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CHAPTER I
INTRODUCTION

Rigorous solutions for scattering problems may be obtained if there
exists a coordinate system in which the field components can be
separated. In practice, these cases are few, and occur only for special
scatterers, i.e., spheres, circular cylinders, etc. To solve problems
of more general nature, an integral equation formulation may be used. A
numerical technique such as the moment method is then used to solve the
integral equation. 1In this work the attention is focused on the
penetrable non-circular cylinders of infinite length, and the Plane Wave
Expansion Galerkin (PWEG) is employed to solve the integral equations.

A basic introduction to the moment method is given by Harrington
[1] and various examples and numerical results are presented. Richmond
[2-3] introduced solutions for scattering by dielectric cylinders of
infinite length, where he employed the Pulse Basis Point Matching
(PBPM) technique. -

Although a variety of conventional techniques has been used by
geophysicists for many years as suggested by Ward [4], many improvements

are being made and various EM-techniques are being introduced. Ward [4]



provides an excellent historical overview of geophysical methods and
their future developments.

Parry et al. [5] treat the problem of EM-scattering from cylinders
of arbitrary cross-section in a conducting half space by obtaining some
integral equations in terms of the surface currents and solving them by
expanding the unknown currents in terms of some quadradic algebraic
functions and point matching.

D'Yakonov [6] treated the problem of a circular cylinder in a
homogeneous half space. This paper is rather involved and difficult to
follow. This problem was later considered by Howard [7], and some
numerical solutions were given. Ogunade [8] also considered D'Yakonov's
[6] problem and provided some numerical results, however, there seems to
have been an incorrect symmetry in equation (21) in this paper
(Richmond, Peters [9]). 0gunade and Dosso present more numerical
results in [10].

During the past decade, considerable research and development
effort has been devoted to underground radar at the ElectroScience
Laboratory. Most efforts have been concentrated on system design
[16-19] propagation and scattering [20-26], experimental measurement and
data collection [27-29] identification and imaging [30-35] and
computational modeling [36].

The purpose of this dissertation is to develop an efficient
computational model for EM-scattering by lossy dielectric cylinders of
infinite length buried in the earth. It is hoped that a frequency

spectrum obtained from the computational model and a future extension of



the model would enable obtaining transient EM-scattering results for the
underground radar targets. It is believed that an unwanted filled
trench response in the transient echo of a buried target may be
identified and ultimately eliminated which in turn would help to enhance
the desired echo. An effort, however, has been made to provide a
formulation for general cases, but specific examples are given for
rectangular cylinders.

Additionally, it is hoped that the numerical results given here
will provide additional insight and Tead to a simple explanation of the
effect of the air-earth interface so that some simple approximations may
be employed. One such an approximation is the use of the plane wave
reflection and transmission coefficients at the air-earth interface to
account for most of the interface effects. This, in turn, wou1&
eliminate the costly evaluation o

The formulation of the integral equations are based on the
polarization current representation for dielectric bodies proposed by
Rhodes [37], whereiﬁ a scatterer may be replaced by a volume of
polarization currents which produce the correct scattered field
everywhere. The integral equations obtained involve the electric field
inside the scatterer as the unknown function. These integral equations
are then solved by expanding the unknown fields in terms of some plane
waves with unknown coefficients. Galerkin's method is used to obtain a
set of N simultaneous linear equations with N unknowns, where the N
unknowns are the coéfficients of the plane waves in the expansion. A

simple matrix inversion and multipiication then gives the solution for



the unknown coefficient. The problem of scattering by cylindrical
inhomogeneities in a lossy medium is presented by Peters and Richmond
[38], volume polarization currents are used to obtain an E-integral
equation and an H-integral equation which then are solved by the moment
method. The same approach is taken here except that all the integral
equations in this dissertation are based on the electric field. This

proved to be more stable for obtaining a convergent solution.

A. THE STRUCTURE OF THE DISSERTATION

This dissertation is basically composed of two parts: The first
part deals only with the scatterers in a homogeneous ambient medium in
the absence of the air-earth interface. The second part deals with
buried scatterer where a Sommerfeld integral is used to account for
the effects of the air-earth interface.

Chapter II gives a general formulation for the EM-scattering by
lossy dielectric cylinder immersed in a homogeneous lossy medium for an
electric and a magnetic line source excitations. In Chapter III, the
plane wave expansion is introduced, the E-wave scattering formulation
derived in Chapter II are specialized to rectangular cylindrical
scatterers. In addition, some numerical results are given and
discussed. In Chapter IV, a similar treatment of the H-wave scattering
model is given and some specific results are provided for a rectangular

cylindrical scatterer.



In Chapter V, a basic introduction to the air-earth interface
effect is made for both an electric and a magnetic line source on the
interface. Some radiation patterns are included and discussed. 1In
addition, some helpful hints are given for evaluating the Sommerfeld
type integrals encountered in this dissertation. In Chapter VI, a
general moment method formulation is given for the EM-scattering by
buried cylindrical geometries for an electric and a magnetic line source
excitations. These scattering models are then specialized for buried
rectangular cylindrical geometries for an electric line source
excitation in Chapter VII, and a magnetic line source excitation in
Chapter VIII. In Chapter IX, a discussion of the computer time required
is given, A comparison is made with the computation time for a Pulse
Basis Point Matching (PBPM) and a Plane Wave Expansion Galerkin (PUWER)
solutions for the same target.

The time harmonic convention eJ®t is assumed throughout this work

and suppressed.



CHAPTER II
FORMULATION OF MOMENT METHOD

A.  INTRODUCTION

A two-dimensional moment method formulation is to be developed in
this chapter for the scattered fields of a lossy dielectric cylinder
immersed in a homogeneous lossy ambient medium. Both electric and
magnetic line currents are to be used as sources. The solution will
have the capability of treating a cylinder of rather general cross
section. Figure 1(a) shows the general geometry whereas Figure 1(b)
shows the special case of most interest herein, i.e., a rectangular
cylinder. This is because the target of interest at present
happens to be the refilled trench in which a pipe has been placed. The
region inside the cylinder is designated as Region I with electrical
parameters €;, H,, and %1, and the region outside the cylinder is
designated as Region II with constituative parameters €5, My, and %,
In the rectangular model it is assumed that x-dimension is greater than
or equal to y-dimension, and that the Tength and width of the

rectangular cylinder are 2a and 2b meters, respectively. The
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Figure 2-1. Electromagnetic scattering model for two-dimensional
lossy dielectric rectangular cylinders (region I)
;???rsed in a lossy homogeneous ambient medium (region
coordinates of the line source are designated by (xg,ys). Region I is
considered to be homogeneous and source-free.

Peters, et al. [9], has presented a two-dimensional moment method
formulation for both parallel and perpendicular polarizations of the
incident field. When the incident electric field is in the z direction,
the formulation to he used follows directly from Peters, et al. [97.
This shows a great numerical stability and convergence. This solution
for the orthogonal excitation proved to be unstahle. Thus for the TE,

case, a new formulation is introduced which does exhibits improved

numerical stability and convergence.



The purposes of this chapter are basically the presentation of the
theory for the electromagnetic scattering models and the formulation of
numerical technique to solve these mathematical formulas. 1In this
chapter the general model of Figure 2-la is treated for any arbitrarily
shéped cross-section of a two-dimensional cylinder. This will be

specialized for the model of Figure 2-1b in the next chapter.

B.  E-WAVE SCATTERING BY TWO-DIMENSIONAL LOSSY DIELECTRIC CYLINDERS

1. Electric Line Source Excitation

An infinitely long time harmonic electric line source with uniform
current of 1 ampere is radiating in a homogeneous medium II with complex

propagation constant Y,, produces a field

P U1 o 1) 5 2.1
E 5= Ko(v2|o o |) 2 (2.1)

where Ky is the modified Bessel function

Yo = Ju /EZUO , (2.2a)

w = 2nf , (2.2b)

AR _392 s 2.2¢
2, EOGPZ ‘EE) (2.2¢)



551 =7 (xx )P+ (yy)? > and (2.3)

(Xs> ¥s) is the coordinate of the location of the line source.
When the above line source is radiating in the presence of the
scattérer, the total field everywhere is the sum of the incident field
and the scattered field. This field is given by

— = — .
Eoy)” Boon)t Bxuy) (2.4)

where Ej(x,y) is the field radiated by the source in the ambient
homogeneous medium II (see Figure 2) in the absence of the scatterer
given by Eq. (2.1),

E(x,y) is the total field observed when the source radiates in the

presence of the scatterer.

Both Eﬁ(x,y) and E(x,y) are measurabfe quantities, and difference
of these two fields renders the scattered field Es(x,y).

To calculate Es(x’y), one may replace the scatterer by a volumetric
equivalent polarization current ﬁéq which when radiating in a
homogeneous ambient medium gives the correct scattered field. The
equivalent volume polarization current is given by Harrington [39].

. e o~ 1
Jeq(x,y) = Jm(el-EZ)E(x,y) s (2.5)

A ~

where €; and ©; are assumed to be constant throughout each respective

region (homogeneous), and



I
E( ) is the total unknown field in region I.
X,¥

Ez(x,y) is given by

ES - -jmuo l’ 1 K —:“1 d ' ) (2.6&)
2(xy)" a1 Jeq(x ¥ Mo (¥ple-e ])ds

where ds' is the differential cross sectional area of the cylinder, and

f;:;!l = V(x-x')2 + (y-y')2 . (2.6b)

From Eq. (2.5), (2.6) and (2.4), the following integral equation is

obtained

2 n o
wuo(el-sz)

i el
Ez(x,y) - EZ(XsY) = o

JJ EI xl 1 K __—I dsl .
8 B (YK, (g le-et [ )ds! (2.7)
The unknown function in the above integral equation is Ei(x,y) or the

field inside the scatterer. The unknown function appears both inside

and outside the integral, thus this is a Fredholm integral equation of

the second kind. To obtain a solution, Ei is expanded in terms of some
known basis function Fn(x,y) with unknown coefficient Cn's.‘
N
I

E = ) CF

z(x,¥) T npZ1 “non(x,y) : (2.8)

Substituting the above expansion in Equation (2.7) gives

£ ) g . _ mzuo(gl-gz) — ]
z(x,¥y) ~p=1 Nl n(x,y) T T (v,lo-0')ds"| ,

(2.9)

ii Fa(x',y1)%o

10



where the C.'s are unknown. To evalvate C, a set of simultaneous linear
equations may be obtained by choosing a set of suitable testing
functions, multiplying the above equation by these testing functions and
then integrating over the cross-section of the scatterer., Various
choices of testing methods exist. However, the two most common ones are
point matching and Galerkin. The first involves use of delta function,
and the latter makes use of basis function used in the expansion of
unknown function in Eq. (2.8) as a testing function. It is desired to
apply a testing which makes use of reciprocity theorem in
electromagnetic theory, this theorm states

JJ _Jm ¢ -En dSm = _’J TJ-n * -F.—m dSn . (2.10)
Sm Sn

where

J_ and I, are pth and pth current modes, Ey and E, are field
generated by these current modes, and Sm and Sn are the cross-section
areas of pth and ,th current elements. A major advantage of
implementing a solution involving the above theorm is that a symmetric
impedance matrix is generated. The Galerkin method is used to take
advantage of the above properties, also, it provides a great numerical
stability and convergence. To apply Galerkin testing, both sides of Eq.
(2.9) are multiplied by the testing fucrction Fm(x,y) and integrated
over the cross-section, One obtains the following set of simultaneous

linear equations;

11



<<
u
le~—=

C 7 m= 1,200, N , (2.11)
M n=1

_ i . , 2.12
A gg P, E2Xoy)ds M= L2, (2.12)

and
I Sty o s’
Zn™es nxy) m(x,) 7 —Zm—cses Pty Fngx,y)RolYple-et[)ds ds.
(2.13)
The matrix form of Equation (2.11) can be written as
[Zma10ChY = [Vmd (2.14)

where [Zmn] is a (NxN) impedence matrix, [Cn] is the unknown column
matrix, and [Vm] is a known voltage column matix. For a nonsingular
[Zun] the above matrix equation can be solved numerically with the aid

of a digital computer. Thus

-1
Cnd = CZuad CVmd (2.15)

Once the [C,] matrix has been determined, ]eq is evaluated by
Equations (2.5) and (2.8). In turn E (x,y) can be calculated from Eq.
z
(2.6a) to obtain

2
s ) e

E =
z(x,y) 2m m=l M cs m(x',yr)

O(Yzlp-p'l)ds' " (2.16)

12



The above equation is valid for all scattering angles. However for

backscattered case some computation time may be saved by using the

following
B.S ~ N
s e = du(E.- 2.17
Ez(xs,ys) Jm(61 82) nzl Cnvn * ( )

The pertinent numerical values (V) may be stored when setting up the
voltage column matrix. These values are then retrieved when the above
equation is used to calculate the backscattered field., This result can
be obtained by reciprocity. Considering Figure 1, the line source has a
current distribution GL.S. = §(x-xg)8(y-ys), and radiates a field

Ei(x,y) given by Equation (2.1). A particular ciurrent mode J, in the

~ A—I
scatterer is given by I, =juw(€1-85)E,, where E, is the total field of mode

n in the scatterer. Y, generates the nth mode of the scattered field

£ . . ES N
E,, where the total scattered field due to the scatterer is “(x,y) = Y
T - n=1

ne . Applying reciprocity to a typical current mode Jn in the scatterer

and J| g, on the line source gives

J T, Tnds =) [Ty Fﬁ(x,y) ds . (2.18)
L.S. C.S.

or

A ~

juw(®1-%9) /] E}Il(x,y) + T (x,y) ds
cS

s
En(xs, ¥s)

~ S

56(E1-55)Cn |] Fa(x,¥)Ez(x,y) ds
. CcS

1}

A ~

Ju(E1-€9)CnVn . (2.19)

13



Thus, Equation (2.17) is obtained.

A11 of the single cross-section integration encountered so far are
easy to evé]uate numerically. The double cross-section integration of
Equation (2.13) is rather tedious because of the singular point (x=x',
y=y'). Richmond [40] has given an integration technique for
evaluation of the inner most cross-section integration of Equation
(2.13). A careful reapplication of the same technique can also be used
to evaluate the outer most integration. This is especially useful for
considering scattering by cylinders with arbitrary cross section. For
the rectangular cross-section shaped cylinders, these integrations are
evaluated in a closed form as will be illustrated in future chapters for

specific cases.

2. Ez-plane Wave Incidence

The fields of a z-polarized incident plane wave are given by

~Y,P.l.
= Eo e 2

; . (2.20)

where E, is amplitude of the incidence plane wave which is to be set
to unity, p = -xcoséi - ysinéj is the unit vector in direction of

-~ ~

propagation, r = xx + yy is radial position vector, and ¢i is the angle

of incidence as shown in Figure 2-2.

The incident field can now be written in the form

. Y (xéos¢. + ysing, )
1 2 i i
E, =e . . (2.21)

14
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I I
(€21 12:02)  \ € 07)

Figure 2-2. Ez-plane wave incident on the scatterer.

From Eq. (2.12)

vo=JlF oYp(xcoses + ysing.) o

cs  m(x,y) (2.22)

In the far zone, the scattered field can be obtained by using asymptotic

form of Ky (¥,/P-P'[) in Equation (2.16)

15



A

“2“0(61'Eé) N Yz(xcos¢s+ys1n¢s)

S _
S (p,9) = mLc JIF (x,y) e ds.
=Y,
e 2%, (2.23)
Vo

The far field approximation has been used as illustrated in Figure 2-3.

where

[e-0'| = p - p'cos(dg-¢')

p - (x'cosdgty'sings) . (2.24)

When ¢; =¢g (Backscattered case)

Wy (8-2,) N =Y, P o
B.S 01 72 T ) cvyv e 2 . (2.25)

2m 2Y2 m=1 mm /p_

Where Vp is now given in Equation (2.22).

C. H-WAVE SCATTERING BY TWO DIMENSIONAL LOSSY DIELECTRIC CYLINDERS

1. Magnetic Line Source Excitation

An infinite magnetic Tine source with uniform current My located at
(Xg,Ys) when radiating in the homogeneous medium (®2,%,%) generates
the field given by

i juwe

- 2 T oz . 2.26
Ho= - K, (¥, lo-0]) (2.26)

16
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IN FAR ZONE

|7 -7 p-p'cos ( bs—d")

Figure 2-3. Tllustration of the far field appreximation for
the scattered field.
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The corresponding electric field generated by the above magnetic current

is
iy -
g2 ; , 2.27a
2 Ky (nylma]) oL (2.272)
where
b g = -Xsing ¢ + ycosé ¢ ;i and (2.27b)

_ -1
¢LS = tan (.Y‘ys> .
X=Xg

where % g is the unit vector is direction of # g as shown in Figure 2-4

and Ky is the modified Bessel function of order one.

The field scattered by the dielectric cylinder is given by

'S s s
Ex,y) = -3uh(x,y) - Vixy) - (2.28)

_S
where A 1is the electric vector potential given by

-Es\'x,y) Ho JJ ) (x',y')Ko (Yzlg_zll) ds* , (2.29)

2m ¢cs €9

V(x’y) is the scalar potential given by

Y

X,y) T
2ne

1 ips(z')Ko(Yzﬁ-—g'Hdz' . (2.30)
2

95(2') is the surface charge density on the surfaces of the scatterer.
d2' is the differential linear element on the contour of the scatterer
as shown in Figure 2-4. (The prime designates integration over the

source region.)

18
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Figure 2-4.

MAGNETIC
LINE (x,y)

Electromagnetic scattering model for magnetic line
source excitation.
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Region I is source free thus
e, = 0. (3.31)
The incremental current dI in an elemental length at the perimeter

is obtained from the normal component of 3éq as

~

dl = [Jeq(#)-n(2)1ds . (2.32)

~

where n(2) a unit normal out of region I as illustrated in Figqure 2-4.

For a time harmonic source,
dl = jwd) . (2.33)
where dQ is the total charge in element d&. From Equations (2.32) and

(2.33), and knowing pg =g_2 ,

p (1) =38_q(_’31_”_(_"_)_ . : (2.34)
S Jju

Substituting Equation (2.34) in Equation (2.30) yields

wy) ©—— (e R I (o0 et - (2.35)
jw2n52

Y

Noting that only p in the integration is dependent on (x, y), taking the

gradient of v(x,y) gives

Y2 7 ! A 1 TR
VV(x’y) - N £ [‘Jeq(‘q' )-n(z )]Kl(Y2|D'p I)pdl (2.363)
jm2w52

20



where

cos¢£ + sin¢§, and (2.36h)
=1 /y-y'
tan (x-x'> .

_S
Now E(x,y) can be written as (from Equations (2.28), (2.29) and (2.36)

©
i

-5
1l

TS 3o (1T (x' v Ky los ] s
Ely)™ ~ g eq(®"s¥ " JKo (v, lo-0" | )ds
Y2 -y |\’; ' PENTEYV TR
+ [ Lo )2 )IK (v lo-p"|)ods -
juene, . (2.37)

The integral equation is formed by substituting for 3éq from Equation
(2.5) in Equation (2.37), transposing Equation (2.4) and substituting

from Equation (2.37) to obtain

2 N ~
=i =1 w uo(sl-s_) _— .
Bay)™ By) T gg EX(x "5y " )K, (vl 0-0" | )ds

1,(€-6,)  — . _—
S 2L 2 e (y )R () K (o, fompt [ )Bda
-~ 2’ (-
2me, (2.38)
L . c o=l
The unknown function in the ahove integral equation is E (x,y), the
field in region I. The unknown function appears both inside and outside

the integral. To solve this integral equation, it is convenient to

expand the total magnetic field inside the scatterer (region I) in terms

of a set of basis function Fn(x,y), thus

21



_ N
H% = F 9 (2.39)

I ¢ 7
X,y) n=1 n n(x,y)
Where the unknowns are the Cu's.
Ilsing Maxwell's equation we ohtain the expansion for total electric

field in Region I.

N

— _

E =P 2 CF . (2.40a)
(xa.Y) n=1 n N(X,y)

where

- oF (x, oF (x,

F =X ”( Y) -y ”( ) . (2.40b)
n(x,y) 3y ax

p = 1 . (2.40C)

jwel

It will be shown in future chapters that Fn(x,y) and p will bhe
simplified for a proper choice of basis function.

Substituting Equation (2.40a) in Equation (2.38) yields

Bl oy = 0\17%) (= == et
E(X,)') =P nzl Cn Fn(x,y)-——z—“———— gs{ Fn(x,y)Ko(Yz|p‘° | )ds
B8y, — ., e
- -—:;f;———— iEFn(R )en (2 )IK (v, 1 e-p" )0 d2 )
'ﬂ'€2

and again the C's are the unknowns.
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It is desired to obtain a set of simultaneous linear equations
given by Equation (2.11) by implementing the reciprocity theorem of
Equation (2.10), thus the Galerkin testing is used in above equation.
The inner product of Fp(x,y) is formed with both sides of Equation
(2.41), and integrated over the cross section of the scatterer.

Using Eq. (2.27), this yields

- =i
= - E d Slylsdseeny
= 1 gy Epny® 123 N

Y —_—
_ 2 Fm{xsy) o Fm(x, ,
=2 <_.m__ sing g + Fnley) cos¢LS> K, (1,05, )ds

2T P} )
© ¢ (2.42)
and
) o _ w uo(el'EZ) -
Zmn= pg Fr(x,y)" Fm(x,y)ds‘—‘é?r—_“ngig Fa(x',y')
F o astes - L2y
) m(XsY)KO(Y2|p-p |)ds ds - — sy m(x.y)
2n52
*oIF, (21)on(2") K (v, 57" [ )de'ds (2.43)

where ¢LS is defined in Equation (2.27b) and 5 is defined in Equation
(2.36b).

The difficulty encountered in evaluating the above integrals is
dependent upon the choice of the basis functions. The integration in
the first term is rather straight forward since there is no singular

points involved in the hegion; The integrals of second term of Equation

23



(2.43) involve a singular point (when x=x' and y=y') but it can be
evaluated in the same manner discussed for Equation (2.13). Perhaps
the most difficult term in Equation (2.43) to integrate is the third
term. This term involves a set of singular points on the cross-section
contour for the inner most integration around the cross-section contour,
and another set of singular points in the cross-section for the outer
most integration over the cross-section. It is suggested that when
approximating the scatterer by a set of overlapping small circular
cylinders, the surface charge density due to all cells be included and
summed. For a rectangular cross-sectjon, however, all the integrals of
the Equations (2.42) and (2.43) can be evaluated in closed form for a
proper choice of testing function. This will be illustrated in future
chapters.

After numerically solving for Cn's the scattered field can be found
oy

W = 1113 VKA - (2.44)
where As is given by Equation (2.29) and 3éq is given by Equations
(2.5) and (2.40a).

juy [E -&,) N _ L
us _ 21 2 ~ . 0os
T —— Z‘ C ({S m(xl,yl )XpKl(Yz‘p"O |)dS z

(2.45a)

X

rn(x.,y.)x,s:s(iw_gy':y_')ﬁnwaFmgx:,y')cos¢> . (2.45)
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Thus

_ juy,p(E,-¢,) aF (x',y")
S 2F+"1 72 y /] m .
C S
(x,y) om m=1 M| cs 3y e
+ (Y Veose ) K (v, [p-p')ds' | 2 - (2.46)
ox' 1'72

The above is valid for all scattering angles. However for

backscattering, some computation time may be saved by using

_B.S. PSR .
H = -Jupl(€1-%) ) CyVm 2 - (2.47)
(XS"yS) m=1

where Vi, is given by Equation (2.42).

2. Hy=Plane Wave Incidence

Using expansions similar to those involving the E;-Plane Wave
incidence case, one may analyze a z-polarized plane magnetic field
incident on the scatterer as shown in Figure 2-5. The incident fields

are given by

o Yz(xcos¢i+ys1n¢i)

H = zHge
. ) Y,(xcos¢.+ ysing.)
E' =n (ﬁjxﬁ) =, e? ! 1 .. (2.48a)
2 2 i
where H0= 1 is assumed and
where ¢; = -xsin¢>i + ycoss, " (2.48b)
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Figure 2-5. Hy-plane wave incident on the scatterer.

n, = Ho is the the intrinsic impedance of homogeneous Region II.

€2

From Equation (2.42).

=, ]J Fm(x,y) Zm ) Ising, + 35915:!2;os¢1 ds .

m oy X

:> eYz(xcos¢1.+ys1nq>1.)
(2.49)

To calculate the far zone scattered field, Equation (2.46) can be

utilized where Kl(erﬁ‘ﬁ'l) is replaced by its asymptotic form and using

a similar far field approximation as in Figure 2-3 and Equations (2.23)

and (2.24) yields
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_S jwy, p(E -£) N
H(p,¢)= 2 12 z C .” BFm( ’y)qu) +8Fm( ,V COS¢\
2m 2y, m=1 M} cs ay” BX "
? V.
-Y,(x'cos¢_+y'sind =YoP

Vo
¢ is the angle of scattered field as shown in Figure 2-3. When $g=%;

the backscattered far field is given by
‘Ypp

juy,p(%,-€
_ 2 / 2 cy © . (2.60)
m 1 mm
p

Vo, is given by Equation (2.49).

_B.S.
H(

s

ﬁe
~—

In this chapter all the derivations have been very genera1.and can
be applied directly to any suitable two dimensional electromagnetic
model by simply chosing a suitable expansion function. It is however
essential that a stable convergence be obtained. Thus the first test to
be made is a convergence test. In the following chapters these theories
are applied to scattering by a two dimensional lossy dielectric
rectangular cylinders hereafter referred to as rectangular cylinders.

In each case a convergence test is included which exhibits the

reliability of the numerical solution.
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CHAPTER III

E-WAVE SCATTERING BY LOSSY DIELECTRIC RECTANGULAR CYLINDERS
OF INFINITE LENGTH IN A LOSSY HOMOGENEQUS MEDIUM

A. INTRODUCTION

In this chapter, the plane wave expansion is introduced and an
example of the convergence properties is given. Examples of typical
scattered field patterns are presented for the cases of a lossy
rectangular cylinder in a free space environment and for an air cylinder

in a lossy ambient medium.

