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INTRODUCTION

Even pefore Alfsen and Effros [2] introduced the notion of an
M-ideal in a general Banach space, it was proved by Dixmier [13] that
K(H) , the space of all compact operators on a separable Hilbert space,
is an M-ideal in L(H) , the space of all bounded linear operators on
H . Even now only a few Banach spaces X for which K(X) 1is an
M-ideal in L(X) are known; for example, <o and zp ,1<p<e,
Some of the classical Banach spaces; for example , 2] 5 4o and
Lp(O,l) with 1 < p <o [ p# 2 do not have the above property.

Smith and Ward [35] showed that (i) M-ideals in a C*-a1gebra are
precisely the closed two sided ideals, (ii) M-ideals in a commutative
Banach algebra with identity are 1deals and (iii) M-ideals in a Banach

algebra with identity are algebras.

In chapter I, we prove that yiven a subspace X of zp s

1 <p<ew , K(X) 1is an M-ideal in L(X) if and only if X has the
compact approximation property. The main result of this chapter is a
strong converse to the Harmand-Lima theorem for subspaces of zp s
1 <p <e ., Harmand and Lima [20] showed that if X 1is a Banach space
for which K(X) 1is an M-ideal in L(X) then there is a net in K(X)
so that

(i) Ta >+ 1 strongly

(i) 4T 4 <1 for all «



(i11i) T: + 1 strongly
(iv) lignI-Tau =1 .

Chapter II is dovoted to proving that if X is a uniformly convex
space then any M-ideal in L(X) is a left ideal, and if X~ is also
uniformly convex then any M-ideal in L(X) 1is a two sided ideal in
L(X) . This yives a partial answer to the Smith-Ward conjecture [36]
that, for a uniformly convex space X , every M-ideal is a two sided
ideal.

n

In Chapter III we will construct a space X = (}:zp‘)r for which

L(X) contains a closed two sided ideal which is not an M-ideal in

L(X) « Thus, the M-ideals and the closed two sided ideas in L(X) are

n.
not the same in yeneral for X = (Zzp‘)r .



CHAPTER I

A CHARACTERIZATION UF SUBSPACES X OF zp FOR WHICH
K(X) IS AN M-IDEAL IN L(X)

1. Introduction

A closed subspace J of a Banach space X 1is said to be an L-
summand if there exists a closed subspace J' of X so that X is
an alyepraic direct sum of J and J' , and if j €4J and j' € J°
then Rj + j't = uju + 4j't . In this case we will write X = J‘gld‘ .
Such a closed subspace J of X is called an M-summand if we have the
norm condition 43 + j'# = max{tjt , tj'¥} 1n place of
U+ ' =03 + u3'v . Here we will write X =J&J"' . A closed
subspace J of a Banach space X is called an M-ideal in X if
gt = xte x*. x“(j) =0 for all j €J} , the annihilator of J in
X* , is an L-summand in X* . By a standard duality aryument we can
easily see that if X =J ©J' then X" =J% @la'* . Thus M-sun-

mands are M-ideals. However, the converse is not 1in general true as we

shall see in the next two examples. It is not difficult to see that

1 . .
2" =¢ @1 and hence ¢ _ 1is an M-ideal in & . However, ¢ is
® 0 11 0 o 0

not an M-summand because it is not even complemented in &, [11J. If
H 1is a separable Hilbert space, K(H)--the space of the compact linear
operators on H--is an M-ideal in L{X)--the space of the bounded linear

operators on H . (This fact had been proved by Dixmier [13] well

before the notion of an M-ideal was introduced). But K(H) 1is not an



M-summand in L(H) since K(H) is not complemented in L(H) .
This follows from the facts that ¢y 1is not complemented in &
and that the diagonal operators in L(H) can be identified with &
and under this identification the diagonal operators in K(H)
correspond to ¢; -
The notion of an M-ideal was introduced by Alfsen and Effros [2].
They also characterized an M-ideal by intersection properties of
open balis. We say that a closed subspace J of a Banach space X
has the n-ball property if for any n open balls Bl’BZ’°"’Bn for
which By N...NB,# ¢ , and B3NJI # ¢ , i =1,2,...n , the inter-

section ,ngirld is nonvoid. Alfsen and Effros [2] proved that a
i=
closed subspace J of a Banach space X 1is an M-ideal if and only
if J has the 3-ball property (equivalently, J has the n-ball
property for every n » 3) . Later Lima [27] also characterized M-
ideals by various intersection properties of closed balls. In
particular, he [27: Theorem 6.17] proved that J is an M-ideal in X
iff for all x € X , ux4 <1, for all Y1s¥osY3 € J with

hy;0 <1, 1=1,2,3, and for all € > 0 , there exists

3
yeJdn n Bal](x+y1,1+e) ,
i=1

where Ball(x,r) means the closed ball with center at x and radius
r.

If J is an M-ideal in X , then J 1is a proximinal subspace of
X , [2], (231, [27 : corollary 6.6]. Recall thai a closed subspace

J of a Banach space X is proximinal if every element in X has a



best approximation in J ; that is, dist(x,J) is attained for each

x € X .« Several authors have studied approximation problems in
M-ideals. Perhaps the most striking approximation property of

M-ideals is the followinyg fact due to Holmes, Scranton and Ward [24].
If J 1is an M-ideal in a Banach space X , then for any x € X\J the
set of all best approximations in J to x spans J . Apparently
being an M-ideal is a very strong condition. Jost [37] and some others
showed that if a closed subspace J of a Banach space X satisfies
the Ié ball property (which is weaker than the 3-ball property) then

J is proximinal in X .

From the start, works on M-ideal have been closely linked to
questions involving the closest compact approximants to a given
non-compact operator on a Banach space. S0 an interesting and
obviously difficult open question is to classify Banach spaces X for
which K(X) , the space of all compact operators on X , is an M-ideal
in L(X) , the space of all bounded linear operators on X . If X is

c, or zp for 1< p <o, then K(X) 1is an M-ideal in L(X) [21].

0
However, if X 1is zl or £, then K(X) is not an M-ideal in L(X)
£35]. If X is L7(0,1) , Le(0,1) or C(0,1) , then K(X) 1is not

an M-ideal in L(X) since K(X) 1is not even proximinal in L(X) [14].
If X = Lp(n,u) for 1 <p<ew  ,p# 2 and u a finite measure on

Q , then K(X) 1is an M-ideal in L(X) 1if and only if wu 1is purely
atomic [28]. (A finite measure space (R,Z,u) is purely atomic if the
complement of the union of all atoms has measure zero. An element

A gt with u(A) # 0 is called an atom if B€Z and BS A can
occur only for B =A or B = ¢ up to measure zero. Notice that

there are at most countably many atoms in a finite measure space.)



Recently Harmand and Lima [20] proved that if X 1is a Banach
space for which K(X) dis an M-ideal in L(X) then there is a net

{Ta} 1in K(X) so that
(i) Ty, > 1 strongly

(i) 1T, <1 for all «
(i11) T, > I strongly
(iv) 1jm 81T =1 .

Tne main result of this chapter, taken from [8], is a strong

converse to the Harmand-Lima theorem for subspaces of zp » 1 < p <o,

In theorem 9 we show that if X 1is a subspace of (}_’Xn)p (dimXp < = ;
1 < p <=») which has the compact approximation property, then K(X)
is an M-ideal in L(X) . (For a sequence {X,} of Banach spaces

Xp's » ([Xn)p is the space of all sequences x = (xp) , X, € X, with

pl/p .
) . This norni makes (2Xn)p

®
the norm defined by ¥xi = ( ] ix ¥
a Banach space.) 1=

Part of the proof consists of showing that such an X satisfies
condition (i)-(iv) in the Harmand-Lima theorem. This result is provead
for general reflexive spaces in Section 2.

