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CHAPTER I
INTRODUCTION

Since the launch of the first commercial communications satellite,
the INTELSAT I, in April 1965, satellite communications have become more
and more popular internationally [1,2,3]. Not only does the number of
satellites continue to increase, but the demand for future satellite
services is growing rapidly [3,4]. This situation creates a problem of
how to provide enough satellite communications capacity to satisfy all
the potential users. The study of this report is devoted to
contributions toward solving this problem by developing methods that can
efficiently utilize the spectrum and orbit resources.

The most popular satellite orbit for the civil communications
services is the geostationary orbit [5,6]. The idea of using this orbit
was proposed by Arthur C. Clarke [1]. However, the geostationary orbit
can accommodate only a limited number of satellites for a given
frequency channel because satellites that have the same frequency
channel must be properly separated from one another in space for
acceptable interference protection [6]. When the geostationary orbit is
considered "crowded" with satellites, it is crowded in terms of
electromagnetic compatibility. This requirement greatly limits the
satellite capacity of the geostationary orbit.

A method of increasing the communications capacity is to increase

the spectral band available for satellite communications use. The
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spectral region of interest lies between the maximum usable frequency
(MUF) for reflection by the- ionosphere and the first oxygen absorption
line (about 60 GHz) [7]. By international agreement, this spectral
region is divided into many bands for various services, e.g., the
broadcasting-satellite service (BSS), the fixed-satellite service (FSS),
the military service, navigation, weather detection, etc [2,8]. As a
result, only a limited number of spectral bands are available for the
civil communicatioﬁs services,

As an example of the large demand for satellite communications,
when the 11 to 12 GHz spectral band for civil satellite service was
opened for use on an international basis, every administration requested
some frequency channels [4]. Even those administrations that do not
need, or cannot afford, a satellite at the present time requested
channel assignments for future use; Therefore, lack of enough spectrum
and orbit resources becomes a serious problem with regard to planning
for future communications satellite traffic, i.e., orbital and frequency
allocations.

The goal of the orbital and frequency planning task is to use the
lTimited amount of resources to provide enough communications capacity to
satisfy every potential user, The main concern of the planning task is
to ensure that mutual interference between different satellite systems
is acceptable; a poorly planned scenario would be likely to result in
unacceptable carrier-to-interference ratios (C/I), and hence
unacceptable signal quality, for at least some users. To avoid this,

the satellite orbital locations and frequency channel allocations should



be carefully planned. This planning task becomes very difficult when
the number of satellites and channels to be assigned becomes large.

Moreover, since the demand for present and future communications
satellites is large, it is important to use the available spectrum énd
orbit resources efficiently. In other words, the objective is to
achieve the maximum information-transfer capacity for the resources
allocated.

In 1977, the spectral band 11.7 to 12.5 GHz was assigned to Region
1 and the band 11.7 to 12.2 GHz to regions 2 and 3 for the planning of
the BSS. The administrations in Regions 1 and 3 completed the planning
in the 1977 World Administrative Radio Conference (WARC-77) [9]. The
plan was based generally on spacing the satellites uniformly at 6
degrees, when they are assigned the same frequency channel [10]. The
administrations in Region 2 delayed the planning process in WARC-77,
with the intention of making the most efficient use of the
geostationary orbit and the spectral band [11,12]; then proposed a plan
at the Regional Administrative Radio Conference in 1983 (RARC-83)
[13,14]. Planning for the fixed-satellite communications service (FSS)
has been deferred to conferences in 1988 or beyond. Therefore, a method
is needed to solve the assignment problem in as near an optimal way with
regard to this objective as possible.

Much work has been done on this problem. Several studies discuss
some important factors that should be considered in the assignment
problem. A study by D. J. Withers identifies three areas that should be

exercised in order to achieve effective resource utilization [15]. The



first area is engineering for an interference-limited environment by
properly using the antenna characteristics, signal modulation, and
multiple-access techniques to minimize the interference power. The
second area is effective inter-system coordination. It includes: 1)
proper pairing of the up- and down-link bands, 2) a standard frequency
trahs]ation between up- and down-link bands, 3) an agreed scale of
permissible single-entry interference noise allocation, 4) maximization
of the satellite service arc by easing the satellite elevation angle
constraint. The third area is the reduction of inhomogeneity in
orbit-spectrum sharing. Also in the Final Acts of the WARC-77, the
importance of placing satellites as close as possible for efficient
orbit ut11izqtion is expressed [16]: the satellite spacing should be
small, while still keeping the mutual interference acceptable.

Some studies deal with the orbital assignment problem alone. A
Japanese study tackles the problem of orbit utilization through a
non-linear programming optimization procedure with the objective of
minimizing the total orbital arc used for a scenario [17]. The basic
approach is to relate the satellite geocentric angular separation to the
inferference power; the problem is formulated as a non-linear
programming problem and the sequential uncon§tra1ned minimization
technique is applied to solve it numerically. Another Japanese study
modified the above program so that it can find the optimal orbital
assignment for a new satellite when it is inserted into an existing
scenario [18]. The result is optimal in the sense of finding &he best

location for the new satellite, while making some modification to the



existing scenario, such that the satellite separations or, equivalently,
the interference powers still meet the requirements. The best location
for inserting the new satellite is chosen so that the total orbital arc
océupied by the final result is minimized. To carry out rigid planning
of many sateT]ites, an evolutional model is used by repeatedly using the
modified program to assign satellite locations one by one, and the
ordering of insertion must first be chosen. It is not obvious, and
appears unlikely, that the quality of the result is independent of this
ordering. |

Some stqdie§ deal with the frequency assignment problem alone. The
methods of map-coloring and dot-linkage have been proposed to achieve
the most conservational use of the spectrum resource [19,20,21,22]. A
Japanese study tackles this problem by rearranging the frequency
assignment of a given scenario that has an initial optimal orbital
assignment [23]; e.g., orbital assignment is obtained from [17] with the
frequency assignments assumed the same for all satellites. Therefore,
in this Japanese study the frequency assignment, identified as a
permutation problem, is handled independently of the orbital assignment;
it is formulated as an integer program and the optimal permutation is
obtained via the branch-and-bound method. When the new frequency
assignments are made, the required satellite orbital separations may be
reduced. The objective is the minimization of the‘tota1 orbital arc
occupied by the final scenario. Note that the combination of the two
Japanese studies [17,23] becomes a complete package that solves the

orbital and frequency assignments in two steps.



Some studies deal with both the orbital and frequency assignments,
Some of these are aimed more at obtaining a better understanding of the
problem than at actually solving it [24,25]. An application-oriented
research group in Canada developed a software package for planning
synthesis in connection with RARC-83 [26,27,28]. It is a multiple-stage
process, and one of the objectives spelled out in the report is the
minimization of the total orbital arc occupied by the scehario; First
the minimum required orbital separations that meet the single-entry
protection ratio are calculated for all pairs of satellites. These data
are calculated in the fo1iowing four cases: co-polarization and
co-channel, co-polarization and adjacent channel, cross-polarization and
co-channel, cross-polarization and adjacent channel. The initial
scenario is an equal-spaced orbital assignment with co-channel,
co-polarization frequency assignment. Then, the computer program can
et the planner make changes both manually and automatically in the
channel and/or polarization assignments, and manually in the orbital
assignments. The program always produces a scenario, even if it turns
out not to meet the required protection ratios. The result is a local
optimum and not necessarily a global obtimum.

Two methods have been proposed by a research group at the Ohio
State University. The first method uses an extended gradient search
technique to improve an existing scenario [29]. A sum of negative
exponentials of the aggregate effective C/I ratios is used as the
objective function to be minimized; therefore.the procedure seeks to
maximize the smallest of all such C/I ratios. The gradient direction of
the objective function at the point representing the existing scenario

6



is calculated; then the objective function values ‘at some discrete
points along the negative of this direction are found. The point
yielding the most favorable (minimum) objective function value is chosen
as a new scenario to start another search process. The iterative
process stops when a better scenario can not be found. The second
method is called the cyclic coordinate search method [30]. In this
method each orbital and frequency variable is varied in turn. Each time
a set of points is examined, the point yielding the most favorable
objective function value is selected as the new coordinate value for
"that variable. A cycle is completed when all the orbital and frequency
variables have been varied onée. The cyclic process is repeated with
suitably adjusted step sizes until it reaches a solution where the
improvement of C/I results halts. The detailed description of the two
methods is given in Chapter III.

Transmission of a signal from the Earth terminal and its reception
at a satellite constitutes an up-link; and transmission of a signal from
a satellite and its reception at the Earth terminal constitutes a
down-1ink., By international agreement, the up-link signals and the
down-1ink signals are not in the same spectral band, so that the signals
will not interfere with each other [31]. In this study only the
regulation of the down-link traffic is considered. The up-link problem
can be implemented similarly in another spectral band. Note that the
above studies [17,26,27,28,29,30] also deal only with the down-1ink
communications traffic regulation.

In Chapter II, some of the important factors and parameters
involved in the carrier and interference power calculations are

7



discussed. Note that in this study an effective carrier-to-interference
power ratio is used to evaluate the feasibility of a scenario; in
Section II.F it will be shown that this is equivalent to the more usual
margin calculation.

In Chapter III, the objective function to be minimized in the
extended-gradient and cyclic-coordinate search techniques to improve a
given scenario is analyzed [29]. It is shown that this function has
large values when two (or more) orbital or frequency assignments are
co1lopated; this indicates that both the signal qua]ity requirement and
the permutation of the orbital/frequency assignments need to be Tooked
into in order to find the globally optimal scenario. Furthermore, some
arguments are given which indicate that the objective function is Tikely.
to be a function with only one local minimum for a fixed permutation of
orbital and frequency assignments; even though a definifive proof has
eluded us, a set of numerical examples are presented which support these
arguments. This suggests that a sufficient condition for obtaining the
globally optimal solution by the extended-gradient search method is that
it should terminate as an ordinary gradient search with the optimal
permutation in orbital and frequency assignments. .

In Chapter IV, a different approach, the AS concept, is presented.
It is shown that the single-entry C/I protection requirement is
equivalent to a required minimum satellite separation; hence the highly
non-1inear C/I requirement can be viewed as constraints on the satellite
locations. With this approach the orbital assignment can be formulated

as a mixed-integer program and solved by the branch-and-bound method; or



it can be formulated as a linear program with non-]ingar side
constraints and solved by a version of the simplex method for linear
programming with restricted basis entry.

Chapter V intends to show that an important body of information for
choosing FSS service areas is the communications-demand density. It is
proposed that the service areas of an FSS system should be specified
according to the communications-demand density in conjunction with the
concept of small-beam design; the frequency re-use scheme can be
implemented through small beams and well-separated service areas. A
case study demonstrates that the communications supply for the United
States could be significantly increased if the service areas are
specified accordiﬁg to these principles. The AS concept presented in

Chapter IV is used in this case study.



CHAPTER II
DESCRIPTION OF PARAMETERS AND FACTORS IN C/I CALCULATIONS

A. INTRODUCTION

The feasibility of a scenario is evaluated according to the signal
quality [32], which is usually expressed in terms of the signal-to-noise
ratio (S/N) [33]. For instancé, the unweighted signal quality
requirement for 625-1ine, color-television signal is suggested to be a
S/N ratio of 33 dB for 99% of the worst month [34]. The signal power
(S) is measured in the baseband channel after modulation improvement and
baseband. processing [35,36]. For the~purpose qf planning the
broadcasting-satellite service (BSS), the requirement is that the
pre-detection carrier-to-noise ratio (C/N) at the receiver input should
equal or exceed 14 dB for 99% of the worst month or 10 dB for 99.9% of
the worst month [37,38].

The noise power includes the receiver thermal noise (N¢) and all
the interference powers from other communications systems [39]. In
order that the interference powers from other communications systems
will not further degrade the C/N level, the total (or aggregate)
interference power level should be weak enough so that its contribution

to the total noise power is negligible. '
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There are several criteria how weak the total interference power
should be [40,41]; two which are commonly used are the interference-to-
thermal noise ratio (I/N¢) and the 6arrier-to-interference power ratio
(C/1) [40]. 1In this study the C/I criterion is used to evaluate the
feasibility of a scenario, with a minor modification. Account must be
taken of fhe fact that a given interference lTevel at the same frequency
as the desired carrier is more damaging than the same level of
interference at a far removed frequency. This can be done by
multiplying each interference power at a non-carrier frequency by a
relative protection factor (less than unity) before adding the
interference powers to obtain an effective ratio (C/lg). This is
discussed in more detai1'in Section II.F, where it is also shown that
this formulation is fully equivalent to the more usual, but less |
convenient, representation in terms of margins.

In the following sections some of the important factors and

parameters involved in the C/Ig calculation are discussed.

B.  SATELLITE

A satellite is a relay terminal, its basic function is to receive
signals from some Earth stations and to re-transmit them to other Earth
stations. It has receiving and transmitting antennas, and a frequency
translator [42,43] or, in some cases, more sophisticated signal-
processing circuits which include frequency shifting.

A satellite may use any orbit to travel [2], but the geostationary

orbit is the most popular orbit for civil communications. In this orbit
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the satellite position is almost stationary with respegt to any place on
Earth; thus complicated satellite tracking systems at the Earth
terminals may be avoided. This orbit is directly above the equator at a
height of 37,165 kilometers.above the Earth surface [2]. By
international agreement this will be the main orbit for civil
communications services [5,6]. Therefore, in this study only this orbit
is considered.

Because the satellite is away from thé Earth, it is possible to
control its position and attitude only to a certain precision. A
satellite drifts away from its designated orbital location and its
position needs to be adjusted from time to time [44,45]. With present
technology, a satellite orbital Tlocation may be maintained within 0.1
degree in the north-south and east-west directions, resulting in 0.14
degree of maximum excursion [44]. As for attitude control, the
transmitting antenna pointing error may be kep; within 0.1 degree, and
the tolerance in the rotation about the beam axis is typically two
degrees [44,45]. For the calculations of this report, the pointing
error may be taken into account through the minimum elliptical beam
calculation to be discussed in Section II.D, or through the antenna
discrimination function to be discussed in Section II.E. The satellite
rotational error may be taken into account through the minimum

elliptical beam calculation to be discussed in Section II.D.
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C. SERVICE AREA

A service area is a designated area on the Earth surface to which a
corresponding satellite directs its signals. Actually an antenna
transmits its signal in all directions according to its pattern
funciion, even though its target area is of limited size. By
international agreement, a service area should be illuminated by its
satellite main beam within the -3 dB contour of that beam [46,47]. This
means that the received power density at any point in the service area
should be within 3 dB of the power density at the antenna aim point.

For simplicity, a service area is represented by a set of test
points at its boundary. To evaluate the C/Io results of a scenario, one
calculates the C/Ipo values at all the test points of all the service
areas, and compares them with the C/Io requirement level, Because the
interference is likely to be the worst on the service area boundaries, a
scenario with satisfactory C/Io values at all the test points should
guarantee that the C/Io values will be good at all the places inside all
the service areas. The test points are also used to generate the
minimum elliptical beam parameters to be discussed in Section II.D.

In this study a satellite and its corresponding service area(s) are
viewed as a communications system. A service area may have several
satellites, but all of these satellites are treated independently of one

another,
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D. MINIMUM ELLIPTICAL BEAM

The antenna main beam (-3 dB contour) of a satellite to its
designated service area should be shaped, using available antenna
technology, to fit the shape of the service area as suitably as possible
[48]. However, a reference antenna pattern for shaped beams is still
unavailable, i.e., there exists no internationally agreed method for
predicting, for regulatory purposes, the discrimination to be expected
from shaped beams outside their respective service areas. In order to
analyze a scenario in terms of C/Io results, the interference powers are
therefore calculated by assuming that a service area is illuminated by a
minimum elliptical beam from the satellite position that covers all the
test points of that service area [47].

This minimum ellipse is specified by five parameters: the
longitude and latitude of the beam aim point, the orientation angle, and
the major- and minor-axis beam widths. In Figure 2.1, the aim point,
which is on the Earth surface, is denoted as A. The antenna beam plane
is a plane perpendicular to the satellite beam axis, SA, and passing
through the aim point A. The vectors AM and AN denote the major and
minor axes. The beam widths in the directions of these two axes, viewed
from the satellite, are ypax and ipin, respectively. The orientation
angle, which is not shown, is the angle measured anti-clockwise in thé
antenna beam plane from a line parallel to the equatorial plane to the
major axis of the ellipse. The more detailed descriptions of these
parameters can be found in a National Telecommunication and Information

Administration (NTIA) document [49].
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Figure 2.1, Minimum ellipse configuration.
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To generate the ellipse data, one needs to specify the nominal
satellite location and the locations of a set of test points; other
parameters that can be specified are the minimum beam width, minimum
elevation angle, satellite pointing error and rotational error. The
resulting elliptical cone covers all the test points that are used to
generate this ellipse; in a worst-case calculation that includes the
specified satellite pointing error and rotational error. A computer
program developed by Akima was used to generate the five ellipse
parameters for the calculations of this report [49].

With these parameters, the half-power beam width (HPBW), y¢q, with
respect to any test point, T, on the Earth surface can be calculated by
means of a somewhat involved procedure, First the vector AP of Figure
2.1 is calculated, where P is the intersection of the line ST and the
antenna beam plane, Then, the angle o between the vector AP and the

major axis AM is calculated. The length of AR is calculated from

AR = AMs[cos?(a) + A,,"’-sinz(a)]'“2 ; (2.1)

where Ar’ called the axial ratio of the elliptical beam, is the ratio
between AM and AN. Then it is assumed that the ratios between the
angles wmax’ wmin’ wto and their corresponding arcs AM, AN, AR are the
same; this is a very good approximation when the angles are not large.
With this approximation, the angle Yeo is calculated from

Voo = Yag- [o05(0) + A Zosin’ (@)1 2, (2.2)
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where Ar can be seen as the ratio between y and ¢

min®
The off-axis angle, Vys toward the point T is calculated by the

max

cosine law

2

cos(y,) = (STZ + sA® - AT?)/(25T-3A), (2.3)

where ST, SA, AT denote distances in Figure 2.1.

The off-axis angle Yyt and the corresponding HPBW y¢o will be used
to calculate the directivity of the antenna toward the specific point,
T. The antenna pattern envelopes used to calculate the directivity will
be described in Section II.E.

The detailed description of all the parameters and the formulations
of all the calculations can be found in the Spectrum Orbit Utilization
Program (SOUP) manual [50]. A streamlined SOUP code is listed in
Appendix A. It is much less complicated than the original SOUP code.
The basic calculation is exactly the same, but with fewer options, For

instance, the streamlined version does not consider propagation loss.

E. ANTENNA REFERENCE PATTERNS AND PROTECTION RATIO

Two sets of antenna reference patterns are used in the study. They
are representations, adopted by the International Radio Consultative
Committee (CCIR), of the envelopes of real antenna patterns; Their use
therefore should result in a near worst-case interference power
calculation. The first set includes the satellite transmitting antenna
reference patterns and the ground receiving antenna reference patterns

suggested in the International Radio Consultative Committee Conference
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Preparatory Meeting in 1982 (CCIR-CPM-82) for the Regional
Administration Radio Conference for Region 2 in 1983 (RARC-83)
[10,51,52]. These are the BSS patterns. The gain, G, of the

transmitting antenna is calculated from [53,54]

6 = e [(/¥yq,)/(180/223)1% A, (2.4)

where the symbols mean
e : the beam efficiency, taken as 0.6 in this study,
VYmax : the beam width of the major axis, in radians,

Ap  : the axial ratio of the elliptical beam.

The ground receiving antenna gain in the BSS calculations is taken as
40,2 dB, corresponding to a circular-beam antenna of 1l-meter diameter,
12 GHz carrier frequency and 0.6 beam efficiency. The reference
patterns are shown in Figures 2.2 and 2.3, and are used in the
calculation of the objective function values in Chapter III,

In F%gures 2.2 and 2.3, both the transmitting and receiving
antennas have two reference patterns with mutually orthogonal
polarizations. The transmitting antenna transmits signals of the
designated polarization according to the co-polarization pattern, at the
same time it also transmits orthogonally polarized signals according to
the cross-polarization pattern. The receiving antenna receives the
wanted signals according to the co-polarization pattern by aligning its
polarization parallel to that of the wanted signal. Any signal that is

co-polarized with the wanted signal is received according to the
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Figure 2,2, BSS satellite transmitting reference patterns.
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Figure 2.3. BSS ground receiving reference patterns.
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co-polarization pattern, and any signal that is cross-polarized with the
wanted signal is received according to the cross-polarization pattern.
These unwanted signals constitute the interference power at the receiver
input.

In the second set of reference antenna patterns, intended for the
fixed-satellite service (FSS) calculations, the satellite transmitting
antenna reference pattern given in Figure 2.4 is a modified version of
the fast fall-off reference pattern from CCIR-CPM-82/RARC-83 [65]. This
modified reference pattern had been suggested as useful for the FSS
systems [56,57]. The transmitting antenna gain is again calculated from
Equation (2.4). The ground receiving antenna reference pattern, shown
in Figure 2.5, is a modified version of the reference pattern from the
International Radio Con§u1tative Committee (CCIR-82) Report 391-4 [58].
The modification is suggested in a CCIR-82 Recommendation and in the
CCIR-CPM-82/RARC-83 Report [59,60], and should become the standard in
year 1987. The receiving antenna gain is 43.2 dB, corresponding to a
circular-beam antenna of 4.5-meter diameter, 4 GHz carrier frequency and
0.6 beam efficiency. Note that there is no cross-polarization pattern
in Figure 2.4 because such a pattern has not been adopted By the
international committee,

The relative protection ratio, PR(dB)-PRy(dB), used in Chapter III
is taken from a CCIR-CPM-82 Report [61] and is shown in Figure 2.6. The
value of PR, is the co-channel protection ratio, the value of the actual
protection ratio PR(dB)-PRy(dB) depends on the carrier frequency offset

between the wanted and unwanted signals as well as on the modulation
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Figure 2.4. FSS satellite transmitting reference pattern.
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method of the signals [62]. The Carson bandwidth will be taken as 25.2
MHz, which is appropriate for the BSS TV/FM case.

F. RECEIVED-POWER CALCULATION

Refer to Figure 2.7 for the geometry, but note that the radius of
the Earth relative to that of the geostationary orbit is exaggerated
greatly for clarity. In this figure, the satellites assigned to service
areas A, B are designated Sp, Sg, respectively. The aim points of Sp,
Sg are the points a, b, The point d is one of the test points in A.
The test points are normally chosen on the boundary of their service
areas because interference is likely to be the worst there. The minimum
ellipses of A, B from Sy, Sg are labeled E(A), E(B). For the test point
d, the off-axis angle of the Sp signal and the corresponding HPBW in the
direction toward d are Vtes Vtcos the subscript c¢ is meant as a mnemonic
for carrier. The distance from Sp to d is x. These values are used to
calculate the carrier power received from Sp at d. Also, for test point
~d, off-axis angle of the Sg signal and the corresponding HPBW are
designated y¢i, Vtig, respectively. Since the receiving antenna at the
test point d is pointed at Sp, its off-axis angle toward Sg is ypj. The
distance from Sg to d is y. These values are used to calculate the
interference power received from Sg at d.

Referring to Figure 2.7, the carrier power, C, at d is calculated

by means of the Friis transmiséion equation [63,64]:
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Figure 2.7. Configuration of received-power calculation,
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2
PasGpo Dy (g )eGyec

C = y | (2.5)

2. (am)%ex?
where the symbols mean
Pp : the transmitting power of Sp,
Gp : the transmitting antenna gain of Sp,
Dp : the co-polarization transmitting antenna discrimination
from Sp in the direction toward d,
Gq : the receiving antenna gain at d,
¢ : the velocity of light,

fa : the carrier frequency.

In Chapter III, the effective isotropic radiated powers are assumed
constant for all the satellites., In Chapters IV and V, it is assumed
that the carrier power densities at the aim points are equal for all the
service areas [65]; therefore, all the satellite transmitting powers are
adjusted to meet this requirement.

The interference power received at d must be calculated with care
because there may be a polarization mismatch between the wanted and
unwanted signals. Bbth of the orthogonally polarized signals
transmitted from Sg must be decomposed into two components, one that is
parallel to the wanted signal of the receiver and the other that is
orthogonal. With the proper choice of the antenna reference patterns,
the received interference power from each component is calculated from

2
Pg* g Dg (V1) Gy Dy (¥pg )oc

I = EXPCN (2.6)
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where the symbols mean
Pg : the transmitting power of Sg,
Gg : the transmitting antenna gain of Sg,
Dg : the transmitting discrimination from Sg to d,
Gqg : the receiving antenna gain at d,
Dq : the receiving antenna discrimination from d in the
direction toward Sg when the antenna is pointed at Sp,

fg : the 1nterference\frequency.

The total interference power is the summation of all the components.
For instance when the signals of Sp and Sg are co-polarized, the

received interference power at d from Sg is calculated from [64,66]

I =1

cp tc,rc * Itx,rx + (I *+ 1 )+D

te,rx tx,rc (2.7a)

X b4

when they are cross-polarized, the received interference power is

calculated from

I =]

Xp tc,rx +1

+ 1 )eD_ . (2.7b)

tx,rc * (Itc,rc tx,rx’ "x

Here the subscripts mean

cp : wanted and unwanted signals are co-polarized,

Xp : wanted and unwanted signals are cross-polarized,

tc : signal transmitted according to the co-polarized reference
pattern,

tx : signal transmitted according to the cross-polarized
reference pattern,

rc : signal received according to the co-polarized reference
pattern,
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rx : signal received according to the cross-polarized reference

pattern.

The term Dy is the rain depolarization factor [66,67]. Since the
propagatidn effect is not considered in this report, the term Dy is

taken to be zero. Also, Equation (2.7a) is further simplified as

Icp = Itc,rc s (2.7¢c)

because the cross-polarization component, which arises from the cross-
polarized patterns of both the transmitting and receiving antennas, is
negligible compared to the co-polarization component. Finally it should
be noted that Equation (2.7b) is an approximation. In an actual case,
these terms should add as phasors, not in a power sense; but to perform
that calculation the relative phases of the tc, tx patterns and that of
the rc, rx patterns w5h1d have to be known. So, without the term Dy, a

worst-case formula would be

- 2 .
Ip = (/Itc,rx * /Itx,rc) . (2.7d)

When the carrier frequencies of the wanted and unwanted signals are
different, a frequency filtering factor must be included in the
effective'1nterference-bqyer calculation. The proper expression for
such a filtering factor can be easily obtained as follows. When
evaluating the effect of the unwanted signal, the usual procedure is to

calculate a term called the protection margin M; from
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M, (dB) = (C/I,)(dB) - PR. (dB), (2.8)

where the symbols mean

i : index of frequency channel of the wanted signal,

I : total interference power in channel i,

PRy grotection ratio against interference power in channel
The interference power is acceptable when the value of M;(dB) is
positive. (When there are several interference signals of the same
carrier frequency, their total interference power is obtained by
decomposing every polarized signal into parallel and orthogonal
components with respect to the wanted signal, then calculating each
interference power and summing them, as discussed above.) When there
are several unwanted signals of different carrier frequencies, the
equivalent protection margin, M, that evaluates the over-all effect of
the interference power is calculated from [68,69]

-M; (dB)/10

M(dB) = -10+10g [ ? 10 1 (2.9)

where each term Mj is the protection margin in one frequency channel,
and the summation is over all frequency channels. Equation (2.9) can be

re-written as
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-{(C/15)(dB)-PR; (dB) }/10

M(dB) = -10-Tog( = 10 )
i

-{(C/11)(dB)-[PRi(dB)-PRo(dB)]}/IO.IOPRo(dB)/IO

-10-Tog( ? 10 )

-{(C/14)(dB)-[PRj(dB)-PRy(dB)]}/10

=.-10-1og( f 10 ) - PRo(dB)
- ¢(dB) - 10+Tog( ? 10{11(dB)+[PRi(dB)-PRo(dB)}/IO) i PRO(dB)
(2.10)

If the equivalent total, or aggregate effective interference power, Ig,
is defined from the expression of the equivalent protection margin, M,
as

M(dB)

(C/1g)(dB) - PRq(dB)

C(dB) - Io(dB) - PRo(dB) |, | (2.11)

then the equivalent aggregate interference power can be expressed as

{1 (dB)+[PR; (dB)-PRy (dB) 1}/10

1,(dB) = 10+Tog( 10 ) (2.12)

i
Therefore, the quantity [PRi(dB)-PRo(dB)], which is the relative
protection ratio in Figure 2.6, can be interpreted as a filtering factor
operating on the interference power when the carrier frequencies of the
wanted and unwanted signals are different, and denoted as
F(fwanted’funwanted)(dB)‘ This approach will be taken throughout

Chapter I1I. For a scenario of many satellites and where each satellite

has many frequency channels, the aggregate effective interference power,
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Iﬁnj’ received in channel n at test point j in service.area k is
calculated from a power summation of terms of the type given in Equation

(2.12),

1° (dB) = 10vTog{ T I 'loflim,knj(dB)+F(fnsfm)(dB)]/IU .
knj iek/k meN

i

1oL Tkm,knj (dB) + F(fn,fm) (dB)1/10

X
meN, /n , (2.13a)
or
e
.= I z . F(T ,f ) + . F(f ,f
IknJ iek/k meNi Iim,knJ F( n’ m) msak/n Ikm,knJ (fn’ m)
(2.13b)
where the symbols mean
K/k : the index set of all the satellites, excluding

satellite S,

Ny : the index set of all the channels assigned to
satellite i,

Iim,knj ¢ the single-entry interference power from channel m of
Si, rﬁceived at channel n of test point j in service
area k,

F(fhsfm) : the relative protection ratio between the carrier
frequency f,, and interference frequency fj, as shown
in Figure 2.6.
The aggregate (C/Ig) value in a channel at test point d is obtained

by calculating the values of C using Equation (2.5) and Iy using
Equation (2.13b) and dividing.
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G. SIGNAL QUALITY REQUIREMENT

When the signal quality requirement is stated as "S/N be no less
than 30 dB for 99% of the worst month" [38], the main. concern is to
obtain satisfactory performance except during rare, large attenuation of
signals due to heavy rains [70]. The prediction of statistical rain
rate distributions as a function of geography will not be adressed in
this study. In this study the carrier and interference powers are
calculated without considering atmospheric absorption and rain
attenuation., As for the assumption that the carrier power densities are
the same at all satellite antenna aim points, the satellite transmitting
powers can be adjusted to allow for these propagation effects so that
the power density requirements are still satisfied; but this has not
been done in the calculations which will be presented.

Most satellites function as a repeater [71]: they receive a
signal, change the signal carrier frequency, and transmit it back to
Earth. In such a design, any interference power generated on the
up-link remains in the signal when re-transmitted in the down-link [72].
In this study, only the interference power generated in the'down-link is
considered; any interference power from the up-link is not included in
the calculation. For BSS, it has been proposed in international
telecommunication meetings that the C/Io requirement value in the
up-link be 10 dB higher (better) than that of the down-link [73,74,75].
Therefore for the BSS the interference power in the up-link should make
an insignificant contribution to the overall interference power, and can

be neglected. For FSS, the C/Ia requirement values for the up- and
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down-1inks may not differ much [76,77]. Therefore for the FSS case the
C/le requirement value for each half link must be specﬁfied with care so
that the total interference power does not degrade the signal quality
excessively.,

In evaluating the feasibility of a scenario, first one calculates
the C/Ie values at all the test points; then compares them with the
pre-determined C/I, requirement value. A scenario is said to be good
when all the resulting C/I, values exceed the requirement value [78,79].
In Chapter III, a C/lg requirement value of 30 dB will be used to
evaluate the quality of the extended gradient search results; the
precise required value depends on the modulations, but 30 dB is typical
[78]. In Chapter IV, the requirement value is arbitrarily set at 25 dB
in the numerical calculation; the precise value is relatively
unimportant because the main goal of the numerical calculations in
Chapter IV is to demonstrate the feasibility of the method. In Chapter
"V, the requirement value is set at 20 dB in the numerical calculation,
where the U.S. is used as a case study, for the following reason. For
the U.S. domestic satellite systems in the 6/4 GHz band, four-degree
spacing between two satellites was used initially to regulate the
orbital assignments. However, in order to better utilize the orbit
resource, the Federal Communication Commission (FCC) has decided to
adopt two-degree spacing in the satellite ﬁlanning task in the 6/4 GHz
band, to be effective beginning in 1987 [80]. Since the method proposed
in Chapter V is not meant only for the U.S., the C/Io requirement is set
at 20 dB in the numerical calculations so that it could appear more
reasonable on the international basis.
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CHAPTER III
THE OBJECTIVE FUNCTION OF THE EXTENDED-GRADIENT AND
CYCLIC-COORDINATE SEARCH METHODS

A. INTRODUCTION

The main purpose of the study in this chapter is to explore the
mathematical nature of the orbital/frequency assignment problem by
investigating an objective function used in the extended-gradient and
cyclic-coordinate search methods to solve the satellite planning
problem. It is shown that in order to find the global optimum solution
one must deal with both the permutation of the orbital/frequency
assignments and the signal quality requirement, e.g., the C/I ratio, in
the optimization process. It is also shown that for a given set of
scenarios with fixed orbital permutation (frequencies fixed) the
function defined by the smallest single-entry C/I value has at most one
local maximum. This strongly suggests that the objective function has
only one local minimum for a given orbital permutation, as supported
by some numerical evidence; this indicates that the extended gradient
search process is highly Tikely to find the global optimal solution if
it terminates as an ordinary gradient search with optimal

orbital/frequency permutation.
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B. GENERAL DISCUSSION OF THE GRADIENT AND CYCLIC-COORDINATE SEARCH
METHODS AND THEIR OBJECTIVE FUNCTIONS

1. Introduction

The purpose of including this section is to intfoduce the basic
principles of the gradient and cyclic-coordinate search methods, and to
demonstrate how they perform for a particular objective function., Using
the gradient search method for the assignment problem was proposed by
Professor Clarence H. Martin of the Department of Industrial and Systems
Engineering [29]; using the cyclic coordinate search method was proposed
by Professor Clark A. Mount-Campbell of the Department of Industrial and
Systems Engineering [30]; the objective function used in both methods
was formulated by Professor Curt A. Levis of the Department of
Electrical Engineering and Professor Clarence H. Martih of the
Department of Industrial and Systems Engineering [29]; the numerical
calculations discussed in Section III.B were performed by Professor
Charles H. Reilly and Mr. David J. Gonsalvez of the Department of
Industrial and Systems Engineering [30].

2. The Gradient and Cyclic-Coordinate Search Methods -

The gradient and cyclic-coordinate search methods are two
techniques commonly used by systems engineers to find an optimal
condition fpr system performance [81,82]. 1In applying either method, an
objective function, which is a function of a set of decision variables,

is constructed in order to rank candidate solutions. The decision
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variables represent the controllable operating conditions of the system;
in the present application, they are the satellite orbital location and
frequency channel assignments, The objective function should be a
measure of the performance of the system under the conditions specified
by the va1ues‘of the decision variables. For instance, one solution, or
specification of values for the decision variables, should represent
more attractive operating conditions than a second solution if the
former solution yields a greater (smaller) value when evaluated in an
objective function which is to be maximized (minimized). The optimal
solutioh (operating conditions) should be that solution which provides
the greatest (smallest) objective-function value, when the objective
function is to be maximized (minimized).

