INFORMATION TO USERS

This reproduction was made from a copy of a manuscript sent to us for publication and microfilming. While the most advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been filmed.

The following explanation of techniques is provided to help clarify notations which may appear on this reproduction.

- 1. Manuscripts may not always be complete. When it is not possible to obtain missing pages, a note appears to indicate this.
- 2. When copyrighted materials are removed from the manuscript, a note appears to indicate this.
- 3. Oversize materials (maps, drawings, and charts) are photographed by sectioning the original, beginning at the upper left hand corner and continuing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or in black and white paper format.*
- 4. Most photographs reproduce acceptably on positive microfilm or microfiche but lack clarity on xerographic copies made from the microfilm. For an additional charge, all photographs are available in black and white standard 35mm slide format.*

*For more information about black and white slides or enlarged paper reproductions, please contact the Dissertations Customer Services Department.

UMI Dissertation Information Service

University Microfilms International A Bell & Howell Information Company 300 N. Zeeb Road, Ann Arbor, Michigan 48106

8625193

Chen, Shuenn-Muh

KINEMATIC AND PASSIVE RESISTIVE PROPERTIES OF HUMAN SHOULDER, HIP, AND ELBOW COMPLEXES

The Ohio State University

Рн.D. 1986

•

University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI 48106

.

KINEMATIC AND PASSIVE RESISTIVE PROPERTIES

OF HUMAN SHOULDER HIP AND

ELBOW COMPLEXES

DISSERTATION

Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Graduate

School of The Ohio State University

By

Shuenn-Muh Chen, B.S., M.S.

* * * * *

The Ohio State University

1986

Dissertation Committee: Professor A.E. Engin Professor D.J. Unger

Professor D. Hui

Approved_by in Adviser

Department of Engineering Mechanics

To My Mother

.

-

ACKNOWLEDGEMENTS

I would like to express sincere appreciation to my adviser, Professor Ali E. Engin, for his guidance, assistance, and encouragement. His inspiration and insight have been invaluable throughout the preparation of this dissertation.

I would also like to acknowledge the use of the software and hardware developed by one of Professor Engin's former graduate students, Dr. Richard D. Peindl of The University of North Carolina at Charlotte.

To my wife, Cho-Hua, I extend sincere thanks for your unshakable faith in me and your willingness to endure with me the viscissitudes of my endeavors. To my son, Albert, I thank you for understanding my frequent absences.

This research work was supported by the Modeling and Analysis Branch of the Aerospace Medical Research Laboratory of the U.S. Air Force, Wright-Patterson Air Force Base, Ohio, under Contract No. F33615-83-C-0150 awarded to Professor Engin and monitored by Dr. Ints Kaleps, Chief of the Modeling and Analysis Branch.

iii

.

August 17, 1956 Born - Kaohsiung, Taiwan 1979. B.S., National Central . University, Chung-Li, Taiwan The Ohio State University Columbus, Ohio 1982-1986. Graduate Research Fellow and Graduate Research Associate, Department of Engineering Mechanics, The Ohio State University, Columbus, Ohio

FIELDS OF STUDY

Major Field: Engineering Mechanics

Studies in Biomechanics and Mechanics. Professor A.E. Engin

VITA

.

TABLE OF CONTENTS

																										P	AGE
ACKN	OWLED	Gements	•	•••	•	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	İ	Lii
VITA	••	• • • •	•	••	•	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		iv
LIST	OF F	IGURES.	•	••	•	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	۲	vii
LIST	OF T	ABLES .	•	••	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2	kii
1.	INTRO 1.1 1.2 1.3	DUCTIO Backgr Defini Scope	N. oun tio of	d . ns c Rese	of ear	Joi ch.	nt	Si	inu		an •	d	Gl	.ob	og	ra	ph	ic	R	ep	• • •	se	ent	at	ic		1 1 4 5
2.	KINEN SONIC 2.1 2.2	MATICS C EMITT Review Moving	BY ERS of Ri	MEAN the gid-	NS S BO	OF oni dy 1	AN C I Kir	OV Dig nem	JER Jit	DE iz	TE	RM • g an	IN Te	AT • Ch In	E	NU qu ia	MB • e li	ER • za	0 ti	F • •		• f	• • a	•	•	•	8 8 11
	2.3	Select: Moving	ion Bo	of dy.	th	ec. e "] • •	Mos •	st •	Ac	cu	ra •	te	п	Ax	is •	S	ys •	te	m	on	t	he •	•	•	•	•	11
3.	BIOME 3.1 3.2	CHANIC Introd	AL 1 uct: ina	PROE ion tior	PER	rie: • •	5 C he)F Ma	TH •	E • mu	HU •	MA • Vo	N lu	SH •	OU •	LD • y	ER • Sh	C •	ом 1а	PL • er	EX •	•	•	•	•	•	21 21
	3.3	Comple: Passive	x S e R	inus esis	s. sti	ve 1	Pro	• pe	ert	ie	• s	Be	yo	nđ	t	- he	S	ho	ul	de	• r	•	•	•	•	•	22
	3.4 3.5	Comple: Statis Coordin	x S tica nate	inus al A e Tr	ana: an:	 Lys: sfo:	is rm <i>a</i>	ati	.on	• • .s	Am	• • on	• • g	• •	• •	• Fi	xe	• • d 1	Bo	dy	• • •	•	•	•	•	•	28 39
	3.6	Indivio Statis Proper	dua: tica tica	l Jo al E s of	oin Oata E ti	tai a Ba he 1	nd ase Hun	Me e f nan	ean Ior S	J t ho	oi he ul	nt B de	A io r	xi me Co	s ch mp	Sy an le	st ic x	em al •	s	•	•	•	•	•	•	•	44 48
4.	BIOME	 ECHANIC	AL I	PROF	PER	FIE S	s c	F	тн	Е	HU	MA	N	HI	P	CO	MP	LE	x						•		71
	4.1	Introd	act	ion	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	71
	4.2	Determ	ina	tion	1 0	E ti	he	Hi	p	Co	mp	le	x	Si	nu	s	•	•	•	•	•	•		•		•	73
	4.3 4.4	Determ: Statis	ina tica	tion al D	n o: Data	E ti a Ba	he ase	Pa e f	ss or	iv t	e he	Re B	si io	st me	iv ch	e ∶ an	Pro ica	op al	er	ti	es	•	•	•	•	•	83
		Proper	tie	s of	t t	he I	Iun	ıan	H	ip	C	om	pl	ex	•	•	•	•	•	•	•	•	•	•	•	•	92

•

•

5.	BIOM	ECHANICAL P	ROPERTIES	of the H	UMAN HUME	RO-ELBOW	COMPLI	EX.	•	.101
	5.1	Introducti	on		• • • •			• •	•	.101
	5.2	Determinat	ion of the	Humero-	Elbow Com	plex Sir	us	• •	•	.102
	5.3	Determinat	ion of the	Passive	Resistiv	e Proper	ties			
		Beyond the	Full Elbo	w Extens	ion		• • •	• •	٠	.113
	5.4	Statistica	l Data Bas	e for th	e Biomech	anical				
		Properties	of the Hu	man Hume	ro-Elbow (Complex	• • •	• •	•	.115
6.	CONCI	LUDING REMA	RKS	• • • •		• • • •	• • • •	• •	٠	.124
APPEN	NDIX A	A: SELECTED	ANTHROPOM	ETRIC ME	ASUREMENT	S OF TEN	SUBJE	CTS	•	.126
APPEN	IDIX E	B: COMPUTER	PROGRAMS	FOR DATA	ACQUISIT	ION AND	ANALYSI	[S.	•	.127
REFEI	RENCES	5	• • • • •		• • • •			• •	•	.196

.

.

.

•

LIST OF FIGURES

FIGUR	E	PAGE
1.1	A fifteen-segment model of the total human body	2
2.1	Quantities used to convert slant range distances (PA, PB, PC, PD) to Cartesian coordinates (x, y, z)	9
3.1	Subject in the torso restraint system and the arm cuff with six sonic emitters	23
3.2	(a) Selected origin and axis system (x _{fb} , y _{fb} , z _{fb}) of the fixed segment (torso)	24
	(b) Relative orientation of the fixed body (x _{fb} , y _{fb} , z _{fb}) and locally-defined joint (x _{jt} , y _{jt} , z _{jt}) axis systems	24
3.3	Curve-fitted raw data for joint sinuses of three subjects	29
3.4	Various components of the data acquisition system. 1) Sonic Digitizer, 2) Subject Restraint/Positioning System, 3a) Force Applicator, 3b) Strain Gage Signal Conditioner/Amplifier, 4) Arm Cuff with Orthotic Shell, 5) Fixed Body Axis Locator Device	30
3.5	Illustration of the vector quantities used in the calculation of resistive force values	34
3.6	The modified joint axis system and the corresponding four test quadrants	36
3.7	Constant resistive force (moment), in Newtons (Newton- Meters), contour map for a subject in the modified joint axis system, in radians	37
3.8	Perspective view of Fig. 3.7	38
3.9	Raw data and fitted curves drawn from $f(\phi, \theta)$ for various constant- ϕ sweeps for the subject mentioned in Fig. 3.7	39

vii

3.10	Joint axis system as obtained by two successive rotations, first about the z _{fb} -axis and then about the intermediate (primed) y'-axis from the fixed body axis system	45
3.11	Subject-based and space-based maximum voluntary shoulder complex sinuses for the first subject	52
3.12	Curve-fitted data for subject-based sinuses of all subjects (dotted curves). Solid curves are for $\overline{\theta}$ and $\overline{\theta} + S_A$	54
3.13	Globographic representations of $\overline{\theta}$ and $\overline{\theta} + S_{\theta}$ (subject-based)	54
3.14	Least-squares fitted data (dotted lines) for the space-based sinuses for all ten subjects. The middle solid curve is the space-based sample mean joint sinus, $\overline{\theta}(\phi)$. The upper and lower solid curves are $\overline{\theta}(\phi) + S_{\theta}(\phi)$ and $\overline{\theta}(\phi) - S_{\theta}(\phi)$, respectively	55
3.15	Globographic representations of $\overline{\theta}(\phi)$ and $\overline{\theta}(\phi) + S_{\theta}(\phi)$ (space-based)	56
3.16	$\overline{\theta}$ (ϕ) and $\overline{\theta}$ (ϕ) \pm S _{θ} (ϕ) for both space-based and subject-based sinuses. Note that the two $\overline{\theta}$ curves coincide with each other in this figure	57
3.17	$\overline{\Theta}(\phi)$ and $\overline{\Theta} + S_{\Theta}(\phi)$ for three different runs for all subjects	58
3.18	Confidence Intervals (CI) for both the space-based and subject-based population means	59
3.19	Globographic representations for the sample mean, $\overline{\theta}$, and the 95% Confidence Interval for the subject-based population mean, μ_{θ}	60
3.20	The 95% Confidence Interval (CI) for the population standard deviation, σ_{θ} . The subject-based sample standard deviation, s_{θ} , is also shown	61
3.21	Constant contour maps of (a) space-based and (b) subject-based sample means for the passive resistive force (moment) in Newtons (Newton-Meters)	65
3.22	Space-based and subject-based sample means for the maximal forced sinuses	67

3.23	Globographic representations of the subject-based mean maximal voluntary (inner curve) and mean maximal forced (outer curve) sinuses	67
3.24	Subject-based sample means of the passive resistive force (moment), maximum voluntary sinus (inner dashed), and maximum forced sinus (outer dashed)	69
4.1	Principal bones and ligaments of the hip complex	72
4.2	Major components of the data acquisitions system. 1) Sonic Digitizer, 2) Digitizer Sensor Assembly, 3) Torso Restraint System, 4) Thigh Cuff with Six Sonic Emitters	74
4.3	Relative orientation between the fixed body (x _{fb} , y _{fb} , z _{fb}) and locally-defined joint (x _{jt} , y _{jt} , z _{jt}) axis systems	75
4.4	Emitter positioning for initialization process	77
4.5	Raw data and the functional expansions of the hip complex sinus for subject No. 1	79
4.6	Raw data and the functional expansions of the hip complex sinus for subject No. 2	80
4.7	Raw data and the functional expansions of the hip complex sinus for subject No. 3	81
4.8	Globographic representations of the hip complex sinuses for subject No. 1	82
4.9	Globographic representations of the hip complex sinuses for subject No. 2	82
4.10	Globographic representations of the hip complex sinuses for subject No. 3	83
4.11	Representative test configurations in each of the four quadrants: 1) upper-rear, 2) lower-rear, 3) lower-front, 4) upper-front	86
4.12	Constant resistive force (moment), in Newtons (Newton-Meters), contour map on the modified joint axis system, in radians, for subject No. 1. The maximal voluntary hip complex sinus (inner dashed) and the maximal forced sinus (outer dashed) are also indicated	87

•

4.13	Constant resistive force (moment), in Newtons (Newton-Meters), contour map on the modified joint axis system, in radians, for subject No. 2. The maximal voluntary hip complex sinus (inner dashed) and the maximal forced sinus (outer dashed) are also indicated	88
4.14	Constant resistive force (moment), in Newtons (Newton-Meters), contour map on the modified joint axis system, in radians, for subject No. 3. The maximal voluntary hip complex sinus (inner dashed) and the maximal forced sinus (outer dashed) are also indicated	89
4.15	Raw data and the fitted-curves (drawn from Figure 4.12) for several constant- ϕ sweeps	90
4.16	Globographic representations of the maximal voluntary (inner curve) and forced (outer curve) sinuses for subject No. l	91
4.17	Globographic representations of the maximal voluntary (inner curve) and forced (outer curve) sinuses for subject No. 2	91
4.18	Globographic representations of the maximal voluntary (inner curve) and forced (outer curve) sinuses for subject No. 3	92
4.19	Hip complex sinuses for all ten subjects (dotted curves). Solid curves are for $\overline{\theta}$ and $\overline{\theta} + s_{\theta} + \cdots + \cdots + \cdots + \cdots$	94
4.20	Globographic representations of $\overline{\theta}$ and $\overline{\theta} \pm s_{\theta} + \cdots + \cdots + \cdots$	94
4.21	$\overline{\theta}$ and $\overline{\theta} \pm S_{\theta}$ for two different runs	95
4.22	Confidence Interval (CI) for the population mean, μ_{θ}	96
4.23	Globographic representation of the Confidence Interval for the population mean	96
4.24	Sample means of the passive resistive property, maximum voluntary sinus (inner dashed), and maximum forced sinus (outer dashed)	100
4.25	Globographic representations of the sample means of the maximum voluntary and forced sinuses	100
5.1	Kinematic and force application tests for the elbow complex	103

.

.

.

5.2	Relative orientation of the mean joint axis system, or the fixed-body axis system, (x_{ch}, y_{ch}, z_{ch}) and		
	the torso axis system, $(x_{ts}, y_{ts}, z_{ts}) \cdots \cdots \cdots \cdots \cdots$	•	104
5.3	Relative orientation of the fixed-body (x_{fb}, y_{fb}, z_{fb}) and the locally-defined joint (x_{jt}, y_{jt}, z_{jt}) axis systems	•	106
5.4	Raw data and the functional expansions of the humero-elbow complex sinus for subject No. 1	•	109
5.5	Raw data and the functional expansions of the humero-elbow complex sinus for subject No. 2	•	110
5.6	Raw data and the functional expansions of the humero-elbow complex sinus for subject No. 3	•	111
5.7	Globographic representation of Fig. 5.4	•	112
5.8	Globographic representation of Fig. 5.5	•	112
5.9	Globographic representation of Fig. 5.6	•	113
5.10	Raw data and functional expansions of the passive resistive property for subject No. 1	•	116
5.11	Raw data and functional expansions of the passive resistive property for subject No. 2	•	116
5.12	Raw data and functional expansions of the passive resistive property for subject No. 3	•	117
5.13	Humero-elbow complex sinuses for all ten subjects. Solid curves are for $\overline{\theta}$ and $\overline{\theta} + S_{\theta} \cdot	•	119
5.14	Globographic representations of $\overline{\theta}$ and $\overline{\theta} + s_{\theta} + \cdots + \cdots$	•	119
5.15	$\overline{\theta}$ and $\overline{\theta} + S_{\theta}$ for two runs	•	120
5.16	Confidence interval for the population mean	•	121
5.17	Globographic representation of the confidence interval	•	121
5.18	f(α) for all ten subjects. Solid curves are for \overline{f} and $\overline{f} \stackrel{+}{=} S_{\overline{f}} \cdots $	•	122
B.1	Flowchart for data acquisition and associated data analysis.	•	128

LIST OF TABLES

PAGE

•

.

~

TABLE		PAGE
3.1	Centers and radii of the best-fitted spheres and (ϕ_n, θ_n) for all ten subjects	26
3.2	Subject-based coefficients of the shoulder complex sinuses for all ten subjects	50
3.3	Space-based coefficients of the shoulder complex sinuses for all ten subjects	51
3.4	Subject-based coefficients of the passive resistive force (moment) data for all ten subjects	62
3.5	Space-based coefficients of the passive resistive force (moment) data for all ten subjects	63
3.6	Subject-based coefficients of the maximum forced sinuses for all ten subjects	66
4.1	Centers and radii of the best-fitted spheres and (ϕ_n, θ_n) for all ten subjects	78
4.2	Expansion coefficients of the hip complex sinuses for all ten subjects	93
4.3	Expansion coefficients of the passive resistive force (moment) data for all ten subjects	97
4.4	Expansion coefficients of the maximum forced sinuses for all ten subjects	98
5.1	Centers and radii of the best-fitted spheres and (ϕ_n, θ_n) for all ten subjects	108
5.2	Expansion coefficients of the humero-elbow complex sinuses for all ten subjects	118
5.3	Expansion coefficients of the passive resistive properties beyond the full elbow extension for all ten subjects	123

1. INTRODUCTION

1.1 Background

Mathematical modeling and simulation of biomechanical system crash response play an economical and versatile role in the understanding of injury mechanisms. In quantitative gross biodynamic motion studies, cognizant of the high cost of conducting experimental with human cadavers and/or anthropomorphic dummies, research biomechanicians have turned their attention to the utilization of computer-based mathematical models of the total human body since the advent of high speed computer technology. Among these models, the versions popular and sophisticated are articulated most and multisegmented to simulate the total human body as a linked structure made up of rigid bodies. Fig. 1.1 shows a typical three-dimensional consisting of fifteen model segments. Representative threedimensional models developed in various research centers include sixsegment model of UMTRI (formerly called HSRI) (Robbins et al., 1972), twelve-segment models of TTI (Young, 1970) and of UCIN (Huston et al., 1974), and fifteen-segment model of Calspan (Fleck, 1975). With some additional features, the Calspan model is also being used by the U.S. Air Force under the title of Articulated Total Body (ATB) model in aerospace related applications.

Fig. 1.1 A fifteen-segment model of the total human body

In these models, the equations of motion are formulated by using either the Newtonian approach or Lagrange's equations, Euler's rigid body equations, and Lagrange's form of d'Alembert's principle and solved by various methods such as Runge-Kutta or Predictor-Corrector numerical integration scheme. Joints are modeled as either the balland-socket type with three degrees of freedom or the hinge type with Resistive force responses beyond the only one degree of freedom. joint stop contour (maximum range of motion) are modeled as one or a combination of the following simple mechanical components: a linear spring, a non-linear spring, a Coulomb friction damper, and a viscous Furthermore, joint properties, i.e., stop contours damper. and resistive force characteristics are estimated and, in some cases, even A thorough review of both two- and three-dimensional assumed. mathematical models simulating biodynamic response of the human body along with the associated experimental validation studies performed, was provided by King and Chou (1976).

Obviously, the effectiveness of these multisegmented mathematical models in accurately predicting in-vivo biodynamic responses, depends upon the individual segment properties such as center of gravity, moment of inertia, geometry, etc., and more heavily upon the biomechanical joint properties between any two linked segments. In particular, the resistive force properties of the joints play a direct and significant role in the understanding of injury mechanisms as well as in the prediction of injury. Although a number of studies have supplied data for model segment properties (Hatze, 1980; McConville et

. .

al., 1980), data on biomechanical joint properties are comparatively sparse (Steindler, 1973) and limited (Engin, 1980; Engin, 1984). Of course, a complete data base for the biomechanical joint properties should undoubtedly include a statistical analysis to account for the intra- and inter-subject variations. The more sound the joint property data base is, the more realistically the multisegmented anthropomorphic dummies and computer-based mathematical total-humanbody models can be constructed and formulated.

1.2 Definitions of Joint Sinus and Globographic Representation

Throughout this dissertation, the terms joint sinus and globographic representation (first used by Dempster, 1965) will be repeatedly used in the discussion of joint properties. Since these two terms are not commonly known, let us give their definitions to avoid possible confusion.

Joint Sinus: the maximum range of angular motion permitted by the moving member of a joint while the other member is rigidly fixed. The joint should possess at least two degrees of freedom such that the moving member sweeps out a conical concavity within which the joint structures permit all possible movements.

Globographic representation: a graphical method of representing a joint sinus upon the surface of a globe with meridians and parallels which define a grid pattern of the angular spherical coordinates with respect to a fixed axis system attached to the rigidly fixed member;

the center of the globe is positioned at the functional center of the joint.

In this study, we will also use another method to represent a joint sinus, namely, a single-valued functional relationship between the two spherical angles of the joint sinus. While the globographic representation provides a physically meaningful plot for the joint sinus, the single-valued functional relationship condenses the joint sinus data into a functional expansion form for easy incorporation into the existing three-dimensional multisegmented models of the total human body.

1.3 Scope of Research

The primary goal of this research program is to provide/establish proper biomechanical joint property data/databases pertinent to the human shoulder, hip, and humero-elbow complexes for incorporation into the existing three-dimensional multisegmented models. A recently developed new kinematic data collection methodology by means of sonic emitters and a data analysis technique based on selection of the "most accurate" axis system from an overdeterminate number of sonic emitters on the moving segment (Engin et al., 1984a) were applied and extended. The passive resistive force data were collected by utilizing a threedimensional multiple-axis force and moment transducers whose calibration and application with sonic emitters were provided in a previous work (Engin et al., 1984b). System accuracy of this data acquisition technique was also previously documented by performing:

- Error analysis on two types of controlled linear translational motion; a rather high degree of accuracy was attained (Engin et al., 1984a).
- (2) Joint sinus simulation tests on a mechanical revoluto-hinge joint; even with high degrees of acoustic blockage, an average of 86.51% of the calculated joint centers fell within 1.46 cm. from the true joint center (Engin and Peindl, 1986).
- (3) Forced abduction simulation tests (sweeping-type motions) on the same mechanical revolute-hinge joint; an average of 81.55% of the calculated joint centers fell within less than 0.5 cm. from the true joint center (Engin and Peindl, 1986).

The system accuracy tests described above, demonstrate that the sonic digitizing technique can be employed to perform fairly complicated three-dimensional rigid body kinematic analysis when used in connection with an overdeterminate number of sonic emitters. In this study, the performance of the data acquisition system and efficacy of the associated data analysis methodology is culminatingly assessed by observing good repeatability of the joint sinus sample means from different runs on ten subjects.

Finally, a statistical data base for the biomechanical joint poperties is established in a systematic way for a special population, namely, the male population of ages 18 thru 32 possessing neither musculoskeletal abnormalities nor any history of trauma in the joints studied herein. <u>Ten</u> subjects were randomly chosen to form the sample

with emphasis placed on choosing subjects whose anthropometry approximates the average for the above-defined population. Selected anthropometric measurements of these subjects are given in Appendix A. The sample mean and sample standard deviation as well as the confidence intervals for the population mean and population standard deviation were obtained in a systematic way and were expressed in functional expansion form relative to a locally-defined joint axis system as well as relative to the fixed-body axis system in the form of globographic representation. It is believed that this is the first attempt to establish a statistically meaningful data base for the biomechanical properties of the major human articulating joints for the purposes of incorporation into the multisegmented mathematical models of the total human body.

2. KINEMATICS BY MEANS OF AN OVERDETERMINATE NUMBER OF SONIC EMITTERS

In this chapter, we shall discuss the general approach to studying the three-dimensional kinematics of a typical joint complex, which links two body segments, by means of an overdeterminate number of sonic emitters. The following chapters will apply this methodology to determine the maximum voluntary ranges of motion and passive resistive properties beyond them for the shoulder, hip, and humeroelbow complexes.

2.1 Review of the Sonic Digitizing Technique

Sonic digitizing is the process of converting information or position via sound waves to digital values in a form suitable for data transmission, storage, and processing. The sound waves, which are audible impulses of a specific frequency, are generated by an electrical arc at the tip of the emitter powered by the GP6-3D Sonic Digitizer manufactured by Science Accessories Corporation. "Point" microphone sensors capable of detecting this specific frequency of sonic impulses are used to receive the sound waves. By multiplying the transit time required for a sound wave to reach a microphone sensor with the speed of sound in still air, the sonic digitizer converts the distance from the emitter tip to the "point" microphone

values. These digits are then transmitted to a PDP-11/34 minicomputer for data analysis and storage.

By applying this sonic digitizing principle, a rigid planar with four "point" board/assembly rectangular sensor microphones/sensors (A, B, C, D) arranged at the corners, as shown in Fig. 2.1, was constructed (Engin and Peindl, 1985). The purpose of this set-up is to convert the four slange range distances of a sonic emitter, which defines a point in the 3-D space, into regular Cartesian coordinates suitable for performing kinematic analysis. Note that only three slant range distances are needed for the The fourth sensor is used for spare purposes. During conversion. conversion analysis, the computer program is designed to examine all four slant range distances, select the three smallest, and discard the fourth. In the special case where one of the slant range distances is zero, namely, the sonic emitter is totally blocked from being detected by one of the four microphone sensors, the zero reading is disregarded.

Fig. 2.1 Quantities used to convert slant range distances (PA, PB, PC) to Cartesian coordinates (x, y, z)

With respect to the selected 3-D coordinate system (to be referred to as the sensor assembly axis system) as shown in Fig. 2.1, slant range distances PA, PB, and PC will be used to illustrate the conversion procedure. Applying the law of cosines to triangle APB, we have

$$(PB)^{2} = (PA)^{2} + (AB)^{2} - 2(PA) (AB) \cos \alpha$$
 (2.1.1)

where AB = 165 cm. is a calibrated dimension for the sensor assembly. We also note that

$$x = AH = (PA) \cos \alpha \qquad (2.1.2)$$

Therefore,

$$(PB)^{2} = (PA)^{2} + (AB)^{2} - 2(AB)x$$
 (2.1.3)

or,

.

.

$$x = [(PA)^{2} + (AB)^{2} - (PB)^{2}]/2(AB)$$
(2.1.4)

.

Similarly, by applying the law of cosines to triangle APC, one obtains

$$y = AE = [(PA)^{2} + (AC)^{2} - (PC)^{2}]/2(AC)$$
 (2.1.5)

where AC = 110 cm. is also a calibrated dimension for the sensor

assembly. Finally, one obtains the z coordinate by

$$z = PP' = [(PA)^2 - (x^2 + y^2)]^{1/2}$$
 (2.1.6)

In like manner, similar equations for x, y, and z can be written for any combination of three slant range distances.

2.2 Moving Rigid-Body Kinematics and Initialization

of a Baseline Data Set

Consider a typical joint complex connecting two body segments. In order to facilitate the relative motion studies between the two body segments, one of them is first rigidly fixed. To each body segment an axis system can then be defined and affixed by mounted The six degrees of freedom permitted by a general sonic emitters. joint complex are completely determined if one point (e.g., the origin of the moving body axis system) on the moving body and the transformation (direction cosine) matrix of the moving-body axis system with respect to the fixed-body axis system are known. The coordinates of this point determine the location (three translational degrees of freedom) and the transformation matrix determines the orientation (three rotational degrees of freedom) of the moving body segment. The orientation can be described in various ways, for example, (1) a set of three successive rotations about the three axes of the fixed-body axis system, (2) three Euler's angles, and (3) a rotation about an arbitrary axis in space. A detailed derivation of

the transformation matrices resulting from the above three ways can be found in Suh and Radcliffe (1978).

To define an axis system affixed to a body segment, three noncolinear points (emitters) on or extended from the body segment are needed. Normally, it is desirable to select one of the axes, e.g., the z-axis to coincide with the longitudinal axis of the moving body segment and the origin to be a certain point on this axis. We shall refer to this type of axis systems as the longitudinal (or long-bone) axis systems. However, since the sonic digitizing technique is applied in this study, total and partial acoustic blockage may occur to produce zero and inaccurate readings for one, or two, or even all three sonic emitters used. Note that in defining the fixed-body axis system, this difficulty can always be avoided by adjusting the sensor assembly to an optimal "view" of the three emitters since these emitters are not moving. In the case of the moving body segment, it is desirable to continuously monitor the moving body axis system while performing joint property experiments. As a result, total or partial acoustic blockage becomes inevitable for some "bad" positions where sound waves must travel around the emitters' bases or the moving body segment itself. Therefore, it is necessary to collect redundant data so that zero readings from individual emitters would not affect kinematic analysis. Obviously, we would select the "most accurate" three emitters in cases where more than three emitters produce nonzero readings.

From experimental experience, six emitters are most suitable for

the redundancy process. Seven or more emitters would dramatically increase computing time without noticeable improvements in accuracy, while four or five emitters do not provide a sufficient spare. Note that if six emitters are used, a total of 20 (C(6, 3) = $\frac{6!}{3!3!}$) different axis systems can be constructed; if seven emitters are used, a total of 35 (C(7,3) = $\frac{7!}{4!3!}$) different axis systems can be constructed.

is It advantageous to arrange the six sonic emitters circumferentially and more or less equally-spaced around the moving body segment. (In reality, the six emitters are first put on an orthotic cuff which, in turn, is strapped circumferentially to the moving body segment). The advantage is that, by doing so, we have reduced the number of "bad" positions to a minimum and also provided the moving body segment with the largest amount of freedom to reach all allowable ranges of motion. However, such an arrangement of the six emitters makes them unsuitable for direct construction of the longitudinal axis system as normally desired. One way of resolving this inconvenience is to establish the relationship (to be explained later) between the six emitters and the longitudinal axis system directly constructed by three properly positioned emitters before performing kinematic data collection and analysis. Since this relationship is invariant, i.e., it does not depend upon the orientation/location of the moving body segment or the sensor assembly, its accuracy can be checked against pre-calibrated interemitter distances to within 1% of error by adjusting the relative

orientation and location between the moving body segment and the sensor assembly to an optimal "view". This procedure is called initialization. The initialized data set, which is reliably accurate, also provides a baseline for the selection of the "most accurate" longitudinal axis systems (will be explained in detail in the next section) for the continuously collected kinematic data whose accuracies are uncontrollable due to partial and/or total acoustic blockage and motion during kinematic data collection. This baseline contains the interrelationships among the six sonic emitters on the moving body. The following explains how the interrelationships among these nine emitters (three for defining the longitudinal axis system and six on the moving body segment) are initialized.

First, the coordinates of the nine emitters are calculated in terms of the sensor assembly axis system. Next, a total of 20 axis systems is defined by calculating the direction cosine matrices $A_{is}(1 \le i \le 20)$ with respect to the sensor assembly axis system from all possible combinations of any three out of the six moving-body emitters. Note that these axis systems can always be obtained since all the six emitters are arranged in such a way that no three of them are colinear, i.e., three mutually orthogonal unit vectors can always be found. The longitudinal axis system is similarly defined by calculating its direction cosine matrix, B_{is} , with respect to the sensor assembly axis system. Next, the transformation (direction cosine) matrix describing the ith axis system relative to the jth axis system $(1 \le i < j \le 20)$ is then calculated by $A_{ij} = A_{is}A_{sj} = A_{is}A_{js}^{-1}$

= A $\stackrel{T}{is}$, where A and A are the transformation matrices describing the ith and jth axis systems relative to the sensor assembly axis system, respectively. that Note these 190 $(C(20,2) = \frac{20!}{18!2!})$ transformation matrices relating each of the 20 axis systems relative to every other system are an intrinsic geometric property of the six moving-body emitters and are independent of the sensor assembly axis system. Second, the distances between the origins of any two of the 20 axis systems, D_{ij} ($1 \le i < j \le 20$) are initialized. Obviously, these 190 scalar quantities are also intrinsic and independent of the sensor assembly axis system. Third, the coordinates (position vectors) of the origin of the longitudinal axis system with respect to the 20 moving-body axis systems are also initialized by $\vec{J}_i = A_{is} \vec{J}_s$ ($1 \le i \le 20$), where \vec{J}_s is the position vector from the origin of the ith axis system to the origin of the longitudinal axis system expressed in terms of the sensor assembly axis system. Note that these 20 vectors are also intrinsic and independent of the sensor assembly axis system during the initialization process. Last, the transformation matrices of the longitudinal axis system with respect to each of the 20 moving-body axis systems are initialized by $B_{li} = B_{ls} A_{si} = B_{ls} A_{is}^{T} (1 \le i \le 20)$. Note that these 20 matrices are also independent of the sensor assembly axis system. All the initialized data are stored in the computer and retrieved for the selection process and determination of the longitudinal axis system once the "most accurate" moving-body axis system is selected.

2.3 Selection of the "Most Accurate" Axis System on the Moving Body

The initialized data set discussed in the previous section forms a baseline for the selection criterion since these data are obtained in an optimal view of the sensor assembly and their accuracy can be well controlled. However, for a typical kinematic test, with the moving body segment in motion, the accuracy is uncontrollable. Since the initialized data set is independent of the sensor assembly axis system, it can be used for any position and orientation of the moving body segment in selecting the "most accurate" moving-body axis system for determination of the desired longitudinal axis system which conveniently describes the complete kinematics of the moving body segment. The sequential firing rate of the six moving-body emitters is set at 7 records per second, and the motion speed of the moving body segment is maintained at approximately 6° arc/sec. One record is defined as a complete sequential firing of all the six moving-body emitters from which one set of kinematic data with respect to the fixed body axis system is determined through coordinate transformation and vector analyses.

The choice of the "most accurate" axis system on the moving body segment during a kinematic test is made on a record by record basis. For each record of the kinematic data, the coordinates of the six moving-body emitters (assuming that all of them give good readings, i.e., none of them is totally blocked from sensor view) are first used to obtain the intrinsic interrelationships between any two of the 20

axis systems as described in the initialization process. If there were no errors in the kinematic measurements, and the orthotic cuff remains rigid, then we should obtain the equalities:

$$(A_{ij})_{kinematic} = (A_{ij})_{initial} , or$$

$$(A_{ij})_{kinematic} (A_{ij}^{T})_{initial} = I \qquad (1 \le i < j \le 20) \qquad (2.3.1)$$

anđ

•

.

$$(D_{ij})_{kinematic} = (D_{ij})_{initial}$$
, or
 $(D_{ij})_{kinematic} - (D_{ij})_{initial} = 0$ ($1 \le i \le j \le 20$) (2.3.2)

where I is the 3 x 3 identity matrix. This, however, is not the case for a typical kinematic tests due to such factors as motion during data collection, changes in the emitter's orientations with respect to the sensor assembly, or the partial acoustic blockage of individual emitters by the fixed body or the moving body segment itself. Therefore, we obtain the following inequalities:

$$(A_{ij})_{kinematic} (A_{ij}^{T})_{initial} = G_{ij} \neq I (l \le i \le j \le 20) (2.3.3)$$

and

$$(D_{ij})_{kinematic} - (D_{ij})_{initial} = \delta_{ij} \neq 0 \quad (1 \leq i < j \leq 20) \quad (2.3.4)$$

where G_{ij} is a general matrix with off-diagonal terms, and δ_{ij} is an apparent dislocation (translational shift) between the origins of the ith and jth axis systems. The general matrix can be considered as a rotation matrix describing an apparent rotational shift between the ith and the jth axis systems from their initialized interrelationship. It should be pointed out that both the translational and rotational shifts are a relative measure of the errors involved. These errors are not correctable, i.e., we cannot pinpoint the absolute errors. Nevertheless, we have at least a relative sense of how much they are so that we can always select the "most accurate" data set. Therefore, a good relative indication of the magnitude of the rotational shift is to consider the amount of rotation , γ_{ij} , introduced by G_{ij} about an axis. To calculate $\gamma_{\mbox{ij}}$, we notice that the rotation matrix describing a rotation of amount α about an axis whose orientation is specified by the direction cosines of a unit vector $\mathbf{u} = [u_x, u_y, u_z]$ is (Suh and Radcliffe, 1978)

R =

$$\begin{bmatrix} u_{x}^{2}(1-\cos \alpha)+\cos \alpha & u_{x}u_{y}(1-\cos \alpha)-u_{z}\sin \alpha & u_{x}u_{z}(1-\cos \alpha)+u_{y}\sin \alpha \\ u_{x}u_{y}(1-\cos \alpha)+u_{z}\sin \alpha & u_{y}^{2}(1-\cos \alpha)+\cos \alpha & u_{y}u_{z}(1-\cos \alpha)-u_{x}\sin \alpha \\ u_{x}u_{z}(1-\cos \alpha)-u_{y}\sin \alpha & u_{y}u_{z}(1-\cos \alpha)+u_{x}\sin \alpha & u_{z}^{2}(1-\cos \alpha)+\cos \alpha \end{bmatrix}$$
(2.3.5)

Summing up the diagonal terms of the matrix R and noticing that $u_x^2 + u_y^2 + u_z^2 = 1$, we obtain

$$\alpha = \cos^{-1}[\frac{1}{2} (trR - 1)]$$
 (2.3.6)

where trR is the trace of R, i.e., the sum of all the three diagonal terms of the matrix R. Applying this equation to the general matrix G_{ii} , we find

$$\gamma_{ij} = \cos^{-1} \left[\frac{1}{2} (tr \ G_{ij} - 1) \right] = \gamma_{ji}$$
 (2.3.7)

Since the orthotic cuff is made of rather rigid steel and during the kinematic test there is essentially no force applied on it, we attribute both the translational and rotational shifts to motion during the emitter firing sequence and/or measurement inaccuracies due to partial acoustic blockage.

