PDHK1)kk2)+L1%%2)/(2,0%L1)

IF (ARS(XC) .6T.ABRS(PC+K1)) GO TO 114
YC=((FATKL) %2~ ((PCER1 D k%2)+L.2%%2)/(2,0%L2)
PP=SORT((PCHK1)X¥2-XCk%2)
YCCOMP=L2-YC
IF (ARS(YCCOMF).GT.FF) GO TO 114
ZE=SART ((PP) Xk2-YCCOMPXX2)
G0 TO 100
20 XC=((FCHK1)R%2- ((PIER1IKK2)+L1%%2)/(2,0%L1)
IF{ABS(XC) .GT.ABS(PCIK1)) 6O TD 114
YC=((FR+K1) kk2- ((PD+K1)kk2) +L2%%2)/(2,0%L2)
PE=SART ( (PCH+K1 Y Xk2-XCK%2)
YCCDMP=L2~YC
IF(AES(YCCOMP).GT.PF) GO TO 114
ZC=SORT ({PP)X¥2-YCCOMPX%2)
100 RC3DAT(J+1)=XC
RCIDAT (J+2)=YC
RC3DAT(J+3)=ZC
GO TO 117
114 S8W=-1
WRITE(Sy200)RC2IAT (1) y KOUNT
200 FORMAT(’0’y/SPARKER’sF3.0s’ IN REC.’»I3s’ INVALID?)
115 RC3DAT(J+1)=0.0
RCIDAT(J+2)=0.0
RC3DAT(J43)=0.0
IF(SW .eG@., -1)G0 7O 117
WRITE(5y130)RC2DAT(I) s KOUNT
130 FORMAT(’0’y/SPARKERsF3.0s’ IN REC.’»I3»’ IS ZERO")
117 J=J43
110 .CONTINUE
RETURN
END
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FROGRAM KINFAF

THIS FROGRAM ANALIZES THE KINEWATICS OF A MOVING RODY RELATIVE
TO A FIXED RODY. IT REQUIRES THE INPUT OF A LOCATOR FILE (FOR
THE FIXED RODY)s AN INITIALIZNG FILE (FOR THE MOVING BODY) AND

A KINEMATIC DATA FILE.
DECLARE & TYFE VARIABLES; DIMENSION ARRAYSF INITIALIZE CONSTANTS

DIMENSION SHLJNT(4)ERDWJIT(4)ANGOUT(4)

DIMENSION CTLOC(3)sRC2DAT(24) sPNTR(6+3)

DIMENSION RC1DAT(24),VEC1(3)sVEC2(3)sVECI(I)

DIMENSION F1(3)syERRTOT(20s3)ELBJINT(3) ELBCNT(3) »CSHAT(3+3)
DIMENSION 61(3)sTHAT(353)sCVEC(3) yHUNIIRC(6093) yHUM(393)
DIMENSION LBVEC(3)CNYVEC(3)»T2(393)sT1(393)»T21(3+3)»FBCNT(3)
IIMENSION LOCOGN(3)s JTCNT(3)sANGS(3)sLGRVEC(3) y INTENT(3)
DIMENSION L.BVEC1(3),LBVEC2(3),LGVEC1(3)sLGVEC2(3)

LOGICAL¥1 JTNAME(?)sSNANE(25) sHESS(80) +FINAME(13) yF2NANE(13)
LUGICAL*1 FINAME(13)sDAY(P)sHOUR(B) »FANANE(13) »FONAME(13)
LOGICALX1 F&NAME(13)

INTEGER ANS»YsNyIPT(20) s TRIADsCASEsANS2

REAL JNTVECsLEVECsLOCOGNy JTCNT»LGRVEC

REAL JNTCNT,LBVEC1,LBVEC2,LGVEC1»LGVEC2

COMMON /AC/ FNTI(693),COSHAT(6053)sCOSTRN(6053) sDIRCOS(4053) s
$DRCTRN(6023) s TRIAD(2053) s JNTUEC(2053)

DATA IREC/1/JREC/1/KREC/1/7Y/°Y’/N/'N' /KOUNT/1/

DIATA LWREC/1/1\.REC/1/HMREC/1/

FROMFT FOR DINENSIONSs DATA FILES AND OUTFUT INFORMATION

WRITE(523)

REALI( G210, ERR=505) (JTNANE(I)»I1=1+%)
WRITE(S»1S)

READCSy 20, ERR=510) (SNAME(I)»I=1s23)

“ WRITE(S23)

READ (5y30sERR=515) (HESS(I)sI=1+80)
WRITE(Sy35)

REALl (5s40sERR=520) (FINAME(I)sI=1,13)
WRITE(Sy45)

REALl (5»50sERR=525) NREC

WRITE(Ss51)

REATI(5»40)ERR=527) (F2NAME(I)»I=1513)
WRITE(S,85)

REAN(Sy 40, ERR=553) (FINAME(T) » I=1+13)
WRITE(S431)

REAL( 5,432, ERR=034)NANS

WRITE(Sy35)

WRITE(S,60)
REAI(Sy 65, ERR=535)CTLOC(1)
URITE(S»70)
READ(Sy 65, ERR=540)CTLOC(2)
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945 WRITE(Sy73)
READ(Sy 65 ERR=545)CTLOC(3)
950 WRITE(G,80)
Do 601 I=1,3
0 602 J=1,3
603 WRITE(S»404)1+J
READ(S» 667 ERR=603)T2(Iy.)
602 CONTINUE
601 CONTINUE
557 UWRITE(S,B85)
READ(S»40,ERR=557) (FSNAKECI) s I=1413)
968 WRITE(S,896)
READ(5s40sERR=568) (FONANE(I)»I=1y13)

g LOCATE» IDENTIFY ANI! ACCESS THE LOCATOR DATA FILE
‘ CALL ASSIGN (1sF2NAME13)
DEFINE FILE 1 (1,48,U,IREC)
g READ' LOCATOR DATA FILE
‘ REALl (1/IRECyERR=3000)(RC2DAT(I)sI=1+24)
E ASSIGN DIATA TO VARIABLES

[0 87 I=1.3

T1(151)=RC2DAT(3+I)

T1(2+1)=RC2DAT(1241)

T1(3yI1)=RC2DAT(18+1)

LOCOGN(I)=RC2DAT(6+1)
87  CONTINUE

CLOSE (UNIT=1)

LOCATE» ILDENTIFY AND ACCESS THE INITIALIZING DATA FILE

[or BLae i o ]

CALL ABSIGN (1,F3NAME»13)

DEFINE FILE 1 (87652,UysJREC)

D0 90 I=1y6

Do 89 J=1,3

READ(1’ JRECYERR=3500)FNTI(I+J)
89  CONTINUE
?0  CONTINUE

po 93 I=1460

00 92 J=1,3

READ(1‘JREC,ERR=3500)COSHAT(I+J)
92  CONTINUE
23 CONTINUE

Do 96 I=1,20

[0 94 J=1,3

REAI(1’ JRECYERR=3500) (UNTVEC(I»Jd))
94  CONTINUE
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96 CONTINUE

N0 98 I=1,60

o 927 J=1,3

READI(1 ' JREC»ERR=3500) (HUMDRC(I+J))
97  CONTINUE
98  CONTINUE

CLOSE (UNIT=1)

c

C CALCULATE THE TRANSFOSES FOR THE VARIOUS AXIS SYSTEM LDIRECTION
C COSINE MATRICES.
C

B0 152 N=1,20

M=(N-1)%3

DO 151 J=1,3
COSTRN(M+Js1)=COSHAT (Ht1,J)
COSTRN(M+Js2)=COSKAT (M4+2yJ)
COSTRN(M+.4s3)=COSMAT (K13 J)
CONTINUE

CONTINUE

o an
P —

CALCULATE THE LOCATION OF THE FIXED BODY CENTER W.R.T. THE
BOARD .,
CALL GMFRLI(T2¢T1sT21¢3+3,3)
CALL NINV(T1,3sDsF1,G1)
CALL GMFRD(T1sCTLOCsFECNTy3»3+1)
D0 920 I=1,3
FECNT (I1)=FBCNT(I)+LOCOGN(I)
20 CONTINUE

CICE £ s

9
c
€ OUTFUT HEADER INFORMATION
C
2

000 CALL DATE(DAY)
CALL TINME(HOUR)
WRITE (S9200)
WRITE(S»100) (JTNAME(IY1I=1+9)
WRITE(S5,205)
WRITE(S9105) DAYsHOUR» (SNAME(I)sI=1,23)
WRITE(S+110) (FINAME(I)»I=1,13)sNREC,(MESS(I)sI=1,80)

WRITE(5,205)
LOCATEs» ILENTIFY ANDI ACCESS THE MAIN DATA FILE

[or I or N o]

CALL ASSIGN (1,FINAMEs13)
IEFINE FILE 1 (NRECy4BsUyKREC)
CALL ASSIGN (3sFONAME»13)
DEFINE FILE 3 (NREC»8sUsHREC)
CALL ASSIGN (4sF4NAME13)
DEFINE FILE 4 (NREC,8yUsLMREC)

REALl ONE RECORID

[ar B o B o}
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500 READ- (1’KRECsERR=4000) (RCiDAT(I)yI=1524)
c
L ASSIGN DATA TO VARIAELES
c
D 499 I=1,3
FNTK(1y1)=RCIDAT(141)
PNFK(2sI)=RCIDAT(I45)
FNTK(3s 1)=RCIDAT(149)
PNTK(4yI)=RCIDAT(I+13)
PNTK(Sy1)=RCIDAT(I+17)
FNTK(6sI)=RCIDAT(I421)
499 CONTINUE
501 KK=0
00 805 I=1y6
IF(FNTK(I51) \NE,0,0) GO TO 805
KK=KK+1
805 CONTINUE
IF(KK.BE.4) GO TO 3700
N=1
D 840 J=1s4
00 830 K=J+1s5
ID 820 L=K+1+6
TRIADNs 1) =
TRIAIMNy 2)=K
TRIADCNy3)=L
IF (FNTK(Ky1) oNE 0O ANDLFNTK(J9 1) JNE, 040 AN FNTK (L 1) W NE,
80,0) GO TO 850
II=((N-1)%3)+1
DO 845 JJ=1,3
IRCOS(I1500)=0,0
DRCOS(II+15JJ)=0.0
IRCOS(11425.0J)=0,0
DRCTRNCII5JJ)=0,0
IRCTRN(II415JJ)=0,0
DRCTRN(IT+250J)=0,0
B45 CONTINUE
IFT(N)=K
N=N+1
0 TO 820
850 DO 800 M=1,3
VEC1 (M) =FNTK (Ky M) ~-FNTK(Js H)
VEC2(M)=PNTK (L yH)~PNTK (K )
800 CONTINUE
IPT(N)=K
CALL DRCMAT(VEC1,VEC2sCSMAT)
I=((N~1)%3)
[0 810 JJ=1,3
DRCOS(I+15JJ)=CSMAT (1)
IRCOS (1425 JJ)=CSMAT (25 JJ)
DRCOS( I+35JJ)=CSHAT (31 JJ)
IRCTRN(I+JJs 1)=CSHAT (15 JJ)
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DRCTRNCI+JJ»2)=CSHAT(2yJJ)
URCTRN(I+JJ»3)=CSHAT (35 JJ)
810 CONTINUE
N=N+1
820 CONTINUE
830 CONTINUE
840 CONTINUE
CALL LOCAXS(PNTKsCASEsERRTOT)

C CALCULATE THE JOINT CENTER W.R.T. THE FIXED BOLY CENTER

I=((CABE-1)%3)+1
DO 900 J=1,3
THAT (15 J)=DRCTRNC(I»J)
THAT (25 J)=DRCTRN(I+1+Jd)
THAT (35 J)=DRCTRN(I+2s J)
HUM(1yJ)=HUMDRC(I»J)
HUM(25 J)=HUNDRC(I+1,J)
HUM(3s J)=HUMDRC(I+2,0)
CVEC{(J)=JINTVEC(CASE»J)

900 CONTINUE
Lo 339 J=1,3
LRVEC (J)=HUM(3sJ)
LEVEC1{(J)=HUM(1,J)
LBVEC2(J)=HUM(2s.))

339 CONTINUE
CALL GMFRI{TMATyCVECYCNTVEC»3+3s1)
CALL GMPRD(TMATsLBVEC,LGBVEC»3y3s1)
CALL GMPRD{(TMAT,LRVEC1,LGVEC1,3+3»1)
CALL GMPRD(TMATsLBVEC2,LGVEC2+3+3s1)
CALL UNITVR(LGRVEC)
CALL UNITVUR(LGVEC1)
CALL UNITVR(LGVEC2)
K=IPT(CASE)
g 910 I1=1,3
ELRJINT (I =FNTK(Ky I)+CNTVEC(I)