B. PLANE WAVE EXPANSION

The expansion of the field inside the cylinder in terms of a set of
basis function Fp is given in Equation (2.8). The choice of F, as a
spectrum of plane waves is such that each F, satisfies the Helmholtz
wave equation inside the cylinder. Since the electric fields are
z-difected, it is only necessary to treat the scalar problem. Thus the

basis function equals

-ifpx -3gny
Fa(x,y) = e e . (3.1a)

From Equation (2.40b)
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Figure 3-1. E-wave, electromagnetic scattering model for a
lossy, dielectric rectangular cylinder of infinite

length immersed in a 1ossy medium,
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-
t

= 3 « _ si oy if x -3y
g = ~dkqlcosg, x - sing y) e n" ¢ 70

-jky(cos¢, x - sing y) F (x.y) . (3.1b)

From the wave equation and Equation (3.1)

2

fn + 92 = k2

n 1 s (3.23)
where

fn = Kjcosen (3.2b)
gn = leiﬂfpn ’ (3.2C)
o = n-].) 27T (3-2d)
(N
kl = “’1“081 , (3.2e)
2L 91y 3.2f
& eo(erl j Vﬂf;) , (3.2f)

where %, is shown in Figure 3-1. Observe that once the number of terms
N retained in this plane wave expansion is given, the individual Fp's
are completely specified, thus Equation (2.8) becomes

-if x o -39,y

. 3.3
1 Cne e ( )

I -
B20x.y) © n

0~

To obtain a set of simultaneous linear equations such as Equation
(2.11), Equation'(3.1) is substituted in Equations (2.12) and (2.13).

The terms of the excitation cd]umn matrix now take the form
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a b . .
. -Jf X =jg_y -
= J(l)]..lo m m - . -
v - _i_é e e ko (Tl pmpg[dxdy 5 m = 1,2,...,N .
(3.4)
The impedance matrix
ab _; : ; ; 2 (p.2) abab
-3f x -jg y -3f x -jg y wyu (% -€,)
7 =]]e Me ™Mg Mo dxdy - 0*1 2 111
mn _a.b 27 -a-b-a-b
-if x' -jg y' -jf _x -jg_y _—
e Me Me Me M Ko(y?lp-p'l)dx'dy'dxdy
= Rmn + Smn Y (3’Sa)
The first integral may be integrated in closed form to obtain
_ 4sin[(fptfp)al sin[(gn+gn)bl ) “ . (3.5b)
mn (fmtfn) (Im*9n)
The second term of Equation (3.5a) is
abab _ijf gt 3 ' ; ;
-if x' -jg y' -if x -jgq_y S
= n n m m 1 ' ' s
San = Cl_g_é_!_é e e e e Ko(Yzlp-p | Ydx 'dy ' dxdy
(3.5¢)
where
2 A &
A W L (3.54)
1 2T

To evaluate Equations (3.4) and (3.5¢) we utilized the spectral
transform of KO(erv-'p'|) is utilized
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o -flx-x"]
Ky (Yplo-0']) = OJ e c$stg(y-y’)] dg - (3.6a)

From the wave equation
-9 =y, | (3.6b)

Note fhat f and g should not be mistaken with fn and g in Equation
(3.2a). .
This transform is easily obtained by redefining some parameters in
the form given by Tyras [41].
‘ Substituting Equation (3.6a) in Equation (3.4) with x'=xg and y'=yg

and changing the order of integration one obtains

- _ Juug |
vV = -
m 21 0

ab _j i
-if x -jg y -flx-x_|
i é e M e ™ e S cosg[(y-ys)]dxdy dg -

(3.7)

—h| =

The integration over the cross-section is easily evaluated in a closed

form to obtain.

-]

= _ Jug 1 . gev . 3.8a
v . OJ 1 (R, e do (3.8a)

where
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sin[gfmfjf)a] o-fXs x> a
(Tmt+if) S
-fx . . . .
jo_ s (ed(Fmtif)xs _ I (futif)ay
2(F¥35)
F o= >
m ﬁ -d S Xg < a
+fx . . . .
¢ _de 'S (e-ifm-if)a | o-3(fm-df)xs)
2(fn-3¢)
S]n[gm-jf)a] esz X < -a
L {(Tm-3F) s
/
(3.8b)
and
! = o Is sinl(gn-g)b] , J¥s sinl(amte)b] . ¢ (3.8¢)

(9m-9) (am*9)

s

Thus the only remaining integration is the ij dg which will be
encountered frequently throughout this dissertation. This integration
must be evaluated rather carefully, and it will be fully discussed in
Chapter V. |

To evaluate Spn in Equation (3.5¢c), Fquation (3.6a) is substituted

into Equation (3.5c). Rearranging the order of integrations yields

' o abab
= 1 ]
Smn= & oJ T -g-g—a—b

-3f x' -jg oy -if x-jg_y -f]x-x'|
e " e " o™ e ™ o cosgl(y-y')ldx'dy'dxdy|dg. (3.9)
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The integrations on y and y' are easily evaluated. The integration on x
can be evaluated by integrating first, from -a to x' where |x'-x|=(x'-x),
and then from x' to a, where |x-x'|=(x-x'). The result, dependent only

on x', is readily evaluated to obtain

oo

= 1 . ) 3°lna
San = 4, Of 1 (FE,, + 6E,,)dg ( )
where
e o i) sinlfrf)al 3 03sinr 5, 56)a
mn (Th+3f) (Tp+Th) (Fa+3T) (Tp=3T)
RICIRIATI . .
. eJ( 0= )as1n[(fm+3f)a] _ sin[(fp+fp)al . (3.10b)

(fa-3f) (Tp+df)  (Tn-37)(fp+fp)
and

gf = Sinl(9n+g)blsin[(gn-g)b] , sin[(gn-g)blsinfgn+g)b] |
mn (9n+9) {9In-9) (9n-9) (gm+9)

(3.10¢)

The scattered field can be obtained by substituting Equations (3.1) and

(3.6) in Equation (2.16) and evaluating the integrals.

s u’2”0(21"32) ) ) v
¢ [ L(F .6E )dg -

E = - =
Z(x,y) ) s m=1 m o T

(3.11)
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where Fy is given by Equation (3.8b) and GE; is given by Equation (3.8c)
by replacing yg by y. The above equation is valid for all scattering
angles. For the backscattered case, i.e., (X,y)=(Xg,¥s), the following
may also be used.

2 A A N

oy (g -€
B.S. - O( 1 2) R . (3.12)
z(xs,Ys) p m=1 MM

V., is given by Equation (3.8a). The far zone scattered field can be
calculated using Equation (2.23), and Equation (3.1). 1In addition,
Equations (2.25) and (3.8a) may be used to calculate the far zone

backscattered field.

C. CONVERGENCE

Two computer programs were developed based on the moment method
formulation given above. These programs are included in the Appendices
A and B. To evaluate the number of plane waves required in the
expansion of Equation (3.3), the program is run for increasing values of
N. A typical result is given in Figure 3-2., This example gives the
relative backscattered field in the form of the scattering attenuation
function (SAF) [42]. The SAF is the normalized scattered field obtained
by dividing the scattered field by the fields of an imaged line source
in a ground plane positioned at the center of the scatterer. For the
rectangular scatterer under consideratioﬁ, the pictorial definition of
the ground plane is shown in Figure 3-3a for backscattered case, and

Figure 3-3b for bistatic case. In these figures, the ground plane is
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specified by the plane which includes the z-axis, and is normal to the
bisector of the angle between ?g and p, (¢-¢5).

The scatterer is a 1m square cylinder with relative permittivity of
€r1=2 and conductivity of .0012 s/m, A Tine source is located at
Xg=1.5m and yg=Nm in a homogeneous medium with Er?=4- and o9=.003 s/m.
As the number of plane waves N, used to represent-the field inside the
cylinder is increased, the solution converges to a single value.

Figure 3-2 indicates that N=6 is sufficient to obtain a reasonably
accurate solution for the particular case.

A convenient way to determine N at which convergence may .occur can
be based on the phase difference between the plane wave traveling in the
x-direction (i.e., ¢j=0 direction, See Equations (3.1) to (3.3)), and
its neighboring plane wave traveling in ¢2=2n/N direction. This may be

expressed as follows

£ = e~dB1(xcosgp+ysingy) . (3.13a)
1 = o~JB1X
¢,=0
and
E, = o~J B1(xcos ¢p+ysingy) . (3.13b)
= ¢ 1Xcos(§£) .
y=0
=2m
¢, =l
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where yi=o1+jB1 and o1=0 is assumed without loss of generality.
The phase difference between Ey and Ep at x=a(adb is assumed as shown in
Figure 3-1) is

86 = -ga(l - cos(ﬁﬂ)) . (3.14)
This phase difference may be arbitrarily chosen, thus, a value for N can
be calculated. Experimentally, it was determined that A%=-T/g is an

initial suitable phase difference. N is now given by

N = Integer [ 2m 1>4 . (3.15)
cos-1[1- _™_1
5B1a

Determination of N from Equation (3.15) is dependent on "a" and "B1" the
phase constant inside the cylinder. The ">4" in Equation (3.15)

suggests that there should be at least four plane waves in the
expansion. For various values of N, A% is calculated from Equation

(3.14) and is plotted in Figure 3-2.

ND. BACKSCATTERED FIELD
1. Far Zone

The first example for which the backscattered fields are to be
computed is a 1m by .5m rectangular scatterer with er1=4, 01=.3ms /m
which is located in a free space environment. A z-polarized plane wave
is incident on this scatterer at an angle ¢ij, as is shown in Fiqure 3-4.

The echo width pattern is given in Figure 3-4. The frequency used is
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100MHz and is used throughout the remainder of this section unless
specified otherwise, The maximum backscattered field is obtained when
the plane wave is incident along y or -y axis (¢;=90° or ¢${j=270°),
There is comparatively smaller backscattering at x and -x direction
(#i=0° and 180°). The results of pulse basis point matching program
[43] is also included for comparison which shows excellent agreement

with the plane wave expansion result.

2. Near Zone

As a second example, consider a l.m by .5m air filled rectangular
cylinder located in a homogeneous dielectric medium with erz =4, and
op=,3ms/m as shown in the model of Figure 3-5. The electric line
source is placed at the radial distance of p=2m and the relative
backscattered field is calculated as a function of ¢;. The SAF versus
¢i is shown in Figure 3-5. The result of an alternative computer
program (RCYLPWE) is also included which shows a 1db descripancy. The
program RCYLPWE is included in Appendix A along with a complete

description.

E. BISTATIC SCATTERING
1. Far Zone

The complete scattering patterns for three cases of plane wave

incidences at ¢i=0°, 45°, and 90°, and for a 1m by .5m rectangular
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cylinder have been computed and given in Figures 3-6, 3-7, and 3-8,
respectively. The bistatic pattern for a z-polarized plane wave
incident along x-axis (¢j=0°)is shown in Figure 3-6. A strong forward
scattered lobe is indicated at ¢=180°. This lobe will shift and the
symmetry will be altered if ¢; is changed. For example, at ¢;=45° (see
Figure 3-7) the symmetry is no longer maintained because of the none
symmetric physical situation. The maximum is now obtained around
$=210°, Initially, this result seemed suspicious since the maximum
value of the scattered field is not in the forward direction and thus
prompted further investigations. Some approximate methods were
considered and proved not useful. Some of these methods will be
discussed in a future section. Richmond's pulse basis point matching
showed excellent agreement and is also shown in Figure 3-7. If we
further increase the incidence angle to 90° so that now the plane wave
is incident along y-axis, the symmetry is obtained about ¢=270° where
the main forward lobe is maximum. This is shown in Figure 3-8 along
with the pulse basis point matching result which indicates excellent

agreement,

2. Near Zone

The three cases considered here place the line source at
(ps,ds)=(2m,0°), (ps,dg)=(2m, 45°), and (pg,ds)=(2m, 90°) which are
analogeous to ¢i=0°, 45°, and 90° considered in the previous section.

A Im by .5m air filled rectanguiar cylinder is located in a homogeneous
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medium of er, =4 and op=.3ms/m. The results are shown in Figure 3-9,
3-10, and 3-11.

The field is observed at a radial distance of p=2m. Figure 3-9
shows the bistatic pattern when the line source is located at
(ps,ds)=(2m,n°) as a function of observation angle ¢. This pattern
shows large forward scattering and small backlobe. The pattern is
symmetric about $=180N° as expected. When the line source is moved to
(pg>¢5) = (2m, 45°), the shape of the pattern is changed and the
symmetry is no longer maintained, and the main lobe is shifted to around
$=240° as may be observed in Figure 3-10. Figure 3-11 shows the
bistatic pattern for the line source at (pg,¢s)={2m, 90°). A strong
forward lobe and a smaller back lobe is observed (4=270° and $=90°
respectively). The pattern is now symmetric about ¢=270°. Also
included in Figures 3-9, 3-10, and 3-11 are the results of RCYLPWE which
show good agreement in each case. The slight descripancy is due to the

nature of the numerical techniques used.

F. SCATTERING VERSUS FREQUENCY

In this section three 1ine source locations are considered. 1In
each case the frequency is varied from 10MHz up to 3N0OMHz and the
Scattering Attenuation Function is calculated.

A 1.m by .5m air filled rectangular cylinder is immersed in a
homogeneous medium with €r2=4- and op=.003s/m. Figure 3-12 shows

backscattered SAF versus frequency for three line source locations. The
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dashed line shows the SAF versus frequency for a line source located at
(egsdg)=(2m, 0°). The solid line shows the SAF versus frequency for a
Tine source located at (pg,¢s)=(2m, 45°), and the dash-dot line shows
the SAF versus frequency for a line source located at (pg,ds)=(2m, 90°).
at low frequencies the rectangular scatterer Tooks the same to an
observer at the observation point. This is the so called Rayleigh
region.

In addition to moment method, two approximate methods were
investigated consisting of an aperture integration solution and physical
optics type of solution for dielectrics. For aperture integration
approach, an aperture is defined, the Equivalence currents Jg densities
are determined [44] and integrated to give the scattered field. To
calculate the far zone backscattered field using this approach the
aperture is defined as shown in Figure 3-13. The aperture field is the
total reflected field evaluated at the aperture and the equivalent
currents are 3é = 25 x H, The scattered field obtained by this method
is shown in Figure 3-13. This does not agree with the moment method
results., The physical optics approximation assumes the field in the
~ scatterer is the same as that of a infinite slab of the same thickness
(i.e., dielectric slab with thickness of 2b) [457. Using the physical
optics, a volumetric polarization current is defined and integrated to
give the scattered field. The far zone backscattered field obtained by
physical optics is given in Figure 3-13., This result agrees well with
the aperture intégration result, hut does not agree with the moment

method solution.
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An anologous set of curves as Figure 3-13 is obtained for the
forward scattering case, and is shown in Figqure 3-14, The aperture
defined for forward scattering is also shown in Figure 3-14. The
aperture field is the difference of the total transmitted field and the
incident field evaluated at the aperture. The aperture field and
physical optics results for forward scattering shown in Figure 3-14
agree more closely with the moment method solution than the analogous
results for backscattering.

Finally, a comparison is given in Figure 3-15 between a moment
method solution for scattering by a l.m-square air filled cylinder
immersed in a homogeneous medium with €r2=4- and 95=,0n3s/m and an exact
solution for an equivalent (equal cross-sectional areas) air-filled
circular cylinder immersed in the homogeneous medium of the same
electrical parameters as given above. These geometries are shown in
Figure 3-15. For low frequencies as one may expect the two scatterers
are not distinguished. This provides a good check on the validity of

the moment method solution.

G. SUMMARY

In this chapter, the mathematical formulation for E-wave scattering
by a two-dimensional lossy dielectric rectangular cylinder immersed in a
lossy homogeneous medium was presented. A conQergence curve was
included and some numerical results were presented and discussed., A
comparison between a moment method solution for a square cylinder and an
exact solution for an equivalent circular cylinder was included.
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In the nextAchapter, the H-wave scattering by a two-dimensional

lossy dielectric rectangular éy]inder is treated.
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CHAPTER IV
H-WAVE SCATTERING BY LOSSY, DIELECTRIC RECTANGULAR

CYLINDERS OF INFINITE LENGTH, IN A
LOSSY HOMODGENEOUS MEDTIUM

A. INTRODUCTION

In this chapter, the plane wave expansion is applied to the H-wave
scattering formulation presented in Chapter II. Some examples of the
convergence properties are given, Examples of typical scattered field
patterns are presented for cases of a lossy rectangular cylinder in a
free space environment and for an air cylinder in a lossy ambient

medium,

B. PLANE WAVE EXPANSION

The general moment method formulation for H-wave scattering by
dielectric cylinders presented in Chapter II is specialized to analyze
the geometry depicted in Figure 4-1, where, a (2a) by (2b) Tossy
dielectric rectangular cylinder of infinite length with the electrical
parameters ej, o1, up is immersed in homogeneous medium whose electrical
parameters are e, op, up. The source is a time harmonic, infinite

magnetic line source placed at (xg, ¥Ys) or (ps, ¢g).
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As shown in Figure 4-1, the z-axis constitutes the cylinder axis. The
magnetic fields inside this cylinder are expanded in terms of a set of
basis function Fp(x,y) similar to Equation (3.3). Choosing the plane
wave basis function given in Equation (3.1) one obtains

-Jf x -39,y

N
I = z b4 (4’1)
H21x,y) n=1 ¢ ¢

For this plane wave expansion,
e "e " ¢ s (4.2)

where

~ ~ ~

bn = -xsindp + ycosén . (4.3)

~

¢n is the unit vector associated with nth plane wave traveling in
direction of ;n=£cos¢n + §sin¢n as shown in Figure 4-1 and N is the
interinsic impedance of Medium I. |

It is desired to obtain a set of simultaneous linear equations as
given by Equation (2.11). To obtain the elements of the voltage matrix
column (V). Equations (3.1b) and (2.27a) are substituted in Equation
(2.42) to obtain

a b -jf x -jg ¥

o " o= - s 4,4
Vm - _i_g e e Kl(Y2|p osl)cos(ﬂ“ ¢Ls)dxdy (4.4)
1

where $ ¢ is defined in Figure 2-4.

AN



Equation (2.43) for Iy, may be expressed as the sum of three terms
Zon = R'mn + S'mn + Tmn (4.5a)

The evaluation of R'pn and S'pp is similar to Equations (3.5b) and
(3.5c) respectively. Using Equations (3.1b) and (2.43), the equations

for R'nn and S'yn are reduced to

cos (4m-¢n)Rmn (4.5b)

R"mn

and

S'mn = cos{dm-9n)Smn - (4.5c)

Kmn and Spn are given by Equations (3.5b) and (3.10a) respectively.
The remaining term in Equation (4.5a) is obtained using Equation (3.16)

in the last term of Equation (2.43)

O T

a
Tmn B Cz_i_

J
3

-3f XU -39 Y L. L Sfx o -dgy -
e N g N <}$ 'n(2i> e Moo ™(3 -p)Kl(Y2|p-p'|)du'dxdy .

! n m
- (4.5d)
where
C = - (El-ez)Yz s (4.5e)
2 -~
Znez

and Vm and Zmn have been normalized by (-Jklnl).

Integrations in Equations (4.4) and (4.5d) are evaluated to a

closed form by using the transform of the modified Bessel function
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Kl(YszJE' ). Taking the gradient of both sides of Equation (3.6a)

yields

_ © L =Fx-xt '
K (Yl )cose = L J fsgn (x-x )ef coste(y-y )l gq .
T2 (4.6a)
- ’” -flx-x"| | ot 1
K -p'l)sing =1 J ge sinfgly-y")1dg -

f and g are given in Equation (3.6b).

To evaluate Equation (4.4), the above two relations are used with

¢=¢Ls,p'=ps x'=xS and y'=ys. Changing the order of integrations yields

[0}

v =_=1 [ 1|fcos¢
M 2mmy o f m

ab _j -j -fx-
ifx -ig Y flx-xg]

e e sgn(x-x_) e 3 cos[g(y-y_)]dxdy
—a-b S S

a b - 3
-if x -ig y -f|x-x_|
+ gsing g g e M e ™ ¢ s sin[g(y-ys)]dxdy dg -

(4.7)
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a _if x -flx- b 3
Jf x =flx-x| jg.y

v = -1 ] 1 sin e e dx J e ™ sin[g(y-y.)]d
e ot g J [a(y-y¢)ldy
a -f x -f|x-x_] b _jg y
+ cos¢ | sgn(x-x Je ™ e ST odxlf S e ™ cos[g(y-y.)ldy|} dg >
m .a s -b S
(4.8)
v=_1 J 1|F (gsing ) 60’ + & (fcoss ) GEY|dg >
moT, o Fm m m m m’ m
1 (4.9a)
where
Fm and GE¥ are given in Equations (3.8b) and (3.8c) respectively,
g0l < i &Fs sinl{gn-g)p] _ o%¥s sinfon+a)h] \ , (4.9b)
m (9m-9) (Im+g) /
and
( \
-f : .
*s sin[(fyp+if)al x Sa
(fm+df) S
5 éfxs ég(fm+3f]xs -ej(fm+3f)a
2(Tmtif)
Gy = ﬁ -a <X < a >
pogets JUndela 3(f-iedx
Z(fm'jf5
fx Al (o
o s sinl(fy-if)a] X <-a . (4.9¢)
\ (fn-3f) S ),



To evaluate the integrals in Tyn, (Equation (4.5d)) the two useful
transforms of Equations (4.6a) and (4.Ab) are used, but first, the
integration path 2 is broken into four segments and defined as follows;

considering Fiqure 4-1

It
x>

21 ; from (a,-b) to (a,bh) , 5(21)

u
<>

>

(4.10)

23 ; from (-a,-b) to (-a,b) , 5(23)

n
1
By

(

29 3 from (-a,b) to (a,b) , 6(22)
(-
(-

1
k:,

a,-b) to (a,-b) , n(2g)

i

24 ; from

A "~

Also, the inner-product (¢, « n(2')) in Equation (4.5d) is found

from Equations (4.3) and (4.10) as

-singp ; for 21 .

cosép ; for 20

(4, - n(2") =

singp ; for 23 .

| -costn for 24 . (4.11)

Substituting Equations (4.11) in (4.5d), Tpn is now given by

ab b : . '
~3f X -Jg y -jf a -jg y
_ m . n n
Tmn = C2 _g_g e -s1n¢n _g e e

(cos%Kl(Yzlp-pll)sina1 + sinqﬂKl(Yzlp-pll)COSal)dy'

-1f x! -jgnb
+ cos¢ f e e cos¢ K, (Y |p-p |)s1na
1''2 ?
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- sin¢mK1(Y?_|;-;2| )cos az)dx' +

b s . .
jf a -jg y -
s1'nq>n B e " e " (cos<1>mK1(\(?|o-p3|)sinm3

- sin¢mK1(Y2| p-p3|)COS<13)d_y'
a -jf x' Jg.b

- | cos ¢, ;{ e " e (cos¢mK1(Y2|;-—p-4|)s1‘naA

-Sin¢mK1(Y2|—p-;4|)COSaA)dx' dxdy (4.12)

-~ A

where (¢m . p) = sin(q;-q)m) was used above (S is the unit vector in the

direction of p). To avoid confusion with ¢m and q:n, ¢ is changed to «

and subscripted according to the path of integration.

( \
I ey T o - tan-l (y-y'
lo-oy| = Y(x-2)% + (y-y') o = tan™ (YY)
—-— = V(xx")? + -b)? 3 =t n"l y-b
lp-p,1 = ¥(x-x")7 + (y-b) a, = tan™ (¥=2)

—_— = / 2 - I ?_ ; = 't -1 Y'y
lo-o 1 = V(x+a)2 + (y-y') o, = tan (YI—
oo | = Vxx")2 bY?2 - tan~! (y+b
lo-py | = Y(xx)Z + (y#0)2 5 o )
\ J (4.13)
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The relations given in Equations (4.6a) and (4.Ab) may now be used
in Equation (4.12), and the integrals are rearranged so that the line
and cross sectional integrals are evaluated to a closed form. After

some regrouping Tyy is now given by

. 2 1 1
Ton ___Of |- s1n¢ncos¢mg(51-55)
Y
2
+ sin¢nsin¢mf(52-58)
+ cos¢ncos¢mg(s3-57)
- cosg sing f(S4-58) | dg - (4.14)
where
-j(fp-3f)a
S1 = 4de F1 - G1 . _ (4.15a)
-j(fn-jf)a
S2 = -de F2 « G2 . (4.15b)
~jgnb
S3= 2. F3.63 . (8.15¢)
-jgnb
S4 = 2e F4 - G4 . (4.15d)
-j(fp+if)a
$5 = de F5 « G5 . (4.15e)
-j(fp+if)a
S6 = 4de F6 + 66 . (4.15f)
Jgnb
S7= 2e F7 - 67 . (4.159)
janb
$8 = 2 FR « 68 . (4.15h)
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where

F1

F3

Fa

F5 =

Gl = G5

mn

G2 = G6

G3

G4

G7

= F2 2sin[(fptif)al . (4.16)
(fm+if)
= F7 = 2FEqn (FEmn 1s given in Equation (3.10b))
' i (fp+if)a
g o g (SinL(fm#fn)ad _ REILNTITTRT
(fn+3T) (Tm+fn) (Tn+3f) (Tp-37)

-j(fp-jfla_, . .
- sin[(fp+if)a] , sinl(fm+fp)al . (4.7)
(Fn-3F) (fm#df) (Fn-37) (Fm+Tn)

rg = 2SinC{fp-if)al | (4.18)
(fm-37)

2G0pn where

y <}in[(9n+g)b15in[(gm-g)b] _ 51"[(9n-9)b151n[(9m*9)b]:)

(9n+9) (9n-9) (9n-9) (9n+9)
(4.19)
= ZGEmn ; (GEmn is given in Equation (3.10c))
_ 53 sinlign-0)b] _ 3% sinl(amronn]) | (4.20)
(9n-9) (gm+9)
i} ;jgb sinl(gn-9)b] , ggb sin[{gm+g)b] | (4.21)
(9m-9) (9n*9)
_ (2 sinl(gn-g)b] _ P sinl(gnra)b] ) (4.22)
Im-9 (9m+9)
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jgb _. -igh_.
g = o sinl{gn-9)b3 , *Psinl(gnre)d] . (4.23)
(9n-9) (9n*9)
These steps now completely fill the matrix elements of Equation (2.14).
Now the matrix can be inverted to solve for the response matrix [Cnl.
The scattered field can be calculated by substituting Equation (3.1)

into Equation (2.46)

z(x,y) 2T m=1
ab [ t
-if x' -jg vy - -
m /. . ,
Cm -g_g e e <s1n¢ms1n¢Kl(Y2|p-p 1)
+ cos¢mcos¢K1(~{2]3-E'|> dx'dy' | (4.24)

where Equations (3.2b) and (3.2c) have been used. Constant p is defined
by Equation (2.40c).