Section 3 is devoted to proving the converse of the Harmand-Lima
theorem for subspace of (an)p . Here we use blockiny methods which

have been previously used in the study of isomorphic, rather than

isometric, properties of zp and a few other spaces.



2. Relations amony approximation properties

If X and Y are Banach spaces, L(X,Y) (respectively K(X,Y))
will denote the space of all bounded linear operators (respectively
compact linear operators) from X to Y . If X =Y , then we simply
write L(X) (respectively K(X)) . Ball(X) wiil denote the closed
unit ball of X . Recall that a linear operator T from X to Y is
bounded if sup{8#Txi ; x € X , UIxl < 1} <o ., A linear operator is
bounded if and only if it is continuous. A linear operator T from
X to Y 1is compact if the norm closure of T(Ball(X)) 1is a compact
subset of Y .

A Banach space X 1is said to have the compact approximation
property (respectively, compact metric approximation property) if the
identity operator in X 1is in the closure of K(X) (respectively,
Ball(K(X)) with respect to the topoloyy T of uniform converyence on
compact sets in X ; that is, for every compact subset K in X and
every e > 0 , there is a compact operator T (respectively, a compact
operator T with #T0 <€ 1) so that #x-Tx# <e for all x € K .

If X and Y are Banach spaces, the space L(X,Y) endowed with
the topology Tt of uniform convergence on compact sets in X 1dis a
locally convex space yenerated by the seminorms of the form

uTuK = sup{iTxt ; x € K} , where K ranges over compact subset of X .

(A locally convex space X 1is a vector space over real or complex
scalar with a topoloyy for which the vector space operations are
continuous, and each point of which has a local neighborhood system
consisting of convex subsets of X .) A seminorm p on a real or
complex vector space X 1is a real valued function on X such that

p(x+y) < p(x) + p(y) and p(ex) = |a|p(x) for all x and y in X



and all scalars a« . Such a seminorm p on X induces a topology in
such a way that at each point x € X the family
V(x,r) = {y € X, p(x-y) < r} (where r ranges over all rational
numbers) constitute a local base at x . Continuous linear functionals
on the locally convex space (L(X,Y),t) stated apbove have a nice
representation in terms of sequences in X and sequences in Y.

The following proposition is taken from Lindenstrauss and

Tzafriri's book [31: p.31].

Proposition 1. For Banach spaces X and Y , endow L(X,Y) with

the topology T of uniform convergence on compact sets in X . Then
the continuous linear functionals on (L(X,Y),t) consist of all

functionals ¢ of the form

8

o) =
1

t~"

- ® * o * Lo
YiUTxg) s Ogdiog S X, i o S L ) gyl <
1 i=1

The next proposition is a relation between the compact metric
approximation property and the compact a;oroximation property, which is
an analogue of the relation between the metric approximation property
and the approximation property [31; p.39]. A Banach space is said to
have the approximation property-(respectively, the metric approximation
property) if the identity operator is in the t-closure of F(X) , the

space of all finite rank operators (respectively, Ball(F(X))).

Proposition 2. Let X be a Banach space. Then the following

three assertions are eguivalent.



(i) X nas the compact metric approximation property.
(i) Ball(K(X)) 1is dense in Ball(L(X)) 1in the topologyy Tt of
uniform convergence on compact sets in X .
(i1i) For every choice of {xn}:=1 X, {x:}zzl < X* such that

y ux 1ix"8 <@ and | § x3(Tx )| € 1 for every T in
j=1 " iz "

Ball(K(X)) , we have | } x:(xn)l <1.
i=1

(Proof). Let T € Ball(L(X)) and K a compact subset of X ,
then T(K) 1is compact. So for any e > 0 , there is Tl in
Ball(X(X)) so that lTlTx-Txn < e for every x € K . Since
TIT € Ball(K(X)) , this proves the implication (i)=(ii) . (iii)
follows from (ii) by proposition 1. Thus it remains to prove that
(iii) implies (i). Suppose X does not have the compact metric
approximation property, then the identity map I on X 1is not in the
T-closure EETTTE?YT)T of Ball(K(X)) . Since EETTTETYT)T is a
closed, convex and balanced subset in a locally convex space (L(X),T)
and does not contain the identity map I on X , by the separation
theorem there are positive numbers o , 8 and a t-continuous linear
functional ¢ on L(X) such that |Re¢(T)| < a < B < Rep(l) for all

—_— 1
T in BaH(K(X))‘r . Setting ¢ = 5% , we have

sup{ |Re¥(T)| : T € Bal1(K(X))} < 1 < Rey(I) .

Viewing ¢ as a linear functional on the Banach space K(X) with the
operator norm, we have Iyl = IReyl = sup{|Rey(T)| : T € Ball(K(X))} <

1 < Rey(I) < |¢(I)] - Since ¢ 1is a t-continuous linear functional on



10

L(X) , by proposition 1 there are sequences {x, } =1 =X and {yn} cx”

such that J ﬂxnﬂny:u <o and for every T in L(X)
n=1

y(T) = E Y, (Tx . Then | i y:(Txn)l <1 for all T in Ball(K(X))
n=1 n=1

and | ) y:(xn)l >1 . This contradicts to (iii). Hence (iii) implies
n=1

(i).

Grothendieck [19]) proved that if X 1is a reflexive Banach space
or a separable conjuyate space which has the approximation property,
then X has the metric approximation property. In the case of the
compact approximation property, the analoyous implication is valid for

reflexive Banach spaces.

Proposition 3. If X 1is a separable reflexive Banach space which

has the compact approximation property, then X has the compact metric
approximation property.

For the proof of proposition 3, we need a lemma from [31; p. 39].

Lemma 4. Let X be a separable Banach space and let ¢ > 0 be

given. Tnen there exists a sequence of functions {fi}i-l on Ball(Xx)

so that for every x 1in Ball(X) , x = Zlfi(x) , each fj(x) is of
n:
the form 2 1 x X_ ., where {E. .} are disjoint Borel sets of
i,3=1 E 1J 137 J=1
Ball(X) , {x. .} c Ball(Xx) , ] #f i, <1+ ¢ where if_l, =
1J =] i=1 1 1

suptf (x)¢ = suptix 8 and 1 is the indicator function of E. .
x 1 j 1 Eig 1]
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(Proof of Proposition 3). Assume X is a separable reflexive
Banach space. By Proposition 2 it suffices to show that if ¢ 1is a t-
continuous linear functional on L(X) such that |¢(T)| < 1 for every
T in Ball(k(X)) , then [¢(T)| < 1 for every T in Ball(L(X)) .
For a fixed & > U , we construct a t-continuous linear functional Ve
on L(X) so that we =¢ on K(X) and Iwe(T)] < (l+e)eTe for all
T in L(X) . Then since K(X) 1is t-dense in L(X) , we =¢ on L(X)
and 1¢(T)t < (l+e)uTu . Since e > 0 is arbitrary, |[¢(T)| < 1 for

all T in Ball(L(X)) . Thus it remains to construct such a ¢ .

% *%
By reflexivity we m2y regard X as X . Then since X is

separable X* s also separable and Ball(X) with the weak topology
induced by X* is a compact metric space. Similarly Ball(x*) with
the weak*-topo]ogy induced by X is also a compact metric space. Thus
K = Ball(Xx) x Ball(X™) with the product topology is a compact metric
space. Let C(K) be the space of all continuous functions on K

with the supermum norm. To each T in K(X) we assign a function 9r
on K defined by gT(x,x*) = x*(x) for all (x,x*) in K .