?1CG  CONTINUE
[0 930 I=1,3
ELBINT(I)=ELBJNT{I)-FECNT(I)

930 CONTINUE
CALL GMFRO{T21+ELBJINTSELBCNT»3+351)
Do 931 I=1,3
EROWJT(I+1)=ELBCNT(I)

931 CONTINUE
CALL GMPRI(T21sLGBVECSLEVECY3+311)
CALL GMPRD(T21sLGVEC1,LBVEC1+3y3s1)
CALL GMFRO(T21sLGVEC2,LBVEC2535341)

CALCULATE THE THETA AND FHI ANGLES OF THE LONG BONE AXIS
W+ Ry T. THE FIXED BODY AXIS SYSTEM

Lo I o I o M s ]
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710

THETA=0.00

PHI=0.00

CALL UNITVR(LEVEC)
CALL UNITVR(LEBVEC1)
CALL UNITVR(LEVEC2)
CALL SPHERE(LBVEC»THETAsFHI)
0 338 J=1+3

HUM(1s J)=LBVECI(J)
HUM(2» J)=LRVEC2(J)
HUM(3» J)=LRVEC(J)
CONTINUE

IF (NANS,EQ.2) GO TO 399
CALL EULER(HUM»ANGS)
ANGOUT (2)=ANGS(1)
ANGOUT (3) =ANGS(2)
ANGOUT (4)=ANGS(3)

60 TO &99

CALL EULER2(HUM»ANGS)
ANGOUT(2)=ANGS(1)
ANGOUT (3)=ANGS(2)
ANGOUT (4) =ANGS(3)

WRITE DISTAL JOINT CENTER COORD,.’S AND EULER ANGLES W. R. T,
THE FIXED BODY AXIS SYSTEM TO DISK FOR THE MOVING BODY

CONTINUE

EBOWJT(1)=FLOAT (KOUNT)
WRITE(3'MREC) (EBOWJT(J) s J=1+4)
ANGOUT (1)=FLOAT (KOUNT)

WRITE(4 LMREC) (ANGOUT(J)sJ=1+4)

WRITE OUT THE DATA

IF(KDUNT.G6T.1)G0 TO 710

WRITE(S,700)

WRITE{S»720)KOUNT» THETAsFHI

$yANGOUT (2) y ANGOUT(3) s ANGOUT(4) » TRIAII(CASE » 1) » TRIAD(CASE» 2) »
$TRIAD(CASE»3) sERRTOT(CASE»1) yERRTOT (CASE»2) yELBCNT(1) s
$ELECNT(2) yELBCNT(3)

IF(ERRTOT(CASEy1).NE.?.999) GO TO 318

I=TRIAD(CASE»1)

J=TRIADCASE»2)

K=TRIAD(CASE»3)

DBKMG1=SART C(FNTR(Is 1)-FPNTR(Jso 1) 2RK2+H(PNTK(I»2)-FNTK(J»2) ) %2+
F(PNTK(I»3)-PNTK(Js3) ) ¥%2)

UKMG2=8QRT ((FNTK(Js 1)-FNTK(Ky1) ) R%2+ (PNTK(Js 2)-FNTK(Ky2) ) k%24
(PNTK(Jr3)-PNTK(K»3) ) %%2)

DKMG3=8QRT ((FNTK(K21)-FNTK(Is1))X%2+(PNTK(Ks2)~-PNTK(Is2) ) k%24
F(PNTK(Ks3)-PNTK(I+3) }%%2)
DIMG1=SART((PNTI(Is1)-PNTI(Js1))%k2+(PNTI(I»2)-PNTI(Js2))k%2+

SOPNTI(I3)-PNTIC(Jr3))%%2)
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60
65
bé
70
75
B0

85

100
105

110

200
205
206
207
275
280
285

DIMG2=SRRT ((FNTI(Jp1)-FNTI(Ky1))XX2+(PNTI(Js2)-FPNTI(K»2))%%24
EC(PNTI(Js3)-PNTI(Ky3))%%2)
DINGI=SART{(PNTI(Ky1)-PNTI(Is 1) )XK2+(PNTI(Ky2)=PNTI(I22))%%2+
S(PNTI(Ks3)-PNTIC(I»3))X%2)

WRITE(S,926)

WRITE(S»9227)1 s JyDIMGLy JoKs DIMG2s Ky I DIMNG3 s Iy Jr IKMG1 » Jo Ky DRMG2
%yKy Iy DIKMG3

IF THERE ARE ANY MORE RECORDS,» GO GET THEM!

KOUNT=KOUNT+1
IF (KOUNT.LE.NREC) GO TO 500

FORMAT STATEMENTS FOR PROMFTS AND RESULTS

FORMAT(’$’s ‘Enter name of Joint tested L[5-91! ')

FORMAT (9A1)

FDRMAT(’$’s‘Enter subJect name or number L[5§-251% /)

FORMAT (25A1)

FORMAT(’0’y 'Enter a3 descrirtion of the test [5-B01 /)
FORMAT(80AL)

FORMAT(’$'y’Enter date file name [S5-133: /)

FORMAT(134A1)

FORMAT(’$’s ‘Enter number of records to be read [N-51} *)
FORMAT(ID)

FORMAT(’$/y'Enter the corresronding fixed bode locator file na
tme [s-132%¢ /)

FORMAT(’0’y’Enter the distances in centimeters slong the loca
ftor axes to the desired fixed body center 3’
FORMAT(’$’9T15s‘Enter the X~COORDINATE [N-81% 7)

FORMAT(F10.,5)

FORMAT(F8.4)

FORMAT('$'¢T15s'Enter the Y-CODRDINATE [N-81: )
FORMAT(’$/sT15, ‘Enter the Z~COORDINATE [N-83% )

FORMAT(’0’s ‘Input 38 3x3 matrix (buy rows) that defines the body
% axis sustem w.r.t, the locator axis sustem ? /)
FORMAT(’$’s’Enter the corresronding initializing file name [
§5-131: )

FORMAT(’0/+T78,9A1y JOINT")

FORMATC(’0’ TS 'DATE! “99A1s/sTSy»'TINE! ‘+8ALs/sTSy‘SUBJECT
ZNAME ANDN NUMEER!: ’»25A1)

FORMAT(’ “»TSy’LIATA FILE NAME! ‘y13A1s/sT3s 'NUMBER OF RECORDS?
$/9159//9TS» “DESCRIFTION: ‘+80A1)

FORMAT(’0/9165( " -"}/)

FORMAT(/079145('=-")//)

FORMAT(’ “9165('~"))

FORMAT(/0/9165(/,+7))

FORMAT( ‘0’ y 'ERROR ON ATTEMFT TD READ LOCATOR FILE /)
FORMAT(’0‘y 'ERROR ON ATTEMPT TO READ INITIALIZING FILE )
FORMAT(’0’s'FOUR EMITTERS ON CUFF READl ZERO-FROCEEDING TO NEXT

& RECORD *)

160



300
311
340

345
420

431
432
433

436

604
700

FORMAT(’0‘yT30y 'ERROR ON ATTEMFT TO READ NEXT RECORD’)
FORMAT('0’ »T20y 'NOMINAL JOINT CENTER AS INITIALIZED'/)
FORMAT(’0’s/’$%’+’Are there other files to be processed?
$LY/NIY )

FORMAT(A4)

FORMATC’$’y‘llo wou want to rrint out the euler angles for the
% humerus? LY/NJI)

FORMAT(’$‘s ‘Do vou wish ture 1 (z-x-z)» or tyre 2 (z-u-2)

% euler andle outrut? [1 or 2117)

FORMAT(I2)
FORMAT(’0’+T18s 'EULER ANGLES FOR HUMERUS’s//»T5»’REC. #'+T18y

&’PRECESSION’ s T34» 'NUTATION’ s TS1s“SPIN’ s/ T20y ' (PHI) ‘s T34, ' (THETA
&) 9T50s ' (PEI) ")

FORMAT(" ’9T6213sT199F7429T349F7.29T4%9F742)

FORMATC ' $/9yT199/T2( 911979 »I1,7)CN-B]% *)

FORMAT( /0’9 T2y 'REC.#/9T135 'THETA' »T23s 'PHI 'y T32s

% ‘EULER ANGLES FOR MOVING RODY’sTé3s’TRIAD USELR’,T78»‘SKEW-DEV’
&2 793y 'DIST-DEV/»T110s 'DISTAL JOINT CENTER’s/sT35s 'PREC, ' 94Xy
&/NUT.“v4Xs ‘SPIN"+/)

FORMAT(’ ‘sI5»T11+F7,2+T209F7,29T33+3FB.2:T62s
83I3+T78¢F7.39T929F7.35T105,3F2.3)

FORMAT (4F8,3)

, FORMAT(’$’y 'Enter the outrut dats filename for ‘v

& ‘THE DISTAL JOINT CENTER COORDINATES ! [5-1331")
FORMAT(’$'s’Enter the outeut data filename for EULER

% ANGLES OF THE MOVING BODY [S-131: /)

FORMAT(’ “»TSs/INITIALIZED DISTANCES: yT63y ‘IISTANCESy CURRENT
& RECORD:’)

FORMAT(’ "93(11s'="9119/="4F5.:24' 19T8093(I1ly’'="911s'="y

&FS.2y7 1))
CLOSE UF DATA FILE & THAT’S ALL FOLKS!

CLOSE (UNIT=1)
CLOSE (UNIT=3)

CLOSE (UNIT=4)

WRITE(55207)

WRITE(S+340)

READ(51345)ANS

IF(ANS EQ. ‘N‘)GO TO 5000
WRITE(5535)

READI(5r40) (FINAME(I)y1=1,13)
WRITE(5s45) ,

READN5»50) NREC

WRITE(S5,25)

READ(S5930) (MESS(I)»I=1,80)
KRE:=1

KOUNT=1

LREC=1

MREC=1

LMREC=1
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959 WRITE(5,885)
READIS»40yERR=537) (FONAME(I)+I=1,13)
560 WRITE(S5:,896)
REANI{5y40sERR=560) (F6NANE(I) +I=1+13)
G0 TO 2000
3000 WRITE(Ss203)
WRITE(S,275)
GO To 5000
3500 WRITE(S,205)
WRITE(5,280)
GO TO S000
3700 WRITE(S»285)
KOUNT=KOUNT+1
IF (KOUNT.GT.NREC) GO TO 2001
GO TO 500
4000 WRITE(S5,205)
WRITE(S»300)
GOTO 2001
5000 WRITE(S,2035)
STGF
END
SUEROUTINE SPHERE(VECsTHETAsPHI)

SUEROUTINE TO CALCULATE THE SFHERICAL COORDINATES (THETAsFPHI)
OF THE VECTOR °"VEC*.

o I o I e B o

DIMENSION E(3)sVEC(3)
DATA PI/3.141592654/
VECHAG=SART (VEC (1) %¥2+VEC (2) %k 2+VEC(3)%%2)
IF{VECMAG.LT.1.,001) GO TO 10
R(1)=VEC(1)/VECHAG
B(2)=VEC(2)/VECHAG
E(3)=VEC(3)/VECNAG
GO TO 15

10 R(1)=VEC(1)
R(2)=VEC{2)
B{3)=VEL(3)

15  A1=SORT(B(1)X¥2+B(2)%%2)
THETA=(ATAN2(A1»E(3)))%180.,0/FI
IF(THETA.LT+179.99.0R.THETA.GT.0.01) GO TO 20

FHI=0.0
GO TO 30
20 PHI=(ATANZ2(E(2)sB(1)))%180.0/FI
30  RETURN
END
c
SURROUTINE UNITVR(VEC)
C
C SUBRDUTINE CALCULATES A UNIT VECTOR FOR ANY GIVEN VECTOR
c

DIMENSION VEC(3)
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VECHAG=(VEC (1) Xk2)+(VEC(2)%%2)+(VEC(3)X%2)
VECMAG=SORT (VECMAG)

IF(VECMAG.EQ.0,0) VECMAG=1.0

D0 10 I=1,3

VEC(I)=VEC(I1)/VECHAG

CONTINUE

RETURN

ENI

SURROUTINE LOCAXS(FNTKsCASEsERRTOT)

THIS SUBROUTINE SELECTS THE °*MOST ACCURATE® LOCAL AXIS SYSTEM
BASED ON INTRA-AXIS SYSTEM DISTANCES AND RELATIVE SKEW ANGLES.

