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ABSTRACT

This study is concerned with the develofment of a transfer-matrlx 
method for the static and dynamic analyses of general planar 
flexlble-body mechanisms where the deflections may be large or small. 
The study Includes the development of the necessary transfer matrices 
(field matrix, point matrix, transformation matrix, spring matrix, 
branch matrix, rlgld-body Inertial matrix, and elastlc-body Inertial 
matrix) for the analyses. These transfer matrices having 7 X 7  

elements give three degrees-of-freedom per node by representing one 

degree-of-freedom In the longitudinal direction with two 
degrees-of-freedom In the transverse direction. In the dynamic 
analysis of flexlble-body mechanisms, the rlgld-body Inertial effects 
caused by rlgld-body accelerations are considered In a quasl-statlc 
sense. The elastlc-body Inertial forces due to the elastic vibrations 

are considered In a tlme-domaln sense. An Iteration method for the 
nonlinear analysis Is based on the successive solutions of linear 
systems. For the dynamic stress analysis, the fatigue stress analysis 
Is carried out for non-zero mean stress levels In the 
structure/mechanism members using Soderberg's linear failure line. The 
kinematic position and acceleration analyses of multiloop planar 
mechanisms are based on the component module approach using closed-form 
equations. Finally, an Interactive, computer-aided analysis program 
(ZASDAN (Computer-Aided Static and Dynamic Analyses of Flexible 

Mechanisms/Structures) Is developed.
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CHAPTER I 

INTRODUCTION

1.1 Introduction

In rigid body analyses, whether static or dynamic, the links of a 
mechanism or structure are assumed rigid. The complexity of the 
mathematical analysis of mechanisms with elastic links has been a
deterrent against giving up the rigidity assumption. Vibrations in the 
mechanism links are often disregarded by the designers, because the
body is assumed to be quasi-static. This is done for relative
simplicity. However, omitting link deformations under dynamic 
conditions may contribute to a machine's failure to perform adequately 
at high speeds. The area of study pertaining to the motion of 
mechanisms, with link elasticity and mass distribution taken into 
account, has been called the kineto-elastodvnanica (RED) of mechanisms.

The effects of mass distribution and elasticity in mechanisms 
become significant at high speed. One interpretation of hioh-sneed may 
be the speed at which the deformations due to inertial forces becomes 
so large that they cannot be ignored. The resulting deflections caused 
by the inertial forces may render the performance of the machine
unacceptable. High stress levels together with the large number of 
cyclic stresses may cause early failure from fatigue. Other problems 
associated with high-speed operation are difficulties in balancing and 
problems with stability.
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This study proposes the development of a new technique for the 

kineto-elastostatic and dynamic analyses of general planar flexible 
mechanisms. Research in the following areas is addressed:

1) Kineto-elastostatic and dynamic analyses of flexible systems 
in general multiloop-planar mechanisms by an iterative 
transfer matrix method.

1. The static analysis of flexible systems.

2. The dynamic analysis of quasi-static systems.

3. The time domain analysis of flexible systems.

2) An approximate method for large, elastic-deflection analyses.

3) A computer program CASDAH for the static and dynamic analyses 
of general aultiloop planar mechanisms and structures
under either the small- or large-deflection assumptions.

In addition, the necessary transfer matrices (field matrices, point 
matrix, spring matrix, transformation matrix, branch matrix, rigid-body 
inertial matrix, and elastic-body inertial matrix) are developed to 
give three degrees-of-freedom per node in the system. Finally, the 
kinematic position and acceleration equations of the component modules 
are derived by using a closed-form solution procedure.



1.2 literature Review

In recent years, great emphasis has been placed on studying 
multi-body systems, and many analytical and numerical techniques have 
been developed for solving systems that consist of interconnected rigid 
components. In many industrial applications, however, the assumption 
of rigidity in mechanical elements does not represent a realistic 
condition, especially, if high precision and alignment are required. 
The demand for an accurate mathematical model that accounts for 
flexibility effects has been a motivation for various analytical and 
numerical investigations.

In this section, the literature for three areas will be reviewed. 
These include: the dynamic analysis of flexible mechanisms, the
computer-aided Kinematic/dynamic analysis/synthesis programs for 
rigid-link mechanisms, and the transfer matrix method.

1.2.1 Dynamic Analysis of Flexible Mechanisms

The study of the motion of linkages consisting of elastic members 
has been the subject of extensive research in recent years. In many 
present-day industrial applications, mechanisms are required to operate 
at high speeds and under large dynamic loads. In such cases, it is 
often necessary to consider the elastic behavior of links, since a 
rigid body analysis does not provide an adequate description of 
mechanism performance. A comprehensive blblography of this field may
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be found In the review articles by Erdaan and Sander Cl] and Lowen and 
Jandrasits C23. A brief overview of the literature will be given here.

In 1969, Shoup [55] investigated analytically large deflections of 
flexible beam springs, and Kinzel [56] derived analytical formulations 
for a flexible slider-crank mechanism. In 1972, Erdaan, Sandor, and 
Oakberg [3] proposed to use the flexibility approach for the structural 
analysis to study an elastic four-bar linkage. Winter and Shoup [4] 
considered the displacement of a four-bar mechanism in which at least 
one link is capable of undergoing large elastic bending deflections. 
They dealt with the displacement analysis of a partially flexible 
mechanism for purposes of path generation and defined the spring 
characteristics of the flexible member in an attempt to prevent the 
deformation which is followed by immediate structural failure due to a 
temporary overload.

In 1973, Imam, Sandor, and Kramer [5] applied the permutation 
vector approach of structural analysis to an elastic four-bar linkage 
and a six-bar multiloop mechanism. They included in their analysis the 
rate of change of eigenvalues and eigenvectors to reduce the required 
computer time. Also, they found dynamic stresses much higher than 
static stresses on the manbers at high operating speeds. In 1973, 
Sadler and Sandor [6] analyzed a slider-crank mechanism with a rigid 
crank and an elastic connecting rod using the Euler-Bernoulli theory 
for beams. In 1974, the same authors [8] analyzed a crank-rocker 
mechanism with rotational inertia in the output; they modeled the crank 
link as a cantilever beam, and the coupler and rocker links as simply



supported beams.

The experimental investigations of the dynamic response of elastic 
mechanisms that were conducted by Alexander and Lawrence [7,9] have 
provided the opportunity for the verification of analytical studies of 
an elastic four-bar mechanism. They presented the steady-state elastic 
response of a planar four-bar, quick-return mechanism and gave strain 
data at points on the coupler and output link for several different 
input rotational speeds. Sadler [11] in 1975 compared these 
experimental results and his analytical results from a lumped-parameter 
model [6]. The analytical and experimental results matched 
satisfactorily. Chu and Pan [10] investigated the longitudinal 
transient dynamic response of an elastic connecting rod in a 
slider-crank mechanism. Their results included the fundamental natural 
frequency as a function of the ratios of the length of crank to the 
length of connecting rod and the viscous damping for different rotating 
speeds of the crank. In their results, they found the crank-connecting 
rod length ratio had a large effect on the amplitude of the response.

In 1976, Bahgat and Nillmert [12] examined the vibration analysis 
of multiloop planar mechanisms using a finite element approach. They 
considered both axial and lateral vibrations using a high-order hermite 
polynomial approximation which conserves moment compatibility between 
elements. They obtained the steady-state solution for the resulting 
differential equations using a harmonic series technique and the 
stresses from the resulting deformations. Golebiewski and Sadler [13] 
obtained experimental data for a slider-crank mechanism with a rigid
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crank and an elastic connecting rod, and analyzed the systoi using 
lumped-parameter Euler-Bemoulli beam theory. Results included dynamic 
steady-state bending stresses for the midpoint of the connecting rod 
and the effects of crank speed, crank length, and slider offset on the 
maximum stress levels. The measured data showed that the maximum 
measured stresses were lower in magnitude than the maximum computed 
stresses. Sutherland C143 examined a conqpletely elastic four-bar 
linkage by employing an assumed-modes analytical approach, and measured 
the follower angles at given crank angles. Thompson and Barr CIS] 
developed a variational approach and applied it to a flexible 
slider-crank mechanism.

In 1977, Kbhli, Hunter, and Sandor C161 used the Euler-Lagrange 
equations of motion for the vibration analysis of an offset 
slider-crank mechanism consisting of elastic links, elastic supports, 
and shafts. Midha, Erdman, and Frohrib C17] used an iterative 
technique to solve an elastic four-bar linkage which was treated as a 
series of single degree-of-freedom problems. However, comparisons with 
experimental data showed poor agreement. In 1978, Midha, Erdman, and 
Frohrib CIS! used a displacement based finite-element method to develop 
the mass and stiffness properties of an elastic four-bar linkage. In 
1979, they developed a numerical algorithm for the transient C191 and 
periodic response [20] of high-speed elastic four-bar linkages. A 
single degree-of-freedom system with time-dependent periodic parameters 
can be solved by discretizing the forcing period into a number of 
intervals and by assuming the system parameters to be constant over
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each Interval. Their algorithm is employed to solve an elastic linkage 
problem via modal superposition.

Badlani and Kleinhenz [21] in 1979 studied the dynamic stability 
of a slider-crank mechanism with an undamped elastic connecting rod 
using the Euler-Bemoulli and Timoshenko beam theories. The results 
indicated new regions of instability idien rotary inertia and shear 
deformation effects were included. Bagci and Kalaycioglu [22-23] used 
the stiffness based finite-element method with planar finite-line 
elements and lumped mass systems to calculate the elastodynamic 
responses and critical operating speeds of planar four-bar,
slider-crank, and Stephenson's six-bar mechanisms. Jandrasits and 
Lowen [24-25] used Hamilton's integral, a novel elastic mechanism 
constraint equation, and Kantorovich method for a counter-weighted 
rocker link with an overhanging endmass in a four-bar linkage.

In 1960, Badlani and Midha [26] investigated the dynamic behavior 
of a slider-crank mechanism with an initially curved connecting rod 
using the Euler-Bemoulli beam theory, and showed that a very small 
initial curvature caused a significantly greater steady-state response. 
Nath and Ghosh [27] developed a systematic finite element method which 
eliminated the singularity in the stiffness matrices for mechanisms 
with Coriolis, tangential, and normal components of acceleration for a 
moving link. Also, they [28] used a harmonic series expressions for 
the element displacements in terms of the crank angle to obtain 
directly the steady-state displacements and stresses within the elastic 
links of a mechanima. Sadler, Mayne, and Fan [29-30] investigated the
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Influence of systen parameters. Including both motor properties and 
mechanism properties, on various performance characteristics. They 
performed simulation studies on two different four-bar mechanisms using 
separately excited d.c. motors for actuation and carried out dynamic 
time-response analyses. They presented nondimensional graphs idiich 
give generalized, quantitative information for the design of 
actuator-mechanism systems.

In 1981, Qeghorn, Fenton, and Tabarrok C313 presented a refined 
mathematical, finite-element model of a four-bar mechanism by assuming 

axial rigidity in the elements to reduce the number of global 
equations. Means and Neon C32] dealt wLth studies of longitudinal, 
transverse, and rotary responses of a non-uniform elastic coupler for 
various speeds of a rigid crank of a slider-crank mechanism. Their 
study indicated that the rotary inertia did not have any notable effect 
on the dynamic response, but shear deformation could be a factor in the 
transverse deformation at a high crank speed. Zuccaro, Bengisu, and 
Thompson C333 examined the dynamic response of a four-bar mechanism 
fabricated from a graphite-epoxy composite with a unidirectional ply, 
and presented the variations of dynamic strain with crank angles for 
constant crank rotation. Sutherland C343 proposed a general procedure 
for the dynamic analysis of flexible mechanisms, based on the 
superposition of elastic-body motions on the gross rigid-body motions.
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In 1982, Ardayflo C351, and Zhu and Chen [47] studied the dynamic 

stability of an eccentric slider crank mechanism with elastic effects 
at both joints of the coupler and illustrated the unstable frequency 
region with respect to crank speed. Badlani and Midha C361 presented 
the effect of internal material damping on the dynamic response of a 
slider-crank mechanism. They assumed a linear viscoelastic model for 
the connecting rod and demonstrated that the viscoelastic material 
dai îng could have significant influence, both favorable and adverse. 
Constantinou and Tadjbakhsh [38-39] investigated the dynamic 
instability of the elastic coupler of a four-bar mechanism and 
presented the unstable regions for a variety of geometric parameters.

Jaskie and Kohli [40] in 1982 solved the non-linear equations for 
the support vibrations of a slider-crank mechanism. They found that 
the support deflections predicted by linear and nonlinear theories 
differed by less than 5 percent and an increase in the flexibility of 
the supports decreased the velocity variation of the crank. Means [41] 
studied the dynamic bearing loads and the slider wall reaction of a 
slider-crank mechanism with an elastic coupler. The results showed 
that the bearing loads with an elastic coupler might be considerably 
higher in both magnitude and frequency than those coqsuted using rigid 
body analyses. Shabana and Nehage [42] presented a method for the 
transient, dynamic analysis of mechanical systems coufosed of 
interconnected rigid- and flexible-bodies under large angular 
displacements, and simulated a flexible mechanical linkage and a 
tracked vehicle.
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Stamps and Bagci C433 investigated, analytically and 

experimentally, the dynamic behavior of planar mechanisms idth offset 
geometry for dynamic stress and critical speed levels. The 
experimental and analytical results showed that at the critical speeds 
the mechanism was subjected to shock loading depending on the 
acceleration history of the links. Sunada and Dubowsky C443 presented 
a method for analyzing the conqplete dynamic behavior of industrial 
robotic manipulators with complex-shaped flexible links, including 
effects of manipulators control systems and actuators. They 
demonstrated that link flexibility has a significant impact on system 
performance and stability. Sung and Thompson [45] examined the effect 
of sinusoidal foundation motion upon the response of a flexible 
four-bar mechanism. They used a displacement based finite-element 
model for the analytical solution, and obtained experimental data for a 
system fabricated from aluminum links and also links fabricated from a 
graphite-epoxy composite. These simulations demonstrated the 
undesirable effects of support motion on the response of the system as 
evidenced by the larger amplitudes of vibration with higher stress 
levels. Thompson, Zuccaro, Gamache, and Gandhi C463 examined a 
flexible planar four-bar linkage fabricated from a fiber-reinforced 
material, using the same experimental apparatus as was used in 
Reference [33]. The studies showed that an elastic continuum model 
might be eiq>loyed to predict the dynamic response of a linkage made 
from a unidirectional fiber-reinforced material.
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In 1983, Qeghorn and Konzelnan [48] compared the effects of 

various beam elements on finite-element models used In flexible 
mechanisms. The results showed that the convergence was more rapid 
when qulntlc rather than cubic polynomials were employed for free 
vibrational responses of a stationary mechanism. In 1984, Bagci C49] 
presented a flexural flnlte-llne element method for 
klneto-ela stodynamlc as well as kineto-elastostatic studies of 
Industrial, planar, and three-dimensional linkages and robots. 
Garcla-Reynoso and Bearing C50] developed a mathematical model for the 
linearized vibrations of a four-bar linkage with a flexible rocker-llnk 
and flexible Input and output shafts. They found that the flexibility 
In the driving- and driven-shafts had a significant Influence on the 
system response. Shabana [51] modeled Inertia properties of flexible 
components with large angular rotations for a slider-crank mechanism. 
He evaluated the flexibility mass matrix based on a 
dlstrlbuted-parameter approach and Inertia coupling based on a 
luiq»ed-mass technique.

Ihoag)son, Sung, and McGrath in 1984 presented a variational method 
for the coupled thermoelastic response of planar flexible mechanism 
system subjected to both mechanical and thermal loadings [52] and for 
the nonlinear finite element analysis of multiloop planar mechanisms 
comprised of elastic bodies connected by revolute or slider joints 
[54]. And Thoopson, Sung, Crouley, and Cucclo [53] used a commercial 
cosqposlte laminate as a coupler link of a flexible four-bar linkages In 
their experimental comparative study. The experimental results
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demonstrated that composite-linked mechanisms had responses superior to 
those of comparable mechanisms manufactured from commercial metals, and 
that the dynamic behavior Is governed by the stiffness to density ratio 
of the link material.

1.2.2 Computer-Aided Klnematlc/Dynamlc Analysis and Synthesis 
Programs for Rigid Body Mechanisms

The kinematic analysis of a mechanical system Is achieved by 

solving the kinematic equations of constraint. The equations of 
constraint may be established In matrix or vector form, either from the
types of rigid constraints at the connecting joints, or from the

conditions of closure for each of the connecting loops. For a dynamic 
analysis, the second-order differential equations can be easily
obtained by taking derivatives of the algebraic equations of 
constraint.

The dynamic analysis of a given system of several Interconnected 
rigid bodies Involves the determination of the unknown accelerations, 
forces, and torques. Generally there are two basic classes of dynamic 
problems: dvnamlc motion analysis and dynamic force analysis. The
dynamics of a system of rigid bodies connected by kinematic pairs may. 
In general, be described by a set of nonlinear ordinary differential 
equations consisting of the dynamic equations of motion and the
kinematic equations of constraint.
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In the case of a dynamic motion analysis, the externally applied 

forces are specified, the reaction forces and the accelerations are 
calculated, and the accelerations are then integrated to determine the 
required velocities and displacements. Conversely, in the case of a 
dynamic force analysis, the necessary input motions are specified; the 
kinematic analysis of the system determines the displacements, 
velocities, and accelerations of the moving members as a function of 
the input motion; and the equations of motion determine the active and 
reactive unknown forces.

Interactive computer-aided analysis/design of mechanical systems 
has recently been undergoing an evolution due to highly efficient 
computer graphics. The industrial iiqplementation of state-of-the-art 
analytical developments in mechanisms has been facilitated by 
computer-aided design packages because these rigid-body mechanism 
analysis/synthesis programs dramatically reduce the time required for 
linkage design. A comprehensive biblography of these programs may be 
found in the articles by Ardayfio [65] in 1961 and Ardayfio, Hittler, 
and Park [77] in 1984. In the U.S.A., these computer-aided 

analysis/synthesis programs are ADAMS [61-62], IXtAM [58], IMP [57], 
KINSYN [63], KINANL [67], RECSYN [68-69], KADRH [64], DADS [79], and 
FORSS [66, 71-72, 75]. Also packages from the international
literature, such as KOGEAN and K06E0P (Germany), LINKE (Canada), TADSOL 
(Netherland), KIDYAN (Czechoslovakia), and MLINK (Italy), have been 
described [65, 77].
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Orlandea, Chace, and Calahan [61-62] developed sparse matrix and 

stiff integrated numerical algorithms, which can be used for the 
simulation of electrical circuits and three-dimensional mechanical 
dynamic system. These algorithms can efficiently solve large sets of 
sparse linear equations and avoid the numerical instability associated 
with widely separated eigenvalues. Thus, the computer program ADAMS 
(Automatic Dynamic Analysis pf Mechanical Systems) developed by 
implementing the algorithms can be used for simulation of 
three-dimensional mechanical systems. Advantages of ADAMS include the 
conditions that the necessary equations can be formulated directly from 
the connection data, and all angular and displacement variables are 
retained as solution variables. Also all joint reaction forces are 
explicit solution variables, and therefore the formulation is 
compatible with the continuum mechanics approach to internal stress 
analysis. As disadvantages, time is wasted in solving for variables of 
no interest to the designer.

In DRAM (Dynamic Response of Articulated Machinery), Smith, Chace, 
and Rubens [58] developed a technique for automatically generating a 
mathematical model for a planar mechanical system with Lagrange's 
equation. The technique used the elements of graph theory which were 
developed for electrical networks. The program DRAM requires three 
basic identifications to automate the generation of the differential 
equations appropriate to the physical system being modeled. These are 
the paths from ground to the center of mass of each part, the 
independent closed loops of the parts and the contacts, and the line of
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action of each applied force. Once, the solution procedure is 
formulated in matrix form; the system of equations is solved for the 
second-order acceleration terms and the Lagrange multipliers; the 
reaction forces are then computed; the second-order terms are 
integrated using initial conditions which are part of the input data. 
The loop is cycled through until the time specified by the user has 
been reached.

Sheth and Uicker [57] developed the computer program IMP 
(Integrated Mechanisms Program) fdiich can be used for automating the 
kinematic, static, and dynamic analysis of planar or spatial and 
aultiloop kinematic chains using a technique based on network theory 
and matrix methods. However, the program IMP requires a mechanism to 
be made entirely of rigid bodies (except for ideal springs) connected 
by kinematic pairs forming a closed kinematic chain. Also, one of the 
rigid bodies must remain fixed relative to some set of reference axes.

KADRM (Kinematic And Dynamic force Analysis of planar Mechanism) 

developed by Williams and Rupprecht C64] used a procedure based on 
three equations of equilibrium for each link in the mechanism. The 
free body diagrams included inertial forces based on D'Alembert's 
principle. The technique automatically formulates these equations into 
matrix form. Gaussian elimination is used for the joint constraint 
forces and driving input force or torque. The vector-loop equation 
approach is also used for the kinematic analysis.
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FCMtSS [66, 71-72, 75] Is an interactive c(»puter program for 

structurally and dimensionally synthesizing force systems to drive a 
mechanism for a desired motion time response and input-output forces. 
The program can be used for any planar one degree-of-freedcmi linkage, 
but a force analysis program and a kinematic analysis program must be 
used as a host to generate pre and post synthesis data.

Haug, Nehage, and Barman C79] developed the computer program DM3S 
rngnamir Analvsis and Design Systems) used a method of formulating and 
automatically integrating the equations of motion for dynamic analysis 
of general constrained systems, and a state space adjoint variable 
method for design sensitivity analysis extensively in optimal control 
and structural design optimization. Both dynamic analysis and design 

sensitivity formulations are automated and solved using a stiff 
numerical integration method for mixed differential equations. The 
program EADS can treat mechanical systems with intermittent motion to 
simulate jump conditions.

KINANL developed by Kinzel et al. [67] is a graphics-oriented, 
interactive computer program for the kinematic analysis of planar 
mechanisms using a modular approach. This approach was developed by 
Suh and Radcliff [105] to obtain position, velocity, and acceleration 
equations for the component modules: rigid body, oscillating slider, 
two-link dyad, and rotating guide for driving crank input. In KINANL, 
the technique is extended by incorporating dual-slider, slider-crank, 
and inverted slider-crank modules, permitting mechanisms to be analyzed 
fdien a slider input is involved. Also KINANL uses an extension of
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Goodman'8 Inversion technique to make the cooq>onent approach applicable 
to most planar mechanisms with lower pairs.

KINSYN developed by Rubel and Kaufman [63] has both synthesis and 
analysis capabilities for planar, rigid four-bar linkages. An 
important capability of KINSYN is the post processor which gives the 
Grashof type, transmission angle, change points, the need for 
reassembly, and the ability to alter a mechanism's dimensions while 
animating its motion. Using synthesis capabilities coupled with the 
man-computer graphical interaction, planar four-bar, motion-generating 
mechanisms can be directly synthesized to guide a body through two, 
three, four, or five coplanar design positions. Also, all possible 
slider-crank inversions, and double-slide devices such as the scotch 
yokes and Cardanic mechanisms are designed at the same time. 
Immediately following the synthesizing of the mechanism, KINSYN 
analyzes the mechanism using a closed-form solution procedure for 
kinematic analysis, and animates the mechanism on the display screen.

RECSYN developed by Waldron [66-69] is a graphics-oriented, 
interactive computer program for the kinematic synthesis of planar 

mechanisms. It can design a four-bar linkage with its coupler passing 
through two, three, four, or five non-parallel positions while 
rectifying spurious and otherwise undesirable solutions. The program 
RECSYN uses numerical techniques eliminating solution failures due to 
numerical error or non-convergence and a closed-form solution 
procedure. An isqportant feature of RECSYN is the automatic 
rectification of cursor selected points to the nearest actual points of
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linear, circular, and cubic loci to Improve solution accuracy, and to 
reduce user strain.

In addition, as a technique for the kinematic analysis of planar 

mechanisms, Benedetto and Pennestrl [73] proposed a numerical method 
for approximate calculations of angular velocities and accelerations in 
planar mechanisms. Fallahl and Ragsdell £74] presented a numerical 
approach to the planar kinematic analysis. Sharma C76] formulated and 
analyzed kinematically general four-bar mechanisms and elliptical 
mechanisms on the microcomputer. Sparls and Nouroutsos £78] presented 

an Iterative matrix method for the kinematic analysis and the 
determination of the velocities and accelerations for planar mechanisms 
Incorporating rolling, sliding, and pivoting members with a single or 
multiple degrees of freedom.

Also the vector graphical, vector analytical, and matrix 
approaches are presented In most textbooks for the dynamic analysis of 
rigid-body mechanisms £101-106]. Gupta £59] formulated the 
Newton-Euler equations of motion for the dynamic analysis of multiloop 
systems. Bagci £60] Investigated the dynamic motion analysis of planar 
mechanisms with coulomb and viscous damping, via the joint force 
analysis. Bogcl and Abounasslf £70] developed an automated technique 
using Irregular line elements for the dynamic force, torque, stress and 
deflection analysis of single degree-of-freedom, multiloop, planar 
mechanisms. They also developed a finite-element based method for 
determining the gross-motlon response of planar mechanisms.
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1.2.3 Transfer Matrix Methods

Toward the middle of this century, very powerful analog and 
digital computers were developed, and engineers were encouraged to 
establish the methods that would reduce the number of sinplifying 
assumptions required to model and analyze mechanical systems. As part 
of this effort, the so-called matrix method of analysis of structures 
was introduced.

The ideas behind the matrix method are not new; they are closely 
associated with the principles set by Castigliano, Maxwell, and 
Huller-Breslau C953. The only reason that the matrix methods were not 
fully developed and utilized in the last century is because they 
involve the solution of large simultaneous equations. Even for a 
fairly small structure, the number of simultaneous equations may reach 
a point fdiere their solutions without computers would be totally 
impractical.

Basically there are three different types of matrix methods for 
analyzing structures, namely, stiffness (displacement), flexibility 
(force), and mixed matrix methods [89-95, 97-1003. Each method 
eventually involves the solution of simultaneous equations. The joint 
displacements are the unknown quantities in the stiffness method, 
member forces in the flexibility method, and both joint displacements 
and forces in the mixed method. The flexibility method is associated 
with the degree-of-indeterminacy of the structure and requires the 
solution of as many simultaneous equations as the number of unknowns.
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The stiffness method, on the other hand, does not depend on whether the 
structure Is determinate or Indeterminate, but on the total number of 
state variables In the system.

In addition to the previous classification of matrix methods, the 
transfer-matrlx method and the finite-element method are commonly used 
for structural analyses. These are based on the idea of breaking up a 
complicated system Into coiqponent parts which have sisgile elastic and 
dynamic properties that can be readily expressed In matrix form. These 
component matrices are considered as building blocks which, idien fitted 

together according to a set of predetermined rules. Include the static 
and dynamic properties of the entire system. The matrix formulation of 
these rules Is superbly adapted to digital computers.

A common type of structural system occurlng In engineering 
practice consists of a number of elements linked together, end to end. 
In the form of a chain. The transfer matrix method is Ideally suited 
for such systems, because only successive matrix multiplications are 
necessary to couple the elements together. Intermediate conditions and 
the number of degrees-of-freedom present no difficulty since they have 
no effect on the order of the transfer matrix required. In fact, the
size Is dependent only on the order of the differential equations
governing the behavior of the elements of the system.

A type of transfer matrix method, called the Holzer transfer
matrix method C953, can effectively carry out the dynamic analysis of 
one-dlmenslonal system. This system Involves one degree-of-freedom per
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node. The matrices used In the transfer-matrlx method represent the 
forces and displacements at one section of a chain-type structure in 
terms of the corresponding forces and displacements at the adjacent 
section. Thus, the coa l̂ete force and displacement profile of the 
structure can be obtained from a sequence of transfer matrix 
multiplications. A second type of transfer matrix method is an 
extension of the Holzer method to the analysis of flexible systems 
xAich have two degree-of-freedc» per node. This method was first 
suggested by Myklestad [95], and is usually called the Holzer-Nyklestad 
method. In this method, the mass is assumed to be concentrated at a 
series of points along the axis, and the degrees of freedom of the 
structure are the lateral translation and the rotation at these points. 
The beam segments connecting the mass points are assumed to be 
weightless and of constant stiffness.

Of the present-day transfer matrix methods for the siaqple systems 
requiring a vibration analysis or beam deflection analysis, the mixed 
transfer matrix method is most commonly used. The mixed transfer 
matrix method consists of single degree-of-freedom systems and two 
degrees-of-freedom systems. A single degree-of-freedom system allows 
only one directional displacement, usually in the longitudinal 
direction, and a two degrees-of-freedom system allows a displacement in 
the transverse direction and a rotational displacement.
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In the transfer matrix methods for structure analysis, two 

methods, a stiffness (displacament) matrix method and a flexibility 
(force) matrix method, are most commonly used. Both methods satisfy 
the force equilibrium equations and the displacement conqpatibility 

conditions, but not in the same order. In the stiffness method, 
force-equilibrium is satisfied first, and in the flexibility method, 
displacement-compatibility is satisfied first. The choice of one 
method over the other depends upon the structure as well as the 
analyst's preference. Each method eventually involves the solution of 
simultaneous equations in #Aich the nodal displacements are the unknown 
quantities in the stiffness method and the member forces in the 
flexibility method.

1.2.4 Discussion of Review

Generally, most of the available computer programs for dynamic 
analyses have been established for rigid-body mechanisms, and they use 
specific techniques to automately determine the equilibrium equations 
and to reformulate them into matrix form. Also they include inertia 
forces due to the rigid-body motions of the mechanism by applying 
D'Alembert's principle.

As a common dynamic analysis method for rigid-body mechanisms, the 
traditional vector graphical method can give poor accuracy. The vector 
analytical method gives accurate results using vectorial calculations 
instead of graphical manipulations for the resultant forces and
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moments. However, many of the vectorial calculations are tedious and 

can induce calculation errors, and they do not easily lend themselves 
to the analysis of flexible linkages. In the "free-body" diagram 
approach, three (or six for the spatial case) equilibrium equations 
including the inertia forces and moments are written for each link. 
Then, all of the equations for the system are expressed in matrix form. 
The advantage of this approach is that the equations of motion are 
quickly derived; however, the disadvantage is the need for a large 
number of matrix manipulations in order to solve the equations, and the 
total number of elements of the matrix is greatly increased by the 
number of links and degrees-of-freedom.

In addition, although no method can fully analyze the 
kineto-elastodynamic effects of general flexible mechanisms, during the 
last decade, the finite element method has been the most popular for 
the dynamic analysis of high-speed flexible mechanisms. For a 
flexible-body dynamic analysis, a mechanism can be thought of as an 
instantaneous structure, which is frozen at a particular instant by 
removing its degrees-of-freedom through the application of added 

mechanical constraints. Then, the same finite-element procedures used 
in structural analysis are applied. But, the finite-element method has 
a distinct disadvantage; the storage requirements for the system matrix 
rapidly increases with the numbers of nodes and degrees-of-freedom per 
node.
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The transfer matrix method does not appear to have been generally 

applied to mechanisms for static and/or dynamic force analyses. 
However, it has a number of advantages over the other methods, 
especially lAen system flexibilities are concerned. The method is very 
compact making it ideally suited to microcoî >uters. It can also 
involve fewer calculations than does the finite-element method, and 
nonlinearities are easy to incorporate.

The purpose of the research described in this dissertation is to 
apply the transfer matrix method to multiloop flexible mechanisms and 
structures. This will include developing an iterative procedure to 
accomodate nonlinearities and the necessary transfer matrices to 
accomodate the special geometries arising in mechanisms. Also, a 

semiautomatic procedure will be established for applying the procedure 
to mechanisms. This will involve the development of the algorithms 
necessary for incorporating the procedure into an interactive analysis 
program.

1.3 Overview of Dissertation

In Chapter 2, the kinematic modular approach is presented for 
position and acceleration analyses, and eight types of components are 

identified. All of the formulations for the rigid-body kinematic 
analysis of the components are given in Appendix A.



25
Chapter 3 derives the transfer matrices required in an iterative 

transfer-matrix method; field, point, transformation, spring, 
rigid-body inertial, elastic-body inertial, and branch matrices. 
Chapter 4 presents an approximate method for large-deflection analyses 
and gives comparisons with exact solutions.

Chapter 5 derives the transfer matrix loop equations for the main 
loop systems and subloop systems. Chapter 6 explains the fundamental 
procedure for applying the iterative transfer-matrix method to 
kineto-elastostatic and dynamic analyses of flexible mechanisms and 
structures.

Chapter 7 briefly discusses the structure of the program CASDAH. 
Tree structure and storage requirements for each routine in the program 
CASDAH are presented in Appendix E. Six samples are analyzed in 
Chapter 6. The samples include a multiloop mechanism for static 
analyses under small- and large-deflection assumptions; a mechanism for 
a quasi-static analysis and for a time-domain analysis; a caltilever 
beam with end loads; and a stepped beam on elastic supports for 
structural analysis. The solution details for the static analysis 
under small-deflection assumption are presented in Appendix B; the 
solutions for the quasi-static analysis are given in Appendix C; the 
solutions for the stepped beam analysis are given in Appendix D. 
Finally, Chapter 9 presents the summary from the dissertation.