With such an objective function, the gradient search is performed
in the following way [29,81]. Assume that the function is concave
(convex) and is to be méximized (minimized), First a point that
represents an initial operating condition is located, and the gradient
components of the objective function at that point are calculated. Then
‘a proper step size is chosen in the gradient (negative-gradient)
direction so as to reach another point representing another operating
condition. Because the objective-function value predicts the system
performance, a sufficiently small step in the gradient (negative-
gradient) direction should always lead to a new condition that is better
than the initial condition, at least according to the chosen objective
function. Then, the same procedure is repeated with the improved

operating condition as the new initial point and the search step size
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properly adjusted according to the magnitude of the gradient: the
smaller the gradient, the smaller the step size. This procedure should
be repeated until a point is reached at which the gradient'search does
not yield improvement in system performance. This final solution will
correspond to the optimal operating condition.

When the objective function is not concave (convex), global
optimality of the solution is not guaranteed; instead the solution may
converge to a local optimum, with the choice of the initial starting
point influencing strongly which local optimum is selected. To reduce
this influence and enhance the 1ike11hoo& of finding a global or near-
global optimum, a modified gradient search procedure, called an extended
gradient serach, was used in the present application [86]. Consider the
objective function as one to be minimized. First, the gradient
direction at the initial point is calculated. Then from this point on
the search 1ine is extended in the negative-gradient direction to the
boundary of the feasible region; the objective function is calculated at
a set of ten equally-spaced points along that search line. The point
with the most favorable objective-~function value is chosen as the new
starting point to do another calculation. If the staéting solution is
the most favorable solution, another ten equally-spaced points between
the starting solution and the first tested point are examined, the point
yielding the most favorable objective-function value is chosen as the
new starting solution. The procedure stops when no solution can be

found that yiglds a more favorable objective-function value.
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Since the search line is extended, the method may allow the search
process to go from a region with one local minimum to another region;
this reduces the Tlikelihood of the search being "trapped" at an
undesirable minimum, i.e., one much greater than the global minimum.

The cyclic coordinate search method, with a given objective
function, proceeds as follows [30,82]. First, an initial operating
condition is assumed. Then the decision variables are varied in turn,
one at a time., Each time a set of points, where the corresponding
variable is varied along its feasible coordinate range, is examined; the
point yielding the most favorable objective-function value 1is
identified, and the search continues from this new solution with another
decision variable and the same search process. A cycle is completed
when every decision variable has been a]]owe& to vary; once a cycle is
completed, another cycle can begin., When there is no more improvement
in the objective-function value, the process is repeated within a
smaller region and with smaller step-sizes. The whole search process
terminates when no more improvement is obtained with a step size

commensurate with the accuracy to be obtained.

3. An Objective Function for Satellite Orbital/Frequency
Assignments

For the satellite planning problem, a suitable objective function

is formulated as [29]
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= I I r exp {a-[C, .(dB)=1" _(dB)} , (3.1)
keK neN, jed, knj knj

where the symbols mean

K : the index set of all satellites,

Nk : the index set of all frequency channels assigned
to satellite k,

Jk ¢ the index set of test points of service area k,

a : arbitrary parameter used to avoid overflow in computer
calculation,

Cknj : the carrier power at channel n of test point j in
service area k, in dB,

IEnj : the effective interference power at channel n of test

point j in service area k, in dB.

It is assumed that each satellite is aﬁsociated with one service area;
thus the index k that represents a satellite also represents its
corresponding service area, Note that it is the satellites that are
counted in the index set K; one service area may be served by several
satel]ifes and each satellite is treated as an individual unit., The
value of Cxnj is calculated from Equation (2.5). The value of Iﬁnj is

calculated from Equation (2.13a), reproduced here
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where Ijp knj, calculated from Equation (2.6), is the interference from
channel m of satellite i1 into channel n of test point j in a service
area served by satellite k. In Equation (3.1) the exponentially
weighted summation is over all the frequency channels, at all the test
points, in all the service areas. In Equation (3.2), the double-
summation adds the interference from all other satellites, and the
single-summation adds the interference from other channels of the same
satellite,

The satellite locations, denoted by o7 for satellite 1, and the
carrier frequencies, denoted by fyn for channel h of satellite 1, are
the decision variables. The 1imits of the orbital variables are usually
determined by elevation angle constraints [83]; sometimes an eclipse-
protection requirement may impose additional restrictions [84]. The
1imits of the frequency variables are determined by the limits of the
available spectral band [4].

It is clear that the orbital variables are continuous variables;
however, this is not necessarily true for the frequency variables. In
past international conferences, generally the available spectral bands
were each divided into channels of equal bandwidth, with each channel
specified by its center frequency [85]. This is likely to be true for

future conferences also; then the frequency variables will be discrete.
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In the gradient search method, the derivatives with respect to all the
decision variables need to be calculated; since it is impossible to
differentiate with respect to a discrete variable, it is assumed here
that in the frequency assignment the center frequencies of all the
channels are allowed to vary continuously while each channel still has
the same, fixed bandwidth. With this assumption, differentiation with
respect to the frequency variables is allowed, and the frequency
protection ratio of Figure 2.6 can be used. It is hoped, but cannot be
guaranteed, that the optimization of the continuous-varying channel
problem will Tead to at least a near-optimum of the discrete channel
problem.

Note in Figure 2.6 that there is a plateau in the frequency
protection ratio. When two satellites are assigned frequencies with the
frequency offset in this range, the gradient search method would find
variation of these frequency assignments not useful because it would not
change the objective-function value. This is definitely not the result
the system blanner'wants, because separating the frequency assignments
sufficiently could produce better C/Io results. To avoid this problem,
the plateau is deformed to form an isosceles triangle with small slopes
(+0.05 dB/unit B); this modification allows the frequency assignments to
be separated if the frequency offset is located in the plateau region.

From Equation (3.1) it is clear that the value of Zxpj is small for
large (C/Ig)knj(dB) values. Since a good scenario should have large
C/1o at all test points, the global minimum of the objective function is

likely to be a good solution for the assignment problem.
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The gradient components of Z are

) 9
vZ = (301 z, 802 Z,-o- Z"") (3'3)

where the partial derivatives have been taken for 511 the decision

variables; also

gz ¢z, ~3(C/T )yn;s(dB)

9 . _ . knj
™ Z =keK neNk JeJk ” . (3.4)
1 1
-3(C/1.),. . (dB)
3%‘ 7 = kei nﬁnk jidk “nj : knd , (3.5)
1h 9 Th

Referring to Figure 2.5 and Equations (2.5), (2.6), moving Sp-clearly
changes Ytc, Ypi, and x, moving Sgp changes also parameters Yt+i, ¥prj, and
y. Every satellite acts both as a desired and interfering source, so it
affects the parameters associated with Sp in some terms, and those with
Sg in others, and both in a few terms. As one moves Sp ans Sg, the
effective isotropic radiated powers, i.e., the products Pp-Gp, PpeGg

of satellites Sp and Sg respectively, are kept constant; but the carrier
powers calculated from Equation (2.5) change somewhat at the test
points, causing some contribution to 3z/307. Also, the minimum ellipses
must be recomputed for new satellite locations; the change in ellipse
changes Ytcos Wig and therefore Dy (tc)s DB (Vi) since Ny depends on
YWc/Vtco and similarly for Dg.

Here one sees that in Equation (3.4) or (3.5), Zxpj is the
weighting factor for the terms 3/301[(C/Ig)knj(dB)] and
3/9f1pL(C/1e)knj(dB)]. Since the term Zypj is a negative exponential
function of (C/Ie)knj(dB), it will be largest for the values k, n, and j
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for which (C/Ie)knj(dB) is smallest; so the weight serves to emphasize
the contribution from those test points and channels which need
improvement most urgently. With such an objective function, the
gradient search method tends to relocate most strongly the
orbital/frequency assignments that are responsible for the worst C/Ia
terms, and the result is an increase of these C/Io values., This, of
course, was the rationale for choosing the exponéntia1 function, A

numerical example, below, will illustrate this point.

4. Numerical Exercise Using the Extended Gradient Search Method

A numerical exercise will now be given to show that the properties
associated with the objective function are indeed as discussed, and that
the performance of the extended gradient search method with respect to
this objective function is as predicted.

In this exercise seven administrations are under consideration;
théy are Argentina, Bolivia, Brazil, Chile, Paraguay, Peru and Uruguay
(denoted as ARG, BOL, BRZ, CHL, PRG, PRU, and URG respectively) with the
geographic relation shown in Figure 3.1 and the test points listed in
Table 3,1, It is assumed that every administration has requested one
orbital location and three contiguous frequency channels, with cross
polarizations for adjacent channels, for its satellite; the orbital
locations and the carrier frequencies of the leading (lowest) channels
are the decision variables, and these leading channels all have the same
polarization. The feasible orbital arc was taken from 90 to 110 degrees
west, and the spectral band from 12,200 to 12,300 MHz, for all
satellites; the bandwidth of each channel is assumed to be 12 MHz, with
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Figure 3.1. Geographic relation of the seven South American
administrations.
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Table 3.1

Test Points of Seven Administrations

ARGENTINA
LON. LAT.
-66.2 -21.8
-62.8 -22.8
~53.8 -27.2
-56.7 -36.9
-63.8 -54.7
-68.3 -54.8
-73.2 -50.9
-71.4 -39.9
-79.5 -31.4
~68.6 -24.8
BOLIVIA
~55.9 -12.2
-65.5 -9.8
-69.9 -11.2
-60.9 -16.1
-57.5 -18.9
-67.5 -22.7
BRAZIL
-64.5 4.5
~-52.8 3.8
-46.9 ~1.5
~356.2 ~7.5
-42.98 -22.5
-63.9 -32.5
~56.3 -29.5
-79.8 -12.5
-73.8 -7.9
-69.9 1.9
CHILE
-69.5 -17.5
=-67.1 -23.9
-78.8 -34.2
~71.7 -43.2
-68.4 -82.3
-72.8 -51.3
=-75.7 -46.8
-74.98 -28.9
~70.4 -18.3
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PARAGLAY
LON.

-587.6
-58.,6
-56.2
~-54.7
-54.2
-58.1
=59.1
-62.2
-62.7
-88.7

PERU

-70.4
~-69.9
-79.5
-74.2
-79.4
-75.2
-80.3
-81.3
-81.2
-76.1

URUGUAY

-56.2
-54.9
-83.5
-53.2
-55.6
-56.9
-57.6
-58.2
-58.4
-57.9

LAT.

-25.3
-27.3
=-27.2
-25.5
-24.1
-28.2
-19.3
-28.5
~22.2
=-27.2

-18.3
~-12.3
-9.4
-7.6
-2.7
-g.9
-3.4
-4.4
=-5.1
-13.4

-34.9
-35.0
-34.9
-32.7
-32.8
-30.1
-38.2
-31.9
"33-9
-34.5



a 2.58 MHz guardband between two channels. The carrier and interference
powers are calculated from Equations (2.5), (2.6) and (2.1§a); the
antenna reference patterns are from Figures 2.2 and 2.3; the freqhency
protection ratio is from Figure 2.6; the ellipse data are calculated
from [49].

In this calculation the initial scenario is that all satellites are
collocated at 110 degrees west, and the initial frequency assignments
extend from 12,235 to 12,265 MHz in 5 MHz intervals. The intermediate
solutions at all the search steps and the final solution after ten
search processes are shown in Figure 3.2 to demonstrate how the search
process proceeds. In Figure 3.2(c), only the worst aggregate C/Ig
values for these administrations are shown. In these figures the
administrations are denoted by numbers according to afphabetic order: 1
for Argeptina, 2 for Bolivia, 3 for Brazil, 4 for Chile, 5 for Paraguay,
6 for Peru and 7 for Uruguay. The improvement of the C/Ip results is
clearly seen as the iteration process proceeds. The orbital assignments
are almost steady after iteration 7, and the frequency assignments are
almost steady after iteration 5; this indicates that the search process
may have reached the vicinity of a local minimum.

The improvement mechanism of the extended-gradient search method
can be observed as follows. Note that the C/Ie results of
administrations 3, 4, 6 and 7 are the worst after iteration 1; then at
iteration 2, the orbital and frequency assignments of these four
satellites make a very significant change, while that of the other three

satellites are almost unchanged., This is exactly the purpose of the
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exponentiation in the objective function as discussed in Section
I11.B.3.

The purpose of modifying the ordinary gradient search method can be
seen as follows. It is known that the objective function takes on large
values when some of the orbital and/or frequency assignments are
identical (for reason to be explained in Section III.C); hence
exchanging the position of two satellites means jumping over such a
region. In Figure 3.2(a) the orbital order established in iteration 1
is disturbed by the exfended search process: the order of satellites 2
and 5 is changed at iteration 7, Thus the extended gradient search

method can move from a region with one Tocal minimum to another region,
5. Numerical Exercise Using the Cyclic Coordinate Search Method

The performance of the cyclic coordinate search method is
demonstrated here; the same objective function is used to solve the same
assignment problem. The initial scenario is changed as follows: all
satellites are at 110 degrees west and 12,250 MHz. The results are

shown in Figure 3.3, The improvement in the C/Io results is obvious.

C. EMPIRICAL EXAMINATION OF THE OBJECTIVE-FUNCTION TOPOGRAPHY

1. The Importance of the Objective-Function Surface Topography to
the Gradient and Cyclic-Coordinate Search Methods

The topography of the objective function greatly influences the

outcome of the search methods. An objective function has only one
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Tocal maximum (minimum) ff it is strictly concave (convex) or
pseudo-concave (pseudo-convex). (See Appendix B for the definitions and
properties of strictly-concave and pseudo-concave functions.) The
gradient and cyclic-coordinate search methods. should Tead one to a point
very close to this maximum (minfmum), if not directly locate it. If the
objective function is not strictly concave, strictly convex,
pseudo-concave, or pseudo-convex, it may have several local maxima or
minima. The greatest maximum (least minimum) is called the global
maximum (minimum), or simply maximum (minimum). The best operating
conditions correspond to the global maximum (minimum), when the
objective function is to be maximized (minimized). For such a function,
both the gradient and the cyclic-coordinate search procedures will
almost certainly give improvement to an initial operating conditions.
However, both procedures may eventually be trapped at a Tocal optimum
instead of reaching the global optimum.

Therefore, knowledge of the mathematical properties of the
objective function is important in determining whether the gradient and
cyclic-coordinate search methods are to succeed, For instance, when the
objective function has only one local maximum (minimum), or if the local
maxima (minima) all correspond to nearly equal objective-function
values, then it will be relatively easy to obtain a near-optimal
so?ution by either method. If, on the other hand, there exist many
local maxima (minima) at which the objective-function value is much
smaller (greater) than its global maximum (minimum) value, then there is
a greater likelihood of arriving at a solution which is much poorer than

the true optimum.
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Therefore, the topography of the objective function used for the

satellite orbital and frequency assignment synthesis, i.e., Equation

(3.1), will be examined next.

2. Relation Between Variations of Orbital/Frequency Separations

and Single-Entry C/Ia Value

A Very important concept should be pointed out first: for two
satellites and their corresponding service areas, the single-entry C/Ig"
values at all the test points increase as the satellite orbital/
frequency separations increase,

In the C/Io calculation several terms are relatively invariant when
satellite locations change. The received carrier powers are calculated
from Equation (2.5), and the interference powers are calculated from
Equations (2.6) and (2.13a). The satellite effective isotropic radiated
powers (EIRP), defined as the product of the transmitting power and the
transmitting antenna gain, are assumed the same for both satellites,
regardless of orbital 16cations. Because the service areas are covered
by the main beams within the -3 dB contour, the carrier transmitting
discrimination factor at the test point is always larger than, and close
to -3 dB. Because the geostationary orbit radius is 6.6 times the Earth
radius, the propagation distances from the satellites to all the test

points vary little when satellite locations are changed.
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One factor that dominates the variations of the single-entry C/Ia
values is the receiving discrimination term Dq(ypi) 1h the interference
power, and that variation depends chiefly on the satellite spacing. Any
relative change of the two satellite locations will change the ground
antenna off-axis angles toward the interfering satellite. Through the
reference pattern in Figure 2.3, this angular change induces a
substantial change in the interference power. The further the two
satellites are separated, the Tower the discrimination factors, and thus
the Tower the interference. Another factor, the interference transmit
discrimination term Dg(yti), also varies when the satellite locations
are changed; however, the change of Dg(itj) is much less than the change
of Dd(vpri) because Yti (seen from the geostationary satellite toward the
Earth) changes much less than ypi (seen from the ground upward to the
sky) when the location of the interfering satellite is changed. The
single-entry C/Io values increase when the corresponding satellite
spacing increases until the discrimination factor D4q(ypi) is in the far
side-lobe of the reference pattern; then the C/Io values become almost
constant as the spacing keeps on increasing. This will be called
"quasi-monotonic" variation: C/ls values decrease (increase)
continuously or remain constant when satellite spacing decreases
(increases) continuously.

For a given service-area pair, the single-entry C/Ia value depends
mainly on the magnitude of the satellite spacing, and slightly on the
mean satellite orbital location. (It will be shown in Chapter IV that

it varies only slightly for a large range of this mean satellite
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location.) Therefore, for the purpose of the discussion in this
section, an approximation is made by assuming that, for a given
service-area pair, the single-entry C/Io values at all the test points
depend only on the magnitude of the satellite spacing and are
independent of the mean satellite location.

Another factor that dominates the variation of the single-entry
C/1e values is the frequency offset in the frequency assignments. As
explained in Section II.F, the frequency filtering factor of Figure 2.6
must be included in the effective interference calculation when the
carrier frequencies of the wanted and unwanted signals are different.
The larger the frequency offset, the lower the filtering factor, and the
lower the interference. Therefore, the variations of the single-entry
C/la values also depend strongly on the separation of the frequency
assignments: for given orbital assignments, the further the frequency

assignments are separated, the higher the single-entry C/Io values.

3. Topographic features of the objective function

a) Objective-function topogfaphy of three-satellite example,
orbital variables only
For simplicity a three-satellite system will be used to demonstrate
some key points. The three satellites are Sy, S2, 53, and these symbols
will also be uséd to designate their orbital locations. A single
channel will be considered so that no frequency variables are involved;

in this case I and I are identical.
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The configuration space for this example is described here. First
one draws the three orbital variable axes and indicates the feasible
region, as in Figure 3.4. The line segment HB measures the feasible
range for S1, HD for Sp, HF for S3. In this figure the three satellites
are assumed to have the same feasible orbital range, i.e., HB = HD = HF;
therefore the feasible region is a cube. Any point in this cube
represents an assignment scenario; its coordinates Si, S», S3 are the
satellite orbital locations of'this assignment. For example, the point
H represents the assignment in which all three satellites are collocated
at one end of the orbital arc; the point A is for three satellites
' collocated at the other end; the point B is for S; Tocated at one end
while S and S3 are collocated at the other. Note that associated with
every point in the configuration space there is an objective-function
value which can be calculated by Equation (3.1).

Several important features need to be mentioned. First, any point
on the line AH indicates a three-satellite collocation. Then, all the
points in the shaded plane ABHE correspond to So, S3 collocation; those
in the plane ACHF to S3, Sp collocation; those in the plane ADHG to Si,
S3 collocation, Points within any one of the six sub-regions separated
by the three collocation planes have the same satellite permutation.

For example within the sub-region bounded by the planes AHB, AHC, ABC
and HBC, all the points have the satellite permutation S1>S2>S3; this is
indicated by the notation 1-2-3 in Figure 3.4. Since'the objective-
function value is large when the C/I values are small, the objective

function should have the highest values along the line AH because the
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1-2-3: REPRESENTS ORDERING S1 > 52 > 53

Figure 3.4. Configuration space of three-satellite case.
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C/I values are the smallest for collocated satellites. Near the
pairwise collocation planes ABHE, ACHF, ADHG the objective function
should be moderately high, while between these planes the objective
function falls off to form valleys because all the satellites are spread
out. Thus we can visualize the objective-function topography as
" dominated by a system of ridges corresponding to satellite collocations;
these ridges are connected to each other at the line AH where three
satellites are collocated. Of course, the ridges will be high if the
service areas are close together and hence the transmitting
discrimination factor Dg in Equation (2.6) is 1$rge; they will be small
when the service areas are well separated.

An arbitrary plane in this cube may be chosen to show the
objective-function values corresponding to points on this plane. The
plane chosen here is the plane CJKLFMNP shown in Figure 3.5(a). The
objective function might have the shape shown in Figure 3.5(b). The
base plane is divided into six sub-regions by its intersection with the
shaded planes in Figure 3.4. Each intersection 1line represents the
collocation of two satellites, and each sub-region represents one
permutatioh of the three satellites. The objective-function topography
sketch shows these sub-regions separated by the ridge§ representing
two-satellite collocation.

The objective-function values of a real set of scenarios will now
be calculated here to con%irm the above arguments. The three
administrations are: Sip for Peru, Sp for Bolivia, S3 for Paraguay. The

orbital locations chosen for the calculation constitute the shaded plane
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(AB) : REPRESENTS COLLOCATION OF Sp AND Sg

(b) its objective-function surface.

Figure 3.5. Typical shape of objective function,

62



RSTU shown in Figure 3.6; it is inside the region of permutation
$1>S2>S3, and is a plane for which the value of Sp is constant at 60°W.
The value of S; ranges from 60 to 64 degrees west, while the value of S3
ranges from 57 to 60 degrees west. ‘The objective-function value is
calculated from Equation (3.1), the values of C and I are calculated
from Equations (2.5), (2.6) and (2.13a), the antenna reference patterns
are taken from Figures 2.2 and 2.3, the ellipse data are calculated from
[49]; the test points are those given in Table 3.1 for these
administrations. The results are listed in Table 3.2, and the
topography is plotted in Figure 3.7. As predicted, the maximum of the
objective function in this plane occurs at R, the three-satellite
collocation, the objective function rises to apparent ridges above the
Tines RS and RU which 1ie in the planes ABH and ADH of two-satellite
collocations, and away from the'lines of satellite collocation the
objective function falls off and forms a valley.

_The typical topography of the objective-function surface for points
lying on a plane inside any région of fixed permutation is shown in
Figure 3.8. The ppint R' will be on the line AH, the lines R'S' and
R'U' will be in the planes of two-satellite collocation, the points T'
will be chosen in the R'S'U' plane. This figure illustrates the typical

shape and locations of the tip, ridges and valley.
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Figure 3.6. Selected area to calculate objective-function value.
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Table 3.2
List of Objective-function Values

z=3 3 exp[a-(C/I)kj(dB)]. a=3>5,
K Jk
SZ(BOL) = 60 degrees,

5; (PRU) Sz (PRG) z in(z)
60. 60. 0.2625 E+4 7.873
59.5 0.8918 E+3 6.793

59, 0.7644 E+3 6.639

58. 0.7606 E+3 6.634

57. 0.7601 E+3 6.633

60.5 60. 0.1529 E+4 7.333
59.5 0.1084 E+3 4.685

59. 0.4488 E+2 3.804

58. 0.4460 E+2 3.798

57. 0.4455 E+2 3,797

61, 60. 0.1010 E+4 6.918
59.5 0.5477 E+2 4,003

59, 0.2781 E-1 -3.582

58. 0.1111 E-1 -4.500

57. 0.1104 E-1 -4.506

62. 60. 0.9673 E+3 6.874
59.5 0.5322 E+2 3.974

59. 0.1490 E-1 -4,206

58. 0.1498 E-4 -11,109

57. 0.6218 E-5 -11.989

63. 60. 0.9613 E+3 6.868
59.5 0.5289 E+2 3.968

59. 0.1454 E-1 -4.231

58. 0.8250 E-5 -11.705

57. 0.1852 E-6 -=15.502

64. 60. 0.9596 E+3 6.867
59.5 0.5277 E+2 3.966

59. 0.1440 E-1 ~-4,241

58. 0.7938 E-5 =11.744

57. 0.1058 E-6 -16.062

65






L : Objective-function isograms

P : Projection onto R'S'T'U'

G : Gradient trajectory if
start at R'

‘Figure 3.8. Typical topography of objective'function.
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A point made in Section III.B.3 can also be illustrated by
referring to Figure 3.7. The gradient direction at the point x is
almost perpendicular to the Tine RS. This means that when this gradient
direction is followed, the orbital location of S; is almost unchanged
while S3 is placed further away from Sp. Note that points close to the
line RS correspond to nearly collocating the satellites So and S3; when
these satellites are close to each other, the test points of their
service areas have low C/I values. This means that the corresponding
weighting factors in Equation (3.4) are high, and the gradient search

process will push the two responsible satellites Sp and S3 apart.
4b) Objective-function topography of n-satellite case

The general shape of the objective-function topography for an
n-satellite case will now be addressed. Note that the orbital and
frequency variables are two different classes of decision variables so
that their effects on the objective-function topography should be
discussed separately.

In the first step only the orbital variables are discussed; it is
assumed that the frequency assignments are the same for all the
satellites. For a case of n satellites to be assigned orbital
locations, the n orbital variables constitute an n-dimensional
configuration space, and it is divided into n! regions of different
orbital permutations (i.e., satellite orderings) by n(n-1)/2 (n-1)-
dimensional hyperplanes of two-satellite collocation. Each region of a

fixed orbital permutation is surrounded by (n-1) hyperplanes of two-
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satellite collocation and two (n-1)-dimensional Boundary hyperplanes,
each corresponding to one satellite at the boundary of its feasible
orbital arc. The objective function has large values when satellites
whose service areas are not well separated are collocated. For two
neighbouring regions of different permutations, the corresponding
permutations differ only in exchanging the relative positions of two
satellites., Therefore the hyperplane between these two regions
corresponds to the collocation of these two satellites, and the
objective function may have large values in this hyperplane. A1l of
these hyperplanes will connect at the line where all satellites are
collocated; as a result the objective function has many local minima
within the complete feasible region, and they can be characterized by

their specific orbital permutations.

In general a satellite is associated with an orbital Tocation and a

set of frequency allocations. Basically, the effect of the frequency
variables on the topography depends on the freqdency protection ratio
pattern shown in Figure 2.6. There is one important similarity between
this pattern and the co-polarization antenna patterns: the relative
protection ratio value is non-increasing as the frequency offset
increases. So the spreading of the frequency assignments has the same
effect on the objective-function value as the spreading of the orbital
assignments: the further the frequency assignments are separated, the
less the interference, and the smaller the objective-function value.
Hence the objective function may have large values when the frequency

assignments are collocated (or nearly collocated since the plateau in

69



Figure 2.6 has a certain bandwidth), and local minima may occur where
frequency assignments are spread out.

The total number of local minima of the objective function in a
case of n orbital and n frequency variables can be deduced as follows.
Theoretically, the n-orbital variables create n! regions with at least
one local minimum in each region, then in each region the n frequency
variables further create n! sub-regions with at least one local minimum
in each sub-region. Therefore, there might be at least (n!)?> 1local
minima in this case. However, in reality the number of local minima is
1ikely to be smaller, e.g., the collocation of two satellites may not
result in bad C/I values to prodhce hyperridge of large objective-
function values when the service areas are well separated.

Also, another very important thing can be deduced from the above
discussion: the local minima of the objective function may be
characterized by the permutations of their orbital/frequency

assignments.
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c) Possibility of one local minimum for a fixed permutation of
orbital/frequency assignments

(1) Introduction

Figures 3.6 and 3.7 also show that the objective function as a
convex (or pseudo-convex) function with only one Tocal minimum within a
region of fixed orbital permutation. In this case this result should be
obvious because, for a three-satellite example with only orbital
variables, the objective function can be minimized by spreading the
outside satellites as far as allowed by the feasible arc, i.e., until
they reach the boundaries. It is interesting to speculate whether, for
a general case of n satellites, there is only one local minimum in a
region of fixed orbital/frequency permutation. If this conjecture could
be shown to be true, or approximately true in the sense that all the
minima for a fixed permutation have approximately equal objective-
function values, then an ordinary (not extended) gradient search
procedure would be sure to find an optimal, or at least near-optimal
solution for a given orbital/frequency permutation. However, a
definitive proof of the conjecture has eluded us. The remainder of this
chapter presents evidence that it is likely to be true for the orbital
variables. Therefore, in this section it is assumed that every
satellite has been assigned the same frequency channel, and the

discussion is confined to a region of fixed orbital permutation.
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(2) Locations of Global Maximum and Local Minima of
Objective Function

First, it is shown the global maximum of the objective function
corresponds to a scenario of all-satellite collocation by showing that
the objective-function value decreases quasi-monotonically along any

linear trajectory starting from all-satellite collocation.

Definition 1
For two scenarios x, y in the n-dimensional configuration space,
the Tinear trajectory between them is specified by the set of scenarios

Zz such that

z =ax + (l-a)y , ' (3.6)

where a is a parameter with value 0< a< 1,

Lemma 1

Assume that all the satellites have continuous feasible orbital
arcs. Then given any two scenarios x, y, there exists a linear
trajectory between them which is completely inside the feasible region;

i.e., the feasible region is a convex set.

Proof

A scenario z in the n-dimensional configuration space.is expressed
by a 1*n row matrix z=(z1, z2, ... Z,), where the components are the
satellite locations of satellites 1, 2, ... n respectively:

Along a lilnear trajectory of starting scenario x and final

scenario y, a scenario z satisfies
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z =ax + (1-a)y , : (3.7a)

where 0O<a<l, or
(21, 22, oo Zp) = a(X1s X2 eee Xp) +

(l'a)(y],’ Y25 oee yn) ] (3.7b)
or

zj = axj + (1-a)yj for 1<i«<n. (3.7¢)

Since all the satellites have continuous feasible orbital arcs, one has
zyeFy if %y, yjeFj for 1<i<n, where Fj is the feasible arc for satellite
i. Hence any scenario z along this linear trajectory is well defined,
and the linear trajectory is completely inside the feasible region. So

the feasible region is a convex set.

Lemma 2
Within a region of fixed orbital permutation in the n-dimensional
configuration space all the pairwise satellite separations vary linearly

along a linear trajectory.

Proof
From Lemma 1, for scenario z the pairwise satellite separation

between satellites i, j is [zj-zj|. From Equation (3.7c) one has
(zi-zj) = a(xi-xj) + (l-a)(yi-yj) , (3.82)

where 0<a<l. Since all the scenarios are of the same orbital

permutation, (xj-xj) and (yj-yj) must have the same sign. Then, since
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both a and (1-a) are positive, (zj-zj) will also have this same sign.

Therefore, Equation (3.8a) can be rewritten as

|21-25] = alxj-xj| + (1-a)|yi-yjl » (3.8b)

f.e., all the pairwise satellite separations vary linearly when a

scenario is varied along a linear trajectory.

Theorem 1
The global maximum of the objective function is on the line of

all-satellite collocation,

Proof

A linear trajectory that starts with all-satellite collocation is
iTlustrated in Figure 3.9, note that the ordering of the satellites
remains the same. Since the initial pairwise spacings are all zero,
from Lemma 2 all the satellite spacings increase linearly in the
trajectory. As discussed in Section III.C.2, all the single-entry C/1
values increase quasi-monotonica]ly when the corresponding pairwise
satellite spacings increase linearly. As a result, all the aggregate
C/I values, which involve the summation of all their contributing
single-entry interference powers, must also increase quasi-monotonicaly
in the process. Thus the objective-function value, which is the
summation of the exponential of the negative of the aggregate C/I
values, must decrease quas{-monotonically. Hence, the global maximum of

the objective function is on the line of all-satellite collocation.
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Figure 3.9. Linear expansion of orbital assignments.
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Theorem 2
Local minima of the objective function occur at boundaries of the
feasible region such that all of the pairwise most widely separated

satellites are at opposite limits of their respective feasible arcs.

Proof
Let the satellites be numbered according to their orbital
positions, so that Xj<xp<...Xp. Let the lower limits of their feasible
arcs be denoted e (i=1,2,...,n) and the upper 1imits wj (i=1,2,...,n).
Assume xi1¥e1, i.e., satellite 1 is not at the lower limit of its

feasible arc. Then
z = a(e1,X9,X35.005Xp) + (1-a)x , 0<a<l (3.9)

defines a linear trajectory for which all the |21-Zj| (3=2,3,0445n) must
“increase continuously away from the other satellites. All other
spacings remain unchanged on the trajectory. As discussed in Section
I11.C.2, this increases the single-entry C/I values involving satellite
1 quasi-monotonically while all other single-entry C/I values remain
unchanged; therefore the objective-function value will decrease
quasi-monotonically along the trajectory. Therefore it can not be a

local minimum for the scenario x with xj#ej. This proves the theorem.

76



(3) Topography of the worst single-entry C/I value
.In the following section the topography of an auxiliary function A,
defined as the the worst (smallest) single-entry C/I value, will be
investigated. Although it is not the objective function Z, it is hoped
that these two functions may have sufficient resemblance that some of
the properties about Z can be extrapolated from A. First the function

is defined as

A = 1 Min [(C/I)1 kj]’ . (3.10)
eK, kekK, JeJk ’ _
where the symbols mean
(C/I)1’kj : the single-entry C/I value at test point j of
service area k and the'sing1e-entry interference
power is from satellite 1,
Jk : index set of test points of service area k,

K : index set of satellites in a scenario.

The value of A for a given scenario is obtained as follows., First
all the single-entry interference from any one satellite to all the test
points of other satellite systems are calculated using Equation (2.6),
and these values are denoted as Ij gj when i is the interfering
satellite and j is the test point in service area k. The carrier power
at any test point is calculated using Equation (2.5), and is denoted Ckj
when j is the test point in service area k. The value of (C/I)i,kj is
calculated by taking the ratio of Cyj and Ij kj. The value of A is
obtained from choosing the smallest of all the (C/I)i kj terms for that

scenario (note that a scenario is a point in the configuration space).
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Note that, if this function is used as the objective function for the
extended-gradient or cyclic-coordinate search method, then the most
favorable assignment is that for which the objective function is the
global maximum.

Considering only the orbital variables, we wish to show that this
function has at most one local maximum (hence a global maximum when it
exists) for each ordering (permutation) of the satellites, and that such
a maximum must 1ie on a boundary of the feasible region. Some lemmas

and definitions will be useful in the proof of this theorem.

Lemma 3
Within a region of fixed permutation in the feasible region, all
the (C/I)i,jk terms are quasi-monotonic functions along any linear

trajectory (orbital variables only).

Proof

As discussed in Section III.C.2, for a service-area pair, the
single-entry C/I values at all the test points vary quasi-monotonically
as the satellite spacing varies. According to Lemma 2 all the pairwise
sate]iite spacings either increase or decrease linearly, or remain
constant along a linear trajectory within a region of fixed permutation.
Therefore all the single-entry (C/I)i,kj functions along that trajectory

vary quasi-monotonically.

Definition 2
For two curves that have a countable number of common points, a

vertex of the two curves is a common point of the two curves.
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Let a function Y(x) be defined from a set of quasi-monotonic

functions Yj(x), ieI in a finite range as

Y(x) = l';‘hr; CYi(x)1 . (3.11)

Lemma 4
If the Tocal maximum of Y(x) exists, it must occur at a vertex or

at the boundary of the allowed range.

Proof

Assume that Y(xq,) is a local maximum (minimum) of Y(x), and it is
not a vertex of Yj(x), iel, nor is it at the boundary. Then Y(x) is
equal to one of the Yj(x) in the vicinity of xg; hence Y(x) is monotonic
in the vicinity of xy. Being a local maximum (minimum) means that
Y(x)<Y(xq) (Y(x)>Y(x0)) for x in the vicinity of xg, which contradicts
the fact that Y(x) is monotonic in the vicinity of x5. Hence the local

maxima (minima) of Y(x) occur at the vertices or at the boundary.

Lemma 5

Y(x) can not have more than one local maximum.

Proof

Suppose that, as shown in Figure 3.10, the function Y(x) has two
separated local makima at x; and x3, then there must exist a local
minimum at some point x» between x; and x3. By lemma 4, this local
minimum must be at the vertex of two Yj(x), say Yi(x) and Yo(x). The

point xp being a Tocal minimum of Y(x) requires, in the vicinity of xa,

79



> e - e e S o s - . wr W =

Figure 3.10.