DIMENSION FNTK(693)9TIS(353)»TISK(393)#TIS(3+3) 1 TISK(3+3)
DIMENSION TIJ(353)»TIJK(353)sBEN(3+3)sVECI(3)sVECK(3)
DIMENSION ERRTOT(20+3)sF1(3)+61(3)

INTEGER TRIAL»CASE

REAL JNTVEC,JTDSHG
COMMON /AC/ FNTI(693)yCOSMAT(6093)9COSTRN(A093) sIIRCOS(6093)

$DRCTRN(60+3) » TRIAD(2053) » INTVEC (20, 3)

ERRSK=0.0
ERRDLT=0.0

[0 20 MM=1,20

I1=TRIAD(HMs1)
J1=TRIAD(MMs2)
K1=TRIAD(HMH»3)

IF(PNTK(II,I)QEQOOGOQDROPNTK(JI,l)OEGOOOOOOROPNTK(KI’l)OEGOOOO)

$ 60O 7O 19

RK=(MM-1)%3

o 3 J=1,3
TIS(1sJ)=COSMAT (KK+1+J)
TIS(2yJ)=COSMAT(KK+22J)

TIS(35J)=COSHAT (KK+3»J)

TISK(1s J)=DRCOS(KK+1yJ)
TISK(2sJ)=DRCOS(KK+2yJ)
TISK{3sJ)=DRCOS(KK+3sJ)
CONTINUE

HKNT1=0
HRNT 2=

0 10 N=1+20

12=TRIAD(N»1)
J2=TRIAD(Ny2)
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K2=TRIADI(N»3)

IF(PNTK(I291)+EQ.0+0.0RFNTK(J2+1) sEQ40.0,0RFNTK(K2+1).EQ.0.:0)

$ GO 70 10
M=(N-1)%3
IF(N.EQ.MM) GO TO 10

D 5 J=1,3

TJS(1yJ)=COSTRN(M+1,J)
TJS(25J)=COSTRN(}+2»J)
TJ8(3sJ)=COSTRN(M+3»J)

TJSK(1,J)=DRCTRN(M+1,J)
TJSK(2»J)=DRCTRN(M+2,J)
TJSR{3sJ)=DRCTRN(H+35.))
CONTINUE

CALL GMPRIMTIS»TJSsTIJr39393)
CALL GHMPRD(TISKsTJSKyTIJKy323+3)
CALL MINV(TIJK»3sDsF1y61)

CALL GMPRD(TIJrTIJKsGENs3s3+3)
TRACE=(GEN(1y 1) Xk24+GEN(2,2) kKk2+GEN(3s3) %%2)

GAM=.S%(TRACE-1.0)
IF(GAM+GT1,0.ANDGAMLT+1409) GAM=1.0
GAM=ACOS (GAM)

JTUSMG=SQRT ( {INTVEC (N 1) %%X2)+ (UNTVEC(Ny2) %X2) + (INTVEC(N»3)
£k%2))

GANSIN=SIN(GAM)

DELTAS=JTDSMGXGAMSIN

IELTAS=DELTASKX2

ERRSK=ERRSK+DELTAS

MRKNT1=MKNT1+1

ITI=TRIAD(MM,2)

JJJ=TRIALN(N2)

IF(III.EQ.JJJ) GO TO 10

no 7 L=1+3
VECT(L)=PNTI(JJJsL)-FNTIC(IIIsL)
VECK(L)=PNTK(JJJy L) ~PNTKC(ITIISL)
CONTINUE

VECIMG=SART((VECI(1)%%2)+(VECI(2)%k2)+(VECI(I)%%2))
VECKMG=SART ( (VECK(1)%%2)+(VECK(2) %%2) + (VECK(3) %%2))
DELTAD=ABS (VECKMG-VECIMG)

NELTAD=0ELTAD¥X2

ERROLT=ERROLT+BELTAD

HKNT2=MKNT2+1

CONTINUE

RMRNT1=FLOAT(MKNT1)
RMKNT2=FLOAT (MKNT2)
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20

[V1=RMKNT1%1.,0
DIV2=RMRNT2%1,0

IF (MKNT1.NE.O) GO TO 11
SKERR=9.999

GO T0 12
SKRERR=SBRT(ERRSK/DIV1)
TF (MKNT2,NE.0) GO TO 13
DERR=7.999

GO T0 14
DERR=SGRT(ERRDLT/DIVZ)
ERRTOT (MMs 1)=5KERR
ERRTOT (MM»2)=DERR
ERRTOT (MM»3)=80RT ( (SKERR¥X2+DERRX¥2)/2.0)

ERRSK=0.0
ERRDLT=0.0

G0 TO 20
ERRTOT(MM»1)=25.0
ERRTOT(MN»2)=23.0
ERRTOT(}K»3)=50.0
ERRSK=0.0
ERRDLT=0.0
CONTINUE

CABE=1

ERTOTL=ERRTOT(1,3)

D0 25 I=1419
IF(ERTOTL,LE.ERRTOT(I+1,3)) GO TO 25
CASE=I+1

ERTOTL=ERRTOT(I+1,3)

CONTINUE

RETURN

END

SURROUTINE EULER(ID'y ANGS)

THIS SUBROUTINE CALCULATES THE EULER ANGLES (Z-X-Z) WHICH
DESCRIBE THE HUMERAL AXIS SYSTEM RELATIVE TO THE FIXED BODY
SYSTEM,

DIMENSION D(3»3)sANGS(3)
DATA PI/3.141592654/

ANGS(2)=(ACOS(D{3+3)))%180.,0/F1

IF(ANGS(2).LT.0.01) GO TO 20

IF(ANGS(2).6T.179.99) GO TO 30
ANGS(3)=(ATAN2(D(1,3)s01(2+3)))%180,0/P1
ANGS(1)=(ATAN2(D{3+1)+-D{(352)))%180.,0/F1

GO TO 40 '
PSIFHI=(ATAN2((D(1+2)-I{291))» (Ii{151)4D(252))) ) %180, 0/FI
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ANGS(1)=PSIPHI
ANGS{33=0.0

50 TO 40
PSIFHI=C(ATAN2((D(192)+0(251)) s (D(1+1)-01(2+2))))%180,0/F]

ANGS(1)=PSIPHI
ANGS(3)=0,0
RETURN

ENIt

SUERDUTINE EULER2{I'»ANGS)

THIS SUBROUTINE CALCULATES THE EULER ANGLES (Z-Y-Z) WHICH
DESCRIBE THE HUMERAL AXIS SYSTEM RELATIVE TO THE FIXED BODY

SYSTEH.

DIMENSION D(3y3)sANGS(3)
DATA PI/3.141592654/

ANGS{2)=(ACDS(D(3+3)))%180.0/F1

IF(ANGS(2).LT,0,01) GO TO 20

IF(ANGS(2).6T.179.99) GO TO 30

ANGS (3)=(ATAN2(D(2+,3)»-D{1,3)))%180.0/F1
ANBS(1)=(ATAN2(IN(3,2)yI1(351)) ) %180.0/F1

GO TO 40
FSIFHI=(ATAN2((D(192)-D(251)) s (II(151)4D(2+2))))%180,0/F1
ANGS(1)=FSIPHI

ANGS(3)=0,0

GO TO 40
PSIFHI=(ATANZ2((D(1y2)+0(221)) 9 (I(1»1)~D(2+2))))%180.0/P1
ANGS(1)=PSIPHI

ANGS(3)=0,0

RETURN

ENL

SURRODUTINE DRCMAT(AsEsC)

THIS SUBROUTINE CALCULATES THE DIRECTION COSINE MATRIX
FOR AN AXIS SYSTEM BASED ON TWO COPLANAR VECTORS (A and B).
THE RESULTING MATRIX» C» IS ORTHOGONAL AND UNITARY.

DIMENSION A(3)sE(3)+L(393)
AMAG=SORT (AC1)Rk2+A(2) KX2+A(3) XX2)
EMAG=SART (R(1)X%2+B(2)kX2+R(3) %%2)
C(151)=A(1)/ANAG

C(1»2)=A(2)/ANAG

C(153)=A(3)/ANAG

C{(2y1)=R(1)/BMAG

C(2:2)=B(2)/BNAG

C(2y3)=B(3)/BHAG
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C{3ry1)={C(1»2)XC(2+3))-(C(2+2)%XC(1,3))

C(3r2)=(C(1+3)%C(291))-(C(2y3)%C(1+1))

C(3+3)=(C(1s1)%C(252))~(C(25y1)%C(1+2))
C(291)=(C(392)XC(1+3))-(C(1y2)XC(3,3))
C{292)=(C(3s3)%C(1+1))~(C(3»1I%XC(1+3))
C(2y3)=(C(3y1)%C(1,2))-(C(15y1)%C(352))

10 10 J=1,3

CHAG=SART(C(Jy 1D XK24C(Js 2) XR2+C(Jr 3) X%2)

DO 3 I=1,3

C(JrI)=C(JrI)/CHAG

CONT INUE

CONTINUE

RETURN

END
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PROGRAM FORCMO

THIS FROGRAM ANALIZES THE KINEMATICS OF A MOVING BODY RELATIVE
TO A FIXED BODY FOR SITUATIONS WITH APPLIED LOADING.

THIS PROGRAM REQUIRES THE INFUT OF A LOCATOR FILE (FOR

THE FIXED BODY)» AN INITIALIZNG FILE (FOR THE MOVING BODY) AND
A KINEMATIC DATA FILE.

DECLARE & TYPE VARIABLESF DNIMENSION ARRAYS: INITIALIZE CONSTANTS

DIMENSION SHLJUNT(4)yEBOWJT(4) s ANGOUT (4)9CAL(6256) 9F2(8)2B2(6)

 DIMENSION CTLOC(3)sR(3)»RC2DAT(24) sPNTK(E53) sFXJTCT(3) yRENTR(3)

DIMENSION RC1DAT(33)sVEC1(3)s0UTPUT(22)»VEC2(3)sVEC3(3)
DIMENSION F1¢(3)sERRTOT(203)sELBJINT(3)sELBCNT(3) yCSMAT(3+3)
DIMENSION G1(3)»THAT(3s3)sCVEC(3) sHUMDRC(6053) yHUM(393)
DIMENSION LBVEC(3)CNTVEC(3)»T2(353)9T1(3+3)»T21(3+3)sFBCNT(3)
NIMENSION LOCOGNCI) » JTLNT(3)sANGS(3) s LGRVEC(3) s JNTCNT(3)

.DIMENSION LRVEC1(3)sPNTG(353)sLBVEC2(3)»LGVECL(3)sLGVEC2(3)

DIMENSION FTAXTF(3s3)sFTAFF(3)sFTAXIS(323) s FTAFB(3)»OUTFT2(12)
DIMENSION TRNAXT(3»3)9X(6)sUJT(393)

LOGICALX1 JTNAME(?)sSNAME(25) sMESS(80)»FINAME(13) yF2NAME(13)
LOGICALX1 F3NAME(Z25) +DAY(F) sHOUR(B) s FANAME(13)

INTEGER ANSsYsNsIFT(20) s TRIAI» CASEANS2»GUNSD

REAL JNTVECsLBVECLOCOGN, JTCNT»LGRVEC

REAL JNTCNT»LRVEC1,LEVEC2,LGVEC1»LGVEC2

COMMON /AC/ PNTI(6»3)sC0SHAT(60s3)sCOSTRN(60s3) s DRCOS(6013) s
$ORCTRNC6023) » TRIADC20+ 3) y INTVEC (204 3)

COMMON /BC/ FRCTRN(&)» TRNAX(3,3)

DATA IREC/1/JREC/A/KREC/1/Y/°Y'/N/'N’/KOUNT/1/

DATA A/'A’/B/'B’/PL1/3,141592694/L.REC/1/

FROMFT FOR DIMENSIONSs IATA FILES AND OUTFUT INFORMATION

WRITE(S:35)

REAL(Sy10sERR=503) (JTNAME(I)sI=1+9)
WRITE(Ss13)

READ(Sy20,ERR=510) (SNAME(I)»I=1,23)
WRITE(S,25)

READ (5s30sERR=515) (MESS(I)»rI=1,80)
WRITE(S,33)

READ (5540yERR=520) (FINAME(I)»I=1,13)
WRITE(Ss43)

