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ABSTRACT

This study is concerned with the development of a transfer-matrix
method for the static and dynamic analyses of general planar
flexible-body mechanisms where the deflections may be large or small.
The study includes the development of the necessary transfer matrices
(field matrix, point matrix, transformation matrix, spring matrix,
branch matrix, rigid-body inertial matrix, and elastic-body inertial
matrix) for the analyses. These transfer matrices having 7 X 7
elements give three degrees-of-freedom per node by representing one
degree-of-freedom in the 1longitudinal direction with two
degrees-of-freedom in the transverse direction. In the dynamic

analysis of flexible-body mechanisms, the rigid-body inertial effects
caused by rigid-body accelerations are considered in a quasi-static

sense, The elastic-body inertial forces due to the elastic vibrations
are considered in a time-domain sense. An iteration method for the
nonlinear analysis is based on the successive solutions of 1linear
systems. For the dynamic stress analysis, the fatigue stress analysis
is carried out for non-zero mean stress levels in the
structure/mechanism members using Soderberg’s linear failure line. The
kinematic position and acceleration analyses of multiloop planar
mechanisms are based on the component module approach using closed-form
equations. Finally, an interactive, computer-aided analysis program
CASDAM (Computer-Alded Static and Dynamic Analyses of Flexible

Mechanisms/Structures) is developed.
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CHAPTER I

INTRODUCTION

1.1 Introduction

In rigid body analyses, whether static or dynamic, the links of a
mechanism or structure are assumed rigid. The complexity of the
'l‘athematical analysis of mechanisms with elastic 1links has been a
deterrent against giving up the rigidity assumption. Vibrations in the
mechanism links are often disregarded by the designers, because the
body 1s assumed to be quasi-static. This is done for relative
simplicity. However, omitting 1link deformations wunder dynamic
conditions may contribute to a machine’s failure to perform adequately
at high speeds. The area of study pertaining to the motion of
mechanisms, with 1link elasticity and mass distribution taken into

account, has been called the kineto-elastodynamics (KED) of mechanisms.

The effects of mass distribution and elasticity in mechanisms

become significant at high speed. One interpretation of high-speed may
be the speed at which the deformations due to inertial forces becomes

80 large that they cannot be ignored. The resulting deflections caused
by the inertial forces may render the performance of the machine
unacceptable. High stress levels together with the large number of
cyclic stresses may cause early failure from fatigue. Other problenms
associated with high-speed operation are difficulties in balancing and
problens with stability.
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This study proposes the development of a new technique for the

kineto-elastostatic and dynamic analyses of general planar flexible

mechanisms. Research in the following areas is addressed:

1) Kineto-elastostatic and dynamic analyses of flexible systems
in general multiloop-planar mechanisms by an 1terative

transfer matrix method.
1. The static analysis of flexible systems.
2. The dynamic analysis of quasi-static systems.
3. The time domain analysis of flexible systems.
2) An approximate method for large, elastic-deflection analyses.

3) A computer program CASDAM for the static and dynamic analyses
of general multiloop planar mechanisms and structures

under either the small- or large-deflection assumptions.

In addition, the necessary transfer matrices (field matrices, point
matrix, spring matrix, transformation matrix, branch matrix, rigid-body
inertial matrix, and elastic-body inertial matrix) are developed to
give three degrees-of-freedom per node in the system. Finally, the
kinematic position and acceleration equations of the component modules

are derived by using a closed-form solution proqedure.



1.2 Literature Review

In recent years, great emphasis has been placed on studying
mlti-body systems, and many analytical and numerical techniques have
been developed for solving systems that consist of interconnected rigid
components. In many industrial applications, however, the assumption
of rigidity in mechanical elements does not represent a realistic
condition, especially, if high precision and alignment are required.
The demand for an accurate mathematical model that accounts for
flexibility effects has been a lotiyation for various analytical and

nmumerical investigations.

In this section, the literature for three areas will be reviewed.
These include: the dynamic analysis of flexible mechanisms, the
computer-aided kinematic/dynamic analysis/synthesis programs for
rigid-link mechanisms, and the transfer matrix method.

1.2.1 Dynamic Analysis of Flexible Mechanisms

The study of the motion of linkages consisting of elastic members
has been the subject of extensive research in recent years. In many
present-day industrial applications, mechanisms are required to operate
at high speeds and under large dynamic loads. In such cases, it is
often necessary to consider the elastic behavior of 1links, since a
rigid body analysis does not provide an adequate description of
mechanism performance. A comprehensive biblography of this field may



4
be found in the review articles by Erdman and Sandor [1] and Lowen and
Jandrasits £2]. A brief overview of the literature will be given here.

In 1969, Shoup [55] investigated analytically large deflections of
flexible beam springs, and Kinzel [56] derived analytical formulations
for a flexible slider-crank mechanism. In 1972, Erdman, Sandor, and
Oakberg [3] proposed to use the flexibility approach for the structural
analysis to study an elastic four-bar linkage. Winter and Shoup [4]
considered the displacement of a four-bar mechanism in which at least
one link is capable of undergoing large elastic bending deflections.
They dealt with the displacement analysis of a partially flexible
mechanism for purposes of path generation and defined the spring
characteristics of the flexible member in an attempt to prevent the
deformation which is followed by immediate structural failure due to a

temporary overload.

In 1973, Imam, Sandor, and Kramer [5] applied the permutation
vector approach of structural analysis to an elastic four-bar linkage
and a six-bar multiloop mechanism. They included in their analysis the
rate of change of eigenvalues and eigenvectors to reduce the required
computer time. Also, they found dynamic stresses much higher than
static stresses on the members at high operating speeds. In 1973,
Sadler and Sandor [6] analyzed a slider-crank mechanism with a rigid
crank and an elastic connecting rod using the Euler-Bernoulli theory
for beams. In 1974, the same authors [8] analyzed a crank-rocker
mechanism with rotational inertia in the output; they modeled the crank
1link as a cantilever beam, and the coupler and rocker links as simply



supported beams.

The experimental investigations of the dynamic response of elastic
mechanisms that were conducted by Alexander and Lawrence £7,9] have
provided the opportunity for the verification of analytical studies of
an elastic four-bar mechanism. They presented the steady-state elastic
response of a planar four-bar, quick-return mechanism and gave strain
data at points on the coupler and output link for several different
input rotational speeds. Sadler [11) in 1975 compared these
experimental results and his analytical results from a lumped-parameter
model ([8]. The analytical and experimental results matched
satisfactorily. Chu and Pan [10] investigated the longitudinal
transient dynamic response of an elastic connecting rod in a
slider-crank mechanism. Their results included the fundamental natural
frequency as a function of the ratios of the length of crank to the
length of connecting rod and the viscous damping for different rotating
speeds of the crank. In their results, they found the crank-connecting
rod length ratio had a large effect on the amplitude of the response.

In 1976, Bahgat and Willmert [12] examined the vibration analysis
of multiloop planar mechanisms using a finite element approach. They
considered bhoth axial and lateral vibrations using a high-order hermite
polynomial approximation which conserves moment compatibility between
elements. They obtained the steady-state solution for the resulting
differential equations using a harmonic series technique and the
stresses from the resulting deformations. Golebiewski and Sadler [13]
obtained experimental data for a slider-crank mechanism with a rigid



crank and an elastic connecting rod, and analyzed the system using
lumped-parameter Euler-Bernoulli beam theory. Results included dynamic
steady-state bending stresses for the midpoint of the connecting rod
and the effects of crank speed, crank length, and slider offset on the
maximum stress levels. The measured data showed that the maximum
measured stresses were lower in magnitude than the maximum computed
stresses. Sutherland [141 examined a completely elastic four-bar
linkage by employing an assumed-modes analytical approach, and measured
the follower angles at given crank angles. Thompson and Barr [15]
developed a variational approach and applied it to a flexible

slider-crank mechanism.

In 1977, Kohli, Hunter, and Sandor [16] used the Euler-Lagrange
equations of motion for the vibration analysis of an offset
slider-crank mechanism consisting of elastic links, elastic supports,
and shafts. Midha, Erdman, and Frohrid [17] used an iterative
technique to solve an elastic four-bar linkage which was treated as a
series of single degree-of-freedom problems. However, comparisons with
experimental data showed poor agreement. In 1978, Midha, Erdman, and
Frohrib [18] used a displacement based finite-element method to develop
the mass and stiffness properties of an elastic four-bar linkage. In
1979, they developed a numerical algorithm for the transient [19] and
periodic response [20] of high-speed elastic four-bar 1linkages. A
single degree-of-freedom system with time-dependent periodic parameters
can be solved by discretizing fhe forcing period into a number of

intervals and by assuming the system parameters to be constant over
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each interval. Their algorithm is employed to solve an elastic linkage
problem via modal superposition.

Badlani and Kleinhenz [21] in 1979 studied the dynamic stability
of a slider-crank mechanism with an undamped elastic connecting rod
using the Euler-Bernoulli and Timoshenko beam theories. The results
indicated new regions of instability when rotary inertia and shear
deformation effects were included. Bagci and Kalaycioglu [22-23] used
the stiffness based finite-element method with planar finite-line
elements and lumped mass systems to calculate the elastodynamic
responses and critical operating speeds of planar four-bar,
slider-crank, and Stephenson’s six-bar mechanisms. Jandrasits and
Lowen [24-25]1 used Hamilton‘’s integral, a novel elastic mechanism
constraint equation, and Kantorovich method for a counter-weighted

rocker link with an overhanging endmass in a four-bar linkage.

In 1980, Badlani and Midha [26] investigated the dynamic behavior
of a slider-crank mechanism with an initially curved connecting rod
using the Euler-Bernoulli beam theory, and showed that a very small
initial curvature caused a significantly greater steady-state response.
Nath and Ghosh [27] developed a systematic finite element method which
eliminated the singularity in the stiffness matrices for mechanisms
with Coriolis, tangential, and normal components of acceleration for a
moving link. Also, they [28] used a harmonic series expressions for
the element displacements in terms of the crank angle to obtain
directly the steady-state displacements and stresses within the elastic
links of a mechanism. Sadler, Mayne, and Fan [29-30] investigated the
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influence of system parameters, including both motor properties and
mechanism properties, on various performance characteristics. They
performed simulation studies on two different four-bar mechanisms using
separately excited d.c. motors for actuation and carried out dynamic
time-response analyses. They presented nondimensional graphs which
give generalized, quantitative information for the design of

actuator-mechanism systems.

In 1981, Cleghorn, Fenton, and Tabarrok [31] presented a refined
mathematical, finite-element model of a four-bar mechanism by assuming
axial rigidity in the elements to reduce the number of global
equations. Means and Neon [32] dealt with studies of longitudinal,
transverse, and rotary responses of a non-uniform elastic coupler for
various speeds of a rigid crank of a slider-crank mechanism. Their
study indicated that the rotary inertia did not have any notable effect
on the dynamic response, but shear deformation could be a factor in the
transverse deformation at a high crank speed. Zuccaro, Bengisu, and
Thompson [33]1 examined the dynamic response of a four-bar mechanism
fabricated from a graphite-epoxy composite with a unidirectional ply,
and presented the variations of dynamic strain with crank angles for
constant crank rotation. Sutherland [34] proposed a general procedure
for the dynamic analysis of flexible mechanisms, based on the
superposition of elastic-body motions on the gross rigid-body motions.



In 1962, Ardayfio [35], and Zhu and Chen [47] studied the dynamic
stability of an eccentric slider crank mechanism with elastic effects
at both joints of the coupler and illustrated the unstable frequency
region with respect to crank speed. Badlani and Midha [36] presented
the effect of internal material damping on the dynamic response of a
slider-crank mechanism. They assumed a linear viscoelastic model for
the connecting rod and demonstrated that the viscoelastic material
damping could have significant influence, both favorable and adverse.
Constantinou and Tadjbakhsh [38-39] investigated the dynamic
instability of the elastic coupler of a four-bar mechanism and

presented the unstable regions for a variety of geometric parameters.

Jaskie and Kohli [40] in 1982 solved the non-linear equations for
the support vibrations of a slider-crank mechanism. They found that
the support deflections predicted by linear and nonlinear theories
differed by less than S percent and an increase in the flexibility of
the supports decreased the velocity variation of the crank. Means [41]
studied the dynamic bearing loads and the slider wall reaction of a
slider-crank mechanism with an elastic coupler. The results showed
that the bearing loads with an elastic coupler might be considerably
higher in both magnitude and frequency than those computed using rigid
body analyses. Shabana and HWehage [42] presented a method for the
transient, dynamic analysis of mechanical systems composed of

interconnected rigid- and flexible-bodies under large angular
displacements, and simulated a flexible mechanical 1linkage and a

tracked vehicle.
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Stamps and Bagci [43) 4investigated, analytically and
experimentally, the dynamic behavior of planar mechanisms with offset
geometry for dynamic stress and critical speed levels. The
experimental and analyticai results showed that at the critical speeds
the mechanism was subjected to shock loading depending on the
acceleration history of the links. Sunada and Dubowusky [441 presented
a method for analyzing the complete dynamic behavior of industrial
robotic manipulators with complex-shaped flexible 1links, including
effects of manipulators control systems and actuators. They
demonstrated that 1link flexibility has a significant impact on system
performance and stability. Sung and Thompson [45] examined the effect
of sinusoidal foundation motion upcn the response of a flexible
four-bar mechanism. They used a displacement based finite-element
model for the analytical solution, and obtained experimental data for a
system fabricated from aluminum links and also links fabricated from a
graphite-epoxy composite. These simulations demonstrated the
undesirable effects of support motion on the response of the system as
evidenced by the larger amplitudes of vibration with higher stress
levels. Thompson, Zuccaro, Gamache, and Gandhi [46] examined a
flexible planar four-bar linkage fabricated from a fiber-reinforced
material, using the same experimental apparatus as was used in
Reference [33). The studies showed that an elastic continuum model
might be employed to predict the dynamic response of a linkage made
from a unidirectional fiber-reinforced material.
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In 1963, Cleghorn and Konzelman [481 compared the effects of
various beam elements on finite-element models used in flexible
mechanisms. The results showed that the convergence was more rapid
when quintlic rather than cubic polynomials were employed for free
vibrational responses of a stationary mechanism. In 1984; Bagci [492
presented a flexural finite-1line element method for
kineto-elastodynamic as well as kineto-elastostatic studies of
industrial, planar, and three-dimensional 1linkages and robots.
Garcia-Reynoso and Seering £50] developed a mathematical model for the
linearized vibrations of a four-bar linkage with a flexible rocker-link
and flexible input and output shafts. They found that the flexibility
in the driving- and driven-shafts had a significant influence on the
system response. Shabana [51] modeled inertia properties of flexible
components with large angular rotations for a slider-crank mechanism.
He evaluated the flexibility mass matrix based on a
distributed-parameter approach and inertia coupling based on a

lunped-mass technique.

Thompson, Sung, and McGrath in 1984 presented a variational method
for the coupled thermoelastic response of planar flexible mechanism
system subjected to both mechanical and thermal loadings [£521 and for
the nonlinear finite element analysis of multiloop planar mechanisms
comprised of elastic bodies connected by revolute or slider joints
[S54]). And Thompson, Sung, Crouley, and Cuccio [53) used a commercial
composite laminate as a coupler link of a flexible four-bar linkages in
their experimental comparative study. The experimental results
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demonstrated that composite-linked mechanisms had responses superior to
those of comparable mechanisms manufactured from commercial metals, and
that the dynamic behavior is governed by the stiffness to density ratio
of the link material.

1.2.2 Computer-Aided Kinematic/Dynamic Analysis and Synthesis
Programs for Rigid Body Mechanisms

The kinematic analysis of a mechanical system 1s achieved by
solving the kinematic equations of constraint. The equations of
constraint may be established in matrix or vector form, either from the
types of rigid constraints at the connecting joints, or from the
conditions of closure for each of the connecting loops. For a dynamic
analysis, the second-order differential equations can be easily
obtained by taking derivatives of the algebraic equations of

constraint.

The dynamic analysis of a given system of several interconnected
rigid bodies involves the determination of the unknown accelerations,
forces, and torques. Generally there are two basic classes of dynamic
problems: dynamic motion analysis and dynamic force analysis. The
dynamics of a system of rigid bodies connected by kinematic pairs may,
in general, be described by a set of nonlinear ordinary differential
equations consisting of the dynamic equations of motion and the

kinematic equations of constraint.
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In the case of a dynamic motion analysis, the externally applied
forces are specified, the reaction forces and the accelerations are
calculated, and the accelerations are then integrated to determine the
required velocities and displacements. Conversely, in the case of a
dynamic force analysis, the necessary input motions are specified; the
kinematic analysis of the system determines the displacements,
velocities, and accelerations of the moving members as a function of
the input motion; and the equations of motion determine the active and

reactive unknown forces.

Interactive computer-aided analysis/design of mechanical systems
has recently been undergoing an evolution due to highly efficient
computer graphics. The industrial implementation of state-of-the-art '
analytical developments in mechanisms has been facilitated by
computer-ajded design packages because these rigid-body mechanism
analysis/synthesis programs dramatically reduce the time required for
linkage design. A comprehensive biblography of these programs may be
found in the articles by Ardayfio [65] in 1961 and Ardayfio, Mittler,
and Park [773) in 1984. In the U.S.A., these computer-aided
analysis/synthesis programs are ADAMS £61-62], DRAM [581, IMP [57],
KINSYN [63], KINANL [67], RECSYN [68-691, KADAM [64], DADS [79], and
FORSS [66, 71-72, 751. Also packages from the international
literature, such as KOGEAN and KOGEOP (Germany), LINKE (Canada), TADSOL
(Netherland), KIDYAN (Czechoslovakia), and MLINK (Italy), have been
described [65, 771.
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Orlandea, Chace, and Calahan [61-62] developed sparse matrizx and
stiff integrated numerical algorithms, which can be used for the
simulation of electrical circuits and three-dimensional mechanical
dynamic system. These algorithms can efficiently solve large sets of
sparse linear equations and avoid the numerical instability associated
with widely separated eigenvalues. Thus, the computer program ADAMS
(Automatic Dynamic BAnalysis of Mechanical Systems) developed by
implementing the algorithms <can be used for simulation of
three-dimensional mechanical systems. Advantages of ADAMS include the
conditions that the necessary equations can be formulated directly from
the connection data, and all angular and displacement variables are
retained as solution variables. Also all joint reaction forces are -
explicit solution variables, and therefore the formulation 1is
compatible with the continuum mechanics approach to internal stress
analysis. As disadvantages, time is wasted in solving for variables of

no interest to the designer.

In DRAM (Dynamic Response of Articulated Machinery), Smith, Chace,
and Rubens [58]1 developed a technique for automatically generating a
mathematical model for a planar mechanical ‘system with Lagrange’s
equation. The technique used the elements of graph theory which were
developed for electrical networks. The program DRAM requires three
basic identifications to automate the generation of the differential
equations appropriate to the physical system being modeled. These are
the paths from ground to the center of mass of each parf, the

independent closed loops of the parts and the contacts, and the line of
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action of each applied force. Once, the solution procedure is
formulated in matrix form; the system of equations is solved for the
second-order acceleration terms and the Lagrange multipliers; the
reaction forces are then computed; the second-order terms are
integrated using 1initial conditions which are part of the input data.
The loop is cycled through until the time specified by the wuser has
been reached.

Sheth and Uicker [57] developed the computer program IMP
(Inteqrated Mechanisms Program) which can be used for automating the
kinematic, static, and dynamic analysis of planar or spatial and
mltiloop kinematic chains using a technique based on network theory
and matrix methods. However, the program IMP requires a mechanism to
be made entirely of rigid bodies (except for ideal springs) connected
by kinematic pairs forming a closed kinematic chain. Also, one of the

rigid bodies must remain fixed relative to some set of reference axes.

KADAM (Kinematic And Dynamic force Analysis of planar Mechanism)
developed by Williams and Rupprecht [641 used a procedure based on
three equations of equilibrium for each link in the mechanism. The
free body diagrams included inertial forces based on D’Alembert’s
principle. The technique automatically formulates these equations into
matrix form. Gaussian elimination 1is used for the joint constraint
forces and driving input force or torque. The wvector-loop equation

approach is also used for the kinematic analysis.
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FORSS [66, 71-72, 75 is an interactive computer program for
structurally and dimensionally synthesizing force systems to drive a
mechanism for a desired motion time response and input-output forces.
The program can be used for any planar one degree-of-freedom linkage,
but a force analysis program and a kinematic analysis program must be

used as a host to generate pre and post synthesis data.

Haug, Wehage, and Barman £79] developed the computer program DADS
(Dynamic Analysis and Design Systems) used a method of formulating and
automatically integrating the equations of motion for dynamic analysis
of general constrained systems, and a state space adjoint variable
method for design sensitivity analysis extensively in optimal control
and structural design optimization. Both dynamic analysis and desién
sensitivity formulations are automated and solved using a stiff
numerical integration method for mixed differential equations.  The
program DADS can treat mechanical systems with intermittent motion to

simulate jump conditions.

KINANL developed by Kinzel et al. [67] is a graphics-oriented,
interactive computer program for the kinematic analysis of planar
mechanisms using a modular approach. This approach was developed by
Suh and Radcliff [105] to obtain position, velocity, and acceleration
equations for the component modules: rigid body, oscillating slider,
two-1link dyad, and rotating guide for driving crank inmput. In KINANL,
the technique is extended by incorporating dual-slider, slider-crank,
and inverted slider-crank modules, permitting mechanisms to be analyzed
when a slider input is involved. Also KINANL uses an extension of
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Goodman’s inversion tecanique to make the component approach applicable

to most planar mechanisms with lower pairs.

KINSYN developed by Rubel and Kaufman [633 has both synthesis and
analysis capabilities for planar, rigid four-bar linkages. An
important capability of KINSYN is the post processor which gives the
Grashof type, transmission angle, change points, the need for
reassembly, and the ability to alter a mechanism’s dimensions while
animating its motion. Using synthesis capabilities coupled with the
man-computer graphical interaction, planar four-bar, motion-generating
mechanisms can be directly synthesized to guide a body through two,
three, four, or five coplanar design positions. Also, all possible
slider-crank inversions, and double-slide devices such as the scotch
yokes and Cardanic mechanisms are designed at the same time.
Immediately following the synthesizing of the mechanism, KINSYN
analyzes the mechanism using a closed-form solution procedure for

kinematic analysis, and animates the mechanism on the display screen.

RECSYN developed by Waldron [68-691 1is a graphics-oriented,
interactive computer program for the kinematic synthesis of planar
mechanisms. It can design a four~bar linkage with its coupler passing
through two, three, four, or five non-parallel positions while
rectifying spurious and otherwise undesirable solutions. The program
RECSYN uses numerical techniques eliminating solution failures due to
numerical error or non-convergence and a closed-form solution
procedure. An important feature of RECSYN is the automatic

rectification of cursor selected points to the nearest actual points of
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linear, circular, and cubic loci to'inprove solution accuracy, and to

reduce user strain.

In addition, as a technique for the kinematic analysis of planar
mechanisms, Benedetto and Pennestri [73] proposed a numerical method
for approximate calculations of angular velocities and accelerations in
planar mechanisms. Fallahi and Ragsdell [74] presented a numerical
approach to the planar kinematic analysis. Sharma £76] formulated and
analyzed kinematically general four-bar mechanisms and elliptical
mechanisms on the microcomputer. Sparis and Mouroutsos [78]1 presented
an iterative matrix method for the kinematic analysis and the
determination of the velocities and accelerations for planar mechanisms
incorporating rolling, sliding, and pivoting members with a single 6r

multiple degrees of freedom.

Also the vector graphical, vector analytical, and matrix
approaches are presented in most textbooks for the dynamic analysis of
rigid-body mechanisms [101-1061. Gupta [59]1 formulated the
Newton-Euler equations of motion for the dynamic analysis of multiloop
systems. Bagci [60] investigated the dynamic motion analysis of planar
mechanisms with coulomb and viscous damping, via the joint force
analysis. Bogci and Abounassif [70] developed an automated technique
using irregular line elements for the dynamic force, torque, stress and
deflection analysis of single degree-of-freedom, multiloop, planar
mechanisms. They also developed a finite-elexent based method for
determining the gross-motion response of planar mechanisms.
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1.2.3 Transfer Matrix Methods

Toward the middle of this century, very powerful analog and
digital computers were developed, and engineers were encouraged to
establish the methods that would reduce the number of simplifying
assumptions required to model and analyze mechanical systems. As part
of this effort, the so-called matrix method of analysis of structures
was introduced.

The ideas behind the matrix method are not new; they are closely
associated with the principles set by Castigliano, Maxwell, and
Muller-Breslau [95]. The only reason that the matrix methods were not
fully developed and utilized in the last century‘is because they
involve the solution of large simultaneous equations. Even for a
fairly small structure, the number of simultaneous equations may reach
a point shere their solutions without computers would be totally
impractical.

Basically there are three different types of matrix methods for
analyzing structures, namely, stiffness (displacement), flexibility
(force), and mixed matrix methods [89-95, 97-1001. Each method
eventually involves the solution of simultaneous equations. The joint
displacements are the unknown quantities in the stiffness method,
member forces in the flexibility method, and both joint displacements
and forces in the mixed method. The flexibility method 1is associated
with the degree-of-indeterminacy of the structure and requires the

solution of as many simultaneous equations as the number of unknowns.
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The stiffness method, on the other hand, does not depend on whether the
structure is determinate or indeterminate, but on the total number of

state variables in the system.

In addition to the previous classification of matrix methods, the
transfer-matrix method and the finite-element method are commonly used
for structural analyses. These are based on the idea of breaking up a
complicated system into component parts which have simple elastic and
dynamic properties that can be readily expressed in matrix form. These
component matrices are considered as building blocks which, when fitted
together according to a set .of predetermined rules, include the static
and dynamic properties of the entire system. The matrix formulation of
these rules is superbly adapted to digital computers.

A common type of structural system occuring in engineering
practice consists of a number of elements linked together, end to end,
in the form of a chain. The transfer matrixz method is ideally suited
for such systems, because only successive matrix multiplications are
necessary to couple the elements together. Intermediate conditions and
the number of degrees-of-freedom present no difficulty since they have
no effect on the order of the transfer matrix required. In fact, the
size 1is dependent only on the order of the differential equations
governing the behavior of the elements of the system.

A type of transfer matrix method, called the Holzer transfer
matrix method [951, can effectively carry out the dynamic analysis of

one~-dimensional system. This system involves one degree-of-freedom per
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node. The matrices used in the transfer-matrix method represent the
forces and displacements at one section of a chalin-type structure in
terms of the corresponding forces and displacements at the adjacent
section. Thus, the complete force and displacement profile of the
structure can be obtained from a sequence of transfer matrix
multiplications. A second type of transfer matrix method 1is an
extension of the Holzer method to the analysis of flexible systems
which have two degree-of-freedom per node. This method was first
suggested by Myklestad [95]), and is usually called the Holzer-Myklestad
method. In this method, the mass is assumed to be concentrated at a
series of points along the axis, And the degrees of freedom of the
structure are the lateral translation and the rotation at these points.
The beam segments connecting the mass points are assumed to be

weightless and of constant stiffness.

Of the present-day transfer matrix methods for the simple systems
requiring a vibration analysis or beam deflection analysis, the mixed
transfer matrix method is most commonly used. The mixed transfer
matrix method consists of single degree-of-freedom systems and two
degrees-of-freedom systems. A single degree-of-freedom system allows
only one directional displacement, wusually in the longitudinal
direction, and a two degrees-of-freedom system allows a displacement in

the transverse direction and a rotational displacement.
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In the transfer matrix methods for structure analysis, two
methods, a stiffness (displacement) matrix method and a flexibility
(force) matrix method, are most commonly used. Both methods satisfy
the force equilibrium equations and the displacement compatibility
conditions, but not in the same order. In the stiffness method,
force-equilibrium 1is satisfied first, and in the flexibility method,
displacement-compatibility is satisfied first. The choice of one
method over the other depends upon the structure as well as the
analyst‘s preference. Each method eventually involves the solution of
simultaneous equations in which the nodal displacements are the unknown
quantities in the stiffness method and the member forces 1in the

flexibility method.

1.2.4 Discussion of Review

Generally, most of the available computer programs for dynamic
analyses have been established for rigid-body mechanisms, and they use
specific techniques to automately determine the equilibrium equations
and to reformulate them into matrix form. Also they include inertia
forces due to the rigid-body motions of the mechanism by applying
D’Alembert‘s principle. |

As a common dynamic analysis method for rigid-body mechanisms, the
traditional vector graphical method can give poor accuracy. The vector
analytical method gives accurate results using vectorial calculations

instead of graphical manipulations for the resultant forces and
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moments. However, many of the vectorial calculations are tedious and
can induce calculation errors, and they do not easily lend themselves
to the analysis of flexible linkages. In the "free-body" diagram
approach, three (or six for the spatial case) equilibrium equations
including the inertia forces and moments are written for each 1link.
Then, all of the equations for the system are expressed in matrixz form.
The advantage of this approach is that the equations of motion are
quickly derived; however, the disadvantage 1is the need for a large
number of matrix manipulations in order to solve the equations, and the
total number of elements of the matrix is greatly increased by the
number of links and degrees-of-freedom.

In addition, although no method <can fully analyze the
. kineto-elastodynamic effects of general flexible mechanisms, during the
last decade, the finite element method has been the most popular for
the dynamic analysis of high-speed flexible mechanisms. For a
flexible-body dynamic analysis, a mechanism can be thought of as an
instantaneous structure, which is frozen at a particular instant by
removing its degrees-of-freedom through the application of added
mechanical constraints. Then, the same finite-element procedures used
in structural analysis are applied. But, the finite-element method has
a distinct disadvantage; the storage requirements for the system matrix
rapidly increases with the numbers of nodes and degrees-of-freedom per
node.
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The transfer matrix method does not appear to have been generally

applied to mechanisms for static and/or dynamic force analyses.

However, it has a number of advantages over the other methods,
especially when system flexibilities are concerned. The method is very
compact making it ideally suited to microcomputers. It can also
involve fewer calculations than does the finite-element method, and

nonlinearities are easy to incorporate.

The purpose of the research described in this dissertation is to
apply the transfer matrix method to multiloop flexible mechanisms and
structures. This will include developing an iterative procedure to
accomodate nonlinearities and the necessafy transfer matrices to
accomodate the special geometries arising in mechanisms. Also, a
semiautomatic procedure will be established for applying the procedure
to mechanisms. This will involve the development of the algorithms
necessary for incorporating the procedure into an interactive analysis

program.

1.3 Overview of Dissertation

In Chapter 2, the kinematic modular approach is presented for
position and acceleration analyses, and eight types of components are
identified. All of the formulations for the rigid-body kinematic

analysis of the components are given in Appendix A.
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Chapter 3 derives the transfer matrices required in an iterative
transfer-matrix method; field, point, transformation, spring,
rigid-body inertial, elastic-body inertial, and branch matrices.
Chapter 4 presents an approximate method for large-deflection analyses

and gives comparisons with exact solutions.

Chapter 5 derives the transfer matrix loop equations for the main
loop systems and subloop systems. Chapter 6 explains the fundamental
procedure for applying the iterative transfer-matrix method to
kineto-elastostatic and dynamic analyses of flexible mechanisms and

structures.

Chapter 7 briefly discusses the structure of the program CASDAM.
Tree structure and storage requirements for each routine in the program
CASDAM are presented in Appendix E. Six samples are analyzed in
Chapter 8. The samples include a multiloop mechanism for static
analyses under small- and large-deflection assumptions; a mechanism for
a quasi-static analysis and for a time-domain analysis; a caltilever
beam with end loads; and a stepped beam on elastic supports for
structural analysis. The solution details for the static analysis
under small-deflection assumption are presented in Appendix B; the
solutions for the quasi-static analysis are given in Appendix C; the
solutions for the stepped beam analysis are given in Appendix D.
Finally, Chapter 9 presents the summary from the dissertation.



CHAPTER II

FUNDAMENTALS FOR THE KINEMATIC LOOP ANALYSES

2.1 Introduction

A mechanism is a mechanical device that has the purpose of
transferring motion and/or force from a source to an output, and
consists of links which are connected by joints (revolutes or prismatic
joints). The rigid-body configuration of the mechanism can be
considered as an ‘instantaneous structure’ capable of undergoing both
rigid-body and elastic motions. Because the mechanism forces are a
function of the 1link accelerations, a kinematic analysis must be
considered prior to any force analysis. This involves determining the
positions, velocities, and accelerations of every important point in

the mechanisn.

Most multiloop mechanisms can be decomposed 1into several
components. The kinematic properties (position, velocity, and
acceleration) of every node can then be determined from the kinematic
analyses of the corresponding component modules by a closed-form

solution procedure.

In Section 2.2 of this chapter, eight types of component modules
are 1identified for the kinematic analyses. Section 2.3 gives the
positions and accelerations of every node in an example multiloop
mechanisn. All formulations for the kinematic ﬁnalysea of the

component modules are presented in Appendix A.
26
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2.2 Types of Kinematic Component Modules

Most planar mechanisms which have lower pairs and which can be
analyzed directly using classical graphical techniques can be shown to
be assembled from one or more of the eight basic components shown in
Fig. (2.1). The first component as shown in Fig. (2.1-1) is a simple
crank with one end completely defined. The pivot point and all other
points of interest on the components are called nodes. The crank has
two nodes (1 and 2). This component is always a driver so that the

angular position and velocity are assumed to be known.

Component 2 shown in Fig. (2.1-2) is a dyad made up of two 1links
connected together by a8 revolute joint. This component together with
the crank forms a four-bar linkage. For the dyad, it is assumed that
the kinematic properties of node 1 are kncwn. The kinematic properties
for nodes 2 and 3 can then be computed directly if the configuration is
specified and the lengths of links are given.

The third component shown in Fig. (2.1-3) is a slider which
consists of a slider moving on a rod or ground. Here, it is assumed
that the kinematic properties of node 1 are known and the azimuth angle

~of the sliding line is given. Then, the kinematic properties for node
2 can be calculatéd directly.

The fourth component shown in Fig. (2.1-4) is a rigid body defined
by nodes 1, 2, and 3. Given the kinematic properties for nodes 1 and
2, the kinematic properties for node 3 can be determined from the
configuration of the rigid body.
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The fifth component shown in Fig. (2.1-5) is an oscillating slider

which consists of a dyad and a slider moving on a rod. Here, it is

assumed that the kinematic properties of nodes 1 and 2 are known.

Given the known kinematic quantities for these nodes and the

configuration of the component, the kinematic properties of nodes 3, 4,
and 5 are calculated directly.

The sixth component shown in fig. (2.1-6) is a special case of the
fifth component. Here, a slider and a revolute are coincident at node
3. Given the kinematic quantities for nodes 1 and 2, the kinematic
properties of nodes 3 and 4 can be computed.

The seventh component given 1in Fig. (2.1-7) is an oscillating
slider which consists of a slider moving on a rod which has an
eccentricity. Here, it is assumed that the kinematic properties of
node 1 are known. The kinematic quantities of nodes 2, 3, 4, and 5 are
directly calculated from the known configuration of the component.

The final component in Fig. (2.1-8) is a special case of the
seventh component and is the standard slider crank with a slider input.
The slider moves on the link and the kinematic quantities of the slider
are assumed known. The kinematic properties of nodes 2, 3, and 4 can
be determined. The formulations for the kinematic analyses of each

module are given in Appendix A.



2.3 An Example of The Kinematic Analysis

A mechanism can be decomposed into several components as shown in
Fig. (2.2). If the 1link between nodes 1 and 2 is an input 1link, the
kinemstic properties (position, velocity, and acceleration) of node 2
in Fig. (2.2b) can be determined froam the given geometry and angular
velocity. A component involving nodes 2, 4, and 6 forms a dyad in
Fig. (2.2c), and the kinematic properties of nodes 4 and 6 are also
determined from the known position of node 2. As one rigid body in
Fig. (2.2d), the kinematic properties of node 3 are calculated from the
conditions of nodes 2 and 4. After the kinematic properties of node 3
are determined, the properties of nodes 7 and 8 are calculated from the
dyad connected by nodes 3, 7, and 8 in Fig. (2.2e). Finally, a dyad
with a slider formed by nodes 4, 5, 6, 9, and 10 in Fig. (2.2f) can be
analyzed from the known properties of nodes 4 and 6. Thus, all of the
kinematic properties of every node in the mechanism in Fig. (2.2a) can

be determined from the corresponding component modular analyses.

The mechanism in Fig. (2.2a) consists of five components.
Fig. (2.3) shows the procedure for selecting each component module in
the computer program CASDAM. Table 2.1 gives the positions and

accelerations of every node for each position, and Table 2.2 shows the

angular accelerations of the links.
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FIGURE 2.2 Components of A Multiloop Mechanism
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TABLE 2.1 Positions and Accelerations of nodes in Fig. (2.2)

10
0.2000E+02 rad/sec
0.7500E+02 degrees
BRITISH (inches, inch/sec/sec)

TOTAL NODES
ROTATING SPEED
INPUT-LINK ANGLE
UNITS

NODE POSITIONS ACCELERATIONS SLIDING ACC.
HORZ. VERT. HORZ. VERT. HORZ. VERT.

0.0C00E+00 0.0000E+00 0.0000E+00 0.0000E+00

0.1294E+01 0.4830E+01 -.5176E+03 -.1932E+04

0.7789E+01 0.8580E+0]1 -.9894E+03 -.1174E+04

0.1426E+02 0.1233E+02 -.1381E+04 -.5556E+03

8.14263+02 0.6330E+01 -.6905E+03 -.2778E+03 -.2275E+03 -.4643E+03
0

0

0

.1428E+02 0.3296E+00 0.0000E+00 0.0000E+00
.1928E+02 0.6330E+01 -.4590E+03 0.1111E+03
.1928E+02 0.2133E+02 0.0000E+00 0.0000E+00
.2789E+01 0.1724E+02 0.3700E+03 -.7748E+03
.5871E+01 0.1224E+02 0.0000E+00 0.0000E+00

TABLE 2.2 Angular Accelerations of Links in Fig. (2.2)

LINK BETWEEN ANGULAR

NODE NODE ACC.
1 2 0.0000E+00
2 3 0.9755E+02
3 4 0.9755E+02
4 5 0.1151E+03
5 6 0.1151E+03
S 7 . 0.1151E+03
7 8 -0.3060E+02
3 9 -0.1377E+03
9 10 -0.8560E+02




CHAPTER III
FUNDAMENTALS OF ITERATIVE TRANSFER MATRIX METHOD

3.1 Introduction

The transfer-matrix method requires that a system be modeled as an
assembly of elements in the same manner as does the finite-element
method. The elements are connected together at nodes. The forces and
displacements at one end of an element are related to those at the
other end by a matrix of elastic properties called a field matrix. The
forces and displacements between adjacent elements and the external
forces at the node are related through a second matrix called a point
matrix. The forces at nodes connected to a spring are related to the
kinematic displacements and elastic displacements by a spring matrizx.
The element 1inertial properties due to the rigid-body kinematic
accelerations are included in a rigid-body inertial matrix, which is
used to analyze quasi-static responses. The inertial properties due to
the 1link elastic vibrations are incorporated in an elastic-body
inertial matrix. It is used to determine time-domain responses of
flexible systems. If more than two elements come together at a point
as 1s the case with multiloop mechanisms, the forces and displacements
among the nodes are related through a branch matrix. Each element will
have its own coordinate system relative to which the elastic properties
and force-displacement relationships are defined. To transfer
quantities from one coordinate system to another, a coordinate
transformation matrix is required. Therefore, for the procedure

36
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developed here, a total of seven different transfer matrices (field,
point, spring, rigid-body inertial, elastic-body inertial, branching,
and transformation) must be developed. For a planar model, three
degree-of-freedom (two translations, one rotation) per node are

required

All of the necessary transfer matrices used in the iterative
transfer matrix method have only 7X7 elements. Thus, the method
requires much less storages than those of the finite-element techniques
or finite-difference techniques. Also this method is simple and
efficient to program on minicomputers and does not need any
transformation of the developed transfer matrices into either stiffness
matrices or flexibility matrices for a structural analysis. Previous
transfer matrix methods in References ([89-95] and finite element
methods in References [96-100] must derive the matrices corresponding
to either the force-matrix method or the displacement-matrix method.