> X

>
-t
>
N
&

Hypothetical case where two maxima occur in a linear
trajectory. (Proved impossible by contradiction)
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Y(x) > Y(x for x > x, and x < x . (3.12)

2) 2 2

Let Y1(x) be the function which coincides with Y(x) for x<xa (i.e., the
curve 11) and Yp(x) the function which coincides with Y(x) for x>x2

(i.e., the curve 1) in the vicinity of xp, then one ﬁas

Y1(x) > Y(x2) for x < %2 . - (3.13)
Y1(x) being quasi-monotonic means that, from Equation (3.13),

Y1(x) < Y(x2) for x > x2 (3.14)

in the vicinity of xp, The same reasoning that led to these two .

equations, when applied to Yo(x), gives in the vicinity of xp,
Yo(x) > Y(x2) for x > x2 , (3.15)
Yo(x) < Y(x2) for x < xo . ' (3.16)

Remembering that Y(x) coincides with Yp(x) (by definition of Ya(x)

abové) for x>xp, Equation (3.15) can be rewritten

Y(x) > Y(x2) for x > x2 , (3.17)
and together with Equation (3.14) this gives

Y1(x) < Y(x) for x > x2 (3.18)

in the vicinity of xp. This contradicts the definition of Y(x) in

Equation (3.11). Thus Y(x) can have at most one local maximum.

81



Theorem 3 .
Along any linear trajectory within a region of fixed permutation in

the feasible region, the auxiliary function A has at most one local

maximum (orbital variables only).

Proof

The discussion here is confined to a linear trajectory within a
region of fixed permutation. From Lemma 3, all the single-entry C/I
terms are quﬁsi-monotonic functions on such a trajectory. The function
A is defined as the minimum of all these C/I ferms; thus the function A
may be identified with Y(x) in Lemma 5 if the trajectory parameter a is
identified with x in that lemma. Therefore, from Lemma 5, the function
A has at most one local maximum (hence a global maximum when it exists)

along a linear trajectory.

Theorem 4
The auxiliary'function A has at most one local maximum within a
region of fixed permutation in the configuration space (orbital

variables only).

Proof

The discussion here is still confined to a region of fixed
permutation. It will be shown that Theorem 3 is contradicted if the
function A has two local maxima within such a region. Suppose that the

function A has two local maxima at xj and xp, then the linear trajectory
that passes through both xj and x» will have two local maxima at xj and

X2; however, this is a clear contradiction of Theorem 3. Hence within
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this region the function A has at most one local maximum; hence any
maximum must be global in the region. Because the C/I variations are
only quasi-monotonic, there may be sub-regions in which the value of A
is conétant; if this value is not exceeded elsewhere in this region, A

will not have a distinct maximum in this region.

Theorem 5
The local maxima of the auxiliary function A are located at the
boundary of the feasible region in the configuration space (orbital

variables only).

Proof

By the same argument as in Theorem 2, a scenario located in the
interior of a feasible region cannot be a Tocal maximum because it is
always possible to find a scenario located at the boundary that has
better or equal single-entry C/I values. Thus any maximum of A has.to

be at the boundary.

(4) Numerical test
As discussed in Section III.B.3, the objective function Z is

formulated to emphasize the worst aggregate C/Io terms by exponentiating
the negative of the aggregate C/Ig value; thus it is reasonable to say
that there is a direct relationship between the function Z and the
negative of the worst aggregate C/Io term, or several such terms if they
are of approximately equal value. In view of Theorem 4, this suggests
that the function Z is likely to have only one local minimum within a

region of fixed permutation. Since a rigorous proof has eluded us, a
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numerical example of a four-administration model was calculated to
investigate this feature: the four administrations are Argentina,
Bolivia, Paraguay, and Peru; the feasible orbital range is from 62 to 68
degrees west. The objective-function value was calculated from Equation
(3.1), the values of C and I were calculated from Equations (2.5),
(2.6), and (2.13a); the antenna reference patterns are from Figures 2.2
and 2.3; the ellipse data were calculated from [49]. Since it is known
from Theorem 2 that the local minima must be Tocated at the boundaries
~of the feasible region in the configuration space, the objective
function values at all the 24 boundary planes of this numerical example
were calculated; the equal-height contour plots are shown in Appendix C,
where Argentina, Bolivia, Paraguay and Peru are denoted as ARG, BOL,
PRG, and PRU respectively, In each figure, two satellites are located
at opposite ends of the feasible arc, and the (varying) orbital
locations of the other two are indicated by the coordinates. The upper
triangle represents one permutation and the lower triangle another
permutation. Clearly there is only one local minimum for each
permutation. The results suggests that for a general case (n
satellites) it is likely that there is only one local minimum within a

region of fixed orbital permutation.

D. DISCUSSION AND CONCLUSION

Even though the objective function in Equation (3.1) is not the
only one that might be formulated to solve the orbital/frequency
assignment problem, it still should be representative of objective

functions designed to maximize Tow C/Ie ratios. Therefore many of the
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mathematical features of the assignment problem can be inferred from
this function,

Referring to Figures 3.4 and 3.5 and the discussions in Section
I11.C, the objective function of Equation (3.1) often has large values
at points of either orbital or frequency assignment collocation, and the
local minima can be characterized by the permutations of their
orbital/frequency assignments. This feature indicates that there might
be on the order of (n!)2 Tlocal optimum solutions for a n-satellite case
of n orbital variables and n frequency variables; in reality the number
of local optima is likely to be smaller because the collocation of two
satellites may not result in bad C/Ig ratios when the service areas or
their frequencies are well sebarated. Still, one thing is clear:
permutation of the orbital/frequency assignments is an important part of
the problem. Therefore a technique for finding the globally optimal (or
a near-optimal) scenario must be able to deal with both the C/1e
requirement and the permutation of the orbital/frequency assignments.

Also, the discussion in Section III.C.3.c, which shqws that the
objective function is likely to have one local minimum within a given
orbital permuiation, suggests that in order for an extended gradient
search method to obtain the globally optimal solution, it should
terminate as an ordinary gradient search with the optimal permutation in

orbital/frequency assignments.
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CHAPTER IV
OPTIMAL ORBITAL ASSIGNMENTS BY MEANS OF THE AS CONCEPT

A. INTRODUCTION

In this chapter a direct correspondence between the single-entry
C/1e protection requirements and the necessary satellite spacings is
exhibited. This relationship is used to formulate linear constraints to
enforce single-entry C/Io protection requirements between all pairs of
satellites. Two new formulations are then developed under the
assumption that frequency assignments are the same for all the service
areas.. One is a mixed integer linear program, solved by a
branch-and-bound procedure; the other is a linear program with both
linear and nonlinear side constraints, the simplex method with
restricted basis entry can be used to find an approximate solution when
this formulation is used. As a consequence, the cumbersome nonlinear
C/Ie expression used for the synthesis formulation in Chapter III is
avoided.

The 1977 World Administrative Radio Conference (WARC-77) suggested
that for maximum orbit utilization, space stations should be placed as
close to each other as is consistent with keeping the mutual
interference to acceptable levels [16]. This concept was explored by a
Canadian study group by relating the single-entry C/I protection

requirement to the satellite spacing [26,27,28]; they formulated a
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orbital/frequency assignment program, for use at the 1983 Regional
Administrative Radio Conference (RARC-83), based on the satellite
spacing requirement., The concept of using this relationship in
conjunction with linear optimization js original, to our best knowledge.
The author is indebted to Professor Charles H. Reilly of the Department
of Industrial and Systems Engineering for the mixed-integer and linear
programming formulations and to Mr. David J. Gonsalvez for the actual
programs.

The organization of the chapter is as follows. First the
relationship between the single-entry C/Iq protection requirement and
pairwise satellite spacing will be formulated, and the relative
importance of system parameters will be discussed. Next exact and
approximate methods of calculating the required spacing will be
presented. This will be followed by a heuristic discussion of the
relationship between sing1e-entry'and total acceptable protection
requirements, in order to establish single-entry requirements which are
highly 1likely to lead to satisfaction of the total acceptable C/Ip
protection requirement. Next the principle of the methods will be
elucidated with a very simple hypothetical four-service area example to
show how satellite ordering (permutation) enters into the linear
optimization process, Finally the results of both the mixed integer
program (MIP) and restricted-basis entry linear program (RBLP)
formulations will be presented for a scenario of six South American

administrations.
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B. RELATION BETWEEN SINGLE-ENTRY C/Ie PROTECTION REQUIREMENT AND
REQUIRED SATELLITE SPACING

The relationship between single-entry C/le requirement and the
required satellite spacing will now be derived. The general
configuration of two service areas A, B and the locations of their
satellites Sp, Sg is shown in Figure 4.1 which is identical to Figure
2.7. Refer to Section II.F for detailed description of all the
parameters. It is assumed that frequency assignments are the same for
both satellites. The received carrier power, C, in channel n (carrier

frequency f,) at test point d is given in Equation (2.5) as

2
Par 6y Dplvyc)e Ggoc

C= ; (4.1)

fg- (4n )Z-X2

e
the effective single-entry interference power, I,, from Sg to channel n

of test point d can be inferred from Equation (2.6) as

2
PgeGg* D (¥4 ) Gye Dg(Wpg)ecF(f,fp)

e
1 =3
" £ 2 (4n) 2 y2
* * ' [ ) [ ) [ ) 2
Pge Gg* Dg (Vg4 )+ Gyr Dyl g )oc F(fysfm)
= b z ) 402
(41r)2-y2 m fmz (4.2)

where the summation is over all frequency channels assigned to Sg. The

term “"single-entry" is defined as the aggregate of emissions from any
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Figure 4.1, Configuration of received-power calculation.
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one satellite entering any receiver in the wanted service within the
channel to be protected [87]. The single-entry Iﬁ values are different
for different channels, and the worst one is in the channel at the
center of the assigned band; it is denoted as Ipg, and is used to
evaluate the interference effect in this chapter.

The exact single-entry C/Io ratio (in center channel n) at test

point d is therefore

) |
¢ PacGa/x Dp (%) 1

=l " : '
Lo~ PgGg/y® - Dgluyy)-Dyluny) A (AT (4.3)

Even though the only independent variables in Equation (4.3) are
the satellite orbital locations, there are many hidden parameters and
relationships., The minimum.e111pse (its size, orientation, and aim
point) for Sy is a function of satellite location, It is assumed in
this chapter that the carrier power flux densities at the aim points are
equal for all the satellite systems. For any ellipse size there is a
corresponding Gp value, and the value of Pp must be adjusted to give the
required power density at the aim point. As for Dp(ikc), tﬁe value of
Ygc depends on the satellite Tocation, and there is also an implicit
parameter Ytco which is a function of the ellipse (refer to Figure 2.1).
The same considerations apply to satellite Sg, and Gg, Pg, Dg. Strictly
speaking, the values of G4, and thus D4, are different for different
channels because they are functions of carrier frequencies; in this
chapter the values of Gq for all channels are assumed the same, which is

reasonable for a narrow band frequency assignment.
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The exact calculation of Equation (4.3) is complicated, it is
therefore worthwhile to seek an approximation to Equation (4.3).
Because the geostationary orbit radius is 6.6 times the Earth radius,
the propagation distances x and y are approximately equal. Then, since
the power densities at the respective aim points are assumed equal [65],

it follows that

PGy PpGp

X2 fod _YZ . (4.4)

When the service-area shape can be fitted reasonably with an ellipse,
the test point d should be located on or near the -3 dB contour [46,47],

giving
Dalbye) = /2 (4.5)
Equation (4.3) can therefore be approxiﬁéted as

C 1 1
I © 2:Dg(0yy)Dglbpy) = F2e BBF(Fy,fr)/f2]

(4.6)

The factor 1/{f2«[£F(fy,fp)/fr? B is a constant since it is
assumed that the frequengy assignments are the same for all satellites
(note that fy is at the center channel). An internationally agreed
F(fn,fm) reference function exists only for the BSS, but not for the FSS

which is the subject of the study in this chapter. However, it is known
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that numerous U.S. FSS satellites have 24 transponders in the 6/4 GHz
band occupying the whole 500 MHz bandwidth, each transponder channel is
36 MHz wide and the guard band between two channels is 4 MHz (cross-
polarization discrimination allows frequency re-use in a satellite). In
this chapter only the co-channel interference will be considered. Thus
the value of 1/{fn20[§F(fn,fm)/fmF]} is taken to be one. Then Equation

(4.6) can be approximated as

c 1
Te = 220g(¥e)Dg(wpq) °

(4.7)

The variation of the C/I, values with respect to the satellite
orbital locations will now be discussed. Because the service areas are
stationary and the satellite orbit radius is 6.6 times the earth radius,
the value of y¢ij, and hence the value of Dg(ytj), changes little when
the location of Sg, the interfering satellite, is changed by a small arc
length., When the service-area pair and system parameters are given, the
term ypi, and thus Dy(ypi), becomes the only factor that can
significantly affect the C/Io values; this is done by changing the
satellite spacing to vary ypi, and thus the Dq(¢pi) value.
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To have an acceptable single-entry C/Ie ratio, the main
contributions are seen to come from the terms DB(wti) and Dd(wri). The
term DB(wti) comes from the separation between the two service areas;
the further they are separated, the less the value DB(wti)' The very
fact that it comes from the geographic separation of the service areas
makes it a valuable-resource for the system planner. The term Dd(wri)
comes from the satellite spacing; the larger the spacing, the larger the
value Ypis and the smaller the value Dd(wri).- The most important
feature about the satellite spacing is that this quantity can be
controlled by the system planner. |

For a given single-entry C/Ie protection requirement, the system
planner should first look for the term DB(wti) for its contribution to
the margin between C and Ie; when this is not enough, he then has to
look for the term Dd(wri) to make up the difference. For satellite SA
located at 1 and Sg located to the east of Sps the threshold satellite
spacing that lets the resulting worst single-entry C/Ie value equal the
protection requirement is the local required spacing for the satellite
pair, and is designated as ASA(]),B(1+); here the sign + means east of

1. For S, to the west of S, it would be AsS

B A A(1)’B(1‘).
spacing at least one of the test points would have an unacceptable

With any less

single-entry C/Ie ratio, while with any more spacing all the single-
entry C/Ie ratios would be better than the requirement. Thus, the As(1)
function can be viewed as the reflection of the single-entry protection
requirement, eg., ISA-SB[>ASAB would guarantee satisfactory single-entry

C/Ie ratios at all the test points in service areas A and B.
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Since a satellite spacing requirement given by As(1) is equivalent
to the equivalent single-entry protection requirement, it can be taken
as a constraint on the relative locations of the corresponding
satellites. So, instead of thinking about a scenario having
satisfactory single-entry C/Io values, one may think about the scenario
satisfying all the As(1) constraints. One important feature about the
As(1) value is that, in producing the margin between C and Ip, it fully
utilizes the service-area separation to minimize the necessary satellite
spacing. This approacﬁ corresponds directly to the idea proposed in
WARC-77: for maximum orbit utilization satellites should be placed as
close to each other as is consistent with keeping the mutual
interference to acceptable Tevels [16]; hence the set of as(1) values is
exactly what the system planner should use in order to achieve this
goal. Using the as(1) value in the orbit planning task has a great
advantage in terms of numerical calculations. While the C/Io expression
involves many geometric equations and is highly nonlinear with respect
to the orbital variables, the As(1) set can be calculated once and for
all for each service-area pair and then used as constraints. This
greatly changes the aspect of the orbital assignment task, and the
methods to solve it; this will be apparent in Section IV.F.

It is suggested in WARC-77 that single-entry protection requirement
can be used as a guide for determining sharing criteria [87]; still the
total interference from all sources must be calculated to evaluate the
scenario definitively. In this chapter, satellite orbit planning

methods are developed based on single-entry protection requirements; it
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will be shown in Section IV.D that this is likely to lead to adequate
aggregate protection when the single-entry C/Io protection requirement
is larger than the total acceptable protection requirement by 5 dB.

First, one needs to turn one's attention to algorithms for calculating

the As values just defined.

C. CALCULATION OF AS VALUES
1. Exact Method

An exact determination of the required satellite spacings requires
solution of Equation (4.3) for ypj for various locations of Sp. An
explicit solution has not been found; still, a numerical value can be
obtained by evaluating the right side of Equation (4.3) (or equivalently
Equations (4.1) and (4.2)) for increasing separations until the required
C/la value results. Specifically, the rigorous calculation of the
threshold satellite spacing for two service areas A, B may be done by
the following algorithm, (Refer to Figure 4.2 for the geometric

relations.)

(1) Set the location of satellite Sp at orbital location 1.

(2) Move the location of satellite Sg incrementally from 1 toward

the east, After each move, use the streamlined Spectrum/Orbit
Utilization Program (SOUP) code in Appendix A to calculate the

C/Ie values at all the test points of the two service areas.
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Figure 4.2. Configuration of aAs(1) value calculation.
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(3) There exists a satellite spacing beyond which all the C/Ie
values exceed the single-entry protection requirement, and
below which at least one C/Ie value is worse than the
protection requirement. This is the satellite spacing for the
two service areas at the prescribed locations and is denoted as

ASA(1),B(1+)’ where the sign + means east of 1.

(4) Repeat procedures (1)=~(3) for SB west of SA; the resulting
spacing is denoted as ASA(]) B(1-)° where the sign - means west
,B(1-
of 1.

(5) Repeat (1)-(4) with a set of new locations for satellite Sy

until its feasible arc has been covered.

The above calculation is rather time consuming. For each test
position, the minimum ellipse data of the service area has to be

generated.

2. Approximate Method

To ease the computational burden, an approximate method was
adopted. This method is based on the assumption that the power
densities at the ground receiver locations do not change when the
location of either satellite is moved away from 1 by a small arc length.

The procedure is:

(1) Collocate the two satellites at 1. Use the streamlined SOUP
code in Appendix A to calculate all the ground receiver C/Ie

values.
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(2) Pick out the test point with the worst C/Ip value, calculate
the margin between this C/Io value and the single-entry
protection requirement. At this point the service-area
separation factor has been accouﬁted for, so this margin should
be made up by separating the two satellites from collocation to
produce the receiving discrimination loss Dq(ypi) toward the
interfering satellite.

(3) Use the receiving antenne reference pattern in Figure 2.5 to
calculate the necessary off-axis angle that provides this
margin; this is the topocentric angular separation (viewed from
the test point with the worst C/Io value) the two satellites.
should have.

. (4) Spread the satellites symmetrically apart from 1 step by step
until the separation gives this necessary topocentric angle at
this test point. The final geocentric separation is the
approximate As(1) value when Sp and Sg are in the vicinity of

orbital location 1.
The computer code for this calculation is listed in Appendix D.

An example of the As(1) calculation is shown in Table 4.1 with the
two administrations being Bolivia (BOL) and Paraguay (PRG). The
satellite transmitting and ground receiving reference patterns are given
in Figures 2.4 and 2.5. Initially the satellites are located at 90
degrees west. The interference calculation is carried out, and the test

point with the worst C/I, value, -0.66 dB, is at 62.2 degrees west
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Table 4.1

Example of as(1) Calculation Procedure

l

COUNTRY SATELLITE (LON.) FREQUENCY (MHz)

BOL -9g.89 - 4050 .89

PRG -Sg.00 4RG3 50

TEST COUNTRY : BOL SATELLITE ¢ -9¢.09

TEST POINT . INT. SAT. C/1 (dB) MARGIN (dB)

LON. LAT.
-65.9% -12.29 PRG 28.86 -1.14
-65.580 -9.88 PRG 27.51 ~-2.49
~69.98 -11.2¢ PRG 27.78 -2.22
-60.00 -16.14 PRG 8.g2 -21.98
=57.5% -18.099 PRG 2.58 -27.42
-67.58 -22.78 PRG 14.88 ~15.12

TEST COUNTRY : PRG SATELLITE : -90.09

1

TEST POINT INT. SAT. C/I (dB) MARGIN (dB)
-587.68 -25.30 BOL 7.75 -22.25
-58.6# -27.38 BOL 19.88 -19.42
-56.28 -27.28 BOL 14.54 -15.46
-54.78 ~25.58 goL 13.22 -16.78
-54.20 -24.1% BOL 11.248 ~18.88
-58.19 -28.29 BOL 1.15 -28.85
~5%8.19 -19.30 BOoL 5.98 =29.92
-62.208 -28.50 BOL -0.66 -30.66
-52.70 -22.20 EOL -£.35 -34.28
-53.76 -27.28 BOL 14.1% -19.85

WORST MARGIN IS -38.66 dB AT PRG ( -62.28, =-20.50)
REQUIRED SATELLITE SPACING : 4.98 AT -S@.@9 FOR C/1 39.9 dB
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Tongitude, 20.5 degrees south latitude in Paraguay. The single-entry
C/1o protection requirement is chosen to be 30 dB, hence it requires
30.66 dB attenuation from the ground receiving discrimination to provide
the necessary margin between C and Ie. Then the receiving reference
pattern is used to calculate the required off-axis angle, i.e., the
topocentric angle, of the two satellites as seen from the test point
with the worst C/Ie value. The satellite geocentric spacing is obtained
from step (4) of the approximate method, the result is shown in Table
4,1 which shows that, in the vicinity of 90 degrees west, the necessary
satellite spacing for these two service areas is four degﬁees. This
spacing should result in at least 30 dB single-entry C/Io values at all
test points, with the worst one at 30 dB. This result can not be
guaranteed precisely, since the test point which was the worst for the
original satellite locations may not be the worst for the new locations,
aé& since new ellipses were not generated for the new satellite
locations.

Using the same antenna parameters and 30 dB protection requirement,
some of the As(1) values for several service-area pairs at different
mean satellite locations are listed in Table 4.2. The calculation is
made in 10- or 20-degree increments.

An example of the curve As(1) vs. mean satellite location 1 is
shown in Figure 4.3, the two administrations are Paraguay and Uruguay.
The as(1) value is fairly constant within a large range of satellite
locations, and starts to incregse when the satellite elevation angle is

small,
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country patr

ARG

ARG

ARG

ARG

ARG

8oL

BOL

8oL

BOL

Table 4,2

As(1) Values of Six South American Administrations

BOL

CHL

PRG

PRU

URG

CHL

PRG

PRU

URG

longitude

-78
-89
-98
-109
=119

-79
-89
-99
-104
-119

-79
-89
-90
190
112

-78
-89
-99
1908
119

-79
-89
-94
198
118

-79
-89
-99
189
119

-79
-89
-99
198
1192

=79
-89
-99
199
119

-29
-49
-69
-78
-89
-90
-198
-118
-129

As

4.00
4.02
4.9%
‘.lz
4.17

4.18
4.05
4.08
4.22
4.19

4.24
‘028
4.32
4.28
4.32

2.94
1.04
1.15
1.25
1.41

4.18
4.14
4.96
4.986
3.94

4.13
4.28
4.28
4.39
4.57

4,99
3.99
4.00
4.03
4.24

3.87
3.95
3.99
4.19
4.26

8.43
2.42
g.49
2.39
2.38
2.38
B.84
8.94
1.89
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country palr

CHL PRS

CHL PRU

CHL URG

PRG PRY

PRG URG

PRU URG

longitude

-29
-39
-48
~59
-60
=79
-89
=98
=129
-114
=129

-~79
-88
-9g
-102
-110

-28
-30
-40
-50
-60
-78
-80
-92
-198
-119
=129

-20
-4Q
-64
-78
-89
-92
~128
~118
-129

-29
-49
-60
-74
-89
-99
~-148
-119
-124

-29
-40
-60
=70
-89
-90
-129
-118
-128

As

3.88
2.45
1.69
1.35
1.14
1.28
1.14
1.25
1.46
2.89
3.32

3.84
3.83
3.85
3.89
3.94

2.52
1.44
2.93
.89
9.43
2.42
2.41
1.03
1.28
1.5¢9
2.19

g.45
.47
B.48
B.49
£.49
g.52
2.85
1.190
1.76

2.35
2.29
2.13
2.16
2.19
2.29
2.34
2.46
2.64

.45
.43
g.41
9.49
2.37
8.37
g.33
g.32
#.36



50 40 60 80 100 120 !

MEAN SATELLITE LOCATION

Figure 4.3. Typical As(1) value variation vs. mean satellite. location.
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Although the As(1) values are calculated up to two decimal
fractions, in practical situations only the first decimal fraction is
meaningful because the typical satellite station keeping inaccuracy is
0.1 degree [44]. The reason for keeping two decimal fractions is only

to show their variations more precisely.

3. Validity of Approximate Method

The approximate method gives the correct result if the power
densities at all the test points do nof change when the satellites are
moved by a small arc length. Strictly speaking, the power-density
invariance assumption is not correct because the carrier power densities
are designed to be constant only at the beam cepters [656]. However, in
practise, it is a highly acceptable assumption. To demonstrate this

point more clearly, Equation (4.3) is written as

C/Ie = K(.‘A’]B)/Dd(wﬂ') s (4.8)
where
PasGp/¥* Dpl¥yc) 1
“Uarl) = by " Dglogy) * FEBF(T /2] (49)

“and 1p and 1g denote the orbital locations of Sp and Sg. The
approximate method consists of calculating K for collocation, i.e.,
K(1,1), then assuming that this value remains constant as satellite

locations are shifted a few degrees from 1. The discussion in Section

103



IV.B (specifically, the paragraphs covering Equations (4.4) to (4.7) and
the one immediately following Equation (4.7)) does indicate that this is
a very good approximation.

Some examples support these arguments and show that the C/Ig values
at the ground receivers do not change by more than 1 dB when the
satellites are moved by two degrees; an example will now be given to
demonstrate this point. In this example the Bolivia and Paraguay
satellites are located at 92 and 88 degrees west, respectively, a
four-degree separation as suggested from the result in Table 4.1. The
C/Ig results from the streamlined SOUP calculation are given in Table
4.3. Note that the worst C/Ip value is very close to the 30 dB
single-entry protection requirement, which indicates that the As(1)
value of the approximate method is very close to that of the exact

method.

L4

4. Relation Between Service-Area Adjacency and As{1) Value

For any adjacent service-area pairs the As(1) values for a given
protection requirement are approximately independent of the sizes and
shapes of the service areas. This can be seen best from Equation (4.7);
for adjacent service areas A and B, the test point d in service area A
with the worst C/Ie-is on or near the common border with B, and its
Dg(¥+i) will be approximately 1/2 (-3dB). This determines the required
Dq(¥pi)s and ¥pi, and hence aAs(1). As another way of looking at it, the
carrier and interference power densities along the common border are
nearly equal because they are designed to be approximately 3 dB below
the respective beam-center power densities, which are designed to be
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Table 4.3

C/Ie Results to Show Validity of Approximate Method

-58.79

SATELLITE (LON.)

FREQUENCY (MHz)

dﬁZﬁ.ﬁﬂ
4008 .00
: ~92.00
C/1 (dB)

59.67
58.32
58.71
38.82
33.22
46.23

SATELLITE : -88.99
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COUNTRY
poL -92.98
PRG -88.90
TEST COUNTRY : EOL SATELLITE
TEST POINT INT. SAT.
LON. LAT.
-65.88 -12.29 PRG
-€5.58 -9.89 PRG
-69.90 -11.20 PRG
-60.89 -16.18 PRG
-57.5¢ -18.80 PRG
-67.50 -22.78 PRG
TEST COUNTRY : PRG
TEST POINT INT. SAT.
LON. LAT.
-57.68 -25.38 BOL
-58.60 -27.380 BOL
-56.20 -27.28 BOL
-54.7¢9  =-25.50 BOL
-54.280 -24.19 BOL
-56.18  -29.20, BOL
-59.1¢ -19.38 BOL
-€2.26 -20.58 goL
-62.79 -22.20 BOL
-27.2% BOL

Cs/1 (dB)

38.33
41.27
44.88

MARGIN (dB)

29.67
28.32
28.71

8.82

3.23
16.83

MARGIN

§.33
11.27
14.88
13.33
11.26

1.79

g.75%

g.o6

7.39
19.86

(dB)



equal. Therefore, the required margin between C and Ig is provided only
by the satellite spacing. Since this is true for all adjacent service-
area pairs, the required satellite spacings are nearly the same. For
the receiving reference pattern in Figure 2.5 and a 30 dB single-entry
C/Io protection requirement, these As(1) values are approximately four
degrees, as can be seen from several cases in Table 4.2,

The aAs(1) values for two non-adjacent service areas are likely to
be smaller, and depend on their shapes, sizes and the separation between
them. This is evident from Equation (4.7) since Dg(yti) is likely to be
smaller numerically (also in dB) in this case compared to the adjacent
case. Heuristically, because of the service-area separation, the
interference power densities in these two service areas are likely to
have a deeper transmitting antenna discrimination loss relative to the
carrier power densities. Therefore, the system needs less receiving
antenna discrimination loss, Dq(ipi), to achieve the required C/Ip
ratio. This means that less satellite spacing, or a smaller as(1)

value, is needed. This is shown in several cases in Table 4.2,

D. RELATION BETWEEN SINGLE-ENTRY AND TOTAL ACCEPTABLE C/Io PROTECTION
REQUIREMENTS
In satellite communications, a scenario is evaluated by computing
an equivalent margin (see Equations (2.8) and (2.9)), which takes into
account all the interference, at all the test points. In Chapter II
Xhis was shown to be equivalent to comparing thé aggregate C/Ia values

with the total acceptable protection requirement., It is therefore
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essential that an assignment algorithm is based u1t1m§te1y on the total
acceptable protection requirement. However, it was also suggested in
WARC-77 that the single-entry protection requirement can be used as a
guide for determining sharing criteria; of course the total interference
from.a11 sources still must be calculated to evaluate the scenario fully
[87]. The extended-gradient and cyclic-coordinate search methods
discussed in Chapter III are based on the aggregate C/Ip. values. In
contrast, the methods in this chapter, using the AS concept, are based
on single-entry C/Iq prqtection requirements. Clearly such an approach
will be acceptable only if there exists some relationship between the
single-entry and aggregate C/1o values.

Although so far no such relationship has been established
rigorously, it is generally felt that the single-entry C/Io protection
requirement does not need to exceed the total acceptable requirement by
more than a few decibels. In order to ensure that a scenario made on
the basis of single-entry C/Io protection requirement would result in
acceptable aggregate C/Io values, WARC-77 suggested that the
single-entry C/Ig protection requirement be higher by 5 dB than the
total acceptable protectjon requirement [78]. Note that numerically 5
dB is equal to 3, this suggestion is therefore based on the assumption
that at the test point which has the worst aggregate C/Igo value the
aggregate interference will not exceed three times the strongest
single-entry interference. This assumption is supported by the
characteristics of the satellite transmitting and ground receiving

antenna reference patterns. Referring to Figures 2.4, 2.5 and Equation

107



(2.6), because these two reference patterns are highly directional,
among all the received single-entry interference powers only the few
that come from the main or near side-lobe of the transmitting reference
patterns and are received in the main or near side-lobe of the receiving
reference pattern are relatively strong; the others are generally weak
enough to be negligible. However, it is difficult to prove rigorously
that 5 dB extra protection requirement is absolutely enough to cover the
difference between the single-entry and aggregate C/Io values; hence the
aggregate C/Ia results must be calculated to evaluate the feasibility of
a scenario.

In the numerical examples in this chapter, 5 dB extra protection
was used for all service areas. In any case, the methods to be
described below do not depend on the validity of 5 dB, or any universal
number. If the final analysis by the streamlined SOUP program shows
more than 5 dB extra protection is needed for some service areas, then a
more appropriate value may be chosen to compute the as(1) values for an

improved synthesis.

E. PERMUTATIONAL ASPECT OF THE ORBITAL-ASSIGNMENT PROBLEM

With a data base of as(1) values for all the service area pairs,
conceptually the planning problem could be solved by choosing a proper
ordering or permutation of the satellites and completing the scenario

by locating every satellite in its feasible orbital range while making
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sure that the As(1) constraints are satisfied. As an example, consider
a four-service area case with the geographic relation as shown in Figure
4.4 with the objective of finding a scenario that uses the least orbit
resource, The satellites are denoted as Sp, S, S¢c and Sp. Assume that
the values of Asgce(1) and Asgp(1), the required satellite spacings for
the non-adjacent service areas, are constant and are two degrees:
similarly assume that the as(1) for all the adjacent service areas are
constant and are four degrees. A scenario that meets this objective
would be the ordering Sp-Sg-Sc-Sp with minimum required satellite
spacing because it requires only eight degrees of orbital arc.
Arrangements that do not include both the Sg-S¢ and Sg-Sp satellite
adjacencies would have to require at least a ten-degree arc. In this
example, with the objective of conserving orbit resource, the basic
concept is to have adjacent satellites serve non-adjacent service areas;
here it utilizes the service-area separation to reduce the need for
satellite spacing, and achieves the maximum orbit utilization suggested

in reference [16].
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Figure 4.4. Geographic location of four service areas.

110



In such a brute-force procedure, it is 1ikely that a feasible
solution can not be found for a particular ordering. It could be that
the available orbital arc for the task is used up before the allocation
of all the satellites has been completed. Then, another érdering has to
be tried.

Note that there are m! possible permutations for m satellites.

This number becomes astronomical when m is large. If the goal is to
find a scenario which is optimal by some criterion, theoretically all
the m! permutations have to be tested. Even if each test is simple and

fast, the overall workload is still enormous.
F. ORBITAL ASSIGNMENT OPTIMIZATION FORMULATIONS
1. 4s(1) Constraint and Objective Function

The orbital assignment problem can now be formulated as the
optimization of a yet unspecified objective function, subject to the
As(1) constraints on pairwise satellite spacings. The protection
requirements will be satisfied because of the constraints. Also, it is
highly desirable if the As(1) values are linear funcﬁions of the orbital
variables so that a simple optimization technique, e.g., linear
programming, can be used. This is apparently not true from Table 4.2
and Figure 4,3, Still, the As(1) values can be approximated by
piecewise linear functions, or the maximum value of As(1) within a given
orbital range, denoted as AS, can be used as a constant parameter in the
optimization formulation. The objective function is in principle

entirely arbitrary, but we shall restrict it to a linear function of the
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orbital locations since the whole purpose of this approach was to avoid
the computational complexity of nonlinear optimization.

The objective function used in the numerical examples below is the
sum of the absolute deviations of the assigned satellite positions from
an arbitrary prescribed set of such positions, an "ideal" set. Such an
"ideal" set might arise from requests of the user administrations.
Alfernative]y, it may be specified as a tool for the synthesis, e.g., if
the westernmost end of the available orbital arc is selected as the
"ideal" location for all satellites, the resulting scenario is likely to
allow the insertion of additional satellites at the eastern end at a
later time with a minimum of readjustment.

Other objective functions which have been proposed for minimization
are the length of the occupied orbital arc and the constant zero. The
latter simply seeks to find a solution which satisfies the As(1)

constraints.

2. Mixed-Integer and Restricted-Basis Linear Programming
Formulations

With the single-entry C/Io protection requirement enforced by the
As(1) constraints and a linear objective function, the problem can be
formulated as a mixed integer program (MIP) [88]. Either the piecewise
linear As functions or the constant AS parameters might be used to
formulate this program; in this chapter the constant AS parameters will
be used. The set of satellite locations which satisfy the AS

constraints and the feasible orbital range constraints constitutes the
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feasible region. When the problem is sofved via the branch-and-bound
algorithm, the globally optimal solution is guaranteed [88]. However,
the computational effort required to find this solution can be
prohibitively long when the problem size, i.e., the number of
satellites, is large.

To ease the burden on computational effort, the same problem can be
formulated as a Tinear program (LP) with a set of nonlinear side
constraints; only the constant AS parameters can be used to formulate
this program. A linear progrém is much more readily solvable than a
nonlinear program or an integer program, and is most often solved by the
simplex method [81]. However, in this problem, the nonlinear side
constraints prevent one from using the simplex method in its most common
form. The method can be modified to handle these nonlinear side
constraints through the use of restricted basis entry. In doing so, one
is certain to find a local, but not necessarily a global, optimum. The
computational effort required by the LP technique should be acceptable
when the problem size is large.