Using Equation (4.6) in Equation (4.24) and simplifying yields

ab ; v 1 o '
-3f x' -jg y -fix-x'| :

c J J[e m o ™ [(sing J ge sinfg(y-y')ldg

m _a-b Mo il

-]

‘ -
+ cos¢ OJ sgn(x-x')fe

| cos[g(y-y" )]d9> dx'dy’' .
(4.25)
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Interchanging the order of integrations and rearranging terms gives

~ _A l
s juny (8,5, )
Z(X,Y) 21! m=]_
= -if x' -jg y' -flx'-x|
¢ Jllcose flle ™ e ™sgn(x'-x)e © cos " "dy!
m o |05 tnfLe gn(x"-x) C9(y'-y)ldx'dy
“Jfpx' -igmy’
+ sindgqg /] e e sinfg(y'-y)Jdx'dy'l dg , (4.26)
cs

where the arguments of the functions have been rearranged so that the
results of Equation (4.7) may be used to simplify the above complicated
relation.

Comparing Equations (4.26) and (4.7), and evaluating the
cross-sectional integrations to a closed form, the scattered field is

finally given by

[ ]

jun, (&,-%,) N
S - 1 1 2 1 . V V .
Hz(x,y)' —-—-:r--——h§1 Ca oj T Fm(51n¢m9)G0m + (cos¢ f)GE_ | dg

(4.27)

F o6, GEY, and GOY are given by Equations (3.8b), (4.9c), (3.8¢), and

(4.9b) respectively, with (xg, ys) replaced by (x,y).
The above equation gives the bistatic and backscattered fields.

Additionally, when the backscattered field is needed, i.e., (x,y) =

(xs,ys), some calculation time may be saved by using the following
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N
B.So - L) 2 ~ ~
Hy ™" (xgo¥g) = ~Juny (-8 Zlcmvm

. (8.28)
This was obtained by replacing (x,y) with (xg,ys) in Equation (4.26) and
(4.27) and comparing the resulting equations with Equations (4.R8) and
(4.9a).

The far zone scattered fields may be found by using Equation (3.1)

in Equation (2.50), and evaluating the resulting integrals.

C. CONVERGENCE

Two computer programs RTUNLH and RCYLHGP were developed based on
the formulation given in this chapter., RTUNLH and RCYLHGP programs are
included and fully discussed in Appendices C and N. RCYLHGP was
developed to enable the calculation of far zone, near zone, and back and
bistatic scattering patterns, whereas, RTUNLH was developed to include
all the above capabilities but was restricted so that x and xg > a.

This restriction is made so that the effect of an air-earth interface
may be modeled. The air-earth interface is discussed extensively in the
following chapter.

Two examples of convergence are shown in Figure 4-2, The
backscattered field is calculated and plotted for increasing numbers of
plane waves (N) in the expansion., 1In Figure 4-2a, a 1m by 1m square air
filled cylinder immersed in a homogeneous dielectric medium with €rp = 4

and op = .0N1s/m is modeled, The line source is located at (xs,ys) =
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Figure 4-2. Convergence curves for RTUNLH and RCYLHGP computer
-programs which use plane wave expansion Galerkin
method at 1nn MHz. (a) for square air filled cylinder,
(b) for a rectangular air filled cylinder. Scattering
attenuation function is plotted as a function of N
the number of plane waves in the expansion.
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(5m,Nm). The curves of Figure 4-2a suqgest that the solution converges
to a single value for N > 6 for RTINLH computer program. Several points
are also calculated by RCYLHGP computer program to confirm the
convergence, The frequency used is 100 MHz.

The second example is shown is Figure 4-2b, A 1m by .5m,
air-filled rectangular cylinder immersed in a homogeneous medium with
€9 = 4 and op = .3ms/m illuminated by a magnetic line source placed at
(Xgs¥s) = (2m,0om). The curve for both programs seems to have converged
to a single value at N > 6.

To get an idea about how many plane waves must be included in the
expansion, a similar estimate as discussed for E-waves in Chapter III
may be used for the expanded H-wave in the cylinder. In Figure 4-?2a the

A% from Equation (3.14) corresponding to each N is also included.

D. BACKSCATTEREN PATTERNS
1. Far Zone

The first example for which the backscattered fields are to be
computed is a 1m by .5m lossy dielectric rectangular cylinder with e =
4. and o1=.3ms/m immersed in a free space environment. An H,-polarized
plane wave is incident on this scatterer at an angle ¢i as shown in
Figure 4-3. The far zone backscattered pattern is plotted and is shown
in Fiqure 4-3. The frequency used is 100 MHz. The maxima of
backscattered fié]d are obtained at incidence angles of 9n° and 27n° at

which Ex is incident on the larger faces of the cylinder, and the minima
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of scattered field are obtained at incidence angles of N° and 130° for
which Ey is incident on the smaller faces of the cylinder. 1In addition,
some results of a pulse basis point matching program is also included
which indicate that, if enough equations are included, the solution
approaches that of the plane wave expansion., Four incremental cases for
the pulse basis point matching shown in Figure 4-3 are for N = 32, 72,
128, and 20n. It is apparent that the pulse basis method has not yet

converged for N

200, but the plane wave expansion has already

12.

converged for N

2. Near Zone

As a second example, consider an air filled, Im by .5m rectangular
cylinder immersed in a lossy homogeneous medium with er? = 4 and
op=.3ms/m. A magnetic Tine source is placed at (p5,¢s);(2m,¢s). This
model is shown at top of the Figure 4-4., Scattering Attenuation
Function versus ¢ is shown in Figure 4-4 for backscatter for increasing
values of N; 6, 7, 8, and 9. For N=8 and 9, the pattern is exactly the
same, this suggests that the solution has converged at N=8. The result
of the pulse basis point matching shows excellent agreement with the
plane wave expansion at the maxima, but, more equations are needed
(i.e., N> 200) to obtain better agreement at minima. This is because
the pulse basis point matching solution has nof yet converged at minima
regions. This was investigated by using N = 32, 72, 128, and 200 and

comparing the patterns. 0Only N = 200 case is included in Figure 4.3,
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used to obtain the above results.

75



(The frequency used is 100 MHz.) Obtaining a converged solution by the

pulse basis method is costly and has not been carried out.

E. BISTATIC SCATTERING PATTERNS
1. Far Zone

The complete scattering patterns for three cases of plane wave
incidences at ¢7 = 0°, 45°, and 90°, and for a Im by .5m lossy
dielectric rectangular cylinder with Er1=4 and o1=.3s/m located in a
free space environment have been computed and given in Figures 4-5, 4-6,
and 4-7, respectively; A Hz-polarized plane wave is incident on the
scatterer at ¢j=0° as shown in Figure 4-5, The bistatic scattering
pattern shown in Figure 4-5 shows a strong forward scattering and
comparatively weak backscattering, and as expected the pattern is
symmetrical about 180°, (The frequency used in this section is 10n
MHz.) Also included in Figure 4-5, is the pulse basis point matching
result for N=200, As discussed in Figure 4-3, better agreement would be
obtained by increasing N in the point matching solution. For a plane
wave incident along 45°-axis, the bistatic scattering pattern is shown
in Figure 4-6. A small Tobe is observed at about 70° and a greater Tobe
is observed at approximately 230°. The pattern does not have a point
about which it is symmetric. For a plane wave incident nearly at
$;=90°, the bistatic scattering pattern of Figure 4-7 is obtained. This
indicates a small backscattered lobe and a large forward scattered lobe.

As expected, the pattern is symmetrical about approximately 27n°. The
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pulse basis point matching solutions included in Figures 4-A, and 4-7-
show a 5° descrepancy in the position of the maxima and minima as
compared to the plane wave expansion so1ﬁtions. In part, this is caused
by numerical approximations of the trigonometric functions by the

computer,
2. Near Zone

The three cases considered include line sources at (Pfg,%)=(2m,n°),
(Pg,%)=(2m,45°), and (Ps,%)=(2m,90°) which are analogous to %;=0°,
45°, and 90° as considered in previous section for a Im by .5m air
filled rectangular cylinder immersed in a lossy homogeneous medium with
erz =4 and 9=,3ms/m. The scattering patterns are given in Figures 4-8,
4-9, and 4-10. The field is observed at a radial distance p=2m, and the
frequency of excitation source is 1A0 MHz. 1In each case, a pulse basis
. point matching solution is provided for compari;on. The bistatic
scattering pattern for a line source placed at (Pg,%)=(2m,0°) is shown
in Figure 4-8. This pattern shows a strong forward scattering and
significantly smaller backscattering. The pattern is symmetric about
18n° as expected, For a magnetic line source located at
(Ps,%5)=(2m,45°), the bistatic scattering pattern is shown in Figure
4-9, The pattern is no longer symmetric and the lobes are offset
accordingly. When the magnetic line source is moved to
(Pg,%s)=(2m,90°), the bistatic scattering pattern of Figure 4-1n is
obtairzd, The péttern is symmetric about 270° where the maximum of the

forward scattering lobe is obtained. 1In each case, the pulse basis
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point matching solution shows reasonable agreement for the number of
equations N utilized. For the region off the main beam, i.e., the
backlobe region, the match may be improved by increasing N in the Pulse

Basis Point Matching.

F. BACKSCATTERING VERSUS FRENUENCY

In this section, three excitation examples are given for a 1m by
5m air filled rectangular cylinder immersed in a lossy homogeneous
medium with €r2=4 and op=.3s/m, For these three locations of the
excitation line source, backscattered fields are calculated for various
frequencies. These curves are shown in Figure 4-11., It is apparent
that at low frequencies, i.e., <40MHz, where the dimensions of the
scatterer are small as compared to the wavelength, there seems to be no
distinction between the three curves. This is the so called Rayleigh
region. However, when the frequency is increased, the scattering is
different for the three excitations shown in Figure 4-11,

To check the reliability of the moment method formulation given in
this chapter, the frequency plots of Figure 4-12 is presented. First an
air filled, 1m square cylinder immersed in a lossy homogeneous medium of
Er2=4- and o0p=,003s/m is considered. A magnetic line source located
at (pg,95)=(2m,N°) is the source of excitation. This model is shown in
Figure 4-12. The relative backscattered curve versus frequency is shown
as the solid line in Figure 4-12. An equivalent scattering model for an

air-filled circular cylinder of the same cross-sectional area as the
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square cylinder immersed in the same lossy homogeneous medium as hefore
is considered. This model is also shown in Figure 4-12. The dash line
shows the exact relative backscattered field as a function of frequency
for the circular cylinderical model. At Tow frequencies where the
dimensions of the square are small with respect to the wavelengths, the
two scatterers are indistinguishable to the observer and the current
moment is the same and appears to be identically distributed in both
models. However, at larger frequencies where the electrical dimensions
are larger, the current distribution is different, and the two scatter

curves are no longer identical.

G. SUMMARY

In this chapter the H-wave scattering by lossy rectangular
cylinders immersed in a lossy homogeneous medium was considered. The
moment method formulation presented in Chapter II was specialized here,
and some numerical results were presented.

In the next chapter a basic introduction of the effects of air-
earth interface, and the solution of the Sommerfeld integral is

presented.
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CHAPTER V
ATR-EARTH INTERFACE AND THE SOMMERFELD INTEGRAL

A. INTRODUCTION

The parallel and perpendicular nlane wave reflection coefficients
for the air-earth interface are given. These coefficients are then used
to obtain radiation patterns for a magnetic line source and an electric
line source when they are located directly on the interface. It will be
shown that the line source radiation patterns can be reasonably
approximated by (1+R), where R is Rl for an electric line source and R"
for a magnetic line source. Finally, some recommendations are incivded
for evaluating the Sommerfelid type integrals encountered in this

dissertation.
B. REFLECTION COEFFICIENTS

The simple model of Figure 5-1 is used for deriving a plane wave
reflection coefficient. As shown, the yz-plane constitutes the

interface between Region I (free space) and II (earth), and the x-axis

is
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Figure 5-1. The magnetic line source, and interface model used
to derive the reflection and transmission coefficients.

normal to this interface. Consider a magnetic line source with a z
directed magnetic current My, located on the interface along
z-axis. This line source radiates a field in the homogeneous earth

region given by

i - . J wezMo __— R 5.1
H, - K, (¥, l0-p 1) (5.1)
or
. o © f
woo JuweoMg ] e |xlos(gy)dg , (5.2)
4 2T 0 T

where Equation (3.6) was used.

The boundary conditions at the interface are

- I 11
nx({ - )=J , (h.32)
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and

I .
nx (E - EII) = Mg (5.3b)

where

S
n
> >
.

(5.3¢c)

For the situation depicted in Figure 5-1, the electric surface current
density Js is zero and the magnetic surface current density Ms on the
interface can be expressed as

t
~ ~ 0

M = zM 8(y) = Mo | cos (gy)dg . (5.4)
S 0 T 0

From Equation (5.2), and for the earth region where x<0

. (5.5a)

: . @ fx
yi o JueMy J e cos (gy)dg %<0
z 2 0 f

Applying Maxwell's equation to above yields

(-]

i M fx
el =M | s dg ; x<0 . (5.5b)
y Tom o & €O (gy)dg X

From Equation (5.5a) the reflected magnetic field may be expressed as

Ln «© fx .
oo ~jwegMo | Rye “cos(gy)dg . (5.6a)
z 2m ) f

When the observation point is below the line source , the reflected

electric field has the form.

AL I efxcos(gy)dg x<0 - (5.6b)
_y 2-" 0 I
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From Equation (5.2) the transmitted field is obtained for x>0 as

" o -Fox
Whoo o JueMo j e "cos(gy)dg .oy (5.7a)
z 2m o | f

Again applying Maxwell's equation to above in Region I

® -f

oX
| ¢ T, e c:S(gy)dg T X0 . (5.7b)
2ﬂ€1 °

Now the fields are matched at the boundary. From Equations (5.3a),

T Me
E _ o2
y

(5.5a), (5.6a), and (5.7a) it follows that

_ jw;ZMo 1 - = 5.8
S £'T (14R,) - T, cos(gy)dg =0 . (5.8)

Thus
Ty=Ry . (5.9)

Also, from Equations (5.3b), (5.4), (5.5b), (5.6b), and (5.7b)

[=-]

- Moz | folu cos(gy)dy - Mo | (14R.) cos(gy)dg
o~ f 2m o “

-~

2w€1

= - Mo | cos(gy)dg . (5.10)
T 0

Thus, from Equation (5.9) and (5.10), it can be shown that

T, = 2e1f . (5.11a)
E1f+52f0
R = fif-e2fp | (5.11bh)

E1f+€2fo
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where

-
'
«Q
1}
<
N
i

ko = Ju fuie, | (5.11c)
2 2 2 . . [
fo =97 = vy =k, = Ju/wEs (5.11d)

€] = € (5.11e)

and

€ e fep _ 5 92\, 5.11f
» = < ry zﬁii> ( )

An analogous consideration for an electric line source renders R; and

T,, or, a simple application of duality to Equations (5.11a) and (5.11b)

gives
T = 2 f . © - (5.12a)
L upf+uofy
R = Mif-ugfo | (5.12b)
| ===
w1 f+uofy

Ry and R are Fresnel's plane wave reflection coefficients and Ty

and T, are the corresponding transmission coefficients.

Substituting
f o= v,co80; | (5.13a)
fO = YOCOS¢1' , (5.13b)
and
g = Jvysince; = jysing, | (5.13c)

in T,, R,, T,, and R, gives the familiar forms of T and R as
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The above equations are in complete agreement with Equation (5.11c) and

(5.11d), and are compatible with the Snell's Tlaw.

T - 2n2C0S$ b4 . (5.14a)
b Mcos ¢i+nycos 5

R = M2C0S¢i-nicos¢t (5.14b)
b Mpcos §;+n1C0S 6t

T = 211C0S $j . (5.14c)
1 "mjcosej+ncosér

R = MCOS$i-npcosdr (5.14d)
1 Tcoséj+nacos gt

where nz and njy are intrinsic impedances of media II and I

respectively.

C. LINE SOURCE RADIATION ON THE AIR-EARTH INTERFACE

Consider the situation depicted in Figure 5-3, where an air-earth
interface (parallel to yz-plane) is located at x=d. A line source is
placed below the interface at point (x',y'). The fields at any point
(x,y) below the interface is the sum of the direct and the reflected
waves. A typical direct and reflected ray is shown in Figure 5-3.

I -F[x=x"| ~f(2d-x-x")

. _ Juuplo | cos[g(y-y')]
E ) = - gly-y )l je +R e d
z (x.) 21 0 f 1 g
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Figure 5-2. Typical ray geometry for reflection and transmission
at a plane boundary between Regions I and II.

LINE SOURCE
IMAGE
X
A
¥ix,y)
1\\' ! AIR - EARTH
REGION I IS INTERFACE

( eog /'LO)

///f////////T//

REGION I
(€,,0,.p,) d

LINE SOURCE

Figure 5-3. DNefinition of a general coordinate system and the air-
earth interface and the line source. The plane
interface is parallel to yz-plane and is located at x=d.
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where Iy is the electric current on the line source
The field observed at a point (x,y) in air may be expressed as

~f(d=x") ~fo(x-d)

I o Jou jTJ_ _y! d VN
E, (X5y) 1o o 7 © e cosfg(y-y')1 dg ; x>d .
(5.16)

where T; and R, are given by Equations (5.12a) and (5.12b), and f and f,
by Equations (5.11c) and (5.11d).
For a buried magnetic line source the corresponding magnetic field

observed at a point (x,y) below the interface is

.2 ” -fx-x"] -f(2d-x-x")
HII(X,y) o _ Jwepty J cos[g(y-yr)] < e +R e dg
z 2T 0 f I

; x <d, (5.17)
and the magnetic field ohserved at a point (x,y) above the interface is

~f(d-x') -fo(x-d)
e e cos[g(y-y')ldg

s x >d . (5.18)

- J NEZMO
2n

Ty
'T

O3

I -
Hz(x’Y) -

Using Equations (5.15) and (5.16) a near zone pattern is obtained
for an electric line source harmonic at 1N0MHz, and located on the
interface (i.e., d=x'=0). The earth medium is represented by Er2=4 and
o9=0, and the field is observed at alrad1a1 distance p=2m. This pattern

is shown in Figure 5-4, where the earth region is between ¢=90° and
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Figure 5-4, Near zone radiation pattern of an electric line source

. : . . d
laced on the air-earth interface field 1s obgerve
gt a radial distance p=2m, and the frequency 1is 100 MHz.
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$=270°. The two additional curves in Figure 5-4 are the radiation
pattern of an electric line source radiating in a homogeneous earth on
interface and radiation pattern of an electric line source radiating in
homogeneous free space. The current is kept constant in all Tine source
cases. Note that the far field of a line source in a lossless
homogeneous medium is proportional to er‘1/4. Thus, the difference in
these two levels is caused by the change in ep. For the case where the
electric line source is placed at the interface, one can use reciprocity
and a test current source far from the interface to show that the
radiated field is modified by a factor (1+R;). For the example of
Figure 5-4 at ¢=180°, R;=1/3 and the electric field from the Tine source
is increased accordingly. It is also observed that the power from the
electric line source on the interface is radiated primarily into the
earth medium. A plot of (1+R)) is also included in Figure 5-4 which
indicates that the approximation is very good in air region and at
normal incidence in earth region. The approximation may be improved by
including the effects of the lateral waves. This is illustrated by the
solid curve in Fiqgure 5-4. For a lossy earth however, the radiated
energy into the earth region is attenuated. A typical case is shown in
Figure 5-5 for op=3ms/m.

Using Equations (5.17) and (5.18) some near zone patterns were
obtained for a magnetic line source (harmonic at 100 MHz) located on
interface. Fiqure 5-6 shows the radiation patterns for a magnetic line
source on the inferface, in homogeneous earth, and in homogeneous air.
The far zone magnetic field for the magnetic line source is proportional
to er3/4. For the case where the interface is introduced the approximate
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Figure 5-5. The same as Figure 5-4, except the earth is lossy
(09=.003s/m).
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solution is obtained by introducing a factor given by (1+Ry) which is
also plotted in Figure 5-6. As shown, this approximation is not as good
as the electric line source case. This suggests that the effects of the
Tateral waves are more important in this case. For a lossy earth, the
energy radiated into the earth is attenuated. A typical case is shown

Figure 5-7 for gp=3sm/m.

D. LIMITING CASE

The 1imit is examined here as the line source approaches the
interface. Let us consider Figure 5-8a where an electric line source is
placed at (x',y') above the interface in the free space region. The

field observed at (x,y) above the interface is

, @ —fqlx-x'
E (x,y) = - 3% | ] & o |costg(y-y')] d
ciX,Y) = - . dg
4 2n | o fo
| (5.19)
w1 -folx+x!
+JRLe cosfg(y-y" ) 4q .
0 fo

the line source is then moved towards the interface until it is directly
placed on it, i.e., x'=0
® folx

v -folx|
1i - Juug [ (B+Rp) e ©'"" cosfg(y-y')1
lim (£, (xy)) = Lo - dg

(5.20)

where Rl = -Rl, and Rl is given by Equation (5.12b). Using this in

Equation (5.20) and further simplifying gives
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Figure 5-8. (a) An electric line source placed at (x',y') above
the interface and moved towards the interface.
(b) The same electric Tine source placed at (x',y')
below the interface and moved towards the
interface. 1In each case, the field is observed

at (x,y).
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. L —fox .
E,(x,) = Jwuuz | e coslgly-y' )4y x>0 . (5.21)
T 0 nof + upfy

Now, let us consider Figure 5-8b where the same electric line
source is placed below the interface. The field observed at (x,y) above

the interface can be expressed as

o fx'—fox

E(xyy) =32 JToe cosfg(y-y)T 40 . yicn .
z 21 0 (i
(5.22)
moving the line source towards the interface implies
. 3 7 ~ToX '
Hm (E_ (x,y)) = S92 J Tee “coslo{y-y")I 45 | (5.23
X'+ Z 2T O T
substituting for T; from Equation (5.12a) and simplifying give
. ® -ToX .
E,(x,y) = -L2Hok2 | & coslgly-y') gy ;s x>0. (5.24)

m 0 uof + uafy

which is exactly the same as Equation (5.21). This can also be proved
by using reciprocity theorem which is not included here.

The procedure is the same for a magnetic line source.

E. SOME REMARKS ON THE EVALUATION OF THE SOMMERFELD INTEGRAL

The Sommerfeld type integrals encountered in this dissertation are

in general of the form
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I =

O 38

F(:sg) dg f2 = Yg + 92 ) (5.25)

The integrand may be singular depending on f, which can be

expressed as

= o2y & ; 2 5.26
f™ = -w o€ o + joug o +g . ( )
where €'s is the real part of the ep.

It can be seen from Equation (5.26) that for a lossy case, the above
integrand does not have any singularities, thus, it can easily be
evaluated numerically. For a lossless case, however, the integrand is

singular when
g = gc = wugep' . (5.27)

To get around this problem, the integration path can be chosen as

follows
I = 'ng F dgl " l]gc F dg| + {T——ifif—J (5.28)
o T g T ge T
51 I2 I3
where
91 = 9c//2 .

I; is easy to evaluate. I is evaluated by introducing the following

transformation.
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(5.29b)

n

!

™
(=%
@
.

dg

I = -j .E dB . (5'30)

o = 92 - 95 = 2 ; o0=0. (5.31a)

d = odo | (5.31b)

9 g

=) Faa . (5.32)
0 g

May be used, thus the integral of Equation (5.25) takes the form

[
91 ©
J O FBdB + [ Fada ; o # 0
J91 o fg o fg
= F
! 0 T’dg ¥
g1 ©
) Fds + JFda 3 o=0 . (5.33)
\ 0 g 0 g
@ (e )
The | da may be approximated by | do, and a sufficiently large *
0 0

may be chosen for a good approximation. The value of o« is dependent on
how fast or how slow the integrand is decaying. For the integrands
encountered in this work a = 10x[maximum(|o2]|,|Ky|,9¢)] proved to be

sufficient.
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The above integrals have been programmed using Simpson's integration
method and the program is included in Appendix E. F can be any

nonsingular function of g.

F. SUMMARY

In this chapter the reflection coefficients for parallel and
perpendicular polarizations were presented, some pattern were given for
radiation by line sources on an air-earth interface. Finally, some
remarks were made about the integration of Sommerfeld integral. In the
next chapter, moment method formulation of E, and H, scattering by

buried cylindrical geometries is presented.

=t
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CHAPTER VI

MOMENT METHOD FORMULATION FOR SCATTERING BY BURIED,
LOSSY DIELECTRIC CYLINDERS OF INFINITE LENGTH

A. INTRODUCTION

In this chapter an electromagnetic scattering model for buried
cylindrical geometries is introduced. The integral equations for E-Wave
and H-wave scatterings are presented, and the moment method is used to
solve these integral equations. Two sets of simultaneous linear
equations obtained here are a modification of the system of linear
equations obtained in Chapter II. This modification is introduced to
incorporate the reflection at the air-earth interface into the
solution.