CHAPTER II

FUNDAMENTALS FOR THE KINEMATIC LOOP ANALYSES

2.1 Introduction

A mechanism is a mechanical device that has the purpose of 
transferring notion and/or force from a source to an output, and 
consists of links fdiich are connected by joints (revolutes or prismatic 
joints). The rigid-body configuration of the mechanism can be 
considered as an 'instantaneous structure' capable of undergoing both 
rigid-body and elastic notions. Because the mechanism forces are a 
function of the link accelerations, a kinematic analysis must be 
considered prior to any force analysis. This involves determining the 
positions, velocities, and accelerations of every iiqiortant point in 
the mechanism.

Most multiloop mechanisms can be decongiosed into several 
coiqponents. The kinematic properties (position, velocity, and 
acceleration) of every node can then be determined from the kinematic 
analyses of the corresponding coaQtonent modules by a closed-form 
solution procedure.

In Section 2.2 of this chapter, eight types of component modules 
are identified for the kinematic analyses. Section 2.3 gives the 
positions and accelerations of every node in an exasqple multiloop 
mechanism. All formulations for the kinematic analyses of the
con̂ onent modules are presented in Appendix A.

26
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2.2 Types of Kinematic Conqponent Modules

Host planar mechanisms which have lower pairs and which can be 
analyzed directly using classical graphical techniques can be shown to 
be assembled from one or more of the eight basic coiqionents shown in 
Fig. (2.1). The first component as shown in Fig. (2.1-1) is a simple 
crank with one end completely defined. The pivot point and all other 
points of interest on the components are called nodes. The crank has 
two nodes (1 and 2). This component is always a driver so that the 
angular position and velocity are assumed to be known.

Component 2 shown in Fig. (2.1-2) is a dyad made up of two links 
connected together by a revolute joint. This coBQ>onent together with 
the crank forms a four-bar linkage. For the dyad, it is assumed that 
the kinematic properties of node 1 are known. The kinematic properties 

for nodes 2 and 3 can then be computed directly if the configuration is 
specified and the lengths of links are given.

The third component shown in Fig. (2.1-3) is a slider which 
consists of a slider moving on a rod or ground. Here, it is assumed 
that the kinematic properties of node 1 are known and the azimuth angle 
of the sliding line is given. Then, the kinematic properties for node 
2 can be calculated directly.

The fourth component shown in Fig. (2.1-4) is a rigid body defined 
by nodes 1, 2, and 3. Given the kinematic properties for nodes 1 and 
2, the kinematic properties for node 3 can be determined from the 
configuration of the rigid body.
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FIGURE 2.1 Types of Component Nodules
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The fifth component shown in Fig. (2.1-5) is an oscillating slider 

which consists of a dyad and a slider moving on a rod. Here, it is 
assumed that the kinematic properties of nodes 1 and 2 are known. 
Given the known kinematic quantities for these nodes and the 
configuration of the component, the kinematic properties of nodes 3, 4, 
and 5 are calculated directly.

The sixth component shown in fig. (2.1-6) is a special case of the 
fifth component. Here, a slider and a revolute are coincident at node 
3. Given the kinematic quantities for nodes 1 and 2, the kinematic 
properties of nodes 3 and 4 can be computed.

The seventh component given in Fig. (2.1-7) is an oscillating 
slider which consists of a slider moving on a rod which has an 
eccentricity. Here, it is assumed that the kinematic properties of 

node 1 are known. The kinematic quantities of nodes 2, 3, 4, and 5 are 
directly calculated from the known configuration of the comqwnent.

The final component in Fig. (2.1-8) is a special case of the 
seventh component and is the standard slider crank with a slider input. 

The slider moves on the link and the kinematic quantities of the slider 
are assumed known. The kinematic properties of nodes 2, 3, and 4 can 
be determined. The formulations for the kinematic analyses of each 
module are given in Appendix A.
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2.3 An Example of The Kinematic Analysis

A mechanism can be decoiqposed Into several components as shown In
Fig. (2.2). If the link between nodes 1 and 2 Is an Input link, the
kinematic properties (position, velocity, and acceleration) of node 2 
In Fig. (2.2b) can be detenmlned from the given geoimetry and angular 
velocity. A component Involving nodes 2, 4, and 6 forms a dyad In 
Fig. (2.2c), and the kinematic properties of nodes 4 and 6 are also 
detenmlned from the known position of node 2. As one rigid body In
Fig. (2.2d), the kinematic properties of node 3 are calculated from the
conditions of nodes 2 and 4. After the kinematic properties of node 3 
are determined, the properties of nodes 7 and 6 are calculated from the 
dyad connected by nodes 3, 7, and 8 In Fig. (2.2e). Finally, a dyad 
with a slider formed by nodes 4, 5, 6, 9, and 10 In Fig. (2.2f) can be 
analyzed from the known properties of nodes 4 and 6. Thus, all of the 
kinematic properties of every node In the mechanism In Fig. (2.2a) can 
be detenmlned from the corresponding component modular analyses.

The mechanism In Fig. (2.2a) consists of five conqponents. 
Fig. (2.3) shows the procedure for selecting each comgwnent module In 
the computer program (ASDAN. Table 2.1 gives the positions and 
accelerations of every node for each position, and Table 2.2 shows the 
angular accelerations of the links.
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FIGURE 2.2 Components of A Multiloop Mechanism
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TABLE 2.1 Positions and Accelerations of nodes in Fig. (2.2)

TOTAL NODES = 10
ROTATING SPEED = 0.2000E+02 rad/sec
INPUT-UNK ANGLE = 0.7500E+02 degrees
UNITS = BRITISH (inches, inch/sec/sec)

NODE POSITIONS ACCELERATIONS SLIDING ACC.
NO HORZ. VERT. HORZ. VERT. HORZ. VERT.
1 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00
2 0.1294E+01 0.4830E+01 -.5176E+03 -.1932E+04
3 0.7789E+01 0.8580E+01 -.9894E+03 -.1174E+04
4 0.1428E+02 0.1233E+02 -.1381E+04 -.5556E+03
5 0.1428E+02 0.6330E+01 -.6905E+03 -.2778E+03 -,227SE+03 -.4643E+03
6 0.1428E+02 0.3296E+00 O.OOOOE+00 O.OOOOE+00
7 0.1928E+02 0.6330E+01 -.4590E+03 O.llllE+03
8 0.1928E+02 0.2133E+02 O.OOOOE+00 O.OOOOE+00
9 0.2789E+01 0.1724E+02 0.3700E+03 -.7748E+03
10 -.5871E+01 0.1224E+02 O.OOOOE+00 O.OOOOE+00

TABLE 2.2 Angular Accelerations of Links in Fig. (2.2)

LINK BETWEEN ANGULAR
NODE NODE ACC.
1 2 O.OOOOE+00
2 3 0.9755E+02
3 4 0.9755E+02
4 5 0.1151E+03
5 6 0.1151E+03
5 7 0.1151E+03
7 8 -0.3060E+02
3 9 -0.1377E+03
9 10 -0.8560E+02



CHAPTER III
FUNDAMENTALS OF ITERATIVE TRANSFER MATRIX METHOD

3.1 Introduction

The transfer-natrlz method requires that a system be modeled as an 
assembly of elements in the same manner as does the finlte-element 
method. The elements are connected together at nodes. The forces and 
displacements at one end of an element are related to those at the 
other end by a matrix of elastic properties called a field matrix. The 
forces and displacements between adjacent elements and the external 
forces at the node are related through a second matrix called a point 
matrix. The forces at nodes connected to a spring are related to the 
kinematic displacements and elastic displacements by a spring matrix. 
The element inertial properties due to the rigid-body kinematic 
accelerations are included in a rigid-body inertial matrix, idiich is 
used to analyze quasi-static responses. The inertial properties due to 
the link elastic vibrations are incorporated in an elastic-body 
inertial matrix. It is used to determine time-domain responses of 
flexible systems. If more than two elements come together at a point 
as is the case with multiloop mechanisms, the forces and displacements 
among the nodes are related through a branch matrix. Each element will 
have its own coordinate system relative to which the elastic properties 
and force-displacement relationships are defined. To transfer 
quantities from one coordinate system to another, a coordinate 
transformation matrix is required. Therefore, for the procedure

36
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developed here, a total of seven different transfer matrices (field, 
point, spring, rigid-body inertial, elastic-body inertial, branching, 
and transformation) must be developed. For a planar model, three 
degree-of-freedom (two translations, one rotation) per node are 
required

All of the necessary transfer matrices used in the iterative 
transfer matrix method have only 7X7 elements. Thus, the method 
requires much less storages than those of the finite-element techniques 
or finite-difference techniques. Also this method is simple and 
efficient to program on minicomputers and does not need any 
transformation of the developed transfer matrices into either stiffness 
matrices or flexibility matrices for a structural analysis. Previous 
transfer matrix methods in References [89-95] and finite element 
methods in References [96-100] must derive the matrices corresponding 
to either the force-matrix method or the displacement-matrix method.

The necessary transfer matrices for the iterative transfer-matrix 
method are derived in Section 3.3. Then, the solutions determined from 
the developed method are compared with previous published solutions 
[7, 9, 11-12, 17] in Section 3.4.



383.2 Nomenclature

A Area of a given cross section

E Modulus of elasticity
I Area moment of inertia
K Coefficient = Jp/EI

L Length of a section
m Mass of a luiqped-mass
M Moment
N Internal force in the axial direction
V Internal force in the transverse direction
6 Slope
P Average axial force on a segment

t Time
u Displacement in the axial direction
H Displacement in the transverse direction
X Position axially along the section
p Mass per unit length
V Poisson's ratio
CB3 Branch matrix
CF3 Field matrix
[M3 Inertial matrix
CP3 Point matrix
[S3 Spring matrix
[T3 Transformation matrix
[S3 State vector = [u, w, 0, M, V, N3̂
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3.3 Derivation of Transfer Matrices

The governing differential equations of motion are discussed in 
this section. The field matrix, the point matrix, the spring matrix, 
the rigid-body and elastic-body inertial matrices, and the 
transformation matrix are derived. Types of branches commonly used in 
mechanisms are given and the branch matrix is discussed.

The equations developed are based on the following assusq»tions:

1. The links of the mechanism move in one plane (planar mechanisms).

2. Beam-shaped links in a mechanism correspond to Euler-Bernoulli 
beams theory, idiere rotary inertia effects are neglected.

3. Plate-shaped links in a mechanism correspond to rigid bodies, 
because the elastic deflections of the links are negligible.

4. Deflections (slopes) of an element relative to its own local 
coordinate system are small.

5. Axial displacements due to the transverse loads are negligible.

6. No teiqperature gradients exist in members.

7. Homogeneous and isotropic elastic materials are used.

6. Friction is negligible.
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3.3.1 Field Matrices

A system can be discretized into many elegants connected together 
at the nodes. The forces and displacements at one node of an element 
are related to those at the other node by an elastic field matrix. 
Thus, the elastic field matrix contains the geometrical dimensions and 
elastic properties of the element. Furthermore, the elastic field 
matrices are different depending on the axial forces on the elements. 
There may be no axial force, or the force may be coaqpresslve or 
tensile.

For small-deflection analyses, a system Is assumed to be linear, 
so that It can be solved by superposing the axial displacements due to 
the axial forces on the transverse displacements due to the transverse 
forces. The small-deflectlon analyses can be used when the maximum 
change In slope at any point In the system Is less than about 10 
degrees relative to local coordinate system. Then, the longitudinal 
displacement due to the transverse deflection Is negligible and the 
system Is linear. Fig. (3.1a) shows a massless beam relative to the 
local coordinate system. The local coordinate system Is Inclined with 
an angle 9 relative to the global X-axls, and a distributed loading 
(q) Is present In the vertical direction of the global coordinate 
system.
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(a) A Beam Relative to The Local Coordinate System

q CO» (j>

A |q*8in<t>
M+dM

p+dP

(b) Forces on A Element 

FIGURE 3.1 A Beam on Two Simple Supports
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The relationship among the loads, internal forces, and bending 

moments are obtained from the equilibrium of the element in 
Fig. (3.1b). Summing forces in the y-direction gives

- V + q cos ̂  • dx + (V + dV) = 0

or
dV

q«cos 4* = - — (a) 
dx

Taking moment about a center point at the right side gives

dx dy dx
M + q*cos<t>*dx—  + V dx - (M + dM) + P*— dx - q sin* dx—  = 0

2 dx 2

If second order tenss are neglected, the equation becomes 

dM dy
yf s p»———  (b)

dx dx

Here, the directions for V and P are perpendicular and parallel, 
respectively, to the local x-axis.

If the effects of shortening deformations and shortening of the 
beam axis are neglected, the moment curvature relationship can be 

written as

d*y
El — —— = — M (c)
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Combining Egg. (a), (b), and (c), the differential equation of the beam
gives

d*y d*y
El — + p — ——— = g. cos (3.1)

dx̂  dx*

The general solution to the equation depends on the sign of the 
axial force (P). If P is tensile (P > 0), the solution is

Q-x*
y = d'Sinh Kx + C2 cosh Kx + C3 x + C4 + -----  (3.2)

2 |P|

fdiere d, C2, C3, and C4 are constants to be determined from the 
boundary conditions.

If P is compressive (P < 0), the solution bectmes

Q-x*y = Cl sin Kx + C2 cos Kx + C3 x + C4 + ------ (3.3)
2-lPl

and if P is zero (P = 0), the solution becomes

X® X* 0'X*
y = d * “ “ + C2*— — + C3‘X + C4 + — (3.4)

6 2 24 EI

In each case.

f WV El
and (3.5)

Q = q-co8<̂
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FIGURE 3.2 End Forces and Displacements for 
A massless Beam with Axial Forces
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Note that Eqs. (3.2), (3.3), and (3.4) involve a separate set of C's. 
Based on Fig. (3.2), the boundary conditions at the left end of the 
segment (z - 0) can be written as

y — w (3.6)
dy
—  ® “ ®  i-i (3.7)dx

El — - = ^ 1-1 (3.8)
dx^
d®y

El --- = - Vj.j (3.9)

If these conditions are substituted into Eqs. (3.2), (3.3), and (3.4), 
and the results are simplified to eliminate the constants, expressions 
for the deflection, slope, moment, and shear force at the right point 
of the segment (x = 1) can be written as follows:

For a tensile force (P > 0), the state equations are:

sinh KL 1 - cosh KL L sihh KL
W j  ■ **1-1 “ “””“ “ *6 + (- - -— — — )*Vj_j

K P P KP
Q Î -I?

+ — ——r » ( cosh KL — 1 — — ———) 
EUT 2

K'sihh KL cosh KL - 1
6j = cosh KL*61-1 + — — ----'^1-1 *■ (------ — ) *

+ — — (KL - sinh KL) (3.10)
EIK
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P'Sinh KL sinh KL

* — — —  ' + cosh KL'Mi_i + — — —  «Vj-i
K K

Q- — -• (cosh KL ~ 1)
IT

Vi = - CL

For compressive force (P < 0)r the equations are:

sin KL cos KL - 1 sin KL L
II s w - — — '8 4_i + —  , +-(--------  -) V, ,

K P KP P
Q KP^

- — — T (1 — COS KL —EUT 2
K'Sin KL 1 - cos KL

©1 = cos KL + -------*^1-1
P P

Q- -— = (KL - sin KL) (3.11)Enr
P sin KL sin KL

cos KL " M + — — —  •Vj.i

- — - *(1 - cos KL)
K*

Vi - V,_, - QL

Finally, the state equations for no axial force (P = 0) are as follows:

1? L® Qli*
"i = "i_i - l*-0i-i -  Mi_i -  Vj.j + ----

2EI 6EI 24EI
L L® QL®

® i  » ®i_i +  Mi-1 +  *Vi-i --------
E'l 2EI 6EI (3.12)
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Mj = M 1-1 + L'Vj.j - ---2
Vj = Vi_i -  QL

Next, the force-displacement relationships for the axial direction 
can be determined as follows:

L qL̂ 'Sin <t>
u s u-, + -N. , - ---------

EA EA
(3.13)

Hi = Nil + qL*sin<̂

fdiere u = displacement in the x-direction,
H = displacement in the y-direction,
6 = slope relative to the local coordinate system,
H = moment,
V = internal force in the y-direction,
N = internal force in the x-direction,
q = uniform distributed load on a segment,

= angle between the two coordinate systems, 
and L = length of a segment.

These equations can be represented in matrix form as given in the 
following section.
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3.3.1.1 Elastic Field Matrices

When no axial force is loaded on the section (P = 0), the elastic 
field matrix equation is:

u 1 0 0 0 0 L/EA FI " u
N 0 1 “L -L/2EI -L/6EI 0 F2 H
e 0 0 1 L/EI L/2EI 0 F3 e
M S 0 0 0 1 L 0 F4 • M
V 0 0 0 0 1 0 F5 V
N 0 0 0 0 0 1 F6 N
1 i 0 0 0 0 0 0 1 . 1

(3.14)

i-1

When the axial force in a segment is tensile (P > 0), the elastic field 
matrix equation is

u 1 0 0 0 0 L/EA FI u

A
sinh KL 1-cosh KL L sinh KL

A F2H V JL
K P P K P

V N

e 0 0 cosh KL
K'Sinh KL 

P
cosh KL - 1 

P
0 F3 e

M S 0 0
P'Sinh KL 

K
cosh KL

sinh KL 
K

0 F4 • M (3.15)

V 0 0 0 0 1 0 F5 V

N 0 0 0 0 0 1 F6 N
1 i ,0 0 0 0 0 0 1 , ,1, i-1
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and the elastic field matrix equation for a compressive axial force 
(P < 0) Is

u

N

6

M

V
N
1 1

1 0 

0 1

0 0

0 0 
sin KL cos KL -1 

P
K sin KL

K

cos KL

- P sin KL 
K 
0 
0 
0

0 0 
0 0 
0 0

p

COS KL

0
0
0

sin KL L 
KP P 

1 - cos KL 
P

sin KL 
K 
1 
0 
0

L/EA FI 

0 F2

0 F3

F4

F5
F6
1

0
1
0

u

e

(3.16)

1-1

idiere K =>/iPI /(El) and IPI Is the magnitude of the force In the 
longitudinal direction determined from the previous Iteration. For a 
Hide cross-section (plane strain), K = ̂ |PI(1-v*)/(EI) Is used.



50
The seventh column for no axial force (P = 0) in the segment 

becomes

n qlr sin $
EA

F2
qlf'COS #
24 El

F3
qL®cos«
6 El

F4
2qL cos*
2

F5 - qL"cos $
F6 qL'Sin*

(3.17)

the seventh column for the tensile axial force (P > 0) in the segment 
is

FI

F2

F3

F4

F5
F6

» ^

2qL'Sin*
EA

«■2,2q.cos4 K L
— — —-"(cosh KL - 1 — — — ) 
EDT 2

q cos $
—— — '(KL - sinh KL) 
EIK®

q.cos $
- — — • ( cosh KL — 1) 

K®
— qL* cos $ 

qL"sin $

(3.18)
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and the seventh column for the compressive axial force (P < 0) in the 
segment is

Fl"

F2

F3
X

F4

F5
F6

qL> sin *
Eh

2 2q- cos *
— —— ———— (1 — cos KL “ —— ——)

EIK^ 2
q .cos *

- — — ’(KL - sin KL) 
En®

q .cos *
- — -—  (1 - COS KL) 

K®
- qL- cos♦ 

qL'Sin*

(3.19)

3.3.1.2 Initial Field Matrix

When the systoa in Fig. (3.1) is analyzed, axial forces on every 
element must be known or estimated initially because the field 
matrices depend on the axial forces. Since the axial forces on the 
elements are unknown during the initial iteration, initial values for 
the axial forces must be estimated in order to use the successive 
iteration method for the flexible-body analysis. For the first 
iteration, all of the axial forces are set to zero, i.e., no effects 
due to the axial forces are included in the field matrix. The initial 
field matrices can then be determined from Eq. (3.14). Then, a
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transfer matrix equation can be built using the Initial field matrices 
and solved for the internal forces at every node of the member. For 
the next Iteration, the elastic field matrices can be calculated from 
Eqs. (3.14) through (3.19) using the axial forces determined at the 
previous iteration.

3.3.1.3 Field Matrix for Rigid-Body Element

Frequently plate-shaped elements are connected with beam-shaped 
links in a mechanism as shown In Fig. (3.3a). In a flexlble-body 
analysis, the elastic deflections In the plate-shaped links can be 
neglected, because the In-plane stiffnesses of the plates are usually 
much higher than those of the beams under In-plane forces.

A plate-element ABC in Fig. (3.3a) has three rlgid-body beam 
elements as shown In Fig. (3.3b), where point D Is the center of mass 
of the plate. The motion of rlgld-body links can be represented by the 
rlgid-body translational displacements followed by a rotation as shown 
in Fig. (3.3b).

To derive the field matrix for a rlgld-body element, let link AD 
rotate an angle 6 about point A as shown in Fig. (3.3c). The local 
coordinate system Is set and then u and w is the displacements due to 
the rotation of the rlgld-body element with small deflections. From 
the geometric relationships, the displacements are as follows:
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(a) A mechanism with Two Plate-Shaped Elements

(b) Rotation of Plate-Shaped 
Link through an Angle 9

(c) Displacements of 
A Rigid-Body Element

FIGURE 3.3 A Mechanism with Plate-Shaped Links
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U = ± 18'sin 0/2 
w = ± 10'cos 6/2

The field matrix for a rigid-body element is given as follow in 
its local coordinate system:

m  =

1
0
0
0
0
0
0

0
1
0
0
0
0
0

Ô 1 sin 8/2 
81* cos 6/2 

1 
0 
0 
0 
0

0
0
0
1
0
0
0

0
0
0
L
1
0
0

0
0
0
0
0
1
0

0 
0 
0 
0 
0 
0 
1 J

(3.20)

#Aere 6 is the rotational angle of the plate determined from the 
previous iteration and must be updated during the iterations. Ô has a 
magnitude of 1 and has the same sign as the sign of the angle 6.
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3.3.2 Point Matrix

The point matrix contains the effects of the external loads and 
moments applied at a specific point of a member. The transfer matrix 
equation at a specific point A as shown in Fig. (3.4a) is

CSjJf = CPlCSlJj

*Aere CSl̂  = state vector at the right side of point A,
CSlĵ  = state vector at the left side of point A,

and CP] = point matrix at point A.

For a positive axial force (N), a positive transverse force (V),
and a positive moment (N) applied in the coordinate system as shown in 
Fig. (3.4a), the equilibrium equations at point A shown in Fig. (3.4b) 
are as follows :

= Nt - N
v! = vt - V

Mi - M

where R means the right side of point A,
L means the left side of point A,
N is a force in the axial direction,
V is a force in the transverse direction, 

and N is a moment.
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(a) External Forces at A Point for Point Matrix

(b) Forces at Point A 

FIGURE 3.4 Forces for Point Matrix



Then, the point matrix at point A becomes
57

CP] =

" 1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 -M
0 0 0 0 1 0 -V
0 0 0 0 0 1 -N

. 0 0 0 0 0 0 1

(3.21)

3.3.3 Transformation Matrix

The transformation matrix transforms the geometric properties and 
state vector from one coordinate system to another rotated by the angle 
* relative to the first coordinate system. The matrix equation at a 
point A in Fig. (3.5a) is

CSlj « m-csii.i

fdiere (Sli « state vector at A in the ith coordinate system,
state vector at A in the (i-1) coordinate system,

and CT3 = transformation matrix at point A.
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Xi

(a) Local Coordinate system in Each Segment

(b) Two Coordinate Systems at Point A 

FIGURE 3.5 Coordinates for Transformation Matrix
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The state variables of node A in the (l-l)th coordinate system are 

defined to those In the 1th coordinate system as shown In Fig. (3.5b).

“l S «1-1 cos* — "i-i -«in*»»
«1 S sln$ + Wj.j -cos (p

6i 6 i-1
Mi Mi-1
Vi s Vi_i • cos $ + sin (J)

Mi m — . sin <t> + cos $

where u = displacement In the axial direction,
w = displacement In the transverse direction,
0 = slope,
M = moment,
V = force In the transverse direction, 

and N = force In the axial direction.

The transformation matrix at the point Is a simple rotation matrix 
as follows:

CT3 =

' cos <t> -sin* 0 0 0 0 0 ■

sin 4> cos* 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 COS * sin* 0
0 0 0 0 -sin * cos* 0

. 0 0 0 0 0 0 1 .

(3.22)



603.3.4 Spring Matrix

The spring matrix contains the forces generated by a spring from 

the rigid-body kinematic displacements and elastic displacements. The 
matrix at a point A in Fig. (3.6a) is

CSlJ * CS3*CSli

fdiere CSl̂  = state vector at the right side of point A,
= state vector at the left side of point A, 

and CS3 = spring matrix at point A.

Springs may be connected between the links in a mechanism or to 
the ground. Here, the spring forces of translational springs are 
considered. In Fig. (3.6a), the original positions of a mechanism 
(0 P Q R) moves to the position (0 P'Q'R) and the spring attachment 
point moves from A to A' for a ground-attached spring, and from C and 0 
to C  and D', respectively, for a spring attached between two links. 
There are two types of spring forces in the mechanisms: one is
developed from the displacements due to the kinematic motions (A to A' 
or line CD to C'O' in Fig. 3.6a) and the other comes from the elastic 
displacements (A' to A" or line CD' to C"D" in Fig. 3.6b). Also, 
there are two types of spring end constraints: Pinned ends and sliding 
ends as shown in Fig.(3.Sal Sliding ends are connected to the frame 
only.
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(a) Displacements due to The Kinematic Motions

A"P

D" \

R
(b) Displacements due to The Elastic Deflections 

FIGURE 3.6 Displacements for The Spring Matrix
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3.3.4.1 Spring Forces Due To The Rlgid-Body Kinematic Motion

The coordinates at Point A and A' shown in Fig. (3.7) are assumed 
known from the rigid-body kinematic analysis. Thus, the length of OA' 
<L) is

L = y (Xo - f + (Yo - Ya'

The generated force (F) along the OA' axis is

F = - K.(FL - 1) = K (L - FL)

idiere FL is the free length of the spring.

The force components in the x- and y-directions are

Fx = F'cos 6 = K (L - FL)»cos 6
Fy » - F sin 0 = - K (1 - FL)» sin 0

(3.23)

where K = spring stiffness,
0 = angle between the spring axis and the global x-axis, 

and FL = free length of the spring.
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FIGURE 3.7 Rigld-Body Motion of A Mechanism
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3.3.4.2 Spring Forces Due To The Elastic Displacements

Fig. (3.8a) shows the elastic displacements of a mechanism. Here, 
the angle 9 Is the angle between the spring axis and the global x-axls 
at point A'. The angle 9' is the angle between the spring axis and the 
global x-axls at point A". If Point A' moves to B. there is no 
additional spring force generated, because the lengths of OA' and OB 
are equal. But. when Point A' moves to A", there is a force reduction 
because of the elastic displacements.

To derive approximate relationships between the spring forces and 
elastic displacements, the coordinate system (x and y) is transformed 
into a new coordinate system (x' and y') located at Point A as shown in 
Fig. (3.8b). The displacement in y'-direction (w' in Fig. 3.8b) is the 
displacement involved to the spring force. This force is then 
deconq>osed into the x- and y-directions of the original coordinate 
system. The transformation angle between the two coordinate systems is 
9s = 9' + 90? Thus. the transverse displacement (w) in the 
y'-direction as A moves from A' to A" becomes

W' = - u sin 9s + w cos 9s

The generated force (F) along the y'-direction is

F = - K w' = K U'Sin 9s - K- w cos Os
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(a) Elastic Displacements of A Mechanism

y
(b) Forces Due To The Elastic Displacements 

FIGURE 3.8 Spring Forces Due To The Elastic Displacements
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If the y'-axls has small deviations relative to the line OA" as 

shown in Fig. (3.8b), the angle 6' can be used to decompose the spring 
force into the components in the z- and y-directions as follows:

Fx - K sin 6s.cos @' u - K«cos 9s.cos 6 . w 
Fy = - K' sin 6s sin O'.u + K • cos 6s.sin 6 «w

Thus, these forces are rearranged in each displacement direction as 
follows:

Fxu = K sin 8s cos 6'. u
Fxw = - K-cos 6s.cos 6'> w

(3.24)

Fyu = - K-sin @s sin 6' • u
Fyw = K cos 6s sin 6' • w

fdiere Fxu = spring force in the x-direction due to the elastic 
displacement in the axial direction,

Fxw = spring force in the x-direction due to the elastic 
displacement in the transverse direction,

Fyu = spring force in the y-direction due to the elastic 
displacement in the axial direction, 

and Fyw = spring force in the y-direction due to the elastic 
displacement in the transverse direction.
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Finally, the spring matrix at a location of any spring is 

determined by combining Eqs. (3.23) and (3.24) as follows:

[S3 =

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
Syx Syy 0 0 1 0 Syk
Sxx Sxy 0 0 0 1 Sxk
0 0 0 0 0 0 1

(3.25)

and

Syx = K sin 8s sin 0'
Syy = - K cos Os.sin 0'
Sxx = - K sin 6s.cos 6'
Szy = K cos 9s cos 0'
Syk = K*(L - FL) sin 6
Sxk = - K (1 - FL) cos 0

(3.26)

where K = stiffness of a translational spring,
FL = free length of the spring,
L = spring length from rigid-body kinematics,
0s = angle between the spring axis and the global x-axis 

and 0s = 0' + 90°
0 = angle between the spring axis and the horizontal axis 

for rigid-body displacements alone.
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6' = angle between the spring awls and the horizontal axis 

for both rlgld-body and elastic displacements,
Sxx = spring force Intensity (force/length) In the x-dlrectlon 

due to the displacement In the x-dlrectlon,
Sxy = spring force Intensity (force/length) In the x-dlrectlon 

due to the displacement In the y-dlrectlon,
Syx = spring force Intensity (force/length) in the y-direction 

due to the displacement In the x-dlrectlon,
Syy = spring force Intensity (force/length) In the y-dlrectlon 

due to the displacement In the y-dlrectlon,
Syk = spring force In the y-dlrectlon due to the pre-load and

to the rlgld-body displacements In the mechanism,
and Sxk = spring force In the x-dlrectlon due to the pre-load and

to the rlgld-body displacements In the mechanism.

3.3.4.3 Spring forces for A Spring Connected Between links

For a spring Interconnected between links, both connecting points 
move with the spring. As shown In Fig. (3.9a), Point C  moves to C" 
and Point D' moves to D". When the spring forces at Point C are 
calculated. Point D' Is set to coincident to Point D" as shown In 
Fig. (3.9b) and then the same procedure In Section 3.3.4.2 are used to 
determine the spring forces due to the elastic displacements of Points 
C and D. For the spring forces at Point 0, Point C' Is coincident to 
Point C". Here, the total displacements used In Eq. (3.26) are the sum 
of the elastic displacements of both nodes.
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(a) Dlsplaconents of Both ends

(b) Displacements of Point C For The Coincident Point D 
FIGURE 3.9 Spring Forces For A Spring Connected Between Links

FIGURE 3.10 A Spring with A Sliding End
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3.3.4.4 Spring Forces for A Spring with A Sliding End

Fig. (3.10) shows a spring with a sliding end. As the system 
deforms. Point A moves to A', and Point B moves to B'. Thus, the angle 
6' remains the same angle as 0 as shown in figure. A spring force is 
generated in only one direction and is calculated from the spring 
matrix given in Eqs. (3.25) and (3.26).

For exanqple, the spring forces generated at point B in Fig. (3.10) 
are calculated from the condition of the angles 6 = 6 = 90° as follows:

9s = 0' + 90° = 100.0®

and from Eg. (3.24),

Syu = 0.0 
Syw = - K‘W 
Sxu = 0.0 
Szw = 0.0

It means that the spring force at node B is generated in the negative 
y-direction only due to the displacement in the positive y-direction.
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3.3.5 Branch Systems

3.3.5.1 Types of Branch Systems

Several types of branches may be connected to the main system 
(loop) in multiloop mechanisms. Thus, the properties of these branch 
systems must be incorporated into the main loop. (Senerally, four types 
of one degree-of-freedom branches are considered in this research. 
These types are given in Fig. (3.11). The detail procedures for the 
subloop matrix equations are presented in Chapter 5.

