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INTRODUCTION

Even before ATfsen and E ffros  [2J introduced the notion o f an

M-ideal in  a general banach space, i t  was proved by Dixmier [13J th a t

K(H) , the space of a l l  compact operators on a separable H i lb e r t  space,

is  an M-ideal in  L(H) , the space of a l l  bounded l in e a r  operators on

H . Even now only a few Banach spaces X fo r  which K(X) is  an

M-ideal in  L(X) are known; f o r  example, Cg and , 1 < p < ® .

Some of the c la ss ica l Banach spaces; f o r  example , and

Lp(Q,l)  w ith  l < p < » , p # 2  do not have the above p rope rty .
★

Smith and Ward [3bJ showed th a t  ( i )  M-ideals in  a C -a lgebra are 

p rec ise ly  the closed two sided id e a ls ,  ( i i )  M-ideals in  a commutative 

Banach algebra w ith  id e n t i t y  are idea ls  and ( i i i )  M-ideals in  a Banach 

algebra w ith  id e n t i t y  are a lgebras.

In chapter I ,  we prove th a t  given a subspace X of ,

1 < p < « , K(X) is  an M-ideal in  L(X) i f  and only i f  X has the

compact approximation p rope rty .  The main re s u lt  of t h is  chapter is  a

strong converse to  the Harmand-Lima theorem fo r  subspaces of ,

1 < p < “  . Harmand and Lima [20J showed th a t  i f  X is  a Banach space 

f o r  which K(X) is  an M-ideal in  L(X) then there is  a net in  K(X) 

so th a t

( i ) T^ + I s tron g ly  

( i i  ) iiT^ii < 1 fo r  a l l  a



( i i i ) T* + 1 s trong ly

( iv )  l im a i-T  « = 1 .
a “

Chapter I I  is  devoted to  proving th a t  i f  X is  a un ifo rm ly convex 

space then any M-ideal in L(X) is  a l e f t  id e a l ,  and i f  X* is  also 

un ifo rm ly convex then any M-ideal in  L(X) is  a two sided ideal in  

L(X) . This gives a p a r t ia l  answer to  the Smith-Ward conjecture [36 ]

t h a t ,  fo r  a un ifo rm ly convex space X , every M-ideal is  a two sided

id e a l .
n

In Chapter I I I  we w i l l  construct a space X = fo r  which

L(X) contains a closed two sided ideal which is  not an M-ideal in  

L(X) . Thus, the M-ideals and the closed two sided ideas in L(X) are

n.
not the same in  general fo r  X = ()&  ̂ .



CHAPTER I

A CHARACTERIZATION OF SUBSPACES X OF & FOR WHICH
P

K(X) IS AN M-IUEAL IN L(X)

1. In troduc tion

A closed subspace J of a Banach space X is  said to  be an L-

summand i f  there ex is ts  a closed subspace O' of X so tha t  X is

an a lgebra ic d i re c t  sum of J and O' , and i f  j  € J and j ' € j '

then «j  + j ‘ u = u j y + a j ' B . In t h is  case we w i l l  w r i te  X = J .

Such a closed subspace J o f X is  ca l led  an M-summand i f  we have the

norm cond it ion  «j + j ' u  = max{BjB , B j'B} in  place of

aj + j ' a  = aja + a j 'a  . Here we w i l l  w r i te  X = J . A closed

subspace J of a Banach space X is  ca l led  an M-ideal in X i f

= { x * €  X*: x * ( j )  = Ü fo r  a l l  j  ^ 0} , the a n n ih i la to r  of J in

X* , is  an L-summand in  X* . By a standard d u a l i ty  argument we can

e a s i ly  see tha t i f  X = J ©„J' then X* = . Thus M-sum-

mands are M -ideals. However, the converse is  not in  general t ru e  as we

sha ll see in the next two examples. I t  is  not d i f f i c u l t  to see th a t

Ü* = c'*’ © £ and hence c is  an M-ideal in  £ . However, c, is
00 0 1 1 U “  Ü

not an M-summand because i t  is  not even complemented in  £^ [ l l j .  I f  

H is  a separable H i lb e r t  space, K(h) —the space of the compact l in e a r  

operators on H— is  an M-ideal in  L (X)—the space o f the bounded l in e a r  

operators on H . (This fa c t  had been proved by Dixmier [13] well 

before the notion of an M-ideal was in troduced).  But K(H) is  not an



M-summand in  L(H) since K(H) is  not complemented in L(H) .

This fo l low s from the fa c ts  tha t c^ is  not complemented in

and tha t  the diagonal operators in L(H) can be id e n t i f ie d  w ith  £„

and under t h is  id e n t i f i c a t io n  the diagonal operators in  K(H)

correspond to  Cg .

The notion of an M-ideal was introduced by Alfsen and E ffros  [ 2 ] .

They also characterized an M-ideal by in te rs e c t io n  p ropert ies  of

open b a l ls .  We say th a t  a closed subspace J of a Banach space X

has the n -ba l l  property i f  fo r  any n open b a l ls  fo r

which B i n . . . H B n  *  9 , and B-j H J 5̂ 9 , i = 1 ,2 , . . . n  , the in t e r -  
n

section 0 B . n j  is  nonvoid. Alfsen and E ffros [2 ]  proved th a t  a 
i = l  ^

closed subspace J of a Banach space X is  an M-ideal i f  and only 

i f  J has the 3 -ba l l  property (e q u iv a le n t ly ,  J has the n -ba l l

property fo r  every n > 3) . Later Lima [27] also characterized M-

idea ls  by various in te rs e c t io n  p ropert ies  of closed b a l ls .  In 

p a r t ic u la r ,  he [27: Theorem 6.17] proved tha t  J is  an M-ideal in  X 

i f f  fo r  a l l  X € X , uxii < 1 , fo r  a l l  y ^ ,y 2 »Y3 ^ J w ith

wy^u < 1 , i = 1,2,3 , and f o r  a l l  e > 0 , there ex is ts

3
y 6 J n n B a l l (x + y . , 1+e) , 

i= l

where B a l l ( x , r )  means the closed ba l l  w ith center at x and radius 

r  .

I f  J is  an M-ideal in X , then J is  a proximinal subspace of 

X , [ 2 ] ,  [2 3 ] ,  [27 : c o ro l la ry  6 . 6] .  Recall tha t a closed subspace 

J of a Banach space X is proximinal i f  every element in  X has a



best approximation in  J ; th a t  i s ,  d is t ( x ,J )  is  a tta ined fo r  each 

X € X . Several authors have studied approximation problems in  

M -idea ls . Perhaps the most s t r i k in g  approximation property of 

M-ideals is  the fo l lo w in g  fa c t  due to  Holmes, Scranton and Ward [2 4 ] .

I f  J is  an M-ideal in  a Banach space X , then fo r  any x € X\J the 

set o f a l l  best approximations in J to  x spans J . Apparently 

being an M-ideal is  a very strong c ond it ion .  Jost [37 ] and some others 

showed th a t  i f  a closed subspace J of a Banach space X s a t is f ie s

the 1“  b a l l  property (which is  weaker than the 3 -b a l l  property) then 

J is  proximinal in  X .

From the s ta r t ,  works on M-ideal have been c lose ly  l inked to  

questions invo lv ing  the c losest compact approximants to  a given 

non-compact operator on a Banach space. So an in te re s t in g  and 

obviously d i f f i c u l t  open question is  to  c la s s i fy  Banach spaces X fo r  

which K(X) , the space of a l l  compact operators on X , is  an M-ideal 

in  L(X) , the space of a l l  bounded l in e a r  operators on X . I f  X is

c^ or fo r  1 < p < «> , then K(X) is  an M-ideal in  L(X) [2 1 ] .

However, i f  X is  or then K(X) is  not an M-ideal in  L(X) 

[3 5 ] .  I f  X is  L^(Ü,1) , L«(0,1) or C(0,1) , then K(X) is  not

an M-ideal in  L(X) since K(X) is  not even proximinal in  L(X) [1 4 ] .

I f  X = Lp(ü,u) fo r  l < p < » , p # 2  and u a f i n i t e  measure on 

a , then K(X) is  an M-ideal in  L(X) i f  and only i f  u is  purely 

atomic [2B ].  (A f i n i t e  measure space (0 ,Z ,u) is  purely atomic i f  the 

complement of the union o f a l l  atoms has measure zero. An element 

A € E w ith  u(A) *  Ü is  ca l led  an atom i f  B € E and B = A can 

occur only fo r  B = A or B = 0 up to  measure zero. Notice tha t  

the re  are at most countably many atoms in  a f i n i t e  measure space.)



Recently Harmand and Lima [20 ] proved th a t  i f  X is  a Banach 

space fo r  which K{X) is  an M-ideal in  L(X) then there is  a net

{Ta} in  K(X) so tha t

( i ) Tg + I s t ro n g ly

( i i ) < 1 f o r  a l 1 a

( i i i )  T* + I s trong ly

( iv )  l^m ai-Tj^n = 1 .

The main re s u l t  o f th is  chapter, taken from [ 8 ] ,  is  a strong 

converse to  the Harmand-Lima theorem fo r  subspaces of tp  , 1 < p < » . 

In theorem 9 we show th a t  i f  X is  a subspace of (%Xn)p (dimXp < ® ;

1 < P < “>) which has the compact approximation property , then K(X) 

is  an M-ideal in  L(X) . (For a sequence {X^} of Banach spaces 

X^'s , ()^Xp)p is  the space of a l l  sequences x = (Xp) , x^ € Xp w ith

"  P 1/p
the norm defined by axu = ( % :x^» ) . This norm makes (IXp)p

a Banach space.)