REATt (5s50,ERR=525) NREC

WRITE(S51)

REAI{Sy40,ERR=527) (F2NAME(I)»I=1y13)
WRITE(S,83)

REAII(S+ 209ERR=355) (FINAME (1) s I=1+23)
WRITE(S,88)
READ(S5y345,ERR=537)GUNSTH

WRITE(SsS%)

WRITE(S»60)

168



READ(S+65yERR=533)CTLOC(1)
940 WRITE(S,70)
REAN(5»65yERR=540)CTLOC(2)
545 WRITE(S:75)
REALI(Ss 65y ERR=545)CTLOC(3)
WRITE(S+76)
946 UWRITE(D977)
REAIN(Ss 65y ERR=546)FXJTCT(1)
947 UWRITE(S,78)
READ(S» 65sERR=547)FXJTCT(2)
548 WRITE(S5,79)
REAI(S» 65ERR=548)FXJTCT(3)
721 WRITE(Ss731)
URITE(S2734)
READ(S5»45yERR=721) THATO
722 UWRITE(Sy732)
READ(S»65yERR=722)PHIO
950 WRITE(S:80)
Do 601 I=1.,3
0D 602 J=1,3
603 MWRITE(S,604)1yJ
REAIN Sy 66yERR=603)T2(I+ )
602 CONTINUE
601 CONTINUE
623 WRITE(Ss626)
READN(Sy 659 ERR=625)HHIIS
630 WRITE(S,631)
READ(S 659 ERR=630)HYDIS
627 URITE(Ss628)
READN(Ss 65 ERR=627)EJIIIS
556 WRITE(S,884)
REAN(S5s40yERR=5556) (FANAME(I)»I=1,13)

c
C LOCATEs IDENTIFY AND ACCESS THE INITIALIZING DATA FILE
c

CALL ASSIGN (1sF3NAMEs25)

DEFINE FILE 1 (876,2yUsJREC)

D0 920 I=1+6

Do 89 J=1,3

READC1‘ JRECYERR=3500)PNTI(IsJ)
89  CONTINUE
20  CONTINUE

o 93 I=1,60

no 92 J=1,3

READ(1/ JRECYERR=3500)COSMAT(IyJ)
92 CONTINUE
93 CONTINUE

Do 96 I=1,20

[0 94 J=1,3

READ(1’ JRECsERR=3500) (UJNTVEC(IsJ))
94  CONTINUE
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96  CONTINUE

N0 98 I=1,60

o 97 J=1,3

REAL(1’JRECERR=3500) (HUMDRC(IsJ))
97  CONTINUE
78  CONTINUE

CLOSE (UNIT=1)

W
c CALCULATE THE TRANSFOSES FOR THE VARIOUS AXIS SYSTEM DIRECTION
c COSINE MATRICES.

C

D 152 N=1,20
M=(N-1)%3
00 151 J=1,3
COSTRN(M+Jy1)=COSHAT (M+1+J)
COSTRN(M+.J»2)=COSHAT (M+2» J)
COSTRN(M+Jy3)=COSMAT (M+3s.J)
151 CONTINUE
152 CONTINUE

C
c FILL THE TRANSDUCER CALIERATION MATRIX
c
CALL ASSIGN (1y’[7»11CAL.LAT’)
DEFINE FILE 1 (2+72yUsLREC)
READ(1/LRECERR=3800) ( (CAL(I»J)»J=1,6)yI=156)
CLOSE (UNIT=1)
CALL MINV(CAL»&9IF2562)
c
C LOCATEy IDENTIFY AND ACCESS THE LOCATOR DATA FILE
C
2000 CALL ASSIGN (1,F2NAME»13)
DEFINE FILE 1 (1,48,UsIREC)
oo
c READI' LOCATOR DATA FILE
£
READ (1’IRECsERR=3000) (RC2DAT(I)yI=1524)
C
» ASSIGN DATA TO VARIABLES
c

o 87 I1=1,3

T1(1,I)=RC2DAT(3+I)

T1(2y1)=RC2DAT(1241)

T1(3sI)=RC2DAT(18+I)

LOCOGN(I)=RC2DAT (6+1)
87  CONTINUE

CLOSE (UNIT=1)

CALCULATE THE LOCATION OF THE FIXED EBODY CENTER W.R.T. THE

BOARD.
CALL GMPRI(T2yT1y7215353+3)

CALL MINV(T1,3,DyF1,61)

Ly SR B
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CALL GMFRD(T1sCTLOC»FEBCNT»3s351)
Do 920 I=1,3
FBCNT(I)=FECNT(I)+LOCOGN(I)

20 CONTINUE

OUTPUT HEALER INFORMATION

IO

CALL DATE(DAY)

CALL TIME(HOUR)

URITE (S5+200)

WRITE(S5,100) (JTNANE(I)»I=1+9)

WRITE(S»2035) :

WRITE(5,105) DAYsHOURy (SNAME(I)»I=1,25)

WRITE(S5»110) (FINAME(I)»I=1,13)s»NREC,(MESS(I)sI=1,80)
WRITE(Sy205)

WRITE(Sy700)

WRITE(S,701)

LOCATEs IDENTIFY AND ACCESS THE MAIN DATA FILE
OPEN aNY OUTPUT DATA FILES

[t B o B e Y e B~ ]

CALL ASSIGN (1sFINAME»13)
DEFINE FILE 1 (NREC»&6sUsKREC)
CALL ASSIGN (2sFANAMEs13)

READ ONE RECORD

[or B o B o |

500 READ (1/KREC»ERR=4000) (RCIDAT(I)»I=1,33)

ASSIGN DATA TO VARIABLES

[ar JR or i o |

[0 499 I=1,3
PNTK{1sI)=RC1DAT(I)
PNTK(2sI)=RCiDAT(I+3)
PNTK{(3sI)=RCIDAT(I+6)
FNTK(4,I)=RCIDAT(I+7)
PNTK(SsI)=RCIDAT(I+12)
PNTK(6»1)=RCIDAT(I+15)

FNTG(1,I)=RCIDAT(I+18)

PNTG(2,I)=RCIDAT(I+21)

PNTG(3sI)=RC1DAT(I+24)

CONVERT TRANSDUCER FORCE AND MOMENT DATA TO
NEWTONS AND NEWTON-METERS

[ 30 I o B o o

FRCTRN(1)=RC1DAT(28)%4.448
FRCTRN(2)=RC1DAT(29)%4.448
FRCTRN(3)=RC1DAT(30)%4.,448
FRCTRN(4)=RC1DAT(31)%0.11298
FRCTRN(S)=RC1IAT(32)%0,11298
FRCTRN(6)=RC1DAT(33)%0.11298
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499 CONTINUE
[0 689 1=1,3
IF(PNTG(Is1).NE.0.0) GO TO 689
G0 TO 3900

489 CONTINUE

901  KK=0
0 805 I=1+6
IF(PNTK(I»1).NE,0.0) GO TO B80S
KR=KK+1

805 CONTINUE
IF(KK.GE.4) GO TO 3700
N=1
[0 840 J=1+4
DO 830 K=J+1»5
00 820 L=Kilyé
TRIAD(Ns1)=J
TRIAD(NY2)=K
TRIAD(Ny3)=L
IF(PNTK(Ky1) +NE.O,O+AND,PNTK(J»1) s NE. O+ O+ ANDFNTK(Ls1) «NE,
§0.0) GO TO 830
II=((N-1)%3)+1
DO 845 JJ=1,3
DRCOS(II+JJ3=0.0
DRCOS{(II+1sJd)=0.40
DRCOS(1I+2yJJ)=0.,0
DRCTRN{(II»,JJ)=0.0
DRCTRN(II+15JJ)=0.0
DRCTRN(II+25JJ)=0.0

845 CONTINUE
IPT(N)=K
N=N+1
G0 TO 820

850 [0 800 M=1+3
VEC1 (M) =FNTK(KsM)~FNTK(Js})
VEC2(M)=PNTK(Ls¥)-PNTK(K»H4)

BOO CONTINUE
IPT(N)=R
CALL DRCMAT(VEC1,»VEC2yCSMAT)
I=({N-1)%3)
[0 810 JJ=1,3
NRCOS(I+1,JJ)=CEMAT(1+J4d)
DIRCOS(I1+2yJJ)=COMAT(2+J])
ODRCOS(I+3+JJ)=CSHAT(3rJJ)
DRCTRN(I+JJy1)=CSMAT (19 JJ)
DRCTRNCI+JJ»2)=CSHAT(2yJJ)
IRCTRN(I+JJy3)=CSHAT(3»JJ)

810 CONTINUE
N=N+1

820 CONTINUE

830 CONTINUE

840 CONTINUE
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SELECT "MOST-ACCURATE® TRIAD OF EMITTERS
CALL LOCAXS(FNTKysCASESERRTOT)

MULTIPLY THE TRANSDUCER VALUES RY THE CALIBRATION MATRIX
TO GET THE FORCES.

CALL GMFRDC(CAL>FRCTRNs»Xs69621)
DO 492 I=1,6

FRCTRN(I)=X(I)

CONTINUE

CALCULATE THE FODINT OF FORCE APFLICATION AND THE AXIS SYSTEM
OF THE FORCE TRANSDUCER W.R.T. THE FIXED BODY CENTER
IN ADDITIONy CHECK THE ACCURACY OF THE F-A EMITTERS

CALL FORPT(PNTG,GUNSDsFTAPFPFTAXIS)
D0 503 I=1,3
FTAFF(I)=FTAPF(I)-FBCNT(I)

CONTINUE

CALL GWMFRI(T21>FTAFPPIFTAPE»353s51)
D0 509 I=1,3
FTAXTE(1,1)=FTAXIS(1y1)
FTAXTP(I,2)=PTAXIS(2+1)
FTAXTF(I»3)=FTAXIS(3yI)

CONTINUE

CALL GMFRICTZ21sFTAXTFyTRNAXT»39353)
0 511 I=1,3
TRNAX(I+1)=TRNAXT(1,1)
TRNAX(I:2)=TRNAXT(2yI)
TRNAX(Is3)=TRNAXT(3+I)

CONTINUE

CALCULATE THE JOINT CENTER W.R.T. THE FIXED BODIY CENTER

I=((CASE-1)%3)+1

RO 9200 J=1,3

THAT (15 J)=DRCTRN(IsJ)
THAT(2yJ)=DRCTRN(I+1yJ)
THAT(3+J)=DRCTRN(I+2yJ)
HUM(1yJ)=HUMDRC(IsJ)
HUM( 25 J)=HUNDRC(I+1s J)
HUM (3 J)=HUMDRC(I+2+J)
CVEC(u. NITVEC(CASE»J)
CONTINUE

DD 339 J=1,3
LRVEC(J)=HUM(3+J)
LRVEC1(J)=HUM(1y.)
LBVEC2(J)=HUM(2y.J)
CONTINUE
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CALL GMPRD{(TMATsCVEC»CNTVEC»3+3s1)
CALL GMPRDTMATsLBVEC,LGBVECs3+3r1)
CALL GMFRI(THMATsLBVEC1sLGVEC193+31)
CALL GMPRD(TMATsLRVEC2,LGVEC2+3+3s1)
CALL UNITVR(LGEVEC)
CALL UNITVR(LGVEC1)
CALL UNITVR(LGVEC2)
R=IPT{CASE)
DD 9210 I=1,3
JNTCNT (1) =FNTK(KyI)+CNTVEC(I ) +HHDISKLGRVEC(I)-HYDISKLGVEC2(I)
ELRINT(I)=JINTCNT(I)+EJDISKLGBVEC(I)
710 CONTINUE
N0 930 I=1,3
JNTCNTCI)=JINTCNT(I)-FRCNT(I)
ELRINT(I)=ELBJINT(I)-FBCNT(I)
730 CONTINUE '
CALL GMFRINMT21sINTCNTyJTCNT#35391)
CALL GMPRD(T21sELBJNTsELBCNT+3+3+1)
N0 931 I=1,3
SHLJUNT(I+1)=JTCNT(I)
EROWUJT(I41)=ELRCNT(I)
OUTPUT(16+41)=JTCNT(I)
CUTPUT(1941)=ELRCNT(I)
931 CONTINUE
CALL GMFRICT21sLGBVECsLBVECs3»3r1)
CALL GMPRD(T21,LGVEC1,LBVEC1,353s1)
CALL GMFRD(T21sLGVEC2sLRVEC2y3»3»1)

C
C CALCULATE THE THETA AND FHI ANGLES OF THE LONG RONE AXIS
C

THETA=0.,00

PHI=0,00

CALL UNITVR(LEBVEC)

CALL UNITVUR(LRBVEC1)

CALL UNITVR(LEVEC2)

CALL SPHERE(LBVEC,THETAsFHI)

00 338 J=1,3

HUM(1,J)=LBVEC1{J)

HUM(2y J)=LBVEC2(.))

