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THE BLIND MEN AND THE ELEPHANT 

by John G. Saxe

It was six men of Indostan to learning much Inclined!
Who went to see the Elephant (though each of them were blind), 

That each by observation might satisfy his mind.

The First approached the Elephant and happening to fall
Against his broad and sturdy side, at once began to bawl:

"God bless me! but the Elephant is very like a wall!"

The Second} feeling of the tusk, cried, "Ho! what have we here 
So very round and smooth and sharp? To me 'tis very clear 

This wonder of an Elephant is very like a spear!"

The Third approached the animal and happening to take
The squirming trunk within his hands, thus boldly up and spake; 

"I see," quoth he, "the Elephant is very like a snake!"

The Fourth reached out his eager hand, and felt about the knee.
"What most this mighty beast is like is mighty plain," quoth he; 

"’Tis clear enough the Elephant is very like a tree!"

The Fifth, who chanced to touch the ear, said "E'en the blindest man 
Can tell what this resembles most; deny the fact who can,

This marvel of an Elephant is very like a fan!"

The Sixth no sooner had begun about the beast to grope,
Than seizing on the swinging tail that fell within his scope,

"I see," quoth he, "the Elephant is very like a rope!"

And so these men of Indostan disputed loud and long,
Each in his own opinion exceeding stiff and strong,

Though each was partly in the right, and all were in the wrong!

ii
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I. INTRODUCTION

The many publications on the stability of shells demonstrates that 

uncertainties still exist in this area. It is well known that 

structures of this class often collapse at load levels which are less 

than those predicted by linear instability theory. The advent of the 

finite element method has drawn renewed interest in this area, since the 

inherent nonlinearities in buckling problems can be modelled effectively 

by this method.

Various types of instability phenomena are observed in practice, as 

shown by means of the Load - Displacement curves in Fig. 1. In (a), the 

path OB is the fundamental path and AC is the secondary or bifurcation 

path. The point at which the two paths intersect is known as the 

bifurcation point. The transition from the primary equilibrium path to 

the bifurcation path is called bifurcation buckling. The post buckling 

path may be ascending, as in (a), or des.icending, as in (b). These 

curves are valid for "perfect" structures. If the structure has initial 

imperfections, then the path followed would be indicated by the dashed 

lines. In these paths there is no bifurcation point. The structure 

with a rising postbuckling path will be able to endure loads higher than 

the bifurcation load. The imperfect structure in (b) will have lower 

strength. Structures of the latter type are termed "imperfection 

sensitive" and the maximum load attained is called the "limit point".
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Figure 1 Load-displacement paths.
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A non-bifurcating load-displacement behavior may also occur for 

structures devoid of imperfections, as shown by path (c) in Fig. 1. In 

such cases a limit point (G) is encountered.

The load-displacement curve is dependent upon material properties 

of the structure as well as its geometry. Inelastic material behavior, 

residual stresses, unknown boundary conditions, Initial imperfections, 

and load interactions further complicate the problem of Instability.

There are three types of buckling of thin cylinders corresponding 

to three types of membrane stresses: axial and circumferential normal

stresses and shear stresses. To cause buckling the normal stresses 

must, of course, be compressive. Loading conditions that cause these 

stresses are axial compressive load, pure bending producing axial 

compressive stress and uniform circumferential stresses produced by 

uniform external pressure or internal vacuum, and uniform shear stresses 

produced by simple torsion. Combination of these stresses also occur 

such as during the laying operation of offshore pipelines, which 

involves external pressure, bending moment, and axial stress.

The present study is limited to unstiffened circular cylinders. 

The diameter to thickness ratio is a key factor in determining the 

buckling behavior of such structures. Thin shells buckle in the elastic 

range; the limiting D/t ratio for steel cylinders to buckle in the 

elastic range is not known accurately but is reported by some 

Investigators to be in the vicinity of 250. Elastic buckling has been 

analyzed by classical shell theory. The most common approach was to use 

Donnel's, Timoshenko's or Flugge’s equilibrium equations for thin shells



4

and assume that the shape of the deformation curves could be modelled by 

trigonometric functions. In other words, solution of three partial 

differential equations in three unknowns: the displacements u,v,w.

This approach was used in most classical works, and several loading 

cases have been treated in this manner, viz. axial loads, 

internal/external pressure, lateral pressure, and combined external 

pressure and axial load.

It was first pointed out by Brazier in 1927, that the cross-section 

of thin tubes subjected to bending, ovalizes before buckling. 

Therefore, these tubes collapse before developing their full moment. 

This also makes the momont-curvature relationship nonlinear. The D/t 

ratio at which significant ovalization takes place was determined 

experimentally by Ades [33] to be in the range 10 - 50. Other studies 

disagree with this value [44].

Stresses in thick cylinders reach the plastic range before buckling 

occurs. The problem is further complicated by the fact that one part of 

the material may be unloading into the elastic range while another is 

loading beyond the yield point. This occurs if it is assumed that the 

axial load remains constant, after reaching the plastic range, while 

bending is initiated. In classical studies, Young's modulus was simply 

replaced by the tangent modulus or the reduced modulus in the formulae 

derived from elastic analysis. More recent studies used a flow rule and 

a hardening rule to relate stress to strain and substituted these

numbers in square brackets are reference numbers listed at the end of 
this dissertation
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relations in the equilibrium relations used for deriving the modified 

Donnel equations.

Another mode of failure that becomes important at very high D/t 

ratios is local buckling. The final buckled configuration involves a 

localized deformation pattern (as shown in the Fig. 2) in contrast with 

a periodic deformation pattern over the entire structure that is 

associated with the gross buckling of the entire column.

The problem of buckling involves large displacements, large 

strains, and nonlinear material behavior. It is difficult to take these 

nonlinearities into account by using analytical methods. One must then 

resort to numerical methods. In the last decade, there has been a 

considerable amount of work done in the area of nonlinear finite element 

analysis. However, when formulating the finite element problem one must

keep computational capability and efficiency in mind. Reliable and

efficient representations of the curved shell element are first required 

and this has not been an easy task due to conditions such as

Interelement displacement continuity.

Nonlinear finite element analysis can be divided into three 

categories: (i) materially nonlinear problems only, (ii) large

displacements but small strains, (ill) large displacements and large 

strains. Most buckling problems are a combination of the first two. 

Nonlinear problems can be formulated in three different ways:

generalized potential energy, hybrid stress, and mixed formulations. In 

the generalized potential energy approach, the element stiffness
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Figure 2 Localized buckling patterns.



matrices are formed and summed to give a global stiffness matrix, but 

without specific attention to the conditions of interelement continuity 

of displacement. Constraint conditions are then written, whose purpose

it is to enforce the'' requirements of lnferelement displacement

continuity. The constraint conditions are added to the potential via 

Lagrange multipliers or penalty functions. Mixed variational principles 

are functionals written in terms of two or more fields of structural 

mechanics. They permit the independent approximation of the respective 

fields which appear in the variational integral. Each field is 

approximated in terms of its physical values at the node points, such as 

stresses or displacements. Hybrid element formulations are special

forms of energy functionals. They are developed from the conventional 

energy functionals by treating the element as an Isolated, complete 

structure during the formulative phase. One or more of the structural 

behavior parameters (e.g. stress, displacement) is approximated in terms 

of generalized parameters (non physical) while the others are

approximated in terms of node point physical parameters, ,such as forces 

or displacements. The generalized parameters are eliminated at the 

element level through application of the stationary condition.

Few analytical studies have included the effect of combined loads. 

Some authors have suggested that the critical buckling stress be 

calculated for each mode separately and then the interaction of these 

loads determined by means of empirical formulae. With the finite 

element method, it is possible to consider complex loading. However, 

most researchers have assumed a specific order in which the loads are 

applied.
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II. OBJECTIVES OF STUDY

The objective of this study was to determine the maximum allowable 

safe loads for cylinders, subjected to complex combined loads, using the 

nonlinear finite element method. The study is restricted to straight, 

hollow cylinders of circular cross-section, ranging in D/t ratio from 5 

to 250. The formulation should include linear elastic as well as 

elastic-plastic material behaviors, which can be encountered in the D/t 

range giver above. Few studies have dealt with combined loads and none 

have studied the influence of the order of loading and nonproportional 

or nonlinear loads. This study presents a formulation which can model 

any combination of external/internal pressure, axial loads, bending 

moments, and uniformly distributed lateral pressure. All loads can vary 

in any manner, can increase or decrease, linearly or nonlinearly, 

independently of each other. It is known that the load-displacement 

relationship is nonlinear for large displacements and nonlinear material 

behavior. Therefore, the loading history can have a considerable 

influence on the failure mode and limit point loads. It is here that 

this study makes its most important contribution.

The study also develops an elastic-plastic, large displacement, 

degenerated cylindrical shell element by extending the work of Bathe and 

Bolourchi [71].

There are no 'fool proof' solution techniques for nonlinear
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elements that guarantee convergence for all problems. This Is 

especially true in the vicinity of limit points. This study examined 

some of these methods and used a combination of two commonly used 

methods. Various measures and indices were defined and used for 

speeding convergence, sensing the approach of limit points, and 

detecting the limit points.
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III. OVERVIEW OF ANALYSIS TECHNIQUES

In the present study, the variational formulation of the Potential 

Energy principle is used. The load is assumed to be applied in several 

steps, thereby allowing linearization of the above governing equation in 

each loadstep. Coordinates and displacements are measured in a Total 

Lagrangian coordinate system. An iterative solution procedure is used 

in each loadstep to obtain convergence. Use of the Second Piola- 

Kirchhoff stress tensor and the Green-Lagrange strain tensor permits 

large rotations.

Many shell elements have been developed by previous investigators. 

In this study the degenerated shell element developed by Bathe and 

Bolourchi at MIT [71] is modified and extended to yield a large 

displacement, degenerated, elastic-plastic, cylindrical shell element. 

The element is parabolic (eight nodes per element) with five degrees of 

freedom per node (three translational, two rotational). Gauss 

quadrature is used to perform reduced numerical integration. These 

elements are based on the continuum strain-displacement relations and 

are degenerated using Kirchhoff's assumptions for shells; they are very 

general as no specific shell theory has been used. The elements can 

model linear-elastic or elastic-plastic deformations under membraqe as 

well as bending stresses. A comparison of non-degenerated continuum 

elements was made with degenerated shell elements under various types of 

loads.
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A quasi-Newton scheme Is used for solving the nonlinear equations,

with the stiffness matrix being updated only once per loadstep to reduce
Tcomputations. The linear equation solver Is based on LDL 

decomposition; a skyline algorithm is used [46].

Several alternative measures of structural 'softening' have been 

proposed here and tried. These are used to predict the approach of 

limit points so that solution strategy may be changed before the 

solution goes unstable. A new use for these softening parameters is
Valso proposed: when the softening parameter is below a certain

linearity index the problem may be treated as linear, eliminating the 

need for unnecessary iterating. Once the stiffness parameter falls 

below a critical value (stability criterion), displacement control may 

be used to find the limit point. A necessary condition for this is that 

the determinant of the stiffness matrix change sign. This indirect 

method can be used, with displacement control, to find the limit point.

Plasticity relations are based on the von Mises yield criterion, 

isotropic hardening rule, and the incremental theory of plasticity. 

These choices were made because the primary aim is to model buckling 

behavior of steel pipes.

A computer-program, called 'BUCKS. OSU' was written to validate the 

above ideas. A special purpose mesh generation program 'PREP' and a 

graphics model checking program 'DSPLAY' are used for preparing the data 

input. The hardening indices, required in elastic-plastic analysis, can 

be obtained from curve-fitting experimental data of a tension test.



This may be done using program 'SSCURV' for the three material models 

used: Bilinear, Exponential, and Ramberg-Osgood.

Runs of the above program were made under various combinations of 

loads. First, single loads were considered this included stability 

analysis under pure pressure and under pure bending. Combinations of 

external pressure and bending moments were also considered and the 

results compared to Battelle's experiments [43].
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IV. LITERATURE REVIEW
\

Investigators have used many different tools for studying the 

complex problem of shell stability. Some of these are:

i) analytical

ii) experimental 

Hi) finite elements

A survey of each of these follows.

Analytical Studies

Classical works, such as [2]-[4] have considered the buckling of 

beam-columns i.e. columns under combined axial load and lateral 

distributed load. Euler's formula is a special case of this. Buckling 

of thin shells has been analyzed as follows: some form of shell

equilibrium equations are written for a given mode of loading. 

Substituting linear elastic constitutive relations and kinematic 

relations into the equilibrium equations yields a set of partial 

differential equations in the dependent variables u, v, w, the 

translational displacements.

As an example, Flugge's shell equations [10] can be written as 

(neglecting curvature effects)



where x , r are the cylindrical coordinates
R B shell radius of curvature

t a shell thickness
V a Poisson's ratio

E a Young's modulus

k a t 2/12R2

D a Et/ (1 - v2)

’i a components of normal pressures

These equations are solved for a given set of boundary conditions, 

most cases* the solution is assumed as a trignometric function of

In

the



where are the displacements, x^ the coordinates, 4> the angle in
cylindrical coordinates, and m, n are constants.

Examples of the above approach can be found in Timoshenko and Gere 

[2] where solutions for a few simple cases are presented. These include 

pure axial load, pure external/internal pressure, and lateral 

distributed load. Brush and Almroth [3] also present a similar approach 

using Donnel's shell equations. For combined external pressure and 

axial load, Brush and Almroth [3] used membrane equations and 

trignometric deflection functions to obtain the critical load.

Brazier [8] was one of the first to study the effect of second 

order terms on the flexure of thin cylindrical shells. He pointed out 

that St. Venant's solution was not valid for large displacements and 

that the moment-curvature relation becomes nonlinear at higher loads 

(Fig. 3). This happens because the cross-section of an initially 

circular shell ovalizes as shown in Fig. 4. The structure is, 

therefore, subject to limit point buckling. Brazier obtained an 

expression for the limit point load and ovalization by differentiating 

the strain energy with respect to the midsurface curvature, assuming 

circumferential inextensionality i.e.



St.Venant's 
Solution

M

Brazier’s 
Solution

1/P

Figure 3 
*

Moment-curvature relation.
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Figure 4 Ovalization.
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The analysis was limited to the elastic range.

Stresses In thick shells can reach the plastic region before the 

onset of buckling. Thus, the equations discussed so far would not be 

applicable. Engesser was the first one to address this problem back in 

1889. He suggested that Young's modulus be replaced by the Tangent 

Modulus In Euler's formula. This was criticized for not taking into 

account the unloading due to bending in a column that was under pure 

compression until it reaches the plastic range. This, appears to have 

been an Important issue three decades ago and a great deal of discussion 

can be found on this subject. A compromise was found in the 'Reduced 

Modulus' formula. Shanely [24] shows that the Engesser load represents 

a lower bound since no bending is assumed to take place and that the 

Reduced Modulus formula represented an upper bound, since it requires 

infinite lateral deflection.

In a later paper, Shanely [14] developed an inelastic column theory 

based on the assumption that bending takes place simultaneously with 

increase in axial load. Thus, it is possible to have bending without 

strain reversal. Derivation of the equation was based on a two-flange 

column and the results obtained were generalized. It was concluded that 

the tangent modulus formula gives the maximum load at which an initially 

straight column will remain straight; the column load may exceed this 

limit but it cannot be greater than the reduced modulus load.

Gerard [26] derived an expression for the buckling load of thin 

cylindrical shells based on linearized Donnel equations and the
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deformation theory of plasticity. These were valid for axial loads 

only. Batterman [27] used an incremental ^  plasticity theory instead, 

to determine the axial buckling loads.

Croll [11] has analyzed the elasto-plastic buckling of cylinders 

under combined external pressure and axial load. An expression for the 

hoop strain was derived from membrane theory and substituted into the 

Donnel equilibrium equations. Von Mises criterion was used to predict 

yielding. A numerical technique was used to calculate a lower bound for 

the critical pressure.

Reddy [15] considered the plastic buckling of cylindrical shells 

under pure bending. The incremental Jj theory was used assuming

isotropic hardening. Reddy contended that pre-buckling ovalization is 

negligible in the plastic range , so a linear variation of axial strain 

was assumed. The stress-strain relations were substituted in the 

uncoupled Donnel equations to give the following differential equation 

in the unknown w, the axial displacement:

L {—  tc ~  + 2(c + c ) -----^ —  + c99 - 1 ^ —] -  a
12 11 3x* 12 13 r B ;x2ae2 22 x0 3x2

+ (C11 C22 - <122> 7 T  " 0r dx

—  L -  Cn  ^  +  ^  ( c u  ^  -  2 c i2  .« » )

+  7 ^  < 4 - 4 >

* This is supported by references cited in [15]
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where Cij are the elements of the constitutive matrix evaluated from

♦ 6ii v

f(0 ) =e
3(E/Et - l)/2 

E/Et - (l-2v)/2

for O < a e y

(4.5)

r = radius of cylinder 

x,0 = cylindrical coordinates

A trignometric function was assumed for w and the equation solved by an 

iterative technique.

Tamano, et al [19] developed a theoretical analysis for the 

evaluation of the plastic collapse of ideal pipes under pressure. 

Statistical regression analysis was used to obtain an empirical formula 

from the experimental data.

Malik, et al [23] used Flugge's equations instead of Donnel's. A 

mixed displacement function was used to solve the equation thus removing 

the restrictions placed by pure sine or cosine functions on boundary 

conditions. However, the only load case considered was of lateral 

pressure.
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Bynum [28] surveyed several analytical formulae for elastic and 

plastic shell buckling. It may be noted here that none of the formulae 

surveyed were for combined loads.

Tugcu and Schroeder [32] considered the plastic buckling of pipes 

under pure bending. The material was modelled as rigid, linear work - 

hardening, using the deformation theory of plasticity. Thin shell 

theory assumption of zero radial stress was used. The strain energy was 

expressed in terms of the strains only by using the constitutive model 

developed in the paper. By using nonlinear shell theory, the strain 

energy was expressed exclusively in terms of the displacements. The

strain energy integral was set equal to the virtual work and

differentiated. The assumed displacement functions allowed for

variation of the displacement u in the axial direction, by using the 

form

u = A[ 1 — cos ] cos <j) — C cos 2<j) [cos ^ + 1] (4.6)

The displacement function for v was selected on the assumption that the 

hoop strain is due to bending only, thus it vanishes at the midsurface. 

Displacement w was constructed such that for linear terms only, the

shear strain in the r - z plane vanishes.

Hangai and Kawamata [113] extended Koiter's method for solving 

nonlinear problems by the perturbation technique [91]. They have shown 

that it is possible to distinguish between a limit point and a 

bifurcation point by this method.
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Ades [33] extended Brazier's work on ovalization, to the plastic 

range for pure bending. An expression for the strain energy was derived 

in terms of the longitudinal and transverse stresses and strains, 

assuming circumferential inextensionality and the stress in the radial 

direction to be zero. The differential equations were obtained using 

the following condition:

— =  0 3(a/r) °

where w = work per unit length

a ■ semi-major axis

r « original radius

A closed form solution could not be obtained for this case. Numerical

Integration was used to obtain w as a function of (a/r). By plotting

the critical moment against D/t (Fig. 5) for both ovalized and

non-ovalized sections, the critical failure mode can be predicted.

Shells of very large D/t ratios may buckle locally. Timoshenko [2] 

considered the symmetric buckling of thin cylinders under uniform axial 

compression. Schilling [34] surveyed information available until the 

year 1965, on the buckling of tubes. He cited a reference by Gerard 

that classified tubes into three categories, on the basis of the 

following parameter

Z -  (f) ( | ) 2 (1 -  v2)1/2 (4.8)
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Figure 5 Effect of ovalization on buckling moment
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For Z 2l 2.85, local buckling was important and various empirical 

formulae were given for calculating buckling strength under different 

types of loads acting independently.

Ramsey [37] used the Jj incremental theory for a rigid-plastic 

material to derive a linear partial differential equation for 

axisymmetric buckling of moderately thick shells under axial 

compression. The equations were solved using asymptotic series. In a 

later paper [39], Ramsey extended his study to buckling deformations 

caused by local axisymmetric imperfections.

Tvergaard and Needleman [38] looked at the localization of buckling 

patterns from a broad perspective. It was observed that the 

load-deflection curve (Fig. 6) for structures prone to local buckling, 

displays a maximum load point. Zn realistic structural models there is 

a delay between the maximum load point and the point of bifurcation that 

leads to localization. The authors compared the localizing of buckling 

patterns to necking in a tension test and found the two anologous.

Between 1969 and 1976, Battelle Columbus Laboratories conducted a 

study of buckling of offshore pipelines during the pipe-laying 

operation. The study considered both gross and local buckling under a 

combination of loads: tension, bending, and external pressure. Details

of the study can be found in [7], [42] - [45]. A summary of the study 

is given below.

The analysis was divided into two parts: collapse due to

ovalization and bifurcation buckling. A specific order of loading was 

assumed - pressure was applied first, followed by axial loading and
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Figure 6 Stress-strain curve for localized buckling.
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bending. It was assumed that the pipe does not ovalize until after the 

bending moment and axial forces are applied. The constitutive relations 

were derived using the deformation theory of plasticity. The total 

strains were composed of

a) strains due to the external pressure

b) strains due to axial force, F

c) strains due to bending moment, M

d) circumferential strains due to ovalization

The strains due to external pressure were calculated from the 

membrane equations (thin walled pressure vessel) i.e.

0 = 0  l r

CT2 - °Q

= 0 

Pr,

and
£e =

0/E

1  f  + 1-.T1]

for

for

a < a 
-  y

lol > 0 (.4.9)

The strains due to the force were taken to be constant along the 

length.

'la

'2 a -y e (4.10)
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The bending strains at any point z from the midsurface were 

calculated from

elb " (y + Z cos <p)
9 (4.11)

e2b “ _yy/p

where $ is the angle from the vertical

The circumferential strains due to ovalization were written as

£ = Y + —  (4 12)2c 2 r dip
o

where ■ hoop strain of mid-surface

ip » rotation due to load 

Strain energy density was written in terms of the strains only and 

the above expressions substituted. The strains at any point can be 

related to the mid-surface displacement. The total strain energy was 

found by integrating the expression over the whole body.

The potential function was written as

7t « U - W = tt(w  ) (4.15)P O

where W is the work done by the external loads. P
w q is the flattening due to the moment 

U is the strain energy of the body
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77 was minimized with respect to wq, using an Iterative numerical 
technique. Once was found all strains could be calculated.