*) .
,Xn 18 a

We claim that gT is continuous on K . Suppose (xn

*
sequence in K which converges to a point (x,x ) in K . Then

* * _ * * * * *
]gT(xn,xn) - gT(x,x o= \anxn-x Tx} < \(xn - X )Tx| + X WTX - Txd .
* *
Since x: » x in the weak -topoloyy (weak topology induced by
%* % * *
X =X), (x, =x)Tx>0 . Since T is compact and x, + x weakly,

- - - * © - *
Txn + Tx in norm. Since {#xpi},-1 1is bounded, WxuiTxy - Tx1 » 0

and hence is in C(K) .

9
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Next

T sup{|gT(x,x*)| s (x,x7) € K}

* * *
sup{(x (Tx)] ; x €Ball(X) , x € Ball(X )}

sup{sup{|x (Tx)| ; x~ €Ball(X)} : x € Ball(X)}

sup{#Txl : x € Ball(X)} = BTU

Thus the map T » gT is an isometry from K(X) into C(K) and we can
view K(X) as a subspace of C((K) . Observe that ¢ restricted to
K(X) dis a norm continuous functional with norm < 1 . By the Hahn-
Banach theorem this tfunctional has a norm preserving extension to

L(X) and we still write this extension ¢ . Then by the Riesz repre-
sentation theorem, there is a Borel measure u on K of norm < 1 so

that

o(T) = fo*(Tx)du for all T € K(X) .

Then using lemma 4, for every T 1in K(X) , we have

i=1 ! i=1 =1 J
* *
where X:J is the functional on X defined by xiJ(x) = IQ X {x)du ,
1]
* . *
Qij = Eij x Ball(X ) . Obviously nxiju < |u](nij) and hence
y ux:.u <1 for every i . From lemma 4, J supix,.t < 1+e.
j=1 J i=1 J J
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T T =%
Let ¢ (T) = x. (Tx.. for T K(X) , then by proposition
URIPR AL (X) y prop
1 ¢y 1is a t-continuous linear functional on L(X) satisfying

lo (T)] < #Tu § ux
€ ij=1

* wux, 4 < (l+e)iTi .
LV B
The above proof of the proposition 3 is a modification of the

Lindenstrauss-Tzafriri [31; p. 40] proof of Grothendieck's theorem.

Remarks: 1. It is a formal consequence of the proposition 3 as
stated that every reflexive space with the compact approximation
property also has the compact metric approximation property.

2. We do not know whether proposition 3 is true if X is
only assumed to be a separable conjugate space. To apply the Linden-
strauss-Tzafriri argument one needs to prove that if s separable,
then the weak*-continuous compact operators on Y* are dense in K(Y*)

when K(Y*) is given the topology of uniform converyence on compact
subsets of Y* .
A sequence {Tp},=1 In L(X) is said to converye to T in

L(X) strongly if for every x in X Tpx converyes to Tx 1in norm.

Corollary 5. If X 1is a separable reflexive Banach space which
has the compact approximation property, then there is a sequence
{Tplp=1 in Ball(K(X)) so that Tn =+ I, (identity map on X)

*
strongly and T: > IX* (identity map on X ) strongly.

(Proof). We choose a countable dense subset

D={x, :1=1,2,3..} of X . For each n , let Dy = {xXq5eeesxy}
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1
and choose Sn in Ball(K(X)) so that 1Syx-x1 < for all x in
Dp - Then S, converyges to Ix (identity map on X) strongly.

i . * * * * *

Since for each x in X and each x in X (S ;x )x - x (x) =
* . A * * *

x (Spx-x) converges to zero and since X is reflexive, Spx =+ X

* *
weakly for each x in X .

*
We choose a countable dense subset E = {x;

;01 =1,2,3...) of

*

X and take a sequence {S. } so that each S is a convex
In" n=1 in

s s ® *  x *
combination of {Sli}i=n and Slel + X7 in norm. Next we take a

@
sequence {S_ } _. so that S is a convex combination of
2n n=1 2n

* *x * . -
and SZix2 + X, 1n nor. We repeat the process in an

314} 4=n

* *
opvious manner. Let Tp = Spp o Then Tp > Iyx (identity map on X )

strongly.

Proposition 6. Suppose X 1is a reflexive subspace of a Banach

space Y with the property that there exists a sequence {Pn}n=1 in

K(Y) such that TimiI,-P 1 <1 and P+ I, (the identity map on Y)
n

stronyly, and suppose that X has the compact approximation property.

Then there exists a sequence {Tn}n=1 in Ball(K(X)) such that

*
-Tnﬂ 1,71 » IX strongly and Tn > IX* strongly.

X

1émﬂl 0

(Proof). Let {Pn}:=1 be as above and for each n , Pyly t X > Y
the restriction of P, to X . Then Ppix » Ix (X + Y) strongly. By
Corollary 5, there exists a sequence {Sn}:=1 in
Ball(K(X))  Ball(K(X,Y)) such that S, » IX strongly and S: > IX*
strongly. As a sequence of operators from X to Y , we have

Pnlx -5, >0 strongly as n»> = . Since X is reflexive it follows
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that Pnlx - Sn + 0 weakly in L(X,Y)* [32; p. 33]. Indeed, as in the
proof of proposition 3, the map S +» x (Sy) defines an isometry from
K(X,Y) to C(Q) , the space of continuous functions on the compact
Hausdorff space £ = Ball(X) x Ba]](Y*) , where Ball(X) has the weak

topology and Ball(Y*) has the weak*-topology. OUbserve that Ball(Y™)
is weak*-compact Hausdorff for any Banach space Y and Ball(X) is
weakly compact Hausdorff since X 1is reflexive. Hence Q with the
product topology is a compact Hausdorff space. As a sequence in

c(e) , {PnIX'Sn}:=1 is uniformly bounded and Pn]X - S, > U pointwise
on @ . For anj 9 € L(X,Y)* , the restriction of ¢ to

K(X,Y) € C(@) 1is a continuous linear functional on K(X,Y) . By the
Hahn-Banach theorem, we choose a norm preserving extension to C(Q)

and we still call this extension ¢ . Thus ¢ 1is a continuous linear
functional on C(2) . Then by the Riesz representation theorem, there
is a regular Borel signed meaure u on £ such that

$(s) = IQX*(SX)du(X,X*) for all S € K(X,Y) . By the bounded

convergence theorem, ¢(Pan-Xn) + 0 a n+ =,

Since Pnlx - S, > 0 weakly in L(X,Y) , there exist sequences

@ ™) an'*-'l an-*-.l
{Qn}r]:]_ and {Tn}n:l such that Qn = l Akpklx s Tn = 2 )‘KSK
k=a+l k=a _+1
an+l o
and 1Qn-Tal > 0, wnere A >0, 2+1AK =1, and {az}p=1 is a

strictly increasing sequence of positive integers. Obviously

uTnu <1, 1;mHIX-TnH < ]gmHIX—Qnu <1, Tn + IX strongly, and

T: > Iyx , strongly.
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Remark. The relationship between the weak operator topology
and the weak topoloyy on the space of operators was, at least in
special cases, known for a long time. The idea of using this
relationship to deduce some kind of approximation condition for a
subspace from the corresponding condition for the whole space is due to

M. Feder [15].

3. M-ideals

Lemma 7. Suppose that {Pplp=1 is a sequence in K(Y) for a
Banach space Y which converyes strongly to the identity map on Y ,
and that K 1is a weakly compact subset of Y . Given € > 0 and a

positive inteyer n , there exists an integer m = m(n,e) > n so that

sup min d(Pky , K) <e,
¥eK n<k<im

where d{(x,K) = inf{ix-z# : z € K} 1is the distance from x to the set

K L4

-]

(Proof). If not, there exists a sequence {ym}m=n+1 in K so

that for each m=n+1 ,n+ 2 ,...

min d(Py ,K) >e .
n<k<m K'm

Let y be any weak cluster point of {y } and assume y =+ y
m m

m=n+1
weakly by passing to a subsequence if necessary. Since each Pk is
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«© -4
compact and {ym}m_ is bounded, {Pkym}m= has a cluster point which