HUM (3 J)=LRVEC(J)

RCNTR(J)=ELBCNT (J)=FXJTCT(J)
338 CONTINUE

CALL SPHERE(RCNTRsTHAZ,FHIZ2)

DUTPUT(2)=ERRTOT(CASEs1)

OUTFUT(3)=ERRTOT(CASE»2)

OUTPUT(4)=THAZ

DUTPUT(S)=FHI2

MULTIFLY RxF AND CALCULATE THE FORCES AND MOMENTS AT THE
JOINT CENTER

[l e I o o
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808

RO =(PTAPR(1)-FXJTCT(1))/100.0
R(2)=(PTAPB(2)-FXJTCT(2))/100.0
R(3)=(FTAPR(3)-FXJTCT(3))/100.0
CALL RESULT(RsOUTPUT)
OUTFUT(1)=FLOAT (KOUNT)
OUTPT2(1)=FLOAT (KOUNT)

TRANSFORM THETA & PHI COORDINATES OF R VECTOR INTO
JOINT SYSTEM COORDINATES

VO=THA2%F1/180.0

HO=PHI2¥PI/180.0

VE=THATOXF1/180.0

HC=FHID%FI/180.0

ARG1=(SIN(VO)*SIN(HO~HC))
ARG2=(SIN(VO)%COS(VC)¥COS(HO-HC)~COS (VD) XSIN(VC))
ARG3=(COS (VD) XCOS(YC) +SIN(VO)XBINCYC) XCOS(HD~HC) )
HT=ATAN2(ARG1»ARG2)

IF(HT.GT.0.0) GO TO 337

HT=2,0XPI-ABS(HT)

VT=ACOS(ARG3)

OUTPT2(2)=VTk(180.,00/FI1)

OUTFT2(3)=HT%(180.,00/F1)

FERFORM ANALYSIS OF FORCES AND' MOMENTS IN THE JOINT
AXIS SYSTEM

IF(KOUNT,.6T.1) GO TO 808

FHIX=PHIOXFI/180.0

THAX=(THATO0+90.0)%F1/180.0

PHIZ=FHIO¥P1/180.,0

THATZ=THATO%F1/180.0
UJT(1,1)=CO8(PHIXIRSIN(THAX)
UdT(1s2)=8IN{PHIX)XSIN(THAX)
UJT(1,3)=COS{THAX)

UdT(3y1)=5INCTHATZ) %COS{FHIZ)
UJT(3r2)=SIN(THATZ) ¥SIN(PHIZ)
UJT(3+3)=COS(THATZ)

UJT(Z2y 1)=(UIT(3s2)XUJT (1530 ~UJT {19 2)XUIT(393))
UJT (25 2)=-(UJST(3912XUIT(1,3)-UIT (12 1D)XUIT(353))
UJT (2 3)=(UJT (3 12XUIT (1 2)-UJT (19 1)XUIT(3+2))
CALL MDANAL (OUTPUT»UT»HT,UJTyOUTPTZ)

WRITE OUT THE DATA

WRITE(S»702) (OUTPUT(I) s I=1+16)

WRITE(S»703) (OUTPUT(I) »I=17+22) 5 (OUTPT2(J) »J=2+12)
WRITE(25704) (OUTFT2(.J)sJ=1512)

DO 818 I=1,22

OUTPUT(1)=0.00

818 CONTINUE
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o 1010 1=1,11
QUTPT2(I)=0.0

1010 CONTINUE
G 819 I=1,33
RCI1DAT(I)=0.00

819 CONTINUE
IF(ERKTOT(CASEs1) .NE.9.,999) GO TD 318
I=TRIAI(CASE,1)
J=TRIAD{CASE»2)
K=TRIAD(CASE»3)
NKMG1=SART ( (PNTK(Is1)-FPNTK{ 32 1)) XX2+H(FNTK(T92)~FNTK(J»2) ) XX2+
E(PNTK(Is3)-PNTK(J»3) ) kk2)
DKMG2=SART({(PNTK(Js1)-FNTK(Ks 1) I X2+ (PNTK(Jr2)~FNTK(K»2) ) k%24
SC(PNTK(Jr3)~PNTRK(K»3) ) %%2)
LIKMG3=SART ((FNTK(Ks 1)~FNTR{I+1) ) %%2+ (PNTK(K»2)-FNTK(I»2) ) k%24
S(PNTR(Ks 3)-PNTK(I+3))%%2)
DIMGI=SQRT((PNTI(Is1)-FNTI(Js1))kk2+(FNTIC(Is2)-FNTI(Js2))%kk2¢
E(PNTICIs3)-PNTI(Js3))%k%2)
DIMG2=8QRT ((FNTI(Js1)-FNTI(Ks1))4X2+(PNTI{Js2)-PNTI(K»2))%%k24
&(PNTI(Js3)-PNTI(Ky3))%%2)
DIMG3=SORT( (FNTI(Ky1)-PNTI(I+1))%X24(PNTI(Ks2)-FNTI(I»2))%%2¢
Z(PNTI(Ks3)~FNTI(1s3))%%2)

WRITE(S»226)
WRITE(S+927) 19 JsDINGL s Iy Koy IIIMG2sKo Ts DIIMG3» 19 Sy IIKMGT 9 Jo K9 IKMG2
2sKy I»DKMG3
C
C IF THERE ARE ANY MORE RECORDSy GO GET THEM!
C
318 KOUNT=KOUNT+1
IF(KOUNT.LE.NREC) GO TO 500
C
C FORMAT STATEMENTS FOR FROMFTS AND RESULTS
C
5 FORMAT(’$’+'Enter name of Joint tested [5-23: *)
10 FORMAT(9A1)
15 FORMAT(’$’s’Enter subdect name or number [5-2351% )
20 FORMAT(25A1)
2%  FORMAT(’0’y’Enter a descrirtion of the test [5-801 /)
30  FORMAT(80A1)

3% FORMAT(’$’s’Enter data file name [S5-133% )

40  FORMAT(13Al1)

45  FORMAT(’$’s’Enter number of records to be read [N-31% /)

50  FORMAT(IS)

51  FORMAT(’4$’s'Enter the corresronding fixed body locator file ns
gme [s-133% 1)

55 FORMAT(’0’s'Enter the distances in centimeters along the loca
ftor 3sxes to the desired fixed body center I

40 FORMAT(’$’sT15» ‘Enter the X-COORIINATE [N-81% ')

65  FORMAT(F10.9)

66  FORMAT(FB.4) ‘

70  FORMAT(’$/+T19s ‘Enter the Y-COORIINATE LN-83%1 /)
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75 FORMAT(’$’»T15s’Enter the Z-COORDINATE CN-81% )

76 FORMAT('0’s’Enter the coordinates of the fixed Joint center
% wersts the fixed-body sustemi’)

77 FORMAT(‘$'»‘Enter the .Joint x-coordinate! /)

78 FORMAT(’$’y’Enter the Joint u-coordinste! /)

79 FORMAT(’$’s’Enter the Joint z-coordinate! /)

80 FORMAT(’0’»’InFut 3 3x3 matrix (bw rows) that defines the body
& axis sustem wer.t, the locator axis sustem ! /)

85 FORMAT(’$’s’Enter the corresronding initislizing file name [
£5-293: 1)

88 FORMAT(’$’s’Enter which side of the force arrlicator
% faced the sensor assembly during the test CA or B1}’)

100 FORMAT( 0’/ sT785%41/JOINT’)

105 FORMATC’O‘»TSy 'DATE} ‘99A19/9TSs'TIME? ‘yBALls/»TSy’SUBJECT
INAME ANDIN NUMERER: ‘,25A1)

110 FORMAT(’ ’»TSy’DATA FILE NAME: ‘+13A1+/»7S»/NUMBER OF RECORDS:
$/913+//5T3+/DESCRIPTION! 7 +80A1)

200 FORMAT(’0/5165('-")/)

205 FORMAT('07»163('-")//)

206 FORMAT(’ 9165('-'))

207 FORMAT(’0"»165(/,"))

275 FORMAT(’0’s’ERROR ON ATTEMFT TO READ LOCATOR FILE )

280 FORMAT(’0’s’ERROR ON ATTEMPT TO READ INITIALIZING FILE )

285 FORMAT(’0’s‘FOUR EMITTERS ON CUFF READ ZERO-FROCEEDING TO NEXT
& RECORD *)

2B7 FORMAT(’0’s’ERROR ON ATTEMFT TO READ TRANSIWCER CALIBRATION
& MATRIX DATA FILE:’)

300 FORMAT(’0’sT30y 'ERROR ON ATTEMFT TO READ' NEXT RECORD’)

311 FORMAT(’0’»T20s 'NOMINAL JOINT CENTER AS INITIALIZED’/)

340 FORMAT(’0’s/’$%'y'Are there other files to be processed?
$LY/NIY 7))

345 FORMAT(A4)

432 FORMAT(I2)

604 FORMAT(/$/sT1Sy'T2( s1Ls’y »11s/)IIN-81: )

626 FORMAT(’$’y’Enter the distance from the acromion-based emitter
$ to the center of the humeral head L[N-81:‘)

628 FORMAT(’$’s’Enter the distance from the center of the humeral
$ head to the center of the elbow Joint L[N-81:17)

631 FORMAT(’$’y’Enter the lateral distance to the londg bone axis
& [N-B11Y)

702 FORMAT(IF9.154F2.2911F10,247)

703 FORMAT(9F9.2+s8F10.2+//)

704 FORMAT{12F10.2)

731 FORMAT(’ ‘y’Enter values for the nominal humeral axis orientationi’)

734 FORMAT(’$%’»‘Thets Nominal?: ‘)

732 FORMAT(’$’y’Phi Nominall %)

733 FORMAT(’$4’y’Enter the *Best-Fit" sehere radius! ‘)

750 FORMAT(’0’,'F-A EMITTER IS ZEROy PROCEEDING TO NEXT RECORD!’)

881 FORMAT(4F8.3)

884 FORMAT(’$%$’s’Enter the cutrut dats filename for restoring
% forces and moments [S-131% /)
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926

3700

3800

3700

4000

5000

FORMAT(’ 7973y INITIALIZED DISTANCES?sT63s ‘DISTANCESsy CURRENT
% RECORD: ‘)

FORMATC(! 793(I1y/="»T8s/="yF5.29"  ‘)yT60+s3(I1s'-"911s'="y
&F5.2y7 ')

CLOSE UF DATA FILE % THAT’S ALL FOLRS!

CLOSE (UNIT=1)

CLOSE (UNIT=2)

WRITE(S,207)

WRITE(S,340)

READ(S5s345)ANS

IF(ANS EQ. ‘N‘)GO TO 5000
WRITE(S,35) :
READ(S»40) (FINAME(I)»I=1,13)
WRITE(S,43)

REAII(S5s50) NREC

WRITE(S,23)

READ(S5,30) (MESS(I)»I1=1+80)
IREC=1

RREC=1

ROUNT=1

WRITE(S»51)
READ(Ss40sERR=557) (F2NAME(I) yI=1y13)
WRITE(G,884)
REAI(5s40yERR=558) (FANAME(I)sI=1+13)
GO TO 2000

WRITE(S5s205)

WRITE(S,275)

GO TO S000

WRITE(S,2035)

WRITE(S5,280)

GO 70 5000

WRITE(5,285)

KOUNT=KOUNT+1
IF(KOUNT.GT.NREC) GO TO 2001
GO TO S00

WRITE(S,287)

G0 TO 500

WRITE(3,750)

KROUNT=KOUNT+1

GO TO 500

WRITE(S,205)

WRITE(Ss300)

GOTO 2001

WRITE(Sy205)

STOF

END

SUEKROUTINE SFHERE(VECsTHETAsFHI)
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SUBROUTINE TO CALCULATE THE SFHERICAL COORDNINATES (THETAyFHI)
OF THE VECTOR 'VEC*.