Part of the proof cons is ts  o f showing th a t  such an X s a t is f ie s  

cond it ion  ( i ) - ( i v )  in  the Harmand-Lima theorem. This re s u lt  is  proved 

fo r  general re f le x iv e  spaces in  Section 2.

Section 3 is  devoted to  proving the converse o f the Harmand-Lima 

theorem fo r  subspace of (%X^)p . Here we use b locking methods which 

have been prev ious ly  used in  the study of isomorphic, ra ther than 

iso m e tr ic ,  propert ies of and a few other spaces.



2. Relations among approximation p ropert ies

I f  X and Y are Banach spaces, L(X,Y) ( re sp e c t ive ly  K(X,Y)) 

w i l l  denote the space of a l l  bounded l in e a r  operators ( re sp ec t ive ly  

compact l in e a r  operators) from X to  Y . I f  X = Y , then we simply 

w r i te  L(X) ( re sp ec t ive ly  K(X)) . Ba ll(X ) w i l l  denote the closed 

u n i t  b a l l  of X . Recall th a t  a l in e a r  operator T from X to  Y is  

bounded i f  sup{tTxii ; x 6 X , UxD < 1} < œ . a l in e a r  operator is  

bounded i f  and only i f  i t  is  continuous. A l in e a r  operator T from 

X to Y is  compact i f  the norm closure of T (B a l l(X ) )  is  a compact

subset of Y .

A Banach space X is  said to  have the compact approximation 

property ( re sp e c t ive ly ,  compact m etr ic  approximation property) i f  the 

id e n t i t y  operator in X is  in  the closure of K(X) ( re s p e c t iv e ly ,  

B a ll(K (X ))  w ith  respect to  the topoloyy % of uniform convergence on 

compact sets in  X ; th a t  i s ,  fo r  every compact subset K in  X and

every e > 0 , there is  a compact operator T ( re s p e c t iv e ly ,  a compact

operator T w ith  aTii < 1) so th a t  Hx-Txa < e fo r  a l l  x € K .

I f  X and Y are Banach spaces, the space L(X,Y) endowed w ith  

the topology t of uniform convergence on compact sets in  X is  a 

lo c a l ly  convex space generated by the semi norms of the form 

BTa^ = sup{aTxa ; x € K} , where K ranges over compact subset of X .

(A lo c a l ly  convex space X is  a vector space over real or complex 

sca lar with a topology fo r  which the vector space operations are 

continuous, and each po in t o f which has a local neighborhood system 

cons is t ing  of convex subsets of X .)  A semi norm p on a real or 

complex vector space X is  a real valued func t ion  on X such th a t  

p(x+y) < p(x) + p(y) and p(ax) = |a |p (x )  f o r  a l l  x and y in  X



and a l l  scalars a . Such a seminorm p on X induces a topology in 

such a way tha t  at each po in t x € X the  fam ily  

V (x ,r )  = {y € X , p (x-y) < r }  (where r  ranges over a l l  ra t iona l 

numbers) c o n s t i tu te  a loca l base at x . Continuous l in e a r  func t iona ls  

on the lo c a l ly  convex space (L (X ,Y ) , t )  stated above have a nice 

representation in  terms of sequences in  X and sequences in Y* .

The fo l low ing  p ropos it ion  is  taken from Lindenstrauss and 

T z a f r i r i ' s  book [31: p .31 ].

Proposit ion 1. For Banach spaces X and Y , endow L(X,Y) w ith  

the topology t of uniform convergence on compact sets in  X . Then 

the continuous l in e a r  func t iona ls  on (L (X ,Y ) ,t ) consist of a l l  

func t iona ls  * of the form

4>(T) = I  y * (T x .)  , = X , G Y* , X »x.WKy*» <
i= l  i= l

The next p ropos it ion  is  a re la t io n  between the compact m etr ic  

approximation property and the compact a:oroximation p roperty , which is  

an analogue of the re la t io n  between the m etric approximation property 

and the approximation property [31; p .3 9 ] .  A Banach space is  said to  

have the approximation p ro p e r ty - ( re s p e c t iv e ly ,  the m etr ic  approximation 

property) i f  the id e n t i t y  operator is  in the x-c losure  o f F(X) , the 

space of a l l  f i n i t e  rank operators ( re s p e c t iv e ly ,  B a l l (F (X ) ) ) .

Proposit ion Z. Let X be a Banach space. Then the fo l low ing  

three assertions are equ iva len t.



( i )  X has the compact m etr ic  approximation property .

( i i )  B a ll(K (X ))  is  dense in  B a l l(L (X ) )  in the topology t  of

uniform convergence on compact sets in  X .

( i i i )  For every choice of = X , { x * } ” -]^ c X* such tha t

00 *  ,
\  :x_uwx. u < ® and \  x „ (T x „ )  < 1 fo r  every T in  n n n ' n ' '

1=1  1=1

B a ll(K (X ))  , we have | \  Xp(Xp)| < 1 .
i = l

(P roo f) .  Let T f  B a l l(L (X ) )  and K a compact subset of X , 

then T(K) is  compact. So fo r  any e > (J , there is  in

B a ll(K (X ))  so th a t  BT.Tx-Txll < e f o r  every x € K . Since 

T|T € B a ll(K (X ))  , t h is  proves the im p l ic a t io n  ( i )  = ( i i )  . ( i i i )  

fo l low s  from ( i i )  by p ropos it ion  1. Thus i t  remains to  prove th a t

( i i i )  implies ( i ) .  Suppose X does not have the compact m etr ic  

approximation property , then the id e n t i t y  map I on X is  not in the

T-c losure Ba ll(K (X ))  o f B a ll(K (X ))  . Since B a ll(K (X ))  is  a 

closed, convex and balanced subset in  a lo c a l ly  convex space ( L ( X ) , t )  

and does not contain the id e n t i t y  map I on X , by the separation 

theorem there are p o s i t iv e  numbers a , B and a T-continuous l in e a r  

func t iona l * on L(X) such tha t  |Re*(T)| < a < g < Re$(I) fo r  a l l  

I  in  B a l l(K (X ))^  . S e tt ing  ij; = ' ^  , we have

sup{|ReY(T)| : I  € B a l l (K (X ) ) }  < 1 < Re*(I) .

Viewing ^ as a l in e a r  func t iona l on the Banach space K(X) w ith  the 

operator norm, we have iii))ii = iRe^B = sup{|Re*(T)| : T € B a l l(K (X ) ) }  <

1 < Reip(I) < |4'(I)1 . Since ^ is  a T-continuous l in e a r  func t iona l on
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00 ic "i
L(X) , by propos it ion  1 there  are sequences = X and {y^ }  s  X

such tha t  'l Qx^uuy*» < ® and fo r  every T in L(X) 
n=l

00 Qg

*(T) = I  y*(Tx ) . Then | I  y*(Tx )| < 1 fo r  a l l  I  in  Ba ll(K (X )) 
n=l n n ^=1 " "

and I I  y * (x  )1 > 1 . This con trad ic ts  to  ( i i i ) .  Hence ( i i i )  implies 
n=l " n

( i ) .

Grothendieck [19 ] proved th a t  i f  X is  a re f le x iv e  Banach space 

or a separable conjugate space which has the approximation p roperty , 

then X has the m etr ic  approximation property . In the case of the 

compact approximation p rope rty ,  the analogous im p l ica t io n  is  v a l id  fo r  

re f le x iv e  Banach spaces.

Proposit ion 3. I f  X is  a separable re f le x iv e  Banach space which 

has the compact approximation property , then X has the compact m etric 

approximation property .

For the proof o f p ropos it ion  3, we need a lemma from [31; p. 39].

Lemma 4 . Let X be a separable Banach space and le t  e > U be

given. Then there e x is ts  a sequence of functions { f  } on Ba ll(X )
1 1=1

so tha t  fo r  every x in B a ll(X ) , x = f - ( x )  , each f  (x) is  of
n=l ■'

“  oo
the form T 1 (x )x  , where {E } are d is jo in t  Borel sets of 

i , j = l  E i j  i j  f j  J=1
00

Ba ll(X ) , { x . . }  s  Ba ll(X ) , I  i f j „  < 1 + e where a f .u „  = 
i j  k=l f 1

supJf ( x ) d  = supux a and 1 is  the in d ic a to r  func t ion  of E 
X i j  iJ E.j i j
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(Proof of P ropos it ion  3 ) .  Assume X is  a separable re f le x iv e

Banach space. By P ropos it ion  2 i t  su f f ice s  to  show th a t  i f  is a t-

continuous l in e a r  func t iona l on L(X) such tha t < 1 fo r  every

T in  B a ll(K (X ))  , then | * (T ) |  < 1 fo r  every T in  B a l l(L (X ) )  .

For a f ixe d  e > U , we cons truc t a T-continuous l in e a r  func t iona l

on L(X) so th a t  *  = *  on K(X) and | < (l+e)BTO fo r  a l l

T in  L(X) . Then since K(X) is  %-dense in  L(X) , ip = <(> on L(X)
e

and B$(T)B < (1+e ) iiT ii . Since e > U is  a r b i t r a ry ,  | * (T ) |  < 1 fo r

a l l  T in B a l l(L (X ) )  . Thus i t  remains to  construct such a .
irk

By r e f l e x i v i t y  we may regard X as X . Then since X is  

separable X* is  also separable and Ba ll(X ) w ith  the weak topology 

induced by X* is  a compact m etr ic  space. S im i la r ly  B a l l(X * )  w ith

the weak*-topology induced by X is  also a compact m etr ic  space. Thus

K = Ba ll(X ) X 8 a l l (X * )  w ith  the product topology is  a compact m etr ic  

space. Let C(K) be the space of a l l  continuous func t ions  on K 

with the supermum norm. To each T in  K(X) we assign a fu nc t ion  g^ 

on K defined by y ^ (x ,x * )  = x * (x )  fo r  a l l  (x ,x * )  in  K .