The MIP and the restricted-basis entry LP (RBLP) formulations are
given in Appendix E as formulated by Professor Cparles H. Reilly of the
Department of Industrial and Systems Engineering for both of the

non-trivial objective functions discussed above.
G. NUMERICAL EXAMPLES
1. Definition of the Problem
In this example, a model of six administrations in South America,

as shown in Figure 4.5, is usedilghey are Argentina (ARG), Bolivia



Figure 4,5. Geographic relation of six South American administrations.
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(BOL), Chile (CHL), Paraguay (PRG), Peru (PRU), and Uruguay (URG). The
feasible orbital ranges for all the administrations are taken to be from
80 to 110 degrees west. It is assumed that all satellites have the same
frequency assignments. The antenna reference patterns are from Figures
2.4 and 2.5. The optimization requirement is to minimize the sum of the
deviations of the actually assigned positions from the satellite
preferred locations. Three sets of satellite preferred locations are
considered, as listed in Table 4.4: 1in case 1, all the preferred
satellite locations are at the center of the feasible range; in case 2,
all the preferred satellite locations are at the western boundary; in
case 3, every administration has its preferred satellite location at a
longitude for which the azimuth angle of the satellite from the
adminigtration center is close to zero.

First, all the As(1) values must be calculated. They were
calculated using a 30 dB single-entry protection requirement; the
results are listed in Table 4.2. The AS values of the
six-administration problem, obtained from Table 4.2 by choosing the
maximum As(1) values over the feasible range 80 to 110 degrees, are
Tisted in Table 4.5. They are denoted as ASjj for satellite i and j in
Appendix E. Using the AS parameters instead of the approximate
piecewise Tinear As funqtions results in a conservative design (C/Ia
will tend to be larger), at the expense of possibly not using the orbit
resource with maximum efficiency; but the alternative, i.e., using the
As functions instead of the AS parameters as constraints, would
complicate the MIP formulations; note that the piecewisé linear
constraints can not be used in the RBLP formulation.
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Table 4.4

Satellite preferred locations of six

administrations

preferred ARG BOL CHL PRG  PRU
case 1 95 95 95 95 95
case 2 110 110 110 110 110
case 3 87.5 92.5 97.5 87.5 102.5

Table 4.5

AS parameters of six administrations

AS ARG BOL CHL PRG PRU URG

ARG * 4,17 4.19 4.32 1.41 4.14
BOL * 4,57 4,04 4.26 0.94
CHL * 2.00 3.94 1.59
PRG * 1,10 2,46
PRU *  0.37
URG *
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2. MIP and RBLP Results

The solutions of the MIP and RBLP fomulations for this objective
function, i.e., Formulations III and IV in Appendix E, are listed in
Table 4.6.together with the values of the total deviations, the océupied
orbital arcs and the computer run times in seconds. These data were
provided by Professor C. Reilly and Mr. D. Gonsalvez of the Department
of Industrial and Systems Engineering.

Because of the AS constraints, the solution is guaranteed to
satisfy the single-entry C/Io protection requirements; still the
aggregate C/Io values need to be checked. By assuming that the term
1/{fn2-[ﬁ[F(fn,fm)/fm2]} equals one in Equation (4.3), this becomes a
co-channel interference calculation. The aggregate C/Ia results of the
MIP solution of case 1'(which happens to be the most densely packed
solution), calculated from the streamlined SOUP code in Appendix A, are
listed in Appendix F. The results show that of the total 54 test
points, only three places in Chile, three places in Paraguay and one
place in Peru have aggregate C/Io values between 27 to 30 dB while all
the rest of the C/Ig values are above 30 dB. Note that the AS values
(Table 4.5) were.calculated from single-entry C/Ie brotection
requirement of 30 dB, with the objective of guaranteeing that the
aggregate C/Ia values be no less than 25 dB (see the discussion in
Section IV.D). Clearly this objective has been achieved; in fact, the
aggregate C/Io results are better than expected.

A likely reason for the aggreﬁate C/Ia values to be better than

expected is the following. First note that in this example every
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satellite
ARG
BOL
CHL
PRG
PRU
URG

deviation

arc

cpu(sec)™

* IBM-3081 computer

Table 4.6

case 1
MIP LP
88.68 105,74
99.57 101,57
95.00 97.00
93,00 95.00
91.06 93.06
96.59 92.54
18.42 23.71
10.89 13.20
25,23 1.31
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case 2
MIP LP
101.35 110.00
97.18 104,33
105.54 99.76
107.54  97.76
109.63 108.59
110.00 105.86
28.76  33.69
12,82 12.24
13.39 1.30

Mixed integer and linear program results

case 3

MIP LP
88.76 101.26
92,93 92,50
97.50 97.07
84.44 87.50
102.50 102.67
81.98 82.50

5.27 14.36
20,52 20.17

2.86 1.25



administration requires only one satellite. For a satellite and its
corresponding service area, usually only the first adjacent satellites
on both sides are close enough to produce éignificant interference, and
these satellites do not usually influence the same test point;
interference from far-away satellites are in general negligible because
the actual satellite spacings are much larger than the required minimal
spacings. This can be seen from the C/Io results in Appendix F: among
the seven test points with C/Io less than 30 dB,'on1y two receive two
strong and almost equal signal, i.e., the two in Chile with C/I5 of
27.52 dB and 28.37 dB, and none receive more than two., Therefore the 5
dB margin between single-entry and total acceptable protection
requirements is adequate for these sample problems; this confirms the

argument made in Section IV.D.

3. Comparison Between MIP and RBLP Techniques

Referring to Table 4.6, note that the total deviations in the MIP
solutions are smaller than those of the RBLP solutions. This is not
unexpected .since the MIP solution guarantees a global optimum with
respect to the objective function while the RBLP formulation does not.
On the other hand, the computer run times for the MIP formulation are
significantly longer, and they are known to increase more rapidly with
problem size than is the case with the RBLP formulation. As stated in
Section IV.F.2, the computer run time could be prohibitively long for
the MIP formulation when the problem size, i.e., the number of

satellites, is large. Therefore, the RBLP formulation becomes more
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attractive as a practical method of solving a real-world problem, The
MIP formulation is useful primarily for evaluating the performance of

the RBLP formulation on small problems.
4. Suggestions for Further Improvement

The C/Io ratios in Appendix F suggest that a uniform 5 dB margin
between the single-entry and total acceptable C/Io protection
requirements may result in over-protection. This raises the concern
that, for a limited orbit resource and a large number of requests, a
satisfactory scenario might never be found if the orbit resource barely
allows every service area to have only the threshold aggregate C/Ig
value,

When a feasible solution of the MIP or RBLP formulation does not
exist for a given set of AS constraints, the reason could be either that
the AS constraints are too high, or that there exists no solution that
could satisfy the total acceptable C/Io protection requirement. To find
out which, a progressive testing process could be used by gradually
decreasing the C/Io requirement level in the As(1) calculation, and
using these values in the MIP or RBLP calculation. Note that as the
single-entry C/Io requirement is gradually decreased, the first point at
which a feasible solution (feasible in terms of the AS requirements)
exists may be such that the total acceptable C/Ig requirement is not
satisfied at some test points. However, this does not mean that a
feasible solution (feasible in terms of total acceptable C/Ip

requirement) does not exist; this is because the margins between the
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single-entry and total acceptable C/Ig protection requirements may not
have to be the same for all satellite pairs. When this is the case it
is proposed that the gradient search method be used to fine-tune the
solution and improve those unacceptable aggregate C/lp values; this
approach is discussed below. If no solution is obtainable when the
as(1) values are calculated using the total acgeptab]e C/1g protection
requirement and the AS parameters are the minimum (over 1) of the aAs(1)
values, a feasible scenario definitely does not exist.

To demonstrate how the gradient search method can fix the worst
C/le terms, the resulting satellite locations of the MIP solution of
case 1 are laid out as shown. in Figure 4.6; here B is for satellite of
Bolivia, U of Urugﬁay, C of Chile, P of Paraguay, E of Peru, and A of
Argentina. Indicated in the figure are the actual spacings (above the
arrows) and the AS values (below the arrows) between a satellite and its
first and second adjacent satellites. The star (*) sign means that the
actual spacing is larger than the corresponding AS value. First note
that there is no star sign for the Chile satellite, while other
satellites have at least one star. This means that the spacings between
the Chile satellite and its first and second adjacent satellites are all
at their minimal required values. This may explain why the C/Io results
for Chile are worse than the others. Then note that this scenario may
be modified by moving the Peru satellite to the right (eastward) and
moving the Uruguay satellite to the left (westward) by a small amount.
Although this modification increases the sum of the absolute deviations

from the "ideal" locations, it also improves the C/Ig results for Chile

121



B u ¢ P E A

99.57 96.59 95 93 91.06 88.68
L 1 1 ! l 1 ! | || | l !
| ! I | l !
i 2.98 I 159 2 | 184 2.38 ,
! = — = |
| Asgy=1.09 lAsyc=159 | Ascp=2 : ASpg = 11 L Asg=tar
| ! I . | I
- | 4.57 | | 3.94 A I
N I€ i € ' >: I
I Asge = 4.57 | ASgp=3.94 |
! |
) 3.59 : 4.32 [
' >l
e * >He— '
| ASUP = 2.64 I ASPA': 4.32 i

(*: Actual separation larger than required separation.)

Figure 4.6. Satellite locations from mixed integer program result.



by increasing the satellite spacings for the Chile satellite; note that
the Peru and Uruguay satellites are its east and west adjacent
satellites. This demonstrates that the gradient search technique can be

used on the MIP or RBLP solution to improve the aggregate C/Ig results,

5. Possible Extensions of the Method

The AS concept has many flexibilities. It was demonstrated here
for elliptical séte]]ite antenna beams, but it can also be applied to
shaped beams if the shaped beam reference pattern is given. At present,
such a pattern is not available. Also, to use the As approach the
antenna reference patterns and the C/Ig protection requirement need not
be the same for all administrations. Such non-uniformity merely changes
the interference calculations, margin‘calculations, and the resulting |
4s(1) values, but the same optimization procedures are still applicable.

The formulations may be useful when new satellites need to be added
into an existing scenario in which the locations of existing satellites
can not be changed. The computational burden of either technique
depends greatly on the number of decision variables. For a task of
adding more satellites, all the information about the existing scenario
constitutes fixed parameters, and the only decision variables correspond
to the new satellites. Therefore, the problem size is small, and the
computational burden is reasonable.

This chapter has dealt only with the orbital assignment, not the
frequency assignment. This is useful for the case that every satellite

uses the full complement of the available spectral band. Still, the
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same procedure should work if there is an a priori frequency assignment
scenario; a considerable body of literature exists on such frequency
assignments [19,20,21,22]. The only modification is to use the proper
protection requirement value (by referring to the frequency assignments
and protection ratio) in the As(1) calculation; the planning process

will be exactly the same.

H. CONCLUSION AND RECOMMENDATION

In this chapter, two techniques are presented to solve the orbital
assignment problem. The MIP technique guarantees to find the globally
optimal solution, but may require prohibitively Tong computing time when
the problem size is large. Still it is very useful for testing other
methods on small problems and may be applicable when a few satellites
are added into an existing scenario. The RBLP technique guarantees to
find a locally, but not necessarily a globally optimal solution, but is
more practical in terms of the computational effort.

Two approximations are used in these methods. The first one
appears in the As(1) calculation; however, it is shown to be acceptable.
The second one is to use maximum As(1) values, AS, in the MIP and RBLP
formulations; this decreases the efficiency of orbit use, but probably
not seriously.

It is recommended that these methods be tried on larger scenarios,

and that the extensions given in Section IV.G.5 be investigatéd.
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CHAPTER V
A SERVICE-AREA SPECIFICATION PROCEDURE

A. INTRODUCTION

In the previous chapters the optimization of orbital and frequency
assignments was considered for communications satellites serving a given
set of service areas defined by political boundaries. Now, procedures
for choosing such service areas will be discussed in the fixed-satellite
service (FSS) context, with the objective of increasing the
communications capacity for all users. The need to study ways in which
the concept of service areas should be defined was brought up in CCIR
report 453-3 [89], and the study in this chapter is intended to give
insight to that concept. By means of an illustrative example it will be
shown that the considerations of traffic-demand density and of minimum
allowable spacing (oS, see Chapter IV) can serve as a basis for

designing service areas for this objective.

B. HISTORICAL PERSPECTIVE
1. Service Area Assignment

In the broadcasting-satellite service (BSS) planning, a satellite
service area is usually specified by the territories of an

administration, a subdivision of an administration, or (in some cases) a
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grouping of administrations [9,13]. Thus there appeared to be no need
for a procedure for defining service areas for the WARC-77 and RARC-83
deliberations,

The situation is quite different with respect to FSS. The FSS
satellites were initially used primarily for inter-administration
communications. International consortia operated such satellites, with
service areas chosen on the basis of demand (or market), technological
considerations, and the compo;ition of the consortium. The Intelsat
satellites are examples of this type of operation. More recently,
satellites have also been employed for intra-administration (Domsat)
communications, e.g., satellite communications in U.S., Canada and the
U.S.S.R. (if the latter is considered as a single entity; technically
the International Telecommunication Union (ITU) regards each separate
Soviet Republic as an administration) [90]. The simplest technology
leads to large service areas; e.g., the whole contiguous continental
U.S. (CONUS). While an experimental FSS satellite using regional and
switched spot beams is at the heart of the NASA Advanced Communications
Technology Satellite (ACTS) program [91], most civilian U.S. operational
and planned systemé are based on CONUS coverage. So in current
approaches to the orbital and frequency assignments for the FSS, the
idea of specifying service areas by the territories of the

administrations seems to be still prevalent.

’
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2. Insufficiency of Communications Supply from Limited Spectrum
and Orbit Resources '

As FSS planning proceeds, it has become clear that the
communications demand is very large [92,93]. As an example, the U.S.
fixed-service communications supply appears to be in great mismatch with
the demand [80,94]. The projected U.S. domestic FSS communications
demand in the year 2000, as estimated in a COMSAT Laboratory report, is
shown in Table 5.1, and is also shown as a "pie chart" in Figure 5.1
[94]; the total communications demand is equivalent to 2,474
transponders. '

By international agreement the total bandwidth of the 6/4 GHz
spectral band assigned to the FSS is 480 MHz [94,95] (note that at
present this is the only band in the planning stage). This band is
divided into 12 slots, each consisting of a freqdency channel 36 MHz
wide followed by a guard band of 4 MHz. Therefore, including the
' cross-polarization channels, there are 24 frequency channels in this
band [94,95]; this is shown in Figure 5.2. A typical U.S. FSS satellite
has 24 transponders transmitting the signals in these 24 channels,
Therefore the total estimated demand of 2,474 transponders implies a
need for 103 satellites to fulfill the demand with the 6/4 GHz band.

Because of interference between satellite systems, satellites must
be separated from each other to have proper protection [16,96,97]. For
the antenna technology available up to the year 1982, satellites with
CONUS beams for systems proposed at that time needed to be separated by
more than three degrees [98]. However, the amount of communications

capacity so provided in the 6/4 GHz band is far from enough to satisfy
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Table 5.1

U.S. NDomestic FSS Communications Demand in the Year 2000

US Domestic
TRAFFIC FORECAST SUMMARY - YEAR 2000

SERVICE TRAFFIC BM_EFFICIENCY | TRANSPONDERS (36 MH,)

TRUMKING
Voice 6816 x 103 Channels ' 120 Channels/MIl, 1578
Data 3348 Mbhits/s - 2.0 Mbits/Milz q1
Videoconf 7814 Channels 1.1 Channels/Hil; 203
cps” o 16
Voice 35 x 103 Chanpels 60 Channels/MH;
Data 25038 Mbits/s 1.5 Mbits/MH, _ 477
Videoconf 411 Channels 0.68 ChannelsiMHZ 17

BROADCAST VIDEO

Distribution 233 Channels 0.069 Channels/Mii; , 9?2
DBS 50 Channels . 0.028 Channels/Hil, __ 50
TOTAL 2474

* CPS : Customer Premises Service
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TRUNKING (1822)

Figure 5.1. Projected U.S. Domestic FSS coommunications demand for the
year 2000. CPS stands for Customer Premises Service. The
number in parentheses indicates number of transponders.
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the FSS demand [99]. In order to increase the communications supply,
the Federal Communication Commission (FCC) decided that the orbit
resource should be more efficiently utilized and announced in the year
1984 that future antenna technology should aliow two-degree spacing for
U.S. FSS satellites, and satellite orbital planning should be based on
two-degree spacing after the year 1987 (This also applies to the 14/12
GHz band) [80]. This will enable the U.S. to have about 25
geostationary satellites in the 6/4 GHz band. Clearly this still falls
far -short of the projected demand of 103 satellites!

Other spectral bands, e.g., the 14/12 GHz band, have been allocated
to the FSS [31]. This should help increase the U.S. FSS communications
supply. Still, it is apparent that the spectrum resource is limited,
and that the orbit resource should be more efficiently utilized in order

to maximally re-use the spectrum resource.

3. Relation Between Frequency Re-Use and Service-Area
Specification

The advantage of using narrow antenna beams to achieve frequency
re-use has been recognized for some time [89,100]. ‘Thus it was noted in
CCIR report 453-3 that it is necessary to study ways in which the
concept of coverage area should be defined [89]. Specifically, It.was
brought up in this report that under certain circumstances a satellite
may transmit separate information on the same frequencies twice, o; even
a greater number of times, using antennas serving different parts of the

world. This general idea has already found practical application with
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the Intelsat series of satellites; while Intelsat IV gate11ites used
global-coverage beams, Intelsat IV-A and V satellites employ
hemispherically restricted beams to allow frequency re-use [101,102].

In view of the scarcity of fhe spectrum/orbit resources relative to
demand, it becomes necessary to develop a method of specifying service
areas such that the advantages of the narrow-beam concept can be fully

utilized for efficient spectrum/orbit management.

C. SERVICE-AREA SPECIFICATION BY AS CONCEPT AND COMMUNICATIONS-DEMAND
DENSITY

1. Role of AS Concept in Service-Area Specification

In order to provide more traffic supply, the AS concept discussed
in Chapter IV suggests that the AS va]ués between satellite pairs should
be as small as possible so that more satellites can be allocated in the
orbit. As discussed in detail in Section IV.C, the margin between the
carrier power, C, ;nd the single-entry interference, I, comes mainly
from the transmitting and receiving antenna discrimination factors in
the interference power; the former comes from the separation between the
two service areas, the latter from the separation between the two
satellites. Also, as discussed in Section IV.C, for a given
single-entry C/I protection requirement, the larger the transmitting
discrimination loss, the less the receiving discrimination loss and thus
the less satellite separation is needed. For the special case when the

transmitting discrimination loss is enough for the protection
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requirement to be met, the satellites can be collocated, or equivalently
a satellite can have two beams serving two service areas simultaneously;
this is exactly what CCIR report 453-3 means by using the same frequency
band twice at one satellite [89].

Referring to Figure 2.4, the transmitting discrimination value
depends on two factors: the half-power beam width (HPBW) and the
off-axis angle. The value of HPBW depends on the size of the service
area: the smaller the service area, the smaller the value of HPBW, and
the narrower the beam; this is the narrow-beam idea stated in references
[89,100]. The off-axis angle depends on the service-area separation.
The combination of these two factors should be the key to the subject of
-service-area definition. If the system planner can control these two
factors to reduce the AS values between satellite pairs, more satellites
can be assigned in the orbit and larger communications supply can be )
provided. To achieve this purpose, basically the service areas should
be specified as small as possible, and their separations should be as

large as possible.

2. Role of Communications-Demand in Service-Area Specification

The simple demand/supply concept implies that the supply should be
where the demand is; hence the communications-demand density must also
be consulted in specifying service areas. There is precedent for using
communications traffic-demand density quantitatively in the technical

design of satellite systems. In time-division multiple access (TDMA)
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system design, a simple rule is: the areas with heavy communications
demand should be given more access to the communications system [103].
Similarly, service areas should specify regions with enough traffic
demand to justify having satellite access as an area. Hence information
about the communications traffic-demand density is an essential

prerequisite to a reasonable choice of service areas.

3. General Consideration

Hence, the AS concept and thé communications traffic-demand density
should both be considered when specifying service areas. It is apparent
that small and separated service areas allow the geostationary orbit to
be used more efficiently; on the other hand, potential demand increases
with the service-area size: a satellite which serves oﬁe metropolitan
area (e.g., Boston) has less potential demand than one which serves a
corresponding region (e.g., the Eastern U.S.) or the entire
administration or a grouping of administrations. There has to be a
compromise between these two factors. The overall rule is that the
selected service areas must have enough communications demand to justify
their own satellite beams,

There are, of course, other factors which need to be taken into
account in a practical plan. For example, multiple-beam satellites,
which may also be beam-switching, require more advanced technology and
are likely to be more expensive than single-beam ones.v Such economic
and perhaps other operational matters will not be considered here; only

the communications capacity will be addressed.
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D. APPLICATION OF SERVICE-AREA SPECIFICATION CONCEPT TO A LARGE
ADMINISTRATION OR GROUP OF ADMINISTRATIONS

1. General Description

The idea of service-area specification by the AS concept and
traffic-demand density may greatly benefit an administration, or a group
of administrations, that has a large territory, when most of the traffic
demand is between several small regions. When this idea is applied to
such a situation, it is proposed to serve such administration(s) with a
mixture of administration-coverage beams and regional beams. The
-administration-coverage beams are intended to serve primarily areas of
relatively low demand, while the majority of traffic demand from
high-demand regions would be carried on the regional beams. The
necessary separations between regional-beam satellites are usually
smaller than those of the administration-coverage satellites., Thus if,
instead of assigning the entire available orbital arc to
administration-coverage satellites, a part is used to accommodate
regional -beam satellites, then more satellites can be allocated in this
arc and more communications supply can be provided. |

Recall the scenario which has 25 CONUS beam satellites in the 6/4
GHz band with every satellite using the full spectral band (Section
V.B.2). At first Took it seems that this scheme uses the spectrum and
orbit resources to their full extent for Earth station antenna
technology which requires two-degree-kate1lite spacing., However, if

some of the service areas are changed from CONUS to smaller, separated
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regions, the AS values for their satellites will be smaller than two
degrees, hence some orbit resource becomes available to allocate more

satellites in the orbit.

2. Procedure of Service-Area Specification and Satellite
Assignment

When regional service areas are to be specified, first the
traffic-demand density should be considered. Because of the population
distribution or the commercial activities, usually there will exist some
regions of relatively small size and large traffic demand. ‘Often such
regions include several large cities relatively close to each other.
Such regions are good candidates for regional serviqe areas within the
administration(s). In selecting these service areas, three things
should be considered simultaneously: the areas should be of small size,
they should have large traffic demand, and the separations between these
service areas should be large,

After the regional service areaé have been selected tentatively,
the AS values between these service area pairs should be calculated by
the method described in Chapter IV. Note that service areas for which
the AS values are zero can be served by a single satellite; this is the
multiple-beam design described in CCIR report 453-3. Different from the
multiple-beam TDMA design, in this case the two beams can be active
simultaneously [104]. Also note that multiple-beam satellites can carry
both inter- and intra-regional communications.

A traffic-demand matrix can be formulated for these tentative
service areas. The elements in this matrix are traffic demand between
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the regions that can be carried by the regional-beam satellites: the
diagonal elements are the intra-regional taffic demand, the off-diagonal
elements are the inter-regional traffic demand. The latter are non-zero
‘only when the corresponding service areas can be served by multiple-beam
satellites. A complete demand matrix consists of the above-described
matrix plus one additional element: the traffic demand which cannot be
carried by regional satellites and must be carried by
administration-coverage satellites.

Examination of the AS and demand matrices may suggest a revision of
'the regional service areas., For example, if many of the AS value for a
particular region are large (e.g., approaching the AS value for
administration-coverage satellites), this may indicate the region is too
large, or too close to other regions, or both. On the other hand if
many of the demand matrix elements corresponding to a region are very
small, this may indicate the region is too small, or it is not a good
candidate to be a regional service area. Thus a good choice of regional
service areas becomes a compromise between achieving satisfactory AS
values and a satisfactory demand matrix, as will be evident from the
example below.

A scenario including both regional and administration-coverage
beams may, in principle, be constructed by any suitable method, e.g., by
extensions of the methods of Chapters III and IV. Here a scenario will
be generated by deassigning a series of administration-coverage
satellites and then.allocating regional-beam satellites in this vacated

orbital arc, consistent with the AS requibement. The number of
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administration-coverage satellites to be deassigned and the number of
regional beams to be assigned are determined by consulting the
traffic-demand matrix. This procedure has the advantage of being
compatible with a network of uniformly spaced administration-coverage
satellites; the new scenario might even evolve out of such a system., It
also has the advantage of demonstrating the important concepts without

the computational complexity of optimization.

3. Traffic Distribution Between Narrow- and Wide-Beam Systems

The traffic-demand problem is completely solved when the amount of
traffic-supply is enough, or more than enough, to meet the demand.
However, as stated earlier, the demand usually far exceeds the supply,
and usually the adoption of the regional-service area idea can only
improve, but not completely solve the demand/supply problem. Therefore,
an important task of the procedure is to make sure all the demands have
their proper share of the supply.

It will be assumed that the satellites serving the regional service
areas are dedicated satellites which are not designed to provide
administration-wide service. Therefore some satellites need to be
preserved to provide administration-wide communications service, even
though the traffic demand which can not be served on a regional basis
may be small, Many criteria could be used to decide the distribution of
satellite beams. It is known that, compared to a scenario with only
administration-coverage beams, there will be a larger communications

supply when the narrow-beam idea is implemented. Therefore, one
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criterion might be that all the demands have an equal percentage of
supply-increase, another criterion might be that the total
communications supply has the maximum amount of increase and no one
suffers any supply decrease. The latter is used to develop the scenario

in Section V.E,

E. NUMERICAL EXAMPLE
1. Description of Parameters

Since the only available detailed traffic-demand density data
available to the author is the projected long-distance telephone traffic
among major cities in the U,S., it will be used in an example to
numerically explore the advantage of the service area specification
~ concept. Because only the 6/4 GHz band is in the planning stage, this
example considers the communications capacity only for this band. Also,
only the down-link communications traffic regulation problem will be
conSidered; the up=-link problem can'be implemented similarly in the
up-1ink spectral -band.

0f the total projected FSS communications demand shown in Table
5.1, more than 63% consists of long-distance telephone voice traffic
[94]. The telephone voice demand will be taken as indicative of total
demand. This assumption is justified in part because only telephone
voice data is available to us, in part because it seems likely that the
geographical distribution of other communications will be similar to

that of telephone voice traffic, and in part because the objective here
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is only to demonstrate a method, not to design a system. More detailed
examination shows that a large portion of the voice long-distance
telephone demand comes from major cities (or metropolitan areas), and
there are 28 cities that share more than 75% of the voice Tong distance
telephone demand. The list of these 28 cities, and the projected long
distance voice telephone demand between them are shown in Table 5.2
[94]. The U.S. map in Figure 5.3 shows the locations of these 28 cities
with their communications rankings: the cities indicated by triple
circles are in the top 5 rankings, double circles are for rankings from
6 to 10, single circles for rankings from 11 to 15, and solid dots for
rankings from 15 and up.

In order to arrive at AS values and C/I ratios consistent with the
antenna pattens shown in Figures 2.4 and 2.5, the C/I results of two |
CONUS beam satellites with 2.5-degree spacing were calculated and are
listed in Table 5.3, and the worst single-entry C/I value is 25 dB.
This value will be used as the single-entry C/I protection requirement
for the U.S.; the total acceptable C/I protection requirement will then
be 20 dB if 5 dB extra protection is needed to compensate for mu1t1p1e
interference. It is not implied here that 2.5-degree spacing or a 20 dB
aggregate protection ratio is recommended. The purpose here is only to
arrive at a consistent set of parameters for demonstrating a

regional-coverage assignment procedure.
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Table 5.2

Long Distance Voice Telephone Demand Between Top 28 Cities in U.S. in the Year 2000

US DOMESTIC VOICE TRAFFIC

TRAFFIC MATRIX
EARTH STATION 10 EARTH STATION

~—

-

TOTAL TRAFFIC FOR US IN 2000 IS  6B146 CMAMNELS.
€S. MAME | MO.| MEW_YORK | LOS_ANGL | CHICAGO | SANM_FRAN | BOSTON ' | DETROIT | WASHINGT | CINCINNA [ PHILADEL | CLEVELND
1 2 3 4 5 6 7 8 9 10

t ] [} ] t t ; 4 ) [} -t + [}
NEW_YORK 1 e 928 837 654 643 593 593 582 544 517
LOS_ANGL 2 928 e 396 312 304 281 281 274 259 247
CHICAGO 3 837 396 ) 281 274 251 251 247 232 221
SAN_FRAR a 654 312 281 ® 213 198 198 194 183 1
BOSTON 5 643 304 274 213 @ 194 194 190 179 32
DETROIT 6 593 281 251 198 194 e 179 175 164 156
WASHINGT 7 593 281 251 198 194 179 0 175 164 156
CINCIHHA 8 582 274 247 194 190 175 175 o 160 152
PHILADEL 9 544 259 232 183 179 164 164 169 e 145
CLEVELND 10 517 247 221 1 1”71 156 156 152 145 ]
DALLAS " 434 205 183 145 141 129 129 126 118 114
AUAHE IM 12 384 183 164 129 126 14 14 114 187 99
ATLANIA 13 346 164 148 14 14 103 103 103 95 91
HOUSTON 14 312 148 133 103 1e3 95 95 91 a4 80
SYRACUSE 15 289 137 123 95 95 87 87 84 80 76
M1AMI- 16 274 129 18 91 91 84 84 80 76 72
S1_Louls 17 262 126 10 87 87 80 80 76 72 68
RALEIGH 18 251 18 107 84 80 76 76 72 68 65
TALPA 19 228 107 95 76 72 68 68 68 61 61
MINMEAPL | 20 217 103 91 72 68 65 65 65 57 57
SEATTLE 21 217 103 91 72 68 65 65 65 57 57
KANSAS_C | 22 194 91 B84 65 61 57 57 57 53 49
DENVER 23 183 84 76 61 57 53 53 53 49 46
MILWAUKE | 24 133 65 57 46 42 38 38 38 38 34
SAHN_ANTO | 25 122 57 53 42 38 38 38 34 34 33
PHOEN X 26 14 53 46 38 M M 34 kT 30 27
HEW_ORLE 27 114 53 46 38 34 34 34 30 30 27
SALT_LAK 26 76 M 3o 27 23 23 23 23 19 19

1 4 [] t t ] 4 i ] ] 1 — +

| 101aL | | 10041 | 5242 | 4744 | 3789 | 3696 | 3434 | 3434 | 3358 | 3158 | 3008 |
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Table 5.

TRAFFIC

2 (Continued)

MATREX

EARTI STATION TO EAREN STATIOH

TOTAL TRAFFIC FOR US IN 2000 IS 68146 CIANNELS.
) b §—— ] t ] § 5 - - ] t [}
€S. NAME | NO.{ DALLAS AHAME IM ATLAHTA HOUSTON SYRACUSE | MTAMI ST_LOUIS | RALEIGH TAMPA MINUEAPL
1] 12 13 1 15 16 17 18 19 20
b i [} ] ] ] L} ] ] [t | ] 1] —
HEW_YORK 1 4 384 346 32 289 2724 262 251 220 217
1.0S_ANGL 2 205 183 164 148 137 129 126 118 107 10)
CHICAGO 3 183 164 148 13) 122 18 . Ho 107 95 91
SAH_FRAN 4 145 129 114 103 95 91 87 B84 76 72
BNSTON 5 141 126 14 103 95 al a’ 80 72 68
DELTRDIT 6 129 114 10) 95 a7 84 a0 76 6B 65
WASHINGT 7 129 114 103 85 87 84 80 76 €8 65
CIHC INNA B 126 14 103 g1 84 8o 76 72 68 65
PUTLADEL 9 118 107 95 84 80 76 72 68 61 57
CLEVELND 10 1id 99 91 80 16 72 60 65 61 57
DALLAS 1" 0 B4 76 68 61 61 57 53 19 46
AHAHE 1M 12 84 o 68 61 53 53 19 49 42 42
ATLANIA 13 76 68 0 53 49 49 46 42 AL:] AL:]
HOUSTON 14 68 61 53 ] 46 42 42 34 3 M.
SYRACUSE 15 61 53 49, 46 o RJ;) 18 3 30 38
MIAM] 16 61 53 49 42 38 ] 34 34 30 30
ST_LOuUlS 1?7 517 49 46 42 38 3 0 34 30 27
RALEIGH 18 53 49 42 38 34 3 RY] e 27 v}
TAMPA 19 49 42 38 34 RT:] 3o 3o 27 ] 23
MINHEAPL 20 46 42 38 34 3o 30 27 27 23 )
SEATTLE 21 46 42 38 34 Jo 3o 27 27 2) 23
KANSAS_C 22 42 3a 34 30 27 27 23 23 23 19
DENVER 23 38 LY ] 30 27 27 23 23 23 19 19
M) LWAUKE 24 27 27 23 19 19 19 15 15 15 15
SAH_ANTO 25 27 23 19 19 15 15 15 15 1" 1"
PIHOENI X 26 23 19 19 15 15 15 15 1 1" 1]
HEW_ORLE 27 23 19 19 15 15 H 15 " 1" 1"
SALT_LAK 28 15 15 1 1" " 8 8 8 8 8
\ 4 i i 1 ) i b 4 ' \ \ +
|  ToTAL | | 2520 | 2252 | 2033 | 1832 | 1690 | 1622 | 1546 | 1468 | 1328 | 1274 |
4 [} ; ] ] J ] § : ] + ’ —-4
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Table 5.2 (Continued)

US DOMESTIC VOICE TRAFFIC

TRAFFIC MATRIX
€ARTIH STATION TO EARIH STAVIOH

TOTAL TRAFFIC FOR US IN 2000 IS 68146 CHAMNELS.

€S. NAME | MO.] SEATTLE | KANSAS_C | DEHVER MILWAUKE | SAN_ANTO | PHOENMIX | NEW_ORVE | SALT_LAK
21 22 23 . 24 25 26 27 28

' 4 ! ' 1 ¢ i \ i 1 '
NEW_YORK 1 217 194 183 133 122 14 14 76
LOS_ANGL 2 103 91 84 65 57 53 53 34
CHICACO 3 91 84 76 57 53 46 46 30
SAH_FRAN 4 72 65 61 46 42 38 38 27
BOSTON 5 68 61 57 42 38 34 M 23
DETROIT 6 65 57 53 38 38 34 3 23
WASHINGT ] 65 57 53 38 38 34 34 23
CINCIHHA 8 65 57 53 38 LY 30 3o 23
PHILADEL 9 57 53 49 38 34 30 30 19
CLEVELND 10 57 49 46 34 30 27 27 19
DALLAS 1) 46 42 a8 21 27 23 23 15
ANAHE IM 12 42 38 k7] 27 23 19 19 15
ATLANTA 13 38 34 30 23 19 19 19 "
HOUSTON 14 M Jo - 27 . 19 19 15 15 1
SYRACUSE 15 30 27 277 19 15 15 15 "
Ml AM] 16 30 27 23 19 15 15 15 8
si_Louls 17 27 23 23 15 15 15 15 8
RALEIGH 18 27 23 23 15 15 n 1 8
TAMPA 19 23 23 19 15 " " " 8
MINNEAPL | 20 23 19 19 15 1" 1 1 8
SEATTLE 21 0 19 19 15 1" 11 t 8
KANSAS_C | 22 19 e 15 " 1" 8 8 8
DENVER 2) 19 15 e 1" " 8 8 4
MILHAUKE | 24 15 " ' ) 8 8 8 4
SAH_AHIO | 25 " 1" " 8 0 -4 4 4
PHOFH DX 26 i 8 8 8 4 8 4 4
HEW_ORLE | 27 1" a a 8 4 4 e 4
SALT_LAK | 28 8 8 4 4 4 4 4 0

' | ] i ' 4 i i —- 1

| T0TAL | | 1274 | 1134 | 1054 | 788 | 709 | 641 | 641 | 436 |

i i ' ' i ' ‘ i } ' +
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Figure 5.3.
long-distance telephone demand in the year 2000.