The necessary transfer matrices for the iterative transfer-matrix
method are derived in Section 3.3. Then, the solutions determined from
the developed method are compared with previous published solutions
L7, 9, 11-12, 171 in Section 3.4.
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3.2 Nomenclature

e W 0 < Z X H M XN H ™M

=

(8:3)
(Fl
M
Pl
€s]
T3
{s}

Area of a given cross section
Modulus of elasticity

Area moment of inertia

Coefficient = JP/ET

Length of a section

Mass of a lumped-mass

Moment

Internal force in the axial direction
Internal force in the transverse direction
Slope

Average axial force on a segment
Time

Displacement in the axial direction
Displacement in the transverse direction
Position axially along the section
Mass per unit length

Poisson’s ratio

Branch matrix

Field matrix

Inertial matrix

Point matrix

Spring matrix

Transformation matrix

State vector = Lu, w, 6, M, V, er



39
3.3 Derivation of Transfer Matrices

The governing differential equations of motion are discussed in
this section. The field matrix, the point matrix, the spring matriz,
the rigid-body and elastic-body inertial matrices, and the
transformation matrix are derived. Types of branches commonly used in
mechanisms are given and the branch matrix is discussed.

The equations developed are based on the following assumptions:

1. The links of the mechanism move in one plane (planar mechanisms).

2. Beam-shaped links in a mechanism correspond to Euler-Bernoulli

beams theory, where rotary inertia effects are neglected.

3. Plate-shaped 1links in a mechanism correspond to rigid bodies,
because the elastic deflections of the links are negligible.

4. Deflections (slopes) of an element relative to its own local

coordinate system are small.
5. Axial displacements due to the transverse loads are negligible.
6. No temperature gradients exist in members.
7. Homogeneous and isotropic elastic materials are used.

8. Friction is negligible.



40
3.3.1 Field Matrices

A system can be discretized into many elements connected together
at the nodes. The forces and displacements at one node of an element
are related to those at the other node by an elastic field matrix.
Thus, the elastic field matrix contains the geometrical dimensions and
elastic properties of the element. Furthermore, the elastic field
matrices are different depending on the axial forces on the elements.
There may be no axial force, or the force may be compressive or

tensile.

For small-deflection analyses, a system is assumed to be 1linear,
so that it can be solved by superposing the axial displacements due to
the axial forces on the trénsverse displacements due to the transverse
forces. The small-deflection analyses can be used when the maximum
change in slope at any point in the system 1is 1less than about 10
degrees relative to local coordinate system. Then, the longitudinal
displacement due to the transverse deflection is negligible and the
system 13' linear. Fig. (3.1a) shows a massless beam relative to the
local coordinate system. The local coordinate system is inclined with
an angle & relative to fhe global X-axis, and a distributed loading
(q) is present in the vertical direction of the global éoorﬂinate

systenm.



(a) A Beam Relative to The Local Coordinate System

(b) Forces on A Element

FIGURE 3.1 A Beam on Two Simple Supports

41
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The relationship among the loads, internal forces, and bending

moments are obtained from the equilibrium of the element in
Fig. (3.1b). Summing forces in the y-direction gives

-V + q-cosd:d@x + (V+dV) = 0

or
av

q:Co8 ¢ = = === (a)
dx

Taking moment about a center point at the right side gives

dx dy dx
M+ q.cosd-dx.—- + V.dx - (M + gM) + P:=~.dx - q-8ind-dx--—- = 0
2 dx 2

If second order terms are neglected, the equation becomes

V = —o== = Promem (b)

Here, the directions for V and P are perpendicular and parallel,

respectively, to the local x-axis.

If the effects of shortening deformations and shortening of the

beam axis are neglected, the moment curvature relationship can be

written as

EI ———- = -M (c)
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Combining Eqs. (a), (b), and (c), the differential equation of the beam

gives

El ---=- + P---;- = q.c08¢ (3.1)

The general solution to the equation depends on the sign of the
axial force (P). If P is tensile (P > 0), the solution is

y = Cl-sinh Kx + C2.coshKx + C3x + C4 + -=—=—e- (3.2)

where C1, C2, C3, and C4 are constants to be determined from the
boundary conditions.

If P is compressive (P ¢ 0), the solution becomes

2
X
y = Cl'sinKx + C2-cosKx + C3:x + C4 + -—-—-- (3.3)
2P|
and if P 1s zero (P = 0), the solution becomes
!3 82 Q.x"
y = Co-——— + C2:-— + C3x + C4 + -=-—e- (3.4)
6 2 24°E-1

In each case,

[Pl

K = [ ===

E-I

and (3.5)



FIGURE 3.2 End Forces and Displacements for
A massless Beam with Axial Forces
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Note that Egs. (3.2), (3.3), and (3.4) involve a separate set of C’'s.

Based on Fig. (3.2), the boundary conditions at the left end of the

segment (x = 0) can be written as

y = W (3.6)

dy

dx

dzy
EI ;;; = -M, (3.8)

d3y
EI a;; = =V (3.9)

If these conditions are substituted into Eqs. (3.2), (3.3), and (3.4),
and the results are simplified to eliminate the constants, expressions
for the deflection, slope, moment, and shear force at the right point

of the segment (x = L) can be written as follows:

For a tensile force (P > 0), the state equations are:

sinh KL 1l - cosh KL L sinh KL
“1 = “1_1 - e - ’e 4-1 ¢ commmcmaaa=. H i-1 + (- - -------)-Vi_l
K P P KP
Br
+ --=——=<(cosh KL -1 - -=—-)
E 2
K- sinh KL coshKL ~ 1
ei = cosh n&'e i-1 4 —mm——————— H 1-1 + ( ----------- )'vi_l
P P
Q
+ ———— +(KL - sinh KL) (3.10)
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P-sinh KL sinh KL
M 1 = "--"--‘-’63.4 4+ cosh KL-M 1-1 4+ eemmman ‘V1.1
K

Q
- =—5+(cosh KL - 1)
K
Ve = Vyy - QL

For compressive force (P < 0), the equations are:

sinKLe cosKL -1 sinkKL L
W, = W, = ======@y 4 ¢ =—=om—m M,, + (m—emm = =)V
1 1-1 P 1-1 — p i-1
Kr
- =====-(] - cos KL, ~ -———-)
A1 o 2
K-.s3in KL, 1 - cos KL
91 = (Cos8 nl'ei_l + mmmecaae .H 4-1 + ( ---------- )‘V1.1
P P
2 (KL in KL) (3.11)
- ————— - s [ ]
EIK®
P-sin KL sin KL
H1 = -"-""-"-'91.1 + Ccos KL-HHI ¢ meme—a—— Vi.l
K K

Q
- -3 (1 - cos KL)
K

V, = vV, -QL

0) are as follows:

Finally, the state equations for no axial force (P

12 13 ort

W = W,_ - L-© a - - ‘M . - ———V, $ ———
1 1-1 i 2EI i-1 6EI 1-1

L 1 or®

e 1 = e -1 ¢+ —-——=M 1-1 + ===V 41 -  eewamen

E-I 2EI 6EI (3.12)
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| or?
H 1-1 + L . V 1-1 - ———

<
[
"

vy = Via - QL

Next, the force-displacement relationships for the axial direction
can be determined as follows:

L al?sin ¢
u = u - + - amonom o " R - [ ——
! = > Y EA
(3.13)
Ny = N,, + qlL-sin¢

where u displacement in the x-direction,

displacement in the y-direction,

= slope relative to the local coordinate system,
= moment,

= dinternal force in the y-direction,

= dinternal force in the x-direction,

= uniform distributed load on a segment,

= angle between the two coordinate systems,

& 4 2 << =X O =
|

and = 1length of a segment.

These equations can be represented in matrix form as given in the

following section.
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3.3.1.1 Elastic Field Matrices

When no axial force is loaded on the section (P = 0), the elastic
field matrix equation is:

u 1 0 0 0 0 L/EA F1] [u]

W 0 1 -L -L/2EI -L/6EI 0 F2 W

e o o 1 L/EI L/2EI 0 F3 e

M(=|0 o0 0 1 L ) Fa |- |M (3.14)
v 0o o 0 0 1 0 F5 v

N 0 o 0 0 0 1 Fé N

114 0o o 0 0 0 0 11 1)1

When the axial force in a segment is tensile (P > 0), the elastic field

matrix equation is

[ u] 1 O 0 0 0 L/EA F1] [u]
sinh KL 1l-cosh K. L sinh KL
W o1 - - - m————— 0 F2 |
K P P KP
K.sinh K. cosh KL - 1
e 0 0 cosh KL 0 F3 e
P P
P-sinh KL sinh KL )
M| =]0 0 -<-wwmem- coshKL = -~=-=-—- 0 F4|-|M| (3.15)
K K
v 00 0 0 1 0 FS v
0 0 0 0 0 1 P6 N
1Ji [0 O 0 0 0 0 1) (1111
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and the elastic field matrix equation for a compressive axial force

(P<0) is
up 1 0 0 0 0 I/EA F1] [u
sin K. cos KL -1 sinkL, L
W 01 - e == 0 F2 | |w
K P Kp p
K-sin KL 1l - cos KL
e 00 L0330 ¢ PSSR S —— 0 F3 e
P P
- P-sin KL sin KL
M{=]0 0 -=-—-emee- cos KL, = ———-—- 0 F4 | M| (3.16)
K K
v 00 0 0 1 0 Fs||v
N 00 0 0 0 1 Fé6| |N
‘lJi 0 O (] 0 0 0 1) ]1}i-1

where K =PI /(EI) and Pl is the magnitude of the force in the
longitudinal direction determined from the previous iteration. For a

wide cross-section (plane strain), K = JIPI-(l- v /(EI) is used.
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The seventh column for no axial force (P =0) in the segment

becomes
r [ qlsine |
Fl1 - me—ecee-
EA
qL-cos ¢
F2l | e
24 EI
qI.3- cos ¢
F3 - mme———— (3.17)
= 6 EI
qu- cosd
F4 - m——————
2
F5 - qL-cos ¢
| F6 | qL-sin¢

the seventh column for the tensile axial force (P > 0) in the segment

is
] [ glsine )
F1 - —e——————
EA
q-cos ¢ l(?L2
F2] | =emm—- (cosh KL - 1 - ~———- )
EIx* 2
q.cos ¢
F3 -----5--(1(1. - sinh KL)
= EIK (3.18)
q-cos ¢
F4 - ====z---(cosh KL - 1)
K
FS5 - qL.cos ¢
| F6 | A ql-sin¢
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and the seventh column for the compressive axial force (P < 0) in the

segment is
. [ ql?sin¢ 1
1 - cemaeme-
EA
g-cos ¢ K?I.2
F2 - m——— (1 -cosKL - -—--)
EIK 2
q-cos ¢
F3 - ----5--(KL - sin KL)
= EIX (3.19)
q-cos ¢
4 - e (1 - cos KL)
K
FS - qL-cos¢
| F6 | | qL-sin¢ J

3.3.1.2 Initial Field Matrix

When the system in Fig. (3.1) is analyzed, axial forces on every
element must be known or estimated initially because the field
matrices depend on the axial forces. Since the axial forces on the
elements are unknown during the initial iteration, initial values for
the axial forces must be estimated in order to use the successive
iteration method for the flexible-body analysis. For the first
iteration, all of the axial forces are set to zero, i.e., no effects
due to the axial forces are included in the field matrix. The initial
field matrices can then be determined from Eq. (3.14). Then, a
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transfer matrix equation can be built using the initial fleld matrices
and solved for the internal forces at every node of the member. For
the next iteration, the elastic field matrices can be calculated from
Eqs. (3.14) through (3.19) using the axial forces determined at the

previous iteration.

3.3.1.3 Field Matrix for Rigid-Body Element

Frequently plate-shaped elements are connected with beam-shaped
links in a mechanism as shown in Fig. (3.3a). In a flexible-body
analysis, the elastic deflections in the plate-shaped 1links can be
neglected, because the in-plane stiffnesses of the plates are usually

much higher than those of the beams under in-plane forces.

A plate-element ABC in Fig. (3.3a) has three rigid-body beam
elements as shown in Fig. (3.3b), shere point D is the center of mass
of the plate. The motion of rigid-body links can be represented by the
rigid-body translational displacements followed by a rotation as shown

in Fig. (3.3b).

To derive the field matrix for a rigid-body element, let 1link AD
rotate an angle © about point A as shown in Fig. (3.3c¢). The local
coordinate system is set and then u and w is the displacements due to
the rotation of the rigid-body element with small deflections. From

the geometric relationships, the displacements are as follows:
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(a) A mechanise with Two Plate-Shaped Elements

(b) Rotation of Plate-Shaped (c) Displacements of
Link through an Angle © A Rigid-Body Element

FIGURE 3.3 A Mechanism with Plate-Shaped Links



¢+ I8-.3in 6/2

=
n

+ Le.cos ©/2

The field matrix for a rigid-body element is given as follow in

its local coordinate system:

[ 1 0 -d8L-sine/2 0 0 o o0
0 1 - 8L:cos /2 0 0 o o
o o 1 0 0 o o
tF3 =] 0o o 0 1 L 0 0 | (3.20)
0o o0 0 0 1 o o
o o0 0 0 0 1 0
L0 o0 0 0 0 0 1 |

where © is the rotational angle of the plate determined from the
previous iteration and must be updated during the iterations. & has a
magnitude of 1 and has the same sign as the sign of the angle 6.
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3.3.2 Point Matrix

The point matrix contains the effects of the external loads and
moments applied at a specific point of a member. The transfer matrix
equation at a specific point A as shown in Fig. (3.4a) is

R _ L
€83’ = [P1.{S3,
where CS}E = gtate vector at the right side of point A,
CS}k = gtate vector at the left side of point A,
and [P]) = point matrix at point A.

For a positive axial force (N), a positive transverse force (V),
and a positive moment (M) applied in the coordinate system as shown in
Fig. (3.4a), the equilibrium equations at point A shown in Fig. (3.4b)

are as follows :

NA— NA“N
vi= vt - v
Mi= M5 - M

where R means the right side of point A,
L means the left side of point A,
N is a force in the axial direction,
V is a force in the transverse direction,

and M is a moment.
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(a) External Forces at A Point for Point Matrix

(b) Forces at Point A

FIGURE 3.4 Forces for Point Matrix
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Then, the point matrix at point A becomes

[Pl = (3.21)

o +# O O © o o°o
[}
=

© © O © - o o
© O O K+ O © °©
© O +H O O ©O o

©O O © © O O -
© O © ©0 oo ¥+ ©o

3.3.3 Transformation Matrix

The transformation matrix transforms the geometric properties and
state vector from one coordinate system to another rotated by the angle
¢ relative to the first coordinate system. The matrix equation at a
point A in Fig. (3.5a) is

{5}, = [T3-(53,

where {S}, = state vector at A in the ith coordinate system,
{83, = state vector at A in the (i-1) coordinate system,

and [T} = transformation matrix at point A.



X;

\

.

(a) Local Coordinate system in Each Segment

Yin
(b) Two Coordinate Systems at Point A

FIGURE 3.5 Coordinates for Transformation Matrix
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The state varlables of node A in the (i-1)th coordinate system are

defined to those in the ith coordinate system as shown in Fig. (3.5b).

[
-
]

=
-
]

V1=

lh=

where

and

u

Z < 32 O =

Uy
g
031
My,
Via

- Via

.cos ¢

-sin¢

.Cos ¢

.8in¢

slope,

= moment,

+

Wi

Wy

Ny,

N 1-1

displacement in the
displacement in the

-8in ¢

-co8 ¢

-8in ¢

.cos ¢

axlal direction,

transverse direction,

= force in the transverse direction,

= force in the axial direction.

The transformation matrix at the point is a simple rotation matrix

as follows:

Tl

" cos ¢

sin ¢

o O o o

-sin ¢
cos ¢

0

0
0
0
0

© O O o = O ©

0 0 0 0]

0 0 0 0

0 0 0 0

1 0 0 0 (3.22)
0 cos ¢ siny O

0 -sin ¢ cos ¢ 0

0 0 0 1|



3.3.4 Spring Matrix

The spring matrix contains the forces generated by a spring from
the rigid-body kinematic displacements and elastic displacements. The
matrix at a point A in Fig. (3.6a) is

{s3} = £s3.¢53%

where £S}2 = state vector at the right side of point A,

{S}k state vector at the left side of point A,

and [S)

]

spring matrix at point A.

Springs may be connected between the links in a mechanism or to
the ground. Here, the spring forces of translational springs are
considered. In Fig. (3.6a), the original positions of a mechanism
(OP QR) moves to the position (O P'Q’R) and the spring attachment
point moves from A to A’ for a ground-attached spring, and from C and D
to C’ and D’, respectively, for a spring attached between two links.
There are two types of spring forces in the mechanisms: one is
developed from the displacements due to the kinematic motions (A to A’
or 1line CD to C’D’ in Fig. 3.6a) and the other comes from the elastic
displacements (A’ to A" or 1line C'D’ to C"D" in Fig. 3.6b). Also,
there are two types of spring end constraints: Pinned ends and sliding
ends as shown in Fig.(3.6a. Sliding ends are connected to the frame
only.
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(a) Displacements due to The Kinematic Motions

(b) Displacements due to The Elastic Deflections

FIGURE 3.6 Displacements for The Spring Matrix



62
3.3.4.1 Spring Forces Due To The Rigid-Body Kinematic Motion

The coordinates at Point A and A’ shown in Fig. (3.7) are assumed
known from the rigid-body kinematic analysis. Thus, the length of OA’
(L) 1is

L =J(x.,- x Pt (- yp P
The generated force (F) along the OA’ axis is
F = -K(L-1L) = K-(L - FL)
where FL i1s the free length of the spriné.
The force components in the x- and y-directions are

Fg = F-cos © K-(L - FL).cos ©

(3.23)

Fy = -F.sin @ - K-(L - FL)-8in ©

where K

spring stiffness,
©® = angle between the spring axis and the global x-axis,
and FL

free length of the spring.



FIGURE 3.7 Rigid-Body Motion of A Mechanism
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3.3.4.2 Spring Forces Due To The Elastic Displacements

Fig. (3.8a) shows the elastic displacements of a mechanism. Here,
the angle 6 is the angle between the spring axis and the global x-axis
at point A’. The angle 6’ is the angle between the spring axis and the
global x-axls at point A", If Point A’ moves to B, there is no
additional spring force generated, because the lengths of OA’ and OB
are equal. But, when Point A’ moves to A", there is a force reduction

because of the elastic displacements.

To derive approximate relationships between the spring forces and
elastic displacements, the coordinate system (x and y) is transformed
into a new coordinate system (x’ and y’) located at Point A as shown in
Fig. (3.8b). The displacement in y’~direction (w’ in Fig. 3.8b) is the
displacement involved to the spring force. This force 1is then
decomposed into the x- and y-directions of the original coordinate
system. The transformation angle between the two coordinate systems is
@s = O’ + 90° Thus, the transverse displacement (w‘) in the

y’—-direction as A moves from A’ to A" becomes

# = -u-8in 68 + w.cos 68

The generated force (F) along the y’~direction is

F = -Kw = Ku.gsin6s - K-w.cos 6s



(b) Forces Due To The Elastic Displacements

FIGURE 3.8 Spring Forces Due To The Elastic Displacements
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If the y’'-axls has small deviations relative to the 1line OA" as
shown in Fig. (3.8b), the angle ©’ can be used to decompose the spring

force into the components in the x- and y-directions as follows:

Fx K-8in 6s.cos 6’-u - Ke.cos ©6s.co8 O8'.-w

Fy

- K:sin 08.8in 6°-u + K.cos 63.3in 6’.-u

Thus, these forces are rearranged in each displacement direction as

follows:
Fxu = K.sin ©s.cos 6’ . u
Fxw = - K-.cos 6s.cos 8’ w
(3.24)
Fyu = - K-sin 6s.8in 9‘. u
Fyn = K.cos 63.8in 0’ %

where Fxu = spring force in the x-direction due to the elastic
displacement in the axial direction,
Fxw = spring force in the x-direction due to the elastic
displacement in the transverse direction,
Fyu = spring force in the y-direction due to the elastic
displacement in the axial direction,
and Fyw = spring force in the y-direction due to the elastic

displacement in the transverse direction.
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Finally, the spring matrix at a 1location of any spring is

determined by combining Eqs. (3.23) and (3.24) as follows:

[ 1 0 0
o 1 0
0 0 1
[s] = 0 0 0
Syx Syy 0
Sxx  Sxy 0
L 0 0 0
and
Syx = K.sin 0s-.sin 6’
Syy = - K.cos 0s.s8in 6’
Sxx = - K-sin 6s.cos 6’
Sxy = K.cos ©s.cos 6’
Syk = K-(L - FL).sin 6
Sxk = - K«(L - FL)-cos ©
where K =
FL = free length of the spring,
L =
s =
and 6s = 0’ + 90,
0 =

stiffness of a translational spring,

o O O W O o o°©

© O +» ©o © ©o o

o # O O O o o©°

0
0
0
0 (3.25)
Syk
Sxk
1
(3.26)

spring length from rigid-body kinematics,

angle between the spring axis and the global x-axis

angle between the spring axis and the horizontal axis

for rigid-body displacements alone,
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0’ = angle between the spring axis and the horizontal axis
for both rigid-body and elastic displacements,

Sxx = spring force intensity (force/length) in the x-direction
due to the displacement in the x-direction,

Sxy = spring force intensity (force/length) in the x-direction
due to the displacement in the y-direction,

Syx = spring force intensity (force/length) in the y-direction
due to the displacement in the x-direction,

Syy = spring force intensity (force/length) in the y-direction
due to the displacement in the y-direction,

Syk = spring force in the y-direction due to the pre-load and
to the rigid-body displacements in the mechanism,

and Sxk = spring force in the x-direction due to the pre-load and

to the rigid-body displacements in the mechanism.

3.3.4.3 Spring forces for A Spring Connected Between Links

For a spring interconnected between links, both connecting points
move with the 'spring. As shown in Fig. (3.9a), Point C’ moves to C"
and Point D’ moves to D*. When the spring forces at Point C are
calculated, Point D’ is set to coincident to Point D" as shown in
Fig. (3.9b) and then the same procedure in Section 3.3.4.2 are used to
determine the spring forces due to the elastic displacements of Points
C and D. For the spring forces at Point D, Point C’ is coincident to
Point C". Here, the total displacements used in Eq. (3.26) are the sum
of the elastic displacements of both nodes.
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(a) Displacements of Both ends

y y'
{(b) Displacements of Point C For The Coincident Point D
FIGURE 3.9 Spring Forces For A Spring Connected Between Links

FIGURE 3.10 A Spring with A Sliding End
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3.3.4.4 Spring Forces for A Spring with A Sliding End

Fig. (3.10) shows a spring with a sliding end. As the system
deforms, Point A moves to A’, and Point B moves to B‘. Thus, the angle
©’ remains the same angle as © as shown in figure. A spring force is
generated in only one direction and is calculated from the spring
matrix given in Eqs. (3.25) and (3.26).

For example, the spring forces generated at point B in Fig. (3.10)
are calculated from the condition of the angles 6 = 6'= 90’ as follows:

es = © + 90° = 180.0°

and from Eq. (3.24),

Syu = 0.0
Syw = - KW
Sxu = 0.0
Szw = 0.0

It means that the spring force at node B is generated in the negative
y-direction only due to the displacement in the positive y-direction.
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3.3.5 Branch Systenms

3.3.5.1 Types of Branch Systems

Several types of branches may be connected to the main system
(loop) in nmultiloop mechanisms. Thus, the properties of these branch
systems must be incorporated into the main loop. Generally, four types
of one degree-of-freedom branches are considered in this research.
These types are given in Fig. (3.11). The detail procedures for the
subloop matrix equations are presented in Chapter 5.

3.3.5.2 Branch Matrix

The branch matrix contains the properties of a branch system. At

any branch point in the system, the transfer matrix equation becomes

{S3; = [B1-{S3}

where {832 = gtate vector at the right side of point A,
{S3} = state vector at the left side of point A,
and [Bl = branch matrix at point A.



FIGURE 3.11 Four Types of Sub-Loop Systems
(a) A Fixed Branch with A Free End
(b) A Revolute Branch with A Pin End
(c) A Slide Branch with A Pin End
(d) A Revolute Branch with A Slide End
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The general transfer matrix equation for any of the subloop

systems in Fig. (3.11) is

]

' U(1,1) U(1,2) U(1,3) U,4) U(,5) U@Q,6) UL, D]
U(2,1) U(2,2) U(z,3) U(2,4) U(2,5) U(2,6) U(2,7)
U(3,1) U(3,2) u(3,3) U(3,4) U(@3,s U(3,6) U(3,7)
U(4,1) U(4,2) U(4,3) U4,4) U4,5) U(4,6) U4,7)|
U(s,1) U(5,2) U(5,3) U(5,4) U(5,5) U(5,6) U(5,7)

=

(3.27)

U(e,1) U(6,2) U(6,3) U(6,4) U(6,5) U(6,6) U(6,7)

- = < X2 O© =
"
- Z2 < X O 2

PL O 0 0 0 0 0 1 p’

From the end conditions of the subloop system, three components in the
state variables must be zero, and the other three are unknown. For the
subloop from A to A’, an end at Point A’ is free so that M=V=N=0
and three displacements are unknown. Thus, the transfer matrix

equation of the branch system simplifies to

'R U(L,1) U(,2) U(Q1,3) UAQ,7
U(Z,1) U(2,2) U(2,3) U2,7)
U(3,1) U(,2) U(@3,3) U@a,7)
= U(4,1) U(4,2) U(4,3) U4,7) | - (3.28)
U(5,1) U(5,2) U(5,3) U(5,7)

IJ A’
u(e,1) U(6,2) U(6,3) U(6,7)

o 2 < =2 O =

Ia 0 0 0 1)
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Then, Eq. (3.28) can be partitioned into two matrices as follows:

u ru
" W
= [Z11- (3.29)
(<] e
11ia 11]a’
and
M F u
v W
= [2Z221]: (3.30)
N e
1ja | 1]a’

From Eqs. (3.29) and (3.30), the forces must be functions of the

displacements at the branch point as follows:

[ M [ U [ u
-1 W ]
= [223-0713 - = [223- (3.31)
) 8
1la 1 1a 112

Rewriting Eq. (3.31) gives

Ma= 22(1,1)euy + 23(1,2)-w, + Z2(1,3)-64 + 2%(1,4)
Va= 22(2,1)-up + 22(2,2)-wy + 22(2,3):0, + 72(2,4)
My = 22(3,1).up + 22(3,2).-0, + 22(3,3)-0, + 2%(3,4)
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Finally, a branch matrix can be derived from Eq. (3.31) as

follows:

1 0 0 0 0 0 0 ]
0 1 0 0 0 0o o0
0 0 1 0 0 0 o0
CB1 = |2Z2(1,1) 22(1,2) 32(1,3) 1 0 0 22(1,4) (3.32)
22(2,1) 22(2,2) 22(2,3) 0 1 0 22(2,4)
22(3,1) 22(3,2) 22(3,3) 0 0 1 22(3,4)
L o0 0 0 0 0 0 1 |

The branch matrix in Eq. (3.32) can be determined from the same
procedure from Eq. (3.27) to Eq. (3.31) for all types of subloop
systems. However, the ZZ(1,j)’s in Eq. (3.32) are different depending
on a subloop system. The formulation details for each subloop system

are given in Section 5.4.
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3.3.6 Inertial Matrices for Dynamic Analyses

To get quasi-static and time-domain responses from a dynamic
analysis, the effects of the lumped mass of the 1links must be
considered. In dynamic analyses of flexible mechanism, the inertial
forces from the rigid-body kinematic accelerations acting on the
members are sometimes treated as external forces at the 1locations of
the lumped masses. But, the elastic-body accelerations from the axial
and transverse vibrations of the members can not be determined
directly. To account for the effects of these elastic-body vibrations
from the lumped masses, the Houbolt difference direct integration
method is used since this method is one of the most effective and
stable methods available [96-97].

At node A of a lumped mass as shown in Fig. (3.12a), the transfer

matrix equation becomes

L
{s1} = 3-gs3,

where {S): = gtate vector at the right side of point A,
(S}k = state vector at the left side of point A,
and [M] = inertial matrix for the lumped mass at point A.

The rigid-body inertial matrix for the quasi-static analysis is
derived in Section 3.3.6.1. The elastic-body inertial matrix for the
time-domain analysis is given in Section 3.3.6.2. The procedure for
the dynamic analysis is briefly explained in Section 3.3.6.3.
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(a) A Lumped Mass at Point A
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(b) Rigid-Body Inertial Forces

FIGURE 3.12 A Lumped Mass with Rigid-Body Kinematic Accelerations
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3.3.6.1 Rigid-Body Inertial Matrix for Quasi-Static Analysis

The rigid-body inertial forces in the global coordinate system as
shoun in Fig. (3.12b) <can be calculated from the rigid-body

accelerations due to the kinematic motions:

Fu = -mAu
Fw = - n.Aw (3.33)
Ma = - I-Aa
where Fu = inertial force in the longitudinal direction,
Fu = inertial force in the transverse direction,
M = inertial moment due to the angular acceleration,
m = lumped-mass,
I = mass moment of inertia about the center of mass,
Au = rigid-body linear accelerations in the longitudinal

direction,

AR = rigid-body linear accelerations in the transverse

direction,

Aa = angular acceleration of the rigid-body links.

The rigid-body inertial matrix including the inertial effects due
to the rigid-body kinematic accelerations is analogous to the point

matrix discussed earlier. The result becomes:



M

3.3.6.2 Elastic-Body Inertial Matrix For Time-Domain Analysis

3.3.6.2.1 Governing Equations of Motion

o O O O O O =

©c O © o©O o + o
©c O O O = O o

o O O + O O O

©c O +H O O O o

o W O © © o o

r.Au
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(3.34)

The fundamental equations of motion in first order form are as

follows:

oW

ax

0

ax

M

X

v

ax

F

- p- - ———

at?

For the transverse direction,

(3.35)

(3.36)

(3.37)

(3.38)



and also for the axial direction,

u N
——— = ee—- (3.39)

ax EA

aN fu

- = - p- —--2— (3040)
£} ot

where u = displacement in the axial direction,

displacement in the transverse direction,

slope,
bending moment,

internal force in the transverse direction,

2 < X o =
L

= internal force in the axial direction,

position axially along the shaft,

area of cross-section,

modulus of elasticity,

-H 3 > ®
]

area moment of inertia,

h-)
i

= mass per unit length,
and
t = time.
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3.3.6.2.2 Houbolt Difference Direct Integration Scheme

For a system of ordinary differential equations with constant
coefficients, any convenient finite difference expressions to
approximate the accelerations and velocities in terms of displacements
can be used. Theoretically, a 1large number of different finite
difference expressions could be employed. However, the solution scheme
should be effective, and it follows that only a few schemes need to be

considered.

For elastic-body inertial forces for the time-domain analyses, the
Houbolt difference scheme is used. The method is based on a
third-order interpolation of displacements. In the Houbolt integration
scheme, multi-step implicit formulas for velocity and acceleration are
derived in terms of displacements using backward differences shown in
Fig. (3.13). The difference formulas in the Houbolt difference method
has the following relationships [96-971:

2 s ..
9= Qrvas — Mypa + é‘f‘ Givas — :‘3’- Qrva

Q-8 = Grear — (2 A)gosa + ('2‘#)2 Greae — (2—6A£)’ Qrvar

3 -
Qe-2ar = Geoae — (3 At)sa; + (%é‘- Groar — (2341 ’ Qevae
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Solving the above equations for acceleration and velocity gives the
following difference formulas:

1 |
Gvae = T3(2rar — 59, + 4G,-as — Q1-24s)
L o T (3.41)

Grae = B"IE(uquu — 18q, + 9¢;-ac — 2¢;-247)

The inertial forces from the elastic vibrations of the 1links in
Egs. (3.38) and (3.40) can be formulated using the Houbolt difference
algorithm. Eq. (3.38) is changed at the time t+Dt as follows:

avnu g“u-n
_____ = = prmmmmmm (3.42)

ox at’

9.2t 9.2t 9 Yteat

FIGURE 3.13 Displacelent Versus Time



Substituting Eq. (3.41) into Eq. (3.42) gives

83

dvuu P
meemem ® - -—p C2w,,-5u +4w_, -W_,, 1 (3.43)
dx Dt
and Eq. (3.40) becomes:
dNH-N p
s = = e L 2w, 5w, tAN_, W, ] (3.44)
dx Dt
From Eqs. (3.43) and (3.44) the elastic-body inertial forces at any
time t+Dt are as follows:
m
Ve =-=—3 W, ~ —5L[-5u +4n_, -~¥W_w 1
bt Dt
(3.45)
2m m
Ne = - = UYua = -3 L-5u, +4u,_, -u_ 1
Dt Dt
where Ve = elastic-body inertial force in the transverse direction,
Ne = elastic-body inertial force in the axial direction,
m = mass of a lumped-mass,
u = displacements of the lumped-mass in the axial direction,
and w = displacements of the lumped-mass in the transverse

direction.



3.3.6.2.3 Elastic-body Inertial Matrix

Fig. (3.13a) shows the rigid-body inertial forces due to the
rigid-body accelerations. Fig. (3.13b) gives the elastic-body inertial
forces due to the elastic vibrations of the members. At a lumped-mass
of Point A, the total of the inertial forces are determined by summing
the rigid-body inertial forces (Fig. 3.13a) and the elastic-body
inertial forces (Fig. 3.13b) as follows:

Mi = ML - M
VB = Vi - Ve - Fw (3.46)
N; = N, - Ne - Fu

where

M = nmoment,

V = force in the transverse direction,

N = force in the axial direction,

Ma = moment due to the rigid-body angular acceleration,

Fw = transverse force due to the rigid-body acceleration,

Fu = axlal force due to the rigid-body acceleration,

Ve = transverse force due to the elastic vibrations at a time,

Ne = axial force due to the elastic vibrations at a time.
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(a) Rigid-Body Inertial Forces
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. M3
NA A Ne N:
L
M,y
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(b) Elastic~-Body Inertial Forces

FIGURE 3.14 1Inertial Forces of A Lumped-Mass at Point A
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By substituting Eqs. (3.33) and (3.45) into Eq. (3.46), the
elastic-body inertial matrix is derived as follows:

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1l 0 0 0 0
M = 0 0 0 1l 0 0 Fmm (3.47)
Y] Frow 0 0 1l 0 Fow
Fmu 0 0 0 0 1l Fuu
| O 0 0 0 0 0 1
and
2
Fmk = 2Zm/Dt
Fmu = 2n/Df
Fmm = I Aa
(3.48)
n
Faw = - C-5wuw +4w_, -¥W_u 1 + nAN
Dt
n
Fuu = -522- C-5u, +4u,., -u_,, 1 + mau

where m = mass of a lumped-mass,
Dt = time interval,
I = mass moment of inertia,
Aa = rigid-body angular acceleration of link,
Au = rigid-body acceleration in the axial direction,
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Aw = rigid-body acceleration in the transverse direction,

displacements of the lumped-mass in the axial direction,

u
and w = displacerents of the lumped-mass in the transverse

direction.

3.3.6.3 Procedure for The Inertial Matrices

In a dynamic analysis for quasi-static responses, the rigid-body
accelerations of lumped masses are required to be calculated from the
kinematic acceleration analysis. These inertial forces due to the
rigid-body kinematic accelerations acting on the members can be treated
as external forces at the 1locations of the lumped masses. Thus,
Eq. (3.34) can be used directly for the dynamic analysis for the

quasi-static responses of mechanisms.

However, the elastic-body accelerations due to the elastic
vibrations of the members can not be calculated directly. To account
for the effects of the elastic-body vibrations, a direct integration
method 1s used. The direct integration method is that static
equilibrium, which includes the effects of inertial forces, is sought
at discrete time points within the interval of solution. Therefore,
all solution techniques employed in the static analysis can also be
used effectively in direct integration. The second point is that a
specific variation of displacements, velocities, and accelerations

within each time interval is assumed.
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Displacements, velocities, and accelerations of elastic members

due to the elastic vibrations are zero at the initial position (initial

conditions). Time interval is calculated from the angular velocity of

an input-link in a mechanism and the angle interval to the next
position to be analyzed as follow [27-28]:

Dt = ——meemee (3.49)

where Dt = time interval in Eq. (3.48),
A© = angular difference to each position of the mechanism,
and ¢ = angular velocity of the input-link.

Thus, all of the displacements of every node in the system are
calculated from the rigid-body inertial forces and the elastic-body
inertial forces at each position. The elastic-body inertial forces of
every lumped-mass due to the elastic vibrations are computed from
Eq. (3.45) using the displacements at three positions. The inertial
matrix at next position of the mechanism can be evaluated from
Eq. (3.48) using the displacements determined at the previous positions
of the mechanism.
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3.4 Comparison with The Solutions of Flexible Mechanisms

As a first comparative study, a four-bar crank-rocker mechanism
shown in Fig. (3.15) is analyzed. This mechanism is examined by Buhgat
and Willmert [12] using a displacement-based finite element method and

a high-order hermite polynomial approximation.

The data for the mechanism shown in Fig. (3.15) are:

Length of input crank (AB) 5.0 inches.

Length of coupler (BC) 11.0 inches.

Length of follower (CD) 10.5 inches.

Fixed distance (AD) 10.0 inches.

The initial position of the crank at t = 0 coincides with the ground
link as shown 1in Fig. (3.15). The angular speed of the crank is
constant at 125 rad/sec, and each bar is considered to be a steel rod

with 0.25 inch wide and 1.0 inch high.

The results are compared with the solutions presented in
Reference [12] and given in Figs. (3.16) - (3.19). Figs. (3.16) and
(3.17) give the displacements in the horizontal direction and slopes at
node B, respectively, as a function of crank angle. Fig. (3.18) shows
the horizontal displacements at node C, and Fig. (3.19) gives the
stresses at the mid-point of the coupler. The comparative study shows

that both solutions are in good agreement.
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As a second study, a four-bar crank-rocker mechanism as given in
References L7, 9, 11, 17) is studied. The geometry of the mechanism
shown in Fig. (3.20) has the following dimensions:

Length of crank = 4.0 inches.
Length of coupler = 11.0 inches.
10.5 inches.
10.0 inches.