3.3.5.2 Branch Matrix

The branch matrix contains the properties of a branch system. At 
any branch point in the system, the transfer matrix equation becomes

£SlJ = CB3-£Sli

where fSl" = state vector at the right side of point A, 
{S}L = state vector at the left side of point A, 

and CB3 = branch matrix at point A.
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r -

FIGURE 3.11 Four Types of Sub-Loop Systems
(a) A Fixed Branch with A Free End
(b) A Revolute Branch with A Pin End
(c) A Slide Branch with A Pin End
(d) A Revolute Branch with A Slide End
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The general transfer matrix equation for any of the subloop 

systems in Fig. (3.11) is

u
w
e
M
V
N
,1 P

U(l,l) U(l,2) U(l,3) U(l,4) U(l,5) U(l,6) U(l,7)
U(2,l) U(2,2) U(2,3) U(2,4) U(2,5) U(2,6) U(2,7)
U(3,l) U(3,2) U(3,3) 0(3,4) 0(3,5) 0(3,6) 0(3,7)
0(4,1) 0(4,2) 0(4,3) 0(4,4) 0(4,5) 0(4,6) 0(4,7)
0(5,1) 0(5,2) 0(5,3) 0(5,4) 0(5,5) 0(5,6) 0(5,7)
0(6,1) 0(6,2) 0(6,3) 0(6,4) 0(6,5) 0(6,6) 0(6,7)

0 0 0 0 0 0 1

u
w
e

• M
V
N
1

(3.27)

P'

From the end conditions of the subloop system, three components in the 
state variables must be zero, and the other three are unknown. For the 
subloop from A to A', an end at Point A' is free so that M = V = N = 0 
and three displacements are unknown. Thus, the transfer matrix 
equation of the branch system siaq»lifies to

u U(l,l) 0(1,2) 0(1,3) 0(1,7)
w 0(2,1) 0(2,2) 0(2,3) 0(2,7)

u
8 0(3,1) 0(3,2) 0(3,3) 0(3,7)

w
M s 0(4,1) 0(4,2) 0(4,3) 0(4,7) .

8
V 0(5,1) 0(5,2) 0(5,3) 0(5,7)

1
N 0(6,1) 0(6,2) 0(6,3) 0(6,7)
1 A 0 0 0 1

(3.28)
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Then, Eq. (3.28) can be partitioned Into two matrices as follows:

and

U ' U
w w

= [ Z1 ] '
e Ô

1 A . 1

H U
V w

= [ Z2 ] "
N e

1 A 1 ,

(3.29)

A'

(3.30)

From Eqs. (3.29) and (3.30), the forces must be functions of the 
displacements at the branch point as follows:

H u u
V —1 w w

= CZ2] [Zl] ' = CZZ3-
N e @

1 .A 1 A 1

(3.31)

Rewriting Eq. (3.31) gives

Ma = ZZ(1,1)*Ua + ZZ(1,2) w* + ZZ(1,3)*0a + ZZ(1,4)
Va « ZZ(2,1) UA + ZZ(2,2)'WA + 28(2,3)8^ + ZZ(2,4)
Ha = ZZ(3,1).UA + ZZ(3,2)WA + ZZ(3,3) 6^ + ZZ(3,4)
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Finally, a branch matrix can be derived from Eg. (3.31) as 

follows:

CB3 =

1
0
0

0
1
0

0
0
1

ZZ(1,1) ZZ(1,2) ZZ(1,3)
ZZ(2,1) ZZ(2,2) ZZ(2,3)
ZZ(3,1) ZZ(3,2) ZZ(3,3) 0

0 0 0 0

0
0
0
0
1
0
0

0 0
0 0
0 0
0 ZZ(1,4)
0 ZZ(2,4)
1 ZZ(3,4) 
0 1

(3.32)

The branch matrix In Eg. (3.32) can be determined from the same 
procedure from Eg. (3.27) to Eg. (3.31) for all types of subloop 
systems. However, the ZZ(l,j)'s In Eg. (3.32) are different depending 
on a subloop system. The formulation details for each subloop system 
are given In Section 5.4.
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3.3.6 Inertial Matrices for Dynamic Analyses

To get quasl-statlc and tlme-domaln responses from a dynamic 
analysis, the effects of the luig>ed mass of the links must be 
considered. In dynamic analyses of flexible mechanism, the Inertial 
forces from the rlgld-body kinematic accelerations acting on the 
members are sometimes treated as external forces at the locations of
the lumped masses. But, the elastlc-body accelerations from the axial
and transverse vibrations of the members can not be determined 
directly. To account for the effects of these elastlc-body vibrations 
from the lumped masses, the Houbolt difference direct integration 
method Is used since this method Is one of the most effective and 
stable methods available [96-971.

At node A of a lumped mass as shown In Fig. (3.12a), the transfer 
matrix equation becomes

CSlS = CMl-CSlJi

where (Si" = state vector at the right side of point A,
(SI* = state vector at the left side of point A,

and [Ml = Inertial matrix for the lumped mass at point A.

The rlgld-body Inertial matrix for the quasl-statlc analysis Is 
derived In Section 3.3.6.1. The elastlc-body Inertial matrix for the 
tlme-domaln analysis Is given In Section 3.3.6.2. The procedure for 
the dynamic analysis Is briefly explained In Section 3.3.6.3.
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{S}^ {S}"

(a) A Lumped Mass at Point A

V»
A  - \“ î

T ' ‘ r *
Fw

(b) Rlgid-Body Inertial Forces 

FIGURE 3.12 A Lumped Mass with Rigid-Body Kinematic Accelerations
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3.3.6.1 Rlgid-Body Inertial Matrix for Quasl-Static Analysis

The rlgld-body Inertial forces In the global coordinate system as 
shown In Fig. (3.12b) can be calculated from the rlgld-body 
accelerations due to the kinematic motions:

Fu = - m Au
Fw = - m Aw (3.33)
Ma = - I'Aa

where Fu = inertial force In the longitudinal direction,
Fw = inertial force in the transverse direction,
N = Inertial moment due to the angular acceleration, 
m = lumped-mass,
I = mass moment of Inertia about the center of mass.

Au = rlgld-body linear accelerations in the longitudinal 
direction.

Aw = rlgld-body linear accelerations In the transverse 
direction,

Aa = angular acceleration of the rlgld-body links.

The rlgld-body Inertial matrix including the inertial effects due 
to the rlgld-body kinematic accelerations is analogous to the point 
matrix discussed earlier. The result becomes:
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CH] =

1 0 0 0 0 0 0

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 I'Aa
0 0 0 0 1 0 mAw
0 0 0 0 0 1 mAu
0 0 0 0 0 0 1

(3.34)

3.3.6.2 Elastic-Body Inertial Matrix For Tlme-Domain Analysis

3.3.6.2.1 Governing Equations of Motion

The fundamental equations of motion In first order form are as 
follows: For the transverse direction.

aw

ax
(3.35)

ae

ax

an

ax

av

ax

M
El

A
■  "'17

(3.36)

(3.37)

(3.38)



80

and also for the axial direction.

du N
— = ——  (3»39)

3X EA

3N fu
— =  “  P" —— y  (3»40)

3X 3t

where u = displacement in the axial direction,
H = displacement in the transverse direction,
0 = slope,
H = bending moment,
V = internal force in the transverse direction, 
N = internal force in the axial direction,
X = position axially along the shaft,
A = area of cross-section,
E = modulus of elasticity,
1 - area moment of inertia,
P = mass per unit length,

and
t = time.
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3.3.6.2.2 Houbolt Difference Direct Integration Scheme

For a system of ordinary differential equations with constant 
coefficients, any convenient finite difference expressions to 
approximate the accelerations and velocities in terms of displacements 
can be used. Theoretically, a large number of different finite 
difference expressions could be employed. However, the solution scheme 
should be effective, and it follows that only a few schemes need to be 
considered.

For elastic-body inertial forces for the time-domain analyses, the 
Houbolt difference scheme is used. The method is based on a 
third-order interpolation of displacements. In the Houbolt integration 
scheme, multi-step implicit formulas for velocity and acceleration are 
derived in terms of displacements using backward differences shown in 
Fig. (3.13). The difference formulas in the Houbolt difference method 
has the following relationships [96-973:

9t = 9t+ét — ^  4i+Ai —  ̂

9i-àt =  (2 àt)q,+̂  +  ®t+Ai — ( ~ i^ )  9i*At

9i-tàt = 9t+At — (3 9t*àt — 9t*At
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Solving the above equations for acceleration and velocity gives the 
following difference formulas:

it*A t =  TraCîVi+A» —  Sq, +  4 q , .^  —  q ,.tA t)
^  (3.41)

4i*ai =  — 18Vt +  9q,-Ai — 29t-iàt)

The Inertial forces from the elastic vibrations of the links In 
Eqs. (3.38) and (3.40) can be formulated using the Houbolt difference 
algorithm. Eg. (3.38) Is changed at the time t+Dt as follows:

8V,t*àt
8x 8t*

(3.42)

t-ât

t
K—  h AI Al

FIGURE 3.13 Dlsplaceawnt Versus Time
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Substituting Eq. (3.41) into Eg. (3.42) gives

p
  = - — 5 [ 2 5 H, +4 h,_a, - w,_,4, ] (3.43)
dx Dt

and Eg. (3.40) becomes:

dN,.̂  p
  = _ — - [ 2 5 H, +4 H,_*, - w,_,4,. ] (3.44)
dx Dt

Erwu Egs. (3.43) and (3.44) the elastic-body inertial forces at any 
time t+Dt are as follows:

2m m
— 2
Dt Dt
2m m
--2 U.+A.
Dt Dt̂

(3.45)

where Ve = elastic-body inertial force in the transverse direction.

Ne = elastic-body inertial force in the axial direction,
m = mass of a lumped-mass,
u = displacements of the lumped-mass in the axial direction,

and w = displacements of the lumped-mass in the transverse
direction.
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3.3.6.2.3 Elastlc-body Inertial Matrix

Fig. (3.13a) shows the rigid-body inertial forces due to the 
rigid-body accelerations. Fig. (3.13b) gives the elastic-body inertial 
forces due to the elastic vibrations of the members. At a lumped-mass 
of Point Ar the total of the inertial forces are determined by summing 
the rigid-body inertial forces (Fig. 3.13a) and the elastic-body 
inertial forces (Fig. 3.13b) as follows:

mJ = Mi - Ma

vf = vi - Ve - Fw (3.46)

<  = Ni - Ne - Fu

where
N = momentr
V = force in the transverse direction,
N = force in the axial direction,
Mb = moment due to the rigid-body angular acceleration,
Fw = transverse force due to the rigid-body acceleration,
Fu = axial force due to the rigid-body acceleration,
Ve = transverse force due to the elastic vibrations at a time.
Ne = axial force due to the elastic vibrations at a time.
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(a) Rlgid-Body Inertial Forces

" i — H  *1--- ►N. p ^ N j

V. V»

(b) Elastlc-Body Inertial Forces 

FIGURE 3.14 Inertial Forces of A Lumped-Hass at Point A



86
By substituting Eqs. (3.33) and (3.45) Into Eq. (3.46), the 

elastic-body inertial matrix is derived as follows:

CN3 =

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 Rum
0 Row 0 0 1 0 Fww
Emu 0 0 0 0 1 Fuu
0 0 0 0 0 0 1

(3.47)

and

Rnw 2m/D(P
Rbu 2m/Df
Emm S I Aa

Eww
m
Dt*

[ - 5 w, + 4 w,.̂ - W ,_iA« ] + m Aw

Euu
m
Dt*

[ - 5 u, + 4 u,.̂ - 1 4 m Au

(3.48)

where m = mass of a lumped-mass,
Dt = time interval,
I = mass moment of inertia,
Aa - rigid-body angular acceleration of lln)c.
Au = rigid-body acceleration in the axial direction.
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An = rigid-body acceleration in the transverse direction, 
u = displacements of the lumped-mass in the axial direction, 

and N = displacements of the lumped-mass in the transverse 
direction.

3.3.6.3 Procedure for The Inertial Matrices

In a dynamic analysis for quasi-static responses, the rigid-body 
accelerations of lumped masses are required to be calculated from the 
kinematic acceleration analysis. These inertial forces due to the 
rigid-body kinematic accelerations acting on the members can be treated 
as external forces at the locations of the lumped masses. Thus, 
Eq. (3.34) can be used directly for the dynamic analysis for the 
quasi-static responses of mechanisms.

However, the elastic-body accelerations due to the elastic 
vibrations of the members can not be calculated directly. To account 
for the effects of the elastic-body vibrations, a direct integration 
method is used. The direct integration method is that static 
equilibrium, idiich includes the effects of inertial forces, is sought 
at discrete time points within the interval of solution. Therefore, 
all solution techniques employed in the static analysis can also be 
used effectively in direct integration. The second point is that a 
specific variation of displacements, velocities, and accelerations 
within each time interval is assumed.
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Displacements, velocities, and accelerations of elastic members 

due to the elastic vibrations are zero at the initial position (initial 
conditions). Time interval is calculated from the angular velocity of 
an input-link in a mechanism and the angle interval to the next 
position to be analyzed as follow [27-281:

IT. A©
Dt = (3.49)

fdiere Dt = time interval in Eq. (3.48),
A9 = angular difference to each position of the mechanism, 

and n = angular velocity of the input-link.

Thus, all of the displacements of every node in the system are 
calculated frcan the rigid-body inertial forces and the elastic-body 
inertial forces at each position. The elastic-body inertial forces of 
every lumped-mass due to the elastic vibrations are coaq>uted from 
Eq. (3.45) using the displacements at three positions. The inertial 
matrix at next position of the mechanism can be evaluated from 
Eq. (3.48) using the displacements determined at the previous positions 
of the mechanism.
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3.4 Comparison with The Solutions of FLezible Mechanisms

As a first comparative study, a four-bar crank-rocker mechanism 
shown in Fig. (3.15) is analyzed. This mechanism is examined by Buhgat 
and Nillmert [12] using a displacement-based finite element method and 
a high-order hermite polynomial approximation.

The data for the mechanism shown in Fig. (3.15) are:

Length of input crank (AB) - 5.0 inches.
Length of coupler (BC) = 11.0 inches.
Length of follower (CD) = 10.5 inches.
Fixed distance (AD) = 10.0 inches.

The initial position of the crank at t = 0 coincides with the ground 

link as shown in Fig. (3.15). The angular speed of the crank is 
constant at 125 rad/sec, and each bar is considered to be a steel rod 
with 0.25 inch wide and 1.0 inch high.

The results are compared with the solutions presented in 
Reference £123 and given in Figs. (3.16) - (3.19). Figs. (3.16) and 
(3.17) give the displacements in the horizontal direction and slopes at 
node B, respectively, as a function of crank angle. Fig. (3.18) shows 

the horizontal displacements at node C, and Fig. (3.19) gives the 
stresses at the mid-point of the coupler. The comparative study shows 
that both solutions are in good agreement.
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figure 3.15 Four-Bar Mechanism
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FIGURE 3.16 Horizontal Displacements at Node B
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FIGURE 3.17 Slopes at Node B
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FIGURE 3.19 Stresses at Mid-Point of the Coupler
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As a second study, a four-bar crank-rocker mechanism as given in 

References C7, 9, 11, 17] is studied. The geometry of the mechanism 

shown in Fig. (3.20) has the following dimensions:

Length of crank = 4.0 inches.
Length of coupler = 11.0 inches.
Length of Follower = 10.5 inches.
Ground link = 10.0 inches.

The model in C7, 9] was constructed of aluminum strip 1.0 inch 
wide. The crank was 0.167 inch thick. The coupler and follower links 
were 0.063 inch thick. The coupler was connected to the crank and the 
follower by means of pins and small ball bearings mounted in sleeves. 
The total weight of the bearing and the sleeve at each end was 0.06 lb. 
Other apparatus details may be found in C7, 91. In References 
[11, 17], the total weight of the bearing and the sleeve was assumed to 
be distributed equally to luoqped masses on the crank and follower.

The input-link is rotated at 400 rpm in the clockwise direction. 
Fig. (3.21) gives the nomalized rigid-body angular acceleration of the 
follower plotted against the crank rotation angle. The results are the 
quasi-static strains at mid-point of the follower. These strains are 
illustrated in Fig. (3.22) and show in good agreement. Finally, 
Fig. (3.23) shows the steady-state strains at the mid-point of the 
follower determined from the time-domain analysis. The solution 
details are given in Section 8.3 and Appendix C.
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FIGURE 3.20 Four-Bar Crank-Rocker Mechanism
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FIGURE 3.21 Nomalized Rlgld-Body Angular Acceleration of Follower
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Solution from Reference [17]
—  A —  A —  Solution from the developed method 

FIGURE 3.22 Quasl-Static Strains at Mid-Point of Follomer
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FIGURE 3.23 Steady-State Strains at Mid-Point of Follower



CHAPTER IV

APPROXIMATE METHOD FOR LAR6E-DEFLECTI0N ANALYSIS

4.1 Introduction

In Section 3.3.1, the elastic field matrices for the
small-deflection analyses are derived by assuming a linear system. 
However, large-deflection problems can not be solved by superposition 
of the displacements, because the system is nonlinear. Thus, the 
solutions for the large-deflection problems can not be obtained 
directly from elementary beam theory for linearized systems since the 
basic assuiqptions are no longer valid. Specifically, elementary theory 
neglects the square of the first derivative in the beam curvature 
formula and provides no correction for the shortening of the moment-arm 
caused by transverse deflections. Thus, for large loads elementary 
theory for a linearized system can give deflections greater than the 
length of the system.

The objective of this chapter is to develop an approximate method 
for the large-deflection analyses. Then, the solutions determined from 
the approximate method developed are compared with exact solutions 

£86-683.

96
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4.2 Fundamentals for Large-Oeflection Analysis ^

As mentioned earlier, large-deflection problems cannot be solved 
directly from elementary beam theory for the linearized systems, 
because the theory neglects both the square of the first derivative in 
the denominator of the beam curvature formula and the shortening of the 
moment-arm. However, if these effects are evaluated approximately and 
involved iteratively, the large-deflection problems may be analyzed 
using linearized equations. Hence, from the state equations given by 
Eqs. (3.14)-(3.19) for the linearized system, the displacements are 
corrected by a geometric relationship. Then, an updated average axial 
force in each segment is determined from equilibrium conditions. The 
corrections for the displacements and average axial force are updated 
at every iteration.

A general beam subjected to external loadings is represented in 
Fig. (4.1). Regardless of the beam loading, the beam can be accurately 
modeled as a series of discrete segments so that each segment is 
subjected to the internal forces at both ends as shown in Fig. (4.2). 
Each segment has its own local coordinate system oriented at an angle 
with respect to the fixed global system. The position of the local 
coordinate system must be updated as the member deforms.

A typical beam segment can be represented as shown in Fig. (4.3). 
The internal forces at both ends are present in the local coordinate 
system. As the segment deflects, the moment-arm is shortened by the 
transverse displacement due to the transverse loading.
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Iw

FIGURE 4.1 A General Beam Subjected to External Loadings

à »

FIGURE 4.2 Beam Divided Into Finite Segments

FIGURE 4.3 Internal Forces In A Segment
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The relationships among the displacements and internal forces at both 
ends of segment under axial tension can be determined from Eqs. (3.15) 
and (3.18) as follows:

L q.lî sin $
UÎ = u, , + — - N. . - — — —  (4.1)

E A E A

sinh KL 1 - cosh KL
m ' = - -— -— *®i-i +   —

L sinh KL q.cos $ K«]f
+ (— — — —————)«V. . + — — T- (cosh KL “ 1 ~ — ———)

P K P EIK* 2

K sinh KL cosh KL - 1
6 = cosh KL • ©i-x +   '^1-1 * --------- “'̂ 1-1

P P

q.cos $
+ ----  ' (KL - sinh KL)

EIK®

P'Sinh KL sinh KL
--- 8*̂ 1 + cosh KL . + -----

q.cos $
— — -%—  • ( cosh KL - 1) 

K

(4.2)

(4.3)

(4.4)

Vj = Vi_i - q.L'COS* (4.5)

“ N̂ _i + q«L>sin(t> (4.6)

xAere u' = longitudinal displacement in the local coordinate system, 
w' = transverse displacement in the local coordinate system.



100
e = slope,
M = moment,
V = internal force in the transverse direction,
N = internal force in the longitudinal direction,
P = axial force on the segment,
L = length of the segment,
K = yP/EI,
q = uniform distributed load on a segment, 

and <t> = angle between the local x-axis and the global X-axis.

Here, the displacements u' and w' in Eqs. (4.1) and (4.2) are 
values in the local coordinate system for the small deflection 
analysis. But, for the large deflection analysis, the displacements 
are related to each other and to the total length of the segment 
(L +AL), which L is the original length of the segment and AL is the 
elongation due to the axial (tensile) force. The angle is the 
rotation angle between the current and original local coordinate 
systems. This angle is updated iteratively as the segment deforms. In 
a kinematic analysis, the position corresponding to «= 0 would be the 
position determined in a rigid-body kinematic analysis. Fig. (4.4) 
shows the displacements of the end of the segment in the inclined axes, 
fdiere the inclined axes are dependent on the deflected position of a 
node.
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FIGURE 4.4 Transverse Displacement in An Inclined Axes
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Then, the displacements in the local coordinate system can be 

determined from the geometric relationship as follows:

u = u'*cosa + w'« sin a (4.7)
w = - U " sin a + w'- cos a (4.8)

and

a = e / 2 (4.9)

where 0 Is the average slope of the deflected segment. In real
situation, a Is not exactly 6/2, because the deflected segment Is not a 
straight line as shown In Fig. (4.4). But, If the length of the 
segment Is short enough to be approximately straight, the relationship 
can be used for the formulations.

Substituting Eqs. (4.1) and (4.2) Into Eqs. (4.7) and (4.8) gives

slnh KL 1 - cosh KL
Uj ■ '̂i-i — — —  sino *6j_j + -— -— “ "“•sin a • M

L slnh KL L
+ ( - "  ----- )• sin a • V. , +  "N. . (4.10)

P K P EA
2 2 2 ql- sin $ q.cos $ K*L

— — —— —— + — “ T— (cosh KL " 1 " """"")• sin (X
EA EIK* 2



103Slnh KL 1 - cosh KL
*  **1-1 ~ — — — ■•cos a *O i-i + — ----— -- cosa

L slnh KL
+ ( —------ -—  )*COSQ *Vi-i (4.11)

P K P

q.cos* K?I?
+ — — —  «(cosh KL - 1 - — — )"COSo 

EIK* 2

The other components of the state vector (6, H, V, and N) are not 
changed.

4.3 Determination of The Average Axial Forces from The Equilibrium
Conditions

Let us consider the equilibrium conditions of the Segment as shown 
Fig. (4.5) to determine a way of iteratively updating the average axial 
forces (P) in each beam segment. The average axial force in the 
segment is determine so that equilibrium conditions at the end nodes 
can be satisfied.

Fig. (4.5) shows a beam segment under large deflection. The 
relationships of the state variables between nodes i and i-1 are given 
in Eqs. (4.3)-(4.6) and Eqs. (4.10)-(4.11). Here, the equilibrium 
condition for the moments in the beam segment is investigated. From 
the summation of moment about the right end the following condition is 
given:
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— 0 = M — Hj + (L + AU)*Vj«i ~ ( AN ) « N i_i

(4.12)
- q.L-cos<t> *(L + Au)/2 - q*L-sin4> •(Am)/2

Here, the last two terms In Eq. (4.12) correspond to the moments due to 
the distributed load. au and ah are the net displacements in the 
axial and transverse directions.

The net displacements in each direction can be calculated from 
Eqs. (4.10) and (4.11) as follows:

AU » Uj - Uj.i
sinh KL 1 - cosh KL

= — • sin ct « 0 1-1 + • sin o • M i_i
K P
L sinh KL L

+ ( - - — — —  ) sin ot • Vi_j +  Ni_i
P K P  EA
2 2 2 qL" sin $ q.cos d) K L

— — ————— +  — — T— .( cosh KL — 1 — — —  ) « sin ot
EA EIK 2

and
AW = Wj - ŵ .̂

sinh KL 1 - cosh KL
— — —  cos ot —  cosa '^1-1

K P
L sinh KL

+ ( — - ) rCOS ot . Vi_i
P K'P

q.cos 4) K?^
+ — — —  (cosh KL — 1 — — —-) cos ot 

EIK^ 2
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Here, the elongation or shortening of the segment length due to 

the axial force is very small relative to the displacement due to the 
transverse deflection.

[L ql^sin (|> 1 r sinh KL
N.. — — —————  I (( I — sin a "0

EA EA J L K
i-1

1 - cosh KL L sinh KL
+ sin o i-1 + ( — - ——— — — )>sino( » Vi-i

p P K P
2 2q.cos <t> K*L

+ — — T— (cosh KL — 1 - — —— sin 
EIK 2 ■]

Thus, the terms of the left side in the above equation can be 
neglected.

Let us calculate each term in Eq. (4.12).

(L + AU)*CVi_i - (qL'COS (t> )/23 
qL^cos <|>

= L'Vĵ _2 — —— ————— + ( sin a )• I — — — — — *01-1I sinh KL
—  — — — — — — — •

K
K

1 - cosh KL L sinh KL
—— ——— M, . + (— — — —
P P K P

K?^

+ — — — —— M + (- — — — — ) "Vi_i (4.13)

q cos 0
+ — — T- ( cosh KL - 1 - — — ) 

EUT 2
•[ Vi_i - (qL cos $ )/2 j
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(AW)' CN i_i + (qL- sin <t> ) /23

[ slnh KL 1 - cosh KL
 ----— *®i-i + --------

K P
L sinh KL

+ ( - - — —  )'V (4.14) 
P K-P

2 2q.cos $ K L
+ — — T- (cosh KL — 1 - — —— ) 

EOT 2
[ * 1-1 + (qL-sin(|) )/2 j

Substituting Eqs. (4.4) for Eqs. (4.13) and (4.14) into Eq. (4.12) 
and rearrangement of the equation gives

[ sinh KL 1 - cosh KL L sinh KL
— ——— — -0 4-1 + —— — — —  "M4 4 + (— — “““ •—““) •V4-1

K P P KP
K*I? 1 r qL'COS $

KL “ I  ---- ) I • I P + (V4_4 - — — — —  )- sin a2 J L 2

■ 1
+ — — (cosh

q.cos <]) 
El?

qL' sin (p
2

- (N4_j + — — — )* cos a * = 0
(4.15)

The first square bracket in Eq. (4.15) corresponds to H' in Eq. (4.2) 
and this term can not be zero. Thus, the average axial force in a 
segment can be derived from the terms in the second bracket in 
Eq. (4.15) as follows:

qL-sin<}) qL-cos*
P = (N 4_4 + — — ) ' COS a — (V4_4 — —  —  ) 'sin a (4.16)

2 2



4.4 Field Matrices for Large-Deflection Analysis
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Field matrices for the large-deflection analyses can be derived 
from Eqs. (3.14) - (3.19) in Section 3.3.1 and Eqs. (4.7) - (4.9). The 
average axial force in a segment is given by Eq. (4.16).

qL" sin * qL*cos<t>
P = + -— — --) cosa - (Vj-i - — — -)'Sina2 2

where P = total axial force present in a segment,
= longitudinal force at the (i-l)th node,
» transverse force at the (i-l)th node, 

a = angle in Eq. (4.9).
q = force intensity on a segment (force/length),

and 4 = angle between the horizontal axis and the global x-axis.

When there is no axial force (P = 0) in the segment, the field 
matrix becomes

[F] =

1 0 -L-sin O'
L*

— —  » sin Of 
2EI

1®
- —  • sin Of 
6EI

L
EA

FI

0 1 -L cosa
1?

— ——  cos Of
2EI

L®
— —  cos Of
6EI

0 F2

0 0 1
L
El

L®
2EI

0 F3

0 0 0 1 L 0 F4
0 0 0 0 1 0 F5

0 0 0 0 0 1 F6

0 0 0 0 0 0 1

(4.17)



for a tensile force (P > 0), the field matrix is
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ZFl =

-sinh KL 1 - cosh KL L sinh KL L
1 0 —————— «sino; — ———————— sin# (— — — — —)»sin# —  FI

K P P KP EA
-sinh KL 1 - cosh KL L sinh KL

0 1 *cosOf — — ———————*co30f (“ “ — —— 0 F2

0 0 cosh KL

p.sinh KL 
K

0 0 
0 0 
0 0

0
0
0

P
K«sinh KL 

P

cosh KL

0
0
0

P KP 
cosh KL - 1 

P

sinh KL 
K 
1 
0 
0

0 F3

0 F4

0 F5
1 F6 
0 1 , 

.(4.18)
and for a compressive force (P < 0), the field matrix is

s in  KL cos KL - 1 s in  KL L
1  0 — — ——  • s in  Of —— ——————— • s in  #  ( — —  — — ) • s in  ot

K P KP P
s in  KL cos KL - 1 s in  KL L

0  1  —  — —  • c o s  Of — — — — — — — —  * c o s  Of ( — —  —  —  ) • c o s  Of

K

CFl =

L
EA

0 0 cos KL

P'Sin KL 
K

0 0 
0 0 
0 0

0
0
0

p
K'Sin KL 

P

cos KL

0
0
0

KP P 
1 - cos KL 

P
sin KL 
K 
1 
0 
0

FI 

F2 

F3

F4

F5 
F6 
1

(4.19)
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Hhere k = \f\Pl/El and IPI Is the total axial force determined from 
Eq. (4.19) at the previous Iteration. For a wide cross-section, 
K = yiPI (1- v2)/(EI) Is used. The angle a Is the displacement 
correction angle In Eq. (4.9) and must be updated during the 
Iterations.

The seventh column for no axial force In the segment becomes

FI

F2

F3

F4

F5

,F6

ql^sln* qt̂ 'cos «I* 
EA 24 El

qiAcos*
24'EI
3qL’COS <j> 
6 El 

qL̂ cos<t> 
2

- qL*cos<i> 

qL'Sln*

(4.20)



the seventh column for the tensile axial force in the segment is
111

PI

F2

F3

F4

F5
F6,

q.cos (|>qlsin*
EA 
q.cos (|>
— — T- • ( cosh KL - 1 — — —  ) • cos o 
EIK* 2

— — —  + —— ——  ' ( cosh KL — 1 — — — ). sin & 
EA EIK* 2

K?L̂

q.cos <t>
— — --■(KL - sinh KL) 
EIK®
q cos <t>

- — —s—"‘(cosh KL - 1) 
K

- qL'COS 4* 
qL 'Sin <t>

(4.21)

and the seventh column for the compressive axial force in the segment 
is

FI

F2

F3

F4

F5
F6

qlr sin 4* q > COS 4> E®L®
— ———  — cos KT* ■" #slrfi ûf

EA EIK* 2
q.cos 9 K'L
-—— —-.(I — cos KL — —— ——) cos#
EUT 2
q.cos 4>

- — — %-• (KL - sin KL)
EIK®

q.cos 4>
— — .(1 - cos KL) 

K
- qL'COS 4> 

qL* sin 4>

(4.22)



112
4.5 Cmparlson with The Exact Solution

As the first comparative study, let us solve a large-deflectlon 
problem, mhlch Is a cantilever beam under transverse loading at the 
tip. Blsshopp and Drucker [87] obtained the relationships between the 
end loads and the displacements In the longitudinal and transverse 
directions for an Inextensible caltllevered beam with the end loads as 
shown In Fig. (4.6a). In their analytical study, the exact expression 
for the beam curvature of the elastic line Is related to the arc-length 
and the slope of the deflected beam. They assumed that the curvature 
of the beam Is proportional to the bending moment, and that the 
curvature at the loaded end Is zero. The solution was In terms of 
elliptic Integrals fdilch were evaluated numerically. The solution Is 
given In Fig. (4.6b)

To Investigate the proposed approximate method for the 
large-deflectlon analyses, a steel cantllevered beam subjected to the 
transverse loads at the end Is considered. The beam has a 10 - Inch 
length with a square cross-section of 0.1 X 0.1 (Inch*). The total 
number of elements Is 10 with each element of equal length. The 
results are compared with the curves presented In References [86-873 
and given In Fig. (4.6b). The comparative study shows that both curves 
for H/L and V/L are In good agreement. The solution details are given 
In Section 8.4.
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(a) A Cantilever Beam

#

e J
ï

.... Solution from The Proposed Method 
  Exact Solution from Bisshopp and Drucker [87]

(b) Solutions of Large-Deflection Problem

FIGURE 4.6 Comparison of The Solutions
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As a second study, a cantilever beam acted on by an end moment as 

shown in fig. (4.7) Is studied. This causes a tip rotation of 1.0 rad 
(57.295 degrees) xAich is considered a large rotation. 
Be Arantes e Oliviera [88] solved the problem by sub-dividing the load 
into ten equal increments using an iteration approach. Thus, this 
problem has been solved in ten load steps with an unspecified number of 
iterations at each load step. But, the proposed method uses the entire 
load. The results shown in Table 4.1 are after only 8 iterations, and 
there is less than 2 percent error compared to the solutions given in 
[88].