Figure 6-1 shows a plane cut of the electromagnetic scattering
model. The z-axis is parallel to the axis of the cylinder, and x=d
plane constitutes the air-earth interface. The region inside the
scatterer is designated by I (®y, M1, %), and earth region external to
the scatterer is designated by II (%, ¥y, %). The source of

excitation is a line source at (Xg,Ys) or (P, %s). For this model Xg<d
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Figure 6-1. Electromagnetic scattering model for a 1d?sy
dielectric cylinder of infinite length buried
in earth.

is considered without loss of generality. Thus the line source can be

placed either on the interface or within the earth medium,

| B. E-WAVE SCATTERING BY BURIED, LOSSY DIELECTRIC CYLINDERS OF

INFINITE LENGTH

A uniform time harmonic, infinite electric Tine source is placed at
(Xs,¥g) as shown in Figure 6-1. In homogeneous Medium II, this line
source radiates a field given by Equation (2.1). For the model of
Figure 6-1, the total field incident on the scatterer is the sum of the
direct incident wave and the wave reflected at the interface and then

incident toward the scatterer.
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where from Equation (5.15) one may obtain

] i w -f|x-xs|
gid _ _Juug f e cosfg(y-ys)] 4q (6.1b)
Z 21 0 f
and
] ] ® -f(2d-x-xs)
gir . _Juwp [Rie cosfg(y-ys)] dg > (6.1c)

4 21 0 f

where Io=1 is assumed and Rl is the reflection coefficient given by
Equation (5.12b).
In the presence of the scatterer and the interface the field at any

point is given by

. ¢id ir sd sr 6.2
E,(x.y) = E)0 +E +E° +E (6.2)
where E;d and E;r are direct and reflected incident fields due to the

1ine source given by Equation (6.1). Ezd and Ezr are direct and

reflected scattered fields. A typical ray geometry demonstrating these
quantities are shown in Figure 6-2 for an elemental scatterer. Note

that multiple reflections between the interface and the scatterer are

sd

implicitly contained in this solution. Ez and Eir are expressed

. o -f|x-x"|
gsd o _Juwo J) 4 (x',y')| /e cosfg(y-y')1 dg ds' »
cs €4 0 T

z o
(6.3a)
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Figure 6-2. Illustration of typical direct incident and reflected
incident fields, and direct scattered and refiected
scattered fields for an element of the scatterer.

and
. (] w A ~f(2d-x-x") Ca(y-y')]
EST o Jwig J (x',y')| ] R cosLgly-y dal ds' -
z 2T CS eq( v 0 T 9
(6.3b)

where Jeq is the equivalent volume polarization current placed at the
position of the scatterer given by Equation (2.5). Using Equation (2.5)
in Equation (6.3) yields

w2u (8,-8,) ® ~Flx-x'|

sd J el y) e cosla(y-y')] dg| s -

E2 = 2T cs
(6.4a)
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and

2, (5.2 o ~f(2d-x-x")
ESI" i w U0(€1 82) /) Ei(x',y') J Ry cos[g(y-y')] dg ds'.
CcS 0

Z 2n f
(6.4b)

E;(x,y) is the field inside the scatterer to be obtained by

evaluating Equation (6.2) in Region I. After rearranging Equation (6.2)
and using Equations (6.4a) and (6.4b), the following integral equation
is obtained.

2 ~ A~
w uo(el-sz)

E;d(x,y) * Eir(x,y) = Ei(x,y) - éi Ei(X',y')

2w
@ -flx-x'| . @  -f(2d-x-x") .
| e c$s[9(Y-y 1 4g + g Rie - °°S[9(y'y')] dg| ds'.
0

 (6.5)

The unknown function in the above integral equation is the field in
Region I (E;). This unknown appears both in the integral and out of the
integral, thus, it is a Fredholmz integral equation of the second kind.
The above integral equation is a modified form of integral equation
given by Equation (2.7). The two additional terms are Eil and EST due
to the reflection at the interface. The present integral equation is
solved in the same way as Equation (2.7) was solved. To avoid
repetition, the attention is directed to the two new terms. The unknown
function E;(x,y) is expanded in terms of some known functions with

unknown coefficients as in Equation (2.8), then substituted in the

integral Equation (6.5). After the Galerkin testing is carried out
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(discussed in Chapter II), the following system of linear equations is

obtained

N
- m=1,2,3,000, N . 6.6
(v, + AV ) nzl C (2 + 87 ) (6.6)

mn

where Vg and Zy, are given by Equations (2.12) and (2.13) respectively.

AVp and Ay, are given by

. o  -f(2d-x-xg)
Ay = - SWo ffE (x,y) |/ Rie cosg(y-ys) dg| ds
m 2m cs M ) f
(6.7)
and
2 A A
wu(e-e)
1’)
A = - 0 “”“Fx','Fx,
m T ——— A (XY )FC(X,y)
(6.8)
o -f(2d-x-x") .
| Rie fCOS[g(y-y )ldg|ds 'ds.
0

After solving the system of linear Equation (6.6), the scattered

field is obtained as

ES0Gy) = E5000y) + ES(x,y) (6.9)

where E;d(x,y) is given by Equations (2.16) or (2.17), From Equations
(6.4b) and (2.8), Ezr(x,y) is obtained.

2 Aoa N
wy_(%,-%,)
Esr(x,y) = o1 2§ ¢ Il

=__ - - - xl, |
Z 2T m=1 M cs m( v
fw -f(2d-x-x") ‘ (A.10)
J Rie ?ostg(y—y ) Jaglds .
0
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For the backscattered case where (x,y) = (xs,ys), Ezr(x,y) can also be

obtained by

N
sr s ~ A
E; (xs,ys) = Jw(sl-ez) mzl AV,

(6.11)

AV, is given by Equation (6.7).

C. H-WAVE SCATTERING BY BURIED, LOSSY DIELECTRIC CYLINDERS OF INFINITE
LENGTH
The electromagnetic scattering model of Figure 6-1 is used with the
electric line source replaced by a magnetic line source. In homogeneous
medium II, the magnetic field radiated by this magnetic line source is
given by Equation (2.26). In the presence of the interface, the total
field incident on the scatterer due to the line source is the sum of

direct incident and reflected incident fields

-y, le . (6.12)

Substituting from Equation (3.6) into Equation (2.26) yields

. jwe, @ -f|x-xs|
yid _ %2 e cos[g(y-ys)1 44 (6.13a)
z 2T 0 i

and the reflected incident field is

. iwe. ©  ~f(2d-x-Xg)
it o 32 [ Rye cos[g(y-¥s)] 44

, (6.13b)
Z 27 0 f
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where R" is the plane wave reflection coefficient given by Equation
(5.11b). The scattered magnetic field at any point is the sum of direct

scattered fields and scattered reflected fields

=" +% |, (6.14)

H :va A . (6.15)

-sd
A is the electric vector potential given by Equation (2.29). From
Equations (3.6), (2.29), and (6.15) the direct scattered field is

obtained as

_sd _ o -f[x-x"]|
H =1 vx /o (x,y)| /e cosfg(y-y')1 dg| ds' .
T cs €9 0 — f

(6.16)

Interchanging the order of differentiation and integration and using a

well known vector identity yields

sd - .1 N ' ' 29 g9
SRR I [ RO CE IR AR
(6.17)
o f|x-x'|
J e ;ostg(y-y')] dg | ds.
0

3éq is the equivalent electric volume polarization current in the

scatterer given by Equation (2.5).
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Using the reflection coefficient Ry as given by Equation (5.11b) in

above equation, the scattered reflected magnetic field is obtained as

' ® -f(2d-x-x")
ﬁsr =1 ) T )y x| & fRy e cos{g(y-y')dy]
2w Cs €q 0 f
o -f(2d-x-x') .
~§ IR e sinfg(y-y')dgd e+
0 f
(6.18a)
Thus
® -f(2d-x-x") |
W=yt gRy e sinfg(y-y')dy]
Z  7Zmcs X 0 f '
® -f(2d-x-x")
+ 9 (x',y) J TR e cos[9(y-y*)dg] g
y 0 f
(6.18b)

where Jy and Jy are the x and y components of the equivalent electric
volume polarization current,

The total magnetic field at any point is the sum of the direct
incident and the reflected incident fields due to the magnetic line
source and direct scattered and scattered reflected fields due to the
scatterer. A typical ray geometry describing this situation for an
elemental section of the scatterer is shown in Figure 6-2, where the

E-field may be replaced by H field for the case under consideration.
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Thus

— _id i sd sr
Ho=H +H +F +H . (6.19)

As it was discussed in Chapter II, it is preferred to obtain an integral
equation involving the electric field as the unknown function. This
choice improved the convergence of the solution significantly (see
Chapter II). To obtain an integral equation'involving EL, Maxwell's
equation is used to find Tid, Tir, ¥5d, and TS' in Region II from Hid,
Tir, #d, and FST respectively. Then the resulting equation is
evaluated in Region I.

Thus, one may write

Eid + Eir = E1 - ESd - EST ;in Region I, where Eid is given by

Equation (2.27a), and from Equation (6.13b) {6.20)
~ir _ir
E =_1 _9VvxH
jwsz
P -f(2d-x-xg)
-1 |5 JRue sinfg(y-ys)] 4
2n | o f g
6.21
o -f(Zd-X-Xs) ( )
+§ | fRye cosfg(y-ys)J 4q| -
0 f
sd

‘E  is given by Equation (2.37), which is found by using Maxwell's
equation in Equation (6.15) and using lorentz condition. ESI is found

from Equation (6.18a) as follows

116



E =_1_vxH
jme2
~ @ f(2d-x-x") '
= -1 Jvx | (xyx|x ) Rie cosfa(y-y')] 44
- F
2njwez 0
~ @ -f(2d-x-x"') . .
- § g Ry e : sinfg(y-y")] 4qlf ds.

(6/22)

Using the above quantities in Equation (6.20) and substituting for ﬁéq

from Equation (2.5) yields the following integral equation.

_id ir 1 2

w £ £ _I —_—
E(x,y) + E(x,y) = E(x,y) - __33551_152 I E(x,y)K (v, 00" | )ds
2T cs Cha

€= _I -
AR e - A K, (1l -0" a2

~ 2
2ws2 .
(%,-5,) -f(2d-x-x*) '
12 JJ W E(x ML J fRy e cos[g(y-y')I1dg
- f
2men
® ~f(2d-x-x") . .
Sy Ruie i sinfo(y-y)7 4gllgst .
0

(6.23)

I
The unknown function in the above integral equation is F(x,y) which
appears inside and outside of the integrals, thus, this may be
viewed as a Fredholm integral equation of the second kind. TFid and Eir

have been defined previously. The above integral equation is basically
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the same as the integral equation in Equation (2.38b) except here two
additional terms due to the reflection at the interface are added. This
integral equation is solved in the same way as Equation (2.38b) was
solved. To avoid repetition, the attention is focused on the reflected
terms. After expansion and testing (see Chapter II) the new system of

linear equations is as follows

=

= 6.24a
(v + V) nzl C (2 + 8L ) ( )

where Vy and Zp, are given by Equations (2.42) and (2.43) respectively

and,

- _ir
= . = 6. b
o gg Fo(x.y) = E(x.y) ds m=1,2,..,N . (6.24b)

Substituting from Equations (2.40b) and (6.21) in Equation (6.24b)
yields

P2 a(y-ys) dq

av =1 /)1 3Fm(x,y) J gRje
m 77 cs ay 0 f

o -f(2d-x-xg)
_ OFm(x,y) | fRye cosfg(y-ys)1 4q| ds
ax 0 T

(6.24c)

118



Testing the last term in the integral equation (6.23)

g -2 R

- cs cs M
2me

2
— - -f(2d-x-x')  _ '
X Fn(x',y')x<:§ J fRye cos{g(y-y')ldg

8

] f
(6.25)
-f(2d-x-x")

-y ) SRue sinfg(y-y')] d%) ds'ds .

ow— g

f

where ?ﬁ(x,y) and P are given by Equations (2.40b) and (2.40c)

respectively.

A further simplified form of AZy, is given by

A-ﬂ P . .
g o BBl Ry dFalxty)
mn N cs cs 3y ay’
2n52

-f(2d-x-x"
a%Rye (2d-x-x )cos[g(y-y')]dg + <:Fm(x,y) Fn(x',y")

O 8

f y ox*

AN -f(2d-x-x") . .
Fp(x,y) dFp(x',y')) | foRye sinfg(y-y')ldg
X Ay’ 0 f

+

Lo @ 20 -f2d-x-x") '
_ Fm(x,y) 3Fn(x',y") | fRye cos[g(y-y')1dg | 4orqs
ax ox’ ] f

(6.26)

After solving the system of linear equations (6.24), the scattered field

is obtained by

HS(x,y) = Hid(x,y) R () . (6.27)
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Hid(x,y) is given by Equation (2.46) or Equation (2.47). To calculate
Hir Equation (2.40) is substituted in Equation (2.5), from which J, and

Jy are determined. Substituting for JX and J_, in Equation (6.18b)

y
yields

'wg-/; p N
Hir(x,y) = +.i_£_£_igl_ !c )

2r m=1 M ¢cs
e -f(2d-x-x") | .
Fm(x",y") | dRye sinfg(y-y")] 44
Ay’ 0 f
L oe  -f(2d-x-x") ,
_ Fp(x',y') | fRye cosfg(y-y')] 4q ds' .
ax' 0 f

(6.28)
P is given by Equation (2.40c).
The above equation in general may be used to calculate the bistatic
or backscattered fields. However, for backscattered case, i.e.,
(x,y) = (xg,¥s), a comparison of Equation (6.28) with Equation (6.24)
reveals that the following can be written
HE'Sr'(Xs’YS)=m mglcmAVm , (6.29)

where AVy is given by Equation (6.24c).

D. SUMMARY

In this chapter, an electromagnetic scattering model for buried
two-dimensional, cylindrical geometries was presented. Integral

equations involving the unknown electric field inside the scatterer for
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parallel and perpendicular polarization were derived. To solve these
integral equations the moment method was used and corresponding linear
equations were derived.

In the next chapter, the E-wave scattering model is specialized to
buried rectangular cylinders and the moment method formulation presented

here is applied by choosing a set of basis and testing functions.
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CHAPTER VII

E-WAVE SCATTERING BY BURIEND, LOSSY DIELECTRIC
RECTANGULAR CYLINDER OF INFINITE LENGTH

A. INTRODUCTION

An E-wave scattering model for lossy dielectric rectangular
cylinders buried in earth is presented. This model may be used to
simulate a tunnel or a trench geometry. The moment method formulations
are presented. Then the number of plane waves in the expansion to
obtain convergence is considered. Some numerical results aré“presented
and discussed.

Figure 7-1 shows a plane cut of the electromagnetic scattering
model. A (2a) by (2b) rectangular dielectric cylinder is buried in
earth region designated by II (ep, up, op). The z-axis is along the
axis of the cylinder and x=d plane constitutes the air-earth interface.
For the sake of simplicity, as<xg<d is assumed. If d>a, the tunnel
geometry is modeled (Figure 7-la), and if d=a, the trench geometries is
modeled (Figure 7-1b). Most of the geometries considered in this
chapter are for filled trenches and tunnels. This reflects the interest
of one of the supporting agencies but does not restrict the

applicability of the techniques.
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geometry.’
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B. PLANE WAVE EXPANSION

The system of linear Equation (6.6) has already been discussed for
an infinite-length cylinder of arbitrary cross-section shape and for
general basis functions. Here it suffices to choose the basis functions
and evaluate the cross-sectional integrations in a closed form in the
same manner as discussed in Chapter III. The set of simultaneous linear
equations obtained are

N

(po+avy= L ¢z

n=1 n' mn * AZmn) ;M= 1,2,3,...,N . (7.1)

Vp and Zy, are now given by Equations (3.8)and (3.5) respectively, and

from Equations (6.7) and (3.1).

) ab _if x -3 o  -f(2d-x-xg)
AN = 3% [ ] eJ m ngmy J Ree cos[g(y-ys)]dg dxdy .
m 21 -a-b 0 T
(7.2)
From Equations (6.8) and (3.1)
a b a b 3 ' 3 ' 3 -
-3t x' -jg y' -if x -jg_y
_ n n m m
Azmn = C1 _i_g _g_] e e e e
®  -f(2d-x-x" .
| Ree fcos[g(y-y )] dg|dx'dy'dxdy . (7.3)
0

Cy1 is given by Equation (3.5d).
Interchanging the order of the integrations in Equation (7.2) and

rearranging terms, one obtains
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. o@ =f(2d-xg) | a _jf x fx b _jgy
_ o Juig JR@ J m J m
AV = - e e dx J e cos - dy| dg ,
. = - . K L9(y-y )1 dy| dg
or
. o " -f(2d-xg) v
- _Juug | Ree . 7.4a
A . é . (F - GE) dg , (7.4a)
where
- sinl{fptif)al | (7.8b)
m (Tmtif)

eV is given by Equation (3.8c).
m

Changing the order of integration and rearranging terms jn

Equation (7.3) yields

@ ocefd A e x fxt 3 Jjfox fx

a7z =¢ JRue Je ™ e dx'Je ™ e dx
mn lo f -a -a
b b _;3 !
=Jg .y -9y
g [e™ &™ cos[g(y-y')] dy'dy| ,
or
o R -2fd
- _Le . . 705
8, i e (Fy " Py v G, o (7.5)

Fm and F, are given by Equation (7.4b), and GEpn is given by Equation
(3.10c).
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After solving the system of linear equations (7.1) for Cp's, the
scattered field is calculated by

d, gSr (7.6)

s _ ¢S
Ez(x’y) - EZ 4 3

where E:d is given by Equations (3.11) or (3.12), and Eir is found from
Equations (6.10) and (3.1) as

2, (&._e ) N o -f(2d-x
=2 BCENCTCY b ¢ ] Rie (2d-x)
T

= Vv
5 (x5¥) mel Mo~ f

(F. - GE) dg .
(7.7)

v

Fo is given by Equation (7.4b) and GE_

is given by Equation (3.8c) with
Yg replaced by y. An additional way to obtain the backscattered field

((x,y) = (xs,ys)) is by comparing Equations (7.7) and (7.4) which yields

N
sr - _i oA 7.8
ES"(xgo¥g) = ~3u(8)-%,) mzl Cav . (7.8)

AV is given by Equation (7.4).

C. CONVERGENCE

Two computer programs were developed to model the air-earth
interface and buried scatterers. These programs are called RTUNLE and
RCYLEGP. The former uses the closed form evaluation for the cross-

sectional integrals, whereas, the latter uses numerical integration for
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the cross-sectional integrals. These computer programs are included and
fully discussed in the Appendices B and F,

To test the convergence of the solution, a typical convergence test
is made. The scattered field is calculated for increasing number of

plane waves in the expansion (N). For this purpose, a 1 m square tunnel

with €r1=2 and °1='0012 s/m buried 1 m below the interfere in an earth

with €r2=4 and 02=.003 s/m, is considered. The source of excitation is

an electric line source located on the interface directly above the
tunnel. Figure 7-2 shows the resulting backscattered field versus
increasing number of plane waves spanning the field inside the tunnel.
The solution is converged for N»>6. After convergence the solution seems
to be very stable and the curve is smooth for the range shown. Using
Equation (3.14), a value for A% is included for all values of N.and is
included in Figure 7-2.

An approximate model can be developed that can be used to explain
much of the details of structure of the scattering patterns to be
computed using the above more precise numerical analysis.

First, the fields radiated into the "earth" medium by an electric

Tine source at the interface are given by

Eem - Ehomo (1 + RL)

where E

homo are the fields radiated into a homogeneous earth medium

and
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Figure 7-2. The convergence curve for computer program RTUNLE
for a buried tunnel. Scattering Attenuation
Function is calculated for increasing values of N,
the number of plane waves in the expansion. The
frequency used is 100 MHz.
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Ry is the plane wave reflection coefficient for incidence on the
interface from the "earth" medium.
This approximation was confirmed in Chapter V.
Second, the fields scattered by the target are also incident on the
interface. This requires that a second (1+R;) factor be introduced.

Thus the SAFy for the case for the interface could be approximated by

) 2
SAFy = (SAF), - (14R))

where (SAF)pomo 1s the scattering attenuation function when the
target and source are contained in a homogeneous medium. Note that the
normalization used in this dissertation did not include the interface,
i.e., the normalization factor was the fields of a line source at the
image position in a homogeneous medium. If the interface had been
included in the normalization procedure, the SAF would to a first
approximation be dependent only on the target.

Another factor that appears in the appropriate forms are the
scattering patterns of the "tunnels". Referring to Figure 3-4, it is
seen that only a small lobe appears at 4=180°., This is the region for
which we will be observing these targets. Thus if one considers the
factors discussed above, the scattering pattern of the tunnel in a
homogeneous medium and the scattering pattern of the line source on the
interface, then the computed results to be shown are those that would be

anticipated.
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D. SCATTERING PATTERNS

Some examples of bistatic and backscattered patterns are given for
a filled trench and some tunnel geometries. A family of curves is
presented for increasing values of "d", the depth of the center of the
tunnel. The trench or tunnel (see Figure 7-1) is modeled by a 1 m by .5
m rectangular cylinder of infinite length with er1=2, 62=.0012 s/m, and
u1=pg. The earth is modeled by a medium with er2=4, 02=.003 s/m, and
po=ug. The frequency used is 100 MHz, The electromagnetic scattering
model is shown in Figure 7-3. An electric line source is placed on the

interface parallel to z-axis at (xg=d,yg).

1. Backscattered Patterns

Figure 7-3 shows various backscattered patterns. When d=a=.5m, a
trench geometry is modeled. The backscattered pattern for this trench
geometry is shown in Figure 7-3, which indicates a strong backscattered
field in regions directly above the trench. After a minimum at |y|=.5m
region, the backscattered field increases slightly and then falls
rapidly as |y| is increased.

For values of dda tunnel geometries are modeled. Some
backscattered patterns are included in Figure 7-3 for tunnels buried at
d=.75m, Im, 1.25m, and 1.5m. These patterns, in general, follow the
same shape as that of the trench, except that, the pattern is widened
and reduced in mdgnitude for most regions close to the scatterer.

This is caused by the scattering pattern of the tunnel and is not an
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Figure 7-3. The backscattering patterns for trench.and tunnel
geometries. The electric line source is placed
on the interface, parallel to z-axis, and moved
from y=-2.5 m to y=2.5 m incrementally. The

frequency is 100 MHz.
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interface phenomena. Figure 7-3 suggests that (for the case under
consideration) for deeply buried tunnels, there is not a distinct
maximum above the tunnel, while for shallowly buried tunnel for this
case, there is a definite maximum directly above the tunnel.

To investigate the effect of the air-earth interface on the
backscattering patterns of a trench and a tunnel, Figures 7-4 and 7-5
are presented. Figure 7-4 shows the backscattered pattern for the
trench geometry discussed in Figure 7-3. In addition, an analogous
backscattered pattern is given for a case where the air-earth interface
is removed (i.e., air region is replaced with Region II). This pattern
shows that the air-earth interface changes the backscattered pattern
considerably. For the case shown, Figure 7-4 suggests that the
interface enhances the backscattered field in the vicinity of the
trench, This is because the source and observation point are in the
immediate vicinity of the top of the tunnel. Note that the increase in
the Scattering Attenuation Function (SAF) level at when the source is at
the top of the trench may be obtained by multiplying the SAF with no
interface by (1+Rl)2 where R; is the plane wave reflection coefficient
for a wave in the tunnel normally incident on the interface. The decay
in the pattern as y increases is caused by the directional pattern of
the line source on the interface as shown in Chapter V. For the case of
the tunnel (Figure 7-5), the line source pattern is not significant. We
also note that the presence of the interface is approximately accounted
for by the (1+Rl)2 factor. 1In this case, the interface for which Ry is

computed is that between medium II and free space.
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This (1+R;)2 factor is that suggested by Burrell and Peters [47].
The fields radiated by the line source into the medium are increased by
(1+R|) as was discussed in Chapter V. The total scattered fields are

also increased by (1+Rj) on reflection at the interface.

2. Bistatic Scattering Patterns

As a first example of bistatic scattering pattern, an electric line
source is placed on the interface at (xg,ys)={d,0) and the scattered
field is observed on the interface at y=-2.5m to y=2.5m incrementally.
This model is shown in Figure 7-6. Some bistatic scattering patterns
are included in Figure 7-6 for a trench geometry and some tunnels
buried at d=.75m, lm, 1.25m, and 1.5m. For the trench case (d=a=.5m),
the bistatic pattern is maximum directly above the trench and it falls
rapidly as |y| is increased. For tunnel geometries (d>a) the general
shape of the bistatic pattern is similar to that of the trench and is
reduced in amplitude and widened as d is increased. It is also noted
that the bistatic pattern falls with a slower rate for deeper tunnels.
This is primarily caused by the scattering angles becoming more
restrictive as the depth increases.

To investigate the effect of the air-earth interface on the
bistatic patterns of a trench and a tunnel, Figures 7-7 and 7-8 are
presented. Figure 7-7 shows the bistatic scattering pattern for the
trench geometry discussed in Figure 7-6. In addition, a similar
bistatic scattering pattern is given for a case where the air-earth

interface is removed (i.e., air region is replaced by Region II).
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Figure 7-7 suggests that the bistatic pattern is enhanced by interface
in the vicinity of the trench (i.e., |y|<1.5m) by a factor of (1+R;)2,
where R) is the plane wave reflection coefficient between region I and
air. As |y| is increased, the pattern falls rapidly, partially because
of the effect of the radiation pattern of the line source on the
interface as discussed in Chapter V. The pattern for the no-interface
case remains unchanged for large values of |y| for the range shown.
Figure 7-8 shows an analogous set of patterns for a tunnel buried at
d=1.5m. It is apparent that the interface produces only minor changes
in the bistatic scattering pattern. For this case R) in the (1+R;)2
factor is between regions II and air.

As a second example of bistatic scattering pattern, an electric
line source is placed on the interface at (xg,ys)=(d,1.5m) and the
scattered field is calculated on the interface from y=-2.5m to y=2.5m.
The bistatic scattering patterns are shown in Figure 7-9 for a trench
geoemetry and for a tunnel buried at d=.75m, 1lm, 1.25m, and 1l.5m. It is
noted that because of the none symmetrical physical situation, the
patterns do not have any symmetry. It is apparent that the general
shape of the pattern is basically the same for all cases, except that as
the tunnel is buried deeper, the pattern widens and is reduced in

magnitude as is expected.

E. BACKSCATTERING VERSUS FREQUENCY

In this section two sets of frequency curves are presented, one for
a trench geometry, and the other for a tunnel geometry. In each case a
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Figure 7-9.

tunnel geometries. An electric line source is

~placed on the interface at (xg,yg)=(d,l.5m)

parallel to z-axis, and the scattered field is
observed at points on the interface along y-axis
(from y=-2.5m to y=2.5m). The frequency is 100 MHz.
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curve for the no interface case is included for comparison. In
addition, a set of frequency curves for an equivalent cross-section area
circular cylinder is provided for testing the validity of the moment
method solution.

The scattering model for a trench geometry is shown in Figure 7-10,
where a 1 mby .65 m 1ossy rectangular trench of buried in an earth
medium, is considered. For this model, a backscattered field versus
frequency curve (solid line) is shown in Figure 7-10 which shows
increases in relative scattering with frequency.

The dashed curve in Figure 7-10 is the relative scattering curve
for the case where the interface is removed and the same source location
is maintained. The two curves are related as has already been
discussed. Similar results are shown in Figure 7-11 except that R)s is
used in lieu of R)j where Rj] is the reflection coefficient between
region I and air, and R 2 is the reflection coefficient between region
IT and air. It is again noted that the presence of the interface can be
accounted for in a simple way and yet reasonably accurate results can be
obtained.