The second part of the analysis dealt with bifurcation buckling

i.e. given the equilibrium position from the ovalization analysis, 

determine if another equilibrium point exists in the neighboring region.
eSuch a point would be defined by the stress field and strain

• • •field + e ij* where cr^ and are perturbations about

and respectively. Equations relating shell deformations at

the middle surface to the loading conditions are developed from the

stress-strain constitutive relations deformation theory), the

kinematic equations relating the strains to the deformations, and the

equilibrium relations for the shell. The resulting Partial Differential
• • •Equations involve functions of the quantities ^ a n d  u,v,w as 

unknowns. By separation of variables, the Partial Differential 

Equations were transformed to a set of Ordinary Differential Equations. 

The finite difference technique was use.! to solve these equations.

Most buckling analyses surveyed in the previous sections have been 

restricted to only one type of loading, i.e. either buckling under pure 

bending or pure axial pressure or pure external/internal pressure. 

Although some studies, such as the Battelle study, considered combined 

loading, several researchers have suggested that critical loads be 

calculated separately for each type of loading and then the loads be 

superimposed using an Interaction formula.

Interaction formulae are derived semi-empirically. The first step
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is to plot a failure surface by taking each type of loading to be 

represented by non-dimensional ratios e.g.

g Y 0 z „ _JL (A. 16)
a p Mcr cr cr

where acr» Pcr» ^cr are t îe values of the axial compressive stress, 

external pressure, and bending moment, respectively, at failure if each 

of these acted independently. The curve will intersect each of the axes 

at X e 1, Y = 1, Z «* 1. Donnel [18] has shown that the general equation 

would be of the form

x“ + Y5 + Zn - 1 (4.17)

The exponents may be evaluated from curve fitting experimental data. 

For combined torsion and axial compression, Donnel suggested the 

following equation

+ (t2-) = i (4.i8)cr cr

Schilling [34] suggested different exponents

(-2-) + (-L-)2 . 1 (4.19)
cr cr
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Furthermore, Schilling claimed that if both bending and axial loads 

are present, it would be safe to simply add the axial (direct) stresses 

due to each load and then substitute into the above equation. However, 

the following equation for the direct stress was found to be less 

conservative.

0 - V i a i  + t ? r  (4-20)

Donnel [18] suggested that 0cr in bending be taken as 1.4 times 

o in axial compression. Battelle's researchers [44] suggested a 

linear formula for combined bending moment and external pressure:

P M
p  +  —  °  1  (4-21>*cr cr

Experimental Studies

Numerous experimental studies have been conducted to determine 

buckling strength of cylinders. The following is not, by any means, a 

complete survey. Only a few studies are cited, the results of which 

will be compared to the results from BUCKS.OSU.

To validate the analytical method discussed in the previous 

section, Battelle conducted experimental tests on 1020 steel cylinders 

under combined bending moment and external pressure [43]. D/t ratios of 

40, 20, and 16 were used with L/D ranging from 10 to 25. Some full size
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tests were also conducted on pipes of 20-inch diameter and 24 feet 

length. The test apparatus consisted of a four-point bending mechanism 

within a pressure vessel. From this study, the moment-pressure 

interaction curve was validated. It should be mentioned, however, that 

because of limitations on maximum pressure and specimen size, a 

relatively small portion of the curve could be validated.

TRW conducted experiments on Mylar cylinders and cones under 

combined axial compression and lateral external pressure [143]. R/t of 

150 to 400 and Z ranging from 30 to 740 was used. Interaction curves 

were obtained based partly on the experimental results.

Sobel and Newman [22] tested 304 stainless steel cylinders in axial 

compression. D/t ranges were chosen so as to get localized axisymmetric 

buckling in the plastic range.

Mesloh, et al [42] coined the term "propagating buckle" to describe 

a local transverse buckle that occurs in pipes subjected to external 

pressure and bending. Once initiated, this buckle may propagate along 

the pipe. From experiments it was observed that this type of buckle 

forms in pipes having the range of D/t between 20 and 100. Empirical 

relations were derived for the Initiation and propagation pressures 

required to get this kind of buckling.

Kyriakides, et al [41], conducted extensive experimental studies on 

the propagating buckle. The problem was examined parametrically, and 

the results presented in graphical form.
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Finite-Element Studies

Variational formulations of finite element methods are derived from 

energy principles and can be divided into the following categories:

1. Potential Energy Formulation

2. Mixed Formulation

3. Hybrid Formulation

For linear structural problems, the first method is the most

popular one. In the displacement based method, the variation in

potential energy is written as an algebraic sum of the virtual work done 

by the internal and external forces on a body. By using force-stress 

relations, followed by constitutive and then kinematic relations, the 

equations thus obtained can be written entirely in terms of the known 

forces and the unknown displacements. These equations are then

discretized.

T T<5tt = / 6e adV - f <5ur b dV - / SuT t dS (4.21)
V  g  “ •

Sir = 0 (minimize potential energy)
KU = jl = 0 (descretized)

In the above expressions 

it » Potential
T_e o_ - Strain energy/unit volume

TU b ■ Virtual work of body forces
TU t ™ Virtual work of surface tractions
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K - Stiffness matrix

R • Load vector

U «* Displacement vector

V - Volume of body

S » Surface area

Mixed formulations are based on the Reissner-Hellinger Principle 

described in [102] by Washizu. In this case, stresses and displacements 

are considered independent but compatability is forced on strains and 

the boundary conditions are assumed to be satisfied. This is a

specialization of the Generalized Potential Energy Principle. (Zienkiewicz 

[47].
TT = / aTe dv + /UT (LT a + b)dV - / UT (Ga - t)dS (4.221v----  —  —  —  &

tt r 9 4. 3 + JLlwhere operator L =» aJ <5y Bz J

and G is the operator linking stresses to tractions

It can be observed that displacements have to preserve the same 

continuity as strains because of the operator Ij but since the stresses 

do not have to be differentiated they can be discontinuous. Thus, the 

mixed method relieves continuity requirements on interpolating functions 

[47], [102], [103].

Hybrid methods are discussed in [47, 87, 95, 98, 99, 101, 103, 

104]. The formulation was introduced by Plan to alleviate continuity

problems even further. The method Is based on the Complimentary Energy

Principle. Each element is considered to be a separate structure. A 

compatible (or equilibriating) field of strains (or stress) is defined
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Inside each element without ensuring inter-element compatibility (or 

equilibrium), which is imposed by Lagrangian multipliers defined only at 

the Interfaces.

Potential: tt «= tt ($)
1 2Constraint: E. (<}>) - E(<}>) = 0 on (4.23)

where E is a linear operator

Tj is the inter-element boundary 

jfr is the assumed field

This is a relatively new method and elements based on it are under 

development.

In surveying the analytical studies some of the difficulties 

encountered in using this approach for shell buckling were obvious. The 

shell partial differential equations, that form the basis of these 

methods, can only be solved for a few cases, even with assumed 

displacement modes. When combined loads are considered, or non-linear 

shell theories used (for large displacements) or when elastic-plastic 

stress-strain relations are used, it becomes impossible to use this 

approach. For this reason, numerical methods such as finite differences 

and finite elements have been used. Although, there are nonlinear 

finite difference programs available, such as Lockheed’s STAGS [22] and 

Bushnell's BOSOR [84], it was decided ’a priori' to consider only the 

finite element method for this study.

If one considers the governing equation of the displacement-based 

finite element method given earlier as
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K U - R 

or (BTCB ) D  - R

where JJ ■ strain-displacement matrix 

£  “ constitutive matrix

and K and II are constant, we have a linear set of equations. This 

requires that (a) the loads be independent of displacements, (b) the 

strain-displacement matrix 15 should be constant, which is true for small 

displacements only, (c) the constitutive matrix £  be constant, which is 

valid only for linear-elastic materials. If any of the above three 

conditions are violated, the set of equations would be nonlinear. 

Therefore, one can divide nonlinear analyses into three categories:

1. Materially non-linear (C is nonlinear)

2. Large displacements but small strains (15 is nonlinear)

3. Large displacements and large strains (15 and £  are nonlinear) 

For nonlinear problems, a common approach is to apply the loads in

several small steps and to linearize the equations in each load step 

[A6, 47]. A time variable is used to describe the loading and the 

motion of the body, i.e. the loads and configuration of the body change 

in discrete intervals by discrete amounts, from the original loads and 

configuration to the final ones.

For large displacement problems, it is better to employ a 

Lagrangian formulation (moving coordinate system) rather than a Eulerian 

formulation # (stationary coordinate system). Two approaches are
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generally used: the Total Lagranglan (T.L.) and the Updated Lagranglan

(U.L.) formulations. The former was Introduced by Oden [92] and Yaghmai 

[93] and the latter is described by Bathe ' In [46]. In the T.L. 

formulation, all static and kinematic variables are referred to the 

initial configuration at time zero. In the U.L. formulation all 

variables are referred to the configurations at time t.

Just as in linear analyses, isoparametric elements can be used in 

nonlinear analysis i.e. the 'shape functions' employed for interpolating 

the coordinates can also be used for interpolating the displacements. 

Either continuum or structural elements may be used.

Sandia Laboratories report on Nonlinear Finite Elements [54] 

compares various non-linear formulations with respect to computational 

efficiency and accuracy. The survey was limited to material - geometric 

non-linearities and small strains. As such the conventional Cauchy 

stress and strain tensors were the only measures considered. 

Formulations based on the incremental law of plasticity were deemed to 

be most accurate. The study recommended not sparing any effort in 

computing the element stiffness matrix for the sake of reduction In 

computing cost. It also concluded that it is more efficient to use 

simplifying assumptions for the nonlinear terms and a large number of 

elements than to use a few complex elements. As the geometric nonlinear 

terms depend only on the midsurface strains and rotations, they should 

be computed using elements that can compute these to a sufficient degree 

of accuracy. Since this report was published in 1972 and is restricted 

to small displacement problems, it is a bit outdated and somewhat less
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comprehensive than Bathe's [46] which was published in 1982.

Shell stability analysis using Finite Elements can be divided into 

two classes [106]: 'classical' concept and 'degeneration concept'. In

the former, nonlinear shell equations are Introduced into the field 

equations for a 3-D continuum. In most cases, Kirchhoff-Love 

assumptions are used. Either curved elements (e.g. Gallagher [63]) or 

flat elements (Wennerstrom [111]) are used. Generally, C* continuity 

requirement has to be satisfied. The second method directly discretizes 

the 3-D field equations in terms of the midsurface variables, i.e. 

displacements and rotations are independent variables so only 

continuity is required.

In geometrically nonlinear analysis either a total or an updated 

Lagranglan formulation is used. In shell analysis no preference for one 

over the other can be observed [106]. Argyris [123] presented the 

corotational formulation, in which an initially flat element deforms to 

a curved shape. The element variables are referred to a local 

coordinate system which undergoes rigid body motions. The geometric 

nonlinear effects enter through the rigid body kinematics.

The bifurcation point and the limit point, though different in 

meaning physically, can be found in the same way, i.e. by setting the 

determinant of the stiffness matrix to zero.

Material nonlinearity can be introduced in three ways: (1) If solid 

elements are used, each element will have a certain stress state which 

can be used to calculate the constitutive matrix for each increment. 

The procedure is simple but costly. (2) If shell elements are used, a
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layered model could be used, I.e. using the same constitutive matrix for 

each layer, thus reducing the expense. (3) In the Integral model the 

material law is defined in terms of the stress resultants instead of the 

stresses. This requires the use of Integral material laws in the 

formulation [106].

Ramm [106] used the Lagrangian formulation to Investigate the 

buckling of axially loaded cylindrical shells and panels under various 

bouhdary conditions. Degenerated isoparametric elements were used and 

the layered plasticity model was employed to model material 

nonlinearity. An interative solution method was used.

Wennerstrom [111] developed a nonlinear flat shell element, 

primarily for use in metal forming analysis, but the procedure was also 

applied to cylindrical shells under internal pressure and axial tension. 

The membrane strains and bending curvature were assumed constant within 

each of the two triangular sub-elements that composed a quadrilateral 

element. Six stress resultants were considered. Cauchy stress and 

strains were used. The constitutive relations were based on von Mises 

criterion and Prandtl-Reuss flow rule. Newton-Raphson solution 

procedure was used.

Brendel and Ramm [60] used a two-dimensional discretization, the 

total Lagrangian formulation with the 2nd Piola stress tensor and the 

Green-Lagrange strain tensor, an incremental solution procedure, and the 

Newton-Raphson iteration method for the stability analysis of cylinders 

(of open and closed cross-sections). The loading cases for which the 

problem was solved were external pressure, transverse distributed load,
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transverse concentrated loads. Each load case was considered 

separately. Degenerate Isoparametric shell elements (superparametrlc) 

with 9 and 16 nodes were used. The lowest eigenvalue of the tangent 

stiffness matrix gives the ultimate load (arbitrary mth iteration)

det K*” - 0 (4.25)

Neither combined loading was considered nor large strains; the material 

was assumed to be linear elastic.

Civil and Aeronautical engineers have applied the F.E. method to 

predict the buckling behavior of frame structures. Akkoush et al [59]

developed a procedure for analyzing complex structures by dividing it
*

into three-dimensional beam elements and thin rectangular plate 

elements. Cauchy tensors were used so the analysis was limited to small 

strains. Only geometric non-linearity was taken into account. The 

elasticity matrix was assumed constant throughout the loading process. 

The problem was reduced to an eigenvalue problem and an incremental 

solution was used. The method can be applied to thick walled cylinders 

or solid circular rods.

The Finite Element Method was applied to the local buckling of 

large diameter pipelines by Row et al [40]. The study is divided into 

two parts: axlsymmetrlc and bending analysis. It is assumed that an

axisymmetric wrinkle forms at the middle of the pipe, which leads to 

buckling. A total Lagrangian formulation was used in conjunction with 

an 8-node axisymmetric solid finite element. An anisotropic hardening
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behavior was assumed for the material. Imperfection sensitivity was 

considered also by examining two types of imperfections: ’bulge' and

'offset'. The combined effect of internal pressure and axial 

compression was based on the assumption that the pressure was applied 

first, before the axial compression was imposed. The effects of pipe 

ovalling on the buckling limit were also considered. This was found to 

be the most comprehensive study on local buckling using the finite 

element method.

Kasar [57] applied the F.E. Method to Inelastic Buckling of 

thin-walled structural systems. The members of the space frame were 

assumed to be of open cross-section. Elastic-perfectly plastic material 

behavior was assumed and an incremental formulation was used to 

accomodate large displacements. The failure modes considered were (1) 

local failure of a part of the cross-section of a member, (2) failure of 

the entire member. Both torsional and lateral buckling were considered. 

The shifting of the elastic centroidal and shear center axes, after 

initiation of yielding, was considered. Strain reversal and residual 

stresses were also included.

Mau and Gallagher [66] recommended the following general procedure 

for nonlinear buckling problems. Use a Lagrangian frame of reference to 

give the following general equation

[K] {A} + [Nx (A)]{A} + IN2(A)]{A} «= A {P> (*.26)
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where K = linear stiffness matrix

n j»N2 ° are first an<* second order nonlinear matrices
P, A ■ are loads and displacements respectively

It is claimed that the Newton-Raphson method fails in the vicinity of 

bifurcation point so a direct Iterative method is used, the load is

increased in discrete steps. All loads must Increase in the same 

proportion. Also, one can conclude from the above equation that the 

formulation is limited to geometric nonlinearities only. The

bifurcation point is determined in the usual way, i.e. the second

variation of the potential energy should be zero. This results in the

following eigenproblem:

Det [K + 2Nj(A) + 3N2(A)] - 0 (4.27)

Therefore, Gallagher’s method does not represent any major deviations 

from Bathe’s method discussed before.

In a later paper [63] Gallagher presented a nonlinear curve thin

shell element to overcome the problems associated with interelement

continuity that were inherent in other elements of this kind developed 

earlier.

Krakeland [64] used an updated Lagrangian formulation with the 

Kirchhoff stress and Green strain tensors. The element used was the 

degenerate isoparametric shell element, parabolic type i.e. eight noded.
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The material was modelled by using the von Mises yield criterion and 

Prandtl-Reuss flow theory. Two types of hardening were considered: 

isotropic and "overlay". The computer program developed was applied to 

several numerical problems, including a cylindrical concrete shell with 

axial load and hydrostatic pressure.

Yamada [112, 115] has been the principal user of the updated

Lagrangian formulation for nonlinear analysis. Yamada has compared the 

results obtained from using different stress tensors (Lagrange, Euler, 

Kirchhoff, and Cauchy) with the same type of element (plane stress). It 

was observed that the choice of the stress tensor influenced the results 

significantly [112].

In recent years, a great deal of effort has been focused on mixed 

and hybrid methods. The hybrid method was developed by Plan [90, 98, 

110, 122, 124] and Tong [95, 103] and Atluri et al [99]. The mixed 

method has been used by Altman and Igut [94]. In the mixed formulation, 

both stresses (or internal forces) and displacements are treated as 

Independent variables, as opposed to only the displacements being 

independent in the displacement based method or only internal forces 

being independent in the force based method. Thus, only constitutive 

relations must be assumed but compatibility conditions are relaxed (only 

approximately satisfied). On the other hand, hybrid methods assume an 

equilibriating stress within each element and compatible displacements 

along Interelement boundaries. This relaxes continuity requirements on 

stress distributions.
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In order to take shear deformation into account for thick shells, 

the conventional method requires adding rotations of the surface normals 

as additional nodal displacements which are Independent of u, v, w. 

Thus, there is an increase in degrees of freedom when compared to 

elements based on Kirchhoff theory. Also, in the limiting case of thin 

shells, this scheme would fail because of near zero shear deformations. 

A hybrid thick shell element may be described in exactly the same manner 

as Kirchhoff's hypothesis [122].

Atluri [99] presented a unifying theory for all hybrid elements. 

Both total and updated Lagrangian approaches were considered. 

Modifications were made to the general expressions for the purpose of 

developing an element suitable for nonlinear elastic solids. Horrigmoe 

and Eidsheim [101] developed hybrid stress models suitable for 

elastic-plastic analysis of plates in bending and strain problems. 

Barnard and Sherman [104] developed plane stress, plate bending, and 3-D 

solid hybrid elements for elastic-plastic analysis.

Pian and Boland [110] derived hybrid principles for large 

deflection of shallow shells and incremental analysis. The Finite 

Element formulation was based on the interpolation of both interior and 

boundary displacements for an element and an assumption of an element 

stress distribution. However, the resulting matrix contained only nodal 

displacements as unknowns.

Horrigmoe [73] used the hybrid formulation to perform buckling 

analysis of cylindrical and spherical shells. As with other studies, an 

incremental form of the Hellinger-Reissner principle was employed.
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Simple flat triangular and quadrllaterlal elements were used. It was 

claimed that this procedure was more efficient and accurate than the 

conventional method. One of the problems solved by this method was the 

axisymmetric loading of a cylinder under tension and internal pressure. 

Convergence was studied for both types of elements.

Altman and Iguti [94] used a mixed formulation to derive a thin 

cylindrical shell finite element. All stress resultants (except shear 

loads) and displacements were treated as independent variables. Linear 

theory of shells was used. The method was applied to thin cylindrical 

shells under a lateral concentrated load (pinched load).

Nonlinear equations may be solved by any of the following groups of 

methods:

1. Iterative Methods (classical)

2. Incremental Methods (Argyris, Gallagher)

3. Incremental-iterative methods (Conner, Fellipa)

4. Self-correcting methods (Oden, Haisler, Stricklin)

5. Search methods

All these methods attempt to solve the nonlinear equation

K (U) U - R

II may also be a function of IJ or it could be constant. These methods 

are discussed in Refs. [133-137, 116, 105, 82, 83, 46-50]. Some of the 

popular ones are briefly discussed below.

The direct iteration method, shown schematically in Fig. 7, uses an 

assumed starting value of IJ to calculate IC and R. These are substituted 

in the above equation to get a new value of IJ. This new value is used
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in the next Iteration and so on until the error (difference in U between 

consecutive iterations) falls below some specified value. This involves 

inversion of the stiffness matrix in each interation. Also, convergence 

is not guaranteed.

The Newton-Raphson scheme is an iterative technique in which the 

stiffness matrix is updated in every iteration and the resulting linear 

equations solved. This is time consuming but very accurate. Several 

modifications are used. One method, called the Modified Newton-Raphson 

method, uses the initial tangent matrix throughout all Iterations. This 

is not suitable for all nonlinear problems, since convergence is not 

guaranteed. Other quasi-Newton schemes, that fall in between the two 

methods mentioned above are also used; the stiffness matrix is updated 

periodically. This method has been used by Gallagher [63] and Krakeland 

[64].

In incremental methods, each load step is linearized, thus no 

interation is necessary. This is suitable for problems where the 

non-linearities are of a relatively lower order. However, this method 

is known to be unreliable. An improvement is to use equilibrium 

constraints at the end of each load step, as proposed by Hoffmiester 

[137].

In incremental-iterative methods, the load is applied in increments 

and the solution obtained by iteration within each Increment, treating 

the load Increment as the final load.

The BFGS method (Broyden-Fletcher-Goldtarb-Shanno) is described in 

[140]. It belongs to a class of quasi-Newton methods and represents a
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compromise between the cost effectiveness of Modified Newton method and 

the accuracy of Newton-Raphson method. The method has been introduced 

as recently as 1979* but is already being acclaimed as the fastest and 

most reliable method. In this method the inverse of the coefficient 

matrix is updated to provide a second approximation from iteration (i-1) 

to i.

Another self correcting method is the mean stiffness method of 

Argyris, Fellipa, and Akyz.

Search or Gradient Methods were introduced by Cauchy [105] but are 

used in more sophisticated forms now. The basic idea is that starting 

from an arbitrary point in the solution space, a stationary point can be 

reached by moving in the direction of the minimum (maximum) slope 

(gradient). This is replaced in steps until the stationary point is 

found.

Potential tt =  tt ( x  x  .  x  )J- 2 n
Step Size Axi A7ri/Axi

a—  " -a— tt—  (4.29)Ax1 Att̂ /Ax ^

Since the variables may be of different orders of magnitude, it is 

more efficient to work with normalized variables. The conventional 

gradient method converges slowly and may become stalled at saddle points 

or ridges. Powell and Fletcher [82, 86] introduced the conjugate

gradient method which improves convergence. The same equation can be 

written as
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Ax± = xcj

where X = Ax^/CAir /A x ^

and = f (Au/Axj) for the jth iteration
(4.30)

An iteration is defined here as the sequence of steps along the line of 

a given direction until a minimum is reached on that line. The value of 

C is reset after each iteration using either the Fletcher-Reeves [86] or 

the Fletcher-Powell [82] formulae.