For each kinematic data record, if one assumes the jth axis system to be accurate, then the ith axis system has obviously introduced both errors, i.e., δ_{ij} and γ_{ij} . If we then calculate, for each axis system, the root mean square error, ϵ_{i} , by assuming all the other 19 axis systems are accurate, as

$$\varepsilon_{i} = \left\{ \sum_{\substack{j=1\\ j\neq i}}^{20} \left[\left(\delta_{ij} \right)^{2} + \left(\gamma_{ij} \right)^{2} \right] \right\}^{1/2} \qquad (1 \le i \le 20) \qquad (2.3.8)$$

(Note that, in this equation, $\gamma_{\mbox{ij}}$ should be thought of as the arc

length obtained when γ_{ij} is multiplied by a unit length), the axis system which exhibits the smallest ε_i has obviously undergone the least apparent shift (rotational and translational) with respect to all the other axis systems as initialized. From a statistical point of view, this axis system has the highest probability of being the most accurate as compared to the initialized geometry.

For each kinematic data record, the "most accurate" axis system on the moving body segment is then used to calculate the origin and the direction cosine matrix of the longitudinal axis system via the initialized data, i.e., \vec{J}_i and B_{li} . Or, stating it in another manner, we are monitoring the desired longitudinal axis system via a versatile medium, i.e., the six emitters on the moving body segment.
3. BIOMECHANICAL PROPERTIES OF THE HUMAN SHOULDER COMPLEX

3.1 Introduction

In multisegmented mathematical models of the total human body, the most complicated and least successfully modeled joint has been the shoulder complex mainly due to the lack of an appropriate biomechanical data base as well as the anatomical complexity of the The term "shoulder complex" refers to shoulder region. the combination of the shoulder joint (the glenohumeral joint) and the shoulder girdle which includes the clavicle and scapula and their Therefore, in discussing the joint sinus of the articulations. shoulder complex, it is more appropriate to use the term "shoulder complex sinus" to designate the range of extreme allowable motion of the humerus with respect to torso. It is important to make this distinction since it is possible to define joint sinuses for various skeletal components of the shoulder complex. An anatomical description and a brief account of studies on the shoulder complex was provided by Engin (1980) and more details can be found in standard text books (Steindler, 1973; Gray's Anatomy, 1973; Norkin and Levangie, 1983); thus they will not be repeated here.

3.2 Determination of the Maximum Voluntary Shoulder Complex Sinus

The basic components of the data acquisition system used in the study are the sonic digitizer, digitizer sensor assembly with four microphones, torso restraint system, and the orthotic arm cuff with sonic emitters as shown in Fig. 3.1. The emitter positioning for the six arm cuff emitters and the three longitudinal-axis-system emitters was provided by Engin et al. (1984a).

The procedure for determination of the shoulder complex sinus involves the following basic steps: (1) immobilizing the body segment (torso) to be treated as the fixed body and defining the fixed body axis system as shown in Fig. 3.2(a), (2) having the subject move the upper arm along the maximal voluntary range of motion (stop contour) and monitoring, with respect to the fixed body axis system, the 3-D coordinates of a distal point on the moving body segment; this point on the elbow joint is selected as being on the humeral longitudinal axis at the level of the humeral condylar maximal width, (3) fitting the 3-D coordinates to a sphere using a least-squares technique, thus establishing a center for the best-fitted sphere and an idealized link length (radius of the sphere), (4) fitting a plane to the same 3-D coordinates using a least-squares technique; the normal to this plane (specified by the spherical coordinates (ϕ_n, θ_n) as shown in Fig. 3.2(b)) establishes the pole of a local joint axis system (z_{it} axis) about which the shoulder complex sinus, designated by the spherical coordinates (ϕ , θ) of the vector connecting the center of

the sphere with the distal elbow point, can be expressed as a singlevalued functional relationship, i.e., $\theta = \theta(\phi)$.

Fig. 3.1 Subject in the torso restraint system and the arm cuff with six sonic emitters

Since the origin of the fixed body axis system is inaccessible, a relative axis locator device (RALD) (Engin et al., 1984a) is used to

(a)

- Fig. 3.2 (a) Selected origin and axis system (x_{fb}, y_{fb}, z_{fb}) of the fixed segment (torso).
 - (b) Relative orientation of the fixed body (x_{fb}, y_{fb}, z_{fb}) and locally-defined joint (x_{jt}, y_{jt}, z_{jt}) axis systems.

locate the origin and define the transformation matrix of the fixed body axis system in terms of the microphone/sensor assembly axis system. The accuracy of these data can always be maintained within 1% of error against pre-calibrated dimensions bv adjusting the orientation and location of the microphone/sensor assembly. Of course, this adjustment should also take into account the orientation and/or position of the arm cuff in order to obtain the best kinematic data even though an overdeterminate number of sonic emitters and a "most accurate" selection criterion are used.

Table 3.1 lists the centers and radii of the best-fitted spheres and (ϕ_n, θ_n) as well as their sample means and sample standard deviations for all ten subjects. The mean values for (ϕ_n, θ_n) shall be designated as (ϕ_m, θ_m) and the corresponding joint axis system shall be referred to as the mean joint axis system.

Before the test, each subject was instructed to move his upper arm along its maximum range of motion boundary in a counterclockwise motion as viewed from the sensor assembly. He was also instructed to displace the arm distally along its longitudinal axis as far as possible at all times while circumscribing the joint sinus. Preferred rotation of the upper arm about its longitudinal axis was left up to the discretion of subjects in obtaining the maximal contour. Several sweeps of this type were performed before data were collected so that the subjects could experiment with obtaining the largest possible range of motion. In order to help maintain a constant rate of motion,

SUBJECT NO.	× _{fb}	CENTER (cm Y _{fb}) ^z fb	RADIUS (cm)	[¢] n (deg.)	θn (đeg.)
1	8.85	14.92	-26.97	36.75	57.37	72.24
2	3.30	10.01	-25.25	35.37	56.52	77.32
3	5.45	15.50	-25.76	34.19	55.51	81.61
4	9.67	16.75	-33.67	36.28	59.72	83.20
5	2.53	13.78	-24.77	32.09	58.82	79.53
6	3.78	15.48	-25.39	32.83	62.58	77.86
7	7.10	16.51	-24.68	32.18	59.43	78.87
8	4.51	12.59	-24.94	35.25	57.12	77.90
9	6.88	17.27	-24.62	31.77	60.98	84.31
10	1.88	16.25	-25.85	33.96	64.87	77.93
Sample Mean	5.40	14.91	-26.19	34.07	59.29	79.08
Sample St. Dev.	2.66	2.23	2.72	1.81	2.90	3.42

Table 3.1 Centers and radii of the best-fitted spheres and (ϕ_n, θ_n) for all ten subjects

.

a large clock with an easily visible second hand was placed in front of the subject. The subject was instructed to imagine his humerus as the second hand, and to synchronize his joint sinus circumscription with the clock's 60 second sweep. In this manner, three test runs (sweeps) were collected for each subject.

To consolidate the enormous volume of experimental raw data into a form readily usable by the multisegmented total-human-body models currently in use, functional expansions for the shoulder complex sinuses are desirable. This is also the reason why we want to represent the shoulder complex sinus in a single-valued functional relationship, i.e., $\theta = \theta(\phi)$, with respect to the locally-defined joint axis system. It will be shown in Section 3.4 that the functional expansions also greatly facilitate the statistical analysis.

The following trigonometric polynomial, with ten basis functions, initially proposed by Herron (1974):

$$\theta(\phi) = \sum_{n=1}^{5} \cos^{n-1} \phi(C_{2n-1} + C_{2n} \sin \phi)$$
 (3.2.1)

will be used for the functional expansions by the method of leastsquares. Ten was chosen for the number of basis functions (or coefficients) and determined as the smallest number for which the criterion $e \leq 0.001e_{o}$ is satisfied, where e is the square sum of curve-fitting errors, 0.001 is the relative tolerance chosen, and e_{o} is the square sum of the experimental data (θ) values. A detailed

discussion of the above criterion can be found in Berztiss (1964). Fig. 3.3 shows a sense of how "well" the expansion of Eq. (3.2.1) fits the raw data for any of the three sinuses taken from the sample.

3.3 Passive Resistive Properties Beyond the Shoulder Complex Sinus

In general, the passive resistive properties in an articulating joint may depend on at least three variables which define the orientation of one segment of the joint with respect to the adjacent one. For example, the three Euler angles, namely, ϕ , θ , and ψ can be used to define the orientation of the upper arm with respect to torso. If we exclude the rotational influence of the upper arm along its long-bone axis with respect to the other two directions, then, the passive resistive properties can be expressed as $f = f(\phi, \theta)$ where ϕ and θ are the spherical coordinates with respect to the local joint axis system defined in Section 3.2.

The basic components of the data acquisition system are shown in Fig. 3.4. The major component of the system is the sonic digitizer and the digitizer sensor assembly. The subject restraint/positioning system was designed so that the subject's torso can be positioned in a wide range of orientations. The force applicator is a hand-maneuvered device which is constrained to motion in a level, horizontal plane by a track-mounted trolley system located overhead. It utilizes a sixcomponent transducer which measures forces and moments in three orthogonal directions. The orientation of the upper arm with respect to torso is monitored by means of the arm cuff with six sonic emitters

Fig. 3.3 Curve-fitted raw data for joint sinuses of three subjects.

Fig. 3.4 Various components of the data acquisition system. 1) Sonic Digitizer, 2) Subject Restraint/Positioning System, 3a) Force Applicator, 3b) Strain Gage Signal Conditioner/Amplifier, 4) Arm Cuff with Orthotic Shell, 5) Fixed Body Axis Locator Device.

as was used for the shoulder complex sinus tests. This data acquisition system thus enables one to perform a series of tests in which the upper arm is forced outward in the direction of increasing θ for a constant- ϕ value in the local joint axis system defined by (ϕ_n, θ_n) (refer to Fig. 3.2). Furthermore, forces and moments at the joint due to gravitational loading can be held relatively constant and can be factored out by setting all the bridge circuits of the force-moment transducer to zero at the start of each forced sweep.

The subject is first rotated by an angle -(90° - ϕ_n) about the positioning system yaw axis, and then rotated -(90° - θ_n) about the roll axis. If the subject then extends his upper arm in an orientation parallel to the pitch axis of the positioning system, his humeral longitudinal axis will be at (ϕ_n, θ_n) with respect to the torso fixed body axis system. The force applicator is then positioned vertically at the same level as the subject's upper arm, and the front of the force transducer is strapped to the subject's arm near the elbow joint. The subject is then asked to move his arm to its maximal position in the constrained plane of motion of the force applicator. The arm is "backed-off" from this position, and this then is the starting location of the forced sweep. The subject's upper arm is then abducted or adducted in a quasi-static manner until the subject experiences discomfort or the upper arm can no longer be displaced (i.e., adduction into the torso occurs). The forced angular velocity, which is the same as the circumscription speed in obtaining the shoulder complex sinus described in Section 3.2, is set at an average of 6° of arc/sec for these tests. During the entire course of each test, the subject is instructed to let his arm hang limply and not to actively (muscularly) resist the motion of the test. The bridge

circuits of the force-moment transducer are all set to zero at the start of each test, so that the recorded values during the sweep are departures from this "neutral" force orientation, or stating it in a different manner, they are the passive resistive force values.

With respect to the joint axis system, these forced sweeps take place in a direction of increasing θ , and at an approximately constant- ϕ value. By then rotating the positioning system about its pitch axis, a series of constant- ϕ sweeps are obtained. Each time, the force applicator is vertically positioned at the proper level with the humeral longitudinal axis in a level horizontal plane. In this way the tests are performed as four sub-series with each sub-series discernible by its own experimental set-up configuration. The groupings consist of constant- ϕ sweeps in: 1) the upper-rear quadrant (0° < ϕ < 90°), 2) the lower-rear quadrant (90° < ϕ < 180°), 3) lowerfront quadrant (180° < ϕ < 270°) and 4) the upper-front quadrant (270° < ϕ < 360°).

The data obtained according to the procedure outlined above were analyzed as follows. First, the force and moment vectors obtained from the force applicator data were used to calculate a total moment vector with respect to the instantaneous joint center which is chosen to be the glenohumeral joint center location. Next, a moment arm vector was calculated from the center of the best-fitted sphere (described in Section 3.2) to the point of force application. Next, ' the intersection of this vector with a sphere of radius equal to one meter was selected as a "normalized" point of force application. The

total moment vector was then resolved into components along the moment arm and perpendicular to the moment arm vector. The component along the position vector (moment arm vector) was then discarded, since it does not serve to restore the moving segment to an orientation within the voluntary shoulder complex sinus. From the remaining moment component and the normalized position vector the resistive force vector was then calculated. Since the moment arm is normalized to one meter, the magnitude of the resistive force vector is the same as that of the resistive moment vector. We shall refer to this magnitude as the passive resistive force (moment) property. Note that this force vector is always tangent to the surface of the selected normal sphere. Fig. 3.5 depicts the vectors and coordinates specified in the analysis. Finally, to consolidate the vast amount of passive resistive force (moment) data and to facilitate the statistical analysis, the functional expansion $f(\phi, \theta)$ must be established. A variety of basis functions has been investigated by utilizing the GLM (General Linear Model) program of the SAS (Statistical Analysis System) computer package (SAS User's Guide, 1982) of the Instruction and Research Computer Center at The Ohio State University. It was found that the functional expansion.

$$E(\phi, \theta) = (C_1 + C_2 \cos\phi + C_3 \sin\phi)\theta + (C_4 \cos^2\phi + C_5 \cos\phi \sin\phi + C_6 \sin^2\phi)\theta^2 + (C_7 \cos^3\phi + C_8 \cos^2\phi \sin\phi + C_9 \cos\phi \sin^2\phi + C_{10} \sin^3\phi)\theta^3$$
(3.3.1)

provides the best fit. Ten was used for the number of basis functions

,

(or coefficients) and determined as the smallest number for which the following criterion chosen

$$R^2 = 1 - \frac{SSE}{SSTO} \ge 90$$
 (3.3.2)

is satisfied, where

 $R^2(0 \le R^2 \le 1)$ which is called the coefficient of multiple

determination and measures the proportionate reduction of total variation in f associated with the use of the set of (ϕ, θ) independent variables, SSE is the error (residual) sum of squares or

SSE =
$$\sum_{i=1}^{n} [f(\phi_i, \theta_i) - z_i(\phi_i, \theta_i)]^2$$
, and

SSTO is the total sum of squares, or

SSTO =
$$\sum_{i=1}^{n} [z_i(\phi_i, \theta_i) - \overline{z}]^2$$
, where

n = total number of experimental force (moment) data points collected, $z_i(\phi_i, \theta_i)$ = the experimental force (moment) value collected at the ith point (ϕ_i, θ_i) , and

$$\overline{z} = \frac{1}{n} \sum_{i=1}^{n} z_{i}(\phi_{i}, \theta_{i}).$$

A detailed discussion of the R^2 and related regression analysis can be found in Neter, et al. (1985).

Since θ ($\theta \ge 0$) measures how far the upper arm departs from the z-axis of the local joint axis system, and ϕ goes from 0 to 2π , we can treat θ as the radial coordinate and ϕ as the angular coordinate in the polar coordinate system (θ , ϕ). The pole is then the z-axis of the local joint axis system,. Therefore, if we introduce the following coordinate transformation

$$p = \theta \cos \phi$$

$$q = \theta \sin \phi$$
(3.3.3)

then (p, q) can be regarded as the corresponding rectangular coordinate system. Fig. 3.6 illustrates both coordinate systems and the corresponding four test quadrants. We shall define the combination of these two coordinate systems as the modified joint axis

Fig. 3.6 The modified joint axis system and the corresponding four test quadrants.

system. Obviously in terms of the modified coordinates, (p, q), the expansion function now becomes

$$f(\phi, \theta) = F(p, q) = C_1 \sqrt{p^2 + q^2} + C_2 p + C_3 q + C_4 p^2 + C_5 pq$$
$$+ C_6 q^2 + C_7 p^3 + C_8 p^2 q + C_9 pq^2 + C_{10} q^3 \quad (3.3.4)$$

With the help of the modified joint axis system, a physically meaningful plot can be made for the above expansion function to give us a visual aid to the understanding of the overall resistive force (moment) properties of any articulating joint. Fig. 3.7 shows the constant resistive force (moment) contour map for a subject and

Fig. 3.7 Constant resistive force (moment), in Newtons (Newton-Meters), contour map for a subject in the modified joint axis system, in radians.

Fig. 3.8 shows a corresponding three-dimensional perspective view. Fig. 3.9 illustrates the sense of how "well" the expansion $f(\phi, \theta)$ fits the raw data for several constant- ϕ sweeps.

Fig. 3.8 Perspective view of Fig. 3.7.

Fig. 3.9 Raw data and fitted curves drawn from $f(\phi, \theta)$ for various constant- ϕ sweeps for the subject mentioned in Fig. 3.7.

3.4 Statistical Analysis

Considering the vast quantities of sinus and force data for ten subjects, it would be very cumbersome if one uses a direct statistical analysis technique. It is more desirable to develop a systematic and easily manageable approach to deal with the extensive data. Therefore, Eqs. (3.2.1) and (3.3.1) will be utilized in an appropriate manner to seek for a sample mean, sample variance, and the confidence intervals for the population mean and variance. In this section we shall derive the method in a general sense.

Let $f(\vec{x}) = \sum_{i=1}^{M} C_i g_i(\vec{x})$ be a functional expansion (by the method of least squares in this study) for the experimental measurement of a x_3, \ldots, x_n , where $\{g_i(\vec{x}) \mid i = 1, 2, 3, \ldots, M\}$ is a set of mutually independent basis functions, $\{C_i \mid i = 1, 2, 3, ..., M\}$ is the corresponding set of independent expansion coefficients, and M is the number of basis functions or coefficients. Consider now the statistics of the quantity f for a chosen population from which we have a random sample of size N. Then, obviously, the coefficients, C,, become statistically independent random variables, and the nonrandom basis functions become statistically constant. Furthermore, f is now a linear combination of random variables, and, so, is itself a random variable.

From probability theory, for each $\dot{\vec{x}}$, the population mean, $\mu_f(\dot{\vec{x}})$, is

$$\mu_{f}(\vec{x}) = E[f(\vec{x})] = E[\sum_{i=1}^{M} C_{i} g_{i}(\vec{x})]$$
$$= \sum_{i=1}^{M} g_{i}(\vec{x}) E[C_{i}] = \sum_{i=1}^{M} g_{i}(\vec{x}) \mu_{c_{i}}$$
(3.4.1)

and the population variance, $\sigma_{f}^{2}(\vec{x})$, is

$$\sigma_{f}^{2}(\vec{x}) = \operatorname{VAR}[f(\vec{x})] = \operatorname{VAR}[\sum_{i=1}^{M} C_{i} g_{i}(\vec{x})]$$

$$= \sum_{i=1}^{M} g_{i}^{2}(\vec{x}) \operatorname{VAR}[C_{i}]$$

$$= \sum_{i=1}^{M} g_{i}^{2}(\vec{x}) \sigma_{c_{i}}^{2} \qquad (3.4.2)$$

where we have utilized

$$COV[C_{i}, C_{j}] = 0 \quad \text{for all } 1 \leq i < j \leq M \tag{3.4.3}$$

since all the coefficients are mutually independent. Note that in Eq. (3.4.1) the operator E stands for the mathematical expectation and in Eq. (3.4.2) the operator VAR for the variance. Therefore, if we know the population means, μ_{c_i} , and the population variances, $\sigma_{c_i}^2$, for all the M coefficients, we can evaluate the population mean and variance for $f(\vec{x})$.

Sample Mean, $\vec{f}(\vec{x})$, and Sample Variance, $s_{f}^{2}(\vec{x})$

Since the population means and variances of the coefficients can rarely be obtained, we seek for statistical estimates, namely, the sample means, $\overline{C_i}$, and sample variances, $s_{c_i}^2$, from the given random sample of size N. From <u>statistical</u> theory, an estimate for μ_{c_i} is

$$\bar{c}_{i} = \frac{1}{N} \sum_{j=1}^{N} (c_{i})_{j}$$
 (3.4.4.)

where (C_i)_j stands for the ith coefficient of the jth sample outcome, and an unbiased estimate for $\sigma_{c_i}^2$ is

$$s_{c_{i}}^{2} = \frac{1}{N-1} \left\{ \sum_{j=1}^{N} (C_{i})_{j}^{2} - \frac{1}{N} \left[\sum_{j=1}^{N} (C_{i})_{j} \right]^{2} \right\}$$
(3.4.5)

Thus, an estimate for $\mu_f(\vec{x})$ from Eq. (3.4.1) is

$$\overline{f}(\overline{x}) = \sum_{i=1}^{M} g_i(\overline{x}) \overline{C}_i$$
(3.4.6)

and an unbiased estimate for $\sigma_f^2(\dot{x})$ from Eq. (3.4.2) is

$$s_{f}^{2}(\vec{x}) = \sum_{i=1}^{M} g_{i}^{2}(\vec{x}) s_{c_{i}}^{2}$$
 (3.4.7)

Confidence Interval for $\mu_{f}(\vec{x})$ From statistical theory, the random variable $\frac{\vec{f}(\vec{x}) - \mu_{f}(\vec{x})}{S_{f}(\vec{x})/\sqrt{N}}$

has a t-distribution with N-1 degrees of freedom, regardless of the parameter values $\mu_f(\vec{x})$ and $\sigma_f^2(\vec{x})$. Therefore, the confidence interval of $\mu_f(\vec{x})$ can be obtained by

$$\Pr\left\{-\alpha_{\gamma} \leq \frac{\vec{f}(\vec{x}) - \mu_{f}(\vec{x})}{s_{f}(\vec{x})/\sqrt{N}} \leq \alpha_{\gamma}\right\} = \gamma \qquad (3.4.8)$$

where Pr is the probability, γ is the confidence level to be chosen, and $\alpha_{\gamma}(>0)$ is the solution of the equation

$$\int_{\alpha_{\gamma}}^{\infty} t_{N-1} (z) dz = \frac{1-\gamma}{2}$$
(3.4.9)

where t_{N-1} is the probability density function of the t-distribution with N-1 degrees of freedom. Rearranging the inequalities, we obtain the confidence interval for $\mu_f(\vec{x})$, at the confidence level γ ,

$$\operatorname{CONF}\left\{ \overline{f}(\overrightarrow{x}) - \frac{\alpha_{\gamma} S_{f}(\overrightarrow{x})}{\sqrt{N}} \leq \mu_{f}(\overrightarrow{x}) \leq \overline{f}(\overrightarrow{x}) + \frac{\alpha_{\gamma} S_{f}(\overrightarrow{x})}{\sqrt{N}} \right\}$$
(3.4.10)

Confidence Interval for $\sigma_{f}^{2}(x)$ The fact that the random variable $\frac{(N-1) s_{f}^{2}(x)}{\sigma_{f}^{2}(x)}$ has a χ^{2} -distribution

with N-1 degrees of freedom enables us to have

$$\Pr\left\{ \alpha_{\gamma} \leq \frac{(N-1) \ s_{f}^{2}(\vec{x})}{\sigma_{f}^{2}(\vec{x})} \leq \beta_{\gamma} \right\} = \gamma$$
(3.4.11)

where $\boldsymbol{\alpha}_{\boldsymbol{\gamma}}$ is the solution of the equation

$$\int_{0}^{\alpha} \gamma \chi_{N-1}^{2} (z) dz = \frac{1-\gamma}{2} , \qquad (3.4.12)$$

and β_γ is the solution of the equation

$$\int_{\beta_{\gamma}}^{\infty} \chi_{N-1}^{2} (z) dz = \frac{1-\gamma}{2} , \qquad (3.4.13)$$

where χ^2_{N-1} is the probability density function of the χ^2 -distribution with N-1 degrees of freedom. Rearranging the inequalities, we obtain the confidence interval for $\sigma^2_f(\vec{x})$, at the confidence level γ ,

$$\operatorname{CONF}\left\{\begin{array}{c} \frac{(N-1) \ s_{f}^{2}(\vec{x})}{\beta_{\gamma}} \leq \sigma_{f}^{2}(\vec{x}) \leq \frac{(N-1) \ s_{f}^{2}(\vec{x})}{\alpha_{\gamma}} \end{array}\right\}$$
(3.4.14)

3.5 <u>Coordinate Transformations Among the Fixed Body, Individual Joint</u> and Mean Joint Axis Systems

Since we shall utilize the functional expansion forms, Eqs. (3.2.1) and (3.3.1), to perform statistical analysis for the shoulder complex sinuses and passive resistive properties beyond them, appropriate coordinate systems should be consistently used for the purposes of statistically comparing the coefficients of the data sets for ten subjects. In representing the joint property data in functional expansion form, different coordinate systems used will result in different coefficients although the same basis functions are used. Therefore, it is necessary perform to coordinate transformations for the spherical angles, ϕ and θ , among the fixed body, individual local joint and mean joint axis systems.

The local joint axis system, as shown in Fig. 3.10 is uniquely obtained in this study by first rotating the fixed body axis system by an angle ϕ_n about the z_{fb} -axis and then rotating the intermediate (primed) axis system by an angle θ_n about the y'-axis. The mean joint axis system is obtained in a similar manner with (ϕ_n, θ_n) replaced by (ϕ_m, θ_m) . Since the joint sinus with spherical coordinates (ϕ, θ) implies a unit vector with rectangular coordinates $(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$, the coordinate transformation from (ϕ_f, θ_f) , relative to the fixed body axis system, to (ϕ_j, θ_j) , relative to the joint axis system, can be obtained in the following manner:

Fig. 3.10 Joint axis system as obtained by two successive rotations, first about the z_{fb}-axis and then about the intermediate (primed) y'-axis from the fixed body axis system.

$$\begin{bmatrix} \sin\theta_{j} \cos\phi_{j} \\ \sin\theta_{j} \sin\phi_{j} \\ \cos\theta_{j} \end{bmatrix}_{jt}^{= N_{jt/fb}} \begin{bmatrix} \sin\theta_{f} \cos\phi_{f} \\ \sin\theta_{f} \sin\phi_{f} \\ \cos\theta_{f} \end{bmatrix}_{fb}^{= \begin{bmatrix} x \\ y \\ z \end{bmatrix}} (3.5.1)$$

where N_{jt/fb} =
$$\begin{bmatrix} \cos\theta_n & 0 & -\sin\theta_n \\ 0 & 1 & 0 \\ \sin\theta_n & 0 & \cos\theta_n \end{bmatrix} \begin{bmatrix} \cos\phi_n & \sin\phi_n & 0 \\ -\sin\phi_n & \cos\phi_n & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \cos\theta_{n} & \cos\phi_{n} & \cos\theta_{n} & \sin\phi_{n} & -\sin\theta_{n} \\ -\sin\phi_{n} & \cos\phi_{n} & 0 \\ \sin\theta_{n} & \cos\phi_{n} & \sin\theta_{n} & \sin\phi_{n} & \cos\theta_{n} \end{bmatrix}$$

is the transformation matrix defining the joint axis system relative to the fixed body axis system, and x, y, z can be numerically calculated with (ϕ_n, θ_n) and the joint sinus (ϕ_f, θ_f) specified. Comparing the left and right hand sides of Eq. (3.5.1), we have

$$\begin{cases} \phi_{j} = \tan^{-1} \frac{y}{x} \text{ and} \\ \theta_{j} = \cos^{-1} z \quad . \end{cases}$$
(3.5.2)

The coordinate transformation from (ϕ_{f}, θ_{f}) to (ϕ_{mj}, θ_{mj}) , where mj stands for the mean joint axis system, can be obtained in the same way as above with (ϕ_{n}, θ_{n}) replaced by (ϕ_{m}, θ_{m}) so that the transformation matrix defining the mean joint axis system relative to the fixed body axis system now becomes

$$M_{mj/fb} = \begin{bmatrix} \cos\theta_{m} \cos\phi_{m} & \cos\theta_{m} \sin\phi_{m} & -\sin\theta_{m} \\ -\sin\phi_{m} & \cos\phi_{m} & 0 \\ \sin\theta_{m} \cos\phi_{m} & \sin\theta_{m} \sin\phi_{m} & \cos\theta_{m} \end{bmatrix}$$

If the joint sinus is given relative to the individual local joint axis system, then the spherical coordinate transformation from (ϕ_j, θ_j) to (ϕ_{mj}, θ_{mj}) can be achieved by noting that

$$\begin{bmatrix} \sin\theta_{mj} \cos\phi_{mj} \\ \sin\theta_{mj} \sin\phi_{mj} \\ \cos\theta_{mj} \end{bmatrix}_{mj} = M_{mj/fb} L_{fb/jt} \begin{bmatrix} \sin\theta_{j} \cos\phi_{j} \\ \sin\theta_{j} \sin\phi_{j} \\ \cos\theta_{j} \end{bmatrix}_{jt}$$
$$= \begin{bmatrix} x \\ y \\ z \end{bmatrix}_{mj}$$
(3.5.3)

where $L_{fb/jt} = N_{jt/fb}^{-1} = N_{jt/fb}^{T}$ since $N_{jt/fb}$ is a proper orthogonal matrix, i.e.,

$$N_{jt/fb} N_{jt/fb}^{T} = I , \qquad (3.5.4)$$

and X, Y, Z can be numerically calculated with (ϕ_m, θ_m) , (ϕ_n, θ_n) and the joint sinus (ϕ_j, θ_j) specified. Comparing the left and right hand sides of Eq. (3.5.3), we have

$$\begin{cases} \phi_{mj} = \tan^{-1} \frac{Y}{X} \text{ and} \\ \theta_{mj} = \cos^{-1} Z \quad . \tag{3.5.5} \end{cases}$$

3.6 <u>Statistical Data Base for the Biomechanical Properties of the</u> Human Shoulder Complex

Since each subject has an individual local joint axis system specified by (ϕ_n, θ_n) , in statistically comparing the functional expansion coefficients of the joint property data, two different sets of sample means and sample variances can be envisioned and obtained from different points of view:

1. Subject-Based Mean and Variance

Here, we consider each individual local joint axis system, defined by (ϕ_n, θ_n) , as an index attributable to the individual anatomical variations in overall joint articulating structure as well as muscle/ligament orientations, and subjective kinematic behavioral variations in the circumscription mannerism. Then, not to be biased, each individual joint sinus and the resistive force (moment) data should be described by (ϕ_j, θ_j) with respect to the joint axis system of each subject, namely,

 $\theta_j = \theta_j (\phi_j)$ for the shoulder complex sinus, and $F = F(\phi_j, \theta_j)$ for the resistive force (moment).

The functional expansion coefficients obtained from these data are called <u>subject-based coefficients</u>. Furthermore, the population/sample means and variances obtained from the subject-based coefficients will be called subject-based population/sample means and variances, respectively. Obviously, from a statistical point of view, the most appropriate axis system for the subject-based population/sample means and variances is the population/sample mean joint axis system.

2. Space-Based Mean and Variance

In this case, the shoulder complex sinuses and the resistive force (moment) data are described by (ϕ_{mj}, θ_{mj}) with respect to a common mean joint axis system for all subjects, namely,

$$\theta_{mj} = \theta_{mj}(\phi_{mj})$$
 for the shoulder complex sinus, and
 $F = F(\phi_{mj}, \theta_{mj})$ for the resistive force (moment).

The functional expansion coefficients obtained from these data are now called <u>space-based coefficients</u>. In addition, the population/sample means and variances obtained from the space-based coefficients will be called space-based population/sample means and variances, respectively.

Maximum Voluntary Shoulder Complex Sinus

Table 3.2 lists the ten subject-based coefficients of the shoulder complex sinuses for all ten subjects. Table 3.3 lists the corresponding ten space-based coefficients. These two tables also list the sample means and variances for all ten coefficients.

COBFFI- CIENTS		c ₁	с ₂	c3	C4	c ₅	с ₆	c ₇	с ₈	с ₉	с ₁₀
SUBJ. NO.	1	1.59292	-0.10675	-0.24466	-0.36233	0.19558	0.44395	0.49886	0.06685	-0.62262	-0.42877
	2	1.18066	-0.08909	-0.07757	-0.06084	0.11961	0.33650	0.23417	-0.34872	-0.32021	-0.04841
	3	1.42229	-0.05486	-0.18374	-0.15690	0.28160	0.35114	0.34084	-0.26833	-0.30699	-0.12560
	4	1.70121	-0.10321	-0.27100	-0.32562	-0.02313	0.74636	0.45572	0.19442	-0.26271	-0.79351
	5	1.28393	-0.07031	-0,33344	-0.47247	-ū.04754	0.67981	0.55630	0.44145	-0.12712	-0.61977
	6	1.57994	-0.09393	-0.33890	-0.37299	0.39152	0.89132	0.55373	0.05622	-0.69396	-0.86106
	7	1.75422	-0.06345	-0.32748	-0.46664	-0.15587	0.63602	0.62553	0.22174	-0.22427	-0.80867
	8	1.53784	-0.12414	-0.26177	-0.41879	0.35225	0.79143	0.50138	0.17251	-0.60433	-0.49631
	9	1.50215	-0.12424	-0.12763	-0.28346	0.47236	0.53337	0.27331	-0.00376	-0.63518	-0.39607
	10	1.43838	-0.09574	-0.29782	-0.01552	0.28790	0.44899	0.51590	-0.44247	-0.49447	-0.12844
Sample Mean		1.49936	-0.09257	-0.24640	-0.29356	0.18743	0.58589	0.45557	0.00899	-0.42918	-0.47066
Sample Variance		0.03112	0.00057	0.00808	0.02666	0.04345	0.03684	0.01685	0.07865	0.04141	0.09062

Table 3.2 Subject-based coefficients of the shoulder complex sinuses for all ten subjects

COEFFI- CIENTS		с ₁	°2	c3	°4	c ₅	с ₆	с ₇	c ₈	°9	с ₁₀
	1	1.18167	-0.13492	-0.10623	-0.04934	0.11099	0.29947	0.22508	-0.37071	-0.30969	0.01536
	2	1.59502	-0.13343	-0.36746	-0.36963	0.18949	0.38560	0.49613	0.09209	-0.61517	-0.36522
	3	1.42535	-0.12051	-0.14047	-0.16509	0.26499	0.37472	0.34033	-0.26402	-0.29337	-0.16580
SUBJ. NO.	4	1.69959	-0.09904	-0.19982	-0.31658	-0.01759	0.76733	0.45691	0.17579	-0.26778	-0.81237
	5	1.28512	-0.07703	-0.32588	-0.47315	-0.05643	0.67388	0.55654	0.43909	-0.11917	-0.61506
	6	1.5736 <u>5</u>	-0.04192	-0.36103	-0.36639	0.42768	0.91880	0.55155	0.03496	-0.72275	-0.88100
	7	1.75407	-0.06101	-0.33126	-0.46733	-0.15494	0.63562	0.62551	0.22275	-0.22494	-0.80821
	8	1.54165	-0.16045	-0.28826	-0.42410	0.33518	0.79179	0.50885	0.18746	-0.59228	-0.50851
	9	1.50088	-0.09623	-0.03463	-0.28225	0.47499	0.54593	0.27331	-0.00882	-0.63813	-0.40824
	10	1.43259	-0.00208	-0.31430	-0.00739	0.31598	0.45068	0.51082	-0.44820	-0.51794	-0.11297
Sample Mean		1.49896	-0.09266	-0.24693	-0.29213	0.18903	0.58438	0.45450	0.00604	-0.43012	-0.46720
Sample Variance		0.03091	0.00232	0.01395	0.02770	0.04548	0.04255	0.01727	0.08065	0.04394	0.09848

Table 3.3 Space-based coefficients of the shoulder complex sinuses for all ten subjects

Fig. 3.11 shows the best fitted curves for both space-based and subject-based sinuses for the first subject who has the $(\phi_n, \theta_n) = (57^{\circ}.37, 72^{\circ}.24)$ which depart the most from the mean values $(\phi_m, \theta_m) = (59^{\circ}.29, 79^{\circ}.08)$. The more the individual joint axis system deviates from the mean joint axis system, the bigger is the difference between the space-based and the subject-based sinuses.

Fig. 3.11 Subject-based and space-based maximum voluntary shoulder complex sinuses for the first subject

Now let us apply the results obtained from the statistical analysis developed in Section 3.4 to establish a statistical data base for the shoulder complex sinus. In this case, the functional expansion, Eq. (3.2.1), has only one independent variable, i.e., ϕ .

From Eq. (3.4.6) one obtains the sample mean

$$\overline{\theta} (\phi) = \sum_{n=1}^{5} \cos^{n-1} \phi \left(\overline{c}_{2n-1} + \overline{c}_{2n} \sin \phi \right)$$
(3.6.1)

and from Eq. (3.4.7) the unbiased sample variance

$$S_{\theta}^{2}(\phi) = \sum_{n=1}^{5} \cos^{2(n-1)} \phi \left(S_{C_{2n-1}}^{2} + S_{C_{2n}}^{2} \sin^{2} \phi \right)$$
(3.6.2)

Fig. 3.12 displays the least-squares fitted data for the subject-based sinuses of all ten subjects. This figure also shows curves for the sample mean, $\bar{\theta}(\phi)$, and those corresponding to $\bar{\theta}(\phi) \pm S_{\theta}(\phi)$. Fig. 3.13 shows their corresponding globographic representations in the torso-fixed coordinate system, i.e., the spherical coordinates on the globe are referred to the fixed body axis system. Therefore, the coordinates $(\phi_f, \theta_f) = (0^\circ, 90^\circ)$ on the globe corresponds to the emergent point of the x_{fb} -axis, and the coordinates $(\phi_f, \theta_f) = (90^\circ, 90^\circ)$ corresponds to the emergent point of the x_{fb} -axis. Note that, in this case, since each subject's sinus is defined by its own local axis system designated by (ϕ_n, θ_n) , from a statistical point of view, the most "appropriate" local axis system

Fig. 3.12 Curve-fitted data for subject-based sinuses of all subjects (dotted curves). Solid curves are for $\overline{\theta}$ and $\overline{\theta} \pm s_{\theta}$.