DIMENSION R{3),VEC(3)

DATA FI/3,141592654/
VECHMAG=SMRT (VEC (1) XXk 2+VEC(2) %% 2+VEC(3) X%k2)
TF(VECHAG,LT.1,001) GO TO 10
E{1)=VEC(1)/VECHAG

B{2)=VEC(2)/VECHAG

R(3;=VEC(3)/VECHAG

G0 TO 15

R{1)=VEC{L)

R{2)=YEC(2)

B{31=VEC(3)

AI=SRRT(B(1IXX2FR{2)X%2)
THETA=(ATAN2(A1,E(3)))%180,0/F1
IF{THETA.LT+179.99.,0R.THETA.GT.0.01) GO TO 20
FHI=(.0

6o 10 30

FHI=(ATAN2(E(2)sR(1)))%180.0/F1

RETURN

ENI

SUEROUTINE UNITVR(VEC)
SUBRROUTINE CALCULATES A UNIT VECTOR FOR ANY GIVEN VECTOR

DIHENSION VEC(3)
VECHAB=(VEC(1)%%2)+(VEC(2)%%2)+(VEC(3)%%2)
VECHAG=SART (VECHAG)

IF(VECHAG.EQ.0.,0) VECHAG=1.0

o 10 I=§y3

VEC(I)=YEC{I)/VECHAG

CONTINUE

RETURN

ENDI

SUBROUTINE LOCAXS(FNTKsCASEyERRTOT)

THIS SURROUTINE SELECTS THE *MOST ACCURATE® LOCAL AXIS GYSTEM
RASED ON INTRA-AXIS SYSTEM DISTANCES AND RELATIVE SKEW ANGLES.

DIMENSION FNTR(693)9TIS(393) s TISK(393)sTJS(323) s TISK(393)
DIMENSION TIJ(3+3)sTIJR(393)sBEN(Is3)»VECT(I)sVECK(3)
DIMENSION ERRTOT(2093)sF1(33,61(3)

INTEGER TRIAIDSCASE

REAL JNTVECsJTDSHG

COMMON 7AC/ FNTI(693)sCOSMAT(60»3) s COSTRN(S0s3) »IRCOS(6093)
$NRCTRN(6093) s TRIAD(205 33 » INTUEC (209 3)
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ERRER=0.,0
ERRILT=0.0

no 26 Me=1,20

11=TRIAD(MM 1}
J1=TRIALD(HM,2)
Ri=TRIATI(HH»3)
[F(FNTR(I191) JEQeO4 OV ORVFNTK(J191) +ER4 0.0 ORFNTK(K191)EG.040)
$ 60 TO 19

KK=(H~1)%3

o 3 J=1,+3

TIS(1,J)=COSHAT (KK+15J)
TIS(2yJ)=COSMAT (KK+2+J)
TIS(3yJ)=COSMAT(KK+3s J)

TISK(1yJ)=DRCOS(KK+1sJ)
TISK (2, )=DRCOS(KK+2y )
TISK{3y J)=DRCOS(KK+3+J)
CONTINUE

HKNT1=0
MKNT2=G

L0 10 N=1420

§2=TRIAD(N, 1)

JE=TRIAINY 20

F2=TRIAD(N,3)
IF{FMTR(IZy1)EQ.0.,0,ORPNTR(J2+13,EQ. 0.0, ORFNTR(R2+1).EQ.0,0)
6O TO 10

fi=(N=-1)%3

IF(N.EQ.MM) 6D TO 10

0095 J=1+3

TJS(1y )=COSTRN(H+1sD)
TJ5¢2»J)=COSTRN(M+2yJ)
TJ5(3r J)=COSTRN(M+3+ )

TJSK(1s JI=URCTRN(M+1yd)
TJBK(2» J)=DRCTRN(H+2» J)
TJIER(F» I =DRCTRN(H+3+ D)
CONTINUE

CALL GMFRIKTISyTJSsTIJ32393)
CALL GMPRD(TISKsTJSKyTIJK»39393)
CALL MINVC(TIJNs3sDsF1s61)

CALL GMFROC(TIJyTIJKsBENs3»393)
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TRACE={BEN(1» 1) ¥¥2+GEN( 2y 2)£X2+GEN (393 X%2)
GAn=,5k(TRACE-1.,0)
IFiGAMGT+1.0.AND.GAMLLT1,05) GAN=1.0
GAM=ACOS (GAM)

JTDEME=50RT C(INTVEC (N1 1) %k2 )+ ( INTVEC (N» 2) K%2) +(INTVEC(Ns 3)

3k%2))

GAMSIN=GIN(GAN)
LELTAS=JTISHGXGAMSIN
DELTAS=DELTASKX2
ERRSK=ERRSK+IELTAS
MRNT1=MRKNT141
ITI=TRIADCMN2)
JIA=TRIAL(N, 2)
IF(ITILEQ.JJJ) GO TO 10

0 7 L=1s3

VECI (LY =FNTI(JJJL)-FNTI(IIIsL)
VECK(L}=PNTK{JJJsL)-PNTK(ITIsL)
CONTINUE

VECIMG=SQRT((VECI(1)%%2)+(VECI(2)4%2)+(VECI(3)%%2))
VECKMG=SART( (VECK(1)%¥2)+(VECK(2)%%2)+(VECK(3)%%2))
DEL TALI=ARS (VECKMG-VECIMG)

DELTAD=DELTADKX2

ERRIOLT=ERRILT+DELTAL

HKNT2=HRNTZ2+1

CONTINUE

RMENT1=FLOAT (HRNT1)
RMRNT2=FLOAT (MKNT2)
[IV1=RHURNT1%1.0
DIV2=RMKNT2%1.0
LF(HRNT1.NE.O) GD TO 11
SKERR=%.,9%7

GO TO 12

SKERR=8QRT (ERRSK/LIV1)
IF (MKNT2.NE.O) GO TO 13
LERR=%,999

Gii TO 14

JERR=30RT (ERRILT/DIVZ)
ERRTOT (tH»s 1)=5KERR
ERRTOT MMy 2)=LERR
ERRTOT (MH»3)=50RT ( (SKERR¥%2+DERR#%2) /2. 0)

ERRSK=0,0
ERRILT=0.0

GO 10 20

ERRTOT (HM»1)=235.0
ERRTDT(MM»2)=25.0
ERRTOT (HM»3)=00,0
ERRSK=0.0

181



Low B0 B

3

ERROLT=0.0
CUNT INUE

GASE=]

ERTOTL=ERRTOT(1+3)

o 25 I=1,19
IF{ERTOTL.LE.ERRTOT(I+1+3)) GO 7O 25
CASE=I+1

ERTOTL=ERRTOT(I+1+3)

CONTINUE

RETURN

END

SURROUTINE MOANAL (OUTFUTsVT9HTsUJT»OUTFTZ)

DIMENSION OUTFUT(22)yOUTRT2(12) sUJT(323) 2 HFR(3) sy HITT(3) 2 URJT(3)
DIMENSION FJUTR(3)»MJITR(3)

REAL NFEyMJTTsMJTRsMITRMG s MURMAG

DATA FI/2.141572694/

CALCULATE TOTAL RESTORING MOMENTs TRANSFORM INTO JOINT SYGTEM.
AND FACTOR OUT COMFONENT ALONG R VECTOR

HFR(1)=0UTPUT (103+0UTFUT(13)
MFRC2)=0UTPUT(11)+0UTPUT(14)
MFR(3)=0UTPUT(12)+0UTFUT(15)

CALL GMFRDC(UJT »MFEsMJTT+39391)

URJIT(13=8SIN(VTYRCOS(HT)

URJT(2)=8IN{VT)RBINCHT)

URJT(3)=L0GCVUT)

CALL UNITVR(URJT)

NURMAG= (NJTT (1) RURJT (1) HMITT (2)RURJT(2)HMJITT (3)XURJIT (3))
DUTFT2 (47 =NURHAG

HJTROL1)=MJTT (1) - (HURMAGXURJT (1))
HJTR{23=MJTT(2) - (MURHAGXURJT (2))

FJTR () =MJTT(3) - (MURMAGRURJT (3))

MJTRMG=SORT (MJTR (1) KK2HHITR(2IRA2HHJITR (3) %%2)
QUTFT2{9)=HJTR(1)

DUTPT2(10)=MJTR(2)

OUTPT2(11)=HJTR(3)

OUTPT2(12)=MJTRHG

CALL UNITVUR(MJTR)

FUTROD = {MITR(21KURJIT(3)-URJIT (2)*MJTR(3) Y X (MITRMG/1.0)
FUTR{Z) == {KJTR(1IRURJIT(3)-URJT (1) KMITR(3) IR (MITRHG/1.0)
FUTR(3)=(MJTRCI)RURIT(2)~URIT LI RHITR(Z) ) X(HITRMG/1,0)
FITRHG=5ART (FJTR(1)RKZHFITR (2 ) ¥k 2HF JTR(3 ) k%2)
QUTFT2(5)=FJTR(1)

OUTFT2(8)=FJTR(Z)

QUTPT2(7)=FJTR(3)

QUTFTZ(3)=FJTRMG
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SUBRDUTINE DIRCMAT(AsE,C)

THIS SUBROUTINE CALCULATES THE DIRECTION COSINE MATRIX
FOR A AXIS SYSTEM BASED' ON TWO COFLANAR VECTORS (A and R).

THE RESULTVING MATRIXs C» IS ORTHOGONAL AND' UNITARY.

DIMENSION A(3)sB(3)sL(353)

AMAG=BORT (ACL)XX2+A(2IRK2HA(T) £X2)

BMAB=SURT (BE(1)kX24B(2IRRZTR(3)RX2)

C(1,13=A01)/ANAG

C{1:,23=A(2)/ANAG

C{1s3)=A(3)/ANAG

L{2.1)=B{1)/BNAG

C(2s2)=R(2)/BHAG

Ci2y39=R(Z)/BHAG

C(Er13={CL21%C(293))-(C(252)XC(1+3))

C(3r2)=(C(1y3IXKC(251))-(C(2,3)%C(1s1))

Ci393)=(C{1s1IRC(292))-(C(21DXRC(192))
C(291)=(C(3s2IRC(153))-(C(1y2IRC(3+3))
Ci2y2)=(C{3»3)%C(1+1))-(C(3»1)%C(1»3))
C{2y3)=(C(Is1IXC(1,2))-(CC151)%C(3y2))

o 1¢ J=1,3

CHAG=SART(C (Jy LIXR2HC( Sy 2)KK2HC (I 32 K%2)

DD S I=1,3

Lo Ir=C{JyI)/CHAG

CONT INUE

CONT INUE

RETURAN

ENI

SURROUTINE RESULT(RyDUTFUT)

DIMENSION R{3)yX{(3)3Y(3)sZ(3) s HOMXTR(3) y HOMYTR(3) » HOMZTR{3)
DNIMENSION FRCBD(3)»PMOMBL(3) o MONEDCI) y MOMTRO(I) yOUTRUT(22)
REAL MOMXTRsMOMYTRyMOMZ TRy MOMRL» HOMTED

COMMON /BC/ FRCTRN(6)s TRNAX(3s3)

DD 7 J=1,3

ACJr=FRCTRN{1)ATRNAX (1s.D)

Y{d)=FRCTRN(2)XTRNAX(2yd)

Z(J)=FRCTRN(IIKTRNAX {3y D)

MOMXTR (J)=FRCTRN( 4) XTRNAX(1»J)
HOMTTR(J)=FRETREN(S) XTRNAX (22 )

HUMZTR (J)=FRETRN(S)IKTRNAX( 3y J)

GCONTINUE

ng 8 f=1,2

FRCEDCI)=X(D (D +Z{I)
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OUTPUT (S+I7=FRCEIM{I)

FHORED(I) =MONXTR (I} +HOMYTR (1) +MOMZTR(I)
OUTPUT(741)=FHOMEBR(I)

CONTINUE

ALL CRSPROCRyFRCEDy HONED

B9 9 I=1:3

KOMTRIN(I) =FMOMBI{I) tHOMRINI)
QUTFUT{12+1)=HOKRD(I) A
CONTINUE - '

OUTFUT (9)=SQRT ((FRCED{(1)%%2) 4 (FRCEL2)¥%2) + (FRCEI(3) k%2))
QUTFUT{18)=8QART ((MOMTERO(1)%%2)+ (MOMTBI(2) %%2) + (HOMTRR(3) %%2) )

RETURN :
END

SUBROUTINE CRSFRDCRFDUT)

DIMENSION R(3)sF(3)QUT(3)
QUTCL)=(RC2IKFC3) I-C(R(3IRF(2))
QUT(Z)=(RIDIKF (L) I -C{R(1I¥F(3))
OUT(Zo=(ROLIAF(2))~(R(2I¥F (1))
RETURN