Irons and Elsawaf [83] presented a new method that is a compromise 

between the Newton method and the conjugate gradient method; it was 

labelled as the conjugat e-Newton Algorithm. It is claimed by the 

researchers that this method guarantees convergence even for 

ill-conditioned non-linear equations and uses less core and backup 

storage.
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V. THEORY AND FORMULATION

Variational Formulation:

As evidenced from the literature review, the following variational 

formulations could be used for stability problems of thin/thick shells.

1. Potential Energy formulation in the form of the displacement- 

based method.

2. Mixed formulation in terms of stresses and displacements or 

stress resultants and displacements.

3. Hybrid formulations with assumed stress distribution within 

the element and Lagranglan multipliers defined on the inter- 

element surface only. Subsequent elimination of one set of 

variables to enable use of standard solution techniques.

It is the opinion of the author that mixed methods create 

unnecessary problems by increasing the number of field variables thus 

increasing the size of the matrices and requiring more CPU time for the 

solution without yielding significant benefits. Therefore, this 

formulation was not considered.

The displacement method derived from the potential energy 

formulation may be regarded as a 'classical' finite element technique in 

the sense that it has been around since the inception of the finite 

element method. A great deal of literature exists on it, and it would



be relatively simple to formulate the proposed problem along these 

lines. On the other hand, hybrid methods were introduced very recently, 

although a great deal of work has been done on the stress-hybrid element 

in the last five years. Because of the availability of reliable large 

displacement elements based on the potential energy formulation, it was 

decided to use this method.

The potential energy method is based on the Principle of Virtual 

Work, which states that for a system in static equilibrium, the sum of 

the virtual work done by the external and internal forces acting on the 

system is zero:

6tt *= S(U - V) - 0 (5.1)

where ir *= Potential of system

U = Internal energy (strain energy)

V = Virtual work of applied forces

<5 implies ’variation in'

Washizu [102] derived the generalized potential energy principle 

for elasticity and plasticity problems (neglecting second order terms; 

these will be Included later) , as
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+ (

+ (

where

The terms 

exactly.

yz ”
3w
3y f ) T + (yOZ yz zx

3u
3z T 1) *OX zx

nxy 3x f i )T  ]dV 3y xy

(T u + T v + t w)dr ! x y z

[(u - u)px + (v - v)p + (w - w)pfc]dr2 (5.2)

x,y »Z are the Cartesian coordinates

eX • • • ^xz are the components of strain

a x • • • Txz are the components of stress

u,v »W are the displacements

Ti are surface tractions on surface T.

pi are surface tractions on surface F

bi are the components of body forces

(u-u) result from not satisfying the boundary conditions 

E it is assumed that the boundary conditions are satisfied



exactly, the last term will disappear. If a kinematic relation can be 

found between strains and displacements, the second term will disappear. 

For static problems, if gravity forces are neglected, we get

tt = ///,. A(e , e V x ’ y (5.3)

For elastic-plastic problems, It has been shown (Washizu [102]) that A 

represents the strain energy. If constitutive relations are used, 

stresses can be eliminated from the above equation and using kinematic 

relations, the potential can be expressed entirely in terms of the 

displacements and applied forces.

This is the governing variational equation for elastic-plastic problems 

for static structures.

Stress and Strain Tensors

The stress and strain measures must satisfy the following two 

conditions. First, they must be energetically conjugate (their product 

: should give a measure of strain energy) since the formulation is based 

on potential energy. Second, the stress and strain tensors must be

6t t =  0

or 0 (5.A)
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Invariant under rigid body motions, which can be large in buckling 

problems.

There are many such pairs available, as evidenced by the literature 

on continuum mechanics. The pair chosen for this study is the 2nd 

Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor. 

These measures cannot be given any physical meaning but were chosen 

because not only do they satisfy the two conditions stated above, but 

they can be converted to Cauchy measures through simple tensor 

transformations; i.e. they do not require an integration over the loading 

path to obtain Cauchy stresses.

The second Piola-Kirchhoff stress at time t^ is defined as 

(measured in coordinate system at time tQ)

% 4

t t 
tQ 3 °x i 3 °x.

1 °kl ---- 1
K 3 xA l

t
where ° p ■> density at time tQ

% ■ density at time t^

= Cauchy stresses at tj
t
xi *= coordinates at time t

The Green-Lagrange strains are defined as
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'lr A 1
Gij “ 2 A  + A + ( ! \ )  ( ^ 1

.3 V j  3 °xi V 3 °X;L/  3 V ' J
(5.6)

Lagrangian Incremental Equations

As discussed in Chapter IV, two approaches can be used for large 

displacement problems: the Total Lagrangian (T.L.) and Updated

Lagrangian (U.L.) formulations. Both yield the same final solution. 

The T.L. formulation involves more computations because of an additional

term resulting from referring all kinematic variables to the original

coordinate system. The U.L. approach is slightly more complex to

formulate. In this study, the T.L. approach is being used.

In large displacement problems, the load-displacement path is 

nonlinear. Therefore, it is assumed that the load increases in small 

steps from its initial value to its final value, in a quasi-static 

manner (dynamic effects are neglected in this study). The variational 

equation (5.4) is written for each step and linearized.

Figure 8 shows the motion of a body in steps from the original 

position at time tQ to the position at time t^. The variational 

equation is written in incremental form between adjacent positions. The 

solution of this equation in each step gives the incremental

displacements, measured in the coordinate system for which the solution 

was obtained in the previous step. The coordinates, stresses, and



t;

t
time

time

Figure 8 Motion of a body in a Lagrangian frame.



strains are updated and the procedure repeated: For example, between

steps t^ and t^> the coordinates are updated as follows.

h  t]L tlt?x - * + 1 2Au
t2 *1 t.t

y - y + 1 2 Av
t, t -'2z :lt.2Aw (5.7)

t t t
The displacements, referred to the original coordinates x, y, z 

are

t2 *"1 tlt2u «• u + Au , etc. (5.8)

and the stresses and strains at the end of are

\  ' tlG«  + (5-9)

t 2 P °  t ] -p +  ^  (5 .10 )
U  ij

Equation (5.4) for the position t^ can be written as
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where A®.. * linear component of AG*J 3-J
Arnj « nonlinear component of A G ^

u® = displacements caused by tractions

Multiplying out, one gets

C1 fcl
\  P«  6AeiJ dVo + A , Pij “ niJ dVo + ' v  Ap«  4iei3dVo

+ fv 4Py«in1:j • dVo = f T 2l l 6u*dr (5.12)

In linearizing the interval, the fourth term may be dropped and one may 

also write the approximate constitutive relation

*•1AP.. = AC Ae (5.13)ia ij rs rs

t-.where ^ j y s  " elements of constitutive matrix at time tj



This is the incremental equation of motion for a total Lagrangian 

system.

Discretization

Equation (5.14) has been derived for a continuum. The next step is 

to divide the body into discrete elements and write this equation for 

each element separately. Summing up the left and right hand sides of 

the individual equations gives the system energy balances i.e.

HF t- NE t.

NE t NE t1
( 5 .1 5 )e i=l V

where the summation is taken over NE elements and V is the volume ofe
element i at time t^
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Boundary traction Ts 
on edgeBoundary traction 

on top face "
of element /

Surface TZ

Element e 
Volume Ve

NE elements

Restraints

Figure 9 Discretization of a general shell.
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and T Is the surface area located on element 1, on which forces T. act e i
The strains are related to displacements and the relations can be 

written in matrix form as

Ae «= B Aia”“L
An - S m A u

The displacements at any point All are obtained from nodal point 

displacements AU using interpolating functions N^:

Au = NAU (5.16)

where « shape function matrix
\

AU •= nodal displacement vector
t

Ae = S_ NAU = B AU (5.17)”“Xj *" Li

and
An = Bmt NAU = BmtAU (5.18)—  —*NL  — NL —

where B, and B _  are the linear and nonlinear strain-displacement —L —NL
matrices



Also define

-NL " -^NL -NL
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(5.19)

Similarly, shape functions can be used to relate the surface 

displacements on r .

AU8 - i£ A U  (5.20)

Writing eq. 5.15 in discrete form and substituting (5.17), (5.19) and 

(5.20) we get

NE NE
{±Sl 'v h .  dVe + ill 'v dV  ■

NE NE
i ; ns t dr - z / b ; sv dvo1=1 ig —  —  e i=l V — L —  e (5.21)

where SM «= stress matrix

SV ■ stress vector 

and it is understood that all quantities are measured at time t^ for 

element i (the superscripts for indicating this have been omitted for 

simplicity).

This equation can be written as

^1 ^1 *"2 ^1 < SKl + S K ^ A U  = R. - ~F (5.22)
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NE Twhere SK^= = Linear System Stiffness Matrix
e

t, • NE ^
Bn l SM BNLdVe = Nonlinear System Stiffness

Matrix

t2 NE
R = /p N_S .T dre = Applied Load Vector 

e

tx NE
E - /y SV dVg — Internal Load Vector

e —

Finally, we write

ti t2
SK AU = *XL (5.23)

where SK « System Stiffness Matrix at tj 
fc2XL - Load vector at t2

Selection of Elements

A wide variety of elements are available in the literature, 

consequently, there is no need to formulate a new element here. When 

looking at the requirements, we need an element that Is suitable for
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large displacements, can undergo both translation and rotation, and can 

model cylindrical shells In the D/t range of Interest.

Suitable elements can be divided Into groups: continuum and

structural. Continuum elements, such as one-dimensional cable 

two-dimensional (plane stress, plane strain, and axisymmetric elements), 

and three-dimensional elements can be formulated using isoparametric 

interpolation i.e. the displacements u,v,w (whichever applicable) are

interpolated in terms of nodal point displacements, such that the

interpolating function is the same for both displacements and position. 

However, for structural elements, such as beam, plate, or shell 

elements, the displacements u,v,w are interpolated in terms of the 

midsurface displacements and rotations. This can be interpreted as 

using a higher degree of interpolation on the geometry than on the -

displacements. Thus, these elements are referred to as superparametric 

elements, which amounts to isoparametric formulation with displacement 

constraints.

Whereas for continuum elements the equilibrium equation can be used 

directly to compute element stiffness matrices and the load vector, the 

stiffness matrix for structural elements is derived from the expression 

of total potential energy applicable to that type of structure. 

Formulations based on Kirchhoff's theory, which neglects shear 

deformations, cannot satisfy inter-element continuity on displacements 

because the shell rotations are calculated from the transverse 

displacements. However, if shear effects are included, the



displacements and rotations of the midsurface normals are independent, 

and the interelement continuity can be satisfied easily [46].

Another difficulty with structural elements is that low order 

elements can grossly overestimate the structural stiffness for thin 

elements, so only high-order elements should be used [46]. However, it 

is possible to use some modified, low order, structural elements that 

eliminate this problem by the use of selective or reduced integration of 

the element matrices.

On the other hand, using 3-D continuum elements for thin structures 

leads to the following problems [77]:

1. Computational difficulties due to increase in stiffness 

corresponding to shell thickness

2. Errors caused by strain energy of the normal stresses in

, the thickness direction

3. Inefficiency because the interpolation order in the

thickness direction is high and in the surface direction 

it is low

Degenerate shell elements alleviate this problem. In the study reported

in this dissertation, both continuum and degenerated elements were used

and a comparison made.
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Formulation of Large Displacement Shell Elements

Large displacement shell elements have been developed by many 

researchers: Ramm and Stegmuller [106], Bergan and Clough [130], Ramm

[77], Krakeland [64], Gallagher [63], Bathe and Bolourchi [71], to name 

a few. In this study, the Bathe and Bolourchi element is specialized to 

cylindrical shells, extended to elastic-plastic analysis, and 

degenerated, as shown in the following pages.

Curved boundaries must be defined accurately; this can be done by 

using a large number of linear elements or a fewer number of parabolic 

elements. For the same number of nodes, it is computationally more 

efficient to use parabolic elements.

For the D/t range being studied here^ it is essential that thin as 

well as thick shells be modelled effectively. For this reason it is 

necessary to have rotational degrees of freedom in addition to the three 

translations of the shell midsurface. For points not lying on the 

midplane, the displacements can be interpolated in terms of the 

midsurface translational and rotational displacements. This provides a 

more accurate representation of thick shells subjected to bending loads 

in addition to membrane loads.

Figure 10 shows the deformation of an eight-noded, parabolic shell 

element which has five degrees of freedom per node: the translations

u,v,w and rotations ct and 3 . Thus, we have a 40 degrees-of-freedom 

element. The angles ot and 3 are the rotations of a vector, defined 

as the unit normal to the shell midplane at the nodal point. The 

rotations are measured in an arbitrarely defined orthogonal Cartesian 

system.
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time = t„

time

3

t,

Figure 10 Deformation of shell elements.



As shown In Fig. 11, the normal vector at any node i can be 

calculated from trignometric relations, provided the circular 

cylindrical shell is undeformed. Therefore, at time tQ the vector 

is

O O
Xi yi°v„ = (------ 1 1   , 0) (5.24)

31 /°jc? + ° y ]  */°x2. + ° y 2
i x ■'i

At subsequent positions the vector is updated using the rotations

and 3^ as shown in Fig. 12.

\ i  ' + ^ 3 1  (5'25)

where ^ 3 1  t*ie vector change in between times t^ and t^

is obtained from the rotations about and ^2i

. AV X / V X \ / ^  X3i\ ( 2i \ ( li

Av3il>’  -“i { \ l r  Bi j \ i >  <5-26)
i / It.z / ' 1„ z ' L, z

3i 2i li

Even though the orthogonal system, V^, is arbitrarily
->■

defined, the same definition must be used for all nodes. is
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1node

Figure 11 Vector normal to cylinderical shell

Figure 12 Measurement of shell rotations



obtained by taking the cross-product of an<* t*ie global Cartesian

vector in the direction y.

li
-*• i->
e2 * 31 (5.27)

"0 “ r h  x n3i 2 n3i

1 X *v y 3i = .0

_° _ tV 2 L  31 —
fcv * _ 31

and

li
lfcvli1

+ ('v31V

(5.28)

Finally, is obtained by taking the vector product of V3i and
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21

(5.29)

must then be normalized.

The vector equations are limited to shells that were of circular 

cross-section in the undeformed state.

The coordinates of any point on the shell is obtained. from the 

nodal coordinates by means of interpolating functions, using the 

relation

tx

t

tz
3i
z (5.30)
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t t twhere x, y ,. z are the coordinates of a point on the element

« N^(r,s) are the shape functions In terms of the local
I

coordinates r and s 

A “ shell thickness (assumed constant)
k « components of normal vector at node 1

In the above relations, a local curvilinear coordinate system 

r,s,t, is used. The coordinates are defined in the conventional manner 

i.e. node 1 is located at r = +1, s *= +1; node 2 at r » -1, s = -1; node 

3 at r = -1, s ■= -1; node 4 at r +1, s = -1. The midnode coordinates 

are: node 5 at r = 0, s = +1; node 6 at r ■ -1, s = 0; node 7 at r = 0,

s = -1 and node 8 at r = +1, s = 0. These are the node numbers in the

local system and are thus the same for all elements. The origin is 

located at the point whose coordinates can be calculated from eq. (5.30) 

by using r = 0, s = 0, t = 0. For all nodes, the value of t = 0 since 

nodes are located in the midplane, t is defined as the normal vector to 

the shell surface at r = 0, B e 0.

It can be observed that in eq. (5.30) the second term vanishes for

t ■= 0, i.e. at the midplane. Also, if the shell thickness A is small,

the second term has little influence on the values of the coordinate 

being interpolated. This term, therefore, influences thick shell 

analysis , and its Inclusion allows a better representation of thick 

shells undergoing bending. However, degeneration is not applicable to 

thick shells as discussed later.
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For isoparametric elements, the same shape functions are used for 

interpolating the displacements as those used for the coordinates.

t 8 t At 8 t xu = E N fcu +  f  Z N
i=l z i=l 1

t 8 t At 8 t vv = E N. V. + ~  E N, V ?
i=l 1 1 2 i=l 1 31

t 8 t At 8 t z
*  = * Ni Wi + T  * Ni V3i (5‘31)x=l i=l

The most popular isoparametric shape functions for quadratic 

elements, as presented by Irons and Ahmad [144] are

Corner nodes: (1 + ^ 0 ( 1  + + n±n - 1)

Midnodes: ^  = o ; N = j  (1 -  £2) (1 + r^n)

ni = 0 : N i = | ( 1 +  ?i?)(1 " n2) (5*32)-

where £ , n are the local coordinates (equivalent to r, s in present 

nomenclature). Substituting the local coordinates for 

each node one obtains

N1 - 0.25(1 + r) (1 + s)(-l + r + s)

N2 " 0.25(1 - r) (1 + s)(-l - r + s)

n 3 - 0.25(1 - r) (1 - s) (— 1 - r - s)

N. « 4 0.25(1 + r) (1 - s)(-l + r - s)
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N5 - 0.5(1 - r2)(1 + s)

N6 - 0.5(1 - r)(l - s2)

N7 » 0.5(1 - r2)(1 - s)

Ng «■ 0.5(1 + r) (1 - s2) (5.33)

Incremental Green-Lagrange Strains

As given previously, the incremental Green-Lagrange strains between 

steps t^ and t^ are

Agi 3 ‘  \ j  -  \  ( 5 ‘ 34)

Substituting the definition of from eq. (5.6), one obtains

AG«

t„ t „ t_ t_
. r 3 u. 3 u. .3 u, w 3

+ ^ A - r +  M JL ~ o ~ o 'c.0 / \ r . o / - Jo x .  o x .  o x .  3 x,J i i j

L 3 °x, 3 °x., 3 ° x j  '3 °x,J i i J

But

3 °x 3 °x 3 x.d Xj d Xj j

Substituting (5.36) in (5.35)

(5.35)

*"1
"± - ui + Aui

S ^ u .  3Au.
— — L  = — — i + — t-- (5.36)t t o



^29 u. 9 a*2 a*19 u . 9 u . 74
AG,

9 X. 9 UX,
3 j 9 xi 9 xi

*"2 t2 fcl fcl9 u, 9 u. 9 u. 9 u. ■«k k k k I
t * t " t t I

9 V  9 °Xj 9 °x± 9 °x J

1 1 - r 9Au. 9Au. /9 u, 9Au. \ / 9 u, 9Au, \
- i [ - r u * V - + ( ^  +  - r !L) ( - E - t +  - £ - * )L ~ o r>o V  O a ' a o„ . a /9 x. 9 x. 9 x. o x .  o x .  d x.j 1 i  i  J J

*"1 tl
3 Uk 3 Uk]
A ,  *o J9 x 9 x .i J

9Au.
___1t
9 x

9A u 9A u

i
t t

9Au 9Auk

%
jT 9Au^ 9Au. 3 ^ ^^uk 3^uk 3^uk T
2i t + t + t t + t ~t + ~t ~t I

9 °x. 9 °x 9 °x. 9 °x. 9 °x. 9 °x. 9 °x. 9 °x.J i i j j i i j
(5.37)

We now split into its linear and nonlinear components:

A G y  ’ A e u  + A n u
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r 3Au 3Au 9 u 3Au .3 u , , 3Au -x

i -  i  h r  + ^ - + ~  (5-38)3 Xj 9 °~ 3 °„ a °„ 3 °„ ' ' a °„ 'Ja u U '^o / \ r\ o /«X, 9 x .  O X .  o X,
1 i  J J i

(5.39)

3 x ±' '3 ^

All the terms in eq. (5.38) are linear in ^u^. it should be noted

that when calculating the incremental displacements A u, > the
fcldisplacements in the previous iteration u^ are known. Therefore, 

these are treated as constants in the above equation. Equation (5.39)

is nonlinear (quadratic) in

Jacobian Matrix

The Jacobian matrix relates the derivatives in the local 

curvilinear coordinate system r,s,t to the global Cartesian system at 

time step tQ .
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3
t
3 x

3r 3r

_3_ Xo

3s 3s

3
ta °3 x

3t 3t
■

L -

3r

a °JL y.3s

-3— y3t

ItoJ]

a ° j)__z
3r

n °3 z 
3s

3 z 
3t

-I

(5.40)

[ J] is the Jacobian matrix in a Total Lagrangian system. The elements 

of this matrix can be calculated by differentiating equation (5.30), 

with respect to the local coodinates, as follows.

J  od__x
dr

8
Z
i=l

N. Xi + N S  * i 3i

8 3N. t .. 8 3N.z * °x * 4  Z - i  "Voi 
i=l 9r 1 2 i=l 3r 31

t
d °x 
ds

a 8 3N4 t .. 8 3Ny j. y i x
3r ^  3s Xi 2 ^  3s 3i

a ° d__x
dt

A
2 i  *■
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t t

And similarly, the derivatives for y and z can be evaluated. It 

should be noted here that is a function of r and s only.

a °
r = —  x11 3r

and

3N 3N2 
”§r ~3r"

3N,8
3r

x.

X,

A t K ^ 2
2 I 3r 3r

3N_8
3r

°V X 31

° v x32

o x 
38

(5.A1)

t a ° r
°J = — - = 23 3S [

3N1
3s

3N_8
3s

V

At
[3s *** 3s _

°V z 31

°V z 38
(5.42)

whereas the element of the last row are obtained as
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t EtOJ32

t

t
(5.43)

and so on.
The derivatives of the shape functions are obtained by 

differentiating equation (5.33).