Length of Follower
Ground 1ink

The model in [7, 9] was constructed of aluminum strip 1.0 inch
wide. The crank was 0.167 inch thick. The coppler and follower links
were 0.063 inch thick. The coupler was connected to the crank and the
follower by means of pins and small ball bearings mounted in sleeves.
The total weight of the bearing and the sleeve at each end was 0.06 lb.
Other apparatus details may be found in [7, 93. 1In References
£11, 1731, the total weight of the bearing and the sleeve was assumed to
be distributed equally to lumped masses on the crank and follower.

The input-link is rotated at 400 rpm in the clockwise direction.
Fig. (3.21) gives the nomalized rigid-body angular acceleration of the
follower plotted against the crank rotation angle. The results are the
quasi-static strains at mid-point of the follower. These strains are
illustrated in Fig. (3.22) and show in good agreement. Finally,
Fig. (3.23) shows the steady-state strains at the mid-point of the
follower determined from the time-domain analysis. The solution
details are given in Section 8.3 and Appendix C.
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CHAPTER IV

APPROXIMATE METHOD FOR LARGE-DEFLECTION ANALYSIS

4.1 Introduction

In Section 3.3.1, the elastic field matrices for the
small-deflection analyses are derived by assuming a linear system.
However, large-deflection problems can not be solved by superposition
of the displacements, because the system is nonlinear. Thus, the
solutions for the large-deflection problems can not be obtained
directly from elementary beam theory for linearized systems since the
basic assumptions are no longer valid. Specifically, elementary theory
neglects the square of the first derivative in the beam curvature
formula and provides no correction for the shortening of the moment-arm
caused by transverse deflections. Thus, for large loads elementary
theory for a linearized system can give deflections greater than the

length of the system.

The objective of this chapter is to develop an approximate method
for the large-deflection analyses. Then, the solutions determined from
the approximate method developed are compared with exact solutions
£86-881.
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4.2 Fundamentals for Large-Deflection Analysis —

As mentioned earlier, large-deflection problems cannot be solved
directly from elementary beam theory for the 1linearized systems,
because the theory neglects both the square of the first derivative in
the denominator of the beam curvature formula and the shortening of the
moment-arm. However, 1f these effects are evaluated approximately and
involved iteratively. the 1large-deflection problems may be analyzed
using linearized equations. Hence, from the state equations given by
Eqs. (3.14)-(3.19) for the 1linearized system, the displacements are
corrected by a geometric relationship. Then, an updated average axial
force in each segment 1s determined from equilibrium conditions. The
corrections for the displacements and average axial force are updated

at every iteration.

A general beam subjected to external loadings is represented in
Fig. (4.1). Regardless of the beam loading, the beam can be accurately
modeled as a series of discrete segments 8o that each segment 1is
subjected to the internal forces at both ends as shown in Fig. (4.2).
Each segment has its own local coordinate system oriented at an angle
with respect to the fixed global system. The position of the local
coordinate system must be updated as the member deforms.

A typical beam segment can be represented as shown in Fig. (4.3).
The internal forces at both ends are present in the local coordinate
system. As the segment deflects, the moment-arm is shortened by the

transverse displacement due to the transverse loading.
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The relationships among the displacements and internal forces at both

ends of segment under axial tension can be determined from Eqs. (3.15)
and (3.18) as follows:

L q Psino
u, = u,, + -—-N,, = ==———————- (4.1)
1 1-1 EA 1-1 EA
sinh KL 1 - cosh KL
W = W = =ememeei@,, + ——mme—e——ee. M,
1 1-1 K 1-1 p 1-1
(4.2)
L sinh KL g.cos ¢ lt?I.2
t (== mmeee=n) V4 e 7~ '(cosh KL - 1 - ---—- )
P KP EIK 2
K-sinh KL cosh KL, - 1
e, = cosh KL -0y + =---—e—==eM i, 4 —cocoommoee. Ny,
P P
(4.3)
q.cos ¢
+ =---——3--(KL - sinh KL)
EIK
P-sinh KL sinh KL _
M, = v ©,,; + coshKL.-My; + -—-————-. Ny
1 K i-1 X 1-1
(4.4)
qg-cos ¢
- =---3—-(cosh KL - 1)
K
V, = Via - q-L.cos¢ (4.5)
N, = Ny, + qL-sin¢ (4.6)

where u’ = longitudinal displacement in the local coordinate system,

W’ = transverse displacement in the local coordinate system,
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slope,

moment,

internal force in the transverse direction,

internal force in the longitudinal direction,

axial force on the segment,

length of the segment,

JP EI,

uniform distributed load on a segment,

e R RN M W = < X O
[

and angle between the local x-axis and the global X-axis.

Here, the displacements u’ and w' in Eqs. (4.1) and (4.2) are
values in the 1local coordinate system for the small deflection
analysis. But; for the large deflection analysis, the displacements
are related to each other and to the total length of the segment
(L +AL), which L is the original iength of the segment and AL 1is the
elongation due to the axial (tensile) force. The angle is the
rotation angle between the current and original local coordinate
systems. This angle is updated iteratively as the segment deforms. 1In
a kinematic analysis, the position corresponding to a= 0 would be the
position determined in a rigid-body kinematic analysis. Fig. (4.4)
shows the displacements of the end of the segment in the inclined axes,
where the inclined axes are dependent on the deflected position of a

node.
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FIGURE 4.4 Transverse Displacement in An Inclined Axes
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Then, the displacements in the 1local coordinate system can be

determined from the geometric relationship as follows:

u = u‘ecosa ¢+ w-.sina (4.7)

w = =-u'‘sinoa + wW-cosa (4.8)
and

a = ©0/2 (4.9)

where © is the average slope of thg deflected segment. In real
situation, a is not exactly 6/2, because the deflected segment is not a
straight line as shown in Fig. (4.4). But, if the 1length of the
segment 1s short enough to be approximately straight, the relationship
can be used for 1;he formulations.

Substituting Eqs. (4.1) and (4.2) into Eqs. (4.7) and (4.8) gives

sinh KL 1 - cosh KL
u; = u,, - -=~—---.sing - 0,, + ----—-—----.sino M4,
K P

L sinh KL L
+ (- - -—--)sina -V, ¢+ ——N,_ (4.10)

P KP * B

qu- sin ¢ q.co8 ¢ K?Iz

- + «(coshKL -1 - ~====).8ina

4

EA EIK 2
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sinh KL 1 - cosh KL
W, = W, - —--E----cosa Q4 ¢+ ------;-----cosa My,

L sinh KL

+ (= = =======)ecosa V43 (4.11)
P KP

q.cos ¢ 154

+ ----;—-(cosh KL -1 - ———==)«cos 0

EIK 2

The other components of the state vector (6, M, V, and N) are not

changed.

4.3 Determination of The Average Axial Forces from The Equilibrium
Conditions

Let us consider the equilibrium conditions of the segment as shown
Fig. (4.5) to determine a way of iteratively updating the average axial
fdrceé (P) in each beam segment. The average axial force in the
seguent is determine so that equilibrium conditions at the end nodes
can be satisfied.

Fig. (4.5) shows a beam segment under large deflection. The
relationships of the state variables between nodes i and i-1 are given
in Eqs. (4.3)-(4.6) and Eqgs. (4.10)-(4.11). Here, the equilibrium
condition for the moments in the beam segment is investigated. From
the summation of moment about the right end the following condition is

given:
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M=0-= Hi— - M, + (L + Au)'V_1 - (A")‘N1.1
b2 ! ! t (4.12)
- q.-L-cos$ (L + Au)/2 - q-L-sind -(am)/2

Here, the last two terms in Eq. (4.12) correspond to the moments due to
the distributed 1load. Au and AW are the net displacements in the

axial and transverse directions.

The net displacements in each direction can be calculated from

Eqs. (4.10) and (4.11) as follows:

AU = u; - Uy,
sinh KL 1 - cosh KL
= - mm———— sina <04 + ——————m—ee-. sina ‘M4,
K P
L sinh KL L
+ ( - e e—— )'Sin a . v1_1 "' ———— 'N‘_l
P K:P
qu- sing¢ q.cos ¢ l(?I.2
- + : «(cosh K, -1 - -———-)+sina
EA EIK 2
and
AR = W, - W,
sinh KL 1 - cosh KL
= - —m— coSa -0, + ———-———e———. cosa -My,
K P
L sinh KL
+ (- - - )rcosa Vg,
P K-P
q.cos ¢ K?I.2
+ ---——2-(cosh KL - l--=-==).cosa

EIK 2
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Here, the elongation or shortening of the segment length due to

the axial force is very small relative to the displacement due to the

transverse deflection.

L qu.gin ¢ sinh KL
['"'-'Ni-l - _-------] <4 [ - mee——— sina -84
EA EA K
| 1 - cosh KL L sinh KL
+ -—=—-————.gina My, + ( - = ====—== ).sina .Vy,
P P KP
q.cos ¢ K?Lz
--—--g-(cosh KL - 1 - -—---)-sina
EIK 2

Thus, the terms of the left side in the above equation can be

neglected.

Let us calculate each term in Eq. (4.12).

(L + au)-LVy,; - (gL-cos ¢)/2]

qI.":cos ¢ sinh KL
e + (sinag )} - ====—=—=-0311
2 K
1l - cosh KL L sinh KL
4 ceeeemem—— -H1_1+ (= = —======) V4, (4.13)
P P K-P

q-cos ¢ K?f
4+ ———eeee(cosh KL - 1 - ===== ) .[ vi—l - (qL-cos ¢ )/2 ]
Exx* 2
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(am)- I[Ny, + (qL-sin ¢)/2]1

sinh KL 1l - cosh KL
= (cosa):f = —m=—m—mt 04y + -momommm—e- My
K P
L sinh KL
,’. ( - e esemeranerame )‘vi‘l (4.14)
P K-P
0080 hKL -1 K?f’ ] N L
4 —me———— .(COS - - ——— .[ 1 ¥ (q -s:ln¢)/2]
Exx* 2

Substituting Eqs. (4.4) for M,, Eqs. (4.13) and (4.14) into Eq. (4.12)

and rearrangement of the equation gives

sinh KL 1 - cosh KL L sinh KL

- m—— L R B Mgt (- = )V,
K P P
q-cos ¢ KL qL-cos ¢
4+ -—---—-.(cosh KL -1 ~ --——-- Y e P+ (Vi = ~oemm )sina
EIX* 2 2
qL.sin ¢
- (N, # ~====-==).cCOB 0 = 0
2

(4.15)

The first square bracket in Eq. (4.15) corresponds to W' in Eq. (4.2)
and this term can not be zero. Thus, the average axial force in a

segment can be derived from the terms in the second bracket in

Eq. (4.15) as follows:

qL-sin ¢ gL-cos ¢
P=(Ny3 ¢+ —————-).co80 - (Vyy = === --):sina (4.16)
2
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4.4 Field Matrices for Large-Deflection Analysis

Field matrices for the large-deflection analyses can be derived
from Eqs. (3.14) - (3.19) in Section 3.3.1 and Eqs. (4.7) - (4.9). The
average axial force in a segment is given by Eq. (4.16).

qL-sin ¢ gL.cos ¢
P = (N, + -——=-==).co8a - (V43 = ====--=-=).sina
2 2

where P = total axial force present in a segment,
Ny, = longitudinal force at the (i-1)th node,
Vi, = transverse force at the (1-1)th node,
o = angle in Eq. (4.9).
q = force intensity on a segment (force/length),
and ¢ = angle between the horizontal axis and the global x-axis.

When there is no axial force (P = 0) in the segment, the fileld

matrix becomes

. 12 i L
1 0 -L.sinaq - ---,gina¢ - =-~--.sina -- Fl1
2E1 6EI EA
12 i
0 1 -L.-cosa = ---.cO8a =- -——.COSQ 0 F2
2F1 6EI
L i
[FI=|0 O 1 ———— eem——— 0 F3 | (4.17)
EI 2E1
o 0 0 1 L 0 F4
0o 0 0 0 1 0 FS
0 0 0 0 0 1 Fé
| 0 O 0 0 0 0 1




for a tensile force (P > 0)_. the field matrix is
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-sinh KL 1 - cosh KL L sinh KL L 1
10 ————=em. sina ----==-==--.ginae (- - ===---=).sina -- F1
K P P KP EA
-sinh KL 1 - cosh KL L sinh KL
01 --------.c08q@ -----—-----.C08a (- - -=————-).co8a¢ O F2
K P P KP
K-sinh KL cosh KL -1
[F1=100 cosh KL = ==—cemcee cereceeeee 0 F3
P P
P.sinh KL sinh KL
00 - ——-====—- cosh KL e 0 F4
K K
00 0 0 1 0 F5
00 0 0 0 1 Fé6
[0 0 0 0 0 0 1)
.O....O..(4.18)
and for a compressive force (P < 0), the field matrix is
[ sin KL cos KL -1 sinkKLL, L L )
10-------'sinag -——---==--- sina (----— - -).sina -- Fl
K P KP P EA
sin KL cos KL - 1 sinkKL L
01 - ~=—===:CO08q =~========. cosa (===--- - -).co8a O F2
K P KP P
K.sin KL 1 - cos KL
[(F1={00 cos KL = W --=-weem 0 memeeeeeee 0 F3
P P
P-sin KL sin KL
00 -~ —-——=—m- coskL = ==---- 0 - F4
K K
00 0 0 1 0 F5
00 0 0 (1] 1 Fé6
00 0 0 0 0 1!

000000000(4019)
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where k = \I IPI/EI and [Pl 1s the total axial force determined from
Eg. (4.19) at the previous iteration. For a wide cross-section,

K= ,/ IPI(1-v2)/(EI) is used. The angle o 1is the displacement
correction angle in Eq. (4.9) and must be updated during the

iterations.

The seventh column for no axial force in the segment becomes

r ql?siné ql'cos ¢
F1 - m————— + ==—--——-.gina
EA 24-EI
qI.‘- cos ¢
F21 | eececca—-— * COs a
24-E1
3
gL.cos ¢
E‘3 - - - e o o -— (4 N 20)
6-EI
qL2- cos ¢
F4 - mEmmm——
2 .
F5 - gL-cos¢
| F6 | qL-sin¢ ]




the seventh column for the tensile axial force in the segment is

F2

F3

F4

F5

and
is

F2

F3

F4

F5

LFG

fFl‘

, F6 |

[ qI.z- siné g.cos ¢ l(?l.2

+ r (cosh KL ~ 1 - =-====).sina
EA EIK 2

2
q-cos ¢ G
----- ¢ '(cosh KL - 1 = -—-==).cos @
EIX 2

-------- (KL - sinh KL)

- -—--3--+(cosh KL - 1)

- gL-cos ¢
qL-sin ¢

2
- qlisiné  q-cosé KL
- - -(1 - cos KL = ----=).8in
EA e 2
q.cosd K?I-z)
- e, (1 - cos KL - -——--).co8
EIx* 2
q.cos ¢
- ----5--(KL - 8in KL)
EIK
q.-cos ¢
- _---5--(1 - cos KL)
K
- gqL-cos ¢

ql-sin ¢
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(4.21)

the seventh column for the compressive axial force in the segment

(4.22)
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4.5 Comparison with The Exact Solution

As the first comparative study, let us solve a large-deflection
problem, which 15 a cantilever beam under transvefae loading at the
tip. Bisshopp and Drucker [871 obtained the relationships between the
end loads and the displacements in the longitudinal and transverse
directions for an inextensible caltilevered beam with the end loads as
shown in Fig. (4.6a). In their analytical study, the exact expression
for the beam curvature of the elastic line is related to the arc-length
and the slope of the deflected beam. They assumed that the curvature
of the beam is proportional to the bending moment, and that the
curvature at the loaded end is zero. The solution was in terms of
elliptic integrals which were evaluated numerically. The solution 1is
given in Fig. (4.6b)

To investigate the proposed approximate method for the
large~deflection analyses, a steel cantilevered beam subjected to the
transverse loads at the end is considered. The beam has a 10 - inch
length with a square cross-section of 0.1 X 0.1 (inch®). The total
number of elements is 10 with each element of equal 1length. The
results are compared with the curves presented in References [86-871]
and given in Fig. (4.6b). The comparative study shows that both curves
for H/L and V/L are in good agreement. The solution details are given
in Section 8.4.



113

T
~

H—

(a) A Cantilever Beam

) [
L. 2 ;
.
’ —
: ! \\
P K
o s 2 3 A 3 5 2 M M W

t et
eess Solution from The Proposed Method
~--- Exact Solution from Bisshopp and Drucker [87]

(b) Solutions of Large-Deflection Problem

FIGURE 4.6 Comparison of The Solutions



114
As a second study, a cantilever beam acted on by an end moment as
shown 1in Fig. (4.7) is studied. This causes a tip rotation of 1.0 rad
(57.295 degrees) which 1is considered a large rotation.
De Arantes e Oliviera [881 solved the problem by sub-dividing the load

into ten equal increments using an iteration approach. Thus, this
problem has been solved in ten load steps with an unspecified number of
iterations at each load step. But, the proposed method uses the entire
load. The results shown in Table 4.1 are after only 8 iterations, and
there is less than 2 percent error compared to the solutions given in

[8el.

TABLE 4.1 Tip Motion of The Cantilever Beam

Solution Method X (cm) Y (cm) © (Deg)
Linear Theory 100.0000 50.0000 57.295
Exact Solutions [88] 84.1471 45.9698 57.295

Solutions from The
Developed Method 83.367 46.746 57.295

ERROR (Percent) 0.9 1.7 0.0
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FIGURE 4.7 Cantilever Acted on by End Moment



CHAPTER V

TRANSFER MATRIX EQUATIONS FOR LOOPS

5.1 Introduction

Mechanisas have joints (revolutes and sliders). At the joints one
of the state variables must be discontinuous. For example, at a
revolute joints, the slopes of both sides at pre- and post-locations of
the revolute are not continuous, because the moment at the location of
the revolute must be zero. At a slider, a displacement in the sliding
direction is discontinuous, because the force in the sliding direction
must be zero. Thus, additions of the slopes (for the revolutes) and
displacements (for the sliders) to compensate for the discontinuity
must be determined from equilibrium conditions at the locations of the

joints.

This chapter presents the derivation of the transfer matrix
equations for Iinkages. As mentioned in Chapter 3, there are two types
of loops: main loops and subloops (branch systems). The main loop
systems consist of four-bar mechanisms and slider-crank mechanisms. In
a mechanism, the support shaft for the input link must carry a torque
so that the input-link is treated as fixed. The subloop systems are
identified by four types as given in Section 3.3.5. The transfer
matrix equations for each subloop system is derived in the following

sections.
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Section 5.2 identifies the boundary conditions. Sections 5.3 and
5.4 give the procedures for the derivations of the main loop and

subloop systems, respectively.

5.2 Boundary Conditions

Each loop system has the typical boundary conditions corresponding
to the end point. The state vector at the support (end point) consists
of six components:

€S} = [u, w, 6, M, V, NI'

where u = displacement in the longitudinal direction,

displacement in the transverse direction,

slope,

moment,

internal force in the transverse direction,

Z2 < X O =
L)

internal force in the longitudinal direction.

Table 5.1 gives the types of supports considered and the corresponding
boundary conditions.
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TABLE 5.1 Types of Supports and The Boundary Conditions

Type of Supports Boundary conditions Unknown Values
Pinned u =0 §1 = ©
w =20 s2 =V

M =0 S3 = N

Fixzed u =0 s1 = M
W =0 2 =V

e =0 S3 = N

Free . e M =0 §1 = u
/ i =0 2 = w

N =0 S3 = ©

Slider - ... w o= 0 S1 = u
e = 0 2 = M

N =0 83 =V

Simple .. w =20 81 = u
Supported M =0 S2 = 6
N =0 S3 =V
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5.3 Transfer Matrix Equations of Main Loops

A mechanism is assumed to consist of the links and two types of
kinematic joints (revolutes and sliders). For the revolutes, no moment
is transmitted to the adjacent 1link(s) and the slopes are
discontinuous. For sliders, the force in the sliding direction is zero
and the displacements in the sliding direction are discontinuous. The
transfer matrix equations for the main systems are derived in the

following sections.

5.3.1 Transfer Matrix Equations for A Four-Bar Mechanism

Fig. (5.la) shows a four-bar mechanism with two revolutes at
points B and C, and grounded revolutes at points A and D. If 1link AB
is the input 1link, the end types become fixed at point A and pinned at

point D. Then, the transfer matrix equation for the overall system is

{83y = [Ty [F] ... [F3-{R};*[T)-(F] ... [P] ... [F]
*{R3g :[T1g[F] ... [F1-LT],-{S], (5.1)

where [TI;[F] ... [F1-[T],= loop matrix equation for link AB,

[T:LF1 ... [F]
[T3;EF1 ... [F)
Pl
{53, and {53,
and {R}

loop matrix equation for link BC,

loop matrix equation for 1link CD,
point matrix,

state vectors at both end,

matrix reformulation for the revolutes.
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FIGURE 5.1 A Four-Bar Mechanism Model



121

Let us consider the transfer matrix equation of each 1link. A

transfer matrix equation for a link AB is

Rewriting Eq. (5.2) gives

=
[

[ U(1,1) U(1,2) U(1,3) U(1,4) U(1,5) U(1,6) U(1,7) ]
u(z,1) U(2,2) u(2,3) U(2,4) U(2,5) U(2,6) U(2,7)
U(3,1) U(3,2) U(3,3) U(3,4) U(3,5) U(3,6) U(3,7)
U(4,1) U4,2) U(4,3) U(4,4) U4,5) U4,6) U4,7) |-
U(s,1) U(5,2) U(5,3) U(S5,4) U(5,5) U(5,6) U(5,7)

py

(5.3)

Z2 < =X O =

u¢6,1) U(6,2) U(6,3) U(6,4) U(6,5) U(6,6) U(6,7)

- Z < =X 0O =

re

0 0 0 0 0 0 1 JI11A

Here, three components of the state vector at point A are zero from
Table S5.1. '~ Thus, there are only three unknowns. The colummns in the
matrix corresponding to the zero values of the state components can be

eliminated from Eq. (5.3) as follows:
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rull  [PQ,1) P20 P(1,3) P(1L,4)]
W P21 P22 P23 P2
e P(3,1) P(3,2) P(3,3) P(3,4)
M| = | P(4,1) P(4,2) P(4,3) P(4,4){ 52 (5.4)
v P(5,1) P(5,2) P(5,3) P(5,4) 53
N P61 P62 P63 B |
1B | o 0 0 1

where S1, S2, and S3 are the non-zero state components as given in
Table 5.1. And {S}; is the state vector at the left side of point B
as shown in Fig. (5.1b).

At point B, the kinematic conditions for a revolute joint are
satisfied: No moment is transmitted and the slopes are discontinuous.

Mg = 0 = P(4,1)-51 + P(4,2)-S2 + P(4,3)S3 + P(4,4) (5.5)
Rearrangement of Eq. (5.5) gives

S2= -12(1,2)81 - 2(3,2):S3 - Z(4,2) (5.6)

where Z(1,2) = P(4,1)/P(4,2),
2(3,2) = P(4,3)/P(4,2),
and 2(4,2) = P(4,4)/P(4,2).
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Substituting Eq. (5.6) into Eq. (5.4) gives

[ulL [(P(l,l)-P’(l.l)) (P(1,3)-P‘(1,3)) (P(1,4)-P'(1,4))

W (P(2,1)-P'(2,1)) (P(2,3)-P'(2,3)) (P(2,4)-P'(2,4))

e (P(3,1)-P’'(3,1)) (P(3,3)-P’(3,3)) (P(3,4)-P'(3,4)) | [S1

M| = 0 0 0 83| (5.7)
v (P(5,1)-P’'(5,1)) (P(5,3)-P’(5,3)) (P(5,4)-P'(5,4)) 1

N (P(6,1)-P’(6,1)) (P(6,3)-P’'(6,3)) (P(6,4)-P’'(6,4))

1B 0 0 1

where P'(1,3) = P(1,2)-2(3,2)
At point B, the slopes are discontinuous. Thus, an additional slope as
shown in Fig. (5.1b) is present as follows:
R _ L
{83, = (Sl + « (5.8)

where a is the additional angle between the two adjacent links at B,
and can be determined from Eg. (5.18). Then, the matrix equation to
the right side of point B from point A becomes

ulR [(P(1,1)-P’(1,1)) 0 (P(1,3)-P’(1,3)) (P(1,4)-P’(1,4))]

W (P(2,1)-P'(2,1)) 0 (P(2,3)-P'(2,3)) (P(2,4)-P’'(2,4)) -

e (P(3,1)-P’(3,1)) 1 (P(3,3)-P'(3,3)) (P(3,4)-P'(3,4))
a

M| = 0 0 0 0 (5.9)
S3

v (P(5,1)-P’(5,1)) 0 (P(5,3)-P'(5,3)) (P(5,4)-P'(5,4)) |
1.

N (P(6,1)-P’(6,1)) O (P(6,3)-P'(6,3)) (P(6,4)-P'(6,4))

1iB 0 0 0 1



Next, the matrix equation for the link BC is
{S3g = [13.-CF1 ... [P] ... [FI-{53)

Combining Eqs. (5.9) and (5.10) gives Eq. (5.11).

ruil [ Q2,1 01,2 Q1,3 0(1,4)]

W 0(2,1) 02,2 0(2,3) 0(2,4)

) 03,10 03,20 0(3,3) 0(3,4)

M = {01 04,20 04,3 o4, -
v 0(5,1)  0(5,2) Q(5,3) Q(5,4)

N 0(6,1) Q6,20 0(6,3) 0(6,4)
1le L o 0 0 1

s1 ]

53

124

(5.10)

(5.11)

At point C, M = 0. Thus, the moment equation from Eq. (5.11) is

Mc = 0 = 0(4,1)-51 + 0(4,2)-a + Q(4,3):53 + Q(4,4)

and elimination of S3 gives

§3 = - 2Z(1,3)-81 - 22(2,3)-« - 7%2(4,3)

where 2Z(1,3) = Q(4,1)/0(4,3),
Z22(2,3) = Q(4,2)/9(4,3),
and 2Z(4,3) = Q(4,4)/0(4,3).

(5.12)
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Substituting Eq. (5.12) into Eq. (5.11) gives

ull [ (QML1)-Q'(1,1)) (Q1,2-9°(1,2)) (Q(1,4)-0"(1,4))]

w| | z,0-07(2,10) (Q(2,2)-9°(2,2)) (Q(2,4)-0"(2,4))

ol |(Q3,1-0'(3,1)) (Q(3,2)-0"(3,2)) ((3,4)-0' (3,481

M| = 0 0 0 el (5.13)
v| |(s,1)-0'(5,1)) (0(5,2)-0'(5,2)) (Q(5,4)-0*(5,4n |l 1

Nl |e6,1)-0'(6,1)) (Q(6,2)-0°(6,2)) (Q(6,4)-Q(6,4))

1k | 0 0 1

where Q'(1,3) = 0(4,3)-22(5,3)

At point C, the slope is discontinuous. Thus, an additional angle is

present as shown in Fig. (5.1c). The state vector is as follows:
R L
83 = 83, + B (5.14)

where £ is the additional angle between the two adjacent links at C,
and can be determined from Eq. (5.18). Then, the matrix equation to
the right side of point C from point A becomes

e
o

(Q(1,1)-9(1,1)) (Q(1,2)-Q'(1,2)) 0 (Q(1,4)-Q0°(1,4))]
(Q(2,1)-0'(2,1)) (Q(2,2)-Q'(2,2)) 0 (Q(2,4)-Q'(2,4))
(Q@3,1)-Q'(3,1)) (Q(3,2)-Q'(3,2)) 1 (Q(3,4)-Q’(3,4))
= 0 0 0 0 . (5.15)
(Q(5,1)-0°(5,1)) (Q(5,2)-Q'(5,2)) 0 (Q(5,4)-Q'(5,4))
(Q(6,1)-0°(6,1)) (Q(6,2)-Q’'(6,2)) 0 (Q(6,4)-Q°'(6,4))
ci 0 0 0 1

[S1]

B 2 g X OO X



Finally, the matrix equation for the 1link CD is

{S}y = [T, [FI ... CF1-{S3]

Combining Eqs. (5.15) and (5.16) gives Eq. (5.17).

Fu

Applying the boundary conditions at point

2 < 2 © T

[ R(1,1)
R(2,1)
R(@3,1)
R(4,1)
R(5,1)
R(6,1)

0

RQ1,2)

R(2,2)

R(3,2)

R(4,2)

R(5,2)

R(6,2)
0

R(1,3)

R(2,3)

R(3,3)

R(4,3)

R(5,3)

R(6,3)
0

R(1,4) ]
R(2,4)
R(3,4)
R(4,4)
R(5,4)
R(6,4)

1 !

simultaneous equations for the pinned support:

The solutions of Eq. (5.18) gives three values for §S1,

n51¢

R(1,1)-S1 + R(1,2)- « + R(1,3).B + R(1,4)
R(2,1)-81 + R(2,2)-a + R(2,3).8 + R(2,4)
R(4,1)-S1 + R(4,2)-« + R(4,3)- P + R(4,4)
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(5.16)

(5.17)

gives three

(5.18)

a, and pB.

Then, the unknown values of S2 and S3 can be calculated from Eqs. (5.6)

and (5.12), respectively.
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5.3.2 Transfer Matrix Equation for A Slider-Crank Mechanism

Fig. (5.2) shows a slider-crank mechanism with revolutes at points
B and C, grounded by a fixed end at point A, and by a slider at point
D. The procedures for the derivations of the transfer matrix equations

are the same as those in Section 5.3.1.

The boundary conditions at the slider given in Table 5.1 are as

followus:
W, = 0
& = O (5.19)
ND = 0

The same procedure up to Eq. (5.11) in Section 5.3.1 can be used. At
points C and D, the kinematic conditions must be satisfied: No moment
can be transmitted at point C, and no reaction force is present in the
sliding direction. Thus, a displacement continuity at point D is
present in the sliding direction as shown in Figs. (5.2a) and (5.2b).
After the expressions in Eqs. (5.12) and (5.13) are used, the condition

at points C and D becomes

53, = {83, + u (5.20)

where u" is the additional displacement in the sliding direction as
shown in Fig. (5.2b).



(a) A Slider-Crank Mechanism

B
{S]'i 04 | {Sk Uu
D D
(b) Additional Angle (c¢) Additional Displacement
at Point B at Point D

FIGURE 5.2 A Slider-Crank Mechanism Model
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Then, the equation to point D from point C becomes

s

- 2 < 2B O© X

Ip

where

[(Q(1,1)-Q°(1,1)) (Q(1,2)-Q9°(1,2)) 1 (Q(1,4)-Q’(1,4))]

(Q(2,1)-Q'(2,1)) (Q(2,2)-Q’(2,2)) 0 (Q(2,4)-Q'(2,4))
(Q(3,1)-0°(3,1)) (Q(3,2)-Q°(3,2)) 0 (Q(3,4)-Q'(3,4))
0 0 0 0
(Q(5,1)-Q'(5,1)) (Q(5,2)-Q°(5,2)) 0 (Q(5,4)-Q°(5,4))
(Q(6,1)-0(6,1)) (Q(6,2)-Q°(6,2)) 0 (Q(6,4)-Q'(6,4))

0 0 0 1 ;

Q'(1,3) = Q(1,3)-22(3,3).
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(5.21)

Finally, the matrix equation in Eq. (5.21) can be written in the

same form as in Eg. (5.17) as follows:

- 2 < X O =

-

D (| O 0 0 1

" R(1,1) R(1,2) R(1,3) R(1,4)]
R(2,1) R(2,2) R(2,3) R(2,4)

Psl.
R(3,1) R(3,2) R(3,3) R(3,9)
a
= | R(4,1) R(4,2) R(4,3) R(4,9)| o
u“
R(5,1) R(5,2) R(5,3) R(5,4)
1
[ d

R(6,1) R(6,2) R(6,3) R(6,4)

(5.22)
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Applying the conditions in Eq. (5.19) to Eq. (5.22) gives the following

three equations:

u, = 0 = R(1,1)-81 + R(1,2) @ + R(1,3)-u" + R(1,4)
@, = 0 = R(3,1)-81 + R(3,2)-a + R(3,3)-u" + R(3,4) (5.23)
Np = 0 = R(6,1)-51 + R(6,2)-a + R(6,3)-u" + R(6,4)

The solutions of Eq. (5.23) gives three values for S1, «, and u",
shere a 1is an additional angle at point B and u" is an additional
displacement in the sliding direction at point D. Then, the unknown
values of S2 and S3 can be calculated from Eqs. (5.6) and (5.12),

respectively.

5.4 Transfer Matrix Equations for the Sub-loop (Branch) Systenms

As shown in Fig. (3.11), there are four types of sub-loop systems.
Combining the same procedures for the matrix equations as in Section
5.3 and for the branch matrices as in Section 3.3.5 gives the transfer
matrix equations for each type of the sub-system. Figs. (5.3) through
(5.6) give the sub~loop systems, and Tables (5.2) through (5.5) give
the loop equations for each sub-loop system.
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FIGURE 5.3 Sub-Loop with A Free End and A Fixed Branch
Point (Case 1).

TABLE 5.2 Loop Equations for The Unknowns at Point 0 (Case 1)

22(1,1).u, + 2Z(1,2)-w + 2Z2(1,3)-0: + 2Z2(1,4)

u, =
W = 22(2,1)-u, + 22(2,2)-w, + ZZ2(2,3)-6s + 2Z(2,4)
© = Z22(3,1).u, + 272(3,2)ew, + 22(3,3).06, + Z2(3,4)

where u,, W,, 6, = displacements at node 0,

u,, W, 6 displacements at node 1,

and 22(1,J) components in the matrix of Eq. (3.32).
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FIGURE 5.4 Sub~Loop with A Slider End and A Revolute Branch
Point (Case 2).

TABLE 5.3 Loop Equations for The Unknowns at Point 0 (Case 2)

Uy = 22(1,1)-u, + 2Z(1,2)-w, + 2Z2(1,3)+6v + ZZ(1,4)
o = 2Z(2,1).u, + 2Z2(2,2).-w, + 22(2,3)-8, + 2Z(2,4)
0, = 2Z(3,1).u, + 22(3,2).wm + 22(3,3)-6¢ + 2ZZ(3,4)
W, 1s determined from Eq. (5.6)

where u,, W,, 6, = displacements at node 0,

Uy, W, 6, = displacements at node 1,

o additional angle for point 1,

and 22(4,J)

components in the matrix of Eq. (3.32).



FIGURE 5.5 Sub-Loop with A Pin End and A Revolute Branch
Point (Case 3).

TABLE 5.4 Loop Equations for The Unknowns at Point 0 (Case 3)

6 = 22(1,1)-u; + 2%2(1,2).-wg + ZZ(1,3)-0; + ZZ(1,4)
¢ = 22(2,1).u, + 2%2(2,2).-w; + 22(2,3)-6; + ZZ(2,4)
B = 2Z(3,1).u; + 2%2(3,2).w, + 22(3,3)-8: + 2Z2(3,4)
Vo is determined from Eq. (5.6)
N, is determined from Eq. (5.12)

where u,, W,, 6, = displacements at node 0,
M., Vo, No = forces at node 0,
Uz, Wy, 6; = displacements at node 2,
a , B = additional angles for points 1 and 2,
and 2Z(1,§) = components in the matrix of Eq. (3.32).
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FIGURE 5.6 Sub-Loop with A Pin End and A Slider Branch
Point (Case 4).

TABLE 5.5 Loop Equations for The Unknowns at Point O (Case 4)

U = 22(1,1)-us + 2Z(1,2)ew; + 22(1,3)-6y + ZZ(1,4)
e = 22(2,1)-u; + 2%2(2,2)-w, + 22(2,3)-6; + Z72(2,4)
u" = 22(3,1).uy + 2%(3,2)-w; + 22(3,3)-6; + ZZ(3,4)
Vo 1is determined from Eq. (5.6)
No is determined from Eq. (5.12)

displacements at node O,

where u,, W,, ©,

M., Vo, No = forces at node 0,
Uz, Wg, 6 = displacements at node 2,
o = additional angle at point 1,
u" = additional deflection in the sliding direction

at point 2,

and 22(1,3) components in the matrix of Eq. (3.32).
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CHAPTER VI

GENERAL PROCEDURES FOR ITERATIVE TRANSFER MATRIX METHOD FOR
KINETO-ELASTODYNAMIC ANALYSIS OF GENERAL PLANAR MECHANISMS

6.1 Introduction

This chapter explains the basic ideas in the dynamic analysis
method for flexible-body systems for general planar mechanisms. Since
the mechanism forces are a function of the 1ink accelerations, a
kinematic analysis must be conducted prior to any force analysis.
Section 6.2 gives the basic procedure for a closed-form, component
approach for the rigid-body kinematic analysis.

Next, the basic procedures in the iterative transfer matrix method
for a flexible-body dynamic analysis is explained in Section 6.3.
Section 6.4 gives a model for the transfer matrix method.

6.2 Procedure of Component Approach for The Kinematic Analysis

As mentioned in Chapter 2, a multiloop mechanism can be decomposed
into several components, which can be analyzed directly using a
closed-form solution procedure. The rigid-body kinematic analysis
involves determining the positions, velocities, and accelerations of
every important point in the mechanism.
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Fig. (6.1) shows a multiloop mechanism. Fig. (6.2) gives four
components of the mechanism to calculate the kinematic properties
(positions, velocities, and accelerations). For an _input-link
(Fig. 6.2a), the kinematic properties of node B can be directly
determined from the given angular velocity and the length of the 1link.
After determining the kinematic properties of node B, those of nodes C
and D (Fig. 6.2b) are calculated from dyad equations. The kinematic
properties of node E (Fig. 6.2c) are computed directly from the known
properties of nodes B and C, which three nodes form a solid 1link.
Finally, nodes E, F, and G (Fig. 6.2d) is a dyad so that the kinematic
properties of nodes F and G can be determined from the known properties
of node E. -

Eight types of the basic components are identified in Section 2.2
for the kinematic analysis. All of the formulations for the rigid-body
kinematic analyses of the components are presented in Appendix A.
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A D

FIGURE 6.1 A Multiloop Mechanism

(e) (d)

FIGURE 6.2 Components of The Mechanism In Fig. (6.1)
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6.3 Procedures for The Proposed Iterative Transfer Matrix Methods
for The Dynamic Analysis

6.3.1 Fundamentals for the Procedures

A planar mechanism can be thought of as an instantaneous-structure
which 1is frozen at a particular instant by fixing the
degree(s)-of-freedom associated with the mechanism input-link(s). At
an instantaneous position the mechanism is modeled as a planar
structure with several revolutes (moment-release joints), sliders
(force-release joints), and branch systems (any sub-loop system
connected with the main loop). The overall system has a global
coordinate system, and each link has a local coordinate system usually

defined in the axial and transverse directions.

Next, each 1link is divided into many sections with a lumped
elastic stiffness and a lumped mass. The necessary transfer matrices
at each section can be determined from the material properties,
geometry, and external 1loads. The formulations for the transfer

matrices are presented in Section 3.3.