Fig. 3.13 Globographic representations of $\overline{\theta}$ and $\overline{\theta} + S_{\theta}$ (subject-based).

Fig. 3.14 Least-squares fitted data (dotted lines) for the space-based sinuses for all ten subjects. The middle solid curve is the space-based sample mean joint sinus $\overline{\theta}(\phi)$. The upper and lower solid curves are $\overline{\theta}(\phi) + S_{\theta}(\phi)$ and $\overline{\theta}(\phi) - S_{\theta}(\phi)$, respectively.

for the subject-based $\overline{\theta}(\phi)$ and $S^2_{\theta}(\phi)$ is the mean joint axis system, designated by the sample mean, (ϕ_m, θ_m) , taken from the sample.

Fig. 3.14 displays the least-squares fitted data for the spacebased sinuses for all ten subjects. This figure also shows curves for the sample mean, $\overline{\theta}(\phi)$, and those corresponding to $\overline{\theta}(\phi) \pm S_{\theta}(\phi)$. Fig. 3.15 shows their corresponding globographic representations.

Fig. 3.15 Globographic representations of $\overline{\theta}(\phi)$ and $\overline{\theta}(\phi) + S_{\theta}(\phi)$ (space-based).

Obviously, in this case, the mean joint axis system should be used for the space-based $\overline{\theta}(\phi)$ and $S^2_{\theta}(\phi)$, since all the sinuses are represented in this axis system.

For the purposes of comparison, Fig. 3.16 displays the sample mean, $\overline{\theta}(\phi)$, and those corresponding to $\overline{\theta}(\phi) \pm S_{\theta}(\phi)$ for both space based and subject-based sinuses. It should be remarked that, while the space-based and subject-based sinuses may differ significantly for an individual subject, their sample means and, $\overline{\theta}(\phi) \pm S_{\theta}(\phi)$, may be indiscernible as indicated in Fig. 3.16.

One of the most important ways of testing the ultimate overall performance of the data acquisition system and efficacy of the associated data analysis methodology is good repeatability of sample
means and sample standard deviations from <u>different</u> runs made on the same sample. Fig. 3.17 displays the subject-based sample means, and $\overline{\theta} \pm S_{\theta}$ from three different runs for all subjects. Rather good repeatability obviously exists if one realizes that most of the deviations arise from the variations during circumscription type of motion by the subjects.

Fig. 3.16 $\overline{\theta}(\phi)$ and $\overline{\theta}(\phi) + S_{\theta}(\phi)$ for both space-based and subject-based sinuses. Note that the two $\overline{\theta}$ curves coincide with each other in this figure.

For the confidence level of 95%, utilizing Eq. (3.4.8), we obtain

Fig. 3.17 $\overline{\theta}(\phi)$ and $\overline{\theta} + S_{\theta}(\phi)$ for three different runs for all subjects.

from statistical table (Kreyszig, 1972) that

$$\Pr\left\{-2.26 \leq \frac{\overline{\theta}(\phi) - \mu_{\theta}(\phi)}{s_{\theta}(\phi)/\sqrt{10}} \leq 2.26\right\} = 95\% \qquad (3.6.3)$$

Rearranging the inequalities, we obtain

$$\Pr\left\{\left[\overline{\theta}(\phi) - 0.715 \ S_{\theta}(\phi)\right] \le \mu_{\theta}(\phi) \le \left[\overline{\theta}(\phi) + 0.715 \ S_{\theta}(\phi)\right]\right\} = 95\%$$
(3.6.4)

In other words, we are 95% confident that the population mean $\mu_{\theta}(\phi)$ is within the interval $[\overline{\theta}(\phi) - 0715S_{\theta}(\phi), \overline{\theta}(\phi) + 0.715S_{\theta}(\phi)]$ at each value of ϕ .

Fig. 3.18 shows the confidence intervals for both the space-based and subject-based population means for comparison. Fig. 3.19 displays the globographic representation of the confidence interval for the subject-based population mean, $\mu_{\rm A}(\phi)$.

Fig. 3.18 Confidence intervals (CI) for both the space-based and subject-based population means.

Fig. 3.19 Globographic representations for the sample mean, $\bar{\theta}$, and the 95% Confidence Interval for the subject-based population mean, μ_{A} .

For the confidence interval of the population variance, from Eq. (3.4.11), we have

$$\Pr\left\{2.70 \leq \frac{9 s_{\theta}^2(\phi)}{\sigma_{\theta}^2(\phi)} \leq 19.02\right\} = 95\%$$
(3.6.5)

with 2.5% of probability on both tails of the χ^2 -distribution curve. Rearranging the inequalities, we have

$$\Pr\left\{ 0.473 \ s_{\theta}^{2}(\phi) \leq \sigma_{\theta}^{2}(\phi) \leq 3.33 \ s_{\theta}^{2}(\phi) \right\} = 95\% \qquad (3.6.6)$$

In other words, we are 95% sure that the population standard deviation $\sigma_{\theta}(\phi)$ is bracketed by the interval $[0.688S_{\theta}(\phi), 1.82S_{\theta}(\phi)]$ at each value of ϕ . Fig. 3.20 shows the plots of this interval as well as $S_{\theta}(\phi)$ for the subject-based population standard deviation, $\sigma_{\theta}(\phi)$.

Fig. 3.20 The 95% Confidence Interval (CI) for the population standard deviation, σ_{θ} . The subject-based sample standard deviation, S_{θ} , is also shown.

Passive Resistive Force (Moment) Properties

Table 3.4 lists the subject-based coefficients, as well as their sample means and sample variances, for the passive resistive force (moment) data for all ten subjects. Table 3.5 lists the corresponding space-based coefficients.

COEFF	'I- 'S	с ₁	c2	c3	C4	c ₅	с _б	с ₇	c ₈	c _و	с ₁₀
	1	-21.36600	-4.80500	-0.72700	22.06600	4.38400	16.55500	0.51300	-4.84200	1.79200	-0.10900
SUBJ.	2	-33.74500	0.23400	5.61000	31.49600	8.40000	22.99200	-3.53400	-8.05100	0.09300	-1.57300
	3	-30.76300	-4.94500	-0.35900	26.06300	7.38400	22.98300	-0.91700	-6.41200	-0.49900	-1.71500
	4	-26.52200	3.19000	5.28400	25.72400	6.65400	17.86100	-3.62800	-6.36300	-2.08500	-1.64000
	5	-15.06400	-2.25400	-4.62300	19.08300	5.13200	12.21000	-3.36300	-2.72200	1.26600	1.03000
	6	-20.32000	-0.93700	8.20800	16.10400	6.94600	16.73100	-1.31900	-3.95400	0.22300	-1.62800
	7	-19.38200	-2.32700	-1.02800	13.51900	2.13400	12.15200	-0.16100	-1.02800	-0.29300	0.34000
	8	-16.09600	-0.92600	4.27800	10.56800	1.66300	12.45500	-0.90400	-1.70600	1.03100	-0.21500
	9	-17.80500	-6.06200	2.62300	17.43000	4.11000	13.35300	0.85200	-2.15800	1.14300	-0.08700
	10	-13.86800	-1.53400	2.86600	14.00700	4.75400	10.54000	-1.21800	-4.11600	-0.56000	-0.46200
Samp Mea	ole In	-21.49310	-2.03660	2.21320	19.60600	5.15610	15.78320	-1.36790	-4.13520	0.21110	-0.60590
Samp Varia	ole ince	45.48725	7.51404	14.91813	43.76720	4.90238	20.00472	2.68291	5.27504	1.31021	0.94889

Table 3.4 Subject-based coefficients for the passive resistive force (moment) data for all ten subjects

.

COEFF	'I- 'S	c ₁	°2	c3	°4	c ₅	с ₆	с ₇	с ₈	c ₉	с ₁₀
	1	-21.77200	-0.49800	0.53500	22.69200	3.95200	16.39900	0.39000	-4.08200	1.00600	-0.50400
SUBJ.	2	-35.05500	2.27200	6.50200	32.33400	7.19800	23.12200	-3.86000	-7.05000	0.02700	-1.58800
	3	-31.81800	-5.62700	-0.36800	27.31800	7.13200	22.53100	-1.37600	-5.83300	-0.01000	-1.19700
	4	-24.89000	0.55200	4.36000	25.49800	7.21700	16.86000	-3.60000	-6.66600	-1.48000	-1.30600
	5.	-14.96100	-2.44300	-4.64400	19.10400	4.96000	12.10800	-3.39300	-2.63000	1.36600	1.07700
	6	-20,43000	-1.66200	7.41400	15.83900	7.17000	17.24500	-0.87800	-3.88500	0.09300	-1.81800
	7	-19.40200	-2.28600	-1.02700	13.52000	2.14500	12.17000	-0.15300	-1.03400	-0.30000	0.32900
	8	-16.03200	-0.45800	4.93200	10.56600	1.53100	12.35600	-0.96300	-1.71900	1.11200	-0.23700
	9	-17.44700	-8.43000	1.56400	17.05700	4.06400	13.25400	0.89800	-2.46100	1.45700	0.15100
	10	-13.17800	-2.31000	2.13100	13.11400	5.37400	10.94800	-0.69100	-4.43800	-0.94400	-0.69300
Samp Mea	ole in	-21.49850	-2.08900	2.13990	19.70420	5.07430	15.69930	-1.36260	-3.97980	0.23270	-0.57860
Sample Variance		51.73908	9.36730	13.86847	49.71848	4.58292	19.00889	2.87292	4.24702	0.98632	0.85544

Table 3.5 Space-based coefficients for the passive resistive force (moment) data for all ten subjects

From Eq. (3.4.6) one obtains the sample mean

$$\bar{f}(\phi, \theta) = (\bar{c} + \bar{c}_{2}^{\cos\phi} + \bar{c}_{3}^{\sin\phi})\theta + (\bar{c}_{4}^{\cos^{2}\phi} + \bar{c}_{5}^{\cos\phi}^{\cos\phi} + \bar{c}_{6}^{\cos\phi}^{2})\theta^{2} + (\bar{c}_{7}^{\cos^{3}\phi} + \bar{c}_{8}^{\cos^{2}\phi}^{\cos\phi}^{\sin\phi} + \bar{c}_{9}^{\cos\phi}^{\cos\phi}^{2} + \bar{c}_{10}^{\sin^{3}\phi})\theta^{3}$$

$$(3.6.7)$$

and from Eq. (3.4.7) the sample variance

$$s_{f}^{2}(\phi, \theta) = (s_{c_{1}}^{2} + s_{c_{2}}^{2} \cos^{2}\phi + s_{c_{3}}^{2} \sin^{2}\phi)\theta^{2} + (s_{c_{4}}^{2} \cos^{4}\phi)^{2} + s_{c_{5}}^{2} \cos^{4}\phi^{2} + s_{c_{5}}^{2} \cos^{2}\phi \sin^{2}\phi + s_{c_{6}}^{2} \sin^{4}\phi)\theta^{4} + (s_{c_{7}}^{2} \cos^{6}\phi)^{2} + s_{c_{8}}^{2} \cos^{4}\phi \sin^{2}\phi + s_{c_{9}}^{2} \cos^{2}\phi \sin^{4}\phi + s_{c_{10}}^{2} \sin^{6}\phi)\theta^{6}$$

(3.6.8)

Note that, in this case, the functional expansion for the force (moment) properties, i.e. Eq. (3.3.1), has two independent variables, ϕ and θ .

Fig. 3.21 shows both the space-based and the subject-based sample means for the passive resistive force (moment) property in the form of a constant contour map. Since the difference between these two contour maps is <u>imperceptible</u> they are shown in two separate figures rather than in a superimposed format.

Fig. 3.21 Constant contour maps of (a) space-based and (b) subject-based sample means for the passive resistive force (moment) in Newtons (Newton-Meters).

It should be mentioned that the force (moment) data were collected beyond the maximum voluntary sinus up to the point, which will be referred to as the maximum forced sinus, where the subject starts experiencing discomfort or the upper arm can no longer be moved (i.e., adduction into the torso occurs). The raw data for the maximal forced sinus are curve fitted by the same functional expansion used for the maximal voluntary sinus. Table 3.6 lists the subject-based coefficients as well as their sample means and sample variances for the ten subjects' maximal forced sinuses. The statistical analysis procedure is also applied to the maximum forced sinuses. Fig. 3.22, for comparison, displays the space-based as well as the subject-based sample means for the maximal forced sinuses. With the exception of

COEFFI- CIENTS		c ₁	°2	с _з	C4	с ₅	C ₆	с ₇	с _в	وc	с ₁₀
	1	1.95847	-0.13361	-0.42477	-0.19760	-0.06931	0.86523	0.71596	-0.33193	-0.38737	-0.80224
SUBJ. NO.	2	2.05970	-0.15205	-0.44746	-0.37028	0.18673	0.71718	0.92062	0.10291	-0.72357	-0.76177
	3	2.02944	0.04465	-0.02249	-0.05501	-0.01525	0.78285	0.27618	-0.60899	-0.21055	-0.43102
	4	2.06142	-0.06659	-0.14934	-0.22026	0.01678	0.23767	0.38708	-0.21028	-0.20828	-0.05278
	5	2.02973	-0.04433	0.13719	-0.42731	-0.17474	-0.30285	-0.07285	-0.11544	-0.30782	1.04693
	6	2.02761	-0.11431	-0.22517	-0.13266	0.09089	-0.30028	0.54808	-0.26533	-0.24242	0.74863
	7	2.14849	-0.12938	0.12166	0.05062	0.06783	0.08645	0.15261	-0.99712	-0.69896	0.21765
	8	1.95496	-0.29534	-0.26107	-0.08081	0.49858	0.42557	0.84891	-0.79603	-0.58480	0.19829
	9	1.83864	-0.15643	0.14464	-0.12550	0.46590	0.16682	-0.31702	-0.41109	-1.26334	-0.78313
	10	1.99501	-0.15882	-0.26241	-0.56146	-0.36536	-0.01707	0.61799	0.20085	0.11311	0.98942
Sample Mean		2.01035	-0.12062	-0.13892	-0.21203	0.07020	0.26616	0.40775	-0.34324	-0.45140	0.03700
Sample Variance		0.00674	0.00784	0.05030	0.03538	0.07038	0.18028	0.16174	0.14207	0.14629	0.52602

Table 3.6 Subject-based coefficients of the maximum forced sinuses for all ten subjects

.

•

Fig. 3.22 Space-based and subject-based sample means for the maximal forced sinuses.

Fig. 3.23 Globographic representations of the subject-based mean maximal voluntary (inner curve) and mean maximal forced (outer curve) sinuses.

the region $0 < \phi < \frac{\pi}{2}$, these two sample means have indistinguishable difference. Finally, Fig. 3.23 shows the globographic representations of the subject-based mean maximal voluntary and mean maximal forced sinuses.

In computing the sample means, we found two different alternatives to represent the individual joint sinus and passive resistive property. For the shoulder complex investigated in this study, it was established that the difference between the subjectbased and the space-based sample means is indicernible even though each one possesses a particular anatomical or physical significance. In the next two chapters, for simplicity, we shall adopt the subjectbased approach in representing the joint properties for the hip and humero-elbow complexes.

To obtain some physical insights into the nature of the joint property of the human shoulder complex, let us superimpose the three most important results, i.e., the (subject-based) sample means of the passive resistive force (moment), maximum voluntary sinus, and maximum forced sinus, on the same figure as shown in Fig. 3.24. First, several observations concerning the passive resistive properties beyond the maximal voluntary shoulder complex sinus can be made:

- The constant resistive force (moment) contours are not simply an outward conformal expansion of the maximal voluntary sinus as one might surmise and adopt to use in currently existing multisegmented total-human-body models.
- 2. The shoulder complex is least resilient in the two rear quadrants ($0 < \phi < \pi$). In this region, more or less constant force (moment) values [between 14 and 18 Newtons (Newton-Meters)] were observed to initiate discomfort.

3. The lower front portion $(\pi < \phi < \frac{3}{2}\pi)$ of the plot exhibits the most resilient behavior due to adduction of the upper

- Fig. 3.24 Subject-based sample means of the passive resistive force (moment), maximum voluntary sinus (inner dashed), and maximum forced sinus (outer dashed).
 arm into the torso. No real discomfort was observed and the maximal forced sinus in this region is based on the θ values reached as far as possible during the constant-\$\phi\$ sweeps for the force (moment) levels which were applied.
- $(\frac{3}{2}\pi < \phi < 2\pi)$ region exhibits 4. The upper front an intermediate (transitional) characteristic in terms of In this region, discomfort initiates at the resilience. force (moment) level of about 26 Newtons (Newton-Meters).

Second, the maximum voluntary and forced sinuses specify the <u>applicable domain</u> of the passive resistive property. The resistive forces (moments) below the maximal voluntary sinus are appreciably lower in magnitude and thus can be neglected. Therefore, the maximal voluntary sinus can be considered as the lower limit of the applicable range for the expansion function $\overline{f}(\phi, \theta)$. In fact, Fig. 3.9 shows that in the neighborhood of the origin (pole), dashed curves indicate both lacking good fit and being outside the applicable domain. In the strict sense, the upper limit is the maximal forced sinus for the applicability of $\overline{f}(\phi, \theta)$. However, the extrapolated values by $\overline{f}(\phi, \theta)$ beyond this upper limit are most likely predictions and can be used up to the point of impending injury for the simulation studies of multisegmented mathematical models.

4. BIOMECHANICAL PROPERTIES OF THE HUMAN HIP COMPLEX

4.1 Introduction

This chapter deals with the in-vivo biomechanical properties of the human hip complex in the sitting position with the torso being fixed. The data so obtained are suitable for simulating a seated pilot as well as an occupant in a car.

The term "hip complex" refers to the combination of the hip joint, pelvis, lumbar spine, and their articulations. Fig. 4.1 shows the principal bones and ligaments of the hip complex. Since the femoral motion, while sitting with torso being fixed, is normally accompanied by lumbar flexion and pelvic tilting, it is more appropriate to use the term "hip complex sinus," rather than "hip joint sinus," to designate the range of extreme allowable motion of the femur with respect to torso. The human hip has been normally modeled as a three-degree-of-freedom ball and socket joint by most researchers (Dempster, 1955; Johnston and Smidt, 1969; Chao et al., 1970; Lamoreux, 1971), although in some cases it has also been simplified by neglecting the axial rotation (Saunders et al., 1953; In planar motion studies, it is even assumed as a one-Paul, 1965). degree-of-freedom revolute (or hinge) joint (Clayson et al., 1966; Beckett and Chang, 1968).

POSTERIOR VIEW

ANTERIOR VIEW

Fig. 4.1 principal bones and ligaments of the hip complex.

Functionally, unlike the shoulder which has sacrificed stability in favor of mobility, the hip provides essential stability for support of the body as well as a certain degree of mobility. Structurally, the pelvis is more rigid than the rather freely movable scapula. The interplay among the hip joint, pelvis, and lumbar spine is similar to that between the shoulder joint (the glenohumeral joint) and the shoulder girdle which includes the clavicle and the scapula. However, the articulations of the sacroiliac joint and symphysis pubis provide much less mobility than those of the shoulder girdle. Furthermore, the joint capsule, the ligaments, and the muscles have reduced the freedom of the hip joint whose bony structure permits almost as much mobility as is found in the glenohumeral joint. For example, hip

hyperextension is practically insignificant mainly due to the ligamentous check of the iliofemoral (Y) ligament. Finally, it should be noted that hip flexion is also dependent upon the amount of knee flexion due to the interaction of the two-joint muscles between the hip and knee joints. With the knee in full extension, hip flexion is the hamstrings. More detailed limited by anatomical anđ kinesiological descriptions are available in standard textbooks (Steindler, 1973; Norkin and Levangie, 1983; Gray's Anatomy, 1973) and, therefore, will not be made here.

4.2 Determination of the Hip Complex Sinus

The major components of the data acquisition system used in this study are the sonic digitizer which is linked with the PDP-11/34 minicomputer, digitizer sensor assembly, torso restraint system, and six sonic emitters mounted on a cylindrical thigh cuff as shown in Fig. 4.2. The thigh cuff is, in turn, attached to an orthotic brace, which is held onto the thigh by three Velcro straps. The front part of the brace is shaped so that the patella can move freely.

The quantitative determination of the hip complex sinus involves the following basic steps: (1) immobilizing the torso to be treated as the fixed body and defining the fixed body axis system as shown in Fig. 3.2(a), (2) having the subject move the upper leg along the maximal voluntary range of motion and monitor, with respect to the fixed body axis system, the 3-D coordinates of a distal point on the moving body segment; this point (to be referred to as the knee joint

Fig. 4.2 Major components of the data acquisitions system. 1) Sonic Digitizer, 2) Digitizer Sensor Assembly, Torso Restraint System, 4) Thigh Cuff with Six Sonic Emitters.

reference point) is selected as being on the mechanical axis of the femur at the level of the femoral lateral epicondyle, (3) fitting the knee joint reference point coordinates to a sphere using the least-squares method, thus establishing a center for the best-fitted sphere and an idealized link length (radius of the sphere), (4) fitting a plane to the same knee joint reference point coordinates to a sphere using the least-squares method; the normal to this plane (specified by the spherical coordinates (ϕ_n , θ_n) as shown in Fig. 4.3) establishes the pole (z_{jt} -axis) of a local joint axis system with respect to which

Fig. 4.3 Relative orientation between the fixed body (x_{fb}, y_{fb}, z_{fb}) and locally-defined joint (x_{jt}, y_{jt}, z_{jt}) axis systems.

the hip complex sinus, designated by the spherical coordinates (ϕ, θ) of the vector connecting the center of the best-fitted sphere with the knee joint reference point, can be expressed as a single-valued functional relationship, i.e., $\theta = \theta(\phi)$. Since only the knee joint reference point is monitored in this study, only the relationships between this point and the six sonic emitters on the thigh cuff need to be initialized. The calculations are the same as those used for the origin of the longitudinal axis system thoroughly discussed in Section 2.2. However, since the knee joint reference point is inaccessible, two emitters are needed to interpolate it as being located at the center. The emitter positioning for this initialization process is schematically shown in Fig. 4.4.

Before the hip complex sinus test, the subject was instructed to move his upper leg along its maximal voluntary range of motion in a counterclockwise motion as viewed from the sensor assembly. He was also instructed to displace the upper leg distally along its longitudinal axis as far as possible at all times while circumscribing the hip complex sinus. Preferred rotation of the upper leg about its longitudinal axis as well as preferred knee flexion were left up to the discretion of the subject in obtaining the maximal contour. Several sweeps of this type were practiced before data were collected so that the subject could experiment with obtaining the largest possible range of motion. In order to help maintain a constant rate of motion during data collection, a large clock with an easily visible second hand was placed in front of the subject. The subject was instructed to imagine his upper leg as the second hand, and to synchronize his hip complex sinus circumscription with the clock's 60 second sweep.

.

.

.

ANTERIOR VIEW

.

0

Fig. 4.4 Emitter positioning for initialization process.

Table 4.1 lists the centers and radii of the best-fitted spheres and $(\boldsymbol{\varphi}_n, \, \boldsymbol{\theta}_n)$ values of the best-fitted planes for all ten subjects. With respect to each individual local joint axis system, Figs. 4.5-4.7 the hip complex sinuses show for three subjects and their corresponding least-squares fitted functional expansions of Eq. (3.2.1). Figs. 4.8-4.10 display the corresponding globographic representations of these three subjects' functional expansion sinuses with respect to the fixed body axis system.

Table 4.1 Centers and radii of the best-fitted spheres and and (ϕ_n, θ_n) for all ten subjects.

SUBJECT		CENTER (c	m)	RADIUS	ф _п	θ _n (deg.)	
No.	× _{fb}	У _{fb}	^z fb	(cm)	(deg.)		
1	1.77	6.14	20.85	47.82	47.22	64.85	
2	3.63	5.98	27.45	43.76	53.78	52.18	
3	5.26	8.49	28.80	47.35	42.37	60.04	
4	-0.10	5.64	31.39	45.50	47.06	52.54	
5	3.24	5.96	27.57	43.79	55.17	51.40	
6	3.93	6.94	26.78	46.61	37.17	52.83	
7	-0.50	5.08	29.85	46.81	49.39	53.77	
8	3.12	7.01	29.30	47.87	33.46	57.18	
9	-1.70	6.26	18.07	50.07	36.78	68.34	
10	3.84	4.40	25.16	48.90	34.54	55.35	
Sample Mean	2.25	6.19	26.52	46.85	43.19	56.85	
Sample St. Dev.	2.28	1.12	4.15	2.04	7.96	5.81	
		1					

Fig. 4.5 Raw data and the functional expansions of the hip complex sinus for subject No. 1.

Fig. 4.6 Raw data and the functional expansions of the hip complex sinus for subject No. 2.

Fig. 4.7 Raw data and the functional expansions of the hip complex sinus for subject No. 3.

Fig. 4.8 Globographic representations of the hip complex sinuses for subject No. 1.

Fig. 4.9 Globographic representations of the hip complex sinuses for subject No. 2.

Fig. 4.10 Globographic representations of the hip complex sinuses for subject No. 3.

4.3 Determination of the Passive Resistive Properties

As is the case for the forced tests on the shoulder complex, it is also desirable to perform a series of forced tests in which the upper leg is forced outward in the direction of increasing θ for a constant- ϕ value with respect to the local joint axis system.

For a typical forced kinematic test, the subject's torso is first rotated by an angle - $(90^{\circ} - \phi_n)$ about the positioning system yaw axis, and then rotated - $(90^{\circ} - \theta_n)$ about the roll axis. If the subject then extends his upper leg in an orientation parallel to the horizontal pitch axis of the positioning system, the mechanical axis of the femur will be at (ϕ_n, θ_n) , i.e., coincide with the z_{jt} -axis

with respect to the torso fixed body axis system. To factor out the gravitational loading of the leg, an adjustable pulley-cable system is used to hold the leg with the pulley positioned directly above the hip joint so that the horizontal component of the cable force passes through the hip joint and does not serve to either abduct or adduct the upper leg. The subject is first instructed to move his leg to its maximal voluntary position in the constrained plane of motion of the upper leg. The leg is backed-off from its maximal voluntary position, and this then is the starting orientation of the forced sweep. The force applicator is then positioned vertically at the same level as the subject's upper leg, and the transducer front is pointed near the knee joint. The subject's upper leg is next abducted or adducted in a quasi-static manner until the subject starts experiencing discomfort or the upper leg can no longer be displaced (e.g., adduction into the torso occurs). During the entire course of each test, the subject is instructed to let his leg hang limply and not to actively (muscularly) resist the motion of the test. The bridge circuits of the forcemoment transducer are all set to zero at the start of each test, so that recorded values during the sweep are departures from this "neutral" force-moment orientation, or stating it in a different manner, they are the passive resistive force-moment values.

With respect to the joint axis system, as mentioned earlier, these force sweeps take place in a direction of increasing θ , and at an approximately constant- ϕ value. By then rotating the restraint positioning system about its pitch axis, a series of constant- ϕ sweeps

are obtained. In this way the tests are performed as four sub-series with each sub-series discernible by its own experimental set-up configuration as shown in Fig. 4.11. The groupings consist of constant- ϕ sweeps in: 1) the upper-rear quadrant (0° < ϕ < 90°), 2) the lower-rear quadrant (90° < ϕ < 180°), 3) the lower-front quadrant (180° < ϕ < 270°, and 4) the upper-front quadrant (270° < ϕ < 360°).

The data obtained according to the procedure outlined above are analyzed as follows. First, the force (\vec{F}) and moment (\vec{M}) vectors obtained from the force applicator transducer are used to calculate a total moment vector with respect to the center of the best-fitted sphere

 $\vec{M}_{total} = \vec{M} + \vec{r} \times \vec{F}$

where \vec{r} is the moment arm vector from the center of the best-fitted sphere to the point of force application. Next, the total moment vector is resolved into components along and perpendicular to the moment arm vector. The component along the moment arm vector is then discarded, since it does not serve to restore the moving segment to an orientation within the maximal voluntary hip complex sinus. Finally, a "normalized" moment arm vector of unit length, i.e., one meter, along the moment arm vector is used together with the remaining moment component (the passive resistive moment vector) to calculate the passive resistive force vector. Since the moment arm is normalized to one meter, the magnitude of the resistive force vector is the same as that of the resistive moment vector. We shall refer to this magnitude

Fig. 4.11 Representative test configurations in each of the four quadrants: 1) upper-rear, 2) lower-rear, 3) lower-front, 4) upper-front

as the passive resistive force (moment) property, which is assumed to be a function of ϕ and θ in this study with respect to the local joint axis system.

Figs. 4.12-4.14 show the constant resistive force (moment) contour maps for three subjects on the modified joint axis system.

Fig. 4.12 Constant resistive force (moment), in Newtons (Newton-Meters), contour map on the modified joint axis system, in radians, for subject No. 1. The maximal voluntary hip complex sinus (inner dashed) and the maximal forced sinus (outer dashed) are also indicated.

Fig. 4.15 displays the "goodness" of the curve fitting for the raw data of several constant- ϕ sweeps for the first subject. In Figs. 4.12-4.14, the respective maximal voluntary hip complex sinuses

Fig. 4.13 Constant resistive force (moment), in Newtons (Newton-Meters), contour map on the modified joint axis system, in radians, for subject No. 2. The maximal voluntary hip complex sinus (inner dashed) and the maximal forced sinus (outer dashed) are also indicated. and maximal forced sinuses are also indicated. Finally, Figs. 4.16-4.18 show the globographic representations of the maximal forced sinuses together with the maximal voluntary sinuses (run No. 1) for the three subjects.

Fig. 4.14 Constant resistive force (moment), in Newtons (Newton-Meters), contour map on the modified joint axis system, in radians, for subject No. 3. The maximal voluntary hip complex sinus (inner dashed) and the maximal forced sinus (outer dashed) are also indicated.

Fig. 4.15 Raw data and the fitted curves (drawn from Fig. 4.12) for several constant- ϕ sweeps.

Fig. 4.16 Globographic representations of the maximal voluntary (inner curve) and forced (outer curve) sinuses for subject No. 1.

Fig. 4.17 Globographic representations of the maximal voluntary (inner curve) and forced (outer curve) sinuses for subject No. 2.

Fig. 4.18 Globographic representations of the maximal voluntary (inner curve) and forced (outer curve) sinuses for subject No. 3.

4.4 Statistical Data Base for the Biomechanical Properties of

the Human Hip Complex

Since the functional expansions used herein are the same as those used for the shoulder complex, the statistical analysis is the same as presented in Section 3.6; thus it will not be repeated here.

Table 4.2 lists the expansion coefficients of the hip complex sinuses for all ten subjects. This table also lists the sample means and sample variances of the ten coefficients. Fig. 4.19 displays these ten sinuses as well as their sample mean, $\overline{\theta}(\phi)$, and $\overline{\theta}$ $(\phi) \pm S_{\theta}(\phi)$. Fig. 4.20 shows the globographic representations of the latter three. Fig. 4.21 shows the $\overline{\theta}$ and $\overline{\theta} \pm S_{\theta}$ curves for two different runs. Again, this figure reveals good repeatability of the hip complex sinus tests.
COEFF	ri- 'S	c1	c2	c3	C4	с ₅	с ₆	с ₇	c ₈	c ₉	с ₁₀
	1	0.39571	-0.08703	-0.00428	-0.11163	0.56715	-0.02082	-0.00608	-0.55837	-0.13548	0.13040
SUBJ. NO.	2	0.41498	-0.03727	-0.03586	-0.15646	0.26460	0.25202	0.02128	0.15108	-0.08600	-0.31333
	3	0.66374	-0.01989	0.01311	-0.14792	0.33131	0.04340	0.00400	-0.43214	0.03317	0.19523
	4	0.64836	0.05747	-0.09878	-0.27652	0.38494	0.01268	0.09635	-0.13057	-0.15474	-0.00942
	5	0.41728	-0.03587	-0.01455	-0.21832	0.38268	-0.02453	.0.00890	-0.00675	-0.19582	0.14766
	6	0.57179	0.05677	0.13936	-0.10665	0.25711	-0.42213	-0.09643	-0.26946	-0.23603	0.77554
	7	0.58089	0.01795	-0.11139	-0.23718	0.52750	0.06738	0.11461	-0.22175	-0.26809	0.02208
	8	0.56665	0.07304	0.07290	-0.04798	0.21822	-0.11714	-0.08476	-0.30503	0.35835	0.29331
	9	0.42387	-0.04199	-0.11612	-0.13343	0.28786	-0.21253	0.09007	-0.27206	0.16308	0.37762
	10	0.54724	0.04135	0.18203	0.05549	0.31620	-0.01822	-0.17311	-0.52484	0.16224	0.21174
Sampl Mean	le	0.52305	0.00245	0.00264	-0.13806	0.35376	-0.04399	-0.00252	-0.25699	0.01127	0.18308
Samp Vari	le ance	0.01029	0.00292	0.01057	0.00924	0.01327	0.03213	0.00861	0.04915	0.04409	0.07949

Table 4.2 Expansion coefficients of the hip complex sinusesfor all ten subjects

93

.

•

•

Fig. 4.19 Hip complex sinuses for all ten subjects (dotted curves). Solid curves are for $\overline{\theta}$ and $\overline{\theta} \pm S_{\theta}$.

Fig. 4.20 Globographic representations of $\overline{\theta}$ and $\overline{\theta} \pm S_{\theta}$.

Fig. 4.21 $\overline{\theta}$ and $\overline{\theta} \pm S_{\theta}$ for two different runs.

For the confidence level of 95%, Fig. 4.22 shows the confidence interval of the population mean, and Fig. 4.23 its corresponding globographic representation.

Table 4.3 lists the expansion coefficients as well as their sample means and sample variances of the passive resistive force (moment) data for all ten subjects. Table 4.4 lists the expansion coefficients of the maximum forced sinuses for all ten subjects.

Fig. 4.22 Confidence Interval (CI) for the population mean, μ_θ .

Fig. 4.23 Globographic representation of the Confidence Interval for the population mean.

COEFFI-		c,	c2	c3	C4	с ₅	с ₆	с ₇	с ₈	c ₉	с ₁₀
CIENTS											
	1	-4.93	-1.37	15.12	59.24	94.97	143.89	-7.94	-3.70	16.63	-11.34
	2	-8.67	-7.68	57.96	59.73	49.13	87.61	5.85	18.72	18.19	-14.19
	3	-9.11	-6.55	12.47	50.23	40.16	75.25	-2.09	2.09 -5.58		18.98
SUBJ. NO.	4	-7.13	-0.64	14.65	83.48	69.25	81.22	-2.24	-23.48	-29.01	-24.03
	5	-14.45	7.85	34.81	66.84	60.81	.81 106.39		14.80	11.74	-13.59
	6	-2.18	-2.84	20.29	45.56	46.48	89.29	1.30	-20.55	-27.34	-14.46
	7	-17.84	5.44	18.03	72.58	39.33	73.49	2.92	14.38	22.40	-4.73
	8	-1.49	-7.80	11.03	39.68	47.88	79.22	2.56	5.13	10.72	-10.57
	9	-12.48	3.12	17.87	63.94	71.45	102.09	2.17	9.04	15.20	-13.51
	10	-5.86	-6.18	20.98	53.17	54.48	112.70	1.28	-19.82	-26.17	-18.85
Sampl Mean	Le	-8.41	-1.66	22.32	59.44	57.39	95.11	0.76	-1.11	2.57	-10.63
Sampl Varia	Le ance	27.72	31.61	200.61	170.33	296.83	473.58	15.39	253.70	442.067	133.73

Table 4.3 Expansion coefficients of the passive resistive force (moment) data for all ten subjects.

97

` ?

t

•

COEFFI- CIENTS		c ₁	°2	с ₃	°4	с ₅	° ₆	°7	с ₈	c _و	с ₁₀
	1	0.86022	-0.29444	0.43908	-0.89108	-0.01064	0.37849	37849 -0.53381		0.37733	-0.35817
SUBJ. NO.	2	0.87910	-0.16396	0.21117	-0.61168	0.02493	-0.03323	-0.28160	0.29654	0.07114	0.03164
	3	0.95953	-0.30142	0.37933	-0.52935	0.12908	0.16419	-0.33168	0.35897	0.00000	0.00000
	4	0.95015	.95015 -0.06743	0.02830	-0.46765	0.20000	-0.16934	-0.07731	0.12608	0.00000	0.00000
	5	0.79477	-0.11009	-0.01419	-0.36841	0.30207	0.22030	0.15289	-0.05182	0.12805	-0.26038
	6	0.96264	-0.00587	0.17370	-0.45350	0.81117	0.50267	-0.02478	-0.50541	-0.22958	-0.07306
	7	0.76140	0.02475	0.01770	-0.30282	0.67457	-0.10819	0.03962	-0.27926	-0.30765	-0.17010
	8	0.82154	-0.05859	0.43567	-0.62290	0.30109	-0.45838	-0.31269	0.42118	-0.00489	0.31648
	9	0.61995	-0.17743	0.36143	-0.61903	0.70729	-0.34451	-0.49297	0.38546	-0.27602	0.37877
	10	1.05702	0.01582	0.33113	-0.14915	0.34016	0.67845	-0.43865	-0.33994	-0.18280	-1.04720
Samp] Mean	.e	0.86663	-0.11387	0.23633	-0.50156	0.34797	0.08304	-0.23010	0.20238	-0.06805	-0.11820
Sample Variance		0.01560	0.01414	0.03159	0.04200	0.08416	0.13700	0.05662	0.10691	0.04161	0.15910

Table 4.4 Expansion coefficients of the maximum forced sinuses

Fig. 4.24 superimposes the sample means of the passive resistive property, the maximum voluntary and forced sinuses. Finally, Fig. 4.25 shows the globographic representations of the sample means of the maximum voluntary and forced sinuses.