= 0.25(1 + s)(2r + s)dr
3N»

= 0.25(1 + s)(2r - s)3 r 
3N„

= 0.25(1 - s)(2r + s)

3N
— - = - s'* (2r - s)

(5.44)



31^
3s
3N2
3s
SHj
3s
3N. __4
3s
3N5
3s
3N.o
3s
3N?
3s

!!§
3s

= 0.25(1 + r)(r + 2s)

= 0.25(1 - r)(-r + 2s)

= 0.25(1 - r)(-r - 2s)

= 0.25(1 + r)(r - 2s)
A

= 0.5(1 - r2)

= -s(l - r)

= -0.5(1 - r2)

= -s(1 + r)
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(5.45)

Linear Straln-Dlsplacement Matrices

The linear components of the incremental strains can be obtained 

from eq. (5.37) as

Aexx

Ae
yy

3Au 1+ (•
3 °x I

3Av
a °3 y

3 u

0
a °3 y

3Au ) + (

3Au
a °3 y

a*1 '3 v

) + c
S 13___y

3A v-. , 3 w 3Aw x
t t t ̂o  ̂ o d x a x

3Ay
) +  ('

d w
a °3 y a °3 y

3Aw
a °3 y



Aezz
f fcl fcl fcl9Aw j /9 u # 9Au v , /3 y 9Av-> , ,9 w  ̂ 9Aw \

t ' t t } t t t * tr> O | r\0 r\0 r\ O rv O ev O in O3 z I 3 z 3 z 3 z 3 z  3 z 3 z

2Ae = 3Au +______1+ i_li . -3Au + 3 vXV t rvO I t t tr.O 9 X ~ O rv O ~ O 9 y  1 9 x 9 y 9 x

9Av 9 w 9Aw +t t tf\ . O r\ O is oo y y a x  o y

2Aexz

2Aeyz
9Av

9 °z

afcla u *"19Au . 9 v 9Ay S i. 0 w . 9Aw

9toy
t 1 t

IN O f\ Oo x  o y
t

9 °x
1 t ̂°9 y

t
9 °x

1
+ 3AwU

9 °xl
I

________________1

9 u 9Au 
t t 

9 °z 9 °x

S i9 v
t^ °9 z

9A v . 
t + 

9 °x

S i9 w .
t■3 O9 z

S i9 u *•19Au . 9 v *"29Av . 9 w 9Aw

9 °x ;
t ' t 
) °z 9 °x

' V  ' t ’
9 °z 9 °x

t
9 °z

■ ■  i .

+ ^ » [ + 
9 °yj

1

fcl9 u 9Au 
t t 

9 °z 9 °y

tl

9 °z

9Av
t

9 °y So9 z

_ J 
S i9 U . tl9Au . 9 v + 9Av , *X 9Aw

9 A w 1
t I\ o !

K H

I 9 °y 9 °z 3 °y 
1 1BLll *Lt--------------

rv O 9 Z O9 z

M -
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(5.46)
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The first term of the normal strain equations and the first two 

terms of the shear strains are dependent upon the displacement 

increments only. It is convenient to separate these terms from the rest 

for the purpose of writing the strain-displacement matrices. Thus, we 

write

[Ae] - [BL1][AU] + [BL2][AU] (5.47)

where [Ae] ® incremental linear strain vector
T“ [e e e 2e 2e 2e ] xx yy zz xy yz xz

[BL1] = linear strain-displacement matrix no. 1,

(6x40 size) at tj 

[BL2] ■ linear strain-displacement matrix no. 2,

(6x40 size) at t^

[AU] = incremental nodal displacement vector (40x1 size) 

= [u2 Vj Wj u2 ... Ug Vg Wg]T

Define [Ae^ - [BL1][AU] (5.48)

[Ae]2 - [BL2][AU] (5.49)

Combining (5.46) and (5.48) yields
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[Ae],

3Au
t

3 x

3A y 
t

3 y

3Aw

3Au

3Au

3Av

3A v

3Aw

3 Aw
a °9 y

(.5 .50)

The elements of this vector can be obtained by differentiating 

(5.21) with respect to the corresponding coordinates. For example,

Auj Uj

8 _ *2 . At 8 M 2,. x
2 Ni ui + T  2 Ni 3ii«=l 1 * i=l

8 H
" 2 Ni uii=l 1 1



8 *"1 At ® C2 x *"1 x£  N ± ( u ± - ^  +  f  £  Ni ( 2V3* - \ * )

j 3 Ni(\  - \ >  + T  j ,  Ni <-“iV2^ + 6iVH >

(Au) = - f -  V ui  + f  A  V - “iV2i  + Bi  VU>]~ o 1=1 1=1
a x

8
= Z 

1=1
3N,

i u i  +  l
3t

r\ O3 x

8
Z
1=1 V - “iV2? 6iVli>

At
2

8
Z
1=1

3N.
(-a, V1 21 + eivu >

x

Now N^ = N^(r,s)

3N. 3N±
I t

dr
t

d °x

3N±
3s

ds
j °d x

83

(5.51)
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t
where

and

Define three

t . 3N. t , 3N
°jii "§7 + °Ji2 -97 (5*52)

* are the elements of the inverse of the Jacobian 

matrix for the given element given by eq. (5.40)

N
—  are the derivatives of the shape functions with 
iri

respect to local coordinates, given by eq. (5.44) 

and (5.45).

(8,3) arrays SH, SGI, SG2 as

A  t 1  3 N t  t  3 NA o -1 I , o - l  I SH(I, J) * Jj;L 3r + JJ2 3s (5.53)

SGI(I,J) ^ -0.5 AV^ j (5.54)

SG2(I,J) ^ 0.5 (5.55)

Equation (5.39) can be written as
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CAu) = Z8 t i( °J_111 1=1
3N
"97 " V 112

9N
V O A u ,9s i

8
Z
1=1

A „ x 9t
2 21 (N1 —  

9 °x

9N,
■)a,

8
+ Z 

1=1
—  v x (N 2 11 VW1

9n .
+ t — -) $

Define an (8,3) array GG as

GG(I,J) = n x jJ3 + t(SH(I,J))

and note that

9t -1
~  = 13
9 x

(Au) = j; SH(i,l)Au. + Z SGl(l, 1) GG(i,l)oi + Z SG2(i,l)GG(l,l)8.
a o 1=1 1 1=1 1 1=1 19 x

(5.56)
Sv m dwSimilarly, the other elements ~~Z and ~T can be calculated In

3 9 Oy 3roz
terms of SH, SGI, SG2, and GG. The shear terms Involve mixed 

derivatives and these can also be written in terms of the four arrays 

defined. For example, the fourth term is
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8 a*. 8 tt r* ** 1 , At n «. / XT ^ O.. X \
ui ’ £ Ni U1 + T  H1 < 3i - 31 >i=l i=l

3fcu. 8 3n . t. 8 . j . dN t- ti v i 1 , r /A dt v A.  A \ / 2tt x oTT X\
—  ■ L ~  ui +,£ <2 — Ni + 2 t — K  V3 i '  310_ 1-J- rx O 1=1 , O „ 0_3 U * * f\ U A A , U J Ux o x  d x d x

8 t1 A 8 t 1 t0 t= E SH(i,l) u + ~  Z ( °j“^ N, + t SH(i,l))( * - °V *)
i=l 1 * i=l 1 J

= SL(1,1) (5.59)

The array SL is of size (3,3). Substitute (5.47) in (5.46) to obtain

Ae2 (l) = SL(1,1) - ^ - +  SL(2,1) + SL(3,1)

Substitute for the displacement derivatives from (5.44) to get

8 8 Ae (1) = SL(1,1) I 2 SH(i,l)Au + Z SGl(i,l)GG(i,l)a
i=l 1 i=l8+ Z SG2(i,l)GG(i,l)B.] 

i=l

8 8 
+ SL(2,l)[1E1SH(i,l)Avi + J^SGKi,2)00(1,1)0^

8
+ E SG2(i,2)GG(i,l)8.] 

i=l
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+ SL(3,l)[i|1 SH(i,l)Awi + Z SGI(i,3)GG(i,l)ai

8
+ Z SG2(i,3)GG(i,1)8.] 

i=l 1

8
= SL(1,1) Z SH(i,l)Au

i=l 1
8

+ SL(2,1) E SH(i,l)Av 
i=l 1
8

+ SL(3,1) Z SH(i,l)Aw 
i=l 1

+ [SL(l,l)SGl(i,l) + SL(2,l)SGl(i,2) + SL(3,l)SGl(i,3)]GG(i,l)ai

+ [SL(l,l)SG2(i,l) + SL(2,l)SG2(i,2) + SL(3,1) SG2(i,3) ] GGCi.DBj

(5.60)

Similarly, expressions for the other elements of [A e ] 2 may be 

calculated, and the matrix [BL2] obtained.
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Nonlinear Strain Displacement Matrix
From eq. (5.39) the nonlinear strains are

%
3Au, '•3Aa,

nXX

V

nzz

nxy

n yz

n.xz
.

, 3Au v 2 
t + , 3Av v 2 

 ̂ t + , 3Aw >2 
t ' ̂°3 x 3 x s o 3 x

 ̂3Au  ̂2 c f  )2+ +
 ̂ °3 y o °3 y s °3 y

, 3Au j2 
t + , 3Av >2 

t )
+ . 3Aw v 2 

t ;o3 z 3 °z s °3 z

■ 3Au 3Au 3Ay 3 Ay 3 Aw 3 Aw
t t t t t t~ o 3 x r> O 3 y t\ 03 x 3 y  ̂ o 3 x 3 ° y

3Au 3Au 3Av 3Av •1 3Aw 3 Aw
t t t t t t

3 y o3 z

oCD o3 z o °3 y 3 z

3Au 3Au 3Av 3Ay 3 Aw 3 Aw
t t t t t ts °3 x rv O 3 z 2 o3 x i °3 z 2 o3 x 2 o3 z

= [ENL]

Def ine

[BNL] [AU] =j— -----   — |— ----- 1----- — ,[3Au 3Av
t t

3 °x 3 °x

3Aw * 3Au 3Av 3Aw I 3Au 3Av 3AwF>z .3 °x 1 3 °y 3 °y 3 °y I 3 °z 3 °z 3 °-

(5.61)

(5.62)
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The reason for this definition will become clear in the next 

section. The elements of matrix IBNL] can be calculated since

expressions for the Incremental displacement derivatives have already 

been obtained in the last section.

Element Stiffness Matrices

From eq. (5.22) the linear and nonlinear element stiffness matrices 

at tj are

[ SKL] e /v [BL]* [C] [BL] dVe (5.63)

e /„ [BNL]T [SM] IBNL] dV V e (5.64)
e

Looking at eq. (5.47) it can be seen that

[BL] - [BL1] + [BL2] (5.65)

Since the elements of [BL1] and [BL2] have been calculated, [BL] is 

obtained by adding the two matrices. Calculation of the constitutive
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matrix [C] is discussed later. It will be observed that [ SKL]g is of 

size (40x40) since [BL] is (6x40) and [C] is (6x6).

From the definition of [BNL] it can be seen that it is of size 

(9x40). A (9x9) stress matrix is defined to obtain [ SKNLJe as 

(40x40) so that the linear and nonlinear matrices can be added directly. 

The stress matrix is defined as

o o
lp«  0

t .

*y
xy

*y

[SM] =
yy

yy

y*

yy

yz 0

Symmetric

(5.66)

where P.^ are the elements of the Piola-Kirchhoff stress tensor at lj
time tj.
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Numerical Integration

Equations (5.63) and (5.64) must be Integrated numerically to

obtain the element stiffness. Therefore, one must choose a numerical

Integration scheme and the order of Integration. Gauss quadrature,

which optimizes both the positions of the sampling points and the

weighting functions, is used widely in finite element analysis. The

basic equation is

+i n
/ F(x)dx = E a F(x ) (5-67)
-1 i=l

where n ■= no. of sampling points (order of integration) 

x^ *= position of sampling point 

= welghtage at sampling point i

Equations (5.63) and (5.64) involve volume Integrals, which are

evaluated from

+1 +1 +1 ni n2 03
f-. fi /, F(a,b,c) da db dc = E E E aiOt̂ ajr F(a,, b., c, ) (5.68)-1 - 1 - 1  » j=ik=l 1 J K i J k

where n^ * order of integration in direction a

■ order of integration in direction b

n^ ■ order of integration in direction c

If the limits of integration are not ±1 then the above formulae are

modified.
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Now dV *= dx dy dz e J

< f  . I I  . i|> d „ sdt

t
dV = det I °j] dr ds dt (5.69)e

where det ’determinant of'

The limits of r, s, t are ±1 so these formulae may be used without 

any change.

t ^ 1 n2 n3 t
[ 1 SKL] = E E E [BL(r ,s ,t, )]T [C] [BL(r ,s ,t. )]detl °j0.a a a 

e i-1 j=l k=l i l k  i j it
(5.70)

tl[ SKNL] is evaluated similarily.

Next, the order of integrations n^, n2» n^ are determined. The 

terms in [BL] and [BNL] are of the general form

f(J-1
3N.

ij Sr,
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-1 9Ni
Jij = S C ^ )

where g is some general function
3N 3N 3n .

fCJ«  -sr> - f ' < i e  •i i J

The derivatives of can contain at the most quadratic powers of r and 

s.

BL(i,j) - f' (h1(r2,s2), h2(rz,s2))

■ f"(r^, s^ ... )

/. [BL]T [BL] - f (r8, s8 ... )

The same applies to [BNL]. Also, upon inspection of the components of 

[BL] and [BNL], one finds the highest power of t is 1. Therefore, the 

stiffness matrix terms can contain, at most, quadratic powers of t.

Therefore, for exact integration, the order of Gauss quadrature 

must be 8 x 8 x 2. In linear analyses, reduced integration is used 

commonly. Shells can be integrated in 3 x 3 x 2 quadrature reliably and 

in 2 x 2 x 2 in some cases. The only way to determine a reliable order 

of reduced integration is to experiment with different values and 

compare the results. In linear analyses,a great deal of experience has
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been gained and standard practices established. No such norms exist in 

nonlinear analysis because of lack of experience. Therefore, in the 

present study, the order of integration in the shell plane has been made 

a user input variable, and different orders were tested. The order of 

integration in the thickness plane can be safely taken as 2, but it has 

also been Incorporated as a variable.

Assembly

The system stiffness matrix, in the unreduced form, is of size (ND

x ND) where ND is the product of the total number of nodes and the

number of degrees of freedom per node, which is 5 in this case. The
Tsystem matrix [SKL] is obtained by adding the components of [BL] [C][BL] 

in the corresponding position. The elements of [SKNL] are obtained from 

[BNL]^[SM][BNL]. In turn, [BL] and [BNL] are sums of the weighted 

values of the integrals at the Gauss sampling points. In this study, 

the conventional assembly by elements is used. The matrices 

[BL]T [C][BL] and [BNL]T [SM][BNL] are of size (40x40), correponding to 

the 40 degrees of freedom per element. Each component of this is placed 

directly into the system matrix at the end of Gauss point calculations 

for each element, using the relation

SK(NR1 + M, NR2 + L) = BTCB(5(I - 1) + M, 5(J - 1) + L)

where NR1 - (IC0N(NELM, I) - l)x5 

NR2 - (IC0N(NELM, J) - l)x5.
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I and J are the local node numbers (1 thru 8) of the nodes being 

assembled and ICON Is the connectivity of the element being assembled. 

BTCB can be taken to mean either [BL]T [C][BLJ or [BNL]T [SM][BNL].

Constitutive Relations

The constitutive matrix was defined earlier as

[AP] «= [ ^ [ A e ]

It relates the incremental Piola-Kirchhoff stresses to the linear 

component of the linear Green-Lagrange strains. It can be approximately 

taken as the relation between Cauchy stresses and strains.

The merits and demerits of continuum elements vis-a-vis structural 

elements were discussed in an earlier section. The kinematic relations

used in formulating the stiffnesses were for a general three-

dimensional continuum. Therefore, if the general three-dimensional

constitutive relations are used, the result would be a continuum

element. However, if shell theory assumptions are forced on the 

constitutive matrix, a degenerated shell element is obtained.

In this problem, the focus is on linear elastic and elastic- 

plastic materials. Therefore, two sets of constitutive relations must 

be specified and a criterion defined for yielding.
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Elasticity Matrix

The relation between Cauchy stresses and strains in three 

dimensions are:

xx —  [a - v(a + o )] E xx yy zz

yy —  [a - v(a + a )] E yy xx zz

zz

2exy

—  [a - v(a + a )] E zz xx yy
T Txy _ xy
G ~ E/2(1 +v)

2eyz

2exz

E/2(1 + V) 
TXZ

E/2 (1 + V) (5.71)

where E = Young’s Modulus* G = shear Modulus, and v «= Poisson's Ratio

Inverting these relations, the elasticity matrix [CE] is obtained

as

[CE]
1—V—2v

1—V V V 0 0 0

1-v V 0 0 0

1-v 0 0 0

l-2vO 0 0
Symmetric z

1-2V r»

l-2v

(5.72)
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Plasticity Constitutive Relations

Complete specification of plasticity relations Involve the 

specification of the following:

1. a yield criterion

2. a flow rule

3. a hardening rule

It is the aim of the study to focus primarily on steel pipelines, which 

may be considered as materially isotropic and ductile. Therefore, the 

yield criterion chosen is the Von Mises or Distortion Energy Theory. In 

terms of the six stress components, this criterion can be expressed as

{%[(<? -a )2 + (a -a )2 + (a -a )2J + 3t + 3t 2 + 3t 2 > s1 xx yy yy zz zz xx xy yz zx _  ^y

(5.73)

where Sy = uniaxial yield strength

It should be noted here that the stress components in eq. (5.73) are the 

elements of the conventional engineering stress tensor. Therefore, the 

Piola-Kirchhoff stresses must be transformed to Cauchy stresses to test 

for yielding.

Plastic stress-strain relations are of two kinds: incremental and

deformation. Incremental theories relate the deviatoric stresses in 

the material to the corresponding plastic strain increments. This
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equation must be integrated over the load interval to get the total 

stresses and strains. On the other hand, deformation theories relate 

the total stresses and strains directly.

The Prandtl-Reuss flow rule is an incremental theory in its 

simplest form, and can be written as

(5.74)

where dX * — —
, de 3 e

ae
eP “ plastic component of strain

O and de e < are the effective stress and effective strain incremente
given as

a
6 S i

1

(5.75)

(5.76)

The equivalent deformation theory as proposed by Hencky [67] is



According to eq. (5.77) the plastic strains are functions of the current 

state of stress and are independent of the loading history. At first 

sight, deformation theories appear to be inferior to incremental 

theories because the loading path is assumed to influence strains. 

However, inspite of this discrepancy, many researchers have shown that 

results obtained from this theory are in better agreement with 

experimental results than the analytically sound incremental theories. 

Batterman [27] proved this for proportional loads and Budiansky [69] 

experimented with nonproportional loads. The latter found that for 

lower hardening rates the results for nonproportional loading were good. 

This support of deformation theories has been disputed by other 

researchers, such as Drucker [97].

In this study, the basic equations of motion were written in 

incremental form, which makes it easier to incorporate incremental 

theories. Since nonproportional loads must be studied also and since the 

hardening indices for steel are moderate, it seems better to use an 

incremental theory.

The next step is to calculate the hardening in the material and 

incorporate it in the Prandtl-Reuss equations. For perfectly plastic 

materials (no hardening), the flow rule is written as [67]
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deij
3
2 Sij (5.78)

Mendelson [67] has defined two measures of hardening. The first 

one, known as work hardening, depends only upon the plastic work and is 

independent of the strain path. The second measure, known as strain 

hardening, depends upon the slope of the effective stress-strain curve.

The Prandtl-Reuss equations now take the form

, da
**5) -  !  s «  <5 - 79>

e
where tH “ hardening measure

CH 4  lo ̂  (5.80)
P

CH for the three material models studied is computed in a later section.

After yielding, the strain is composed of two parts, elastic and 

plastic.

de - dee + dep (5.81)
or

dep = de - de® (5.82)

where de « total strain



gde * elastic component 

deP “ plastic component

Also, [da] A [CE][dee] - [CE][de - dep ] 

and [da] » [CEP][de]

(5.83)
(5.84)

where [CE] = elasticity matrix

[CEP] *= elastic-plastic matrix

Reference [46] has derived the plasticity matrix for a Bilinear 

material model. Generalizing this result here and writing it in a more 

compact form, one gets

[cp] - cei srrs]t „ r t c l T r t (5.85)

(5.86)

tS » deviatoric stresses
3 (5.87)3

Cauchy stresses

2(1+v) t 2 (5.88)

The elastic-plastic constitutive matrix is obtained from



[CEP] - [CE] - [CP]
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(5.89)

The only remaining unknown Is tH which is computed in a later section 

for the three material models used here. The constitutive matrix must 

be computed in each Iteration from the stresses found in the previous 

iteration. The matrix is calculated at each Gauss point separately 

allowing for both elastic and plastic deformations to occur at different 

points in the cylinder, giving a more realistic model than those based 

on average material stresses.

Material Models

The hardening index in eq. (5.78) was defined in terms of the 

Incremental work under the effective stress-strain curve. It is 

standard practice to use the uniaxial stress-strain curve, obtained from 

a tension test, instead of the effective stress-strain curve. For this 

purpose, material models must be defined and compared to experimentally 

obtained data. Figure 13 shows the three models used in this study.

The simplest model is the bilinear model, defined by the equations

S < S (5.90)a - Ee —  y
(a - Sy) = ET (e - ey) S > Sy (5.91)

where E >■ Young's Modulus 

Ê , ■ Tangent Modulus

S , e ■ yield stress, strainy y 3
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tcr

Sy

e e
Bilinear model

e<e,
e>ev

tcr

v

e

e&ev
e>e..

Exponential model

datcr

S,v

de
a=Ke

Ramberg-Osgood model

Figure 13 Material models
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Now ey “ S /Ey

a ■1 s + y
0 at (S ■y
a m K i +

where K 1 and K,

T E '

^ > * V
C„e (5.92)

In order to determine ET from experimental data, eq. (5.91) is written

as

y * b Xwhere y = O - 1
x = e - ey

Using least square fit

Ay = blXi " yi 
where x_̂ , y^ are experimentally measured values

(Ay)2 = b12 (x1)2 + ( y ^ 2 - 2b1(xi)(yi)

Z (Ay)2 = b 2 Z x 2 + Z y.- 2b Z x y 
i=l 1 i=l 1 i=l 1i=l

— ■ 2bi Ixi2 - 2 Exiyi ■ 0

or

1

1 v 2 
i

N
Z (e, - V )(o± - Sy)

Et . -i=5----------   (5.93)
,E - • )2
i=l 1 y
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The exponential model, defined by Barnard and Sherman [104] as

ep - A ( 0  _ s )B 0 > Sy y
ep = 0 o < S (5.94)-  y

where A ■ hardening coefficient

B «= hardening exponent

To determine A and B from experimental data, a least square fit is used 

as follows

y = Ax B (5.95)

where
py = e = e - e

x - 0 - Sy
then log y = log A + B log x

or y <= A + Bx

where

y ■ log y,

A = log A,

x - log x

Ay - 1  + Bx - y ±
N

and 2 (Ay)2 = NX2 + B2 Zx±2 + 2 y±2 + 2XB 2 x±
1=1 :

- 26 2 - 2X 2 y^
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~ 2
- 2NA + 2B E x - 2 E y . = 03X 1 1

and

31 (Ay)2 = 2B E x 2 + 2XEx. - 2 E x y = 0as 1 1 1 1

Solving the above simultaneous equations, one gets

Ex E y . - NEx.y. 
B = 1 1

(Ex^)2 - N E x^2

E y - B Ex 
X =  i--------- i-

and B

N

Elog(e. - e ) - BElog(a. - S ) 
alog [_----- 1---- 2------------ 1----i - ]

N

E l o g ^  - Sy) E log(e1 - ey) - NElogCc^ - Sy)log(ei - ey)

(ElogC^ - Sy))2 - NE(log(ai - Sy))2 (5>96)
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The Ramberg-Osgood model Is of the form
O «= Ken

where K « strain hardening coefficient

n « strain hardening exponent

To obtain the values of K and n, take logs of both sides

log o  m log K + n log e

or y => K3 + nx

where y = log a

K3 *= log K 

x = log e

This is similar to the equation of the exponential model, so 

can be evaluated as

K = alog [X1°B01 ” * l06e<]

where

n _ ZlogejE log g'j - N Elog ej log Qj
(Elog e ±)2 - N E(log e.̂ )2

(5.97)

and n

(5.98)
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Hardening Variable fcH

£The hardening variable H, at time t^, was defined In eq. (5.63) as

*» - P

where dW^ = 0 ^eij

The hardening variable is evaluated below for each of the material 

models.