Also included in Figure 7-11 are two analogous backscattered versus
frequency curves, for an equivalent cross-section area circular
cylinder. The circular cylinder is composed of the same medium (Region
I1). Comparing the corresponding curves for the rectangular and the
circular cylinders, it is apparent that at low frequency regions (i.e.,
<50 MHz) the scaﬁtering curves that are the same for each corresponding

case. As the frequency increases the corresponding scattering curves
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diverge. These curves are a good test for the solution of moment method

at low frequencies.

F. SUMMARY

In this chapter, the E-wave scattering by buried lossy dielectric
rectangular cylinders was considered. Moment method formulations were
presented and a convergence curve was included which showed excellent
convergence. Some numerical results were also presented and discussed.
It is again noted that the presence of the interface can be accounted
for in a simple way and yet reasonably accurate results can be obtained.
In the next chapter H-wave scattering by buried lossy dielectric

rectangular cylinders is presented.
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CHAPTER VIII
H-WAVE SCATTERING BY LOSSY DIELECTRIC RECTANGULAR CYLINDERS
OF INFINITE LENGTH
A, INTRODUCTION

The electromagnetic scattering model developed in Chapter VI is
specialized to a rectangular scatterer. Again a plane wave expansion is
used in the moment method formulation as a set of basis functions. A
convergence test similar to that used in Chapters VI and VII is applied
and which gives comparable results for the moment method. Some numerical
results are presented and discussed. The results can be explained in a
manner similar to the interpretations of Chapter VII. The major
difference is that the (1+R;)2 factor is replaced by (1+R;f factor.

The H-wave electromagnetic scattering model is the same as that for
E-wave as shown in Figure 7-1, except that the electric line source is
replaced by a uniform time harmonic magnetic line source. lsing this

model, the moment method formulations are derived.

B. PLANE WAVE EXPANSION

The system of linear equation

N
_ 8.1
(v, + 8v) nzl c (z  + o7 ) (8.1)
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was obtained by applying moment method to Integral Equation (6.23),
where Vy and Zp, are given by Equations (4.9) and (4.5) respectively, and
AVp and AZy are given by Equations (6.24c) and (6.26) respectively.
Using Equation (3.1) in Equation (6.24c) yields
a b _jf x ;jgmy o -f(2d-x-xs)

AV = - k1 ] /e | aRy e sinfg(y-yg)] dg sin o
0

m 2T -a-b f

® -f(2d-x-xg)
- fRye cosLg(y-¥s)J 4q cos o |dxdy ,
0 ¥ m

(8.2)

where Equation (3.2b) and (3.2c) has been used.
Substituting Equation (3.1) in Equation (6.26) yields

A oA abab _if y' _ig y! :
. , -3jf x' -jg y' -f x -jg y
sz =3k mlereep) g J g e " e " eMe "
-~ ..a_ -a-

mn
2mep

® o -f(2d-x-x") '
sing sing_ g gRy e ' cosfg(y-y")] 4q

-f(2d-x-x"
(2d-xx )sintg(y-y')] dg
f

+ (sinﬂ“ cos¢ cos¢msin¢n) g foRy e

® 9 -f(2d-x-x")
fRye
- cos¢ CoS¢ g

cosfg(y-y")] 1 o
- dg ) dx'dy dx?§.3$
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where Equations (2.40c), (3.2b), and (3.2c) have been used to simplify
the constant term. Interchanging the order of integration and

rearranging terms in Equation (8.2) yields

© -f(Zd-Xs) b s
s o= -1 JRue sing g J ;ngy sinfg(y-y.)] dy
m  2mni o f m* _b S
b -jgmy a -jfmx fx l
- cosqnf | e cos[g(y-y.)] dy J e e dx } dg R
-5 S -a J
(8.4)
Or,
© -f(Zd-Xs)
= ‘1 R" e 1 V - V
v = g . [%Jmn%gG%] cmgﬁ'%mﬂ dg .
(8.5)
Fm is given by Equation (7.4b). GEx is given by Equation (3.8c) and GO¥

is given by Equation (4.9b).

In a similar manner, Equation (8.3) is reduced to

A A o -adf
_ (e1-€2) J Ry e ing_ sing g 2
6z, = 151 i . (sing sing g° - cos¢ cos¢ f°)
2ﬂ€2
b b . o
-Jg.y -J9_Y
I Je ™ & ™ cos[g(y-y')] dy'dy

~-b-b
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bb _jgy' -ig y

. . n 1l s ) '
+ (cos¢m sing. + sing cos¢n) fg_é_é e e sin[g(y-y')1ldy'dy
a -jf x' fx' a -jf x fx
e e dx' e e dx dg ,
-a -a (8.6)
Or,
Mertp) Ry e 20T 2 2
- - €1-€2 | e . . _
Az _ g ; [(s1n¢ms1n¢ng cos¢ cos¢. f ) GE
T\'Ez
+ (cosqnsin¢n + sin¢mcos¢n) fg GOmn]
. 8.7
Foe Fordg . (8.7)

GEpn is given by Equation (3.10c), GOpn is given by Equation (4.19), and
Fn and Fy are given by Equation (7.4b). In order to make AVm'énd AMmn
compatible with Vp and Zy, derived in Chapter IV, AVy and Ay, have been
normalized to -jkin.

After solving Equation (8.1) for Cp's, the scattered field may be

obtained by Equation (6.28) as

~ A

N
K" (x,y) = L5122) Le
- m=l m

2nel
ab R -f(2d-x-x"') . -
| [ Fm(x'sy") | 9Ry e sin[g(y-y')1 dg
-a-b ay' 0 f
R -f(2d-x-x") '
- 3Fm(x »Y ) J fRII e COS[Q(Y'Y )] dg dx'dy' .
X' 0 f

(8.8)
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Substituting for Fp{x,y) from Equation (3.1), and simplifying, the

scattered field is reduced to

Suer-tm o § )
sr . -Jwler-e2)ng
HO (x,y) = \ C
> (xy) = IR

S3f x' -ig v o o f(2dexex') |

e M g " (sing | SRy e sinfg(y-y')ldy

e -f(2d-x-x' .
- Ccos¢ J fR"e Cos[g(y-y )-‘dq dX'dy' .
m g T

(8.9)
Interchanging the order of integration and rearranging the terms and

evaluating the cross-sectional integrals yields

ooriym | T -f (2d-x)
sr _ =Juwier-€2)n | e

H = v VN4 L)L C
z (%s) = m=1 M o T

. v v
[Fm(s1n¢mg GO, - cos¢ f GEm)J dg ,
where Fm is given by Equation (7.4b). GE¥ and GO¥ are given by Equations
(3.8c) and (4.9b) respectively, with Y replaced by y.

For backscattered field, some computational time may be saved by
using the elements of the voltage column. This may be verified by

replacing (x,y) by (xg,ys) in Equation (8.9), and comparing the result
with Equation (8.4).
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N

B.sr = iunl (0.2 8.11

AV is given by Equation (8.5).

C. CONVERGENCE

A computer program was developed to model the air-earth interface
and a buried scatterer. This program is called RTUNLH and it is included
in the Appendix C. To check the convergence characteristic of this
program, the program is used to calculated the relative scattering for
increasing values of "N" the number of plane waves in the expansion. A
typical curve is shown in Figure 8-1.

The scattering model used to obtain this curve is shown at top of
Figure 8-1. This model is a 1m square filled cylindrical tunnel with
€r1=2., and 01=.0012 s/m buried at d=1.5m in earth with €ro=4 and o=.003
s/m. The interface is the x=1.5m plane and the frequency is 100 MHz. As
shown in Figure 8-1, the excitation line source is located at
(Xg,¥g)=(1.5m,0). As depicted in Figure 8-1, the solution seems to have
converged for N»6. This convergence curve has the same behavior as the
convergence curves presented in earlier chapters thus to avoid
repetition, it is not discussed further. The A% corresponding to every
value of N is calculated from Equation (3.14), and is included in Figure

8-1.
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D. SCATTERING PATTERNS

Some examples of bistatic and backscattered patterns are given for a
filled trench and some filled tunnel geometries. A family of curves is
presented for increasing values of "d", the depth of the center of the
tunnel. The trench or tunnel (see Figure 7-1) is modeled by a 1m by .5m
rectangular cylinder of infinite length with €ry=2, 95=,0012 s/m, and
H1=¥9. The earth is modeied by a medium with Srp=4, 9,=,003 s/m, and
Ho=H,. The frequency used is 100 MHz. The electromagnetic scattering
model is shown in Figure 8-2. A magnetic line source is placed on the

interface parallel to z-axis at (xg,ys), and it can be moved in

ty-direction to obtain various excitation cases.

1. Backscattering Patterns

Figure 8-2 shows various backscattering patterns for some trench and
tunnel geometries. When d=,5m, a trench geometry is modeled, The
backscattering pattern for this trench shows a strong relative
backscattered field in regions directly above the trench., The relative
scattered field decfeases as the |y|-offset is increased until |y|=2.2m,
where an apparent null is obtained, beyond this point the field again
increases for the range shown.

For values of d>.5m tunnel geometries are modeled. Some
backscattering patterns are included in Figure 8-2 for tunnels buried at
d=,75m, 1m, 1.25m,‘and 1.5m. Patterns for shallowly buried tunnels,

ji.e., d=.75m, l.m, have the same general shape as that of the trench, hut
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are widened and reduced in magnitude. As the tunnels are buried deeper,
the backscattered field is no longer maximum directly above the tunnel,
this case is shown in Figure 8-2 for tunnels buried at d=1.25m, and 1.5m.

To illustrate the effect of the air-earth interface on the
backscattering patterns of a trench and a tunnel, Figures 8-3 and 8-4 are
presented. Figure 8-3 shows the backscattered pattern for the trench
geometry discussed in Figure 8-2. In addition, an analogous
backscattered pattern is given for a case where the air-earth geometry is
removed (i.e., air region is replaced with region II). This pattern
shows the significant effect of air-earth interface on the backscattered
fields at various points. However, the approximate model discussed in
Chapter VII does not seem to fit as well for this polarization. As
suggested by Figure 8-3, the air-earth interface not only changes the
backscattering pattern of a trench more dramatically, but it also reduces
the magnitude of the backscattered field a§ would be predicted. However
the approximate solution is not as accurate as was the case for the
electric line source. An analogous set of curves is shown in Figure 8-4
for a tunnel buried at d=1.5m. For this curve, the approximate model

seems to work better than the trench case of Figure 8-3.

2. Bistatic Patterns

As a first example of bistatic scattering pattern, a magnetic line
source is placed on the interface at (xg,ys)=(d,0) and the scattered
field is observed on the interface at y=-2.5m to y=2.5m incrementally.

This model is shown in Figure 8-5, where bistatic scattering patterns are
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included for a trench and some tunnels buried at d=.75m, Im, 1.25m, and
1.5m. For the trench model where d=.5m, a maximum is obtained directly
above the trench. The scattered field is reduced for increased
|y|-offsets up to |y|=1, after which it smoothly increases for larger
|y|-offsets. For tunnel geometries (d>.5m), the patterns shown in Figure
8-5 depicts maxima directly above the tunnel and smoothly decreasing
scattered field for increasing |y|-offsets.

Figure 8-6 shows a comparison between the scattering pattern of a
trench geometry and that of an analogous case with the air-earth
interface removed (i.e., air region is replaced with region II), and
Figure 8-7 shows an analogous sets of patterns for a tunnel geometry
buried at d=1.5m.

A second example of bistatic scaftering pattern is presehfed in
Figure 8-8, where the scattering model of Figure 8-5 is used with the
exception that the excitation line source is moved to (xg,yg)=(d,1.5m).
The patterns presented in Figure 8-8 are for a filled trench and some
tunnels buried at d=.75m, Im, 1.25m, and 1.5m. It is apparent that as
the depth of burial of tunnel (d) is increased, the pattern is reduced
and widened, and that the null directly above the tunnel remains very
much in place, while the one to the left of tunnel gradually moves

further away and hecomes shallower.
E. BACKSCATTERING VERSUS FREQUENCY

In this section two sets of frequency curves are presented; one for

a trench geometry and the other for a tunnel geometry. In each case an
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placed on the interface at (xg,yg)=(d,1.5m) parallel
to z-axis, and the scattered field is observed
at points on the interface along y-axis (from
y=-2.5m to y=2.5m). The frequency is 100 MHz.
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Figure 8-9. The backscattering versus frequency curves for a trench
geometry, with and without the air-earth interface.
The magnetic line source is placed at (xg,ys)=(d,0).
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analogous curve for no the interface case is included for comparison. A
Im square trench with €r1=2, and 01=.0012 s/m in a earth medium with
€rp=4 and 02=,003 s/m for a magnetic line source placed on the interface
at (xg,ys)=(d,0) is shown in Figure 8-9. This geometry represents the
electromagnetic scattering model of a filled trench.

The corresponding backscattering curves are shown in Figure 8-9.
The dashed curve is the frequency curve for a trench, whereas, the solid
curve is the frequency curve for the case where the air-earth interface
is removed (i.e., air region is replaced by region II) and the same
source geometry is retained. Comparing these two curves, it is apparent
that the interface reduces the scattering as would be predicted and this
reduction appears to be relatively nonuniform for various frequencies in
contrast to the electric line source cases. The shape of the two curves
appears to be almost the same for frequency range shown. Figure 8-10
shows a set of curves analogous to Figure 8-9 for a rectangular tunnel
geometry. The electromagnetic scattering model is also shown. Comparing
the curve for buried rectangular tunnel (dashed line) and the curve for
the rectangular tunnel in the absence of air-earth interface (solid
line), it is apparent that the two have the same shape for frequency
range shown and that the interface effect, seems to be uniform at various
frequencies. In fact, it seems like the interface shifted the solid
curve by a -7.5 dB approximately. From a simplistic point of view, this
factor may be approximated reasonably by a (1+Rj|)2 factor as discussed in
Chapter VII, where Ry is the plane wave reflection coefficient at the

interface. The first (1+Ry) factor is due to the total incidence field
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Figure 8-10. Backscattering versus frequency curves for a square
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on the scatterer, and a second (1+Ry) factor is due to the scattered
field, due to the induced currents in the scatterer. For the model shown
in Figure 8-10, Ry= -1 (neglecting the effect of loss as suggested by
curves of Figure(S-lO? and (14Ry)2 = (1 1%)2 which implies approximately
a -7 dB shift of the solid curve to obtain the dashed curve in Figure
8-10. This approach fails for the target at the surface. This
simplistic approximation is sufficiently accurate for the case under
consideration, thus the costly evaluation of the Sommerfeld integrals may

not be necessary in this case. It is hypothesized that the approximate

model gives better results as the scatterer is buried deeper.

F. SUMMARY

In this chapter, a moment method formulation for H-wave scattering
by buried lossy dielectric rectangular cylinders was given. A
convergence curve was presented, and various numerical results were

included and discussed.
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CHAPTER IX
CPU-TIME CONSINERATIONS

One advantage offered by using the plane wave expansion is that the
number of linear equations required to solve a given problem is
considerably less than the number of linear equations required to solve
the same problem via a pulse basis method. This is very critical in
terms of the CPU-time required to solve a set of simultaneous linear
equations, usually, a matrix inversion or a gauss elimination routine is
required to solve such a system. Thus, the efficiency of the operation
is highly dependent on the efficiency of the matrix inversion routine.

For this reason, it is convenient to choose a matrix reduction technique

such as triangulation or gauss's elimination. This usually requires a-l

3
N3 operations (one operation usually consists of an addition and a

multiplication) to triangulate the matrix where N is the number of
linearly independent equations to be solved, and é% N2 operations are
required to solve the matrix. It is possible to use a compact” scheme
for gaussian elimination [48] such as Crout's method to solve the system
of the N linearly independent equations. The CPU-time required for
so1vihg N simultaneous 1inéér equations by Crout's method is

proportional to N2, A subroutine implementing the Crout's method is

included in the appendix (courtesy of Professor Richmond).
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It is possible to subdivide a moment method computer program into
four major parts in terms of the types of the operations involved, such
as:

1) setting up the generalized impedance matrix

2) setting up the generalized voltage column

3) solving the matrix

4) calculating the final results, i.e., SAF or echowidth ... .

Parts 2 and 4 are not very critical in terms of the amount of the
required CPU-time, whereas, parts 1 and 3 usually represent the time
consuming operations.

Depending on how a moment method solution is formulated and the
type of expansion and testing used, the four operational catagories are
weighted differently in terms of the required CPU-time. For example:
RCYLPWE program presented in Appendix A uses four fold symmetry and
standing plane wave expansion and Galerkin testing, while, RTUNLE
computer program presented in Appendix B uses traveling plane wave
expansion and Galerkin testing. Thus, the former may require more time
to set up the generalized impedance matrix than the latter, but the
former is much faster in solving the matrix than the latter, 1In
contrast, a simple pulse basis point matching requires a short set-up
time, but it uses much longer time to invert the matrix. In fact, the
time required for solving the matrix becomes so great for larger N's,
that it becomes economically infeasible for larger geometries.

This is i]Tustrated in Figure 9-1, where a comparison between the

Pulse Basis Point Matching {PBPM) and a Plane Wave Expansion Galerkin
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(PWEG) is given in form of the CPU-time and the number of required
linear equations N as a function of frequency. The CPU-time values are
the required time to obtain a convergent solution for the particular
scatterer shown. These times are typical of the VAX-11/780 Computer in
the ElectroScience Lahoratory computing facilities, and may vary
considerably on other computers. However, regardless of the computer
speed, the relative speed of the PBPM and PWEG methods would be very
similar to that of Figure 9-1.

For the PBPM computer program, the CPU-time increases very slowly
for frequencies smaller than 80 MHz (see Figure 9-1), in fact, in this
region, the PBPM program is faster than the PWEG program. The
additional time required by PWEG program in this region is partially due
to the time required to set up the generalized impedance matrix. As the
frequency is increased beyond 80 MHz, the solution time for PBPM program
increases rapidly as more equations are needed to obtain a convergent
solution. 1In contrast to this, a much faster solution is obtained by
PWEG program from fewer linear equations. The small rate of increase of
the required CPU-time and the fewer needed linear equations makes the
PWEG method very attractive for higher frequencies or larger geometries,
while at low frequencies PBPM is more suitable. It is hypothesized that
for larger values of N, the CPU-time becomes a function of N2,

The excitation source used in the scattering model of Figure 9-1 is
a uniform time harmonic electric line source. An analogous set of
curves is given in Figure 9-2 for a magnetic line source excitation.

The moment method formulation for this case is more involved and the
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Figure 9-1. Comparison between the Pulse Basis Point Matching
(PBPM) and a Plane Wave Expansion Galerkin (PWEG)
methods. The CPU-time and the number of Tinear
equations "N" needed to obtain a convergent solution
is plotted for various frequencies. The excitation
is due to a uniform electric line source and the
computer programs used are RECTPPE and RTUNLE for
PRPM and PWEG respectively.
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execution time for the computer programs are longer than the electric
1ine source case. Figure 9-2 basically shows the same relative CPU-time
behavior for PRPM and PWEG as that of Figure 9-1, and similar
conclusions may be drawn,

The maximum frequency or the size of the scatterer to be modeled by
the PWEG technique may be limited by the economic considerations of
CPU-execution time. Modern high density core memories in conjuction
with added virtual memories may soon eliminate most of the limitations
imposed by memory size. The VAX-11/780 computer can accommodate
approximately a 1000 by 1000 matrix of complex elements in its

addressable memory of about 2 Gbytes [50].
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CHAPTER X
CONCLUSIONS

The object of this research has been to obtain an efficient
computational model for the study of EM-scattering by buried, penetrable
non-circular cylinder of infinite length. This model can be used to
model two-dimensional scatterers in either a lossy half space or in a
lossy homogeneous medium,

The Plane Wave Expansion Galerkin method presented here offers
several advantages over the Pulse Basis FPoint Matching. It gives a
stable convergence for a fewer number of linear equations, it provides
reduced integration time for a rectangular based cylinder, where the
cross-sectional integrals are evaluated in closed form. Additionally,
the various optimizations provided by PWEG, enables modeling of larger
scatterers that was not possible previously.

In Chapter III and IV, some numerical results were included for E-
wave and H-wave scattering by a rectangular cylinder immersed in a
homogeneous ambient medium. The scattering pattern obtained in Chapter
I11 and IV were then used to develop an approximate model to explain
much of the details of the structure of the scattering patterns obtained

by the more exact solutions obtained by evaluating the Sommerfeld
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integrals. In Chapter V the radiation patterns of a line sources placed
on the air-interface were obtained. It was illustrated that these
patterns may be approximated by (1+R;) factor for an electric line
source and (1+Ry) factor for a magnetic line source. It is apparent
that the simple approximation does not include the lateral type waves.
Exclusion of the effect of lateral waves is more drastic for the case of
the magnetic line source, because the lateral wave is more significant
for this particular polarization because of its association with the
Brewster angle [51]. It is also shown that the far field of a magnetic
line source in a homogeneous lossless medium is proportional to ep-1/4
and far field of a magnetic line source in that medium is proportional
to ep3/4,

In Chapter VII, E-wave, and in Chapter VIII, H-wave, scattering by
buried Tossy dielectric rectangular cylinders of infinite length were
considered and some scattering patterns were presented. It was
illustrated that a simple model may be used to obtain the effect of the
air-earth interface. This approximate model suggests that SAF for a
Buried scatterer may be obtained by multiplying the SAF of scatterer
immersed in homogeneous earth medium by (1+R)2, where R is equal to R,
for an electric line source excitation, and Ry for a magnetic line
source excitation. The first (1+R) factor is introduced to account for
the presence of the interface on the field radiated by the line source.
The second (1+R) accounts for the reflection of the scattered fields by
the interface. Thus the total of (1+R)2 factor is required to

approximate the effect of the interface on the scattered fields. This
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approximation seems to work better for the electric line source

excitation.

A. SUGGESTIONS

The EM-scattering models presented in this dissertation may by
extended so that finite sources may by modeled. This would involve
utilizing a Fourier transform and solving the above problem numerous
times for various vaiues of the transform argument. This however may be
avoided by utilizing the method of Steepest descent for cases where the
scatterer is located far enough so that the asymptotic evaluation of the
pertinent integrals is possible.

A problem of interest in underground radar is the crossed dipole
transmitter-receiver antenna pairs. This enables considerable isolation
between the transmitter signal and the received signal. The EM-
scattering results of the two different polarizations, the parallel and
the perpendicular polarization may be combined to obtain a solution for
such an antenna system [52].

Finally, the scattering models should be tested for various
material case, i.e., good conductors and poor conductors. This would

determine some of the limitations that the method may have.
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APPENDIX A

Computer program RCYLPWE uses Plane Wave Expansion Galerkin with

four fold symmetry. The field inside the scatterer is expanded as

N
I
E(X,y) = nzl [anFﬁe(X,Y) + anze(x,y) + anﬁo(x,y) + ango(x,y)] ,
(A.1a)
where
Fﬁe(x,y) = cos(f x)cos(g y) . (A.1b)
FO®(x,y) = sin(f x)cos(gy) (A.1c)
Fﬁo(x,y) = cos(fnx)sin(gny) , (A.1d)
and
F,?o(x,y) = sin(f x)sin(g y) . (A.1e)

The superscripts correspond to evenness or oddness w.r.t x and y.

From the wave equation it is shown that

2 2 _ 2 A.2a
fo * 9, = K s ( )

where
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fp = Kpcosé (A.2b)

9, = kysing, ; (A.2c)

b = %%5%%-% ; (A.2d)
and

kp = 9 uo;l ’ (A.2e)

Following the same derivation procedure as discussed in Chapter II, for
the electric line source excitation we obtain an integral equation of
the form of Equation (2.7) which can be reduced to four sets of
decoupled systems of simultaneous linear equations. These system of

equations are:

N
21 a A= Ve m=1, 2, 3, «es N, (A.3a)
n=
N
n§1 b B = Vo8 m=1,2, 3, eeus N, (A.3b)
N
Zl Cncmn = vEO m=1, 2, 3, ..., N, (A.3c)
n=
and
N
I dp =00 m=1, 2, 3, «us N, (A.3d)
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where El(x’y) has been expressed as a sum of odd and even

symmetrical functions of x and y

EL(x.y) = E%(x,y) + E2%(xoy) + E00y) + ECxy)  , (AA)

for an electric line source excitation it was shown in Chapter II that
L - , A.5a
E,(x.y) = T K (¥,0;) (A.5a)

P1 is shown in Figure A-1, and

I= -;MUo . (A.5b)
m

thus from Equations (A.4) and (A.5) one can obtain the following:

+

EX(xay) = 1 (K5 (vppy) + K, (¥ppp) + K, (¥03) + K (¥0))

I (A.6a)
E2(,y) = 1 (Ko (vppp) = Ko (1pmp) = Ko (¥pp3) + Ko(vppy)) (A.6b)
E(ay) = J (K, (vgpy) + K, (vp0) = Ky (vpo) = Ky(rp0)) 5y
E%%(x,y) = 1 (Kolvpep) = K (rpe5) + Ko (vpeq) - Koly,0.)) (A.6d)

For a uniform line source of unit current excitation placed at (xi,

¥y1), Equations (A.d), (A.5), and (A.6) can be achieved by replacing the
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Figure A-1.
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this line source with four Tine sources of %_current strength at

5

(x1,¥1)s (x2,¥2), (x3,¥3), and (x4,y4) respectively as illustrated in
Figure A-1. The polarity of the currents is chosen so that the desired
symmetries w.r.t x and y are obtained. This is illustrated pictorially
in Figure A-1. To simplify this figure the points (x1,y1), (x2,y2),
(x3,¥3), and (x4,ya) aré only designated by 1, 2, 3, and 4. Also the

line source excitations are simplified as

ool
I Ko(YZOi) = K

i=1,2,3, 4
The Vy's of the Equations (A.3) involve a cross-sectional integration
which can be evaluated easily, because there is no singularity involved.

These are given by

Voo = ROy ES0oy) as L - (A.7a)
o - éi FRo(y) E(y) ds (A.7b)
Voo = IOy By 6, (A.7c)
Voo = IR 0Gy) B0y as (A.7d)

where Fp's are defined in Equation (A.1), and E's are defined in
Equation (A.6).