Based on the numerical results shown in Fig. 4.24, several observations and remarks concerning the passive resistive properties of the human hip complex beyond the maximal voluntary sinuses can be made:

- The constant resistive force (moment) contours are not simply an outward conformal expansion of the maximal voluntary sinus as one might surmise and adopt to use in currently existing multisegmented total-human-body models.
- 2. The two rear quadrants $(0 < \phi < \pi)$ are the most important regions in terms of pain threshold and injury potential. In this region, discomfort was observed at the force (moment) levels of approximately 60 to 80 Newtons (Newton-Meters), which are about 4.5 times those found on the shoulder complex.
- 3. In the two front quadrants ($\pi < \phi < 2\pi$), no real discomfort was observed due to adduction of the upper leg into the opposite leg or the torso. In this region, the maximal forced sinus is based on the θ values reached as far as possible during constant- ϕ sweeps for the force (moment) levels which were applied.

Fig. 4.24 Sample means of the passive resistive property, maximum voluntary sinus (inner dashed), and maximum forced sinus (outer dashed).

Fig. 4.25 Globographic representations of the sample means of the maximum voluntary and forced sinuses.

5. BIOMECHANICAL PROPERTIES OF THE HUMAN HUMERO-ELBOW COMPLEX

5.1 Introduction

Two types of data are considered in this chapter: (1) the maximum voluntary humero-elbow complex sinus, or, the angular range of the extreme allowable motion of the lower arm with respect to the upper arm whose axial rotation is permitted, and (2) the passive resistive properties beyond the full elbow extension with the lower arm in pronation.

The elbow complex is composed of three articulations: the humeroradial, the humeroulnar, and the superior radioulnar; it has been modeled as a trochoginglymus joint possessing two rotational degrees of freedom (flexion-extension and pronation-supination) by most investigators (Dempster, 1955; Steindler, 1973; Youm et al., 1979). By utilizing the inserted Kirschner wires for defining coordinate axes and biplanar radiographs, Chao and Morrey (1979) were able to accurately isolate the three-dimensional rotation of cadaver forearms under passive elbow motion; the translatory components of the joint motion were ignored by assuming that the tight ligamentous constraints would limit such motion to small magnitudes. The additional component of rotation is referred to as the carrying angle (or abduction-adduction). Chao et al. (1980) also developed a device

similar to the electrogoniometer for determining the three-dimensional angular motion occurring at living normal subject's elbow joint while performing different daily functions. The carrying angle normally disappears when the lower arm is pronated with the elbow in full extension. Due to the articular check (between the olecranon process and fossa) and the ligamentous constraints, excessive elbow extension beyond the maximum voluntary range may cause serious injuries.

5.2 Determination of the Humero-Elbow Complex Sinus

Both kinematic and force application tests for the elbow joint are shown in Fig. 5.1. This figure also shows the upper arm restraint fixture. The fixed longitudinal axis of the upper arm with respect to the torso is chosen tocoincide with the z-axis of the statistical mean joint axis system established for the shoulder complex in Section 3.2. In the author's opinion, by positioning the upper arm in this orientation, the shoulder complex is in a state of maximum laxity. As shown in Fig. 5.2, the mean joint axis system is uniquely obtained by first rotating the torso axis system by the mean angle ϕ_m (= 59°) about the z_{ts} -axis and then rotating the intermediate (primed) axis system by the mean angle θ_m (= 79°) about the y'-axis. In this study, this mean joint axis system is also naturally selected as the fixed reference frame (fixed-body axis system) for performing the kinematic analyses of the forearm; the origin of this fixed-body axis system is conveniently chosen to be the center of the humeral head.

Since the upper arm is only permitted to rotate about its longitudinal (long-bone) axis, its translational degrees of freedom

Fig. 5.1 Kinematic and force application tests for the elbow complex.

are prohibited by the shoulder part of the torso restraint shell, and the other two rotational degrees of freedom are eliminated by fastening the upper arm onto a rigid fixture (whose direction, of course, is along the z_{fb} -axis of the fixed reference frame) with three Velcro straps.

Fig. 5.2 Relative orientation of the mean joint axis system, or the fixed-body axis system, (x_{fb}, y_{fb}, z_{fb}) and the torso axis system, (x_{ts}, y_{ts}, z_{ts}) .

An orthotic brace made of heat-moldable orthoplast is used in order to mount the six sonic emitters on the lower arm to monitor its rigid-body kinematics. Two Velcro straps are used to hold the brace on the lower arm. In addition, by letting the hand hold a pole which extends from the brace, the wrist complex is fixed so that the forearm muscles are held in a stable configuration. This orthotic device thus eliminates the relative shifting motion between the forearm and the brace. The forearm cuff with six emitters affixed to it is then rigidly attached to the brace by two screws. The forearm cuff is made of a rigid, cylindrical, plastic shell which extends about threequarters of the way around the lower arm. It is believed that this orthotic configuration comes as close as possible to rigid body conditions, and provides for accurate measurement of forearm kinematics.

The procedure for quantitative determination of the humero-elbow complex sinus consists of the following steps: (1) immobilizing the torso and upper arm, and defining the fixed body axis system as described before (also refer to Fig. 5.2), (2) having the subject move forearm along the maximum voluntary range of motion and his continuously monitoring, with respect to the fixed-body axis system, the 3-D coordinates of a distal point on the moving body segment; this point (to be referred to as the wrist joint reference point) is selected as being on the longitudinal axis of the forearm at the level of the styloid process, (3) fitting the wrist joint reference point coordinates to a sphere using the least-squares method, thus establishing a center for the best-fitted sphere and an idealized link length (radius of the sphere), (4) fitting a plane to the same wrist joint reference point coordinates using the least-squares method; the normal to this plane (specified by the spherical coordinates (ϕ_n , θ_n) as shown in Fig. 5.3) establishes the pole (z_{it}-axis) of a local joint

Fig. 5.3 Relative orientation of the fixed-body (x_{fb}, y_{fb}, z_{fb}) and the locally-defined joint (x_{jt}, y_{jt}, z_{jt}) axis systems.

axis system (for the humero-elbow complex) with respect to which the humero-elbow complex sinus, designated by the spherical coordinates (ϕ, θ) of the vector connecting the center of the best-fitted sphere with the wrist joint reference point, can be expressed as a singlevalued functional relationship, i.e., $\theta = \theta(\phi)$. Since only the wrist joint reference point is monitored, the same initialization procedure as that used for the hip complex is employed.

Before the humero-elbow complex sinus test, the subject was instructed to move his forearm along its maximum voluntary range of motion in a counter-clockwise direction as viewed from the sensor assembly. Preferred rotation of the forearm about its longitudinal axis was left up to the discretion of the subject in obtaining the maximum sinus. Several sweeps of this type were practiced before data were collected so that the subject could experiment with obtaining the largest possible range of motion. In order to help maintain a constant rate of motion during data collection, a large clock with an easily visible second hand was placed in front of the subject. The subject was instructed to imagine his forearm as the second hand, and to synchronize his circumscription with the clock's 60 second sweep. The firing rate of the sonic emitters was set at seven data records per second (as used for the shoulder and hip complexes) so that a total of 420 wrist joint reference points was collected for each complete humero-elbow complex sinus.

Table 5.1 lists the centers and radii of the best-fitted spheres and (ϕ_n, θ_n) values of the best-fitted planes for all ten subjects. With respect to each individual local joint axis system designated by (ϕ_n, θ_n) , Figs. 5.4-5.6 show both the raw data and least-squares fitted values of the single-valued functional relationship, i.e., $\theta = \theta(\phi)$ of the humero-elbow complex sinus for three subjects. In these figures, only 72 raw data points (approximately equally spaced)

SUBJECT		CENTER (zm)	RADIUS	ф _п	θ _n
No.	× _{fb}	У _{fb}	^z fb	(cm)	(deg.)	(deg.)
1	-0.06	0.19	28.76	29.58	-57.25	74.47
2	2 0.43 0.12 25.90		29.62	-40.57	71.42	
3	0.69	0.96	27.11	29.72	-57.51	70.92
.4	1.62 -0.20		28.14	31.12	-43.44	70.21
5	-1.22	-0.30	22.09	28.38	-67.33	58.75
6	-0.72	-1.51	25.00	29.93	-55.06	66.69
7	-0.77	0.88	26.79	30.96	-42.73	75.45
8	-0.43	0.66	27.73	30.24	-53.74	68.01
9	-1.27	1.01	26.90	29.39	-37.92	73.99
10	-1.10	0.21	26.51	28.69	-55.70	59.94
Sample Mean	-0.42	0.20	26.49	29.76	-51.14	68.98
Sample St. Dev.	0.89	0.76	1.88	0.87	9.46	5.78

Table 5.1 Centers and radii of the best-fitted spheres and (ϕ_n, θ_n) for all ten subjects.

.

.

were plotted and used for curve-fitting of the functional expansion, Eq. (3.2.1). Figs. 5.7-5.9 display the globographic representations of these three functional expansion sinuses with respect to the fixedbody axis system.

Fig. 5.4 Raw data and the functional expansions of the humero-elbow complex sinus for subject No. 1.

Fig. 5.5 Raw data and the functional expansions of the humero-elbow complex sinus for subject No. 2.

Fig. 5.6 Raw data and the functional expansions of the humero-elbow complex sinus for subject No. 3.

Fig. 5.7 Globographic representation of Fig. 5.4.

Fig. 5.8 Globographic representation of Fig. 5.5.

Fig. 5.9 Globographic representation of Fig. 5.6.

5.3 Determination of the Passive Resistive Properties

Beyond the Full Elbow Extension

Since the force applicator is constrained to motion in a level horizontal plane by a track-mounted trolley system located overhead, it is necessary to tilt the torso, while sitting, $11^{\circ} (= 90^{\circ} - \theta_m)$ about x_{ts} -axis so that the upper arm is also parallel to the ground. The subject was first instructed to pronate his forearm to face the ground and to fully extend it. The force applicator was then positioned vertically at the same level as the subject's forearm, and the transducer front was positioned near the wrist joint. The subject's forearm was next forced beyond its full extension in a quasi-static manner until the subject started experiencing discomfort. During the entire course of the test, the subject was instructed to let his forearm hang limply and not to actively (muscularly) resist the motion of the test.

The data collected according to the foregoing procedure were analyzed as follows. First, the force (\vec{F}) and moment (\vec{M}) vectors obtained from the force applicator transducer were used to calculate a total moment vector with respect to the center of the best-fitted sphere (described in Section 5.2):

 $\vec{M}_{total} = \vec{M} + \vec{r} \times \vec{F}$

where \vec{r} is the moment arm vector from the center of the best-fitted sphere to the point of force application. Next, the total moment vector was resolved into components along and perpendicular to the moment arm vector. The component along the moment arm vector was then discarded, since it does not serve to restore the forearm towards its full extension position. Finally, a "normalized" moment arm vector of unit length, i.e., one meter, along the moment arm vector was used together with the remaining moment component (the passive resistive moment vector) to calculate the passive resistive force vector. Since the moment arm is normalized to unit length, the magnitude of the resistive force vector is the same as that of the resistive moment vector. We shall refer to this magnitude as the passive resistive force (moment) property, which is expressed as a function of α , or the angular displacement from the full elbow extension. In calculating this angle, the line connecting the center of the best-fitted sphere and the distal wrist joint reference point is used as the longitudinal axis of the forearm.

Figs. 5.10-5.12 show two runs of both the raw data and the curvefitted function values of the passive resistive force (moment) properties for three subjects. The expansion function used is of the following polynomial form:

$$f(\alpha) = C_1 + C_2 \alpha + C_3 \alpha^2 + C_4 \alpha^3$$
 (5.3.1)

5.4 <u>Statistical Data Base for the Biomechanical Properties of</u> the Human Humero-Elbow Complex

Since the functional expansion used for the humero-elbow complex sinus is the same as that used for the shoulder complex sinus, the statistical procedure is the same as discussed in Section 3.6. Table 5.2 lists the expansion coefficients of the humero-elbow complex sinuses for all ten subjects. Fig. 5.13 shows the ten sinuses as well as their sample mean, $\overline{\theta}(\phi)$, and $\overline{\theta}(\phi) \pm S_{\theta}(\phi)$. Fig. 5.14 displays the globographic representations of $\overline{\theta}$ and $\overline{\theta} \pm S_{\theta}$ in the fixed-body axis system. Fig. 5.15 shows the $\overline{\theta}$ and $\overline{\theta} \pm S_{\theta}$ curves for two different runs. Good repeatability is observed. Finally, Fig. 5.16 shows the confidence interval for the population mean and Fig. 5.17 shows its corresponding globographic representation.

Table 5.3 lists the expansion coefficients of the passive resistive properties beyond the full elbow extension for all ten subjects. From Eqs. (5.3.1), (3.4.6), and (3.4.7), one obtains the sample mean,

$$\bar{f}(\alpha) = \bar{c}_1 + \bar{c}_2 \alpha + \bar{c}_3 \alpha^2 + \bar{c}_4 \alpha^3$$
(5.3.2)

Fig. 5.10 Raw data and functional expansions of the passive resistive property for subject No. 1.

Fig. 5.11 Raw data and functional expansions of the passive resistive property for subject No. 2.

Fig. 5.12 Raw data and functional expansions of the passive resistive property for subject No. 3.

and the unbiased sample variance,

$$s_{f}^{2}(\alpha) = s_{c_{1}}^{2} + s_{c_{2}}^{2} \alpha^{2} + s_{c_{3}}^{2} \alpha^{4} + s_{c_{4}}^{2} \alpha^{6}$$
(5.3.3)

Fig. 5.18 shows $f(\alpha)$ for all ten subjects as well as their sample mean \overline{f} and $\overline{f} \pm s_{f}$.

The fast-increasing feature of the passive resistive property reveals the characteristic of the articular check occurring at the elbow joint. Human tolerance beyond the full elbow extension, based on the ten subjects tested, is found to be about 10 to 15 N(N-M) at about 10 to 15 degrees of hyperextension.

COEFF	'I- 'S	с ₁	°2	c3	°4	с ₅	с ₆	с ₇	с ₈	°9	с ₁₀
	1	0.94660	-0.20931	0.35965	-0.11399	0.09762	-0.03984	-0.30936	-0.02223	0.04501	0.16160
SUBJ. NO.	2	1.00298	-0.11922	0.11995	0.05758	0.04369	0.15991	-0.12879	-0.03236	-0.09795	0.31772
	3	1.06830	-0.08237	0.27826	0.10650	-0.02804	0.06418	-0.29654	-0.34261	0.01997	0.11073
	4	1.35042	-0.09649	0.23392	0.00335	-0.00341	0.05962	-0.24854	-0.15328	0.08454	0.17998
	5	0.83271	-0.33242	0.40520	-0.05891	-0.01626	-0.08224	-0.31606	-0.11071	0.20727	0.20206
	6	1.19426	-0.27498	0.40907	0.03315	0.14440	-0.28925	-0.24968	-0.03632	-0.17170	0.70481
	7	1.20455	-0.13006	0.51425	-0.05006	0.02719	0.18983	-0.15035	-0.15804	-0.16461	0.13516
	8	1.17002	-0.05783	0.13041	-0.03689	-0.04236	0.08745	-0.13670	-0.10281	-0.13730	0.11914
	9	1.01306	-0.08750	0.23569	-0.06580	0.08852	-0.17986	-0.22606	-0.19725	-0.08117	0.51515
	10	1.03835	-0.38860	0.46054	-0.15291	-0.10472	-0.16720	-0.36231	-0.40137	0.13013	0.66868
Sampl Mean	Le	1.08213	-0.17788	0.27869	-0.02780	-0.02066	-0.01974	-0.24244	-0.15570	-0.01658	0.31150
Sample Variance		0.02233	0.01364	0.01546	0.00623	0.00560	0.02504	0.00668	0.01657	0.01759	0.05377

Table 5.2 Expansion coefficients of the humero-elbow complex sinuses for all ten subjects.

Fig. 5.13 Humero-elbow complex sinuses for all ten subjects. Solid curves are for $\overline{\theta}$ and $\overline{\theta} + s_{\theta}$.

Fig. 5.14 Globographic representations of $\overline{\theta}$ and $\overline{\theta} \pm s_{\theta}$.

i

Fig. 5.15 $\overline{\theta}$ and $\overline{\theta} + S_{\theta}$ for two runs.

Fig. 5.16 Confidence interval for the population mean.

Fig. 5.17 Globographic representation of the confidence interval for the population mean.

Fig. 5.18 $f(\alpha)$ for all ten subjects. Solid curves are for \overline{f} and $\overline{f} + S_f$.

COER	FI- NTS	c ₁	c2	c3	°4	
	1	-0.29505	0.97641	-0.04239	0.00167	
	2	2.62520	0.12251	-0.01258	0.00397	
	3	1.21570	0.41974	0.04335	-0.00077	
	4	0.99568	0.36091	0.06439	-0.00104	
SUBJ. NO.	5	0.97960	0.40776	-0.03570	0.00224	
	6 2.99000		0.47401	0.03703	-0.00111	
	7	-0.38531	0.81571	-0.01229	0.00029	
	8	1.00290	0.48261	-0.00950	0.00143	
	9	-0.28201	0.81601	-0.04942	0.00465	
	10	1.25800	0.22501	-0.00158	0.00031	
Samp Mean	le	1.01047	0.51007	-0.00187	0.00116	
Samp Vari	le ance	1.32818	0.07543	0.00148	0.00000	

Table 5.3 Expansion coefficients of the passive resistive properties beyond the full elbow extension for all ten subjects.

6. CONCLUDING REMARKS

In biomechanics research, many random variables associated with the human body are either normally distributed or have approximately normal distributions. Therefore, a sample of size ten utilized in this research is expected to provide reasonably good statistical estimations from the analyses presented herein. All the results were presented in a compact format and can thus be easily incorporated into the joint complex regions of the currently existing multisegmented models of the total human body.

From a safety design point of view, the maximal forced sinus data presented in this work can be considered as a prelude towards establishment of a criterion for the impending injury on the joint complexes studied. Any support/restraint or protective device should have the capability of restricting the range of motion of the moving body segment below the maximal forced sinus under most types of external loading conditions.

In conclusion, it is important to point out that biological materials, especially soft tissues, display nonlinear viscoelastic behavior. If we assume that the passive resistive response of the soft tissues in the joint complexes can be modeled similar to the Kelvin viscoelastic material, i.e., elastic and viscous forces are

additive, results presented in this work can lead one to the determination of the elastic component of the passive resistive force (moment) on a particular soft tissue. Thus, the next important research endeavor should be the determination of the velocitydependent viscous component of the passive resistive force (moment) properties.

Subject No.	1	2	3	4	5	6	7	8	9	10
DIMENSIONS (CR)									•	
Weight (Newtons)	800	778	800	689	832	734	801	734	734	690
Stature	175.2	188	175.2	183	173	182	183	180	184	187.6
Shoulder circumference	126.5	127	123.8	113	120.6	114.3	119.5	106.7	113	104.1
Waist circumference	93	86	89	73.7	94	79	98	83.8	81	73.7
Wrist circumference	16.8	18.4	18.9	17.8	17.8	17.8	17.8	17.8	17.8	17.8
Lower arm circumference	31.2	29.9	31.3	26.7	29.8	27.9	28.5	27.9	26.7	24.1
Biceps circumference	35.4	34.3	36.5	26.7	34.9	30.5	30.5	27.9	26.7	25.4
Thigh, upper circumference	61.3	58	56	53.3	58.4	53.3	60	54.6	52	50.8
Thigh, lower circumference	42.5	42	44	.38.1	43.2	43.2	47	38.1	39	39.4
Calf circumference	39.8	37	39.5	34.9	40.6	40.6	42	39.4	36.5	35.6
Ankle circumference	25.4	26.3	26.7	26.7	25.4	26.7	27	25.4	28	25.4
Forearm - wrist length	20.5	23	20.5	25.4	24.1	24	25.4	22.9	25,4	22.9
Shoulder - elbow length	36	40	35.5	33	27.9	34	37	38.1	35.5	37
Shoulder - height, sitting	60	63	59.5	66	62	60	70	58.4	66	64
Shoulder breadth	51	50	50	44	46	45	44	42	46	42
Chest breadth	32	34.5	31	33	33	32	34	33	34	31
Chest depth	28	27	26	24	25	24	26	24	21	18
Waist depth	27	24.5	25	20	24	18	24	21	21	18
Buttock - knee length	61	65.5	61	56	57	60	58	61	59	61
Buttock - popliteal length	49	54	50	55	50	50	52	50	56	57
Knee height, sitting	54	67	55.7	57	53	56	55	58	56	57
Elbow-to-elbow breadth	47	46	50.5	44	51	45	45	43	44	39
Hip breadth, sitting	39	37	38	37	39	35	41	38	37	34
Knee-to-knee breadth, sitting	25	22.5	23	20	23	25	23	23	22	19

APPENDIX A: SELECTED ANTHROPOMETRIC MEASUREMENTS OF TEN SUBJECTS

•

APPENDIX B: COMPUTER PROGRAMS FOR DATA ACQUISITION AND ANALYSIS

The following computer programs were used for the data acquisition and the associated data analysis described in this research work. They are derived from their prototypes used for studying the shoulder complex (Engin and Peindl, 1985), and can be used to study any joint complex as discussed in Chapter 2. Fig. B.1 shows the flowchart for executing these programs. Data acquisition programs include LOCATE, INITLZ, IEEKIN, and FORCIO; data analysis programs include KINF4P, FORCMO, and CALEXP. A brief description for each program is provided below.

- LOCATE: Calculates the direction cosine matrix and origin of the RALD axis system in terms of the sensor assembly axis system. Output from this program is used for determining the fixed-body axis system by both KINF4P and FORCMO.
- INITLZ: Performs the initialization procedure as described in Section 2.2 for the interrelationships between the moving-body axis system and the six emitters on the moving body segment. Output from this program is used for selection of the "most accurate" system by both KINF4P and FORCMO.

Fig. B.1 Flowchart for data acquisition and associated data analysis.

IEEKIN: Collects slant range data from the six emitters on the moving-body segment. This program is used for the joint complex sinus tests in this work, and can also be applied to collect any kind of kinematic data. Data from this program are analyzed by KINF4P.
- FORCIO: Collects slant range data from the six emitters on the moving-body segment and the three emitters on the force applicator. It also collects digital data from the force/moment transducer by means of a FORTRAN-callable macro subroutine OSUATD which exercises the Data Translation DT-1712 Analog-to-Digit converter. Data from this program are analyzed by FORCMO.
- KINF4P: Analyzes the kinematics of a moving-body segment with respect to a fixed-body segment by selecting the "most accurate" axis system on the moving-body segment.
- FORCMO: Analyzes the kinematics (sweeping-type) of the moving-body segment with respect to the fixed-body segment and calculates the passive resistive forces (moments). It requires the input of the coordinates of the best-fitted sphere center obtained by CALEXP.
- CALEXP: Calculates the center and radius of the best-fitted sphere to the joint complex sinus by least-squares method. It also calculates the best-fitted plane to the sinus and then transforms the sinus data into functional relationship with respect to the local joint axis system. Finally, the functional expansion of Eq. (3.2.1) is used to obtain the expansion coefficients for the joint complex sinus.

129

PROGRAM LOCATE

```
С
С
     THIS PROGRAM USES EMITTER DATA FROM THE "RALD" TO
     CALCULATE THE DIRECTION COSINE MATRIX AND ORIGIN OF
С
С
     AN AXIS SYSTEM IN SPACE WITH RESPECT TO THE SENSOR BOARD
С
     AXIS SYSTEM
С
     LOGICAL*1 RECDAT(88,5),TEMP(88)
     LOGICAL*1 FINAME(13)
     DIMENSION RECRD(20), FOINT(4,3), FTAVG(4,3), DEV(4,3)
     DIMENSION AVGPT(4,3), PT1(3), PT2(3), PT3(3), PT4(3), RALDAX(3,3)
     DIMENSION CNTPT(3);OUTPUT(24);V(6;3);A(3);B(3)
     REAL L1,L2
     INTEGER IPARAM(6,5),DSW,IOST(2),IOSB(2),PRLA(6),CMDA(2)
     COMMON /AC/ L1,L2
     DATA IREC/1/CMDA/'_?','%P'/N/O/KDIV/1/PTAVG/12*0.0/
     DATA AVGPT/12*0.0/
С
C
     CREATE & OPEN OUTPUT FILE
3
     WRITE(5,5)
     READ(5,10) (F1NAME(I),I=1,13)
     CALL ASSIGN (1,F1NAME,13)
     DEFINE FILE 1 (2,48,U,IREC)
C
C
     GET THE BUFFER ADDRESSES
C
     CALL GETADR(IPARAM(1,1),RECDAT(1,1))
     CALL GETADR(IPARAM(1,2),RECDAT(1,2))
     CALL GETADR(IPARAM(1,3), RECDAT(1,3))
     CALL GETADR(IPARAM(1,4),RECDAT(1,4))
     CALL GETADR(IPARAM(1,5),RECDAT(1,5))
     IPARAM(2,1)=88
     IFARAM(2,2)=88
     IPARAM(2,3)=88
     IPARAM(2,4)=88
     IPARAM(2,5)=88
C
С
     ATTACH IEEE BUS
C
     CALL WTQIO (*1420,2,1,,IOST,,DSW)
     IF(DSW.NE.1)TYPE *, ' IEEE BUS WILL NOT PICK YOU UP TODAY!'
     IF(DSW.NE.1) GD TO 2000
     IF(IOST(1).NE.1)TYPE *, ' IEEE BUS WILL NOT PICK YOU UP TODAY!'
     IF(IOST(1).NE.1) GO TO 2000
     CALL GETADR (PRLA(1), CMDA(1))
     PRLA(2)=4
Ĉ
C
     SET UP DIGITIZER AS TALKER
С
    CALL WTQIO (*420,2,1,,IOST,PRLA,DSW)
```

IF(DSW.NE.1)TYPE *,' IEEE BUS IS NOT TALKING TODAY!' IF(DSW.NE.1) GO TO 2000 IF(IOST(1).NE.1)TYPE *, ' IEEE BUS IS NOT TALKING TODAY!' IF(IOST(1).NE.1) GO TO 2000 С C READ FIVE SETS OF FOINT VALUES С KOUNT=1 GO TO 30 20 CALL WAITFR(10) CALL GIO(*1000,2,10,,IOSB(1),IPARAM(1,KOUNT),DSW) 30 KOUNT=KOUNT+1 IF(KOUNT.EQ.6) GD TO 50 GO TU 20 CALL WAITFR(10) 50 CALL WTQID(2000,2,1,,IOST,,DSW) CALL CLREF(10) С С CALCULATE THE AVERAGE VALUES FOR THE FOUR POINTS С 55 DO 100 KNT=1,5 KDIV=KNT-N DO 60 II=1,88 TEMP(II)=RECDAT(II,KNT) 60 CONTINUE DECODE (88,300,TEMP) (RECRD(KK),KK=1,20) IF(K.GT.1) GO TO 65 TYPE *, 'SLANT RANGE VALUES FOR FIRST RECORD:' WRITE(5,900)(RECRD(LK),LK=1,20) CALL COORD(RECRD, POINT, KNT) 65 DO 70 JK=1,4 IF(POINT(JK,1),NE.0.0)GD TO 70 WRITE(5,560)KNT N=N+1 IF(N.EQ.2) TYPE *, ' TWO RECORDS CONTAIN ZERO VALUES. ' ,'JOB FAILED!' * IF(N.EQ.2)G0 TO 2000 GO TO 100 70 CONTINUE DO 90 J=1,4 10 80 I=1,3 PTAVG(J,I)=PTAVG(J,I)+POINT(J,I) AVGPT(J,I)=PTAVG(J,I)/KDIV DEV(J,I)=ABS(AVGFT(J,I)-POINT(J,I)) IF(DEV(J,I).LT.0.25) GO TO 80 WRITE(5,540) 80 CONTINUE CONTINUE 90 100 CONTINUE IIO 110 JJ=1,3 PT1(JJ)=AVGPT(1,JJ)

```
PT2(JJ)=AVGPT(2,JJ)
     PT3(JJ)=AVGPT(3,JJ)
     FT4(JJ)=AVGFT(4,JJ)
110 CONTINUE
     DO 111 I=1,3
     V(1,I)=PT2(I)-PT1(I)
     V(2,I)=PT3(I)-PT1(I)
     V(3,I)=PT4(I)-PT1(I)
     V(4,1)=FT3(1)-FT2(1)
     V(5,I)=PT4(I)-PT3(I)
     V(6,1) = PT2(1) - PT4(1)
111 CONTINUE
     DO 112 I=1,6
     V(I,1)=V(I,1)**2+V(I,2)**2+V(I,3)**2
     V(I,1)=SQRT(V(I,1))
112 CONTINUE
С
£
     CALCULATE THE AXIS SYSTEM (RALDAX) AND DRIGIN (CNTPT)
С
     DO 120 I=1,3
     A(I)=PT4(I)-PT2(I)
     B(I)=PT3(I)-FT2(I)
120 CONTINUE
     CALL DRCMAT(A,B,RALDAX)
     DO 130 J=1,3
     CNTFT(J)=FT1(J)-8.491*RALDAX(1.J)
130 CONTINUE
     DO 140 K=1,3
     OUTPUT(K)=PT1(K)
     OUTPUT(K+3)=RALDAX(1,K)
     OUTPUT(K+6)=CNTPT(K)
     OUTPUT(K+9)=PT2(K)
     OUTPUT(K+12)=RALDAX(2,K)
     OUTFUT(K+15)=FT3(K)
     OUTPUT(K+18)=RALDAX(3,K)
     OUTPUT(K+21)=PT4(K)
140 CONTINUE
Ĉ
С
     FLACE INFORMATION IN DATA FILE
С
     WRITE(5,580)
     WRITE(5,600) (OUTPUT(I), I=1,9)
     WRITE(5,700) (OUTPUT(I), I=10,15)
     WRITE(5,700) (OUTFUT(I), I=16,21)
     WRITE(5,800) (OUTPUT(I), I=22,24)
     WRITE(5,820)
     WRITE(5,840)V(1,1),V(4,1),V(2,1),V(5,1),V(3,1),V(6,1)
     WRITE (1'IREC) (OUTPUT(I), I=1,24)
     CLOSE (UNIT=1)
     CALL CLREF(10)
5
     FORMAT('$','Enter the name to be given to the data
```

```
132
```

```
$file [S-13]:')
10
     FORMAT(13A1)
300 FORMAT(4(F1.0,4F5.2,1X))
540 FORMAT('0', 'INACCURATE COORDINATE--DEV, EXCEEDS .25CM')
560 FORMAT('0', RECORD NUMBER: ', 15, CONTAINED ZERO VALUES AND
     $ HAS BEEN DELETED.')
580 FORMAT('0,'T14,'FOINT COORDINATES',T52,'PLATFORM AXES w.r.t.
     $BOARD',T96,'CENTERPOINT (BASE)',/)
600 FORMAT(' ',T10,3(F8.2),T50,3(F9.4),T92,3(F8.2))
700 FORMAT(' ',T10,3(F8.2),T50,3(F9.4))
800 FORMAT(' ',T10,3(F8,2))
820 FORMAT('0',T14,'DIMENSIONAL CHECK'//T5,'LGTH (1-2,1-3,1-4)=4.
     &83cm',T40,'LGTH (2-3,3-4,4-2)=7.67cm',/)
840 FORMAT(' ',T10,'LGTH12=',T18,F5,2,T45,'LGTH23=',T53,F5,2/
     &T10, 'LGTH13=', T18, F5, 2, T45, 'LGTH34=', T53, F5, 2/
     &T10, 'LGTH14=', T18, F5, 2, T45, 'LGTH42=', T53, F5, 2)
900 FORMAT('0',4(F3.0,4F7.2,4X))
2000 STOP
     END
C
C
     SUBROUTINE DRCMAT(A,B,C)
С
С
     THIS SUBROUTINE CALCULATES THE DIRECTION COSINE MATRIX
     FOR AN AXIS SYSTEM BASED ON TWO COPLANAR VECTORS (A and B).
C
     THE RESULTING MATRIX, C, IS ORTHOGONAL AND UNITARY.
С
C
     DIMENSION A(3), B(3), C(3,3)
     AMAG=SQRT(A(1)**2+A(2)**2+A(3)**2)
     BMAG=SQRT(B(1)**2+B(2)**2+B(3)**2)
     C(2,1)=A(1)/AHAG
     C(2,2)=A(2)/AMAG
     C(2,3)=A(3)/AMAG
     C(3,1)=B(1)/BMAG
     C(3,2)=B(2)/BMAG
     C(3,3)=B(3)/BMAG
     C(1,1)=(C(2,2)*C(3,3))-(C(3,2)*C(2,3))
     C(1_{2})=(C(3_{2})*C(2_{3}))-(C(2_{2})*C(3_{3}))
     C(1,3) = (C(2,1) * C(3,2)) - (C(3,1) * C(2,2))
     C(3,1)=(C(1,2)*C(2,3))-(C(2,2)*C(1,3))
     C(3,2)=(C(2,1)*C(1,3))-(C(1,1)*C(2,3))
     C(3,3)=(C(1,1)*C(2,2))-(C(2,1)*C(1,2))
     DO 10 J=1,3
     CMAG=SQRT(C(J,1)**2+C(J,2)**2+C(J,3)**2)
     DO 5 I=1,3
     C(J_{J}I)=C(J_{J}I)/CMAG
     CONTINUE
5
10
     CONTINUE
     RETURN
     END
```

С

```
SUBROUTINE COORD(RC2DAT, FOINT, KNT)
С
     THIS SUBROUTINE COMPUTES THE X,Y,Z COORDINATES FOR THE SPARK
С
     GAPS IN THE BOARD REFERENCE SYSTEM BY PERFORMING CALCULATIONS
C
C
     ON THE SLANT RANGE DATA FROM THE FOUR CORNER MICROPHONES
C
     DIMENSION RC2DAT(20), FOINT(4,3)
     INTEGER CASE, KNT, SW
     REAL L1, L2, K1
     DATA L1/167.75/, L2/111.80/, K1/3.90/
     CASE=0
     J=1
     DO 110 I=1,16,5
     SW=1
     KK=1
     IF(RC2DAT(I+1) .EQ. 0.0) KK=KK+1
     IF(RC2DAT(I+2) .EQ. 0.0) KK=KK+1
     IF(RC2DAT(I+3) .EQ. 0.0) KK=KK+1
     IF(RC2DAT(I+4) .EQ. 0.0) KK=KK+1
     IF(KK.GT.2) GO TO 115
     PA=RC2DAT(I+1)
     PB=RC2DAT(I+2)
     PC=RC2DAT(1+3)
     FD=RC2DAT(I+4)
     IF (PD.GE.PA.AND.PD.GE.PB.AND.PD.GE.PC) CASE=1
     IF(PC.GE.PA.AND.PC.GE.PB.AND.PC.GE.PD) CASE=2
     IF(PB.GE.PA.AND.PB.GE.PC.AND.PB.GE.PD) CASE=3
     IF(PA.GE.PB.AND.PA.GE.PC.AND.PA.GE.PD) CASE=4
     IF(PD .EQ. 0.0) CASE=1
     IF(PC .EQ. 0.0) CASE=2
     IF(PB .EQ. 0.0) CASE=3
     IF(PA .EQ. 0.0) CASE=4
     GD TO (60,70,80,90),CASE
     XC=((PA+K1)**2-((PB+K1)**2)+L1**2)/(2.0*L1)
60
     IF(ABS(XC).GT.ABS(PA+K1)) GO TO 114
     YC=((PA+K1)**2-((PC+K1)**2)+L2**2)/(2.0*L2)
     FF=SQRT((FA+K1)**2-XC**2)
     IF(ABS(YC).GT.PP) GO TO 114
     ZC=SQRT((FF)**2-YC**2)
     GO TO 100
70
    XC=((FA+K1)**2-((FB+K1)**2)+L1**2)/(2.0*L1)
     IF(ABS(XC).GT.ABS(PA+K1)) GO TO 114
     YC=((PB+K1)**2-((PD+K1)**2)+L2**2)/(2.0*L2)
     PP=SQRT((PA+K1)**2-XC**2)
     IF(ABS(YC).GT.PP) GO TO 114
     ZC=SQRT((PP)**2-YC**2)
     GO TO 100
80
    XC=((FC+K1)**2-((FD+K1)**2)+L1**2)/(2.0*L1)
     IF(ABS(XC).GT.ABS(PC+K1)) GO TO 114
```

С

```
YC=((PA+K1)**2-((PC+K1)**2)+L2**2)/(2.0*L2)
```

```
PP=S0RT((PC+K1)**2-XC**2)
     YCCOMP=L2-YC
     IF(ABS(YCCOMP).GT.PP) GO TO 114
     ZC=SQRT((PP)**2-YCCOMP**2)
     GO TO 100
90
     XC=((FC+K1)**2-((FD+K1)**2)+L1**2)/(2.0*L1)
     IF(ABS(XC).GT.ABS(PC+K1)) GO TO 114
     YC=((FB+K1)**2-((FD+K1)**2)+L2**2)/(2.0*L2)
     PP=SQRT((PC+K1)**2-XC**2)
     YCCOMP=L2-YC
     IF(ABS(YCCOMP).GT.PP) GO TO 114
     ZC=SQRT((PP)**2-YCCOMP**2)
100 FOINT(J,1)=XC
     POINT(J,2)=YC
     FOINT(J,3)=ZC
     J=J+1
     GO TO 110
114 SW=-1
     WRITE(5,200)J,KNT
200 FORMAT('0', 'SPARKER', 14, ' IN REC.', 13, ' INVALID')
115 POINT(J,1)=0.0
     FOINT(J,2)=0.0
     POINT(J,3)=0.0
     J=J+1
     IF(SW .EQ. -1)GO TO 110
     WRITE(5,130)J,KNT
130 FORMAT('0', 'SPARKER', 14, ' IN REC. ', 13, ' IS ZERO')
110 CONTINUE
    RETURN
     END
```

.