TABLE 4.1 Tip Notion of The Cantilever Beam

Solution Method X (cm) Y (cm) e (Oeg)

Linear Theory 
Exact Solutions [88]

100.0000
84.1471

50.0000
45.9698

57.295
57.295

Solutions from The 
Developed Method 83.367 46.746 57.295

ERROR (Percent) 0.9 1.7 0.0
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E,I,A

H * 10 N-cm 
L = 100 cm 
A = 10.0 cm*
I = 5.0 cm*
E = 2.0 X 10® N/cm*

FIGURE 4.7 Cantilever Acted on by End Moment



CHAPTER V 

TRANSFER MATRIX EQUATIONS FOR LOOPS

5.1 Introduction

Hechanisns have joints (revolutes and sliders). At the joints one 
of the state variables must be discontinuous. For example, at a 
revolute joints, the slopes of both sides at pre- and post-locations of 
the revolute are not continuous, because the moment at the location of 

the revolute must be zero. At a slider, a displacement in the sliding 
direction is discontinuous, because the force in the sliding direction 
must be zero. Thus, additions of the slopes (for the revolutes) and 
displacements (for the sliders) to compensate for the discontinuity 
must be determined from equilibrium conditions at the locations of the 
joints.

This chapter presents the derivation of the transfer matrix
equations for linkages. As mentioned in Chapter 3, there are two types
of loops: main loops and subloops (branch systems). The main loop 
systems consist of four-bar mechanisms and slider-crank mechanisms. In 
a mechanism, the support shaft for the input link must carry a torque 
so that the input-link is treated as fixed. The subloop systems are 
identified by four types as given in Section 3.3.5. The transfer
matrix equations for each subloop system is derived in the following
sections.
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Section 5.2 identifies the boundary conditions. Sections 5.3 and

5.4 give the procedures for the derivations of the main loop and 

subloop systems, respectively.

5.2 Boundary Conditions

Each loop system has the typical boundary conditions corresponding 
to the end point. The state vector at the support (end point) consists 
of six components:

€S1 = Cu, H, G, M, V, Nf

fdiere u = displacement in the longitudinal direction,
N = displacement in the transverse direction,
G = slope,
M = moment,
V = internal force in the transverse direction, 

and N = internal force in the longitudinal direction.

Table 5.1 gives the types of supports considered and the corresponding 
boundary conditions.
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TAKiE 5.1 Types of Supports and The Boundary Conditions 
Type of Supports Boundary conditions Unknown Values

Pinned u = 0
w = 0
M = 0

51 = e
52 = V
53 = N

Fixed u = 0
w = 0
e = 0

51 = M
52 = V
53 = N

Free M = 0 
V = 0 
N = 0

51 = u
52 = N
53 = e

Slider w = 0
0 = 0
N = 0

51 = u
52 = M
53 = V

Simple
Supported

w = 0
M = 0
N = 0

51 = u
52 = 0
53 = V
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5.3 Transfer Matrix Equations of Main Loops

A mechanism is assumed to consist of the links and two types of 
kinematic joints (revolutes and sliders). For the revolutes, no moment 
is transmitted to the adjacent link(s) and the slopes are
discontinuous. For sliders, the force in the sliding direction is zero 
and the displacements in the sliding direction are discontinuous. The 
transfer matrix equations for the main systems are derived in the
following sections.

5.3.1 Transfer Matrix Equations for A Four-Bar Mechanism

Fig. (5.1a) shows a four-bar mechanism with two revolutes at
points B and C, and grounded revolutes at points A and D. If link AB
is the input link, the end types become fixed at point A and pinned at
point D. Then, the transfer matrix equation for the overall system is

CSJo = [T]p"[F] ... [F] {Rlc'CTlg'CF] ... CPI ... CF3
.{Rlg CTOg CF] ... CF3*m^*CS}A (5.1)

where CT3gCF3 ... CF3*CT3a= loop matrix equation for link AB,
CT!̂ CF3 ... CF3 = loop matrix equation for link BC,
[T3|g[F3 ... CF3 = loop matrix equation for link CD,

CP3 = point matrix,
£S3̂  and £S3g = state vectors at both end,

and £R3 = matrix reformulation for the revolutes.
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(a) A Four-Bar Mechanism

{S}i

(b) Additional Angle 
at Point B

(c) Additional Angle 
at Point C

FIGURE 5.1 A Four-Bar Mechanism Model
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Let us consider the transfer matrix equation of each link. A 
transfer matrix equation for a link AB is

CS}g = [Tlg'CF] ... [F] [Tla'tS}* (5.2)

Rewriting Eq. (5.2) gives

u L U(l,l) U(l,2) U(l,3) U(l,4) U(l,5) U(l,6) U(l,7) • u
w U(2,l) U(2,2) U(2,3) U(2,4) U(2,5) U(2,6) U(2,7) w
e U(3,l) U(3,2) U(3,3) U(3,4) U(3,5) U(3,6) U(3,7) e

H U(4,l) U(4,2) U(4,3) U(4,4) U(4,5) U(4,6) U(4,7) • H
V U(5,l) U(5,2) U(5,3) U(5,4) U(5,5) U(5,6) U(5,7) V

N U(6,l) U(6,2) U(6,3) U(6,4) U(6,5) U(6,6) U(6,7) N
1. B 0 0 0 0 0 0 1 ,1

(5.3)

Here, three coiQ>onents of the state vector at point A are zero from 
Table 5.1. Thus, there are only three unknowns. The colummns in the 
matrix corresponding to the zero values of the state components can be 
eliminated from Eq. (5.3) as follows:
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u L " P(l,l) P(l,2) P(l,3) P(l,4)
w P(2,l) P(2,2) P(2,3) P(2,4)

SI"
e P(3,l) P(3,2) P(3,3) P(3,4)

S2
N P(4,l) P(4,2) P(4,3) P(4,4) •

S3
V P(5,l) P(5,2) P(5,3) P(5,4)

. 1 .
N P(6,l) P(6,2) P(6,3) P(6,4)
1,B . 0 0 0 1

(5.4)

where SI, S2, and S3 are the non-zero state components as given in 
Table 5.1. And CSlg is the state vector at the left side of point B 

as shown in Fig. (5.1b).

At point B, the kinematic conditions for a revolute joint are 

satisfied; No moment is transmitted and the slopes are discontinuous.

Mb = 0 = P(4,1)-S1 + P(4,2)'S2 + P(4,3)-S3 + P(4,4) 

Rearrangement of Eg. (5.5) gives

(5.5)

S2 = - Z(1,2)'S1 - Z(3,2)*S3 - Z(4,2) (5.6)

where Z(l,2) = P(4,l)/P(4,2),
Z(3,2) = P(4,3)/P(4,2),

and Z(4,2) = P(4,4)/P(4,2).
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Substituting Eq. (5.6) into Eq. (5.4) gives

u L (P(l,l)-P'(l,l)) (P(l,3)-P'(l,3)) (P(l,4)-P'(l,4))
w (P(2,1)-P'(2,D) (P(2,3)-P (2,3)) (P(2,4)-P (2,4))
e (P(3,l)-P'(3,l)) (P(3,3)-P (3,3)) (P(3,4)-P'(3,4))
H 0 0 0
V (P(5,l)-P'(5,l)) (P(5,3)-P'(5,3)) (P(5,4)-P (5,4))
N (P(6,l)-P'(6,l)) (P(6,3)-P (6,3)) (P(6,4)-P'(6,4))
1 B 0 0 1

SI
S3
1

(5.7)

where P'(i,j) = P(i,2) Z(j,2)

At point B, the slopes are discontinuous. Thus, an additional slope as 
shown in Fig. (5.1b) is present as follows:

CSjJ = €S}L + * (5.8)

where a is the additional angle between the two adjacent links at B, 
and can be determined from Eq. (5.18). Then, the matrix equation to 
the right side of point B from point A becomes

u R
w
6
M
V
N
1 B

(P(l,l)-P'(l,l)) 0 (P(l,3)-P (1,3)) (P(l,4)-P'(l,4)) 
(P(2,l)-P (2,1)) 0 (P(2,3)-P (2,3)) (P(2,4)-P'(2,4)) 
(P(3,l)-P (3,1)) 1 (P(3,3)-P'(3,3)) (P(3,4)-P (3,4)) 

0 0 0 0
(P(5,l)-P (5,1)) 0 (P(5,3)-P (5,3)) (P(5,4)-P (5,4)) 
(P(6,l)-P (6,1)) 0 (P(6,3)-P'(6,3)) (P(6,4)-P'(6,4)) 

0 0 0 1

SI
a

S3 
, 1

(5.9)



Next, the matrix equation for the link BC is

{S}% = m g -c ra  . . .  CP3 . . .  m - c s i j

Combining Eqs. (5.9) and (5.10) gives Eq. (5.11),
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(5.10)

•u L ■ Qdrl) 0(1,2) 0(1,3) 0(1,4)
N 0(2,1) 0(2,2) 0(2,3) 0(2,4)
e 0(3,1) 0(3,2) 0(3,3) 0(3,4)
N 0(4,1) 0(4,2) 0(4,3) 0(4,4)
V 0(5,1) 0(5,2) 0(5,3) 0(5,4)
N 0(6,1) 0(6,2) 0(6,3) 0(6,4)

,1.C 0 0 0 1

SI
a

S3

1

(5.11)

At point C, Mg = 0. Thus, the moment equation from Eq. (5.11) is 

Mg = 0 = Q(4,1)'S1 + 0(4,2)'* + 0(4,3).S3 + Q(4,4) 

and elimination of S3 gives

33= - ZZ(1,3)*S1 - ZZ(2,3)'« - ZZ(4,3) (5.12)

Hhere ZZ(1,3) = Q(4,l)/Q(4,3),
ZZ(2,3) = Q(4,2)/Q(4,3),

and ZZ(4,3) = Q(4,4)/Q(4,3).



Substituting Eq. (5.12) into Eq. (5.11) gives
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u L
w
e

M
V
N
1 C

(Q(l,l)-Q'(l,l)) (Q(l,2)-Q'(l,2)) (Q(l,4)-Q (1,4)) 
(Q(2,1)-Q'(2,D) (Q(2,2)-0'(2,2)) (Q(2,4)-Q (2,4)) 
(Q(3,1)-Q'(3,D) (0(3,2)-0 (3,2)) (Q(3,4)-Q'(3,4)) 

0 0 0 
(Q(5,l)-Q'(5,l)> (Q(5,2)-Q'(5,2)) (Q(5,4)-Q'(5,4)) 
(Q(6,1)-Q'(6,D) (Q(6,2)-Q'(6,2)) (Q(6,4)-Q'(6,4)) 

0 0 1

SI
a

1
(5.13)

where Q'(i,j) = Q(i,3)-ZZ(j,3)

At point C, the slope is discontinuous. Thus, an additional angle is 
present as shown in Fig. (5.1c). The state vector is as follows:

£SlJ X CSĴ  + P (5.14)

where p  is the additional angle between the two adjacent links at C, 
and can be determined from Eg. (5.18). Then, the matrix equation to 
the right side of point C from point A becomes

u R (Q(l,l)-0'(1,1)) (Q(l,2)-Q'(l,2)) 0 (Q(l,4)-Q'(l,4))
w (Q(2,1)-Q'(2,D) (Q(2,2)-Q'(2,2)) 0 (Q(2,4)-0 (2,4))
e (Q(3,l)-Q (3,1)) (Q(3,2)-Q (3,2)) 1 (Q(3,4)-Q (3,4))
H 0 0 0 0
V (Q(5,1)-Q'(5,D) (Q(5,2)-Q (5,2)) 0 (Q(5,4)-Q (5,4))
N (Q(6,1)-Q'(6,D) (Q(6,2)-Q'(6,2)) 0 (Q(6,4)-Q'(6,4)>
1 C 0 0 0 1

SI
a

P
, u

(5.15)



Finally, the matrix equation for the link CD Is 

CSlg = [Ilo'CF] ... [Fl'tSlg 

Combining Eqs. (5.15) and (5.16) gives Eq. (5.17).
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(5.16)

•u • R(l,l) R(l,2) R(l,3) R(l,4)
w R(2,l) R(2,2) R(2,3) R(2,4)

SI
e R(3,l) R(3,2) R(3,3) R(3,4)

a
M R(4,l) R(4,2) R(4,3) R(4,4)

P
V R(5,l) R(5,2) R(5,3) R(5,4)

. 1
N R(6,l) R(6,2) R(6,3) R(6,4)
1,D , 0 0 0 1

(5.17)

Applying the boundary conditions at point D gives three 
simultaneous equations for the pinned support:

0 = R(1,1)'S1 + R(l,2)' * + R(1,3).P + R(l,4)

**D = 0 = R(2,1).S1 + R(2,2)'« + R(2,3).p + R(2,4) (5.18)

Mo = 0 = R(4,1)'S1 + R(4,2).« + R(4,3). P + R(4,4)

The solutions of Eq. (5.18) gives three values for SI, a, and |3. 
Then, the unknown values of S2 and S3 can be calculated from Eqs. (5.6) 
and (5.12), respectively.
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5.3.2 Transfer Matrix Equation for A Slider-Crank Mechanism

Fig. (5.2) shows a slider-crank mechanism with revolutes at points 
B and C, grounded by a fixed end at point A, and by a slider at point 
D. The procedures for the derivations of the transfer matrix equations 
are the same as those in Section 5.3.1.

The boundary conditions at the slider given in Table 5.1 are as 
follows:

" d = 0

®D “ 0 (5.19)

N q = 0

The same procedure up to Eq. (5.11) in Section 5.3.1 can be used. At 

points C and D, the kinematic conditions must be satisfied: No moment 
can be transmitted at point C, and no reaction force is present in the 
sliding direction. Thus, a displacement continuity at point D is 
present in the sliding direction as shown in Figs. (5.2a) and (5.2b). 
After the expressions in Eqs. (5.12) and (5.13) are used, the condition 
at points C and D becomes

CSlp = £S3c + u" (5.20)

where u" is the additional displacement in the sliding direction as 
shown in Fig. (5.2b).
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B

(a) A Sllder-Crank Mechanism

{S},

(b) Additional Angle 
at Point B

(c) Additional Displacement 
at Point D

FIGURE 5.2 A Sllder-CranK Mechanism Model
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u
N
e
M
V 
N
llD

r(Q(l,l)-Q'(l,D) (Q(l,2)-0'(1,2)) 1 (Q(l,4)-0 (1,4)) 
(Q(2,l)-0 (2,1)) (Q(2,2)-0'(2,2)) 0 (Q(2,4)-Q'(2,4)) 
(Q(3,1)-Q'(3,D) (Q(3,2)-Q (3,2)) 0 (Q(3,4)-Q'(3,4)) 

0 0 0 0
(Q(5,1)-Q'(5,D) (Q(5,2)-Q'(5,2)) 0 (Q(5,4)-Q'(5,4)) 
(Q(6,l)-Q (6,1)) (Q(6,2)-Q'(6,2)) 0 (Q(6,4)-Q'(6,4)) 

0 0 0 1

SI
a

u"
1

(5.21)

where 0'(i,j) = 0(1,3). ZZ(j,3).

Finally, the matrix equation in Eq. (5.21) can be written in the 
same form as in Eq. (5.17) as follows:

u ■ R(l,l) R(l,2) R(l,3) R(l,4)
w R(2,l) R(2,2) R(2,3) R(2,4)

SIe R(3,l) R(3,2) R(3,3) R(3,4)
a

M R(4,l) R(4,2) R(4,3) R(4,4) •
u"

V R(5,l) R(5,2) R(5,3) R(5,4)
1

N R(6,l) R(6,2) R(6,3) R(6,4)
1 D 0 0 0 1

(5.22)
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^plying the conditions In Eq. (5.19) to Eq. (5.22) gives the following 
three equations:

“d = 0 = R(1,1)'S1 + R(l,2). Of + R(1,3)'U" + R(l,4)

00 = 0 = R(3,1)'S1 + R(3,2)-or + R(3,3).u" + R(3,4) (5.23)

No = 0 = R(6,1)-S1 + R(6,2).« + R(6,3)*u" + R(6,4)

The solutions of Eq. (5.23) gives three values for SI, a, and u", 
where « Is an additional angle at point B and u" Is an additional 
displacement In the sliding direction at point 0. Then, the unknown 
values of S2 and S3 can be calculated from Eqs. (5.6) and (5.12), 
respectively.

5.4 Transfer Matrix Equations for the Sub-loop (Branch) Systems

As shown In Fig. (3.11), there are four types of sub-loop systems. 
Combining the same procedures for the matrix equations as In Section
5.3 and for the branch matrices as In Section 3.3.5 gives the transfer 
matrix equations for each type of the sub-system. Figs. (5.3) through 
(5.6) give the sub-loop systems, and Tables (5.2) through (5.5) give 
the loop equations for each sub-loop system.
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FIGURE 5.3 Sub-Loop with A Free End and A Fixed Branch 
Point (Case 1).

TABLE 5.2 Loop Equations for The Unknowns at Point 0 (Case 1)

u, = ZZ(l,l).u, + ZZ(l,2).w, + ZZ(l,3)«e, + ZZ(1,4)
H, = ZZ(2,l).u, + ZZ(2,2)w, + ZZ(2f3).e, + ZZ(2,4)
e, = ZZ(3,l).u, + ZZ(3,2).h, + ZZ(3,3)'6, + ZZ(3,4)

where u*, w*, %  - displacements at node 0,
u,, w,, e, = displacements at node 1,

and ZZ(i,j) - conq>onents in the matrix of Eq. (3.32).
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FIGURE 5.4 Sub-Loop with A Slider End and A Revolute Branch 
Point (Case 2).

TABLE 5.3 Loop Equations for The Unknowns at Point 0 (Case 2)

u, > ZZ(l,l)u, + ZZ(1,2)'W, + ZZ(1,3)'6, + ZZ(1,4)
Q * ZZ(2,1)»U| + ZZ(2f2)«Wi + ZZ(2f3)'@i + ZZ(2f4)
e, = ZZ(3,l).u, + ZZ(3,2).w, + ZZ(3,3).e, + ZZ(3,4)
w* Is determined from Eq. (5.6)

where u», w,, = displacements at node 0,
u,, w,, 6, « displacements at node 1,

a = additional angle for point 1,
and ZZ(l,j) = coaqponents In the matrix of Eq. (3.32).
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—  a

FIGURE 5.5 Sub-Loop with A Pin End and A Revolute Branch 
Point (Case 3).

TABLE 5,4 Loop Equations for The Unknowns at Point 0 (Case 3)

e» = ZZdrD-u, + ZZ(1,2)W: + ZZ(1,3)'Q, + ZZ(1,4)

a = ZZ(2,l).u, + ZZ(2,2).W; + 22(2,3)8% + 22(2,4)

3 * 22(3,1).u% + 22(3,2).Wi + 22(3,3).8% + 22(3,4)

V» is determined from Eq. (5.6)
No is determined from Eq. (5.12)

idiere u#, w«, 8* = displacements at node 0,
No, Vo, No = forces at node 0,
u%, N%, 8% ■ displacements at node 2,
a , 3 ■ additional angles for points 1 and 2,

and 22(i,j) « components in the matrix of Eq. (3.32).
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figure 5.6 Sub-Loop Hlth A Pin End and A Slider Branch 
Point (Case 4).

TABLE 5.5 Loop Equations for The Unknowns at Point 0 (Case 4)

u* = ZZ(l,l).u, + ZZ(1,2).W: + ZZ(1,3)'6, + ZZ(1,4)
a = ZZ(2,l).u, + ZZ(2,2) w, + ZZ(2,3)*6< + ZZ(2,4)
u" * ZZ(3,1).U; + ZZ(3,2)w, + ZZ(3,3)'Q, + ZZ(3,4)
V» is determined from Eq. (5.6)
N« is determined from Eq. (5.12)

fdiere u,, w,, 6. = displacements at node 0,
Her Vor N* = forces at node 0,
Ug, Ngr 9s = displacements at node 2,

a = additional angle at point 1,
u" - additional deflection in the sliding direction

at point 2,
and ZZ(i,j) = components in the matrix of Eq. (3.32).



CHAPTER VI

GENERAL PROCEDURES FOR ITERATIVE TRANSFER MATRIX METHOD FOR 
KTNETO-ELASTODTNAMIC ANALYSIS OF GENERAL PLANAR MECHANISMS

6.1 Introduction

This chapter explains the basic ideas in the dynamic analysis 
method for flexible-body systems for general planar mechanisms. Since 
the mechanism forces are a function of the link accelerations, a 
kinematic analysis must be conducted prior to any force analysis. 

Section 6.2 gives the basic procedure for a closed-form, cougionent 
approach for the rigid-body kinematic analysis.

Next, the basic procedures in the iterative transfer matrix method 
for a flexible-body dynamic analysis is explained in Section 6.3. 
Section 6.4 gives a model for the transfer matrix method.

6.2 Procedure of Component Approach for The Kinematic Analysis

As mentioned in Chapter 2, a multiloop mechanism can be decomposed 
into several components, idiich can be analyzed directly using a 
closed-form solution procedure. The rigid-body kinematic analysis 
involves determining the positions, velocities, and accelerations of 
every important point in the mechanism.
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Fig. (6.1) shows a multiloop mechanism. Fig. (6.2) gives four 
components of the mechanism to calculate the Icinematic properties 
(positions, velocities, and accelerations). For an input-linli 
(Fig. 6.2a), the kinematic properties of node B can be directly 
determined from the given angular velocity and the length of the link. 
After determining the kinematic properties of node B, those of nodes C 
and 0 (Fig. 6.2b) are calculated from dyad equations. The kinematic 
properties of node E (Fig. 6.2c) are computed directly from the known 
properties of nodes B and C, which three nodes form a solid link. 
Finally, nodes E, F, and G (Fig. 6.2d) is a dyad so that the kinematic 
properties of nodes F and G can be determined from the known properties 
of node E.

Eight types of the basic components are identified in Section 2.2 
for the kinematic analysis. All of the formulations for the rigid-body 
kinematic analyses of the components are presented in Appendix A.
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FIGURE 6.1 A Hultlloop Nechanla

(a ) (b )

(e ) (d )

FIGURE 6.2 Components of The Mechanism In Fig. (6.1)
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6.3 Procedures for The Proposed Iterative Transfer Matrix Methods
for The Dynamic Analysis

6.3.1 Fundamentals for the Procedures

A planar mechanism can be thought of as an instantaneous-structure 
which is frozen at a particular instant by fixing the 
degree(s)-of-freedom associated with the mechanism input-link(s). At 
an instantaneous position the mechanism is modeled as a planar 
structure with several revolutes (moment-release joints), sliders 
(force-release joints), and branch systems (any sub-loop system 
connected with the main loop). The overall system has a global 
coordinate system, and each link has a local coordinate system usually 
defined in the axial and transverse directions.

Next, each link is divided into many sections with a lumped 
elastic stiffness and a lumped mass. The necessary transfer matrices 
at each section can be determined from the material properties, 
geometry, and external loads. The formulations for the transfer 
matrices are presented in Section 3.3.

6.3.2 Transfer Matrix Equation

After the transfer matrices for all of the sections and nodes are 
determined, a system equation is built by multiplying the matrices from 

the starting node to the end node. However, special formulations are 
required for the revolutes, prismatic joints, and branch points.



139
For the revolute, the moment about the turning axis must vanish, 

and the link angles are discontinuous; for the prismatic joint 
(slider), the sliding force must be zero, and the longitudinal 
displacement becomes discontinuous; and for the branch point, some of 
the displacements and forces at the branch points must be continuous 
depending on the type of branch.

6.3.3 Solution Procedures

In comuon boundary-value problems, there are three unknowns and 

three knowns in the state vectors at the starting point and the end 
point (usually supports). Three unknowns at the starting support can 
be easily determined by solving three linear simultaneous equations.

To illustrate the procedures, consider the multiloop planar 
mechanism shown in Fig. (6.3). A-B-C-D is a 4-bar mechanism with link 
AB as the input driver. It is assumed here that a rigid-body klnanatic 
analysis has already been conducted so that nominal values for all of 
the linkage angles are luiown. For the mechanism analysis, the input 
link must accommodate a torque so that its support becomes a clamped 
condition. A branch E-F-6 is connected to the main body at point E by 
a revolute joint. In Fig. (6.3), the driving link is at an angle 9a 
from the horizontal axis in the global coordinate system. Thus, the 
state vector in the global coordinates at point A must be transformed 
by the angle 6a into the state vector in the local coordinates at the 
same point. At point B, the state vector in the local coordinates of
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FIGURE 6.3 A Hultlloop Planar Mechanism
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FIGURE 6.4 Schematic Plot of The Mechanism in Fig. (6.3)



141
link AB must be transformed by the angle 8g to those in the local 
coordinates of link fiC in order to satisfy the continuity conditions. 
The mechanism in Fig. (6.3) can be mapped schematically as shown in 
Fig. (6.4). The detail numerical solutions for the system in 
Fig. (6.3) are given in Chapter 8 and Appendix C.

Fig. (6.4) shows the transformed main 4-bar linkage as well as the 
branch system of the mechanism given in Fig. (6.3), and shows the 
qualitative scheme used to analyze the mechanism. A transfer matrix 
equation for the main loop is given as follows:

CSJp = [Tig CF] ... CF3 CRJc-mc CFJ ... CFJ • CBle
m  ... CF3 '{Rig [Tig-CF] ... m - m A ' C S l ^  (6.1)

and for the branch loop,

{Slg = {Jlg'tTlg'CFl ... CF3 • CPlp-CRlp* CTJp
CF3 ... CF3'rag-CSlg (6.2)

Here, a branch matrix CB3g at point E can be determined from Eq. (6.4) 
using the procedures in Sections 3.3.5.2 and 5.4. CRl and £J1 are not 
really matrices, but are operators which represent the matrix 
reformulation process to satisfy the kinematic conditions. These 
operators were presented in Chapter 5.
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Rewriting Eq. (6.1) into a transfer matrix equation for the main 

loop gives

CSlp = CMI {S\ (6.3)

where €S1q = state vector at the support D,
CSl̂  = state vector at the support A,
CSlg = state vector at the support E,
£S}q = state vector at the support G,
CTHl = equivalent transfer matrix combined all elements,
CT] = transformation matrix at each point,
CF3 = field matrix at each section,
CB3e = branch metric at point E due to a open branch E-F-G.

[P3p = point matrix at point F,
£J}g = branch connectivity operator, 

and CRl = revolute operator.

The state vector consists of the six variables (i.e. u, w, 9, M, V, 
and N). These state variables are

u = displacement in the axial direction,
N = displacement in the transverse direction,
9 = slope,
M = moment,
V = transverse force, 

and N = axial force.
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The boundary conditions at point A are u* = w* = 8* = 0 and M, V, 

and N as the unknowns. At point D, the pinned condition gives
Ud = No = Hd = 0 and 8, V, and N as the unknowns. Thus, using the 
known conditions at point D, three simultaneous equations can be 
written and solved for the unknowns at point A.

Thus, Eq. (6.2) can be written as follows:

u
w
8
N
V
N

1 D

0(1,1) 0(1,2) 0(1,3) 0(1,4) 0(1,5) 0(1,6) 0(1,7)
0(2,1) 0(2,2) 0(2,3) 0(2,4) 0(2,5) 0(2,6) 0(2,7)

0(3,1) 0(3,2) 0(3,3) 0(3,4) 0(3,5) 0(3,6) 0(3,7)
0(4,1) 0(4,2) 0(4,3) 0(4,4) 0(4,5) 0(4,6) 0(4,7)
0(5,1) 0(5,2) 0(5,3) 0(5,4) 0(5,5) 0(5,6) 0(5,7)
0(6,1) 0(6,2) 0(6,3) 0(6,4) 0(6,5) 0(6,6) 0(6,7)

0 0 0 0 0 0 1

u
w

e
• M
V
N

1.

Then, applying the boundary conditions at each support

0 0(1,1) 0(1,2) 0(1,3) 0(1,4) 0(1,5) 0(1,6) 0(1,7) 0
0 0(2,1) 0(2,2) 0(2,3) 0(2,4) 0(2,5) 0(2,6) 0(2,7) 0
8 0(3,1) 0(3,2) 0(3,3) 0(3,4) 0(3,5) 0(3,6) 0(3,7) 0
0 0(4,1) 0(4,2) 0(4,3) 0(4,4) 0(4,5) 0(4,6) 0(4,7) • H
V 0(5,1) 0(5,2) 0(5,3) 0(5,4) 0(5,5) 0(5,6) 0(5,7) V
N 0(6,1) 0(6,2) 0(6,3) 0(6,4) 0(6,5) 0(6,6) 0(6,7) N
.1 D 0 0 0 0 0 0 1 ,1
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0 = U(1,4)*Ma + U(1,5)-Va + U(1,6)-Na + U(l,7)
0 = U(2,4)-Ma + U(2,5)-Va + U(2,6)*Na + U(2,7)

0 = U(4,4)»Ma + U(4,5).Va + U(4,6)-Na + U(4,7)

After solving for the unknowns V/̂, and Na) at point A, the 
state vectors at every other points in the main body can be calculated, 
and the state vectors at every branch system can also be determined by 
applying the state vector, determined at the branched point. Eq. (6.4) 
is a typical transfer matrix equation for a segment, which shows the 
relationships between state vectors at the (i-l)th point and at the ith 
point; here, €S}̂  can be calculated from Eq. (6.4) if is known:

» ClM3*€S3^.i (6.4)

tdiere {S}̂  = state vector at the ith position,
{Sy = state vector at the (i-l)th position, 1*1

and cno = transfer matrix between the two points.
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6.3.4 Iteration Procedures for Field Matrices

As mentioned earlier, the zero-axial force condition is used to 
determine the initial forces at any node of the flexible-body systems. 
Because the axial force at each section is unknown at the initial 
iteration, equilibrium cannot be represented explicitly so that the 
equations become non-linear. The moment at each segment depends on the 
transverse forces and displacements as well as on the unknown axial 
force. In addition, the displacements at the end of each segment is a 
function of the unknown internal forces. This means that a field 

matrix must incorporate the unknown axial loads which are part of the 
state variables. In the method presented here, the nonlinear problem 
is linearlized by first separating the interrelative elastic effects 
for the segment into the transverse and the longitudinal directions, 
and by calculating the internal forces in each direction. For 
subsequent iterations, the field matrices are calculated again by using 
the internal forces determined during the previous iteration.

Thus, the initial field matrix contains the elastic properties of 
a segment and those are independent of the elastic effects due to the 
internal forces. But, the elastic field matrix contains the elastic 
properties which are a function of the axial forces determined at the 
previous iteration. The accuracy of the matrix improves with each 
iteration. Convergence of this method is very fast, and usually only 
three or four iterations are required.
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6.3.5 Dynamic Analyses

In dynamic analyses of flexible mechanisms, there are two types of 
inertial forces at the locations of lumped-masses; one is rigid-body 
inertial forces due to the rigid-body accelerations and the other is 
the elastic-body inertial forces due to the elastic vibrations of the 
flexible members.

The inertial forces from the rigid-body accelerations acting on 
the members are sometimes treated as external forces at the locations 
of the lumped masses. But, the elastic-body accelerations from the 
axial and transverse vibrations of the members can not be determined 
directly. To account for the inertial effects of the elastic-body 
vibrations, the Houbolt difference direct integration method is used as 
derived in Section 3.3.6.

Thus, two types of the inertial matrices are derived as given in 
Section 3.3.6: The rigid-body inertial matrix is used for the
quasi-static analyses, and the elastic-body matrix is used for the 
time-domain analyses.
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6.3.6 Considerations of the Fatigue Stress and Distortion Analyses

After determining all of the state variables at each point of 
interest in the members, stresses in each direction, ccmbined stresses, 
distortions, and distortion-angles can be calculated. The stresses in 
each direction are determined from the forces, moments, and geometric 
properties. The combined stresses can also be calculated from the 
stresses determined. The distortion at any point is defined as the 
distance from the position determined by the rigid-body analysis to the 
position determined by the flexible-body analysis, and is easily 

calculated from the displacements in each direction. Finally, the 
distortion-angle at each point shows the direction of the distortion at 
the point. These stresses and distortions change with the rotation of 
the input link as shown in Fig. (6.5).

Here, a fatigue analysis for the dynamic stresses must be 
involved. The proposed ideas in the fatigue analysis are that the 
stresses at any segment in a member are determined for a period of one 
revolution of the input link as shown in Fig. (6.6). It is assumed 
that the segment is ideally subjected to the cyclic stresses with the 
maximum and minimum stresses given by the dotted line in the figure. 
Then, Soderberg's linear-failure line can be used for the fatigue 
failure analysis. This failure line is the most conservative of the 
non-zero mean stress fatigue failure lines [80-853. Also it will be 
assumed that the mechanism can be used for infinite cycles, and 
therefore the endurance limit is used as the maximum allowable strength
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DISPLACEMENTS VS. INPUT-LINK ANGLES
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FIGURE 6.6 Stress State Assumed for The Fatigue Analysis
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for stress analysis.

Applying Soderberg's linear line to the cyclic stresses, the 
safety factor for each link can be determined by the following 
relationships [80-833.

Ssean = (Smaz + Snin) / 2 
Saltn = (Smaz - Smin) / 2

and

SF

fdiere SF = factor of safety,
Sn = fatigue endurance limit,
Sy = yielding strength,
Smean = mean stress,
Saltn = alternating stress,
Smaz = mazimum stress,

and Smin = minimum stress.