1 1
has to be Pky because Pkym > Pk weakly. Thus we infer that

inf d(Pky,K) » € . This is a contradiction, because y 1is in K and
N<K <

!y—Pkyﬂ >0 as k+ e,
A Banach space X 1is said to have a finite dimensional Schauder

[--
decomposition {Xp}p=1 if every x € X can be uniquely written as
[--4
x= } X s where X0 € Xn and each Xn is a finite dimensional sub-
n=1

space of X . For each n , the partial sum projection Pn on X s
® n
defined by P ( ) x;) = X Xx; » where x; €X; . It is easy to see
i=1 i=1
that supﬂPnu <o , Indeed, for every x in X , x = 1im an and
n n

hence by the Banach-Steinhaus theorem &P,4 < M for all n and for

some M<K e

Lemma 8. Let X be a reflexive Banach space which is a subspace
of a Banach space Y which has a finite dimensional Schauder
decomposition {Xn}:=1 with partial sum projections {Pn}:=l and set
a = s:p{uPnu} . Then for any € >0 and T e K(X) with &Ti < 2,
there exists a positive integer n such that

(1) n(I-Pn)Txu < ¢ for every x € Ball(X) ,

€
(ii) if x €Ball(X) and Ppxll <G , then iTxl < ea .

(Proof). Since the closure of T(Ball(X)) 1is compact, given
€ > 0 we can choose a finite subset {xl,xz,...,xn} of Ball(X) so
that for every x in B8all(X) , there is xj , 1 < i< n , with

€ €
ITx=-Tx.lI <
4(1+a) and hence Tx Tx1

ux-xiu < ) Now for all <

2(1l+a
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€
sufficiently large n , n(I-Pn)Txin <7 for 1 =1,2,...,n . For
x € Ball(X) , choose Xi so that HTx—Txii < %-. Then since

uI—Pnn <l+a.

€ €
n(I-Pn)Txu < u(I-Pn)Tx - (I-Pn)Txin + u(I-Pn)Txin <p+tp=c¢
for all sufficiently larye n .
Thus (i) is true for all large n .
If no n satisfies (ii), then there is a segquence {xk}k_1 in
Ball(X) such that P x I < = and ITx I > ea . Since Ball(X) is

k k 4 K
weakly compact, by passing to a subsequence if necessary, we may assume

eQa

that xk + X £€X weakly. We claim that #xi < E‘ . If not,

€Q

anxu >3~ for all large 2 . Since P2 is a compact operator and a

compact operator carries a weakly convergent sequence to a norm con-

veryent sequence, szk - sz in norm as k + « and hence

€Q
"szk" > uszu >3 . This is impossible since for k > & ,

EQ €Q

i< aquxku <7 . Thus we have #xl < g— .

Since T 1is compact and xk + x weakly, by the same reason as

P x
2k

above, UTx I + #Txt as k +» o ., This is a contradiction because

Kk
2ea
uTxku >ea for all k and #Txd < T#lxd <'j§‘ < ea .

The above proof actually shows that there are infinitely many n
satisfying the conditions (i) and (ii).

Now we are ready to prove our main theorem. In this proof we use
the following characterization of M-ideals due to Lima [27; Theorem

6.17]. A closed subspace J of a Banach space X is an M-ideal of X
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if and only if for any € > 0 , for any x in Ball(X) and for any

Y5 in Ball(Jd) (i=1,2,3) , there exists y € J such that

Ix+yi-yl <l+e for i=1,2,3.

Theorem 9.. If X 1is a closed subspace of Y = (Xxn)p
(dim X, < = , 1<p<o) which has the compact approximation property,

then K(X) 1is an M-ideal in L(X) .

(Proof). Let Sl » Sp 5, S3 € Ball(K(X)) and T e Ball(L(X)) .

We will show that for any n» > 0 , there exists K€ K(X) such that
nsi +T-Ki<l+nr (i=1,2,3).

By Propositon 6, we can choose a sequence {Tn}:=1 in Ball(K(X))
so that TEE HIX-Tnu <1, Trl > IX strongly, and T: > IX* strongly.
Let {P,} denote the partial sum projections associated with the
natural finite dimensional decomposition {Xn}:=1 of Y . Using Lemma
8, with this choice of Pp's (so that e =1) , for a fixed
0 <e <1, choose M so that for 1 =1,2,3

(i) if x € Ball(X) , then n(I-PM)Six)u < £ where I = IX

€
(i1) if x € Ball(X) and HPMXU <z » then HSixﬂ <e .

By lemma 7, we can choose N > M so that for every x € X , there is
k = k{x). (M < k <N) such that d(ka,x) < elxt .

Given x € X with ixi =1 , let K = k(x) and pick ylé X so
that WP x-y. I < . Settin =X - , we have

(i11) Hyz-(I-Pk)xn = HPKx-ylu < g, I(I-Pk)yln < & and
IPkyzu < e.

Finally, choose r 1large encugh so that
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(iv) u(I-Tr)Tyu < 8¢ for every y in the set
A={y€X: iyl <2 and n(I-PN)yn < €}

(v) 0Py (I-T)Tu = 4T (I-Tp)Pyl <& and #I-Th < 1+¢.
This is possible because the set A above has a 3e-net and T, + I
strongly. ({(If B 1is a subset of a metric space and € > U , then a
subset A of B 1dis called an e-net of B if for every x in B ,
there is y € A such that d(x,y) < e .)
For x € X with ixd =1 , write x = yl + y2 as in (iii). Then

for i =1,2,3 , we have

p
1Six + (I-Tp)Txi

< (nPM(Six) + (I-PM)(I—Tr)Txu + u(I-PM)Sixn + uPM(I-Tr)Txu)p

N

(19,(5.%) + (1P )(1-T )Txt + € + &)’ (oy (i) and (v))

(uPM(Six)up + u(I-PM)(I—Tr)Txup +f(e) (fle) » 0 as e » 0)

n

p p
(HPM(Siy o+ "PMSiyZH) + ("(I‘PM)(I'Tr)Tylu + u(I-PM)(I-Tr)Tyzu) + f(e)

1

Y p
< (uylu + 4g) + (8e + (1+e)ﬂy2ﬂ) + f(e) (since By i < 2 and
Pyl < €, “Siyg" < 4e by (ii) . Since ¥y € A by (iii) ,

E(I-Tr)Tylu <8 . I(I-TOTE < 1+ e by (v))
< (nkau + 5e)p + (u(I-Pk)xu + lle)p + f(e) (by (iii))
P p
< nkau + u(I-Pk)xu + g{e) (gle) >0 as e+ 0) .

=1+ y(e) .
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. 1/p
Thus for 1 =1,2,3, asi + T = T4 = usi + (I-Tp )T < (1+4g(e)) .

1
Choose e so that (l+g(e)) L l1+n and let K=TT.

Combining Theorem 9 with the Harmand-Lima Theorem, we get the

following.

Corollary 10. If X 1is a closed subspace of (an)p
(dim X, <o , 1 <p <), then K(X) 1is an M-ideal in L(X) if and

only if X has the compact approximation property.



CHAPTER 11
M-IDEALS AND IDEALS IN L(X)
1. Introduction

As has already been stated in the introduction to chapter I, many
authors have studied M-ideal structures in operator alyebras with a
view toward characterizing those Banach spaces X for which K(X) ,
the space of compact operators on X , is an M-ideal in L(X) , the
space of continuous operators in X . An extensive study of the
M-ideal structure of a general complex Banach algebra with identity
was done by Smith and Ward [35].

Originally an M-ideal was defined in a real Banach space [2].
However, this notion can be extended to a compiex Banach space [22].