6.3.2 Transfer Matrix Equation

After the transfer matrices for all of the sections and nodes are
determined, a system equation is built by multiplying the matrices from
the starting node to the end node. However, special formulations are

required for the revolutes, prismatic joints, and branch points.
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For the revolute, the moment about the turning axis must vanish,

and the 1link angles are discontinuous; for the prismatic joint
(slider), the sliding force must be zero, and the longitudinal
displacement becomes discontinuous; and for the branch point, some of
the displacements and forces at the branch points must be continuous

depending on the type of branch.

6.3.3 Solution Procedures

In common boundary-value problems, there are three unknowns and
three knowns in the state vectors at the starting point and the end

point (usually supports). Three unknowns at the staiting support can
be easily determined by solving three linear simultaneous equations.

To 1illustrate the procedures, consider the multiloop planar
mechanism shown in Fig. (6.3). A-B-C-D is a 4-bar mechanism with 1link
AB as the input driver. It is assumed here that a rigid-body kinematic
analysis has already been conducted so that nominal values for all of
the linkage angles are known. For the mechanism analysis, the input
1ink must accommodate a torque so that its support becomes a clamped
condition. A branch E-F-G is connected to the main body at point E by
a revolute joint. 1In Fig. (6.3), the driving link is at an angle 6,
from the horizontal axis in the global coordinate system. Thus, the
state vector in the global coordinates at point A must be transformed
by the angle 6, into the state vector in the local coordinates at the
same point. At point B, the state vector in the local coordinates of
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FIGURE 6.3 A Multiloop Planar Mechanism
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FIGURE 6.4 Schematic Plot of The Mechanism in Fig. (6.3)
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1link AB must be transformed by the angle 6z to those in the 1local

coordinates of 1link BC in order to satisfy the continuity conditions.
The mechanism in Fig. (6.3) can be mapped schematically as shown in
Fig. (6.4). The detail numerical solutions for the system in
Fig. (6.3) are given in Chapter 8 and Appendix C.

Fig. (6.4) shows the transformed main 4-bar linkage as well as the
branch system of the mechanism given in Fig. (6.3), and shows the
qualitative scheme used to analyze the mechanism. A transfer matrix

equation for the main loop 1s given as follows:

£S}D= IT]D'[FJ cee [F] '{R}c'[!]c'[?] e [FJ .[B]E
LF] ... [F] - iR35-[T]g LF] ... LF] - [T],- {53, (6.1)

and for the branch loop,

{5}, = I3, [T [F] ... [F3- [P~ (R} [TI;
£F] ... [F1: [T {8}, (6.2)

Here, a branch matrix [Bl; at point E can be determined from Eq. (6.4)
using the procedures in Sections 3.3.5.2 and 5.4. {R} and {J} are not
really matrices, but are operators which represent the matrix
reformulation process to satisfy the kinematic conditions. These

operators were presented in Chapter S.
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Rewriting Eq. (6.1) into a transfer matrix equation for the main

loop gives
{8}, = M {53, (6.3)
where {S}, = state vector at the support D,
{81, = state vector at the support A,
{8} = state vector at the support E,
£S}G = state vector at the support G,
LTM] = equivalent transfer matrix combined all elements,
[T] = transformation matrix at each point,
[F] = field matrix at each section,
Bl = branch matric at point E due to a open branch E-F-G.
[P]; = point matrix at point F,
{J3; = branch connectivity operator,
and {R} = revolute operator.

The state vector consists of the six variables (i.e. u, w, 6, M, V,

and N). These state variables are

u = displacement in the axial direction,

w = displacement in the transverse direction,
8 = slope,
M = moment,

V = transverse force,

and N = axial force.
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The boundary conditions at point A are uy = uw, =8, =0and M, V,
and N as the unknowns. At point D, the pinned condition gives
Up=Wp=Mp=0and 6, V, and N as the unknowns. Thus, using the
known conditions at point D, three simultaneous equations can be
Written and solved for the unknowns at point A.

Thus, Eq. (6.2) can be written as follows:

el [UGQL1) U(1,2) U,3) U,4) U(,S) U(1,6) Ud,7) | [u
W U(2,1) U(2,2) U(2,3) U(2,4) U(2,5) U(2,6) U(2,7) | =
) U(3,1) U(3,2) U(3,3) U(3,4) U(3,5) U(3,6) U(3,7) | le
M| = |U(4,1) U(4,2) U(4,3) U(4,4) U(4,5) U(4,6) U(4,7) |- M
v U(s,1) U(5,2) U(5,3) U(5,4) U(5,5) U(S5,6) U(5,7) | |V
N U(6,1) U(6,2) U(6,3) U(6,4) U(6,5) U(6,6) U6,7) | [N
1lD 0 0 0 0 0 0 1 ] laa

Then, applying the boundary conditioné at each support

S

[U(1,1) U(1,2) U(1,3) U(1,4) U(,5) U(1,6) U@,7)
u(2,1) U(2,2) U(2,3) U(2,4) U(2,5) U(2,6) U(2,7)
U(3,1) U(3,2) U(3,3) U(3,4) U(3,5) U(3,6) U(3,7)
U(4,1) U(4,2) U(4,3) U4,4) U(4,5) U4,6) U(4,7)
U(s,1) U(5,2) U(5,3) U(5,4) U(5,5) U(5,6) U(S5,7)

& < O ® o
"

U(e,1) U(6,2) U(6,3) U(6,4) U(6,5) U(6,6) U(6,7)
0 0 o 0 0 0 1 L

H B < ® O O O

[
=



and finally three simultaneous equations are: 144

0 = U(1,4)"M, + U(1,5):Vy + U(1,6):N, + U(1,7)
0 = U(2,4)-Mp + U(2,5)-V, + U(2,6):N, + U(2,7)
0 = U(4,4)-M, + U(4,5).V, + U(4,6):Np + U(4,7)

After solving for the unknowns (M,, V,, and N,) at point A, the
state vectors at every other points in the main body can be calculated,
and the state vectors at every branch system can also be determined by
applying the state vector, determined at the branched point. Eq. (6.4)
is a typical transfer matrix equation for a segment, which shows the
relationships between state vectors at the (i-1)th point and at the ith
point; here, {S}, can be calculated from Eq. (6.4) if £S]1-1 is known:

{5}, = M1 {53, (6.4)
where CZS:}1 = state vector at the ith position,

{SJH= state vector at the (i-1)th position,
and [TM) = transfer matrix between the two points.
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6.3.4 Iteration Procedures for Field Matrices

As mentioned earlier, the zero-axial force condition is used to
determine the initial forces at any node of the flexible-body systems.
Because the axial force at each section is unknown at the initial
iteration, equilibrium cannot be represented explicitly so that the
equations become non-linear. The moment at each segment depends on the
transverse forces and displacements as well as on the unknown axial
force. In addition, the displacements at the end of each segment is a
function of the unknown internal forces. This means that a field
matriz must incorporate the unknown axial loads which are part of the

state variables. In the method presented here, the nonlinear problem
is linearlized by first separating the interrelative elastic effects
for the segment into the transverse and the longitudinal directions,
and by calculating the internal forces in each direction. For
subsequent iterations, the field matrices are calculated again by using
the internal forces determined during the previocus iteration.

Thus, the initial field matrix contains the elastic properties of
a segment and those are independent of the elastic effects due to the
internal forces. But, the elastic field matrix contains the elastic
properties shich are a function of the axial forces determined at the
previous iteration. The accuracy of the matrix improves with each
iteration. Convergence of this method is very fast, and usually only

three or four iterations are required.
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6.3.5 Dynamic Analyses

In dynamic analyses of flexible mechanisms, there are two types of
inertial forces at the locations of lumped-masses: one is rigid-body
inertial forces due to the rigid-body accelerations and the other 1is
the elastic-body inertial forces due to the elastic vibrations of the
flexible members.

The inertial forces from the rigid-body accelerations acting on
the members are sometimes treated as external forces at the locations
of the lumped masses. But, the elastic-body accelerations from the
axial and transverse vibrations of the members can not be determined
directly. To account for the inertial effects of the elastic-body
vibrations, the Houbolt difference direct integration method is used as
derived in Section 3.3.6.

Thus, two types of the inertial matrices are derived as given in
Section 3.3.6: The rigid-body inertial matrix is wused for the
quasi-static analyses, and the elastic-body matrix is used for the

time-domain analyses.
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6.3.6 Considerations of the Fatigue Stress and Distortion Analyses

After determining all of the state variables at each point of
interest in the members, stresses in each direction, combined stresses,
distortions, and distortion-angles can be calculated. The stresses in
each direction are determined from the forces, moments, and geometric
properties. The combined stresses can also be calculated from the
stresses determined. The distortion at any point is defined as the
distance from the position determined by the rigid-body analysis to the
position determined by the flexible-body analysis, and 1is easily
calculated from the displacements in each direction. Finally, the
distortion-angle at each point shows the direction of the distortion at
the point. These stresses and distortions change with the rotation of
the input link as shown in Fig. (6.5).

Here, a fatigue analysis for the dynamic stresses must be
involved. The proposed ideas in the fatigue analysis are that the
stresses at any segment in a member are determined for a period of one
revolution of the input 1ink as shown in Fig. (6.6). It is assumed
that the segment is ideally subjected to the cyclic stresses wnith the
maximum and minimum stresses given by the dotted line in the figure.
Then, Soderberg’s linear-failure line can be used for the fatigue
failure analysis. This failure line is the most conservative of the
non-zero mean stress fatigue failure lines [80-85]. Also it will be
assumed that the mechanism can be used for infinite cycles, and

therefore the endurance limit is used as the maximum allowable strength
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for stress analysis.

Applying Soderberg‘’s linear 1line to the cyclic stresses, the
safety factor for each 1link can be determined by the following
relationships [£80-831.

Smean = (Smax + Smin) / 2
Saltn = (Smex - Smin) / 2 (6.3
and
1

SF =

Smean Saltn (6.6)

Sy * Sn
where SF = factor of safety,

Sn = fatigue endurance limit,
Sy = yielding strength,
Smean = mean stress,
Saltn = alternating stress,
Smax = maximum stress,

and Smin = minimum stress.
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6.4 A Model for The Transfer Matrix Method for Flexible Systems

To fit into the methodology of the transfer matrix method, the
following model of a mechanism is used. At an initial time t = t,, the
rigid-body configuration determined from a rigid-body kinematic
analysis of the mechanism is considered as an ‘instantaneous structure’
capable of undergoing both rigid-body and elastic motions. ACDB is
the position of the rigid-body system, and A C'D’B is the deformed
position of the flexible linkage in Fig. (6.7). For this instantaneous
structure, the inertial forces due to the rigid-body accelerations of
the elements, the forces generated by springs, and the external forces
acting on it are considered here. The mass and stiffness properties of
the mechanism, treated as an elastic system, are derived for the
rigid-body position and are assumed to remain unchanged during a chosen
interval of time Dt.
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FIGURE 6.7 Model of A Mechanism for The Analyses



CHAPTER VII

OVERVIEW OF COMPUTER PROGRAM CASDAM

7.1 Introduction

The program CASDAM is a graphics-oriented, interactive,
computer-aided program for static and dynamic analyses of flexible
mechanisms and structures. The program incorporates the developed
iterative transfer-matrix method and is intended for use with a
graphics terminal such as the Tektronix 4014. The necessary transfer
matrices used in the iterative transfer-matrix method have 7 X 7
elements so that the program requires much less storage than does the
finite-element methods and other lumped-mass techniques. Thus, the
program should be effective on mini/micro-computers.

The program CASDAM is developed on a Digital Equipment Corporation
VAX 11/750 minicomputer installed in The Advance Design Method
Laboratory, Department of Mechanical Engineering, The Ohio State
University. There has been considerable effort made in trying to
develop the program so that the program has minimal amounts of machine
dependency. The program language used is 1977 ANSI FORTRAN IV.

In this chapter, the program CASDAM is discussed briefly.
Section 7.2 explains the functional structure of CASDAM. The
description of each routine, tree structure, and overall statistical

data for the program are given in Appendix E.

152



153
7.2 Functional Structure of Program CASDAM

The program CASDAM consists of three processes given in Table 7.1:
pre-process, process, and post-process. In the preprocess step, the
necessary data are input interactively or in batch mode, and then data
for processing are generated automatically. The kinematic analyses are

carried out if a dynamic analysis 18 required.

In the process step, the displacements and internal forces are
calculated by the iterative transfer-matrix method. The static stress
analysis or dynamic stress analysis is also carried out. Then, the

maximum displacements at every node and the safety factors for the
system at the critical nodes are determined.

The postprocess gives the geometrical and graphical plots for the
displacements, stresses, and safety factors. All of the results are
given by the graphics-oriented plots on the terminal screen and in the

tabular forms.



TABLE 7.1
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Functional Structure of CASDAM

STEP

FUNCTIONS

PREPROCESS

Input Data

!

Kinematic Analyses
oo ook dede ek sk e e ook ok e e

Calculate positions and accelerations

|
Data Generation

PROCESS

|

ANALYSES
FkhRkhRkk

Calculate displacements, internal forces,
stresses, and safety factors.

POSTPROCESS

Geometrical Plots for Displacements
and Safety Factors of The System

Graphical Plots for Displacements
and Stresses of A Node




CHAPTER VIII

DEMONSTRATION AND APPLICATION

8.1 Introduction

In this chapter, six problems are analyzed for demonstration of
the iterative transfer-matrix method. Section 8.2 gives a multiloop
mechanism for static analyses under small- and large-deflection
assumptions, and Section 8.3 shows a mechanism for dynamic analyses
(quasi-static and steady-state responses), when the input-link can
rotate a full 360 degrees. Section 8.4 gives a cantilever beam with
end loads, and Section 8.5 gives a stepped beam on elastic supports
under static loads. The complete solutions for these problems are

given in Appendices.

8.2 Static Analyses of A Multiloop Mechanism
B8.2.1 Static Analysis for Small-Deflection Problem

A planar multiloop mechanism shown in Fig. (8.1) consists of seven
beam elements and a triangular plate connected with two springs. A
link between nodes 1 and 2 is set as the input-link so that the end
condition at node 1 becomes fizxed: The end conditions at nodes 6, 8,
and 12 are pinned: The sliding condition is used at node 13. All of
the nodes have revolute joints except for node 5, where a sliding joint
is used. Each beam is uniform and made from AISI 4340 CD steel. There

are two springs in the system: A spring is connected between nodes 4
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and 11, and the other spring is connected from node 3 to ground.

At node 13, an external force is loaded horizontally in the
negative direction and is 100 pounds. For the geometry of the spring,
the free lengths of the springs are set as 5 inches, and the distance
of the grounded spring at node 3 is about 7.5 inches so that a force
due to the spring is generated. The spring constant is K = 100 1b/in.
The cross-sectional area is 0.5 X 0.5 (inch?), and the thickness of the
plate is 0.5 inch.

Fig. (8.2) shows the mechanism generated with a number of elements
for each 1link. Figs. (8.3) and (8.4) give the deflected system under
small-deflections and the safety factors, respectively. Table 8.1
gives the displacements at every node. Table 8.2 shows the intgrnal
forces and stresses at each node. The reaction forces at the supports
are given in Table 8.3. Finally, the safety factors for nodes are
shown in Table 8.4.

The mechanism 1link deflections are assumed to be small. The
maximum distortion, which is the distance from the original position to
the deflected position, is 0.0787 inch at node 11. The minimum safety
factor for the system is 1.86 at node 3 for the given steel based on a
yield strength of 100,000 psi. The analysis details are given in
Appendix B.
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FIGURE 8.1 A Multiloop Mechanism for Static Analysis



FIGURE 8.2 The Element-Generated Systea

SMALL DEFLECTION ASSUMPTION USED

FIGURE 8.3 The Deflected System under Small-Deflections
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TABLE 8.1 Displacements of Nodes

SMALL-DEFLECTION ASSUMPTION USED

UNITS ARE BERITISH (INCHES)
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NODE LOCATION DISPLACEMENTS SLOPE
NO X Y HORIZ VERTI DEG
1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00  0.0000E+00
2 0.1294E+01 0.4830E+01 -0.1077E-01 0.2627E-02 -0.1053E+01
3 0.5624E+01 0.7330E+01 0.1964E-01 -0.5131E-01 -0.2393E-01
4 0.9954E+01 0.9830E+01 -0.9424E-02 -0.1674E-02 0.3917E-01
5 0.1117E+02 0.2936E+01 -0.4712E-02 -0.8368E-03 0.3917E-01
6 0.1239E+02 -.3958E+01 0.0000E+00 0.0000E+00 0.3917E-01
7 0.1609E+02 0.3B04E+01 -0.4860E-02 -0.2363E-05 0.3917E-01
8 0.1609E+02 -.1196E+01 0.0000E+00 0.0000E+00 0.5570E-01
9 0.5320E+01 0.1257E+02 0.3677E-01 -0.5032E-01 0.1873E+00
10 0.2124E+01 0.1339E+02 0.3946E-01 -0.3987E-01 0.1873E+00
11 0.8212E+01 0.1699E+02 0.5122E-01 -0.5977E-01 0.1873E+00
12 -.1411E+01 0.9856E+01 0.0000E+00 0.0000E+00 -0.6428E+00
13  0.1254E+02 0.1949E+02 0.1607E-01 0.0000E+00  0.7946E+00
14 0.3235E+00 0.1207E+01 -0.9330E-03 0.1889E-03 0.8319E-01
15 0.6470E+00 0.2415E+01 -0.3372E-02 0.7790E-03 0.1428E+00
16 0.9706E+00 0.3622E+01 -0.6818E-02 0.1636E-02 0.1787E+00
17 0.2377E+01 0.5455E+01 0.2682E-03 -0.1699E-01 -0.9885E+00
18 0.3459E+01 0.6080E+01 0.9939E-02 -0.3414E-01 -0.7951E+00
19 0.4542E+01 0.6705E+01 0.1686E-01 -0.4638E-01 -0.4732E+00
20 -.5274E+00 0.1074E+02 0.9865E-02 -0.9967E-02 -0.6428E+00
21 0.3565E+00 0,1162E+02 0.1973E-01 -0.1993E-01 -0.6428E+00
22 0.1240E+01 0.1251E+02 0.2960E-01 -0.2990E-01 -0.6428E+00
23 0.1146E+02 0.1886E+02 0.2486E-01 -0.1494E-01 0.7946E+00
24 0.1038E+02 0.1824E+02 0.3365E-01 -0.2989E-01 0.7946E+00
25 0.9295E+01 0.1761E+02 0.4243E-01 -0.4483E-01 0.7946E+00
26 0.6707E+01 0.7955E+01 0.1734E-01 -0.4732E-01 0.4245E+00
27 0.7789E+01 0.8580E+01 0.1080E-01 -0.3611E-01 0.7446E+00
28 0.887Z2E+01 0.9205E+01 0.1405E-02 -0.2009E-01 0.9365E+00
29 0.1026E+02 0.8106E+01 -0.8246E-02 -0.1464E-02 0.3917E-01
30 0.1056E+02 0.6383E+01 -0.7068E-02 -0.1255E-02 0.3917E-01
31 0.1087E+02 0.4659E+01 -0.5890E-02 -0.1046E-02 0.3917E-01
32 0.1609E+02 0,5422E-01 -0.1215E-02 0.0000E+00 0.5570E-01
33 0.1609E+02 0.1304E+01 -0.2430E-02 -0.1181E-05 0.5570E-01
34 0.1609E+02 0.2554E+01 -0.3645E-02 -0.1772E-05 0.5570E-01
35 0.1486E+02 0.3587E+01 -0.4712E-02 -0.8439E-03 0.3917E-01
36 0.1363E+02 0.3370E+01 -0.4563E-02 -0.1686E-02 0.3917E-01
37 0.1240E+02 0.3153E+01 -0.4414E-02 -0.2527E-02 0.3917E-01
38 0.1147E+02 0.1213E+01 -0.3534E-02 -0.6275E-03 0.3917E-01
39 0.1178E+02 -.5109E+00 -0.2356E-02 -0.4183E-03 0.3917E-01
40 0.1208E+02 -.2234E+01 -0.1178E-02 -0.2091E-03 0.3917E-01




TABLE 8.2 Internal Forces and Stresses

SMALL-DEFLECTION ASSUMPTION USED
UNITS ARE BRITISH (LBS, LBS-IN, AND PSI)
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NODE INTERNAL FORCES MOMENT STRESSES
NO HORIZ VERTI T0P BOTTOM
1 -0.1304E+03 -0.3296E+03 0.2070E+03 0.9414E+04 -0.1046E+05
2 -0.1304E+03 -0.3296E+03 0.0000E+00 -0,5216E+03 -0.5216E+03
3 -0.5403E+02 0.2280E+03 0.1118E+04 0.5345E+05 -0.5388E+05
4 -0.7885E+00 0.4454E+01 0.0000E+00 -0.3154E+01 -0.3154E+01
5 -0.7885E+00 0.4454E+01 0.0000E+00 -0.3154E+01 -0.3154E+01
6 -0.7885E+00 0.4454E+01 0.0000E+00 -0,.1810E+02 -0.1810E+02
7 0.0000E+00 0.0000E+00  0.0000E+00 0.0000E+00  0.0000E+00
8 0.0000E+00  0.0000E+00  0.0000E+00 0.0000E+00  0.0000E+00
9 0.7636E+02 0.3127E+03 0.4952E+03 0.0000E+00  0.0000E+00
10 0.3044E+02 0.2976E+02 0.0000E+00 0.1218E+03 0.1218E+03
11 0.4592E+02 0,2830E+03 0.0000E+00 0.1837E+03  0.1837E+03
12 0.3044E+02 0.2976E+02 0.0000E+00 0.1218E+03 0.1218E+03
13 0.1000E+03 0.5960E+02 0.0000E+00 0.4000E+03  0.4000E+03
14 -0.1304E+03 -0.3296E+03 0.1559E+03 0.6075E+04 -0.8892E+04
15 -0.1304E+03 -0.3296E+03 0.1042E+03 0.3593E+04 -0.6410E+04
16 -0.1304E+03 -0.3296E+03 0.5221E+02 0.1098E+04 -0.3914E+04
17 -0.1304E+03 -0.3296E+03 0.2816E+03 0.1241E+05 -0.1463E+05
18 -0.1304E+03 -0.3296E+03 0.5623E+03 0.2588E+05 -0.2810E+05
19 -0.1304E+03 -0.3296E+03 0.8416E+03 0.3929E+05 -0.4151E+05
20 0.3044E+02 0.2976E+02 0.0000E+00 0.1703E+03 0.1703E+03
21 0.3044E+02 0.2976E+02 0.0000E+00 0.1703E+03  0.1703E+03
22 0.3044E+02 0.2976E+02 0.0000E+00 0.1703E+03  0.1703E+03
23 0.1000E+03 0.5960E+02 0.0000E+00 -0.4656E+03 -0.4656E+03
24 0.1000E+03 0.5960E+02 0.0000E+00 -0.4656E+03 -0.4656E+03
25 0.1000E+03 0.5960E+02 0.0000E+00 -0.4656E+03 -0.4656E+03
26 -0.5403E+02 0.2280E+03 0.8382E+03 0.4050E+05 -0.3996E+05
27 -0.5403E+02 0.2280E+03 0.5585E+03 0.2708E+05 -0.2654E+05
28 -0.5403E+02 0.2280E+03 0.2791E+03 0.1367E+05 -0.1313E+05
29 ~0.7885E+00 0.4454E+01 0.0000E+00 -0.1810E+02 -0.1810E+02
30 -0.7885E+00 0.4454E+01 0.0000E+00 -0.1810E+02 -0.1810E+02
31 -0.7885E+00 0.4454E+01 0.0000E+00 -0.1810E+02 -0.1810E+02
32 0.0000E+00  0.0000E+00  0.0000E+00 0.0000E+00  0.0000E+00
33 0.0000E+00  0.0000E+00  0.0000E+00 0.0000E+00  0.0000E+00
34 0.0000E+00  0.0000E+00  0.0000E+00 0.0000E+00  0.0000E+00
35 0.0000E+00  0.0000E+00  0.0000E+00 0.0000E+00  0.0000E+00
36 0.0000E+00  0.0000E+00  0.0000E+00 0.0000E+00  0.0000E+00
37 0.0000E+00  0.0000E+00  0.0000E+00 0.0000E+00  0.0000E+00
38 -0.7885E+00 0.4454E+01 0.0000E+00 -0.1810E+02 -0.1810E+02
39 -0.7885E+00 0.4454E+01 0.0000E+00 -0.1810E+02 -0.1810E+02
40 -0.7885E+00 0,.4454E+01 0.0000E+00 -0,1810E+02 -0.1810E+02
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TABLE 8.3 Reaction Forces of Supports

UNITS ARE BRITISH (LBS AND LBS-IN)

NODE REACTION FORCES MOMENT
NO HORZ. VERT.
1 0.1304E+03 0.3296E+03 -0.2070E+03
6 -0.7885E+00 0.4454E+01 0.0000E+00
8 0.0000E+00 0.0000E+00 0.0000E+00
12 -0.3044E+02 -0.2976E+02 0.0000E+00
13 0.0000E+00 -0.5960E+02 0.0000E+00
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TABLE 8.4 Safety Factors of Nodes

SAFETY FACTOR

hkk
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40

4% MIN. SAFETY FACTOR FOR SYSTEM =

0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06
0.1000E+06

STRESSES

Top oM
0.9414E+04 -.1046E+05
-.5216E+03 -.5216E+03
0.5345E+05 -.5388E+05
-.3154E+01 ~.3154E+01
-.3154E+01 -.3154E+01
-.1810E+02 -.1810E+02
0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00
0.1218E+03 0.1218E+03
0.1837E+03 0.1837E+03
0.1218E+03 0.1218E+03
0.4000E+03 0.4000E+03
0.6075E+04 -.8692E+04
0.3593E+04 -.6410E+04
0.1098E+04 -.3914E+04
0.1241E+05 -.1463E+05
0.258B8E+05 -.2810E+05
0.3929E+05 -.4151E+05
0.1703E+03 0.1703E+03
0.1703E+03 0.1703E+03
0.1703E+03 0.1703E+03
-.4656E+03 -.4656E+03
-.4656E+03 -.4656E+03
-.4656E+03 -.4656E+03
0.4050E+05 -.3996E+05
0.27068E+05 ~.2654E+05
0.1367E+05 -.1313E+05
-.1810E+02 -.1810E+02
-.1810E+02 -.1810E+02
-.1810E+02 -.1810E+02
0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00
-.1810E+02 -.1810E+02
-.1810E+02 -.1810E+02
-.1810E+02 -.1810E+02

DETERMINED FROM MAX. NORMAL STRESS THEORY
CORRESPONDS TO ZERO STRESS ON THE LINK OR RIGID LINK
UNITS ARE BRITISH (PSI FOR STRESSES)

SAFETY
FACTOR

0.956E+01
0.192E+03
0.186E+01
0.317E+05
0.317E+05

0.552E+04
-

Ak
hikk

0.821E+03
0.544E+03
0.821E+03
0.250E+03
0.112E+02
0.156E+02
0.255E+02
0.684E+01
0.356E+01
0.241E+01
0.587E+03
0.587E+03
0.587E+03
0.215E+03
0.215E+03
0.215E+03
0.247E+01
0.369E+01
0.732E+01
0.552E+04
0.552E+04
0.552E+04

Rk
Hekk
Rk
Hhkk
hkk
hokk

0.552E+04
0.552E+04
0.552E+04

1.86 AT NODE 3 #a
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8.2.2 Static Analysis for Large-Deflection Problem

External forces are applied -300 1lbs horizontally and vertically
at nodes 5 and 7, respectively, in the system shown in Fig. (8.5a).
The cross-sectional area for the links is 0.3 X 0.3 (inch?), and made
from a steel. Fig. (8.5b) gives the deflected system under

large-deflections.

Table 8.5 gives the displacements at every node. Table 8.6 showus
the internal forces and stresses at the nodes. The reaction forces at
the supports are given in Table 8.7. Fig. (8.6) gives the safety

factors of every node in the system. The safety factors are tabulated
in Table 8.8.

The mechanism 1link deflections are assumed to be large. The
maximum distortion, which is the distance from the original position to
the deflected position, 1s 4.097 inch at node 33. The safety factor
for the system is 0.261 at node 3 for the given steel based on a yield
strength of 100,000 psi.
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(a) Element-Generated System

LARGE DEFLECTION ASSUMPTION USED

(b) Deflected system
FIGURE 8.5 A Mechanism For Large-Deflections Analysis



TABLE 8.5 Displacements of Nodes

LARGE-DEFLECTION ASSUMPTION USED
UNITS ARE BRITISH (INCHES)
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NODE LOCATION DISPLACEMENTS SLOPE

NO X ) 4 HORIZ VERTI DEG
1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00  0.0000E+00
2 0.2586E+01 0.9659E+01 -0.2062E+01 0.2818E+00 -0.2991E+02
3 0.1125E+02 0.1466E+02 -0.9330E+00 -0.3194E+01 -0,3792E+01
4 0.1991E+02 0.1966E+02 -0.2325E+01 -0.1447E+01 -0.1567E+02
5 0.2165E+02 0.9811E+01 -0.3674E+01 -0.1519E+01 0.7776E+01
6 0.2338E+02 -.3690E-01 0.0000E+00 0.0000E+00  0.3031E+02
7 0.8748E+01 0.1899E+02 0.2736E+00 -0.2695E+01 -0.1589E+02
6 0.6248E+01 0.2332E+02 0.163BE+01 -0.2156E+01 -0.1726E+02
9 -~-.8226E+00 0.1625E+02 0.0000E+00 0.0000E+00 -0.1551E+02
10 0.5176E+00 0.1932E+01 -0.1080E+00 0.2557E-01 0.6194E+01
11 0.1035E+01 0.3864E+01 -0.4115E+00 0.8206E-01 0.1129E+02
12  0.1553E+01 0.5796E+01 -0.8710E+00 0.1492E+00 0.1S08E+02
13 0.2071E+01 0.7727E+01 -0.1439E+01 0.2166E+00 0.1742E+02
14 0.4320E+01 0.1066E+02 -0.1794E+01 -0.7139E+00 -0.28680E+02
15 0.6052E+01 0.1166E+02 -0.1528E+01 -0.1630E+01 -0.2550E+02
16 0.7784E+01 0.1266E+0Z2 -0.1274E+01 -0.2391E+01 -0.2011E+02
17 0.9516E+01 0.1366E+02 -0.1061E+01 -0.2930E+01 -0.1279E+02
18 0.5916E+00 0.1766E+02 0.3275E+00 -0.4312E+00 -0.1551E+02
19 0.2006E+01 O0.190BE+02 0.6550E+00 -0.8625E+00 -0.1551E+02
20 0.3420E+01 0.2049E+02 0.9825E+00 -0.1294E+01 -0.1551E+02
21 0.4834E+01 0.2191E+02 0.1310E+01 -0.1725E+01 -0.1551E+02
22 0.7082E+01 0.2188E+02 0.1171E+01 -0.2339E+01 -0.1711E+02
23 0.7915E+01 0.2043E+02 0.7138E+00 -0.2519E+01 -0.1665E+02
24 0,9582E+01 0.1755E+02 -0.1434E+00 -0.2866E+01 -0.1512E+02
25 0.1042E+02 0.1610E402 -0.5427E+00 -0.3031E+01 -0.1464E+02
26 0.1298E+02 0.1566E+02 -0.9469E+00 -0.3171E+01 0.5067E+01
27 0.1471E+02 0.1666E+02 -0.1119E+01 -0.2919E+01 0.1208E+02
28 0.1644E+02 0.1766E+02 -0.1433E+01 -0.2509E+01 0.1715E+02
29 0.1818E+02 0.1866E+02 -0.1851E+01 -0.2001E+01 0.2021E+02
30 0.2026E+02 0.1769E+02 -0.2860E+01 -0.1468E+01 -0.1470E+02
31 0.2060E+02 0.1572E402 -0.3327E+01 -0.149SE+01 -0.1181E+02
32 0.2095E+02 0.1375E+02 -0.3660E+01 -0.1525E+01 -0.7031E+0l
33 0.2130E+02 0.1178E+02 -0.3795E+01 -0.1544E+01 -0.4596E+00
34 0.2199E+02 0.7842E+01 -0.3272E+01 -0.1404E+01 0.1590E+02
35 0.2234E+02 0.5872E+01 -0.2641E+01 -0.1178E+01 0.2221E+02
36 0.2269E+02 0.3902E+01 -0.1846E+01 -0.8505E+00 0.2672E+02
37 0.2303E+02 0.1933E+01 -0.9481E+00 -0.4459E+00 0.2942E+02




TABLE 8.6 Internal Forces and Stresses of Nodes
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LARGE-DEFLECTION ASSUMPTION USED
UNITS ARE BRITISH (LBS, LBS-IN, AND PSI)

NODE INTERNAL FORCES MOMENT STRESSES
NO HORIZ VERTI TOP BOTTOM
l -0.1287E+03 -0.1957E+03 0.1177E+04 0.2601E+06 -0.2630E+06
2 -0.1287E+03 -0.1957E+03 0.0000E+00 -0.1430E+04 -0.1430E+04
3 -0.1638E+03 0.8453E+02 0.1719E+04 0.3802E+06 -0.3B3BE+06
4 -0.1638E+03 0.8453E+02 0.0000E+00 -0.1820E+04 -0.1820E+04
5 0.1362E+03 0.8453E+02 0.1592E+04 0.3553E+06 -0.3523E+06
6 0.1362E+03 0.8453E+02 0.0000E+00 -0.6621E+03 -0.6621E+03
7 -0.3507E+02 0.2802E+03 0.1933E+03 0.4257E+05 -0.4335E+05
8 -0.3507E+02 -0.1979E+02 0.0000E+00 -0.3897E+03 -0.3897E+03
9 -0.3507E+02 -0.1979E+02 0.0000E+00 -0.3897E+03 -0.3897E+03
10 -0.1287E+03 -0.1957E+03 0.100SE+04 0.2209E+06 -0.2258E+06
11 -0.1287E+03 -0.1957E+03 0.7907E+03 0.1732E+06 -0.1782E+06
12 -0.1287E+03 -0.1957E+03 0.5448E+03 0.1186E+06 -0.1235E+06
13 -0.1287E+03 -0.1957E+03 0.2777E+03 0.5924E+05 -0.6418E+05
14 -0.1287E+03 -0.1957E+03 0.3908E+03 0.8452E+05 -0.8917E+05
15 -0.1287E+03 -0.1957E+03 0.7710E+03 0.1690E+06 -0.1737E+06
16 -0.1287E+03 -0.1957E+03 0.1129E+04 0.2486E+06 -0.2532E+06
17 -0.1287E+03 -0.1957E+03 0.1450E+04 0.3199E+06 -0.3245E+06
18 -0.3507E+02 -0.1979E+02 0.0000E+00 -0.4310E+03 -0.4310E+03
19 -0.3507E+02 -0.1979E+02 0.0000E+00 -0.4310E+03 -0.4310E+03
20 -0.3507E+02 -0.1979E+02 0.0000E+00 -0.4310E+03 -0.4310E+03
21 -0.3507E+02 -0.1979E+02 0.0000E+00 -0.4310E+03 -0.4310E+03
22 -0.3507E+02 -0.1979E+02 0.6429E+02 0.1428E+05 -0.1429E+05
23 -0.3507E+02 -0.1979E+02 0.1287E+03 0.2860E+05 -0.2860E+05
24 -0.3507E+02 0.2802E+03 0.1331E+03 0.2669E+05 -0.3247E+05
25 -0.3507E+02 0.2802E+03 0.6788E+02 0.1219E+05 -0.179B8E+05
26 -0.1636E+03 0.8453E+02 0.1407E+04 0.3116E+06 -0.313B8E+06
27 -0.1636E+03 0.8453E+02 0.1070E+04 0.2367E+06 -0.2389E+06
28 -0.1638E+03 0.8453E+02 0.7190E+03 0.1587E+06 -0.1609E+06
29 -0.1636E+03 0.8453E+02 0.3609E+03 0.7909E+05 -0.8131E+05
30 -0.1638E+03 0.8453E+02 0.3420E+03 0.7476E+05 -0.7724E+05
31 -0.1638E+03 0.8453E+02 0.6791E+03 0.1497E+06 -0.1522E+06
32 -0.163BE+03 0.8453E+02 0.1005E+04 0.2221E+06 -0.2246E+06
33 -0.1638E+03 0.8453E+02 0.1313E+04 0.2905E+06 -0.2930E+06
34 0.1362E+03 0.8453E+02  0.1276E+04 0.2829E+06 -0.2842E+06
35 0.1362E+03 0.B8453E+02 0.9557E+03 0.2117E+06 -0.2130E+06
36 0.1362E+03 0.8453E+02 0.6355E+03 0.1406E+06 -0.1419E+06
37 0.1362E+03 0.8453E+02 0.3171E+03 0.6980E+05 -0.7113E+05
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TABLE 8.7 Reaction Forces at Supports

UNITS ARE BRITISH (LBS AND LBS-IN)

NODE REACTION FORCES MOMENT
NO RZ. VERT.
1 0.1287E+03 0.1957E+03 -0.1177E+04
6 0.1362E+03 0.8453E+02 0.0000E+00
9 0.3507E+02 0.1979E+02 0.0000E+00
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FIGURE 8.6 The Safety Factors of Nodes



SAFETY FACTOR DETERMINED
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TABLE 8.8 Safety Factors of Nodes

FROM

MAX. NORMAL STRESS THEORY

CORRESPONDS TO ZERO STRESS ON THE LINK OR RIGID LINK
UNITS ARE BRITISH (PSI FOR STRESSES)

NODE YIELD STRESSES SAFETY
NO STRENGTH TOP BOTTOM FACTOR
1 0.1000E+06 0.2601E+06 -.2630E+06 0.380E+00
2 0.1000E+06 -.1430E+04 -.1430E+04 0.699E+02
3 0.1000E+06 0.3802E+06 -.3838E+06 0.261E+00
4 0.1000E+06 -.1820E+04 ~.1820E+04 0.549E+02
5 0.1000E+06 0.3553E+06 -.3523E+06 0.2B81E+00
6 0.1000E+06 -.6621E+03 -.6621E+03 0.151E+03
7 0.1000E+06 0.4257E+05 -.4335E+05 0.231E+01
8 0.1000E+06 -.3897E+03 -.3897E+03 0.257E+03
9 0.1000E+06 -.3897E+03 -.3B897E+03 0.257E+03
10 0.1000E+06 0.2209E+06 -~.2258E+06 0.443E+00
11 0.1000E+06 0.1732E+06 -.1782E+06 0.561E+00
12 0.1000E+06 0.1186E+06 -.1235E+06 0.810E+00
13 0.1000E+06 0.5924E+05 -.6418E+05 0.156E+01
14 0.1000E+06 0.8452E+05 ~-.8917E+05 0.112E+01
15 0.1000E+06 0.1690E+06 -.1737E+06 0.576E+00
16 0.1000E+06 0.24B6E+06 -.2532E+06 0.395E+00
17 0.1000E+06 0.3199E+06 -.3245E+06 0.308E+00
18 0.1000E+06 -.4310E+03 -.4310E+03 0.232E+03
19 0.1000E+06 -.4310E+03 -.4310E+03 0.232E+03
20 0.1000E+06 -.4310E+03 -.4310E+03 0.232E+03
21 0.1000E+06 -.4310E+03 -.4310E+03 0.232E+03
22 0.1000E+06 0.14268E+05 -.1429E+05 0.700E+01
23 0.1000E+06 0.2860E+05 -.2860E+05 0.350E+01
24 0.1000E+06 0.2669E+05 -.3247E+05 0.308E+01
25 0.1000E+06 0.1219E+05 -.1798E+05 0.556E+01
26 0.1000E+06 0.3116E+06 -.3136E+06 0.319E+00
27 0.1000E+06 0.2367E+06 -.2389E+06 0.419E+00
28 0.1000E+06 0.1587E+06 -.1609E+06 0.622E+00
29 0.1000E+06 0.7909E+05 -.8131E+05 0.123E+01
30 0.1000E+06 0.7476E+05 -.7724E+05 0.129E+01
31 0.1000E+06 0.1497E+06 -.1522E+06 0.657E+00
32 0.1000E+06 0.2221E+06 -.2246E+06 0.445E+00
33 0.1000E+06 0.2905E+06 -.2930E+06 0.341E+00
34 0.1000E+06 0.2829E+06 -~.2842E+06 0.352E+00
35 0.1000E+06 0.2117E+06 -.2130E+06 0.469E+00
36 0.1000E+06 0.1406E+06 -.1419E+06 0.705E+00
37 0.1000E+06 0.6980E+05 -.7113E+05 0.141E+01
*x%x MIN SAFETY FACTOR FOR SYSTEM = 0.261 #***
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8.3 Dynamic Analyses of A Mechanism Under Continuous Motions

For a mechanism under continuous motions, the kinematic analyses
are carried out to determine the positions and accelerations of the
nodes, and a fatigue stress analysis is conducted for the dynamic
stresses in the elements. In the program CASDAM, the modular approach
is used for the kinematic analyses at every 9 degrees of the input-link
as given in Chapter 2. For the fatigue stress analyses, Soderberg’s

linear failure line is used.