We claim th a t  g^ is  continuous on K . Suppose (x ^ ,x * )  is  a

sequence in  K which converges to  a point (x ,x  ) in  K . Then

i9 U n » x * )  -  g ^ ( x , x * ) l  = l x *T x^ -x *T x l  < | ( x *  -  x* )Tx |  + Ux^^BTx^ -  Tx:  ,
*  *  *

Since x^ + x in the weak -topo logy (weak topology induced by
*  *

X = X) , (Xp -  X )Tx + 0 . Since T is  compact and Xp + x weakly,
*  00 *

Tx^ + Tx in  norm. Since {BXp»}p=i is  bounded, BXpWBTxp -  Tx: + 0

and hence g^ is  in  C(K) .



12

Next

= s u p { |g ^ ( x ,x * )1 ; ( x ,x * )  € K}

= sup{(x (Tx)l ; X € B a l l (X )  , x Ç B a l l {X  )}

= sup{sup{ lx*(Tx) I ; X € B a H (X * ) }  : x € B a l l(X ) }

= sup{BTxü : X € 8 a l l (X ) }  = flTa

Tnus the map T + is  an i s ometry from K(X) in to  C(K) and we can 

view K(X) as a subspace of C(K) . Observe th a t  * re s t r ic te d  to

K(X) is  a norm continuous func t iona l w ith  norm < 1 . By the Hahn-

Banach theorem th is  func t iona l has a norm preserving extension to  

L(X) and we s t i l l  w r i te  th is  extension $ . Then by the Riesz repre­

senta tion theorem, there is  a Borel measure p on K of norm < 1 so

tha t

<i>(T) = /  X (Tx)dp fo r  a l l  I  f  K(X) .

Then using lemma 4, fo r  every T in  K(X) , we have

*(T) = y /  x * ( T ( f . (x )) )dp  = 1 1  X * . (T x . . )  
i= l  ^ i= l  j = l

where x*^ is  the func t iona l on X defined by x . j j ( x )  = / ^  x (x)dy ,
i j

0. . = E. . X B a ll(X *)  . Obviously Hx*.ii < | p | ( o . . )  and hence
• J  I J  I J  I J

I  Ux^.ii < 1 fo r  every i  . From lemma 4, % supJx. . U < 1 + e .
j = l  i = l  j
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00 00

Let (T) = I  I  X* (T x . . )  fo r  I  K(X) , then by propos it ion  
i= l  j = l  'J TJ

1 ipg is a T-continuous linear functional on L(X) satisfying

| *_ (T ) |  < mu I  Ix *  U U X . . U  < ( l+ e )u lu  . 
i j = l  TJ

The above proof o f the p ropos it ion  3 is  a m od if ica t ion  of the 

L inden s trauss -T za fr ir i  [31; p. 4U] proof of Grothendieck*s theorem.

Remarks : 1. I t  is  a formal consequence of the p ropos it ion  3 as

stated th a t  every re f le x iv e  space w ith  the compact approximation 

property also has the compact m etr ic  approximation property .

2. We do not know whether proposit ion 3 is  t ru e  i f  X is  

only assumed to  be a separable conjugate space. To apply the Linden­

s t ra u s s -T z a fr i r i  argument one needs to  prove th a t  i f  Y* is  separable, 

then the weak*-continuous compact operators on V* are dense in  K(Y*) 

when K(Y*) is  given the topology of uniform convergence on compact 

subsets of Y* .

A sequence {Tn)n=i m  L(X) is  said to  converge to  T in  

L(X) s trong ly  i f  fo r  every x in  X TpX converges to  Tx in  norm.

Coro lla ry  b. I f  X is  a separable re f le x iv e  Banach space which 

has the compact approximation p rope rty ,  then there is  a sequence

{Tn>n=i in B a ll(K (X ))  so tha t  T^ + ( id e n t i t y  map on X) 

s trong ly  and T* + I^ *  ( id e n t i t y  map on X ) s t ro n g ly .

(P roo f) .  We choose a countable dense subset 

D = {x.j : i = 1 ,2 ,3 . . }  of X . For each n , le t  = {xj^, . . . ,X|^}



and

14

1
choose in  B a ll(K (X ))  so th a t  iSpX-xii < ^ fo r  a l l  x in

Dp . Then converges to  ( id e n t i t y  map on X) s t ro n g ly .
*  *  *  *  *

Since fo r  each x in  X and each x in  X (S^x )x -  x (x) =
*  *  *  *

X (SpX-x) converges to  zero and since X is  r e f le x iv e ,  SpX -*■ x
*  *

weakly fo r  each x in  X .

We choose a countable dense subset E = {x *  : i  = 1 , 2 , 3 . . . }  of
00

X and take a sequence {S, } , so th a t  each 5, is  a convex
In n=l In

00 *  *  *
combination of and S^jX^ + in norm. Next we take a

sequence {S } so th a t  S is  a convex combination of 
2n 2n

{S i i> i_ n  and S^^Xg x^ in  norm. We repeat the process in  an
*  *  

obvious manner. Let Tp = Spp . Then Tp + ( id e n t i t y  map on X )

s t ro n g ly .

Proposit ion 6 . Suppose X is  a re f le x iv e  subspace of a Banach

space Y w ith  the property th a t  there ex is ts  a sequence {P } _ in
n n—i

K(Y) such th a t  l imuly-P^u < 1 and P  ̂ -»■ ly (the id e n t i t y  map on Y) 

s t ro n g ly ,  and suppose th a t  X has the compact approximation property .

Then there e x is ts  a sequence {T_} in B a ll(K (X ))  such tha t
' ' n—i

limWl^-T^U < 1 , T^ + s trong ly  and T^ + 1^* s trong ly .

(P roo f) .  Let {Pp}^_^ be as above and fo r  each n , Pp|% : X + Y 

the r e s t r ic t io n  of Pp to  X . Then Pp|x + 1% (% + Y) s t ro n g ly .  By 

C oro l la ry  b, there e x is ts  a sequence {Sp}%=i in
*

B a ll(K (X ))  Ba ll(K (X ,Y ))  such tha t  Sp + s trong ly  and Sp + 1̂ *̂

s t ro n g ly .  As a sequence of operators from X to Y , we have

Pnix ■ ^n ->• Ü s trong ly  as n ® . Since X is  re f le x iv e  i t  fo l low s
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th a t  + 0 weakly in  L(X,Y) [32; p. 33 ].  Indeed, as in  the
*

proof o f p ropos it ion  3, the map S + x (Sy) defines an i s ometry from

K(X,Y) to  C(0) , the space of continuous funct ions on the compact

Hausdorff space £2 = Ba ll(X ) x B a l l(Y * )  , where B a ll(X ) has the weak

topoloyy and B a l l(Y * )  has the weak*-topoloyy. Observe th a t  B a l l(Y * )

is  weak*-compact Hausdorff fo r  any Banach space Y and B a ll(X )  is

weakly compact Hausdorff since X is  re f le x iv e .  Hence £2 w ith  the

product topoloyy is  a compact Hausdorff space. As a sequence in

C(£2) , {Pn|X"^n^n=l un ifo rm ly bounded and P^jx -  + 0 pointw ise
*

on £2 . For any * € L(X,Y) , the r e s t r ic t io n  of * to

K(X,Y) e C(£2) is  a continuous l in e a r  func t iona l on K(X,Y) . By the

Hahn-Banach theorem, we choose a norm preserving extension to  C(£2)

and we s t i l l  c a l l  t h is  extension ç . Thus *  is  a continuous l in e a r

func t iona l on C(£2) . Then by the Riesz representation theorem, there

is  a regu lar Borel signed meaure u on £2 such tha t

4>(s) = /  x * (S x )du (x ,x * )  fo r  a l l  S € K(X,Y) . By the bounded
£2

convergence theorem, <p(Pri|x"^n^ 0 as n + » .

Since P^jx -  + 0 weakly in  L(X,Y) , there e x is t  sequences

00 00 ^n+1 ^n+1
{Qn>n=l and {Tn>n=l such th a t  Qn = I  Au^klX » Tn = I  \ ^ k

k=a„+l k=a^+l

an+1
and iiQn-Tn“ U , where X, > Ü , X = 1 , and {an)n= l is  a

k =an +l

s t r i c t l y  increasing sequence of p o s i t iv e  in teg e rs .  Obviously 

UT„U < 1 , I im fl ly -T „i i  < limaly-Q„u < 1 , T. + ly  s t ro n g ly ,  andn p A i i  n A n  h a

T* -»■ Ix *  , s t ro n g ly .
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Remark. The re la t io n s h ip  between the weak operator topology 

and the weak topology on the space o f operators was, a t le as t  in 

specia l cases, known fo r  a long t im e . The idea o f using th is  

re la t io n s h ip  to  deduce some kind o f approximation cond it ion  f o r  a 

subspace from the corresponding cond it ion  fo r  the whole space is  due to  

M. Feder [1 5 ] .

3. M-ideals

Lemma 7. Suppose th a t  (Pn}n=l is  a sequence in  K(Y) fo r  a 

Banach space Y which converges s trong ly  to  the id e n t i t y  map on Y , 

and tha t K is  a weakly compact subset of Y . (iiven e > 0 and a 

p o s i t iv e  in teger n , there e x is ts  an in teger in = m(n,e) > n so tha t

sup min d(P y , K) < e , 
yfK n<k<m

where d(x,K) = in f { » x - z :  : z € K} is  the distance from x to  the set 

k .