In Fig. 13, the definitions of stress/strain components are shown 

on the Ramberg-Osgood model. These definitions are valid for all 

models. The shaded area is the change in the total strain energy dW.

dW dW - dW

tade - t0deE

Now de E E 
e2 ” *1

dW

do
E
ta(de -i2) (5.99)

Eq. (5.99) is valid for all elastic-plastic models. For the 

Bilinear model



Substituting eq. (5.100) in (5.80)

H *= t—
E •

E ET

For the exponential model



Substituting (5.103) in (5.80)

ABt0(

.-. H  .  L.
AB(ta -

For the Ramberg-Osgood model



Substituting (5.106) in (5.80)

fcH = tO -^e-dW

= a

1 n-l
_ „n t n nE K g

n-l 1̂ 
n n

E - n a K

.i n-l
nEK O

n-l
E - n‘o n K n

(5.107)

Degeneration

So far all kinematic and constitutive relations used are valid for 

the general three-dimensional continuum. However, if Kirchhoff's shell 

■assumption that the stress normal to the shell surface is zero is now 

introduced via the constitutive matrix, one would have the formulation 

of a shell element. This is done by first writing the constitutive
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matrix in the element local coordinate system. The direction t is 

normal to the shell surface, so the components of stress in that

to zero. Thus,

err = 1
J  (° e rr ass

ess = 1
F (°E SS

orr

ett = -V 
F (°e rr ass

2e .i 2 = 2(1+v) 
E

T . .1J for i 4 j (5.108)

From the first two equations ) one gets

rr

ss

— —2- (e - Ve ) 1—v ' rr ss
■, 1-z (e - Ve ) 1—v ' ss rr (5.109)

Therefore, in the shell element coordinate system the constitutive 

matrix [CSE] is written as

[CSE]= 1-VZ

1 -V 0 0 0 0

-V 1 0 0 0 0

0 0 0 0 0 0
0 0 0 1-v

2 0 0

0 0 0 0 1-v
2 0

0 0 0 0 0 1-v

(5.10)



This tensor must be transformed to the global coordinate system by 

orthogonal rotation matrix; which is determined from the direction 

cosines of the local axes (see Fig. 14). For this purpose, vectors in 

directions r and s should be evaluated at the point r * 0, s = 0, t = 0. 

Since this point is on the midplane the coordinates can be interpolated 

as (from eq. (5.30) for t ■ 0)

V, - Ii i=1 1 i

tzi
8 

= Z
i=l

For r = 0, s •= 0

N± - -0.25, i - 1,4 

N± - 0.5, i = 5,8

Using these values of and the nodal coordinates, the global

coordinates of point 0 are obtained as (x , y , z ). The vectors r ando o o
s may be obtained by writing the equation of straight lines joining
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2 , 5

3

t

Figure l4 Transformation from local to 
global coordinate system.



points 0 and 8 and 0 and 5, respectively (see Fig. 14). For cylinders,

whose s direction is alligned with the length direction of the cylinder,
->■ -*■ this will give the exact vector for s but the value for r will only be

approximate. However, as the number of elements along the circumference

is increased, this error in r is reduced. Thus

r -  (x8- x 0) l  + (y8-y0)S + (z8-z0̂
s = (x5-x0)i + (y8-y0)J + (z8-zo>k
t ■ r X 8

(5.111)

(5.112)

(5.113)

The angles between r, s, t and x, y, z as defined in Fig. 14 can be

calculated from the scalar products

A • B ™ IIAII • II B || cos0

= A B + A B + A Bx x  y y z z

A B  + A B + A B
cos 6 - * *■- , - n . ----- -z- 2...  (5.114)

V ‘Ax2 + Av2 + Az2)(Eji2 + B,2 +x y Z JX y

Since the global unit vectors are (1,0,0), (0,1,0), and (0,0,1), the 

angles a , 8 » Y are given by



The stresses in the local system can be transformed to the stresses 

in the global system using the tensor transformation given in books on 

Elasticity. From Ref. [147]
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where ■* cos ai

mi " cos Bi

ni " COS Yi

Thus, we can write eq. (5.109) in matrix form for incremental

[AP] = [T][AP] „1 Jxyz 1 J1 rst

Similarly, for strains we can write

[Ae] - [T][Ae] „1 Jxyz 11 rst

Also

[fiPJrst - ["1CE][Ae]rst
[*][AP1 - t ^ E H T H A e ]

t /v
[AP1xyz = [T]T t ^E] [T] [Ae]xyz

A
(Since [T] is an orthogonal matrix)

Therefore, the degenerated elasticity matrix is

t1 A T A[ DE] - [T]A[ CE][T]

where t h P ] ^  - [ W & ] xy2

stresses

(5.117)

(5.118)

(5.119)
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Degeneration of Plasticity Matrix

In the plasticity matrix [CP], the Kirchhoff assumption is 

substituted (P = 0), giving

[ lcp] = tS t T s S O S  s „ s _1+V I rr ss rs st rt

where S.. are the deviatoric'stresses ij
The degenerated matrix is obtained from

rr

^ss
0

5rs

3st

5rt (5.120)

t t t
[ 1DEP] = [T]T ([ 1 CE] - [ ^-CP])^] (5.121)

When the strain displacement matrices derived before are used in 

conjunction with (5.121), one obtains the large displacement, 

degenerated, elastic-plastic shell element.

Calculation of Piola-Kirchhoff Stresses

The Piola-Kirchhoff stresses at the end of step t^ are calculated 

from the linearized relation

ij
1 1 P . . + C. . Aeij ijrs rs (5.122)



119

The linear component of the Green-Lagrange strains ^ ers are obtained 

from

As seen from (5.90), the nonlinear strains are not required for 

computing Pij’ However, if need be, the nonlinear strains can be 

calculated from

1 3An (I,J) = J  Z DD(K,I) • DD(K,J) (5.123)
K=1

where DD(I,J) *= derivative of displacement I with respect to

coordinate J

Sx j

The elements of [DG] can be found from the nonlinear strain- 

displacement matrix, using the following relations from eq. (5.50)

40
DD(i,1) - Z BNL(i,J).U(J) for i - 1,3

J — X40DD(j,2) « | BNL(j+3, J)»U(J) for j - 1,3
*J x

DD(k,3) - |° BNL(k+6,J)»U(J) for k - 1,3 (5.124)J— X
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Transformation of Piola-Kirchhoff Tensor to Cauchy Tensor

The Piola-Kirchhoff tensor was defined by eq. (5.5). 

this relation, the Cauchy stresses are obtained as

Inverting

tn i 1 JLp t
kl t t ii0 ^ 0

p a xi

3 °x

- o 3 x.
(5.125)

Define the deformation gradient matrix as a (3x3) matrix containing the 

derivatives of the coordinates at time t^ with respect to the 

coordinates at t

[DG] =

*13 x

a 1 l _ ztn> O 3 x

S i3__z
ts o 3 x

A c
t•s °3 y

S i3__y
t

3 y

Si3 z
a °3 >y

S 13 x

a 1 1 . yt~ o 3 z

S 13__z
ts o 3 z

Also, from constancy of mass
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1 1 *=1•p h v
t t o o p dV

lr
t t t.'

^dV _ d °x d °y d °z
L fcl tl tldV d x d y d z

det [DG] (5.127)

Therefore, eq. (5.125) can be written as

[ xo] = det[DG] [DG][PP][DG] (5.128)

where [PP]

and P^ are the elements of the stress vector. The only thing remaining

in the transformation is to calculate the elements of [DG], which is

done as follows: 
t„a '!9 Xj

9 °x.

1° 8Hk C1 . A 3 k
. Z, 1 ---  Xik + 2 * 1  ‘V *  3ik=l „ o k=l . o9 xj 9 x. J

where x^ ■ x, y, z

Define [DG] - [DG1] + A  . [DG2]



40 9N t
where DGl(i,j) - Z — --- x±k

k=l ~ o 3 x.J
g "̂1 kand ' DG2(i,j) - k|x   (\t) AV3±
 ̂ °
3 Xj

122

40 9N. . 9N . t._ ^ / k dr , k ds , 1.
“ J \ (“97 • 1 —  + I T  * “ t— } xikk=l n. o ~ o9 x. 9 x.J 3

or

40 a i- 9n l. 1DG2U.3) - l a - A  + t _ J 5.) lv
k=l n. O ~ o9 x. 9 x.

40 t
i  (<V<

40 9N,

9N.k
9s

t I (- 
k=l

: , t
° J  _1 ) h Kj,2 } 3i

9r “j:1.

(5.130)

Load Vector

The right hand side of eq. (5.22) is termed the ’load vector', XL.

S  t9 I[ 2 XL] - [%] - [ 1 F] 1 (5.131)

Since an incremental scheme is used, the applied loads [R] are updated 

at the beginning of each load step and subtracted from the internal 

loads [F]. The calculation of these vectors is discussed below.
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It is the objective of this study to examine not only buckling

under proportional loads but also nonproportional nonlinear loads which

have not been studied by any previous researcher using finite elements.

Incorporating of nonproportional loads also permits the study of the

influence of the order of loading and loading history on the buckling

modes and critical loads. Any combination of axial loads, lateral

loads, bending moments, and internal/external pressure can be

incorporated in the following formulation.

Figure 15 shows pressure p, bending moment M, and axial load P,

increasing linearly from zero to p , M , and P , respectively. If 6 J rmax max max
equal size steps are taken then the loads in any step are Pmax/N»

M /N, and P /N, where N is the total number of load steps. The load max max
vector, therefore, is an exact multiple of the load vector at the 

maximum loads

tl tN[ R] = (i)[ R]/N (5.132)

Figure 16 shows an example of nonlinear nonproportional loads. All 

loads increase or decrease independent of each other. Incorporating 

this type of loading via equivalent nodal loads does not present a 

problem. However, major changes are required in the solution phase 

during displacement control, and in the use of linearity indices and 

stability criteria, as discussed in later sections.

These nonproportional loads may be incorporated as follows. A 

certain reference value for each type of load should be specified along
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e 
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maximum
loads

max max max
Applied Loads

Figure 15 Proportional loads.

max max max

Figure 16 Nonproportional, nonlinear loads.
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with the number of load steps. The ratio of each type of load to the 

reference value In each load must then be specified so that the loads 

may be calculated from

t.
l P = Ratio(P,i) • P f, etc. (5.133)

where Ratio(P,i) is the ratio of the load type P in step i

to the reference value of P

In the example shown in Fig. 16, one can see that the moment M and 

pressure p are applied first, but P is zero until step 3. Thus the 

Ratio(p,i) for i = 1 to 3 will be zero. Also, if the maximum values are 

used as the reference values, then Ratio(P,N) will be less than one. By 

using this scheme, any type of load variation and order of loading may 

be specified. It must be noted, however, that the load vectors in 

different steps are different, and this causes some problems in 

searching for limit points.

Figure 17 shows an example of a situation where nonproportional 

loads are encountered. In the laying of subsea pipelines, the pipe 

undergoes combined bending, axial tension, and external pressure 

loading.

The equivalent nodal loads have to be calculated for each type of 

loading. Four types of load encountered in pipeline problems are: 

uniformly distributed axial compression/tension, uniformly distributed 

lateral loads, pure bending moment, and external/internal pressure.



Overbend I 
Region I 
(bending)|

t [t Stinger Region
I(Ext.Pressure + 

Tension)-'1

------  Sag Region ---------
( BM + Ext.Pressure + Tension)

Stinger

Figure 17 Laying of sub-sea pipelines.
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For uniformly distributed axial loads, the equivalent nodal loads 

can be calculated from the total axial load as given below.

FTThe load per unit length of circumference is ^
f tand load per element is wg = '̂ ( eic) (5.134)

where F̂ , *= total axial load

D = midplane diameter of cylinder 

NC <= number of elements along circumference

(assuming elements are equal along circumference)

From eq. (5.13)

(R] - fv [NB]T[Ts]dr (5.135)c i 6e

Figure 18 shows a parabolic element subjected to uniform pressure on 

face 1-5-2. The shape functions [Hs] on the surface are evaluated by 

setting s - 1, which is for face 1-5-2.

Then

N x « 0.5r(l + r)

N 2 “ -0.5r(l - r)

N5 - (1 - r2)

N3 " N4 " N6 " N7 * N8 " 0

i



128

w lt/in

s=l

Figure 18 Uniform edge pressure on parabolic element.

F/2 F/2

b aa

BM

Figure 19 Four point bend test.
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[Ts]

-  [Rle
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0.5r(l+r)

0

>0.5r(1-r) 

0

(1-r2)

0

0.5r(l+r)
0

-0.5r(l-r)

0

(1-r2)

[ “ l V 1 u2 v2 °5 v s]

- -
T 6 0r _

H 03 w6 e. _

/•'-1

■r*'-i

0.5r(1+r) 0

0 0.5r(l+r)

-0.5r(1-r) 0

0 -0.5r(l-r)

(1-r2) 0

0 (1-r2)

0 ’  0

0.5r(l+r)wg l/3we
0 0

-0.5r(l-r)we dr* l/3we
0 0

(l-r2)we 4/3we
•

0

w

(5.136)
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Since the global direction Z Is aligned with the local direction s for 

elements on the cylinder if curvilinear rectangles are used, 

transformation to the global system was not used. It is also assumed 

that the midnode is located at the midpoint of 1-2.

The ratio of the equivalent load on corner nodes to that on the 

midnode is 1:4, for each element. However, the corner nodes get load 

contributions from two adjacent elements, so the ratio is reduced to 
1:2. Therefore,

Uniformly distributed lateral loads can be calculated in a similar 

manner.

NC • F„ + NC • 2F_ « W • TTD C C e

where F,C ® equivalent load on corner nodes
7TW D

and F, e (5.137)C 3NCT

2 ttW  D
and F, e (5.138)M 3NC
where Fjj = equivalent load on midnodes

F.T

where F,j, ■ total lateral load

Wg ■ load per unit length 

L ■ length of cylinder
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No. of elements along length = NL » thus

Fc + 2FC (NL-1) + 4FC(NL) ■= WfiL

and
W LF,C 85 e (5.139)(6 NL - 1)

where F-, *= F. = equivalent load on unrestrained extreme corner

node

Thus, the load on all corner nodes, except the extremes is 2F^ and the 

load on midnodes Is 4F^.

Since Battelle's study Involved tests using four-point bending, 

which imparts a constant bending moment between the inner points (Fig.

19), several schemes for modelling constant bending moments were

devised. The results of the most successful of such schemes are given

in the last chapter. The nodal loads shown in Fig. 20, produce

theoretical deflections equivalent to

Finally, equivalent loads must be calculated for uniform 

external/internal element pressures. As with distributed loads, the 

equivalent nodal loads must be consistent with the assumed shape 

functions. However, if the elements are small, the error in using equal 

nodal loads (on an element basis) is negligible.

M ■ F x 0/2 (5.140)
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d z

Figure 20 Uniform pressure on a general shell element.
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Figure 20 shows uniform pressure on a shell element of general 

shape. The pressure Is always normal to the shell surface; therefore* 

the components in x and y-directions would depend upon the position of 

the point. Since the local axis direction t is normal to the shell 

surface, the pressure can be said to always act in direction t, 

regardless of position. Pressure calculations can be simplified if it 

is observed that in the case of a right circular cylinder whose axis is 

aligned with the z direction and the origin of the global system lies 

somewhere along the cylinder axis. These assumptions are true if the 

model has been generated using the special purpose preprocessor PREP.

Equivalent nodal loads are calculated from eq. (5.141)

[R]e -  fT [Hs ]T[Ts ]dre (5.141)
e

Now dr “ d£dz e
(j/d x + d y  )dz (5.142)

Also drds det [Js] 

.*. det [J8]

(5.143)
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js rCJs 2 + js23\ 11 12 '

dre = [ Jl3 >| Jll2 + Ji 2 ]dris (5-144>

[T ] is calculated by breaking p into its components in the x,y,z 

directions

[T8] p cos 6 

p sin 6 

0 (5.145)

Substituting (5.144) and (5.145) into (5.141) and using Gauss quadrature 

for numerical integration, one obtains

[R]„ =
i=l j=l J P sin 0 J J

L o Jm
(5.146)

where l,j » Legendre sampling points 

nj.n^ ■ order of Integration
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■ weighting functions 

m “ node

It Is seen that, in this case, a closed form solution cannot be obtained, 

and the equivalent loads must be calculated for each node by evaluating 

the shape functions, Jacobian matrix, the coordinates, and the current 

element pressures and numerically integrating over the entire element. 

If this procedure is repeated in every load step, the deformation of the 

cylinder will be taken into account in calculating the loads, i.e. the 

direction of the pressure is taken normal to the deformed shell not the 

original shell.

Finally, to obtain the incremental load vector, the internal load 

vector from the previous iteration is subtracted from the applied load 

vector. The internal loads are obtained for each element from eq.

(5.15) as

fcl 40 40 40 t ,[ F] « Z Z Z [BL(r. ,s ,t, )] [SV]det Jct,a,ou (5.147)e i=l j=l k=l 1 j k i j k

where [SV] «= [P^ ? 22 P33 P 12 P22 P31]

Solution of Nonlinear Equations

Various solution schemes were discussed in Chapter IV. The

Incremental formulation used is equivalent to a Newton—Raphson scheme.

Bathe [46] has shown that the stiffness matrix in an incremental analysis
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is equivalent to the gradient in the Newton-Raphson equation. The 

equation to be solved is

C1 *~2[ SK][Au] - [ R] - [ F] (5.148)

An incremental-iterative scheme is used here i.e. the load is 

Incremented in steps and convergence in each step is obtained by 

iterating. In step t^ and iteration (i),the equation to be solved is

(t;LSK](i)[Au](i) - [ 2R] - [ 2F](i_1) (5.149)

In eq. (5.149) the stiffness matrix must be recalculated in each 

iteration. This is too time consuming. Therefore, a quasi-Newton 

scheme is used in this study, which uses the equation

[t;lSK](1) [A'u](i) - [t2R] - [t2F](1“15 (5.150)

The stiffness matrix is calculated in the first iteration of each
t9loadstep. In subsequent iterations only the internal loads [ ^F] are 

updated and the equation solved.

Convergence is checked by computing the ratio of the displacement 

norm to the root mean square of the displacements in that load step

ERROR - £  CONV (5.151)
J I IIAuMl2
V j-i
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where CONV ■ convergence criterion

In each iteration, the linear matrix equation K V_ ■ JR is solved.
TThe linear solution technique used in this study is the LDL 

decomposition in the form of skyline reduction method. This is a 

standard procedure and is described in finite element text books, such 

as Zienkiewicz [47] and is briefly described here. The stiffness 

matrix is decomposed to a lower triangular matrix [L] and a diagonal 

matrix [D]

[SK] - [L][D][L]T

Also [R] - [L][V]

[L][D][L]T [U] = [L][V]

[L]T [u ] - [D]_1[V] (5.152)

[xj] may thus be calculated, starting from the last equation and 

back-substituting.

The stiffness matrix is symmetric and banded as shown in Fig. 21; 

the elements outside the band are zero. The skyline reduction method, 

operates on the stiffness matrix by columns, starting at the skyline

i.e. the first nonzero element in the column. The last element reduced

is the diagonal element in each column. Therefore, this method is 

.computationally efficient because it takes advantage of the symmetric 

and banded nature of the matrix.
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Figure 21 Nature of stiffness matrix
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Stability Analysis

It was pointed out In Chapter IV that when cylinders buckle

(ovalization or gross column buckling, elastic or plastic) a limit point 

is encountered on the load-displacement curve. Therefore, in order to 

predict buckling loads, the position of the first limit point must be 

found. From a simple one dimensional representation in Fig. 22 it can

be seen that the stiffness value tan9 is reduced as the limit point is

approached. Also, at the limit point 0 « 0. In multi-dimensional

problems this is equivalent to saying that the stiffness matrix becomes 

singular. Since a quasi-Newton scheme is being used for solving the 

nonlinear equations, the solution will become unstable at or near the 

limit point. The reason is that one of the pivot elements will approach 

zero leading to division by zero in the reduction scheme.

To prevent numerical instability near limit points, the solution 

strategy must be altered. Newton-Raphson or quasi-Newton schemes cannot 

be used. It is, therefore, essential that the approach of a limit point 

be detected before It is actually reached. This can be done in the 

following ways.

Since the diagonal elements are used as pivots, the magnitude of 

these elements can give an indication of the approach of limit point. 

Thus, we define a stiffness index ST1

(SK(1.1)/D) ... (SK(N,N)/D)i 
b11 = (SK(1,1)/D) ... (SK(N,N)/D)1 (.5.153)
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R

u

Figure 22 Structural softening.
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where D « divider to prevent magnitude overflow 

/i ■ step i 

/I ■ step 1

Since the selection of D is difficult 'a priori' an alternative measure 

is defined as

N
.g, log SK(k,k)/i

ST1 = - y ---------------------  (5.154)
z log SK(k,k)/l

k=l

From these definitions, it would be expected that ST1 would be a number 

between 0 and 1. When the value of ST1 reaches a certain value (call it 

stability criterion STAB2) the solution strategy can be altered. The 

advantage of ST1 over other measures described below is that it is 

Independent of the load vector and thus suitable for both proportional 

and nonproportional loads. A disadvantage is that it does not give a 

good measure in case of highly coupled equations and also numerical 

difficulties are involved with the exponent magnitude.