Smith and Ward [35] proved that M-ideals in a complex Banach
algyebra with identity are subalgebras and that they are two sided
(algebraic) iaeals if the alyebra is commutative. However, M-ideals
in a gyeneral complex Banach algebra need not to be either left ideals

or right ideals as the followiny two examples from [35] show.

Example 1. Let A be the Banach algebra of 2 x 2 matrices

with the usual multiplication and norm defined by

= max{|a] + |v]| , [8] + [8]} .

a B
¢ ‘5)|

22
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Let Jl and J2 be respectively the sets of elements of the form

a0 08

(Y 0) and (0 6) .

Then it is easily verified that Jp and Jy, are complementary

M-summands in A . However the equation

10 01 01

Gollo ) =G

shows that Jl is not closed under multiplication from the right,
though both M-summands are easily shown to be left ideals.

By the standard duality it is easy to show that M-summands are M-
ideals [4].

Examples 2. Let A be the Banach alyebra defined in Example
l. Let B be the Banach algebra A x A with multiplication
defined for a , b, ¢, d&€ A by

(a,p)(c,d) = (ac,bd) ,

and norm defined by

i(a,b)i = max{tal,ipk} .

Let Jl and J2 denote respectively the sets of elements of the form
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a0 0y
(GG o) » (o o))
and
Oa ,v 0
(G o) o)) -
Then dl and J2 are complementary M-summands. However the equa-
tions
01 1 0))((1 0) (U 1. ((1 0) (1 0
0124 o)y ol ) = Ly b
and
10 01 01 10 01 01
() g)alg DG 0 o)) = (G 0 ]

show that neither M-summand is either a left or right ideal.

Smith and Ward [35] also proved that the M-ideals in a C*—a1gebra
are exactly the two sided ideals.

Later Flinn [17], and Smith and Ward [36] showed that for
1<p<Ke K(zp) is the only nontrivial ideal in L(zp) , and since
0 and L(zp) are both ideals and M-ideals, the M-ideals in L(zp)
are exactly the two sided ideals in L(2p) .

In this chapter we will prove that for a uniformly convex space
X , every M-ideal in L(X) is a left ideal. Moreover if x* is also
uniformly convex, then every M-ideal in L(X) 1is a two sided ideal.

This verifies a special case of the conjecture of Smith and Ward [35]

that if X is a uniformly convex space then every M-ideal in L(X)
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is a two sided ideal.

Expressed in geometrical terms, a Banach space X is uniformly
convex if the mid point of a variable chord of the closed unit ball of
the space X cannot approach the boundary of the ball unless the
length of the chord yoes to zero. Formally, for any Banach space X

with dim X > 2 , the modulus of convexity Gx(s) ,0<e<2,0f X

is defined by

Ix+yl
§y(e) = inf{l - "sz'; X,y € X , ixt =1yl =1, 8x-yl =€} .

A Banach space X 1is said to be uniformly convex if Gx(s) >0 for
every 0 <e < 2. In the definition of &y(e) we can also take the
infimum over all vectors x , y € X with #x¢ , Uyl < 1 and
ix-yt » ¢ [32; p. 60].

For 1 <p <o zp and Lp are uniformly convex [10], but
obviously 2, and L, are not. HWe can easily see from the definit-

ion that a Banach space X 1is not uniformly convex if the boundary of

the unit ball contains a line segment.

2. Some results related with M-ideals in complex Banach alyebras.

This section contains some backyround material and several facts
due to Smith and Ward [35], [36], which will be needed in the proof
of the main theorem in section 3.

A Banach algebra A 1is a real or complex Banach space A with a

multiplication having the followiny properties:
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(i) x(y+z) = xy + xz and (y+z)x =yx +2zx for x ,y , 2z €A
(i1) a(xy) = (ax)y = x(ay) for any scalar « and x , y €A .

(ii1) txyd < ixhiys for x , y €A .

A Banach algebra is unital if it contains the identity element e with
respect to the rwltiplication and et = 1.

If A 1is a Banach algebra, then the second dual A of A
becomes a Banach algebra with respect to the Arens multiplication which
is defined in the following fashion [6]. If y €A , f € A* and
F,G¢ A** , then linear functionals fy . Ff € A* are defined by

fy(x) = f(yx) and Fe(x) = F(fy) for x € A . Then Arens multipli-

*x %
cation GF ¢ A is defined by

(GF)(f) = G(Ff) for all f€ A .

*%x
The canonical embedding of A into A is an isometric alyebra

isomorphism of A 1into AF* . Moreover, if A has identity e then

** §s the identity element of A™" .

the canonical image of e in A
In the rest of this section, A will denote a complex Banach
algebra with unit e . In the dual space A* of A , the state space

S is defined to be {f €A* : f(e) = 1ft = 1} . Jbviously, this is
weak*-closed and it is known [34] that A* is algebraically spanned by

S . If J is an L-summand in A*

with the complementary subspace
J' ; that is , A = J EE J' , then J and J' are algebraically
spanned by F =JNS and F' =J'N S, respectively. More specific-

ally,
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Proposition 1 [34]. F and F' 1is a pair of complementary split

faces of S , and J and J' are algebraically spanned by F and
F' , respectively.

An element h € A 1is said to be hermitian if f(h) is real for
each f in the state space S . It is known [6; p. 46] that h € A

ith
is hermitian if and only if e # =1 for all real numbers t . Of

ith , © (ith)n
course, e is defined by Zd‘j:“" .
n .

Proposition 2 [35]. Suppose A =9y §J, , J;# {0} (i =1,2),

P : A=+ J; is the natural projection onto J; and z = P(e) . Then
z is hermitian and 22 =z .

For a Banach space X , a projection P : X + X (continuous
linear operator on X with P2 = P) 1is called an L-projection
(respectively M-projection) if @xl = IPxt + Ux - Pxi (respectively
ixt = max{iPxy , ix - Pxu}) for every x € X . If P 1is an L-pro-
jection on X then ranye P and Ker P are L-summands and P - range
P gives one to one correspondence between the set of all L-projections
on X and the set of all L-summands in X [4; p. 12] . The same
relation holds between M-projections on X and M-summands in X .

If P 1is a projection on a Banach space, then P is an L-pro-
jection (respectively M-projection) if and only if its adjoint P* on
X* is M-projection (respectively L-projection( [4; prop. 1.5].

If J 1is an M-ideal in a complex unital Banach alyebra A , then
A* = gt @aJl' for some closed subspace J'  of A* and it is easy to
show that A™ = (Jl G&Jl')* = Jll'@gdlll , where gto= (dl')* and
Jll' = (Jl')l = (Jl)* up to isometry. Let P : A** > Jll be the

11
M-projection onto J and let z = P(e) ; then by proposition 2, z
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*%* *%k
is a hermitian projection in A , that is, z 1is hermitian in A

and satisfies 22 = z . We shall need the following theorem of Smith

and Ward in the next section.

- .t - . . - . **
Tneorem 3. (361 Let 2z be a hermitian projection in A
associated with an M-ideal J in A . Then, yiven € > 0 , z 1is the

weak™ 1imit of a net (e,) in A such that
et , le-e l , lece ll <1+¢ .
a a Q

The following lemma is essentially due to Smith and Ward [36] ,
although they restricted attention to right multiplication by a

hermitian projection 2z associated with an M-ideal J in A .

* %
Lemma 4. In the Banach algebra A , riynt multiplication by
every element y in A** is a weak“-continuous function on A™" and
if u €A™ is the weak -limit of a net {uu} in A then, for every

*
x in A, xu is the weak -limit of {xuy} .

(Proof.) To prove the first statement, let {v,} be a net in
* %k *

* *
. If fE€EA and yeA ,

sk *
A with the weak -1imit v in A

then, by the definition of Arens multiplication,

(vy)(f) = vlyg) = Tim v (yg) = 1inlv ¥)(f) .