(6.5)

Smean Saltn (6.6)

Sy Sn
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6.4 A Model for The Transfer Matrix Method for Flexible Systems

To fit into the methodology of the transfer matrix method, the 
following model of a mechanism is used. At an initial time t = to, the 
rigid-body configuration determined from a rigid-body kinematic 
analysis of the mechanism is considered as an 'instantaneous structure' 
capable of undergoing both rigid-body and elastic motions. A C D B is 
the position of the rigid-body system, and A C'D'B is the deformed 
position of the flexible linkage in Fig. (6.7). For this Instantaneous 
structure, the inertial forces due to the rigid-body accelerations of 
the elements, the forces generated by springs, and the external forces 
acting on it are considered here. The mass and stiffness properties of 
the mechanism, treated as an elastic system, are derived for the 
rigid-body position and are assumed to remain unchanged during a chosen 
interval of time Dt.
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FIGURE 6.7 Model of A Mechanism for The Analyses



CHAPTER VII 

OVERVIEW OF COMPUTER PROGRAM CASDAM

7.1 Introduction

The program CASDAM la a graphics-oriented, interactive, 
computer-aided program for static and dynamic analyses of flexible 
mechanisms and structures. The program incorporates the developed 
iterative transfer-matriz method and is intended for use with a 

graphics terminal such as the Tektronix 4014. The necessary transfer 
matrices used in the iterative transfer-matrix method have 7 X 7  
elements so that the program requires much less storage than does the 
finite-element methods and other lumped-mass techniques. Thus, the 
program should be effective on mini/micro-conq)uters.

The program CASDAM is developed on a Digital Equipment Corporation 
VAX 11/750 minicomputer installed in The Advance Design Method 
Laboratory, Department of Mechanical Engineering, The (Xiio State 
University. There has been considerable effort made in trying to 
develop the program so that the program has minimal amounts of machine 
dependency. The program language used is 1977 ANSI FORTRAN IV.

In this chapter, the program CASDAM is discussed briefly. 
Section 7.2 explains the functional structure of CASDAM. The 
description of each routine, tree structure, and overall statistical 
data for the program are given in Appendix E.
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7.2 Functional Structure of Program CASDAM

The program CASDAM consists of three processes given in Table 7.1: 
pre-process, process, and post-process. In the preprocess step, the 
necessary data are input interactively or in batch mode, and then data
for processif are generated automatically. The kinematic analyses are
carried out if a dynamic analysis is required.

In the process step, the displacements and internal forces are
calculated by the iterative transfer-matrix method. The static stress 
analysis or dynamic stress analysis is also carried out. Then, the
maximum displacements at every node and the safety factors for the 
system at the critical nodes are determined.

The postprocess gives the geometrical and graphical plots for the 

displacements, stresses, and safety factors. All of the results are 
given by the graphics-oriented plots on the terminal screen and in the 
tabular forms.
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TABLE 7.1 Functional Structure of CASDAM

STEP FUNCTIONS

PREPROCESS

Input Data

Kinematic Analyses ******************
Calculate positions and accelerations

Data Generation

PROCESS
ANALYSES
********

Calculate displacements, internal forces, 
stresses, and safety factors.

POSTPROCESS

Geometrical Plots for Displacements 
and Safety Factors of The System

Graphical Plots for Displaconents 
and Stresses of A Node



CHAPTER VIII 

DEMONSTRATION AND APPLICATION

6.1 Introduction

In this chapter, six problems are analyzed for demonstration of 
the iterative transfer-matrix method. Section 8.2 gives a multiloop 
mechanism for static analyses under small- and large-deflection 
assumptions, and Section 8.3 shows a mechanism for dynamic analyses 
(quasi-static and steady-state responses), when the input-link can 
rotate a full 360 degrees. Section 6.4 gives a cantilever beam with 

end loads, and Section 8.5 gives a stepped beam on elastic supports 
under static loads. The complete solutions for these problems are 
given in Appendices.

8.2 Static Analyses of A Multiloop Mechanism

8.2.1 Static Analysis for Small-Deflection Problem

A planar multiloop mechanism shown in Fig. (8.1) consists of seven
beam elements and a triangular plate connected with two springs. A
link between nodes 1 and 2 is set as the input-link so that the end
condition at node 1 becomes fixed: The end conditions at nodes 6, 8,
and 12 are pinned: The sliding condition is used at node 13. All of
the nodes have revolute joints except for node 5, idiere a sliding joint
is used. Each beam is uniform and made from AISI 4340 CD steel. There
are two springs in the system: A spring is connected between nodes 4
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and 11, and the other spring Is connected fraa node 3 to ground.

At node 13, an external force is loaded horizontally in the 
negative direction and is 100 pounds. For the geometry of the spring, 
the free lengths of the springs are set as 5 inches, and the distance 
of the grounded spring at node 3 is about 7.5 inches so that a force 
due to the spring is generated. The spring constant is K = 100 lb/in. 
The cross-sectional area is 0.5 X 0.5 (inch*), and the thickness of the 
plate is 0.5 inch.

Fig. (8.2) shows the mechanism generated with a number of elements 
for each link. Figs. (8.3) and (8.4) give the deflected system under 
small-deflections and the safety factors, respectively. Table 8.1 
gives the displacements at every node. Table 8.2 shows the internal 
forces and stresses at each node. The reaction forces at the supports 
are given in Table 8.3. Finally, the safety factors for nodes are 
shown in Table 8.4.

The mechanism link deflections are assumed to be small. The 
maximum distortion, which is the distance from the original position to 
the deflected position, is 0.0787 inch at node 11. The minimum safety 
factor for the system is 1.86 at node 3 for the given steel based on a 
yield strength of 100,000 psi. The analysis details are given in 
Appendix B.
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FIGURE 6.1 A Hultiloop Hechanism for Static Analysis
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FIGURE 8.2 The Element-Generated System

SMALL DEFLECTION ASSUMPTION USED
FIGURE 8.3 The Deflected System under Small-Deflections



table 8.1 Displacements of Nodes

SMALL-DEPLECIION ASSUMPTION USED 
UNITS ARE BRITISH (INCHES)
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NODE LOCATION DISPLACEMENTS SLOPE
NO X Y HORIZ VERTI DBG
1 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00
2 0.1294E+01 0.4830E+01 -0.1077E-01 0.2627E-02 -0.1053E+01
3 0.5624E+01 0.7330E+01 0.1964E-01 -0.5131E-01 -0.2393E-01
4 0.9954E+01 0.9830E+01 -0.9424E-02 -0.1674E-02 0.3917E-01
5 0.1117E+02 0.2936E+01 -0.4712E-02 -0.8368E-03 0.3917E-01
6 0.1239E+02 -.3958E+01 O.OOOOE+00 O.OOOOE+00 0.3917E-01
7 0.16098+02 0.3804E+01 -0.4860E-02 -0.2363E-05 0.3917E-01a 0.1609E+02 -.1196E+01 O.OOOOE+00 O.OOOOE+00 0.5570E-01
9 0.5320E+01 0.1257E+02 0.3677E-01 -0.5032E-01 0.1873E+00
10 0.2124E+01 0.1339E+02 0.3946E-01 -0.3987E-01 0.1873E+00
11 0.8212E+01 0.1699E+02 0.5122E-01 -0.5977E-01 0.1873E+00
12 -.1411E+01 0.9856E+01 O.OOOOE+00 O.OOOOE+00 -0.6428E+00
13 0.1254E+02 0.1949E+02 0.1607E-01 O.OOOOE+00 0.7946E+0014 0.3235E+00 0.1207E+01 -0.9330E-03 0.1889E-03 0.8319E-0115 0.6470E+00 0.2415E+01 -0.3372E-02 0.7790E-03 0.1428E+00
16 0.9706E+00 0.3622E+01 -0.6618E-02 0.1636E-02 0.1787E+00
17 0.2377E+01 0.5455E+01 0.2682E-03 -0.1699E-01 -0.9885E+00
18 0.3459E+01 0.6080E+01 0.9939E-02 -0.3414E-01 -0.7951E+00
19 0.4542E+01 0.6705E+01 0.1686E-01 -0.4638E-01 -0.4732E+00
20 -.5274E+00 0.1074E+02 0.9665E-02 -0.9967E-02 -0.6428E+00
21 0.3565E+00 0.1162E+02 0.1973E-01 -0.1993E-01 -0.6428E+00
22 0.1240E+01 0.1251E+02 0.2960E-01 -0.2990E-01 -0.6428E+00
23 0.1146E+02 0.1886E+02 0.2486E-01 -0.1494E-01 0.7946E+00
24 0.1038E+02 0.1824E+02 0.3365E-01 -0.2989E-01 0.7946E+00
25 0.9295E+01 0.1761E+02 0.4243E-01 -0.4483E-01 0.7946E+00
26 0.6707E+01 0.7955E+01 0.1734E-01 -0.4732E-01 0.4245E+00
27 0.7789E+01 0.8580E+01 0.1080E-01 -0.3611E-01 0.7446E+00
28 0.8872E+01 0.9205E+01 0.1405E-02 -0.2009E-01 0.9365E+00
29 0.1026E+02 0.8106E+01 -0.8246E-02 -0.1464E-02 0.3917E-01
30 0.1056E+02 0.6383E+01 -0.7068E-02 -0.1255E-02 0.3917E-01
31 0.1087E+02 0.4659E+01 -0.5690E-02 -0.1046E-02 0.3917E-01
32 0.1609E+02 0.5422E-01 -0.1215E-02 O.OOOOE+00 0.5570E-01
33 0.1609E+02 0.1304E+01 -0.2430E-02 -0.1181E-05 0.5570E-01
34 0.1609E+02 0.2554E+01 -0.3645E-02 -0.1772E-05 0.5570E-01
35 0.1486E+02 0.3587E+01 -0.4712E-02 -0.8439E-03 0.3917E-01
36 0.1363E+02 0.3370E+01 -0.4563E-02 -0.1686E-02 0.3917E-01
37 0.1240E+02 0.3153E+01 -0.4414E-02 -0.2527E-02 0.3917E-01
38 0.1147E+02 0.1213E+01 -0.3534E-02 -0.6275E-03 0.3917E-01
39 0.1178E+02 -.5109E+00 -0.2356E-02 -0.4183E-03 0.3917E-01
40 0.1208E+02 -.2234E+01 -0.U78E-02 -0.2091E-03 0.3917E-01
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table 8.2 Internal Forces and Stresses

SHALL-DEFLECTION ASSUMPTION USED 
UNITS ARE BRITISH (LBS, LBS-IN, AND PSI)

NODE INTERNAL fGRCES MOMENT STRESSES
NO HORIZ VERTI TOP BOTTOM
1 -0.1304E+03 -0.3296E+03 0.2070E+03 0.9414E+04 -0.1046E+05
2 -0.1304E+03 -0.3296E+03 O.OOOOE+00 -0.5216E+03 -0.5216E+03
3 -0.5403E+02 0.2280E+03 0.1U8E+04 0.5345E+05 -0.5388E+05
4 -0.7885E+00 0.4454E+01 O.OOOOE+00 -0.3154E+01 -0.3154E+01
5 -0.7885E+00 0.4454E+01 O.OOOOE+OO -0.3154E+01 -0.3154E+01
6 -0.7885E+00 0.4454E+01 O.OOOOE+00 -0.1810E+02 -0.1810E+02
7 O.OOOOE+00 O.OOOOE+00 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO
8 O.OOOOE+00 O.OOOOE+00 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO
9 0.7636E+02 0.3127E+03 0.4952E+03 O.OOOOE+OO O.OOOOE+OO
10 0.3044E+02 0.2976E+02 O.OOOOE+OO 0.1218E+03 0.1218E+03
11 0.4592E+02 0.2830E+03 O.OOOOE+OO 0.1837E+03 0.1837E+03
12 0.3044E+02 0.2976E+02 O.OOOOE+OO 0.1218E+03 0.1218E+03
13 O.lOOOE+03 0.5960E+02 O.OOOOE+OO 0.4000E+03 0.4000E+03
14 -0.1304E+03 -0.3296E+03 0.1559E+03 0.6075E+04 -0.8892E+04
15 -0.1304E+03 -0.3296E+03 0.1042E+03 0.3593E+04 -0.6410E+04
16 -0.1304E+03 -0.3296E+03 0.5221E+02 0.1098E+04 -0.3914E+04
17 -0.1304E+03 -0.3296E+03 0.2816E+03 0.1241E+05 -0.1463E+05
18 -0.1304E+03 -0.3296E+03 0.5623E+03 0.2588E+05 -0.2810E+05
19 -0.1304E+03 -0.3296E+03 0.8416E+03 0.3929E+05 -0.4151E+05
20 0.3044E+02 0.2976E+02 O.OOOOE+OO 0.1703E+03 0.1703E+03
21 0.3044E+02 0.2976E+02 O.OOOOE+OO 0.1703E+03 0.1703E+03
22 0.3044E+02 0.2976E+02 O.OOOOE+OO 0.1703E+03 0.1703E+03
23 O.lOOOE+03 0.5960E+02 O.OOOOE+OO -0.4656E+03 -0.4656E+03
24 O.lOOOE+03 0.5960E+02 O.OOOOE+OO -0.4656E+03 -0.4656E+03
25 0.1000E+03 0.5960E+02 O.OOOOE+OO -0.4656E+03 -0.4656E+03
26 -0.5403E+02 0.2280E+03 0.8382E+03 0.4050E+05 -0.3996E+05
27 -0.5403E+02 0.2280E+03 0.5585E+03 0.2708E+05 -0.2654E+05
28 -0.5403E+02 0.2280E+03 0.2791E+03 0.1367E+05 -0.1313E+05
29 -0.7885E+00 0.4454E+01 O.OOOOE+OO -0.1810E+02 -0.1810E+02
30 -0.7885E+00 0.4454E+01 O.OOOOE+OO -0.1810E+02 -0.1810E+02
31 -0.7885E+00 0.4454E+01 O.OOOOE+OO -0.1810E+02 -0.1810E+02
32 O.OOOOE+00 O.OOOOE+00 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO
33 O.OOOOE+00 O.OOOOE+00 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO
34 O.OOOOE+00 O.OOOOE+00 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO
35 O.OOOOE+00 O.OOOOE+00 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO
36 O.OOOOE+00 O.OOOOE+00 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO
37 O.OOOOE+00 O.OOOOE+00 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO
38 -0.7885E+00 0.4454E+01 O.OOOOE+OO -0.1810E+02 -0.1810E+02
39 -0.7885E+00 0.4454E+01 O.OOOOE+OO -0.1810E+02 -O.ieiOE+02
40 -0.7885E+00 0.4454E+01 O.OOOOE+OO -0.1810E+02 -0.1810E+02
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TABLE 6.3 Reaction Forces of Supports

UNITS ARE BRITISH (LBS AND LBS-IN)
NODE REACTION FORCES MOMENT
NO HORZ. VERT.
1 0.1304E+03 0.3296E+03 -0.2070E+03
6 -0.7885E+00 0.4454E+01 O.OOOOE+OO
8 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO
12 -0.3044E+02 -0.2976E+02 O.OOOOE+OO
13 O.OOOOE+OO -0.5960E+02 O.OOOOE+OO

KCULTt OF OTRCOS AMALYOES
V  B«B T  w g  T  was TP tSB, LOCATIONS OF CRITICAL FOINT(S)

=■UM I B  I t

n

MIN SAFETY FACTOR FOR SYSTEM

SeOEfOS AT NODE 3 s«»s<snm»tt»<t»«n«t
EXl 3-tWfr-86 IStattCB PM PG 5

figure 8.4 The Safety Factors for the Nodes
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table 6.4 Safety Factors of Nodes

SAFETY FACTOR DETERMINED FROM MAX. NORMAL STRESS THEORY 
*** CORRESPONDS TO ZERO STRESS ON THE LINK OR RIGID LINK 

UNITS ARE BRITISH (PSI FOR STRESSES)
NODE
NO

YIELD
STRENGTH TOP

STRESSES
BOTTOM

12
3
4
5
6
7
8 
9
10
11
12
13
14
15
16
17
18
1920 21 22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 ***

0.0.
0.
0.0.
0.0.0.0.0.0.0.0.0.
0.
0.0.0.
0.0.0.
0.0.0.0.0.0.0.0.0.
0.0.
0.
0.0.0.
0.0.0.
0.

MIN.

lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06
lOOOE+06

0.9414E+04
-.5216E+03
0.5345E+05
-.3154E+01
-.3154E+01
-.1810E+02
O.OOOOE+OO
O.OOOOE+OO
O.OOOOE+OO
0.1218E+03
0.1837E+03
0.1218E+03
0.4000E+03
0.6075E+04
0.3593E+04
0.1098E+04
0.1241E+05
0.2588E+05
0.3929E+05
0.1703E+03
0.1703E+03
0.1703E+03
-.4656E+03
-.4656E+03
-.4656E+03
0.4050E+05
0.2708E+05
0.1367E+05
-.1810E+02
-.1810E+02
-.1810E+02
O.OOOOE+OO
O.OOOOE+OO
O.OOOOE+OO
O.OOOOE+OO
O.OOOOE+OO
O.OOOOE+OO
-.1810E+02
-.1810E+02
-.1810E+02

-.1046E+05
-.5216E+03
-.5388E+05
-.3154E+01
-.3154E+01
-.1810E+02
O.OOOOE+OO
O.OOOOE+OO
O.OOOOE+OO
0.1218E+03
0.1837E+03
0.1218E+03
0.4000E+03
-.8892E+04
-.6410E+04
-.3914E+04
-.1463E+05
-.2810E+05
-.4151E+05
0.1703E+03
0.1703E+03
0.1703E+03
-.4656E+03
-.4656E+03
-.4656E+03
-.3996E+05
-.2654E+05
-.1313E+05
-.1810E+02
-.1810E+02
-.1810E+02
O.OOOOE+OO
O.OOOOE+OO
O.OOOOE+OO
O.OOOOE+OO
O.OOOOE+OO
O.OOOOE+OO
-.1810E+02
-.1810E+02
-.1810E+02

SAFETY
FACTOR

0.956E+01
0.192E+03
0.186E+01
0.317E+05
0.317E+05
0.552E+04***

SAFETY FACTOR FOR SYSTEM = 1.86 AT

***
0.821E+03
0.544E+03
0.821E+03
0.250E+03
0.112E+02
0.156E+02
0.255E+02
0.684E+01
0.356E+01
0.241E+01
0.587E+03
0.587E+03
0.587E+03
0.215E+03
0.215E+03
0.215E+03
0.247E+01
0.369E+01
0.732E+01
0.552E+04
0.552E+04
0.552E+04

A A A
A A A
A A A
A A A
A A A
A A A

0.552E+04 
0.552E+04 
0.552E+04 

NODE 3 ***
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8.2.2 Static Analysis for Large-Deflection Problem

External forces are applied -300 lbs horizontally and vertically 
at nodes 5 and 7, respectively, in the system shown in Fig. (8.5a). 
The cross-sectional area for the links is 0.3 X 0.3 (incĥ ), and made 
from a steel. Fig. (8.5b) gives the deflected system under 
large-deflections.

Table 8.5 gives the displacements at every node. Table 8.6 shows 
the internal forces and stresses at the nodes. The reaction forces at 

the supports are given in Table 8.7. Fig. (8.6) gives the safety

factors of every node in the system. The safety factors are tabulated 
in Table 8.8.

The mechanism link deflections are assumed to be large. The 
maximum distortion, which is the distance from the original position to 
the deflected position, is 4.097 inch at node 33. The safety factor 
for the system is 0.261 at node 3 for the given steel based on a yield 

strength of 100,000 psi.
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(a) Element-Generated System

LARGE DEFLECTION ASSUMPTION USED

(b) Deflected system
FIGURE 8.5 A Mechanism For Large-Deflections Analysis



TABLE 6.5 Displacements of Nodes

lARGE-DEFLECIlON ASSUMPTION USED 
UNITS ARE BRITISH (INCHES)
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NODE LOCATION DISPLACEMENTS SLOPE
NO X Y HORIZ VERTI DBG
1 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO
2 0.2588E+01 0.9659E+01 -0.2062E+01 0.2818E+00 -0.2991E+02
3 0.1125E+02 0.1466E+02 -0.9330E+00 -0.3194E+01 -0.3792E+01
4 0.1991E+02 0.1966E+02 -0.2325E+01 -0.1447E+01 -0.1567E+02
5 0.2165E+02 0.9811E+01 -0.3674E+01 -0.1519E+01 0.7776E+01
6 0.2338E+02 -.3690E-01 O.OOOOE+OO O.OOOOE+OO 0.3031E+02
7 0.8748E+01 0.1899E+02 0.2736E+00 -0.2695E+01 -0.1589E+02
6 0.6248E+01 0.2332E+02 0.1638E+01 -0.2156E+01 -0.1726E+02
9 -.8226E+00 0.1625E+02 O.OOOOE+OO O.OOOOE+OO -0.1551E+02
10 0.5176E+00 0.1932E+01 -0.1080E+00 0.2557E-01 0.6194E+01
11 0.1035E+01 0.3864E+01 -0.4115E+00 0.8206E-01 0.1129E+02
12 0.1553E+01 0.5796E+01 -0.8710E+00 0.1492E+00 0.1508E+02
13 0.2071E+01 0.7727E+01 -0.1439E+01 0.2166E+00 0.1742E+0214 0.4320E+01 0.1066E+02 -0.1794E+01 -0.7139E+00 -0.2880E+0215 0.6052E+01 0.1166E+02 -0.1528E+01 -0.1630E+01 -0.2550E+02
16 0.7784E+01 0.1266E+02 -0.1274E+01 -0.2391E+01 -0.20UE+02
17 0.9516E+01 0.1366E+02 -0.1061E+01 -0.2930E+01 -0.1279E+02
18 0.5916E+00 0.1766E+02 0.3275E+00 -0.4312E+00 -0.1551E+02
19 0.2006E+01 0.1908E+02 0.6550E+00 -0.8625E+00 -0.1551E+02
20 0.3420E+01 0.2049E+02 0.9825E+00 -0.1294E+01 -0.1551E+02
21 0.4834E+01 0.2191E+02 0.1310E+01 -0.1725E+01 -0.1551E+02
22 0.7082E+01 0.2188E+02 0.1171E+01 -0.2339E+01 -0.1711E+02
23 0.7915E+01 0.2043E+02 0.7138E+00 -0.2519E+01 -0.1665E+02
24 0.9582E+01 0.1755E+02 -0.1434E+00 -0.2866E+01 -0.1512E+02
25 0.1042E+02 0.1610E+02 -0.5427E+00 -0.3031E+01 -0.1464E+02
26 0.1298E+02 0.1566E+02 -0.9469E+00 -0.3171E+01 0.5067E+01
27 0.1471E+02 0.1666E+02 -0.1119E+01 -0.2919E+01 0.1208E+02
28 0.1644E+02 0.1766E+02 -0.1433E+01 -0.2509E+01 0.1715E+02
29 0.1818E+02 0.1866E+02 -0.1851E+01 -0.2001E+01 0.2021E+02
30 0.2026E+02 0.1769E+02 -0.2860E+01 -0.1468E+01 -0.1470E+02
31 0.2060E+02 0.1572E+02 -0.3327E+01 -0.1495E+01 -0.U81E+02
32 0.2095E+02 0.1375E+02 -0.3660E+01 -0.1525E+01 -0.7031E+01
33 0.2130E+02 0.1178E+02 -0.3795E+01 -0.1544E+01 -0.4598E+00
34 0.2199E+02 0.7842E+01 -0.3272E+01 -0.1404E+01 0.1590E+02
35 0.2234E+02 0.5872E+01 -0.2641E+01 -0.1178E+01 0.2221E+02
36 0.2269E+02 0.3902E+01 -0.1846E+01 -0.8505E+00 0.2672E+02
37 0.2303E+02 0.1933E+01 -0.9481E+00 -0.4459E+00 0.2942E+02
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table 6.6 Internal Forces and Stresses of Nodes

LARGE-DEFLECTION ASSUMPTION USED 
UNITS ARE BRITISH (LBS, LBS-IN, AND PSI)

NODE INTERNAL FORCES MOMENT
NO HORIZ VERTI

STRESSES 
TOP BOTTOM

12
3
4
56
78 
9
10
1112
13
14
15
16
17
18
1920 
21 
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

-0.1287E+03
-0.1287E+03
-0.1638E+03
-0.1638E+03
0.1362E+03
0.1362E+03
-0.3507E+02
-0.3507E+02
-0.3507E+02
-0.1287E+03
-0.1287E+03
-0.1287E+03
-0.1287E+03
-0.1287E+03
-0.1287E+03
-0.1287E+03
-0.1287E+03
-0.3507E+02
-0.3507E+02
-0.3507E+02
-0.3507E+02
-0.3507E+02
-0.3507E+02
-0.3507E+02
-0.3507E+02
-0.1638E+03
-0.1638E+03
-0.1638E+03
-0.1638E+03
-0.1638E+03
-0.1638E+03
-0.1638E+03
-0.1638E+03
0.1362E+03
0.1362E+03
0.1362E+03
0.1362E+03

-0.1957E+03
-0.1957E+03
0.8453E+02
0.8453E+02
0.8453E+02
0.8453E+02
0.2802E+03
-0.1979E+02
-0.1979E+02
-0.1957E+03
-0.1957E+03
-0.1957E+03
-0.1957E+03
-0.1957E+03
-0.1957E+03
-0.1957E+03
-0.1957E+03
-0.1979E+02
-0.1979E+02
-0.1979E+02
-0.1979E+02
-0.1979E+02
-0.1979E+02
0.2802E+03
0.2802E+03
0.8453E+02
0.8453E+02
0.8453E+02
0.8453E+02
0.8453E+02
0.8453E+02
0.8453E+02
0.8453E+02
0.8453E+02
0.8453E+02
0.8453E+02
0.8453E+02

0.1177E+04
O.OOOOE+OO
0.1719E+04
O.OOOOE+OO
0.1592E+04
O.OOOOE+OO
0.1933E+03
O.OOOOE+OO
O.OOOOE+OO
0.1005E+04
0.7907E+03
0.5448E+03
0.2777E+03
0.3908E+03
0.7710E+03
0.1129E+04
0.1450E+04
O.OOOOE+OO
O.OOOOE+OO
O.OOOOE+OO
O.OOOOE+OO
0.6429E+02
0.1287E+03
0.1331E+03
0.6788E+02
0.1407E+04
0.1070E+04
0.7190E+03
0.3609E+03
0.3420E+03
0.6791E+03
0.1005E+04
0.1313E+04
0.1276E+04
0.9557E+03
0.6355E+03
0.3171E+03

0.2601E+06
-0.1430E+04
0.3802E+06
-0.1820E+04
0.3553E+06
-0.6621E+03
0.4257E+05
-0.3897E+03
-0.3897E+03
0.2209E+06
0.1732E+06
0.1186E+06
0.5924E+05
0.8452E+05
0.1690E+06
0.2486E+06
0.3199E+06
-0.4310E+03
-0.4310E+03
-0.4310E+03
-0.4310E+03
0.1428E+05
0.2860E+05
0.2669E+05
0.1219E+05
0.3116E+06
0.2367E+06
0.1587E+06
0.7909E+05
0.7476E+05
0.1497E+06
0.2221E+06
0.2905E+06
0.2829E+06
0.2117E+06
0.1406E+06
0.6980E+05

-0.2630E+06
-0.1430E+04
-0.3838E+06
-0.1820E+04
-0.3523E+06
-0.6621E+03
-0.4335E+05
-0.3897E+03
-0.3897E+03
-0.2258E+06
-0.1782E+06
-0.1235E+06
-0.6418E+05
-0.8917E+05
-0.1737E+06
-0.2532E+06
-0.3245E+06
-0.4310E+03
-0.4310E+03
-0.4310E+03
-0.4310E+03
-0.1429E+05
-0.2860E+05
-0.3247E+05
-0.1798E+05
-0.3138E+06
-0.2389E+06
-0.1609E+06
-0.8131E+05
-0.7724E+05
-0.1522E+06
-0.2246E+06
-0.2930E+06
-0.2842E+06
-0.2130E+06
-0.1419E+06
-0.7113E+05
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NODE
NO

TABLE 6.7 Reaction Forces at Supports

UNHS ARE BRITISH (LBS AND LBS-IN)
REACTION FORCES 

HORZ. VERT.
MOMENT

1
6
9

0.1287E+03
0.1362E+03
0.3507E+02

0.1957E+03
0.8453E+02
0.1979E+02

-0.1177E+04
O.OOOOE+OO
O.OOOOE+OO

REMITS OF STRESS MMIVSES■* W5 *» wa T  CR V  wa LOCATIONS OF CRITICAL FOINT(S)

m t t m m s t m t t s m m t t tniN SAFETY FACTOR FOR SYSTEM

e.StOE-Sl AT MODE 3

EXXl 3-HAR-86 msatas PH M  6

FKaURE 8.6 The Safety Factors of Nodes
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TABLE 8.8 Safety Factors of Nodes

SAFETY FACTOR OETERHINED FROM MAX. NORMAL STRESS THEORY 
*** CORRESPONDS TO ZERO STRESS ON THE LINK OR RIGID LINK 

UNITS ARE BRITISH (PSI FOR STRESSES)
NODE YIELD STRESSES SAFETY
NO STRENGTH TOP BOTTOM FACTOR
1 O.lOOOE+06 0.2601E+06 -.2630E+06 0.380E+00
2 O.lOOOE+06 -.1430E+04 -.1430E+04 0.699E+02
3 O.lOOOE+06 0.3802E+06 -.3838E+06 0.261E+004 O.lOOOE+06 -.1820E+04 -.1820E+04 0.549E+02
5 O.lOOOE+06 0.3553E+06 -.3523E+06 0.281E+00
6 O.lOOOE+06 -.6621E+03 -.6621E+03 0.151E+03
7 O.lOOOE+06 0.4257E+05 -.4335E+05 0.231E+01
8 O.lOOOE+06 -.3897E+03 -.3897E+03 0.257E+03
9 O.lOOOE+06 -.3897E+03 -.3897E+03 0.257E+03
10 O.lOOOE+06 0.2209E+06 -.2258E+06 0.443E+00
11 O.lOOOE+06 0.1732E+06 -.1782E+06 0.561E+00
12 O.lOOOE+06 0.1186E+06 -.1235E+06 0.810E+00
13 O.lOOOE+06 0.5924E+05 -.6418E+05 0.156E+01
14 O.lOOOE+06 0.8452E+05 -.8917E+05 0.112E+01
15 O.lOOOE+06 0.1690E+06 -.1737E+06 0.576E+00
16 O.lOOOE+06 0.2486E+06 -.2532E+06 0.395E+00
17 O.lOOOE+06 0.3199E+06 -.3245E+06 0.308E+00
18 O.lOOOE+06 -.4310E+03 -.4310E+03 0.232E+03
19 O.lOOOE+06 -.4310E+03 -.4310E+03 0.232E+03
20 O.lOOOE+06 -.4310E+03 -.4310E+03 0.232E+03
21 O.lOOOE+06 -.4310E+03 -.4310E+03 0.232E+03
22 O.lOOOE+06 0.1428E+05 -.1429E+05 0.700E+01
23 O.lOOOE+06 0.2860E+05 -.2860E+05 0.350E+01
24 O.lOOOE+06 0.2669E+05 -.3247E+05 0.308E+01
25 O.lOOOE+06 0.1219E+05 -.1798E+05 0.556E+01
26 O.lOOOE+06 0.3116E+06 -.3138E+06 0.319E+00
27 O.lOOOE+06 0.2367E+06 -.2389E+06 0.419E+00
28 O.lOOOE+06 0.1587E+06 -.1609E+06 0.622E+00
29 O.lOOOE+06 0.7909E+05 -.8131E+05 0.123E+01
30 O.lOOOE+06 0.7476E+05 -.7724E+05 0.129E+01
31 O.lOOOE+06 0.1497E+06 -.1522E+06 0.657E+00
32 O.lOOOE+06 0.2221E+06 -.2246E+06 0.445E+00
33 O.lOOOE+06 0.2905E+06 -.2930E+06 0.341E+00
34 O.lOOOE+06 0.2829E+06 -.2842E+06 0.352E+00
35 O.lOOOE+06 0.2117E+06 -.2130E+06 0.469E+00
36 O.lOOOE+06 0.1406E+06 -.1419E+06 0.705E+00
37 O.lOOOE+06 0.6980E+05 -.7113E+05 0.141E+01

*** MIN SAFETY FACTOR FOR SYSTEM = 0.261 ***
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8.3 Dynamic Analyses of A Mechanism Under Continuous Motions

For a mechanism under continuous motions, the kinematic analyses 
are carried out to determine the positions and accelerations of the 
nodes, and a fatigue stress analysis is conducted for the dynamic 
stresses in the elements. In the program CASDAM, the modular approach 
is used for the kinematic analyses at every 9 degrees of the input-link 
as given in Chapter 2. For the fatigue stress analyses, Soderberg's 
linear failure line is used.