Bergan, et al [72] proposed the following parameter :
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ST2
[An]
Ap. lRrgf']

[Au].
Ap, IR ref

(5.155)

where [AR]^ ■ AP^[Rre£] for proportional loads

Ap 2 [Au]*[AR]
ST 2 = (tt-A )  1 ----  ( 5 . 1 5 6 )

Apl [Au]f[AR]4

But [SK][Au] - [AR]

Ap, 2 [Au]* ISK].[Au ]
ST2 = ( - r - i )   A-------------------- ± -  ( 5 . 1 5 7 )

Apl [Au]* [SK] [Au]

The above Is valid for proportional loads only. This is being extended
t2here to nonproportional loads by using the actual [ R] in each 

iteration. Thus

ST2
[Au]J [AR]1 

[Au]* [AR]±
(5.158)
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A third measure Is being proposed here on the basis of the slope of 

the norm [R] - norm [u] curve. From Fig. 22, the slope in step 1 is

tan 0^ =

and tan 0. = ■i.1 TTSu

\ ^ \ \ x

M l ,

|A*II±

Def ine
ST3

|AR I 1̂ * I|Au||xIWITnsnTi (5-159)

For proportional loads

and
I I a r I I ,  = I |ar| \1 

I|Au| I
ST3 - nETTL (5-160)

The value of ST3 will lie between 0 and 1 and will be an indication of 

’softening’ of the structure. This requires less computation than the 

Bergan criterion, and its performance will be compared to the Bergan 

criterion.

The stiffness parameters ST2 and ST3 have the same disadvantage. 

They measure an average change in the stiffness of the structure. Also,
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they provide no clue as to how the structure will buckle. It is 

proposed here to gear the stiffness parameter or index to the 

deformation mode. Two such modes are bending (column buckling) and 

ovalization.

In bending* if the global axis z is aligned with the cylinder axis, 

the displacements u^ and measure the deflection. The resultant 

deflection of any point k is

I 2 2
6 k + Vk

l l R l l ± /  I I 6 I LDefine STBND -  1------- 1
i n i , /  i m i ,

where | 16 1 | = Norm of 6 *=-^£6^

For proportional loads

llfilliSTBND ■= (5.162)

If the order of loading is such that there is no bending in the first

Iteration, the index STBND will be misleading. Therefore, there is need 

for a magnitude measure to be used in conjunction with STBND. The

center deflection in Battelle's experiment of D/t - 16 is calculated

below.

M « 12,500 in-lbcr
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I - 0.0839 In4
ft ■« 15 In

<5 ■ JL JL_\ ■ 0.56 in°max El 2

Looking at equations for deflection of beams we see that the general 

form is

S?5 a (±— \ max El

6EI _ „— =• = cons tant
1 3

5 Xor — 7T = constant for same material
i 3Define

mov *•

STBNDA - 6?'b02--- (5.163)
6 I
MOVas  t—  = .002 for Bat telle* s model
t

where all parameters are measured in inches.

The ovalization is calculated from Fig. 23 as

R* - yj + ty12
d R* - R

■ ^  xi2 + S ^ 2 ~ R (5.164)

Ovalization - d - d . (on each plane) max min r
To make this dimensionless,divide by the radius

d - d
OVALm

^ max min
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ovalization =

t

Figure 23 Measurement of ovalization.
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where OVAL Is the ovalization on plane mm
Define ovalization Index as

STOVL (5.165)

where II xo ||± = J z  (o v a l’)/nl
m=l

Since the ovalization may not be significant in the first step for 

certain types of loads, an absolute measure is used in conjunction with 

STOVL. This is based on the maximum ovalization calculated by Brazier

The stiffness indices give an early warning of the approach of 

limit points. Once the value of the selected index falls below a 

certain level, quasi-Newton scheme must be abandoned. Instead, a 

displacement control scheme must be followed i.e. instead of 

incrementing the loads and solving for displacements, the displacements 

are increased and internal loads calculated. Bergan et al [72] have 

followed this scheme for proportional loads.

[8] as

R Rmin 2
9 (5.166)

R

Therefore define
MAX(OVAL )

STBRA2 = m
(2/9)
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In displacement control the assumed displacement Increment 

Influences the solution significantly and, In fact, can give completely 

erroneous results. For proportional loads, Bergan used a fraction of 

the last displacement Increment as the assumed displacement. However, 

in nonproportional loads this may not give displacement modes that are 

physically possible or load vectors corresponding to actual loads. If 

an Iterative solution is used, there is no mathematical basis that 

guarantees convergence.
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VI. COMPUTER PROGRAM

In order to validate the formulation presented In Chapter V, a 

series of computer programs were written, under the name "BUCKS". When 

this study was proposed, it was hoped that one of the existing nonlinear 

programs, such as AGGIE or ADINA could be used with appropriate changes 

to the element, material property, and loading subroutines and using the 

solution presented in this study. AGGIE was found to be inadequate for 

this purpose and a bit out of date. The lack of documentation in ADINA 

made it difficult to make any changes in it. Therefore, every 

subroutine in BUCKS had to be written from scratch.

Version 8.1 of BUCKS has been written in FORTRAN ANSI-77, suitable 

for batch processing on IBM mainframes as well as DEC minicomputers. 

The program is about 5600 lines of code consisting of 54 subroutines and 

functions. The organization of such a large program is a major task; 

the algorithms and computational procedures are discussed briefly in the 

following sections.

Analysis Procedure

Figure 24 shows the analysis procedure used. The finite element 

mesh is generated using the special purpose program PREP and checked 

graphically using DSPLAY. A brief write-up on these programs is given 

in the Appendix. The program SSCURV is used to curve-fit experimental
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SSCURV*DAT

Model*DAT

name.DAT

Scratch file 
to store 
intermediate 
values

DATA SPEC

SSCURV 
Curve fit 

stress-strain 
dataDSPLAY 

Graphical 
check of 
mesh

PREP 
Create F.E 
Mesh

BUCKS8 
Nonlinear 

Stability Analysis 
Program

I-----
name*LGG

 1----
name*RST

output
files
_i__

Log file: Record Final results
of convergence of run: disp.,
history, stability stresses, and/
indices and or load vector
solution phases

 1—  -----
name•DBG

Intermediate 
arrays as 
requested by 
Debug code

  1
name*PKS

Piola-Kirchhoff 
stresses if 
requested

Figure 24. Analysis Procedure
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stress-strain data to give the material constants for the three material 

models presented in the last chapter. Using the output from PREP and 

SSCURV a data file is prepared in the format given in the Appendix.

Algorithms

Figure 25 shows the main features of the program BUCKS8. A short 

description of each subroutine is given in the Appendix. Dynamic 

dimensioning is used to optimize storage. The main program serves the 

purpose of reading the parameters required in variable dimensioning. 

Control is then passed on the subroutine DRIVER which acts as the main 

program. Data is read from the formatted file by subroutines INPUT and 

LOADIN. The index ZOL specifies whether the load is proportional and 

linear or nonproportional and even nonlinear.

For proportional loads* the maximum loads are calculated in the 

first step and the equivalent nodal loads from all types of loading are 

added. In each load step the load vector is calculated from

« • »

where ISTEP, i * load step no.

NSTEP ■» total no. of steps

To save memory* [R]mny is not stored* so [AR] is calculated from
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‘i R > i  -  <T s f H ? i > ( 6 ' 2 >

Thus [AR]j is calculated from (6.1) but all subsequent steps use (6.2), 

Nonproportional loads are calculated from eq. (6.3).

[AR]± = PINP(i) [R]ref + PINM(i) * [R)^ef
ref+ PINUL(i) • [R]u l + PINUC(i) * [R]uc (6.3)

where PINP(i) ■» ratio of external/internal pressures in step i to
refreference load vector [R1P

refPINM(i) •= ratio of bending moment to reference loads [R]M 

in step i

PINUL(i) = ratio of uniformly distributed loads in step i 

to [R]jjf

PINUC(i) “ ratio of uniformly distributed axial loads in 

step i to [R]J^f

This calculation is managed by subroutine UNPROP.

The element stiffness matrices are calculated and numerically 

integrated in SHELL1. In the first loadstep, vectors V ^ ,  V ^ *  are 

calculated in VECTOR which also updates these vectors in subsequent 

steps. The strain-displacement matrices are calculated in ELEM1. All 

element subroutines are called once in each Gauss point cycle for each
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element. A maximum size of 4 x 4 x 4 quadrature can be used but this Is 

a user Input variable.

Calculation of the appropriate constitutive matrix Is rather 

involved. The algorithm is shown separately in Fig. 26. In order to 

save computation time, the user specifies an integer-NCRIT which lies 

between 1 and NSTEP. NCRIT is the approximate time step in which the

stresses are estimated to go into the plastic range. Thus, before NCRIT

is reached no check is made on yielding of the material, and the

elasticity matrices are used. Another user input parameter is IANY, 

which specifies the analysis type. If IANY ■= 1 the full elasticity 

matrix calculated in ELAST is used without degeneration. If IANY = 2, 

the modified elasticity matrix in ELAST2 is degenerated by DEGEN.

For ISTEP >_ NCRIT the P/K stresses are transformed to Cauchy

stresses in CAUCH2 and the Von Mises stresses calculated in VMISES.

This is done individually for each Gauss point. If the material has 

yielded, the elastic-plastic stress-strain relations are calculated from 

ELAST and PLAST for IANY = 1 or degenerated matrices from ELAST2,

PLAST2, and DEGEN. If the material is still in the elastic range, the 

procedure is the same as that before NCRIT. In case of yielding, the 

new yield stress is set equal to the Von Mises stress for use in PLAST 

and PLAST2 only. Plasticity relations are based on three material 

models specified by IH.

IH ■ 1 for Bilinear model

IH » 2 for Exponential model
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Figure 26. Material Properties Algorithm
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IH * 3 for Ramberg-Osgood model

To save memory the total P/K stresses at each Gauss point are not

stored In an array but Instead are written to a binary scratch file.

After calculating the Incremental stresses In each iteration, the old

stresses are read from the scratch file and the new stresses calculated 
using

*2 t;L 
Pi3 " Pi j  + i j

t 2The updated stresses overwrite the previous stresses in the

scratch file. Since the scratch file used is binary and direct access, 

the I/O time is not a serious hinderance.

Assembly of integrated element matrices is done by elements. The 

contribution from each Gauss point is placed directly into the system 

matrix in subroutine ASSEM. By using the same memory space for the 

linear, nonlinear, and total system matrices considerable saving in 

storage is achieved. Load vectors are also assembled directly from the 

calculated internal loads in each step.

The solution scheme is very complex eo the solution phase is 

tracked by a parameter ISTAGE. The are four phases.

1STAGE «= 1 Convergence not achieved in load step

ISTAGE - 2 Convergence achieved in load steps other than NSTEP

ISTAGE = 3 Convergence achieved in load step NSTEP; the structure

carries the full load specified without buckling (if

ISTAGE was 1 prior to ISTAGE 3)
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ISTAGE «= 4 Limit point is approached, solution strategy is 

changed to displacement control.

In the quasi-Newton scheme being used here, the stiffness matrix is 

updated only once per loadstep. Convergence is achieved in each step by 

Iterating. Equations corresponding to restrained degress of freedom are 

removed before the solution is carried out. This is done by RSTRNT and 

CONVRT. If the stiffness matrix is not to be updated, as in ISTAGE = 1, 

no such rearrangement is needed. Only the load vector must have 

elements corresponding to restrained degrees of freedom removed. This 

is done by RSTRN2. Thus; IPP *= 2 when iterating within a load step and 

IPP ** 1 when updating the stiffness matrix.

The linear set of equations are solved in EQS0L2 by the skyline 

reduction method. If IPP «= 2 [SK] is not factorized, using the old 

values. EQS0L2 has optimized storage since the matrices [L] and [D] use 

the same space as [SK] and [V] uses the same space as [ R], (All 

symbols have the same meaning as in Chapter V).

Several softening criteria were defined in Chapter V. These are 

calculated in subroutines BUCKLE, OVAL, and BEND. The subroutine SHUFL 

inserts zero displacements for restrained degrees of freedom so that the 

changes in the displacement vector are transparent to the user.

Figure 27 shows the logic used in determining solution strategy. 

It is recognized here that no single stiffness parameter or stability 

index can be used reliably for all cases. Therefore, the program first 

picks the critical index in each Iteration, in accordance with user 

specifications via ICRIT. Suppose the chosen index is STCRIT. Then



STCRIT > STAB2STCRIT < STAB1 STCRIT

STCRIT >  STAB1

ISTAGE = 4ISTAGE = 2 STCRIT < STAB2
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ISTAGE = 1ISTEP=NSTEPISTEPISTEP<NSTEP
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Algorithm
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Figure 27. Solution Logic Algorithm
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STCRIT is compared to the linearity criterion STAB1 and the stability 

criterion STAB2. The objective of the first one is to reduce 

computation time during the initial stages of the loading. Suppose 

STAB1 = 0.02: this implies that as long as the current stiffness is 98%

of the original stiffness the load path is considered linear. 

Therefore, ISTAGE is set to 2 and one goes on to the next load step, 

saving an otherwise useless iteration. This is a new technique for 

speeding solutions by distinguishing between linear and nonlinear parts 

of the curve. STAB1 must be chosen with care and should not exceed 

0.05.

On the other extreme, STAB2 heralds the approach of a limit point. 

If the stiffness reduces to, say, 20 - 30% of the original stiffness the 

limit point could not be far. When this happens, ISTAGE is set to 4 and 

the quasi-Newton scheme abandoned. Instead, displacement control is 

used. When STCRIT lies between the values STAB1 and STAB2, the norm of 

the displacement increment is compared to the displacements in that 

step. The ratio must be below CONV the specified convergence criterion.

When all the loads have been applied and buckling does not occur or 

when a limit point is found, the solution is complete. The results are 

output through the various files mentioned before. The element 

subroutines are called once again but this time with the objective of 

calculating stresses only. Thus, a different and shorter path is 

traversed.
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VII. RESULTS AND CONCLUSIONS

To validate the formulation, several runs of the program BUCKS 

were made, and the results of some of the runs are presented in this 

chapter. The results have been divided into the following groups.

1 * Linear analysis

2. Stability analysis for single loads

3. Stability analysis for combined loads

Linear Analysis

The purpose of linear analysis was to compare the performance of 

the continuum and degenerated elements and to determine a reliable 

order of numerical integration. Also, the displacement mode shapes 

were compared to those predicted by analytical methods. Some modelling 

issues were resolved by using linear analysis: these Include, mesh

size, equivalent ftodal loads and restraints for simulating certain 

types of loading. Once these issues were resolved and confidence in 

the program gained, the analysis was extended into the nonlinear 

regime where analytical solutions were available for only a few 

special cases.

Throughout this chapter reference is made to certain model numbers 
and run numbers. These are not in any particular order. Many more 
runs were made than those presented here, but in order to provide a 
quick reference to the computer printouts, the original model 
numbers and run numbers are used.
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Linear analysis was carried out with the help of several models 

of various dimensions and mesh sizes. The general trends are 

demonstrated here with the help of the model shown In Figure 28.

Model No. 10

Diameter, D * 1.0 In

Length, L = 3.0 in

Thickness, t * 0.1 in
2Cross-sectional area, A ■ nDt « 0.314 in 

Moment of inertia, 1 ■ irD3t/8 ■ 0.0397 in^

The cylinder is divided into 4 elements along the circumference and 4 

along the length; the model, therefore, consists of 16 elements and 56 

nodes. The aspect ratio is

al ttD/NC 
a2 " L/NL

where NC ■ Number of elements along circumference 

NL - Number of elements along length

3

—  - (since NC - NL - 4)
a2 L 

* 1.05
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c 9

PREP DISPLAY -  MODEL NO

Figure 28 Model used in linear analysis.
(rotated by 4S° toward the viewer)
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Aspect ratios below 6:1 are generally considered acceptable. The 

selection of the cylinder dimensions were based on achieving 

aspect ratios in this range.

Uniformly Distributed Axial Loads in Model 10

Figure 29 shows Model 10 fixed at one end and under a uniformly 

distributed compressive load at the other end. The displacements for 

a load of W = 50 lb/in are calculated as follows:

The total axial load P is

P *= ttDW ■ tt(1)(50) « 157 lb^

The axial stress is

°z '1 - crar - -500 ',si
The axial strain is

°z -500e"z E 30xl0b
Thus, the change in length at a point whose z-coordinate is Z is given

by

AL - e Z z
The maximum value occurs at the end (z = L)

-3 x 500AL “ e L *=max z 30 x 10 b

0.5 x 10~4 in
The hoop strain eg is

e© " ~ve

0.3 x 500 
30 x 10b
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w lb/in

all nodes on 
this plane are 
fixed

Figure 29 Uniformly distributed axial load.



Also eg 2tt(R + AR) - 2ttR 
2ttR
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- MR
where

R = radius of the cylinder 

AR = dilation

AR = Reg
0.5 x 0.3 x 500 

30 x 106

■ 0.25 x 10 5 in

Table 1 compares the results obtained from BUCKS8 to the above 

analytical values. In obtaining the AR values, the boundary elements 

displacements were disregarded. RUN83A is for degenerated elements 

and RUN83B for continuum elements. The order of integration in both 

cases was 3 x 3 x 2 .  It is concluded from the above results that 

degenerated elements give better results than continuum elements for 

axial compression.

Data file names are of the form 'RUN



166

Table 1 Comparison of Displacements for Axial Loads

Theoretical RUN83A RUN83B

-4 -4 -4AL 0.50 x 10 0.499 x 10 0.45 x 10max
AR 0.25 x 10-5 0.25 x 10~5 0.32 x 10“5

_. .

The Influence of the order of integration was Investigated by 

performing an analysis with 2 x 2 x 2  quadrature and 4 x 4 x 3  

quadrature. The results from the latter are completely erroneous and 

are not presented here. Table 2 shows the results for 2 x 2 x 2  

quadrature.

RUN83C uses degenerated elements, RUN83D uses continuum elements. 

In both cases 2 x 2 x 2  quadrature Is used. It is seen that the 

results of degenerated elements are not affected much, but the 

continuum elements give poorer results than before.
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Table 2. Comparison of Numerical Integration Order

Theoretical RUN83C RUN83D

(in) (in) (in)

ALmax 0.50 x lO-4 0.50 x 10"4 0.46 x 10“4

AR
ti

0.25 x 10"5 0.27 x 10”5 0.36 x 10~5

Model 10 has a D/t ratio of 10. To Investigate the Influence of 

the D/t ratio on the solution, the thickness was reduced to half the 

original value I.e. 0.05 In to give D/t = 20. The load on the D/t = 

10 model is doubled to compare it to the D/t ■ 20 model. This is done 

in Table 3.
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Table 3. Influence of D/t Ratio

Theoretical

(in)

D/t=10, w= 100

RUN83A 

(in) 

D/t=10, w=100

RUN83E 

(in) 

D/t=20, w=50

AL 1.0 x 10~4 0.99 x 10-4 0.99 x 10"4max
j AR
ii . . ..- —  .—

0.50x 10“5 0.50 x 10~5
---

0.50 x 10-5

As is evident from Table 3, there is no change in the displacement 

solution.

External Pressure Applied to Model 10

Equivalent nodal loads for external/internal pressure can be 

calculated in two ways: application of equal loads (on an element

basis) on all nodes or loads consistent with the shape functions. 

Both options are available in all versions after BUCKS9. The former 

method is used in subroutine PRESUR, the latter in PRSUR2. In 

general, good results will be obtained from equal loads only if the 

mesh was very fine. The advantage of this method lies in lesser 

computation as opposed to consistent loading which requires numerical 

Integration, as discussed in Chapter V.
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The objective here is to obtain constant dilation for constant 

external/internal pressure. The dilation can be measured at three key 

points: corner nodes, lengthwise midnodes, and circumferential

midnodes. This is shown in Fig. 30. A comparison of various loading 

options is made in Table 4.

Table 4. Comparison of Dilation

NODE RUN46 RUN43L RUN43E

Corner node, uc
Lengthwise midnode, u^ 

Circumferential midnode,

0.154 x 10-4 

0.152 x 10"4

0.151 x 10"4

0.98 x 10-4 

0.19 x 10~4

0.65 x 10“4

0.69 x 10~4 

0.06 x 10~4

1
0.56 x 10“4

i1

the value of u^ was divided by cos 45° for the circumferential 

midnodes to get the dilation.

RUN46 is with consistent loading, RUN43L with equal loads, and RUN43E 

with the standard load ratio of l:-4:-4 for rectangular flat parabolic 

elements. Continuum elements and 3 x 3 x 2  quadrature was used for
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1 !

0 corner nodes

X lengthwise midnodes 
o circumferential midnodes
- undeformed shell

  deformed shell

Figure 30 Measurement of dilation.
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all runs. It was to be expected that for such a coarse mesh only 

consistent loads will give good results. Since nonlinear analysis 

Involves very high computation time, It would not be possible to use 

very fine meshes. Therefore, it was decided that only consistent 

loads can be used in all analyses involving uniform element pressures.

Next, the two elements were compared to each other and to 

analytical results. Suppose an external pressure of 25 psi is applied 

to Model 10. Since D/t *= 10, this is just on the border line between 

thick and thin cylinders. Using membrane equations, the hoop stress

o 0 is

and

The axial stress is

The hoop strain eg is

£R
t

0 (for thin shells)

0 (one end fixed, other free; not 

capped)

£R
Et

AR
R £ lLEt

Thus, the dilation AR is

AR £*1Et
Substituting for the variables one gets

. 25(0.5)2AR (30x10*)(0.1)

(7.2)
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- 0.208 x 10"5 in

If thick cylinder formula is used, AR is found as (ref. [149])

a r E ( b ^  a2)1(1 ' V) + (1 + v)f i'1

“ m a x  ■  E& -  a 2 ) [ ( 1  ^  +  ( 1  +  V )  W > ( 7 ‘ 3 >

where a - R - t/2

b - R + t/2

AR = 25 x .°.-.5.53—  [0.7 + 1.3(£4f)2]
max 30 x 106(0.1)

«= 0.217 x 10~5 in

Comparison is made (in Table 5) between the results obtained using 

degenerated elements (RUN86A) and continuum elements (RUN86B). Unless 

otherwise stated, the order of integration is 3 x 3 x 2.
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Table 5. Comparison of Degenerated and Continuum 

Elements Under External Pressure

Theoretical RUN86A RUN86B.