(P roo f) .  I f  no t,  there ex is ts  a sequence {y  } in  K so
m m=n+l

th a t  fo r  each m = n + l  , n + 2 , . . .

min d(P y , K) > e . 
n<k<m K

Let y be any weak c lu s te r  po in t of {y  } and assume y y
m rn=n+l m

weakly by passing to  a subsequence i f  necessary. Since each P|̂  is
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00  CO

compact and {y } , is  bounded, {P y } has a c lu s te r  po in t which
m m=l k m m=l

has to  be P|^y because Pj ŷ̂  ̂ + Pĵ  weakly. Thus we in fe r  th a t

i n f  d(P|^y,K) > e . This is  a c o n tra d ic t io n ,  because y is  in  K and
n<k<®
Sy-P|^yii > 0  as k > ® .

A Banach space X is  said to  have a f i n i t e  dimensional Schauder 
00

decomposition {Xn>n=i i f  every x € X can be uniquely w r i t te n  as
00

X = y X , where x € X and each X is  a f i n i t e  dimensional sub- 
n n n n

n=l
space of X . For each n , the p a r t ia l  sum p ro je c t io n  P on X is

n
® n

defined by P^( I  x^) = I  x^ , where x^ € X̂  . I t  is  easy to  see 
i = l  i = l

th a t  supaP U < ® . Indeed, fo r  every x in  X , x = l im  P x and 
n "  n n

hence by the Banach-Steinhaus theorem BP^u < M fo r  a l l  n and fo r

some M < ® .

Lemma 8 . Let X be a re f le x iv e  Banach space which is  a subspace 

o f  a Banach space Y which has a f i n i t e  dimensional Schauder
CO 00

decomposition * i t h  p a r t ia l  sum p ro je c t ions  {Pn}n=% and set

a = sup{«P u} . Then fo r  any e > Ü and T e K(X) w ith  BTu < 2 , 
n "

there  e x is ts  a p o s i t iv e  in teg e r  n such tha t

( i  ) i i(I-P^)Txii < E fo r  every x € Ba ll(X) ,
e

( i i )  i f  X 6 B a ll(X )  and aPpXl l  < 4 , then BTxU < ea .

(P ro o f) .  Since the c losure of T (B a l l(X ))  is  compact, given 

e > Ü we can choose a f i n i t e  subset {x ^ ,X 2 , . . . , x ^ }  of Ba ll(X ) so 

th a t  fo r  every x in  B a ll(X ) , there  is  x-j , 1 < i  < n , w ith
E E

Bx-x.B < . and hence BTx-Tx.ii < , . Now fo r  a l l  <
1 4 ( l+ a )  1 2 ( l+a )
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e
s u f f i c ie n t l y  la rye  n , o(I-Pn)Tx^o < J  fo r  i  = . For

X € Ba ll(X ) , choose x^ so th a t  i iTx-TxJ < ^  . Then since

Ul-P B < 1 + a . n

— £
a(I-P^)Txii < b,{I-P^)Tx -  ( I -P ^ ) Ix .B  + B{I-P^)Tx.fl < 2 + 2 = G 

fo r  a l l  s u f f i c ie n t l y  la rye  n .

Thus ( i )  is  t ru e  fo r  a l l  la rye  n .

I f  no n s a t is f ie s  ( i i ) ,  then there is  a sequence {x  } in
k k=l

Ba ll(X ) such tha t  BP^x^B < j  and BTx^B > ea . Since B a ll(X ) is

weakly compact, by passiny to  a subsequence i f  necessary, we may assume
ea

tha t  X + X € X weakly. We claim tha t BxB < ^ . I f  not,

ea
BP̂ xB > ~  fo r  a l l  large £ . Since P  ̂ is  a compact operator and a

compact operator ca rr ies  a weakly convergent sequence to  a norm con-

veryent sequence, P^x^ -*■ P^x in norm as k -»■ ® and hence

ea
BP X fl -»• BP xii > . This is  impossible since fo r  k > z ,

£ k £
ea ea

BP X B < aBP X B < 7“  . Thus we have BxB < —  .
£ k k k ^ j

Since T is  compact and x + x weakly, by the same reason as
k

above, BTx^B -*• BTxB as k ® . This is  a con trad ic t ion  because
2ea

BTx, B > ea fo r  a l l  k and bTxB < BTiBxB < -  < ea .k 3
The above proof a c tu a l ly  shows tha t there are i n f i n i t e l y  many n 

s a t is fy in g  the cond it ions ( i )  and ( i i ) .

Now we are ready to prove our main theorem. In t h is  proof we use 

the fo l low ing  cha rac te r iza t io n  of M-ideals due to  Lima [27; Theorem 

6 .1 7 ] .  A closed subspace J of a Banach space X is  an M-ideal of X
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i f  and only i f  fo r  any e > Ü , fo r  any x in  B a ll(X ) and fo r  any 

y^ in  B a l l(J )  ( i= l , 2 , 3 )  , there e x is ts  y € J such tha t

•x+y^-yn < 1 + e fo r  i  = 1 ,2 ,3  .

Theorem 9. .  I f  X is  a closed subspace of Y = (}^Xp)p 

(dim Xp < «» , l<p<“ ) which has the compact approximation property , 

then K(X) is  an M-ideal in  L(X) .

(P roo f) .  Let 5^ , Sg » S3 € B a l l (K (X ) )  and I  Ç B a l l (L (X ) )  .

We w i l l  show th a t  fo r  any r  > U , there e x is ts  K€  K(X) such tha t

DS + I  -  Kll < 1 + r  ( i  = 1 ,2 ,3 )  .

By Propositon 6 , we can choose a sequence in  Ba ll(K (X ))
I *

so th a t  lim  »I -T U < 1 , + I .  s t ro n g ly ,  and + L *  s t ro n g ly ,
p X ^ n X  n X

Let {Pp} denote the p a r t ia l  sum pro jec t ions  associated w ith  the

natural f i n i t e  dimensional decomposition {Xn>n=l o f Y . Using Lemma

8 , w ith  th is  choice of Pp's (so th a t  a = 1) , fo r  a f ix e d

0 < e < 1 , choose M so th a t  fo r  i  = 1,2,3

( i )  i f  X é Ba ll(X ) , then B (I-Pn,)SjX) 11 < e where I =

( i i )  i f  X € Ba ll(X ) and IIP x “ < T  , then IS x l < e .
M 1

By lemma 7, we can choose N > M so th a t  fo r  every x € X , there  is

k = k(x) . (M < k < N) such th a t  d(P|^x,X) < eilxll .

Given x € X w ith  axil = 1 , l e t  k = k(x) and pick y^S X so

th a t  aP x-y II < e . S e tt ing  y, = x -  y , we have
I' 1 2 1

( i i i )  «y^-(I-P|^)xa = HPj^x-y^a < e , B(I-P|^)yj^P < e and 

aPi^y^a < e .

F in a l ly ,  choose r la rge enough so th a t
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( iv )  Q(I-Tp)TyU < 8e fo r  every y in the set 

A = {y 6 X : lyli < 2 and l( I-P^j)y» < e}

(v) lP,^{I-T^)Tll = IIT*(I-T*)p jj l l < £ and i I-Tp l < 1 + e .

This is possib le because the set A above has a 3e-net and Tn + I 

s t ro n g ly .  ( I f  B is  a subset of a m etr ic  space and e > U , then a

subset A of B is  ca l led  an e-net of B i f  f o r  every x in B ,

there  is  y e A such th a t  d (x ,y )  < e .)

For X C X w ith  iixii = 1 , w r ite  x = y^ + y^ as in ( i i i ) .  Then

fo r  i  = 1,2,3 , we have 

p
USiX + (I-Tp)Txll

< (ilP^(S.x) + ( I - P ^ ) d - T  )Txll + U(I-P IS.xil + l iP^(I-T  )T x :)^
M l  M r  M l  M r

< (llP^(S.x) + (I-P^^(I-T^)TxW + e + e)^ (by ( i )  and (v ))

= ( i lP „(S .x) ll^  + u( i-P  ) ( I -T  ) T x /  + f (e )  ( f ( e )  + 0 as e + U)
M l  M r

< (UP^tS-yi)» + MP^S-YgU)^ + (o ( I -P ^ )( I -T ^ )T y iU  + u ( I -P ^ ) ( I -T ^ )T y 2 i i ) ‘'  + f ( s )

p P
< (Uy^ll + 4e) + (8e + (l+ejBygW) + f ( e )  (s ince lly^ll < 2 and

UP^^^U < e , < 4e by ( i i )  . Since y^ e A by ( i i i )  ,

“ (I-T^)Ty^U < Be . «(I-Tp)Tll < 1 + e by (v ))

< ( BP XII + 5e)^ + ( i l ( I -P  )x l + l l e ) ^  + f (e )  (by ( i i i ) )
k k

P P
< SP̂ xU + U(I-P^)xU + g(e) (g(e) + 0 as e + U) .

= 1 + 9(e) •



Thus fo r  i  = 1 ,2 ,3 , BS. + I  -  TpTa = flS. + ( I-T r)Ta  < ( l+ g (e ))
 ̂ 1/p

Choose e so tha t ( l+ g (e ) )  < 1 + p and le t  K = T^T .
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1/P

Combining Theorem 9 w ith  the Harmand-Lima Theorem, we get the 

fo l lo w in g .