*
Thus v,y » vy in the weak -topology and hence right multiplication by
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* %

- * N
y€ A is weak -continuous.

To prove the second statement, let u and {ua} be as above and

*
féA . If x€ A, then

(xu)(f) = x(uf) = uf(x) = u(fx) = 1;m ua(fx) = 1lm f(xua) = ];m(xua)(f)

*
and hence xu 1is the weak -1imit of {xua} -

3. M-ideals and ideals in L(X) .

8x(e)
It is known [32: p. 66] that for every Banach space X , ¢ is

a nondecreasing function on (0,2] . Thus if X 1is uniformly convex,
then Gx(e) is strictly increasing function on (U,2] and its inverse

GX is also a strictly increasing function on (0, GX(Z)] .

Lemma 5. Let X be a uniformly convex space. Then there is a
nonnegative real valued function f on (0,2] x (0,») such that

1im 1im f(e,A) = 0 , and for every A , T in L(X) with T

, WI-Tu ,
A+0 e+0

I1-2T8 <1 + e , KAl < 1 , we have HT+AA(I-T)E < 1 + ¢ + Af(e,A) ,

where I 1is the identity map on X .

(Proof). Fix € , A >0 and y € X with 1yt =1 ., If

iTyd < 1 - A(1+e) , then B (T+AA(I-T)yt < 1 + & . So we assume that

A Y- Ty
1Tyt > 1 - X(l+e) « Set u = 1+ e and v = ] + e ° then
y -2Ty

fu+vi =l 1 +¢ll€l and Hu-vi = | 1+¢ (|1 . Since

u = %{(u+v) + (u-v)} and 2v = (u+v) - (u-v) , we have
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sx(ﬂ2vu) < 1- Bul . Hence 1tul <1 - SX(Zuvu) . By assumption,

1 - A(1+e) . . s
T +& < Wuk . Combining the last two inequalities, we have

1 - A(1l+e) I
—TFe < 1-38(2ive) and hence &y(2tvi) < (1 -7 ) + 2.

. = T -1 1
Since SX is an increasing function, tvi < 2ivi < SX (1-T5ect+2) -

Then B(T+MA(I-T) )yt < 0Tyl + A0(I-T)yt < 1 + ¢ +
-1 1
A(l+e)6X (1 - 1+ e + X) . Hence BT+AA(I-T)0 < 1+ ¢ +
-1 1 -1 1
X (1 =7 5+ ¢ *+A) . Nowlet f(e,r) = (l+s)6X (1-7+¢+A).

A(1+e)s

Now we are ready to prove the main theorem by using the Smith-
Ward argument [36], but by replacing Clarkson's inequalities in

2p s 1 < p <o | py the inequality in lemma 5.

Theorem 6. Let X be a uniformly convex space and J an M-
ideal in L(X) . Then J 1is a left ideal in L(X) and if x* , the
dual of X , is also uniformly convex then J 1is a two sided ideal in
L(X) .

1
(Proof). Let J be the complementary subspace of the L-

1 t
summand J°  in L(X)* ; that is , L(X)* = J~L eldl , and let
[} ' %
F = Jlﬂ S and F = Jl NS where S 1is the state space in L(X) .
. . kK 11 1L 11
Let P be the M-projection of L(X) =J &J onto J and

z = P(e) where e 1is the identity operator on X . Then z

L
vanishes on J and hence on F . Similarly e - z vanishes on
F' . For each o € F' , 1 =09¢(e) = ¢(e-z) + ¢(z) = ¢(z) and hence

z=1 on FI .
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1l
First we will show that L(X)(e-z) < J « In view of
- (JL G%JL')* - (Jleidll)*

)**

proposition 1 and equations L(X
Lt L
@h e W) =

with IAl < 1 thnen ¢(A(e-2z)) =0 for all ¢ € F . Suppose there is

' L . .
Q,J , it suffices to show that if A L(X)

d € F' and Ac¢ L(X) with 8AlI <1 such that ¢(A(e-z)) # 0 . By
multiplying A by a scalar we may assume that ¢(A(e-z)) =12, 0 <A< 1,
Let A =1z + ANA(e-2z) € L(X)™ . Tnen by theorem 3 and lemma 4, A is
the weak*-limit of a net {ea+AnA(e-ea)}cl in L(X) with leyl , le-eql ,
le-e ! < 1+ ¢ . By lemma b, uea+AnA(e-ea)n <1l+e+ Anf(e,xn) and

hence we have
IAT < 1+e+ AN (e,aM .

Since 19k =1 and ¢(z) = 1,1+ Al =¢(A) < 0AN <

n n . . n
l1+e+Af(e,d) . Letting € » 0, we have X < ;18 f(e,A ) , and
lettingn+ o , 0 < A< lim 113 f(e,A") = 0 . This is a contradiction.

n>® cg»

Hence ¢(A(e-z)) =0 for all A €L(X) and all ¢ € F , and we get
that

11!
L(X)(e-z) = J .

. I . Lo .
Since J is weak -closed and by lemma 4 right multiplication
by e-2z is a weak *-continuous function on L(X)** , we have
[]

L(X)**(e-z) < .JJ"L by weak “-denseness of L(X) in L(X)** . Notice

that if I 1is the identity map on L(X)** then I - P s the
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*k Lot 1’
M-projection of L(X) =J @ J onto J and (I-P)e = e - Pe =

[--3
e -z . Thus by replacing z by e - z 1in the above argument we get
that

. . ** 1L
From the above two inclusion, we have L(X) z =J and

LX) (e-2) = d* . since J* = L(X)**2z is a left ideal in L(X)*™ ,
J = Jllﬂ L(X) 1is a left jdeal in L(X) .

Next suppose that X and X*  are uniformly convex. Let
o : L(X) » L(X*) be defined by o(A) = A* , the adjoint of A . Then
o is an isometry and o(AB) = o(B)o(A) for every A, B€ L{X) . If
J is an M-ideal in L{X) , then o(J) 1is an M-ideal in L(X*) and
hence is a left ideal in L(X*) by the above result. Then J = s o(d)

is a right ideal and hence a two sided ideal in L(X) .



CHAPTER 111

. n.
AN EXAMPLE OF A SPACE X = QZPUr FOR WHICH L(X) CUNTAINS A CLOSED

TWO SIDED IDEAL WHICH IS NOT AN M-IDEAL IN L(X)

1. Introduction

As stated in the introduction to chapter II, M-ideals in L(zp)
for 1 < P <o are exactly closed two sided ideals in L(zp) . For
X = ngi)r with 1 <p , r<e and {n;} a bounded sequence of
positive integers, K(X) 1is an M-ideal in L(X) by theorem 9 of
chapter I or [8]. Since both X and X* are uniformly convex [12],
by theorem 6 of chapter 1I or [9] M-ideals in L(X) are closed two

sided ideals. Since X 1is isomorphic to L. and K(zr) is the only

nontrivial two sided ideal in L(&.) [18] , K[X] 1is the only non-
trivial two sided ideal in L{X)} and hence M-ideals in L(X) are
exactly two sided ideals in L{X) .

n,
In this chapter we will construct a space X = (2zp1)r for which

L(X) contains a closed two sided ideal which is not an M-ideal.

The construction of our space X was motivated by Benyamini and
Lin's paper {5]. In fact, X will be constructed so that the
Benyamini-Lin argument can be applied to a certain ideal in L(X) .

We will prove that for this space X the closure Sr(X) of

Sr(X) , the ideal of all operators in L(X) which factor through a

subspace of an L.-space, is not proximinal in L(X) . As stated

33
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before, since an M-ideal in L(X) 1is proximinal, Sr(X) is not an

M-ideal in L(X) .