(in) (in) (in)

R -0.208 x 10"5 -0.207 x 10~5 -0.188 x 10"5

Lmax 0.37 x 10“5 0.35 x 10~5 0.45 x 10-5

Once again, degenerated elements give better results when compared to 

the membrane theory for radial displacements. It should be noted that 

Hnax measure<* at t*ie boundary elements and good agreement is not 
expected because of end effects. Also, one can observe that continuum 

elements are stiffer in the radial direction

Constant Bending Moment

It was pointed out in Chapter V that the four point bend test

produces constant bending moment between the inner points. In order

to simulate this condition, several schemes of equivalent loads were

tried. The method that gave the best results for deflections is shown

in Fig. 31. It was found that this method gives the same theoretical

displacements as those obtained from a constant bending moment of

magnitude F x R. The bending takes place in the x-z plane; hence all z
restrained nodes are restrained in direction x. This does not affect



direction x 
' restrained

direction x,y 
restrained

directions  s
x,y,z restrained direction x,y 

restrained

Figure 31 Modelling constant bending moment.



ovalization because of the way the nodes are chosen; direction x is 

tangential to the shell at the restrained nodes. The equivalent loads 

are calculated in the subroutine MOMENT.

The theoretical displacements are calculated as follows:

The differential equation for deflections u is

d2u M
a*2 EI

u ‘ HI + Cl2 + C2

At z = 0, u = 0

at z = L, u = 0

C2 = °

C = ^  1 EI

u = ^  (z2 - Lz)

Table 6 compares the u deflections predicted by eq. (7.A) with 

the results obtained from BUCKS. Figure 32 shows the deflections 

graphically. RUN85C used degenerated elements; RUN85D used continuum 

elements. Barring slight deviations at the ends, degenerated elements 

prove to be better.
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Figure 32 Comparison of deflections under constant bending moment.
* degenerated elements

** continuum elements
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Table 6. Comparison of Deflections for Constant 

Bending Moment

Node 

z (in)

34

0

30

.375

26

.75

22

1.125

18

1.5

14

1.875

10

2.25

6

2.625

2

3.0

(u X 104)

Theoretical 0 .41 .70 .88 .94 .88 .70 .41 0

RUN85C* 0 .38 .68 .87 .94 .88 .70 .37 0

RUN85D ** 0 .32 .64 .81 .88 .82 .65 .35 0

* 1 ' degenerated elements
**continuum elements 
Uniformly Distributed Lateral Load

Figure 33 shows a cylinder being used as a cantilever beam. If

the distributed lateral load is w = 10 lb/in, the deflections from

beam theory can be calculated from

u = 2§ f  (Z' ’ 4ZL + 6L2)

= .003498 x 10““z2 (z2 - 12z + 54) (7.5)

The equivalent nodal loads for uniform lateral pressure are calculated 

in subroutine UDLL. The deflections of the neutral plane, represented
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Figure 33 Uniform lateral load.
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by the line joining nodes 2 to 34 and 3 to 35 are compared In Table 7. 

It was observed that the deflections on the line 2-34 were the same as 

those along 3 to 35, as expected.

Table 7. Deflections Caused by Uniform Lateral Load

Node 34 30 26 22 18 14 10 6 2

Z(in) 0 0.375 0.75 1.125 1.5 1.87 2.25 2.625 3.0

(u x 104in)

Theoretical 0 0.024 .089 .228 .300 .428 .568 .708 .850

RUN84A* 0 .07 .19 .33 .48 .65 .82 .98 1.16

RUN84B**

------------

0 .07 .15 .31 .45 .60 .76 .91 1.06

* degenerated 
** continuum

Looking at the maximum deflections in Table 7, one finds that 

degenerated elements overestimate the deflection by 36% (RUN84A) and 

continuum elements by 25% (RUN84B). These results are not 

satisfactory and the reason will become clear in the following 

paragraphs.

The L/D ratio for Model 10 is 3; in this range shear effects are 

appreciable. The deflection due to shear can be calculated from (Ref. 

[148])
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d2u
d z ‘

kw
AG

where u * shear deflections
G «= shear modulus

k ■= T0 /(V/A)
T « shear stress at the neutral planeo
V ■ shear force

For thin tubes k = 2

d2u „ s -2w
dz2 = AG

us  " i l  h  +  Ki z + k2

For a cantilever beam 

at z ■ 0, u

K„ - 0
i\ s2 du

at z - L, dz
Kj - 0

s s L  t - i  A 'k.. u8 - AG (7*6)
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Adding eqs. (7.5) and (7.6), the total deflections are found as

.2u H i  (7.7)

If now the theoretical deflections are compared as In Table 8, 

the agreement is good for the continuum elements (excluding end 

effects).

Table 8. Deflections Corrected for Shear

Node 

z (in)

34

0

30

0.375

26

0.75

22

1.125

18

1.5

14

1.875

10

2.25

6

2.625

2

3.0

Theoretical 0 .03 .11

(u x 10 

.22

in)

.36 .52 .71 .89 1.09

RUN84A 0 .07 .19 .33 .48 .65 .82 .98 1.16

RUN84B 0 .07 .19 .31 .45 ! .60 .76 .91 .1.06

The results are shown graphically in Fig. 34.

Concentrated Load

Finally, some runs were made with concentrated loads. As an 

example, an end load was applied laterally and the cylinder fixed at 

the other end. The deflections for this case can be calculated from

U " ell (3Lz2 " z3) + us (7,8)
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Figure 34 Total deflections under distributed lateral loads.



From Ref. [48]» u is found from 6
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dus = kV 
dz AG

kV , „u = 77 z + C.s AG 1

At z = 0, V = 0  s

kVu = —  zs AG

2V= ^  z for thin tubes (7.9)

u EI (3 Lz2 - z3) + 2V
AG (7.10)

The deflections obtained from degenerated elements (RUN82A) and 

continuum elements (RUN82B) are compared to the values obtained from 

eq. (7.10) in Table 9 and Fig. 35. Degenerated element deflections 

give excellent agreement with those calculated from (7.10).
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Figure 35 Deflection under concentrated end load.
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Table 9. Deflections for Concentrated End Load

Node 

z (in)

34

0

30

.375

26

.75

22

1.125

18

1.5

14

1.875

10

2.25

6

2.625

2

3.0

u x 104 

Theoretical 0 .037 .11 .20 .32 .45 .60 .76 .92

RUN82A* 0 .03 .09 .19 .31 .45 .60 .76 .92

RUN82B** 0 .02 .09 .18 .28 .41 .55 .70 .84

* degenerated 
** continuum

Conclusions from Linear Analysis

Only a few examples were included in this write-up. From these 

examples, as well as other runs, it was concluded that

1. The overall performance of degenerated elements is superior 

to that of continuum elements for all types of loading.

2. Degenerated elements are less sensitive to the order of 

Integration.

3. Reduced integration of order 3 in the shell plane and 

exact integration of order 2 in the thickness plane gives 

reliable results.

4. The degenerated elements can model thin shells as well as 

thick shells for D/t greater than 10.

5. Consistent loading must be used when applying external/ 

Internal pressure.



The Piola-Kirchhoff (P/K) stresses were compared to Cauchy 

stresses and theoretical values. Good agreement was found between1 the 

Cauchy stresses and analytical values. Since displacements were 

small, the P/K stresses were almost equal to Cauchy stresses, as 

expected.
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Patch Test

This test Is designed to determine whether or not the solution 

obtained by using a certain type of element will converge as the mesh 

Is refined. Irons and Ahmad have described this test In detail In 

Ref. [144].

The test can be done In three ways: (a) impose deflections to

give constant stress (b) calculate the nodal loads caused by the 

tractions along the boundaries (c) impose deflections at every node.

In this study, the test was done in two steps. First, 

displacements were calculated at the nodes by applying a constant 

axial load of 40 lb^ to Model 10.

£L PL 40 x 3
nax ^  0.314 x 30 x 10(

= 0.25 x 10“** in

P 40
°z = A = 7314 = 255 pSi

The displacement w is plotted for nodes 1 through 33 in Fig. 36 as a

straight line varying from zero to ^ max« The radial displacement is 
PR -5constant at 0.3 x ■ 0.125 x 10 in. The theoretical displacements 

are compared to those obtained from RUN23B for continuum elements and 

RUN24A for degenerated elements. The displacements, representing a 

constant stress state, are substituted back to obtain the stresses.
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The results are shown In Table 10. It can he Btated that both 

elements pass the patch test.

«4»Table 10. Comparison of Axial Stresses for Patch Test

Element No. 1 5 9 13

RUN24A (degenerated) *-261 -257 -257 -264*

RUN23B (continuum) *-257 -262 -262 -259* 

...... ...
boundary elements 

+ stresses in the other direction are approximately zero
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Evaluation of Material Properties for Elastic-Plastic Analysis
Since it is desired to compare the results of this study to 

Battelle's experiments, it is assumed that all models are made of the 

same material that was used in Battelle's study, i.e. 1020 steel. The 

stress-strain curve for this material was obtained experimentally and 

has been plotted in Ref. [A3]. The eight data points given in Table 

11 were read off this curve.

The stress-strain data points were fed into the program SSCURV, 

which converts these engineering stress-strain values to true 

stress-strains and obtains the curve-fitting constants, as described 

in Chapter V. The results are shown in Table 12 and plotted in Fig. 

37.

Table 11. Stress-Strain Data for 1020 Steel

Stress, ksi 0. ft51.65 55.0 60.5 66 71.5 77 82.5

-2Strain x 10 0. 0.172 0.225 0.285 0.345 0.48 0.735 1.53

yield point

From Fig. 37, it can be seen that both the Ramberg-Osgood and 

exponential models provide a good fit, but the bilinear model is not 

suitable for 1020 steel.



Table 12. Elastic-Plastic Material Constants

***** RESULTS OF PROGRAM SSCURV *****
CURVE FITTING OF STRESS-STRAIN DATA

MATERIAL: 1020 STEEL
YOUNGS MODULUS* E: 0. 29942029E+08
YIELD STRENGTH: 0. 51650000E+05

BILINEAR MODEL -
TANGENT MODULUS, ET: 0. 29870260E+07

EXPONENTIAL MODEL -
COEFFICIENT A : 0. 66279&09E-0B
EXPONENT B : O. 13436849E+01

RAMBERG-OSGOOD MODEL -
COEFFICIENT K: 
EXPONENT N:

0. 23240541E+06 
0. 22979479E+00
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Figure 37 Comparison of material models.
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Stability Analysis Under Single Loads

Buckling loads were first determined by applying one type of load 

only. The loads studied were external pressure and bending moments. 

Table 13 lists the dimensions and mesh sizes of the models used. The 

dimensions are the same as those used in Battelle's study [43].

Table 13. Specifications of Models Used in Nonlinear Analysis

Model 30 Model 31 Model 32

1.

Dimensions 

Outside dia/thickness ratio 16 20 40

2. 1 . •'gth/dia. ratio 11.2 11.4 20.3

3. Midsurface dia., D(in) 1.339 1.32 1.28

4. Shell thickness (in) 0.089 0.0695 0.033

5. Length (in) 15 15 26

6.

Section Properties 

Area, in2 0.374 0.288 0.133

7. AMoment of area, in 0.084 0.163 0.0274

8.

Mesh

Circumferential elements 4 4 4

9. Elements along length 6 6 8

10. No. of nodes 80 80 104

11. No. of elements 24 24 32

12. Multiplying factor 1. 1. 1.
(See Appendix A)
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Since computation times on the VAX-750 were very high (about one 

hour per loadstep), all models are fairly coarse. Also, If longer 

cylinders were to be analyzed, the number of elements would have to be 

Increased to keep the aspect ratio the same. The aspect ratio of 

Models 30 and 31 Is obtained from eq. (7.1) as

al _ ttD/NC
a2 ~ L/NL

tt(1.339) x 6 
15 x 4

« 0.42

For Model 32

fl = u(1.28) x 8
a2 26 x 4

= 0.31

These ratios are in the acceptable range but for larger cylinders it 

would be difficult to maintain these ratios without increasing the

number of elements considerably. The displacement solution in the

linear range for these aspect ratios indicates that the conclusions of 

the linear study are still valid.

Unless otherwise stated, 3 x 3 x 2  Gauss quadrature was used with 

degenerated elements. For external pressure, 1F2 was taken as 5
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(consistent loading). Loads were applied In equal steps until the 

approach of the limit point.
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Buckling Under External Pressure

External pressure was applied to the three models specified In 

the previous section. One end was fixed, the other was free to move 

axially. The restraints were applied in such a manner so as not to 

force ovalization at the ends, i.e. the nodes on opposite side of the 

cylinder were not restrained in the direction coincident with the line 

joining them.

The following procedure was followed for stability problems for 

single loads. Some estimate for the buckling load was obtained from 

either analytical or experimental studies. The load applied ranged 

from zero to twice this estimate. The total number of steps chosen 

was based largely on limitations on computer time. However, if

difficulties were involved because of large step size, a higher number 

of steps was used in subsequent runs.

In order to reduce unnecessary computations, the following

variables must be specified:

STAB1 =■ Linearity criterion

ICRIT ■ Critical stiffness parameter

NCRIT *= Critical step number

Several stiffness parameters (stability indices) were defined in

Chapter V. The user inputs a code to choose one of these in 

accordance with the procedure given in Appendix B. In order to reduce 

unwanted iterations in the linear range STAB1 is specified; as long as 

the critical parameter is below STAB1, the solution from the first
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iteration will be considered the final solution in that step. In this 

section, STAB1 was specified as 0.01.; ST3 was taken as the critical 

index, although the variation in other indices was monitored also.

NCRIT is a number between 1 and NSTEP (the total number of 

steps). It is the load step in which some part of the structure is 

expected to go into the plastic range. By specifying this, time is 

saved in steps below NCRIT since the plasticity part of the program is 

by-passed. There is no harm in specifying a lower value of NCRIT 

(only additional computation time) but if a higher value is specified, 

the solution may be erroneous.

In RUN91F, Pffiax “ 20,000 psi was used. The load was applied in 6 

equal steps. However, since NCRIT ■» 4 was used, erroneous results 

were obtained (the determinant becomes negative before reaching ST2 or 

ST3 reach STAB2).

This situation was corrected in RUN91G. The load was applied in 

8 steps. A rough calculation shows that NCRIT should be 3. Before 

any experience was gained with the program, there was no criterion 

available for selecting STAB2. Recall that STAB2 determines when 

displacement control should start. The following reasoning was used.

If the solution strategy is not altered, then at the limit point 

the following events may take place.

1) diagonal elements of the stiffness matrix approach zero 

(if execution is continued, the program would be terminated 

by a floating zero divide)

2) convergence cannot be achieved by a quasi Newton scheme.

(the only reason one may obtain a solution is because of 

round-off errors)
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3) the determinant of the stiffness matrix approaches zero and 

may even change sign (if the limit point Is passed)

4) the lowest eigenvalue approaches zero

Some initial runs were made with no displacement control (STAB2 = 

0.0). If the solution diverged or the determinant changed signs, the 

values of the stability indices was examined. In subsequent runs 

STAB2 was based on these values. For example, RUN91G did not converge 

in step 6 out of a total of 8 steps. The values of ST2 and ST3 were 

in the vicinity of 0.5. RUN91H was a repeat of RUN91G but with STAB2 

- 0.5.

The values of ST2 and ST3 are plotted in Fig. 38 for RUN91H. 

Figure 39 shows the load-displacement curve for this run. In all 

load-displacement curves, D1 represents the start and D2 the end of 

displacement control. Table 14 shows the values of all the stability 

indices. ST1 was omitted because of numerical problems.
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Table 14. Stability Indices in Last Step for External Pressure

INDEX RUN91H 

(Model 30)

RUN102 

(Model 31)

RUN204 

(Model 32)

ST2 0.426 0.099 0.05

ST3 0.481 0.302 0.116

STOVL 1.01 1.02 1.09

STBND x 10”4 0.295 0.539 0.168

STBRAZ 0.0 0.0 0.0

STEULR x 10"4 0.113 0.851 0.699

STBNDA x 10“6 0.0267 0.185' 0.25

..........  ... :

The next step is to determine the external pressure corresponding 

to the limit point. The load vector is printed out with the .RST 

file. However, because displacement control was used after step 5 

there was no direct correspondence between the load vector and applied 

pressure: the solution deviates from the proportional load line. The

method used was based on the average nodal loads at the three key 

points mentioned before. These are listed in Table 15.
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Table 15. Average Nodal Loads for RUN91H

*Node Load Step If 1 Maximum at Buckling+

Corner nodes 798 4990 3545

Circumfer. midnodes 3562 17,810 12,560

Lengthwise midnodes 2779 13,895 9,805

excluding boundary nodes 

+ after crossing the limit point

The maximum loads correspond to an applied pressure of 12,500 psi 

(approximately).

The same procedure was used on models 31 and 32. The maximum 

pressure in RUN101 was 10,000 psi applied in 8 steps and NCRIT = 5. 

RUN101 was run without displacement control and it diverged in step 7. 

RUN102 used STAB2 ■ 0.4; it buckled in step 7 with ST3 ° 0.302. The 

results are given in Table 14 and Figures 40 and 41. The equivalent 

nodal loads are given in Table 16.



1.1

F igure 40 V a ria tio n  o f s t a b i l i t y  in d ic e s  in  RUN102 (pure  p re s s u re ) .
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Table 16. Equivalent Nodal Loads for RUN102

*Node Load Step #1 Maximum At Buckling

Corner nodes 492 3444 2490

Circumf. midnodes 1756 12,292 10,020

Lengthwise midnodes 1370 9,590 7,500

excluding boundary nodes

The maximum loads correspond to an applied pressure of 8750 psi.

In a similar manner, Model 32 was analyzed. The maximum load in 

RUN204 was 5000 psi applied in 10 steps. The determinant becomes 

negative in step 3. The stability indices are listed in Table 14. 

The critical loads correspond to an applied pressure of 1250 psi (step 

3 is on the other side of the limit point).

Buckling Under Bending Load

As in linear analysis, pure bending moments are applied by means 

of end couples. However, there will be no shear forces in the pipe if 

the loads are applied in this manner. On the other hand, if two 

concentrated lateral loads of equal magnitude are applied at the same 

distance from each simple support one gets both bending moments and 

shear forces. However, concentrated loads cause excessive local 

deformation, and the structure may be predicted to buckle prematurely 

(since real loads are distributed over a finite area). It is felt
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that the two methods mentioned above represent two extremes.

Runs RUN94B to RUN94H used the former method for Model 30 while 

RUN97A and RUN97B used concentrated loads. A maximum bending moment 

of 15(000 in-lb was applied in equal steps. In RUN94E the total 

number of load steps was 6. The Ramberg-Osgood model was used with 

degenerated elements. The final values of the stability indices are 

given in Table 17. The variation in the major indices is shown in 

Fig. 42. The load-displacement curve is shown in Fig. 43. At 

buckling, the maximum moment was 12,500.

Using concentrated loads (RUN97B) the structure failed at 7500 

in-lb with lowest ST3 value of 0.24, before displacement control.
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Table 17 Stability Indices in Last Step for Bending

INDEX RUN94E 

(Model 30)

RUN105 

(Model 31)

RUN209 

(Model 32)

ST1 0.89 0.89 1.00

ST2 -0.01 -0.043 0.40

ST3 0.10 0.207 0.22

STOVL 0.17 -0.32 0.57

STBND 0,10 0.21 2.2

STBRAZ 4.88 2.4 3.6

STEULR 0.101 0.06 0.12

STBNDA 0.024 0.012 .004

The same procedure was applied to Model 31 in RUN105 and to Model 

32 in RUN209. The results for constant bending moments are compared 

to Model 30 in Table 17. Figures 44 and 45 show the variations in 

stability indices and the load-displacement curve for RUN105. The 

buckling load for RUN105 was 11,840 and for RUN209 was 3300 lb^.
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Buckling Under Combined Loads

Some program runs were made using various combinations of bending 

moment and external pressure. In the first set of runs, the load was 

applied proportionately i.e. the ratio of the bending moment to 

pressure was the same in all load steps. In subsequent runs the 

influence of the order of loading was investigated. The results are 

discussed below.

In the first run of this type, designated RUN311, bending moment

and pressure were applied to Model 30 in a 1 psi: 1 in-lb ratio. In

each load step, 1000 psi of external pressure and 1000 in-lbs of

moment were applied. The variation in stability index ST3 is shown in

Figure 46 and the norm of the load vector is plotted against the

displacement norm in Figure 47. Buckling occured after load step 7 in

the first iteration of displacement control. In other runs, the

pressurermoment ratio was changed to 2.5:1 (RUN322) and 1:2

(RUN301), etc. The results are plotted in Figure 48 using

dimensionless ratios p/p and M/M , where p and M are the
* rcr cr *cr cr

critical values of external pressure and bending moment respectively, 

when each is applied separately.

In the next set of runs, the influence of the order of loading 

was Investigated as follows. The same loads as those used for 

proportional loading were applied but this time all of the moment was 

applied first, then the moment was kept constant and pressure

increased to its maximum value or to the value at which buckling was

detected. The loading history is shown in Figure 49. The critical

values of the loads are plotted in Figure 50.
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In a similar manner, the pressure was applied first followed by 

the bending moment. The loading history is shown in Figure 51 and the 

results in Figure 52. Subroutine UNPROP makes it possible to apply 

loads in any manner desired.
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Conclusions

The results obtained from program BUCKS were compared to

Battelle's experimental study, which used the same cylinder dimensions 

and same types of loads. The critical loads for pure pressure are

plotted in Figure 53. The difference at D/t = 16 is fairly large

(about 25%) but it is about 13% at D/t = 40. It should be mentioned

here that the length of the D/t = 16 specimen was 15 inches compared 

to 26 inches for the D/t «* 40 specimens. For such small cylinders the 

end conditions have a considerable influence on the stresses and a 

large difference in the buckling loads between the finite element 

study and experiments is not surprising. This is supported by the 

fact that the difference becomes smaller as the length is increased. 

It is not possible to simulate the end conditions exactly in the 

finite element program.

It should also be noted that the program assumes that the 

material is perfect and the loads are not eccentrically applied. 