The Agns Bmun» Cmn» and Dpn are given by
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o
=4
<
D =JJ
mn cs
where
Q=
and
p =

P (oy) Ffleoy) ds + QT RCE 0e,y) FRE 00,y t) K (v0)ds s
(A.8a)

F:e(x,y) Fge(x,y) ds + Qéiég F;e(x,y) er(x',y‘) Ko(yzp)ds'ds
(A.8b)

P 0y) Ffix,y) ds + Q1T EO0ey) RO uyt) K (v 0)ds s
(A.8c)

P (6y) FOGoy) ds + QT RO (x,y) F%(xtyt) K (v,0)ds'ds
(A.8d)

. : " . (A.8e)

Y(x-x")2 + (y-y')2 -

in the Equations (A.8a)-(A.8d), the integrals of the first terms are

evaluated in a closed form with no difficulty, but, the integrals of the

second terms are difficult to evaluate because of the singularity point

at which

p=0. A method that has bheen introduced by Richmond [2] for the

point matching is applied here to evaluate these integrals. The method

involves

dividing the cross-section over which the integration is to be

carried out into many square cells, and approximating the integration
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over the cross-section by a sum of the integration over the cross-
section of each cell. A further approximation can be made if the sizes
of the cells are chosen small enough so that Fp's of Equation (A.1l) can
be assumed to vary very slowly over the cross-section of a cell. These
approximations reduce the integrations of the second terms of the

equation (A.8a)-(A.8d)

ggii Fm(x,y) Fn(x',y') Ko(sz) ds'ds

NC NC

s L L F(x.,,y.)F x..y.) 1) 1] «x r..) ds.ds. .
ify i Tnbed) Falgygd oy cell; o(T2"i3) 4555,
(A.9)

Approximate superscripts for Fy and F, may be used as if applies to
each Equation (A.8), and NC is the number of cell in the cross-section.

Referring to Figure A-2, rij is defined as

X T e A.10
ris = Y0502 + (y5-y5) (A.10)

where (Xi,¥5) definés a point in cell i and (xj,yj) defines a
point in cell j. The square cells may be replaced by a circular cell
which has the same cross-section area and is centered at the center of
the corresponding cell [2]. Without including the details the final

form is given as follows
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Figure A-2. Pictorial illustration for evaluating the cross
sectional integrals.
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p
27)2C - . ios

{20 (1 - 0K (1,001 (1,0) 5 =
2

] I r..) ds.ds, =

cellj cellj o("2 TJ) i <

2%C 2 P
L"$§ I, (v,0) ] Ko(ToRi5) 5 1%
\ (A.11a)

C is the radius of the equivalent area circular cylinder and

- X X2 RRY; , A.11b
Rij = "(X;=X;)2 + (¥3-Y5) (A.11b)

where

(X1,Y7) and (Xj,Yj) are the centers of cellj and cellj
respectively. 1Ij is the modified Bessel function of the first kind of
order one, Ky and Ko are the modified Bessel functions of the second
kind and orders one and zero respective]&.

RCYLPWE program is set up so that various outputs may be obtained
selectively. It can be seti}hat to give single outputs or an array of
numbers. Three major loops to be discussed are shown in Figure A-3.
These are: frequency loop, backscattering loop, and bistatic scattering
Toop. The statement number of the start of the Toop is also included in
Figure A-3 for easy reference to the program listing in subsequent
pages.

To obtain a frequency plot from 10 to 300 MHz. FMCMX is set equal

to 300, and IFMC is set to desired number of points to he calculated.

To obtain a backscattered patterns IBS is set equal to the number of

184



43

g DO JF=1,IFMC
FMC= JF * FMCMX / FLOAT (IFMC)

290

43—

Figure A-3.

RCYLPUE,

| g DO JI=1,IBS
PHI=(JI-I) % 360./FLOAT (IBS-1)

DO JK=1, IBISS
PHI=(JK-1)%360./FLOAT(IBISS-1)

Three major loops used in the computer program
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points needed between 0° to 360°: for getting a Bistatic Scattering
pattern IBISS is used similarly., It must be kept in mind that only one
of the three inputs: IFMC, IBS, IBISS, may be used at a time. Other
inputs may be used in combination to obtain desired outputs.
The RCYLPWE program can model an electric line source excitation or
a plane wave excitation. If IPW=1, the plane wave excitation is used,
and the output is the echowidth/Ap, and if IPW=0, electric line source
excitation is used and the output is the Scattering Attenuation Function
(SAF).
The following is a list of the inputs for RCYLPWE program in the
order they appear in line 29 of the listing:
ER1: Relative dielectric constant of region I.
SIGl:  Conductivity of region I in s/m.
ER2: Relative dielectric constant of region I.
SIG2: Conductivity of region I in s/m.
FMCMX: Maximum frequency in MHz for the frequency plot.
AWM: The length (in meters) of the cross-section of the
rectangular cylinders (see Figure 2-1b).
BWM: Width (in meters) of the rectangular cylinder (see Figure
2-1b).
PHI: The polar angle at which the line source is located or a
plane wave is incident (Figure 2-1).
IWR: If 1, all the generalized impedance matrix element and the
vo1tége column element are written in a file FORO010.DAT.

In addition, to above, the solutions of the plane wave
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coefficients are also written in the above file. IWR=0
otherwise,

IFILD: If 1, the field inside the scatterer is written in FORO10.
DAT for various points in the first quadrant. Must be set
to zero otherwise.

IWRC: If set to 1, the various elements in CROUT subroutine is
printed on the screen for debugging purposes. Set to zero
otherwise,

IPW: If set to 1, the plane wave excitation is used and the
output is echowidth/XAp, if set to zero, the Tine source
excitation is used, and the output is (SAF).

IBS: If > 1, the backscattering pattern is calculated for IBS
points, with angles divided equally. Otherwise it MUST BE
SET TO 1.

IBISS: The same as above, except for Bistatic Scattering Patterns.
If not needed, it MUST BE SET TO 1.

IFMC:  Number of frequency points to be calculated for a frequency
plot. If not used it MUST BE SET TO 1.

1EQ: If set to 1, the program automatically calculates NEQ the
number of plane waves needed in the expansion to obtain a
convergent solution, and NY the number of cells in y-
direction for the integration routines. If set to zero,
the program asks for the values of NEQ and NY to be input

by the user.
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RLS: Radial position of the line source (in meters).

RCYLPWE program uses various optimization techniques, one of which
is the use of Gaussian interpolation technique. This is done by
subroutine INTERP in line 216. Instead of calculating a value of a
Bessel function many times, a table of required numbers is calculated
only at a few points and is kept. The needed values as they are needed
are then extraplated from this table. Another optimization is made in
reducing the values of the Bessel function needed to a minimum by not
calculating any values for redundant cases, i.e., cases where the same

argument for Bessel functions occur over and over again.
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0001 C LINK WITH CROUT & MBE210

0002 C

0003 C THIS PROGRAM (RCYLPWE.FOR) USES PLANE WAVE EXPANSION AND
0004 C GALERKIN METHOD TO CALCULATE THE SCATTERED FIELD BY

0005 C A LOSSY DIELECIRIC INFINITE RECTANGULAR CYLINDER

0006 C FOR AN ELECTRIC LINE SCURCE PARALLEL: TO AXIS OF THE CYLINDER.
0007 C THE CYLINDER IS LOCATED IN A LOSSY HOMOGINEOUS MEDIUM.
0008 C THE PROGRAM USES FOUR FOLD SYMMETRY

0009 C

0010 C WRITTEN BY JAMAL IZADIAN NOVEMBER 1981.

0011 c

0012 COMPLEX BKK(25,25) ,FNEE(25) ,FMOE(25) ,FNEO(25) ,FNCO(25)
0013 COHPLEX FMEE(25),FMEO(25) ,FMOE(25) ,FMOO(25) ,FK(75)

0014 COMPLEX CQIiN(25,25) ,D¥N(25,25) ,EMN(25,25) ,FMN(25,25)

0015 COMPLEX A(25),B(25),C(25),D(25) ,FA(25) ,GA(25)

0016 COMPLEX GC,VEE,VOE,VEO, V00O, XP,CYP, SXP, SYP,CXL,CYL, SXL, SYL
0017 COMPLEX EGXP,EGYP,BGXL,FGYL,EGX1,EGX2,EGX3,EGX4,FN,FM,GN, @1
0018 COMPLEX EZI,FMF,FPF,Q4G,GPG,S),S2,83,54,581,852,SS3,554
0019 QOMPLEX SFPF,SFMF, SGG,SGPG, FMXP, @IYP, FNXL , GNYL

0020 COMPLEX CII,CIK,CV},EPL,EP2,ETA2,CST,CSS,EZ2),EZS,SEE, SOE, SEO, SO0
0021 COMPLEX GAM1,GAMZ,BI,BK,BI1,BK1,GR,K1,K2,SF,SG,REE,ROE,REO, ROO
0022 DIMENSION XM(450),¥M(450)

0023 INTEGER P

0024 DATA FP,TD2/12,5663706144,0./

0025 DATA ETA,PI,TP/376.730366239,3.14159265359,6.28318530718/
0026 DATA 1CC,N¥X,ISIZE,NJ,ITBL/25,30,10,0,0/

0027 DATA E0,U0/8.85418533677E-12,1.25663706144E~6/

0028 call getcp(itl)

0029 READ(7,*)ER1,SIG1,ER2,SIG2,FNCMX, AWM, BWM, PRI, IWR, IFILD, IWNRC
0030 &,IPW.IBS, IBISS, IFMC, IEQ,RLS

0031 IFRSCT=IBISS

0032 IBISS=IABS (IBISS)

0033 WRITE (10,*) IBS, IBISS, IFMC

0034 IC=(IBS-1)* (IBISS~1)+(IBS~1)* (IFMC~1)+(IBISS-1) * (IFMC-1)
0035 IF(IC.NE.0) GO TO 600

0036 WEH=PHI

0037 IF(IEQ.EQ.0)TYPE*, 'GIVE NEQ & NY ='

0038 IF(IEQ. EQ.0) ACCEPT* ,NEQ, NY

0039 IF(IFMC.GT.1) GO TO 41

0040 20 TYPE*, 'GIVE FMC='

0041 ACCEPT*, FMC

0042 IF(FMC.LT.0) GO TO 600

0043 41 DO 500 JF=1,IFMC

0044 IF (IFMC.GT. 1) FMC=JF*FMOMX/FLOAT (IFMC)

0045 Il2=1

0046 AM=AWM/2 .

0047 BM=Bv14/2.

0048 OMEGA=TP*FNC*1.E6

0049 BTS1=0HEGA*CMEGA*UO*ER1*EQ

0050 BET1=SQRT (ETS1)

0051 EP1=(MPLX (ER1*E0Q,~SIG1/OMEGA)

0052 EP2=ER2*E0*(1.,.0)

0053 IF(1D2.GT.1.E-10) EP2=ER2*E0*Q4PLY (1. ,~TD2)

0054 IF (S1G2.GT.1.E-10) EP2=Q1PLX (ER2*EQ ,~SIG2/QHEGA)

0055 ETA2~CSQRT (U0/EP2)

0056 GAM2=OMEGA*CSQRT (~U0*EP2)

0057 GAM1=OMEGA*CSQRT (~UO*EP1)

0058 K1=(0.,-1.)*GAaMl

0059 K2=(0.,-1.) *GAM2

0060 BET2=NIMAG (GAM2)

0061 BTS2=BET2*BET2

0062 WAV1=TP/BET1

0063 WAV2=TP/BET2

189



6064 CPH=1.-P1/(14.*BET1*AM)

€065 IF (ABS(CPH) .GT.1) GO TO 25
0066 DPH=AC0S (CPH)

C067 IF (IEQ. Q. 1)NEQ=1.+PI/ (2. *DPH)
0068 25 TF (NEQ.LT.2) NBQ=2

0069 IF (NEQ. GT. ICC)CO TO 600

0070 IF (IEQ. FQ. 1) NY=15 . *BETL *BvM/PI
0071 IF (NY.LT.6.AND, IEQ. BQ. 1) NY=6
0072 IF (NY.GT.NYX) NY=NYX

0073 NY=2* (NY/2)

0074 NX=INT (AM/EM) *NY

0075 NX= (NX/2) *2

0076 NY2=NY/2

0077 NK2=NK/ 2

0078 K4=NX2*NY2

0079 DPH=.5*PI/ (NBQ-1)

0080 DO 90 J=1,NEQ

0081 PH=(J-1) *DPH

0082 FA(J) =K1*COS (PH)

0083 GA(J) =K1*SIN(PH)

0084 90 CONTINUE

0085 IX=NX/2

0086 IY=NY/2

0087 DX=RHM/NK

0088 DY=EWM/NY

0089 DX2=DX/2.

0050 DY2=DY/2,

0091 ¢ FIND THE PADIOUS OF EQUIVLANT CIRCULAR CELL
0092 Q4=SQRT (DX*DY/PI)

0093 GC=GAM2*QH1

0094 CALL MBEZ10(GAM2*Qf,BI,BK,BI1,BK1,1,-1)
0095 C€S5=(1,~GC*BK1) * (EP1~EP2) /EP2
0096 CST=GC*BIL* (EP1-EP2) /EP2
0097 CIK=CSS*2. *FP*Q*BI1/GAM2
0098 CII=CST*2., *FP*QM*BI1/GAN2
0099 CV1=-ETA2*QM*BI1

0100 RAB=SORT (AVM*BUM+EVM*EHM)
0101 21 DELTR=(RAB-DX) /ISIZE

0102 IF (DX.GT.DELTR) GO TO 23

0103 ISIZE=ISIZE+5

0104 G0 T 21

0105 23 DO 22 I=1,ISIZE

0106 RR=I*DELR,

0107 CALL MBKOZ (GAM2*RR, BK,~1)
0108 FK{1) =BK*CTT

0109 22 CONTINUE

0110 TYPE*, ' ISIZE=' , ISIZE

0111 M=0

0112 Y=DY2

o3 ¢ SET UP THE COORDINATES OF CENTERS OF CELL M
0114 DO 40 J=1,NY2

0115 X=DX2

0116 DO 30 I=1,MK2

0117 M=p1

0118 XU (M) =X

0119 Y (M) =Y

0120 30 X=X+DX

0121 40 Y=Y+DY

0122 , DO 42 J=1,25

0123 DO 42 I=1,25

0124 42 BRK(I,3)=(0.,0.)

0125 C SET UP IMPEDANCE MATRIX

0126 DO 200 M=1,NEQ

190



0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
6177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189

33

180
200

FM=FA(M)

Q=GA(M)

DO 180 N=M,NEQ
FN=FA(N)

GI=GA(N)

FMFP=FN-FM

FPP=FN+FM
GMG=GN-G
GPG=GN+@1
IF(¥.NE.N) GO TO 31
SP=CSIN(2.*FN*AM)
SG=CSIN(2.*GN*BM)
S1=AM*BM
IF(M.BQ.1) THEN

§3=. 5S*Bli*SE/FN
REE=2.*(S14S3)
ROE=2.*(51-53)
REO=(0.,0.)
ROO=(0.,0.)

GO TO 33

END IF

IF(M.BQ.NEQ) THEN
S2=.5*AM*SG/GN
REE=2.* (S1452)
ROE=(0.,0.)
REO=2.*(S1-S2)
ROO=(0.,0.)

GO TO 33

END IF

S2=, S*AM*SG/GN
$3=.5*BM*SF/FN
S4=.25*SF*SG/FN/GN
REE=S1+52-+83+54
ROE=S1+52-53-54
REO=S1~52+53-S4
ROO=51-52-53+54

GO TO 33
SFMF=CSIN(FMF*AM)
SFPF=CSIN(FPF*AM)
SGM3=CSIN (@IG*BM)
SGPG=CSIN(GPG*BM)
SS1=SFMNF*SEG/FNF/QIG
552=SFMF*SGPG/FMF/GPG
SS3=SFPF*S@G/FPF/GMG
554=SFPF*SGPG/FPF/GPG
REE=SS1+552+553+554
ROE=SS1+552-553-554
REO=SS1-852+5883-554
ROO=581-552-S83+4554
CONTINUE

Q4N(M,N) =REE
DMN(M, N) =ROE
Mi=H-1

N1-N-1
IF(M.GI.1)ENN(ML,N1) =REO
IF(M.GT.1) FMN (M1 ,N1)=R0O
CONTINUE

CONTINUE

PO 160 P=1,K4
XP=XI(P)

YP=Y14(P)
JPP=(P-1)/IX+l
IPP=P-(JPP-1) *IX
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01¢c0 JP=JPP+IY

0191 IP=IPP+IX

0192 DO 140 I=1,K4

0163 XL=XM (L)

0194 A (L)

0195 JLP= (L-1) /1X+1

0196 ILP=L- (JLP-1) *IX

0197 XN=XL

0198 =YT,

0199 IN=ILP

0200 . IN=JLP

0201 SIGX=1.

0202 SIGY=1.

0203 DO 120 11=1,2

0204 YY=YP-YL

0205 YS=YY*yy

0206 JL=IY+HJLP+(L1-1)

0207 DO 100 L2=1,2

0208 XX=XP-XL

0209 XS=XX*XX

0210 IL=IX+ILP+(L2-1)

0211 II=1+IABS(IP-IL)

0212 JJ=1+IABS (JP~JL)

0213 ROH=SQRT (XS+YS)

0214 IF (ROH.LT.DX2) GO TO 79
0215 IF(BKK(II,J3).EQ. (0.,0.)) THEN
0216 CALL INTERP(ROH,BKK(1I,JJ) ,DELIR, FK, ISIZE)
0217 BKK (37, 1) =BKK (11,J9)

0218* NI=NJ+1

0219 EXD IF

0220 79 DO 80 M=l,NEQ

0221 IF(L.GT.1) GO TO 77

0222 FM=FA (M)

0223 G=GA (M)

0224 FMXP=FM*YP* (0. ,1.)

0225 QYP=Qi*YP* (0. ,1.)

0226 EGXP=CEXP (FMXP)

0227 EGYP=CEXP (GMYP)

0228 CXP=.5* (BGXP+1./EGXP)

0229 CYP=.5* (EGYP+1./EGYP)

0230 SXP=(0. ,~.5) * (EGXP-1./ECKP)
0231 SYP=(0. ,~.5)* (BGYP-1./EGYP)
0232 FMEE (1) =CKP*CYP

0233 FNOE (M) =SXP*CYP

0234 FMEO (M) =CKP*SYP

0235 FMOO (M) =SXP*SYP

0236 77 DO 80 N=H,NEQ

0237 IF(L1.GT.1.0R.L2.GT.1) GO TO 75
0238 FN=FA(N)

0239 GN=GA (N)

0240 FNKL=FN*XL* (0. ,1.)

0241 GHYL=GN*YL* (0. ,1.)

0242 EGKL=CEXP (FNXL)

0243 " BGYL~=CEXP (GHYL)

0244 CXL=. 5% (EGKL+1 . /EGXL)

0245 CYL=.5* (EGYL+1./EGYL)

0246 SKL=(0. ,=5)* (EGXL~1./BGXL)
0247 SYL=(0. ;~.5) * (EGYL~1./EGYL)
0248 FNEE (N) =CXL*CYL

0249 FNOE (N) =SXL*CYL

0250 FNEO (N) =CXL*SYL

0251 FNOO (N) =SXL*SYL

0252 75 IF (ROH. GT.DX2) GO TO 35
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0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315

35

80

100

120
140
160

210

QiN(M,N) =O1MN (M, N) +FMEE (M) *FNEE (N) *CIK

DIIN (M, N) =DMN (M, N) +FMOE (M) *FNOE (N) *CIK*SIGX
Ml=pM~1

N1=N-1

IF (M.GT.1) EMN(M1,N1) =EMN (M1, N1} +FMEO (¥) *FNEO (N) *CIK*SIGY
IF (15.GT. 1) FMN (M1, N1) =FMN (M1, N1) +FMOO (M) *FNOO (N) *CIK*SIGX*SIGY
GO To 80

BR=EKK (II IJJ)

ami(y,N) = (M, N) +FMEE (M) *FNEE(N) *BK

DN (4, N) =DtIN (M, N) +FMOE (1) *FNOE (N) *BK*SIGX
Ml=M-1

N1=N-1 :
IF (N.GT.1) EMN (ML, N1) =EMN (M1, N1} +FMEO (M) *FNEO (N) *BK*SIGY
IF(M.GT.1) FMN(MIL,NL)=FMN(ML,N1) +FNMOO (M) *FNOO (N) *BK*SIGX*SIGY
CONTINGE

SIGX=-1.

ILP=~IN

XL~=XN

SIGX=1.

SIGY=-1.

XL=XN

ILP=IN

JLP=~JN

YL=~¥N

CONTINUE

CONTINUE

TYPE*, 'NJ=' ,NJ

NJ=0

IF(IWR.EQ.1) THEN

WRITE(10,2)

DO 210 M=1,NEQ

DO 210 N=M,NEQ

WRITE(10,3)M,N,CHN(M,N) , DN (M, N} , EMN (M, N) ,FMN (1, )
CONTINUE

END IF

IF (IWR. BQ. 1) WRITE(10,9)

IF (IWR. BQ. 1) WRITE(10,4)

DO 500 JI=1,IBS

IF (IBS.GT.1) PHI=(JI~1) *360./FLOAT (IBS-1)
PH1=.0174533*PHI

PH2=PI-FH1

PH3=PI+PH1

PH4=-FH1

CS1=C0S (FH1)

SN1=SIN(PH1)

C52=C0S (PH2)

SN2=SIN(PH2)

CS3=COS (FH3)

SN3=SIN(FH3)

CS4=C0oS (PHA)

SN4=SIN(FH4)

XLS1=RLS*CS1

YI.S1=RLS*SN1

XLS2=RLS*CS2

YLS2=RLS*SN2

XLS3=RLS*CS3

YLS3=RLS*SN3

XL.S4=RLS*CS4

YL.S4=FL.S*SN4

SET UP THE VOLTAGE MATRIX

DO 240 M=1,NEQ

FM=FA (M) :

Q4=GA(M)
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€316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378

219

220

240

SEE=(0.,0.)

SOE=(0.,0.)

SEC=(0.,0.)

s00=(0.,0.)

DO 220 P=1,K4

X=XM(P)

Y=Y (P)
FMXP=FM*X*(0.,1.)
QYP=GM*Y*(0.,1.)
BEGXP=CEXP (FMXP)
EGYP=CEXP (QTYP)
CXP=.5*(EGXP+1./EGXP)
CYP=,5*(EGYP+1./EGYP)
SXpP=(0.,~.5) * (EGXP-1./EGXP)
SYp=(0.,~.5) * (EGYP-1./EGYP)
FMEE (M)=CXP*CYP
FMOE (M) =SXP*CYP

FMEO (M) =CXP*SYP
FMOO (M) =SXP*SYP
IF(IPW.BQ.1) THEN
PSI1=X*CS1+Y*SNL
PSI2=X*CS2+Y*SN2
PSI3=X*CS3+Y*SN3
PSI4=X*CS4+Y*SN4
EGX1=CEXP (CAM2*PST1)
EGX2=CEXP (GAM2*PS12)
EGX3=CEXP (GAM2*PS13)
BGX4=CEXP (GAM2*PSI4)
CVl=(1.,0.)*DX*DY

GO TO 219

END IF

X1=XLS1-X

Y1=YL.S1-Y

X2=XL.S2-X

Y2=Y1.S2-Y

X3=XLS3-X

Y3=YL.S3-Y

X4=X1.54-X

Y4=YL.54-Y

RH1=SQRT (X1*X1+Y1*Y1)
RH2=5QRT (X2*X2+Y2*Y2)
FRH3=50RT (X3*X3+Y3*Y3)
RH4=50RT (X4*X4+Y4*Y4)
CALL MBKOZ (GAM2#*RH1,EGK1,-1)
CALL MBKOZ (GAM2*RH2,BGX2,-1)
CALL MBKOZ (GRM2*RH3,BGX3,-1)
CALI, MBKOZ (GAM2*RH4,EGX4,-1)
VEE=EGX1+EGX 2+EGX 3+EGX4
VOE=BEGX1-BGX2-BEGK3+BGX4
VEC=BGK1+BGX2-LGX3-BEGX4
VOO=EGX1-BEGX2+BGX3-EGX4
SEE=SEE+FMEE (M) *VEE
SOE=S0E+IFMOE (M) *VOE
SEO=SEQE1i30 (M) *VEO
SCO=8CCHEMOO (M) *V00
CONTINUE

A(M)=SEE*CV1

B (M) =SOE*CV1

M1=t-1

IF (M.GT. 1) C(M1) =SEO*CV1
IF(M.GT.1)D(M1)=S00*CV1
CONTINUE

IF (IWR. EQ. 1) THEN
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0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406

0407 *

0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441

202

244

242

246

248
45

DO 202 M=1,NEQ

WRITE (10,5)M,A(M) ,B(M) ,C(M) ,D(M)
WRITE(10,9)

ED IF

NN1=NEQ-1

NN2=NEQ-2

ISW=0

CALL CROUT(CMN,A,ICC,ISYM,IWRC,I12,NEQ)
CALI, CROUT (DN, B, ICC, IS¥l4, IWRC,I12,NN1)
CALIL, CROUT (EMN,C,ICC,IS¥YM, IWRC,I12,NN1)
CALL CROUT(FMN,D,ICC,ISVI1, IWRC,I12,NN2) ’
IF (IWR.EQ. 1) THEN

WRITE (10,6)

DO 244 M=1,NEQ

WRITE (10,5)M,A(M) ,B(M) ,C(M) ,D(M)
CONTINUE

WRITE(10,9)

END IF

DO 242 J=1,NEQ-1

I=NEQ-J

C{I+1)=C(I}

D(I+1)=D(I)

C(1)=(0.,0.)

p(1)=(0.,0.)

D(NEQ)=(0.,0.)

FIND THE FIELD IN CELLS OF FIRST QUADRANT
IF(IFILD.NE.1) GO T0 45
WRITE(10,8)

DO 248 I=1,K4

Ez1=(0.,0.)

XL=XM(L)

YESYM(L)

DO 246 N=1,NEQ

FN=FA(N)

GN=GA(N)

FNXL=FN*XL*(0.,1.)
GNYL=GN*YL*(C.,1.)