END

SURROUTINE FORFT(FNTG»GUNST FTAFFYFTAXIS)

SUBROUTINE TO CALCULATE THE FOINT OF FORCE AFFLICATION
AND THE AXIS SYSTHH OF THE FORCE AFFLICATOR

DIMENSION FTAFF(3) sNORMAL(3)yFTIFTZ(3ysFT2FTI(I)

DIMENSION FTAXIS(Z¢3)eX(3) Y (3)sFNTE(3,3)
REAL NORMAL s NORLEN
INTEGER GUNSI
(0 10 I=1+3
FTIRTZ(D) =ENTB(2sI)-PNTG(1,1)
FTEFTICI)=FNTG(3yI)-FNTG(2y1)
COHTINUE
PLE2MAG=S0RT (FTIFT2 (1) RX2+PTIPT2(2)XK24FTIFT2(3) %%2)
F23MAG=SART(FT2PTI (1) RRHFT2FTI(2)RK2HFTFTI(3) %X 2)
F120IF=ARS(F12MAG-12.90)
F230IF=ARS (F2INAG-Y.10)

BOTI2Z=PTIFTE L RFT2RTSCH HPTIFTZ(2YKPT2PTI(D)HFTIFT2(3 %

EFT2PT3(3)

THA={ACOS(D0T123/ (F12HAGKF23HAG) ) ) X57,2938
THADYF=ARS(P0-THA)

TF(F12DIF . GT+0430) WRITE(S»40)F12DIF
TF(P23LIF.GT.0.30) WRITE(Sy43)P23DIF
IF(THATIIF ., GT . 5,0) WRITE(SsS0)THADIF

CALL CRSPRICFTIFT2)PT2FTI»NORMAL)

IF (GUNSD L ER. “A7)60TO 19
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NORMAL (1)=-1.0%HORMAL{1)
NORMAL (2)=-1.0XNORMAL(2)
HORMAL(3)=-1,0XNORHAL (3}
1% NORLEM=SGRT{PTZPTI{LYRR24PT2FTI(2)RE24FPT2FTI(3)X%2)%0. 5
CALL UNITVR(NORMAL)
[0 20 I=1.3
NORMAL ¢ 1)=NORMAL (I)%XNOGRLEN
PTRFTI(I)=PT2PTI(II KO SHPNTG(2s1)
FTARP(D) =NORMAL{I)+FT2FPT3(1)
X(I)=FNTG(2s I)-FTAFF (L)
FAD)=FNTG(3y 1) -FTAFF(I)
20 CONTINUE
CaLl UNITUR(PTIFT2)
CALL UNITYR(X)
CaLll. UNITVRLY)
IF (GUNSD.EQ.'R’) GO TO 25
0 23 I=1,3
Y(I)=-1,0%kY(I)
23 CONTINUE
39 D0 30 I=1y3
MTARF(T)=PTAFF(I)+FTIFT2{1)%30.0
FTAXIS(1s1)=-X(I)
FTAXIS(2:1)=Y(D)
FTAXIS(3s 1) ==FTIPT2(I)
30 CONTINUE
40  FORMAT(/0’s’F12 discrerancy is! sFé.3)
45  FORMAT(’0’s F23 discrerancy is!’sF6.3)
50  FORMAT(’0’y’'Cross rroduct discrerancy is!’»Fé.3y’dedrees’)
RETURN
ENIt

,..
o
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FROGRAM CALEXF

THIS FROGRAM USES JOINT ENVELOFE DATA TO CALCULATE THE JOINT
SINUS EXFANSION IN THE SAME FORM AS FOUNL IN THE CALSPAN ATE
MOLEL. THE SAME FROCEDURE IS FOLLOWED AS IN THE EAYLOR EIO-
STEREOHMETRIC LARORATORY REFORT.

EXTERNAL FFCT

DIMENSION JTNAME(?)sOUTRAT(12092) yDATA{724)

DIMENSION FTMAT(72:3)»U1(4)5U2(3)sFTS(7293)yANG(72+2)

DIMENSION WORK(64)sF(11)>DATI(7252)yCOEF(10)

INTEGER YESsANS1sANSZyANS3sANSA»ANSD

LOGICAL%1 SNAME(25),MESS(80) «FNAME (25) s F2NANE(13) yFINANE(13)
LOGICALX1 FANAME(23)

DOURLE FRECISION DATI»WORKyFIsFsWGTyHTRADNYVTRALCOEF

DOUBLE FRECISION DARGLsDARG2,DARG3sDARGA

DATA IREC/1/F1/3.14159265358%9793110/C0EF/10%0.,000/

DATH YES/'Y /N/'N’/JREC/1/F/11%0,0D0/WORK/66%0,000/

WRITE(S:15)
REAII(S1 20, ERR=510) (SNAME(I))I=1,25)

WRITE(5,25)

REATI{Sy30+ERR=515) (HESS(1)s1=1,80)

WRITE(5,35)

REAL(5» 20, ERR=5201 (FNAME(I)yI=1,25)

WRITE(59220)

REAM(S»221yERR=521)EFS

IF(EFS.EQ,0,0) EF§=0,0005

WRITE(5,230)

READ (512211 ERR=522)ETA

TF{ETALEQ.0.0) ETA=0,0005

WRITE(5s1)

FORMAT ( $ENTER X-TRANSLATION FOR THE F. B Cu ! [F9.613°)
READ(5,221) XTRANS

WRITE(Sy2) |
FORMAT(*$ENTER Y-TRANSLATION FOR THE F. E. C. ! [F9.61%)
READ(S5221) YTRANS

WRITE(S13)

FORMAT (' $ENTER Z-TRANSLATION FOR THE F. By C. ! [F9,611")
READ(5,221) ZTRANS

WRITE (59241

READ(5» 242y ERR=523) ANS1

WRITE(S1300)

REAL(S 242 ERR=600) ANS2

LF (ANS2.NE.YES) GO TO 620

WRITE(59310)

READ (5 40+ERR=610) (F2NAME (1) 5 1=1,13)

WRITE(5,320)

REATI{5» 2425 ERR=620) ANS3

IF (AN33.NE,YES) B0 TO 640

WRITE(51330)
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READ(S» 409 ERR=630) (FINAME(I)»I=1,13)

WRITE(S340)

FORMAT(’$’» 10 YOU WISH TO CREATE A DATA FILE CONTAINING EXFANSIO
+N COEFFICIENTS? LY/N1t7)

REAII(5y 242, ERR=640) ANS4

IF (ANS4.NE.YES) GOTO 42

WRITE(S350)
FORMAT(/$/y 'ENTER THE OUTFUT FILE NAME FOR EXPANSION COEFFICIENTS

+1 [5-2513 ")
REALSy 207ERR=630) (FANAME(I)»I=1,23)

LOCATE, IDENTIFY, AND ACCESS THE DATA FILE

CALL ASSIGN(1+FNAME,25)

KN=0

ng 50 I=1,72
REAN(19B20+ ENDI=51 yERR=523) (DATA(I» J) »J=1+4)
IF(DATA(I+1).ER.0.,0) BO TO 50
RiN=Knt+1

FTHAT(RN» 1)=DATA(Is2) -XTRANS
FTMAT(RNs 2)=DATA(I+3)~TTRANS
FTHAT (KN 3 =DATA( T+ 4) -ZTRANS
CONTINUE

CLOSE <UNIT=1)

60 TO 592

WRITE{3+2000)

GO Tu 2001

FiT THE DATA TO A "REST-FIT' SFHERE IN SFACE.
CALL SFHFIT(FTMAT»ULsANGYFTSsKN)

USE THE JOINT SINUS QUTLINE ON THE SFHERE TO CALCULATE THE
NORMAL (DEFINED BY THETA AND' FHI) OF THE °*REST-FIT® FLANE TO
THEGE FOINTS.,

CALL FLAFIT{FTSsU2ZsKNsTHETAsFHI)

FROM THIS NORMAL, CALCULATE RELATIVE THETA ANI' FHI ANGLES FOR
THE SINUS OUTLINE FOINTS.

VE=THETA

HC=FHI

VCRAD=VCXFI/ 180,00
HCRAD=HCXFI /180,00

[o 100 T=1»KN

VO=ANG(I,1)

HO=ANGE»2)

TF{HDWLT +=170,0) HO=HD+360.00
VORALD=VO%FI/180,00
HORAD=HOXFI/ 180,00
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ARG1=(SIN(VORAD)XSIN(HORAD-HCRAD) )
ARGZ=(SIN(VORALN XCOS(VCRAL) XCOS (HORAD-HCRAL) ~COS (VORAL) X
LSIN(VCRALN)
ARG3I=(COS(VORAD) XCOS (VCRALD +SIN(VORAL) XSIN(VCRAL) XCO5 (HORAL
E-HCRAIO )
(ARG1=DRLE{ARG1)
DARG2=NRLE (ARG2:
IRG3=1BLE (ARG3)
HTRaU=ATAN2 (ARGL yDARGZ)
DARG4=DSART (DARGI X% 2+DARG2XX2)
YTRAD=ATANZ2 (IARGA yDARGS)
DATICL 2)=VTRAD
IF(HTRADLT V0. 000) HTRADR=HTRAD{2,0D0%FI
BATICI»1)=HTRAL
100 CONTINUE

COMFUTE THE EXFANSION COEFFICIENTS FOR THE JOINT SINUS.

T 2%

CALL DAFLL{FFCTsKN»10sFyWORKyDATIIER)
CALL DAPFS(WORKs10sIRESy-1sEFSETAIER)

1\ [0 104 I=1+KN

0104 DATI(I»1)=DATIC(I,1)%180,00/F1

Hif=IRES-1

H=hMk (Mk+1) /2

DO 103 I=1yIRES

COEF (I)=UORK(N+I)

—
L]
ol

BRITE THE OUTFUT DATA TO DISK

[3riR e I8 v

IF(ANSZ.NE.YES)GD TO 109

CALL ASSIGBN (1,F2NAME13)

Call QUTPUT(COEF s OUTDAT s R}

0 106 I=1y120

WRITE {(1+,700)0UTDAT(I»1)»0OUTIAT(I,2)
I TYFE &y 'FHIsTHETA(CALC, )=/ »OUTDAT(I+1)OUTDAT(I»2)
106 CONTINUE

CLOSE (UNIT=1)

E
€ WRITE RHO-GAMMA DATA TO DISK
l:.
1

197  IF(ANS3.NE.YES) GDTOD 111
CALL ASSIGN(1,F3NANE,13)
b0 107 I=1sRN
WRITE(Ls700)0ATI(I»1) s IATI(T2)
107 CONTINUE
CLOSE (UNIT=1)
WRITE(Sy144) KN» (F3NAME(IJ)»IJ=1,13)
144 FORMAT(’07»153»’ RECORDS OF (PHISTHETA) RAW DATA',
¥ * WERE OUTFUT TO FILE’s5Xs13A1)
111 IF(ANS4.NE.YES) GOTO 108
CALL ASSIGN(1sFANAME,25)
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WRITE(1,701) (COEF¢J)»d=1+10)
FORMAT(ZEZ0.,10)
CLOSE (UNIT=1.