Differences could also arise from the choice of parameters that affect 

the displacement solution. The following parameters are considered to 

belong to this class:

1. Size of loadstep (NSTEP)

2. Convergence criterion (CONV)

3. Choice of the stability index (ISTAB)

4. Stability criterion (STAB2)

5. Mesh size

6. Size of displacement vector, [AU], in displacement control
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The results for pure moments are compared in Figure 54. The 

agreement is better than for pure pressure. The results for combined 

loads are compared in Figure 55.

It was seen that the order of loading influences the buckling 

loads significantly. This difference is much greater at the high 

moment-low pressure region than at the low moment-high pressure 

region. Thus, if the bending moments are small, the order of loading 

does not change the buckling load significantly. Also, it was 

observed that if external pressure is applied first, the moment 

carrying capacity of cylinders is reduced sharply from the value 

obtained if both loads increased proportionally or if moment was 

applied first. There was also a difference in the way the stiffness 

reduced in the two cases. If moment was applied first followed by 

pressure, the stiffness reduced gradually as ovalization increased 

until a limit point was reached. If the pressure was applied first, 

the stiffness reduced sharply as bending moment was applied. The 

extent of ovalization was small and the pipe collapsed suddenly 

without developing its fall moment.
Finally, the stiffness of softening parameters were compared. From 

the plots of ST2 and ST3 included in this chapter it can be seen that 

either one could be used as a reliable indicator of stiffness. 

However, it is far simpler to calculate ST3 than it is to calculate 

ST2. In the case of nonproportional loading, the calculation of ST3 

requires storage of additional arrays used in the matrix 

multiplication given in Chapter V. For these reasons, ST3 was found 

to be the simplest and reliable measure when the buckling mode is
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unknown. However, neither ST2 nor ST3 give any indication of the 

buckling mode.

The performance of ST1 was poor; it did not reduce appreciably 

(minimum values were around 0.88) even just before limit points. 

Thus, if this measure were to be used as the basis for the decisions 

in the solution algorithm, numerical instability would be encountered.

Table 18 Comparison of Stiffness Indices

Bending Pressure AABM+P BM,P+ P, BM++

STOVL 0.17 *0.0 1.4 7.7 61.8
STBRAZ 4.8 0. 0.8 5.8 0.01
STBND 0.1 .29x10~* .67 .19 .02
STBNDA 0.02 .03xl0“6 .006 .02 .004
STEULR 0.1 .11x10-* .003 .07 .02

A reset to 1 when below a minimum
fck proportional ratio 1:2

+ moment applied first 
+ + pressure applied first

Table 18 compares the mode dependent stiffness indicators, STOVL 

and STBND, along with the absolute measures of displacements. For 

proportional loads STOVL and STBND lie between 1 and 0. For pure 

bending it can be seen that STOVL and STBND could have been used as 

the critical indices with STAB2 “ 0.2. However, one must be careful 

in using these measures. For example, in the case of pure pressure
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STBND ~ 0 would Imply that failure takes place by bending. But when 

one looks at the absolute measures STBNDA and STEULR, it Is seen that 

there is practically no bending. Therefore, STBNDA must be used in 

conjunction with STBNDA or STEULR.

For the case of proportional loading, one sees that ovalization 

has reached 80% of the Brazier value but the bending index STBND is 

still 0.67 and the absolute bending deflections are small. The 

structure will most likely fail by ovalization. This was also the 

case with moment -applied first. But when pressure was applied first, 

STBRAZ reached a value of 0.01 only, even though STOVL is 61.8. This 

is because under pressure the ovalization is small and all subsequent 

steps compare deformations to the first step. Since STOVL and STBRAZ 

are used together, this does not present a problem. In the case of 

pressure applied first the pipe fails before considerable ovalization. 

Hence, the reduction in load carrying capacity.

More experience is needed with this program in order to establish 

numerical basis for predicting failure mode via these indices.
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Research Contributions

The following are considered to be the major contributions of 

this study:

1. Prediction of buckling loads for cylinders under 

nonproportional and nonlinear loading.

2. Prediction of buckling modes via deformation based 

stiffness parameters.

3. Dependence of buckling loads and modes on the order 

of loading.

4. Extension of the Bathe shell element [71] to cylinderical 

degenerated shells undergoing elastic-plastic deformation.
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Model Creation for BUCKS

Models can be created Interactively using the special purpose mesh 

generation program "PREP". The advantage of using this program over 

general purpose packages, such as SUPERTAB, are as follows: (a) PREP can 

be run on any alphanumeric terminal (b) It takes only a couple of 

minutes of logon time to Input, generate, and write model geometry 

compared to about 15 to 20 minutes for accessing and running SUPERTAB 

(c) the output file of PREP is compatible with BUCKS data input.

Only cylindrical shell mesh can be generated with PREP but the 

mesh can be varied as desired by the user. Using multiplying factors, 

the mesh can be finer in any direction. The user need only input the 

diameter thickness, length (or half length) of the cylinder and 

specify the number of elements along the circumference and length (or 

half length). If the multiplying factor is unity then all elements 

will be of equal length. The length of elements may be increased in 

going from one end of the cylinder to the other by using a multiplying 

factor greater than one and reduced by using a factor lower than one. 

This is shown in Figs. 56 and 57 respectively. If it is desired to 

change the element size in both directions from the center, as shown 

in Fig. 58, only half-length mesh should be generated and the model 

reflected.
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80 YOU MNT TO 200H (Y/NIT

PREP DISPLAY - MODEL NO: 221

Figure 56 Front view of model generated with multiplying factor 
equal to unity.
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00 YOU WWT TO ZOOM (Y/NIT

PREP DISPLAY -  MODEL NO: 2 3 4

Figure 57 Symmetric increase of mesh size by reflection about 
center plane.* (Multiplying factor - 1.2)

the rotated view has been superimposed.
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•0 YOU UMTT TO XOOH (V/H>T

PREP DISPLAY -  HODEL NOS 123

Figure 58 Symmetric reduction of mesh size by reflection about 
the center plane*. (Multiplying factor *= 0.8)

the rotated view has been superimposed.
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The program outputs a named data file; the first line is the same 

as the second line given in Appendix B. It then outputs the 

coordinates of the nodes generated and element connectivities.

The generated mesh can be checked using the program "DSPLAY". 

This is not an essential part of model creation. It requires a 

graphics terminal compatible with TEKTRONIX graphics package PLOT10. 

Data is read from file named F0R001.DAT.

After the data has been read in, the program offers the user a 

menu of various viewing options. These include: rotation of the

model about the three axes at any angle specified by the user; 

magnifying any given area of the model whose diagonal points are 

specified using the graphics cursor; displaying node numbers; 

displaying front and end views.
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IWUT NODE START. END. INC. 1.18.1 II I
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INPUT NODE START. END. INC. 11.28.1
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IWUT NODE START. EN>, INC. 21.38.1
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PREP DISPLAY -  MODEL NO: 2 3 6

Figure 59 Viewing options offered by program DSPLAY.
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Input File Format

The first line must be the debug code (explained later), followed 

by the cylinder mesh parameters, nodal coordinates and element 

connectivity, in that order. With the exception of the first line, 

these can be inserted directly from the output file of program PREP. 

After element connectivities, the data may appear in any order, as 

long as it is preceded by the proper header card. The 'ORDER OF 

LOADING' card must be placed before any load cards. All alphanumeric 

input must be left justified, all integers must be right justified, 

and all real neumonics can appear anywhere in their respective fields. 

The following pages describe the types of input, the options, and the
l

required format.
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Debug Code

iBG

Cols. 1-5 6-10 11-15 16-20 21-25 26-30 31-35

1. DBG = Debug Code for printing intermediate arrays (Format: A15) 

If not required leave the first line blank 

DBG can be any combination of the following alphanumeric 

characters which will print the respective arrays to the

DBG file

BO = Linear strain-displacement matrices BLO

BL1 - Linear strain-displacement matrices BL1

BL = Total linear strain-displacement matrices

BNL - Nonlinear strain-displacement matrices

STR - Stress matrix [SM] from SHELL1

VEC - Vectors, VI, V2, V3, from VECTOR

JAC - Jacobian matrix from JACOB

SRN “ Green-Lagrange strains from STRES1

TCB “ Matrices [BL]T [C] [BjJ and [BNL]T [SM] [B^]

LVC - Load vectors from DRIVER

ASM - Assembled system matrix for each element

SYS - System stiffness matrix [SK]

K53O’U System equations from EQSOLV

DSB - Incremental displacement
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TOT « Total displacements at end of Iteration 

SKY “ Stiffness matrix Skyline
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Cylinder Mesh Data

1 1 .. f- f----- 1---
NN 1 NE NNOD ] NDOF j RAD j XL [ NL | NC

1-5  6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50

1. NN B number of nodes (15)

2. NE 83 number of elements (15)

3. NNOD S3 number of nodes per element (15)

4. NDOF S number of degrees of freedom per node (15)

5. RAD - radius of cylinder at mldplane (F10)

6. XL 83 length of cylinder (F10)

7. NL - number of element along length (15)

8. NC BS number of elements along circumference (15)

Nodal Coordinates

These are inserted directly by the preprocessor

Element Connectivity

Also inserted by the preprocessor

numbers in parentheses give format
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After this point, data may be input in any order. Any number of 

comments may be placed by putting a ' in the first column

Case Title

TITLE_____________________
TIT

Cols. 1-60

In all the following cards, the first line gives the header, 

'TITLE’ in this case, followed by the corresponding data.

1. TIT » Case Title (A60)
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Cols.

Analysis Codes

ANALYSIS
RATIO»

D IFK IANY ISTR
1-5 6 -1 0 11-15 16-20 21-25 26-30 31-35

1. RATIO » Maximum allowable ratio of incremental displacement to 

total displacements (F10)

2. D Code for calculating stiffness index ST1 (F10) 

D ■ 0 ST1 not calculated

D ^ 0 ST1 is calculated

3. IFK Force code (15)

IFK = 1 Spurious loads set to zero

IFK ^ 1 Spurious loads not set to zero

4. IANY Element type (15)

IANY *» 1 Continuum elements

IANY ■ 2 Degenerated elements

5. ISTR = Stress code (15)
ISTR = 0 Use P/K stresses for yield criteria

ISTR - 1 Use Cauchy stresses for yield criteria



241
Run Parameters

MODEL . . . .
MOD | NSTEP | CONV i ITEMAX i : .

1-5 6-10 11-15 16-20 21-25 26-30 31-35

MOD = Model number (15)

NSTEP « Number of loadsteps to 

solution (15)

be used in Incremental

CONV ■ Convergence criterion (F10)

4. ITRMAX *= Maximum number of iterations per loadstep (15)
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Stability Parameters

STABILITY
STAB1■ STAB2 1NCRIT2 • ) I ISTAB

Cols. 1-5 6-10 11-15 16-20 21-25 26-30 31-35

1. STAB1

2. STAB2

Linearity criterion (F10) 

Stability criterion (F10)

3. NCRIT2 Loadstep in which perterbation is to be caused 

(15)

4. ISTAB Select code for critical stiffness parameter (15)

ISTAB CS l Select ST1

ISTAB B 2 Select ST2

ISTAB - 3 Select ST3

ISTAB m 4 Select STOVL

ISTAB e 5 Select STBND

ISTAB m 6 Select STEVLR

ISTAB m 7 Select STBNDA

ISTAB cs 8 Select STBRAZ

Note: STAB1 and STAB2 must be geared to ISTAB
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Order of Loading

ORDER OF LOADING
IOL
1-5 6-10 11-15 16-20 21-25 26-30 31-35

Continuation cards (optional)

j IS j PINM(IS)________[ PINUC(tS)_______ 1 PINUL(IS)
Cols. 1-5 6-10 11-15 16-20 21-25 26-30 31-35

PINP(IS) [ . . i 1
Cols. 36—40 41—45 46—50 51—55 56—60 61—65

The order of Loading card must precede all load cards i.e. LOADS, 

PRESSURE, MOMENT, UDLC, and UDLC. The first card is required. 

Continuation cards are required only if 10L ■= 2; the number of 

continuation cards must be equal to NSTEP specified with the MODEL 
data.

Card 1

1. IOL ■= Order of loading code (15)

IOL « 1 proportional, linear loads

IOL ■= 2 nonproportional/nonlinear loads
Continuation Cards

1. IS ■ Load step number (starts at 1 and ends at NSTEP); Format

(15)

2. PINM (IS) 111 Ratio of bending moment in step IS to reference load

specified on MOMENT cards (F10)



PINUC (IS) « Ratio of uniformly distributed axial load to the 

reference load specified by UDLC cards (F10)

PINUL (IS) ■ Ratio of uniformly distributed lateral loads to 

reference loads specified by UDLL cards (F10)

PINP (IS) - Ratio of external/internal pressure in step IS to 

reference load specified by PRESSURE cards (F10)
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External/Internal Pressure

PRESSURE.
IEL | IEN | INC I IP1 | IP2 | PRES | RKL | RKM

Cols. 1 -5  6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50

1. IEL = Element start (15)

2. IEN = Element end (15)

3. INC = Increment from IEL to IEN

4. IP1 = Resultant load code (required for IP2=1 or 2); (15)

IP1 = use arc length 

IP2 = use chord length

5. IP2 “ Code for calculating equivalent loads (15)

IP2 = 1 consistent loads based on flat rectangular

elements

IP2 = 2 equal loads on element basis

IP2 «= 3 equal loads on global basis

IP2 = 4 user input ratios RKL and RKM for calculating 

equivalent loads 

IP2 «= 5 consistent loads for curved elements

6. PRES = Value of element pressure; should be positive for

external pressure and negative for internal pressure

7. RKL “ Ratio of lengthwise midnode load to corner node load

8. RKM - Ratio of circumferential midnode load to corner node load



Uniformly Distributed Axial Load

i ■ »—  i ■»

IDRl j ICS1 j 1CE11 IC1 jIMS1 JTME1 ] IMl 
Cols. 1-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50

UDLC j 
UDt

1. UD *= Value of distributed load per unit length of

circumference (F10)

2. IDRl = Direction of load (15)

3. ICS1 “ Corner node start number (15)

4. ICE1 *» Corner node end number (15)

5. IC1 - Corner node increment (15)

6. IMS1 «= Midnode start number (15)

7. IME1 ** Midnode end number (15)

8. IMl ■ Midnode increment (15)
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Uniformly Distributed Lateral Load

I 1
UW | IDRl [lCS2 ICE2 1 IC2 I IMS2 1IME2 |lM2 I

Cols. 1 -5  6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50

1. UW Value of lateral distributed load per unit length (F10)

2. IDR2 - Direction of load (15)

3. ICS2 - Corner node start number (15)

4. ICE2 - Corner node end number (15)

5. IC2 - Corner node Increment (15)

6. IMS 2 ■B Midnode start number (15)

7. IME2 K Midnode end number (15)

8. IM2 Midnode increment (15)
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Constant Bending Moment

MOMENT ____________________  |_______■__________
B M O M M l  |_________I_________•_________1___  1_________I------- --------

Cols. 1 -5  6-10 11-15 16-20 21-25 26-30 31-35

1. BMOM * Value of the constant bending moment (F15)

2. Ml « Corner node (one of four) on which equivalent load Is

applied to create constant bending moment condition

0
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Concentrated Loads

LOADS
NODE | IEND INC | IDIR | FORCE

Cots. 1 -5 6-10 11-15 16-20 21-25 26-30 31-35

1. NODE

2. IEND

3. INC

4. IDIR

5. FORCE -

Starting label of node group loaded (15)

End label of node group loaded (15)

Node increment between NODE and IEND

Direction of concentrated force or moment (from 1 to 5 

corresponding to degrees of freedom); (15)

Value of concentrated load (FI5)
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Cols.

Restraints

RESTRAINTS | «
NODE | IEND INC I IRST I
1-5 6-10 11-15 16-20 21-25 26—30 31-35

1. NODE - Starting label of node group restrained (15)

2. IEND - End label of node group restrained (15)

3. INC - Node number increment between NODE and IEND (15)

4. IRST - Restraint code (A5); any combination of the following

1 - restrained in x-direction

2 - restrained in y-direction

3 - restrained in z-direction

4 - rotation « restrained

5 - rotation 3 restrained
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Numerical Integration

SHELL
INTI | INT-2 ! 1 ...........

1-5  6-10 11-15 16-20 21-25 26-30 31-35

1. INTI ■= Order of integration in shell plane (15)

2. INT2 « Order of integration in thickness direction

3. A = Shell thickness (assumed constant), (F10)

(15)

Output Options

OUTPUT
IKOD

Cots. 1 -5 6-10 11-15 16-20 21-25 26-30 31-35

1. IKOD » Output code (15)
IKOD ■ 0 output final displacements to RST file

IKOD *= 1 output P/K stress in each iteration and final

Cauchy stresses to RST file, and final 

displacements 

IKOD * 2 output final Cauchy stresses and final 

displacements

Note: The average stresses and the load vector obtained after

displacement control are output regardless of IKOD value.
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Material Properties

ELASTIC
EY P0IS It 1 »— — 1— 1---- ■ -1

Cols. 1 -5  6-10 11-15 16-20 21-25 26-30 31-35

PLASTIC . •
NCRIT 1 IH AP BP SYi 1_________ I_______ — i

Cols. 1-5 6-10 11-15 16-20 21-25 26-30 31-35

ET
Cols. 36-40 41-45 46-50 51-55 56-60 61-65

Elastic Properties (required)

1. EY *= Young's modulus (F10)

2. P0IS «= Poisson's ratio (F5)

Plastic Properties (value of NCRIT is required if elastic analysis is

done only)

1. NCRIT «= Critical load step below which yield condition is not

checked (15)

2. IH *= Hardening model used (15)

IH «* 1 Bilinear model

IH *= 2 Exponential model

IH ■ 3 Ramberg-Osgood model

3. AP » Hardening coefficient for IH - 2 or 3 (F10)

4. BP “ Hardening exponent for IH «■ 2 or 3 (F10)

5. SY ■ Yield stress (F10)

6. ET * Tangent modulus for IH - 1 (F10)
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List of Subroutines and Functions

1. BUCKS8$MAIN

Main program serves the purpose of variable dimensioning only

2. DRIVER

Controls the running of the entire program: input, computation,
and output

3. INPUT

Reads model geometry from input file and echoes input data

4. LOADIN

Reads loads, pressures, restraints, material properties, etc. 
which are input in random order in the input file

5. BEGIN

Initializes force, pressure, and restraint vectors

6. PRESUR

Calculates equivalent nodal loads from element pressures: based
on rectangular flat elements

7. PRSUR2

Calculates equivalent nodal loads from element pressures for 
curved elements; consistent loads

8. SHELL1

Calculates stiffness matrix and load vectors for degenerated and 
continuum, nonlinear parabolic shell elements

9. SHSTRS

Initializes Piola-Kirchhoff stress matrices at Gauss points
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10. INIT

Calculates Initial value of shell normal vectors and Initializes 
displacements

11. ELAST

Calculates the constitutive matrix for a linear-elastic, 
isotropic material (continuum)

12. ELAST2

Calculates constitutive matrix for shells; must be used in 
conjunction with 'DEGEN'

13. PLAST

Calculates the constitutive matrix of an isotropic, linear 
work-hardening material

14. PLAST2

Calculates constitutive matrix for elastic-plastic shells (used 
with DEGEN)

15. VMISES

Determines which constitutive matrix to use by testing for 
yielding

16. VECTOR

Updates normal V3 vector and calculates reference vectors VI and 
V2 for measuring shell rotations

17. ASSEM

Assembles system matrix

18. ELEM1

For each Gauss point of each element, it calculates the linear 
and nonlinear strain-displacement matrices

19. JACOB

Calculates the Jacobian matrix, its determinant and inverse
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20. SHAPE

Calculates shape functions and their derivatives for parabolic 
shell elements

21. STRES1

Updates the Piola-Kirchhoff stresses at Gauss points

22. CAUCHY

Transforms the Piola-Kirchhoff stresses to Cauchy stresss

23. NEWTON

Newton-Raphson scheme for solving nonlinear equations

24. EQS0L2

Active column skyline method for solving linear equations 
(reduced storage reqd; improved version of EQSOLV)

25. SKYLIN

Calculates the skyline of stiffness matrix

26. UPDATE

Updates coodinates and displacements in total Lagrangian 
system

27. NULOAD

Calculates the current load in each load step

28. OUTPUT

Outputs results of BUCKS (displacements and Cauchy stresses) in 
the last iteration

29. STROUT

Outputs P/K stresses (optional - used only when debugging the 
program)

30. RSTRNT

Interprets restraint code and removes equations corresponding to 
the restrained degrees of freedom
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31. RSTRN2

Removes elements In load vector alone; used In quasi Newton 
scheme when stiffness Is not updated

32. SHUFL

Recovers full displacement vectors by re-inserting equations 
removed by RSTRNT

33. CONVRT

Extracts a smaller square matrix from a larger one

34. BUCKLE

Detects the onset of buckling limit points using ’stiffness 
ratios’

35. DEGEN

Degenerates the constitutve matrix by applying Kirchhoff 
assumptions of shell theory

36. ERRBAC

Outputs error messages

37. MULTIP

Multiplies two matrices

38. TRPMUL

Multiplies the transpose of a matrix by the second matrix

39. ADD

Adds two matrices

40. ADD2

Adds two matrices and stores result in the first matrix

41. MATRIX

Calculates the determinant and inverse of a 3 x 3 matrix
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42. TRANSP

Finds the transpose of a square matrix of arbitrary size

43. F0RCE3

When convergence is achieved in a load step the load vector 
increment is set to zero

44. AVGSTR

Calculates average element stresses

45. CAUCH2

Transforms Kirchhoff stresses to Cauchy stress called from 
SHELL1, more specific than Cauchy

46. UNPROP

Calculates new loads for non-proportional, nonlinear loads

47. UDLL

Calculates equivalent nodal loads for uniformly distributed 
lateral loads

48. UDLC

Calculates equivalent nodal loads for uniformly distributed 
axial loads

49. MOMENT

Calculates equivalent nodal loads for constant bending moment 
condition

50. F0RCE2

Sets spurious stresses to zero

51. OVAL

Calculates amount of ovalization and softening based on 
ovalization buckling

52. BEND

Calculates softening based on Euler buckling mode
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53. XNORM
Calculates the root mean square norm of given vector

54. XN0RM2

Calculates the sum of an array

55. SMAX
Calculates the maximum in a one-dimensional array
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