A four-bar crank-rocker mechanism as given in Fig. (8.7) is 
studied (see References C7, 9, 11, 173). The geometry of the mechanism 
shown in Fig. (8.7) has the following dimensions:

Length of crank = 4.0 inches.
Length of coupler = 11.0 inches.
Length of Follower = 10.5 inches.
Ground link = 10.0 inches.

The model in C7, 93 was constructed of aluminum strip 1.0 inch
wide. The crank was 0.167 inch thick. The coupler and follower links
were 0.063 inch thick. The coupler was connected to the crank and the 
follower by means of pins and small ball bearings mounted in sleeves. 
The total weight of the bearing and the sleeve at each end was 0.06 lb. 
Other apparatus details may be found in C7, 93. As the same procedure
as in References [11, 173, the total weight of the bearing and the
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sleeve was assumed to be distributed equally to lumped masses on the 
crank and follower.

The Input-link is rotated at 400 rpm in the clockwise direction. 
Fig. (3.21) in Section 3.4 gives the nomalized rigid-body angular 
acceleration of the follower plotted against the crank rotation angle. 
Table 6.9 gives the positions and accelerations of the nodes, and 
Table 8.10 gives the angular accelerations of the links at the initial 
position. Fig. (8.8) shows the continuous motion of the mechanism.

TABLE 8.9 Positions and Accelerations of Nodes at Initial Position

TOTAL NODES = 4
ROTATING SPEED = -41.87 RAD/SEC
INPUT-LINK ANGLE = 0.0 DEGREES
UNITS BRITISH

NODE POSITIONS A(%ELERATIONS
NO HORZ. VERT. HORZ. VERT.
1 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO
2 0.4000E+01 O.OOOOE+OO -.7012E+04 O.OOOOE+OO
3 0.7896E+01 0.1029E+02 -.5949E+04 -.9568E+04
4 O.lOOOE+02 0.2003E-04 O.OOOOE+OO O.OOOOE+OO

TABLE 8.10 Angular Accelerations of Links at Initial Position
LINK BETWEEN ANGULAR
NODE NODE ACXXLERATIONS
1 2 O.OOOOE+OO
2 3 -0.3984E+03
3 4 0.7377E+03



171

FIGURE 8.7 Initial Positions of A Mechanism

FIGURE 8.8 Continuous Motion of Mechanism
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8.3.1 Quasi-Static Responses of A Mechanism

The maximum distortions at the nodes are shown in Fig. (8.9), and 
the safety factors from the dynamic stress analysis are given in 
Fig. (8.10) for a aluminum (yield strength = 90,000 psi and endurance 
limit = 45,000 psi). The maximum distortions at the nodes are given in 
Table 8.11, and the equivalent stresses and safety factors are given in 
Table 8.12. The minimum safety factor for the system is 5.44 at the 
critical point (node 12), and the maximum distortion in the system is 
0.3443 inch at node 12.

Fig. (8.11) shows the displacements and stresses of node 12 in the 
global coordinate system. Fig. (8.12) gives the displacements and 
strains of node 12 in the local coordinate system. Fig. (8.13) shows 
the displacements and stresses of node 9 in the global coordinate 
system. Fig. (8.14) gives the displacements and strains of node 9 in 
the local coordinate system. Finally, when the angle of the input-linJc 
is -324 degrees, the positions of the rigid and deflected systems are 
given in Fig. (8.15). The analysis details are given in Appendix C.
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FIGURE 8.9 Maximum Distortions of Nodes
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TABLE 8.11 Maximum Distortions of Nodes

UNITS ARE BRITISH (INCHES FOR DISTORTIONS) 
NODE NO MAXIMUM DISTORTIONS

1 O.OOOOE+OO
2 0.1944E-01
3 0.5217E-01
4 O.OOOOE+OO
5 0.1671E-02
6 0.6077E-02
7 0.1231E-01
8 0.8702E-01
9 0.1402E+00
10 0.1240E+00
11 0.2690E+00
12 0.3443E+00 ***
13 0.2330E+00

**** CORRESPONDS TO MAX. DISTORTION IN THE SYSTEM



174

w  m  y ‘‘gB lOMTIONS OF CRITIMl FOIHT«)

MIN MFCTV FMTOM FOM tVOTEN

B.440C+M AT MODE IIm t n m u m m t m m » »
EX2 8-HAB-86 6167155 AM PC 61

FIGURE 8.10 Safety Factors from Fatigue Stress Analysis

TABLE 8.12 Equivalent Stresses and Safety Factors of Nodes
SAFETY FACTOR DETERMINED FROM S0DERBBR6 FAILURE LINE 

UNITS ARE BRITISH (PSI FOR STRESSES)
NODE STRENGTH EQUIVALENT STRESSES SAFETY
NO YIELD ENDURANCE MEAN. ALTN. FACTOR
1 0.9000E+05 0.4500E+05 0.5655E+03 0.2597E+04 0.156E+02
2 0.9000E+05 0.4500E+05 0.2455E+02 0.3989E+02 0.863E+03
3 0.9000E+05 0.4500E+05 0.1441E+02 0.1554E+02 0.198E+04
4 0.9000E+05 0.4500E+05 -.4585E+01 0.5226E+02 0.825E+03
5 0.9000E+05 0.4500E+05 0.4335E+03 0.1945E+04 0.208E+02
6 0.9000E+05 0.4500E+05 0.2930E+03 0.1298E+04 0.312E+02
7 0.9000E+05 0.4500E+05 0.1518E+03 0.6521E+03 0.618E+02
8 0.9000E+05 0.4500E+05 0.1780E+03 0.2149E+04 0.201E+02
9 0.9000E+05 0.4500E+05 0.4705E+03 0.2932E+04 0.142E+02
10 0.9000E+05 0.4500E+05 0.5520E+03 0.2420E+04 0.167E+02
11 0.9000E+05 0.4500E+05 -.2249E+04 0.5994E+04 0.632E+01
12 0.9000E+05 0.4500E+05 -.2752E+04 0.6900E+04 0.544E+01 **
13 0.9000E+05 0.4500E+05 -.1778E+04 0.4303E+04 0.867E+01
*** HEN. SAFETY FACTOR FOR SYSTQI = 5.44 AT NODE 12 ***
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M T A  AT NODE 11

m ' n 8 » r
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FIGURE 8.11 Displacements and Stresses of Node 12 

in The Global Coordinate System
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«TRAINS VS. INPUT-LINK AHCIES

&« 
#.« ■M
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FIGURE 8.12 Displacements and Stresses of Node 12

In The Local Coordinate System
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FIGURE 6.13 Displacenents and Stresses of Node 9 
In The Global Coordinate System

SATA AT NODE 9
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LOCAL DISPLACEMENTS US. IHPUT-LIMK ANGLES

A  • »

STRAINS VS. INPUT-LINE ANGLES

M ■

Exa 8-HAR-86 ?t>6t>a AM PG 76
FIGURE 8.14 Displacements and Stresses of Node 9

In The Local Coordinate System
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SHALL DEFLECTION ASSUMPTION USED

FIGURE 6.15 Deflected System at -324 Degrees of the Input-Llnk
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8.3.2 Steady-State Responses of A Mechanism

The mechanism shown in Fig. (8.7) is used for time-domain 
analysis. At the initial position, velocities and accelerations of 
every node due to the elastic vibrations of the flexible members are 
set to zero. The steady-state responses of the mechanism are 
investigated.

The maximum distortions of the nodes are shown in Fig. (8.16) and 
the safety factors from the dynamic stress analysis are given in 
Fig. (8.17). The maximum distortions of the nodes are given in 
Table 8.13, and the equivalent stresses and safety factors are given in 
Table 8.14. The safety factor for the system is 3.50 at the critical 
point (node 12), and the maximum distortion in the system is 0.4845 
inch at node 12.

Fig. (8.18) shows the displacements and stresses of node 12 in the 
global coordinate system. Fig. (8.19) gives the displacements and 
strains of node 12 in the local coordinate system. Fig. (8.20) shows 
the displacements and stresses of node 9 in the global coordinate 
system. Fig. (8.21) gives the displacements and strains of node 9 in 
the local coordinate system. Finally, the strains at mid-point of the 
follower (node 12) are given in Fig. (8.22) for each full cycle of the 
input-link: Fig. (8.22a) gives the strains for the first full cycle;
Fig. (8.22b) shows the strains for the second full cycle; and 
Fig. (8.22b) gives for the third full cycle.
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FIGURE 6.16 Maximum Distortions of Nodes

TABLE 8.13 Maximum Distortions of Nodes

UNITS ARE BRITISH (INCHES FOR DISTORTIONS)
NODE NO MAXIMUM DISTORTIONS

1 O.OOOOE+00
2 0.3036E-01
3 0.1079E+00
4 0.2090E-05
5 0.2620E-02
6 0.9514E-02
7 0.1923E-01
8 0.1377E+00
9 0.1835E+00
10 0.1616E+00
11 0.3903E+00
12 0.4845E+00 ***
13 0.3257E+00

**** CORRESPONDS TO MAX. DISTORTION IN THE SYSTEM
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FIGURE 8.17 Safety Factors from Fatigue Stress Analysis

TABLE 8.14 Equivalent Stresses and Safety Factors of Nodes
SAFETY FACTOR DETERMINED FROM SQDERBERG FAILURE LINE 

UNITS ARE BRITISH (PSI FOR STRESSES)
NODE STRENGTH EQUIVALENT STRESSES SAFETY
NO YIELD ENDURANCE MEAN. ALTN. FACTOR

1 0.9000E+05 0.4500E+05 -.2250E+03 0.4699E+04 0.935E+01
2 0.9000E+05 0.4500E+05 0.2256E+02 0.4415E+02 0.812E+03
3 0.9000E+05 0.4500E+05 0.1256E+02 0.1911E+02 0.177E+04
4 0.9000E+05 0.4500E+05 0.1132E+02 0.7624E+02 0.549E+03
5 0.9000E+05 0.4500E+05 0.1960E+03 0.3503E+04 0.125E+02
6 0.9000E+05 0.4500E+05 0.1315E+03 0.2324E+04 0.188E+02
7 0.9000E+05 0.4500E+05 0.6900E+02 0.1154E+04 0.379E+02
8 0.9000E+05 0.4500E+05 -.5145E+03 0.2955E+04 0.140E+02
9 0.9000E+05 0.4500E+05 -.8370E+03 0.4407E+04 0.933E+01
10 0.9000E+05 0.4500E+05 -.5185E+03 0.3555E+04 0.118E+02
11 0.9000E+05 0.4500E+05 -.4955E+03 0.9995E+04 0.439E+01
12 0.9000E+05 0.4500E+05 -.2100E+03 0.1276E+05 0.350E+01 **
13 0.9000E+05 0.4500E+05 0.5450E+02 0.8513E+04 0.527E+01

*** MIN. SAFETY FACTOR FOR SYSTEM = 3.50 AT NODE 12 ***
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FIGURE 8.16 Displacements and Stresses of Node 12 
In The Global Coordinate System
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FIGURE 8.19 Displacements and Stresses of Node 12
in The Local Coordinate System
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FIGURE 8.20 Displacements and Stresses of Node 9 
in The Global Coordinate System
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FIGURE 6.21 Displacements and Stresses of Node 9

in The Local Coordinate System
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STRAINS VS. INPUT-LINK ANCLES

IWUT-LIIK «MUB l».l
(a) For The First Full Cycle of The Input-link

STRAINS vs. INPUT-LINK ANCLES

«.I -

neur<LM(«MUB
(b) For The Second Full Cycle of The Iiqput-Iink

STRAINS vs. INPUT-LINK ANCLES

#.# -

I# •

IVSMIIKIMMS
(c) For The Third Fhll Cycle of The Input-link 

FIGURE 8.22 Strains at Mid-Point of The Follower (Node 12)
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8.4 Cantilever Beam with End Loads

The cantilever beam represented in Fig. (8.23) is loaded by end 
loads P and Q. Increasing the vertical load, the beam deflects in the 
large-deflection mode. Furthermore, the deflections of the beam will 
be changed by applying the horizontal (tensile or coiq>ressive) loads at 
the end point. In this section, the large-deflections of the 
cantilever beam are analyzed when a nondimensional parameter (PlS'EI) 
ranges 0 from 10 and a loading factor (Q/P) ranges between -1 and 1.

Fig. (8.24) shows the displacement for the different values of the 
loading factor at -1.0, -0.2, 0.0, 0.2, and 1.0. Table 8.9 gives the 
displacements of an end point in the horizontal and vertical 
directions. Figs. (8.25) - (8.31) give the deflected beams for each 
loading factor. Fig. (8.32) shows the deflections of the beam when the 
parameter (PL̂ /EI) is 5. The case of Q = 0 corresponds to the model 
given by Bisshopp and Drucker [87], and the solutions were verified in 
good agreement in Section 4.5.
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FIGURE 8.23 Cantilever Beam Loaded by End Loads

Curve NO

2 J  'a .fe h

M

FIGURE 8.24 Displacements of End Point of Beam
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table 8.15 Displacements of End Point of Cantilever Beam

P^EI
0/P

-1.0 -0.5 -0.2 0.0 0.2 0.5 1.0

0.5
H/L
V/1

0.9756
0.1998

0.9805
0.1793

0.9827
0.1688

0.9841
0.1624

0.9852
0.1565

0.9867
0.1484

0.9888
0.1366

1.0
H/L
V/L

0.8761
0.4351

0.9179
0.3601

0.9344
0.3241

0.9430
0.3033

0.9501
0.2847

0.9586
0.2603

0.9688
0.2274

2.0
H/L
V/L

0.5605
0.7255

0.7276
0.6140

0.7993
0.5425

0.8356
0.4981

0.8644
0.4577

0.8966
0.4048

0.9310
0.3357

3.0
H/L
V/L

0.3295
0.8031

0.5585
0.7323

0.6755
0.6608

0.7382
0.6091

0.7887
0.5584

0.8449
0.4893

0.9026
0.3972

4.0
H/L

V/L
0.1842
0.8180

0.4348
0.7866

0.5793
0.7265

0.6613

0.6754
0.7289
0.6215

0.8048
0.5437

0.8816
0.4369

5.0
H/L
V/L

0.0862
0.8168

0.3444
0.8139

0.5057
0.7663

0.6013
0.7184

0.6818
0.6640

0.7734
0.5817

0.8657
0.4648

6.0
H/L
V/L

0.0151
0.8116

0.2760
0.8292

0.4482
0.7924

0.5537
0.7483

0.6443
0.6947

0.7483
0.6098

0.8532
0.4858

7.0
H/L
V/L

-.0400
0.8058

0.2223
0.8385

0.4022
0.8108

0.5152
0.7704

0.6137
0.7180

0.7279
0.6315

0.8431
0.5022

8.0
H/L
V/L

-.0830
0.8004

0.1789
0.8447

0.3644
0.8245

0.4834
0.7874

0.5883
0.7363

0.7109
0.6490

0.8348
0.5154

10.0
H/L
V/L

-.1490
0.7914

0.1126
0.8523

0.3060
0.8438

0.4337
0.8122

0.5484
0.7637

0.6843
0.6755

0.8218
0.5357

fdiere H and V are designated in Fig. (8.23), 
and L is total length of beam.
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j6
Curve No 

(1) (2)
(3)
(4)

Pf/EI
2
5
8
10

FIGURE 8.25 Deflected Beams When Q/P = 0

Curve No 
(1) (2)
(3)
(4)

L

Curve No PL^EI 
2 
5 
8 10

FIGURE 8.26 Deflected Beams Wien Q/P - - 1.0
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A.

Curve No 
(1) (2)
(3)
(4)

L

Pli/'EI2
58
10

FIGURE 8.27 Deflected Beams When Q/P = - 0.5

Curve No (1) (2)
(3)
(4)

FIGURE 8.28 Deflected Beams When Q/P = - 0.2

PL^EI
2
5810
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Curve No 
(1) 
(2)
(3)
(4)

FIGURE 8.29 Deflected Beams When Q/P = 0.2

PL^EI
2
5
8
10

Curve No 
(1) (2)
(3)
(4)

PL^EI
2
5
8
10

FIGURE 8.30 Deflected Beams When Q/P = 0.5
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Curve No 

(1) (2)
(3)
(4)

PL^EI
2
58
10

FIGURE 8.31 Deflected Beans Hhen Q/P = 1.0

Curve No 
(1) (2)
(3)
(4)
(5)(6) 
(7)

FIGURE 8.32 Deflected Beans Hhen PL̂ EI 5

Q/P
- 1.0
-0.5
- 0.2
0.0 
0.2
0.5
1.0
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8.5 Stepped Beam on Elastic Supports

The system In Fig. (8.33) shows a stepped beam loaded by its own 
weight and a vertical end load (lai). The shaft is supported at three 
locations, the right two supports being elastic supports with a spring 
constant K = 2 N/mm. The springs are assumed to be unloaded when the 
beam is horizontal and the springs exert a vertical load only where the 
ends of springs are sliding. Numerical values for the system 
parameters are given in Fig. (8.33).

For the analysis, the beam is broken into 20 segments as shown in 

Fig. (8.34). The shaft is made from steel AISI 4340 (yield
strength = 689 Mpa). The deflections of the system are given in 
Fig. (8.35), and the safety factors of the system are given in 
Fig. (8.36). Table 8.16 gives the displacements of the nodes.
Table 8.17 gives the internal forces and stresses of the nodes. 
Table 8.18 gives the safety factors of the nodes and for the system.

The solution from the analysis gives -2.737 and -23.37 mm for the
maximum displacements at the end point in the horizontal and vertical 
directions, respectively. The factor of safety in the system is 1.25 
at node 4. The analysis details are presented in Appendix D.
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5 
5

A U
L2

B

\K

2.5
325

UU U i

L3
L4

Lengths: 11 = 150 mm
12 = 250 mm
13 = 400 mm
14 = 500 mm

Cross-Sections: Beam AC = 5 X 5 mnf ^
Beam CE = 2.5 X 2.5 mm

Spring length: at node B = 200 mm
at node E = 400 mm

load at end point, P = 15 N
Height per unit volume = 76.5 X 10̂  N/mnP

FIGURE 8.33 Stepped Beam on Elastic Supports



FIGURE 8.34 Element-Generated System
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M

LMtQE K F L E C T I O N  ASSUMPTION USED

FIGURE 8.35 Deflected System



TABLE 8.16 Displacements of Nodes

LARGE-DEFLECTION ASSUMPTION USED 
UNITS ARE SI (HH IN DISPLACEMENTS)
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NODE LOCATION DISPLACEMENTS SLOPE
NO X y HORIZ VERTI DBG

1 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 0.8208E+00
2 0.1500E+03 O.OOOOE+00 -0.1488E-01 0.2113E+01 0.7778E+00
3 0.2500E+03 O.OOOOE+00 -0.2242E-01 0.3337E+01 0.5785E+00
4 0.4000E+03 O.OOOOE+00 -0.9664E+00 -0.1022E+02 -0.1267E+02
5 0.5000E+03 O.OOOOE+00 -0.5273E+01 -0.3909E+02 -0.1875E+02
6 0.2500E+02 0.0000E400 -0.2563E-02 0.3580E+00 0.8198E+00
7 0.5000E+02 O.OOOOE+00 -0.5113E-02 0.7150E+00 0.8165E+00a 0.7500E+02 O.OOOOE+00 -0.7635E-02 0.1070E+01 0.8108E+00
9 O.lOOOE+03 O.OOOOE+00 -O.lOllE-01 0.1422E+01 0.8026E+00
10 0.1250E+03 O.OOOOE+00 -0.1253E-01 0.1770E+01 0.7916E+00
11 0.1750E+03 O.OOOOE+00 -0.1712E-01 0.2447E+01 0.7540E+00
12 0.2000E+03 O.OOOOE+00 -0.1918E-01 0.2768E+01 0.7129E+00
13 0.2250E+03 O.OOOOE+00 -0.2097E-01 0.3067E+01 0.6545E+00
14 0.2750E+03 O.OOOOE+00 -0.2250E-01 0.3272E+01 -0.9199E+00
15 0.3000E+03 O.OOOOE+00 -0.3467E-01 0.2493E+01 -0.2702E+01
16 0.3250E+03 O.OOOOE+00 -0.8712E-01 0.8741E+00 -0.4768E+01
17 0.3500E+03 O.OOOOE+00 -0.2205E+00 -0.1705E+01 -0.7118E+01
18 0.3750E+03 O.OOOOE+00 -0.4900E+00 -0.5366E+01 -0.9752E+01
19 0.4250E+03 O.OOOOE+00 -0.1720E+01 -0.1631E+02 -0.1534E+02
20 0.4500E+03 O.OOOOE+00 -0.2737E+01 -0.2337E+02 -0.1723E+02
21 0.4750E+03 O.OOOOE+00 -0.3953E+01 -0.3107E+02 -0.1837E+02
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I
REtULTt OF t T K E M  ANALYSE#

V  RIB T  0 3  V  0 3  V  0 3

mI MM#
8

LOCATIONS OF CAITICAL POIMT(S)

***********************SAFETY FACTOR OF SYSTEM
O.ISSE*#! AT NODE 4 ***********************

FOR ZERO STRESSES OR RIGID LINK

FIGURE 8.36 Safety Factors of System
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TABLE 8.17 Internal Forces and Stresses of Nodes

LARGE-DEFLECTION ASSUMPTION USED 
UNITS ARE SI (NEHTON, N-IM, AND MPA)

»ODE INTERNAL FORCES MOMENT STRESSES
NO HORIZ VERTI TOP BOTTOM

1 O.OOOOE+00 0.6236E+00 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO
2 O.OOOOE+OO 0.5136E+01 -0.1151E+03 -0.5525E+01 0.5525E+01
3 O.OOOOE+00 0.5327E+01 -0.6382E+03 -0.2451E+03 0.2451E+03
4 O.OOOOE+OO •-0.1505E+02 -0.1438E+04 -0.5522E+03 0.5522E+03
5 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO
6 O.OOOOE+OO 0.6716E+00 -0.1619E+02 -0.7771E+00 0.7771E+00
7 O.OOOOE+OO 0.7194E+00 -0.3358E+02 -0.1612E+01 0.1612E+01
8 O.OOOOE+OO 0.7672E+00 -0.5216E+02 -0.2504E+01 0.2504E+01
9 O.OOOOE+OO 0.8150E+00 -0.7194E+02 -0.3453E+01 0.3453E+01
10 O.OOOOE+OO 0.8626E+00 -0.9291E+02 -0.4460E+01 0.4460E+01
11 O.OOOOE+OO 0.5184E+01 -0.2441E+03 -0.1172E+02 0.U72E+02
12 O.OOOOE+OO 0.5231E+01 -0.3743E+03 -0.1797E+02 0.1797E+02
13 O.OOOOE+OO 0.5279E+01 -0.5056E+03 -0.2427E+02 0.2427E+02
14 O.OOOOE+OO 0.5339E+01 -0.7715E+03 -0.2963E+03 0.2963E+03
15 O.OOOOE+OO 0.5351E+01 -0.9052E+03 -0.3476E+03 0.3476E+03
16 O.OOOOE+OO 0.5363E+01 -0.1039E+04 -0.3990E+03 0.3990E+03
17 O.OOOOE+OO 0.5375E+01 -0.1172E+04 -0.4500E+03 0.4500E+03
18 O.OOOOE+OO 0.5387E+01 -0.1305E+04 -0.5011E+03 0.5011E+03
19 O.OOOOE+OO --0.1504E+02 -0.1073E+04 -0.4120E+03 0.4120E+03
20 O.OOOOE+OO -0.1502E+02 -0.7125E+03 -0.2736E+03 0.2736E+03
21 O.OOOOE+OO -0.1501E+02 -0.3553E+03 -0.1364E+03 0.1364E+03



table 8.18 Safety Factors of Nodes

LARGE-DEFIECTION ASSUMPTION USED
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SAFETY FACTOR lETERNINB) FROM MAX. NORMAL STRESS THEORY 
*** CORRESPONDS TO ZERO STRESS ON THE LINK OR RIGID LINK 

UNITS ARE SI (MPA FOR STRESSES)
NODE YIELD STRESSES SAFETY
NO STRENGTH TOP BOTTOM FACTOR

1 0.6890E+03 O.OOOOE+OO O.OOOOE+OO ***
2 0.6890E+03 -.5525E+01 0.5525E+01 0.125E+03
3 0.6890E+03 -.2451E+03 0.2451E+03 0.281E+01
4 0.6890E+03 -.5522E+03 0.5522E+03 0.125E+01
5 0.6890E+03 O.OOOOE+OO O.OOOOE+OO ***
6 0.6890E+03 “.7771E+00 0.7771E+00 0.887E+03
7 0.6890E+03 -.1612E+01 0.1612E+01 0.427E+03
8 0.6890E+03 -.2504E+01 0.2504E+01 0.275E+03
9 0.6890E+03 -.3453E+01 0.3453E+01 0.200E+03
10 0.6890E+03 -.4460E+01 0.4460E+01 0.154E+03
11 0.6890E+03 -.1172E+02 0.1172E+02 0.588E+02
12 0.6890E+03 -.1797E+02 0.1797E+02 0.383E+02
13 0.6890E+03 -.2427E+02 0.2427E+02 0.284E+02
14 0.6890E+03 -.2963E+03 0.2963E+03 0.233E+01
15 0.6890E+03 -.3476E+03 0.3476E+03 0.198E+01
16 0.6890E+03 -.3990E+03 0.3990E+03 0.173E+01
17 0.6890E+03 -.4500E+03 0.4500E+03 0.153E+01
18 0.6890E+03 -.5011E+03 0.5011E+03 0.137E+01
19 0.6890E+03 -.4120E+03 0.4120E+03 0.167E+01
20 0.6890E+03 -.2736E+03 0.2736E+03 0.252E+01
21 0.6890E+03 -.1364E+03 0.1364E+03 0.505E+01

*******************************************
SAFETY FACTOR FOR SYSTOl = 1.25 AT NODE 4
*******************************************



CHAPTER IX 

SUPMARY

9.1 Discussion

The iterative transfer matrix method presented here can be applied 
to the static and dynamic analyses of both general multiloop 
flexible-body mechanisms and structures.

The internal forces are interrelated elastically with the 

displacements at a node. Also, the field matrices for the 
flexible-body analysis must contain the elastic effects due to the 
internal forces, which are unknown. This complexity in the solution
process can be reduced by using the iterations in order to update the 
internal forces at every node in the flexible-body systems. The 

initial field matrix is used only to determine the initial forces, and 
the elastic field matrix is used for both the force and displacoaent 
analyses of the flexible-body systems. The initial field matrix is 

determined from the elastic properties of the member with zero axial 
forces on each segment. The elastic field matrix is calculated from 
both the elastic properties of the member and the internal forces 
determined from the previous iteration.

198
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In the solution procedure for the iterative transfer matrix 
method, the corresponding transfer matrices at every section and node 
can be calculated. Next, the first matrix equation can be built by 
manipulating the matrices from the starting node to the end node, and 
the unknowns can be solved at the starting node by applying the 
corresponding boundary conditions at both ends. Then, the state 
variables at each node in the system are calculated by manipulating the 
corresponding transfer matrices and the state vector at one end of the 
section.

After determining all of the internal forces at each node from the 
first matrix equation, the elastic field matrices can be obtained from 
the internal forces and used to make the second matrix equation. Then, 
the same solution procedures are used to solve the next matrix 
equation. For the third matrix equation, all procedures for the second 
matrix equation are repeated, tdiere elastic field matrices for the 
third equation are updated by the internal forces determined from the 
second equation.

In addition, there are two types of elastic field matrices. One 
is for solving small-deflection problems, and the other is for 
large-deflection problems. Since the iterative transfer matrix method 
converges rapidly to the solution, three iterations of the solution 
procedures for the small-deflection analysis are usually enough. But, 
for the large-deflection analysis, the solution procedures are 
continued until all state variables are essentially unchanged, and this 
usually requires about 10 iterations.
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The iterative transfer matrix method requires much less storage 

than does the finite-element methods and the other lua^ed-mass 
techniques because all necessary matrices used in the method are 7X7.

9.2 Research Contributions

The following is a list of specific contributions to the field of
general multiloop-planar flexible mechanisms from this research.

1. The iterative-transfer matrix method developed here can be used for 

the static and dynamic analyses of general planar flexible 
mechanisms and structures.

2. The necessary transfer matrices are developed. These transfer 
matrices consist of seven different types of matrices (field 
matrices, a point matrix, a transformation matrix, a spring matrix, 
a branch matrix, a inertial matrix, and a frequency matrix). All 
of these transfer matrices have three degrees-of-flexibility per 
node. These transfer matrices are applied directly to the analysis 
without any transformations, which must be done in the traditional 
transfer-matrix methods.

3. In the dynamic analysis of flexible mechanisms, the inertial 
effects caused by rigid-body accelerations due to the kinematic 
motions are incorporated in the rigid-body inertial matrix. This 
rigid-body inertial matrix is used for quasi-static analyses. The
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inertial forces caused by the elastic vibrations are formulated 
from the Houbolt direct integration method and incorporated in the 
elastic-body matrix. The elastic-body inertial matrix is used for 
time-domain dynamic analyses.

4. The iteration method is developed based on the successive solutions 
of linear systems and can be used for both small-deflection and 
large-deflection analyses.

5. The approximate method for the large-deflection analysis is 
developed by correcting the geometry of a deformed beam and the 
internal forces in the beam segment. The geometric correction is 
derived from the relationships between the beam length and the 
geometry of the deformed beam. The average axial force in a beam 
segment is derived from equilibrium condition in the segment.

6. A computer program CASDAH (Computer-Aided Static and Dynamic 
Analyses of Flexible Mechanisms) was developed. CASDAH is the 
graphics-oriented, interactive, computer-aided analysis program for 
the static and dynamic analyses of general multiloop planar 
mechanisms.
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9.3 Recommendations

There are areas in xAich extension of the present research mould 
be beneficial. The iterative transfer-matrix method is developed for 
the planar systems. One possible isqprovement is to extend the 
procedure to analyze spatial mechanisms.

As a direct integration method for the time-domain analyses, the 
Houbolt method is used to evaluate the elastic-body inertial effects 
due to the elastic vibrations. However, the solutions are not in good 

agreement with the experiment data from References C7, 93. A possible 
improvement is to develop a method to evaluate the inertial effects due 
to the elastic vibrations of the members.

To effectively design a high-speed mechanism, kineto-elastodynanic 
design must be considered. This is normally achieved by first 
performing the kinematic synthesis of the rigid-body mechanism, and 
then proportioning the areas of cross-section of the links optimally to 
account for klneto-elastodynamic effects. The computer program CASDAM 
can be used for kineto-elastodynamic design by interconnecting with the 
programs KINANL C673 and RECSYN [67-683. They are developed for the 
rigid-body kinematic analysis and synthesis, and installed in The 
Advanced Design Method Laboratory, Department of Mechanical 
Engineering, The Ohio State University.
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There are cases where the procedure does not work, because the 

system matrix equation becomes singular. These cases are as follows:

1. The angular velocity of the input-link of a mechanism is near the
natural frequency of elastic links.

2. Two links connected by a revolute joint are on a straight line.

3. The axial coqpressive force is equal to or greater than the
buckling load of a beam segment.
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APPENDIX A

FORMULATIONS FOR THE RIGID-BODY KINEMATIC ANALYSES 
BY A CLOSED-FORM COMPONENT APPROACH

A.l Nomenclatures

A, Br C Parameters
L Length of a link
L Linear velocity of a slider
L Linear acceleration of a slider
X, X, X Position,velocityr and acceleration in the

horizontal direction
Y, Ÿ, Y Position, velocity, and acceleration in the

vertical direction
0, 9, 9 Slope-angle, angular velocity, and acceleration

of a link from the horizontal axis
XX Initial position of a slider in the horizontal

direction
Xs, Xs, Xs Position, velocity, and acceleration of a slider 

in the X-axis
YY Initial position of a slider in the vertical

direction
Ys, Ys, ŸS Position, velocity, and acceleration of a slider 

in the Y-axis
9s Azimuth angle of the sliding axis
a and p Angles between two solid elements
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216A.2 Equations of The Component Modules

This section presents the equations of the kinematic loop 
conqponents for the position and acceleration analyses of the multiloop 
mechanisms. Node 1 is assigned as the point of which the kinematic 
properties are known.

A.2.1 Input-Link Component Module (Type 1)

FIGURE A.l Input-Link Component Module

The positions of node 2 are

X2 = XI L • cos 0
Y2 = Ï1 + L • sin 0

the velocity components of node 2 are 

X2 = — L • 0 • sin 0



Y2 L • 0 • cos G 217

and the acceleration components are 

• 2X2 = - L G '  cos 6 
Y2 = - L • G*' sin G

where 1 = length of the input-link,
G = angle of the input-link, 

and G = angular velocity of the input-link.

A.2.2 Dyad component module (Type 2)

L2

FIGURE A.2 Dyad Component Module



218The parameters to determine the angle 63 are

A = 2 13 • (X3 - n)
B = 2 13 • (Y3 - Yl)
C = (X3 - XI)* + (Y3 - Yl)* + 13* - 12*

#Aere 12 = length of the link between nodes 1 and 2,
13 = length of the link between nodes 2 and 3,
82 = angle of the link between node 1 and 2 from the

horizontal axis at node 2, 
and 63 = angle of the link between nodes 2 and 3 frm the

horizontal axis at node 3.