C o ro l la ry  1Ü. I f  X is  a closed subspace o f (IXp,)p 

(dim < “  , 1 < p < «) , then K(X) is  an M-ideal in  L(X) i f  and 

only i f  X has the compact approximation property .



CHAPTER I I  

M-IüEALS AND IDEALS IN L(X)

1. In troduc tion

As has already been stated in  the in tro d u c t io n  to  chapter I ,  many 

authors have studied M-ideal s truc tu res  in  operator algebras w ith  a 

view toward cha rac te r iz ing  those Banach spaces X fo r  which K(X) , 

the space of compact operators on X , is  an M-ideal in  L(X) , the 

space of continuous operators in  X . An extensive study o f the 

M-ideal s t ru c tu re  of a general complex Banach algebra w ith  id e n t i t y  

was done by Smith and Ward [3bJ.

O r ig in a l ly  an M-ideal was defined in  a real Banach space [ 2 ] .  

However, t h is  notion can be extended to  a complex Banach space [2 2 ] .

Smith and Ward [35 ] proved th a t  M-ideals in  a complex Banach 

algebra w ith  id e n t i t y  are subalgebras and th a t  they are two sided 

(a lgeb ra ic )  idea ls  i f  the algebra is  commutative. However, M-ideals 

in  a general complex Banach algebra need not to  be e i th e r  l e f t  ideals 

or r ig h t  idea ls  as the fo l lo w in g  two examples from [35 ] show.

Example 1. Let A be the Banach algebra o f 2 x 2  matrices 

w ith  the usual m u l t ip l ic a t io n  and norm defined by

(“  g) = max{ |a| + \ y\  , |g| + |6 |}

22
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Let 3nd Jg be respec t ive ly  the sets o f elements of the form

o 0  ̂ OB

‘y  o'  ‘ o « '  •

Then i t  is  eas i ly  v e r i f ie d  th a t  and are complementary

M-summands in A . However the equation

1 01,0 1 ,0 1 
1 0 0 1 "  ^0 1

shows th a t  0  ̂ is  not closed under m u l t ip l ic a t io n  from the r ig h t ,  

though both M-summands are e a s i ly  shown to  be l e f t  id e a ls .

By the standard d u a l i ty  i t  is  easy to  show th a t  M-summands are M-

idea ls  [4J .

Examples 2. Let A be the Banach algebra defined in  Example

1. Let B be the Banach algebra A x A w ith  m u l t ip l ic a t io n

defined fo r  a , b , c , d € A by

(a ,b ) (c ,d )  = (ac,bd) ,

and norm defined by

ii(a,b)u = max{Jail ,iiba} .

Let and Jg denote respec t ive ly  the sets of elements of the form
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and

« 0  I ' C  o')

Then and are complementary M-summands. However the equa­

t ions

and

0 1  1 0  1 0  0 1  1 0  1 0  

^̂ 0 l ^ ’ l̂ Ô ^^ l̂ Ô ’ Ô 1̂  ̂ ” ^̂ 1 Ô ’ ^l 0̂ ^

1 0  0 1  0 1  1 0  0 1  0 1  
^ 1̂ Ô ’ Q̂ l^^^^O l ^ ’ ^l 0̂  ̂ " ^ 0̂ l ^ ’ Ô 1 )̂

show tha t  ne ithe r  M-summand is  e i th e r  a l e f t  or r ig h t  id e a l .

Smith and Ward [35 ] also proved th a t  the M-ideals in a C -algebra 

are exactly  the two sided id e a ls .

Later FI inn [1 7 ] ,  and Smith and Ward [36 ] showed tha t  fo r  

1 < p < “  , is  the only n o n t r iv ia l  ideal in  L ( lp )  , and since

0 and L(&p) are both idea ls  and M -ideals, the M-ideals in  L(&p) 

are exactly  the two sided idea ls  in L(4p) .

In th is  chapter we w i l l  prove th a t  fo r  a un ifo rm ly  convex space 

X , every M-ideal in  L(X) is  a l e f t  id e a l .  Moreover i f  X* is  also 

un ifo rm ly convex, then every M-ideal in L(X) is  a two sided id e a l .  

This v e r i f ie s  a special case o f the conjecture o f Smith and Ward [35] 

th a t  i f  X is  a un ifo rm ly convex space then every M-ideal in  L(X)
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is  a two sided id e a l .

Expressed in  geometrical terms, a Banach space X is  un ifo rm ly  

convex i f  the mid po in t o f  a v a r ia b le  chord of the closed u n i t  b a l l  o f 

the space X cannot approach the boundary of the b a l l  unless the 

length of the chord goes to  zero. Formally, fo r  any Banach space X 

w ith  dim X > 2 , the modulus o f convexity 0^ ( e ) , 0 < e < 2 , o f X 

is  defined by

, > Ix+yU
Gx(e) = i n f { l  -  ^ ; x ,y  € X , Ixll = llyll = 1 , Bx-yll = e} .

A Banach space X is  said to  be un ifo rm ly convex i f  Sj^(e) > 0 fo r  

every Ü < e < 2 . In the d e f in i t io n  of we can a lso take the

infimum over a l l  vectors x , y € X w ith  BxB , ByB < 1 and 

Bx-yB > E [32; p. 60 ].

For 1 < p < » , and are un ifo rm ly  convex [1 0 ] ,  but 

obviously and L „  are not. We can eas i ly  see from the  d e f i n i t ­

ion tha t  a Banach space X is  not un ifo rm ly  convex i f  the boundary of 

the u n i t  ba l l contains a l in e  segment.

2. Some re su lts  re la ted  w ith  M-ideals in  complex Banach a lgebras.

This section contains some background m ate r ia l and several fa c ts  

due to  Smith and Ward [3 5 ] ,  [3 6 ] ,  which w i l l  be needed in  the  proof 

o f  the main theorem in  sect ion  3.

A Banach algebra A is  a real or complex Banach space A w ith  a 

m u l t ip l ic a t io n  having the fo l lo w in g  p rope rt ies ;
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( i )  x(y+z) = xy + xz and (y+z)x = yx + zx f o r  x , y , z € A 

( i i )  a(xy) = (ax)y = x(oy) fo r  any sca la r  a and x , y € A . 

( i i i )  Hxy» < HxllUyll f o r  x , y € A .

A Banach alyebra is  u n i ta l  i f  i t  contains the id e n t i t y  element e w ith

respect to  the m u l t ip l ic a t io n  and iieii = 1.

I f  A is  a Banach algebra, then the second dual A o f  A

becomes a Banach algebra w ith  respect to  the Arens m u l t ip l ic a t io n  which

is  defined in the fo l lo w in g  fashion [ 6 ] .  I f  y € A , f  € A* and 

F , G 6 A** , then l in e a r  fu n c t io n a ls  f ^  , F A* are defined by 

ty (x )  = f (y x )  and F^(x) = F(f%) fo r  x € A . Then Arens m u l t i p l i -  

ca t ion  GF ^ A is  defined by

(GF)(f) = G(Ff) fo r  a l l  f  € A

The canonical embedding of A in to  A is  an isom e tr ic  algebra

isomorphism of A in to  A** . Moreover, i f  A has id e n t i t y  e then 

the canonical image of e in  A** is  the id e n t i t y  element of A** .

In the res t o f t h is  sec t ion , A w i l l  denote a complex Banach 

algebra w ith  u n i t  e . In the dual space A* of A , the s ta te  space 

S is  defined to  be { f  € A* : f ( e )  = i f i i  = 1} . Obviously, t h is  is  

weak*-closed and i t  is  known [34 ] th a t  A* is  a lg e b ra ic a l ly  spanned by 

S . I f  J is  an L-summand in  A* w ith the complementary subspace 

O' ; th a t  is  , A* = J O' , then J and O' are a lg e b ra ic a l ly  

spanned by F = OHS and F' = O'H S , res p e c t iv e ly .  More s p e c i f i c ­

a l l y .
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Proposition 1 [3 4 ] .  F and F' is  a p a ir  o f complementary s p l i t

faces of S , and J and J ' are a lg e b ra ic a l ly  spanned by F and

F' , respec t ive ly .

An element h € A is  said to  be hermitian i f  f (h )  is  real fo r

each f  in  the s ta te  space S . I t  is  known [6 ;  p. 46] th a t  h € A
i th

is  herm itian i f  and only i f  De B = 1 fo r  a l l  real numbers t  . Of

i t h  “  ( i th )M
course, e is  defined by ) ' :—  .

n=0 n !

Proposit ion 2 [3 b ] .  Suppose A = t  {0} ( i  = 1,2) ,

P : A + is  the natural p ro je c t io n  onto and z = P(e) . Then
2

z is  herm itian and z = z .

For a Banach space X , a p ro je c t ion  P : X + X (continuous 

l in e a r  operator on X w ith  p2 = P) is  ca l led  an L -p ro je c t ion  

( re sp ec t ive ly  M -pro jec tion) i f  bxU = aPxB + Dx -  Pxii ( respec tive ly  

Bxii = max{aPxii , ax -  Pxa}) f o r  every x 6 X . I f  P is  an L -p ro ­

je c t io n  on X then range P and ker P are L-summands and P -  range

P gives one to  one correspondence between the set of a l l  L -p ro jec t ions  

on X and the set o f a l l  L-summands in X [4 ;  p. 12] . The same 

re la t io n  holds between M -pro jections on X and M-summands in X .