PROGRAM INITLZ

```
С
С
     THIS FROGRAM SPECIFIES THE INITIAL POSITIONING OF THE ARM
C
     CUFF WITH RESPECT TO THE HUMERUS. IT CALCULATES THE JOINT
C
     CENTER, LONG BONE AXIS, AND HUMERAL AXIS SYSTEM WITH RESPECT
      TO ALL THE AXIS SYSTEMS WHICH CAN BE OBTAINED BY THE VARIOUS
С
     COMBINATIONS OF THREE CUFF EMITTERS. IT ALSO ESTABLISHES A
C
     CRITERION FOR THE CHOICE OF THE THREE POINTS BY MEANS OF
С
C
     INTER-EMITTER DISTANCES AND AXIS SYSTEM SKEW ANGLES.
С
     LOGICAL*1 RECDAT(198,5),TEMP(198)
     LOGICAL*1 F1NAME(13)
     DIMENSION RECRD(45), POINT(9,3), PTAVG(9,3), DEV(9,3)
     DIMENSION AUGPT(9,3), VECMAG(15), COSMAT(60,3)
     DIMENSION DRCOS(3,3), NVEC(20,4), LBVEC(3), JNTVEC(20,3)
     DIMENSION JTVEC(5,3),H1(3),H2(3),H3(3),HUMAX(3,3),HUMDRC(60,3)
     DIMENSION TEMP2(3,3),F1(3),G1(3),V(5,4)
     REAL LBVEC, JTVEC, JNTVEC, LBMAG, L1, L2
     INTEGER IPARAM(6,5), DSW, IOST(2), IOSB(2), PRLA(6), CMDA(2)
     DATA IREC/1/CMDA/(_?(,'%P'/N/0/KDIV/1/PTAVG/27*0.0/
     DATA AVGPT/27#0.0/JTVEC/15#0.0/
     DATA NVEC/1,1,1,1,2,2,2,2,3,3,4,6,6,6,7,7,8,10,10,11,13,6,7,8,9
     8,10,11,12,13,14,15,10,11,12,13,14,15,13,14,15,15,2,3,4,5,3,4,5,
     84,5,5,7,8,9,8,9,9,11,12,12,14,2,2,2,2,3,3,3,4,4,5,3,3,3,4,4,5,4
     2,4,5,5/
     COMMON /AC/ VEC(15,3)
С
С
     CREATE & OPEN OUTPUT FILE
C
     WRITE(5,5)
     READ(5,10) (F1NAME(I),I=1,13)
     CALL ASSIGN (1,F1NAME,13)
     DEFINE FILE 1 (876,2,U, IREC)
C
С
     GET THE BUFFER ADDRESSES
С
     CALL GETADR(IPARAM(1,1), RECDAT(1,1))
     CALL GETADR(IPARAM(1,2),RECDAT(1,2))
     CALL GETADR(IPARAM(1,3),RECDAT(1,3))
     CALL GETADR(IFARAM(1,4), RECDAT(1,4))
     CALL GETADR(IPARAM(1,5), RECDAT(1,5))
     IPARAM(2,1)=198
     IFARAM(2,2)=198
     IFARAM(2,3)=198
     IFARAM(2,4)=198
     IPARAM(2,5)=198
С
С
     ATTACH IEEE BUS
C
     CALL WTQIO (*1420,2,1,,IOST,,DSW)
     IF(DSW.NE.1)TYPE *, ' IEEE BUS IS NOT ATTACHED!'
```

```
IF(DSW.NE.1) GO TO 2000
      IF(IOST(1).NE.1)TYPE *, / IEEE BUS IS NOT ATTACHED! /
      IF(IOST(1).NE.1) GO TO 2000
     CALL GETADR (PRLA(1), CMDA(1))
     PRLA(2)=4
С
     SET UP DIGITIZER AS TALKER
3
С
     CALL WTQIO (*420,2,1,,IOST,PRLA,DSW)
     IF(DSW.NE.1)TYPE *, ' DIGITIZER IS NOT TALKING!'
     IF(DSW.NE.1) GD TO 2000
     IF(IOST(1),NE,1)TYPE *, ' DIGITIZER IS NOT TALKING!'
     IF(IOST(1).NE.1) GO TO 2000
С
С
     READ FIVE SETS OF NINE POINT VALUES
С
     KOUNT=1
     GO TO 30
20
     CALL WAITFR(10)
30
     CALL QIO(*1000,2,10,,IOSB(1),IFARAM(1,KOUNT),DSW)
     KOUNT=KOUNT+1
     IF(KOUNT.EQ.6) GO TO 50
     GO TO 20-
     CALL WAITFR(10)
50
     CALL WTQID(*2000,2,1,,IOST,,DSW)
     CALL CLREF(10)
С
     CALCULATE THE AVERAGE VALUES FOR THE NINE POINTS
С
Ĉ
55
     DO 100 KNT=1,5
     KDIV=KNT-N
     DO 60 II=1,198
     TEMP(II)=RECDAT(II,KNT)
     CONTINUE
60
     DECODE (198,300,TEMP) (RECRD(KK),KK=1,45)
     WRITE(5,1003) KNT, (RECRD(KK), KK=1,20)
     WRITE(5,1004)(RECRD(KK),KK=21,45)
     CALL COORD (RECRD, POINT, SW, KNT)
     10 70 JK=1,9
     IF(POINT(JK,1).NE.0.0) GO TO 70
     WRITE(5,560) KNT
     N=N+1
     IF(N.EQ.2)TYPE *,' TWO SWEEPS CONTAIN ZERO VALUES, JOB FAILED!'
     IF(N.EQ.2) 60 TO 2000
     GO TO 100
     CONTINUE
70
     IIO 90 J=1+9
     DO 80 I=1,3
     FTAVG(J,I)=PTAVG(J,I)+POINT(J,I)
     AVGPT(J,I)=PTAVG(J,I)/KDIV
     DEV(J,I)=ABS(AVGPT(J,I)-POINT(J,I))
```

```
IF(DEV(J,I).LT.0.25) GO TO 80
     WRITE(5,540)
80
     CONTINUE
90
     CONTINUE
100 CONTINUE
     WRITE(5,3)
3
     FORMAT('0')
     TYPE ** AVERAGE COORDINATES W.R.T. SENSOR BOARD: '
     TYPE *,'
                                      Х
                                                      Y
     TYPE *, ' '
     DO 101 I=1,9
     TYPE *, ' SPARKER #', I, (AVGPT(I, J), J=1,3)
101 CONTINUE
     DO 1001 I=1,3
     V(1,I)=AVGPT(2,I)-AVGPT(1,I)
     V(2,I) = AVGPT(4,I) - AVGPT(3,I)
     V(3,I) = AVGPT(6,I) - AVGPT(5,I)
     V(4,I)=AVGPT(8,I)-AVGPT(7,I)
     V(5,I)=AVGPT(9,I)-AVGPT(8,I)
1001 CONTINUE
     DO 1002 I=1,5
     V(I,4)=SQRT(V(I,1)**2+V(I,2)**2+V(I,3)**2)
1002 CONTINUE
     WRITE(5,800)
     WRITE(5,801)V(1,4),V(2,4),V(3,4),V(4,4),V(5,4)
С
С
     CALCULATE THE 20 POSSIBLE VECTOR TRIADS FOR THE
     VARIOUS COMBINATIONS OF 3 CUFF EMITTERS
С
3
     1ST, CALCULATE ALL THE VECTORS
С
     KK=1
     L=1
102 JJ=L+1
     IID 104 M=JJ+6
     VEC(KK,1)=AVGPT(M,1)-AVGPT(L,1)
     VEC(KK,2)=AVGPT(M,2)-AVGPT(L,2)
     VEC(KK,3)=AVGPT(M,3)-AVGPT(L,3)
     KK=KK+1
104 CONTINUE
     L=L+1
     IF(L.LT.6)G0 TO 102
C
С
     DO 105 I=1,15
     VECMAG(I)=VEC(I,1)**2+VEC(I,2)**2+VEC(I,3)**2
     VECMAG(I)=SQRT(VECMAG(I))
105 CONTINUE
     DO 109 I=1,15
     DO 108 J=1,3
     VEC(I,J)=VEC(I,J)/VECMAG(I)
108 CONTINUE
```

```
Z'
```

138

```
109 CONTINUE
С
С
     CALCULATE THE POSSIBLE AXIS SYSTEMS
С
     КК=0
     DO 150 M=1,20
     K=NVEC(M+1)
     L=NVEC(M,2)
     CALL DRCMAT(K,L,DRCOS)
     IIO 140 J=1,3
     DO 130 N=1,3
     COSMAT(KK+J,N)=DRCOS(J,N)
130 CONTINUE
140 CONTINUE
     KK=KK+3
150 CONTINUE
C
C
     CALCULATE THE JOINT CENTER, WHICH IS LOCATED AT
С
     THE CENTER OF SPARKER 7 & 8, AND STORE IT IN AVGPT(7,1)
Ĉ
     DO 145 I=1,3
145 AVGPT(7,I)=(AVGPT(7,I)+AVGPT(8,I))/2.0
С
С
     CALCULATE THE VECTORS FROM THE ORIGINS OF THE VARIOUS
Ē.
     AXIS SYSTEMS TO THE JOINT CENTER
C
     NO 180 I=2,5
     JTVEC(I,1)=AVGPT(7,1)-AVGPT(I,1)
     JTVEC(I,2)=AVGPT(7,2)-AVGPT(I,2)
     JTVEC(1,3)=AVGFT(7,3)-AVGFT(1,3)
180 CONTINUE
C
С
     CALCULATE THE HUMERAL AXIS SYSTEM
С
     DO 181 I=1,3
     H3(I)=AVGPT(9,I)-AVGPT(7,I)
     H2(I)=AVGPT(8,I)-AVGPT(7,I)
181 CONTINUE
     CALL CROS(H2,H3,H1)
     DO 182 I=1,3
     HUMAX(1,I) = H1(I)
     HUMAX(2,I)=H2(I)
182 HUMAX(3,I)=H3(I)
C
С
     CALCULATE EACH JOINT CENTER AND HUMERAL AXIS SYSTEM IN TERMS
     OF EACH LOCAL AXIS SYSTEM
С
С
     K=0
     CALL MINV(HUMAX, 3, D, F1, G1)
     DO 190 I=1,20
     DO 185 J=1,3
```

```
DRCOS(J,1)=COSMAT(K+J,1)
     DRCOS(J;2)=COSMAT(K+J;2)
     DRCOS(J,3)=COSMAT(K+J,3)
185 CONTINUE
     L=NVEC(I,4)
     JNTVEC(I,1)=DRCOS(1,1)*JTVEC(L,1)+DRCOS(1,2)*JTVEC(L,2)+
     &DRCOS(1,3)*JTVEC(L,3)
     JNTVEC(1,2)=DRCOS(2,1)*JTVEC(L,1)+DRCOS(2,2)*JTVEC(L,2)+
     &DRCOS(2,3)*JTVEC(L,3)
     JNTVEC(I,3)=DRCOS(3,1)*JTVEC(L,1)+DRCOS(3,2)*JTVEC(L,2)+
     &DRCOS(3,3)*JTVEC(L,3)
     CALL GMPRD(DRCOS, HUMAX, TEMP2, 3, 3, 3)
     DO 187 J=1,3
     HUMDRC(K+1,J)=TEMP2(J,1)
     HUMDRC(K+2,J)=TEMP2(J,2)
187 HUMDRC(K+3,J)=TEMP2(J,3)
     K=K+3
190 CONTINUE
С
C
     WRITE DATA TO DATA FILE
С
     DO 750 I=1+6
     DO 749 J=1,3
     WRITE(1'IREC)AVGPT(I,J)
749 CONTINUE
750 CONTINUE
     DO 760 I=1,60
     DO 759 J=1,3
     WRITE(1'IREC)COSMAT(I,J)
759 CONTINUE
760 CONTINUE
     DO 780 I=1,20
     IO 779 J=1,3
     WRITE(1'IREC)JNTVEC(I,J)
779 CONTINUE
780 CONTINUE
     DO 790 I=1,60
     DO 789 J=1,3
     WRITE(1'IREC)HUMDRC(I,J)
789 CONTINUE
790 CONTINUE
C
Û
     CLOSE (UNIT=1)
C
С
C
     CALL CLREF(10)
    FORMAT('$','Enter the name to be siven to the data
5
     $file [S-13]:')
10
    FORMAT(13A1)
```

```
300 FORMAT(9(F1.0,4F5.2,1X))
540 FORMAT('0', 'INACCURATE COORDINATE--DEV. EXCEEDS .25CM')
560 FORMAT('0', 'RECORD NUMBER: ', 15, ' CONTAINED ZERO VALUES AND
     $ HAS BEEN DELETED.')
800 FORMAT('0', 'DIMENSIONAL CHECK--LGTH(1-2)=9.48cm', T50, 'LGTH
     &(3-4)=9.58cm',T80,'LGTH(5-6)=9.52cm',T110,'LGTH(7-8)=21.92CM',
      &T140, 'LGTH(8-9)=15.10CM')
801 FORMAT('0', T5, 'CALCULATED LENGTHS:=', T30, F5.2, T59, F5.2, T89,
      &F5.2,T120,F5.2,T150,F5.2)
1003 FORMAT('0', 'RECORD(SWEEF) NO.', 12/1X, 4(F3.0, 4F7.2, 2X))
1004 FORMAT(' ',5(F3.0,4F7.2,2X))
2000 STOP
     END
С
С
     SUBROUTINE COORD(RC2DAT, POINT, SW, KOUNT)
С
С
     THIS SUBROUTINE COMPUTES THE X,Y,Z COORDINATES FOR THE SPARK
С
     GAPS IN THE BOARD REFERENCE SYSTEM BY PERFORMING CALCULATIONS
С
     ON THE SLANT RANGE DATA FROM THE FOUR CORNER MICROPHONES
С
     DIMENSION RC2DAT(45), POINT(9,3)
     INTEGER CASE, KOUNT, SW
     REAL L1,L2,K1
     DATA L1/167.75/, L2/111.80/, K1/3.90/
     CASE=0
     J=1
     DO 110 I=1,41,5
     SW=1
     KK = 1
     IF(RC2DAT(I+1) .EQ. 0.0) KK=KK+1
     IF(RC2DAT(I+2) .EQ. 0.0) KK=KK+1
     IF(RC2DAT(I+3) .EQ. 0.0) KK=KK+1
     IF(RC2DAT(I+4) .EQ. 0.0) KK=KK+1
     IF(KK.GT.2) GO TO 115
     PA=RC2DAT(I+1)
     PB=RC2DAT(1+2)
     PC=RC2DAT(I+3)
     FII=RC2DAT(I+4)
     IF(PD.GE.FA.AND.PD.GE.PB.AND.PD.GE.PC) CASE=1
     IF(PC.GE.PA.AND.PC.GE.PB.AND.PC.GE.PD) CASE=2
     IF(PB.GE.FA.AND.PB.GE.FC.AND.PB.GE.PD) CASE=3
     IF(PA.GE.PB.AND.PA.GE.PC.AND.PA.GE.PD) CASE=4
     IF(FD .EQ. 0.0) CASE=1
     IF(PC .EQ. 0.0) CASE=2
    IF(FB .EQ. 0.0) CASE=3
    IF(PA .EQ. 0.0) CASE=4
    GO TO (60,70,80,90), CASE
    XC=((PA+K1)**2-((PB+K1)**2)+L1**2)/(2.0*L1)
60
    IF(ABS(XC),GT,ABS(PA+K1)) GO TO 114
    YC=((PA+K1)**2-((PC+K1)**2)+L2**2)/(2.0*L2)
```

FF=SQRT((FA+K1)**2-XC**2) IF(ABS(YC).GT.PP) GO TO 114 ZC≈SQRT((PP)**2-YC**2) GO TO 100 XC=((FA+K1)**2-((FB+K1)**2)+L1**2)/(2.0*L1) 70 IF(ABS(XC).GT.ABS(PA+K1)) GO TO 114 YC=((PB+K1)**2-((PD+K1)**2)+L2**2)/(2.0*L2) PP=SQRT((PA+K1)**2-XC**2) IF(ABS(YC),GT,FP) GO TO 114 ZC=SQRT((PP)**2-YC**2) GO TO 100 80 XC=((PC+K1)**2-((PD+K1)**2)+L1**2)/(2.0*L1) IF(ABS(XC).GT.ABS(PC+K1)) GO TO 114 YC=((PA+K1)**2-((PC+K1)**2)+L2**2)/(2.0*L2) PP=SQRT((PC+K1)**2-XC**2) YCCOMP=L2-YC IF(ABS(YCCOMP).GT.PP) GO TO 114 ZC=SQRT((FP)**2-YCCOMP**2) GO TO 100 90 XC=((FC+K1)**2-((FD+K1)**2)+L1**2)/(2.0*L1) IF(ABS(XC),GT,ABS(PC+K1)) GO TO 114 YC=((FB+K1)**2-((FD+K1)**2)+L2**2)/(2.0*L2) PP=SQRT((PC+K1)**2-XC**2) YCCOMP=L2-YC IF(ABS(YCCOMP).GT.PP) GO TO 114 ZC=SQRT((PF)**2-YCCOMP**2) 100 FOINT(J,1)=XC POINT(J,2)=YC FOINT(J,3)=ZCGO TO 117 114 SW=-1 WRITE(5,200)RC2DAT(I),KOUNT 200 FORMAT('0', 'SPARKER', F3.0, ' IN REC.', I3, ' INVALID') 115 FOINT(J,1)=0.0 FOINT(J,2)=0.0 F0INT(J,3)=0.0 IF(SW .EQ. -1)GO TO 117 WRITE(5,130)RC2DAT(I),KOUNT 130 FORMAT('0', 'SPARKER', F3.0, ' IN REC. ', I3, ' IS ZERO') 117 J=J+1 110 CONTINUE RETURN END С SUBROUTINE CROS(A,B,C) C THIS SUBROUTINE CALCULATES A UNIT VECTOR (C) WHICH IS PERPEN-C DICULAR TO THE PLANE CONTAINING THE VECTORS A AND B. NOTE С С THAT THE VECTORS A AND B ARE RETURNED AS UNIT VECTORS! C DIMENSION A(3), B(3), C(3)

```
AMAG=SQRT(A(1)**2+A(2)**2+A(3)**2)
     BMAG=SQRT(B(1)**2+B(2)**2+B(3)**2)
     A(1)=A(1)/AMAG
     A(2)=A(2)/AMAG
     A(3)=A(3)/AMAG
     B(1)=B(1)/BMAG
     B(2)=B(2)/BMAG
     B(3)=B(3)/BMAG
     C(1)=(A(2)*B(3))-(B(2)*A(3))
     C(2)=(A(3)*B(1))-(B(3)*A(1))
     C(3) = (A(1) * B(2)) - (B(1) * A(2))
     RETURN
     END
С
     SUBROUTINE DRCMAT(K,L,C)
С
     THIS SUBROUTINE CALCULATES THE DIRECTION COSINE MATRIX
C
C
     FOR AN AXIS SYSTEM BASED ON TWO COPLANAR VECTORS (SPECIFIED
C
     BY K and L). THE RESULTING MATRIX, C, IS ORTHOGONAL AND
С
     UNITARY.
С
     DIMENSION A(3), B(3), C(3,3)
        INTEGER KIL
     COMMON /AC/ VEC(15,3)
C
     DO 2 I=1,3
     A(I)=VEC(K,I)
     B(I)=VEC(L,I)
2
     CONTINUE
     AMAG=SQRT(A(1)**2+A(2)**2+A(3)**2)
     BMAG=SORT(B(1)**2+B(2)**2+B(3)**2)
     C(1,1)=A(1)/AMAG
     C(1,2)=A(2)/AMAG
     C(1,3)=A(3)/AMAG
     C(2,1)=B(1)/BMAG
     C(2,2)=B(2)//MAG
     C(2,3) = B(3) / BMAG
     C(3,1)=(C(1,2)*C(2,3))-(C(2,2)*C(1,3))
     C(3_{2})=(C(1_{3})*C(2_{1}))-(C(2_{3})*C(1_{1}))
     C(3,3)=(C(1,1)*C(2,2))-(C(2,1)*C(1,2))
     C(2,1)=(C(3,2)*C(1,3))-(C(1,2)*C(3,3))
     C(2,2)=(C(3,3)*C(1,1))-(C(3,1)*C(1,3))
     C(2,3)=(C(3,1)*C(1,2))-(C(1,1)*C(3,2))
     IO 10 J=1,3
     CMAG=SQRT(C(J,1)**2+C(J,2)**2+C(J,3)**2)
     10 5 I=1,3
     C(J,I)=C(J,I)/CMAG
     CONTINUE
5
10
     CONTINUE
     RETURN
     END
```

```
143
```

PROGRAM IEEKIN

```
С
C
     THIS PROGRAM COLLECTS THE SLANT RANGE VALUES FROM THE SONIC
C
     DIGITIZER FOR SIX EMITTERS USING THE IEE-488 INTERFACE. THIS
С
     DATA IS USED FOR KINEMATIC ANALYSIS OF THE MOVING BODY SEGMENT.
С
     DIMENSION OUTPUT(5,30), RECORD(24)
     DIMENSION ONEREC(30)
     VIRTUAL BIGBUF(1000,24)
     LOGICAL*1 TRANS(660)
     LOGICAL*1 RECDAT(660,2)
     LOGICAL*1 FNAME(13)
     INTEGER IPARAM(6,2), IOSB(2,2), FRLA(6), CHECK2
     INTEGER IPARM(6), IOSTOP(2), DSW, CMDA(2)
     INTEGER COLUMN, TEST(1), CHECK, SW, KOUNT, IOST(2)
     DATA TEST/-1/CHECK/0/COLUMN/1/KOUNT/0/
     DATA CMDA//_?/, '%P'/
     DATA MODE/1/LMODE/2/KREC/1/
С
С
     INFUT DATA FILENAME AND # OF RECORDS
С
     WRITE(5,4)
     WRITE(5,5)
     READ(5,10) (FNAME(I), I=1,13)
     WRITE(5,15)
     READ (5,20) NREC
     NDIV=NREC/5
С
C
     OPEN TEMPORARY DATA FILE FOR INCOMING SLANT RANGE DATA
С
     OPEN (UNIT=1, TYPE='SCRATCH', FORM='UNFORMATTED')
С
C
     GET THE BUFFER ADDRESSES
Ũ
     CALL GETADR(IPARAM(1,1),RECDAT(1,1))
     CALL GETADR(IPARAM(1,2),RECDAT(1,2))
     IFARAM(2,1)=660
     IPARAM(2,2)=660
     CALL GETADR(IPARM(1), TEST(1))
     IPARM(2)=1
C
C
     ATTACH IEEE BUS
C
     CALL WTQIO (*1420,2,1,,IOST,,DSW)
     IF(DSW.NE.1) TYPE *, ' IEEE BUS WILL NOT PICK YOU UP TODAY! '
     IF(DSW.NE.1) GD TO 2000
     IF(IOST(1).NE.1) TYPE ** IEEE BUS WILL NOT FICK YOU UP TODAY! '
     IF(IOST(1).NE.1) GO TO 2000
     CALL GETADR (PRLA(1), CMDA(1))
     PRLA(2)=4
С
```

```
0
     SET UP DIGITIZER AS TALKER
C
     CALL WTQIO ("420,2,1,,IOST,PRLA,DSW)
     IF(DSW.NE.1) TYPE *, TIEEE BUS IS NOT TALKING TODAY! "
     IF(DSW.NE.1) GO TO 2000
     IF(IOST(1).NE.1) TYPE *, ' IEEE BUS IS NOT TALKING TODAY! '
     IF(IOST(1).NE.1) GO TO 2000
С
С
     QUEUE THE FIRST I/O
С
     CALL GIO(*1000,2,10,,IDSB(1,1),IPARAM(1,1),DSW)
С
С
     INITIALIZE THE NUMBER OF RECORDS TRANSFERRED
С
100 NMODE=MODE
     MODE=LMODE
     LMODE=NMODE
С
С
     WAIT FOR THE BUFFER TO FILL
С
     CALL WAITFR(10)
     CALL QID(*1000,2,10,,IOSB(1,MODE),IPARAM(1,MODE),DSW)
     IF(CHECK .EQ. NDIV)GO TO 1200
     WRITE(1)(RECDAT(I,LMODE),I=1,660)
С
С
     INCREMENT THE NUMBER OF RECORDS
С
     COLUMN=COLUMN+1
     CHECK=COLUMN-1
     GOTO 100
1200 CHECK2=CHECK#5
     WRITE(5,45)CHECK2
С
С
     READ SLANT RANGE DATA FROM DISK AND CONVERT TO
Ũ
     X,Y,Z COORDINATES
Ċ,
    REWIND 1
С.
     DO 980 K=1, CHECK
     READ(1)(TRANS(I), I=1,660)
     DECODE (660,530,TRANS)((OUTPUT(J,KK),KK=1,30),J=1,5)
     IF(K.NE.CHECK) GO TO 901
     TYPE *, 'SLANT RANGE DATA FOR FINAL RECORD:'
     WRITE(5,1010)(OUTPUT(5,LL),LL=1,15)
     WRITE(5,1015)(OUTPUT(5,LL),LL=16,30)
901 IF(K.GT.1) GO TO 902
     TYPE *, 'SLANT RANGE DATA FOR FIRST RECORD:'
     WRITE(5,1010)(OUTPUT(1,LL),LL=1,15)
     WRITE(5,1015)(OUTPUT(1,LL),LL=16,30)
902 DO 960 II=1,5
    DO 910 JJ=1,30
```

```
ONEREC(JJ)=OUTPUT(II,JJ)
910 CONTINUE
         CALL COORD(ONEREC, RECORD, SW, KOUNT)
         IF(KOUNT .GT. 0) GOTO 920
         WRITE(5,535) (FNAME(I),I=1,13)
         WRITE(5,540) (RECORD(I), I=1,20)
         WRITE(5,545) (RECORD(1),1=21,24)
 920 D0 930 J=1,24
      BIGBUF((KOUNT+1),J)=RECORD(J)
930 CONTINUE
        DD 940 1=1,30
              ONEREC(I)=0.0
940
        CONTINUE
        IIO 950 I=1,24
        RECORD(I)=0.0
950
        CONTINUE
        KOUNT=KOUNT+1
960 CONTINUE
        DO 970 I=1,660
              TRANS(I)=' '
970
        CONTINUE
980 CONTINUE
1500 CLOSE (UNIT=1)
Ũ
3
     OPEN DATA FILE FOR CONVERTED DATA AND WRITE
С
     EMITTER COORDINATE DATA TO DISK
C
     CALL ASSIGN (1, FNAME, 13)
     DEFINE FILE 1 (NREC, 48, U, KREC)
     DO 1550 I=1,NREC
     WRITE(1'KREC)(BIGBUF(I,J),J=1,24)
1550 CONTINUE
     CLOSE (UNIT=1)
     CALL WTQIO(*2000,2,1,,IOST,,DSW)
     WRITE(5,555) (FNAME(I), I=1,13), KOUNT
     CALL CLREF(10)
     FORMAT('0', 'NOTE: Maximum allowable # of records is 1000!
4
     & (approx, 108 seconds)',/,' Records must be allocated in
     % increments of 5!';//)
     FORMAT('$','Enter the name to be siven to the data file [S-13]: ')
5
10
     FORMAT(13A1)
     FORMAT('$','Enter the number of records (disitizer sweeps) to b
15
     $e allocated to the data file [N-5]: ')
20
     FORMAT(IS)
     FORMAT('0', 'SUCCESS.', I6, ' SWEEPS RECORDED IN TEMPORARY FILE.')
45
530 FORMAT(30(F1.0,4F5.2,1X))
535 FORMAT('0', 'PROCESSED DATA FOR FILE: ',13A1)
540 FORMAT('0',5(F3.0,3F7.2))
545 FORMAT('0',1(F3,0,3F7,2))
555 FORMAT('0', 'DATA WRITTEN TO DISK. ', 13A1, 'CONTAINS', 15, ' RECORD
     $5.')
```

```
560 FORMAT('0', 'RECORD NUMBER: ', 15, ' CONTAINED ZERO VALUES AND
      $ HAS BEEN DELETED.')
1010 FORMAT('0',3(F3.0,4F7.2,4X))
1015 FORMAT(' ',3(F3.0,4F7.2,4X))
2000 STDP
     END
     SUBROUTINE COORD(RC2DAT,RC3DAT,SW,KOUNT)
С
С
     THIS SUBROUTINE COMPUTES THE X,Y,Z COORDINATES FOR THE SPARK
С
     GAPS IN THE BOARD REFERENCE SYSTEM BY PERFORMING CALCULATIONS
С
     ON THE SLANT RANGE DATA FROM THE FOUR CORNER MICROPHONES
C
     DIMENSION RC2DAT(30), RC3DAT(24)
     INTEGER CASE, KOUNT, SW
     REAL L1,L2,K1
     DATA L1/167.75/, L2/111.80/, K1/3.90/
     CASE=0
     К≈0
     DO 110 I=1,26,5
     S₩=1
     KK=1
     IF(RC2DAT(I+1) .EQ. 0.0) KK=KK+1
     IF(RC2DAT(I+2) .EQ. 0.0) KK=KK+1
     IF(RC2DAT(I+3) .ER. 0.0) KK=KK+1
     IF(RC2DAT(I+4) .EQ. 0.0) KK=KK+1
     IF(KK.GT.2) GO TO 115
     PA=RC2DAT(I+1)
     FB=RC2DAT(1+2)
     PC=RC2DAT(I+3)
     PD=RC2DAT(I+4)
     IF(PD.GE.PA.AND.PD.GE.PB.AND.PD.GE.PC) CASE=1
     IF(PC.GE.PA.AND.PC.GE.PB.AND.PC.GE.PD) CASE=2
     IF(PB.GE.PA.AND.PB.GE.PC.AND.PB.GE.PD) CASE=3
     IF(PA.GE.PB.AND.PA.GE.PC.AND.PA.GE.PD) CASE=4
     IF(PD .EQ. 0.0) CASE=1
     IF(FC .EQ. 0.0) CASE=2
     IF(PB .EQ. 0.0) CASE=3
     IF(PA ,EQ. 0.0) CASE=4
    GO TO (60,70,80,90), CASE
    XC=((PA+K1)**2-((PB+K1)**2)+L1**2)/(2.0*L1)
60
    IF(ABS(XC).GT.ABS(FA+K1)) GO TO 114
    YC=((PA+K1)**2-((PC+K1)**2)+L2**2)/(2.0*L2)
    FF=SQRT((FA+K1)**2-XC**2)
     IF(ABS(YC).GT.PP) GO TO 114
    ZC=SQRT((PF)**2-YC**2)
    GO TO 100
    XC=((PA+K1)**2-((PB+K1)**2)+L1**2)/(2.0*L1)
70
    IF(ABS(XC).GT,ABS(PA+K1)) GO TO 114
    YC=((PB+K1)**2-((PD+K1)**2)+L2**2)/(2.0*L2)
    PP=SQRT((PA+K1)**2-XC**2)
    IF(ABS(YC).GT.PP) GO TO 114
```

```
147
```

ZC=SQRT((PP)**2-YC**2) GO TO 100 80 XC=((PC+K1)**2-((PD+K1)**2)+L1**2)/(2.0*L1) IF(ABS(XC).GT.ABS(PC+K1)) GO TO 114 YC=((PA+K1)**2-((PC+K1)**2)+L2**2)/(2.0*L2) PP=SQRT((PC+K1)**2-XC**2) YCCOMP=L2-YC IF(ABS(YCCOMF).GT.PP) GO TO 114 ZC=SQRT((PP)**2-YCCOMP**2) GO TO 100

- 90 XC=((FC+K1)**2-((PD+K1)**2)+L1**2)/(2.0*L1) IF(ABS(XC).GT.ABS(PC+K1)) G0 T0 114 YC=((PB+K1)**2-((PD+K1)**2)+L2**2)/(2.0*L2) FP=SQRT((PC+K1)**2-XC**2) YCCOMP=L2-YC IF(ABS(YCCOMF).GT.FF) G0 T0 114 ZC=SQRT((PP)**2-YCCOMP**2)
- 100 RC3DAT(I-K)=RC2DAT(I) RC3DAT(I-K+1)=XC RC3DAT(I-K+2)=YC RC3DAT(I-K+3)=ZC GO TO 117

114 SW=-1
 WRITE(5,200)RC2DAT(I),KOUNT
200 FORMAT('0','SPARKER',F3.0,' IN REC.',I3,' INVALID')
115 RC3DAT(I-K)=RC2DAT(I)

- RC3DAT(I-K+1)=0.0 RC3DAT(I-K+2)=0.0 RC3DAT(I-K+3)=0.0 IF(SW .EQ. -1)GO TO 117 WRITE(5,130)RC3DAT(I-K),KOUNT 130 FORMAT('0','SPARKER',F3.0,' IN REC.',I3,' IS ZERO')
- 117 K=K+1
- 110 CONTINUE RETURN END