Then, the angle of 63 can be determined as follows:

-
_i / - B ± J a  ̂+ \

03 = 2 . tan (------    j

The position and angle of node 2 are

X2 = X3 + 13 ' cos 63
Y2 = Y3 + 13. sin 63

and

-1 / Yl - Y2 
62 = tan I — — — —  

' XI - X2



The velocities are
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03 =
- XI • cos 02 - Yl • sin 02 

L3 • sin (03 - 02)

XI .cos 03 + Yl - sin 03 
L2 • sin (93 - 02)

X2 = - L3 " 93 sin 03
and

Ÿ2 = L3 93 . cos 93

where XI and n  are the velocity coiq>onents of node 1.

Finally, the acceleration components are

XI • cos 92 + Vl • sin 92 + L3 03 - cos (03-02) + 12 - 02
03 = -----------------------------------------------------

- 13 . sin (03-92)

XI • cos 93 + Yl . sin 93 + 12 02 cos (03-02) + 13 -0302 = -------------------------------------------------------------------------
12 • sin (03-02)

X2 = - 13 03 - sin 03 - 13 * 03 ■ cos 93
and
Y2 = 13 03 - cos 93 - 13 - 03̂ - sin 03

where XI and Yl are the acceleration components of node 1, 
and 02 and §3 are the angular velocities of the links.
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e,é.ë

FK3URE A.3 Sliding-End Component Module

The parameters are set as follows:

A = L • tan 0s
B = - L
C = (XI - XX) • tan 0s - (Yl - YY)

fdiere L = length of the link between nodes 1 and 2,
XX and YY = initial position of the slider,

and Os = azimuth angle of the sliding axis.



221Then, the angle of a link can be determined from the follow:

f̂ rr-n— 3
0 = 2 • tan '

The position and angle of node 2 are as follows:

X2 = XI + L ' cos 0
Y2 = Yl + L . sin 0

The angular velocity of the link is 

XI • sin 03 - Yl cos Os0 = ---------------------------
L • cos (0 - 0s)

and the directional velocities of node 2 are as follows:

X2 — XI ~ Xi * 0 * sin 0
Y2 = Ï1 + L • 0 • cos 0

• #*Aere XI and Yl are the velocity components of node 1.

Finally, the accelerations of the link and of node 2 are

•• ee «2
XI • sin 0s - Yl cos 0s + 1 0  sin (0 - 0s)

0 = -------------------------------------------
L • cos (0 - 0s)
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and
Ÿ2 = Ï1 + L • 0 • cos 0 - L • 0 • sin 0

where XI and Ï1 are the acceleration components of node 1.

A.2.4 Solid Link Cosgionent Module (Type 4)

e.e.0
/
\

FIGURE A.4 Solid Link Component Module

The angle at node 1 from node 2 to node 3 is defined as follows:

.i/Y3 - Yli _ w Y 2 - Y l v
ot = tan I -— ——  I - tan I — — —  I

' X3 - XI / \X2 - XI/
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Then, the position of node 3 can be determined from the known 
kinematic properties of node 1 as follows:

23 = XI + L cos (0 + a)
and

Y3 * Yl + L • sin (0 + a )

The velocities and accelerations In each direction are

X3 = XI - L- 0 - sin (0 + «)
Y3 = Yl + L 0 cos (0 •+ a )
X3 = XI - L • 0 ■ sin (0 +•«) - L 0* cos (0 + « )

and
Y3 = Yl + L • 0 • cos .(0 + a) - L • 0 • sin (0 + a )

tdiere XI and Yl - position components of node 1,
XI and Yl = velocity components of node 1,
XI and Yl = acceleration components of node 1,
0, 0, and 0 = slope-angle, angular velocity, and acceleration

of the solid component at node 1, 
and ot = angle at node 1 from the line between nodes 

1 and 2 to the line between nodes 1 and 3.
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FIGURE A.5 Slider-Dyed Component Module

The value of an angle 02 can be determined from the known 01 
and the slider-azimuth angle as follow:

02 = 01 + tr -  O'

The parameters to determined the angle 03 of the dyad are

A = L3 * sin 01
B = - L3 • cos 01
C = (X5 - XI) • sin 01 - (Y5 - Yl) • cos 01 - L2 • sin a

where 11 - length of the link between nodes 1 and 2,
12 = length of the link between nodes 3 and 4,
13 = length of the link between nodes 4 and 5,
1 = length to the slider from node 1,



225and a = azimuth angle of the slider.

Then, the angle Is calculated from the following equation:

- B + / a* + B* - C*
@3 = 2 tan '

■’ ( C - A

The position of node 4 are

A4 = %5 + L3 ' cos 63
Y4 = Y5 + L3 • sin 63

and the positions of the slider are

Xs = X3 = X4 + 12 ' cos 62
Ys = Y3 = Y4 + 12. sin 62

idiere X3 and Y3 are the positions of the node 3,
and Xs and Ys are the positions of the slider.

From the determined positions, the length to the slider from node 1 
can be determined from the coordinate transformation as follow:

1 = (X3 - XI).cos 61 + (Y3 - Yl). sin 61

The angular velocities in the module are 

62 = 81



63
- XI • sin 81 + Ÿ1 cos 61 + L - 61 + L 82 cos a 

13 • cos (83 - 81)

226

and velocities of every node are

X4
Ÿ4
X3
Y3

- L3 ■ 83 • sin 83 
L3 * 83 * cos 83 

XI - L • 81 • sin 81 
h  + 1. 81 cos 81

Next, the velocities of the slider are as follows:

Xs = X4 - 12 ' 82 sin 82
Ys = Ÿ4 + L2 82 ' cos 82

and
-XI cos 83 - Y1 sin 83 + 181 sin (81-83) - 12 62 sin (82-83)

1 = ------------------------------------------------------------------------
cos (81 - 83)

The angular accelerations have the following relationships:

## ##82 = 81

and

83 =

n  sin 81 + n  cos 81 + 2 1 8 1  + 1 8 1  + 13 8 ^  sin (83 - 81) 
-  12 82-cos (82 -  81) + 12 82 sin (82 -  81)

13 cos (83 - 81)



The directional accelerations of nodes 3 and 4 are
2

X4 = - 13' G3 .sin 83 - 13 - 93• cos 93
2

Ÿ4 = 13 • 93 cos 93 - 13 - 93 sin 93
X3 = XI - 1 • 91. sin 01 - 1 ef- cos 01
Ÿ3 = Ÿ1 + 1- 01 ' cos 91 - 1 - sin 91
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and the acceleratlona of the slider are
2

Xs = X4 - 12 • 02 • sin 02 - 12 02 . cos 02
2

Ÿs = Ÿ4 + 12 - 02 ' cos 02 - 12 - 02 - sin 92

a.2.6 Sliding Revolute Component Module (Type 6)

FIGURE a.6 Sliding Revolute Component Module
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The parameters to determined the angle 63 of the dyad are

A = L2- sin 61
B = - L2 ’ cos 61
C = (X4 - XI) • sin 61 - (Y4 - Yl) • cos 61

where LI = length of the link between nodes 1 and 2,
L2 = length of the link between nodes 3 and 4,

and L = distance to the slider from node 1.

Then, the angle is calculated from the following equation:

62 = 2
. / - B ± J a  ̂+ B* - C* \ 

• tan ---------------------
V C - A /

The positions of the slider are

Xs = X3 = X4 + L2. cos 62
Ys = Y3 = Y4 + L2 • sin 62

where X3 and Y3 are the positions of the node 3,
and Xs and Ys are the positions of the slider.

From the determined positions, the length to the slider from node 1 
can be determined from the coordinate transformation as follow:

L = (X3 - XI) cos 61 + (Y3 - Yl)* sin 61



The angular velocity, 62, of the folloer link is
229

, - XI • aln 01 + Yl • cos 01 + L - 01
62 =  --------------

L2 * cos (02 - 01)

and the velocities of node 3 are

X3 = - 1 01 sin 01 
Y3 = L • 01 • cos 01

Next, the velocities of the slider can be determined as follows:

Xs = - 12 02 ' sin 02 
Ys = 12 02- cos 02

and
- XI - cos 02 - n  • sin 02 - 1-01 sin (02 - 01)

1 = -------------------------------------------------------------
cos (02 - 01)

Finally,The angular accelerations of the follower link is

- XI-sin 01 + Yl-cos 01 2-Î-01 + 1-01 + 12-02 sln (02-01)02 =   ---------------------------
12 - cos (02 - 01)

The acceleration vectors of node 3 and slider are as follows:

X3 = - 1 - 61 - sin 01 - 1-01 cos 01
Y3 = 1 - 01 - cos 01 - 1- 01 - sin 01
Xs = - 12-02 • sin 02 - 12 -02 - cos 02



and 230

Ys =
.2

12 62 • cos 62 - 12-62 * sin 62

A.2.7 Slider and Follower Component Module (Type 7)

FK3URE A.7 Slider and Follower Component Module

The angles between two solid members are determined from the 
known initial positions

a =

and

. .1 / f s  - \tdn I — —— — I - tan I i
' X5 “ X4 / ' X3 - X4 /

Y3 - Y4

.1/ Y5 - Y2t f Y3 - Y2 \
p = tan I — - I - tan I   I

' X5 - X2 / V X3 - X2 /

Y3 - Y2 
X3 - X2

where a = it, when the nodes 3 and 4 are coincident.
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The parameters to determine the angle of the follower link are

A = Ï1 - Y3
B = X3 - XI
C = 13" sin ( a - TT ) - LI. sin ( p - w )

where LI - length of the link between nodes 1 and 2,
L2 = length of the link between nodes 4 and 5,
L3 = length of the link between nodes 3 and 4,
L = distance to the slider from node 4,
a - angle between two solid-links L2 and L3, 

and p = azimuth angle of the slider.

The angle can be determined frmn the following equation

/ 2 . t>2 r,2/ - ° I J «63 = ft - a + 2 ' tan
.1 / - B * JAT * c M

’ I-T — Â J
An angle of the input-link, 61, is represented by the following 
equation related with the known geometric relationships:

61 = 63 + * - p

The positions of the slider are

Xs = X2 = XI + LI. cos 81
Ys = Y2 = Yl + LI • sin 61



where 12 and Y2 are the positions of the node 3, 
and Xs and Ys are the positions of the slider.

The positions of nodes 4 and 5 are calculated as follows:
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X4 = X3 + 13 "cos 03
Y4 = Y3 + 13 • sin 03
X5 = X4 + 12 • cos (03 + O' - V )
Y5 = Y4 + 12 • sin (03 + a - TT )

From the determined positions, the length to the slider from node 4 
can be determined from the coordinate transformation as follow:

L = (X2 - X4) • cos (03+a- w) + (Y2 - Y4) • sin (03+a-Tr)

The angular velocities, 01 and 03, of the links are

, , - XI* sin (03 + a - TT ) + Yl cos (03 + a - ir )
03 = 01 = --------------------------------------

L - 11 cos (p- V ) + 13-cos (*- V )

and the velocities of nodes are

X4 = - 13 * 03 * sin 03
Y4 = 13 03*cos 03
X2 = X4 - 1 • 03 * sin (03 + a- V )
Y2 = Y4 + 1 * 03 * cos (03 + a- v )
X5 = X4 - 12 - 03 sin (03 +*- n )



Ÿ5 = x4 + 12- 63 cos (03 + a - ir ) 233

Next, the velocities of the slider can be determined as follows:

Xs = XI - 11 ' 61 ' sin 01 
Ys = n  + U  ' 61 cos 01

and

XI [- 11 cos (03 + or - p ) + 13 COS 03 + 1-cos (03 + * - n )] 
+ Yl [- 11 sin (03 + Of - p) + 13-sln 03 + 1-sln (03 + * - v )] 

1 - 11-cos ( p - V ) + 13-cos ( or - IT )

Finally, the angular accelerations of the links are

- xi-sln (03 + Of - ) -K ft.-cos (03 +a- v)

03 = 01
+ 11*03-sin ( P“ V ) — 13-03*sin (or- ir ) - 2*1*03

1 - 11-cos ( p - w ) + 13 cos ( a - TT )

The acceleration vectors of nodes and slider are as follows:

X4 - 13 *## # 203 - sin 63 - 13 - 03 . cos 03
Y4 13 * .203 • cos 03 - 13 • 03 . sin 03
X2 S

••X4 - 1 03 * sin (03 + or - ir ) - .21 63 - cos (03 + or - IT )
Ÿ2

a#
Y4 -K 1 63 * COS (03 +  or - IT ) -

. 21 03 - sin (03 +  or - IT )

X5
e#
X4 - 12 - 03 - sin (03 + Of -  IT ) -

• 212 - 03 cos (03 + or - IT )

Ÿ5
*#
Y4 + 12 - 03 - cos (03 + or - IT ) - .2

12 - 63 - sin (63 + or - IT )



## ••Xs = XI - 11" ei " sin 91 
and

n  + 11'8l .cos 91Vs

.2
11* 91 • cos 91

.211-91 - sin 91
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A.2.8 Sliding Revolute and Follower Component Module (Type 8)

9,8,6

FIGURE A.8 Sliding Revolute and Follower Component Nodule

The angles between two solid members are determined from the known 
initial positions

a -

'X4 - X3/ ' X2 - X3 /
Y2 - Y3

idiere « = v, when the nodes 2 and 3 are coincident.
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The parameters to determine the angle of the follower link are

A = Y2 - Yl
B = n  - X2
C = L2 ' sin ( or - ir )

fdiere L2 = length of the link between nodes 2 and 3,
13 = length of the link between nodes 3 and 4,
L = distance to the slider from node 3,

and a « angle at node 3 between two solid members 12 and 13.

The angle can be determined from the following equation.

0 = TT - a + 2 • tan

The positions of nodes 3 and 4 are calculated as follows:

X3 = X2 + 12 'cos 6
Y3 = Y2 + 12 • sin 9
X4 = X3 + 13 • cos (0 + a - IT )
Y4 = Y3 + 13 • sin (e + a - ir )

From the determined positions, the length to the slider from node 3 
can be determined from the coordinate transformation as follow:

1 = (X2 - X4) • cos (0+Of-TT) + (Y2 - Y4) • sin (Bf of-TT)



The angular velocity of the link is
236

e = - XI*sin (9 + o - V ) + Yl cos (9 + « - v ) 
L + L2*cos («-■"■)

and the velocities of nodes are

X3 = -  1 2  9  s in  6  

$3  = L 2  • 9  • cos 9

X4 = X3 -  L3 * 9  • s in  ( 9  + a -  V )

Ÿ4 = Y3 L3 • 9  • cos ( 9  + a -  V )

X I = X3 -  L • 9  • s in  (9  +<%- v  )

and
Yl = Y3 *•■ L • 9 • cos (9 + or- v )

Next, the velocity of the slider in the link can be determined as 

follows:

L = - 12 9 sin ( or- v ) + XI sin (9 + or - v ) + Yl cos (9 + or - ir ) 

Finally, the angular accelerations of the links are

9

XI sin (6 + or - V ) + Yl cos (0 +or- v )
•2- L2*6*sin ( o - v ) 

L + 12'COS ( or - V )
2 1*0



237The acceleration vectors of nodes are as follows:

—  a# #2X3 = ~ L2 ' 8 ' sin 6 - L2 - 6 * cos 6
Y3 = 12 6. cos 6 - 12 ëu sin 9
X4 = X3 - 13 9 sin (9 + a - ir ) - 13 6̂ - cos (9 + a - tt )
Y4 = Y3 + 13 9 - cos (9 + o -  w) - 13 -é̂ - sin (9 + a - ir )
XI = X3 - 1 9  ' sin (9 + ct - IT ) - 1 ^  - cos (9 + « - ir )

and
Yl = Y3 + 1*8 cos (9 + a - ir ) - 1*0 • sin <9 + « - ir )



APPENDIX B

THE SOLUTION DETAILS FOR THE STATIC ANALYSIS OF A MECHANISM
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WELCOME TO GASDAM *****************
CASDAM - COMPUTER AIDED STATIC AND DYNAMIC ANALYSES OF MECHANISMS

THE PROGRAM CASDAM CAN ANALYZE STATIC/DYNAMIC PROBLEMS UNDER SMALL/LARGE DEFLECTIONS OF PLNAR FLEXIBLE MECHANISMS/STRUCTURES
THE PROGRAM CASDAM CONSISTS OF
PRE-PROCESSMESH GENERATION OF A PLANAR MECHANISM WITH NODES (UP TO 800) AND LOOPS (UP TO 10)KINEMATIC POSITION/ACCELERATION ANALYSIS DATA GENERATION FOR PROCESS
PROCESSSTATIC AND DYNAMIC ANALYSIS FOR THE FLEXIBLE SYSTEM* DISPLACEMENTS# FORCES# STRESSES# AND SAFETY FACTORS
POST-PROCESSGEOMETRICAL PLOTS OF DISPLACEMENTS GRAPHICAL PLOTS OF DISPLACEMENTS AND STRESSES

INPUT PROBLEM TITLE (UP TO 20 CHARACTERS) - EXl

3-MAR-86 5(23*50 AM PG 1
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PRE-PROCESS FOR MECHANISM ANALYSIS **********************************
• n ic T  iMKT nrmos
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M M  OK avJ/N> T> V
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EXl________________ 3-MAR-86 5*24:24 AM PG 2
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MESH GENERATION FOR A MECHANISM *******************************
MAKE NODES (UP TO 50) FOR A SYSTEM

AT EXTERNAL FORCE POINTS 
AT SPRING CONNECTIONS 
AT BRANCH POINTS 
AT JOINTS (REVOLUTES AND SLIDES)

THEN, NODES ARE GENERATED

i n m « K  1 ......... . M IMM
■ ......... . «

W R T  UNIT •  I

IM Tt M i
.... ............................ tW H n
N M t .................... IM  INUNM)
1NMX iM c m r).. 3 > m
t m n .................. m

M» TW mniML noT

NIT m u w
EXl________________ 3-MAR-86 5>25 >25 AM PG 3
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EXl 3-MAR-86 5*26;28 AM PG 4
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« n n r n n n r i w i  • •
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m i e r i u m T  TVR « s
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EXl 3-MAR-86 5*31*08 AM PG 5
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PROCESS FOR QENERATION OF ELEMENTS
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EXl 3-MAR-86 5:33:04 AM PG 6
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PROCESS FOR LINK PROPERTIES
M l M X

1  m nI  M U M M M

u m  (ivi/m t> V 

• 1.1
MNT
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3-MAR-86 5*34*36 AM PG 7EXl
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PROCESS FOR END TYPES
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EXl 3-MAR-86 5*35*28 AM PG 8



PROCESS FOR EXTERNAL AND SPRING FORCES
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THERE ARE 4 LOOPS IN THE SYSTEM.
INPUT NODE NO FROM THE STARTING POINTTO END POINT IN EACH LOOP

EXl 3-MAR-86 5*39*22 AM PG 10
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PROCESS FOR CONNECTIVITY 
mort#»--------------
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EXl 3-MAR-86 5*41*05 AM PG 11
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PROCESS FOR CONNECTIVITYiv y —
•OT *

tMPUr MOK W M F *  * * ,  MT •  

NODE GENERATION
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EXl 3-MAR-86__5*42*16 AM PG 12
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PROCESS FOR CONNECTIVITY
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NODE GENERATION
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EXl 3-MAR-86 5*43*13 AM PG 13
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raOCESS FOR CONNECTIVITYnm------------ VSStSSSSJS
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EXl 3-MAR-86 5*44*10 AM PG 14



PROCESS FOR SYSTEM LOOPING
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POST-PROCESS OF ANALYSES.
************************ i n i t i a l  POSITION OF NECHANISH

■MT «uipur n u  n tt.n x >  ttv v m  t>  v

MmnooMM 
■ n u  « « M S  H m n * « o m n o

m r m rm

EXl 3-MAR-86 10*19*08 PM PG 3
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REACTION FORCES AT SUPPORTS

Nn WWN

tnr.

§
QEOHETRICAL PLOT SCALE • 10.0 t 1.

SMALL DEFLECTION ASSUMPTION USED

EXl 3-MAR-86 10*20*59 PM PG A
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RESULTS OF STRESS ANALYSES
LOCATIONS OF CRITICAL POINT(S)

J

m
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4t*4# IM4«S

****************************MIN SAFETY FACTOR FOR SYSTEM

1.860E+O0 AT NODE 3 ****************************
NIT

EXl 3-MAR-86 10*21(48 PM PG 5
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END OF PROGRAM

H IT  RETURN
3-MAR-86 10*22MO PM PG 6
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THE SOLUTION DETAILS FOR THE DÏNAMIC ANALYSIS OF A MECHANISM
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WELCOME TO GASDAM *****************
CASDAM - COMPUTER AIDED STATIC AMD DYNAMIC ANALYSES OF MECHANISMS

THE PROGRAM CASDAM CAN ANALYZE STATIC/DYNAMIC PROBLEMS UNDER SMALL/LARGE DEFLECTIONS OF PLNAR FLEXIBLE MECHANISMS/STRUCTURES
THE PROGRAM CASDAM CONSISTS OF
PRE-PROCESSMESH GENERATION OF A PLANAR MECHANISM WITH NODES (UP TO 200) AND LOOPS (UP TO 10)KINEMATIC POSITION/ACCELERATION ANALYSIS DATA GENERATION FOR PROCESS
PROCESSSTATIC AND DYNAMIC ANALYSIS FOR THE FLEXIBLE SYSTEM: DISPLACEMENTS, FORCES, STRESSES, AND SAFETY FACTORS
POST-PROCESSGEOMETRICAL PLOTS OF DISPLACEMENTS GRAPHICAL PLOTS OF DISPLACEMENTS AND STRESSES

INPUT PROBLEM TITLE (UP TO 20 CHARACTERS) - EX2

MT anuN
2-MAR-86 6:06:14 AM PG 1
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PRE-PROCESS FOR MECHANISM ANALYSIS **********************************
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MESH GENERATION FOR A MECHANISM *******************************
MAKE NODES (UP TO 50) FOR A SYSTEM

AT EXTERNAL FORCE POINTS AT SPRING CONNECTIONS AT BRANCH POINTS AT JOINTS (REVOLUTES AND SLIDES)
THEN, NODES ARE GENERATED
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PROCESS FOR OENERATION OF ELEMENTS
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PROCESS FOR LINK PROPERTIES
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EX2 2-MAR-86 6:13*18 AM PG 6



PROCESS FOR LINK PROPERTZES
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PROCESS FOR END TYPES
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r̂anu5S*Ŝ 5? Mm « avvm t> v

MT M1UM

EX2 8-MAR-86 6*18*13 AM PG 8



268

PROCESS FOR EXTERNAL AND SPRING FORCES
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THERE ARE 1 LOOPS ZN THE SV8TER.
INPUT NODE NO FROM THE STARTING POINT TO END POINT IN EACH LOOP
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PROCESS FOR CONNECTIVITY
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K2NENATXC ANALYSIS ****************** MENU
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KINEMATIC ANALYSIS ******************
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KINEMATIC ANALYSIS ******************
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KINEMATIC ANALYSIS ******************
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KINEMATIC ANALYSIS HAS BEGUN 
BELL SIGNALS ANALYSIS COMPLETE
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QEOHETRICAL PLOT OF POSITION ANALYSIS
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PROCESS FOR SYSTEM LOOPING
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APPQ9DIX E 

OVERVIEW OF THE COMPUTER PROGRAM CASDAM

E.l General Description

The program CASDAM is a graphics-oriented, interactive, 
computer-aided, static and dynamic analyses of flexible mechanisms and 
structures incorporated with the proposed iterative transfer-matrix 
method, and intended for use with a graphics terminal such as the 
Tektronix 4014. The program is developed on a Digital Equipment 
Corporation VAX 11/750 minicomputer Installed in Advance Design Method 
Laboratory, Dept, of Mechanical Engineering, The Ohio State University. 
There has been considerable effort made in trying to develop the 
program so that the program has minimal amounts of machine dependency. 
The program language used is 1977 ANSI FORTRAN IV.

Section E.2 gives the subroutine descriptions briefly. 
Section E.3 presents the tree structure for the program, the storage 
requirements for the routines, and the the image synopsis of the 
program CASDAM on a VAX 11/750 system.
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E.2 Description of Routines

This section contains the subroutine descriptions.

1. MAIN PROGRAM CASDAM - initiates and proqpts the user for the 
information needed to analyze the flexible mechanisms and 
structures.

2. SUBROUTINE AFLEX - controls the analysis process and solution
convergence.

3. SUBROUTINE AGAIN - solves the state vector for flexible system.
4. SUBROUTINE ANALYS - calculates the unknown variables frcxo the

system matrix equation.
5. SUBROUTINE ARIGID - solves the state vector for rigid system.
6. SUBROUTINE CALSFl - calculates stresses and safety factors at

nodes for a system at one position.
7. SUBROUTINE CALSF2 - calculates stresses and safety factors at

nodes for a system in continuous motions.
6. SUBROUTINE CALSLD - calculates the state vector when a starting

point in a subloop is slider.

9. SUBROUTINE CALSVE - calculates the state vector at a branch point.
10. SUBROUTINE CALSVS - calculates the state vector at supports.
11. SUBROUTINE GONPRS - determines the field matrix when cosq*ressive

axial force is loaded in a element.
12. SUBROUTINE OONNEC - checks the connectivity at joints.
13. SUBROUTINE DATINT - proq>ts for preprocessing the program.
14. SUBROUTINE DATGEN - generates data for processing.
15. SUBROUTINE DFLEX - draws a deflected system.
16. SUBROUTINE DISPU - calculates distortions at nodes for a system

at one position.
17. SUBROUTINE DISPL2 - calculates distortions at nodes for a system

in continuous motions.
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18. SUBROUTINE DOTTED - draws a dotted line.
19. SUBROUTINE DRAN6E - determines range of screen window for drawing 

a deflected system.
20. SUBROUTINE DRAHLP - draws each loop of a system.
21. SUBROUTINE IXiHALL - draws an original structure.
22. SUBROUTINE DRHBOX - draws a square for a screen window.
23. SUBROUTINE DRHDIS - draws a system and writes maximum distortions

at nodes.
24. SUBROUTINE ORHDOT - draws an original system with dotted lines.
25. SUBROUTINE ORHEND - draws a support.
26. SUBROUTINE BRHINP - draws a generated system.
27. SUBROUTINE DRNORI - draws a undeflected system.
28. SUBROUTINE DRNREV - draws a revolute joint.
29. SUBROUTINE DRHSLD - draws a sliding joint.
30. SUBROUTINE DRHSF - draws a system and writes safety factors at

nodes.
31. SUBROUTINE ORHSPR - draws a spring.
32. SUBROUTINE DRHSYS - draws a generated system.
33. SUBROUTINE DZERO - sets the initial values be zero for a

generated system.
34. SUBROUTINE PINDPT - finds mass center and calculates total volume 

of a plate.
35. SUBROUTINE FUSIS - prompts for analysis of a flexible system.
36. SUBROUTINE F(XtSPR - prompts for external forces and conditions of

springs.
37. SUBROUTINE 6ENALL - sorts input data and generates data.
38. SUBROUTINE GENSEC - generates elements of an original system.
39. SUBROUTINE 6ETFIX - determines the three simultaneous equations 

for a system with a fixed end.
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40. SUBROUTINE GETfRE - deternlnes the three sinultaneous equations

for a system with a free end.
41. SUBROUTINE 6ETPIN - determines the three simultaneous equations

for a system with a pinned end.
42. SUBROUTINE GETSIM - determines the three simultaneous equations

for a system with a simple support.
43. SUBROUTINE 6ETSLD - determines the three simultaneous equations

for a system with a sliding end.
44. SUBROUTINE HELLO - writes the message for the general information

and description of the program CASDAM..
45. SUBROUTINE INVERS - inverses a matrix.
46. SUBROUTINE JOINTS - calculates the transfer matrix to be satisfied

the joint conditions
analyzes the 1st type of kinematic component,
analyzes the 2nd type of kinematic component,
analyzes the 3rd type of kinematic component,
analyzes the 4th type of kinematic component,
analyzes the 5th type of kinematic component,
analyzes the 6th type of kinematic component,
analyzes the 7th type of kinematic component,
analyzes the 8th type of kinematic component,
controls subroutines for kinematic analyses, 
draws the first type of kinematic component, 
draws the 2nd type of kinematic component,
draws the 3rd type of kinematic component,
draws the 4th type of kinematic component,
draws the 5th type of kinematic component,
draws the 6th type of kinematic component.

47. SUBROUTINE KINANl

48. SUBROUTINE KINAN2
49. SUBROUTINE KINAN3
50. SUBROUTINE KINAN4
51. SUBROUTINE KINAN5

52. SUBROUTINE 10NAN6

53. SUBROUTINE KINAN7
54. SUBROUTINE IQNAN8
55. SUBROUTINE KINANS

56. SUBROUTINE KINERl
57. SUBROUTINE KINDR2
58. SUBROUTINE KINER3

59. SUBROUTINE KINCR4
60. SUm)UTINE KINCR5

61. SUBROUTINE KINCR6
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62. SUBROUTINE KINDR7 - draws the 7th type of kinematic component.
63. SUBROUTINE KINCR8 - draws the 6th type of kinematic component.
64. SUBROUTINE KINORH - controls subroutines to draw the corresponding 

component when user indicates.
65. SUBROUTINE OilNP - pro^>ts for the input of the rotating speed of 

an input-link of a mechanism.
66. SUBROUTINE KINONE - draws a component from menu.
67. SUBROUTINE OiSIS - prompts for the kinematic analysis.
68. SUBROUTINE KINSYS - draws a system in the continuous motions.
69. SUBROUTINE KZERO - sets the initial values for kinematic analysis 

be zero.

70. SUBROUTINE LEAREQ - solves the linear simultaneous equations.
71. SUBROUTINE L1HAN6 - sets an angle within -180 to 180 degrees.
72. SUBROUTINE LINDOT - draws a dotted line.
73. SUBROUTINE LINSID - draws a solid line.
74. SUBROUTINE LOOPS - determines a main loop and subloops from a

system.
75. SUBROUTINE LOOPSS - checks each loop for 1 OOF system.
76. SUBROUTINE NBRAN - calculates a branch matrix.
77. SUBROUTINE HFIELD - calculates a field matrix for a flexible link.
78. SUBROUTINE MMASS - calculates a mass matrix.
79. SUBROUTINE NPOINT - calculates a point matrix.
80. SUBROUTINE MRI6ID - calculates a filed matrix for a rigid link.
81. SUBROUTINE MSPRN6 - calculates a spring matrix.
82. SUBROUTINE HTRANS - calculates a transformation matrix.
83. SUBROUTINE NULT74 - multiplies two matrices.
84. SUBROUTINE PLATES - calculates data for a plate element.
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85. SUBROUTINE PROPl - determines the material and geometrical 

properties of a link.
86. SUBROUTINE RANGEL - determines range of screen window for drawing 

a initial syston.
87. SUBROUTINE RANGES - determines range of screen window for drawing 

a system in kinematic motions.
88. SUBROUTINE READIN - reads all generated data from a file.
89. SUBROUTINE RESULT - controls subroutines to calculate distortions 

and safety factors at nodes.
90. SUBROUTINE SECHAT - prompts for information of the properties of 

links.
91. SUBROUTINE SETC - sets a transfer matrix to be stored.
92. SUHtOUTINE SETING - sets all state vectors determined at the

previous iteration.
93. SUBROUTINE SETPNT - marks a symbol on the corresponding point.
94. SUBROUTINE SETPOS - sets position to write on screen.
95. SUBROUTINE SETHIN - sets a screen window.
96. SUBROUTINE SUEG - calculates the corresponding state variables 

to a sliding end.
97. SUBROUTINE SORTS - prompts for the postprocess.
98. SUBROUTINE STARTS - calculates the initial transfer matrix from 

the given support conditions.
99. SUBROUTINE STATE - calculates state vectors for a rigid system.
100. SUBROUTINE STRSIS - promts for the stress analysis.
101. SUBROUTINE SUBLPl - generates data for an Initial subloop system.
102. SUBROUTINE SUBLP2 - generates data for a double subloop system.
103. SUBROUTINE SU%P3 - generates data for a triple subloop system.
104. SUBROUTINE SUBLP4 - generates data for a fourth subloop system.
105. SUKOUTINE SUBLP5 - generates data for a fifth subloop system.
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106. SUBROUTINE SUBLP6 - generates data for a sixth subloop system.
107. SUffîOUTINE TENSCM - calculates field matrix when a tensile force 

is loaded in a link.
106. SUBROUTINE TYLOOP - generates data for the main loop system.
109. SUBROUTINE TYPEND - prompts for the end types.
110. SUBROUTINE TYPSYS - prompts for the types of analyses.
111. SUBROUTINE RESETC - resets the matrix equation.
112. SUBROUTINE RFIELD - controls subroutines to calculate a field 

matrix.
113. SUBROUTINE RSTATE - calculates state vectors at nodes for a 

flexible system.
114. SUBROUTINE NASSUM - writes the message for assiuqption used in the 

analysis.
115. SUBROUTINE NBEND - writes the generated data for a support in a 

subloop.
116. SUBROUTINE NBRAN - writes the generated data for a branch point.
117. SUBROUTINE NFHEAD - writes a title in a output file.
118. SUBROUTINE NEIELD - writes the generated data for a link.
119. SUBROUTINE NINABS - sets a screen window.
120. SUBROUTINE fWEND - writes the generated data for an end point in

the main loop.
121. SUBROUTINE NMID - writes the generated data for an external

forces.
122. SUBROUTINE NREACT - writes reaction forces on the screen.
123. SUBROUTINE NREV - writes the generated data for a revolute

joint.
124. SUBROUTINE NRTABS - transforms results in the local coordinate

system to those in the global coordinate system and writes them in 
a file for postprocessing.