I f  P is  a p ro je c t io n  on a Banach space, then P is  an L-pro­

je c t io n  ( re sp ec t ive ly  M -pro jec tion ) i f  and only i f  i t s  a d jo in t  P* on 

X* is  M -pro jection ( re sp e c t ive ly  L -p ro je c t io n (  [4 ;  prop. l . b ] .

I f  J is  an M-ideal in  a complex u n i ta l  Banach algebra A , then

A* = J"*" fo r  some closed subspace of A* and i t  is  easy to

show th a t  A** = (J'*' SjJ'*’ ) *  = J'*"*’ , where = (J'*’ ' ) *  and
IJ. ' JL ' j. J. *  * *  JLX

J = (J ) = (J ) up to  ison ie try. Let P : A -*-0 be the
11

M -pro jection onto J and le t  z = P(e) ; then by propos it ion  2, z
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•** * *  
is  a herm itian p ro je c t ion  in A , th a t  i s ,  z is  herm itian in  A

and s a t is f ie s  z2 = z . We sha ll need the  fo l lo w in g  theorem o f  Smith 

and Ward in  the next sec t ion .

Theorem 3. [36] Let z be a herm itian p ro je c t io n  in  A** 

associated w ith  an M-ideal J in  A . Then, given e  > Q , z is  the 

weak* l im i t  o f a net (e ) in  A such tha t

B e II ,  a e - e  a , a e - e  u < 1 +  e .  a  a  ’ a

The fo l low ing  lemma is  e s s e n t ia l ly  due to  Smith and Ward [36 ] , 

although they re s t r ic te d  a t te n t io n  to  r ig h t  m u l t ip l ic a t io n  by a 

herm it ian  p ro jec t ion  z associated w ith  an M-ideal J in  A .

Lemma 4 . In the Banach algebra A , r ig h t  m u l t ip l ic a t io n  by

every element y in  A** is  a weak*-continuous func t ion  on A** and

i f  u € A** is  the w e a k * - l im it of a net {u^} in  A then, fo r  every
★

X in A , XU is  the weak - l i m i t  of {xu^} .

(P roo f.)  To prove the f i r s t  statement, le t  {Vg} be a net in
*  * *  ★ ■**

A with the weak - l i m i t  v in  A . I f  f  € A and y € A ,

then, by the d e f in i t io n  o f  Arens m u l t ip l ic a t io n ,

( v y ) ( f )  = v(y^) = I m  v^(y^) = l j m ( v ^ ) ( f )  .

*
Thus v^y vy in  the weak -topo logy and hence r ig h t  m u l t ip l ic a t io n  by
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y € A** is  weak*-continuous.

To prove the second statement, le t  u and {u^} be as above and 

f  Ç A* . I f  X € A , then

(x u ) ( f )  = x(Uf) = Uf(x) = u ( f  ) = l im  u ( f  )
T T A  ot a  X

l im  f(xu  ) = lim (xu ) ( f )  
a  a  a  a

and hence xu is  the weak - l i m i t  of {xu^}

3. M-ideals and idea ls  in  L(X) .

5x(e)
I t  is  known [32: p. 56] th a t  fo r  every Banach space X , g is

a nondecreasing func t ion  on (0 ,2 ]  . Thus i f  X is  uniform ly convex,

then Ô (e) is  s t r i c t l y  increas ing func t ion  on (0 , 2 ]  and i t s  inverse 
-1 ^

6 is  also a s t r i c t l y  increas ing func t ion  on (0 , 6^ ( 2 ) ]  .

Lemma 6 . Let X be a un ifo rm ly  convex space. Then there is  a

nonnegative real valued func t ion  f  on (0 , 2 ]  x (U,«) such tha t

l im  lim  f (e ,X )  = 0 , and f o r  every A , T in  L(X) with aTii , UI-TB ,
X+0 G+0

UI-2TU < 1 + e , «All < 1 , we have iT+XA(I-T)« < 1 + e + X f(e ,X ) ,

where I is  the id e n t i t y  map on X .

(P roo f) .  Fix e , X > 0 and y € X w ith Byll = 1 . I f  

BTyU < 1 -  X(l+e) , then «(T+XA(I-T)ya < 1 + e . So we assume th a t

iTyll > 1 -  X(l+£) . Set u = J iL
1 + e

y -  Ty 
and V = , , , then

Hu+vB = J L
1 + e < 1 and au-vi

y -2Ty
1 + e

1 + e 

< 1 . Since

u = %{(u+v) + (u -v ) }  and 2v = (u+v) -  (u -v) , we have
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ô^(a2vii) < 1 -  Bu» . Hence tua < 1 -  ô^(2ava) . By assumption,

1 -  X(l+e)
1 + £ < auB . Combining the  la s t  two in e q u a l i t ie s ,  we have

1 -  X (l+e) 1
— 1 + £----- < 1 -  6^ ( 2ava) and hence 6^ ( 20va) < (1 -   ̂ + g) + X .

-1 -1 1 
Since 5 is  an increas ing  fu n c t io n ,  a va < 2a va < 6^ (1 -  ^ + £ + X)

Then a(T+XA(I-T))ya < alyü + Xa(I-T)y» < 1 + e +
-1  1

X(l+e)5  (1 -  + X) . Hence aT+XA(I-T)a < 1 + e +

-1  1 -1  1
X(l+e)5^ (1 -  1 + £ + X) . Now le t  f (e ,X )  = ( 1+2 )6% (1 -  % + £ + X)

Now we are ready to  prove the main theorem by using the Smith- 

Ward argument [3 6 ] ,  but by rep lac ing  Clarkson's in e q u a l i t ie s  in  

, 1 < p < » , by the in e q u a l i ty  in  lemma 5.

Theorem 6. Let X be a un ifo rm ly  convex space and J an M- 

ideal in  L(X) . Then J is  a l e f t  ideal in  L(X) and i f  X* , the 

dual of X , is  also un ifo rm ly  convex then J is  a two sided ideal in 

L(X) .

1 '
(P roo f) .  Let J be the complementary subspace of the L- 

summand J'*’ in  L (X )*  ; th a t  is  , L(X)* = © J"*" , and le t
1 ' i '   ̂ *

F = J n S and F = J n S where S is  the state space in  L(X)
* *  i i  i i  ' i i

Let P be the M -pro jec tion  of L(X) = J ©,J onto J and

z = P(e) where e is  the id e n t i t y  operator on X . Then z

vanishes on and hence on F . S im i la r ly  e -  z vanishes on

f ' . For each $ € f ' , 1 = $(e) = <t>(e-z) + * (z )  = * ( z )  and hence 

z = 1 on f ' .
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i i '
F i r s t  we w i l l  show th a t  L (X )(e -z) = J . I n  view of 

p ropos it ion  1 and equations L (X )**  = (J"*" ) *  = ) *  =

, i t  su f f ic e s  to  show tha t  i f  A L(X)

w ith  a All < 1 then * (A (e -z ) )  = 0 f o r  a l l  (j) 6 F . Suppose the re  is

(j) Ç f ' and A E L(X) w ith  OAU < 1 such tha t * (A (e -z ) )  *  0 . By

m u lt ip ly in g  A by a sca la r  we may assume th a t  * (A (e -z ) )  = A , 0 < A < 1. 

Let A^ = z + A"A(e-z) € L (X )**  . Then by theorem 3 and lemma 4, A^ is  

the w e ak*- l im it  of a net { e ^ + X ^ ^ ( e - e J } ^  in  L{X) w ith  lea» , ae-e*! ,

He-e^M < 1 + e . By lemma b, ueg+A^Ate-eaja < 1 + e + A'^f(e,A^) and 

hence we have

lA^II < 1 + e + A'^f(e,A^) .

Since «(j)» = 1 and * (z )  = 1 , 1  + A^+l = *(4^)  < BÂ U <

1 + e + A^f(e ,A^) . L e t t in g  e 0 , we have A < 1 j g  f(E ,A^) , and

le t t in g  n + » , 0 < A < lim  lim  f (E ,A ")  = 0 . This is a con tra d ic t io n .
n+oo E+Ü ,

Hence <s>(A(e-z)) = 0 fo r  a l l  A f  L(X) and a l l  * € F , and we get 

tha t

i i '
L (X )(e -z )  5 J

i i '  *
Since J is  weak -c losed and by lemma 4 r ig h t  m u l t ip l ic a t io n  

by e -  z is  a weak*-continuous func t ion  on L (X )**  , we have 

L (X )** (e -z )  ^  J"*"̂  by weak*-denseness of L(X) in L (X )**  . Notice 

th a t  i f  I is  the id e n t i t y  map on L (X )**  then I -  P is  the
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* *  11 11 '  11 '
M-pro jection of L(X) = J %  J onto J and ( I-P )e  = e -  Pe

e -  z . Thus by replacing z by e -  z in  the above argument we get

tha t

* *  11 
L(X) Z G J

* *  11
From the above two in c lu s io n ,  we have L(X) z = J and 

L (X )** (e -z )  = . Since = L(X)**z  is  a l e f t  ideal in  L(X)** ,

J = L(X) is  a l e f t  ideal in  L(X) .

Next suppose tha t  X and X* are uniform ly convex. Let 

0 : L(X) + L(X*) be defined by a(A) = A* , the a d jo in t  of A . Then

o is  an i s ometry and a(AB) = a(B)a(A) f o r  every A , B 6 L(X) . I f

J is  an M-ideal in  L(X) , then a(J) is  an M-ideal in  L(X*) and

hence is  a l e f t  ideal in  L(X ) by the above re s u l t .  Then J = a ^a(J)

is  a r ig h t  ideal and hence a two sided ideal in  L(X) .