A four-bar crank-rocker mechanism as given in Fig. (B8.7) is

studied (see References L7, 9, 11, 17]J). The geometry of the mechanism
shown in Fig. (8.7) has the following dimensions:

Length of crank 4.0 inches.

Length of coupler 11.0 inches.

Length of Follower 10.5 inches.

Ground link 10.0 inches.

The model in [7, 93 was constructed of aluminum strip 1.0 inch
wide. The crank was 0.167 inch thick. The coupler and follower links
were 0.063 inch thick. The coupler was connected to the crank and the
follower by means of pins and small ball bearings mounted in sleeves.
The total weight of the bearing and the sleeve at each end was 0.06 1b.
Other apparatus details may be found in £7, 91. As the same procedure
as in References [11, 171, the total weight of the bearing and the
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sleeve was assumed to be distributed equally to lumped masses on the

crank and follower.

The input-link is rotated at 400 rpm in the clockwise direction.
Fig. (3.21) in Section 3.4 gives the nomalized rigid-body angular
acceleration of the follower plotted against the crank rotation angle.
Table 8.9 gives the positions and accelerations of the nodes, and
Table 8.10 gives the angular accelerations of the 1links at the initial
position. Fig. (8.8) shows the continuous motion of the mechanism.

TABLE 8.9 Positions and Accelerations of Nodes at Initial Position

TOTAL NODES = 4
ROTATING SPEED = -41.87 RAD/SEC
INPUT-LINK ANGLE = 0.0 DEGREES
UNITS = BRITISH

NODE POSITIONS ACCELERATIONS

NO HORZ. VERT. HORZ . VERT.

0.0000E+00 0.0000E+00  0.0000E+00 0.0000E+00
0.4000E+01 0.0000E+00 -.7012E+04 0.0000E+00
0.7896E+01 0.1029E+02 -.5949E+04 -.9568E+04
0.1000E+02 0.2003E-04 0.0000E+00 0.0000E+00

W -~

TABLE 8.10 Angular Accelerations of Links at Initial Position

LINK BETWEEN ANGULAR
NODE NODE ACCELERATIONS
1 2 0.0000E+00
2 3 -0.3984E+03
3 4 0.7377E+03
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FIGURE 8.7 1Initial Positions of A Mechanism

FIGURE 8.8 Continuous Motion of Mechanism
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8.3.1 Quasi-Static Responses of A Mechanism

The maximum distortions at the nodes are shown in Fig. (8.9), and
the safety factors from the dynamic stress analysis are given in
Fig. (8.10) for a aluminum (yield strength = 90,000 psi and endurance
limit = 45,000 psi). The maximum distortions at the nodes are given in
Table 8.11, and the equivalent stresses and safety factors are given in
Table 8.12. The minimum safety factor for the system is 5.44 at the
critical point (node 12), and the maximum distortion in the system is
0.3443 inch at node 12.

Fig. (8.11) shows the displacements and stresses of node 12 in the
global coordinate system. Fig. (8.12) gives the displacements and
strains of node 12 in the local coordinate system. Fig. (8.13) shows
the displacements and stresses of node 9 in the global coordinate
system. Fig. (8.14) gives the displacements and strains of node 9 in
the local coordinate systen. ?ipally, when the angle of the input-link
is -324 degrees, the positions of the rigid and deflected systems are
given in Fig. (8.15). The analysis details are given in Appendix C.
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FIGURE 8.9 Maximum Distortions of Nodes

TABLE 8.11 Maximum Distortions of Nodes

UNITS ARE BRITISH (INCHES FOR DISTORTIONS)
NODE NO MAXIMUM DISTORTIONS

1 0.0000E+00
2 0.1944E-01
3 0.5217E-01
4 0.0000E+00
5 0.1671E-02
6 0.6077E-02
7 0.1231E-01
8 0.8702E-01
9 0.1402E+00
10 0.1240E+00
11 0.2690E+00
12 0.3443E+00 ***
13 0.2330E+00

#**% CORRESPONDS TO MAX. DISTORTION IN THE SYSTEM
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FIGURE 8.10 Safety Factors from Fatigue Stress Analysis

TABLE 8.12 Equivalent Stresses and Safety Factors of Nodes

SAFETY FACTOR DETERMINED FROM SODERBERG FAILURE LINE

UNITS ARE BRITISH (PSI FOR STRESSES)
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NODE STRENGTH EQUIVALENT STRESSES SAFETY
NO YIELD ENDURANCE MEAN. ALIN. FACTOR
1 0.9000E+05 0.4500E+05 0.5655E+03 0.2597E+04 0.156E+02
2 0.9000E+05 0.4500E+05 0.2455E+02 0.3989E+02 0.863E+03
3 0.9000E+05 0.4500E+05 0.1441E+02 0.1554E+02 0.198E+04
4 0.9000E+05 0.4500E+05 -.4585E+01 0.5226E+02 0.825E+03
5 0.9000E+05 0.4500E+05 0.4335E+03 0.1945E+04 0.208E+02
6 0.9000E+05 0.4500E+05 0.2930E+03 0.1298E+04 0.312E+02
7 0.9000E+05 0.4500E+05 0.1518E+03 0.6521E+03 0.618E+02
8 0.9000E+05 0.4500E+05 0.1780E+03 0.2149E+04 0.201E+02
9 0.9000E+05 0.4500E+05 0.4705E+03 0.2932E+04 0.142E+02
10 0.9000E+05 0.4500E+05 0.5520E+03 0.2420E+04 0.167E+02
11 0.9000E+05 0.4500E+05 -.2249E+04 0.5994E+04 0.632E+01
12 0.9000E+05 0.4500E+05 -.2752E+04 0.6900E+04 0.544E+01 **
13 0.9000E+05 0.4500E+05 -.1778E+04 0.4303E+04 0.867E+01

*** MIN. SAFETY FACTOR FOR SYSTEM =

5.44 AT NODE 12 *»**
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FIGURE 8.13 Displacements and Stresses of Node 9
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SNALL DEFLECTION ASSUNPTION USED

FIGURE 8.15 Deflected System at -324 Degrees of the Input-Link
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8.3.2 Steady-State Responses of A Mechanism

The mechanism shown in Fig. (8.7) 1is used for time-domain
analysis. At the initial position, velocities and accelerations of
every node due to the elastic vibrations of the flexible members are

set to zero. The steady-state responses of the mechanism are

investigated.

The maximum distortions of the nodes are shown in Fig. (8.16) and
the safety factors from the dynamic stress analysis are given in
Fig. (8.17). The maximum distortions of the nodes are given in
Table 8.13, and the equivalent stresses and safety factors are given in
Table 8.14. The safety factor for the system i1s 3.50 at the critical
point (node 12), and the maximum distortion in the system is 0.4845
inch at node 12.

Fig. (8.18) shows the displacements and stresses of node 12 in the
global coordinate system. Fig. (8.19) gives the displacements and
strains of node 12 in the local coordinate system. Fig. (8.20) shous
the displacements and stresses of node 9 in the global coordinate
system. Fig. (8.21) gives the displacements and strains of node 9 in
the 1local coordinate system. Finally, the strains at mid-point of the
follower (node 12) are given in Fig. (8.22) for each full cycle of the
input-1ink: Fig. (8.22a) gives the strains for the first full cycle;
Fig. (8.22b) shows the strains for the second full cycle; and
Fig. (8.22b) gives for the third full cycle.
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FIGURE 8.16 Maximum Distortions of Nodes

TABLE 8.13 Maximum Distortions of Nodes

UNITS ARE BRITISH (INCHES FOR DISTORTIONS)
NODE NO MAXIMUM DISTORTIONS

1 0.0000E+00
2 0.3036E-01
3 0.1079E+00
4 0.2090E-05
5 0.2620E-02
6 0.9514E-02
7 0.1923E-01
8 0.1377E+00
9 0.1835E+00
10 0.1616E+00
11 0.3903E+00
12 0.4845E+00 #a*
13 0.3257E+00

#*x% CORRESPONDS TO MAX. DISTORTION IN THE SYSTEM
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FIGURE 8.17 Safety Factors from Fatigue Stress Analysis

TABLE 8.14 Equivalent Stresses and Safety Factors of Nodes

SAFETY FACTOR DETERMINED FROM SODERBERG FAILURE LINE

UNITS ARE BRITISH (PSI FOR STRESSES)

STRENGTH

YIELD ENDURANCE MEAN.

ALTN.

EQUIVALENT STRESSES SAFETY

FACTOR

180

0.9000E+05
0.9000E+05
0.9000E+05
0.9000E+05
0.9000E+05
0.9000E+05
0.9000E+05
0.9000E+05
0.9000E+05
0.9000E+05
0.9000E+05
0.9000E+05
0.9000E+05

0.4500E+05
0.4500E+05
0.4500E+05
0.4500E+05
0.4500E+05
0.4500E+05
0.4500E+05
0.4500E+05
0.4500E+05
0.4500E+05
0.4500E405
0.4500E+05
0.4500E+05

-.2250E+03
0.2256E+02
0.1256E+02
0.1132E+02
0.1960E+03
0.1315E+03
0.6900E+02
~.5145E+03
~-.8370E+03
-.5185E+03
-.4955E+03
-.2100E+03
0.5450E+02

*** MIN. SAFETY FACTOR FOR SYSTEM =

0.4699E+04
0.4415E+02
0.1911E+02
0.7624E+02
0.3503E+04
0.2324E+04
0.1154E+04
0.2955E+04
0.4407E+04
0.3555E+04
0.9995E+04
0.1276E+05
0.8513E+04

0.935E+01
0.812E+03
0.177E+04
0.549E+03
0.125E+02
0.188E+02
0.379E+02
0.140E+02
0.933E+01
0.118E+02
0.439E+01
0.350E+01
0.527E+01

3.50 AT NODE 12 #**
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in The Global Coordinate System
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8.4 Cantilever Beam with End Loads

The cantilever beam represented in Fig. (8.23) is loaded by end
loads P and Q. Increasing the vertical load, the beam deflects in the
large-deflection mode. Furthermore, the deflections of the beam will
be changed by applying the horizontal (tensile or compressive) loads at
the end point. In this section, the large-deflections of the
cantilever beam are analyzed when a nondimensional parameter (PIZEI)

ranges 0 from 10 and a loading factor (Q/P) ranges between -1 and 1.

Fig. (8.24) shows the displacement for the different values of the
loading factor at -1.0, -0.2, 0.0, 0.2, and 1.0. Table 8.9 gives the
displacements of an end point in the horizontal and vertical
directions. Figs. (8.25) - (8.31) give the deflected beams for each
loading factor. Fig. (8.32) shows the deflections of the beam when the
parameter (PIZEI) 1s S. The case of Q = 0 corresponds to the model
given by Bisshopp and Drucker [87], and the solutions were verified in

good agreement in Section 4.5.
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FIGURE 8.23 Cantilever Beam Loaded by End loads

Curve No Q/P

1) -1.0
(2) -0.5
(3) -0.2
(4) 0.0
(5) 0.2
(6) 0.5
(7) 1.0

FIGURE 8.24 Displacements of End Point of Beam
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TABLE 8.15 Displacements of End Point of Cantilever Beam

0/p
m -1.0

PL/ET ~J ~1-0 95 0z 0.0 0.2 05 1.0
H/L | 0.9756 0.9805 0.9827 0.9841 0.9852 0.9867 0.9888
0- V/L 10.1998 0.1793 0.1668 0.1624 0.1565 0.1484 0.1366
H/L 1 0.8761 0.9179 0.9344 0.9430 0.9501 0.9586 0.9668
-0 V/L |0.4351 0.3601 0.3241 0.3033 0.2847 0.2603 0.2274
H/L}10.5605 0.7276 0.7993 0.8356 0.8644 0.8966 0.9310
2.0 V/L]0.7255 0.6140 0.5425 0.4981 0.4577 0.4048 0.3357
H/L|0.3295 0.5585 0.6755 0.7382 0.7687 0.8449 0.9026
3-0 V/5L|0.8031 0.7323 0.6608 0.6091 0.5584 0.4893 0.3972
H/L {0.1842 0.4348 0.5793 0.6613 0.7289 0.8048 0.8816
#-0 V/L|0.8180 0.7866 0.7265 0.6754 0.6215 0.5437 0.4369
H/L | 0.0862 0.3444 0.5057 0.6013 0.6818 0.7734 0.665;-
>0 V/5{0.8168 0.8139 0.7663 0.7184 0.6640 0.5817 0.4648
H/L | 0.0151 0.2760 0.4482 0.5537 0.6443 0.7483 0.8532
-0 V/L{0.8116 0.8292 0.7924 0.7483 0.6947 0.6098 0.4858
H/L}-.0400 0.2223 0.4022 0.5152 0.6137 0.7279 0.8431
7-0 V/L|0.8058 0.8385 0.8108 0.7704 0.7180 0.6315 0.5022
H/L|-.0830 0.1789 0.3644 0.4834 0.5883 0.7109 0.8348
% 1vi]o.6004 0.6447 0.6245 0.787a 0.7363 0.6490 0.5154
H/L|~-.1490 0.1126 0.3060 0.4337 0.5484 0.6843 0.8218
100 V/L {0.7914 0.8523 0.8438 0.8122 0.7637 0.6755 0.5357

shere H and V are designated in Fig. (8.23),

and L is total length of beam.
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FIGURE 8.26 Deflected Beams When Q/P = - 1.0
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FIGURE 8.29 Deflected Beams When Q/P = 0.2
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FIGURE 8.30 Deflected Beams When Q/P = 0.5
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FIGURE 8.31 Deflected Beams When Q/P = 1.0
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FIGURE 8.32 Deflected Beams When PIZEI = 5
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8.5 Stepped Beam on Elastic Supports

The system in Fig. (8.33) shows a stepped bear loaded by 1its omn
weight and a vertical end load (15N). The shaft is supported at three
locations, the right two supports being elastic supports with a spring
constant K = 2 N/mm. The springs are assumed to be unloaded when the
beam is horizontal and the springs exert a vertical load only where the
ends of springs are sliding. Numerical values for the system

paianeters are given in Fig. (8.33).

For the analysis, the beam is broken into 20 segments as shown in

Fig. (8.34). The shaft 1s made from steel AISI 4340 (yield
strength = 689 Mpa). The deflections of the system are given in
Fig. (8.35), and the safety factors of the system are given in

Fig. (8.36). Table 8.16 gives the Jdisplacements of the nodes.
Table 8.17 gives the internal forces and stresses of the nodes.
Table 8.18 gives the safety factors of the nodes and for the system.

The solution from the analysis gives -2.737 and -23.37 =mm for the
maximum displacements at the end point in the horizontal and vertical
directions, respectively. The factor of safety in the system is 1.25
at node 4. The analysis details are presented in Appendix D.
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FIGURE 8.33 Stepped Beam on Elastic Supports
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LARGE DEFLECTION ASSUNPTION USED

FIGURE 8.35 Deflected System
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TABLE 8.16 Displacements of Nodes

LARGE-DEFLECTION ASSUMPTION USED
UNITS ARE SI (MM IN DISPLACEMENTS)

NODE LOCATION DISPLACEMENTS SLOPE
NO X Y HORIZ VERTI DEG
1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00  0.820BE+00
2 0.1500E+03 0.0000E+00 -0.1488E-01 0.2113E+01 0.7778E+00
3 0.2500E+03 0.0000E+00 -0.2242E-01 0.3337E+01 0.5785E+00
4 0.4000E+03 0.0000E+00 -0.9664E+00 -0.1022E+02 -0.1267E+02
5 0.5000E+03 0.0000E+00 -0.5273E+01 -0.3909E+02 -0.1875E+02
6 0.2500E+02 0.0000E+00 -0.2563E-02 0.3580E+00 0.8198E+00
7  0.5000E+02 0.0000E+00 -0.5113E-02 0.7150E+00 0.8165E+00
8 0.7500E+02 0.0000E+00 -0.7635E-02 0.1070E+01 0.8108E+00
9 0.1000E+03 0.0000E+00 -0.1011E-01 0.1422E+01 0.8026E+00
10 0.1250E+03 0.0000E+00 -0.1253E-01 0.1770E+01 0.7916E+00
11 0.1750E+03 0.0000E+00 -0.1712E-01 0.2447E+01 0.7540E+00
12 0.2000E+03 0.0000E+00 -0.1918E-01 0.2768E+01 0.7129E+00
13 0.2250E+03 0.0000E+00 -0.2097E-01 0.3067E+01  0.6545E+00
14 0.2750E+03 0.0000E+00 -0.2250E-01 0.3272E+01 -0.9199E+00
15 0.3000E+03 0.0000E+00 -0.3467E-01 0.2493E+01 -0.2702E+0l
16 0.3250E+03 0.0000E+00 -0.8712E-01 0.8741E+00 -0.4768E+0l
17 0.3500E+03 0.0000E+00 -0.2205E+00 -0.1705E+01 -0.7118E+01
18 0.3750E+03 0.0000E+00 -0.4900E+00 -0.5366E+01 -0.9752E+0l1
19 0.4250E+03 0.0000E+00 -0.1720E+01 -0.1631E+02 -0.1534E+02
20 0.4500E+03 0.0000E+00 -0.2737E+01 -0.2337E+02 -0.1723E+02
21 0.4750E+03 0.0000E+00 -0.3953E+01 -0.3107E+02 -0.1837E+02
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TABLE 8.17 Internal Forces and Stresses of Nodes

LARGE-DEFLECTION ASSUMPTION USED
UNITS ARE SI (NEWTON, N-MM, AND MPA)

196

NODE INTERNAL FORCES MOMENT STRESSES
NO HORIZ VERTI TOP BOTTOM
1 0.0000E+00 0.6238E+00 0.0000E+00 0.0000E+00  0.0000E+00
2 0.0000E+00  0.5136E+01 -0.1151E+03 -0.5525E+01 0.5525E+01
3 0.0000E+00 0.5327E+01 -0.6382E+03 -0.2451E+03 0.2451E+03
4 0.0000E+00 ~0.1505E+02 -0,1438E+04 -0.5522E+03 0.5522E+03
5 0.0000E+00 0.0000E+00  0.0000E+00 0.0000E+00  0.0000E+00
6 0.0000E+00 0.6716E+00 -0.1619E+02 -0.7771E+00 0.7771E+00
7 0.0000E+00 0.7194E+00 -0.33568E+02 -0.1612E+01 0.1612E+01
8 0.0000E+00 0.7672E+00 -0.5216E+02 -0.2504E+01 0.2504E+01
9 0.0000E+00  0.8150E+00 -0.7194E+02 -0.3453E+01 0.3453E+01
10 0.0000E+00 0.8628E+00 -0.9291E+02 -0.4460E+01 0.4460E+01
11 0.0000E+00 0.5184E+01 -0.2441E+03 -0.1172E+02 0.1172E+02
12 0.0000E+00 0.5231E+01 -0.3743E+03 -0.1797E+02 0.1797E+02
13 0.0000E+00 0.5279E+01 -0.5056E+03 -0.2427E+02 0.2427E+02
14 0.0000E+00 0.5339E+01 -0.7715E+03 -0.2963E+03 0.2963E+03
15 0.0000E+00  0.5351E+01 -0.9052E+03 -0.3476E+03 0.3476E+03
16 0.0000E+00  0.5363E+01 -0.1039E+04 -0.3990E+03 0.3990E+03
17 0.0000E+00 0.5375E+01 -0.1172E+04 -0.4500E+03  0.4500E+03
18 0.0000E+00  0.5387E+01 -0.1305E+04 -0.5011E+03 0.5011E+03
19 0.0000E+00 ~0.1504E+02 -0.1073E+04 -0.4120E+03 0.4120E+03
20 0.0000E+00 -0.1502E+02 -0.7125E+403 -0.2736E+03 0.2736E+03
21 0.0000E+00 ~0.1501E+02 -0.3553E+03 -0.1364E+03 0.1364E+03




TABLE 8.18 Safety Factors of Nodes

LARGE-DEFLECTION ASSUMPTION USED

SAFETY FACTOR DETERMINED FROM MAX. NORMAL STRESS THEORY
*#* CORRESPONDS TO ZERO STRESS ON THE LINK OR RIGID LINK
UNITS ARE SI (MPA FOR STRESSES)

NODE YIELD STRESSES SAFETY
NO STRENGTH ToP BOTTOM FACTOR
1 0.6890E+03 0.0000E+00 0.0000E+00 iakiad
2 0.6890E+03 -.5525E+01 0.5525E+01 0.125E+03
3 0.6890E+03 -.2451E+03 0.2451E+03 0.281E+01
4 0.6890E+03 -.5522E+03 0.5522E+03 0.125E+01
5 0.6890E+03 0.0000E+00 0.0000E+00 dekedke
6 0.6890E+03 -.7771E+00 0.7771E+00 0.887E+03
7 0.6890E+03 -.1612E+01 0.1612E+01 0.427E+03
8 0.6890E+03 -.2504E+01 0.2504E+01 0.275E+03
9 0.6890E+03 -.3453E+01 0.3453E+01 0.200E+03
10 0.6890E+03 -.4460E+01 0.4460E+01 0.154E+03
11 0.6890E+03 ~-.1172E+02 0.1172E+02 0.588E+02
12 0.6890E+03 -.1797E+02 0.1797E+02 0.383E+02
13 0.6B90E+03 -.2427E+02 0.2427E+02 0.284E+02
14 0.6890E+03 -.2963E+03 0.2963E+03 0.233E+01
15 0.6890E+03 -.3476E+03 0.3476E+03 0.198E+01
16 0.6890E+03 -.3990E+03 0.3990E+03 0.173E+01
17 0.6890E+03 -.4500E+03 0.4500E+03 0.153E+01
18 0.6890E+03 -.5011E+03 0.5011E+03 0.137E+01
19 0.6890E+03 -.4120E+03 0.4120E+03 0.167E+01
20 0.6890E+03 -.2736E+03 0.2736E+03 0.252E+01
21 0.6890E+03 -.1364E+03 0.1364E+03 0.505E+01

Ferke e sk e e sk e ol e e s s S sk e sl e e e ole e sk sk Aok e sk A e e sk e s e ke e e

SAFETY FACTOR FOR SYSTEM =

1.25 AT NODE 4
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CHAPTER IX

SUMMARY

9.1 Discussion

The iterative transfer matrix method presented here can be applied

to the static and dynamic analyses of both general multiloop
flexible-body mechanisms and structures.

The internal forces are interrelated elastically with the

displacements at a node. Also, the field matrices for the

flexible-body analysis must contain the elastic effects due to the
internal forces, which are unknown. This complexity in the solution

process can be reduced by using the iterations in order to update the
internal forces at every node in the flexible-body systems. The
initial field matrix is used only to determine the initial forces, and
the elastic field matrix is used for both the force and displacement
analyses of the flexible-body systems. The initial field matrix 1is
determined from the elastic properties of the member with zero axial
forces on each segment. The elastic field matrix is calculated from
both the elastic properties of the mnember and the internal forces
determined from the previous iteration.
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In the solution procedure for the iterative transfer matrix
method, the corresponding transfer matrices at every section and node
can be calculated. Next, the first matriz equation can be built by
manipulating the matrices from the starting node to the end node, and
the unknowns can be solved at the starting node by applying the
corresponding boundary conditions at both ends. Then, the state
variables at each node in the system are calculated by manipulating the

corresponding transfer matrices and the state vector at one end of the

section.

After determining all of the internal forces at each node from the
first matrix equation, the elastic field matrices can be obtained from
the internal forces and used to make the second matrix equation. Then,
the same solution procedures are used to solve the next matrix
equation. For the third matrix equation, all procedures for the second
matrix equation are repeated, where elastic field matrices for the
third equation are updated by the internal forces determined from the

second equation.

In addition, there are two types of elastic field matrices. One
is for solving small-deflection problems, and the other is for
large-deflection problems. Since the iterative transfer matriz method
converges rapidly to the solution, three iterations of the solution
procedures for the small-deflection analysis are usually enough. But,
for the 1large-deflection analysis, the solution procedures are
continued until all state variables are essentially unchanged, and this
usually requires about 10 iterations.
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The iterative transfer matrix method requires much 1less storage

than does the finite-element methods and the other lumped-mass
techniques because all necessary matrices used in the method are 7X7.

9.2 Research Contributions

The following is a list of specific contributions to the field of

general multiloop-planar flexible mechanisms from this research.

1. The iterative-transfer matrix method developed here can be used for

the static and dynamic analyses of general planar flexible

mechanisms and structures.

2. The necessary transfer matrices are developed. These transfer
matrices consist of seven different types of matrices (field
matrices, a point matrix, a transformation matrix, a spring matrix,
a branch matrix, a inertial matrix, and a frequency matrix). All
of these transfer matrices have three degrees-of-flexibility per
node. These transfer matrices are applied directly to the analysis
without any transformations, which must be done in the traditional

transfer-matrix methods.

3. In the dynamic analysis of flexible mechanisms, the inertial
effects caused by rigid-body accelerations due to the kinematic
motions are incorporated in the rigid-body inertial matrix. This
rigid-body 1inertial matrix 1s used for quasi-static analyses. The
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inertial forces caused by the elastic vibrations are formulated
from the Houbolt direct integration method and incorporated in the
eléstic-body matrix. The elastic-body inertial matrix is used for
time-domain dynamic analyses.

The iteration method is developed based on the successive solutions
of 1linear systems and can be used for both small-deflection and

large-deflection analyses.

The approximate method for the 1large-deflection analysis is
developed by correcting the geometry of a deformed beam and the
internal forces in the beam segment. The geometric correction 1is
derived from the relationships between the beam length and the
geometry of the deformed beam. The average axial force in a beam

segment is derived from equilibrium condition in the segment.

A computer program CASDAM (Computer-Aided Static and Dynamic
Analyses of Flexible Mechanisms) was developed. CASDAM is the
graphics-oriented, interactive, computer-aided analysis program for
the static and dynamic analyses of general multiloop planar

mechanisns.
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9.3 Recommendations

There are areas in which extension of the present research would
be beneficial. The iterative transfer-matrix method is developed for
the planar systems. One possible improvement is to extend the

procedure to analyze spatial mechanisms.

As a direct integration method for the time-domain analyses, the
Houbolt method 1is used to evaluate the elastic-body inertial effects
due to the elastic vibrations. However, the solutions are not in good
agreement with the experiment data from References [7, 93. A possible

improvement is to develop a method to evaluate the inertial effects due
to the elastic vibrations of the members.

To effectively design a high-speed mechanism, kineto-elastodynamic
design must be considered. This is normally achieved by first
performing the kinematic synthesis of the rigid-body wmechanism, and
then proportioning the areas of cross-section of the links optimally to
account for kineto-elastodynamic effects. The computer program CASDAM
can be used for kineto-elastodynamic design by interconnecting with the
programs KINANL [67] and RECSYN [67-68]. They are developed for the
rigid-body kinematic analysis and synthesis, and installed in The
Advanced Design Method [ILaboratory, Department of Mechanical
Engineering, The Ohio State University. |
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There are cases where the procedure does not work, because the

system matrix equation becomes singular. These cases are as follows:

1. The angular velocity of the input-link of a mechanism is near the
natural frequency of elastic links.

2. Two links connected by a revolute joint are on a straight line.

3. The axial compressive force is equal to or' greater than the
buckling load of a beam segment.



2.

3.

5.

6.

8.

9.

REFERENCES

GENERAL SURVEY FOR FLEXIELE MECHANISMS ANALYSES

ERDMAN, A. G., and SANDOR, G. N., "Kineto-Elastodynamic - A Review
of the State of the Art and Trends," Mechanism and Machine Theory,
1972, Vol. 7, PP. 19-33.

IOWEN, G. G., and JANDRASITS, W. G., "Survey of Investigations into
the Dynamic Behavior of Mechanisms containing ILinks with
Distributed Mass and Elasticity,” Mechanism and Machine Theory,
1972, Vol. 7, PP. 3-17.

ANALYSIS, VIBRATION, AND EXPERIMENT FOR FLEXIBLE MECHANISMS

ERDMAN, A. G., SANDOR, G. N., and OAKBERG, R. G., "A General Method
for Kineto-Elastodynamic Analysis and Synthesis of Mechanisms,"

ﬁggaizogsm. Journal of Engineering for Industry, Nov. 1972, PP.

WINTER, S. J., and SHOUP, T. E., "The Displacement Analysis of
Path-Generating Flexible-Link Mechanisms," Mechanism and Machine
Theory, 1972, Vol. 7, PP. 443-451.

IMAM, I., SANDOR, G. N., and KRAMER, S. N, "Deflection and Stress
Analysis in High Speed Planar Mechanisms with Elastic Links,"

Irans. ASME, Journal of Engineerinq for Industry, May 1973, PP.
541-548.

SADLER, J. P., and SANDOR, G. N., "A Lumped Parameter Approach to
Vibration and Stress Analysis of Elastic Linkages,” Trans. ASME,

Journal of Engineering for Industry, May 1973, PP. 549-557.

ALEXANDER, R. M., and LAWRENCE, K. L., "An Experimental
Investigation of the Dynamic Response of an Elastic Mechanism,"

Trans. ASME, Journal of Engineering for Industry, Feb. 1974, PP.
268-274.

SADLER, J. P., and SANDOR, G. N., "Nonlinear Vibration Analysis of
Elastic Four-Bar Linkages," Trans. ASME, Journal of Engineering
for Industry, May 1974, PP. 411-419.

ALEXANDER, R. M., and LAWRENCE, K. L., “Experimentally Determined
Dynamic Strains in an Elastic Mechanism,” Trans. ASME, Journal of
Engineering for Industry, Aug. 1975, PP. 791-7%4.

204



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

205

CHU, 8.-C., and PAN, K. C.,"Dynamic Response of a High-Speed
Slider-Crank Mechanism with an Elastic Connecting Rod," Trans.
ASME, Journal of Engineering for Industry, May 1975, PP. 542-550.

ESIADL% J.Hle)::r'xa;:lon the ;;nalyt:lcal Lunpeg-l!ass Model of an Elastic
our-bar sm," Trans. ASME, Journal of Engineering for
Industry, May 1975, PP. 561-565.

BAHGAT, B. M., and WILIMERT, K. D., "Finite Element Vibrational
Analysis of Planar Mechanisms," Mechanism and Machine Theory, 1976,
VO].. 11' ppo 47-71.

GOLEBIEWSKI, E. P., and SADLER, J. P., “"Analytical and Experimental
Investigation of Elastic Slider-Crank Mechanisms," Trans. ASME,
Journal of Engineering for Industry, Nov. 1976, PP. 1266-1271.

SUTHERLAND, G. H., "Analytical and Experimental Investigation of a
High-Speed Elastic-Membered Linkage," Trans. ASME, Journal of
Engineering for Industry, Aug. 1976, PP. 788-794.

THOMPSON, B. S., and BARR, A. D. S., “"A Variational Principle for
the Elastodynamic Motion of Planar Linkage," Trans. ASME, Journal
of Engineering for Industry, Nov. 1976, PP. 1306-1312.

KOHLI, D., HUNTER, D., and SANDOR, G. N., "Elastodynamic Analysis
of a Completely Elastic System," Trans. ASME, Journal of
Engineering for Industry, Aug. 1977, PP. 604-609.

MIDHA, A., ERDMAN, A. G., and FROHRIB, D. A., "“An Approximate
Method for the Dynamic Analysis of Elastic Linkages," Trans. ASME,

Journal of Engineering for Industry, May 1977, PP. 449-455.

MIDHA, A., ERDMAN, A. G., and FROHRIB, D. A., “Finite Element
Approach to Mathematical Modeling of High-Speed Elastic Linkages,"
Mechanise and Machine Theory, Vol. 13, PP. 603-618, 1978.

MIDHA, A., ERDMAN, A. G., and FROHRIB, D. A., "A Computational
Efficient Numerical Algorithm for the Transient Response of
High-Speed Elastic Linkages," Trans. ASME, Paper No. 78-DET-54,

Journal of Mechanical Design, Jan. 1979, Vol. 101, PP. 138-148.

MIDHA, A., ERDMAN, A. G., and FROHRIB, D. A., "A Closed-Form
Numerical Algorithm for the Periodic Response of High-Speed Elastic
Linkages,"” Trans. ASME, Paper No. 78-DET-15, Journal of
Mechanjcal Design, Jan. 1979, Vol. 101, PP. 154-162.

BADLANI, M., and KLEINHENZ, N., "Dynamic Stability of Elastic
Mechanisms," Trans. ASME, Paper No. 76-DET-17, Journal of
Mechanical Design, Jan. 1979, Vol. 101, pp. 149-153.



22.

23.

25.

26.

27.

28.

29.

30.

3l1.

206

BAGCI, C., and KALAYCIOGLU, S., “Elastodynamics of Planar
Mechanisas Using Planar Actual Finite Line Elements, Lumped Mass
Systems, Matrix-Exponential Method, and the Method of ‘Critical-
Geometry-kineto-elasto-statics’ (CGKES)," Trans. ASME, Paper No.

78-DET-26, Journal of Mechanical Design, July 1979, Vol. 101, PP.
417-427. '

KALAYCIOGLU, S., and BAGCI, C., "Determination of the Critical
Operating Speeds of Planar Mechanisms by the Finite Element Method
Using Planar Actual Line Elements and Lumped Mass Systems,” Trans.
ASME, Paper No. 78-DET-37, Journal of Mechanical Design, April
1979, Vol. 101, PP. 210-223.

JANDRASITS, N. G., and LONEN G. G, "The Elastic-Dynamic Behavior of
a Counterweighted Rocker Link with an Overhanging Endmass in a
Four-Bar Linkage, Part I: Theory,” Trans. ASME, Paper No.

78-DET-23, Journal of Mechanical Desiqn, Jan. 1979, Vol. 101, PP.
77-88.

JANDRASITS, W. G., and LOWEN, G. G, "The Elastic-Dynamic Behavior
of a Counterweighted Rocker Link with an Overhanging Endmass in a
Four-Bar Linkage, Part II: Application and Experiment,” Trans.

ASME, Paper No. 78-DET-24, Journal of Mechanical Design, Jan.
1979, Vol. 101, pp. Bo-op- @ ‘rnal of Hechanical Desian, Jan

BADLANI, M., and MIDHA, A., "Member Initial Curvature Effects on
the Elastic Slider-Crank Mechanism Response," Trans. ASME, Paper
No. 80-DET-72, Journal of Mechanical Design, Jan. 1980, Vol.
104, PP. 159-167.

NATH, P. K., and GHOSH, A., "Kineto-Elastodynamic Analysis of
Mechanisms by Finite Element Method," Mechanism and Machine theory,
Vol. 15, PP. 179-197, 1980.

NATH, P. K., and GHOSH, A., “"Steady state Response of Mechanisms
with Elastic Links by Finite Element Method," Mechanism and Machine
theory, Vol. 15, PP. 179-197, 1980.

SADLER, J. P., MAYNE, R. W., and FAN, K. C., “Generalized Study of
Crank-Rocker Mechanisms Driven by a d.c. Motor; Part 1I.
Mathematical Model," Mechanism and Machine theory, Vol. 15, PP.
447-461, 1980.

MAYNE, R. W., SADLER, J. P., and FAN, K. C., "Generalized Study of
Crank-Rocker Mechanisms Driven by a d.c. Motor; Part 1II.

Applications,” Mechanism and Machine theory, Vol. 15, PP.
447-461, 1980.

CLEGHORN, W. L., FENTON, R. G., and TABARROK, B., "Finite Element
Analysis of High-Speed Flexible Mechanisms," Mechanism and Machine
theory, Vol. 16, PP. 407-424, 1981.



32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

207

MEANS, K. H. and NEOU, I. M., "Elasto-Dynamic Responses of a
Non-uniform Elastic Coupler of a Slider-Crank Mechanism,"

proceedings of The 7th Applied Mechanisms Conference, at OSU,
Kansas City, Mo., 1961, PP. XXXV.1-16.

ZUCCARO, D., Bengisu, M. T., and Thompson, B. S., "An
Experimental Investigation of a Four-Bar Mechanism with Links
Fabricated from a Graphite-Epoxy Composite Material," proceedings

of The 7th Applied Mechanisms Conference, at OSU, Kansas City, Mo.,
1981' ppo XI.].'G.

SUTHERLAND, G. H., "Elastic-Member Mechanism Dynamics," proceedings

of The 7th Applied Mechanisms Conference, at OSU, Kansas City, Mo.,
1981, PP. XLVIII.1-3.

ARDAYFIO, D. D., “Dynamic Stability of a Slider-Crank Mechanism
with Elastic Effects at Both Coupler Joints," ASME Paper No.
82-DET-19, 1982.

BADLANI, M., and MIDHA, A., "Effect of Internal Material Damping on
the Dynamics of a Slider-Crank Mechanism," Trans. ASME, Paper No.
82-DET-2, Journal of Mechanical Desiqn, 1982.

CHU, F. H., and PILKEY, W. D., “A Direct Integration Technique for
the Transient Analysis of Rotating Shafts," Trans. ASME, Paper No.
81-DET-56, Journal of Mechanical Design, April 1982, Vol. 104, PP.
384-368.

CONSTANTINOU, M. C., and TADJBAKHSH, I. G., "Dynamic Instability of
the Elastic Coupler of a Four-Bar Mechanism,” ASME Paper No.
82-DET-6, 1982.

TADJBAKHSH, I. G., "Stability of Motion of Elastic Planar Linkages
with Application to Slider Crank Mechanism," Trans. ASME, Paper
No. B81-DET-6, Journal of Mechanical Design, Oct. 1982, Vol. 104,
PP. 698-703.