WRITE OUT THE DESIRED DATA

WRITE (59 110) SNAME

WRITE(S» 113)MESS

WRITE{G»118)

FORMATC’0’s’ F.+ Es Lo TRANSLATIONS!')
WRITE(Ss125) XTRANS,YTRANSyZTRANS

WRITE(S5y120)
WRITE(S5»125)U1(1)U1(2) »UL1(3) UL (4)
WRITE(Ss130)VCsHC

WRITE(S,133)IER

WRITE(Ss135)IRES,EFSETA

WRITE(Ss140) (COEF(I)»I=1510)
IF{ANS1.NE,YES) GO TO 2001

WRITE(Ss145)

URITE(Ss150) (ANG(Is1)sANG(Is2)sATI(Is1)
sDATI(IN2) »I=1+KN)

FORMAT STATEMENTS FOR FROMFTS AND RESULTS

FORMAT(‘$’+’Enter the name of the Joint tested., [5-71:7)
FORMAT(9A1)

FORMAT('$’s’Enter the supbdect name or number. [5-25117)
FORMAT (2541}

FORMAT("$’s'Comments ony or descrirtion of test., [5-80117)
FORMAT (80A1)

FORMAT(’$’s 'Enter the ineput dats file name, [5-2531!7)
FORMAT(13A1)

FORMAT(’$'s'Tio wou want sinus data in terms of theta-rhi 2nd
% rho-damma coordipates issued as outeut? LCY/NII‘)

FORMAT (44)

FORMAT{’07s'Snhoulder Joint Sinus Analusis for Subdect!’»2341)
FORMAT(’ “s’Commentsi’»8081//165(' 7))

FORMAT(’0  Joint Center Coordinates’’sT30s'Srhere Avg. Redius’)
FORMAT(1XsF7.3s2F2:3+T34+F8. 37

FORMAT {0’y ‘Orientation of Normal for "Best-Fit' Flane’/Tlé.
&' Theta’syT27y'Fhi‘/T14sF7:2:T249F7.,.2)
FORMAT(Z0 2 " TER ="sT7yI2)

FORMAT(“0’ s 'Exransion Coefficients for "Ires"=/,T38,13y

AT48y 'EFS="»TO3sET, 2y TABy 'ETA="»T735sEF . 2/T11s ‘AL’

ET2Cy A2 9 TA49 " A3 yTO0» A4/ s T74r A5 »T92y ‘A6 s T10By A7 1 T1244 A
58 2 T140+7A9/ s T156: "A10G7 /)

FORMAT{10E15.5)

FORMAT(’07y 'Sinus Diata in terms of Tnetz-Fhi Coordinstes and
& 2-D Coordinatest’/T16y/Thetz-Fni W.R.T+ Boduy’s

& Té0s "Joint Sustem Coords.’/)

FORMAT(T1192F8,29T6032F8,2)
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FORMAT( "% » "Select EFS (between 1.€-3 and 1.E-6) [F9.63:7)
FORMATIF? .47

FORMAT("$ '+ '3elect ETA {between 1.E0 and 1.E-6) [F%.41%7)
FORMAT( 4’y '[to wou wish to create an outrut data file /»

+ ‘FOR THE REST-FIT FUNCTION VALUEST LY/N1:’)
FORMAT(’$"y’Enter the outrut data file namel [S§-13]47)
FORMAT('$°y ‘Do wou wish to create 2 data Tile containing
% rho-damms coordinates® LY/NII%)

FORMAT{'$’» 'Enter the outrut file name for rho-demma data!
% [5-13137)

FORMAT(F104+Sy "y "sF10.3)

FORMATI4FE.3)

FORMAT (2’9 ’ERROR ON ATTEMFT TO READ DATA FILE!")
WRITE(Sy?9)

FORMAT( “3ARE THERE OTHER FILES TO EBE PROCESSED ! LCY/NJ)
READ(S 242 ANSS

IF(ANSSEQ.YES) GO TO 310

STOF

ENI

EURROUTINE SFHFIT(FTHAT UsANGYFTSIRN)

THIS SUBROUTINE CALCULATES THE “BEST FIT" SPHERE TO A SET
OF DATA FOINTS AND THEN OUTFUTS INFORMATION ON THE SFHERE

AND! ON THE REVISEL' DATA SET.

DNIMENSION FTHAT(72:30#F(72),UC4)yFTE(72+3)
HIMENSION ANG(72+23PVEC(3)+GTG(4,4)sF1(4),61(4)
DIMENSION G(7254),8T{4572)2G6(4,72)sHIN(3)

DATA F/72%1.0/

KHIN=FTHAT (1s1)

THIN=FTHAT(12)

ZMIN=PTHAT (15 3)

B0 50 I=1sKN

IF(FTHAT(I 1) LT XHIN) XHIN=PTMAT(Is1)
IF(FTHAT(I»2) (LT YHIN) YMIN=FTMAT(I»2)
IF(FTHAT(I93) LT ZHIN) ZHIN=FTHAT(I»3)
CONTINUE

HINCE)=ARS(XHIN)+1.0
MIN(2)=ARS(YHIN)$1.0
HIN(3)=ARG(ZHMINI+1.,0

DG 75 J=1+KN

FTEC D) =FTHAT(Jr D) HMINCL)
FTE(Js20=FTHAT(Js2)HMIN(Z)
FT30Jr30=FTHAT (Js3) tHIN(3)
DIVI=((RTS(Jp 1) XK2IH(PTS (I 2)KK2) H(FTS(Jy 30 %%2) )
GCdy1)=(2,0%FT5(J»1))/0IV1
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110
126
130

G(Js2i=(2.0%FPT5(Js2))/DIV1
Gids3)=(2,04FTE (S 3)) /NIIVL
Gidrdi=(-1,0)/D1IV1
GT{lsdr=G(ds1)
GT(2yJi=b{ds2)

GT{Z: 13=G{Js3)
GT(4s.8)=6(dr4a)

CONTTHUE

nn 30 1=1,4

Iy 20 K=1,4
GIG(IsK)I=0,0

GTGN=0.0

{10 10 J=1sKN

OTHBN=GT(Iy DAG(JIR)
GTG(IsR)=GTG(I K)+GTGN
CONTINUE

CONTINUE

CONTINUE

Akl MINV(GTGe4sDsF1,G1)
0 130 I=1,+4

A 120 K=1sKN
GG(IsK)=0,0

GGN=0.0

0o 110 J=1,+4

GON=GTG(I» IXGT(JsR)
GG{IyRK)=3G{IsK)+GON
CONTINUE

CONTINUE

CONTINUE

o 230 I=1,4

i 21=0,0

UN=0.0

M 220 J=1sKN
UN=GB(IsJI¥F(J)
D=0 +UN

CONTINUE

CONTINUE
R=SARTCCCUCLIRR2)+ U2 RE2Y U3 X%2))-U(4))
TYFE %s'R='sR

0 BO I=1sKN
FTS(I»1)=FTS(I,1)-U(1)
PTS{I»2)=FTS(Is2)-U(D)
FT3(I+3)y=FT5(I+3)-U(3)
FTHAB=EART((FTS(Is 1) kX2)+(PTS(Ie 22 K%2)+(FTE(I»3)%%k2))
FUEC(1)=FT5(Iy1)/FPTHAG
FVEC(2)=FTS5(1+2)/FTHAG
FUEC(3)=FTS(I,3)/FTHAG
CALL SFHERE(FVEC,THETAsFHI)
ANG{I»1)=THETA
ANGI1»2)=FHI
FTS(Is1=FVEC(L1)Y%R
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BTE (T 2)=FUEC{2) 4R

FT8¢T1+3)=PVEC(3) ¥R
&0 CONTINUE

o 85 I=1sKN
l TYPE Xy "THETA-FHI='sANG(I+1) s ANG(Is2)
85  UONTINUE

L1 =U(1)-HIN(1)

UC2y=U{2)-HIN(2)

U(3)=U{3)-HIN(3)

U(4)=R
I TYPE &9 "U="2U{1)sU(2)2U(3)U4D)
RETURN
END
C
C
C
SUBROUTINE FLAFIT(FTSsUsKNyTHETAsFHI)
C
£ THIS SUEROUTINE CALCULATES THE "BEST FIT" FLANE TO A SET OF
C LATAH POINTS AND THEN OUTFUTS INFORMATION ON THE OUTWARD
C NORMAL TG THAT FPLANE.
C

DIMENSION FTS(7222)»GTG(3+3)sU(3)+F(72)
DINENSION G(72s3)»GT(3272)9F1(3)951(3)166(3+72)
DATA F/72%1.0/

YMIN=FTS({1s 1)
YHIN=FTS(1s2)
LHIN=FT5{1+3}
Lo 100 I=1sKN
IFIPISCT 1) W LT XHIN) XMIN=FTS(Is1)
IFCFTS(Ie2) LT YHINY YMIN=FTS(I+2)
FFCOTS(Te3) LT ZMIN) ZMIN=PTS(I+3)
100  CONTINUE
DO 129 J=1+KN
GCJr1i=PTS5¢Js 1 ARG (XMINI 41,0
G(Jr2)=PTS(Js2) +ARS(YMIN)+1.0
G(Jr3)=PT5{ Iy J1+ABS(ZHINI+1.0
GT(1sd)=G(Jds1)
GT{Z:Ja=G{ds 2}
GT(3rdr=G(Jr3)
125 CONTIHUE
0o 30 I=is3
0 20 K=1+3
GTGLIAKY =00
GTEN=GL 0
my 10 J=1,KN
BTGH=GT{TsJIRG(JIR)
BTG, IoKI=BTG(IK)+GTON
10 CONTINUE -
2¢ CONTINUE
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Lad

I

Ca ¢ 2

L o]

P e
<

<

<>

[

ZONTIMUE

whll MINV(GTGy3sLyF1+61)
g 130 I=1,3

o0 120 K=1sKN
GOIIYRI=0.C

GGN=0.0

g 110 J=1,3
GON=GTE{ Ly JIXGT(JsK)
GG(IsR)=6GG(IsK)+GGN
CONTINUE

CONTINUE

CONTINUE

Do 230 I=1,3

ilr=0,0

UN=0,0

10 220 J=1sKN
UNH=GGCT s JYRF ()

BT =0 +UN

CONTINUE

CONTINUE

NIV2=5ART (CUCL)RE2)+(UC2IRR2)H{U(3) X%2))
Bi=U(1)/0IV2
W2r=U(2)/IIV2
U(3)=U¢3)/nIv2

TYFE %+ U FLANE NORMAL=/yU(1)U(27,U(3)
CALL SPHERE(UyTHETAsFHI
RETURN

END

SUBROUTINE FFCT(IsNsIFsFsDATIHWGTIER)

THIS SURROUTINE DEFINES THE RASIS FUNCTIDNS FOR THE JOINT
SINUS EXFANSIONs AND CALCUILATES THEIR VALUES FOR GIVEN

VALUES OF 'GaMMA’,

OIMENSION F(11) DATI(7392)5IER(1)
IOUELE PRECISION DATI,WGBTsF»GAH

CHECK FOR FORMaAL ERRORS IN SFECIFIED DIMENSIONS
IF(HN310510s1
JFANLGT.72) GO TOQ 10
IF(IF)10s10932
IF{IF.5T1G) GO T0O 190

IER(1)=0
WiT=1.10
Gat=0ATI(I»1)
F(1i=1.00

O =DETN (GAM)

193



PS5y =0C05(GAN)
FCd)=(DEIN(GAM) ) K(DCOS(GAN) )
F{Si=(DCOS(GAMI IXXI
F{&)=(IBIN(GAM) Yk (DCOS(BAN) ) k%2)
F(7)=(LCAS(GAM) ) ¥%3
F8)=(LSIN(GAM) ) % { (IICTS (GAN) Y k%3)
FeF)={DCOS{GAM) ) Kk4
F{10y=(DEIN(GAN) )X ((DCOS{GAM) Y ¥%4)
F{L1)=DATI{1+2)
G0 TO LS

10 IER{1i=1

13 RETURN
Enli

SUERCUTINE SFHERE(E» THETAsFHI)

SURROUTINE TO CALCULATE THE SPHERICAL COORDINATES (THETA»FHI)
OF THE UNIT VECTOR K.

TiQy<:os

DIMENSION R(3)
[ATA FI/3.141592654/
A1l=S0RT (BRCIXXZ+B(2)X%2)
THETA= (ATANZ2{(AL1+R{3) ) )%18B0.,0/FI
IF{THETAWLT 179,99, 0R,THETA.GT.0,01) GO TO 10
FHI=G,0
G0 T0 20
10 PHI=CATAN2(B{Z)sE{1)))%180,0/F1
2¢ RETURN
END

EUEROUTINE OUTFUT(COEF,»OUTDATsKN)

DIMENSION COEF:10)sDUTRAT(12092)9R(10)
INTEGER EX(10s2)
HOURLE FRECISION COEFsFIsDEGZsRyGAMIRTsRX»RY
DATE FI/3,141592653589793100/
HATA EX/0»1902190v190v19091909091919292+3939494/
DEG3=3,0D0%(F1/180,0L07
BaM=0, 000
00 35 J=1+120
{iAM=GAM+DEG3
L3 15 I=1:10
H=EX{Iy 1)
H=EX(I+2)
FOL)=COEF (I % {DSIN(GAM) XXN) X (LICOS(GAN ) X%M)
15 CONTINUE
FT=RO1DIFR(ZIHR(BIFR(AIFRIGIHRISIFR(ZIHR(BIFR(FI+R(10)
QUTDAT (J»1)=5NGL (GAM)
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OUTLAT(Js 23=5NGBL(RT)
CONT INUE

RETURN

EWD
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