BGXIL=CEXP (FNXL)

BGYL=CEXP (GNYL)

CXL=.5% (EGXL+1 ./EGXL)
CY¥L=.5*(EGYL+1./EGYL)
SX1~=(0.,-.5) * (EGXL~1./EGXL)
SYL=(0.,~.5) * (EGYL~1./EGYL)

FNEE (N) =CXL*CYL,

FNOE (N) =SXL*CYL

FNEO(N) =CXL*SYL

FNOO (N) =SXL*SYL

E21=E21+(A (N) *FNEE (N) +B (N) *FNOE (N) +C (N) *FNEO (N) 4D (N) *FNOO (N) )
CONTINUE

C%=.0174533

RE=REAL (EZ1)

ATE=AINAG (EZ1)

AMP=CABS (EZ1)

PHASE=ATAN2 (AIF,RE) /CX

WRITE (10,11) XL, YL, , AMP, PHASE
CONTINUE

IF (IWR.EQ. 1) WRITE (10,9)

PHS=PH1

IF(IFRSCT. FQ.-1) PHS=PHS+PI

DO 500 JK=1,IBISS
IF(IBISS.GT.1)THEN
PHI=(JK-1)*360./FLOAT (IBISS-1)
PHS=.0174533*PHI
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44 BD IF

0443 KLS=RLS*C0S (FHIS)

0444 YLS=RLS*SIN(PHS)

0445 C FIND THE BACKSCATTERED FIELD
0446 EZ28=(.0,.0)

0447 DO 290 1~1,K4

0448 X1L=XM(L)

0449 YL=YM(L)

0450 XN=XL

0451 YN=YL

0452 SIGX=1.

0453 SIGY=1.

0454 DO 280 L1=1,2

0455 YY=YLS-YL,

0456 YS=YY*YY

0457 DO 270 12=1,2

0458 XX=XLS-XL

0459 XS=XX*XX

0460 IF (IPW.BQ. 1) THEN

0461 PST=XI,*Q0S (PHS) +YL*SIN (PHS)
0462 BK=CEXP (GRM2*PST)

0463 GO TO 47

0464 END IF

0465 ROH=SQRT (XS+YS)

0466 CALL MBKOZ (GAM2*RCH,BK,~-1)
0467 47 Ez1=(0.,0.)

0468 DO 260 N=1,NEQ

0469 IF(L1.GT.1.0R.L2.GT.1) GO TO 269
0470* FN=FA(N)

0471 GN=GA (N)

0472 FNXL~FN*XL* (0.,1.)

0473 GNYL~GN*YL* (0., 1.)

0474 BEGXL~=CEXP (FNXL)

0475 BGYL=CEXP (CNYL)

0476 CXL=. 5% (EGXL+1./BGKL)

0477 CYL~=.5% (EGYL+1./EGYL)

0478 SXL~(0. ,~.5) * (BGXL-1./EGXL)
0479 SYi~(0.,~.5) *(EGYL~1./EGYL)
0480 FNEE (N) =CXL*CYL

0481 FNOE (N} =SXL*CYL,

0482 FNEO (N) =CXL*SYL

0483 FNOO (N) =SXL*SYL

0484 269 E2Z1=EZ1+ (A (N) *FNEE (N) +B (N} *FNOE (N) *SIGX+C (N) *FNEO(N) *SI1GY
0485 &+D (N) *FNOO (N) *SIGK*SIGY)

0486 260 CORTINUE

0487 EZS=EZS+EZ1*BK

0488 SIGX=-1.

0489 270 XL=-XN

0490 SIGX=1.

0491 SIGY=-1.

0492 XL=KN

0493 280 YL=-¥N
0494 290 CONTINUE

0455 EZS=-CST*EZS

0496 IF (IP]. EQ. 1) E2S=E%S*CSQRT ( .S*P1/GRN2)

0497 AZS=CABS(EZS)

0498 IF (IWR. BQ. 1) WRITE (10, *) 'AZS=" ,AZS

0499 EWL=TP*AZS*AZS/VIRV2

0500 DB=.0

0501 o FIND THE NORMALIZED SCATTERING ATTENUATION FUNCTION
0502 IF(IPW.EQ.0) THEN

0503 GR=2.*GAM2*RLS

0504 CALL MBKOZ (GR,BK,-1)
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0505
0506
0507
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0519
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0525
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0531
0532
0533
0534
0535
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0537
0538
0539
0540
0541
0542
0543
0544

599

500
600

HREHEOOAWU&S WD
W

E21=(.0,-1.) *OMEGA*UO*BK/TP

AZI=CABS(EZI)

IF (IWR.FQ.1)WRITE(10,*) 'AZ1=" ,AZI

AZN=AZS/AZT

DB=20.*ALOG10 (AZN)

TYPE1,NEQ,MX,NY,FNC,DB, PHI

WRITE(10,1) NEQ,NX,NY, FMC, DB, PHI

GO TO 599

END IF

‘TYPE1,NEQ,NX,NY,FMC, EVIL, FHI

WRITE (10,1) MEQ, X, NY, FMC, EWL, FHI
IF(IES.PQ.1.AND. IBISS. EQ.1.AND, IFMC.EQ. 1) GO TO 20
112=2

CONTINUE

CONTINUE

IF(IPW. . 1)¥RITE(10,14)

IF(IPW.BQ.0)WRITE(10,13)

WRITE(10,9)

WRITE(10,*)' ERl & SIGl =',ER1,SIGl

WRITE(10,*)' ER2 & SIG2 =',ER2,SIG2

WRITE(10,*)' AWM & BYWM ="' AWM, BM

WRITE(10,*) 'RLS=',RLS,'PHI=',WPH

call getcp(it2)

time=(it2-it1)/100.

WRITE(10,*) ' CPU TIME (SEC) =',TIME

TYPE*,' CPU TIVE (SEC) = ',TIME

WRITE(10,*) 'RCYLPWE.FOR'

FORMAT(1X,315,6F12.6)
EtHﬂi¥P(5X,'M',4X,'N',13X,’CMN',21X,'EMN',21X,'EMN',21X,'FMN')
FORMAT (1X,215,8F12.6)

FORMAT (X, 'M',18X, "VEE',21X, "VOE', 21X, '"VEO' 21X, 'VOO')
FORMAT (1X,15,5X,8F12.6)

FORMAT(5X,'M',18%X,' A ',21X,' B ',21X,' C ',21X,' D ")
FORMAT (5%, 'X",9X,'Y',11X, 'AMPLITUDE' ,3X, 'PHASE')
FORMAT (1HO)

FORMAT (1X,2F10.5,5X,2F12.6)

FORMAT (3X, 'NEQ',3X, 'NX',3X, 'NY',6X, '"FMC',9X, "SAF' ,9X, 'PHI')
FORMAT (3X, 'NEQ',3X, 'NX',3X, 'NY' ,6K, '"FMC' ,9X, 'EWL' ,9X, 'PHI')
CALL EXIT

END
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APPENDIX B

The computer program RTUNLE uses the formulation of Chapter III and
Chapter VII. It is capable of treating a rectangu]ar'scatterer in a
homogeneous ambient medium or in a Tossy half space. To include the
effects of the half space IGROND is set to one otherwise, it must be set
to zero. Ail the inputs necessary to execute the program is shown in
line 16 and 17 in the listing. This program has the same type of
internal DO Toops as described in Figure A-3 for RCYLPWE program. Here,

only the new inputs are described.

NEQ: Number of plane waves to be included in the p]ane’WaVe
expansion, restricted to condition in Tine 53. This will be
used by the program when line 24-25 and 48-52 are not to be
executed.,

DM:  The x-coordinate of the air-earth interface plane parallel to
yz-plane as shown in Figure 7-1. DM is in meters.

XLS: X-coordinate of the electric line source Tocation (in meters)
as shown in Figure 7-1. 1In this program the restriction

AWM < XLS < DM is made,
2

YLS: Y-coordinate of the electric line source (in meters) as shown

in Figure 7-1.
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IGROND: If set to one, the air-earth interface will be included in
the model as shown in Figure 7-1. 1If set to zero only the
homogeneous ambient medium is considered.

IZMN: If set to one, the elements of the generalized impedance
matrix is stored in file FOR$¢8.DAT for cases where these
elements are needed again. If set to zero, the program does
not calculate the elements of generalized impedance matrix,

instead it reads them from file FOR$4¢S.DAT.
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22
20

This is program (RTUNLE.FOR) Rectangular TUNneL Ez-polarization.
It uses Plane Wave Expansion Galerkin.

WRITTEN BY JAMAL IZADIAN DECFMBER 1981.

COMPLEX A(25) ,v(25),DV(25),Vr(25),2(25,25) ,D%(25,25) ,2T(25,25)
COMPLEX FA(25),GA(25) ,B(25) ,EZ1,EZ1,EZS

COMPLEX SUML,sUM2,SUMT,RMN,SMN,FN,FM, &, Q4,S1,S2,FNEM, GNGH
COMPLEX C2,CsT,CY,QJ,EPl,EP2,GAMI ,GAM2,GAM2S, K1 ,K2, EXF, EXG,BK
DIMENSION XM(100),YM(100)

COMMON /JI/ GAM2S,GAMZ,0HMEGA, ER2,SIG2

COMMON FN, FM,GN,G4,AM, BM,DH,XLS, YLS

DATA PI,TP/3.14159265359,6.28318530718/

DATA EO0,U0/8.85418533677E~12,1.25663706144E-6/

DATA IWRC,ICC,I12,ISYM/0,25,1,0/

READ(7,*) ER1,SIG) ,ER2, SIG2 , FMCHX , NEQ, AvM, BWM,, ¥4, XLS, YL.S , TWR

&,IFILD, IBS, IBISS, IFMC, IGROND, IZMN

call getep(itl)

IF((AWM/2.) .GT.Di1.OR. XLS.GT.IM) €O TO 500
WRITE (10, *)MAX (IBS, IBISS, IFMC)
CJ=(0.,1.)

CX=,0174533

Ny=)

TYPE*, 'GIVE FMC,NEQ,NY="'
ACCEPT* ,FMC,NEQ,NY
IF(FMC.LT.0)GO TO 500
NX=( AW/ BWM) *NY

BM=RWM/ 2.

BM=BWM/2.

DO 500 JF=1,IFNMC

IF (IFMC.GT. 1) FMC=JF*FMCHX/FLOAT (IFMC)
OMEGA=TP*FMC*1.E6

EP1=CMPLX (ER1*EQ,-SIG1/OMEGA)
EP2=CMPLX (ER2*EQ ,~51G2/0MEGR)
GAM1=OMEGA*CSQRT (-U0*EP1)
GAM2=0MEGA*CSQRT (-U0*EP2)
BET1=ATMAG (GAML)
GAM2S=GAM2*GAM2

K1=—CJ*GAML

K2=~CJ*GAM2
CST=-OMEGA*QMEGA*U0* (EP1-EF2) /TP
Cl=-CJ*OMEGAR*UQ/TP
C2=CJ*OMEGA* (EP1-EP2)
DX=Ar/NK

DY=BWM/NY

DX2=DX/2.

DY2=DY/2.
CPH=1,-PI/(14.*BET1*AM)

IF (ABS(CPH) .GT.1)GO TO 19
DPH=ACOS (CPH)
NEQ=1.+PL/(2.*DPH)

NEQ=2*NEQ

IF (NEQ. LT.6) NEQ=6

M=0

Y=~BM+DY2

DO 20 J=1,NY

X==AM+DX2

DO 22 I=1,NX

M=M+1

XM{M) =X

YM{M) =Y

X=X+DX

Y=Y4DY
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104

400

300

45

600

IF (IWR. BQ. 1) WRITE(10,3)

IF (IGROWD. EQ. 1) THEN

DO 104 M=1,NEQ

V(M) =VT (M)

END IF

CALL CROUT(Z,V,ICC,ISYM,IWRC,I12,NEQ)
IF(IFILD.EQ.0) GO TO 45

FIND FIELD INSIDE THE TUNNEL
WRITE(10,3)

WRITE(10,6)

DO 300 L=1,KK

Ez1=(C.,0.)

X=XM(L)

Y=YM(L)

IF(X.LT.0.0R.Y.LT.0) GO TO 300
DO-400 N=1,NEQ

FN=FA(N)

GN=CGA(N)

EXF=CEXP (-CJ*FN*X)

EXG=CEXP (-CT*GN*Y)
EZ1=FZ1+EXF*EXG*V (N)

RE=REAL (EZ1)

ATE=RAIMAG(EZ1)

PHASE=ATAN2 (AIE,RE) /CX
AMP=CABS(Ez1)
WRITE(10,7)X,Y,AMP,PHASE
CONTINUE

WRITE(10,3)

FIND SCATTERED FIELD

DO 500 JK=1,IBISS
IF(IBISS.GT.1)YLS=( (IBISS-1) /2+1~JK) *.0625
EzZS=(C.,0.)

DO 600 M=1,NEQ
IF(IBISS.GT.1) THEN

FM=FA (M)

GM=GA (M)

CALL SPCTRM(SUMT,0 ,IGROND)
A(M)=S0MT

IF(IGROND. EQ. 1) CALL SPCTRM(SUMT,1, IGROND)
IF (IGROND.FQ. 1) B{(M)=SUMr

END IF

EZS=EZS+V{M) * (A (M) 4B(M) )
EZS=-CST*2.*EZS

AZS=CABS(EZS)
IF(IGRCOMD. EQ. 0) THEN

RESO=SQRT (XLS*XLS+YLS*VLS)
RLSS=E0RT (XLS*XLS+YLSS*VLSS)
CALL MBKOZ (GAM2* (RLSO+RLSS) ,BK,-1)
EZI=BK*C1l )
AZI=CABS(EZI)

AZN=R7S/AZT

DB=20.*ALOGLO (AZN)

TYPES ,NEQ, MK, NY,FMC,DB, YLS
WRITE(10,8) NEQ, NX, NY,FMC, DB, YLS
GO TO 499

END IF :
TYPES,NEQ,NX, NY, FMC, AZS, YLS
WRITE (10,8) MEQ, NX, NY,FMC, AZS, YLS
IF(IBS.GT.1) I12=2
IF(IBS.BQ.1.AND. IBISS. Q. 1.AND. IFMC.EQ.1)GO TO 21
COMTINUE
IF(IGROND.EQ.1)WRITE(10,9)

IF (IGROND. EQ. 0) WRITE(10,10)
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0190
19l
€192
c193
0194
C195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210

HW oAU S WN -

o

FORMAT (5X, 'M' ,4X,'N',13X, ' ZMN' ,20X, 'DZMN' ,20X, ' ZIMN' 25X)
FORMAT (1X,215,8F12.6)

FORMAT (1HO)

FORMAT(5X, 'M',12X,' WM ',21X%,'DVM',21X,'VIM',21X)

FORMAT (1X,15,8F12.6)

FORMAT(5X,'X',9X,'Y',13X, 'AMPLITUDE' ,3X, 'PHASE')

FORMAT (1X,2F10.5,5X,2F12.6)

FORMAT (1X,315,6F12.6)

FORMAT(3X, 'NEQ',3X, 'NX',3X, 'NY? ,6X, '"FMC',9X, 'SAF')
FORMAT (3X, 'NEQ' ,3X, 'NX',3X, "NY*?,6X, 'FMC',9X, ' SAF!)

call getcp(it2)

time=(it2-it1)/100.

WRITE(10,*) 'ER1 & SIGl=',ER1,SIGL

WRITE(10,*) 'ER2 & SIG2=',ER2,S1G2

WRITE(J.O '*) 'M'l,Blemil}{IJSIYLS:' 'AWM[M‘,H“]XLS:YLS
write(10,*) ' cpu time=',time,'sec’

WRITE(10,%) ' RTUNLE. FOR'
write(10,*)ER1,SIGL,ER2,SIG2,FMC, NEQ, A, BWM, DM, ¥LS, VLS, TWR

&,IFILD, IBS, IBISS

STOP
END

FUNCTIONS AND SUBROUTINES REFERENCED

0001
0002
0003
0004
0005
0006
0007
0008
0009
go10
0011
6012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
6035
0036

31

SUBROUTINE SPCTRM(SUMT,I0123,IGROND)
COMPLEX GAM2S,GAM2,GAMOS,FQ,RC,F,F0,FF,SUML,SUM2,SUM3,SUMT -
COMPLEX FN,FM,GN,@4,CJ3,FF1,FF2,FF3,DSUM
REAL KO

COMMON /J1/GAM2S,GAM2 ,OMBGA, ER2,SIG2
COMMON FN,FM,GN,Q4,2AM,BM,DM,XLS, YLS
DATA PI,TP/3.14155265359,6.28318530718/
DATA E0,U0/6.85418533677E-12,1.25663706144E~6/
cJ=(0.,1.)

KO=CMEGA*SQRT (E0*U0)
GAM0S=-KO*K0*(1.,0.)

GC=OMEGA*SQRT (UO*ER2*EQ)

GCS=GC*GC

GL=GC/SQRT (2.)

SET UP FOR SUML & SuM2
IF(10123.LT.3)DEL~PI/10./ (AM+EM)
IF(10123.EQ.3)DEL~PI/10./ (AM+DM+EM)
NS=G1/DEL

IF(NS.LT.20) NS=20

NP=2%(N5/2)

DEL~G1/NP

NP=NP+1

DEL3=DEL/3.

som=(0.,0.)

soM2=(0.,0.)

DO 100 1=1,2

SIGN=1.

DO 100 J=1,NP

W= (3.-SIGN) *DEL3

IF(J.EQ.1.0R.J.BEQ.NP) W=DEL3
IF(I.BQ.2)GO T0 31

G=(J-1) *DEL

GO TO 33

B=(J-1) *DEL

BS=B*B
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0037
0038
0039
6040
0041
6042
0043
0044
0045
Co46
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
€076
0077
0078
0079
6080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0080
0091
0092
0093
0094
0095

0001

33

100

34

200
c
300

G=SQRT (GCS-BS)

GS=G*G

F=CSQRT (CAM2S+GS)

FO=CSQRT (GAMOS+GS)

IF (IGROND. BQ. 1) RC=(F-F0) / (F+F0)
IF(10123.5Q.0) FF=FF1(G,F) *CEXP (-F*XLS)
IF(10123.BQ.1)FF=FF1(G,F) *RC*CEXP (F* (~2, *DM+XLS) )
IF(10123.BQ.2) FF=FF2(G,F)
IF(10123.8Q.3)FF=FF3(G,F) *RC*CEXP (-2, *F*{1)
IF(SIG2.NE.C.AND, I.EQ.2) FQ=B/F
IF(SIG2.EQ.0.AND, I.BQ.2) FO=(0.,~1.)
IF(I.BQ.1) SUMI=SUMLHW*FF/F

IF(I.EQ.2) SUM2=SUM2HV*FF*FQ/G

SIGN=-SIGN

type*, 'npl=',np

ALPH1=10.*AMAX] (KO,GC,CABS(GANM2))

SET UP FOR SUM3 & SUM4

DELAL=DEL

NS=ALPH1/DELAL

IF(NS.LT.20)NS=20

NP=2* (NS/2)

DELAL~ALPH1/NP

NPT=NP/4

NP=NP+1

suM3=(0.,0.)

SIGN=1.

DELA3=DELAL/3.

IABORT=0

DO 200 I=1,NP

W1=3.-SIGN

W=1J1*DELA3

IF(I.EQ.1.0R.I.EQ.NP)W=DELA3

ALPHA=(I-1) *DELAL

ALPHS=ALPHA*ALPHA

G=SQRT (ALPHS+GCS)

GS=G*G

F=CSQRT (GAM2S+GS)

FO=CSQRT (CAMOS+GS)

IF (IGROND. BQ. 1) RC=(F~-F0) / (F+F0)
IF(10123.EQ.0) FF=FF1 (G, F) *CEXP (-F*YL8)
IF(10123.PQ.1)FF=FF1 (G, F) *RC*CEXP (F* (~2,*DM+XLS))
IF(I0123.EQ.2)FF=FF2(G,F)
IF(10123.EQ.3)FF=FF3 (G, F) *RC*CEXP (-2, *F*D!M)
IF(SIG2.NE.0) FQ=ALPHA/F
IF(S1G2.FQ.0)FQ=(1.,0.)

DSUM=W*FF*FQ/G

SUM3=SUM3+DSUM

IF(IABORT.BEQ.1) GO TO 300

IF(CABS(DSUM) .LT. (CABS(SUM3)/1000.) .AND. I.GT.NPT.AND.

&W1.EQ.4.) THEN

IABORT=1

#=DELA3

GO O 34

ED IF

SIGN=-SIGN

type*, 'np2=' ,np
SUMP=SUM1+SUM2+SUM3
RETURN

END
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CQMPLEX FUNCTION FF1(G,F)

COMPLEX FN,FM,GN,a&M,F,QJ,T1,T2,13,FMPF,Q0G, GIFG,S1,S2
COMMON FN,FM,GN,G1,AM,FM,DH,XLS, YLS

CJ=(0.,1.)

TYPE*, 'FF1,AM, RM, DM, XIS, YLS="' ,AM, BM,Di, XLS, YLS
FMPF=FM+CJ*F

AMG=Q-G

GPG=QI+G

S1=BM

IF (CABS(@MG) . GT.1.E~6) S1=CSIN(GMMG*BM) /GG
S2=RM .

IF(CABS(®PG) .GT.1.E~6) S2=CSIN{(GMPG*BM) /GMPG
T1=CSIN(FMPF*AN) /FMPF

T2=CEXP (-CJ*G*YLS) *S1

T3=CEXP (CT*G*YLS) *S2

FF1=T1* (12+13)

RETURN

END

COMPLEX FUNCTION FF2(G,F)

COMPLEX FN,FM,GN,G1,F,SNK1,SNK2, SNK3 ,SNK4, SNK5 , SNK6 , SNK7 , SNK8
COMPLEX EX1,EX2,T1,T2,T3,T4,T5,T6,C

COMELEX GNEG,GNMG, GPG, @G, FMFN, FNPF, FMMF , FMPF , FNMF
COMMON FN,FM,GN, GM, AM, BM, DM, XLS, YLS

TYPE*, 'FF2,AM,BM, DM, XLS, YLS=" ,AM,BM, DM, XLS, YLS
CI=(0.,1.)

GNEG=GN+G

GNMG=GN-G

QUEG=GMHG

GC=G1-G

FMEN=FM+FN

FNPF=FN+CT*F

FMME=FM-CJ*F

FMPF=FMCT*F

FNMF=FN-CJ*F

SNK1=EN

IF (CABS (GNFG) . GT. 1 . E~6) SNK1=CSIN (GNPG*EM) /GNPG
SNK2=BM

IF (CABS(@MG) .GT. 1.E-6) SNK2=CSIN(QMG*EM) /@G
SNK3=RM

IF (CABS (GNMG) .GT. 1 .E~6) SNK3=CSIN(GNMG*EM) /GNMG
SNK4=pM

IF (CABS(@IPG) .GT. L . E-6) SNK4=CSIN(GUPG*EY) /QMEG
SNKS=AM

IF (CABS(FMFN) .GT. 1 . E~6) SNK5=CSIN(FMFN*AM) /FMFN
SNK6=AM

IF (CABS (FMMF) .GT. 1 .E-6) SNK6=CSIN (FMMF*AN) /FMMF
SNK7=AM

IF (CABS (FMPF) .GT. 1 .E~6) SNK7=CSIN (FMPF*AN) /FMPF
SNK8=SNKS

EX1=MM

IF (CABS(ENPF) .GT. 1. E~6) EX1=CEXP (CJ*FNPF*AM) /FNPF
EX2=-AM

IF (CABS (FNMF) . GT. 1 . E~6) EX2=CEXP (~CI*FNMF*AN) /FNMF
TL=GNK1*SNK2

T2=SNK3*SNK4

T3=~SNK5/FNPF

TA=EX1*SNK6

T5=~EX2*SNK7
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0042
0043
.0044
0045

0001
0002
€003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034

T6=SNK8/FNMF

FF2=~CJ* (T1+4T2) * (T3 +T44T5+16)
RETURN

END

COMPLEX FUNCTION FF3(G,F}

COMPLEX FN,FM,GN,Q4,C3,F

COMPLEX SNK1,SNK2,SNK3,SMK4,SNKS,SNK6,T1,T2,T3
QOMPLEX FNPF,FMPF,GNEG,GTG, GNNG, QIPG

COMMON FN,FM,GN, Q4,AM, M, DM, XLS, YLS

TYPE*, 'FF3, A, R, D, XLS, YLS=" ,AM, BM, DM, XLS, YLS
CJ=(0.,1.)

FNPF=FN+CJ*F

FMPF=FM+CI*F

GNPG=GN+G

GMG=CM-G

GNMG=GN-G

QIFG=QHHG

TYPE*, 'G,F=',G,F

TYPE* , ' FNFF ,FMPF' ,ENPF, FMPF

SNK1=mM
IF(CABS(FNPF) .GT.1.E-6) SNK1=CSIN(FNPF*ANM) /FNFF
SNK2=mM
IF(CABS(FMPF) .GT.1.E~6) SNK2=CSIN(FMPF*AM) /FMPF
SNK3=EM

IF (CABS{GNFG) .GT.1.E-6) SNK3=CSIN(GNPG*BM} /GNEG
SNK4=BM

IF (CABS{@GMG) .GT.1.E-6) SNK4=CSIN(QMG*EM)} /QMMG
SNK5=BM )

IF (CABS(GNMG) .GT.1.E~6) SNKS=CSIN(GNNMG*BM)/GNMG
SNK6=EM
IF(CABS(@4PG) .CT.1.E-6) SNK6=CSIN(GMPG*BM) /QIFG
T1=SNK1*SNK2

T2=SNK3*SNK4

T3=SMK5*SNK6

FF3=T1* (T2+I3)

RETURN

END
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APPENDIX C

The program RTUNLH is based on the formulation given in Chapters IV

and VIII. A1l other descriptions are analogous to RTUNLE.
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0001 C This is program (RTUNLH.FOR) Rectangular TUNnel using
0002 C Hz-polarization with electric field formulation.
0003 c It uses Plane Wave Expansion Galerkin.