JASKIE, J. E., and KOHLI, D., "A Note on Support Vibrations of a
Slider-Crank Mechanism," ASME Paper No. 82-DET-76, 1982.

MEANS, K. H., "Bearing lLoads in an Elastic Slider Crank Mechanism,"
ASME Paper No. 82-DET-36, 1982.

SHABANA, A., and WEHAGE, R. A., "Variable Degree-of-Freedom
Component Mode Analysis of Inertia Variant Flexible Mechanical
Systems," Trans. ASME, Paper No. 82-DET-93, Journal of Mechanical
Design, 1982.

STAMPS, F. R., and BOGCI, C., “Dynamics of Planar, Elastic,
High-Speed Mechanisms Considering Three-Dimensional Offset
Geometry: Analytical and Experimental Investigations,"” Trans.



44.

45.

q6.

47.

48.

49.

50.

51.

52.

53.

208
ASME, Paper No. 82-DET-34, Journal of Mechanical Design, 1982.

SUNADA, W. H., and DUBOWSKY, S., "On the Dynamic Analysis and
Behavior of Industrial Robotic Manipulators with Elastic Members,"
Trans. ASME, Paper No. 82-DET-45, Journal of Mechanical Design,
1982.

SUNG, C. K., and THOMPSON, B. S., '“A Note on the Effect of
Foundation Motion upon the Response of Flexible Linkages," ASME
Paper No. 82-DET-26, 1982.

THOMPSON, B. S., ZUCCARO, D., GAMACHE, D., and GANDHI, M. V., "An
Experimental and Analytical Study of the Dynamic Response of a
Linkage Fabricated from a Unidirectional Fiber-Reinforced Composite
Laminate,” Trans. ASME, Paper No. 82-DET-67, Journal of
Mechanical Design, 1982.

ZHU, 2. G., and CHEN, Y., "The Stability of the Motion of a
Connecting Rod," Trans. ASME, Paper No. 82-DET-84, Journal of
Mechanical Design, 1982.

CLEGHORN, W. L., and KONZELIMAN, C. J., “Comparative Analysis of
Finite Element Types wused in Flexible Mechanism Models,"

Proceedings of The 8th Applied Mechanisms Conference, at OSU, Saint
Louis, Mo, 1983.

BAGCI, C., “Observations on Analytical and Experimental
Kinetoelastodynamic response of Mechanisms Involving Flexural Line
Elements, Lumped Mass Systems, and Dynamic Damping Factors, and
Applications to Kinetoelastodynamics of Industrial Robots," Trans.
ASME, Paper No. 84-DET-141, 1984.

GARCIA-REYNOSO, A., and SEERING, W. P., “"Vibration Characteristics
of an Elastic Linkage with Elastic Input and Output Shafts," ASME
Paper No. 84-DET-1, 1984.

SHABANA, A. A., "Dynamics of Constrained Flexible Systems Using
Consistent, Lumped and Hybrid Mass Formulation," Trans. ASME,
Paper No. 84-DET-125, 1984.

SUNG, C. K., THOMPSON, B. S., and MCGRATH, J. J., "A Variational
Principle for the Linear Coupled Thermoelastodynamic Analysis of
Mechanism Systems," Trans. ASME, Paper No. 84-DET-39, 1984.

SUNG, C. K., THOMPSON, B. S., CROUILEY, P., and CUCCIO, J., "An
Experimental Comparative Study of Flexible Four Bar Linkages and
Slider Crank Mechanisms Fabricated in Commercial Metals and
Composite Laminate,” Trans. ASME, Paper No. 84-DET-52, 1964.



55,

56.

57.

59.

60.

6l1.

62.

63.

209

THOMPSON, B. S., and SUNG, C. K., "A Variational Formulation for
the Nonlinear Finite Element Analysis of Flexible Linkages :

Theory, Implementation, and Experimental Results," Trans. ASME,
hwr NO. m-m.ls' 1984.

SHOUP, T. E., "An Analytical Investigation of the Large Deflections
of Flexible Beam Springs," Ph.D. Dissertation, The Ohio State
University, 1969.

KINZEL, G. L., "An Analytical Kinetostatic Study of a Flexible
Slider-Crank Mechanism with from One to Four Degrees of
Flexibility," Thesis, The Ohio State University, 1969.

COMPUTER-AIDED KINEMATIC/DYNAMIC ANALYSIS PROGRAMS
FOR RIGID MECHANISMS

SHETH, P. N., and UICKER, J. J. Jr., "IMP (Integral Mechanisms
Program), A Computer-Aided Design Analysis System for Mechanisms

and Linkage," Journal of Engineering for Industry, PP. 454-464,
1972.

SMITH, D. A., CHACE, M. A., and RUBENS, A. C., "The Automatic
Generation of a Mathematical Model for Machinery Systems," Journal

of Engineering for Industry, PP. 629-635, 1973.

GUPTA, V. K., “Dynamic Analysis of Multi-Rigid-Body Systems,”
Trans. ASME, Paper No. 73-RA/DE-12, Journal of Engineering for

Industry, Aug. 1974.

BAGCI, C., "Dynamic Motion Analysis of Plane Mechanisms With Columb
and Viscous Damping via the Joint Force Analysis," Trans. ASME,

Paper No. 74-DET-37, Journal of Engineering for Industry, May
1975.

ORLANDEA, N., CHACE, M. A., and CALAHAN, D. A., “A
Sparsity-Oriented Approach to the Dynamic Analysis and Design of
Mechanical Systems: Part I,"” Trans. ASME, Paper No. 76-DET-19,

Journal of Engineering for Industry, Aug. 1977.

ORLANDEA, N., CHACE, M. A., and CALAHAN, D. A., “A
Sparsity-Oriented Approach to the Dynamic Analysis and Design of
Mechanical Systems: Part II," Trans. ASME, Paper No. 76-DET-20,

Journal of Engineering for Industry, Aug. 1977.

RUBEL, A.J. and KAUFMAN, R. E., “KINSYN III: A New
Human-Engineered System for Interactive Computer-Aided Design of
Planar Linkages,"” Journal of Engineering for Industry, Trans.
ASME, 76-DET-48, PP 440-448, May 1977.



64.

65.

66.

67.

68.

69.

70.

1.

72.

73.

74.

210

WILLIAMS, R. J., and RUPPRECHT, S., ‘"Dynamic Force Analysis of
Planar Mechanisms,"” Mechanism and Machine theory, Vol. 16, PP.
425-440, 1981.

ARDAYFIO, D. D., "Design of Kinematic Mechanisms using CAD

Technology," proceedings of The 7th Applied Mechanisms Conference,
at osU' KBBSQS Cj-ty' HO., 1981' ppo xonl-sn

CARSON, W. L., and OLADIRAN, O. B., "An Interactive Computer
Program for Force System Structural and Dimensional Synthesis,"

proceedings of The 7th Applied Mechanisms Conference, at OSU,
Kansas City, Mo., 1981, pp XXII.1-15.

KINZEL, G. L., and CHANG, C., "The Analysis of Planar Linkages
Using a Modular Approach," proceedings of The 7th Applied
%vcﬁnisgs Conference, at OSU, Kansas City, Mo., 1981, PP.

WALDRON, K. J., “"Graphical Solution of the Branch and Order
Problems of Linkage Synthesis for Multiply Separated Positions,"

Journal of Engineering for Industry, Trans. A&ASME, 76-DE7-16, PP
591-597, Aug. 1977.

WALDRON, K. J. and SONG, S. M., "Theoretical and Numerical
Improvements to an Interactive L:lnkage Design Program - RECSYN,"
proceedings of The 7th Applied Mecha onference, at OSU,
Kansas City, Mo., 1981, PP. VIII.1-8.

BAGCI, C., and Abounassif, J. A.-N., "Computer Aided Dynamic Force,
Stress and Gross-Motion Response Analysis of Planar Mechanism Using
Finite Line Element Technique," ASME Paper No. 82-DET-11, 1982.

CARSON, W. L., and LEE, C.-S. I., "A Force System Synthesis
Algorithm for Use as a Companion to Mechanism Dynamic Analysis
Programs," Trans. ASME, Paper No. 82-DET-72.

CARSON, W. L., and LEE, C.-S. I., "An Interactive Force System
Synthesis Program for Use with A Host Mechanism Dynamic Analysis
Program,” Trans. ASME, Paper No. 82-DET-74

BENEDETTO, A. D., and PENNESTRI, E., “Analysis of Angular
Velocities and Accelerations in Plane Linkages by Means of
Numerical Procedure,” Trans. ASME, Paper No. 82-DET-82.

FALLAHI, B., and RAGSDELL, K. M., "A Compact Approach to Planar
Kinematic Analysis,” Trans. ASME, Journal of Mechanisms,
Iransmissions, and Automation Design, Vol. 105, PP. 434-440, Sep.
1983.



75.

76.

77.

78.

79.

80.

8l.

82.

83.

84.

85.

211

CARSON, W. L., MUENKS, J., and POURMAND, B., "Examples of Force
System Structural and Dimensional Synthesis by Use of Interactive

Computer Graphics," Proceedings of The 8th Applied Mechanisms
Conference, at OSU, Saint Louis, Mo., 1983. -

SHARMA, R. P., "Mechanism Analysis on Microcomputers," proceedings

ga%t;e_ 8th Applied Mechanisms Conference, at OSU, Saint Louls, Mo.,

ARDAYFIO, D. D., MITTLER, J. P., and PARK, A. S., "Interactive

Microcomputer Package for the Dynamic Analysis of Machines," Trans.
ASME, Paper No. 84-DET-9, 1984.

SPARIS, P. D., and MOUROUTSOS, S. G., "A new Matrix Method for the
Kinematic Analysis and Motion Simulation of Planar Mechanisms with
Lower Pairs," Trans. ASME, Paper No. B84-DET-193, 1984.

HAUG, E. J., WEHAGE, E., and BARMAN, N. C., "Design Sensitivity
Analysis of Planar Mechanism and Machine Dynamics," Trans. ASME,
Paper No 80-DET-6, Journal of Mechanical Design, July 1981,
Vol. 103, PP. 560-570.

FATIGUE AND LARGE ELASTIC DEFORMATION ANALYSES

SHIN, J. H., "The Development of an Interactive Fatigue Analysis
Program for Machine Elements,” Thesis, The Ohio State University,
1981.

SHIN, J. H., and KINZEL, G. L., "The Development of An Interactive
Procedure for Fatigue Analysis Using Computer Graphics,"

Proceedings of the 2nd International Computer Engineering
Conference and Exhibit," San Diego, CA., 1982.

SHIN, J. H., and KINZEL, G. L., "Manual for Fillet and Spot Welding
Connections Design and Analysis Program,"” Dept. of Mechanical
Engineering, The Ohio State University, 1984.

COLLINS, J. A., "Failure of Materials in Mechanical Design," John
Wiley and Sons, Inc., N.Y., 1981.

JUVINALL, R. C., "Stress, Strain, and Strength," McGraw-Hill Book
Comp., N.Y., 1967.

SHIGLEY, J. E., "Mechanical Engineering Design," rd Edit.,
McGraw-Hill Book Comp., N.Y., 1977.



86.

87.

89.

90.

9.

92.

93.

94.

95.

96.

97.

98.

212

FAUPEL, J. H., and FISHER, F. E., "Engineering Design," 2nd
Edition, John Wiley and Sons, Inc., N.Y., 1981.

BISSHOPP, K. E., and DRUCKER, D. C., "Large Deflections of

Cantilever Beams," Quarterly of Applied Mathematics, Vol. 3, 1945,
PP 272-275.

de ARANTESE OLIVEIRA, E. R.,"A Method of Fictitious Forces for The
Geometrically Nonlinear Analysis of Structures," in Computational
Method in Nonlinear Mechanics, The Tezxas Institute for
Conmputational Mechanics, 1974.

MATRIX METHODS AND DYNAMIC ANALYSIS

PESTEL, E. C., and LECKIE, F. A., "Matrix Methods in Elasto
Mechanics," McGraw-Hill Book Comp., N.Y., 1963.

PILKEY, R. B., and PILKEY, O. H., "Mechanics of Solid," Quantum
Publishers, Inc., N.Y., 1974.

PIIKEY, W. D., and CHANG, P. Y., "Modern Formulas for Statics and
cs, A Stress-and-Strain Approach," McGraw-Hill Book Comp.,
N.Y., 1978.

PRZEMIENIECKI, J. S., "Theory of Matrix Structure Analysis,”
McGraw-Hill Book Comp., N.Y., 1968.

KARDESTUNCER, H., "Elementary Matrix Analysis of Structures,"
HCG!‘&“‘H’JI BOOK Cﬂp.. N.Y.. 19740

LIVESLEY, R. K., "Matrix Methods of Structural Analysis,” 2nd
Edit., Pergamon Press, Inc., Elmsford, N.J., 1975.

CLOUGH, R. W., and PENZIEN, J., ‘“Dynamics of Structures,"
McGraw-Hill Book Comp., N.Y., 1982.

D’SOUZA, A. F. and GARG, V. K., "Advanced Dynamics, Modeling and
Analysis," McGran-Hill Book Comp., N.Y., 1964.

BATHE, K. J., and WILSON, E. L., “Numerical Methods in Finite
Element Analysis," Prentice-Hall,Inc., Englewood Cliffs, N.J.,
1976.

BECKER, E. B., CAREY, G. F., and ODEN, J. T., "Finite Elements, An
Introduction,” Vol. I, Prentice-Hall,Inc., Englewood Cliffs, N.J.,
1981.



213

99. SEGERLIND, L. J., "Applied Finite Element Analysis," John Riley and
Sons, Inc., N.Y., 1976.

100. ZIENKIEWICZ, O. C., "The Finite Element Analysis," Mcgraw-Hill Book
Comp., N.Y., 1977.

MECHANISM ANALYSIS

101. SHIGLEY, J. E., "Kinematic Analysis of Mechanisms," 2nd Edit.,
McGrawn-Hill Book Comp., N.Y., 1969.

102. SHIGLEY, J. E., "Dynamic Analysis of Machines,” McGraw-Hill Book
Comp., N.Y., 1961.

103. SHIGLEY, J. E. and UICKER, J. J., "Theory of Machines and
Mechanisms," McGraw-Hill Book Comp., N.Y., 1980.

104. MARTIN, G. H., “"Kinematic and Dynamics of Machines,” McGraw-Hill
Book Comp., N.Y., 1982.

105. SUH, C. H. and RADCLIFF, C. R., "Kinematics and Mechanism Design,"
John Wiley and Sons, Inc., N.Y., 1978.

106. SANDOR, G. N., and ERDMAN, A. G., “Advanced Mechanism Design:
Analysis and Synthesis," Vol. 2, Prentice-Hall,Inc., Englewood
CQliffs, N.J., 1984. ‘



APPENDICES A - E

214



APPENDIX A

FORMULATIONS FOR THE RIGID-BODY KINEMATIC ANALYSES

BY A CLOSED-FORM COMPONENT APPROACH

A.1 Nomenclatures

A, B, C

e
o
-
.<a

O
-
®
00

¥Ys, is, fs

Os
a and B

Parameters

Length of a 1link

Linear velocity of a slider
Linear acceleration of a slider

Position,velocity, and acceleration in the
horizontal direction

Position, velocity, and acceleration in the
vertical direction

Slope-angle, angular velocity, and acceleration
of a 1link from the horizontal axis

Initial position of a slider in the horizontal
direction

Position, velocity, and acceleration of a slider
in the X-axis

Initial position of a slider in the vertical
direction

Position, velocity, and acceleration of a slider
in the Y-axis

Azimuth angle of the sliding axis
Angles between two solid elements
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A.2 Equations of The Component Modules

This section presents the equations of the kinematic 1loop
components for the position and acceleration analyses of the multiloop
mechanisms. Node 1 is assigned as the point of which the kinematic

properties are known.

A.2.1 Input-Link Component Module (Type 1)

FIGURE A.1 Input-Link Component Module

The positions of node 2 are

X2 X1 + L-cos®©

Y2 Y1 + L.sin®

the velocity components of node 2 are

X2 = -L-6.sin6



iZ = -L-éz-cose
o8 02
Y2 = -L.0.8in 6
where 1L = 1length of the input-link,
© = angle of the input-link,
and © = angular velocity of the input-link.

A.2.2 Dyad component module (Type 2)

FIGURE A.2 Dyad Component Module
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The parameters to determine the angle 63 are

A = 213-(X3 -1X1)
B = 2.1L3-(Y3~Yl)
c = m3-m?+ (13-1n72+ 13°- 12°
where L2 = 1length of the 1link between nodes 1 and 2,
L3 = 1length of the link between nodes 2 and 3,

62 = angle of the 1ink between node 1 and 2 from the
horizontal axis at node 2,
and O3

angle of the link between nodes 2 and 3 from the

horizontal axis at node 3.

Then, the angle of 63 can'be determined as follows:

-B &+ [A%+ BZ- c"“')

-1
63 = 2. tan (
c - A

The position and angle of node 2 are

X2 = X3 + L3.cos 63

Y2 = Y3 + 13.sin @3
and
af Y1 -Y2
62 = tan ( --------- )
11 - X2
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The velocities are

N -il-cosez-h-smez
L3 sin (63 - 02)

il-cos e3 +h-sin63

82 =
L2 - sin (83 - 62)
X2 = -13'63 -sin 63
and
V2 = 13 - 63 - cos 63

where l.ll and ¥1 are the velocity components of node 1.

Finally, the acceleration components are

219

. ¥1.cose2 + V1-sinez + 13-63- cos (63-62) &z
= - L3 .sin (63-02)

. . .2 .2
. f1.cose3 + ¥1.8in63 + 12-62 . cos (63-62) . 63
% = L2 - sin (63-62)
%2 = -13-63-sin @3 - 13- €3 . cos 03

and

Y2 = 13-83-cos @3 - 13-83. sin 63

where X1 and Y1 are the acceleration components of node 1,

and 62 and 63 are the angular velocities of the links.



A.2.3 S1iding-End Component Module (Type 3)

FIGURE A.3 Sliding-End Component Module

The parameters are set as follows:

A = L.taneos
= -1
C = (X1 - XX)-tan ©s - (Y1 - YY)
where L = length of the link between nodes 1 and 2,
XX and YY = initial position of the slider,
and s = azimuth angle of the sliding axis.
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Then, the angle of a 1ink can be determined from the follow:

-1
© = 2-.tan (

-B + [a2+ B?- ci)
C - A
The position and angle of node 2 are as follows:

X2 X1 + L.cos®

Y2 Y1 + L.sin$®

The angular velocity of the link is

il-sines - h-cosOs

L . cos (6 - 63)

and the directional velocities of node 2 are as follows:

X2

- L-0-8in @
¥2 L.

+ é-cose

"
i =

where l.ll and Y1 are the velocity components of node 1.

Finally, the accelerations of the link and of node 2 are

*w (1] l2
Kl1-8in©s -~ Yl .cos 03 + L-6-38in (6 - O8)

o
n

L.cos (68 - 03)
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. o0 1) .2

X2 = X1 - L:-©:-8in©® - L-©:-co86 222
and

] (1] 12 .2

YZ = Y1 4+ L:-©.cos® - L.-0.8in#6

where X1 and V1 are the acceleration components of node 1.

A.2.4 Solid Link Component Module (Type 4)

FIGURE A.4 Solid Link Component Module
The angle at node 1 from node 2 to node 3 is defined as follows:

a = tan | ====~=--] - tan [ --=-——--

(o) - =)
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Then, the position of node 3 can be determined from the known

kinematic properties of node 1 as follows:

X3 = X1 + L-cos (@ +a)
and

Y1 + L-3sin (@ +a)

o

The velocities and accelerations in each direction are

De

%3 = §1 - L-6-sin (0 +a)

D

{’3 = Y1 + L-©.-cos (6'+a)

]
X3 = X1 - L-0.-8in(®@+a) -~ L-©-cos (6 +a)
and

o2
Y3 = Y1 + L:-6-cos(@+a) - L.O6.8in (6 +a)

where X1 and Y1 position components of node 1,

ilandh

#

velocity components of node 1,

.1.1 and 'Y'l acceleration components of node 1,

e, é, and ] slope-angle, angular velocity, and acceleration

of the solid component at node 1,

and a angle at node 1 from the line between nodes

1 and 2 to the line between nodes 1 and 3.



A.2.5 Slider-Dyad Component Module (Type 5) 224

FIGURE A.5 Slider-Dyad Component Module

The value of an angle ©2 can be determined from the known 61
and the slider-azimuth angle as follow:

62 = 61l + 7 - «a

The parameters to determined the angle 63 of the dyad are

A = 13 -sin 61
B = -13.cosél
C = (X¥5-X1)-8in6l - (Y5 -Y1).-cos6l - L2 -sina
shere Ll = length of the 1link between nodes 1 and 2,
L2 = length of the 1ink between nodes 3 and 4,
L3 = length of the link betseen nodes 4 and 5,
L = length to the slider from node 1,
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and a = azimuth angle of the slider.

Then, the angle is calculated from the following equation:

-8B ¢+ (a%+ B2- C? )

03 = z.tai'(
c - A

The position of node 4 are

X4 X5 + L3 cos 63

Y4 ¥YS + L3-sin @3
and the positions of the slider are

Xs = X3 X4 + L2 - cos 62

Ya + L2. sin 62

¥s = Y3

where X3 and Y3 are the positions of the node 3,
and Xs and ¥s are the positions of the slider.

From the determined positions, the length to the slider from node 1

can be determined from the coordinate transformation as follow:

L = (X3 -X1)-cos 61 + (Y3 - Y1).sin 61

The angular velocities in the module are
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-Xl1-8in61 + Yl.cos61 + L-01 + L-62-.co8 «

L3 .cos (63 - 61)

and velocities of every node are

¥4 = -13-63.sin 63
¥4 = 13-63-cos 63
¥3 = 1 - L-61.sinel
3 = i+ L-él-cosel
Next, the velocities of the slider are as follows:
Is = X4 - 12-62-sin €2
fs = V4 + 12-62.cose2
and
. -X1.cos 63 - ¥1-sin 03 + L-61-sin (61-63) - 12-62.sin (62-63)
L =
cos (61 - 63)
The angular accelerations have the following relationships:
2 = a
and
8 [ 1) [ ] ® [ 2
- Xl-3in 61 + Yl.cos 61 + 2-L-61 + L-51-+ 13.63.3in (63 - 61)
. o2
. - 12.-62-cos (62 - 61) + L2-62-8in (62 - 61)
63 =

L3-cos (63 - el)
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The directional accelerations of nodes 3 and 4 are

[ 1] of ® 2

¥4 = ~13:03.83in63 - L3-63-cos 63

" c a® .2

Y4 = 13:63 :cos 83 - 13-03:-sin 63

¥3 = §1 - 1L.-81.sin€1 - L-8&I- cos 61

1 + L-81.cos@l - L6 sine6l
and the accelerationa of the slider are

e 3 2
Xs X4 - 12-62-8in 62 - 12-62.cos 62

' ae .2
¥s Y4 + 12:-02-c0862 - 12-02-s3in 62

A.2.6 8Sliding Revolute Component Module (Type 6)

FIGURE A.6 S1liding Revolute Component Module



The parameters to determined the angle 63 of the dyad are

= L2- sin €1
= - L2-.cos 61
C = (X¥4-X1)-8in6l - (Y4 - Y1) cos 6l
where L1 = length of the link between nodes 1 and 2,
L2 = length of the link between nodes 3 and 4,

and L = distance to the slider from node 1.

Then, the angle is calculated from the following equation:

-B + &%+ B?- c’)

02 = 2.-taﬂ(
cC - A

The positions of the slider are

Xs = X3 X4 + L2. cos 62

¥Ys = Y3 . Y4 + L2. sin 62

where X3 and Y3 are the positions of the node 3,
and Xs and Ys are the positions of the slider.

From the determined positions, the length to the slider from node 1

can be determined from the coordinate transformation as follow:

L = (X3 -Xl)-cos 6l + (Y3 - Y1)- sin 61

228
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The angular velocity, 62, of the folloer 1link is

-f(l~s:|.n91 + !h-cosel + L-él
L2 - cos (62 - 61)

and the velocities of node 3 are

¥3 = -1L-6l-sin@l
¥3 = L-61-cos 6l

Next, the velocities of the slider can be determined as follows:

Ks = - L2.62.sin 62
¥s = L2 .62 - cos 62
and
: -X1 .cos62 - Y1-sin62 - L.61 sin (62 - 61)

cos (62 - 61)

Finally,The angular accelerations of the follower link is

[ [ad e @ [ 1] 02
- X1.3in 61 + Yl-cos 61 + 2-L-61 + L-61 + L2-62-sin (62-61)

L2 . cos (62 - Oi)

The acceleration vectors of node 3 and slider are as follows:

. o 2
X3 = ~-L1L:-61:3in61 - L-61 -cos 61
. . o 2
Y3 = L-6l-cos0l - L-61-siné6l

L1 *® 2
Xs - L2:62 - sin 62 L2-82 . cos 62
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o o2
Ys = 12-62 - cos 62 - 12-62 - sin €2

A.2.7 Slider and Follower Component Module (Type 7)

FIGURE A.7 Slider and Follower Component Module

The angles between two solid members are determined from the
known initial positions

1 /Y5 - Y4 4 (Y3 - Y4
a = tan ( ------- ) - tan ( ------- )
X5 - X4 X3 - X4
and
41Y5 - Y2 4 ¥3-Y2
B = tan ( ------- ) - tan (----—-—)
X5 - X2 X3 - X2

where « = w, when the nodes 3 and 4 are coincident.
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The parameters to determine the angle of the follower link are

Yi-1Y3
X3 - X1
C = L3-8in(a-7w) - Ll.sin (pg- 7))

where Ll = length of the 1link between nodes 1 and 2,
L2 = length of the link between nodes 4 and 5,
L3 = length of the 1link between nodes 3 and 4,
1, = distance to the slider from node 4,
a = angle between two solid-links L2 and L3,
and p = azimuth angle of the slider.

The angle can be determined from the following equation.

-B 1JA2+ B2 - c’)

63 = T - a + z-tar}'(
C - A

An angle of the input-link, 61, is represented by the following
equation related with the known geometric relationships:

6l = 63 + a - B

The positions of the slider are

Xs = X2 X1 + Ll.cos 6l

Ys = Y2 Yl + 1.1.8in 61l



where X2 and Y2 are the positions of the node 3,

and Xs and Ys are the positions of the slider.

The positions of nodes 4 and 5 are calculated as follows:

X4 =
Y4 =
X5 =
Y5 =

X3 + L3 -cos 63
Y3 + L3 .sin 63
¥4 + L2.-cos (@3 +a - 7)
¥4 + L2.s8in (63 + @ - ™)

From the determined positions, the length to the slider from node 4

can be determined from the coordinate transformation as follow:

and

L = «

The a

X2 - X4) - cos (83+a-w) + (Y2 - Y4) . sin (B3+a~-T)

ngular velocities, él and 63. of the links are

~-Xl-sin (@3 + @ - w) + Yl-cos (63 + a- w)

L-Ll-cos (B~ ™) + L3-cos (a- 7 )

the velocities of nodes are

S
[ it [ ] it

- 13- 63 - sin 63

13- @3 - cos 63
%4 - L-63-3in (83 +a- m)
¥4 + L-63-cos (63 +a- )

X4 L2-63 - sin (63 +a- 7 )

232



Y5 = ¥4 + 12-63.cos (63 +a- ) 233

Next, the veloclities of the slider can be determined as follows:

fs = ¥1 - 11-61.sinel
is = §1 + Ll'él-cosel
and
%1.0- Ll-cos (83 + @~ B) + L3.cos 63 + L-cos (83 + a@ - T )]
. + V1-0- Ll-8in (@3 + @-p) + 13.8in 63 + L.sin (3 + @ - 7 )]
L=

L~Ll.cos (B~ T) + L3.cos (a~ 7))

Finally, the angular accelerations of the links are

-il'l-sin (93+a-1r)+?1-cos (03 +a- 7))
o 2 ° 2 o »
+ L1-63-sin (B~ w) - L3-63-8in (- w ) - 2:L-63

83=61-=
L ~1Ll-cos (B~ w) + L3-cos (a-m)

The acceleration vectors of nodes and slider are aé follows:

[1] ] .2
¥4 = -13-63:-8in63 - L3-63.cos 63
[ P 02
Y4 = L3-03.-cos 63 - L3.63.sin 63

(] 14 ‘2
2 = ¥4 ~ L-63-sin(@3 +a~- m) - L-63.co8 (63 + a -

=
~

» . Py o 2

Y2 = V4 + L-83-cos(@3+a@-m) - L-03 .8in (83 + @~ m)
. (1] o o2

X5 = X4 - 12.63 sin(é3 +a-1mw) - L2.-63 -cos (63 + a - 1)
PP P o 2

Y5 = Y4 + 12-03-cos (83 +a-mw) - 12-63:3in(63 +a - w)



[ 1) (1] .2
X1 - L1601 .3in €1 -~ L1-61- cos 61 234

b
(")
L]

oe 1] 02
¥s = Y1 + 11:81.cos61 - I11-61 - sin 01

A.2.8 §Sliding Revolute and Follower Component Module (Type 8)

FIGURE A.8 Sliding Revolute and Follower Component Module

The angles between two solid members are determined from the known

initial positions

where a = w, when the nodes 2 and 3 are coincident.



The parameters to determine the angle of the follower link are

= Y¥Y2-Y1
= X1 - X2
C = L2:-s8in (a-m)
where 12 = length of the 1ink between nodes 2 and 3,
L3 = length of the link between nodes 3 and 4,
L = distance to the slider from node 3,
and o = angle at node 3 between two solid members L2 and L3.

The angle can be determined from the following equation.

-B +/2%+ B*- 2 )

cC - A

-1
e = 1r-a+2~tan(

The positions of nodes 3 and 4 are calculated as follows:

X3 X2 + L2 :-cos ©

Y3 Y2 + L2-8in©
X4 = X3 + L3 :cos8 (@ + a-1m)

Y4 = Y3 + 13-.-8in(6+a-~m)

From the determined positions, the length to the slider from node 3

can be determined from the coordinate transformation as follow:

L = (X2-X4)-cos (6+a-mw) + (Y2 - Y4) . 8in (6+a-T)
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The angular velocity of the link is

-il-sin (9+a-1r)+‘h-cos (0 + a~- m)

[>T
1}

L + L2-cos (a- T)

and the velocities of nodes are

X3 -12-8-sin ©

Y3 = 12-6 -cos ©
4 = X3 - 13-0-sin (@ +a- m)
¥4 = ¥3 + 13-0-cos (8 +a- w)
i1l = %3 - L-6.sin (0 +a- 1)
and

Y1 = ¥3 + L.©-cos (@ +a- 1)

Next, the velocity of the slider in the link can be determined as

follows:

f. = -I.z-é-sin(a- n)+i1-sin (6 + a-n)+§1-cos (0+a-1x)

Finally, the angular accelerations of the links are

—ifl-sin O+ a-~-1m) +'Y'1-cos (@ +ta- 7))

o2
- 12-6:8in (a- w) - 2.1-06

L+ L2co8 (a- )
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The acceleration vectors of nodes are as follows:

¥3 = -12-8.sin@ - I.Z-éz-cose

¥3 = 12:8.cos6 - 12.8-sin 0

¥a = %3 - 13-8-stn@+a-1) - I3-8-cos (@+a - T)
¥4 = ¥3 + 13- 8-cos(@+4a-1m) - L3.8-sin (@ 4 a - m)
1l = ¥ - L8.stn@+a-m) - I.-éz-cos (0+a-m)
and

a8 (13

[d .2
L@-cos(@+a-7m) - LB:-8ln (@ + a- 7)

n
+



APPENDIX B

THE SOLUTION DETAILS FOR THE STATIC ANALYSIS OF A MECHANISM
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WELCOME TO CASDAM
KXEXRXXKRRRXKXXKX

CASDAM - COMPUTER AIDED STATIC AND DYNAMIC ANALYSES OF MECHANISMS

THE PROGRAM CASDAM CAN ANALYZE
STATIC/DYNANIC PROBLEMS UNDER
SMALL/LARGE DEFLECTIONS OF PLNAR
FLEXIBLE MECHANISMS/STRUCTURES

THE PROGRAM CASDAM CONSISTS OF

PRE-PROCESS
MESH GENERATION OF A PLANAR MECHANISM
UITH NODES (UP TO 200) AND LOOPS (UP TO 1@)
KINEMATIC POSITION/ACCELERATION ANALYSIS
DATA GENERATION FOR PROCESS

PROCESS
STATIC AND DYNAMIC ANALYSIS FOR THE FLEXIBLE SYSTEM:
DISPLACEMENTS, FORCES, STRESSES, AND SAFETY FACTORS

POST-PROCESS
GEOMETRICAL PLOTS OF DISPLACEMENTS
GRAPHICAL PLOTS OF DISPLACEMENTS AND STRESSES

INPUT PROBLEM TITLE (UP TO 20 CHARACTERS) = EX1

3-MAR-86  5:8315@ AM PG 1
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PRE-PROCESS FOR MECHANISN ANALYSIS
EXXEXXXEXXXRAXXXXRXER XXX XN ELXRA R XX
SEUECT INPUT AETHOD
£ GhelT Rl 1
BATR OK CEYIA) D Y
BIPUT FILE WARE FOR ALL BATA = DU
AL BATA UTLL DE SIVEN IN THE POLLOVING FILES
EI3.007 + SDEMTED DATA FILE FOR MwLysis
g.m . m‘“’ 75 FRon RIMARTIC Awcvols
POt TITE TN FILE WK

mmn

L eer n 16M AT GNE POSITION
'..:Z W umc'gu"mm POSITIONS

BATA OF (RYIAN) ) ¥
ANLVSIS TVPES AT

1 ceree STATIC AMALVSLS

R coese QUASI-STATIC AMALYSLS

2 eves TIME-DORAIH AMALYSTS
SELECT ANALYSIS TYRE » §
BATA OX (RVIM) D ¥
LINK UETGHTS ARE

1 sereo NO CONSIMERED

® ceese OOMSIBERED

domm ey

BATA 0K CLVIAN) P ¥

PG 2

EX1 —_ 3-MAR-86

5t24:24 AN
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i

MESH GENERATION FOR A MECHANISM
EEXXXEXXXAXXARAXARXEXEXKRRXRRLX

MAKE NODES (UP TO 50) FOR A SYSTEM

AT EXTERNAL FORCE POINTS

AT SPRING CONNECTIONS

AT BRANCH POINTS

AT JOINTS (REVOLUTES AND SLIDES)

THEN, NODES ARE GENERATED

UNITS ARE 1 coooen BRITION

SELECT UNIT » 3

SER i

FOR THE INITIAL PLOT

neur IMECTION o 0,
BoUT AIn. 0 v T WBiRecHon = 838

MIT RETURM

EX1 3-MAR-86  5:25:25 AM

PG 3
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YPRTIG ot Cr  ELDRNT 1 19 6T 08 (0,0)

SELECT CLEMENT TVIE » 3

NODE MO AT STARY 1
TOUT LTy A AROLE 7

SELECT ELEMINT TVYPE =
eur START
e hase & IO Vi > ¥
TPUT LINTH AD ANGLE
SELECY CLENENY TV » 4
mx'gum- amuc{munw
IHPUT LENGTH AND ANGLE = 5,30

SELECT ELEMENT TVPE o 4
INPUT HOBE WO AT STARTING
M!’IM- nmokcfmnw

SELECT ELEMENT TYPE o §
mmwmmm
STARTING NODE nmu lﬂ"’)V
LENGTH AND ANGLE * 7,~80
SELECT ELEMENT TVPE = ¢
TNPUT NCOE MO AT STARTING L
STARTING MOBE = § BATA OK (IVIM) P ¥
INPUT LENGTH AND ANGLE » B,10
SELECT CLENENT TVPE = 2
e
ﬂmxa“mu- 1.1" "Mnnw
INPUT LENGTH
mmmu

HIT RETURN

» 1]
sesee 553 NO
4 sevse 355 PAE

»

EX1

PG 4

3-MAR-86

5326328 AM
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SELECT CLOENT TVOE o 8
eyt -
il B AR o Kt X
TROUT LETATY A AoaLE 70 & WOLTEN = Jo78
INPUT THICKMESS OF PLATE « 0.8 g
SELEOT ELORENT YVPE o 8
1 STIRTING PO 'Y
TTARYINE Fok (o oaTh o L' D v
THPUT LEIRTH A9 ANGLE © 5805
SELECT TUONNT TVPL = 8
.. ] WN
o L X

llﬂﬂ‘ mm l-'
SELECT ELEMENT TVPE = 3

NIT AETURN

EX1

3~HﬁR—86

PG 5

PRSI

5831 108 ﬁﬂ

PRIy
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PROCESS FOR GENERATION OF ELEMENTS

TFoh ELET s & IeUT TV Mes - 1.8

TR LT 8 IWUT TV W0ES © 8.3

TR GO« 3 INUT TV WL « 3.4
R TS "4 neur 1w neoes - 48
R LD 8 DRUT TV WoLS « 58

TR GO S ¢ 1RUT 10 Nees < 57

SR Qe 7 DeuT T eses - 18

SELECT COMAND = 4
FOR LODWNT = § DNPUT TUO NODES = 3.9

SELECT QUMW = {
POR ELEMENT = $0 IPUT THO NOIES - 10,18

SELECT DONAID = ¢
FOR SLEMENT o 41 INPUT TWO NOBES » B.1%

HIT RETURM

EX1

3-MAR-86 5:33:04 AM

PG 6
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PROCESS FOR LINK PROPERTIES

USE SARE FATERIAL FOR ALL LINKS (ZYIN) D ¥
MATERINL TVPLS ARS
“ll..m
..l.'l
3 cesoe UNR SPECIFIDD
GELECT MATERIAL © 8
INPUT VIELD STRENETH o 100000

USE SANE OROSO-SECTIONS FOR ALL LIS (SVIA) 9 ¥
THPUT THIOKNESS OF OROSO-GECTION * 0.8
INPUT HETONT OF OROSO-SECTION * 0.8

EX1

3-MAR-86

5134:36 AM

PG 7
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PROCESS FOR END TYPES

FOR NECHANISR,
848000080000

GNLY OMK €MD SUBT IR FIXED FOR BRIVER LINK
INPUT MOBE MO CIF MO MORE DD, NIT @) = 8

e Tvom 'y

DIPUT NORE WO CIF MO MORE DD, HIT @) o B

e @I 'y

INPUT NODE MO ¢IF MO MORE BMD, HIT 0) = 8
SELECY -
i Xeo f8

DPUT WOBE MO CIF WO MORE DD, KIT @) = 18
Ui By A

SELECT DB TVPE = 4
siore . 0.
BT o VA By T et = 0.0

INPUT MOBE MO (IF MO NORE D, HIT B) = @

SEESEESIREEERFRIEEE
SVITEN HA8  § DDG. BATH 0K VI W) ¥

EX1

3-MAR-86 5:35:28 AN

PG 8
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PROCESS FOR EXTERNAL AND SPRING FORCES:

SELECT NODE TVPK o ¢
NPUT HOBE WO « 23
"o - 13 BATA OK C(EVIA) 7 ¥

TMPUT ROMENT L1
SELECT NODE TVPE = 8

INPUT NODE M0 » 4

WODE » 4 DATA 0K (Ll 7 ¥
CONMECT TO GROUND 18 OR UITH NODE 2% o 8

SELECT MOME TVPE - B

IWPUT NOBE W0 © 3

e« 3 DATA OK (LYW P ¥
OOMNECT TO GROUND 218 OR UITH MOBE 388 » £

INPUY STIFFHESS OF GPRING 100

INPUT LENGTH AND AMELE TO SPRING DO » 7.5,~00
SPRING EXD 18 FINED 318 OR LI
mmmwm-lmm“

SELECT MO TVPE ¢ 3

HIT RETURN

| s
4 coeve 358 PARE CHAMIE 33X

EX1

3-MAR-86 5:36:43 AM PG 9
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"ﬂ"ﬁmuuumm

MOBE MO TN FOLLOMER LINK

TOTAL NOBES IN MAIN LOOP g
DNPUT NOBK MO (TOTAL. & NOBES) © 1,8,3,4.8.8

Yl O v
PoR B S0

LOWP » TOTAL _NODES
m [ (Mﬂ. 4 NoES) - '0..!.5“

BATA O XYM B V¥
T ROLE W0 (YA 3 WRES) « Boita13
gy K R N e

BT o

MIT RETURN

THERE ARE 4 LOOPS IN THE SYSTEM.