CHAPTER 111

AN EXAMPLE UF A SPACE X = FOR WHICH L(X) CONTAINS A CLOSED

TWO SIDED IDEAL WHICH IS NOT AN M-IDEAL IN L(X)

1. In troduc tion

As stated in  the in tro d u c t io n  to  chapter 11, M-ideals in L(&p)

fo r  1 < P < » are exactly  closed two sided idea ls  in  L ( tp )  . For
n-

X = w ith 1 < p , r  < “  and {n^-} a bounded sequence of

p o s i t iv e  in tege rs , K(X) is  an M-ideal in  L(X) by theorem 9 of 

chapter 1 or [ 8 ] .  Since both X and X* are uniform ly convex [1 2 ] ,  

by theorem 6 of chapter 11 or [9 ]  M-ideals in L(X) are closed two 

sided id e a ls .  Since X is  isomorphic to  and K(&^) is  the only 

n o n t r iv ia l  two sided ideal in L(Jip) [18] , K[XJ is  the only non­

t r i v i a l  two sided ideal in L(X) and hence M-ideals in L(X) are

exactly  two sided idea ls  in  L(X) .

In th is  chapter we w i l l  construct a space X = (}_£ i ) ^  fo r  which
n 

'P
L(X) contains a closed two sided ideal which is  not an M -iaea l.

The construc tion  of our space X was motivated by Benyamini and 

L in 's  paper [ b ] .  In f a c t ,  X w f l l  be constructed so tha t the 

Benyamini-Lin argument can be applied to  a ce r ta in  ideal in  L(X) .

We w i l l  prove th a t  fo r  th is  space X the closure Sp(X) of 

Sp(X) , the ideal of a l l  operators in L(X) which fa c to r  through a 

subspace of an Lp-space, is  not proximinal in  L(X) . As stated

33



34

before, since an M-ideal in  L(X) is  prox im ina l,  Sj.(X) is  not an 

M-ideal in  L(X) .

2 . Pre lim inary

For a Banach space X and 1 < r < <*> , Sp(X) w i l l  denote the 

space of a l l  operators in  L(X) which fa c to r  through a subspace of an 

Lp-space. Thus an operator I  in  L(X) belongs to  Sp(X) i f  there

ex is ts  a subspace E o f an Lp(i2) and bounded l in e a r  operators

A : X + E , B : E + X such tha t T = BA . I t  is  easy to  see tha t

Sp(X) is  a two sided ideal in  L(X) . Since the closure of any two

sided ideal is  also a two sided ideal in  L(X) , the c losure Sp(X) of

S (X) is  a two sided ideal in  L(X) . 
r

On S^(X) , we put a norm which is  defined fo r  I  in  Sp(X) by

Sp(T) = inf{UAUIIBII : I  = BA , A € L(X,E) , B € L(E,X) 

and E is  a closed subspace of an Lp-space}

where the infimum is  taken over a l l  possible fa c to r iz a t io n s  of T 

through subspaces of Lp-spaces.

In th is  chapter we w i l l  heavily  use the fo l low ing  lemma which is  

due to  F ig ie l  and Johnson.

Lemma 1 [1 6 ] . Suppose 2 < p < = , T : 2^ + w ith
K 1/p

iUu < 1 and Averaye{ii.^ ± Te^ii} > 6k , 6 > ü , where the average 
-  i =1

is  taken over a l l  choices of + and -  s igns. Then there ex is t
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p o s i t iv e  constants c = c ( p , r ,ô )  and a = a (p , r )  such tha t 

S^(T) > ck“  .

Lemma 2 . Suppose 1 < p r  < ® and i t  is  fa lse  th a t

1 < r  < p < 3 . Then we have d ( I  , S^(X)) = in f{B l-T u  : I  € S^(X)} > 1

where I is  the id e n t i t y  map on X = ( )_ t  ) .
k=l P

(P roo f) .  I f  d ( I  , S^(X)) < 1 then there is  F 6 S^(X) such tha t 

uF-lu = 1 -  e , £ > Ü and F fac to rs  through a subspace of L

"  k ^  F ^  "  k
^k=l*P^r ^ ^k=l*P^r

Thus liST-lu = 1 -  e .
”  k k

Let H|̂  be the p ro je c t ion  from ( i  & ) onto SL , then

n (F| k) has a fa c to r iz a t io n
k £p

E s  Lp

k
4
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where T,  ̂ = and S,̂  = H|̂ S . Then OS^T^-Ik» < 1 -  e , where I|^
P

is  the id e n t i t y  map on Zp . Thus S^T^ is  in v e r t ib le  and by the 

Neumann series expansion of (S|^T|^)”  ̂ , we have the estimates

W ' ‘  T T i i r T )  '  7

known

S (I, ) < US liliT, (S, T, )"^a < «SIIIITII7 . 
r  k k k k k ^

To draw a c o n t ra d ic t io n ,  we w i l l  show tha t  sup S. ( I . )  = = . I t  is
k K K

th a t  £p cannot be ( isom orph ica l ly ) embedded in Lp under the

hypothesis on p and r  [3 ; p. 3Ü6], [2 6 ] .  So &p's cannot be 

un ifo rm ly embedded in Lp .

Indeed, i f  £p ‘ s can be un ifo rm ly embedded in Lp(u) fo r  some 

measure u then there e x is t  p o s i t iv e  numoers a , o > U and embed­

dings T^ : + L^(p) such tha t  fo r  every k = 1 ,2 ,3 . . .

aiixil < uTj^xll < buxll fo r  any x € Zp

By tak ing  u l t r a  product of {T|^}"_^ , we have [32; p. 120] tha t

where y  is  an u l t r a f i l t e r  on N , the set of a l l  p o s i t iv e  in tegers .

By d e f in i t io n s ,  fo r  any (x ^ )^  in  (£ ^ )^  , =

(TkXkV^ , u = l^m Ux^u and u(T|^X|^>j^a = l^muT^x^u . Hence we 

have
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a i i ( x ^ ) ^  Il < “T (x ,^ )^ u  < b u ( x , ^ ) ^  ,

tha t  i s ,  T is  an embedüing of in  ( L ^ (u ) ) ^  . Since

(Lp),^ is  also an Lp-space [32; p. 271] and (2^ ) ^  contains an 

isom etr ic  copy of £p , T y ie ld s  an embedding of in to  , which 

is  a co n tra d ic t io n .

Going back to  the main stream, fo r  any 6 > 0 and each k , 

there is  a fa c to r iz a t io n

Lp

\ /  ' \
/

k
t p ------------------------- > l p

Ik

so th a t  iiA| îiiiB|^u < Sp(I^) + ô and uB^u = 1 . Since A|̂  is  an 

embedding supuA^u = = , and hence Sjjp Sp(I%) = = .

3. Main theorem

For k = 1 , 2 , 3 , . . . ,  m = 1 , 2 , 3 , . . . ,  and 1 < i < m , le t

^k m i “  : l < s < k m , l < t < k , s  and t  are in teg e rs }  U

{ (1 ,0 ) }  be a measure space with u ( ( l , 0 ) }  = ^  and p { ( s , t ) }  = “ ^  i f
km

( s , t )  t  (1,0) .

For nota t iona l convenience we denote L (o, .) , p > 2 byp k,m,i

X (k ,m ,i)  , the in d ic a to r  func t ion  of { (1 ,0 ) }  by e (k ,m , i)  and the 

in d ic a to r  func t ion  of { ( s , t ) }  by e ^ (k ,m , i )  i f  ( s , t )  *  (1,0) .5 5 L
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So {e : 1 < s < km , 1 < t  < k} U {e (k ,m , i ) }  is  the natural
S

basis of X (k ,m , i)  . Usually the dependence on k , m and i  w i l l  be 

supressed.

Let ^   ̂ be the p ro jec t ion  on X (k ,m ,i)  defined by

1 km
Pk,m ,i(e) = 0 and P k ,m , i (e s , t )  = ^ u . t  '  We define a l in e a r

k k
Sk.n.1

= “  • “ e e as i ly  see th a t  both and 5% ^ , ,

have norm one.
~ m “  ~

Let X(k,m) = i l  X( k, m, i ) ) n and X = ( I  X(K,m))_ , 2 < p < ® ,
1=1  ̂ k,m=l

l < r * p < " .  Let P : X + X and S : X + X be the d i re c t  sum of

fa m i l ie s  {Pi<,m,i^ and respec t ive ly .  Since each X(k,m,)

is  isom etr ic  to  ji'^^m^+m x is  isometr ic  to  ( V ^k^m^+m)
P k ,m = l  P r

Our goal is  proving th a t  S^{X) is  not proximinal in  L(X) by 

showing th a t  P + S does not have a best approximant in S^(X) .

Proposit ion 3 . a(P + S , S^(X)) = 1 .

(P roo f) .  I t  s u f f ic e s  to  show th a t  d(P + S , Sp(X)) = 1 . For a

f ixe d  n , de f ine  an operator Sp on X so th a t  Sp is  the d i re c t

sum of operators T, . on X (k ,m ,i)  where T, . = S, . and 
^ k,m ,i k ,n , i  k ,n , i

Tk.m.i = “  i f  ”  *  "  ■

From the d e f in i t io n  of Sp , i t  is  easy to  see th a t  the range of 

Sp|X(k,n) (Sp re s t r ic te d  to  X (k,n))  is  isom etr ic  to  s,^ . Since

is  isomorphic to  , Sp|X(k,n) fac to rs  through .
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Thus i t  fo l low s th a t  S fa c to rs  through £ = (T &") , i  -sum of
n r  r r  r

i n f i n i t e l y  many copies of , and hence ? Sp(X) .