Table 5.3
C/I Results of Two CONUS-beam satellites with
2.5-degree spacing

COUNTRY SATELLITE (LON.)  FREQUENCY (MHz)
usa -100.00 4000.00
usa -102.50 4000.00

TEST COUNTRY : USA SATELLITE : -100.00

TEST POINT INT. SAT. Cc/1 (dB)
LON. LAT.

T -69.20  47.40 usa -108.35
-66.90  44.80 usa -108.29
-69.90  41.50 uUsa -107.71
-81.80  24.40 Usa -108.44
-97.20  26.00 usa -107.61

-117.10  32.30 UsA -108.47
-124.20  40.40 usa -108.50
-122.80  49.00 usa -108.39
-95.10  49.40 UsA -107.22
TEST COUNTRY : USA SATELLITE : -102,50
TEST POINT INT. SAT. C/1 (dB)

LON. LAT. :

-69.20  47.40 Usa -108.35
-66.90  44.80 usa -108.30
-69.90  41.50 UsA -107.72
-81.80  24.40 UsA -108.41
-97.20  26.00 usa -107.60
-117.10  32.30 usa -108.51
-124.20  40.40 USsA -108.54
-122.80  49.00 usa -108.41
-95.10 49,40 USsA -107.19
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2. Specifying Four Service Areas According to AS Consideration and

Traffic-Demand Density

Referring to Figure 5.3 about the communications traffic-demand
density, four service areas that cover most of the top 28 cities may be
specified as shown in Figure 5.4, The first service area, called the
East region, covers the cities New York (1), Boston (5), Washington D.C.
(7), Philadelphia (9), and Raleigh (18). The second service area,
called North Central, covers Chicago (3), Detroit (6), Cincinnati (8)
and Cleveland (10). The third service area, called West, covers Los
Angeles (2), San Francisco (4) and Anaheim (12). The fourth service
area, called South Central, covers Dallas (11), Houston (14), San
Antonio (25) and New Orleans (27). These regional service areas were
obtained by trial and error as reasonable compromises between the AS
matrix and demand matrix requirements. Fer example, the traffic demand
for the North Central region could be increased by including Syracuse
(15), St. Louis (17), Minneapolis (20), Kansas City (22), and Milwaukee
(24); however, this would increase its size and reduce the separation
between regions, thus it would increase ASg Nc and ASyc,sc sufficiently
to prohibit sufficient frequency re-use. Even as it is, ASg yc turns
out too Targe to use multiple-beam design., Its size could be reduced by
eliminating Chicago (3) and Detroit (6) from this region, but then the
traffic-demand might be too low to justify having its own satellite
beams. This illustrates the compromise between AS and traffic demand

which must be the basis in specifying regional service areas.
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The AS matrix of the four service areas is shown jn Table 5.4: the
AS values between any two of the four service areas, except between East
and North Central, are zero. To demonstrate that a multiple-beam scheme
is feasible, the C/I ratio of a three-beam satellite serving East, West
and South Central is shown in Table 5.5, and the C/I ratio of a
three-beam satellite serving North Central, West and South Central is
shown in Table 5.6; in both cases, the worst aggregate C/I values are
larger than 25 dB. The AS value between East and North Central is 1.24
degrees, as indicated in Table 5.7; however, for numerical convenience
1.25-degree spacing will be used for the East and North Central
satellites.

With this AS matrix, there can be two classes of regional-beam
designs for satellites serving these four regions. In the first one the
service areas East, West and South Central, or any combination of these,
can use one multiple-beam satellite, In the second, the service areas
North Central, West, and South Central, or any combination of them, can
use one multiple-beam satellite. There are two overall restrictions:
satellites serving the East and North Central regions respectively need
to be separated by at least 1.25 degrees, and any two satellites that
serve the same service area must be separated by no less than 2.5
degrees. Aside from these restrictions, a scenario can have any
combination of the two regional-beam designs. For example, two adjacent
satellites that serve the Eegions East and North Central, respectively,

can a1§p serve the service areas West and/or South Cehtral.
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Table 5.4

AS matrix of four regions

AS East N. Central West S. Central

East 2.50 1.25 0 0
N. Central 2,50 -0 0

West 2.50 0
S. Central 2.50
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Table 5.5
C/1 Results of collocating satellites serving

East, West and South Central regions

REGION - SATELLITE (LON.) FREQUENCY (MHz)
EAS ~108.080 ARER .08
WES -100.90 : 4000 .00
SCR -100 .08 4088.08
TEST REGION : EAS SATELLITE : ~-1@0.80
TEST POINT © INT. SAT. C/I (dB) MARGIN (dB)
LON. LAT.
~74.82 48.72 WES £4.29
-74.42 48.72 SCR 34.25
-74.92 49.72 TOTAL 33.93 8.93
-71.87 42.35 WES 42.57
-71.87 42.35 SCR 34.43
-71.87 42.35 TOTAL 33.86 8.86
-77.82 38.90 WES 44.29
~-77.92 38.99 SCR 32.49
-77.82 38,99 TOTAL 32.21 7.21
-75.12 39.95 WES - 44.54
-75.12 39.95 SCR 33.980
-75.12 39.95 TOTAL 33.54 8.54
-78.65 35.78 WES ' 43.28
-78.65 35.78 SCR 28.91_
-78.65 35.78 TOTAL 28.76 3.786
TEST REGION : WES SATELLITE : -180.00
TEST POINT INT. SAT. <C/I (dB) MARGIN (dB}
-118.25 24.05 EAS 44.13
-118.25 34.05 SCR 32.33
-118.25 34.0% TOTAL : 32.6% 7.85
-122.40 37.82 EAS 43.56
-122.48 37.80 SCR 33.60
-122.48 37.89 TOTAL 33.37 . 8.37
-117.95 33.85 EAS 43.97
-117.95 33.85 SCR 32.92
-117.95 23.85 TOTAL 31.75 6.7%
TEST REGION : SCR SATELLITE : -18£.00
TEST POINT INT. SAT. C/I (dE) MARGIN (dB)
-%6.88 32.78 EAS 34.39
-96.880 32.78 WES 37.82
-cL.80 32.78 TOTAL 32.z22 7.82
-©8.582 29.47 EAS 35.71
-£3.62 29.47 WES 35.22
~98.52 29.47 TOTAL 32.45 7.45
-9g.12 29.97 EAS 28.14
-5@.12 29.97 WES 39.74
~9g.12 29.97 TOTAL 27.85 - 2.85
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Table 5.6
C/I results of collocating satellites serving

North Central, West and South Central regions

REGION SATELLITE (LON.) FREQUENCY (MHz)
WES -108.09 4008 .00
NCR -169.02 4900.50
SCR -19¢ .90 4908 .98
TEST REGION : WES SATELLITE : -102.08
TEST POINT INT. SAT. C/I (dB) MARGIN (dB)
LON. LAT. :
-118.25 34.05 NCR 43.46
-118.25 24.05 SCR 32.33
-118.25 34.95 TOTAL 32.00 7.88
-122.40 37.89 NCR 42.47
-122.49 37.89 SCR 33.39
-122.48 37.88 TOTAL 33.36 8.36
-117.95 33.85 NCR 43.23
-117.95 33.85  SCR '32.92 ’
-117.95 33.85 TOTAL 31.78 6.78
TEST REGION : NCR SATELLITE : -108.60
TEST POINT INT. SAT. C/I (dB) MARGIN (dB)
-87.63 41.88 WES 42.72
-87.63 41.88 SCR 39.48
-87.63 41.88 TOTAL 39.23 5.23
-81.68 41.58 WES 43.22
-81.68 41.50 SCR 31.89
-81.68 41.58 TOTAL 31.58 6.58
-83.95 42.33 WES 43.97
-23.05 42.33 SCR 32.84
-83.05 42.33 TOTAL 32.582 7.52
-84.52 39,18 WES 43.73
-84.52 29.19 SCR 29.55
-84,52 39,10 TOTAL 29.39 4.39
TEST REGION : SCR SATELLITE : -186.08
TEST POINT INT. SAT. C/I {(dB) MARGIN (dB)
-96.89 32.78 WES 37.82
-95.89 32.78 MCR 31.28
-96.80 32.78 TOTAL 37.09 5.09
-95,37 29.77 WES 38.87
-95.37 29.77 NCR 34.92
-¢5.237 29.77 TOTAL 32.7¢ 7.79
-98.52 29.47 WES 35.22
-98.52 29.47 NCR 34.37
-98.52 29.47 TOTAL 31.77 6.77
-90.12 29.97 WES 35.74
-9g.12 29.97 NCR 29.59
-99.12 29.97 TOTAL 29.11 4.11
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Table 5.7

As calculation for East and North Central regions

REGION SATELLITE (LON.) | FREQUENCY (MHz)
NCR ~72.00 AQRG .00
EST -70.88 AQEE .99
TEST REGION : NCR SATELLITE : =-705.0684
TEST POINT INT. SAT. C/1 (dB) MARGIN (dB)
LON. LAT.
-87.63 41.88 EST . 2B.66 3.66
-83.85 42.33 EST 14.71 -19.29
~84.52 39.19 EST 17.18 . ~7.98
-61.68 41.50 EST 8.59 -16.41
TEST REGION : EST SATELLITE : -792.0%

TEST POINT ~ INT. SAT. C/I (dB) MARGIN (dB)
-71.87 42.35 NCR 29.28 4.80
=75.12 39.958 NCR 22.11 ~2.89
-78.65 35.78 NCR 12.64 -12.36
~74.82 40.72 NCR 29.50 4.50
=74.02 49.72 NCR 25.50 4.50

WORST MARGIN IS ~-16.41 dB AT NCR ( -81.68, 41.5£)
REQUIRED SATELLITE SPACING : 1.24 AT -72.08 FOR C/1 25.9 dB
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The projected long-distance telephone demand matpix between the
major cities in these four areas is given in Table 65.8(a). When traffic
demand for a region or between regions is computed below, we shall
simply add matrix elements from Table 5.2. For instance, internal
demand for the West region would be the demand from L.A. to San
Francisco (2)-(4), San Francisco to L.A. (4)-(2), L.A. to Anaheim
(2)-(12), Anaheim to L.A. (12)-(2), San Francisco to Anaheim (4)-(12),
Anaheim to San Francisco (12)-(4). For demand from the West region to
the North Central region, one would add the matrix elements
corresponding to transmission from each of (2),(4),(12) to each of
(3),(6),(8),(10). To make these numbers more applicable to the
satellite planning task, they are converted to a corresponding number of
satellite beams in the fo]lowing way. From Figure 5.2, there are 24
frequency channels in the 6/4 GHz spectral band, and each channel is 36
MHz wide. Assuming that a high quality telephone channel occupies 8 KHz
bandwidth, one MHz bandwidfh can carry 120 telephone channels, and hence
a full spectral band can carry 103,680 telephone channels. The number
of satellite beams is therefore obtained from the number of telephone
channels by dividing by 103,680. Table 5.8(a) is re-stated as satellite
beam requirements in Table 5.8(b).

A complete requirement matrix, R, for the U.S. is shown in beam
units in Table 5.9. In this matrix, the inter- and intra-regional
communications demand of the four regions that can use the two
regional-beam designs are listed individually, the rest of the demand,
i.e., 73.15 beams, that must go through the CONUS-beam satellites is
listed in one category. Note that the inter-regional demand between
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Table 5.8
Telephone communications demand between major
cities in four regions

(a) In channel units

channels East N. Central West S. Central
East 558400 514000 | 400200 198700
N. Central 514000 240400 253300 124300
West 400200 253300 124800 97800
S. Central 198700 124300 97800 31200

(b) In beam units

beams East N. Central West S. Central

East 5.38 4.95 3.85 1.91
N. Central 4,95 2,31 2.44 1.19
West 3.85 2.44 1.20 0.94
S. Central 1,91 1.19 0.94 .0.30
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Table 5.9

Complete requirement matrix

beams East N. Central West S. Central CONUS

East  5.38 * 3.85 1.91

'N. Central  * 2.31 2.44 .19  73.15
West  3.85 2.44 1.20 0.94

S. Central 1,91 1.19 0.94 0.30
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East and North Central is included in the CONUS beam category because it

can not use any of the two regional-beam designs.

3. Improvement of traffic-supply matrix with service-area
specification

A supply matrix is used to express the traffic-supply arrangement;
each element in this matrix is the amount of traffic supply from one
region to another offered from a.scenario up to the maximum amount of
demand from the corresponding regions. |

If the communications demand is supported by 25 CONUS-beam
satellites, the average percentage of satisfaction, s, is

S

25/103
24.27% .

Assuming that each user in the continental U.S. has equal probability of
accessing to all satellites, then each user will have the same
percentage.of satisfaction and the corresponding supply matrix in beam
numbers is given by

S =s«R, (5.1)

which is shown in Table 5.10. This represents the total supply expected
from the all-CONUS system. While the origin and destination of traffic
by regions East, N. Central, S. Central and West are not particularly
meaningful with the all CONUS-beam design, the same partitioning as in
Table 5.9 has been retained in Table 5.10; this will prove convenient
when this scheme is compared to the multiple-beam designs to be

discussed.
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beams

East
N. Central

West

S. Central

Table 5.10

Supply matrix without regional-beam

East N. Central

1.305
*
0.934
0.463

satellites

*
0.560
0.592
0.289
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West
0.934
0.592
0.291
0.228

S. Central
0.463
0.289
0.228
0.073

CONUS

17.753



When implementing the two regional -beam designs, some of the 25
CONUS beam satellites must be preserved; the criterion here is to have
the maximum total increase of traffic supply and no loss for any
individual. The projected total demand is 163 beams. The requirement
matrix that can use the two_regiona1-béam designs, which is simply the
regionally served part of Table 5.9, is shown in Table 5.11; the
regional sub-total requirement is found to be 29.85 beams. Suppose
there are m CONUS satellites being replaced by the regional-beam
designs, If the taffic which can be' carried only by the CONUS beams
does not suffer any loss after implementing the regional-beam designs,
the number m must satisfy the requirement

(25-m)/(103-29.85) > (25/103).
The maximum value of m, denoted by M, is 7. Replacing M consecutive
CONUS satellites with regional-beam satellites will lead to the maximum
total increase of traffic supply. For a general case, the value of M is
calculated from

M = IFIX[n-(n/t) (t-r)], (5.2)

where the symbols are
IFIX : a function whose value is the largest integer equal
to or less than the argument,
n : number of satellites in a scenario before implementing
regional -beam designs,
t : total communications demand,
r : communications demand that is to be satisfied by the

regional -beam designs.
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beams

East
N. Central

West

S. Central

Table 5.11

Requirement matrix of four regions

East
5.38
*
3.85
1.91

N. Central
*
2.31
2.44
1.19
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West
3.85
2.44
1.20
0.94

S. Central
1.91
1.19
0.94
0.30

total

sub-total
11.14
5.9
8.43
4,34

29.85



Reference to the AS matrix in Table 5.4 shows the orbital arc that
accommodates seven CONUS-beam satellites can locate thirteen satellites
with 1.25-degree spacing. Of these thirteen satellites, there could be
maximally seven beams illuminating the region East since satellites
serving the same service area must be separated by no less than 2.5
degrees. Then, because of the AS restriction which does not allow
collocation of East and North Central beams, there can be at most six
beams illuminating North Central. (The reason that East has been
allotted more beams than North Central is that it has more demand.) The
maximum numbers of beams for West and South Central are both six. They
can not be seven because the beam arrangement should allow
inter-regional communications from East or North Central to West and
South Central; the choice of seven West beams would result in
beam-collocation of the East and West beams and no communications
between West and North Central. (If these statements do not seem clear,
the reader is encouraged to refer to Figure 5.5,.wh1ch shows the
sequence of the thirteen regional-beam satellites, and to experiment
with other arrangements, keeping in mind both restrictions and
regional-beam designs discussed in Section V.E.2.) With these beam
assignments, the supply of regional beams to these four regions is
listed in Table 5.12,

With these beams, the percentages of satisfaction for the four
regions are listed in Table 5.13; the corresponding supply matrix,
obtained by multiplying elements of each row with the respective

percentage of satisfaction, is shown in Table 5.14(a). It is assumed
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Table 5.12

Supply of regional beams to four regions

region beams
East 7
N. Central 6
West 6
S. Central 6
total 25
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Table 5.13
Percentage of satisfaction of demand by

means of regional beams

region p. 0. S.
East 7/11.14 = 0.6283
N. Central 1
West 6/8.43 = 0.7117
S. Central 1

162



that the satellite traffic is likely to be symmetrical, hence this
matrix needs to be symmetrized. The adjustment shou]d.be dominated by
the first row because the demand from/to East is the largest and the
rate of successful connection depends therefore most strongly on the
availability of the channels to the East. The first step is to
symmetrize the first column and row, and the matrix should become as
shown in Table 5.14(b). Next, the adjustment should be dominated by the
third row because the communications from/to West is the second largest.
Note that since the value of its first element has been decreased in
step one, the available communications supply to the other three
elements will increase. The total demand represented by the last three
e1ements in row three can be seen fbom Table 5.9 to be 4,58 beam units,
The beam supply corresponding to these elements are the six beams
allotted to the West region (see Table 5.12) minus the 2.419 beam units
assigned to the first element of row three in Table 5.14(b), or 3.581
beams. The percentage of satisfaction is therefore 2.419/3.581, or
0.7818, which means the matrix is adjusted as shown in Table 5714(c).
This adjustment procedure continues, but is less complicated for the
remaining two rows because the amount of beam supply for North Central
and $outh Central is larger than the demand. The adjustment is
completed by satisfying the demand, i.e., inserting the corresponding
elements from Table 5.11, and the final result is shown in Table
5.14(d). At this point it should be recalled that the design began by
converting seven of 25 satellites to regional-beam use, see discussion

above Equation (5.2); thus 18 remain for CONUS coverage. For a clear
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Table 5.14
Supply matrix adjustment
(a) Step one

beams East N. Central West S, Central

East 3.380 * 2.419 1.200
N. Central * 2.310 2.440 1.190
West 2,740 1.736 0.854 0.669
S. Central 1.910 1.190 0.940 0. 300

(b) Step two

beams East N, Central West S. Central
East 3.380 * 2.419 1.200
N. Central *
West 2,419
S. Central 1.200
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beams East

East 3.380
Central *

2.419

West

Central 1.200
beams East
East 3.380
Central *
West 2.419
Central 1.200

(c) Step three

N. Central West
* 2.419

1.908

1.908 0.938
0.735

(d) Final step

N. Central West
-k 2.419
2.310 1.908
1.908 0.938
1.190 0.735
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S. Central
1.200

0.735

S. Central
1.200
1.190
0.735
0.300

sub-total
7
5.408

3.425



comparison of how the regional-beam designs increase the communications
supply, the supply matrix without these regional-beam designs (as shown
in Table 5.10) is re-listed in Table 5.15, and the supply matrix with
regional -beam designs is given in Table 5.16. It is obvious that the
design has accomplished its objective: increasing the communications
supply (i.e., satellite availability) to the four regions while
decreasing it for no user.

One possible beam arrangement that could provide the number of
beams listed in Table 5.12 is shown in Figure 5.5. One possible
communications traffic distribution that could provide the supply matrix
as shown in Table 5.14(d) is shown in Figure 5.6, and is derived as
follows. First, one should saturate the capacity of the one-beam
satellites with intra-regional traffic supply, as in satellites S2, S7,
and Sy2. Then one should try to saturate the capacity of the two-beam
satellites with inter-regional traffic supply, as in S3, S4, S5, Sgs S8»
Sg, S10s and S31; because of the Timited supply given in Table 5.14(d),
S, Sg, and ég are not fully used by inter-regional traffic, and the
remaining capacity in each is assigned to intra-regional traffic. The
traffic of the three-beam satellites are then distributed to fulfill the
remaining traffic supply quota in Table 5.14(d). Also note that as
shown in Figure 5.6, additional intra-regional beams are available for
North Central and South Central. Comparison of the supply matrix in
Table 5.16, which is implemented by Figure 5.6, with the requirements in
Table 5.9 show that -this situation can be viewed as more than 100%

satisfaction of the demand for these regions.
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Table 5.15

Supply matrix without regional beams

beams East
East 1.305

N. Central *
West 0.934
S. Central 0.463

N. Central West
* 0.934
0.560 0.592
0.592 0.291
0.289 0.228
Table 5.16

S. Centra]
0.463
0.289
0.228
0.073

Supply matrix with regional beams

beams East
East 3.380

N. Central *
West 2,419
S. Central 1.200

N. Central
*
2.310
1.908
1.190
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West
2.419
1.908
0.938
0.735

S. Central
1.200
1.190
0.735
0.300

CONUS

17.753

rest
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4. Discussion of Numerical Example

The above example was formulated by observing the communications-
demand density on a map and selecting service areas intuitively
according to the following criteria: the communications demand within
and between the service areas should be high, the service areas should
be small, and the distance between these service areas should be large.
To some extent these criteria conflict, and a compromise was necessary.
Although the service areas were specified intuitively, there should be
ways to automate this process. The ultimate criterion for the choice of
service area specification is that it should result in the maximum
communications supply. Intermediate criteria in terms of the AS and
demand matrix elements would be useful if they can be developed.

It was fortunate that the required spacing between the East and
North Central satellites tubned out slightly-less than half the value
for CONUS-beam satellites; this made the satellite "conversion" from
CONUS to regional-beam particularly simple and straightforward. For
other choices of service areas, the AS matrix will be different, so will
the beam arrangement and the Eesu1t1ng communications supply. Still the
principle is the same: smaller AS values means more satellites. It is
hoped that this example will provide insight for generating more general
and-automated procedures.

The concept of replacing administration-coverage satellites with
regional-beam ones may have great practical merit. At present,
satellite planning work may take place many years before the actual

satellite implantation., It is very difficult to make a plan that can
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cope with the technologies available twenty years later; therefore, a
good plan should be flexible so that the administrations will not be
tied to old technologies. For example, if CONUS-beam designs are used
in the U.S. planning process with the option of "converting" some to
multiple-beam designs later, higher information capacity can be obtained
within the framework of an existing scenario, i.e., without changes in
the remaining satellites. Therefore, from the viewpoint of flexibility,
the multiple-beam replacement option should be attractive as a component

of the U.S. planning,

F. DISCUSSION AND CONCLUSION

It was suggested that service areas of the FSS system should be
specified according to the communications traffic-demand density in
conjunction with the AS concept, because this could enable the system
planner to specify more satellites and provide more communications
supply. When applying this concept to specify satellites for
administration(s) which has heavy traffic between several small and
separated regions, it was shown that a mixture of administration
coverage and intra-administration regional coverage can increase the
communications capacity compared with only administration coverage. A
numerical example was used to illustrate the design procedure for
replacing several of a series of uniformly spaced administration-
coverage satellites with regional-beam ones. It was shown that a
substantial communications capacity increase could be obtained for many

users without decreasing the capacity for any user. The procedure was
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intuitive in part, and it is recommended that techniqpes for formalizing
and automating it be investigated.

The regional service-area concept in this chapter is closely
related to the AS concept in Chapter IV, In Chapter IV, the
specification of service areas is given and fixed and the focus of the
study’is allocating satellite locations in the orbit. The foéus in
Chapter V is the specification of service areas. It is found that
consideration of AS and traffic demand leads to useful techniques for
this specification.

An important advantage in specffying smaller (i.e., regional as
opposed to administration-coverage) service areas in the case of
geographically large administrations is the reduction of interference to
other communications systems. A smaller service area means a smaller
beam, and hence a faster drop of the field strength away from the
service area. Thus, the use of regional service areas can give better
interference protection to other service areas, not only within but also
outside the same administration,

In this chapter,the inter-satellite service (ISS) was not
considered. The adoption of the ISS might affect this study

significantly.
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CHAPTER VI
CONCLUSION

The purpose of this study has been to explore orbit and frequency
assignment methods with which the spectrum/orbit resources can be
efficiently utilized for satellite communications.

In Chapter III, the mathematical nature of the orbital/frequency
assignment problem is investigated by analyzing an objective function
used by the extendéd-gradient and cyclic-coordinate search techniques.
It is shown that the permutation of the orbital/frequency assignments is
an important part of the problem. This indicates that a necessary
condition for a technique to be able to find the globally optimal
scenario is that it should to be able to deal with both the signal
quality requirement and the permutation problem. It is also shown that,
at least when the frequency variables are fixed, for a given orbital
permutation this objective function is likely to have only one local
minimum. This suggests that a sufficient condition to obtain the
globally optimal solution by a extended gradient search method is that
it should terminate as the ordinary gradient search procedure with the
optimal permutation in orbital and frequency assignments.

In Chapter IV, a technique for obtaining the optimal orbital
assignments is presented. The idea is to convert the signal quality
requirement to minimum satellite spacing requirements and use them as

constraints on the relative satellite locations. With a set of these
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constraints, the assignment problem can be formulated as a mixed integer
program (1ntéger programming is often used to solve a‘permutation
problem) and solved by the branch-and-bound method. The globally
optimal solution is guaranteed; however, the required computational time
may be prohibitively long when the problem size (number of satellites to
be assigned) is large. To overcome this difficulty, the same problem is
formulated as a linear program and solved by a version of the simplex
method with restricted basis entry; only a locally optimal solution is
guaranteed, but the method is more practical in terms of computational
effort., The solutions of both programs are guaranteed to have
satisfactory single-entry C/la (carrier-to-effective interference ratio)
results,

In Chapter V, a basis of specifying service areas for the FSS
system is proposed. It is suggested that while some satellites should
cover large territories, some satellites should cover smaller regions
where the communications demands are high. Smaller and separated
service areas require smaller necessary satellite spacings, thus more
satellites can be allocated in the orbit and higher communications
supply can be obtained. The method involves simultaneous consideration
of a requirement matrix and the AS matrix for the proposed regions. A
numerical example, in which projected voice telephone demand is used for

the requirement matrix, demonstrates the validity of this approach.
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APPENDIX A

STREAMLINED SOUP CODE

C*#** 5> MAIN FROGRAM <<

c THIS IS A MINI SOUP PROGRAM
L T r e e e T e R A L E Lt R e DA Al Al iid

c
IMPLICIT INTEGER*4(I-N) ,REAL*8(A-E,0-2)

CHARACTER*§ NAMESA

OCOMMON /CONSTS/ E,PI,RADIAN, DEGREE,GCR,ER, ERDB, EAP,
1 PFD,ALOGE, ALN10 ,COIMIN, COISING

COMMON /PARAMS/ NUMSAR,NAMESA(10,2) ,NTPSA(10) ,CPHIO(10)
COMHON / VECTOR/ DSLON(10) ,RSLON (10) /%0 (10) Y0 (10)
ROAIRI
2 XOAC(10) ,YOAC(10) ,Z0AC (10) , ROAC(10)

COMMON /VARBLS/ FREQ(10) ,IPOLAR(10) ,GAINR(10) ,GAINT(10) ,
1l EIRP(10) ,IPINST (10) ,IPTNER(10)

COMMON /MINELL/ BCLAT(10) ,BCLON(10) ,DBCLAT(10) ,DBCLON(10) ,
1 REFLAT (10) ,REFLON(10) ,AXR(10) ,
1 ORIENT(10) ,AXMAJ (10)

COMMON /TPOINT/ RELON(10,20) ,RELAT(10,20) ,DELON(10,20),
1 DELAT(10'20),XB(10'20),YE(IO,ZO),ZE(IO'ZO)

COMMON /ANGLES/ YPHIT,YPRIR,PHITK,YPHIO

COMMON /REAL/  PIRJ, PRRJ, PWFQM, PHDRCK, YPWDRC, YPWDRX,
1 XOAKRJT , YOARKT , ZOAKKT , RORKRRT

c
L T L N e et 2
C ' )

OPEN (UNIT=20,FILEs’INPUTO.DAT' ,TXPEs'OLD')

OPEN (UNIT=6,FILE=‘NASAP.DAT' ,TYPE='NEW')

c
CALL ICONST
CALL INPUTO
c
c ASSUME POWER DENSITIES AT ALL BEAM AIM POINTS ARE CONSTANT
c )
DO 2 K = 1,NUMSAR
CALL GAINER(K)
EIRP(K) = PFD+10.*DLOGLO(4.*PI*ROAC (K)*ROAC(K))~ERDB
2 CONTINUE
c
CALL ZFUNCT
c
sTOP
END
c

SUBROUTINE ZFUNCT

c
C*** 5> THIS ROUTINE IS THE OVERALL CONTROL ROUTINE AT EACH <<
C*** >> STEP IN THE LINE SEARCE PROCEDURE <<

c't**il KRR R AR SRR R A RN R AN R AR R AR AR N R R RN RN ARAANRANN RN RN RN NSNS AR h b dd

c
IMPLICIT INTEGER*4(I-N) ,REAL*8(A-H,0~2)
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1

1
2
1

1
1

1

1

CHARACTER*6 NAMESA

COMMON /CONSTS/ E, PI,RADIAN,DEGREE,GCR, ER, ERDB, EAP,

COMMON /PARAMS/
COMMON /VECTOR/
COMMON /VARBLS/

COMMON /MINELL/

COMMON /TPOINT/

COMMON /ANGLES/
COMMON /REAL/

PFD, ALOGE, ALN10,COIMIN, COISING
NUMSAR, NAMESA(10,2) ,NTPSA(10) ,CPHIO (10)
DSLON(10) ,RSLON(10) ,X0(10) ,YO(10) ,
ROAIRJ,

XOAC(10) ,YOAC(10) ,Z0AC(10) ,ROAC(10)

FREQ(10) ,IPOLAR (10) ,GAINR(10) ,GAINT(10),
EIRP(10) ,IPDNST (10) ,IPTNER(10)

BCLAT(10) ,BCLON(10) ,DBCLAT (10) ,DBCLON(10) ,
REFLAT (10) ,REFLON (10) ,AXR(10) ,
ORIENT (10) ,AXMAJ (10)

RELON(10,20) ,RELAT(10,20) ,DELON(10,20) ,
DELAT(10,20) ,XE (10,20) ,YE(10,20) ,ZE(10,20)

YPHIT, YPHIR, PHITK, YPHIO

PIRJ, PKKJ, PWFQM, PWDRCK, YPWDRC, YPWDRX,
XOAKKJ , YOARKRJ , ZOAKKJ , ROAKKJ

C
c************t***********t*****t***********************i*************

c
Chxx

C

10

Caxx

c
Chuk

Chik

>> INITIALIZE PARAMETER

DO 10 I=1,NUMSAR

CALL REFCAL(I)

CONTINUE
>> OUTER SUMMATION (OVER K) FOR ALL SERVICE AREAS <<

DO 1000 K = 1,NUMSAR

JNTP = NTPSA(K)
WRITE (6 ,705) NAMESA(K,1) ,DSLON(K)

>> MIDDLE SUMMATION (OVER J) FOR ALL TEST POINTS IN AREA K <<

>>

DO 900
CALL
CALL
CALL
CALL
CALL

J = 1,JNTP

RPHI (K,J)

XPHIO (K,K,J)

KPWDRC (K,J)

XPWFQ (FREQ(K) ,FREQ(K))
XPOWER (K,K,J)

CALCULATE INTERFERENCE POWER

SUMP=0.
DO 500

I= 1'NUHSAR

IF (I.EQ.K) GO TO 500

CALL ZPHI (I,K,J)

CALL XPHIO (I,K,J)

IF (IPOLAR(I).EQ.IPOLAR(K)) THEN

CALL 2PWDRC (I,K,J)
ELSE
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500

C
900

CALL ZPWDRX (I,K,J)
END IF
CALL XPWFQ (FREQ(K) ,FREQ(I))
CALL XPOWER (I,K,J)
COI = PEKRJ-PIKJ
DMGN = COI - COISING

WRITE (6 ,706) DELON (K, J) ,DELAT (K, J) ,NAMESA(I,1) ,PIKJ,COI,DMGN
IF (PIKJ .LT. -700.) PIKJ = -700.

TENl = 10. ** (PIKJ/10.)
SUMP = SUMP + TEN1
CONTINUE

IF(NUMSAR.NE,2) THEN

SUMPDB = 10.*DLOG10 (SUMP)

COIT = PKRJ-SUMPDB

TDMGN = COIT-COIMIN

WRITE (6,708) DELON(K,J) ,DELAT (K,J) ,SUMPDB, COIT, TDMGN
END IF

CONTINUE

1000 CONTINUE
705 FORMAT(//,12X,'TEST COUNTIRY :',A6,5X,"SATELLITE :',F8.2,//,15X,

C

706
708
Cc

c
Cakk

1'TEST POINT',10X,*INT. SAT.',2X,'INT. FWR',3X,'C/I (dB)',
25X, 'MARGIN')
FORMAT (15X, F7.2,2X,F7.2,5X,26 ,4X,F8.2,4X,F6.2,6X,F6.2)
FORMAT (13X,2(2X,F7.2) ,6X,'TOTAL' ,4X,F8.2,4X,F6.2,6X,F6.2,/)
RETURN
END

SUBROUTINE ICONST
>> THIS ROUTINE INPUTS CONSTANTS THAT ARE USED IN THE PROGRAM <<

C
c************i***********i*******************t*****************i****

IMPLICIT INTEGER*4(I-N) ,REAL¥*8(A-H,0-2)
COMMON /CONSTS/ E,PI,RADIAN,DEGREE,GCR,ER, ERDB,EAP,

PFD, ALOGE, ALN10,COIMIN, COISING

C
CRAR AT AR AU AR R AR AR R AR AR AR R AR AR AR AR R AR AR AR AN KRR AR R EARRRRRARRRANREK

C

E = 2,7182818285

PI = 3.1415926536
RADIAN = PI / 180.0
"DEGREE = 180.0 / PI
GCR = 6.6134

= 6.371E+06

ALOGE = 0.4342944819
ALN10 = 2.3025850930
ERDB = -~20.0 * DLOGlO(ER)
PFD = -90. ‘

EAP = 0.6

RETURN
END
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C

C
Cork

ChRk
Chkn
Ch¥*
Chwn
Cwnn

SUBROUTINE INPUTO

>> THIS ROUTINE INPUTS <X
>> = SERVICE AREA DATA <<
>> - INITIAL SATELLITE LOCATIONS <<
>> = INITIAL FREQUENCY ASSIGNMENTS <<
>> = INITIAL POLARISATIONS 149

>>

ANTENNA PATTERN TYPE

C
C*i**ti**tttt**********t**********ti****************t***************

C
C
Cc

C

C

1

2

1

1
1

1

IMPLICIT INTEGER*4(I-N),REAL*8(A-H,0~2)
CHARACTER*6 NAMESA

COMMON /CONSTS/

COMMON /PARAMS/
COMMON /VECTOR/
1

COMMON /VARBLS/

COMMON /MINELL/

COMMON /TPOINT/

E, PI, RADIAN, DEGREE, GCR, ER, ERDB, EAP,
PFD, ALOGE, ALN10,COIMIN, COISING

NUMSAR, NAMESA (10,2) ,NTPSA(10) ,CPHIO0(10)

DSLON(10) ,RSLON(10) ,X0(10) ,¥0(10),

ROAIKJT,
X0aC(10) ,YOAC(10) ,Z0AC(10) ,ROAC(10)

FREQ(10) ,IPOLAR(10) ,GAINR(10) ,GAINT(10) ,
EIRP(10) ,IPTNST(10) ,IPTNER(10)

BCLAT(10) ,BCLON(10) ,DBCLAT(10) ,DBCLON(10),
REFLAT (10) ,REFLON(10) ,AXR(10) ,
ORIENT (10) ,AXMAJ (10)

RELON(10,20) ,RELAT(10,20) ,DELON(10,20) ,
DELAT(10,20) ,XE(10,20) ,YE (10,20) ,2E(10,20)

CRAARARKAARRNR R AN AANAR AN AR R A AR R AR AR AR AR A AR AR R hhh kR kR ARk kb kkkhdkhkk

Caxs
c

12
C

>> INPUT DATA FOR SATELLITE, BEAM, EARTH STATION CHARACTERISTICS

READ(20,*) COISING
COIMIN = COISING = 5.