INPUT NODE NO FROM THE STARTING POINT
TO END POINT IN EACH LOOP

EX1

B-MR-SS 5839!28 An

PG 10

XTSI PN
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PROCESS FOR CONNECTIVITY

POR REVOLUTE JOINT<osee

(LA ]
L L EAL LR

o SRR L LS

TWPUT WIDE M0 CIF MO AORK, WIT 0) = §

MNODE GENERATION

on 100 DETUREN NODES 1 MO
m‘m"mwmmm-: .

POR SECTION DETUREN NODES 3 MD ¢
INPUT WO OF INSIDE MOIKS 3

FOR_SECTL! NODES
ll'lll‘lgl mxum:a‘m'
POR SECTION [ I

MIT RETURN

EX1

3-MAR-86

5:41:05 AN

PG 11
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PROCESS FOR CONNECTIVITY
SIFON Y

%M Hé‘{ll N.Mo HY 0«2
BATA 8K (IVIM) 9 ¥

INPUT NODE WO (IF HO NORE, NIT O) © 3¢
e A

SHPUT NODE NO CIF N0 MORK, HIT @) » 0

NODE GENERATION

HIT RETURN

VITIES MK

R -1

EX1

3-MAR-B6 5t42t16 AM

PG 12
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PROCESS FOR CONNECTIVITY ‘ vITIES Mee

INMUT NODE MO (IF MO MORE. MIT @) = 13
Y
R avm By

IPUT MOAE WO (IF MO RORE, HIT ) <O

NODE GENERATION

LT

RILID MOV BETVIEN MOBES 11 MO

EX1 3-MAR-86 534313 AM PG 13
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PROCESS FOR CONNECTIVITY

o]
NO_CIF N0 MORE, HIT @) o
%l v
mcv ))V..
%qﬂﬂ'ﬁ"olﬂﬁi'
v e
o uvim 0 Y

THPUT NOBE M0 CIF MO MORE, HIT 0) © @

NODE GENERATION

POR SECTION nosgs_ § A
TUT 10 Es = 3 '

PI o oF I mees 4

g
R -

EX1

3-MAR-86

5144210 AN

PG 14
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PROCESS FOR SYSTEM LOOPING

ARY ABDITIONAL MEIGHT OF GACH DEAN (YAN3) 72 N

EX1

3-MAR-BE  5:44:55 AM

PG 15
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POST-PROCESS OF ANALYSES
EXXEXTEXXIXRSXRRLILRTALRX  INITIAL POSITION OF MECHANISM

GANT QUTPUT FILE (SS2.FLX) (LYW #5 ¥

o ERE-yErragT——rwry

EX1 3-MAR-86 10319108 PM__PG 3
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REACTION FORCES AT SUPPORTS
GEOMETRICAL PLOT
. b3 Torux SCALE = 10.0 ¢ 1,

L

SMALL DEFLECTION ASSUMPTION USED

HIT RETURN

EX1 3-MAR-86 10320259 PM PG 4
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RESULTS OF STRESS ANALYSES

o e ™ o e W e LOCATIONS OF CRITICAL POINT(S)
'y N 00 1§ AR08 33 5.0000:0

{ [ 1 fEs =

4 1« L TOE 404 4 1 481 -nm

; R H X h =

; g f‘l‘% ;‘“

10 saimue B S aNeee - i&'ﬁ

.==
XL
88
TR

EXXXXXRXXXXXTXXEAXRERRTEREXLR
NIN SAFETY FACTOR FOR SYSTER

0000060080 000060006000800000000

1.866E+00 AT NODE 3
EXXRXXXRXXXXRIXXRIXXARIXRAXR

EX1 3-MAR-86 10:21t48 PN PG 5
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HIT RETURN

END OF PROGRAM

3-MAR-86 10322:40 PN

PG 6




APPENDIX C

THE SOLUTION DETAILS FOR THE DYNAMIC ANALYSIS OF A MECHANISM

259



260

WELCOME TO CASDAM
XXXXXXRRXRRAKREKX K

CASDAM - COMPUTER AIDED STATIC AND DYNAMIC ANALYSES OF MECHANISMS

THE PROGRAM CASDAM CAN ANALYZE
STATIC/DYNANIC PROBLEMS UNDER
SMALL/LARGE DEFLECTIONS OF PLNAR
FLEXIBLE MECHANISMS/STRUCTURES

THE PROGRAM CASDAM CONSISTS OF

PRE-PROCESS
MESH GENERATION OF A PLANAR MECHANISM
WITH NODES (UP TO 200) AND LOOPS (UP TO 10)
KINEMATIC POSITION/ACCELERATION ANALYSIS
DATA GENERATION FOR PROCESS

PROCESS
STATIC AND DYNAMIC ANALYSIS FOR THE FLEXIBLE SYSTEM:
DISPLACEMENTS, FORCES, STRESSES, AND SAFETY FACTORS
POST-PROCESS

GEOMETRICAL PLOTS OF DISPLACEMENTS
GRAPHICAL PLOTS OF DISPLACEMENTS AND STRESSES

INPUT PROBLEM TITLE (UP TO 2@ CHARACTERS) = EX2

2-MAR-86 6106314 AM PG 1




261

PRE-PROCESS FOR MECHANISM ANALYSIS
P P48 003333 983334333333 33¢433384%3
SELECT INPUT METHOD
g T
SELECT INPUT NETHOD « 3
BATA OK (kY2 M) P2 ¥
THPUT FILE NGAE FOR ALL DATA » QUAST

ALL DATW UILL BE QIVEN IN THME POLLOVING FILES

SERDAT o m 'll.l 'ﬂ AALYVSIS
SEE.MNL »
I!l.lvl . l° ANALYSLS

PROSLER TVPES ARE
L ceeeo STRUCTURE OR MECHANION AY ONE POSITION
8 iooc. MECHANISN UITH CONTINUCUS POSITIONS
PROSLEN TVPE - 8
BATA 0K (LYLN) P ¥
MALYSIS TVIES MK

1 seoes STATIC AMALYSLS
B coree GUABI-STATIC MALYVSLS
N ANALYSIS

=DOMA
I8 VL « 8
muavmn nyY

NIT RETURN

EX2 2-MAR-86

6207231 AM

PG 2




262

8 cevens

desedscens

NESH GENERATION FOR A MECHANISH
SXREXERREXXXAXRLRXRAXRXXXREREXL

MAKE NODES (UP TO 5¢) FOR A SYSTEM
AT EXTERNAL FORCE POINTS
AT SPRING CONNECTIONS
AT BRANCH POINTS
AT JOINTS (REVOLUTES AND SLIDES)

THEN, NODES ARE GENERATED

wmu

EX2 2-MAR-86

6:08:38 AM

PG 3




263

PRt M o GET L 18 02T 08 ()

SELECT CLENENT TYOE o o

MODE MO AT STARTING POINT o
mmnm-m

SELECT ELENENT TVOE o 3
mxﬁ'm'n't? lmu" ).')V
INPUT LENOTH MDD ANGLE » 3...!
STLECT KLEWENT TVOL o 4
PUT NOBE N0 AT STARTING .3
mmnm- 3 IATA OX 1Ny
IPUT LDNTH AN m-n.s.-u.«
SELECT KLENENT TVPE « 3

HIT RETURN

EX2

2-MAR-86

6110239 aAM

PG 4




264

PROCESS FOR GENERATION OF ELEMENTS

TR nDOT: "¢ peur o mees + 1.2
Lo ¢ Deur T noes - 0.9

ttttt

R ROOT. '3 neur Two wees « 3.4
SELECT CONWD « 3

EX2

2-MAR-86 6:12:16 AM

PG S




265

PROCESS FOR LINK PROPERTIES

WL GARE MATERIAL POR ALL LIWKS CYIM) 7 ¢
MATERIAL TYPES ARE
sesee STREL
i:::::w'ﬂmn
SELECT MATERZIAL » 8
INPUT VIELD STREMNETH » S0000
INPUT DUAANCE LINLT » 40008

USE SARE OROSO-SRCTIONS FOR ALL LINKS (XVIA) 3 N

HIT RETUR

EX2

2-MAR-86

6:13:18 AM

PG 6




266

PROCESS FOR LINK PROPERTIES

TP WO O eese-gEoTIoN T Si1er

TR TN O chosesiETIe T« .03

INPUT THIOKNESS OF OROSS-SECTION » 1.
INPUT NETGHT OF OROOS-SECTION :gaﬂi

HIT RETURN

EX2

2-MAR-86 631714 AM PG 7




267

PROCESS FOR END TYPES o g TS S
POR NECHANTON, i )
v GRE D8 et 28 F1ED POR BATVER LI §oeee e
PPUT 108 N0 CIF NO MOAE WD, KIT @) o 1
i Rya AN

DPUT NOBE #0 (IF N0 MORE 8D, MIT O) = 4
m? (X}
BATA OK AV P ¥

INPUT HOBK MO (IF MO RORE KN, HIT 8) * 0

HAS 8 DS, DATA X VI P ¥

EX2 2-MAR-86 6:18:13 AN PG 8




268

PROCESS FOR EXTERNAL AND SPRING FOROESi

moE TVWES ANE
TEEEsTARETITY
eoees NOGE POR ronces
SRLECT NORK TVPE = 3 i..... W0 MORE_ WOBE T

EX2 2-MAR-86  6:19312 AN PG 9




269

" e et L
g ST

MR X AYIN) VO ¥

THERE ARE 1 LOOPS IN THE SYSTENM.,

INPUT NODE NO FROM THE STARTING POINT
TO END POINT IN EACH LOOP

EX2

2-MAR-86 6120307 AM PG 10




270

PROCESS FOR CONNECTIVITY

B En w6 0
TPUT VEINY oF ITELF = 0

L et

TNPUT N0OE 90 CIF MO NORE, HIT 03 = 0

NODE GENERATION

LT, 10 ¢

MIT RETURN

EXe

2-MAR-86

6321:48 AN

PG 11




271

KINENATIC ANALYSIS ’
ZXXXXEXXXXRTRELXXXX MENU
COMNNS AN
i s T oo
e ‘ "

]
A
.
Z

/>
.
"L

g
. ig
; Es

EXe

>-MAR-86 6123106 AN PG 12




272

KINEMATIC ANALVSIS

| B e o

Mue § WMAKULIVIM DY

EK:Gﬁ&ﬂﬁguﬁjiﬁhamn

v Row & B e o

Rt e Rt

PATA 0K (LYIM) D ¥
NIY RETURN

EXe

2-MAR-86

6124109 AN

PG 13




273

KINENATIC ANALYSIS
EXXEEXXRRXXXATRRALLE

§ i R e e

AN e B AT XUV VO VY 3

EX2 2-MAR-86 6:26316 AM PG 14
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KINEWATIC ANALYSIS
SXXXXXRXXXRXXRAXRX

CONWDS AR
‘ LIl1 1]

| e m:"..%'“ il

KINEMATIC ANALYSIS HAS BEGUN
BELL SIGNALS ANALYSIS COMPLETE

W17 RETURN

EX2 2-MAR-86 6327107 AM PG 15
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MR XY

PG 16

6241220 AN

2-MAR-86

GEOMETRICAL PLOT OF POSITION ANALYSIS

N~ —
R ﬂl//l//’”ﬂuﬂ_. 27
; s
ey

EX2




e ap———

276

PROCESS FOR SYSTEM LOOPING

AV ABDITIONAL UCTENT OF BAOH SEAN (YA ND) LV
TUO MODE MO FOR

LINK © 3

ERFRFOT

ANV ABDITIONAL UCIGNT OF EAOH BEAR (VAND)
BELL SI0NALS PROCESS OONPLETE

MIT RETURN

EXe

2-MAR-86 6342322 AM PG 17




277

PROCESS FOR NECHANISN ANALYSIS

POSITION OF MECHANISM

POSITIONNO = |
TNPUT-LINK = §.000E+00 DEG

ANALYSIS HAS BEGUN
BELL SIGNALS ANALYSIS COMPLETED

EX2

2-MAR-86 6345:01 AM PG 18




278

PROCESS FOR MECHANISM ANALYSIS

POSITION OF MECHANISM

POSITIONNO = 2
INPUT-LINK = ~9.000E+00 OEC

ANALYSIS HAS BEGUN
BELL SIONALS ANALYSIS COMPLETED

EX2

2-MAR-86

6345:38 AM PG 19




279

' .
PROCESS FOR MECHANISM ANALYSIS

POSITION NO = 48

INPUT-LINK = =3.510C¢02 DEC

ANALYSIS HAS BEGUN
GELL SIGNALS ANALYSLS COMPLETED

HIT RETUM Y

POSITION OF MECHANISM

b

Exe

2-MAR-86  6355:06 AN PG 57




280

POST-PROCESS OF ANALYSES ., ..
SXXREXXXXXEXRRIXXARRILRE  INITIAL POSITION OF MECHANISM

GANT QUTRUT FILE (S53.FLX) (RYIAD P N

WIT BETURN .

EX2 : 2-MAR-86  6:55:49 AM PG 58




281

GELECT (1, 8 3 4 OR §) ¢ )

W7 RETURN

EXe

2-MAR-86

6:57:13 AM

PG 59




282

RESULTS OF STRESS ANALYSES :
b~ A AU - A WL A0 LOCATIONS OF CRITICAL POINT(S)
o o 81 13 .67«
i EES S
X o 99
= FOR SN0 STRLOOES
TEEETLRLEXXRRRTLTELRATRL RS
MIN SAFETY FACTOR FOR SYSTEN
5.440E+00 AT NODE 12
SLXEXLTLLRLELLLLLLLLLRLLL XL
NIT AETURN
EXe 2-MAR-86 6357355 AM PG 66




283

POST-PROCENS FOR ADRATS
LITTTY o & SVSTEN
ooe AT & 08T
sovee
oen DISTORTIONS
' (1111

SERECT (1, 8 3 4. R W) » 4

EX2

2~MAR-86

6:58:30 AM

PG 61




284

"=

w

IESULTS OF nax. DISTORTIONS .

ey

L

INITIAL POSITION OF SYSTEM

SXXXEATARARAXXXRARLRLEIRELL
MAX. DISTORTION FOR SYSTEM

0000000000000 000000000000

3.4436E-61 AT NODE 12
EXRXXXXBEXRXRRXRTRXEXRRRRE

EXe

2-MAR-86  6359:37 AN PG 62
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.olo. oF A SVOTEN
PEYeYs AT & W0
LYYYYY

LYTYY)

LITYTY

mu...s.c.au-n

" INITIAL POSITION OF WECHANISM

EX2

2-~MAR-86  7t00:12 AM PG €3
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DATA AT NODE 12

ssssisesnesecsesesnecete

i

4.0 3.0

STRESSES VUS. INPUT-LINK ANGLES

2.0 1.0 o.ae®

t0.omte?
«0-0-0~ FOR UPPER SBWACE
~8-3-3~ FOR LOVER SUNFACE -
V00 IC02000000000800000000
>
ol TR
eee0g,,
-4,
- R . . j
4.0 -2.0 -2.0 -1.0 oot
INPUT-LINK ANSLES (DES.)
HIT AEYURN

EX2

2-MAR-86 7300355 AM PG 64
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DATA AT NODE 12

= oo - 0
- X —y X
INPUT=LINK ANOLES (DE6.)
NI AETURN .
Exe 2-MAR-86 7301344 AM PG 65




SELECT (22 8. 30 40 R G) v }

1n

id

A

sididathoiatiiitisesiniin

g UM RN IR RS SRR S S e snma

-
3

-1
-

_EXe _2-MAR-86 7102130 AM PG 66
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REACTION FORCES AT SUPPORTS

W e,
oI/ IR A8

GEOMETRICAL PLOT
SCALE « 1.0 ¢

SMALL DEFLECTION ASSUNPTION USED

Ex2

2-MAR-B6  7103:48 AM PG 67




290

e mas

evens

GEUACT (1. 8, 3, 4 R S) = R

‘ INITIAL POSITION OF MECHANISM

e vt ey o
% e %ﬂm

EXe

2-MAR-86 7104324 AM PG 68
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DATA AT NODE 9

SIITOIISILLININIEIRRINSG

e e 1

aseeIITITANISIBLRINISS

-0 9.0 -2.0 =140 s.oue®

9800000000 0030000000000000

Reed g g

9900030000000 2833000000000

e 2.0 .0 1) st

INPUT-LINK ANOLES (DES.)

Ex2 2-MAR-86 7105312 AM PG 69
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DATA AT NODE

®8080000080000 0000 0R0RS

“0=0-0= FOR _ ANIAL
=5=3-0~ FOR TRANIRERIL

LY T LYY I XY I YR Y Y

-9 3.0 -2 e X

it STRAINS US. INPUT-LINK ANGLES
%
2

R

i.
-y, o
-8, -
40 a0 - e .ot

INPUT-LINK ANOLES (DES.)
HIT AETURN .
EXe 2-MAR-B6 7:06:02 AN PG 70
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GELECY (10 80 S0 6. OR B} o 8

EX2

2-MAR-86

7206145 AN

PG 71
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HIT RETURN

END OF PROGRAM

2-MAR-86

7107221 AN

PG 72




APPENDIX D

THE SOLUTION DETAILS FOR A STEPPED BEAM ON ELASTIC SUPPORTS
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s COMPUTER-AIDED STATIC AMD DYMANIC ANALYSES OF RECHANISHS
M”I CONPUTER-AIDED STATIC AMD DVINARIC ANALYSES OF MECHANISHS
cceee [ 38888 [ A n ]
ct c AR ] s 2 » AR m n
E ° o e B3 L% EE
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[543 c M [ ) 8% D » M [ 1]
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CASDAN: CONPUTER-ALIDED STATIC AND DVIMANIC ANALYSES OF MECHANISHS
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QOCAD = SRAPHICS ORIENTED COMPUTER AIDED BESICH l CASDAN ~ STATIC AND DYNARIC AMALYSES OF FLEXIBLE MECHANISA

UELCOME TO CASDAM
EXXXEXRXXXXRXRXXK

CASDAM - COMPUTER AIDED STATIC AND DYNAMIC ANALYSES OF MECHANISNS

THE PROGRAM CASDAM CAN ANALYZE
STATIC/DYNAMIC PROBLEMS UNDER
SMALL/LARGE DEFLECTIONS OF PLNAR
FLEXIBLE MECHANISNS/STRUCTURES

THE PROGRAM CASDAM CONSISTS OF

PRE-PROCESS
MESH GENERATION OF A PLANAR MECHANISH
UITH NODES (UP TO 200) AND LOOPS (UP TO 1)
KINEMATIC POSITION/ACCELERATION ANALYSIS
DATA GENERATION FOR PROCESS

PROCESS

STATIC AND DYNAMIC ANALYSIS FOR THE FLEXIBLE SYSTEM:
DISPLACEMENTS, FORCES, STRESSES, AND SAFETY FACTORS

POST-PROCESS
GEOMETRICAL PLOTS OF DISPLACEMENTS
GRAPHICAL PLOTS OF DISPLACEMENTS AND STRESSES

INPUT PROBLEN TITLE (UP TO 20 CHARACTERS) = EXAMPLE 4

HIT RETURN

DATE- »-Dr--86 1A 4R €5 on raGE |

L62



G0CAD = GRAPHICS ORTENTED COMPUTER AIDED DESION I CASDAN - STATIC AND DYNANIC ANAL/SES OF FLEXIDLE MECHANISA

PRE-PROCESS FOR MECHANISM ANALYSIS

SELECTY INPUT METHOD o 8
IHPUT METHOD « 1 DATA OX, CV/NI? ¥
INPUT FILE NARE FOR ALL DATA o Exé
ALL DATA VILL BK GIVEN TN THE FOLLOUING FILES
S83.DAT o GENERATED BATA FILE FOR Mﬂ!‘
GENERATED DATA

32 1§ THE QIUVEN ﬂl.! M

mmm“

CiJscoc. NECHANISR AT OME POSITION
reees MECHANISA UITH CONTINUOUS POSITIONS

SELECT PROBLER TVPE » 1

PROSLEN TYPE = 1 DATA OK, Lv/M? ¥
AMALYSIS TVPES AREC

€1.0000 STATIC ANALVSLS

C83e0.00 DYMARIC ANALYSIS

SELECT AMALYSIS TVPE = 1

ANALYSIS TVPE » 1 BATA OK, CY/ND? ¥

LINK VEIOHTS ARE

E43..v.. NO CONBIDERED
C83. .00 CONSIDERED

SELECT (S OR R) = 2
SELECT TYPE « B DATA OK, CLYy/MI? ¥

HIT RETURN

CASE TITLE- EXANPLE 4 DATF- B-DEC-8S 10.49.38 a0 Pagr 2

862



QOCAD ~ ORAPHICS ORIENTED COMPUTER AIDED DESIGN l CASDAN -~ STATIC AND DVMANIC ANALVSTS OF FLEZISLE MECH/ANISA

MESH GENERATION FOR A MECHANISH

MAKE NODES (UP TO 50) FOR A SYSTENM

AT EXTERNAL FORCE POINTS
AT SPRING CONNECTIONS
AT BRANCH POINTS

AT JOINTS (REVOLUTES AND SLIDES)

THEN, NODES ARE GENERATED

UNITS aRE €13 ..... DRITISH
€23 o000 81
SELECT UNIT » 2

3

i

LENCTH vocvcveces MW

FORCE cvescassoce M (NEUTON)

TOROUE (MORENT).. N-MR

STRESS .ccesvesee MPA
ILLTELSFTILLTTACELALALERSLALS
FOR THE INITIAL PLO?

INPUT NIN. AND AAX. 1M X-DIRECTION » 0,500

INPUT NIN. AND BAX. IN Y-DIRECTION « 0,400

HIT RETURN

CASE TITLE- EXANPLE 4 DATE- P-DEC-BS

10.50.31 AN PAGE 3

662



1

CASSAR ~ STATIC MDD SYNANIC AWALYSES OF FLEXIDLE MECHANISA

CLEMENTS MUST INPUT IN
STARTING ”IMIW EMN.I'.I 18 627 08 (0,0)
SELECT ELENENT YVPE » 3

NODE _NO_AT STARTII INT o 3
INPUT LENGTH aND w-lﬂ.

cT

ELEMENT TYPE ARE

« BEAN (LINE) ELERENT
- TRIMGULAR PLATE ELERENT

ELERENT TVPE o
MRWNQTMINHM'ﬂ
STARTING NOBE = B DATA CY7n3e v
tml.mmm-:ho

saLEct Lot vvee o
LNRT HODE N0 AT STARTING POINT = 3
STARTING HODE o 2 DAYA OK, CV/HIY V
TIPUT LENGTH D ANGLE = 60,6

SELECT ELEMNENT TYPE »
AAPUT HODE HO AT mnm POINT = 4
STARTING NODE o 4 DATA OK, CV/NI? ¥
TNPUT LENGTH AND AMGLE = 169,0

SELECT ELEPENT YVPE » 3

-»

HIT RETURN

Carr <711 €~ ExomplLE 4

NASC.. 2 REAAE (A8 1° A= oart o

00t



§0CAD - GAAPHICS ORIENTED COMPUTER ATDED MStoN |

CASDAN - STATIC AND DVMANIC ANALYSES OF FLEXIBLE MECHANISH

PROCESS FOR GENERATION OF ELEMENTS

SELECT COMMNG « 1
FOR ELERENT » 1 IWPUT TUO NOBES = 1,2
sgLEcT comwd « 1

€13 vooo. GENERATE ELEMENY

€23 ..... 858 GENERATE AGAIN FRON ERROR
£33 cooes 388 NO MORE ELEMENT

€43 oooor SRR CHANGE PAGE

L]
OR ELERENT = 8 INPUT TUO NODES = 3,3

SELECT COMPMAND o 4
FOR ELEMENT = 3 INPUT TUO MOBES = 3,4

SELECT COMMAND o 4
FOR ELENENT o 4 INPUT TUO NODES = 4.8

SELECT COMMAND » 3

HIT RETURN

"AcE TITLE- EXAWPLE 4

PatE~ 3-0FC-RS h 5P 49 £~ pary ¢

T0€E



QOCAD -~ QRAPUICS ORIENTED COMPUTER AIDED DESIEN

CASDAR = STATIC AND DVNANIC ANAL/SES OF FLEXIDLE MECHANISA

PROCESS FOR LINK PROPERTIES

USE SANE MATERIAL FOR ALL LIMKS, Cv/N3? v
NATERIAL TVPES ARE

STEEL

ALURTNUN

USER SPECIFIED
SELECT MATERIAL o §

INPUT VIELD STRENGTH « €89

USE SARE CROSS~-SECTIONS FOR ALL LINKS, EV/NI? N

HET RETURN

CASF TITLE- EXAMPLE 4

——
DRTE- 3-DEC-8S

16.53.40 AN

PAGE

20



QOCAD - GRAPHICS ORIENTED CONPUTER AIBED DESION _I CABDAN - STATIC ArD DYNANIC AMALYSES OF FLEVIBLE MECHANISH

PROCESS FOR LINK PROPERTIES

?’U‘T ON »
mnmmwm -l
FOR A ELEMENT DETUEEN WOMES 2 AMD 0

INPUT THICKNESS OF SECTION = §
INPUT HEIGNT OF eaou-umon LR

FOR A CLENENT DETUEEN NORES 3 AND 4t

DPUT THICKMESS OF CROSS-BECTION - 3.8
INPUT MEIGHT OF CROSS-SECTION « 8.8

FOR A CLEMENT DETUCEN HODES 4 aMD 8t

INPUT THICKMESS OF CROSS-SECTION »
INPUT HEIONT OF CROSS-SECTION

HIT RETURN

CASE TITLE- EXAMPLE 4 DATE~- E-DEC-S5  10.84.34 MM PAGE 7

£0E



GOCAD ~ GRAPHICS QRIENTED CONPUTER AIDED BESIOMN

CASIAR = STATIC AD DVMANIC AMALYSES OF PLEAIBLE NECIHANISA

PROCESS FOR END TYPES

FOR MECHANISN,
covovecsnnmns
ONLY OME €ND MUST DE FIXED FOR DRIVER LINK
INPUT MOBE MO CIF NO MORE END, HIT 6) = &

N VLS ARt

a;..-.. PIN END (DUSHING )
» PINED €XD

[+ ] « PREE DNO

€43....0 sLIDE OO
£53..... SIPLE SUPPORT

mﬂmm;z

IMPUT HODE HO (IF NO RORE END, HIT @) ¢ §
sELEcT TYPE = )
DATA 0K, EY/HD? ¢

INPUT NODE MO CIF NO RORE END, HIT @) = &

SERTLLLLTISTIZALLNR
SYSTEN HAS 2 ENDS. DATA 0K, Cy/NI? ¥

HIT RETURN

rACC PIVIE~ FXANRIE 4

FAYF. D-nEARE 1@ G850 am

Ract g

roe



GUCRT - GRAPHICS ORIENTED COMPUTER AIDED DESION

CASDAN = STATIC AND DVIANIC AALYSRS OF FLEXIBLE MECHANISR

PROCESS FOR EXTERNAL AND SPRING FORCES

SELECTY NODE TVPE = 1§
INPUT NCDE N0 = §
NODE » S5 DATA 0K, Cv/n2? ¥

FORCES GIVEN BY
l 1 « DIRECTIONAL FORCES
1 L FORCES

. VECTOR
St iTon g .
IHPUT FGPCE IN HORIZONTAL DIRECTION = @
IheuT FOPCE TN UERTICAL BIRCCTION = ~18
INPUT MORENT i

SRLECT NODE TVYPE « 2

INPUT HODE 10 » 8

NODE « 2 DATA OK, EV/NI® ¥
m«sutom:uﬂu:‘mmm-x

Imu" STIFFHESS OF SPRING »
MPUT LENGTH AMD AMGLE TO ’Rlﬂ END = 200,90

SPAIIKG EUD IS FIXED C13 OR SLIDING C23 » 3
T0PUT oD 0 GIVER AKLS,’ NODE MO = 1
INPUT FREE LENGTH OF 9PRING « 300

SELECT HODE TVPE « 2

INPUT HOE M0 » 4
NODE « 4 DATA OK, CV/MI? ¥

CONNECT TO GROUMD C13 OR UITH NODE C22 = 3

1MUY smmu OF SPRING » B

INPUT LENGTH AND ANGLE TO SPRING END = 409,00
SPRING Enp 18 FIXED £13 OR SLIBING €23 - 2
TO DETERNINE SLIDING AKIS,

INPUT hDE 10 GIVEN AXIS.  WODE N0 « 3
IHFUT FREE LENGTH OF SPRING

SELECT KIOE TVPE = 23

HIT i ORN

NODE TYPES ARE

€12..... NODE FOR EXTERMAL FORCES
C21..... NODE POR SPRING COMMECTION
£33..... 338 N0 NORE NODE

€42..... S3% PAGE CHAMOE 832

b

4

T T T ExaneLE 4

DATE- 2-DEC-85  11.10.24 o0 PAGE 9

SOE



FOR MAIN LOOP
INPUT STARTING MODE NO 1IN DRIVER LINK
FOLLOWER LINK

1 4
1.8,3,4.%

| CASDAN - STATIC AND DYMARIC ANALYSES OF FLEXIBLE MECHANISH
THERE ARE 1 LOOPS IN THE SYSTEM.

INPUT NODE NO FROM THE STARTING POINT
TO END POINT IN EACH LOOP

HIT RETURN

CASE TITLE- EXMPLE 4

DATE- 2-DEC-8S 10.58.55 an PAGE 10

90t



QOCAD ~ GRAPHICS ORTENTED OONPUTIR AIBED DEGION l | CASBAR ~ STATIC AND DYNAMMIC AHALVELS OF FLEXIBLE NECWAMISR

PROCESS FOR CONNECTIVITY

PAIN LOOP
avcvorccsvens

" FOR REVOLUTE JOINT
INPUT NOBE NO (1F NO MORE, HIT §) = @

NODE GENERATION

FOR SECTION SETUETH WODRS 3 MND
INPUT MO OF INSIDE WODES » 6 '

FOR SECTION BETUETH MODES B AND 3
INPUT MO OF INSIDE NODES = 3

FOR SECTION BETUEEN NODES 3 L}
INPUT HO OF INSIDE MODES » ’W

FOR SECTION BETUEEN NODES 4 AND €
INPUT NO OF INSIDE NODES = 3

HIT RETURN

CASE TITLE- EXMWLE 4 DATE- 2-DFC-8S 10.59.48 AN PAGE  t1

LOE



GO0CAD - GRAPHICS ORIENTED COMPUTER AIDED DESION

1

CABDAR -~ STATIC AND BYMANIC AMALYSES OF FLEXIBLE MECIHANIIN

PROCESS FOR SYSTEM LOOPING

SELL SICNALS PROCESS CONPLETE

HIT RETURN

CaSF TITLE- EvanPLE 4

rATE-  PDEA-RG

1t .04 .38 W

PAnE

3

80E



GOCAD - GRAPHICS ORIENTED CONPUTER AIDED IESIOM

CASDAR = STATIC AND DYNARIC AMAL/SES OF FLEXINLE MECHANISH

PROCESS FOR MECHANISM ANALYSIS

RRALYSIS HAS BEGUN
BELL SIGNALS ANALYSIS COMPLETED

INITIAL POSITION OF MECHANISM

HIT RETURN

Casy TITLE- EXAMPLE 4

navE- 2-DEC-SE 14 01.45 0% ®ACE 13

60t



QOCAD - GRAPHMICS ORIENTED COMPUTER AIDED DESICH ] CASPAR - STATIC AMD DYNAMIC ANALYSES OF FLEXIBLE MECHANISA

POST-PROCESS OF ANALYSES
UANT OUTPUT FILE (338.FLX), Cv/NTP ¥ INITIAL POSITION OF MECHANISH

DATA PROCESHING
SELLS S1GNALS PROCESS CONPLETED

HIT RETURN

CASE TI*LE- EXAWPLE 4 DATE- 2-NEC-95 11.02.12 An PAGE 34

ote



REACTION FORCES AT SUPPORTS
e PR, T

ienpn-awncno-nuunu-uuue'nunnxnnumnn

GEONETRICAL PLOT

O Y T S SCALE » 1.0 1,
]
\ .
LARGE DEFLECTION ASSUMPTION USED
HIT RETURN
" e & PR, B toN.PR DICIRIN ) [T

1te



QO0AD ~ GRAPNICS ORTENTED CONPUTER AINED BUSION J llaﬁm-mxemmemmvmm

RESULTS OF STRESS ANALVSES
L3 e
Ao W Mo W MR pocatrons oF cRITICAL POINT(S)

ZXXXXXXXXRIARAXERXXRRER
SAFETY FACTOR OF SVSTEN

0000380000000 000000000200

0.125E+01 AT NODE 4
EXXXXXEXLEXRARRLRTRARIR

v -=- FOR ZERO STRESSES OR RIGID LINK

rAR



G0CAD -~ GRAPNICS ORIEMTED CONPUTER AIDED BESION T CASDAN = STATIC AND DVANIC ANALYSES OF FLEXISLE MECHANISH

END OF PROGRAM

HIT RETURN

PATE- 2-DEC-8S 11.06.3€ a0 #acr 17

E1E



APPENDIX E

OVERVIEW OF THE COMPUTER PROGRAM CASDAM

E.1 General Description

The program CASDAM 1s a graphics-oriented, interactive,
computer-aided, static and dynamic analyses of flexible mechanisms and
structures incorporated with the proposed iterative transfer-matrix
method, and intended for use with a graphics terminal such as the
Tektronix 4014. The program 1is developed on 8 Digital Equipment
Corporation VAX 11/750 minicomputer installed in Advance Design Method
Laboratory, Dept. of Mechanical Engineering, The Ohio State University.
There has been considerable effort made in trying to develop the
program so that the program has minimal amounts of machine dependency.
The program language used is 1977 ANSI FORTRAN IV.

Section E.2 gives the subroutine descriptions briefly.
Section E.3 presents the {ree structure for the program, the storage
requirenments for the routines, and the the image synopsis of the
program CASDAM on a VAX 11/750 system.
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E.2 Description of Routines 315

This section contains the subroutine descriptions.

1. MAIN PROGRAM CASDAM - initiates and prompts the user for the
:l.:fomt:lon needed to analyze the flexible mechanisms and
structures.

2. SUBROUTINE AFLEX - controls the analysis process and solution
convergence.

3. SUBROUTINE AGAIN - solves the state vector for flexible system.

4. SUBROUTINE ANALYS - calculates the unknown variables from the
system matrix equation.

S. SUBROUTINE ARIGID - solves the state vector for rigid system.

6. SUBROUTINE CALSF1 - calculates stresses and safety factors at
nodes for a system at one position.

7. SUBROUTINE CALSF2 - calculates stresses and safety factors at
nodes for a system in continuous motions.

8. SUBROUTINE CALSLD - calculates the state vector when a starting
point in a subloop is slider.

9. SUBROUTINE CALSVE - calculates the state vector at a branch point.

10. SUBROUTINE CALSVS - calculates the state vector at supports.

11. SUBROUTINE COMPRS - determines the field matrix when compressive
axial force is loaded in a element.

12. SUBROUTINE CONNEC - checks the connectivity at joints.

13. SUBROUTINE DATINT - prompts for preprocessing the program.
14. SUBROUTINE DATGEN - generates data for processing.

15. SUBROUTINE DFLEX - draws a deflected systen.

16. SUBROUTINE DISPL1 - calculates distortions at nodes for a system
at one position.

17. SUBROUTINE DISPLZ - calculates distortions at nodes for a system
in continuous motions.
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18. SUBROUTINE DOTTED - draws a dotted line.

19. SUBROUTINE DRANGE - determines range of screen window for drawing
a deflected system.

20. SUBROUTINE DRAWLP - draws each loop of a system.
21. SUBROUTINE DRWALL - draws an original structure.
22. SUBROUTINE DRWBOX - drans a square for a screen window.

23. S:IB!;&ITINE DRHDIS - draws a system and writes maximum distortions
a es.

24. SUBROUTINE DRWDOT - draws an original system with dotted lines.
25. SUBROUTINE - draws a support.

26. SUBROUTINE DRWINP - draws a generated systen.

27. SUBROUTINE DRWORI - draws a undeflected systenm.

28. SUBROUTINE DRWREV - draws a revolute joint.

29. SUBROUTINE DRWSLD - draws a sliding joint.

30. ;sggawrm DRHSF - draws a system and writes safety factors at
es.

31. SUBROUTINE DRWSPR - draws a spring.
32. SUBROUTINE DRHSYS - draws a generated systea.

33. SUBROUTINE DZERO - sets the initial values be =zero for a
generated system.

34. SUBROUTINE FINDPT - finds mass center and calculates total volume
of a plate.

35. SUBROUTINE FLXSIS - prompts for analysis of a flexible systenm.

36. SUBROUTINE FORSPR - prompts for external forces and conditions of
springs.

37. SUBROUTINE GENALL - sorts input data and generates data.
38. SUBROUTINE GENSEC - generates elements of an original systen.

39. SUBROUTINE GETFIX - determines the three simultaneous equations
for a system with a fixed end.



- 40.

4.
42
43.
44.

45.
46.

47.
48.
99.
50.
s1.
52.
83.
54.
55.
56.
57.

’ 59.
60.
6l1.

SUBROUTINE GETFRE

SUBROUTINE GETPIN

317

-.determines the three simultaneous equations
for a system with a free end.

- determines the three simultaneous

for a system with a pinned end.

SUBROUTINE GETSIM

SUBROUTINE GETSLD

SUBROUTINE HELLO

SUBROUTINE INVERS
SUBROUTINE JOINTS

equations

- determines the three simultaneous equations
for a system with a simple support.

- determines the three simultaneous equations
for a system with a sliding end.