>

PROGRAM FORCIO

```
С
С
      THIS PROGRAM COLLECTS THE SLANT RANGE VALUES FROM THE SONIC
С
      DIGITIZER AND SIX CHANNELS FROM THE A-TO-D BOARD AND USES
С
         THE IEEE-488 INTERFACE. THIS DATA IS USED FOR FORCED
С
         KINEMATIC ANALYSIS OF THE MOVING BODY SEGMENT.
Ũ
     DIMENSION OUTPUT(45), RECORD(33)
      VIRTUAL BIGBUF(198,156),ATDDAT(6,156)
     LOGICAL*1 BIGBUF, TRANS(198)
     LOGICAL*1 RECDAT(198,2)
     LOGICAL*1 FNAME(13)
      INTEGER IFARAM(6,2), IOSB(2,2), PRLA(6), CHKMN1
      INTEGER IPARM(6), IOSTOP(2), DSW, CMDA(2)
     DIMENSION SUM(6,2), ATDOUT(6)
     INTEGER COLUMN, TEST(1), CHECK, SW, KOUNT, IOST(2)
     INATA TEST/~1/CHECK/0/COLUMN/1/KOUNT/0/
     DATA IREC/1/CMDA/1_?','%P'/
     DATA MODE/1/LMODE/2/
С
С
     CREATE & OPEN OUTPUT FILE
C
     TYPE *, NOTE: The maximum number of records allowable is 155.'
     TYPE **
                     This is approx. 19.5 seconds.'
     WRITE(5,5)
     REAB(5,10) (FNAME(I),I=1,13)
     WRITE(3,15)
     READ (5,20) NREC
     MREC=NREC*2
     CALL ASSIGN (1, FNAME, 13)
     DEFINE FILE 1 (MREC, 66, U, IREC)
С
С
     GET THE BUFFER ADDRESSES
С
     CALL GETADR(IPARAM(1,1), RECDAT(1,1))
     CALL GETADR(IPARAM(1,2),RECDAT(1,2))
     IFARAM(2,1)=198
     IPARAM(2,2)=198
     CALL GETADR(IFARM(1), TEST(1))
     IPARM(2)=1
С
С
     ATTACH IEEE BUS
С
     CALL WTQIO (*1420,2,1,,IOST,,DSW)
     IF(DSW.NE.1) TYPE *, ' IEEE BUS WILL NOT PICK YOU UP TODAY! '
     IF(DSW.NE.1) GO TO 2000
     IF(IOST(1).NE.1) TYPE *, ' IEEE BUS WILL NOT PICK YOU UP TODAY! '
     IF(IOST(1).NE.1) GO TO 2000
     CALL GETADR (PRLA(1), CMDA(1))
     PRLA(2)=4
C
```

```
С
      SET UP DIGITIZER AS TALKER
С
      CALL WTQIO (*420,2,1,,IOST,PRLA,DSW)
      IF(DSW.NE.1) TYPE *, ' IEEE BUS IS NOT TALKING TODAY! '
      IF(DSW.NE.1) GD TO 2000
      IF(IOST(1).NE.1) TYPE *, ' IEEE BUS IS NOT TALKING TODAY! '
      IF(IOST(1).NE.1) GO TO 2000
С
С
     QUEUE THE FIRST I/O
С
     CALL RID(*1000,2,10,, IOSB(1,1), IPARAM(1,1), DSW)
     DO 25 I=1,12
     DO 25 J=32,37
        K=J-31
        CALL OSUATD(J,0,IDATA,ISTAT)
        DATA=IDATA*0.00030571578
        SUM(K,1)=SUM(K,1)+DATA
25
     CONTINUE
C
С
     INITIALIZE THE NUMBER OF RECORDS TRANSFERRED
С
100 NMODE=MODE
     MODE=LMODE
     LMODE=NMODE
C
С
     WAIT FOR THE BUFFER TO FILL
C
     CALL WAITFR(10)
     CALL QIO('1000,2,10,,IOSB(1,MODE),IPARAM(1,MODE),DSW)
1
     DO 90 I=1,198
        BIGBUF(I,COLUMN)=RECDAT(I,LMODE)
90
     CONTINUE
     DO 30 I=1,12
     DO 30 J=32,37
        K=J-31
        CALL OSUATE(J,0,IDATA,ISTAT)
        DATA=IDATA*0.00030571578
        SUM(K,MODE)=SUM(K,MODE)+DATA
30
     CONTINUE
     DO 35 I=1,6
2
        ATDDAT(I,COLUMN)=SUM(I,LMODE)
        SUM(I;LMODE)=0.0
35
     CONTINUE
     IF(CHECK .EQ. NREC+1)GOTO 1200
C
С
     INCREMENT THE NUMBER OF RECORDS
C
     COLUMN=COLUMN+1
     CHECK=COLUMN-1
     GOTO 100
1200 CHKMN1=CHECK-1
```

```
150
```

```
WRITE(5,45)CHKMN1
      DO 999 K=1,CHECK
        DO 998 I=1,198
              TRANS(I)=BIGBUF(I,K)
998
        CONTINUE
С
С
     DELETE 1ST RECORD FOR SETTLING PURPOSES
С
     IF(K.EQ.1)GO TO 3
C
С
        DECODE (198,530,TRANS) (OUTFUT(J),J=1,45)
        DO 997 I=1,6
              ATDOUT(I)=ATDDAT(I,K)
              RECORD(27+I)=ATDOUT(I)*0.083333
997
        CONTINUE
        CALL COORD (OUTPUT, RECORD, SW, KOUNT)
        IF(KOUNT .GT. 0) GOTO 993
994
        WRITE(5,535) (FNAME(1),1=1,13)
        WRITE(5,540) (RECORD(I), I=1,15)
        WRITE(5,545) (RECORD(1),1=16,27)
        WRITE(5,550) (RECORD(I),I=28,33)
993
        WRITE(1'IREC) (RECORD(I), I=1,33)
        DO 899 I=1,45
             OUTFUT(I)=0.0
899
        CONTINUE
        DO 888 I=1,6
             ATDOUT(I)=0.0
888
        CONTINUE
        DO 300 I=1,33
        RECORD(I)=0.0
300
        CONTINUE
        DO 887 I=1,198
             TRANS(I)=' '
887
        CONTINUE
        KOUNT=KOUNT+1
     CONTINUE
3
999 CONTINUE
1500 CLOSE (UNIT=1)
     CALL WTQIO(*2000,2,1,,IOST,DSW)
     WRITE(5,555) (FNAME(I), I=1,13), KOUNT
     CALL CLREF(10)
5
     FORMAT('$','Enter the name to be siven to the data file [S-13]: ')
10
     FORMAT(13A1)
     FORMAT('$','Enter the number of records (disitizer sweeps) to b
15
     $e allocated to the data file [N-5]; ')
20
     FORMAT(15)
     FORMAT('0','SUCCESS,',I6,' SWEEPS RECORDED.')
45
530 FORMAT(9(F1.0,4F5.2,1X))
535 FORMAT('0', 'PROCESSED DATA FOR FILE: ',13A1)
540 FORMAT('0',5(3F7,2))
```

```
545 FORMAT('0',4(3F7.2))
550 FORMAT('0',6F17.9)
555 FORMAT('0', 'DATA WRITTEN TO DISK, ', 13A1, 'CONTAINS', 15, ' RECORD
      $S.()
560 FORMAT(' ', 'RECORD NUMBER: ', 15,' CONTAINED ZERO VALUES AND
     $ HAS BEEN DELETED.')
2000 STOP
     END
     SUBROUTINE COORD(RC2DAT,RC3DAT,SW,KOUNT)
С
С
     THIS SUBROUTINE COMFUTES THE X,Y,Z COORDINATES FOR THE SPARK
     GAPS IN THE BOARD REFERENCE SYSTEM BY PERFORMING CALCULATIONS
С
С
     ON THE SLANT RANGE DATA FROM THE FOUR CORNER MICROPHONES
С
     DIMENSION RC2DAT(45), RC3DAT(33)
     INTEGER CASE, KOUNT, SW
     REAL L1,L2,K1
     DATA L1/167.75/, L2/111.80/, K1/3.90/
     CASE=0
     J=0
     DO 110 I=1,41,5
     SW=1
     KK=1
     IF(RC2DAT(I+1) .EQ. 0.0) KK=KK+1
     IF(RC2DAT(I+2) .EQ. 0.0) KK=KK+1
     IF(RC2DAT(I+3) .EQ. 0.0) KK=KK+1
     IF(RC2DAT(I+4) .EQ. 0.0) KK=KK+1
     IF(KK.GT.2) GO TO 115
     PA=RC2DAT(I+1)
     PB=RC2DAT(I+2)
     PC=RC2DAT(I+3)
     FD=RC2DAT(I+4)
     IF(PD.GE.PA.AND.PD.GE.PB.AND.PD.GE.PC) CASE=1
     IF(PC.GE.PA.AND.PC.GE.PB.AND.PC.GE.PD) CASE=2
     IF (PB.GE.FA.AND.FB.GE.FC.AND.FB.GE.FD) CASE=3
     IF(PA.GE.PB.AND.PA.GE.PC.AND.PA.GE.PD) CASE=4
     IF(FD .EQ. 0.0) CASE=1
     IF(PC .EQ. 0.0) CASE=2
     IF(PR .EQ. 0.0) CASE=3
     IF(PA .EQ. 0.0) CASE=4
     GO TO (60,70,80,90),CASE
60
     XC=((PA+K1)**2-((PB+K1)**2)+L1**2)/(2.0*L1)
     IF(ABS(XC).GT.ABS(FA+K1)) GO TO 114
     YC=((FA+K1)**2-((PC+K1)**2)+L2**2)/(2.0*L2)
     PP=SQRT((FA+K1)**2-XC**2)
     IF(ABS(YC).GT.PP) GO TO 114
     ZC=SQRT((PP)**2-YC**2)
     GO TO 100
     XC=((PA+K1)**2-((PB+K1)**2)+L1**2)/(2.0*L1)
70
     IF(ABS(XC).GT.ABS(PA+K1)) GO TO 114
```

```
YC=((FB+K1)**2-((FD+K1)**2)+L2**2)/(2.0*L2)
```

```
PP=SQRT((PA+K1)**2-XC**2)
     IF(ABS(YC).GT.FF) GO TO 114
     ZC=SQRT((PP)**2-YC**2)
     GO TO 100
80
     XC=((FC+K1)**2-((FD+K1)**2)+L1**2)/(2.0*L1)
     IF(ABS(XC).GT.ABS(PC+K1)) GO TO 114
     YC=((FA+K1)**2-((PC+K1)**2)+L2**2)/(2.0*L2)
     PP=SQRT((PC+K1)**2-XC**2)
     YCCOMP=L2-YC
     IF(ABS(YCCOMP).GT.PP) GO TO 114
     ZC=SQRT((PP)**2-YCCOMP**2)
     GO TO 100
90
     XC=((FC+K1)**2-((FD+K1)**2)+L1**2)/(2.0*L1)
     IF(ABS(XC).GT.ABS(PC+K1)) GO TO 114
     YC=((FB+K1)**2-((FD+K1)**2)+L2**2)/(2.0*L2)
     PP=SQRT((PC+K1)**2-XC**2)
     YCCOMP=L2-YC
     IF(ABS(YCCOMP).GT.PF) GO TO 114
     ZC=SQRT((PP)**2-YCCOMP**2)
100 RC3DAT(J+1)=XC
     RC3DAT(J+2)=YC
     RC3DAT(J+3)=ZC
     GO TO 117
114 SW=-1
     WRITE(5,200)RC2DAT(1),KOUNT
200 FORMAT('0', 'SPARKER', F3.0, ' IN REC.', I3, ' INVALID')
115 RC3DAT(J+1)=0.0
     RC3DAT(J+2)=0.0
     RC3DAT(J+3)=0.0
     IF(SW .EQ. -1)GO TO 117
     WRITE(5,130)RC2DAT(1),KOUNT
130 FORMAT('0', 'SPARKER', F3.0,' IN REC.', I3,' IS ZERO')
117 J=J+3
110 CONTINUE
    RETURN
    END
```

>

PROGRAM KINF4P

```
C
C
     THIS PROGRAM ANALIZES THE KINEMATICS OF A MOVING BODY RELATIVE
C
      TO A FIXED BODY. IT REQUIRES THE INPUT OF A LOCATOR FILE (FOR
     THE FIXED BODY), AN INITIALIZNG FILE (FOR THE MOVING BODY) AND
С
С
     A KINEMATIC DATA FILE.
Ũ
С
       DECLARE & TYPE VARIABLES; DIMENSION ARRAYS; INITIALIZE CONSTANTS
C
     DIMENSION SHLJNT(4), EBOWJT(4), ANGOUT(4)
     DIMENSION CTLOC(3), RC2DAT(24), PNTK(6,3)
     DIMENSION RC1DAT(24), VEC1(3), VEC2(3), VEC3(3)
     DIMENSION F1(3),ERRTOT(20,3),ELBJNT(3),ELBCNT(3),CSMAT(3,3)
     DIMENSION G1(3), TMAT(3,3), CVEC(3), HUMDRC(60,3), HUM(3,3)
     DIMENSION LBVEC(3), CN/VEC(3), T2(3,3), T1(3,3), T21(3,3), FBCNT(3)
     DIMENSION LOCOGN(3), JTCNT(3), ANGS(3), LGRVEC(3), JNTCNT(3)
     DIMENSION LBVEC1(3), LBVEC2(3), LGVEC1(3), LGVEC2(3)
     LOGICAL*1 JTNAME(9), SNAME(25), MESS(80), F1NAME(13), F2NAME(13)
     LUGICAL*1 F3NAME(13), DAY(9), HOUR(8), F4NAME(13), F5NAME(13)
     LOGICAL #1 F6NAME(13)
     INTEGER ANS, Y, N, IPT(20), TRIAD, CASE, ANS2
     REAL JNTVEC, LBVEC, LOCOGN, JTCNT, LGBVEC
     REAL JNTCNT, LBVEC1, LBVEC2, LGVEC1, LGVEC2
     COMMON /AC/ FNTI(6,3),COSMAT(60,3),COSTRN(60,3),DRCOS(60,3),
     $DRCTRN(60,3),TRIAD(20,3),JNTVEC(20,3)
     DATA IREC/1/JREC/1/KREC/1/Y/'Y'/N/'N'/KOUNT/1/
     DATA LMREC/1/LREC/1/MREC/1/
С
C
     PROMPT FOR DIMENSIONS, DATA FILES AND OUTPUT INFORMATION
C
505 WRITE(5,5)
     READ(5,10,ERR=505) (JTNAME(I),I=1,9)
510 WRITE(5,15)
     READ(5,20,ERR=510) (SNAME(I),I=1,25)
515 WRITE(5,25)
     READ (5,30,ERR=515) (MESS(I),I=1,80)
520 WRITE(5,35)
     READ (5,40,ERR=520) (F1NAME(I),I=1,13)
525 WRITE(5,45)
     READ (5,50,ERR=525) NREC
527 WRITE(3,51)
     READ(5,40,ERR=527)(F2NAME(I),I=1,13)
555 WRITE(5,85)
     READ(5,40,ERR=555)(F3NAME(1),I=1,13)
534 WRITE(5,431)
    READ(5,432,ERR=534)NANS
530 WRITE(5,55)
    WRITE(5,60)
535
     READ(5,65,ERR=535)CTLOC(1)
540 WRITE(5,70)
    READ(5,65,ERR=540)CTLOC(2)
```

```
154
```

```
545 WRITE(5,75)
      READ(5,65,ERR=545)CTLOC(3)
550 WRITE(5,80)
     DO 601 I=1,3
      DO 602 J=1,3
603 WRITE(5,604)I,J
     READ(5,66,ERR=603)T2(I,J)
602 CONTINUE
601 CONTINUE
557 WRITE(5,885)
     READ(5,40,ERR=557)(F5NAME(I),I=1,13)
568 WRITE(5,896)
     READ(5,40,ERR=568)(F6NAME(1),I=1,13)
С
С
     LOCATE, IDENTIFY AND ACCESS THE LOCATOR DATA FILE
C
     CALL ASSIGN (1,F2NAME,13)
     DEFINE FILE 1 (1,48,U,IREC)
C
С
     READ LOCATOR DATA FILE
C
     READ (1'IREC, ERR=3000) (RC2DAT(I), I=1, 24)
С
С
     ASSIGN DATA TO VARIABLES
С
     DO 87 I=1,3
     T1(1,I)=RC2DAT(3+I)
     T1(2,I)=RC2DAT(12+I)
     T1(3,I) = RC2DAT(18+I)
     LOCOGN(I)=RC2DAT(6+I)
87
     CONTINUE
     CLOSE (UNIT=1)
С
С
     LOCATE, IDENTIFY AND ACCESS THE INITIALIZING DATA FILE
С
     CALL ASSIGN (1,F3NAME,13)
     DEFINE FILE 1 (876,2,U,JREC)
     DO 90 I=1,6
     DO 89 J=1,3
     READ(1'JREC; ERR=3500)FNTI(I; J)
89
     CONTINUE
90
     CONTINUE
     DO 93 I=1,60
     DO 92 J=1+3
     READ(1'JREC, ERR=3500)COSMAT(I, J)
92
     CONTINUE
     CONTINUE
93
     DO 96 I=1,20
     IIO 94 J=1,3
     READ(1'JREC; ERR=3500)(JNTVEC(I,J))
94
     CONTINUE
```

```
96
      CONTINUE
     DO 98 I=1,60
     DO 97 J=1,3
     READ(1'JREC, ERR=3500)(HUMDRC(I, J))
97
     CONTINUE
98
     CONTINUE
      CLOSE (UNIT=1)
C
С
      CALCULATE THE TRANSPOSES FOR THE VARIOUS AXIS SYSTEM DIRECTION
С
     COSINE MATRICES.
£.
     DO 152 N=1,20
     M = (N - 1) \times 3
     DO 151 J=1,3
     COSTRN(M+J,1)=COSMAT(M+1,J)
     COSTRN(M+J,2)=COSMAT(M+2,J)
     COSTRN(M+J,3)=COSMAT(M+3,J)
151 CONTINUE
152 CONTINUE
C
С
     CALCULATE THE LOCATION OF THE FIXED BODY CENTER W.R.T. THE
С
     BOARD.
     CALL GMPRD(T2,T1,T21,3,3,3)
     CALL MINV(T1,3,D,F1,G1)
     CALL GMPRD(T1,CTLOC,FBCNT,3,3,1)
     DO 920 I=1,3
     FBCNT(I)=FBCNT(I)+LOCOGN(I)
920 CONTINUE
C
С
     OUTPUT HEADER INFORMATION
Ē
2000 CALL DATE(DAY)
     CALL TIME(HOUR)
     WRITE (5,200)
     WRITE(5,100) (JTNAME(I), I=1,9)
     WRITE(5,205)
     WRITE(5,105) DAY, HOUR, (SNAME(I), I=1,25)
     WRITE(5,110) (F1NAME(I),I=1,13),NREC,(MESS(I),I=1,80)
     WRITE(5,205)
С
     LOCATE, IDENTIFY AND ACCESS THE MAIN DATA FILE
С
С
     CALL ASSIGN (1,F1NAME,13)
     DEFINE FILE 1 (NREC, 48, U, KREC)
     CALL ASSIGN (3,F5NAME,13)
     DEFINE FILE 3 (NREC, 8, U, MREC)
     CALL ASSIGN (4,F6NAME,13)
     DEFINE FILE 4 (NREC, 8, U, LMREC)
C
C
     READ ONE RECORD
С
```

```
500 READ (1'KREC; ERR=4000) (RC1DAT(I); I=1, 24)
С
C
     ASSIGN DATA TO VARIABLES
C
     ID 499 I=1,3
        FNTK(1,I)=RC1DAT(I+1)
        PNTK(2,I)=RC1DAT(I+5)
        FNTK(3,1)=RC1DAT(1+9)
        PNTK(4,I)=RC1DAT(I+13)
        PNTK(5,1)=RC1DAT(1+17)
        FNTK(6,I)=RC1DAT(I+21)
499 CONTINUE
501 KK=0
     DO 805 I=1,6
     IF(PNTK(I,1).NE.0.0) GD TO 805
     KK=KK+1
805 CONTINUE
     IF(KK.GE.4) GD TO 3700
     N=1
     10 840 J=1,4
     10 830 K=J+1,5
     10 820 L=K+1,6
     TRIAD(N,1)=J
     TRIAD(N,2)=K
     TRIAD(N,3)=L
     IF(PNTK(K,1),NE.0,0,AND.PNTK(J,1),NE.0.0.AND.PNTK(L,1),NE.
     $0.0) GO TO 850
     II=((N-1)*3)+1
     DO 845 JJ=1,3
     DRCOS(II,JJ)=0.0
     DRCOS(II+1,JJ)=0.0
     DRCOS(II+2,JJ)=0.0
     DRCTRN(II,JJ)=0.0
     DRCTRN(II+1,JJ)=0.0
     DRCTRN(II+2,JJ)=0.0
845 CONTINUE
     IPT(N)=K
     N=N+1
     60 TO 820
850 DO 800 M=1,3
     VEC1(M)=PNTK(K,M)-PNTK(J,M)
     VEC2(M)=PNTK(L,M)-PNTK(K,M)
800 CONTINUE
     IPT(N)=K
     CALL DRCMAT(VEC1, VEC2, CSMAT)
     I=((N-1)*3)
     DO 810 JJ=1,3
     DRCOS(I+1,JJ)=CSMAT(1,JJ)
     DRCOS(I+2,JJ)=CSMAT(2,JJ)
     DRCOS(I+3,JJ)=CSMAT(3,JJ)
     DRCTRN(I+JJ,1)=CSMAT(1,JJ)
```

```
157
```

```
DRCTRN(I+JJ,2)=CSMAT(2,JJ)
      DRCTRN(I+JJ,3)=CSMAT(3,JJ)
810 CONTINUE
      N=N+1
820 CONTINUE
830 CONTINUE
840 CONTINUE
     CALL LOCAXS(PNTK, CASE, ERRTOT)
С
C
     CALCULATE THE JOINT CENTER W.R.T. THE FIXED BODY CENTER
C
     I = ((CASE - 1) \times 3) + 1
     DO 900 J=1,3
     THAT(1,J)=DRCTRN(I,J)
     TMAT(2,J)=DRCTRN(I+1,J)
     TMAT(3,J) \approx DRCTRN(1+2,J)
     HUM(1,J)=HUMDRC(I,J)
     HUM(2,J)=HUMDRC(I+1,J)
     HUM(3,J) = HUMDRC(I+2,J)
     CVEC(J)=JNTVEC(CASE,J)
900 CONTINUE
     EIO 339 J=1,3
     LBVEC(J)=HUM(3,J)
     LBVEC1(J)=HUM(1,J)
     LBVEC2(J)=HUM(2,J)
339 CONTINUE
     CALL GMPRD(TMAT, CVEC, CNTVEC, 3, 3, 1)
     CALL GMPRD(TMAT,LBVEC,LGBVEC,3,3,1)
     CALL GMPRD(TMAT,LBVEC1,LGVEC1,3,3,1)
     CALL GMPRD(TMAT,LBVEC2,LGVEC2,3,3,1)
     CALL UNITVR(LGBVEC)
     CALL UNITVR(LGVEC1)
     CALL UNITVR(LGVEC2)
     K=IPT(CASE)
     DO 910 I=1,3
     ELBJNT(I)=FNTK(K,I)+CNTVEC(I)
910 CONTINUE
     DO 930 I=1,3
     ELBJNT(I)=ELBJNT(I)-FBCNT(I)
930 CONTINUE
     CALL GMPRD(T21,ELBJNT,ELBCNT,3,3,1)
     DO 931 I=1,3
     EBOWJT(I+1)=ELBCNT(I)
931 CONTINUE
     CALL GMPRD(T21,LGBVEC,LBVEC,3,3,1)
     CALL GMPRD(T21,LGVEC1,LBVEC1,3,3,1)
     CALL GMPRD(T21,LGVEC2,LBVEC2,3,3,1)
С
     CALCULATE THE THETA AND PHI ANGLES OF THE LONG BONE AXIS
С
3
     W. R. T. THE FIXED BODY AXIS SYSTEM
C
```

```
THETA=0.00
      PHI=0.00
      CALL UNITVR(LBVEC)
      CALL UNITVR(LBVEC1)
      CALL UNITVR(LBVEC2)
      CALL SPHERE(LBVEC, THETA, PHI)
      DO 338 J=1,3
     HUM(1,J)=LBVEC1(J)
     HUM(2,J)=LBVEC2(J)
     HUM(3,J) = LBVEC(J)
338 CONTINUE
     IF(NANS.EQ.2) GO TO 399
     CALL EULER(HUM, ANGS)
     ANGOUT(2)=ANGS(1)
     ANGOUT(3)=ANGS(2)
     ANGOUT(4)=ANGS(3)
     GO TO 699
399 CALL EULER2(HUM; ANGS)
     ANGOUT(2)=ANGS(1)
     ANGOUT(3)=ANGS(2)
     ANGOUT(4) = ANGS(3)
С
С
     WRITE DISTAL JOINT CENTER COORD.'S AND EULER ANGLES W. R. T.
C
     THE FIXED BODY AXIS SYSTEM TO DISK FOR THE MOVING BODY
C
699 CONTINUE
     EBOWJT(1)=FLOAT(KOUNT)
     WRITE(3'MREC)(EBOWJT(J), J=1,4)
     ANGOUT(1)=FLOAT(KOUNT)
     WRITE(4'LMREC)(ANGOUT(J),J=1,4)
C
С
     WRITE OUT THE DATA
C
     IF(KOUNT.GT.1)GO TO 710
     WRITE(5,700)
710 WRITE(5,720)KOUNT, THETA, PHI
     $,ANGOUT(2),ANGOUT(3),ANGOUT(4),TRIAD(CASE,1),TRIAD(CASE,2),
     $TRIAD(CASE, 3), ERRTOT(CASE, 1), FRRTOT(CASE, 2), ELBCNT(1),
     $ELBCNT(2),ELBCNT(3)
     IF(ERRTOT(CASE,1).NE.9.999) GO TO 318
     I=TRIAD(CASE,1)
     J=TRIAD(CASE,2)
     K=TRIAD(CASE,3)
     DKMG1=SQRT((FNTK(I,1)-PNTK(J,1))**2+(FNTK(I,2)-PNTK(J,2))**2+
     &(PNTK(I,3)-PNTK(J,3))**2)
     DKMG2=SQRT((FNTK(J,1)-PNTK(K,1))**2+(PNTK(J,2)-PNTK(K,2))**2+
     &(PNTK(J,3)-PNTK(K,3))**2)
     DKMG3=SQRT((FNTK(K,1)-FNTK(I,1))**2+(FNTK(K,2)-FNTK(I,2))**2+
     &(PNTK(K,3)-PNTK(1,3))**2)
     DIMG1=SQRT((PNTI(I,1)-PNTI(J,1))**2+(PNTI(I,2)-PNTI(J,2))**2+
     &(PNTI(I,3)-PNTI(J,3))**2)
```

```
DIMG2=SQRT((PNTI(J,1)-PNTI(K,1))**2+(PNTI(J,2)-PNTI(K,2))**2+
      &(PNTI(J,3)-PNTI(K,3))**2)
     DIMG3=SQRT((PNTI(K,1)-PNTI(I,1))**2+(PNTI(K,2)-PNTI(I,2))**2+
      &(FNTI(K,3)-FNTI(I,3))**2)
     WRITE(5,926)
     WRITE(5,927)I,J,DIMG1,J,K,DIMG2,K,I,DIMG3,I,J,DKMG1,J,K,DKMG2
      %,K,I,DKMG3
С
C
     IF THERE ARE ANY MORE RECORDS, GO GET THEM!
С
318 KOUNT=KOUNT+1
     IF(KOUNT.LE.NREC) GO TO 500
С
     FORMAT STATEMENTS FOR PROMPTS AND RESULTS
C
С
     FORMAT('$','Enter name of joint tested [5-9]: ')
5
10
     FORMAT(9A1)
     FORMAT('$','Enter subject name or number [S-25]: ')
15
20
     FORMAT(25A1)
25
     FORMAT('0','Enter a description of the test [5-80] ')
30
     FORMAT(80A1)
35
     FORMAT('$','Enter data file name [S-13]; ')
40
     FORMAT(13A1)
45
     FORMAT('$','Enter number of records to be read EN-53: ')
50
     FORMAT(I5)
51
     FORMAT('$','Enter the corresponding fixed body locator file na
     &me [s-13]: ')
55
     FORMAT('0','Enter the distances in centimeters along the loca
     &tor axes to the desired fixed body center :')
60
     FORMAT('$',T15,'Enter the X-COORDINATE [N-8]; ')
65
     FORMAT(F10.5)
     FORMAT(F8.4)
66
70
     FORMAT('$',T15,'Enter the Y-COORDINATE [N-8]; ')
75
     FORMAT('$',T15,'Enter the Z-COORDINATE [N-8]; ')
     FORMAT('0','Input a 3x3 matrix (by rows) that defines the body
RO
     & axis system w.r.t. the locator axis system : ')
85
     FORMAT('$','Enter the corresponding initializing file name [
     &S-13]: ()
100 FORMAT('0', T78, 9A1, 'JOINT')
105 FORMAT('0', T5, 'DATE: ', 9A1, /, T5, 'TIME: ', 8A1, /, T5, 'SUBJECT
     &NAME AND NUMBER: (,25A1)
110 FORMAT(' ',T5,'DATA FILE NAME: ',13A1,/,T5,'NUMBER OF RECORDS:
     $', I5, //, T5, 'DESCRIPTION: ', 80A1)
200 FORMAT('0',165('-')/)
205 FORMAT('0',165('-')//)
206 FORMAT(' '+165('-'))
207 FORMAT('0',165(','))
275 FORMAT('0', 'ERROR ON ATTEMPT TO READ LOCATOR FILE ')
280 FORMAT('0', 'ERROR ON ATTEMPT TO READ INITIALIZING FILE ')
285 FORMAT('0', 'FOUR EMITTERS ON CUFF READ ZERO-PROCEEDING TO NEXT
     & RECORD ()
```

```
160
```

```
300 FORMAT('0',T30,'ERROR ON ATTEMPT TO READ NEXT RECORD')
311 FORMAT('0',T20, 'NOMINAL JOINT CENTER AS INITIALIZED'/)
340 FORMAT('0',/'$','Are there other files to be processed?
     $EY/N3: ')
345 FORMAT(A4)
420 FORMAT('$','No you want to print out the euler angles for the
     & humerus? [Y/N]:/)
431 FORMAT('$','Do you wish type 1 (z-x-z), or type 2 (z-y-z)
      & euler angle output? [1 or 2];')
432 FORMAT(12)
433 FORMAT('0',T18,'EULER ANGLES FOR HUMERUS',//,T5,'REC. #',T18,
     &'PRECESSION', T34, 'NUTATION', T51, 'SPIN', /, T20, '(PHI)', T34, '(THETA
     &)',T50,'(PSI)')
436 FORMAT(' ', T6, I3, T19, F7, 2, T34, F7, 2, T49, F7, 2)
604 FORMAT('$',T15,'T2(',I1,',',I1,'):[N-8]; ')
700 FORMAT('0',T2,'REC.#',T13,'THETA',T23,'PHI',T32,
     & EULER ANGLES FOR MOVING BODY ', T63, 'TRIAD USED', T78, 'SKEW-DEV'
     &,T93,'DIST-DEV',T110,'DISTAL JOINT CENTER',',T35,'PREC.',4X,
     &'NUT.',4X,'SPIN',/)
720 FORMAT(' ', I5, T11, F7, 2, T20, F7, 2, T33, 3F8, 2, T62,
     &313,T78,F7.3,T92,F7.3,T105,3F9.3)
881 FORMAT(4F8,3)
885 FORMAT('$','Enter the output data filename for ',
     % 'THE DISTAL JOINT CENTER COORDINATES ! ES-133:')
896 FORMAT('$','Enter the output data filename for EULER
     & ANGLES OF THE MOVING BODY [S-13]; ')
926 FORMAT(' ',T5,'INITIALIZED DISTANCES:',T63,'DISTANCES, CURRENT
     & RECORD: ')
927 FORMAT(' ',3(I1,'-',I1,'=',F5,2,' '),T60,3(I1,'-',I1,'=',
     &F5,2,' ())
С
С
     CLOSE UP DATA FILE & THAT'S ALL FOLKS!
С
2001 CLOSE (UNIT=1)
     CLOSE (UNIT=3)
     CLOSE (UNIT=4)
     WRITE(5,207)
     WRITE(5,340)
     READ(5,345)ANS
     IF(ANS .EQ. 'N')GO TO 5000
     WRITE(3,35)
     READ(5,40) (F1NAME(I),I=1,13)
     WRITE(5,45)
     READ(5,50) NREC
     WRITE(5,25)
    READ(5,30) (MESS(I), I=1,80)
    KREC=1
    KOUNT=1
    LREC=1
    MREC=1
    LMREC=1
```

```
161
```

```
559 WRITE(5,885)
     READ(5,40,ERR=559)(F5NAME(1),I=1,13)
560 WRITE(5,896)
     READ(5,40,ERR=560)(F6NAME(1),1=1,13)
     GO TO 2000
3000 WRITE(5,205)
     WRITE(5,275)
     GO TO 5000
3500 WRITE(5,205)
     WRITE(5,280)
     GO TO 5000
3700 WRITE(5,285)
     KOUNT=KOUNT+1
     IF(KOUNT.GT.NREC) GO TO 2001
     GO TO 500
4000 WRITE(5,205)
     WRITE(5,300)
     GOTO 2001
5000 WRITE(5,205)
     STOP
     END
     SUBROUTINE SPHERE(VEC, THETA, PHI)
C
С
     SUBROUTINE TO CALCULATE THE SPHERICAL COORDINATES (THETA, PHI)
С
     OF THE VECTOR "VEC".
C
     DIMENSION B(3), VEC(3)
     DATA PI/3.141592654/
     VECMAG=SQRT(VEC(1)**2+VEC(2)**2+VEC(3)**2)
     IF(VECMAG.LT.1.001) G0 T0 10
     B(1)=VEC(1)/VECMAG
     B(2)=VEC(2)/VECMAG
     B(3)=VEC(3)/VECMAG
     GO TO 15
10
   B(1)=VEC(1)
     B(2)=VEC(2)
     B(3)=VEC(3)
     A1=SQRT(B(1)**2+B(2)**2)
15
     THETA=(ATAN2(A1,B(3)))*180.0/PI
     IF(THETA.LT.179.99.OR.THETA.GT.0.01) GO TO 20
     FHI=0.0
     GO TO 30
20
     PHI=(ATAN2(B(2),B(1)))*180.0/PI
30
     RETURN
     END
С
     SUBROUTINE UNITVR(VEC)
С
     SUBROUTINE CALCULATES A UNIT VECTOR FOR ANY GIVEN VECTOR
C
С
     DIMENSION VEC(3)
```

```
VECMAG=(VEC(1)**2)+(VEC(2)**2)+(VEC(3)**2)
     VECMAG=SQRT(VECMAG)
      IF(VECMAG.EQ.0.0) VECMAG=1.0
     DO 10 I=1,3
     VEC(I)=VEC(I)/VECMAG
10
     CONTINUE
     RETURN
     END
     SUBROUTINE LOCAXS(FNTK, CASE, ERRTOT)
С
     THIS SUBROUTINE SELECTS THE "MOST ACCURATE" LOCAL AXIS SYSTEM
С
C
     BASED ON INTRA-AXIS SYSTEM DISTANCES AND RELATIVE SKEW ANGLES.
C
     DIMENSION FNTK(6,3), TIS(3,3), TISK(3,3), TJS(3,3), TJSK(3,3)
     DIMENSION TIJ(3,3),TIJK(3,3),GEN(3,3),VECI(3),VECK(3)
     DIMENSION ERRTOT(20,3), F1(3), G1(3)
     INTEGER TRIAD, CASE
     REAL JNTVEC, JTDSMG
     COMMON /AC/ FNTI(6,3),COSMAT(60,3),COSTRN(60,3),DRCOS(60,3),
     $DRCTRN(60,3),TRIAD(20,3),JNTVEC(20,3)
C
     ERRSK=0.0
     ERRDLT=0.0
С
     10 20 MM=1,20
С
     I1=TRIAD(MM,1)
     J1=TRIAD(MM,2)
     K1=TRIAD(MM+3)
      IF (PNTK(11,1), EQ.0.0.0R, PNTK(J1,1), EQ.0.0.0R, PNTK(K1,1), EQ.0.0)
     $ GO TO 19
С
     KK=(MM-1)*3
С
С
     DO 3 J=1,3
     TIS(1,J)=COSMAT(KK+1,J)
     TIS(2,J)=COSMAT(KK+2,J)
     TIS(3,J)=COSMAT(KK+3,J)
C
     TISK(1,J)=DRCOS(KK+1,J)
     TISK(2,J)=DRCOS(KK+2,J)
     TISK(3,J)=DRCOS(KK+3,J)
3
     CONTINUE
С
     MKNT1=0
     MKNT2=0
С
     DO 10 N=1,20
     I2=TRIAD(N,1)
     J2=TRIAD(N,2)
```

```
K2=TRIAD(N,3)
      IF(PNTK(12,1),EQ.0.0.0R,PNTK(J2,1),EQ.0.0.0R,PNTK(K2,1),EQ.0.0)
      $ GO TO 10
      M = (N - 1) * 3
      IF(N.EQ.MM) GD TD 10
C
      10 5 J=1,3
      TJS(1,J)=COSTRN(M+1,J)
      TJS(2,J)=COSTRN(M+2,J)
      TJS(3,J)=COSTRN(M+3,J)
C
     TJSK(1,J)=DRCTRN(M+1,J)
     TJSK(2,J)=DRCTRN(M+2,J)
     TJSK(3,J)=DRCTRN(M+3,J)
5
     CONTINUE
C
С
     CALL GMPRD(TIS,TJS,TIJ,3,3,3)
     CALL GMPRD(TISK,TJSK,TIJK,3,3,3)
     CALL MINV(TIJK,3,D,F1,G1)
     CALL GMPRD(TIJ,TIJK,GEN,3,3,3)
     TRACE=(GEN(1,1)**2+GEN(2,2)**2+GEN(3,3)**2)
     GAM=.5*(TRACE-1.0)
     IF(GAM.GT.1.0.AND.GAM.LT.1.05) GAM=1.0
     GAM=ACOS(GAM)
     JTDSMG=SQRT((JNTVEC(N,1)**2)+(JNTVEC(N,2)**2)+(JNTVEC(N,3)
     8**2))
     GAMSIN=SIN(GAM)
     DEL TAS=JTDSMG*GAMSIN
     DELTAS=DELTAS**2
     ERRSK=ERRSK+DELTAS
     MKNT1=MKNT1+1
     III=TRIAD(MM,2)
     JJJ=TRIAD(N,2)
     IF(III.EQ.JJJ) GO TO 10
С
     00 7 L=1,3
     VECI(L)=FNTI(JJJ,L)-FNTI(III,L)
     VECK(L)=PNTK(JJJ,L)-PNTK(III,L)
7
     CONTINUE
C
     VECIMG=SQRT((VECI(1)**2)+(VECI(2)**2)+(VECI(3)**2))
     VECKMG=SQRT((VECK(1)**2)+(VECK(2)**2)+(VECK(3)**2))
     DELTAD=ABS(VECKMG-VECIMG)
     DELTAD=0ELTAD**2
     ERRDLT=ERRDLT+DELTAD
     MKNT2=MKNT2+1
    CONTINUE
10
С
     RMKNT1=FLOAT(MKNT1)
     RMKNT2=FLOAT(MKNT2)
```

```
164
```
DIV1=RMKNT1*1.0 DIV2=RMKNT2*1.0 IF (MKNT1.NE.0) GO TO 11 SKERR=9.999 GO TO 12 SKERR=SORT(ERRSK/DIV1) 11 12 IF(MKNT2,NE,0) GO TO 13 DERR=9.999 GO TO 14 DERR=SQRT(ERRDLT/DIV2) 13 14 ERRTOT(MM,1)=SKERR ERRTOT(MM,2)=DERR ERRTOT(MM,3)=SQRT((SKERR**2+DERR**2)/2.0) C ERRSK=0.0 ERRDLT=0.0 GO TO 20 19 ERRTOT(MM,1)=25.0 ERRTOT(MM,2)=25.0 ERRTOT(MM,3)=50.0 ERRSK=0.0 ERRDLT=0.0 20 CONTINUE С CASE=1 ERTOTL=ERRTOT(1,3) DO 25 I=1,19 IF(ERTOTL.LE.ERRTOT(I+1,3)) GO TO 25 CASE=I+1 ERTOTL=ERRTOT(I+1,3) 25 CONTINUE RETURN END С C SUBROUTINE EULER(D,ANGS) С С THIS SUBROUTINE CALCULATES THE EULER ANGLES (Z-X-Z) WHICH Ĉ DESCRIBE THE HUMERAL AXIS SYSTEM RELATIVE TO THE FIXED BODY SYSTEM. С С DIMENSION D(3,3), ANGS(3) DATA PI/3.141592654/ С ANGS(2)=(ACOS(D(3,3)))*180.0/PI IF(ANGS(2).LT.0.01) G0 T0 20 IF(ANGS(2),GT,179,99) GO TO 30 ANGS(3)=(ATAN2(D(1,3),D(2,3)))*180.0/PI ANGS(1)=(ATAN2(D(3,1),-D(3,2)))*180.0/PI GO TO 40 20 PSIFHI=(ATAN2((D(1,2)-D(2,1)),(D(1,1)+D(2,2))))*180.0/PI

```
ANGS(1)=PSIPHI
     ANGS(3)=0.0
     GO TO 40
30
     PSIFHI=(ATAN2((D(1,2)+D(2,1)),(D(1,1)-D(2,2))))*180,0/FI
     ANGS(1)=PSIPHI
     ANGS(3)=0.0
40
     RETURN
     END
С
С
     SUBROUTINE EULER2(D,ANGS)
С
С
     THIS SUBROUTINE CALCULATES THE EULER ANGLES (Z-Y-Z) WHICH
     DESCRIBE THE HUMERAL AXIS SYSTEM RELATIVE TO THE FIXED BODY
С
С
     SYSTEM.
C
     DIMENSION D(3,3), ANGS(3)
     DATA PI/3.141592654/
С
     ANGS(2)=(ACOS(D(3,3)))*180.0/FI
     IF(ANGS(2).LT.0.01) GO TO 20
     IF(ANGS(2).GT.179.99) GO TO 30
     ANGS(3)=(ATAN2(D(2,3),-D(1,3)))*180.0/PI
     ANGS(1)=(ATAN2(D(3,2),D(3,1)))*180.0/PI
     GO TO 40
20
     FSIPHI=(ATAN2((D(1,2)-D(2,1)),(D(1,1)+D(2,2)))*180.0/FI
     ANGS(1)=PSIPHI
     ANGS(3) = 0.0
     GO TO 40
     PSIPHI=(ATAN2((D(1,2)+D(2,1)),(D(1,1)-D(2,2))))*180.0/PI
30
     ANGS(1)=PSIPHI
     ANGS(3)=0.0
40
    RETURN
     END
С
Ĉ
     SUBROUTINE DRCMAT(A,B,C)
С
     THIS SUBROUTINE CALCULATES THE DIRECTION COSINE MATRIX
С
     FOR AN AXIS SYSTEM BASED ON TWO COPLANAR VECTORS (A and B).
C
     THE RESULTING MATRIX, C, IS ORTHOGONAL AND UNITARY.
C
С
    DIMENSION A(3), B(3), C(3,3)
     AMAG=SQRT(A(1)**2+A(2)**2+A(3)**2)
    BMAG=SQRT(B(1)**2+B(2)**2+B(3)**2)
    C(1,1)=A(1)/AMAG
    C(1,2)=A(2)/AMAG
    C(1,3)=A(3)/AMAG
    C(2,1)=B(1)/BMAG
    C(2,2)=B(2)/BMAG
    C(2,3)=B(3)/BMAG
```

```
166
```

```
C(3,1)=(C(1,2)*C(2,3))-(C(2,2)*C(1,3))
     C(3_{2})=(C(1_{3})*C(2_{1}))-(C(2_{3})*C(1_{1}))
     C(3_{3})=(C(1_{3})*C(2_{3}))-(C(2_{3})*C(1_{3}))
        C(2,1)=(C(3,2)*C(1,3))-(C(1,2)*C(3,3))
        C(2,2)=(C(3,3)*C(1,1))-(C(3,1)*C(1,3))
        C(2,3)=(C(3,1)*C(1,2))-(C(1,1)*C(3,2))
     10 10 J=1,3
     CMAG=SQRT(C(J,1)**2+C(J,2)**2+C(J,3)**2)
     DO 5 I=1,3
     C(J,I)=C(J,I)/CMAG
5
     CONTINUE
10
     CONTINUE
     RETURN
     END
```