READ(20,%*) NUMSAR

DO 10 N = 1,NUMSAR .
READ(20,801) (NAMESA(N,I),I=1,2)
READ (20 ,*)DSLON(N) ,FREQ (N) - IPOLAR (N) , IPTNST (N) , IPTNER(N)
READ(20,*) DBCLON(N) ,DBCLAT (N} ,ORIENT (N) ,AXMAJ (N) ,AXMIN
READ(20,*) NTP

DO 12 Nl=),NTP
READ(20 ,*)DELON (N, N1) ,DELAT (N, N1)

RELON(N,N1) = DELON(N, Nl1) *RADIAN
RELAT(N,N1) = DELAT(N,Nl) *RADIAN

CONTINUE

NTPSA(N) = NTP

FREQ(N) = FREQ(N) * 1000.
RSLON(N) = DSLON(N) * RADIAN
AXR(N) = AXMAJ(N) /AXMIN
ORIENT(N) = ORIENT(N) *RADIAN
AXMAJ (N) = AXMAJ(N) *RADIAN
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C

10
C
Chkn
C

20

801
901

902

Chas

30

(o]

O 0000 0

BCLON(N) = DBCLON (N) *RADIAN
BCLAT (N) = DBCLAT (N) *RADIAN

CONTINUE
>> REFLECT INPUT DATA <<

WRITE (6,901)
DO 20 N = ), NUMSAR
WRITE (6,902) NAMESA(N,1) ,DSLON(N),
$ FREQ(N) , IPOLAR (N) , IPTNST (N) , XIPTNER(N)
CONTINUE

FORMAT (226)

FORMAT (//12X, ' COUNTRY' ,5X, ' SATELLITE' ,5X, ' FREQUENCY' ,3X,
§ 'POLAR. ' ,3X, 'PIN(ST) ' ,3X, ' PIN(ER) ',/)

PORMAT (13X, A6 ,5X,F9.2,5X,F9.2,5X,12,7X,12,8X,I2)

>> SET UP THE VECTIORS FOR THE TEST POINTS <<
DO 30 K = 1,NUMSAR

X0I = DCOS(RSLON(K))
YOI = DSIN(RSLON(K))
X0 (K) = X0I
YO(R) = YOI

BCLT = BCLAT(K)

BCLN = BCLON(K)

COSBLT = DCOS(BCLT)
CXE = COSBLT*DCOS (BCLN)
CYE = COSBLT*DS IN(BCLN)
CZE = DSIN(BCLT)

XOACI = CXE-GCR*XOI

YOACI = CYE~GCR*YOI

ZO0AC(K) = CZE

ROACI = DSQRT(XOACI*XOACI + YOACI*YOACI + CZE*CZE)

XOAC(K) = XOACI
YOAC(K) = YOACI
ROAC(K) = ROACI

DO 30 J = 1,NTPSA(K)
COSLAT = DCOS (RELAT (K,J))
XE(K,J) = COSLAT * DCOS(RELON(K,J))
YE(K,J) = COSLAT * DSIN(RELON(K,J))
2E(K,J) = DSIN(RELAT(K,J))
CONTINUE

RETURN
END

SUBROUTINE GAINER(K)

THIS IS TO CALCULATE EARTH RECEIVER GAIN FROM ANTENNA
DIAMETER, AND TRANSMITTER GAIN FROM HFPBW.

IMPLICIT INTEGER*4(I-N) ,REAL*8(A-H,0-2)

179



anon

anon

(eXele

Qanon

10

20

30

40

[eXe X

50

1

1

1
1

CHARACTER*6 NAMESA

COMMON /CONSTS/ E,PI,RADIAN,DEGREE,GCR,ER, ERDB, EAP,
PFD, ALOGE, ALN10 ,COIMIN, COISING

COMMON /VARBLS/ FREQ(10) ,IPOLAR(10) ,GAINR(10) ,GAINT(10),
EIRP(10) ,IPTNST(10) , IPTNER(10)

COMMON /PARAMS/ NUMSAR,NAMESA(10,2) ,NTPSA(10) ,CPHIO(10)

COMMON /MINELL/ BCLAT(10) ,BCLON(10),DBCLAT(10) ,DBCLON(10),
REFLAT (10) ,REFLON(10) ,AXR(10) ,
ORIENT(10) ,AXMAJ (10)

X0 = 223./180. .
Go 170 (10,20,30,40,50) ,IPTNER(K)

FSS, DIAMETER 3 METERS

D=3,

WAVEL = 300. / FREQ(K)

X1 = D/WAVEL

GAINR(K) = 10.*DLOG10O(PI*PI*X1*X1*EAP)
CPHIO(K) = X0/X1

GO TO 60

FSS, DIAMETER 3 METERS

D=3,

WAVEL = 300. / FREQ(K)

X1 = D/WAVEL .

GAINR(K) = 10.*DLOG10(PI*PI*X1*X1*EAP)
CPH1v(K) = X0/X1

GO TO 60

FSS, DIAMETER 4.5 METERS

D= 4,5

WAVEL = 300. / PREQ(K)

X1 = D/WAVEL

GAINR(K) = 10.*DLOG10(PI*PI*X1*X1*EAP)
CPHIO(K) = X0/X1

GO TO 60

PSS, DIAMETER 4.5 METERS

D= 4.5

WAVEL = 300. / FREQ(K)

X1 = D/WAVEL .
GAINR(K) = 10.*DLOG10(PI*PI*X1*X1*EAP)
CPHIO(K) = X0/X1

GO TO 60

BES, DIAMETER 1 METER

D=1,

WAVEL = 300. / FREQ(K)

X1 = D/WAVEL

GAINR(K) = 10.*DLOGl0(PI*PI*X1*X1*EAP)
CPHIO(K) = X0/X1
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CALCULATE TRANSMIT GAIN FROM HPBW
60 GAINT(K) = 10.*DLOG10(EAP*AXR (K)* (PI*X0/AXMAJ (K)) **2)

RETURN
END

0O 000

SUBROUTINE KPHI (K,J)

C
C#** 5> THIS ROUTINE COMPUTES THE VECTOR COMPONENTS OF THE LINK <<
CH*% 3> K=K=J , AND THE CORRESPONDING TRANSMITTING PHI ANGLE <<

o
CER AR AR AR R R R AR R R RN AR AR R R AR R R R R R AR R AR RN R RAR R AN RS RR RN R RRRN R AR R AR

Cc
IMPLICIT INTEGER*4(I-N) ,REAL*8(A-H,0-2)

c
CHARACTER*6 NAMESA
c _
COMMON /CONSTS/ E,PI,RADIAN,DEGREE,GCR,ER, ERDB,EAP,
1 PFD, ALOGE, ALN10 , COIMIN, COISING
COMMON /PARAMS/ NUMSAR,NAMESA(10,2) ,NTPSA(10) ,CPHIO(10)
COMMON /VECTOR/ DSLON(10) ,RSLON(10) ,X0(10) ,Y0(10),
1 ROAIRJ,
2 XOAC(10) ,YOAC(10) ,Z0AC(10) ,ROAC(10)
c
COMMON /VARBLS/ FREQ(10) ,IPOLAR(10) ,GAINR(10) ,GAINT(10),
1 EIRP(10) ,IPTNST(10) ,IPTNER(10)
c
COMMON /MINELL/ BCLAT (10) ,BCLON(10) ,DBCLAT(10) ,DBCLON(10) ,
1 . REFLAT(10) ,REFLON (10) ,AXR(10) ,
1 ORIENT(10) ,AXMAJ (10)
c
COMMON /TPOINT/ RELON(10,20) ,RELAT(10,20) ,DELON(10,20),
1 DELAT(10,20) ,XE (10,20) ,YE(10,20) ,2E(10,20)
c
COMMON /ANGLES/ YPHIT,YPHIR, PHITK,YPHIO
p .
COMMON /REAL/ PIKJ,PKKJ, PWFQM, PWDRCK, YPWDRC, YPWDRX,
1 XOARKJ , YOARRJ , ZOAKKJ , ROAKRJ
c

ChRARk R AR A ERRREANRRAN SR AN R AR N A AR AR A RR R AR R R RARRARARA AR R RRARARRRENRY
C

XOARKJ = XE(K,J) - GCR * XO(K)
YOAKKJ = YE(K,J) - GCR * YO(K)
ZOARKJ = ZE(K,J)
RORAKKJ = DSQRT (XOAKKJ*XOAKKJ + YOAKKJ*YOAKKJ + ZOAKKJ*ZOAKKJ)
C -
COSPHI = (XOAC(K) * XOAKRKJ + YOAC(K) * YOAKKJ + ZOAC(K) * ZOAKKJ)
$ / (ROAC(K) * ROAKKIJ)
PHITK = DARCOS (COSPHI)
c v
RETURN .
END
C

SUBROUTINE ZPHI (I,K,d)
C
C#*** 5> THIS ROUTINE COMPUTES THE PHI ANGLES <<
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Chak

>> (POR I INTERFERING WITH K TEST POINT J) <<

C
ChERR RS A N RRRAARAAARR AR R RN R R AR A IR AR R ARk AR Rk h ok h Rk ke khk kb khhkkdkhkk

c

IMPLICIT INTEGER*4(I-N) ,REAL*8(A-H,0-2)
CHARACTER*6 NAMESA

COMMON /CONSTS/ E,PI,RADIAN,DEGREE,GCR, ER, ERDB, EAP,
1 PFD, ALOGE, ALN10,COIMIN, COISING

COMMON /PARAMS/ NUMSAR,NAMESA(10,2) ,NTPSA(10) ,CPHIO(10)

ICOM!'DN /VECTOR/ DSLON(10) ,RSLON(10) ,X0(10) ,YO(10),
ROAIKJ, '
2 XOAC(10) ,YOAC(10) ,20AC(10) ,ROAC(10)

COMMON /VARBLS/ FREQ(10) ,IPOLAR(10) ,GAINR(10) ,GAINT(10),
. EIRP(16) ,IPTNST(10) ,IPTNER(10)

COMMON /MINELL/ BCLAT(10) ,BCLON(10) ,DBCLAT(10) ,DBCLON(10),
1 REFLAT (10) ,REFLON (10) ,AXR(10) ,
1 ORIENT(10) ,AXMAJ (10)

1

COMMON /TPOINT/ RELON(10,20) ,RELAT(10,20) ,DELON(10,20),
1l DELAT(10,20) ,XE(10,20) ,YE(10,20) ,2E(10,20)

COMMON /ANGLES/ YPHIT,YPHIR,PHITK,YPHIO
COMMON /REAL/ °~ PIKJ,PKKJ, PAFQM, PWDRCK, YPWDRC, YPWDRX,

1 XOAKKJ , YOAKRJ , ZOAKKJ , ROAKKJ .
g******t***t****t****ttt***t******a-***tttt**t**********t***********t
C
C*** 5> CALCULATE OFF AXIS VECTOR COMPONENTS (_IKJ) <<
C

XOAIRJ = XE(K,J) = GCR * XO(I)
YOAIRJ = YE(K,J) - GCR * YO(I)
ZOAIKI = 2E(K,J)
ROAIKJ = DSQRT (XOAIKJ*XOAIKJ + YOAIRJ*YOAIKJ + ZOAIKJ*ZOAIKJ)
C
Cx%* 55 COMPUTE DISCRIMINATION ANGLES <<
C**% 3> FOR THE TRANSMITTING ANTENNA <<
C
TNUMER = XOAC(I) * XOAIKJ + YOAC(I) * YOAIKJ + Z0AC(I) * ZOAIKJ
TDENOM = ROAC(I) * ROAIKJ
TEMPU = TNUMER / TDENOM
C
YPHIT = 0.0
IF (DABS(TEMPU) .LT. 1.0) YPHIT = DARCOS(TEMPU)
C
C*** 5> COMPUTE DISCRIMINATION ANGLES <<
Cr*x 5> FOR THE RECEIVING ANTENNA <L
C
TNUMER = XOAKKJ * XOAIKJ + YOAKRJ * YOAIKJ + Z0AKKJ * ZOAIRJ
TDENOM = ROAKKJ * ROAIKJ
TEMPU = TNUMER / TDENOM
c

YPHIR = 0.0
IF (DABS(TEMPU) .LT. 1.0) YPHIR = DARCOS(TEMPU)
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Cc
RETURN
END
C
SUBROUTINE XPHIO (I,K,J)

Cc .
C*** >> THIS ROUTINE COMPUTES THE ELLIPTICAL BEAM HALF POWER
C*** >> BEAM WIDTH USING THE METHOD GIVEN IN THE SOUP-3 MANUAL

C
CRRRE AR AR AR AR AR A SRR AR R R AR R R AR RRRTRRRAR AR RARARARR AR A AR A A RRTARK
c .

C

IMPLICIT INTEGER*4(I-N) ,REAL*8(A~H,0~2)
CHARACTER*6 NAMESA

COMMON /CONSTS/ E,PI,RADIAN,DEGREE,GCR,ER,ERDB,EAP,
1 PFD, ALOGE, ALN10,COIMIN, COISING

COMMON /PARAMS/ NUMSAR,NAMESA(10,2) ,NTPSA(10) ,CPHIO (10)

COMMON /VECTOR/ DSLON(10) ,RSLON(10) ,X0(10) ,Y0(10),
1 ROAIRJ .
2 XOAC(10) ,YOAC (10) ,Z0AC(10) ,ROAC(10)

COMMON /VARBLS/ FREQ(10) ,IPOLAR(10) ,GAINR(10) ,GAINT(10),
1 EIRP(10) ,IPTNST(10) ,IPINER(10)

COMMON /MINELL/ BCLAT(10) ,BCLON(10) ,DBCLAT(10) ,DBCLON(10),
1 REFLAT(10) ,REFLON (10} ,AXR(10),
1 ORIENT(10) ,AXMAJ (10)

COMMON /TPOINT/ RELON(10,20) ,RELAT(10,20) ,DELON(10,20),
1 DELAT(10,20) ,XE(10,20) ,Y: (10,20) ,2E(20,20)

COMMON /ANGLES/ YPHIT,YPHIR,PHITK,YPHIO

COMMON /REAL/  PIKJ, PKRJ, PAFQM, PWDRCK, YPWDRC, YPWDRX,
1 XOAKKJ , YOAKKJ , Z0AKKJ , ROAKKJ

C
C****t*******t*******************************i****************ﬁ****u*

C
PHIS = RSLON(I)
PHIC = BCLON(I)
THETAC = BCLAT(I)

Cc .
SINPHS = DSIN(PHIS)
COSPHS = DCOS(PHIS)
COSTC = DCOS(THETAC)
C
COSW = COSTC * DCOS(PHIS-PHIC)
SINW = DSIN(DARCOS(COSW))
C

RSLAT = 0.

IF ( BCLON(I).EQ.RSLON(I) ) GO TO 1

IF ( BCLAT(I).EQ.RSLAT ) GO TO 2

ARG = COSTC * DSIN(DABS(BCLON(I)~-RSLON(I))) / SINW

A = DASIN(ARG) -

IF (BCLON(I).GT.RSLON(I) .AND. BCLAT(I).GT.RSLAT) A=2.*PI-A
IF (BCLON(I).LT.RSLON(I) .AND. BCLAT(I).LT.RSLAT} A=PI-A
IF (BCLON(I).GT.RSLON(I) .AND. BCLAT(I).LT.RSLAT) A=PI+A
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COSA = DCOS(A)

SINA = DSIN(A)

GO TO 3

CONTINUE

COSA = -1,

SINA = 0.

A= PI

IF (BCLAT(I).LT.RSLAT) GO TO 3
COSA = 1.

A= 0.

GO TO 3

OONTINUE

QOSA = 0.

SINA = 1.

A= PI/2.

IF (BCLON(I).LT.RSLON(X)) GO T0 3
SINA = -1,

A= 1.5%*P1

CONTINUE

TANT = SINW / (GCR - COSW)
TRAD = DATAN(TANT)
SINT = DSIN(TRAD)
COST = -DCOS (TRAD)

A2l = - COSA * SINFHS
A22 = QOSA * COSPHS
A23 = SINA

A3l = SINT * COSPHS + COST * SINA * SINPHS
A32 = SINT * SINPHS - COST * SINA * COSPHS
A33 = COST * COSA

FLAT = REFLAT(I)

FLON = REFLON(I)

CSFLAT = DCOS(FLAT)

VRl = CSFLAT * DCOS(FLON)
. VR2 = CSFLAT * DSIN(FLON)
VR3 = DSIN(FLAT)

BLAT = BCLAT(I)

BLON = BCLON(I)

CSBLAT = DCOS{BLAT)

VCl = CSBLAT * DCOS(BLON)
VC2 = CSBLAT * DSIN(BLON)
VC3 = DSIN(BLAT)

PHIE = RELON(K,J)

THETAE = RELAT(K,J)
COSTE = DCOS(THETAE)

VEl = COSTE * DCOS(PHIE)
VE2 = COSTE * DSIN(PHIE)
VE3 DSIN(THETAE)

VSl = GCR * COSPHS
VS2 = GCR * SINFHS
Vs3 = 0.0

VRMVCl = VRL =~ VCl
VRMVC2 = VR2 - VC2
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VRMVC3 = VR3 = VC3

c
VEMVS]l = VEl - VSl
VEMVS2 = VE2 - V82
c VEMVS3 = VE3
SINUMR = A31*VRMVCl + A32*VRMVC2 + A33*VRMVC3
SIDENR = A21*VRMVCl + A22*VRMVC2 + A23*VRMVC3
C
S2NUMR = A31*VEMVS1 + A32*VEMVS2 + A33*VEMVS3
S2DENR = A2]1*VEMVS1l + A22%VEMVS2 + A23*VEMVS3
Cc
IF (SIDENR. NE .0.0) GO TO 10
Sl =PI / 2.0
GO TO 15
10 S1 = DATAN(S1NUMR/S1DENR)
C

15 1IF (S2DENR. NE .0.0) GO TO 20
52 = PI / 2.0
GO TO 25

20 52 = DATAN(S2NUMR/ S2DENR)

25 SIGMA = S2 - Sl
CS = DCOS(SIGMA)
SS = DSIN(SIGMA)
AR = AXR(I)
PO = AXMAJ(I) / DSQRT(CS*CS + AR*AR * SS*S8)

C .

YPHIO = PO

RETURN

END
C

SUBROUTINE REFCAL(N)
C

C*** >> THIS ROUTINE CALCULATES THE REFERENCE POINT LAT. & LON. <<
C*** > BASED ON THE ALGORITHM IN SOUP MANUAL 3.4, MAY 1983 <<

C*********t*********t**********i*i*t*********t************t*********

C
IMPLICIT INTEGER*4(I-N),REAL*8(A-H,0~2)

C
CHARACTER*6 NAMESA
C .
COMMON /CONSTS/ E,PI,RADIAN, DEGREE,GCR, ER, ERDB,EAP,
1 PFD, ALOGE, ALN10,COIMIN, COISING
c
COMMON /PARAMS/ NUMSAR,NAMESA(10,2) ,NTPSA(10) ,CPHIO(10)
C
COMMON /VECTOR/ DSLQN(10) ,RSLON(10) ,X0(10) ,¥0(10) ,
1 ROAIRJ,
2 X0AC(10) ,YOAC(10) ,20AC(10) ,ROAC(10)
C
COMMON /VARBLS/ FREQ(10) ,IPOLAR(10) ,GAINR(10) ,GAINT(10),
EIRP(10) ,IPTNST (10) ,IPTNER(10)
Cc
COMMON /MINELL/  BCLAT(10) ,BCLON(10) ,DBCLAT (10) ,DBCLON(10),
1 REFLAT (10) ,REFLON (10) ,AXR(10) ,
1 ORIENT(10) ,AXMAJ (10)
C

COMMON /TPOINT/ RELON(10,20) ,RELAT(10,20) ,DELON(10,20),
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1 DELAT(1€,20) ,XE (10,20) ,YE(10,20) ,ZE(10,20)

COMMON /ANGLES/ YPHIT,YPHIR, PHITK,YPHIO

COMMON /REAL/  PIKRJ,PKRJ, PHFQM, PNDRCK, YPWDRC, YPWDRX,
1 XOAKRJ , YOARKJ , ZOAKKJ , ROAKKJ

C
Chh kR R R R R RN A AR R R RN R AR RN R AR AN RN AR AR R AR R AR AR AN RA AR AR AR RARE R R

C
PGMPS = BCLON(N) - RSLON(N)
COSTG = DCOS(BCLAT(N))
COSPP = DCOS(PGMPS)
Ql = COSTG * DSIN(PGMPS)
Q2 = GCR - COSTG * COSPP
Q3 = DSQRT(QL**2+Q2%*2)

C
SX = DATAN2(Q1,Q2)
SY = DATAN2 (DSIN(BCLAT(N)) ,03)
Cc
AMAJ2 = AXMAJ(N) * 0.5
§X2 = AMAJ2 * DCOS(ORIENT(N))
SY2 = AMAJ2 * DSIN(ORIENT(N))
(o
Xl = SX + SX2
¥l = SY + SY2
C
Q4 = DARCOS(DCOS(X1) * DCOS(Y¥1l))
Q5 = DSIN(Q4)
T = GCR * Q5
IF (T .LE. 1.0) GO TO 10
C
X1l = SX - SX2
Yl = SY - SY2
Q4 = DARCOS(DCOS(X1l) * DCOS(Y1l))
Q5 = DSIN(Q4)
T = GCR * Q5
IF (T -LE- 1.0 .mD. T .GE. -1.0) Go '1'0 10
IF (T .GT. 0.) T = 1.0
IF (T .LT. 0,) T = =1.0
C

WRITE(6,901) T
901 FORMAT(/10X,'**%**** POSSIBLE ERROR IN ELLIPSE SELECTION ',

$ F5.1)
c

10 PX = DARSIN(DSIN(Y1)/Q5)
IF (X1 .LT. 0.0) PX = PI - PX
D = DARSIN(T)
BLAM = D - Q4
REFLAT(N) = DARSIN(DSIN(BLAM) * DSIN(PX))
AL = DARCOS(DCOS ( BLAM) /DCOS ( REFLAT(N) })
IF ( DABS(PX) .GT. PI/2.) AL = ~AL
REFLON(N) = RSLON(N) + AL

RETURN
END

an

FUNCTION DARSIN(X)
IMPLICIT REAL*8(A-H,0~32)
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c

C
Chwk

Cwex
Cc
C
C

DARSIN = DASIN(X)
RETURN

END

FUNCTION DAROOS (X)

IMPLICIT REAL*8(A-H,0-2)
DARCOS = DACOS(X)
RETURN

END

SUBROUTINE KPWDRC (K,J)

>> THIS ROUTINE COMPUTES THE CARRIER SIGNAL DISCRIMINATING <<
>> FACTOR (DESIRED POWER - QO-FOLARISED ONLY - PHIR=0 ) <<

C
CRRRR AR AR RR AR RR R AR R R AR R AR AR R AR A AR RN KRR AR R AR R AR AR AR AR R A AR

IMPLICIT INTEGER*4(I~N) ,REAL*8(A-H,0~-2)
CHARACTER*6 NAMESA

COMMON
1

COMMON
COMMON

1

2
COMMON

1
COMMON

1

1
COMMON

1
COMMON

COMMON
1

/CONSTS/

/PARAMS/

/VECTOR/

/VERBLS/

/MINELL/

/TPOINT/

/ANGLES/
/ REAL/

E, PI, RADIAN, DEGREE, GCR, ER, ERDB, EAP,
PFD, ALOGE, ALN10,COIMIN, COISING

NUMS2R, NAMESA (10,2) ,NTPSA(10) ,CPHIO(10)
DSLON(10) ,RSLON(10) ,X0(10) ,¥0(10) ,
RORIKJ,

XOAC(10) ,YOAC(10) ,20AC(10) ,ROAC(10)

FREQ(10) , IPOLAR(10) ,GAINR(10) ,GAINT(10),
EIRP(10) ,IPTNST(10) ,IPTNER(10)

BCLAT(10) ,BCLON(10) ,DBCLAT(10) ,DBCLON(10) ,
REFLAT(10) ,REFLON(10) ,AXR(10) ,
ORIENT(10) ,AXMAJ (10)

RELON (10,20) ,RELAT(10,20) ,DELON(10,20) ,
DELAT(10,20) ,XE (10,20) ,YE (10,20) ,2E (10,20)

YPHIT,YPHIR, PHITK, YPHIO

PIKJ, PKKJ, FWFQM, PADRCK, YPWDRC, YPWDRX,
XOAKKJ , YOARKJ y ZOAKKT , RORKKJ

Cc
C*******t********************t**tt********ﬁ******t*****t*************

C

C

C
10

C
20

PT = PHITK
PO = YPHIO

GO T0(10,20,30,40,50) ,IPTNST(K)

CALL PINST1 (PT,P0,GAINT(K),DISC)
GOTO 60

CALL PINST2 (PT,P0,GAINT(K),DISC)
GOTO 60

C
30 CALL PTNST3 (PT,PO0,GAINT(K),DISC)
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40

50
60

QOO0 0n0 0O O

(2]

C

c
Chax

Chnn
Chkn

GOTO 60

CALL PINST4 (PT,PO,GAINT(K),DISC)
GOTO 60 :

CALL PINST5 (PT,P0,GAINT(K),DISC)

YDSCT = DISC ‘

PREVENTING INPERFECT MINIMUM ELLIPSE NOT COVERING ALL POINTS
IF (YDSCT.LT.-3.) YDSCI=-3.

>> COMPONENT OF DESIRED POWER DEPENDENT ON ORBIT LOCATION <<

PWDRCK = EIRP(K) + YDSCT + GAINR(K) - 20.0 * DLOG10(ROAKKJ)
RETURN

END
SUBROUTINE ZPWDRC (I,K,J)

>> THIS ROUTINE COMPUTES THE INTERFERENCE SIGNAL 14
>> TRANSMITTING AND RECEIVING DISCRIMINATIONS FOR <<
>> THE CO-POLARISED CASE 144

C
c*tt*************tt*******t****tt******************i*t********t*****

C
C
c

1

1
2
1

1
1

IMPLICIT INTEGER*4(I-N),REAL*8(A-H,0~-2) .
CHARACTER*6 NAMESA

COMMON /CONSTS/ E, PI,RADIAN,DEGREE,GCR,ER,ERDB, EAP,
PFD, ALOGE, ALN10,COIMIN, COISING

COMMON /PARAMS/ NUMSAR,NAMESA(10,2) ,NTPSA(10) ,CPHIO(10)

COMMON /VECTOR/ DSLON(10) ,RSLON(10) ,XO(10) ,¥O(10),
ROAIRS
XOAC (10) ,YOAC(10) ,ZO0AC (10) ,ROAC(10)

COMMON /VARBLS/ FREQ(10) ,IPOLAR(10) ,GAINR(10) ,GAINT(10),
EIRP(10) ,IPINST(10) ,IPTNER(10)

COMMON /MINELL/ BCLAT(10) ,BCLON(10) ,DBCLAT(10) ,DBCLON(10) ,
REFLAT(10) ,REFLON(10) ,AXR(10),
ORIENT(10) ,AXMAJ (10)

COMMON /TPOINT/ RELON(10,20) ,RELAT (10,20} ,DELON(10,20),
1

1

DELAT(10,20) ,XE(10,20) ,YE(10,20) ,Z2E(10,20)
COMMON /ANGLES/ YPHIT,YPHIR,PHITK,YPHIO

COMMON /REAL/  PIKJ,PKKJ, PWFQM, PHDRCK, YPWDRC, YPWDRX,
XOAKKJ , YOAKKJ , 20AKKJ , ROAKKJ

C
CRAERRARE AR R TR AR R RN R R AR KRN AR AR R R RN R RRRRRERA R R AR AR KRR RN RRRAR AR

o
Chex

c

>> TRANSMITTING DISCRIMINATION <<
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PT = YPHIT
P0 = YPHIO
GO T0(10,20,30,40,50) ,IPTNST(I)

10 CALL PTNST1 (PT,PO,GAINT (1) ,DISC)
GOTO 60

20 CALL PrNST2(PT,P0,GAINT(I),DISC)
GOTO 60

30 CALL PINST3(PT,PO,GAINT(I),DISC)
GO TO 60 :

40 CALL PINST4(PT,PO,GAINT(I),DISC)
GO TO 60

50 CALL PTNSTS (PT,P0,GAINT(I),DISC)
60 YDSCT = DISC
C*** >> RECEIVING DISCRIMINATION <<

PR = YPHIR
PO = CPHIO(K)

G0 T0(110,120,130,140,150) ,IPTNER(K)

C
110 CALL PTNERIL (PR, PO,FREQ(I) ,GAINR(K),DISC)
GOTO 160

120 CALL PINER2(PR,PO,FREQ(I),GAINR(K) ,DISC)
GOTO 160 :

130 CALL PINER3(PR,PO,FREQ(I),GAINR(K),DISC)
GO TO 160

140 CALL PTNER4 (PR, P0,FREQ(I),GAINR(K),DISC)
GO TO 160

150 CALL PINERS (PR, PO,FREQ(I) ,GAINR(K) ,DISC)
160 Y¥YDSCR = DISC

C*#* 5> COMPONENT OF POWER DEPENDENT ON THE ORBIT LOCATION <<
Co¥x  >> CO-POLARISED CASE <<

YPWDRC = EIRP(I) + YDSCT + YDSCR
$ ) = 20. * DLOG10(ROAIKJ)
RETURN
END
c

SUBROUTINE ZPWDRX (I,K,J)
c
C*** 5> THIS ROUTINE COMPUTES THE INTERFERENCE POWER <<
C*** >> TRANSMITTING AND RECEIVING DISCRIMINATIONS FOR <<
C*** 5> THE CROSS~POLARISED CASE <«

C
C**********t**************t*******t*t******t************************
C
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IMPLICIT INTEGER*4(I~-N) ,REAL*8(A-H,0-2)
CHARACTER*6 NAMESA

COMMON /CONSTS/ E,PI,RADIAN,DEGREE,GCR,ER, ERDB, EAP,
1

1
2

PFD,ALOGE, ALN10, COIMIN, COISING
COMMON /PARAMS/ NUMSAR,NAMESA(10,2) ,NTPSA(10) ,CPHI0(10)
COMMON /VECTOR/ DSLON(10) ,RSLON(10) ,X0(10) ,Y0(10),

ROAIKJI,
XOAC(10) ,YOAC(10) ,20AC(10) ,ROAC(10)

ICOHH)N /VBARBLS/ FREQ(10) ,IPOLAR(10) ,GAINR(10) ,GAINT(10),

1
1

EIRP(10) ,IPTNST(10) ,IPTNER(10)

COMMON /MINELL/ BCLAT(10) ,BCLON(10) ,DBCLAT(10) ,DBCLON(10) ,
REFLAT(10) ,REFLON (10) ,AXR(10) ,
ORIENT(10) ,AXMAJ (10)

COMMON /TPOINT/ RELON(10,20) ,RELAT(10,20) ,DELON(10,20),
1

. DELAT(10,20) ,XE (10,20) ,YE(10,20) ,2E(10,20)
COMMON /ANGLES/ YPHIT,YPHIR,PHITK,YPHIO

ICOHMON / REAL/ PIKJ, PKRJ, PWFQM, PWDRCK, YPWDRC, YPWDRX,

XOARKJ, YOAKKJ , ZOAKKJ  ROARKJ

CARR R R RN AR AR AR AR R AR ARN AR AR AR RN R R AR A AR AR RN RRAAR AR AR RN ARk h X

C
Chkx

C

10

12

14

16

18
20

Chak

2> TRANSMITTING DISCRIMINATION <<

PT = YPHIT
P0 = YPHIO

Go ™ (10,12,14,16,18) ,IPTNST(I)

CALL PTNST1(PT,PO0,GAINT(I),DISC)
GO TO 20

CALL PINST2(PT,P0,GAINT(I),DISC)
GO TO 20

CALL PTNST3(PT,P0,GAINT(I) ,DISC)
GO TO 20

CALL PTNST4 (PT, PO,GAINT(I) ,DISC)
GO TO 20

CALL PTNSTS(PT,P0,GAINT(I),DISC)
YDSCT = DISC
>> RECEIVING DIRECTIVITY <<

PR = YPHIR
PO = CPHIO(K)

CALL XPTNERI (PR, PO ,GAINR(K) ,DISC)
YDSXR = DISC
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C
C*** 3> 'COMPONENT OF POWER DEPENDENT ON THE ORBIT LOCATION <<

Cr¥x 3> CROSS-POLARISED CASE <<

C
100 YPWDRX = EIRP(I) + YDSCr + YDSXR
$ - 20.0 * DLOG10(ROAIKJ)

C
RETURN
END

C

c SUBROUTINE XFWFQ (FQD,FQI)

C*** 5> THIS ROUTINE COMPUTES THE FREQUENCY DEPENDENT PORTION <<
Ck*x 3> IN THE POWER EQUATION 144

C
CRRRRRRRERRR AR R R AR RN RARRARNR R RN A RRRRRRAN RN AR R AR A kAR A Ak ARk bk kk

C
IMPLICIT INTEGER*4(I-N) ,REAL*8(A-H,0~2)

CHARACTER*6 NAMESA

COMMON /CONSTS/ E, PI, RADIAN, DEGREE, GCR,ER, ERDB, EAP,
PFD,ALOGE, ALN10,COIMIN, COISING

COMMON /PARAMS/ NUMSAR,NAMESA(10,2) ,NTPSA(10) ,CPHIO (10)

C
C

COMMON /VECTOR/ DSLON(10) ,RSLON(10) ,X0(10) ,YO(10),
1 ROAIKJ,
2 XOAC(10) ,YOAC(10) ,20AC(10) ,ROAC(10)

COMMON /VARBLS/ FREQ(10) ,IPOLAR(10) ,GAINR(10) ,GAINT(10),
1 EIRP(10) ,IPTNST(10) ,IPTNER(10)

COMMON /MINELL/ BCLAT(10) ,BCLON(10) ,DBCLAT(10) ,DBCLON(10) ,
1 REFLAT (10) ,REFLON(10) ,AXR(10) ,
1l ORIENT(10) ,AXMAJ (10)

COMMON /TPOINT/ RELON(10,20) ,RELAT(10,20) ,DELON(10,20),
1 DELAT(10,20) ,XE(10,20) ,YE(10,20) ,ZE(10,20)

COMMON /ANGLES/ YPHIT,YPHIR, PHITK,YPHIO

COMMON /REAL/ PIRJ, PRKJ, PWHFQM, PWDRCK, YPWDRC, YPWDRX,
1 XOAKKJ , YOAKKT , 20AKKJ , ROAKRT

Lo L T I T s I T ] L
C
C*** 5> POWER BEING CALCULATED IS INTERFERING POWER <<
C
X = (FQI - FQD)
ABSX = DABS(X)