125. SUBROUTINE NRTANL - writes title in a data file.
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126. SUBROUTINE NRTDAT - regenerates all generated data for processing.
127. SUBROUTINE NRTFLX - writes results of displacements and stresses

at nodes In an output file.
126. SUBROUTINE NRTPRO - writes title for displacements and internal

forces at nodes.
129. SUBROUTINE NRTSCR - writes data on the screen.
130. SUBROUTINE NSPR - writes the generated data for a spring.
131. SUBROUTINE NSLIIÆ - writes the generated data for a sliding joint.
132. SUBROUTINE WSTART - writes the generated data for a starting

support.
133. SUBROUTINE ZERO - sets initial values of the input system using

in preprocessing.
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The tree structure for the program CASDAM is listed in two ways. 
First, all subroutines Which call a given subroutine are listed in 
Table E.l, and then all of the subroutines called by a given subroutine 
are given in Table E.2. The routines are designated as either the main 
program (N), a subroutine in CASDAM (6), or a PLTPAK subroutine (P). 
The PLTPAK subroutines are the general graphics subroutines.

Table E.3 lists the storage requirements for the progeam CASDAM, 
and Table E.4 gives the storage requirements for the PLTPAK subroutines 
and the PLOIIO graphics routines. Table E.5 presents an image synopsis 
of the program CASDAM on a VAX 11/750 system.

TABLE E.l CROSS REFERENCE BÏ CALLING ROUTINES
Routine Type Called by ...

AFLEX G FLXSIS
AGAIN G AFLEX
ANALYS G AGAIN ARIGID
ARIGID G AFLEX
CALSFl G STRSIS
CALSF2 G STRSIS
Notes on type of routine
M : Main program 
G : GOCAD subroutine 
P : PLTPAK subroutine
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Routine Type Called by ...

CALSLD G RSTATE STATE
CALSVE G RSTATE STATE
CALSVS G RSTATE STATE
CASDAM M
CONPRS G RFIEID
OONNEC G LOOPS
DATGEN G CASDAM
DATINT G DATGEN
DFLEX G DISPLI SORTS
DISPLI G SORTS
DISPL2 G SORTS
DOTTED 6 KINDRl KINDR2 KINDR3 KINDR4 

KINDR8
DRAN6E G DFLEX DRMALL

DRAHLP G LOOPS

DRNALL G DRNDIS DRNINP DRHORI DRHSF
DRHBOZ G DATINT DFLEX DRAHLP DRHALL
DRNDIS G SORTS

DRHDOT G GENSEC KINSIS LOOPS

Di^BiD G DFLEX DRAHLP DRHALL DRHDOT
Notes on type of routine
M : Main program
G : GDCAD subroutine
P : PLTPAK subroutine
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table E.l CROSS REFERENCE Bi CALLING ROUTINES (CONTINUED)
Routine Type Called by ...

DRNINP G DISPU
ORNQRI G RESULT SORTS
DRNREV G DRNALL DRHDOT DRHSYS KINSYS
ORNSF G SORTS
DRNSLD G DRNALL DRHDOT DRNSYS KINSYS
DRNSPR G DFLEX DRNALL DRHDOT DRNSYS
DRNSYS G OONNEC FORSPR GENALL SECMAT
DZERO G READIN

FINDPT G DATINT
FLXSIS G CASDAM
FORSPR G DATGEN

GBIALL G DATGEN
GBISEC G DATINT
GETFIX G ANALYS
(ZTFRE G ANALYS
GETPIN G ANALYS
GETSIM G ANALYS
GETSLD G ANALYS
HELLO G CASDAM

Notes on type of routine
M X Main program
G X GOCAD subroutine
P X PLTPAK subroutine



table E.l CROSS REFERENCE BY CALLING ROUTINES (CONTINUED)
Routine Type Called by ...
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INVERS G NBRAN
JOINTS G AGAIN ARIGID
KBUSH P ERNEND DRNSPR KINDRl KINER2 KINDR3 KINDR5 KINDR6

1ŒNDR7 KINDR8
KDING P AFLEX FLXSIS GENALL HELLO KINSIS RESULT
KDRNAB P DRNSID DRNSPR HNDRl KINDR2 KINDR3 KINDR4 KINDR5

K1NDR6 KINER7 KINDR8 LINSLD
KDRNRL P DOTTED DRNSPR KINDR5 KINDR6 KINDR7 KINDR8 LINDOT
KGRAPH P DISPL2
KINANl 6 KINANS
KINAN2 G KINANS
KINAN3 G KINANS
KINAN4 G KINANS
KINANS G KINANS
KINAN6 6 KINANS
KINAN7 G KINANS
KINANS G KINANS
KINANS G KINSIS
KINDRl G KINDRN KINONE

Notes on type of routine
M % Main program
G : (90CAD subroutine
P : PLTPAK subroutine



TABLE E.l CROSS REFERENCE BY CALLING ROUTINES (CONTINUED)
Routine Type Called by ...
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KINDR2 G lŒNDRH KINONE
KINDR3 G KINDRH KINONE
KINDR4 G KINDRH KINONE
KINDR5 G KINDRH KINONE
KINDR6 G KINDRH KINONE
KINDR7 G KINDRH KINONE
KINDR8 G KINDRH KINONE
KINDRH 6 KINSIS

KININP G KINSIS
KINITZ P CASDAH

KINONE G KINSIS
KINSIS G DATGEN

KINSYS G KINSIS
KIQCSZ P DOTTED SETFOS
KLNTYP P CASDAH DFLEY

KLOGUN P AFLEX ANALYS CALSLD 
DATINT DFLEX DISPLI 
ERHSF FUSIS FORSPR 
KINDRl KINDR2 KINDR3 
KINDR8 KINDRH KININP 
LOOPS LOOPSS RESULT 
TYPSYS NASSUM HREACT

Notes on type of routine
H : Main program
G : QOCPD subroutine
P : PLTPAK subroutine

CALSVS
DISPL2
GENALL
KINDR4
KINSIS
SECHAT

CASDAH
DRNDIS
GENSEC
KINDR5
KINSYS
SORTS

COMPRS
DRHINP
HELLO
KINDR6
UNDOT
STRSIS

CONNEC
DRHORI
KINANS
KINDR7
UNSLD
TYFEND



table E.l CROSS REFERENCE BT CALLING ROUTINES (CONTINUED)
Routine Type Called by ...
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KNARGN

KHOVAB

KHOVRL
KPAUSE

KPGRST
KPOLGN

ERECT

KSETTL
ESTOP
ETZSIZ

P
P

P
P

P
P
P

AFLEX CASOAH CONNEC DATINT DISPU 0ISPL2 ERHDIS 
CRHSF FLXSIS FORSPR GENALL GENSEC HELLO EINSIS 
EINSYS LOOPS SECNAT SORTS TYPEND
DISPL2 DOTTED DRNDIS DRNSF DRWSID DRNSPR EINDRl 
EINDR2 EINDR3 EINDR4 EINDR5 EINDR6 EINER7 EINDR8 
KINDRH EINSIS UNDO! LINSLD SETPOS
DOTTQ) EINER5 EINDR6 EINDR7 EINDR8 LINDOT LINSLD
AFLEX CASDAM CONNEC DATINT DISPU DISPL2 DRNDIS 
DRNSF FLXSIS FORSPR GBfALL GENSEC HELLO EINSIS 
EINSYS LOOPS SECHAT SORTS TYPEND
CASDAM
DRNALL DRNDOT DRNEND DRNREV DRNSYS EINDRl RINDR2 
EINDR3 EINDR4 EINDR5 EINDR6 EINDR7 EINDR8 EINSYS
DRNBOX EINDRl EINDR2 EINDR3 EINDR4 EINDR5 EINDR6 
EINDR7 EINDR8 EINSYS
CASDAH HELLO
CASDAH
CASDAH
DRNDIS
GENALL
EINDR5
LOOPS
NFHEAD

CONNEC
DRNEND
GENSEC
EINDR6
RESULT
NREACT

DATINT
DRNINP
hello
EINDR7
SECHAT

DFLEX
DRHORI
EINDRl
EINDR8
SORTS

DISPU
DRNSF
EINDR2
EINDRN
STRSIS

DISPL2
FLXSIS
EINDR3
EINSIS
TYPEND

DOTTED
FORSPR
EINDR4
EINSYS
NASSUM

EVNPAR EINDRl EINDR2 EINDR3 EINDR4 EINDR5 EINDR6 EINDR7 
EINDR8 SETNIN NINABS

Notes on type of routine
M : Main program
G : GOCAD subroutine
P : PLTPAE subroutine
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TABLE E.l CROSS REFERENCE BY CALLING ROUTINES (CONTINUED)
Routine Type Called by ...

KNRNOD P AFLEX CONNEC 
DRANLP DRNALL 
DRNORI DRNREV 
FORSPR GENALL 
KINDR4 KINDR5 
KINSIS KINSYS 
SETPOS SETNIN 
NINABS NREACT

DATINT
DRNBOX
DRNSF
GENSEC
KINDR6
LINDOT
SORTS

DFLEX
DRNDIS
DRNSLD
HELLO
KINDR7
LINSLD
STRSIS

KZERO G KINANS
LEAREQ G GETFIX GETFRE GETPIN GETSIM
LIMANG G KINAN2 KINAN3 KINANS KINAN6
LINDOT G DATINT DFLEX DRNDOT
LINSLD G DATINT DFLEX 

KINSYS LOOPS
DRANLP DRNALL

LOOPS G DATGQI
LOOPSS G LOOPS
NBRAN G AGAIN ARIGID
MFIELD G ARIGID RFIELD STATE
MASS G AGAIN ARIGID RSTATE STATE

MPOINT G AGAIN ARIGID RSTATE STATE

HRIGID G AGAIN ARIGID RSTATE STATE
NSPRNG G AGAIN ARIGID RSTATE STATE
NTRANS G AGAIN ANALYS 

STARTS STATE
ARIGID
NRTABS

CALSLD

DISPU
CRHDOT
DRNSPR
KINDRl
KINDRB
LOOPS
TYPEND

DISFL2
DRNEND
DRNSYS
KINDR2
KINDRN
RESULT
NASSUM

DOTTED
DRNINP
FLXSIS
KINDRB
KINONE
SECNAT
NFHEAD

Notes on type of routine
M : Main program
G : GOCAD subroutine
P : PLTPAK subroutine



table E.l CROSS REFERENCE BÏ CALLING ROUTINES (CONTINUED)
Routine Type Called by ...
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HULT74
PLATES
PROPl
RANGEL
RANGES
READIN
RESETC
RESULT
RFIELD
RSTATE
SECNAT
SEIC
SETING
SETPNT
SETPOS

SETNIN

SLIDE

G
G
G
G
G
G
G
G
G
G
G
G
G
G
G

G

G

AGAIN ANALYS ARIGID SLIDE STARTS 
GENALL
AGAIN ARIGID RESULT RSTATE STATE 
DFLEX
DRNDOT DRNSYS 
FLXSIS RESULT 
AGAIN ARIGID 
SORTS
AGAIN RSTATE
AGAIN
DATINT
AGAIN ARIGID 
AFLEX
RSTATE STATE
AFLEX
DRNINP
KINSIS
NREACT

DFI£X
DRNSF

CONNEC DATINT DFLEX DISPLI DISPL2 DRNDIS
DRNORI DRNSF FLXSIS FORSPR GENALL GENSEC
LOOPS RESULT SECHAT SORTS TYPEND NASSUM

DRANLP DRNALL DRNDIS DRNDOT DRNEND DRNREV 
DRNSLD DRNSPR DRNSYS KINSYS LINDOT UNSID

AGAIN ARIGID

Notes on type of routine
M : Main program
G I GOCAD subroutine
P : PLTPAK subroutine
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table E.l CROSS REFERENCE BY CALLING ROUTINES (CONTINUED)
Routine Type Called by ...

SORTS 6 CASDAM
STARTS G AGAIN ARIGID
STATE G ARIGID
STRSIS G RESULT
SUBLPl G TYLOOP
SUBLP2 G SUBLPl
SUBLP3 G SUBLP2
SUBLP4 G SUBLP3
SUBLP5 G SUBLP4
SUBLP6 G SUBLP5
TENSON G RFIELD

TYLOOP G GENALL
TYPEND G DATGEN
TYPSYS G CASDAM
NASSUM G DFLEX
HBEND G SUBLPl SUBLP2 SUBLP3 SUBLP4 SUBLP5 SUBLP6
NBRAN G SUBLPl SUBLP2 SUBLP3 SUBLP4 SUBLP5 SUBLP6
NFHEAD G CALSFl CALSF2 CASDAM KINANS RESULT NRTFLX NRTPRO
NFIELD G SUBLPl SUBLP2 SUBLP3 SUBLP4 SUBLP5 SUBLP6 TYLOOP

Notes on type of routine
M : Main program
G { GOCAD subroutine
P : PLTPAK subroutine



table E.l CROSS REFERENCE BY CALLING ROUTINES (CONTINUED)
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Routine Type Called

NINABS 6 CASDAH
DRNDIS
DRNSLD
KINDR4
KINSYS
NREACT

HHEND 6 TYLOOP
NHm G SUBLPl
NREACT 6 DISPU
HREV 6 SUBLPl
NRTABS 6 RSTATE
NRTANL G AFLEX
NRTDAT G GENALL
NRTFLX G RESULT
NRTPRO 6 RESULT
NRTSCR G NREACT
NSLIDE G SUBLPl
HSPR G SUBLPl
NSTART G SUBLPl
ZERO G CASDAH

DFLEX
DRNDOT
DRNSPR
KINDR5
LINDOT

DISPU
DRNEND
DRNSYS
KINDR6
LINSLD

DISPL2
DRNINP
FLXSIS
KINDR7
SETPOS

DRANLP
DRNORI
KINDRl
KINDR8
SETNIN

DRNAU
DRNREV
KINDR2
KINDRN
SORTS

DRNBOX
DRNSF
KINDR3
KINONE
NASSUM

SUBLP2 SUBLP3 SUBLP4 SUBLP5 SUBLP6 TYLOOP 
SORTS
SUBLP2 SUBLP3 SUBLP4 SUBLP5 SUBLP6 TYLOOP

SUBLP2 SUBLP3 SUBLP4 SUBLP5 SUBLP6
SUBLP2 SUBLP3 SUBLP4 SUBLP5 SUBLP6 TYLOOP
SUBLP2 SUBLP3 SUBLP4 SUBLP5 SUBLP6 TYLOOP

Notes on type of routine
H : Main program
G : GOCAD subroutine
P t PLTPAK subroutine



table e.2 cross reference by routines called
Routine Calls to ...
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AFLEX

AGAIN

ANALYS

ARIGID

CALSFl
CALSF2
CALSLD
CALSVS
CASDAM

COMPRS
CONNEC
DATGEN
DATINT

DFLEX

DISPU

DISPL2

AGAIN ARIGID KDING KLOGUN 
SETING SETPOS NRTANL
ANALYS JOINTS NBRAN (MASS 
NTRANS NULT74 PROPl RESETC 
SLIDE STARTS
GETFIX GETFRE GETPIN GETSIM 
HULT74
ANALYS JOINTS MBRAN HFIEID 
MSPRNG NTRANS NULT74 PROPl 
STARTS STATE
HEHEAD
NFHEAD
KLOGUN NTRANS 
KLOGUN NTRANS
DATGEN FLXSIS HELLO KINITZ 
KPAUSE KPGRST KSETTL KSTOP 
NFHEAD NINABS ZERO

KLOGUN
DRNSYS KLOGUN KNARGN KPAUSE
DATINT FORSPR GENALL KINSIS
DRNBOX FINDPT GENSEC KLOGUN 
KNRNOD LINDOT LINSLD SECNAT
DRAN6E DRNBOX DRNEND DRNSPR 
KNRNOD LINDOT LINSLD RANGEL 
NINABS
DFLEX DRNINP KLOGUN KNARGN 
SETPOS NINABS NREACT
KGRAPH KLOGUN KNARGN KNOVAB 
SETPOS NINABS

KNARGN KPAUSE KNRNOD

MPOINT NRI6ID NSPRNG 
RFIELD RSTATE SETC

GETSLD KLOGUN NTRANS

IMASS MPOINT NRIGID 
RESETC SETC SLIDE

KLNTYP KLOGUN KNARGN 
KTXSIZ SORTS TYPSYS

KTXSIZ KNRNOD SETPOS
LOOPS TYPEND
KNARGN KPAUSE KTXSIZ 
SETPOS
KLNTYP KLOGUN KTXSIZ 
SETPOS SETNIN NASSUM

KPAUSE KTXSIZ KNRNOD

KPAUSE KTXSIZ KNRNOD



TABLE E.2 CROSS REETKOfCB BY ROUTINES CALLED (CONTINUED)
Routine Calls to ...
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DOTTED KDRNRL KIQCSZ KNOVAB KNOVRL KTXSIZ KNRNOD
DRANLP DRNBOX DRNEND KNRNOD UNSU) SETNIN NINABS
DRNALL DRANGE

KNRNOD
DRNBOX
UNSIJ)

DRNEND
SETNIN

DRNREV
NINABS

DRNSLD DRNSPR KPOLGN

DRNBOX KRECT KNRNOD NINABS
DRNDIS DRNALL

SETPOS
KLOGUN
SETNIN

KNARGN
NINABS

KNOVAB KPAUSE KTXSIZ KNRNOD

DRNDOT DRNBOX
LINDOT

DRNEND
RANGES

DRNREV
SETNIN

DRNSID
NINABS

DRNSPR KPOLGN KNRNOD

DRNOm KBUSH KPOLGN KTXSIZ KNRNOD SETNIN NINABS
DRNINP DRNALL KLOGUN KTXSIZ KNRNOD SETPOS NINABS
DRNORI DRNALL KLOGUN KTXSIZ KNRNOD SETPOS NINABS
DRNREV KPOLGN KNRNOD SETNIN NINABS

DRNSF DRNALL
SETPOS

KLOGUN
SETNIN

KNARGN
NINABS

KNOVAB KPAUSE KTXSIZ KNRNOD

DRNSLD KDRNAB KNOVAB KNRNOD SETNIN NINABS
DRNSPR KBUSH KDRNAB KDRNRL KHOVAB KNRNOD SETNIN NINABS
DRNSYS DRNBOX

UNSID
DRNEND
RANGES

DRNREV
SETNIN

DRNSLD
NINABS

DRNSPR KPOLGN KNRNOD

FLXSIS AFLEX
KNRNOD

DRNALL
READIN

KDING
SETPOS

KLOGUN
NINABS

KNARGN KPAUSE KTXSIZ

FORSPR DRNSYS KLOGUN KNARGN KPAUSE KTXSIZ KNRNOD SETPOS

GENALL DRNSYS
PLATES

KDING
SETPOS

KLOGUN
TYLOOP

KNARGN
NRTDAT

KPAUSE KTXSIZ KNRNOD

GENSEC DRNDOT
SETPOS

KLOGUN KNARGN KPAUSE KTXSIZ KNRNOD LINSLD

GETFIX LEAREQ



TABLE E.2 CROSS REFERENCE BY ROUTINES CALLED (CONTINUED)
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Routine Calls to ...

GETFRE LEAREQ
GETPIN LEAREQ
GETSIN USAREQ
GETSLD LEAREQ
HELLO KDING KLOGUN KMARGN
INVERS LEAREQ
KINAN2 LIMANG
KINAN3 LIMANG ,

KINANS LIMANG
KINANS LIMANG
KINAN7 LIMANG
KINANS LIMANG
KINANS KINANl KINAN2 

KINANS KLOGUN
KINAN3
KZERO

KINDRl DOTTED KBUSH 
KTXSIZ KVNPAR

KDRNAB
KNRNOD

KINDR2 DOTTED KBUSH 
KTXSIZ KVNPAR

KDRNAB
KNRNOD

KINDR3 DOTTED KBUSH 
KTXSIZ KVNPAR

KDRNAB
KNRNOD

KINDR4 DOTTED KDRNAB 
KVNPAR KNRNOD

KLOGUN
NINABS

KINDRS DOTTED KBUSH 
KPOLGN KRECT

KDRNAB
KTXSIZ

KINDRS DOTTED KBUSH 
KPOLGN KRECT

KDRNAB
KTXSIZ

KPAUSE KSETTL KTXSIZ KHRHOD

KINAN4 KINANS KINANS KINAN7 
NFHEAD
KLCXm KNOVAB KPOIÆN KRECT 
NINABS
KLOGUN KHOVAB KPOLGN KRECT 
NINABS
KLOGUN KNOVAB KPOLGN KRECT 
NINABS
KNOVAB KPOLGN KRECT KTXSIZ

KDRNRL KLOGUN KNOVAB KNOVRL 
KVNPAR KNRNOD NINABS

KDRNRL KLOGUN KNOVAB KNOVRL 
KVNPAR KNRNOD NINABS
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Routine Calls to ...
— ———

KINDR7 DOTTED KBUSH 
KPOIÆN KRECT

KINDRB DOTTED KBUSH 
KPOLGN KRECT

KINDRH KINDRl KINDR2 
KINDRB KLOGUN

KININP KLOGUN
KINONE KINDRl KINDR2 

KINDRB KNRNOD
KINSIS DRNDOT KDING 

KLOGUN KNARGN 
SETPOS

KINSYS DRNEND DRNREV 
KPOLGN KRECT

LINDOT KDRNRL KLOGUN

LINSLD KDRNAB KLOGUN
LOOPS CONNEC DRANLP 

KPAUSE KTXSIZ
LOOPSS KLOGUN
NBRAN INVERS
READIN DZERO
RESULT DRNORI KDING 

SETPOS STRSIS
RFIELD OONPRS NFIEU)
RSTATE CALSLD CALSVE 

NTRANS PROPl
SECNAT DRNSYS KLOGUN
SETPOS KIQCSZ KNOVAB



TABLE E.2 CROSS REFERENCE BY ROUTINES CALLED (CONTINUED)
Routine Calls to ...
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SETNIN
SLUE

SORTS

STARTS
STATE

STRSIS

SUBLPl

SUBLP2

SUBLP3

SUBLP4

SUBLP5

SUBLP6

TYLOOP
TYPEND

TYPSYS
NASSUM
NFHEAD
NINABS

KVNPAR KNRNOD NINABS 
NTRANS HULT74
DFLEX DZSPU DISPL2 DRNDIS DRNORI 
KMARGN KPAUSE KTXSIZ KNRNOD RESULT 
NREACT

DRNSF KLOGUN 
SETPOS NINABS

MTRANS NULT74
CALSLD CALSVE CALSVS NFIELD MIASS 
MSPRNG MTRANS PROPl SETPNT
CALSFl CALSF2 KLOGUN KTXSIZ KNRNOD

SUBLP2 NBQID NBRAN NFIELD NNID 
NSPR NSTART
SUBLP3 NBEND NBRAN NFIEU) NNID 
NSPR NSTART
SUBLP4 NBOm NBRAN NFIELD NNID 
NSPR NSTART
SUBLP5 NBOm NBRAN NFIELD NNID 
NSPR NSTART
SUBLP6 NBEND NBRAN NFIELD NNID 
NSPR NSTART
NBEND NBRAN NFIELD üflD NREV 
NSTART
SUBLPl NFIELD NMEND WHD NREV
DRNBiD DRNSYS KLOGUN KNARGN KPAUSE 
SETPOS
KLOGUN
KLOGUN KTXSIZ KNRNOD SETPOS NINABS 
KTXSIZ KNRNOD 
KVNPAR KNRNOD

NPOINT NRIGID

NREV NSLIDE

NREV NSLIDE

NREV NSLIDE

NREV NSLIDE

NREV NSLIDE

NSLIDE NSPR

NSPR NSTART 
KTXSIZ KNRNOD
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table E.2 CROSS REFERENCE BY ROUTINES CALLED (CONTINUED) 
Routine Calls to ...

NREACT
NRTABS
NRTFLX
NRTPRO

KLOGUN KTXSIZ KNRNOD SETPOS NINABS NRTSCR
NTRANS
NFHEAD
NFHEAD

TABLE E.3 Storage Requirements for the Nain Nodule

NODULE NAME BYTES
CASDAM 1050
AFLEX 70450
AGAIN 72127
ANALYS 2758
ARIGID 49638
CALSFl 2467
CALSF2 109260
CALSLD 3876
CALSVE 638
CALSVS 3940
COMPRS 614
CONNEC 4987
DATINT 18020
DATGEN 17743
DFLEX 16755
DISPU 143047
DISPL2 110189
DOTTED 358
DRANGE 9466
DRANLP 2966
DRNALL 13975
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MODULE NAME BYTES
DRNBOX
DRNDIS
DRNDOT
DRNEND
DRNINP
DRNORI
DRNREV
DRNSLD
DRNSF
DRNSPR
DRNSYS
DZERO
FINDPT
FLXSIS
FORSPR
GENALL
GENSEC
GETFIX
(3EIFRE
GETPIN
GETSIM
GETSLD
HELLOINVERS
JOINTS
KINANl
KINAN2
K1NAN3
KINAN4
KINANS
KINANS
K1NAN7
KINANB
KINANS
KINDRl
K1NDR2
KINDR3
KINDR4
KINDRS
KINDRS
KINDR7

194
S4S48
3S7S
48S

S2128
13S6S
174
2S1

S49S0
944
3S75
48432
290

4S22S
S2S4
19S0S
14110
317
314
32S
32S
32S
3010
SIO
1298
15312
1420S
14S73
13S29
1SS8S
ISOSS
1S977
1S34S
20393
S24
773
70S
7SS
1141
1034
11S4
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NODULE NAME BYTES

K1NER8
KINORH
KININP
KINONE
KINSIS
KINSYS
KZERO
LEAREQ
LIMANG
LINDOT
LINSLD
LOOPS
LOOPSS
MBRAN
NFIELD
MASS
MPOINT
NRIGID
NSPRNG
MTRANS
NÜLT74
PLATES
PROPl
RANGEL
RANGES
READIN
RESULT
SECNAT
SETC
SETING
SETPNT
SETPOS
SETNIN
SLIDE
SORTS
STARTS
STATE
STRSIS
SUBLPl
SUBLP2
SUBLP3

1017
426
1028
219

16143
4955
3375
1322
145
645
405

19195
1637
2191
566
104
104
172

10074
171
422

15251
7307
11147
2074
36344
34129
17005
2339
25023
553
100
303
1715

194676
627

50290
571

18637
18637
18637
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TABLE E.3 Storage Requirements for the Main Module (Continued)

MODULE NAME BYTES

SUBLP4 16637
SUBLP5 18637
SUBLP6 18597
TOISON 618
TTLOOP 18893
TYPEND 6135
TYPSYS 1132
RESETC 2339
RFIELD 295
RSTATE 61428
NASSUM 251
NBEND 4019
NBRAN 1149
NFHEAD 2660
NFIELD 16932
NINABS 72
NMEND 4221
MHID 2784
NREACT 22366
NREV 2190
NRTABS 1013
NRTANL 432
NRTDAT 2423
NRTFLX 16979
NRTPRO 577
NRTSCR 155
NSPR 3210
NSLIDE 4706
NSTART 2368
ZERO 16409
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TABLE E.4 Storage Requirements for the Library Module

MODULE NAME BYTES

KBUSH 742
KDING 64
KDRNAB 361
KDRNRL 185
KGRAPH 4901
KiNnz 2007
KIQCSZ 273
KIQLTY 137
KIQMAG 27
KIQROT 27
KIQIMD 196
KIQTRT 135
KIQTSZ 135
KIQVNP 147
KIQNIN 147
KLNIDX 1137
KUITYP 162
KLOGUN 11
KMAGFÏ 27
KMAPID 1060
KMARGN 2455
KNOVAB 271
KMOVCA 342
KMOVRL 185
KPAUSE 580
KPBUFF 80241
KPGRST 530
KPLOI 2554
KPOLGN 286
KPSTMV 90
KRECT 229
KROTAT 190
KSQGLE 1345
KSELTM 5456
KSETTL 175
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table E.4 Storage Requirements for the Library Module (Continued)

MODULE NAME BYTES

KSTART 184
KSTOP 237
KTEIT 1827
KTIHE 1485
KTMCTL 268
KTXMOD 205
KTXMRG 143
KTXROT 408
KTXSIZ 785
KVNPAR 245
KVNPRT 729
KHINDO 729
KNRNOD 104
KYES 22
KALFNM 1580
KAXIS 3871
KB6IDX 1054
KCHARC 1066
KCLEAR 1915
KCUPH 878
KCVCHR 691
KDATE 189
KDRNCA 350
KFINSH 86
KEORMT 2186
K(3tlD 264
KINCH6 208
KINICO 1863
KIQEQP 294
KLEXDT 30
KLINFD 637
KMAPTB 2222
KNKPLT 2075
KNO 22
KP6TCH 51
KP6TDR 96
KPGTMV 83
KP6TRT 51
KPGTSZ 51
KP6TTY 264
KPLCTL 148
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table e.4 Storage Requirements for the Library Module (Continued)

MODULE NAME BYTES

KPLTIO 4787
KPLI21 1456
KPSTCH 55
KPSTEH 100
KPSTRT 55
KPSTSZ 55
KRBGIS 1743
KUPOAT 64

285
295

KXCHAR 334
KZCHSZ 412
KXCHSD 305
KZDRHA 351
KZDSHA 306
KXERAS 68
KXFINT 59
KlINIT 358
m O N T 48
KM)VA 292
KSNNLN 17
KXNNPG 370
KZOUT 42
KXOUTS 342
KXPNIA 301
KXRECV 392
KXREST 536
KXSCUR 452
KZSTBF 336
KXTERM 282
KXTKDH 1245
KZTKPT 333
m S N D 37
KZVCND 339
ONAIT 152
m Y C V 682
KCHDAT 6210
nXSGN 783
KDCCHR 117
KDCCMP 267
KDCENG 57
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TABLE E.4 Storage Requirements for the Library Module (Continued)

module NAME BYTES

KDCDRH 422
KDCDSH 279
KDCERS 142
KDCLOC 567
KDCNOV 422
KDCOUT 714
KDCPNT 60
KDCSTP 71
KDCNRT 503
KKCLPF 669
KKCSZA 950
KKDRAH 907
KKD6LN 1492
KKLIMT 1401
KKLOCT 1029
KKMOVE 907
KKMPUU 986
KKNMP 996
KKNPEN 970
KKPLOF 960
KKPLON 904
KKPLT 2100
KKPLTS 2672
KKPUMU 929
KKSTIN 670
KKSTUU 670
KKSTMB 2154
KKHHER 923
KOUTKI 239
KREAD 203
KZAFHD 305
KXBFPK 1598
KXCRTN 343
KEDSHH 387
EXINS 790
KXUNF 375
KXPLCH 580
KXPNTM 332
KXQSUB 23
KDCINC 102
KXADRH 949
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table e.4 Storage Requirements for the Library Module (Continued)

MODULE NAME BYTES

KXA6P 1151
KKAMOV 942
KKARTL 977
KKAZY 1463
KKCDIR 1004
KECFNT 1063
KKCHNG 969
KKCLP 1086
KKCLPR 1354
KKCPLT 976
KKCSZ 1256
KKDATO 973
KKDELT 1057
KKGUPU 927
KRHPOU 164
KKHSHK 1316
m N P U 927
KKIRLl 1401
KKLBOF 918
KKLBIM 1043
KKMUPU 929
KKOUa 1113
KKOUE 1155
KKOURl 1091
KK0UR3 1113
KK0UR4 1145
KKPDIR 1004
KKPNSP 997
KKPNUP 870
KKPUUN 969
KKUUPU 987
KXADIN 187
KXADOU 372
KKAN6 1272
KKHPIN 189
KKIDRN 947
m M O V 948
m x Y 1210
KKPUGU 927
KKPUIN 929
XXPUUU 987
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table E.5 Image Synopsis

Virtual memory allocated:
Number of files;
Number of modules;
Number of program sections:
Number of global symbols:
Number of image sections:
User transfer address:
Debugger transfer address:
Number of code references to shareable images: 

Dmge type:

(660480. bytes, 1290. pages)
a.

336.
84.

1082.
20. 

00081(X)0 
ypFEwaa 

56.

EXECUTABLE.