2. Preliminary

For a Banach space X and 1 <r <e , S (X) will denote the
space of all operators in L(X) which factor through a subspace of an
L .-space. Thus an operator T din L(X) belonys to Sr(x) if there
exists a subspace E of an L.(2) and bounded linear operators

A:X+E ,B:E->X suchthat T =BA . It is easy to see that

Sr(X) is a two sided ideal in L(X) . Since the closure of any two

sided ideal is also a two sided ideal in L{X) , the closure Sr(x) of
Sr(X) is a two sided ideal in L(X) .

Un Sr(X) , we put a norm which is defined for T in sr(x) by

Sr(T) = inf{UAuIBL : T =BA , A € L(X,E) , B £ L(E,X)

and E s a closed subspace of an L.-space}

where the infimum is taken over all possible factorizations of T
through subspaces of Lr-spaces.

In this chapter we will heavily use the following lemma which is

due to Fiyiel and Johnson.

Lemma 1 [16]. Suppose 2 <p <o , T : 2K 5 22K yith

p p
3 1/
iT¥ <1 and Avegage{u_zl * Teiu} > &k P , 8§ >0 , where the average
- 1:

is taken over all choices of + and - signs. Then there exist



35

positive constants ¢ = c(p,r,8) and a« = a(p,r) such that

Sr(T) > ck® .

Lemma 2. Suppose 1 < p # r <« and it is false that
1<r<p<2. Then we have d(I , S (X)) = inf{#I-Tt : T € Sr(X)} >1,

where 1 is the identity map on = ( lep .

(Proof). If d(I , Sr(X)) <1 then there is F ¢ Sr(X) such that

UF-It =1 -¢ , >0 and F factors through a subspace of Lr

Thus iST-I1 =1 - ¢ .
K
Let Iy be the projection from ( 21 o)r onto zp , then

I (F| x) has a factorization
3 2p
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where Tk = Tizg and S, =1, S . Then nSka-Ikn <1 -¢, where 1k

is the identity map on z; . Thus STk 1s invertible and by the
Neumann series expansion of (Ska)'1 , we have the estimates

-1 1 1
u(Ska) < 1 - (l_e) = € and

-1 1
Sr(lk) < uskuuTk(ska) 1< EsSuETIg .

To draw a contradiction, we will show that sgp Sk(Ik) =e , It is

known that %5 cannot be (isomorphically) embedded in L, under the

hypothesis on p and r [3; p. 206], [26]. So zg's cannot be

uniformly embedded in L. .

Indeed, if 22'5 can be uniformly embecdded in L.(u) for some

measure u then there exist positive numbers a , b > U and embed-

dings T, : zt > L.(u) such that for every k = 1,2,3...

kK

alxt < uTKxu < bixl for any x € zp

By taking ultra product of {Tk}zzl , we have [32; p. 120] tnat

T = (T o (25)y > (Le(u))y,

where 9, is an ultrafilter on N , the set of all positive integers.
. . . . . k =
By definitions, for any (xk),u in (zp),u , (Tk)'u((xk)'u)
) = i = ]
(Tka,u . H(xk)%ﬂ ]%F Ix I and u(Tkxk)uu 1&muTkxku . Hence we

have
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al(x Jo I < BT(x) )t < DE(X )og

that is, T 1is an embedaing of (2g)u in (Lr(“))z(' Since
(Lr)u is also an L.-space [32; p. 271] and (zg)z(contains an
isometric copy of Ly » T yields an embedding of Lp into Lp , which
is a contradiction.

Going back to the main stream, for any & > 0 and each k ,

there is a factorization

r
/4 \
/ \
A / . Bk
///
k Iy 3 K
£P > 20

so that nAkuanu < Sr(Ik) + & and "Bk" =1 . Since Ak is an

embedding Sﬁp"Ak“ = o , and hence syp Sr(lk) =,

3. Main theorem

For k =1,2,3,e0e, m=1,2,3,00., ad 1< i<m, let
Qk,m,i ={(s,t) : 1<s<km,1<t<k,s and t are integers} U
{(1,0)} be a measure space with u{(1,0)} = %‘ and u{(s,t)} = ;%; if
(s,t) # (1,0) .

For notational convenience we denote Lp(gk,m,i
X(k,m,i) , the indicator function of {(1,0)} by e(k,m,i) and the

) »p>2 by

indicator function of {(s,t)} by &g t(k,m,i) if (s,t) # (1,0) .
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So {es t(k,m,i) :1<s<km,l<t<k} U-{e(k,mi)} dis the natural

basis of X(k,m,i) . Usually the dependence on k , m and i will be

supressed.
Let Pk,m,i be the projection on X(k,m,i) defined by
m
Pk,m,i(e) =0 and Pk,m,i(es,t) = Ea-uzl eyt We define a linear
map Sk,m,i on X(k,m,i) by Sk,m,i(e) = tzl sgles’t and
sk,m,i(es,t) = 0 . We can easily see that both Pk,m,i and Sk,m,i

have norm one.

(. p and X = ( [_ X(k,m))p 2 < p <o,
i k,m=1

l1<r#p<c<eoe, Let P:X+X ad S : X+ X be the direct sum of

3

. X(k,m,1))

tet X(k,m)

e~
—

families {Pk,m,i} and {Sk,m,i} respectively. Since each X(k,m,)

2.2, .. ) ® 2 2
is isometric to K"MW X is jsometric to ) pktmTamy
P k,m=1 P r

Our goal is proving that Sr(X) is not proximinal in L(X) by

showing that P + S does not have a best approximant in Sr(X) .

Proposition 3. a(P + S , Sr(X)) =1.

(Proof). It suffices to show that d(P + S , Sr(X)) =1 . For a
fixed n , define an operator S, on X so that S, 1is the direct

i . i her T ;= i and
sum of operators Tk,m,1 on X(k,m,i) where k,n,i Sk,n,1 n
T

K,m, i =0 if m#n .

From the definition of S , it is easy to see that the range of

Sn|§(k,n) (S, restricted to i(k,n)) is isometric to 28 . Since

.. . n ~
2; is isomorphic to £, , Snlx(k,n) factors through 22 .
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n
() 2 ) s L -sum of

Thus it follows that Sn factors through 2r

n ~
infinitely many copies of zr , and hence SN = E Sh € Se .
. ~ 1.1/p .
Now we claim that P + S - SNn <1+ (ﬁﬁ . To prove the claim,

observe that
P+ S - SNB = sup{tP + s - gN)|x(k,m,i)n}

vhere the supremum is taken over all k ,m=1,2,3,..., and

1<ic<m, and

P i if m< N
~ k,m,i
iP + s - SN)[X(K,m,i)n = %:
qu’m,i + Sk,m,i" if m>N .
lp
To prove that qu’m,i + Sk m, s <1+ (N) for all m > N, let
B = {(1,0)} and A = {(s,t) € Q mi 1<s ,t<k} . For
f € X(k,m,i) , let fl = fIB and f2 =f - f1 . Then Pk,m,ifl =90
and Sk,m,ifZ =0 .
Since "Pk,m,i" =1 and PK m, 1f2 is constant on each column of

1
/pnfu , where 1lp is the

1.1/p. ) ]
U ,m,i\B > H1APe @ if2l = (7) pnPk,m,ifgn < ()
indicator function of A .

Since sk,m,ifl and (1 - IA)Pk,m,ifZ have disjoint supports,

IS I =1 and qu,m,iu =1 , we have

k,m,i
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1/p
iS _fl + (1 lA)P < ify .

f
K,m,i i

1= (1S . faP + 1(1-1,)P £ 4P

k,m,i 2 K,m,i 1 k,m,i 2

Hence, for f € X(k,m,i) ,

1(P YfU < WP, .f. 0 + 41,P

k,m,i' 1 A k,m,if2u +

.+ .
K,m,i Sk,m,1

Siom,ife * (-1a0P n i ol + 1Sy i Fo!