IF(ABSX.LE.15.) THEN
FF = 0.
ELSE
FF = =-(ABSX-15.) *1.6
END IF
C
PWFQM = FF - 20.0 * DLOG10{(FQI)
C
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RETURN
END

C
SUBROUTINE XPOWER (I,K,J)

c
Cws* 3> THIS ROUTINE CALCULATES ALL THE POWERS AFTER THE <<
C*#% >> DIRECTIVITY AND FREQUENCY PORTIONS ARE COMPUTED <<
c
P T T s L e T T T
c

IMPLICIT INTEGER*4(I-N) ,REAL*8(A-H,0-2)

CHARACTER*6 NAMESA

COMMON /CONSTS/ E,PI,RADIAN,DEGREE,GCR,ER, ERDB, EAP,
1 PFD, ALOGE, ALN10,COIMIN, COISING

COMMON /PARAMS/ NUMSAR,NAMESA(10,2) ,NTPSA(10) ,CPHIO(10)

COMMON /VECTOR/ DSLON(10) ,RSLON(10) ,X0(10) ,Y0(10),

1 ROAIRJ,
2 XOAC(10) ,YOAC(10) ,Z0AC(10) ,ROAC(10)

COHﬁON /VARBLS/ FREQ(10),IPOLAR(10) ,GAINR(10) ,GAINT(10),
1 EIRP(10) ,IPTNST(10) ,IPTNER(10)

- COMMON /MINELL/ BCLAT(10) ,BCLON(10) ,DBCLAT(10) ,DBCLON(10) ,
1 REFLAT (10) ,REFLON(10) ,AXR(10) ,
R ORIENT (10) ,AXMAJ (10) -

COMMON /TPOINT/ RELON(10,20) ,RELAT(10,20) ,DELON(10,20),
1 DELAT(10,20) ,XE(10,20) ,¥E (10,20} ,2E(10,20)

COMMON /ANGLES/ YPHIT,YPHIR,PHITK,YPHIO

COMMON /REAL/  PIKJ,PKKJ, PWFQM, FWDRCK, YPWDRC, YPWDRX,
1 XOAKKJ , YOAKKJ  ZOAKKJ , ROAKKJ

C
CAN AR ARk A RN R AR AR R AR AR AR R R R AR RN R KRR R IR RRRRRARERRRRRRRRRN
c

IF (K. EQ .I) GO TO 100

C
Ce** 3> POWER BEING ‘CALCULATED IS AN INTERFERING POWER <<

C
IF (IPOLAR(I). EQ .IPOLAR(K)) GO TO 50

C

C**% 3> CROSS-POLARIZED <<

c
PIKJ = YPWDRX + PWFQM + ERDB + 27.56
RETURN

C

C*** 5> CO-POLARIZED <K

50 PIRJ = YPWDRC + PWFQM + ERDB + 27.56
RETURN

C*** >> POWER BEING CALCULATED IS A PESIRED POWER <<

100 PKKJ = PWDRCK + PWFQM + ERDB + 27.56
RETURN
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END

SUBROUTINE PTNST1 (PT, PO ,G,DISC)
FSS SATELLITE TX PATTSRN FROM CCIR REPORT 558-2
IMPLICIT INTEGER*4(I-N) ,REAL*8(A-H,0-2)

COMMON /CONSTS/ E, PI,RADIAN,DEGREE,GCR,ER, ERDB, EAP,
1 . PFD,ALOGE, ALN10,COIMIN, COISING

X=PT/P0
IFP (X .LE. 1.3) GO T0 10
IF (X .LE. 3.15) GO TO 20

IF (DISC.LE.(-G-10.)) DISC = -~G-10.
GO T0 40

DISC = =12,0 * X * X
GO TO 40

DISC = -20.0

RETURN
END

SUBROUTINE PINST2(PT,P0,G,DISC)
FSS SATELLITE TX PATTERN FROM RARC 83 $ 5.1.10.1
IMPLICIT INTEGER*4(f-N) ,REAL*8(A~-H,0-2)

COMMON /CONSTS/ E, PI,RADIAN, DEGREE,GCR,ER, ERDB, EAP,
PFD, ALOGE, ALN10,00IMIN, COISING

DP0 =PO0*DEGREE
X1 =PT/PO
x3 -.5*(1--1./)(2)

Pl =.4/DP0+X3

P2 =]1.,155/DP0 +X3
P3 =1.60/DP0+X3
P4 = 4.0/DPO+X3
PS5 = 6,968/DP0 +X3

© P6 = 10.%*((G-11.5)/25.)/%X2 + X3

IF (X1 .LE. 0.5) GO T0 10
IF (X1 .LE. P2) GO TO 12
IF (X1 .LE. P3) GO TO 14
IF (X1 .LE. P4) GO T0 16
IF (X1 .LE. P5) GO TO 18
IF (X1 .LE. P6) GO TO 20

DISC = -G
GO TO 40

DISC = =12.0 * X1 * X1
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GO T0 40

DISC = =18.75*DPO*DP0* (X1-X3) * (X1-X3)
GO TO 40

DISC = =25
GO TO 40

DISC = =17 .5 = 25.%DLOG10((X1-X3) *X2)
GO TO 40

DISC = -35,
GO TO 40

DISC = ~11.5 - 25.% DLOG10((X1-X3)*X2)

RETURN
END

SUBROUTINE PTNST3 (PT, PO,G,DISC)

FSS SATELLITE TX PATTERN FROM RARC 83 § 5.1.10.1
WITH MODIFICATION

IMPLICIT INTEGER*4(I-N) ,REAL*8(A-H,0~2)

COMMON /CONSTS/ E,Pl,RADIAN,DEGREE,GCR,ER,ERDB, EAP,
PFD, ALOGE, ALN10,COIMIN, COISING

DP0 = PO*DEGREE

X1 = PT/P0 R
X2 = DP0/0.8

x3 = 15* (1--1./x2)

IF (X1 .LE. 0.5) GO TO 10
P2 = 1,265/DP0 +X3

IF (X1 .LE. P2) GO T0 12
P3 = 10.**((30.-24.)/30.)

IF (X1 .LE. P3) GO T0 14

P4 = 10.**((G~24.)/30.)

IF (X1 .LE. P4) GO T0 16

DISC = -G
GO TO 40

DISC = =12.0 * X1 * X1
GO TO 40

DISC = -18.75*DPO*DPO* (X1~X3) * (X1~X3)
GO TO 40

DISC = =30.
GO TO 40

DISC = ~24.-30.*DLOG10(X1)

RETURN
END

SUBROUTINE PINST4 (PT, P0,G,DISC)
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PSS SATELLITE TX PATTERN FROM RARC 83 $5.10.1
WITH MODIFICATION

IMPLICIT INTEGER*4(I-N) ,REAL*8(A-H,0-2)

COMMON /CONSTS/ E, PI,RADIAN,DEGREE,GCR,ER,ERDB, EAP,
1

PFD, ALOGE, ALN10,COIMIN, COISING

DP0 = PO*DEGREE
X1 = PT/P0O

X2 = DP0/0.8

X3 = 5%(]1.-1./X2)

IF (X1 .LE. 0.5) GO T0 10
P2 = 1,265/DP0 +X3

IF (X1 .LE. P2) GO TO 12
P3 = 10.**((30.-24.)/30.)
IF (X1 .LE. P3) GO T0 14
P4 = 10.%**((G-24.)/30.)

IF (X1 .LE. P4) GO TO 16

DISC = -G
GO TO 40

DISC = -12.0 * X1 * X1
GO TO 40

DISC = =18.75*DP0O*DPO* (X1-X3) * (X1-X3)
GO TO 40

DISC = -30.
GO TO 40

DISC = -24.,-30.*DLOG10(X1)

RETURN
END

SUBROUTINE PINSTS (PT,P0,G,DISC)

SATELLITE TX PATTERN FROM RARC 83 P.111,
BSS PATTERN

IMPLICIT INTEGER*4(I-N) ,REAL*8(A-H,0-2)

COMMON /CONSTS/ E, PI,RADIAN,DEGREE,GCR,ER, ERDB, EAP,
PFD, ALOGE, ALN10,COIMIN, COISING

X1 = PT/PO’

IF (X1 .LE. 1.58) GO TO 10
IF (X .LE, 3.16) GO TO 12
IFf (X1 .LE. 10.) GO T0 14

DISC = =42.5
GO T0 40

DISC = =12.0 * X1 * X1
GO TO 40
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DISC = ~30.
GO TO 40

DISC = -17.5-25.*DLOG10(X1)
GO TO 40

RETURN
END

SUBROUTINE PTNERL (PR, P0,F,G,DISC)

FSS EARTH REVEIVER PATTERN FROM CCIR REPORT 391-4
ANTENNA DIAMETER 3 METERS, MAIN LOBE NOT GAUSSIAN

IMPLICIT INTEGER*4(I-N) ,REAL*8(A-H,0-2)

COMMON /CONSTS/ E,PI,RADIAN,DEGREE,GCR,ER, ERDB, EAP,
1 PFD, ALOGE, ALN10,COIMIN, COISING

DPR = PR*DEGREE

DPG = P0 * DEGREE

D= 3.

WAVEL = 300./F

X1 = D/WAVEL

Gl = 2, + 15.* DLOG10(X1)
PM = 20./X1* DSQRT(G-Gl)
PS = 15.85 / X1**0.6

IF (DPR .LE. PM) GO T0 50
IF (DPR .LE. PS) GO TO 60
IF (DPR .LE. 48.) GO TO 70

DISC = ~10.
GO TO 80

DISC = G~ 2.5E~3 * X1*X1*DPR*DPR
GO TO 80

DISC = Gl
GO TO 80

DISC = 32.-25.*DLOG10(DPR)

RETURN
END

SUBROUTINE PINER2(PR,P0,F,G,DISC)
FSS EARTH REVEIVER PATTERN FROM CCIR REPORT 391-4
MAIN LOBE GAUSSIAN, ANTENNA DIAMETER 3 METERS,
MODIFIED FOR NON US COUNTRIES
IMPLICIT INTEGER*4(I-N) ,REAL*8(A-~H,0-2)

COMMON /CONSTS/ E, PI,RADIAN,DEGREE,GCR,ER,ERDB, EAP,
1 PFD, ALOGE, ALN10,COIMIN, COISING

DPR = PR*DEGREE
X = PR/PO
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P2 = 10.**((32.+410.)/25.)

IF (X.LE.0.5) THEN
DISC = G - 12.%X*X

GO TO 80 .

ELSE IF (DPR .GE. P2) THEN
DISC = ~10.

GO TO 80

END IF

DISC = G ~ 12.%X*X
Dl = 32, - 25.*DLOG10(DPR)
IF (D1 .GE. DISC) DISC = D1

RETURN
END

SUBROUTINE PTNER3 (PR, PO ,F,G,DISC)

FSS EARTH REVEIVER PATTERN FROM CCIR REPORT 391-4
MAIN LOBE GAUSSIAN, ANTENNA DIAMETER 4.5 METERS,
MODIFIED FOR US ONLY

IMPLICIT INTEGER*4(I~N) ,REAL*8(A-H,0~2)

COMMON /CONSTS/ E,PI,RADIAN,DEGREE,GCR,ER, ERDB, EAP,
1 PFD, ALOGE, ALN10,COIMIN, QOIS ING

DPR = PR*DEGREE
X = PR/PD
P2 = 10.**((29.+10.)/25.)

IP (X.LE.l.) THEN

DISC = G - 12.%X*X

GO TO 80

ELSE IF (DPR .GE. P2) THEN
DISC = -10.

GO TO 80

END IF

DISC = G = 12.%X*X
Dl = 29. - 25.*DLOG10(DPR)
IF (D1 .GE. DISC) DISC = D1

RETURN
END

SUBROUTINE PINER4 (PR, PO ,F,G,DISC)

FSS EARTH REVEIVER PATTERN FROM CCIR REPORT 391-4
MAIN LOBE GAUSSIAN, ANTENNA DIAMETER 4.5 METERS,
MODIFIED FOR US ONLY

IMPLICIT INTEGER*4(I-N) ,REAL*8(A-H,0~2)

COMMON /CONSTS/ E, PI,RADIAN,DEGREE, GCR,ER,ERDB, EAP,
1 PFD,ALOGE, ALN10,COIMIN, COISING _

DPR = PR*DEGREE
X = PR/PO
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P2 = 10.**%((29.+10.)/25.)

IF (X.LE.1l.) THEN

DISC = G - 12.*X¥*X

GO TO 80

ELSE IF (DPR .GE. P2) THEN
GO TO 80

END IF

DISC = G = 12,.%X*X

Dl = 29, - 25.*DLOG10(DPR)
IF (D1 .GE. DISC) DISC = D1

RETURN
END

SUBROUTINE PINERS (PR, PO,P,G,DISC)

EARTH REVEIVER PATTERN FROM RARC-83 P.ll5 CURVE B
BSS PATTERN

IMPLICIT INTEGER*4(I-N) ,REAL*8(A-H,0-2)

COMMON /CONSTS/ E,PI,RADIAN,DEGREE,GCR,ER, ERDB, EAP,
1 PFD, ALOGE, ALN10,COIMIN, COISING

X = PR/PO

IF (X .LE. 0.25) GOTO 10
IF (X .LE. 0.94) GOTO 12
IF (X .LE. 18.88) GOTO 14

DISC = G -43.2
RETURN

DISC = G
RETURN

DISC = G -12. * X * X
. RETURN

DISC = G ~11.3 -25. * DLOG10(X)
RETURN

END
SUBROUTINE XPTNERI (PR, P0O,G,DISC)

CROSS POLARIZATION RECEIVER PATTERN, BSS
IMPLICIT REAL*8(A-H,0-2)

X = PR/PO

IF (X.LE.0.25) GO TO 40

IF (X.LE.0.44) GO TO 50

IF (X.LE.l.28) GO TO 60

IF (X.LE.3.22) GO TO 70

IF (X.LE.5.60) GO TO 80
IF (X.LE.18.88) GO TO 90
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DISC = G~43.2
GO TO 100

DISC = G-25.
GO TO 100

DISC = G-(30.+40.*DLOG10(1.0-X))
GO TO 100

DISC = G-20.
GO T0 100

DISC = G-(17.3+25.*DLOG10(X))
GO T0 100

DISC = G-30.
GO TO 100

DISC = G-(11.3+25.*DLOGLO(X))

RETURN
END
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APPENDIX B
CONCAVE, QUASI-CONCAVE AND PSEUDO-CONCAVE FUNCTIONS

The content in this appendix is from the book "Nonlinear
Programming" written by Olvi L. Mangasarian [105]. Al1 the page numbers
appearing in the content are referred to this book. Here only the
concave functions are discussed; the same discussions apply to convex

functions with obvious substitution.

Definition of convex set (p. 39)

A set IcRn is a convex set if, for x,ycl, aeR, 0<a<l, one has

(1-a)x+ayel , (B.1)

here R" is the set of n-dimensional vector space, R is the set of real

numbers,

Definition of concave function (p. 56)

A numerical function f defined on a set IcRn is said to be

concave at xel if, for yel, O<a<l, (l-a)x+ayel, one has

(1-a)f(x)+af(y) < f[(1-a)x+ay] ; (8.2)

f is said to be concave on I if it is concave at each xel.
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Definition of strictly concave function (p. 57)

A numerical function f defined on a set IcR" is said to be strictly

concave at xel if, for yel, xky, 0<a<l, (1l-a)x+ayeI, one has
(1-a)f(x)+af(y) < f[(1-a)x+ay]l ; (8.3)

f is said to be strictly concave on I if it is strictly concave at each

xel,

Definition of quasi-concave function (p. 132)

A numerical function f defined on a set IcRn is said to be quasi-concave

at xel if, for yel, f(x)<f(y), ka<l, (1-a)x+aycI, one has

f(x) < f[(1-a)x+ay] 3 (B.4)
f is said to be quasi-concave on I if it is quasi-concave at each xecl.
Definition of strictly quasi-concave function (p. 137)

' n
A numerical function f defined on a set IcR is said to be strictly

quasi-concave at xeI if, for yeI, f(x)<f(y), 0<a<l, (1-a)x+ayeI, one has
f(x) < fL(1-a)x+ay]l (B.5)

f is said to be strictly quasi-concave on I if it is strictly quasi-

concave at each xel.
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Theorem 1 (p. 139)

Let f be a numerical function defined on the convex set I in Rn,

and let xel be a local maximum. If f is strictly quasi-concave at x,

then f(x) is a global maximum of f on I.

Definition of pseudo-concave function (p. 141)

Let f be a numerical function defined on some open set in R"
containing the set I. f is said to be pseudo-concave at xel if it is

differentiable at x, and for yel, vf(x)(y-x)<0, one has

f(y) < f(x) ; | (B.6)

f is said to be pseudo-concave on I if it is pseudo-concave at each xel.

Theorem 2 (p. 143)

Let I be a convex set in Rn, and let f be a numerical function
defined on some open set containing I. If f is pseudo-concave on I,
then f is strictly quasi-concave on I and hence also quasi-concave on I.

The converse is not true.,

Theorem 3 (p. 144)

Let f be a numerical function defined on some open set I in Rn, let
xel, and let f be differentiable at x. If f is concave at x, then f

is pseudo-concave at x, but not conversely.
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Theorem 4 (p. 145)

Let I be a convex set in Rn, and let f be a numerical function
defined on some open set containing I. If f is pseudo-concave on I,

then each local maximum of f on I is also a global maximum of f on I.

A final note: a function that is strictly concave is also concave,
a function that is concave is also pseudo-concave, a function that is
pseudo-concave is also strictly quasi-concave, a function that is

strictly quasi-concave is also quasi-concave; the converse is not true.
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APPENDIX C

CONTOUR PLOTS OF OBJECTIVE-FUNCTION SURFACE

- ARG=62. BOL=68.
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APPENDIX D

AS CALCULATION CODE

Ce*# 5> MAIN PROGRAM <<

c THIS IS 70 CALCULATE THE NECESSARY SATELLITE SPACING

C FOR TWO SERVICE AREAS.

c INITIAL SATELLITE LOCATIONS SEOULD BE THE SAME.

c SUBROUTINES SAME AS MINI~-SOUP PROGRAM, EXCEPI DIMENSION OF

C SERVICE AREA IS TWO

T T L e A T A T L T T T I T e T T T
c
c
c

IMPLICIT REAL*8(A=-H,0~2)
CHARACTER*6 NAMESA

COMMON /CONSTS/ E,PI,RADIAN.DEGREE,GCR,ER, ERDB, EAP,
1 PFD, ALOGE, ALN10,COIMIN, COISING

COMMON /PARAMS/ NUMSAR.,NAMESA(2,2) NTPSA(2) ,CPHIO(2)
COMMON /VECTOR/ DSLON(2) ,RSLON(2) ,X0(2),7¥0(2),

1 ROAIRJ,
2 XOAC(2) ,YOAC(2) ,Z0AC (2} ,ROAC(2)

c
COMMON /VARBLS/ FREQ(2) ,IPOLAR(2) ,GAINR(2) ,GAINT(2),
1 EIRP(2) ,IPTNST(2) ,IPTNER(2)
c
COMMON /MINELL/ BCLAT(2) ,BCLON(2) ,DBCLAT(2) ,DBCLON(2),
1 REFLAT(2) ,REFLON (2) ,AXR(2) ,
c 1 ORIENT(2) ,AXMAJ (2)
COMMON /TPOINT/ RELON(2.20) ,RELAT(2,20) ,DELON(2,20),
1 DELAT(2,20) ,XE (2.20) ,YE(2,20) ,2E(2,20)
COMMON /ANGLES/ YPHIT,YPHIR.PHITK,YPHIO
COMMON /REAL/  PIKJ,PKRJ, FWFQM, F¥DRCK, YBWDRC, YPWDRX,
1 XOAKKJ, YOARRT , ZOAKKS , ROAKKT
c

COMMON /SRCB/  DMGN(2.20)
W e L Ty e e T T I A Tt

C
OPEN (UNIT=20 ,FILE='INPUTO.DAT',TYPE='OLD')
OPEN (UNIT=6,FILE='DSOUT.DAT',TYPE='NEW')

CALL ICONST
CALL INPUTO

DO 2 K = 1,NUMSAR
CALL GAINER(K)
EIRP(K) = PFD+10.*DLOGL0(4.*PI*ROAC(K)*ROAC(K))-ERDB
2 CONTINUE

c
CALL ZFUNCT
CALL SEPAR
c
STOP
END
c

SUBROUTINE ZFUNCT

c .
C*** >> THIS ROWTINE IS THE OVERALL CONTROL ROUTINE FOR <<
c .
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C
IMPLICIT REAL*8(A-H,0-2)

C
CHARACTER*6 NAMESA
C
COMMON /CONSTS/ E, PI, RADIAN.DEGREE, GCR,ER, ERDB, EAP,
1 PFD, ALOGE, ALN10, COIMIN, OQOISING
Cc
COMMON /PARAMS/ NUMSAR.NAMESA(2.2) ,NTPSA(2) ,CPHI0(2)
C
COMMON /VECTOR/ DSLON(2) ,RSLON(2) ,X0(2),Y0(2),
1 ROAIRJ,
2 XOAC(2) ,YOAC(2) ,Z0AC(2) ,ROAC(2)
C
COMMON /VARBLS/ FREQ(2) ,IPOLAR(2) ,GAINR(2) ,GAINT(2),
1 EIRP(2) ,IPTNST(2) ,IFTNER(2)
C
COMMON /MINELL/ BCLAT(2) ,BCLON(2) ,DBCLAT(2) ,DBCLON(2) ,
1 REFLAT(2) ,REFLON(2) ,AXR(2),
1 ORIENT(2) ,AXMAJ (2)
C
COMMON /TPOINT/ RELON(2.20) ,RELAT(2,20) ,DELON(2,20),
1 DELAT(2,20) ,XE(2,20) ,YE(2,20) ,ZE(2,20)
c , : : .
COMMON /ANGLES/ YPHIT,YPHIR.,PHITK, YPHIO
COMMON /REAL/  PIKJ,PKRJ, PAFQM, PWDRCK, YPWDRC, YPWDRX,
1 XOAKRJ , YOAKKT, ZOAKKJ , ROAKKJ
C

COMMON /SRCH/  DMGN(2.20)
I L T Ty e P T I ST T
c
C**%* 5> INITIALIZE PARAMETER
c
DO 10 I=1,NUMSAR
CALL REFCAL(I)
10 CONTINUE.

C*** 5> OUTER SUMMATION (OVER R) FOR ALL SERVICE AREAS <<

DO 1000 K = 1,NUMSAR
JNTP = NTPSA(K)
WRITE(6,705) NAMESA(K,l) ,DSLON(K)

C*#* >5> MIDDLE SUMMATION (OVER J) FOR ALL TEST POINTS IN AREA K <<

DO 900 J = 1,JNTP
CALL KPHI (K,J}
CALL XPH10 (K,K,J)
CALL KPWDRC (K,J}
CALL XPWFQ (FREQ(K),FREQ(K))
CALL XPOWER (K,K,dJ)

Chxx 35 CALCULATE INTERFERENCE POWER
SUMP=0.
DO 500 I = 1,NUMSAR

IF (I.EQ.RK) GO TO 500
CALL ZPHI (I,K,d)
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CALL XPHIO (I,K,J)
IF (IPOLAR(I).EQ.IFOLAR(K)) THEN
CALL ZPWDRC (I,K,J)
ELSE
CALL ZPWDRX (I,K,dJ)
END IF
CALL XPWFQ. (FREQ(K) ,FRBEQ(I))
CALL XPOWER (I,K,d)
COI = PRRJ-PIKJ
DMGN(K,J) = COI - QOISING
C
WRITE (6 ,706) DELON (K, J) ,DELAT(K,J) ,NAMESA(X,1) ,PIKJ, COI,DMGN(K,J)
500 CONTINUE i
C .
900 CONTINUE
1000 CONTINUE
Cc
705 FORHAT(//'IZX"TEST QUNIRY :',AG,SX"SATELLITE :'yF8-2,//,15X,
1'TEST POINT',10X,'INT. SAT.',2X,'INT. PWR',3X,'C/I (dB)',
25X, "MARGIN')
706 FORMAT(/,15X,F7.2,2X,F7.2,5X,26,4X,F8.2,4X,F6.2,6X,F6.2)

RETURN -
END

SUBROUTINE SEPAR

THIS IS TO FIND THE MINIMAL REQUIRED SATELLITE SPACING FOR TWO
SERVICE AREAS

L T T T T T T
IMPLICIT REAL*8(A-H,0-2Z)
CHARACTER*6 NAMESA

COMMON /CONSTS/ E,PI,RADIAN.DEGREE,GCR,ER, ERDB, EAP,
1 PFD, ALOGE, ALN10,COIMIN., QOISING

COMMON /PARAMS/ NUMSAR,NAMESA(2.2) ,NTPSA(2) ,CPHI0(2)

n O ooooan o0

(¢

COMMON /VECTOR/ DSLON(2) ,RSLON(2) ,X0(2) ,Y0(2),
1 ROAIKJ,
2 XOAC(2) (YOAC(2) ,ZOAC(2) ,ROAC(2)

COMMON /VARBLS/ FREQ(2) ,IPOLAR(2) ,GAINR(2) ,GAINT(2),
1 EIRP(2) ,IPTNST(2) ,IPTNER(2)

COMMON /MINELL/ BCLAT(2) ,BCLON(2) ,DBCLAT(2) ,DBCLON(2),
1 REFLAT(2) ,REFLON(2) ,AXR(2) ,
1 ORIENT (2) ,AXMAJ (2) -

COMMON /TPOINT/ RELON(2,20) ,RELAT(2,20) ,DELON(2,20),
1 DELAT(2,20) ,XE(2,20) ,YE(2.20) ,2E(2,20)

COMMON /ANGLES/ YPHIT,YPHIR, PHITK,YPHIO

COMMON / REAL/ PIKJ, PKKJ, PWFQM, PWDRCK, YPWDRC, YPWDRX,
1 XOAKKJ, YOAKKJ , 20AKKJ  ROAKKJ

218



non

aaan

ann

[eXeXzN2X2!

100

COMMON /SRCH/  DMGN(2,20)

KRRRRRRRRRRRERERNRRARARRRRRA RN A

NTP1 = NTPSA(l)
NTP2 = NTPSA(2)

SELECT WORST MARGIN AMONG ALL C/I VALUES AT ALL TEST POINTS

RMINLI = DMGN(1.1)

DO J=2,NTPl

RMIN1 = DMIN1(RMIN1,DMGN(1,J))
END DO

RMIN2 = DMGN(2,1)

DO J=2,NTP2 '

RMIN2 = DMIN1(RMIN2,DMGN(2.J))
END DO

NO SATELLITE SPACING REQQUIRED

IF(RMINl.GE,0..AND, RMIN2.GE.0.) THEN
WRITE(6,1)
FORMAT(//,11X,' *%** SATELLITE SEPARATION NOT NEEDED %#*%%!)
RETURN »

END IF

CALCULATE TOPOCENTRIC AND GEOCENTRIC ANGLE (SATELLITE SPACING)
FROM WORST TEST POINT
PRECAUSION MADE IF TWO SYSTEMS USE DIFFERENT RECEIVING PATTERNS

IF(IPTNER(1) .EQ. IPTNER(2) ) THEN
IF (RMIN1.LE.RMIN2) THEN
CALL MINMGN(1.J1,RMIN1) .
WRITE (6,2) RMIN1.NAMESA(1.2) ,DELON(1,J1),DELAT(1,J1)
CALL PTNANG(1,RMIN1,TOPOANG)
CALL GEOANG(2,1,J1,TOPOANG, DELTAS)
ELSE
CALL MINMGN(2,J2,RMIN2)
WRITE (6,2) RMIN2,NAMESA(2.2) ,DELON(2,J2) ,DELAT(2,J2)
CALL PTNANG(2,RMIN2,TOPOANG}
CALL GEOANG(1.2,J2,TOPOANG, DELTAS)
END IF
ELSE -
CALL MINMGN(1,J1,RMIN1)
WRITE (6,2) RMIN]l,NAMESA(1,2),DELON(1,31) ,DELAT(1,J1)
CALL PTNANG(1l,RMIN1,TOPOANGl)
CALL GEOANG(2,l1,J1,TOPOANGl,DELTAS1)
CALL MINMGN(2,J2,RMIN2)
WRITE (6,2) RMIN2,NAMESA(2,2) ,DELON(2,J2) ,DELAT(2,J2)
CALL PTNANG(2,RMIN2,TOPOANG2)
CALL GEOANG(1,2,J2,TOPOANG2 ,DELTAS2)
DELTAS = DMAX1(DELTAS],DELTAS2)
END IF
WRITE(6,100)DELTAS.DSLON(1) ,Q0ISING .
FORMAT (//,11X,'WORST MARGIN IS ',F6.2,' AT',A6,'(',
P7-2",',F702")q
FORMAT (/,11X,'SATELLITE SEPARATION : ',F5.2,' AT ',
F7.2,' FOR C/I ',F4.1,' GB')
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RETURN
END

SUBROUTINE MINMGN(KL.Jl,RMIN)

THIS IS TO FIND THE MINIMUM MARGIN AMONG THE TEST POINTS
IMPLICIT REAL*8(A~H,O-2) '
CHARACTER*G NAMESA

COMMON /CONSTS/ E, PI,RADIAN.DEGREE,GCR,ER, ERDB, EAP,
1l PFD, ALOGE, ALN10 , COIMIN, COISING

COMMON /PARAMS/ NUMSAR.NAMESA(2.2) (NTPSA(2) ,CPHIO(2)
COMMON /SRCH/  DMGN(2,20)

DO J=1 ,NTPSA (K1) .
IF(DMGN(K1,J) .LE. RMIN) THEN
Jl = J
RETURN
END IF

END DO

RETURN

END

SUBROUTINE PTNANG(K1,RMIN.TOPOANG)

THIS IS TO CALCULATE THE TOPOCENTRIC ANGLE (FROM GROUND
RECEIVING REFERENCE PATTERN) NECESSARY TO PROVIDE
THE DISCRIMINATION

IMPLICIT REAL*8(A-H,0-2)
CHARACTER*6 NAMESA

QOMMON /CONSTS/ E, PI,RADIAN.DEGREE, GCR, ER, ERDB, EAP,
1 PFD, ALOGE, ALN10, COIMIN, COISING

COMMON /PARAMS/ NUMSAR,NAMESA(2.,2) NTPSA(2) ,CPHI0(2)

COMMON /VARBLé/ FREQ(2) ,IPOLAR(2) ,GAINR(2) ,GAINT(2),
1 EIRP(2) ,IPINST(2) ,IFTNER(2)

COMMON /SRCH/  DMGN(2,20)

IF (IPOLAR(1l).NE.IFOLAR(2)) THEN

CALL XRPI'NER1 (PR, CPHIO(K1) ,GAINR(K1) ,RMIN)
GO T0 60

END IF

GO 10 (51,53,55,57,59) ,IPITNER(K])

CALL RPTNERIL (PR, CPHIO (K1) ,FREQ(K1) ,GAINR(K1) ,RMIN)
GO TO 60
CALL RPTNER2(PR.CPHIO (K1) ,FREQ(K1) ,GAINR(K1) ,RMIN)
GO TO 60
CALL RPTNER3 (PR.CPHIO (K1) ,FREQ(K1l) ,GAINR(K1) ,RMIN)
GO TO 60
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59
60

CALL RgNERAG (PR, CFHIO (K1) ,FREQ(K1) ,GAINR(K1) ,RMIN)
GO TO
CALL RPINERS (PR.,CPHIO(K1) ,FREQ(K1) ,GAINR(K1) ,RMIN)

TOPOANG = PR * DEGREE .

RETURN
=D

SUBROUTINE GEOANG(I,K,dJ,TOPOANG,DELTAS)

THIS IS TO ITERATE TO CALCULATE THE NECESSARY GEOCENTRIC
ANGLE FOR THE REQUIRED DISCRIMINATION

0O O 0000 O

20

1

1
2
1
1

1

IMPLICIT

REAL*8(A-H,0~2)

CHARACTER*6 NAMESA
COMMON /CONSTS/ E,PI,RADIAN,DEGREE,GCR,ER,ERDB, EAP,

PFD, ALOGE, ALN10,00IMIN, COISING

COMMON /PARAMS/ NUMSAR.NAMESA(2,2) ,NTPSA(2) ,CPHIO0(2)

COMMON /VECTOR/ DSLON(2) ,RSLON(2) ,X0(2) ,Y0(2),

ROAIKJ,
XOAC(2) ,YOAC(2) ,20AC(2) ,ROAC(2)

COMMON /MINELL/ BCLAT(2) ,BCLON(2) ,DBCLAT(2) ,DBCLON(2),

REFLAT(2) ,REFLON(2) ,AXR(2),
ORIENT (2) ,AXMAJ(2)

COMMON /TPOINT/ RELON(2,20) ,RELAT(2,20) ,DELON(2,20),

COMMON /
DSLONG

DELAT(2,20) ,XE(2,20) ,YE(2,20) ,2E(2,20)
SRCH/  DMGN(2,20)
= DSLON(I)

IF(DBCLON(K) .GE. DBCLON(I)) THEN
DELTA = 0.01

DSK

= DSLONG+TOPOANG/ 2.

DSI = DSLONG-TOPOANG/2.

ELSE

DELTA = -0.01

DSK

= DSLONG-TOPOANG/ 2.

DSI = DSLONG+TOPOANG/2.

END IF

DSK
DSI
RSK
RSI
X0AK =
YOAK =
ZOAK =
ROAK =

=

X0AI
YOAI
Z0Al
ROAI
ARG =

DSK~DELTA
DSI+DELTA
DSK*RADIAN
DSI*RADIAN
XE (K, J) -GCR*DCOS ( RSK)
YE (K, J) =GCR*DSIN(RSK)
ZE(K,dJ)
DSQRT (XOAK*XOAK+YOAK*YOAK+ZOAK*Z OAK)
XE (K, J) -GCR*DCOS (RSI)
YE (K, J) =GCR*DSIN(RSI)
ZE(K,J) bt
DSQRT (XOAI*XOAI+YOAI*YOAI+ZOAI*ZOAI)
(XOAK*XOAI+YOAK*YOAI+ZOAK*Z0AI)/ (ROAK*ROAI)
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TOPO = DACOS(ARG) *DEGREE
IF(TOPO. GT. TOPOANG) GOTO 20

DELTAS = DABS(DSK-DSI)+0.02
RETURN
END

SUBROUTINE RPTNER1 (PR, PO.,F,G,DISC)

FSS EARTH RECEIVER REFERENCE PATTERN FROM CCIR REPORT 391-4
ANTENNA DIAMETER 3 METERS, MAIN LOBE NOT GAUSSIAN

IMPLICIT REAL*8(A-H,0-2)

COMMON /CONSTS/ E, PI,RADIAN, DEGREE, GCR, ER, ERDB, EAP,
1 PFD, ALOGE, ALN10, COIMIN. COISING

D= 3.
WAVEL = 300./F
Xl = D/WAVEL

IF (DISC.GE.(Gl-G)) GO TO 50
IF (DISC.GE.(-G-~10.)) GO TO 60

PR = PI
GO 0 80

PR = RADIAN * DSQRT(-DISC*400./ (X1*X1))
GO T0 80 -

PR = RADIAN*1(Q.**(-(DISC+G-32.)/25.)

RETURN
END

SUBROUTINE RPTNER2(PR,PO,F,G,DISC)

FSS EARTH RECEIVER PATTERN FROM CCIR REPORT 391-4
MAIN LOBE GAUSSIAN, ANTENNA DIAMETER 3 METERS.
MODIFIED FOR NON US COUNTRIES )

IMPLICIT REAL*8(A~H,O~2)

COMMON /CONSTS/ E, PI,RADIAN.DEGREE,GCR,ER, ERDB, EAP,
1 PFD, ALOGE, ALN) 0, COIMIN, QOISING

IF (DISC.GE.'3.) THEN

PR = P0 * DSQRT(-DISC/12.)