- Writes the message for the general information
and description of the program CASDAM..

the joint conditions

SUBROUTINE KINAN
SUBROUTINE KINANZ
SUBROUTINE KINAN3
SUBROUTINE KINAN4
SUBROUTINE KINANS
SUBROUTINE KINANG
SUEROUTINE KINAN?
SUBROUTINE KINANS
SUBROUTINE KINANS
SUBROUTINE KINDR1
SUBROUTTNE KINDRZ
SUBROUTINE KINDR3
SUBROUTINE KINDRA
SUBROUTINE KINDRS
SUBROUTINE KINDR6

inverses a matrix.

calculates the transfer matrix to be satisfied

analyzes the 1lst type of kinematic
analyzes the 2nd type of kinematic
analyzes the 3rd type of kinematic
analyzes the 4th type of kinematic
analyzes the S5th type of kinematic
analyzes the 6th type of kinematic
analyzes the 7th type of kinematic
analyzes the 8th type of kinematic

controls subroutines for kinematic

component.
component.
component.
component.
component.
component.
component.
component.

analyses.

draws the first type of kinematic component.

- draws the 2nd type of kinematic component.

- draws the 3rd type of kinematic component.

- draus the 4th type of kinematic component.

- drans the S5th type of kinematic component.

- draws the 6th type of kinematic component.



62.
63.

65.

66.
67.

69.

70.
71.
72.
73.
74.

75.
76.
77.
78.
79.
80.
8l.
8z.
e3.

SUBROUTINE KINDR7

SUBROUTINE KINDRS
SUBROUTINE KINDRW
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- draws the 7th type of kinematic component.

- draws the 8th type of kinematic component.

- controls subroutines to draw the corresponding

component when user indicates.

SUBROUTINE KININP

- prompts for the input of the rotating speed of

an input-link of a mechanism.

SUBROUTINE KINONE
SUBROUTINE KINSIS
SUBROUTINE KINSYS

SUBROUTINE KZERO
be zero.

SUBROUTINE LEAREQ
SUBROUTINE LIMANG

SUBROUTINE LINDOT -

SUEROUTINE LINSLD

SUBROUTINE LOOPS
systen. .

SUBROUTINE LOOPSS
SUBROUTINE MBRAN

SUBROUTINE MFIELD
SUEROUTINE MMASS

SUBROUTINE MPOINT
SUBROUTINE MRIGID
SUBROUTINE MSPRNG
SUBROUTINE MTRANS
SUBROUTINE MULT74
SUBROUTINE PLATES

- draws a component from menu.
- prompts for the kinematic analysis.
- drans a system in the continuous motions.

- sets the initial values for kinematic analysis

- solves the linear simultaneous equations.
- sets an angle within -180 to 180 degrees.
- draws a dotted line.
- draws a solid line.

- determines a main loop and subloops from a

- checks each loop for 1 DOF system.

- calculates a branch matrix.

- calculates a field matrix for a flexible link.
- calculates a mass matrix.

- calculates a point matrix.

- calculates a filed matrix for a rigid link.

- calculates a spring matrix.

- calculates a transformation matrix.

- multiplies two matrices.

- calculates data for a plate element.



8s.

86.

87.

89.

90.

9l.
92.

93.
9.
95.
96.

97.
98.

99.
100.
101.
102.
103.
104.
105.
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SUBROUTINE PROP1 - determines the material and geometrical
pro_perties of a link.

SUBROUTINE RANGEL - determines range of screen window for drawing
a initial system.

SUBROUTINE RANGES - determines range of screen window for drawing
a system in kinematic motions.

SUBROUTINE READIN - reads all generated data from a file.

SUBROUTINE RESULT - controls subroutines to calculate distortions
and safety factors at nodes.

ﬂﬁOUTINE SECMAT -~ prompts for information of the properties of
s.

SUBROUTINE SETC ~ sets a transfer matrix to be stored.

SUBROUTINE SETING -~ sets all state vectors determined at the
previous iteration.

SUEROUTINE SETPNT - marks a symbol on the corresponding point.
SUBROUTINE SETPOS
SUBROUTINE SEIWIN -~ sets a screen window.

SUBROUTINE SLIDE
to a sliding end.

SUBROUTINE SORTS

SUBROUTINE STARTS <~ calculates the initial transfer matrix from
the given support conditions.

sets position to write on screen.

calculates the corresponding state variables

prompts for the postprocess.

SUBROUTINE STATE -~ calculates state vectors for a rigid system._
SUBROUTINE STRSIS -~ prompts for the stress analysis.

SUBROUTINE SUBLP1 -~ generates data for an initial subloop system.
SUBROUTINE SUBLPZ -~ generates data for a double subloop system.
SU_BROUTINE SUBLP3 ~ generates data for a triple subloop system.
SUBROUTINE SUBLP4 -~ generates data for a fourth subloop system.
SUBROUTINE SUBLPS -~ generates data for a fifth subloop system.



106.
107.

108.
109.
110.
111.
112.

113.
114.
115.

116.
117.
118.
119.
120.

121.

122.
123.

124.

125.
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SUBROUTINE SUBLP6é - generates data for a sixth subloop system.

SUBROUTINE TENSON - calculates field matrix when a tensile force
is loaded in a link.

SUBROUTINE TYLOOP - generates data for the main loop system.
SUBROUTINE TYPEND - prompts for the end types.

SUBROUTINE TYPSYS - prompts for the types of analyses.
SUBROUTINE RESETC - resets the matrix equation.

sugaﬁmm RFIELD - controls subroutines to calculate a field
matrix.

SUBROUTINE RSTATE - calculates state vectors at nodes for a
flexible systen.

SUBROUTINE WASSUM - writes the leaaaée for assumption used in the |
analysis.

SUBROUTINE WBEND - writes the generated data for a support in a
subloop.

SUBROUTINE WBRAN - murites the generated data for a branch point.
SUBROUTINE WFHEAD - writes a title in a output file.

SUBROUTINE WFIELD - writes the generated data for a link.
SUBROUTINE WINABS - sets a screen window.

SUBROUTINE WMEND - writes the generated data for an end point in
the main loop.

SUBROUTINE RMID
forces.

writes the generated data for an external

SUBROUTINE WREACT - writes reaction forces on the screen.

SUBROUTINE HREV - writes the generated data for a revolute
joint.

SUBROUTINE WRTABS - transforms results in the 1local coordinate
system to those in the global coordinate system and writes them in
a file for postprocessing.

SUBROUTINE WRTANL - writes title in a data file.



126.
127.

128.

129.
130.
131.
132.

133.
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SUBROUTINE WRTDAT - regenerates all generated data for processing.

SUBROUTINE WRTFLX - writes results of displacénents and stresses
at nodes in an output file.

SUBROUTINE WRTPRO
forces at nodes.

SUBROUTINE WRTSCR
SUBROUTINE WSPR
SUBROUTINE WSLIDE

SUBROUTINE WSTART
support.

SUBROUTINE ZERO
in preprocessing.

wWrites title for displacements and internal

urites data on the screen.

urites the generated data for a spring.

writes the generated data for a sliding joint.

writes the generated data for a starting

sets initial values of the input system using
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E.3 ZIree Structures of Routines

The tree structure for the program CASDAM is 1listed in two ways.
First, all subroutines which call a given subroutine are listed in
Table E.1, and then all of the subroutines called by a given subroutine
are given in Table E.2. The routines are designated as either the main
program (M), a subroutine in CASDAM (G), or a PLTPAK subroutine (P).
The PLTIPAK subroutines are the general graphics subroutines.

Table E.3 lists the storage requirements for the progeam CASDAM,
and Table E.4 gives the storage requirements for the PLTPAK subroutines |
and the PLOT10 graphics routines. Table E.S5 presents an image synopsis
of the program CASDAM on a VAX 11/750 system.

TABLE E.1 CROSS REFERENCE BY CALLING ROUTINES
Routine Type Called by ...

AFLEX G FLXSIS

AGAIN G  AFLEX

ANALYS G  AGAIN ARIGID
ARIGID G = AFLEX

CALSF1 G STRSIS

CALSF2 G STRSIS
Notes on type of routine

M : Main program
G : GOCAD subroutine
P : PLTPAK subroutine



TABLE E.1 CROSS REFERENCE BY CALLING ROUTINES (CONTINUED) 323

Routine 7IType Called by ...

CALSLD G  RSTATE STATE
CALSVE G  RSTATE STATE
CALSVS G  RSTATE STATE
CASDAM M
COMPRS G  RFIELD
CONNEC G  LOOPS
DAIGEN G  CASDAM
DATINT G  DATGEN
DFLEX G  DISPLl SORTS
DISPL1 G  SORTS
DISPL2 G  SORTS
DOTTED G  KINDRL KINDR2 KINDR3 KINDR4 KINDRS KINDR6 KINDR7
DRANGE G %8 DRWALL
DRAHLP G  LOOPS
DRHALL G  DRWDIS DRWINP DRWORI DRWSF FLXSIS
DRABOX G  DATINT DFLEX DRAWLP DRWALL DRWDOT DRWSYS
DRWDIS G  SORTS
DRRDOT G  GENSEC KINSIS LOOPS
DRNEND G  DFLEX DRAWLP DRWALL DRWDOT DRWSYS KINSYS TYPEND
No.tes on type of routine
M : Main program

G GOCAD subroutine
P : PLIPAK subroutine



TABLE E.1 CROSS REFERENCE BY CALLING ROUTINES (CONTINUED)

Routine Type Called by ...

FLXSIS
FORSPR

GENSEC
GETFIX
GETFRE
GETPIN
GETSIM
GETSLD
HELLO

Q Q@ Q@ Q@ 06 Q@ 6 6 a6 6 606 @ 606 @ 0 0 606 6 &

DISPL]
RESULT SORTS
DRWALL DRWDOT DRWSYS KINSYS LOOPS

. SORTS

DRRALL DRWDOT DRWSYS KINSYS LOOPS
DFLEX DRRWALL DRHDOT DRWSYS KINSYS
CONNEC FORSPR GENALL SECMAT TYPEND
READIN

DATINT

CASDAM

DATGEN

DATGEN

DATINT

ANALYS

ANALYS

ANALYS

ANALYS

ANALYS

CASDAM

Notes on type of routine

M : Main program
G : GOCAD subroutine
P : PLTPAK subroutine
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TABLE E.1 CROSS REFERENCE BY CALLING ROUTINES (CONTINUED)
Routine Type Called by ...

INVERS
JOINTS
KBUSH

KDING
KDRWAB

KDRWRL
KGRAPH
KINAN1
KINAN2
KINAN3
KINANG
KINANS
KINAN6
KINAN7
KINANS
KINANS
KINDR1

G
G

o

Q Qa a @ 0 6 @ @ @ @ v v

MBRAN
AGAIN ARIGID

DRWEND DRWSPR KINDR1 KINDR2 KINDR3 KINDRS KINDR6
KINDR7 KINDRS

AFLEX FLXSIS GENALL HELLO KINSIS RESULT

DRWSLD DRWSPR KINDR1 KINDR2 KINDR3 KINDR4 KINDRS
KINDR6 KINDR7 KINDR8 LINSLD

DOTTED DRWSPR KINDRS KINDR6 KINDR7 KINDRS8 LINDOT
DISPL2
KINANS
KINANS

KINANS
KINANS

KINANS
KINANS
KINANS
KINANS
KINSIS
KINDRN KINONE

Notes on type of routine

M : Main program
G : GOCAD subroutine
P : PLTPAK subroutine



326
TABLE E.1 CROSS REFERENCE BY CALLING ROUTINES (CONTINUED)

Routine Type Called by ...

KINDRZ G  KINDRW KINONE
KINDR3 G  KINDRW KINONE

KINDRA G  KINDRW KINONE

KINDRS G  KINDRW KINONE

KINDR6é G  KINDRW KINONE

KINDR? G  KINDRW KINONE

KINDR8 G  KINDRW KINONE

KINDRH G  KINSIS

KININP G  KINSIS

KINITZ P  CASDAM

KINNE G  KINSIS

KINSIS G  DATGEN

KINSYS G  KINSIS

KIQCSZ P DOTTED SETPOS

KINTYP P  CASDAM DFLEX

KIOGUN P  AFLEX ANALYS CALSLD CALSVS CASDAM COMPRS CONNEC

DATINT DFLEX DISPLl DISPLZ DRHDIS DRWINP DRWORI
DRRSF FLXSIS FORSPR GENALL GENSEC HELLO KINANS
KINDR1 KINDRZ KINDR3 KINDR4 KINDRS KINDR6 KINDR7
KINDRS8 KINDRW KININP KINSIS KINSYS LINDOT LINSLD
LOOPS LOOPSS RESULT SECMAT SORTS STRSIS TYPEND
TYPSYS WASSUM WREACT

Notes on type of routine
M Main program

G : GOCAD subroutine
P : PLTPAK subroutine




TABLE E.1 CROSS REFERENCE BY CALLING ROUTINES (CONTINUED)
Routine Type Called by ...

KMOVAB

KMOVRL
KPAUSE

KPGRST

KPOLGN

KRECT

KSETTL
KSToP
KTXSIZ

KVWPAR

P

AFLEX CASDAM CONNEC DATINT DISPL1 DISPLZ DRWDIS
DRWSF FLXSIS FORSPR GENALL GENSEC HELIO KINSIS
KINSYS LOOPS SECMAT SORTS TYPEND

DISPLZ DOTTED DRWDIS DRWSF DRWSLD DRWSPR KINDR1
KINDR2 KINDR3 KINDR4 KINDRS KINDR6 KINDR7 KINDRS
KINDRR KINSIS LINDOT LINSLD SETPOS

DOTTED KINDRS KINDR6 KINDR7 KINDRS8 LINDOT LINSLD

AFLEX CASDAM CONNEC DATINT DISPL1 DISPLZ DRWDIS
DRWSF FLXSIS FORSPR GENALL GENSEC HELLO KINSIS
KINSYS LOOPS SECMAT SORTS TYPEND

CASDAM

DRWALL DRWDOT DRWEND DRWREV DRWSYS KINDR1 KINDR2
KINDR3 KINDR4 KINDRS KINDR6 KINDR7 KINDRE KINSYS

DRWBOX KINDR1 KINDR2 KINDR3 KINDR4 KINDRS KINDR6
KINDR7 KINDR8 KINSYS

CASDAM HELLO

CASDAM

CASDAM CONNEC DATINT DFLEX DISPL1 DISPLZ DOTTED
DRWDIS DRWEND DRWINP DRWORI DRWSF FLXSIS FORSPR
GENALL GENSEC HELLO KINDR1 KINDRZ KINDR3 KINDR4
KINDRS KINDR6 KINDR7 KINDRS KINDRW KINSIS KINSYS
LOOPS RESULT SECMAT SORTS STRSIS TYPEND WASSUM
WFHEAD WREACT

KINDR1 KINDRZ KINDR3 KINDR4 KINDRS KINDR6 KINDR?
KINDRS8 SETWIN WINABS

Notes on type of routine

M
G
P

Main program
GOCAD subroutine
PLTPAK subroutine

327



TABLE E.1 CROSS REFERENCE BY CALLING ROUTINES (CONTINUED)
Routine Type Called by ...

KWRMOD

LIMANG
LINDOT
LINSLD

P

Q Q Q@ O @

Q 0 o a 6 6 6 @ @

AFLEX CONNEC DATINT DFLEX DISPL1 DISPLZ DOTTED
DRAWLP DRWALL DRWBOX DRWDIS DRWDOT DRWEND DRWINP
DRWORI DRWREV DRWSF DRWSLD DRWSPR DRWSYS FLXSIS
FORSPR GENALL GENSEC HELLO KINDR1 KINDRZ KINDR3
KINDR4 KINDRS KINDR6 KINDR7 KINDRE KINDRW KINONE
KINSIS KINSYS LINDOT LINSLD LOOPS RESULYT SECMAT
SETPOS SETWIN SORTS STRSIS TYPEND WASSUM WFHEAD
WINABS WREACT

KINANS

GETFIX GETFRE GETPIN GETSIM GETSLD INVERS

KINANZ KINAN3 KINANS KINAN6 KINAN7 KINANS

DATINT DFLEX DRWDOT

DATINT DFLEX DRAWLP DRWALL DRWSYS GENSEC KINSIS
KINSYS LOOPS

DATGEN
100PS

AGAIN ARIGID

ARIGID RFIELD STATE

AGAIN AKRIGID RSTATE STATE
AGAIN ARIGID RSTATE STATE
AGAIN ARIGID RSTATE STATE
AGAIN ARIGID RSTATE STATE

AGAIN ANALYS ARIGID CALSLD CALSVS RSTATE SLIDE
STARTS STATE WRTABS

Notes 6n type of routine

M : Main program’
G : GOCAD subroutine
P : PLTPAK subroutine
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TABLE E.1 CROSS REFERENCE BY CALLING ROUTINES (CONTINUED)
Routine Type Called by ...

MULT74
PLATES
PROP1

RANGEL

RANGES
READIN
RESETC
RESULT
RFIELD
RSTATE
SECMAT
SETC

SETING
SETPNT
SETPOS

SETWIN

SLIDE

Q 0 6 6 606 @ 6 @ a 6 6 606 0 @ &

G

AGAIN ANALYS ARIGID SLIDE STARTS

GENALL

AGAIN ARIGID RESULT RSTATE STATE

oPLEX .

DRWDOT DRWSYS

FLXSIS RESULT

AGAIN ARIGID

SORTS

AGAIN RSTATE

AGAIN

DATINT

AGAIN ARIGID

AFLEX

RSTATE STATE

AFLEX CONNEC DATINT DFLEX DISPL1 DISPLZ DRWDIS
DRWINP DRWORT DRWSF FLXSIS FORSPR GENALL GENSEC
ﬁg LOOPS RESULT SECMAT SORTS TYPEND WASSUM

DFLEX DRAWLP DRWALL DRRDIS DRWDOT DRWEND DRWREV
DRRSF DRWSLD DRWSPR DRWSYS KINSYS LINDOT LINSLD

AGAIN ARIGID

Notes on type of routine

M : Main program
G : GOCAD subroutine
P : PLTPAK subroutine
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TABLE E.1 CROSS REFERENCE BY CALLING ROUTINES (CONTINUED)

Routine Type Called by ...

SORTS G  CASDAM

STARTS G  AGAIN ARIGID

STATE G  ARIGID

STRSIS G  RESULT

SUBLP1 G  TYLOOP

SUBLPZ G  SUBLP1

SUBLP3 G  SUBLP2

SUBLP4 G  SUBLP3

SUBLPS G  SUBLP4

SUBLPé G  SUBLPS

TENSON G  RFIELD

TYLOOP G  GENALL

TYPEND G  DATGEN

TYPSYS G  CASDAM

WASSUM G  DFLEX

WBEND G  SUBLP1 SUBLP2 SUBLP3 SUBLP4 SUBLPS SUBLP6

WBRAN G SUBLP1 SUBLPZ SUBLP3 SUBLP4 SUBLP5 SUBLP6
WFHEAD G  CALSF1 CALSF2 CASDAM KINANS RESULT WRTFLX WRTPRO
WFIELD G  SUBLP1 SUBLP2 SUBLP3 SUBLP4 SUBLP5 SUBLP6 TYLOOP

Notes on type of routine

M : Main program
G : GOCAD subroutine
P : PLTPAK subroutine



TABLE E.1 CROSS REFERENCE BY CALLING ROUTINES (CONTINUED)
Routine Type Called by ...

WINABS

WRTABS
WRTANL
WRTDAT
WRTFLX
WRTPRO
WRTSCR
WSLIDE
WSPR

WSTART
ZERO

G

Q@ O 606 @ 6 a6 6 @ 6 a6 6 6 6 @

CASDAM DFLEX DISPL1 DISPLZ DRAWLP DRWALL DRWBOX
DRWDIS DRWDOT DRWEND DRWINP DRWORI DRWREV DRWSF
DRWSLD DRWSPR DRWSYS FLXSIS KINDR1 KINDR2 KINDR3
KINDR4 KINDRS KINDR6 KINDR7 KINDRES KINDRW KINONE
KINSYS LINDOT LINSID SETPOS SETWIN SORTS HWASSUM
WREACT

TYLOOP

SUBLP1 SUBLPZ SUBLP3 SUBLP4 SUBLPS SUBLP6 TYLOOP
DISPL1 SORTS

SUELP1 SUBLP2 SUBLP3 SUBLP4 SUBLP5 SUBLP6 TYLOOP
RSTATE

AFLEX

GENALL

RESULT

RESULT

WREACT

SUBLP1 SUBLPZ SUBLP3 SUBLP4 SUBLPS5 SUBLP6

SUBLP1 SUBLP2 SUBLP3 SUBLP4 SUBLP5 SUBLP6 TYLOOP
SUBLP1 SUBLP2 SUBLP3 SUBLP4 SUBLPS SUBLP6 TYLOOP

CASDAM

Notes on type of routine

M
G :
P :

Main program
GOCAD subroutine
PLTPAK subroutine

331



TABLE E.2 CROSS REFERENCE BY ROUTINES CALLED

Routine

Calls to ...

AFLEX

AGAIN

ANALYS

ARIGID

CALSF1
CALSF2
CALSLD
CALSVS

COMPRS
CONNEC
DATGEN
DATINT

DISPL1

DISPL2

AGAIN ARIGID KDING KLOGUN KMARGN KPAUSE KWRMOD
SETING SETPOS WRTANL

ANALYS JOINTS MBRAN MMASS MPOINT MRIGID MSPRNG
MTRANS MULT74 PROP1 RESETC RFIELD RSTATE SETC
SLIDE STARTS :

g’ﬂl‘gg GETFRE GETPIN GETSIM GETSLD KLOGUN MTRANS

ANALYS JOINTS MBRAN MFIELD MMASS MPOINT MRIGID
MSPRNG MTRANS MULT74 PROP1 RESETC SETC SLIDE
STARTS STATE

WFHEAD

WFHEAD

KLOGUN MTRANS

KLOGUN MTRANS

DATGEN FLXSIS HELLO KINITZ KINTYP KLOGUN KMARGN
KPAUSE KPGRST KSETTL KSTOP KTXSIZ SORTS TYPSYS
WFHEAD WINABS ZERO

KLOGUN
DRNSYS KLOGUN KMARGN KPAUSE KTXSIZ KWRMOD SETPOS
DATINT FORSPR GENALL KINSIS LOOPS TYPEND

DRWBOX FINDPT GENSEC KLOGUN KMARGN KPAUSE KTXISIZ
KWRMOD LINDOT LINSLD SECMAT SETPOS

DRANGE DRWBOX DRWEND DRWSPR KINTYP KLOGUN KTXSIZ
KWRMOD LINDOT LINSLD RANGEL SETPOS SETWIN WASSUM

WINABS

DFLEX DRWINP KLOGUN KMARGN KPAUSE KTXSIZ KWRMOD
SETPOS WINABS WREACT

KGRAPH KLOGUN KMARGN KMOVAB KPAUSE KTXSIZ KWRMOD
SETPOS WINABS
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TABLE E.2 CROSS REFERENCE BY ROUTINES CALLED (CONTINUED)

Routine

Calls to ...

DOTTED
DRAWLP
DRHALL

DRWBOX
DRWDIS

DRWEND
DRWINP
DRWORI

DRWSF

DRRWSLD
DRASPR
DRNWSYS

FLYSIS -

FORSPR
GENALL

GENSEC

GETFIX

KDRWRL KIQCSZ KMOVAB KMOVRL KTXSIZ KWRMOD
DRWBOX DRWEND KWRMOD LINSLD SETWIN WINABS

DRANGE DRWBOX DRWEND DRWREV DRWSLD DRWSPR KPOLGN
KWRMOD LINSLD SETWIN WINABS

KRECT KWRMOD WINABS

DRHALL KLOGUN KMARGN KMOVAB KPAUSE KTXSIZ KWRMOD
SETPOS SETWIN WINABS

DRWBOX DRWEND DRWREV DRWSLD DRWSPR KPOLGN KWRMOD
LINDOT RANGES SETWIN WINABS

KBUSH KPOLGN KTXSIZ KWRMOD SETWIN WINABS
DRRALL KLOGUN KTXSIZ KWRMOD SETPOS WINABS
DRNALL KLOGUN KTXSIZ KWRMOD SETPOS WINABS
KPOLGN KWRMOD SETWIN WINABS

DRWALL KLOGUN KMARGN KMOVAB KPAUSE KTXSIZ KWRMOD
SETPOS SETWIN WINABS

KDRWNAB KMOVAB KWRMOD SETWIN WINABS
KBUSH KDRWAB KDRWRL KMOVAB KHRMOD SETWIN WINABS

DRWBOX DRHEND DRWREV DRWSLD DRRSPR KPOLGN KWRMOD
LINSLD RANGES SETWIN WINABS

AFLEX DRWALL KDING KLOGUN KMARGN KPAUSE KTXSIZ
KWRMOD READIN SETPOS WINABS

DRWSYS KLOGUN KMARGN KPAUSE KTXSIZ KWRMOD SETPOS

DRHSYS KDING KLOGUN KMARGN KPAUSE KTXSIZ KWRMOD
PLATES SETPOS TYLOOP WRTDAT

m KLOGUN KMARGN KPAUSE KTXSIZ KWRMOD LINSLD

LEAREQ
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TABLE E.2 CROSS REFERENCE BY ROUTINES CALLED (CONTINUED)
Routine Calls to ...
GETFRE  LEAREQ
GETPIN  LEAREQ
GETSIM LEAREQ
GETSLD  LEAREQ
HELLO KDING KLOGUN KMARGN KPAUSE KSETTL KTXSIZ KWRMOD
INVERS  LEAREQ
KINANZ ° LIMANG
KINAN3  LIMANG
KINANS  LIMANG
KINAN6  LIMANG
KINAN7?  LIMANG
KINANE  LIMANG
KINANS %%3%msmsm7
KINDR1  DOTTED KBUSH KDRWAB KLOGUN KMOVAB KPOLGN KRECT
KTXSIZ KVWPAR KWRMOD WINABS
KINDR2  DOTTED KBUSH KDRRAB KLOGUN KMOVAB KPOLGN KRECT
KTXSIZ KVWPAR KWRMOD WINABS
KINDR3  DOTTED KBUSH KDRRAB KLOGUN KMOVAB KPOLGN KRECT
KTXSIZ KVWPAR KWRMOD WINABS
KINDR4  DOTTED KDRWAB KLOGUN KMOVAB KPOLGN KRECT KTXSIZ
KVWPAR KWRMOD WINABS
KINDRS  DOTTED KBUSH KDRWAB KDRWRL KLOGUN KMOVAB KMOVRL
KPOLGN KRECT KTXSIZ KVWPAR KWRMOD WINABS
KINDR6  DOTTED KBUSH KDRWAB KDRWRL KLOGUN KMOVAB KMOVRL

KPOLGN KRECT KTXSIZ KVWPAR KWRMOD WINABS
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TABLE E.2 CROSS REFERENCE BY ROUTINES CALLED (CONTINUED)

Routine

Calls to ...

KINDR?

KINDRS

KINDRW

KININP
KINONE

KINSIS

KINSYS

LINDOT
LINSLD

LOOPSS

READIN
RESULT

RSTATE

SECMAT
SETPOS

DOTTED KBUSH KDRWAB KDRWRL KLOGUN KMOVAB KMOVRL
KPOLGN KRECT KTXSIZ KVWPAR KWRMOD WINABS

DOTTED KBUSH KDRWAB KDRWRL KLOGUN KMOVAB KMOVRL
KPOLGN KRECT KTXSIZ KVAPAR KWRMOD WINABS

KINDR1 KINDRZ KINDR3 KINDR4 KINDRS KINDR6 KINDR7
KINDREG KLOGUN KMOVAB KTXSIZ KWRMOD WINABS

KLOGUN

KINDR1 KINDRZ KINDR3 KINDR4 KINDRS5 KINDR6 KINDR7
KINDRS KWRMOD WINABS

DRWDOT KDING KINANS KINDRW KININP KINONE KINSYS
KLOGUN KMARGN KMOVAB KPAUSE KTXSIZ KWRMOD LINSLD
SETPOS

DRHEND DRRREV DRWSLD DRWSPR KLOGUN KMARGN KPAUSE
KPOLGN KRECT KTXSIZ KWRMOD LINSLD SETWIN WINABS

KDRHRL KLOGUN KMOVAB KMOVRL KWRMOD SETWIN WINABS
KDRWAB KLOGUN KMOVAB KMOVRL KWRMOD SETWIN WINABS

CONNEC DRAWLP DRWDOT DRWREV DRWSLD KLOGUN KMARGN
KPAUSE KTXSIZ KWRMOD LINSLD LOOPSS SETPOS

KLOGUN
INVERS
DZERO

DRWORI KDING KLOGUN KTXSIZ KWRMOD PROP1 READIN
SETPOS STRSIS WFHEAD WRTFLY WRTPRO

COMPRS MFIELD TENSON

CALSLD CALSVE CALSVS MMASS MPOINT MRIGID MSPRNG
MTRANS PROP1 RFIELD SETPNT WRTABS

DRWSYS KLOGUN KMARGN KPAUSE KTXSIZ KWRMOD SETPOS
KIQCSZ KMOVAB KWRMOD WINABS
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TABLE E.2 CROSS REFERENCE BY ROUTINES CALLED (CONTINUED)

Routine

Calls to ...

SETWIN
SLIDE
SORTS

STARTS
STATE

STRSIS
SUBLP1

SUBLP2

SUBLP3

SUBLP4

SUBLPS

SUBLP6

TYLOOP
TYPEND

TYPSYS
WASSUM

KVWPAR KWRMOD WINABS
MTRANS MULT74

DFLEX DISPL1 DISPLZ DRWDIS DRWORI DRWSF KLOGUN
KMARGN KPAUSE KTXSIZ KWRMOD RESULT SETPOS WINABS

WREACT
MIRANS MULT74

CALSLD CALSVE CALSVS MFIELD MMASS MPOINT MRIGID

MSPRNG MTRANS PROP1 SETPNT

CALSF1 CALSFZ2 KLOGUN KTXSIZ KWRMOD

SUBLPZ WBEND WBRAN WFIELD WMID
WSPR  WSTART

SUBLP3 WBEND WERAN WFIELD RMID
WSPR  WSTART

SUBLP4 WBEND WBRAN WFIELD WMID
WSPR  WSTART

SUBLPS WEBEND WBRAN HFIELD WMID
WRSPR  RSTART

SUBLP6 WBEND WBRAN WFIELD WMID
WSPR  WSTART

WBRAN WFIELD RMID WREV
WSTART

SUBLP1 WFIELD RMEND WMID WREV

WREV

WSLIDE

WSLIDE

WSLIDE

WSLIDE

WSLIDE

RSLIDE WSPR

WSPR

WSTART

DRWEND DRWSYS KLOGUN KMARGN KPAUSE KTXSIZ KWRMOD

SETPOS
KLOGUN

KLOGUN KTXSIZ KWRMOD SETPOS WINABS

KTXSIZ KWRMOD
KVWPAR KWRMOD
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TABLE E.2

Routine Calls to ...

WREACT
WRTABS
HRTFLX
WRTPRO

KLOGUN KTXSIZ KWRMOD SETPOS WINABS WRTSCR

MTRANS
WFHEAD
WFHEAD

TABLE E.3 Storage Requirements for the Main Module

CROSS REFERENCE BY ROUTINES CALLED (CONTINUED)

MODULE NAME BYTES
CASDAM 1050
AFLEX 70450
AGAIN 72127
ANALYS 2758
ARIGID 49638
CALSF1 2467
CALSF2 109260
CALSLD 3876
CALSVE 638
CALSVS 3940
COMPRS 814
CONNEC 4987
DATINT 18020
DATGEN 17743
DFLEX 16755
DISPL1 143047
DISPL2 110189
DOTTED 358
DRANGE 9466
DRAWLP 2986
DRWALL 13975
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TABLE E.3 Storage Requirements for the Main Module (Continued)

MODULE NAME BYTES
DRHBOX 194
DRNDIS 64648
DRWDOT 3575
DRWEND 485
DRWINP 62128
DRWORI 13666
DRWREV 174
DRASLD 251
DRWSF 64960
DRHSPR 944
DRNSYS 3575
DZERO 48432
FINDPT 230
FLXSIS 46226
FORSPR 6254
GENALL 19506
GENSEC 14110
GETFIX 317
GETFRE 314
GETPIN 325
GETSIM 326
GETSLD 326
HELLO 3010
INVERS 610
JOINTS 1298
KINAN1 15312
KINAN2 14205
KINAN3 14673
KINAN4 13529
KINANS 15685
KINANG 15065
KINAN7 15977
KINANG 15345
KINANS 20393
KINDR1 624
KINDR2 773
KINDR3 706
KINDR4 765
KINDRS 1141
KINDR6 1034
KINDR? 1154
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TABLE E.3 Storage Requirements for the Main Module (Continued)

MODULE NAME BYTES
KINDRS 1017
KINDRW 426
KININP 1028
KINONE 219
KINSIS : 16143
KINSYS 4955
KZERO 3375
LEAREQ 1322
LIMANG 145
LINDOT 645
LINSLD 405
LOOPS 19195
LOOPSS 1637
MERAN 2191
MFIELD 566
MMASS 104
MPOINT 104
MRIGID 172
MSPRNG 10074
MTRANS 171
MULT74 422
PLATES 15251
PROP1 7307
RANGEL 11147
RANGES 2074
READIN 36344
RESULT 34129
SECQMAT 17005
SETC 2339
SETING 25023
SETPNT 553
SETPOS 100
SETWIN 303
SLIDE 1715
SORTS 194676
STARTS 627
STATE 50290
STRSIS 571
SUBLP1 18637
SUBLP2 18637

SUBLP3 18637




TABLE E.3 Storage Requirements for the Main Module (Continued)

MODULE NAME BYTES
SUBLP4 18637
SUBLP5 18637
SUELP6 18597
TENSON 618
TYLOOP 18893
TYPEND 6135
TYPSYS 1132
RESETC 2339
RFIELD 295
RSTATE 61428
WASSUM 251
4019
WERAN 1149
WFHEAD 2660
WFIELD 16932
WINABS 72
WMEND 4221
WMID 2764
WREACT 22366
WREV 2190
WRTABS 1013
WRTANL 432
WRTDAT 2423
WRTFLX 16979
WRTPRO 577
WRTSCR 155
WSPR 3210
WSLIDE 4706
WSTART 2368
ZERO 16409
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TABLE E.4 Storage Requirements for the Library Module

MODULE NAME BYTES
KBUSH 742
KDING 64
KDRWAB 361
KDRWRL 185
KGRAPH 4901
KINITZ 2007
KIQCS2Z 273
KIQLTY 137
KIQOMAG 27
KIQROT 27
KIQTMD 196
KIQTRT 135
KIQTS2 135
KIQVWP 147
KIOWIN 147
KLNIDX 1137
KINTYP 162
KLOGUN 11
KMAGFY 27
KMAPID 1060
KMARGN 2455
KMOVAB 271
KMOVCA 342
KMOVRL 185
KPAUSE 580
KPBUFF 80241
KPGRST 530
KPLOT 2554
KPOLGN 286
KPSTMV 90
KRECT 229
KROTAT 190
" KSCALE 1345
KSELTM 5456
KSETTL 175
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342
TABLE E.4 Storage Requirements for the Library Module (Continued)

MODULE NAME . BYTES
KSTART 184
KSTOP 237
KTEXT 1827
KTIME 1485
KTMCTL 268
KTXMOD 205
KTIMRG 143
KTXROT 408
KTXSIZ 785
KVWPAR 245
KVHPRT 729
KWINDO 729
KWRMOD 104
KYES 22
KALFNM 1580
KAXIS 3871
KBGIDX 1054
KCHARC 1066
KCLEAR 1915
KCLIPH 878
KCVCHR 691
KDATE 189
KDRHCA 350
KFINSH 86
KFORMT 2186
KGRID 264
KINCHG 208
KINICO 1863
KIQEQP 294
KLEXDT 30
KLINFD 637
KMAPTB 2222
KMKPLT 2075
KNO 22
KPGTCH 51
KPGTDR 96
KPGTMV 63
KPGTRT 51
KPGTSZ 51
KPGTTY 264

KPLCIL 148




MODULE NAME BYTES
KPLT10 4787
KPLT21 1456
KPSTCH 55
KPSTDR 100
KPSTRT 55
KPSTSZ 55
KREGIS 1743
KUPDAT 64
KIANMD 285
KXBELL 295
KXCHAR 334
KXCHSZ 412
KXCWSD 305
KXDRRA 351
KXDSHA 306
KXERAS 66
KXFINT 59
KXINIT 358
KXIOWT 48
KXMOVA 292
KXNHLN 17
KXNWPG 370
KXOUT 42
KXOUTS 342
KXPNTA 301
KXRECV 392
KXREST 536
KXSCUR 452
KISTBF 336
KXTERM 282
KXTKDH 1245
KXTKPT 333
KXTSND 37
KXvoD 339
KXWAIT 152
KXXYCV 662
KCHDAT 6210
KDCBGN 783
KDCCHR 117
KDCDMP 267
KDCDNG 57
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TABLE E.4 Storage Requirements for the Library Module (Continued)
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TABLE E.4 Storage Requirements for the Library Module (Continued)

MODULE NAME BYTES
KDCDRW 422
KDCDSH 279
KDCERS 142
KDCLOC 567
KDCMOV 422
KDCOUT 714
KDCPNT 80
KDCSTP 71
KDCHRT 503
KKCLPF 869
KKCSZA 950
KKDRAW 907
KKDSLN 1492
KKLIMT 1401
KKLOCT ' 1029
KKMOVE 907
KKMPUU 986
KKNMP 996
KKNPEN 970
KKPLOF 960
KKPLON 904
KKPLT 2100
KKPLTS 2672
KKPUMU 929
KKSTIN 870
KKSTUU 870
KKSYMB 2154
KKWHER 923
KOUTKI 239
- KREAD 203
KXAFMD 305
KXBFPK 1598
KACRTN 343
KXDSHM 387
KXINS 790
KXLINF 375
KXPLCH 580
KXPNTM 332
KXQSUB 23
KDCINC 102

KKADRR 949




TABLE E.4 Storage Requirements for the Library Module (Continued)

MODULE NAME BYTES
KKAGP 1151
KKAMOV 942
KKARTL 977
KKAXY 1463
KKCDIR 1004
KKCFNT 1063
KKCHNG 969
KKCLP 1086
KKCLPR 1354
KKCPLT 976
KKCSZ 1256
KKDATO 973
-KKDELT 1057 -
KKGUPU 927
KKHPOU 164
KKHSHK 1316
KKINPU 927
KKIPL1 1401
KKLBOF 918
KKLBTM 1043
KKMUPU 929
KKOUC1 1113
KKOUE 1155
KKOUR1 1091
KKOUR3 1113
KKOUR4 1145
KKPDIR 1004
KKPNSP 997
KKPNUP 870
KKPUUN 969
KKUUPU 987
KXADIN 187
KXADOU 372
KKANG 1272
KKHPIN 189
KKIDRW 947
KKIMOV 948
KKIXY 1210
KKPUGU 927
KKPUIN 929
KKPUUU 987
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TABLE E.5 Image Synopsis

Virtual memory allocated: (660480. bytes, 1290. pages)
Nunmber of files: ' 8.
Number of modules: 336.
Number of program sections: 84.
Number of global symbols: 1082.
Number of image sections: 20.
User transfer address: 00081C00
Debugger transfer address: 7FFEDF68
Number of code references to shareable images: 56.

Image type: EXECUTABLE.