11
0+ (3) /p

n

ift + uft + 0

a+ &0 .

1
Thus for m > N , IP .+ S <1+ (/) <1+
k,m,i K,m,1i

proof of the claim is complete.

1/ 11/
P ;I) P and the

Since gN € Sr(x) , by letting N+ = , we infer that
d(P + S, Sp(X)) < 1.

To prove the reverse inequality, notice that P + S restricted

Kn k

to the span{ Zles ¢ 0t =1,2,..k} , which is isometric to 2, 5 acts
S: 5

as the identity operator. Thus P + S acts as the identity operator on

«©

K
and isometric copy of (k}:lzp)r . SO by lemma 2 we have

d(P + S, Sp(X)) > 1 and the proof of proposition 3 is complete.

Lemma 4. Let Qk m.i be the projection of X onto

E Km
span{ ) e. ,(k,m,i) ,
551 S»t s=k+1

. . 1/p :
then Tim s min tm Te(k,m,i)t =0 .
] ﬁp 1<}<m Qk,m,i ( )

N S .
es,t(k,m,1) bizp - I T dis in Sr(X) .
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(Proof). Obviously it suffices to prove the lemma for T in

Sr(X) with #Ti <1 . If the statement is false then there is

1/

. p . P
> ; .
§ > 0 such that SEP g}gmnn Qk’m,1Te(k,m,1)s > 28 for infinitely

1
many m . Fix such an m and choose Kk = k(m) so that

1
im /ka o 1_Te(k,m,i)u >& for all 1=1,2,0e.,m .

m
The map ¢ : zp > span{e(k,m,i)}?_1

. . . m . .
(i =1,2,...,m) 1is an isometry onto where {ei}].=1 is the unit

1/pe(

defined by ei +m K,m,i)

vector basis of z: .
Since vectors in {Qk,m,iTe(k’m’i)}?=1 have disjoint supports,
iTe(k,m,i)}T=1 is isometric to a subspace of 2E

the map S defined by ei > Qk,m,iTw(ei) can be viewed to have
Since 1ISe;l = uml/ka’m,

has cotype p with constant 1 [31;

span{Qk and hence

s

) m
values 1in zp .

i=1,2,...,m and since L

iTe(k,m,i)u > § for each

p
p. 731, we have

m m
Averag{l ) *Sesu} > (i ] uSe-up)l/p > sml/p .
x if] i=]

Since USH < 1 , we conclude by the Fiyiel-Jdohnson lemma that there

exist positive constants c¢ = ¢(p,r,8) and a = a{p,a) such that
S [o4
br(S) > cm® .,

n
Since S = (_Zle )Ty and y is an isometry, we get that
i1 k,m,i



42

5 (s) —s<5fo

r

Q
kom, i T) < Sr(T) and so Sr(T) > Sr(S) > cm®  for

infinitely many m . Since T €Sp(X) this is a contradiction.

Theorem 5. P + S has no best approximant in S _(X) .

rl

(Proof). Suppose P + S has a best approximant T 1in Sr(X) .
then by proposition 3 P + S -Ti =1 . In view of lemma 4, we don't
lose anything by assuming,’for notational convenience, that for all k

and all m ,

In the sequel we will write Qk m.1 @as Qk m° So the above
9 b >

inequality is

111/
qu mTe(k,m,l)u <7 (m

9’

(*)

For each k , m and g = (ei)§=1 with €. = x1 |, we consider a

i
Rademacher function
K

r\s,k,m= z € )

e

Fe,k,m in tne range of Qk,m defined by

(k,m,1) . Since the rank of Qk m is 2k , by

the Figiel-Johnson lemma and an approximation argument, we get that for

any & > 0, there is a k(&) such that

y i I < *%
F ety 13 % ek, mt <8 (**)
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for all k » k(8) and all m .
~ ~ )
Indeed, there exists T in Sp(X) such that T - T# < 5 . So
~ §
bQ,mT - Q,ml? <7 and S.(Q

(**) is violated then we get that

m?) < Sr(?) for any k and m . If

~ 8
) 2

E?( EE{-l,l}lek,mTre,k,m“ >

for infinitely many k and some m = m(k) . Notice that the map

1/p km ) ) k
ej * k &g i(k,m,l) defines an isometry from 2p onto
L]

km K
span{séles,i(k,m,l)}i=1 . Since the range of Qk,m is isometric to

zsk , applying the Figiel-Jonhnson lemma as in lemma 4 we get that

Sr(?) > Sr(Qk’mT) > ck®

for infinitely many k . This is a contradiction and so (**) is
ture.

For a fixed vector x & X(k,m,1) with the expansion
X =) x_ e + er(k,m,l) with respect to the natural basis for

m

1 .
X(k,m,1) , we have <Fg g m » X = [ e X du = —— E . <
oK tLR k2m t=1 t s=1 s,t

and so



1
(Average|<re v m » x>|2 2
e 5 b 1
1 2
) |<r , x>|°)
2" eef-1,13k EkM
1
1 1 ‘ k é
==k ) 9} z 12)
kém 2 egf-1,13K t=1 =t %s,t
1
1 ko km 2.2
- k2 (tllls)'l S, 1;‘ )
1
m > .
< —l—{ 5 ( § | x t|2)km)2 by Holder's inequality
kZm t=1 =1 S,
1
1 k km 1 é 1
"7 eh sh 2m 2n%s. 1) IR

where uxuz is the Lz—norm of X .

It is easy to see that <r m o X =<r x> and hence from

€,K,N
the above inequality we have

E,K,m ? uk,m

2.1/2 1.

(Avegagel<r€,k,m s Qk,mx>] ) < 3 llxllz (***)

Now we will show that &P + S - T4 > 1 to finish the proof of
theorem 5.
For each positive integer n , choose a positive integer k(n)

such that k(n+l) > k(n) and for k = k(n) the left hand sides of

-1 -
(**) and (***) are smaller than (4n) and (4n2nxu2) ! respectively..
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Then we have

1
le(n),mTre,k(n),mn “n

1
and  |<re k(n),m » Q(n),m*>| < [ixip for all m and some e = g(n,m) .

If we set g =rg o+ ie(k,m1) , A >0, then

igt = (1 + AP %ﬁl/p and 1Q, (P + S - T)gl =

K,m
"re,k,m - Qk,mTre,k,m * AQk,m(S - T)e(k,m,1)¥

> "re,k,m + Auk,m(s - T)e(k,m, 1)t - i

HQk,mTrs,k,m
> ure’k’m + AQk,m(s - T)e(k,m,l)u2 - uuk,mTre’k’mu

2 _ 1/p
> (1 + qu m(S T)e(k,m,1)1

b

S AT n s Q (S - The(k,m,1))>)

- "Qk,lﬂTrE,k,mu .

111
Since \Qk mTe(k,m,l)n <'Zta) /p by (*) , by Chebysnev's

b

inequality we have

1
u({(s,t) €@ lQ, Te(k,m,1)| > 3})

k,m,1 : K,m

p Peop i ) 1
<2 qu’mTe(k,m,l)u <2 #n e

Since Qk mSe(k,m,l) = lA , the indicator function of A , if we set
b



1
C=1{(s,t) €A :|Q mTe(k,m,l)l < %} then u(C) > u(A) - 7,

k
and hence we have

2
1Qy,m(S - Delk,m 1)ty > [ |1 - QK,mTe(k,m,l)Izdu

Thus

iP+S-Ti > ];m uQK(n)’m(P +S-T)t
L +,23 .11
16 m .p
> — )
1+Ap?‘n‘

> 1 for small X .

This is a contradiction and the proof of theorem 5 is complete.
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