GO TO 80

ELSE IF (DISC.LE.-(G+10.)) THEN
PR = PI

GO TO 80

END IF

PRl = PQ * DSQRT(-DISC/12.)
PRZ = RADIAN * 100'*("(G"DISC‘320)/25.)
PR = DMAX1(PR1,PR2)

RETURN
END
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SUBROUTINE RPTNER3 (PR, P0,F,G,DISC)

FSS EARTH RECEIVER PATTERN FROM CCIR REPORT 391-4
MAIN LOBE GAUSSIAN, ANTENNA DIAMETFR 4.5 METERS,
MODIFIED FOR US ONLY , :

IMPLICIT REAL*8(A-H,O0~32)

COMMON /CONSTS/ E,PI,RADIAN.DEGREE,GCR, ER, ERDB, EAP,
1 PFD, ALOGE, ALN1 0, COIMIN, COISING

PR = P0 * DSQRT(-DISC/12.)

GO T0 80

ELSE IF (DISC.LE.-(G+10.)) THEN
PR = PI

GO TO 80

END IF

PRl = PO * DSQRT(-DISC/12.)
PR2 = RADIAN * 10.%%(~(GFDISC~29.)/25.)
PR = DMAX1(PR1l,PR2)

RETURN
END

SUBROUTINE RPTNER4 (PR, P0,F,G,DISC)

FSS EARTH RECEIVER PATTERN FROM CCIR REPORT 391-4
MAIN LOBE GAUSSIAN, ANTENNA DIAMETER 4.5 METERS,
MODIFIED FOR US ONLY

IMPLICIT REAL*8(A-H,0-2)

COMMON /CONSTS/ E,PI,RADIAN.DEGREE,GCR,ER, ERDB, EAP,
1 PFD, ALOGE, ALN1 0, COIMIN, QOISING

IF (DISC.GE.-12.) THEN

PR = PQ * DSQRT(-DISC/12.)

GO TO 80

ELSE IF (DISC.LE.-(G+10.)) THEN
PR = PI

GO T0 80

END IF

PR1 = PQ * DSQRT(-DISC/12.)
PR2 = RADIAN * 10.**(-(G+DISC-29-)/25.)
PR = DMAX1(PR1,PR2)

RETURN
END

SUBROUTINE RPTNERS (PR, P0,F,G,DISC)

BSS PATTERN, RARC-83.CPM, P.115 CURVE-B,
ANTENNA DIAMETER 1 METER

IMPLICIT REAL*8(A~H,O0-2)
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60

70

80
100

COMMON /CONSTS/ E,PIl,RADIAN.DEGREE,GCR, ER, ERDB, EAP,
1

PFD,ALOGE, ALN10,00IMIN, QOISING

IF (D1SC.GE.-10.6032) THEN
PR = P0 * DSQRT(-PISC/12.)
GO T0 80

ELSE IF (DISC.LE.-43.2) THEN
PR = PI

GO T0 80

END IF

PR = PO * 10.**(-(DISC+11.3)/25.)

RETURN
END

SUBROUTINE XRPINER1(PR,P0,G,DISC)
CROSS POLARIZATION RECEIVER PATTERN
IMPLICIT REAL*8(A-H,0-2)
X = PR/PO

IF (DISC.GE.-20.) GO T0
IF (DISC.GE.-30.) GO T0
IF (DISC.GE.~43.2) GO TO

PR = PI
GO TO 100

60
70
80

PR = 0.
GO TO 100

PR = 10.**(-(17.3+DISC)/25.) * PO
GO TO 100

FR = 10.%*%(~(11.3+DISC)/25.) * PO

RETURN
END
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APPENDIX E
FORMULATIONS OF MIXED-INTEGER AND LINEAR PROGRAMS

A. ALGORITHMS

A mixed integer program (MIP) can be solved by a branch-and-bound
algorithm [66]. In such an algorithm, a linear objective function is to
be optimized; the constraints of the problem are expressed as linear
equalities or inequalities. Some, but not necessarily all, of the
decision variables are integers. The set of feasible solutions that
satisfy the conétraints constitutes the feasible region. For our
purpose, we can assume that the integer variables are bounded. Because
the integer variables have a finite.pumber of feasible values, the
number of feasible solutions is finite; therefore an enumerative
approach can be used to theoretically test all the feasible solutions in
order to find the globally optimal solution(s).

To perform the enumeration by the branch-and-bound algorithm, the
set of feasible solutions can be structured as a tree, and every branch
represents one possible value of a particular integer variable. For the
branch-and-bound concept, "branching" means testing a path that leads to
a subset of feasible solutions, "bounding" means calculating the upper
and lower bounds of the objective function value associated with the
tested path. In the enumerative ﬁrocess, the upper and lower bounds of

“the objective function value are ﬁpdated whenever more favorable values
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are found in the branch-and-bound process. In the branch-and-bound
process a path is tested against the updated upper and lower bounds: it
finds a more favorable upper or lower bound of the objective function
value and updates it, or it terminates teéting that path and all its
associated feasible solutions once it determines that this path can not
yield a more favorable upper or lower bound of the objective function
value. The process terminates when the updated upper and lower bounds
are equal, or when it determines that an optimal solution does not
exist., All the feasible solutions will have been considered imp]icit1y,
and hopefully very few will have been explicitly examined. A globally
optimal solution is guaranteed, if one exists, by this process.

The 1inear program (LP) is commonly solved by the simplex method
[58]. In this program a linear objective function is to be optimized;
the constraints of the problem are expressed as linear equalities or
inequalities. All the decision variables are continuous variables, and
they must have nonnegative values. The set of feasible solutions
constitutes a feasible region that is a convex set; its boundaries are
the hyperplanes representing the linear constraints and nonnegativity
restrictions., Because the objective function and the constraints are
all linear equations, a locally optimal solution is always at a vertex
which is the intersection of the bounding hyperplanes. The simplex
method examines a sequence of locally optimal feasible solutions of the
linear program. Each solution examined shares at least one boundary

with the previous one, and has an objective function value no less
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favorable than that of the previous solution. The process terminates
when it is determined that no improved solution can be found.

The simplex method can be modified to handle nonlinear
complementarity constraints through the use of restricted basis entry:
when a complementary variable enters the basis at a non-zero value, its
complement is forced to be non-basic and cannot enter the basis (except
when the variable leaves). The effect of this modification is that the
continuous feasible region is divided into many distinct subregions.
Although the simplex method can still work, it only guarantees a local,
but not necessarily a global, optimum, provided a feasible solution is
found.

As the number of satellites increases, the computational time
needed to find a solution typically increases exponentially for the MIP
technique, but only polynomially for the restricted basis LP (RBLP)
technique. Therefore, the MIP technique may take a prohibitively long
time to solve a large problem; and the RBLP tethnique becomes an
acceptable alternative, even though approximate, rather than exact,

solutions are found.

B. PARAMETERS AND VARIABLES

The coordinate system here is in the reverse longitude direction of
the common global system, hence the longitude Va]ues increase as one
moves in the westerly direction. Or simply speaking, the new coordinate
system uses the magnitude of west Tongitude; in this way, there are only

non-negative variables in both of the new formulations.
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The parameters in the formulations are:

Nj(Ej) : westernmost (easternmost) feasible location for satellite
Jj in degrees west,

d,
J

ASij : required sate]lite.separation between satellites i and j,

preferred location for satellite j relative to Ej,

1, if satellite i is west of j,
X

1j 0, otherwise,

m : number of satellites.

E = m}n {Ej}’
W= mgx {wj}.

The decision variables are:

xj : relative location of satellite j with respect to Ej’
pij("ij) : degrees west(east) of satellite i that satellite j is
Tocated,
xj+(xj') : degrees west(east) of its preferred location that satellite
j is located,

Y : length of the occupied orbital arc.
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Note that the nonnegative variable p1j alone can not represent the
separation between satellites i and j, and another nonnegative variable,
"ij’ is needed when i is east of j. Therefore when satellite i is west
of j, the value of pij is positive, and "ij should be set equal to zero;
when satellite i is east of j, n1.j is positive and pij should be zero.
Also note from the definition of xj, the coordinate system for every

satellite is re-originated at the eastern-most bound, Ej.

C. FORMULATION I

If the optimal criterion is to minimize the total amount of orbital

arc occupied by the satellites to be synthesized, the MIP formulation

is
Minimize f = Y.‘ (E.1)

subject to
Xs = xj - pij + "1j = 0, for 1 < j (E.2)
Pij * Myj 2 84 50 for 1 < (E.3)
xj < wj - Ej’ for all j (E.4)
Pyg * My - Y<O, for i <j (E.5)
Xy > 0, for all j (E.6)
Pyjs My 2 0, for i < j (E.7)
Y >0, (E.8)
(E = W)-xij *Pyy < 0, for 1 < j (E.9)
(W - E)'xij + U < (W -E), for 1 < j (E.10)
X5 & {0,1}, for 1 < J (E.11)
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Equations (E.9) and (E.10) guarantee that

p.. <0, orn,. < 0. (E.12)

ij ij
Together with Equation (E.7), one has
Pij = 0, or Ny = 0. (E.13)

If the optimal solution can be found, the optimal values of the
variables xj's specify the optimal orbital locations for the satellites.
Otherwise, the code will tell the user that a feasible solution does not
exist.

It is possible that the objective is only to have a feasible
solution that satisfies the C/I protection requirements, as described in
Chapter IV. Then one could reformulate the objective function of
Equatibn (E.1) and ignore the variable Y, Equations (E.5) and (E.8).

The calculation process will either stop when it finds a feasible
solution, or determines that none exists.

Also, the same formulation (Equations (E.1) through (E.11)) is
still applicable if the system requirement is to have the maximum C/I
results for all the service areas, and there is no interest in the
conservation of the orbit resource. 0né’tou1d progressively adjust the
C/I protection requirement and repeat the AS and MIP calculations until

the resulting scenario uses up the whole feasible arc. This result is

the scenario that offers the maximum C/I.
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D. FORMULATION II

For the same objective as stated above, the LP formulation with the

nonlinear side constraints is

Minimize f = Y (E.14)
subject to
Xy = xj - pij + nij =0, for 1 < j (E.15)
pij + "1j > Asij’ for i < j (E.16)
X; < wj - Ej, | for all j (E.17)
pij + "1j -Y<0, for i < j " (E.18)
X; >0, for all j (E.19)
Pijs "1j > 0, for i < j (E.20)
Y >0, : (E.21)
pij‘"ij =0, for 1 < j (E.22)

The solution to this problem is an orbital assignment.

In this formulation, Equation (E.22) is not a linear equation,
thus the simplex method needs to be modified through the use of
restricted basis entry: the variable Pi; can not be a basic variable if
"ij is a basic variable, and vice versa. Although the simplex method
can still work, it only guarantees a locally optimal solution, provided

a feasible solution is found.
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E. FORMULATION III

It is possible that every administration has a preferred satellite
location and hopes the actual assigned location will be near the
preferred location. Solutions become less and less attractive as ﬁhe
actual location becomes further and further removed from the preferred
location. A suitable objective is to minimize the sum of the absolute
deviations of the satellites' actual locations from their preferred

locations, i.e., to minimize the total deviation. The MIP formulation

is
Minimize f = g (x5% + x57) (E.23)
subject to
Xj = xj* + x57 = dj, for all j (E.24)
Xi = Xj - Pij + njj = 0, for 1 ¢ j (E.25)
Pij + Nij > ASij, for i < - (E.26)
xj < W5 - Ej, for all j (E.27)
Xj, Xj*s x5= > 0, for all j (E.28)
Pijs Nij > 0, for 1 < j (E.29)
(E - W) « xjj + pij < 0, for 1 < j (E.30)
(W=E) < xjj +njj< (W=-E), for i<j (E.31)
xijj € (0,1}, for 1 < j (E.32)

The optimal values of the variables xj's prescribe optimal locations for
the satellites which minimize the total deviation of the prescribed

locations from the preferred locations.
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F. FORMULATION IV

For the same objective, the LP formulation is shown below. As

before, nonlinear side constraints are to be enforced.

Minimize f = ? (x5% + x57) (E.33)
subject to
Xj - xj* + x5° = dj, for all j (E.34)
X{ = Xj = P{j * njj = 0, for 1 < j (E.35)
Pij + Nij > 8Sij,- for 1 < j (E.36)
Xj < Wj - Ejs for all j (E.37)
Xjs Xj+, xj= > 0, for all j (E.38)
Pijs Nij > 0, for 1 < (E.39)
Pij-* nij = 0, for i < j (E.40)

An approximate solution can be found by solving this problem with the
simplex method with restricted basis entry, provided a feasible solution

is found.

G. COMPARISON BETWEEN FORMULATIONS III AND IV

Solutions were obtained when a synthesis test problem was solved
using formulations III and IV, The test problem includes six
administrations in South America: Argentina, Bolivia, Chile, Paraguay,
Peru, Uruguay (denoted as ARG, BOL, CHL, PRG, PRU, and URG
respectively). Three sets of preferred satellite locations are

considered and listed in Table E.l.
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country
case 1
case 2

case 3

AS
ARG
BOL
CHL
PRG
PRU
URG

Table E.1

Satellite preferred locations of six

ARG
95
110
87.5

administrations
BOL CHL
95 95
110 110
92.5 97.5
Table E,.2

PRG
95
110
87.5

PRU
95
110
102.

AS parameters of six administrations

ARG BOL
* 4.17

CHL

4.19
4,57

*

234

PRG
4.32
4.04
2.00

%*

PRU
1.41
4.26
3.04
1.10

*

5

URG
4,14
0.94
1.59
2.46
0.37

URG
95
110

82.5



The AS matrix for these six countries is in Table E.2. The
resulting assignments, together with the total occupied arc Y, the total
deviation Z of the prescribed locations from the preferred locations,
and the C.P.U, times in seconds are listed in Table E.3.

It is clear that the solutions obtained by solving the MIP
formulation are better than those found by solving the LP formulation.
The MIP solutions could never be worse than the corresponding LP
solutions, but more computer time is required to solve the MIP

formulation.
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satellite
ARG
BOL
CHL
PRG
PRU
URG

deviation
arc

cpu(sec)®

Tqb1e E.3

Mixed-integer and linear program results

case 1
MIP LP
88.68 105.74
99,57 101.57
95.00 97.00
93.00 95.00
91.06 = 93.06
96.59 92.54
18.42 23.71
10.89 13.20
25,23 1.31

* IBM-3081 computer

case 2

MIP LP
101.35 110.00
97.18 104.33
105.54 99.76
107.54 97.76
109.63 108.59
110.00 105.86
28.76  33.69
12.82 12.24
13.39 1.30
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case 3

MIP LP
88.76 101.26
92,93 92,50
97.50 97.07
84.44 87.50
102.50 102.67
81.98 82.50

5.27 14,36
20,52 20.17

2.86 1.25



APPENDIX F

C/1 CALCULATION OF MIXED INTEGER PROGRAM RESULT

COUNTRY SATELLITE (LON.) FREQUENCY (MHz)
ARG -88.68 AZR3 .88
2oL -99.57 4003 .80
CHL -95.9¢ 40808
FRG ~93.890 4003 .88
PFRU -91.96 4373.88
LG ~96.59 40C3 .08

TEST COUNTRY : ARG SATELLITE ¢+ =-35.€8.

TEST POINT INT. SAT. C/I (dB) MARGIN (dB)
LON. LAT,
-65.28 - =-21.80 BOLASY 49.83 19.83
-€%.20 ~-21.808 CHLA95 37.25 7.25
-65.28 ~-21.89 PRGEI3 39.39 9.39
-65.2¢ -21.8¢0 PRUAS1 41.47 -11.47
-66.20 -21.88 URGA96 68.92 38.02
-63.28 -21.8¢0 TOTAL 33.39 8.39
-€2.84 -22.82 BOLA99 41.37 11.37
-62.89 ~22.88 CHLASS §1.35 21.35
-62.80 -22.89 PRGA93 32.43 2.43
-€2.808 ~22.83 PRUZ91 $3.86 23.86
-62.80 -22.00 URGR96 67.24 37.24
-62.89 -22.89 TOTAL 31.48 6.48
-53.88 -27.28 BOLE99 - 653.85 23.85
-53.80 ~27.28 CHLE95 63.14 33.14
-53.88 -27.28 PRGA93 31.863 1.53
-53.80 -27.20 PRUSI] 52.74 22.74
-53.88 -27.20 URGH96 49.37 19.37
-52.88 -27.28 TOTAL 31.39 6.39
-56.78 -36.99 BOLZ99 69.73 39.73
-85.7¢0 -36.98 CHLA9S5 55.67 25.57
-86.70 -36.99 PRGA93 5§9.61 29.61
-85.78 -36.90 PRUZS1 53.45 23.45-
-586.78 =-36.99 URGPA96 41.77 11.77
-556.78 -36.99 TOTAL 41.25 16.25
-63.80 ~54.78 BOLA99 72.73 42.73
-53.89  -54,72 CHL2SS 42.91 12.81
-63.80 -54.78 PRGAS3 67.29 37.29
-63.80 -54.789 PRUZ91 52.85 22.85
-63.80 -54.78 URGZ96 74.65 44 .65
~62.88 =-54.72 TOTAL 41.65 16.65
~68.30 -54.80 BOL@99 73.38 43.38
-68.3# -54.80 CHLA95 39.26 9.26
-68.34 -54.89 PRGA93 63.21 38.21
-63.38 -54.84 PRUZ91 53.16 23.16
~63.38 -54.89 URGES6 75.74 45.74
-68.38 -54.89 TOTAL 39.08 14.28
=73.28 -54.99 BOLP99 73.25 43.25
-73.29 -54.99 CHLP95 35.44 5.44
-73.29 -58.99 PRGZ93 68.41 38.41
=-72.20 -58.99 PRUGIL 52.91 22.91
=-73.28 -54.99 URGE96 75.82 45.82
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-73.29 -58.99
-71.49 =39.99
-71.49 ~39.909
-71.48 -39.09
-71.48 -39.93
~71.44 ~3%.00
-71.49 -39.890
-717.58 =31.49
~7..58 -31.490
~72.50 =-31.45
-7...50 -31.49
-73.508 -31.49
-73.58 -31.49
-68.68 ~24.8¢
-63.60 -24.80
-63.60 -24.89
~-63.64 -24.84
-63.60 -24.89
~63.64 ~24.82
TEST COUNTRY : BOL
TEST POINT
-65.90 -12.28
-65.09 ~-12.24
-65.99 ~12.249
-65.00 -12.29
-65.90 -12.28
-65.09 -12.29
-65.5¢ -9.8¢0
-65.59 -9.89
-65,5#% -9.89
-65.58 -9.80
-65.50 -9.89"
-65.58 -9.80
-69.09 ~11.20
-69.09 -11.29
~-69.09 -11.29
«69.09 -11.29
-69.08 -11.20
-69.92 -11.28
~-62.09 -16.18
-60.908 -16.12
~-60.09 -16.19
~60.99 -16.14
~-64J.00 -16.19
-60.09 -16.19
-57.58 ~-18.99
~57.58 ~-18.99
-57.59 ~-18.08
-57.59 -18.90
~57.59 -18.908
-57.59 -18.09

TOTAL

BOLA99
CHLA9S
PRGE93
PRUGI1
URGHI6

TOTAL

BOL@39
CHL@95
PRGEI3
PRUGI1
URG@96

TOTAL

BOL@99
CHLA9S
PRGQ93
PRUA91
URGO96

TOTAL

SATELLITE 1

INT. SAT.
ARGZ88
CHL@95
P" 5093
PRUGI1
URGA96
TOTAL

ARGg88
CHLA95
PRGRAI3
PRUZ91
URGAI6

TOTAL

ARGP88
CHLE9S
PRGR93
PRUS91
URGP9I6

TOTAL

ARGO88
CHL@9S
PRGPA93
PRUZ91
URGEI6

TOTAL

ARG@88
CHL@9S
PRGA93
PRUZ91
URGP96

TOTAL
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35.386

79.45
36.45
65.76
54.18
71.36
35.38

78.35
35.18
61.53
54..Y8
63.29
35.93

49.99
35.23
§9.37
53.21
67.38
34.96

-99.57
C/1 (dB)

79.32
61.01
64.35
45.32
66.08
45.11

69.00
59.68
63.52
42.75
66.37
42.69

69.81
64.49
64.34
38.97
66.93
38.92

47.93
64.57
43.69
67.54
62.26
42.18

41.71
§9.57
38.56
66.53
59.66
36.89

19.36

40.45

5.45
35.76
24.13
41.86
19.38

49.25

5.18
31.63
24.78
38.29
19.983

19.00
5.23
29.37

1 23.21

37.38
9.96

MARGIN

19.32
31.91
34.85
15.32
36.48
2g.11

39.99
29.68
33.52
12.75
36.37
17.69

39.81
39.49
34.34

8.97
36.93
13.92

17.93
34.57
13.69
37.54
32.26
17.18

11.71
29.57

8.56
36.83
29.66
11.89

{dB)



-67.59 -22.74 ARGO88 41.44 11.44

~67 .59 -22.72 CHLO95 31.21 1.91
-67.50 -22.79 PRGOI3 49,78 19.35
-67.5¢ -22.79 PRUZIL 54.71 24.71
~67 .59 -22.7J URGO96 57.38 29..4
-€7.54@ -22.79 TOTAL 31.35 6.35

TEST COUNTRY : CHL SATELLITE ¢« -95.29

TEST POINT INT. SAT. C/I (dB) MARGIN (dB)
~62.50 -17.50 ARGQ88 62.92 32.92
~69.59 -17.59 80LA99 32.58 g.58
~63.50 =17.59 PRGASY3 50.44 20.44
-69.59 -17.59 PRUZ91 39.53 #.53
~63.59 -17.58 URCOSE 55.17 25.17
-69.58 ~17.59 TOTAL 27.52 2.52
-67.18 -23.99 ARGO88 35.33 5.33
-67.19 -23.089 BOLA99 32.18 2.18
-67.18 -23.00 PRGRI3 35.49 $.49
-67.1% ~23.04 PRUZI1 48.86 18.86
~67.19 ~23.00 URGOI96 49.75 19.75
-€7.19 -23.2% TOTAL 29.19 4.1%
~-79.08 -34.20 ARGQ88 35.39 5.39
-73.80 -34.29 BOL299 61.16 31.18
-70.09 -34.249 PRGA93 54.61 24.61
-79.08 -34.29 PRUAI1 59.79 29.79
-73.09 -34.29 URGA96 51.39 21.34
-70.28 ~34.29 TOTAL 35.29 19.20
-71.78 ~43.24 ARGO88 35.24 5.24
=71.79 ~43.29 BOLO99 62.26 32.26
-71.78 ~-43.28 PRGZ93 58.53 28.53
-71.79 -43.20 PRUAI1 89.99 29.99
=71.79 -43.29 URGR96 56.99 26.900
-71.79 -43.29 TOTAL 35.158 12.15
-72.84 ~51.39 ARGA88 34.91 - 4.91
-72.88 -51.390 BOL299 63.54 33.54
-72.88 -51.39 PRGA93 59.73 29.73
-72.88 -51.38 PRUZS1 58.11 28.11
-72.89 -51.38 URGA96 58.19 28.19
-72.89 ~51.39 TOTAL 34.85 9.85
-75.79 ~-46.890 ARGQ88 36.11 6.11
=-75.74 ~46.84 8OLA99 63.76 33.76
-75.78 -46.80 PRGA93 64.28 3%.28
-75.74 ~-46.89 PRUZ91 58.44 28.44
=-75.78 -46.88 URGA9E6 58.50 28.59
-75.78 ~-46.80 TOTAL 36.04 11.24
-74.89 -28.99 ARGO88 41.43 11.43
~74.0% -28.99 BOLA99 62.06 32.96
=-74.00 -28.99 PRGAI3 §5.97 25.97
~74.00 -28.99 PRUA91 68.69 30.69
-74.09 -28.99 URGP96 55.35 25.35
-74.249 ~28.99 TOTAL 41.83 16.43
-790.44 ~-18.3#8 ARGQ88 63.43 33.43
~70.48 -18.38 BOLA9S 31.39 1.89
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~70.40
-73.49
-7d.48
~73.48

-18.30
~-18.39
-18.39
-18.39

TEST COUNTRY : PRG

TEST POINT
-57.69 -25.38
-57.60 -25,39
~57.68 -25.39
-57.68 -25.39
~57.60 -25.30
-57.68 -25.39
-58.68 -27.39
-58.62 -27.349
-58.60 -27.39
-58.60 -27.348
-58.60 -27.30
~58.60 -27.39
~56.29 -27 .29
-56.20 -27.28
-56.20 -27.29
~56.29 -27.29
-56.20 -27.29
=-£6.29 =27.29
~54.749 -25.58
-84.79 -25.58
-54.78 -25.59
-54.79 -25.59
-54.79 -25.50
~54.70 -25.59
-54.29 ~24.198
-54 .20 ~24.18
-54.29 -24.19
-54.29 -24.19
-54.29 -24.19
=54 .29 -24.149
-58.18 -29.28
-58.19 -20.29
-58.18 -28.29
-58.19 ~20.20
-58.19 -28.29
~-58.19% ~29.29
-59.109 -19.39
-59.190 -19.39
-59.10 -19.34
~-59.1% -19.39
-59.10 -19.39
-59.19 -19.39
-62.29 -29.50
-62.20 ~20.59
-62.20 -20.58
-62.20 -28.50

PRGO93
PRUZI91
URGZ96

TOTAL

SATELLITE 3

INT. SAT.
ARGZ8S8
BOL299
CHL@95
PRUG91
URGR96
TOTAL

ARGZ88
BOLA99
CHLA95
PRUA91
URGPI6

TOTAL

ARG@88
BOLA9S
CHLA95
PRUZ91
URGA96

TOTAL

ARGO8S8
BOLO99
CHLO95
PRUGI1
URGZ96

TOTAL

ARGZBS8
BOL299
CHLA95
PRUZ91
URGP96

TOTAL

ARGQ8S
BOLO99
CHL@95
PRUZI1
URGD96

TOTAL

ARGO88
BOLO99
CHLA95
PRUAI1
URGA96

TOTAL

ARGOSS
BOLJ99
CHL@95
PRU291
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57.94
31.437
$5.51
28.37

-93.39

C/1 (dB)
32.18
49.41
§2.58
52.47
46.66
31.31

39.87
43.33
54.95
50.84
35.28
28.78

31.192
45.13
51.31
51.24
37.5#9
30.008

31.86
43.23
51.46
51.34
49.09
31.39

31.72
41.60
51.93
54.91
§7.11
31.19

32.21
36.69
51.87
51.75
6@.68
3g.81

31.99
35.81
51.46
51.35
61.11
39.41

31.81
35.22
'45.98
51.45

27.94
1.87
25.51
3.37

MARGIN
2.18
18.41
22.38
22.47
16.66
6.31

R.87
13.33
24.95
20.84

5.20

3.79

1.19
15.13
21.31
21.248

7.58

5.99

1.86
13.23
21.46
21.34
19.99

6.39

1.72
11.68
21.93
28.91
27.11

6.19

2.21
6.89
21.87
21.75
39.64
5.81

1.99
5.81
21.46
21.35
31.11
5.41

1.81
§.22
15.99
21.45

(dB)



~62.20
-62.29

-62.79
-62.78
-62.78
~62.78
-62.79
-62.78

-58.79
-68.78
-58.79
-58.79
-53.78
~-58.79

-20.58
-20.59

-22.20
~22.24
-22.28
-22.28
-22.29
-22.20

-27.29
-27. 29
=-27.20
=27 .28
-27.29
=-27.29

TEST COUNTRY : PRU

TEST POINT
~78 .49 -18.39
~74.49 -18.39
~-70.49 -18.3¢
~79.48 -18.34
~79 .40 -18,39
-70.48 -18.30
-69.499 -12.39
-69.09 -12.38
-69 .09 -12.39
~69.00 -12.39
-69.00 -12.39
-69.99 -12.39
-79.58 -9.40
-78.58 =-9.402
-70.58 -9.49
-78.50 -9.49
-70.58 -9.49
-79.58 -9.49
-74.08 -7.68
-74.99 -7.64
~74.08 -7.64
~-74.09 -7.68
-74.889 -7.68
-74.28 ~7.68
-79.08 -2.79
-79.88 -2.79
-79.088 -2.79
~79.29 -2.78
~79.849 -2.78
~72.29 -2.79
~75.20 g.09
-75.28 B.809
~75.29 2.28
~75.29 2.99
~75.20 9.99
-75.20 2.83

URGA96
TOTAL

ARGOSS
BOLASS
CHLZ95
PRUGIL
URGAI6

TOTAL

ARGO838
BOLA99
CHLO95
PRUGY1
URGO96

TOTAL

SATELLITE

INT. SAT.
ARGO88
BOLA99
CHLO9%
PRGA93
URGAI6
TOTAL

ARGAB8
BOLPA99
CHLOA95
PRGOA93
URGA96

TOTAL

ARGO88
BOL299
CHLA95
PRGA93
URGAS6

TOTAL

ARGO88
BOLO299
CHL@95
PRGA93
URGZ96

TOTAL

ARGO88
BOLA99
CHLA9S
PRGE93
URGA96

TOTAL

ARGP88
BOLO99
CHL@95
PRGA93
URGOAI6

TOTAL
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60.97 20.97
30.82 5.2
31.93 1.03
35.58 5.59
38.46 8.46
51.18 21.18
57.93 27.93
29.13 4.13
39.12 g.12
43.91 13.91
51.02 21.92,
59.99 29.99
35.62 5.62
28.82 3.82
-91.96
€/1 (dB) MARGIN
52.44 22.44
38.18 8.18
32.25 9.25
58.24 20.24
68.67 38.67
29.54 4.54
53.36 23.36
38.54 8.54
48.79 18.79
51.15 21.15
73.24 43.84
37.81 12.81
54.19 24,18
41.74 11.74
59.68 29.68
53.03 23.03
75.81 45,81
41.14 16.14
54.91 24.91
57.52 27.52
62.49 39.49
56.79 26.79
78.36 48.36
50.97 25.97
52.37 22.37
66.39 36,38
57.95 27.95
54.98 24.98
77.12 47.12
49.65 24.65
54.94 24.94
66.68 36.68
58.34 28.34
58.41 28,41
77.58 47.58
51.97 26.97

(dB)



-87.39
-80.39
-8J.39
-CY.39
-8.,.3%9
-83.39

-81.39
-81.39
~-81.39
-81.34
-81.3%9
-81.38

-81.20
~81.29
-81.29
-81.29
-81.20
-81.29

-76.19
-76.18
~76.18
-76. 1”
-76.1%
-76.18

~3.42
-3.449
-3.49
-3.40
=3.49
=3.49

-4.49
~4.49
-4.49
=-4.40
-4.49
~-4.40

-6.19
-6.10
-6.10
-6.12
-6' lz
-6.19

=-13.49
-13.49
-13.40
-13.40
-13.449
=-13.4%

TEST COUNTRY : URG

TEST POINT
-56.290 ~34.99
-56.29 -34.92
-56.29 ~34.99
~56.29 -34,.99
-56,.20 -34.998
-56.28 ~-34.990
-54.99 ~35.00
-54.90 -35.09
-54.90 -35.00
-54.99 ~-35.089
-84.99 -35.90
-54.90 -35.00
~-63.58 ~34.08
-63.598 ~-34.00
-53.59 -34.00
-53.59 -34.009
~-83.59 -34.908
-53.59 -34.08
-63.29 -32.780
~53.20 ~-32.78
-63.290 -32.78
-53.29 -32.72
-53.29 -32.78
-53.20 -32.74
~55.64 -39.84@

ARGP88
BOLZ99
CHLZ95
PRGQ93
URGA96
- TOTAL

ARGQ88
BOL@A99
CHL@95
PRGA93
URGOA96

TOTAL

ARGO88
BOL@99
CHLA95
PRGHI3
URGAI6

TOTAL

ARGA88
BOLP99
CHL@9S
PRGII3
URGA96

TOTAL

SATELLITE :

INT. SAT.
ARGQ88
BOLS99
CHLA9S
PRGOAI93
PRUZ91L
TOTAL

ARGQA88
BOL299
CHLA9S
PRGO93
PRUQ91

TOTAL

ARGPSS
BOLY99
CHL@95
PRGOI3
PRUGI1

TOTAL

ARGA88
80LA99
CHLO95
PRG@93
PRUZY1

TOTAL

ARG@S88
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55.34 25.84
66.83 36.83
58.49 28.49
59.5#4 29.50
77.55 47 .65
52.78 27.749
85.54 25.54
66.47 36.47
58.123 28.13
§9.34 29.34
77.29 47.29
52.41 27.41
55.26 25.26
66.79 36.79
58.45 28.45
59.17 29.17
77.61 47.61
52.33 27.33
54.34 24.34
52.75 22.75
36.94 6.94
55.68 25.68
75.66 45.66
36.69 11.69
-96.59
C/1 (dB) MARGIN
38.13 8.13
55.95 25.95
49.15 19.15
57.89 27.89
62.99 32.99
37.68 12.68
38.79 8.79
56.02 26.02
49.21 - 19.21
57.96 27.96
62.96 32,96
38.19 13.19
39.49 9.49
56.28 26.28
49.47 19.47
51.23 21.23
63.22 33.22
38.73 13.73
39.27 9.27
55.99 25.99
49.18 19.18
44.41 14.41
62.93 32.93
37.71 12.71
38.43 8.43

(dB)



-53.68
-55.68
-55.60
-£5.60
-55.69

-£6.99
-£6.99
-56,90
-96.99
-£6.98
-56.99

-57.68
-57.60
-57.648
-57.68
-57.60
~57.68

-58.29
~-58.29
-E3.24
-58.20
-58.29
-58.29

-58.440
-58.49
~-58.40
-58.40
-58.40
-58.449

-87.99
-57.99
-57.99
-57.99
-57.99
~57.90

-39.89
-39.80
~-39.88
-39.89
-39.89

-39.198
-30.18
-39.19
-38.19
-39.10
-34.19

-39.20
-30.28
-30.28
-39.29
-30.28
-30.29

-31.99

¢ =31,99

-31.99
-31.90
-31095
-31.99

-33.99
-33.99
=33.99
-33.99
-33 . SB
~-33.99

-34.59
-34.59
~34.50
~-34.59
~34.5%
-34.59

BOLO99
CHL@95
PRGZ93
PRURI1

TOTAL

ARGO88
BOLA99
CHLE95
PRGAO3
PRUZS1

TOTAL

ARGQE8
BOLA99
CHLA9S
PRGAI3
PRUZI1

TOTAL

ARGP88
BOLAS9
CHLA95
PRGEI3
PRUZ91

TOTAL

ARGZ88
BOL@99
CHLA95
PRGA93
PRUA91

TOTAL

ARGQ88
BOLA99
CHLA9S
PRGPI3
PRUZI1
"TOTAL
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56.21
49.41
37.26
63.16
34.61

37.58
47 .38
49.92
35.18
62.77
32.99

37.54
48.42
49.19
36.34
62.94
33.59

38.39
56.91
41.35
45.82
63.86
36.93

37.24
55.83
37.27
§7.77
62.77
34.19

37.13
55.54
38.25
57.48
62.48
34.58

26.21
19.41
7.26
33.16
9.61

7.58
17.88
19.92

5.18
32.77

7.98

7.54
18.42
19.19

6.39
32,94

8.59

8.39
26.91
11.35
16.82
33.86
11.83

7.24
26.83
7.27
27.77
32.77
9.19

7.13
25.54
8.2%
27.48
32.48
9.58
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