>

PROGRAM FORCMO

С

```
C
      THIS PROGRAM ANALIZES THE KINEMATICS OF A MOVING BODY RELATIVE
C
      TO A FIXED BODY FOR SITUATIONS WITH APPLIED LOADING.
С
      THIS PROGRAM REQUIRES THE INPUT OF A LOCATOR FILE (FOR
С
      THE FIXED BODY), AN INITIALIZNG FILE (FOR THE MOVING BODY) AND
С
     A KINEMATIC DATA FILE.
С
C
        DECLARE & TYPE VARIABLES; DIMENSION ARRAYS; INITIALIZE CONSTANTS
Ĉ
     L'IMENSION SHLJNT(4), EBOWJT(4), ANGOUT(4), CAL(6,6), F2(6), G2(6)
     DIMENSION CTLOC(3),R(3),RC2DAT(24),PNTK(6,3),FXJTCT(3),RCNTR(3)
     DIMENSION RC1DAT(33), VEC1(3), OUTPUT(22), VEC2(3), VEC3(3)
     DIMENSION F1(3), ERRTOT(20,3), ELBJNT(3), ELBCNT(3), CSMAT(3,3)
     DIMENSION G1(3), TMAT(3,3), CVEC(3), HUMDRC(60,3), HUM(3,3)
     DIMENSION LBVEC(3), CNTVEC(3), T2(3,3), T1(3,3), T21(3,3), FBCNT(3)
     DIMENSION LOCOGN(3), JTCNT(3), ANGS(3), LGBVEC(3), JNTCNT(3)
     DIMENSION LBVEC1(3), PNTG(3,3), LBVEC2(3), LGVEC1(3), LGVEC2(3)
     DIMENSION PTAXTP(3,3), PTAPP(3), PTAXIS(3,3), PTAPB(3), OUTPT2(12)
     DIMENSION TRNAXT(3,3),X(6),UJT(3,3)
     LOGICAL*1 JTNAME(9), SNAME(25), MESS(80), F1NAME(13), F2NAME(13)
     LOGICAL*1 F3NAME(25),DAY(9),HOUR(8),F4NAME(13)
     INTEGER ANS, Y, N, IFT(20), TRIAD, CASE, ANS2, GUNSD
     REAL JNTVEC, LBVEC, LOCOGN, JTCNT, LGBVEC
     REAL JNTCNT, LBVEC1, LBVEC2, LGVEC1, LGVEC2
     COMMON /AC/ PNTI(6,3),COSMAT(60,3),COSTRN(60,3),DRCOS(60,3),
     $DRCTRN(60,3),TRIAD(20,3),JNTVEC(20,3)
     COMMON /BC/ FRCTRN(6), TRNAX(3,3)
     DATA IREC/1/JREC/1/KREC/1/Y/'Y'/N/'N'/KOUNT/1/
     DATA A/'A'/B/'B'/PI/3,141592694/LREC/1/
C
С
     PROMPT FOR DIMENSIONS, DATA FILES AND OUTPUT INFORMATION
C.
505 WRITE(5,5)
     READ(5,10,ERR=505) (JTNAME(I),I=1,9)
510
     WRITE(5,15)
     READ(5,20,ERR=510) (SNAME(I),I=1,25)
515 WRITE(5,25)
     READ (5,30,ERR=515) (MESS(I),I=1,80)
520 WRITE(5,35)
     KEAD (5,40,ERR=520) (F1NAME(I),I=1,13)
525 WRITE(5,45)
     READ (5,50,ERR=525) NREC
527
    WRITE(5,51)
     READ(5,40,ERR=527)(F2NAME(1),I=1,13)
555 WRITE(5,85)
     READ(5,20,ERR=555)(F3NAME(I),I=1,25)
537 WRITE(5,88)
     READ(5,345,ERR=537)GUNSD
530 WRITE(5,55)
535 WRITE(5,60)
```

	READ(5,65,ERR=535)CTLOC(1)
540	WRITE(5,70)
	REAN(5,65,ERR=540)CTLOC(2)
545	WRITE(5,75)
	READ(5,65,ERR=545)CTLOC(3)
	WRITE(5,76)
546	WRITE(5,77)
	READ(5,65,ERR=546)FXJTCT(1)
547	WRITE(5,78)
	READ(5,65,ERR=547)FXJTCT(2)
548	WRITE(5,79)
	READ(5,65,ERR=548)FXJTCT(3)
721	WRITE(5,731)
	WRITE(5,734)
	READ(5,65,ERR=721)THATO
722	WRITE(5,732)
	READ(5,65,ERR=722)PHIO
550	WRITE(5,80)
	DO 601 I=1+3
	NO 602 J=1,3
603	WRITE(5,604)I,J
	READ(5,66,ERR=603)T2(1,J)
602	CONTINUE
601	CONTINUE
625	WRITE(5,626)
	READ(5,65,ERR=625)HHDIS
630	WRITE(5,631)
	READ(5,65,ERR=630)HYDIS
627	WRITE(5,628)
	READ(5,65,ERR=627)EJDIS
556	WRITE(5,884)
	READ(5,40,ERR=556)(F4NAME(I),I=1,13)
3	
С	LOCATE, IDENTIFY AND ACCESS THE INITIALIZING DATA FILE
C	
	CALL ASSIGN (1,F3NAME,25)
	DEFINE FILE 1 (876,2,U,JREC)
	DO 90 I=1,6
	DO 89 J=1,3
	READ(1'JREC,ERR=3500)PNTI(1,J)
89	CONTINUE
90	CONTINUE
	DO 93 I=1,60
	DO 92 J=1,3
	READ(1'JREC,ERR=3500)COSMAT(1,J)
92	CONTINUE
93	CONTINUE
	DO 96 I=1,20
	DO 94 J=1,3
	READ(1'JREC,ERR=3500)(JNTVEC(1,J))
94	CONTINUE

```
96
     CONTINUE
      DO 98 I=1,60
     IIO 97 J=1,3
     READ(1'JREC,ERR=3500)(HUMDRC(I,J))
97
     CONTINUE
98
     CONTINUE
     CLOSE (UNIT=1)
C
С
     CALCULATE THE TRANSPOSES FOR THE VARIOUS AXIS SYSTEM DIRECTION
C
     COSINE MATRICES.
C
     DO 152 N=1,20
     M=(N-1)*3
     DO 151 J=1,3
     COSTRN(M+J,1)=COSMAT(M+1,J)
     COSTRN(M+J,2)=COSMAT(M+2,J)
     COSTRN(M+J,3)=COSMAT(M+3,J)
151 CONTINUE
152 CONTINUE
С
С
     FILL THE TRANSDUCER CALIBRATION MATRIX
C
     CALL ASSIGN (1, '[7,1]CAL.DAT')
     DEFINE FILE 1 (2,72,U,LREC)
     READ(1'LREC, ERR=3800)((CAL(I,J), J=1,6), I=1,6)
     CLOSE (UNIT=1)
     CALL MINV(CAL, 6, D, F2, G2)
С
     LOCATE, IDENTIFY AND ACCESS THE LOCATOR DATA FILE
C
С
2000 CALL ASSIGN (1,F2NAME,13)
     DEFINE FILE 1 (1,48,U, IREC)
C
С
     READ LOCATOR DATA FILE
С
     READ (1'IREC, ERR=3000)(RC2DAT(I), I=1, 24)
C
С
     ASSIGN DATA TO VARIABLES
С
     DO 87 I=1:3
     T1(1,I) = RC2DAT(3+I)
     T1(2,I)=RC2DAT(12+I)
     T1(3,I)=RC2DAT(18+I)
     LOCOGN(I)=RC2DAT(6+I)
87
     CONTINUE
     CLOSE (UNIT=1)
C
     CALCULATE THE LOCATION OF THE FIXED BODY CENTER W.R.T. THE
С
С
     BOARD.
     CALL GMPRD(T2,T1,T21,3,3,3)
     CALL MINV(T1,3,D,F1,G1)
```

```
CALL GMPRD(T1,CTLOC,FBCNT,3,3,1)
      DO 920 I=1,3
     FBCNT(I)=FBCNT(I)+LOCOGN(I)
920 CONTINUE
С
С
     OUTPUT HEADER INFORMATION
С
     CALL DATE(DAY)
     CALL TIME(HOUR)
     WRITE (5,200)
     WRITE(5,100) (JTNAME(I), I=1,9)
     WRITE(5,205)
     WRITE(5,105) DAY, HOUR, (SNAME(I), I=1,25)
     WRITE(5,110) (F1NAME(I), I=1,13), NREC, (MESS(I), I=1,80)
     WRITE(5,205)
D
     WRITE(5,700)
ĪI.
     WRITE(5,701)
C
C
     LOCATE, IDENTIFY AND ACCESS THE MAIN DATA FILE
С
     OPEN ANY OUTPUT DATA FILES
C
     CALL ASSIGN (1,F1NAME,13)
     DEFINE FILE 1 (NREC, 66, U, KREC)
     CALL ASSIGN (2, F4NAME, 13)
С
С
     READ ONE RECORD
С
 500 READ (1'KREC, ERR=4000) (RC1DAT(I), I=1, 33)
C
C
     ASSIGN DATA TO VARIABLES
C
     I/O 499 I=1,3
        FNTK(1,I)=RC1DAT(I)
        FNTK(2,1)=RC1DAT(1+3)
        PNTK(3,I)=RC1DAT(I+6)
        FNTK(4,I)=RC1DAT(I+9)
        PNTK(5,I)=RC1DAT(I+12)
        PNTK(6,I)=RC1DAT(I+15)
     FNTG(1,I)=RC1DAT(I+18)
     FNTG(2,1)=RC1DAT(1+21)
     PNTG(3,1)=RC1DAT(1+24)
С
     CONVERT TRANSDUCER FORCE AND MOMENT DATA TO
С
     NEWTONS AND NEWTON-METERS
С
С
        FRCTRN(1)=RC1DAT(28)*4.448
        FRCTRN(2)=RC1DAT(29)*4.448
        FRCTRN(3)=RC1DAT(30)*4.448
        FRCTRN(4)=RC1DAT(31)*0.11298
        FRCTRN(5)=RC1DAT(32)*0,11298
        FRCTRN(6)=RC1DAT(33)*0.11298
```

÷...

499	CONTINUE
	DO 689 I=1,3
	IF(PNTG(1,1).NE.0.0) GO TO 689
	GO TO 3900
689	CONTINUE
501	КК=0
	DO 805 I=1,6
	IF(PNTK(I,1).NE.0.0) GO TO 805
	KK=KK+1
805	CONTINUE
	IF(KK.GE.4) GD TO 3700
	N=1
	IO 840 J=1,4
	DO 830 K=J+1,5
	DO 820 L=K+1,6
	TRIAD(N,1)=J
	TRIAD(N,2)=K
	TRIAD(N,3)=L
	IF(PNTK(K,1).NE.0.0.AND.PNTK(J,1).NE.0.0.AND.FNTK(L,1).NE.
	\$0.0) GO TO 850
	II=((N-1)*3)+1
	DO 845 JJ=1,3
	DRCOS(II,JJ)=0.0
	DRCOS(II+1,JJ)=0.0
	BRCOS(II+2,JJ)≈0.0
	DRCTRN(II,JJ)=0.0
	DRCTRN(II+1,JJ)=0.0
	DRCTRN(II+2,JJ)=0.0
845	CONTINUE
	IPT(N)=K
	N=N+1
	GO TO 920
850	DO 800 M=1,3
	VEC1(M)=FNTK(K,M)-FNTK(J,M)
	VEC2(M)=PNTK(L,M)-PNTK(K,M)
800	CONTINUE
	IPT(N)=K
	CALL DRCMAT(VEC1,VEC2,CSMAT)
	$I = ((N-1) \times 3)$
	I/O 810 JJ=1,3
	URCUS(1+1,JJ)=CSMA((1,JJ)
	DRCOS(1+2,JJ)=CSMAT(2,JJ)
	IRCUS(1+3)JJ)=CSMAT(3)JJ)
	DKC(KN(1+JJ)1)=05081(1)JJ)
644	UKCIKN(11JJ)3/=C3HI(3)JJ/
910	
004	
02V 070	
03V 040	
84V	COM LINCE

~

.

```
С
C
     SELECT "MOST-ACCURATE" TRIAD OF EMITTERS
C
     CALL LOCAXS(FNTK, CASE, ERRTOT)
С
C
     MULTIPLY THE TRANSDUCER VALUES BY THE CALIBRATION MATRIX
      TO GET THE FORCES.
С
С
     CALL GMPRD(CAL, FRCTRN, X, 6, 6, 1)
     DO 492 I=1,6
     FRCTRN(I)=X(I)
492 CONTINUE
С
C
     CALCULATE THE POINT OF FORCE APPLICATION AND THE AXIS SYSTEM
C
     OF THE FORCE TRANSDUCER W.R.T. THE FIXED BODY CENTER
С
     IN ADDITION, CHECK THE ACCURACY OF THE F-A EMITTERS
С
     CALL FORPT(PNTG,GUNSD,PTAPP,PTAXIS)
     DO 503 I=1,3
     FTAFF(I)=FTAFF(I)-FBCNT(I)
503 CONTINUE
     CALL GMPRD(T21,FTAPP,FTAPB,3,3,1)
     DO 509 I=1,3
     FTAXTF(I,1)=FTAXIS(1,I)
     PTAXTP(I,2)=PTAXIS(2,I)
     PTAXTP(I,3)=PTAXIS(3,1)
509 CONTINUE
     CALL GMPRD(T21, PTAXTP, TRNAXT, 3, 3, 3)
     DO 511 I=1,3
     TRNAX(I,1)=TRNAXT(1,I)
     TRNAX(I,2)=TRNAXT(2,I)
     TRNAX(I,3)=TRNAXT(3,I)
511 CONTINUE
С
     CALCULATE THE JOINT CENTER W.R.T. THE FIXED BODY CENTER
С
С
     I = ((CASE - 1) \times 3) + 1
     DO 900 J=1,3
     TMAT(1,J)=DRCTRN(1,J)
     TMAT(2,J)=DRCTRN(I+1,J)
     TMAT(3,J)=DRCTRN(1+2,J)
     HUM(1,J) = HUMDRC(I,J)
     HUM(2,J) = HUMDRC(I+1,J)
     HUM(3,J) = HUMDRC(I+2,J)
     CVEC(J) UNITVEC(CASE+J)
900 CONTINUE
     DO 339 J=1,3
     LBVEC(J)=HUM(3,J)
     LEVEC1(J)=HUM(1,J)
     LBVEC2(J)=HUM(2,J)
339 CONTINUE
```

```
173
```

```
CALL GMPRD(TMAT, CVEC, CNTVEC, 3, 3, 1)
     CALL GMPRD(TMAT,LBVEC,LGBVEC,3,3,1)
     CALL GMFRD(TMAT,LBVEC1,LGVEC1,3,3,1)
     CALL GMPRD(TMAT,LBVEC2,LGVEC2,3,3,1)
     CALL UNITVR(LGBVEC)
     CALL UNITVR(LGVEC1)
     CALL UNITVR(LGVEC2)
     K=IPT(CASE)
     DO 910 1=1,3
     JNTCNT(I)=PNTK(K,I)+CNTVEC(I)+HHDIS*LGBVEC(I)-HYDIS*LGVEC2(I)
     ELBJNT(I)=JNTCNT(I)+EJDIS*LGBVEC(I)
910 CONTINUE
     DO 930 I=1.3
     JNTCNT(I)=JNTCNT(I)-FBCNT(I)
     ELBJNT(I)=ELBJNT(I)-FBCNT(I)
930 CONTINUE
     CALL GMPRD(T21, JNTCNT, JTCNT, 3, 3, 1)
     CALL GMPRD(T21,ELBJNT,ELBCNT,3,3,1)
     DO 931 I=1,3
     SHLJNT(I+1)=JTCNT(I)
     EBOWJT(I+1)=ELBCNT(I)
     OUTPUT(16+I)=JTCNT(I)
     OUTPUT(19+I)=ELBCNT(I)
931 CONTINUE
     CALL GMPRD(T21,LGBVEC,LBVEC,3,3,1)
     CALL GMPRD(T21,LGVEC1,LBVEC1,3,3,1)
     CALL GMPRD(T21,LGVEC2,LBVEC2,3,3,1)
С
С
     CALCULATE THE THETA AND PHI ANGLES OF THE LONG BONE AXIS
С
     THETA=0.00
     PHI=0.00
     CALL UNITVR(LBVEC)
     CALL UNITVR(LBVEC1)
     CALL UNITVR(LBVEC2)
     CALL SPHERE(LBVEC, THETA, PHI)
     DO 338 J=1,3
     HUM(1,J)=LBVEC1(J)
     HUM(2,J)=LBVEC2(J)
     HUM(3,J)=LBVEC(J)
     RCNTR(J)=ELBCNT(J)-FXJTCT(J)
338 CONTINUE
     CALL SPHERE(RCNTR, THA2, PHI2)
     OUTPUT(2)=ERRTOT(CASE,1)
     OUTPUT(3)=ERRTOT(CASE+2)
     OUTPUT(4)=THA2
     OUTPUT(5)=PHI2
C
     MULTIPLY RXF AND CALCULATE THE FORCES AND MOMENTS AT THE
С
С
     JOINT CENTER
Ũ
```

```
R(1)=(PTAPB(1)-FXJTCT(1))/100.0
     R(2)=(PTAPB(2)-FXJTCT(2))/100.0
     R(3) = (PTAPB(3) - FXJTCT(3)) / 100.0
     CALL RESULT(R, OUTPUT)
     OUTPUT(1)=FLOAT(KOUNT)
     OUTPT2(1)=FLOAT(KOUNT)
С
С
     TRANSFORM THETA & PHI COORDINATES OF R VECTOR INTO
C
      JOINT SYSTEM COORDINATES
С
     V0=THA2*FI/180.0
     H0=PHI2*PI/180.0
     VC=THATO*PI/180.0
     HC=FHI0*FI/180.0
     ARG1=(SIN(VO)*SIN(HO-HC))
     ARG2=(SIN(VO)*COS(VC)*COS(HO-HC)-COS(VO)*SIN(VC))
     ARG3=(COS(VO)*COS(VC)+SIN(VO)*SIN(VC)*COS(HO-HC))
     HT=ATAN2(ARG1;ARG2)
     IF(HT.GT.0.0) GO TO 337
     HT=2.0*PI-ABS(HT)
337 VT=ACOS(ARG3)
     OUTPT2(2)=VT*(180.00/PI)
     OUTFT2(3)=HT*(180,00/FI)
С
С
     PERFORM ANALYSIS OF FORCES AND MOMENTS IN THE JOINT
С
     AXIS SYSTEM
C
     IF(KOUNT.GT.1) GD TO 808
     PHIX=PHIO*PI/180.0
     THAX=(THAT0+90.0)*FI/180.0
     PHIZ=PHIO*PI/180.0
     THATZ=THATO*FI/180.0
     UJT(1,1)=COS(PHIX)*SIN(THAX)
     UJT(1,2)=SIN(PHIX)*SIN(THAX)
     UJT(1,3)=COS(THAX)
     UJT(3,1)=SIN(THATZ)*COS(PHIZ)
     UJT(3,2)=SIN(THATZ)*SIN(PHIZ)
     UJT(3,3)=COS(THATZ)
     UJT(2,1)=(UJT(3,2)*UJT(1,3)-UJT(1,2)*UJT(3,3))
     UJT(2,2)=-(UJT(3,1)*UJT(1,3)-UJT(1,1)*UJT(3,3))
     UJT(2,3)=(UJT(3,1)*UJT(1,2)-UJT(1,1)*UJT(3,2))
808 CALL MOANAL(OUTPUT,VT,HT,UJT,OUTPT2)
С
С
     WRITE OUT THE DATA
С
     WRITE(5,702)(OUTPUT(1),1=1,16)
     WRITE(5,703)(OUTPUT(I), I=17,22),(OUTPT2(J), J=2,12)
     WRITE(2,704)(OUTFT2(J), J=1,12)
     DO 818 I=1,22
     OUTFUT(I)=0.00
818 CONTINUE
```

```
DO 1010 I=1,11
      OUTPT2(I)=0.0
1010 CONTINUE
     DO 819 I=1,33
      RC1DAT(I)=0.00
819 CONTINUE
     IF(ERRTOT(CASE,1), NE.9,999) GO TO 318
      I=TRIAD(CASE,1)
      J=TRIAD(CASE,2)
     K=TRIAD(CASE,3)
     DKMG1=SQRT((PNTK(I,1)-PNTK(J,1))**2+(PNTK(I,2)-PNTK(J,2))**2+
      &(PNTK(1,3)-PNTK(J,3))**2)
     DKMG2=SQRT((PNTK(J+1)-PNTK(K+1))**2+(PNTK(J+2)-PNTK(K+2))**2+
     &(PNTK(J,3)-PNTK(K,3))**2)
     DKMG3=SQRT((PNTK(K,1)-PNTK(I,1))**2+(PNTK(K,2)-PNTK(I,2))**2+
     &(PNTK(K,3)-PNTK(1,3))**2)
     DIMG1=SQRT((PNTI(I,1)-PNTI(J,1))**2+(PNTI(I,2)-PNTI(J,2))**2+
     &(PNTI(1,3)-PNTI(J,3))**2)
     DIMG2=SQRT((FNTI(J,1)-FNTI(K,1))**2+(FNTI(J,2)-FNTI(K,2))**2+
     &(PNTI(J,3)-PNTI(K,3))**2)
     DIMG3=SQRT((FNTI(K,1)-FNTI(I,1))**2+(FNTI(K,2)-FNTI(I,2))**2+
     &(PNTI(K,3)-PNTI(I,3))**2)
     WRITE(5,926)
     WRITE(5,927)I,J,DIMG1,J,K,DIMG2,K,I,DIMG3,I,J,DKMG1,J,K,DKMG2
     &,K,I,DKMG3
С
С
     IF THERE ARE ANY MORE RECORDS, GO GET THEM!
С
318
     KOUNT=KOUNT+1
     IF(KOUNT.LE.NREC) GO TO 500
С
С
     FORMAT STATEMENTS FOR PROMPTS AND RESULTS
С
5
     FORMAT('$','Enter name of Joint tested [S-9]: ')
10
     FORMAT(9A1)
     FORMAT('$','Enter subject name or number ES-253: ')
15
20
     FORMAT(25A1)
     FORMAT('0','Enter a description of the test [S-80] ')
25
30
     FORMAT(80A1)
35
     FORMAT('$','Enter data file name [S-13]: ')
40
     FORMAT(13A1)
45
     FORMAT('$','Enter number of records to be read [N-5]; ')
50
     FORMAT(I5)
51
     FORMAT('$','Enter the corresponding fixed body locator file na
     &me [s-13]: ')
     FORMAT('0','Enter the distances in centimeters along the loca
55
     Stor exes to the desired fixed body center :')
     FORMAT('$',T15,'Enter the X-COORDINATE EN-83: ')
60
     FORMAT(F10.5)
65
66
     FORMAT(F8.4)
     FORMAT('$',T15,'Enter the Y-COORDINATE EN-83; ')
70
```

-

```
FORMAT('$',T15,'Enter the Z-COORDINATE [N-8]: ')
75
     FORMAT('0','Enter the coordinates of the fixed joint center
76
      & w.r.t. the fixed-body system:')
     FORMAT('$','Enter the joint x-coordinate: ')
77
     FORMAT('$','Enter the joint s-coordinate: ')
78
79
     FORMAT('$','Enter the joint z-coordinate: ')
     FORMAT('0','Input a 3x3 matrix (by rows) that defines the body
80
     & axis system w.r.t. the locator axis system : ')
85
     FORMAT('$','Enter the corresponding initializing file name [
     &S-253: ')
     FORMAT('$','Enter which side of the force applicator
88
     & faced the sensor assembly during the test CA or BJ:')
100 FORMAT('0', T78, 9A1, 'JOINT')
105 FORMAT('0',T5,'DATE: ',9A1,/,T5,'TIME: ',8A1,/,T5,'SUBJECT
     &NAME AND NUMBER: ',25A1)
110 FORMAT(' ',T5,'DATA FILE NAME: ',13A1,/,T5,'NUMBER OF RECORDS:
     $', I5, //, T5, 'DESCRIPTION: ', 80A1)
200 FORMAT('0',165('-')/)
205 FORMAT('0',165('-')//)
206 FDRMAT(' ',165('-'))
207 FORMAT('0',165('.'))
275 FORMAT('0', 'ERROR ON ATTEMPT TO READ LOCATOR FILE ')
280 FORMAT('0', 'ERROR ON ATTEMPT TO READ INITIALIZING FILE ')
285 FORMAT('0', 'FOUR EMITTERS ON CUFF READ ZERO-PROCEEDING TO NEXT
     & RECORD ()
287 FORMAT('0', 'ERROR ON ATTEMPT TO READ TRANSDUCER CALIBRATION
     % MATRIX DATA FILE:')
300 FORMAT('0',T30, 'ERROR ON ATTEMPT TO READ NEXT RECORD')
311 FORMAT('0',T20,'NOMINAL JOINT CENTER AS INITIALIZED'/)
340 FORMAT('0',/'$','Are there other files to be processed?
     $EY/N3: ()
345 FORMAT(A4)
432 FORMAT(12)
604 FORMAT('$',T15,'T2(',I1,',',I1,');EN-83; ')
626 FORMAT('$','Enter the distance from the acromion-based emitter
     $ to the center of the humeral head EN-8]:')
628 FORMAT('$','Enter the distance from the center of the humeral
     $ head to the center of the elbow joint [N-8]:')
631 FORMAI('$','Enter the lateral distance to the long bone axis
     & EN-83:()
702 FORMAT(1F9.1,4F9.2,11F10.2,/)
703 FORMAT(9F9.2,8F10.2,//)
704 FORMAT(12F10.2)
731 FORMAT(' ','Enter values for the nominal humeral axis orientation:')
734 FORMAT('$','Theta Nominal: ')
732 FORMAT('$','Fhi Nominal: ')
733 FORMAT('$','Enter the "Best-Fit" sphere radius: ')
750 FORMAT('0','F-A EMITTER IS ZERO, PROCEEDING TO NEXT RECORD!')
881 FORMAT(4F8.3)
884 FORMAT('$','Enter the output data filename for restoring
     & forces and moments [S-13]; ')
```

```
926 FORMAT(' ', T5, 'INITIALIZED DISTANCES:', T63, 'DISTANCES, CURRENT
     % RECORD: ')
927 FORMAT(' ',3(I1,'-',I1,'=',F5,2,' '),T60,3(I1,'-',I1,'=',
     &F5.2, ( ())
C
C
     CLOSE UP DATA FILE & THAT'S ALL FOLKS!
C.
2001 CLOSE (UNIT=1)
     CLOSE (UNIT=2)
     WRITE(5,207)
     WRITE(5,340)
     READ(5,345)ANS
     IF(ANS .EQ. 'N')GO TO 5000
     WRITE(5,35)
     READ(5,40) (F1NAME(I),I=1,13)
     WRITE(5,45)
     READ(5,50) NREC
     WRITE(5,25)
     READ(5,30) (MESS(I),I=1,80)
     IREC=1
     KREC=1
     KOUNT=1
557 WRITE(5,51)
     keaD(5,40,ERR=557)(F2NAME(I),I=1,13)
558 WRITE(5,884)
     READ(5,40,ERR=558)(F4NAME(I),I=1,13)
     GO TO 2000
3000 WRITE(5,205)
     WRITE(5,275)
     GO TO 5000
3500 WRITE(5,205)
     WRITE(5,280)
     GO TO 5000
3700 WRITE(5,285)
     KOUNT=KOUNT+1
     IF(KOUNT.GT.NREC) GO TO 2001
     GO TO 500
3800 WRITE(5,287)
     GO TO 500
3900 WRITE(5,750)
     KOUNT=KOUNT+1
     GO TO 500
4000 WRITE(5,205)
     WRITE(5,300)
     GOTO 2001
5000 WRITE(5,205)
     STOP
     END
C
C
     SUBROUTINE SPHERE(VEC, THETA, PHI)
```

```
С
C
     SUBROUTINE TO CALCULATE THE SPHERICAL COORDINATES (THETA, PHI)
С
     OF THE VECTOR "VEC".
Ü
     DIMENSION B(3), VEC(3)
     DATA PI/3.141592654/
     VECMAG=SQRT(VEC(1)**2+VEC(2)**2+VEC(3)**2)
     IF(VECMAG.LT.1.001) GO TO 10
     B(1)=VEC(1)/VECMAG
     B(2)=VEC(2)/VECMAG
     B(3)=VEC(3)/VECMAG
     GO TO 15
     B(1) = VEC(1)
10
     B(2)=VEC(2)
     B(3) = VEC(3)
15
     A1=SQRT(B(1)**2+B(2)**2)
     THETA=(ATAN2(A1,B(3)))*180.0/FI
     IF(THETA.LT.179.99.OR.THETA.GT.0.01) GO TO 20
     FHI=0.0
     GO TO 30
20^{\circ}
     PHI=(ATAN2(B(2),B(1)))*180.0/PI
30
     RETURN
     END
C
     SUBROUTINE UNITVR(VEC)
С
C
     SUBROUTINE CALCULATES A UNIT VECTOR FOR ANY GIVEN VECTOR
Ũ
     DIMENSION VEC(3)
     VECMAG=(VEC(1)**2)+(VEC(2)**2)+(VEC(3)**2)
     VECMAG=SQRT(VECMAG)
     IF(VECMAG.EQ.0.0) VECMAG=1.0
     DO 10 I=1,3
     VEC(I)=VEC(I)/VECMAG
10
     CONTINUE
     RETURN
     END
С
     SUBROUTINE LOCAXS(PNTK, CASE, ERRTOT)
С
     THIS SUBROUTINE SELECTS THE 'MOST ACCURATE' LOCAL AXIS SYSTEM
C
     BASED ON INTRA-AXIS SYSTEM DISTANCES AND RELATIVE SKEW ANGLES.
C
С
     DIMENSION FNTK(6,3), TIS(3,3), TISK(3,3), TJS(3,3), TJSK(3,3)
     DIMENSION TIJ(3,3), TIJK(3,3), GEN(3,3), VECI(3), VECK(3)
     DIMENSION ERRTOT(20,3),F1(3),G1(3)
     INTEGER TRIAD, CASE
     REAL JNTVEC, JTDSMG
     COMMON /AC/ PNTI(6,3),COSMAT(60,3),COSTRN(60,3),DRCOS(60,3),
     $DRCTRN(60,3),TRIAD(20,3),JNTVEC(20,3)
```