Now we claim tha t  HP + S -  S^: < 1 + . To prove the c la im ,

observe tha t

UP + S -  S^u = sup{uP + S -  S ) |X ( k .m , i ) i }

where the supremum is  taken over a l l  k , m = 1 , 2 , 3 , . . . ,  and 

1 < i < m , and

(

UP, .a i f  m < Nk,m,i

To prove th a t  uP. _ . + SL ^ .a < 1 + (—)^ fo r  a l l  m > N , l e t  k ,m ,i k ,m ,i
B = { (1 ,0 ) }  and A = { ( s , t )  € 0^ ^   ̂ : 1 < s , t  < k} . For

f  f  X (k ,m ,i)  , le t  f^  = f  |y and f^  = f  -  . Then Pk^ni,i^ i ^

Sk,m ,if2  = U '

Since 'P^ ^  ^a = 1 and Pj  ̂ ^fg is  constant on each column of

O k,m ,i\b  , wiAPk,m,if2" = (F )^^ ’̂ '“ Pk,m ,i^2“ < , where 1a is  the

in d ic a to r  func t ion  o f A .

Since S,̂  ^  ^ f^  and (1 -  l^^P^ ^ ^^2 have d is jo in t  supports,

:S u ,m , i '  =  ̂ “ P k ,m ,i“ = 1 . we have

'k
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Hence, fo r  f  Ç X (k ,m , i ) ,

(1 + .

1 1/p 1 1/p
Thus fo r  m > N , UP . + S . u < 1 + (ïïT) < 1 + Cü) and the

k,m,i k,m,i
proof of the claim is  complete.

Since € Sp(X) , b_y le t t in g  N + = , we in fe r  th a t

d(P + 5 , Sp(X)) < 1 .

To prove the reverse in e q u a l i ty ,  notice th a t  P + S re s t r ic te d

km k
to  the span{ 2 e ^ : t  = l , 2 , . . . k }  , which is  isom etr ic  to  , acts 

s=l P
as the id e n t i t y  opera tor. Thus P + S acts as the id e n t i t y  operator on

“  k
and isom etr ic  copy of ( I^^p )p  • So by lemma 2 we have

d(P + S , Sp(X)) > 1 and the proof of p ropos it ion  3 is  complete.

Lemma 4. Let ^  ̂ be the p ro jec t ion  of X onto

k km |( ---------
span{ I  e . ( k , m , i )  , I  e^ p (k ,m , i)  . I f  T is  in S (X) ,

s=l s=k+l

then lim  sup mjn Om̂ ^  ̂ Q Te(k,m,i)u = 0 . 
m-*-® k l<i<m k,m,i
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(P ro o f) .  Obviously i t  su f f ice s  to  prove the lemma fo r  T in  

Sp(X) with 8TII < 1 . I f  the statement is  fa ls e  then there is
1/p

Ô > 0 such th a t  sup min im Q. _ ^Te(k,m,i)H > 26 fo r  i n f i n i t e l y  
K <m ^ >'"> *

many m . F ix such an m and choose k = k(m) so tha t

1/p
Hm Q .Te (k ,m ,i)y  > 5 fo r  a l l  i  = 1 , 2 , . . . ,m  .

K jïT! J  i

111 i;] 1/p
The map ij; : & span{e(k,m,i ) } .  defined by e. + m e (k ,m , i)

p 1=1 1
( i  = 1 , 2 , i s an is  omet ry onto where {e-j}^_^ is  the un it

vector basis of .
P ^

Since vectors in  {Q .T e (k ,m , i) } ._  have d i s jo in t  supports,

span{Q .T e (k ,m , i ) } ._  is  isom etr ic  to  a subspace of and hence
*

the map 5 defined by e -*• Q .Tip(e.) can be viewed to  have
1 k ,m ,i 1

m 1/p
values in . Since iiSe^n = um ^ ^Te(k,m,i)w > 6 fo r  each

i = 1 , 2 , . . . ,m  and since has cotype p w ith  constant 1 [31;

p. 73 ],  we have

HI HI n l / o  1/D
Averay{B \  ±Se,u} > (u ^ aSe-ii^) > 6m

-  i = l  i = l  '

Since iiSii < 1 , we conclude by the Fiyiel-Johnson lemma tha t  there 

e x is t  p o s i t iv e  constants c = c (p , r ,6 )  and a = a (p ,a )  such tha t

Sp(S) > cm° .

n
Since S = ( }̂  Q )Tij  ̂ and is  an isometry, we get tha t 

i = l  k,m,i
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SJS) = S ( S Q T) < S (T) and so S (T) > S (S) > cm= fo r  I I j K > n i , i  I r  r
i n f i n i t e l y  many m . Since T Ç Sp(X) t h is  is  a c o n t ra d ic t io n .

Theorem 5. P + S has no best approximant in  S^(X) .

(P roo f) .  Suppose P + S has a best approximant T in  Sp(X) , 

then by p ropos it ion  3 üP + S -  Ta = 1 . In view of lemma 4, we don 't  

lose anything by assuming, fo r  nota t iona l convenience, tha t  fo r  a l l  k 

and a l l  m ,

1/p 1
am Q .Te(k,m,l)a < -  . 

k,m,i 4

In the sequel we w i l l  w r i te  ^ ^ as ^  '  So the above 

in e q u a l i ty  is

1 1 1/p
UQ̂  J e ( k ,m , l ) a  < . (*)

For each k , m and e = w ith  = ±1 , we consider a

Rademacher func t ion  r^^k^m the range of defined by

k km
k m " I  E L e  (k ,m , l )  . Since the rank of Q is  2k , by 

^=2 t  5=1 s , t  K,m

the Figiel-Johnson lemma and an approximation argument, we get th a t  fo r

any 6 > 0 , there is  a k(6) such tha t
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fo r  al 1 k > k(ô) and a l l  m .
~ 5

Indeed, there e x is ts  T in  Sp(X) such th a t  BT -  Ta < j  . So

*Qk,mT -  Qk,mTB < J  and ^T) < S^(T) fo r  any k and m . I f

( * * )  is  v io la ted  then we get tha t

fo r  i n f i n i t e l y  many k and some m = m(k) . Notice th a t  the map

1/p km k
e-j k 2 Gg ^ (k ,m , l )  defines an is  omet ry from onto

km  ̂ k
span{ 2^65 i ( k , m , l ) } i _ i  . Since the range of ^ is  isom etr ic  to

2k
Sip , applying the F ig ie l-Johnson lemma as in  lemma 4 we yet th a t

S flT ) > Sr(Ok.mT) '

f o r  i n f i n i t e l y  many k . This is  a con trad ic t ion  and so ( * * )  is  

tu  re.

For a f ixed  vector x € X (k ,m ,l)  w ith  the expansion 

X = 2 Xg ^ + Xye(k,m ,l)  w ith  respect to  the natural basis fo r

1 k km
X (k ,m ,l)  , we have <rE^k,m , %> = J ’'e.k.ni^ du = ~  I  \  2 %

k m ^ 5=1 ’
and so
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1

(Average|<re,k,m . x> l^ )^  ^

1
1 1  k km ? 2

1

km

k^m
i  ( ^ |x_ |2)km)^ by Holder's  in e q u a l i ty

2-1 t = l  s=l

i _ ,  V _1_, . , 2\2 _
O I

k^m

where WxUg is  the L2-norm of x .

I t  is  easy to  see tha t  <r^ ^ ^  , x> = <r^ ^ ^ » ^k m^  ̂ hence from

the above in e q u a l i ty  we have

2 1/2 1
(Avera3e|<r^_^_^ , Q, ^*>1 ) < ( . . . )

Now we w i l l  show tha t  aP + S -  Tu > 1 to  f in is h  the proof of 

theorem b.

For each p o s i t iv e  in teg e r  n , choose a p o s i t iv e  in tege r  k(n)

such tha t  k (n+ l)  > k(n) and fo r  k = k(n) the l e f t  hand sides of
“ 1 2 “ I

( * * )  and ( * * * )  are smaller than (4n) and (4n Bxii ) respec t ive ly .
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Then we have

and |<rg.,k(n),m ♦ Qk(n),m*>l < f o r  a l l  m and some e = e(n,m)

I f  we set g = ^e (k ,m ,l)  , x > 0 , then

ugli = (1 + xP and + S -  T)gll =

’*’'e,k,m " ^k,m'*^^e,k,m " T)e(k,m,l) ll

> 'rs,k,m + -  T )e (k ,m , l ) ,  -

>  " r e , k , m  +  A Q t , m ( S  "  T l e t k . m . l ) , ^  -

> (1 + X%:Q̂  ^(S -  T )e (k ,m , l ) |Z  -  X<rg^k,m > " T)e(k,m,l))>)^^P

“^k,m"^^e,k m” *

Since ^Te(k ,m ,l) i i  < by (* )  , by Chebyshev's

in e q u a l i ty  we have

Since q,  ̂ ^ ^e (k ,m ,l)  = , the in d ic a to r  func t ion  of A , i f  we set
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C = { ( s , t )  e A : IQ^ ^ T e (k ,m , l) |  < then u(C) > y(A) -  ^ 4m

and hence we have

'Qk,m(S -  T )e (k ,m ,l) i !2  > j ^ | l  -

1 ? 3 1
> / [ ( z )  OW = Ï6  m '

Thus

nP + S -  m > Tim DQ, , , (P + S -  T)ii 
n k(n),m '

> 1 fo r  small X .

This is  a con trad ic t ion  and the proof of theorem b is  complete.
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