C

```
ERRSK=0.0
     ERRILT=0.0
C
     DO 20 MM=1,20
C
     I1=TRIAD(MM,1)
     J1=TRIAD(MM,2)
     K1=TRIAD(MM,3)
       IF (FNTK(11,1), EQ.0.0.0R, FNTK(J1,1), EQ.0.0.0R, FNTK(K1,1), EQ.0.0)
      $ GO TO 19
Ũ
     KK=(MM-1)*3
Ü
Ü.
     DO 3 J=1,3
     TIS(1,J)=COSMAT(KK+1,J)
     TIS(2,J)=COSMAT(KK+2,J)
     TIS(3,J)=COSMAT(KK+3,J)
С
     TISK(1,J)=DRCOS(KK+1,J)
     TISK(2,J)=DRCOS(KK+2,J)
     TISK(3,J)=DRCOS(KK+3,J)
     CONTINUE
3
Ű.
     MKNT1=0
     MKNT2=0
Ü
     10 10 N=1,20
     J2=TRIAD(N+1)
     J2=TRIAD(N,2)
     K2=TRIAD(N+3)
     IF (FNTK(I2,1), EQ,0.0, OR, PNTK(J2,1), EQ,0.0, OR, PNTK(K2,1), EQ,0.0)
     $ GO TO 10
     m=(N-1)*3
     IF(N.EQ.MM) GO TO 10
Ũ.
     00 5 J=1+3
     TJS(1,J)=COSTRN(M+1,J)
     TUS(2,J)=COSTRN(M+2,J)
     TUS(3,J)=COSTRN(M+3,J)
C
     TJSK(1,J)=DRCTRN(M+1,J)
     TJSK(2,J)=DRCTRN(M+2,J)
     TUSK(3,J)=DRCTRN(M+3,J)
5
     CONTINUE
С
Ē
     CALL GMPRD(TIS, TJS, TIJ, 3, 3, 3)
     CALL GMPRD(TISK, TJSK, TIJK, 3, 3, 3)
     CALL MINV(TIJK,3,D,F1,61)
     CALL GMPRD(TIJ,TIJK,GEN,3,3,3)
```

```
180
```

```
TRACE=(GEN(1,1)**2+GEN(2,2)**2+GEN(3,3)**2)
     GAM = .5 \times (TRACE - 1.0)
     IF (GAM.GT.1.0.AND.GAM.LT.1.05) GAM=1.0
     GAM=ACOS(GAM)
     JTDSMG=SQRT((JNTVEC(N,1)**2)+(JNTVEC(N,2)**2)+(JNTVEC(N,3)
     8**2))
     GAMSIN=SIN(GAM)
     DELTAS=JTDSMG*GAMSIN
     DELTAS=DELTAS**2
     ERRSK=ERRSK+DELTAS
     MKNT1=MKNT1+1
     III=TRIAD(MM,2)
     JJJ=TRIAD(N,2)
     IF(III.EQ.JJJ) GO TO 10
Ũ
     10 7 L=1+3
     VEC1(L)=FNTI(JJJ,L)-FNTI(III,L)
     VECK(L)=PNTK(JJJ,L)-PNTK(III,L)
     CONTINUE
7
C
     VECIMG=SQRT((VECI(1)**2)+(VECI(2)**2)+(VECI(3)**2))
     VECKMG=SQRT((VECK(1)**2)+(VECK(2)**2)+(VECK(3)**2))
     DELTAD=ABS(VECKMG-VECIMG)
     DELTAD=DELTAD**2
     ERROLT=ERROLT+DELTAD
     MKNT2=MKNT2+1
10
     CONTINUE
Ĉ
     RMKNT1=FLOAT(MKNT1)
     RMKNT2=FLOAT(MKNT2)
     DIV1=RMKNT1*1.0
     DIV2=RMKNT2#1.0
     1F(MKNT1.NE.0) GD TO 11
     SKERR=9.999
     GO TO 12
     SKERR=SQRT(ERRSK/DIV1)
11
12
     IF(MKNT2.NE.0) GO TO 13
     DERR=9.999
     GO TO 14
     DERR=SORT(ERRDLT/DIV2)
13
14
     ERRTOT(MM,1)=SKERR
     ERRTOT(MM+2)=DERR
     ERRTOT(MM+3)=SQRT((SKERR**2+DERR**2)/2.0)
Ü
    ERRSK=0.0
    EREDLT=0.0
    GO TO 20
    ERRTOT(MM,1)=25.0
19
    ERRTOT(MM,2)=25.0
    ERRTOT(MM,3)=50.0
    ERRSK=0.0
```

```
ERROLT=0.0
20
     CONTINUE
£.
     CASE=1
     ERTOTL=ERRTOT(1,3)
     NO 25 I=1,19
     IF(ERTOTL.LE.ERRTOT(I+1,3)) GO TO 25
     CASE=I+1
     ERTOTL=ERRTOT(I+1,3)
25
     CONTINUE
     RETURN
     END
C
С
     SUBROUTINE MOANAL(OUTPUT,VT,HT,UJT,OUTPT2)
C
     IUMENSION OUTPUT(22),OUTPT2(12),UJT(3,3),MFB(3),MJTT(3),URJT(3)
     DIMENSION FJTR(3), MJTR(3)
     REAL MFB, MJTT, MJTR, MJTRMG, MURMAG
     DATA PI/3.141592694/
C.
C
     CALCULATE TOTAL RESTORING MOMENT, TRANSFORM INTO JOINT SYSTEM,
С
     AND FACTOR OUT COMPONENT ALONG R VECTOR
Ũ
    MFB(1)=OUTPUT(10)+OUTPUT(13)
     MFB(2)=OUTPUT(11)+OUTPUT(14)
     MFB(3)=OUTPUT(12)+OUTPUT(15)
     CALL GMPRD(UJT,MFB,MJTT,3,3,1)
     URJT(1)=SIN(VT)*COS(HT)
    URJT(2)=SIN(VT)*SIN(HT)
    URJT(3)=COS(VT)
    CALL UNITVR(URJT)
    hURMAG=(MJTT(1)*URJT(1)+MJTT(2)*URJT(2)+MJTT(3)*URJT(3))
    OUTPT2(4)=NURMAG
    HUTR(1)=HUTT(1)-(MURMAG*URUT(1))
    MJTR(2)=MJTT(2)-(MURMAG*URJT(2))
    MJTR(3) = MJTT(3) - (MURMAG*URJT(3))
    MUTRMG=SQRT(MUTR(1)**2+MUTR(2)**2+MUTR(3)**2)
    OUTFT2(9)=MJTR(1)
    OUTPT2(10)=MJTR(2)
    OUTFT2(11) = MUTR(3)
    OUTPT2(12)=MJTRMG
    CALL UNITVR(MJTR)
    FJTR(1)=(MJTR(2)*URJT(3)-URJT(2)*MJTR(3))*(MJTRMG/1.0)
    FUTR(2)=-(MJTR(1)*URJT(3)-URJT(1)*MJTR(3))*(MJTRMG/1.0)
    FJTR(3)=(MJTR(1)*URJT(2)-URJT(1)*MJTR(2))*(MJTRMG/1.0)
    FJ(RMG=SQRT(FJ)R(1)**2+FJTR(2)**2+FJTR(3)**2)
    CUTFT2(5)=FJTR(1)
    OUTPT2(6)=FJTR(2)
    OUTPT2(7)=FJTR(3)
    OUTPT2(8)=FJTRMG
```

```
182
```

```
RETURN
     END
С
С
     SUBROUTINE DRCMAT(A,B,C)
Û,
     THIS SUBROUTINE CALCULATES THE DIRECTION COSINE MATRIX
0
ĩ.
     FOR AN AXIS SYSTEM BASED ON TWO COPLANAR VECTORS (A and B).
C
     THE RESULTING MATRIX, C, IS ORTHOGONAL AND UNITARY.
С
     DIMENSION A(3), B(3), C(3,3)
     AMAG=SQRT(A(1)**2+A(2)**2+A(3)**2)
     BMAG=SQRT(B(1)**2+B(2)**2+B(3)**2)
     C(1,1)=A(1)/AMAG
     C(1+2)=A(2)/AMAG
     C(1,3)=A(3)/AMAG
     C(2+1)=B(1)/BMAG
     C(2,2)=B(2)/BMAG
     C(2,3)=B(3)/BMAG
     C(3,1)=(C(1,2)*C(2,3))-(C(2,2)*C(1,3))
     C(3,2)=(C(1,3)*C(2,1))-(C(2,3)*C(1,1))
     C(3,3)=(C(1,1)*C(2,2))-(C(2,1)*C(1,2))
        C(2,1)=(C(3,2)*C(1,3))-(C(1,2)*C(3,3))
        C(2_{2})=(C(3_{3})*C(1_{1}))-(C(3_{1})*C(1_{3}))
        C(2,3)=(C(3,1)*C(1,2))-(C(1,1)*C(3,2))
     00 10 J=1,3
     CMAG=SQRT(C(J,1)**2+C(J,2)**2+C(J,3)**2)
     DO 5 I=1,3
     C(J,I)=C(J,I)/CMAG
5
     CONTINUE
10
     CONTINUE
     RETURN
     END
C
     SUBROUTINE RESULT(R; OUTPUT)
С
C
     DIMENSION R(3),X(3),Y(3),Z(3),MOMXTR(3),MOMYTR(3),MOMZTR(3)
     DIMENSION FRCBD(3), PMOMBD(3), MOMBD(3), MOMTBD(3), OUTPUT(22)
     REAL MOMXTR, MOMYTR, MOMZTR, MOMBD, MOMTBD
     COMMON /BC/ FRCTRN(6), TRNAX(3,3)
     NO 7 J=1,3
     X(J)=FRCTRN(1)*TRNAX(1,J)
     Y(J)=FRCTRN(2)*TRNAX(2,J)
     Z(J) = FRCTRN(3) * TRNAX(3, J)
     MOMXTR(J)=FRCTRN(4)*TRNAX(1,J)
     MOMYTR(J)=FRCTRN(5)*TRNAX(2,J)
     MOMZTR(J)=FRCTRN(6)*TRNAX(3,J)
7
    CONTINUE
    DO 8 1=1,3
    FRCED(I)=X(I)+Y(I)+Z(I)
```

```
183
```

```
OUTPUT(5+I)=FRCBD(I)
     FMOHBD(I)=MONXTR(I)+MOMYTR(I)+MOMZTR(I)
     OUTPUT(9+I)=PMOMBD(I)
8
     CONTINUE
     CALL CRSPRD(R, FRCBD, MOMBD)
     DO 9 I=1,3
     MOMTBD(I)=FMOMBD(I)+MOMBD(I)
     OUTPUT(12+I)=MOMBD(I)
Ģ.
     CONTINUE
     OUTPUT(9)=SQRT((FRCBD(1)**2)+(FRCBD(2)**2)+(FRCBD(3)**2))
     OUTPUT(16)=SQRT((MONTBD(1)**2)+(MONTBD(2)**2)+(MONTBD(3)**2))
     RETURN
     END
Ē.
C
     SUBROUTINE CRSPRD(R,F,OUT)
0 ...
     DIMENSION R(3), F(3), OUT(3)
     OUT(1)=(R(2)*F(3))-(R(3)*F(2))
     OUT(2) = (R(3) * F(1)) - (R(1) * F(3))
     OUT(3) = (R(1) * F(2)) - (R(2) * F(1))
     RETURN
     END
С
C
     SUBROUTINE FORFT(FNTG, GUNSD, FTAPF, FTAXIS)
C
     SUBROUTINE TO CALCULATE THE POINT OF FORCE APPLICATION
С
C
     AND THE AXIS SYSTEM OF THE FORCE APPLICATOR
C
     DIMENSION PTAPP(3),NORMAL(3),PT1PT2(3),PT2PT3(3)
     DIMENSION FTAXIS(3,3),X(3),Y(3),FNTG(3,3)
     REAL NORMAL, NORLEN
     INTEGER GUNSD
     60 10 I=1,3
        FT1FT2(1)=FNTG(2,1)-FNTG(1,1)
        PT2PT3(I)=PNTG(3,I)-PNTG(2,I)
10
     CONTINUE
     P12MAG=S0RT(PT1PT2(1)**2+PT1PT2(2)**2+PT1PT2(3)**2)
     P23MAG=SQRT(PT2PT3(1)**2+PT2PT3(2)**2+PT2PT3(3)**2)
     P12DIF=ABS(P12MAG-12.90)
     F230IF=ABS(F23MAG-9.10)
     D0T123=PT1PT2(1)*PT2PT3(1)+PT1PT2(2)*PT2PT3(2)+PT1PT2(3)*
     &PT2PT3(3)
     THA=(ACOS(D0T123/(F12MAG*P23MAG)))*57.2958
     THADIF=ABS(90-THA)
     lF(F12DIF.GT.0.30) WRITE(5,40)F12DIF
     IF(P23DIF.GT.0.30) WRITE(5,45)P23DIF
     IF(THADIF.GT.5.0) WRITE(5,50)THADIF
     CALL CRSPRD(PT1PT2,PT2PT3,NORMAL)
     IF(GUNSD .EQ. 'A')GOTO 15
```

```
184
```

```
NORMAL(1)=-1+0*NORMAL(1)
     NORMAL(2)=-1.0*NORMAL(2)
     NORMAL(3)=-1.0*NORMAL(3)
15
     NORLEN=SORT(PT2PT3(1)**2+PT2PT3(2)**2+PT2PT3(3)**2)*0.5
     CALL UNITVR(NORMAL)
     DO 20 I=1,3
        NORMAL(I)=NORMAL(I)*NORLEN
        PT2PT3(I)=PT2PT3(I)*0.5+PNTG(2.1)
        PTAPP(I)=NORMAL(I)+PT2PT3(I)
        X(I)=PNTG(2,I)-FTAPP(I)
        Y(I) = FNTG(3,I) - FTAFF(I)
20
     CONTINUE
     CALL UNITVR(PT1PT2)
     CALL UNITUR(X)
     CALL UNITVR(Y)
     IF(GUNSD.EQ.'B') GO TO 25
     DO 23 I=1+3
     Y(I) = -1.0*Y(I)
23
     CONTINUE
25
     DO 30 I=1,3
        PTAPP(I)=PTAPP(I)+PT1FT2(I)*30.0
        FTAXIS(1,I)=-X(I)
        PTAXIS(2,I)=Y(I)
        PTAXIS(3,I)=-PT1PT2(I)
30
     CONTINUE
     FORMAT('0', 'F12 discrepancy is:', F6.3)
40
     FORMAT('0', 'P23 discrepancy is:', F6.3)
45
50
     FORMAT('0','Cross product discrepancy is:',F6.3,'desrees')
     RETURN
     END
Ũ
```

 \geq

....

PROGRAM CALEXP

C	· · · ·
C C	THIS PROGRAM USES JOINT ENVELOPE DATA TO CALCULATE THE JOINT STANG EXPANSION IN THE SAME FORM AS FOUND IN THE CAUSEAN ATB
č	MODEL. THE SAME PROCEDURE IS FOLLOWED AS IN THE RAYING BIO-
č	STEREOMETRIC LABORATORY REPORT.
Ē	
	EXTERNAL FFCT
	DIMENSION JINAME(9),OUTDAT(120,2),DATA(72,4)
	DIMENSION PTMAT(72,3),U1(4),U2(3),PTS(72,3),ANG(72,2)
	DIMENSION WORK(66),P(11),DATI(72,2),COEF(10)
	INTEGER YES,ANS1,ANS2,ANS3,ANS4,ANS5
	LOGICAL*1 SNAME(25), MESS(80), FNAME(25), F2NAME(13), F3NAME(13)
	LOGICAL*1 F4NAME(25)
	DOURLE PRECISION DATI,WURK,FI,F,WG),HIRAD,VIRAD,CUEF
	DOUBLE PRECISION DARG1, DARG2, DARG3, DARG4
	DATA 1866/1771/3+141372633387773100/CCCF71040+0007
r	DATA TEST TYNY NY JREC/T/P/TIKO:ODO/WORK/08#0:ODO/
510	WEITE(5.15)
	REAT(5, 20) ERE=510) (SNAME(1), 1=1.25)
515	WRITE(5,25)
***	READ(5,30,ERR=515) (MESS(I),I=1,80)
520	WRITE(5,35)
	READ(5,20,ERR=520) (FNAME(I),I=1,25)
521	WRITE(5,220)
	READ(5,221,ERR=521)EPS
800	1F(EFS,EU,0,0) EFS=0.0005
చినిన	WR11E(372307 DEAD/5-931-EB0-5331ETA
	15/FT4.FD.0.0) FT4=0.0005
	URITE(5.1)
1	FORMAT('\$ENTER X-TRANSLATION FOR THE F. B. C. ! [F9.63:')
-	READ(5,221) XTRANS
	WRITE(5,2)
2	FORMAT('\$ENTER Y-TRANSLATION FOR THE F. B. C. ! [F9.6]:')
	READ(5,221) YTRANS
	WRITE(5,3)
3	FORMAT((\$ENTER Z-TRANSLATION FOR THE F. B. C. ! LF9.6JT)
507	KEAU(3/221) 21KANS URITE(5-241)
020	WRIIE(3)241) DEAD/5.747.E00-57714NG1
400	NEHD(3)242)CRR-323/HR31 WETTE(5.300)
000	READ(5+242+ERR=600)ANS2
	1F(ANS2.NE.YES) 60 TO 620
610	WRITE(5,310)
	READ(5,40,ERR=610)(F2NAME(I),I=1,13)
620	WRITE(5,320)
	READ(5,242,ERR=620)ANS3
	IF(ANS3.NE.YES) GO TO 640
630	WRITE(5,330)

```
READ(5,40,ERR=630)(F3NAME(I),I=1,13)
640
     WRITE(5,340)
     FORMAT('$','DO YOU WISH TO CREATE A DATA FILE CONTAINING EXFANSIO
340
     +N COEFFICIENTS? (Y/NJ:')
      READ(5,242,ERR=640) ANS4
      IF(ANS4.NE.YES) GOTO 42
650 WRITE(5,350)
     FORMAT('$','ENTER THE OUTPUT FILE NAME FOR EXPANSION COEFFICIENTS
350
     +! [3-25]:')
      READ(5,20,ERR=650) (F4NAME(I),I=1,25)
Ũ
С.
     LOCATE, IDENTIFY, AND ACCESS THE DATA FILE
Ũ
42
     CALL ASSIGN(1,FNAME,25)
     KN=0
     DO 50 I=1,72
     READ(1,820+END=51,ERR=525)(DATA(I,J),J=1,4)
     IF(DATA(I,1).EQ.0.0) GO TO 50
     KN=KN+1
     FTMAT(KN,1)=DATA(I,2)-XTRANS
     PTMAT(KN,2)=DATA(I,3)-YTRANS
     FTMAT(KN,3)=DATA(I,4)-ZTRANS
50
     CONTINUE
51
     CLOSE (UNIT=1)
     60 TO 52
525 WRITE(5,2000)
     GO TO 2001
Ū
     FIT THE DATA TO A "BEST-FIT" SPHERE IN SPACE.
С
С
52
     CALL SPHFIT(PTMAT,U1,ANG,PTS,KN)
C
     USE THE JOINT SINUS OUTLINE ON THE SPHERE TO CALCULATE THE
Ũ
     NORMAL (DEFINED BY THETA AND PHI) OF THE "BEST-FIT" PLANE TO
Ĉ
С
     THESE POINTS.
C
     CALL PLAFIT(PTS,U2,KN,THETA,PHI)
C
     FROM THIS NORMAL, CALCULATE RELATIVE THETA AND PHI ANGLES FOR
C
C
     THE SINUS OUTLINE POINTS.
C
    VC=THETA
     HC=PHI
    VCRAD=VC*FI/180.00
    HCRAD=HC*FI/180.00
    DO 100 I=1,KN
    VO=ANG(I,1)
    H0=ANG(1,2)
    1F(H0.L1.-170.0) H0=H0+360.00
    VORAD=V0*FI/180.00
    HORAD=HO*FI/180.00
```

```
ARG1=(SIN(VORAD)*SIN(HORAD-HCRAD))
      ARG2=(SIN(VORAD)*COS(VCRAD)*COS(HORAD-HCRAD)-COS(VORAD)*
      &SIN(VCRAD))
      ARG3=(COS(VORAD)*COS(VCRAD)+SIN(VORAD)*SIN(VCRAD)*COS(HORAD
      &-HCRAD())
      0ARG1=DBLE(ARG1)
      DARG2=DBLE(ARG2)
      DARG3=DBLE(ARG3)
      HTRAD=ATAN2(DARG1,DARG2)
      DARG4=DSQRT(DARG1**2+DARG2**2)
      VTRAD=ATAN2(DARG4,DARG3)
      DATI(1,2)=VTRAD
      IF(HTRAD.LT.0.0D0) HTRAD=HTRAD+2.0D0*FI
      DATI(I,1)=HTRAD
 100 CONTINUE
C
Ĉ
     COMPUTE THE EXPANSION COEFFICIENTS FOR THE JOINT SINUS.
C
     CALL DAFLL(FFCT,KN,10,F,WORK,DATI,IER)
     CALL DAPFS(WORK, 10, IRES, -1, EPS, ETA, IER)
Ũ.
     10 104 I=1,KN
D104 DATI(I,1)=DATI(I,1)*180.00/PI
     MM=IRES-1
     M=MM*(MM+1)/2
     DO 105 I=1, IRES
105 COEF(I)=WORK(M+I)
Ü
C
     WRITE THE OUTPUT DATA TO DISK
Ü
     IF(ANS2.NE.YES)G0 TO 109
     CALL ASSIGN (1,F2NAME,13)
     CALL OUTPUT (COEF, OUTDAT, KN)
     DO 106 I=1,120
     WRITE (1,700)OUTDAT(1,1),OUTDAT(1,2)
     TYPE *, 'PHI, THETA(CALC.)=', OUTDAT(I,1), OUTDAT(I,2)
Ī1
106 CONTINUE
     CLOSE (UNIT=1)
Ĉ
С
     WRITE RHO-GAMMA DATA TO DISK
Ũ:
107
      IF(ANS3.NE.YES) GOTO 111
     CALL ASSIGN(1,F3NAME,13)
     10 107 I=1,KN
     WRITE(1,700)DATI(I,1),DATI(I,2)
107 CONTINUE
     CLOSE (UNIT=1)
     WRITE(5,146) KN, (F3NAME(IJ), IJ=1,13)
146 FORMAT('0', 15,' RECORDS OF (PHI, THETA) RAW DATA',
     +
               / WERE OUTPUT TO FILE(,5X,13A1)
111
      IF(ANS4.NE.YES) GOTO 108
      CALL ASSIGN(1,F4NAME,25)
```

```
WRITE(1,701) (COEF(J),J=1,10)
701
      FORMAT(2E20.10)
      CLOSE (UNIT=1)
Ĉ
Ũ
     WRITE OUT THE DESIRED DATA
C
108 WRITE(5,110)SNAME
     WRITE(S+115)MESS
     WRITE(5,118)
118 FORMAT('0',' F. B. C. TRANSLATIONS:')
     WRITE(5,125) XTRANS, YTRANS, ZTRANS
     WRITE(5,120)
     WRITE(5,125)U1(1),U1(2),U1(3),U1(4)
     WRITE(5,130)VC,HC
     WRITE(5,133)IER
     WRITE(5,135) IRES, EPS, ETA
     WRITE(5,140)(COEF(I),I=1,10)
     IF(ANS1.NE.YES) GO TO 2001
     WRITE(5,145)
     WRITE(5,150)(ANG(1,1),ANG(1,2),DATI(1,1)
     &, DATI(I,2), I=1,KN)
С
Ĉ
     FORMAT STATEMENTS FOR PROMPTS AND RESULTS
Ü
5
     FORMAT('$','Enter the name of the joint tested. [5-9]:')
10
     FORMAT(9A1)
15
     FORMAT('$','Enter the subject name or number, [S-25]:')
20
     FORMAT(25A1)
25
     FORMAT('$','Comments on, or description of test. [5-80]:')
30
     FORMAT(80A1)
     FORMAT('$','Enter the input data file name, [5-25]:')
35
40
     FORMAT(13A1)
241 FORMAT('$','Do you want sinus data in terms of theta-phi and
     & rho-samma coordinates issued as output? [Y/N]:')
242 FORMAT(A4)
110 FDRMAT('0', Shoulder Joint Sinus Analysis for Subject: ',25A1)
115 FORMAT(' ', 'Comments:', 80A1//165('_'))
120 FORMAT('0 Joint Center Coordinates:',T50,'Sphere Avs. Radius')
125 FORMAT(1X,F7.3,2F9.3,T54,F8.3)
130 FORMAT('0','Orientation of Normal for 'Best-Fit' Flane'/T16,
     &'Thets',T27,'Phi'/T14,F7,2,T24,F7.2)
133 FORMAT('0', ''IER'=', T9, I2)
135 FORMAT('0', 'Expansion Coefficients for "Ires"=', T38, I3,
     %T48, 'EFS=', T53, E9, 2, T68, 'ETA=', T73, E9, 2/T11, 'A1',
     $T28, 'A2', T44, 'A3', T60, 'A4', T76, 'A5', T92, 'A6', T108, 'A7', T124, 'A
     &8',T140,'A9',T156,'A10'/)
140 FORMAT(10E16.5)
145 FORMAT('0','Sinus Data in terms of Theta-Phi Coordinates and
     & 2-D Coordinates: //T10, Theta-Phi W.R.T. Body',
     & ToO, 'Joint System Coords.'/)
150 FORMAT(T11,2F8,2,T60,2F8,2)
```

```
189
```

```
220 FORMAT('$','Select EPS (between 1.E-3 and 1.E-6) [F9.6];')
221 FORMAT(F9.6)
230 FORMAT('$','Select ETA (between 1.E0 and 1.E-6) [F9.6];')
300 FORMAT('$','No you wish to create an output data file ',
          (FOR THE REST-FIT FUNCTION VALUES? [Y/N]:()
     ÷
310 FORMAT('$','Enter the output data file name! [S-13]:')
320 FORMAT('$','Do you wish to create a data file containing
     % rho-samma coordinates? [Y/N]:')
330 FORMAT('$','Enter the output file name for rho-samma data!
     & [S-13];')
700 FORMAT(F10.5,',',F10.5)
820 FORMAT(4F6.3)
2000 FORMAT('$','ERROR ON ATTEMPT TO READ DATA FILE!')
2001 WRITE(5,99)
     FORMAT('$ARE THERE OTHER FILES TO BE PROCESSED ! EY/NJ:')
99
     READ(5,242) ANS5
     IF(ANS5.EQ.YES) GO TO 510
     STOP
     END
Ü
Ũ
C
     SUBROUTINE SPHFIT(PTMAT,U,ANG,PTS,KN)
Ü
Ĉ
     THIS SUBROUTINE CALCULATES THE "BEST FIT" SPHERE TO A SET
Ũ
     OF DATA POINTS AND THEN OUTPUTS INFORMATION ON THE SPHERE
     AND ON THE REVISED DATA SET.
C
Ċ
     DIMENSION PTMAT(72,3), P(72), U(4), PTS(72,3)
     DIMENSION ANG(72,2), PVEC(3), GTG(4,4), F1(4), G1(4)
     DIMENSION G(72,4),GT(4,72),GG(4,72),MIN(3)
     DATA P/72*1.0/
C
C
     XMIN=PTMAT(1,1)
     YMIN=PTMAT(1,2)
     ZMIN=FTMAT(1,3)
     DO 50 I=1,KN
     IF(PTMAT(1,1).LT.XMIN) XMIN=PTMAT(1,1)
     IF(PTMAT(I,2),LT,YMIN) YMIN=PTMAT(I,2)
     IF (PTMAT(I,3), LT, ZMIN) ZMIN=PTMAT(I,3)
50
     CONTINUE
     MIN(1)=ABS(XMIN)+1.0
     MIN(2)=ABS(YMIN)+1.0
     MIN(3)=ABS(ZMIN)+1.0
     00 75 J=1,KN
     PTS(J,1)=PTMAT(J,1)+MIN(1)
     PTS(J,2)=PTMAT(J,2)+MIN(2)
     FTS(J,3)=FTMAT(J,3)+MIN(3)
     DIV1=((PTS(J,1)**2)+(PTS(J,2)**2)+(PTS(J,3)**2))
     G(J,1)=(2.0*PTS(J,1))/DIV1
```

```
190
```

	G(J,2)=(2.0*PTS(J,2))/DIV1
	G(J,3)=(2.0*PTS(J,3))/DIV1
	$G(.1,4) = (-1,0)/\Pi T V 1$
	67(1,1)=6(1,1)
	GT(2+1)=6(1+2)
	GT (3+.1) = G(.1+3)
	GT(4+.1)=G(.1+4)
75	CONTINUE
~ •	ΠΟ 30 I=1.4
	DD 20 K=1.4
	GIG(I+K)=0.0
	GTGN=0.0
	00 10 I-1 KN
	61768=61(1.1)±6(.1.K)
	GTG(T-K)=GTG(T-K)+GTGN
10	CONTINUE
20	CONTINCE
20	
.50	DUNIINUE PAR MINUCTE A.D.EI.EI
	DO 170 T-1.0
	DO 130 1-194
	30 120 K-19KM GG(T-K)-0 0
	CON-CTC(I, NYCT(I,K)
	GG/T.K)=GG/T.K)+GGN
110	
100	CONTINUE
120	CONTINCE
190	DD 270 f=1.4
	65 250 1-194 67 1-194
	US=0.0
	500 900 I-1-KN
	DN=66(T. D)*P(D)
	(1) = (1(1) + 1)N
220	CONTINUE
220	CONTINUE
6.20	000011000 0=50071((11(1)**2)+(11(2)**2)+(11(3)**2))-11(4))
'n	TYPE #./R=/.D
D	10 80 T=1.KN
	PTS(I,1)=PTS(I,1)-U(1)
	PTS(1,2) = PTS(1,2) - H(2)
	PTS(1,3) = PTS(1,3) - U(3)
	FTMAG=SQRT((FTS(1,1)**2)+(FTS(1,2)**2)+(FTS(1,3)**2))
	PVEC(1)=PTS(I,1)/PTMAG
	PVEC(2)=PTS(1,2)/PTMAG
	PVEC(3)=FTS(1,3)/FTMAG
	CALL SPHERE(PVEC, THETA, PHI)
	ANG(I,1)=THETA
	ANG(1,2)=PHI
	PTS(1,1)=PVEC(1)*R

```
PTS(1,2)=PVEC(2)*R
     PTS(I+3)=PVEC(3)*R
80 CONTINUE
     DO 85 I=1,KN
Û.
     TYPE *, THETA-PHI= /, ANG(I,1), ANG(I,2)
95 CONTINUE
     U(1)=U(1)-MIN(1)
     U(2) = U(2) - MIN(2)
     U(3)=U(3)-MIN(3)
     U(4)=R
Γt
     TYPE *, U=',U(1),U(2),U(3),U(4)
     RETURN
     END
С
С
Ĉ
     SUBROUTINE PLAFIT(PTS,U,KN,THETA,PHI)
£
С
     THIS SUBROUTINE CALCULATES THE 'BEST FIT' PLANE TO A SET OF
С
     DATA POINTS AND THEN OUTPUTS INFORMATION ON THE OUTWARD
С
     NORMAL TO THAT PLANE.
C
     DIMENSION FTS(72,2),GTG(3,3),U(3),F(72)
     DIMENSION G(72,3),GT(3,72),F1(3),G1(3),GG(3,72)
     DATA P/72*1.0/
Ũ
     XMIN=PTS(1,1)
     YMIN=PTS(1,2)
     ZMIN=FTS(1,3)
     DO 100 I=1,KN
     IF(P(S(I,1),LT,XMIN) XMIN=PTS(I,1)
     IF(PTS(I,2).LT.YMIN) YMIN=PTS(I,2)
     IF(PTS(I,3).LT.ZMIN) ZMIN=PTS(I,3)
100 CONTINUE
     10 125 J=1,KN
                                         •
     G(J,1)=PTS(J,1)+ABS(XMIN)+1.0
     G(J,2)=PTS(J,2)+ABS(YMIN)+1.0
     G(J,3)=PTS(J,3)+ABS(ZMIN)+1.0
     GT(1,J) = G(J,1)
     GT(2,J)=G(J,2)
     GT(3,J) = G(J,3)
125 CONTINUE
    DO 30 I=1,3
    DO 20 K=1,3
    GTG(I,K)=0.0
    GTGN=0.0
    10 10 J=1,KN
    6TGN=6T(1,J)*6(J,K)
    GTG(I,K)=GTG(I,K)+GTGN
10 CONTINUE
```

```
20 CONTINUE
```

```
30
     CONTINUE
     CALL MINV(GTG, 3, D, F1, G1)
     DO 130 I=1,3
     DD 120 K=1,KN
     GG(1,K)=0.0
     GGN=0.0
     DO 110 J=1,3
     GGN=GTG(I,J)*GT(J,K)
     GG(I,K)=GG(I,K)+GGN
110 CONTINUE
120 CONTINUE
130 CONTINUE
     DO 230 I=1,3
     U(I)=0.0
     UN=0.0
     10 220 J=1,KN
     UN=66(I,J)*P(J)
     U(I)=U(I)+UN
220 CONTINUE
230 CONTINUE
     01V2=SQRT((U(1)**2)+(U(2)**2)+(U(3)**2))
     U(1) = U(1) / DIV2
     U(2) = U(2) / DIV2
     U(3) = U(3) / DIV2
     TYPE *, 'U PLANE NORMAL=', U(1), U(2), U(3)
Ð
     CALL SPHERE(U, THETA, PHI)
     RETURN
     END
C
C
С.
     SUBROUTINE FFCT(1,N, IF, F, DATI, WGT, IER)
C
     THIS SUBROUTINE DEFINES THE BASIS FUNCTIONS FOR THE JOINT
3
     SINUS EXPANSION, AND CALCULATES THEIR VALUES FOR GIVEN
0
Ũ.
     VALUES OF 'GAMMA'.
C
     DIMENSION P(11), DATI(72,2), IER(1)
     DOUBLE PRECISION DATI, WGT, P, GAM
Ũ
Ũ
        CHECK FOR FORMAL ERRORS IN SPECIFIED DIMENSIONS
     IF(N)10,10,1
 1 IF(N.GT.72) GO TO 10
     IF(IP)10,10,2
 2 IF(IP.6T.10) 60 TO 10
Ü
     1ER(1)=0
     WGT=1.DO
    GAH=DATI(I+1)
    P(1)=1.D0
    P(2)=DSIN(GAM)
```

```
F(3)=DCOS(GAM)
     F(4)=(DSIN(GAM))*(DCOS(GAM))
     F(5)=(DCOS(GAM))**2
     P(3)=(DSIN(GAM))*((DCOS(GAM))**2)
     F(7)=(DCOS(GAM))**3
     F(8)=(DSIN(GAM))*((DCOS(GAM))**3)
     P(9)=(DCOS(GAM))**4
     F(10)=(DSIN(GAM))*((DCDS(GAM))**4)
     P(11)=DATI(1,2)
     GO TO 15
 10 IER(1)=1
 15 RETURN
     END
C
C
Ü
     SUBROUTINE SPHERE(B, THETA, PHI)
С.
     SUBROUTINE TO CALCULATE THE SPHERICAL COORDINATES (THETA, PHI)
Ü
С
     OF THE UNIT VECTOR B.
C
     DIMENSION B(3)
     DATA PI/3.141592654/
     A1=SQRT(B(1)**2+B(2)**2)
     THETA=(ATAN2(A1,B(3)))*180.0/PI
     IF(THETA.LT.179.99.OR.THETA.GT.0.01) GO TO 10
     FHI=0.0
     GO TO 20
10
     FHI=(ATAN2(B(2),B(1)))*180.0/PI
     RETURN
20^{\circ}
     END
Ũ
Ċ
     SUBROUTINE OUTPUT(COEF, OUTDAT, KN)
C
     DIMENSION COEF(10), OUTDAT(120,2), R(10)
     INTEGFR EX(10,2)
     HOUBLE PRECISION COEF, FI, DEG2, R, GAM, RT, RX, RY
     DATA PI/3.1415926535897931D0/
     DATA EX/0,1,0,1,0,1,0,1,0,1,0,0,1,1,2,2,3,3,4,4/
     DEG3=3.0B0*(FI/180.0D0)
     GAM=0.010
     00 35 J=1,120
     GAM=GAM+DEG3
     DO 15 I=1,10
     N=EX(I,1)
     M=EX(1,2)
     R(I)=COEF(I)*(DSIN(GAM)**N)*(DCOS(GAM)**M)
15
     CONTINUE
     RT = R(1) + R(2) + R(3) + R(4) + R(5) + R(6) + R(7) + R(8) + R(9) + R(10)
     OUTDAT(J,1)=SNGL(GAM)
```

	OUTDAT(J+2)=SNGL(RT)
35	CONTINUE
	RETURN
	END
>	

195

.

REFERENCES

Beckett, R. and Chang, K. (1968) An Evaluation of the Kinematics of Gait by Energy. Journal of Biomechanics, Vol. 1, pp. 147-159.

Berzteiss, A.T. (1964) "Least-Squares Fitting of Polynomials to Irregularly Spaced Data," SIAM Review, Vol. 6, No. 3, pp. 203-227.

Chao, E.Y.S., et al. (1970) The Application of $4 \ge 4$ Matrix Methods to the Correction of the Measurements of Hip Joint Rotations. Journal of Biomechanics, Vol. 2, pp. 459-471.

Chao, E.Y. and Morrey, B.F. (1978) Three-Dimensional Rotation of the Elbow. Journal of Biomechanics, Vol. 11, pp. 57-73.

Chao, E.Y., An, K.N., Askew, L.J., and Morrey, B.F. (1980) Electrogoniometer for the Measurement of Human Elbow Joint Rotation. Journal of Biomechanical Engineering, Vol. 102, pp. 301-310.

Clayson, S.J., et al. (1966) Goniometer Adaptation for Measuring Hip Extension. Archives of Physical Medicine, Vol. 47, pp. 255-261.

Dempster, S.T. (1955) The Anthropometry of Body Motion. <u>Annals New</u> York Academy of Sciences, Vol. 63, pp. 559-585.

Dempster, S.T. (1965) Mechanism of Shoulder Movement. <u>Arch. Phys.</u> Med. Rehab. (46), pp. 49-70.

Engin, A.E. (1980) On the Biomechanics of the Shoulder Complex. Journal of Biomechanics, Vol. 13, No. 7, pp. 575-590.

Engin, A.E. (1984) On the Damping Properties of the Shoulder Complex. Journal of Biomechanical Engineering, Vol. 106, pp. 360-363.

Engin, A.E., Peindl, R.D., Berme, N., and Kaleps, I. (1984a) Kinematic and Force Data Collection in Biomechanics by Means of Sonic Emitters - I: Kinematic Data Collection Methodology. <u>Journal of</u> Biomechanical Engineering, Vol. 106, pp. 204-211.

Engin, A.E., Peindl, R.D., Berme, N., and Kaleps, I. (1984b) Kinematic and Force Data Collection in Biomechanics by Means of Sonic Emitters - II: Force Data Collection and Application to the Human Shoulder Complex. Journal of Biomechanical Engineering, Vol. 106, pp. 212-219. Engin, A.E. and Peindl, R.D. (1985) "Passive Resistive and Damping Properties of Human Shoulder Complex," AFAMRL-TR-84-051.

Engin, A.E. and Peindl, R.D. (1986) On the Biomechanics of Human Shoulder Complex - I: Kinematics for Determination of the Shoulder Complex Sinus. Journal of Biomechanics, Vol. 19, (in print).

Fleck, J.T. (1975) Calspan 3-D Crash Victim Simulation Program. Proceedings Symposium on Aircraft Crashworthiness, University Press of Virginia, Charlottesville.

Gray's Anatomy (1973) 35th British edition (edited by Warwick, R. and Williams, P.L.), W.B. Saunders, Philadelphia.

Hatze, H. (1980) A Mathematical Model for the Computational Determination of Parameter Values of Anthropomorphic Segments. Journal of Biomechanics, Vol. 13, No. 10, pp. 833-843.

Herron, R.E. (1974) Experimental Determination of Mechanical Features of Children and Adults. D.O.T. Report, No. DOT-HS-231-2-397.

Huston, R.L., Hessel, R.E., and Passerello, C.E. (1974) A Three-Dimensional Vehicle-Man Model for Collision and High Acceleration Studies. SEA Paper No. 740275.

Johnston, R.C. and Smidt, G.L. (1969) Measurement of Hip Joint Motion during Motion Walking. <u>The Journal of Bone and Joint Surgery</u>, Vol. 51-A, pp. 1083-1094.

King, A.I. and Chou, C.C. (1976) Mathematical Modeling, Simulation and Experimental Testing of Biomechanical System Crash Response. Journal of Biomechanics, Vol. 9, pp. 301-317.

Kreyszig, E., (1972) Advanced Engineering Mathematics, 3rd Edition, John Wiley and Sons, Inc.

Lamoreux, L.W. (1971) Kinematic Measurements in the Study of Human Walking. Bulletin of Prosthetics Research, pp. 3-84.

McConville, J.T., Churchill, T.D., Kaleps, I., Clauser, C.E., and Cuzzi, J., (1980) "Anthropometric Relationships of Body Segments and Body Segment Moments of Inertia." <u>AFAMRL Report, No. TR-80-119</u>, December 1980.

Neter, J., Wasserman, W., and Kutner, M.H. (1985) <u>Applied Linear</u> <u>Statistical Models</u>. Second Edition, Richard D. Irwin, Inc., Homewood, Illinois.

Norkin, C.C. and Levangie, P.K. (1983) Joint Structure and Function: A Comprehensive Analysis, F.A. Davis Company, Philadelphia.

Paul, J.P. (1965) Forces Transmitted by Joints in the Human Body. Proceedings of the Institution of Mechanical Engineers, Vol. 181, pp. 369-380.

Robbins, D.H., Bennett, R.O., and Bowman, B.M. (1972) User-Oriented Mathematical Crash Victim Simulator. <u>Proceedings of the 16th Strapp</u> Car Crash Conference, pp. 128-148.

SAS User's Guide, 1982 Edition. SAS Institute Inc., Cary, North Carolina.

Saunders, J.B., Inman, V.T., and Eberhart, H.D., (1953) The Major Determination in Normal and Pathological Gait. <u>The Journal of Bone</u> and Joint Surgery, Vol. 35-A, pp. 75-96.

Steindler, A. (1973) <u>Kinesiology of the Human Body</u>. Publisher: Charles C. Thomas, Springfield, Illinois.

Suh, C.H. and Radcliffe, C.W. (1978) <u>Kinematics and Mechanisms Design.</u> John Wiley and Sons, Inc.

Youm, Y., Dryer, R.F., Thambyrajah, K., Flatt, A.E., and Sprague, B.L. (1979) Biomechanical Analyses of Forearm Pronation - Supination and Elbow Flexion-Extension. <u>Journal of Biomechanics</u>, Vol. 12, pp. 245-255.

Young, R.D. (1970) A Three-Dimensional Mathematical Model of an Automobile Passenger. Texas Transportation Institute Research Report 140-2.