0004 C

0005 C WRITTEN BY JAMAL S. IZADIEN MARCH 1982.

0006 C

0007 COMPLEX A(25),V(25),DV(25),VT(25),%(25,25)
0008 COMPLEX FA(25),GA(25) ,B(25) ,HZ1,H21,H2S,GR
0009 COMPLEX SUMT,RMN,SMN,FN,FM,GN,@4,S1,52,FNFM, GINGM
0010 COMPLEX CST2,CST1,Cv1,CY,EP1,EP2,GANML,GAM2,GAM2S
0011 CCMPLEX C1,K1,K2,EXF,EXG,BK,BK1,ETAl,FTA2
0012 DIMENSION PHY (25),XM(500) ,¥M(500)

€013 COMON /JI/ GAM2S,GAM2,0MEGA,ER2,SIG2,EP2
0014 COMNON /JERK/ CST1,CST2,CSMN

0015 COMMON FN,FM,GN,CM,AM, BM, DM, XLS, YLS, CSN, SHN, CSM, SNM
0016 DATA PI,TP/3.14159265359,6.28316530718/

0017 DATA EO,U0/8.8541€533677E~12,1.25663706144E-6/
0018 DATA IWRC,ICC,I12,1SWM/0,25,1,0/

0019 READ(7,*)ER1,SIG1,ER2,S1G2,FMOIX, NEQ, AWM, BWM , DM, XL.S, YLS, TWR
0020 &,IFILD,IBS, IBISS, IFMC, IGROND, IZMN

0021 call getcp(itl)

0022 IF((A¥/2.) .GT.DM.OR.XLS.GT.Di1) GO TO 500

0023 WRITE(10,*)MAX (IBS, IBISS, IFNC)

0024 CJ=(0.,1.)

0025 CX=,0174533

0026 NY=1

0027 201 IF(IFMC.BQ.1) TYPE*, 'GIVE FNC,NEQ,NY='

0028 IF(IFMC.EQ.1) ACCEPT*, FMC,NEQ, NY

0029 . IF(FMC.LT.0)GO TO 500

0030 DO 500 JF=1,IFMC

0031 IF (IFMC.GT.1) FMC=JF*FMQX/FLOAT (1FMC)

0032 NX= (AWI/BiM) *NY

0033 AM=NI21/ 2.

0034 BM=BIM/ 2.

0035 OMEGR=TP*FNC*1.E6

0036 EP1~CMPLX (ER1*EQ,~SIG1/OMEGR)

0037 EP2=(MPLX (ER2*EO ,~SIG2/CMEGR)

0038 ETA1=CSQRT (G0/EP1)

0039 ETA2=CSQRT (U0/EP2)

0040 GRM1=OMEGA*CSQRT (-UO*EP1)

0041 BET1=ATNMAG (GAM1)

0042 GAM2=CMEGA*CSQRT (~U0*EP2)

0043 GAM2S=GAM2*GAM2

0044 K1=—CJ*GAML

0045 K2=-CJ*GAM2

0046 CST1=—CMEGA*CMEGA*UO* (EP1~EF2) /TP

0047 CST2=-(EP1-EP2)/ (TP*EP2)

0048 CVl=-1./(ETA1*PT)

0049 C1=CJ*OMEGA* (EP1-EP2) *ETA1/PI

0050 DX=AVM/NX

0051 DY=BwM/NY

0052 DX2=DX/2.

0053 DY2=DY¥/2.

0054 [ CPE=1.-PI1/(14 .*BET1*AM)

0055 C IF(ABS(CPH) .GT.1)GO TO 19

0056 C DPH=ACOS (CPH) :

0057 C NEQ=1.+PI/(2.*DPH)

€058 C NEQ=FEQ*2

0059 Cl9 . IF(NEQ.LT.6)NEQ=6

0060 M=0

0061 Y=-EM+DY2

0062 po 20 J=1,NY

0063 X=—BN+DX2
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0127
0128
6123
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
018l
0182
0183
0184
0185
01¢&6
0187
0188
0189

120

108

400

300

45

600

47

V(M) =CV1*suMT
IF(IWR.FQ.1)WRITE(10,5)M,V(M) ,DV(M) ,VT (M)
IF (TWR. FQ. 1) WRITE(10,3)

CALL CROWT(Z,V,ICC,ISYM,IWRC,112,NEQ)
IF (IWR. Q. 1) THEN

WRITE(10,3)

WRITE(10,10)

DO 108 M=1,NEQ
VRITE(10,5) M,V (M)
WRITE(10,3)

END IF

IF(IFILD.EQ.0) GO TO 45

FIND FIELD INSIDE THE TUNNEL
WRITE(10,3)

WRITE(10,6)

DO 300 L=1,KK

Hz1=(0.,0.)

X=XM(L)

Y=YM(L)

IF(X.LT.0.0R.Y.LT.0) GO TO 300
DO 400 N=1,NEQ

FN=FA(N)

GN=CA(N)

EXF=CEXP (~-CJ*FN*X)

EXG=CEXP (~CI*GI*Y)
HZ1=HZ1+EXF*EXG*V (N)

RE=REAL (HZ1)

AIE=AINAG(EZ1)

PHASE=ATAN2 (AIE,RE} /CX
AMP=CRBS(KZ1)

WRITE (10,7)X,Y,AMP, PHASE
CONTINUE

WRITE (10,3)

FIND SCATTERED FIELD

DO 500 JK=1,IBISS
IF(IBISS.GT.1) YLS=((IBISS-1)/2+1-JK) *.0625
HZs=(0.,0.)

DO 600 M=1,NEQ

IF (IBISS.GT.1) THEN

PH=PHY (M)

CSM=00S (FH)

SNM=SIN(EH)

FM=FA (M)

Q=GA (M)

CALL SPCIRM(SUMT,1,IGROND)
A(M)=SUMT

END IF

HZS=RZS+V (M) *A (M)

HZS=C1*HZS

A7S=CABS(HZS)

RLSO=SQRT (XLS*YL.S+YLS*YLS)
RLSS=SQRT (XLS*XLS+YLSS*YLSS)
GR= (RLSOHPLSS) *GAM2
IF(CABS(GR) .GT.80.) THEN
BR=CSQRT (.5*PI1/GR) *CEXP (-GR)
CO TO 47 :

END IF

CALL MBKOZ (GR,BK,~1)

RZI=BK* (-GAM2/ETN2/TP)
AZI=CABS(KZI)

AZN=AZS/AZT
IF(IWR.EQ.1)WRITE(10,*) 'AZS=" ,AZS
IF (IWR. EQ.1)WRITE(10,*) 'AZI=" ,AZX
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0180 DB=20.*ALOG10 (AZN)

191 IF(IBS.GT.1)112=2

0192 TYPES ,NEQ, NX, NY, FMC, DB, YLS

0193 WRITE(10,8) NEQ,NX,NY,FMC,DB, YLS

0194 IF (IFMC.BQ.1.AND. IBS. EQ. 1 .AND. IBISS. BQ.1)GO TO 201
0195 500 CONTINUE

0196 WRITE (10,9)

0197 1 FORMAT(5X,'M' ,4%,'N',13%, 'ZMN' ,24X, 'DZ¥N' , 26X, ' 2TMN' 25X)
0198 2 FORMAT(1X,215,8(2X,G12.6) )

0199 3 FORMAT (1HO)

0200 4 FORMAT(5X, 'M',13X,' WM ',25X,'DVM',23X, 'VIH',21X)
0201 5 FORMAT (1X,15,6(2X,G12.6))

02062 6 PORMAT(9X, *X',9%, 'Y’ ,13X, 'AMPLITUDE' ,3X, 'PHASE')
0203 7 FORMAT(1X,2(2X,G10.5) ,5%,2(2X,G12.6) )

0204 8 FORMAT(1X,315,6F12.6)

0205 9 FORMAT (3X, "NEQ' ,3X, 'NX',3X, 'NY' ,6X, '"FMC' ,9X, 'SAF')
0206 10 FORMAT(5X,'M',18X,' A ')

0207 call getcp(it2)

0208 time=(it2-it1)/100.

0209 WRITE(10,*) 'ER1 & SIGl=',ER1,SIGl

0210 WRITE(10,*) 'ER2 & SIG2=',ER2,SIG2

0211 WRITE(10,*) ' AWM, BWM, DM, XLS, YLS=' , AWM, BWM, D1, XLS, YLS
0212 write(10,*) * cpu time=',tinme,'sec’

0213 WRITE(10,*) 'RTUNLH.FOR®

0214 write(10,*)ER1,SIGl,ER2,SIG2,FMC, NEQ, AWM, BIiM, DM, XIS, YLS , TWR
0215 &, IFILD,IBS, IBISS

0216 STOP

0217 END

FUNCTIONS AND SUBROUTIMES REFERENCED

0001 Cc

0002 SUBROUTINE SPCTRM(SUMT,I112,IGRCND)

0003 COMPLEX GRM2S,GAM2,GAMOS,FQ,RC,F,F0,FF,SUML,SUM2,SUM3,SUMT
0004 COMPLEX FN,FM,GN,@1,CJ,FF1,FF2,FF3,EP2,DSUM
0005 REAL KO

0006 COMMON /J1/GRM2S, GAM2 ,0MEGA, ER2,51G2,EP2

0007 COMMON FN, FM,GN, G4, AM,BM,DM, XLS, YLS, CSN, SNN, CSM, SMM
0008 DATA PI,TP/3.14159265359,6.28318530718/

0008 DATA EO,U0/8.85418533677E-12,1.25663706144E-6/
0010 cJ=(0.,1.)

0011 KO=OMEGA*SQRT (E0*U0)

0012 GAMOS=-K0*K0*(1.,0.)

0013 GC=OMEGA*SQRT (UO*ER2*E0Q)

0014 GCS=GC*CC

0015 G1l=GC/SORT(2.)

0016 C SET UP FOR SUM1L & SUM2

0017 C IF(I12.LT.3)DEL=P1/10./ (AM+EM)

0018 DEL=PI/10./ (AMADM+EM)

0019 NS=G1/DEL

0020 IF{NS.LT.30) NS=30

0021 NP=2* (NS/2)

0022 DEL~GL/NP

0023 NP=NP+1

0024 DEL3=DEL/3.
- 0025 suMi=(0.,0.)

0026 . sum2=(0.,0.)

0027 DO 100 1=1,2

0028 SIGN=1.

0025 DO 100 J=1,NP

0030 v=(3.-SIGN) *DEL3
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(031
0032
0033
0034
0035
0036
0037
0038
0039
0040
6041
C042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086

0001
0002
0003

31

33

100

200
300

IF(J.EQ.1.0R.J.EQ.NP) W=DEL3

IF(1.BQ.2)G0 TO 31

G={(J~1) *DEL

GO 10 33

B=(J-1) *DEL

BS=B*B

G=SQRT (CCS-BS)

GS=G*G

F=CSQRT (GAM2S+GS)

FO0=CSQORT (GAMOS+GS)

RC=(EQ*F~EP2*F(0) / (EO*F+EP2*F0)

IF(I12.B0.1)FF=FF1(G,F)* (CEXP (-F*¥LS) +IGROND*RC
&*CEXP (F* (~2. *DM+XLS) ) )

IF(112.EQ.2.AND, IGROND. BQ. 1) FF=FF3 (G, F) *RC*CEXP (-2. *F*[M)

IF(112.8Q.2) FF=FF2(G,F) +IGROND*FF

IF(SIG2.NE.0.AND.I.BQ.2)FQ=E/F

IF(SIG2.FQ.0.AND.I.EFQ,2) FQ=(0.,~-1.)

IF(1.EQ.1) SUMI=SUML+W*FF/F

IF (1. EQ, 2) SUM2=SUM2+W*FF*FQ/G

SIGN=-SIGN

type*, 'npl=',np

ALPH1=10.*AMAX1 (K0,GC,CABS(GAM2) )

SET UP FOR SUM3 & SUM4

DELAL=DEL

NS=ALPH1/DELAL

IF(NS.LT.30) NS=30

NP=2* (NS/2)

DELAL=ALPH1/NP

NP=NP+1

SuM3=(0.,0.)

SIGN=1.,

DELA3=DELAL/3.

DO 200 I1=1,NP

W=(3.~SIGN) *DELA3 .

IF(I.EQ.1.0R.I.BQ.NP)W=DELA3

ALPHA=(I-1) *DELAL

ALPHS=ALPHA*ALPHA

G=SQRT (ALPHS+CCS)

GS=G*G

F=CSQRT (GAM2S+GS)

FO=CSQRT (CAMOS+GS)

RC=(EQ*F~EP2*F0) / (EQ*F+EP2*F()

IF(I12.EQ.1)FF=FF1(G,F) * (CEXP (~F*XLS) +IGRCND*RC
&*CEXP (F* (=2, *Di+XLS) ) )

IF(I12.EQ.2.AND. IGROND, EQ. 1) FF=FF3 (G, F) *RC*CEXP (-2, *F*DM)

IF(112.BQ.2)FF=FF2(G,F) +IGROND*FF

IF(SIG2.NE.0) FQ=ALPHA/F

IF(SIG2.EQ.0)FO=(1.,0.)

DSUM=IPAFF*FQ/G

SUM3=SUM3+DSUM

IF(CABS{DSUM) .LT. (CABS(SUM3) /1000.) )CO TO 300

SIGN=~-SIGN

type*, 'np2=',np

SUMr=SUML+SUM2+S0M3

RETURN

END

COMPLEX FUNCTION FF1(G,F)
COMPLEX FN,FM,GN.@&!,F,CJ,T1,T2,73,FMPF,QMG,QIPG,S1,52
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0004
€005
0006
0007
0008
G009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
Llipat
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041

COMPLEX CSY,SNY
COMdCN FY, FM, GN, Q4, AM, EM, Db, XS, YLS, CSN, SNtd, CSM, SNM
cJ=(C.,1.)
FMPF=FM+CI*F
GMG=Qi-G
GUPG=QG
S1=BM
IF(CABS(G@1G) .GT.1.E-6) S1=CSIN(QTG*BM) /QTG
S2=BM
IF(CABS(@IFG) .GT.1.E-6) S2=CSIN(QIFG*EM) /QTG
T1=CSIN{FMPF*AM) /FMPF
T2=CEXP (-CI*G*YLS) *S1
T3=CEXP (CJ*G*YLS) *S2
CSY=T2+I3
==CJ* (T2-T3)
FF1=T1* (SNM*GASNY-CSM*F*CSY)
RETURN
END

COMPLEX FUNCTION FF2(G,F)

COMPLEX FN,FM,GN,Q1,F,SNK1,SNK2,SNK3,SNK4,SMK5 , SNK6 , SNK7 , SNK8
COMPLEX EX1,EX2,T1,T2,T3,74,T5,T6,CJ,FXE,FX0,SNY,CSY,PEX,EXM
COMPLEX EXBM,EXBP,SYBM,SYBP,CSBM,CSBP,S1,S2,83,54,853,56,57,S8
COMPLEX EXBMN,EXBPN,CST1,CST2,F1,F2

COMPLEX GNPG,GNMG,@MPG,QN4G,FMFN, FNEF,FMMF , FMEF , FNMF
coMMoN EN, FM,GN, G4, AM, BM, DM, XIS, YLS, CSN, ST, CSM, SNM
COMMON /JERK/ CST1,CST2,CSMN

aJ=(0.,1.)

GNPG=GN+G

CNMG=GN-G

GHMPG=GHHG

GUMG=GM-G

FMFN=FM+FN

FNPF=FN+CJ*F

FMMF=FM-CJ*F

FMPF=FM+CT*F

FNMF=FN-CJ*F

SNK1=EM
IF(CABS(GNEG) .GT.1.E~-6) SNK1=CSIN(GNEG*BM) /GNEG
SNK2=BM
IF(CABS(@MMG) .GT.1.E~6) SNK2=CSIN (GMG*BM) /GG
SNK3=RM

IF (CABS(GNMG) .GT. 1 .E~6) SNK3=CSIN (GNMG*BM) /GNMG
SNK4=BM

IF (CABS(@1EG) .GT.1.E~6) SNKA=CSIN (GFG*EM) /QIFG
SNKS5=nM
IF(CABS(FMEN) .GT.1.E~6) SNK5=CSIN (FMFN*AM) /FMFN
SNK6=AM
IF(CABS(FMMF) .GT.1.E~6) SNK6=CSIN(FMME*AM) /FMMF
SNK7=nM

IF (CABS(FMPF) .GT.1.E~6) SNK7=CSIN (FMPF*AM) /FMPF
SNK8=5NK5

EX1=CEXP (CI*FNPF*AM) /FNPF

EX2=CEXP (~CI*FNME*AM) /FNMF

T1=SNK1*SNK2

| T2=S1K3*SNK4

T3=5MK5/FNPF
T4=EX1*SNK6
T5=EX.2*SNK7
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0042 T6=CtK8/FNNF

0043 FXE=CJ* (T3-T4+T5-T6)

€044 FXO=CJ* (13-T4-T5+16)

€045 CSY=T1+T2

0046 SNY=-CJ*(T1-T2)

0047 F1=FXE*CSY*CST1*CSMN*4.

0048 EYBMN=CEXP (~CI*GN*EN)

€049 EXBPN=CEXP (CJ*GN*BM)

0050 EXBN=CEXP (-CIJ*G*BM)

G051 EXBP=CEXP (CT*G*R)

0052 SYRM=-CJ* (EXBM*SNK2-EXEP*SNK4)

0053 SYBP=-CJ* (EXBP*SRK2~EXEM*SNK4)

0054 CSEM=EXEM*SNK2+EXBP*SNK4

0055 CSBP=EXBP*SNK2+EXBM*SNK4

0056 EXM=CEXP (~CI*FNMF*AM)

€057 PEX=CEXP (CT*FNPF*AN)

0058 S1=4 . *EYM*SNK7*SNY

0059 §2=—4 . *EXM*SNK7*CSY

0060 53=2 . *EXBMN*FXE*SYRM

0061 S4=2 . *EXBMN*FXO*CSB!

0062 55=4 . *PEX*SNK6*SNY

0063 S6=4 . *PEX*SNK6*CSY

0064 S7=2.*EXBPN*FXE*SYBP

0065 $8=2 . *EXBPN*FXO*CSBP

0066 c WRITE(8,*) 'F,G,SNY=',F,G,SNY

0067 C WRITE (8,*) 'CSN, SNN, CSM, SNv=" ,CSN, SNN, CSH, SNM
0068 c WRITE(8,*) 's1,S5=',51,55

0069 C WRITE(8,%*) 'S2,86=',52,56

0070. C WRITE(8,*) 's3,57=',53,87

0071 C WRITE(8,*) 'S4,58=',54,S8 .
0072 F2=-SNN*CSM*G* (S1~55) +SNN*SNMAF* (S2~86) +CSN*CSH*G* (S3-57)
0073 &-CSN*SNM*F* (S4~S8)

0074 F2=F2*CST2

0075 FF2=F1+F2

0076 C WRITE(8,*) 'FF2=' ,FF2

0077 RETURN

0078 END

0001 C

0002 COMPLEX FUNCTION FF3(G,F)

0003 COMPLEX FN,FM,GN,&4,CJ,F,CST1,CST2

0004 . COMPLEX SNK1,SHK2,SNK3,SNK4,SNK5,SNK6,T1,T2,T3
0005 CCMPLEX FNPF,FMPF,GNPG, GG, GNMG , GHEG, SNY,CSY
0006 COMMOW FN,FM,GN,GH1,AM,BM, DM, XLS, YLS, CSH, SNN, CSM, SNM
0007 COMMON /JERK/ CST1,CST2,CSMN

0008 cJ=(0.,1.)

0009 FNPF=FN+CJ*F

0010 FMPF=FM+CJI*F

0011 GNPG=GN+G

0012 GMG=G1-G

0013 GMMG=GN~G

0014 QIPG=Gli+G

0015 SNK1=AM

0016 IF (CABS(FNFF) .GT.1.E-6) SNK1=CSIN(FNPF*AM) /FNPF
0017 SNK2=1M

0018 IF(CABS(FMPF) .GT.1.E~6) SNK2=CSIN(FMPF*AM) /FMPF
0019 SNK3=pM

0020 IF (CABS (GNFG) .GT. 1 .E-6) SNK3=CSIN{(GNPG*BM) /GNFG
0021 SNK4=EM
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0022
0023
0024
0025
0026
0027
0028
0029
0030
6031
0032
0033
0034
0035
0036

IF(CAES(@DG) .GT.1.E-6) SKK4=CSIN (QTG*EN) /GG
SNK5=BM

IF{CABS(GIMG) . CT.1.E-6) SNK5=CSIN (GNNG*EM) /GG
SNK6=EM

IF (CABS (QMEG) .GT. 1 .E-6) SNK6=CSIN(QPG*BM) /QIPG
T1=SKR1*SKK2

T2=SMK3*SNK4

T3=SK5*SNK6

CSY=T12+13

SNY=—-CJ* (12-~T3)
FF3=(SNN*SNM*G*G+CSN*CSM*F *F') *CSY
FF3=FF3-+(SNN*CSM~CSN*SNM) *F*G*SNY
FF3=T1*FF3*CST2*8.

RETURN

END
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APPENDIX D

Program RCYLHGP is the same as RTUNLH, except it does not include

the air-earth interface, and it can model plane wave incidence.
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[eXeNeNeleXeXke K2 o K2l

201

LINK WITH CROUT & MBEZ10

THIS PROGRAM (RCYLHGP.FOR) USES TRAVELING PLANE WAVE EXPANSION AND
GALERKIN METHOD TO CALCULATE 1THE SCATTERING ATTENUATION

FUNCTION OF A LOSSY DIELECTRIC INFINITE RECTANGULAR CYLINDER,

FOR A MAGNETIC LINE SOURCE PARALLEL TO AXIS OF THE CYLINDER.

THE CYLINDER IS LOCATED IN A LOSSY HOMOGINEOUS MEDIULM.

WRITTEN BY JAMAL IZADIAN MARCH. 1982.

CQMFLEX C(25) ,A(25),FA(25) ,GA(25) ,FNEE(25),Z(25,25) ,V(25)
COMPLEX FMEE(25) ,FMXP,QIYP,EGXP,EGYP, sumc, sums

COMPLEX GC,VEE, BGYL ,BGXL, BEGX1, FNXI,,GNYL,, SEE, HZ1 ,H2S
COMPLEX SUMT,RMN,SMN,FN,FM,GN, Q1,81 .5S2,FNFM, GNGHM,HZI
COMFLEX CST2,CSsTl,Cv1,CT,EP1,EP2,GAML,GAM2, GANM2S,GR
COMPLEX C1,CI,K1,K2,BI,BIl1,BK,BK1,ETAL,ETA2,DET
DIMENSION PHY(25) ,XM(1000),YM(1000) ,LL(25) ,MM(25)

INTEGER P

QOMMON /JI/ GAM2S,GAM2,0MEGA,ER2,SIG2,FP2

COMMON /JERK/ CST1,CST2,CSMN

coMvoN FN, FM,GN, M, AM,EM, DM, XLS, YLS, CSH, SNN, CSM, SNM

DATA PI,TP/3.14159265359,6.283168530718/

DATA EC,U0/8.85418533677E-12,1.25663706144E-6/

DATA IWRC,ICC,I12,ISYM/0,25,1,0/

call getcp(itl)

CJ=(0.,1.)
READ(7,*)ER1,SIGl,ER2,SIG2,FMCMX, AWM, BWM, DM, XL.S, YLS, IWR, IFILD, IWRC

&,IPV]. IBS, IBISS, IFMC, IEQ, IGRAND, IZMN

PHI=ATAN2 (YLS,XLS)/.0174533
RLS=SQRT (XLS*XLS+YLS*YLS)

WPH=FHI

WRITE (10,*) MAX (IBS, IBISS, IFMC)
CX=.0174533 .
IF(IEQ.EQ.0) TYPE*, 'GIVE NEQ & NY='
IF(IEQ.BQ.0) ACCEPT*,NEQ,NY
IF(IFNC.BEQ. 1) TYPE*, 'GIVE FMC='
IF(IFMC.BQ. 1)ACCEPT*,FMC
IF(FMC.LT.0)GO TO 500

DO 500 JF=1,IFMC
IF(IFMC.GT. 1) FMCIF*FMQIX/FLOAT (IFMC)
AM=A/2.

BM=EVM/ 2.

OMEGA=TP*FMC*1.E6
EP1=CMPLX (ER1*EQ ,~SIGL/QMEGA)
EP2=(MPLX (ER2*EQ ,~SIG2/0MEGA)
ETA1=CSQRT (U0/EP1)

ETA2=CSQRT (UQ/EP2)
GAM1=OMEGA*CSQRT (-UO*EP1)
BET1=AINMAG (GAML)

GAM2=OMEGA*CSQRT (~UO*EP2)
GAN2S=GNM2*GAM2
WAV2=300./ (SQRT (ER2) *F}NC)
WAV1=300./ (SQRT (ER1) *F¥C)
K1=—CJ*GAM]

K2=-CJ*GAM2
CST1=-OMBGA*OFEGA*U0* (EP1~EP2) /TP
CST2=-(EP1-EP2) / (TP*EP2)
CV1=-GAM2/ (ETA1*TP)

C1=CJI*CMEGA* (EP1-EP2} *GAM2*ETA1/TP
CI=—CJ*OMEGA*EP2/TP

TYPE*, '20I=", (AWM/VAV1)
IF(IEQ. BQ. 1) THEN
NY=15.*BETL1*AN/PI
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0064
0065
€066
0067
0068
G069
€070
€071
0072
0073
0074
0075
0076
0077
0078
€079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
c0s0
0091
0092
0093
0094
0095
0036
0097
0098
0099
c100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126

19

22
20

90

92

IF(NY.LT.8.AND. IEQ. EQ. 1) NY=8
CPH=1.-PI/(14.*BET1*AM)
TYPE*, 'CPh=",CPH
IF(ABS(CPH) .GT.1)GO TO 19
DPH=£COS (CPH)
NEQ=1.+P1/(2.*DPH)
IF(NBQ. LT. 6) NEQ=6
NEQ=NEQ#*2+2
END IF
Ny=2* (NY/2)
NY=NY
NX=INT (AM/E}M) *NY
NX=(NR/2) *2
DX=ARH/NX
DY=B:{M/NY
DX2=DX/2.
DY2=DY/2.
DXY=DX*DY
M=
=-BM+DY2
DO 20 J=1,NY
X=-AM+DX2
DO 22 X=1,NX
M=M+1
XM =X
YM(M) =Y
X=X+DX
Y=Y+DY
KK=M
IF(KK.GT.1000) GO TO 500
DPH=TP/NEQ
DO 90 J=1,NEQ
PH=(J-1) *DPH
PHY (J)=PH
FA(J) =K1*C0S (FH)
GA(J)=K1*SIN(PH)
IF(1ZMN. BQ. 0) THEN
DO 92 M=1,NEQ
DO 92 N=M,NEQ
READ(8,2)1,d,2(1,d)
GO TO 404
END IF
IF (IWR.EQ.1)VWRITE(10,1)
CO 100 M=1,NEQ
PHM=PHY (M)
CSM=C0S (PHM)
SNM=SIN(PHM)
FM=FA (M)
Q@i=GA (M)
DO 200 K=M,NEQ
PHN=FRY (N)
CSN=COS (PHN)
SINN=SIN(PHN)
CSHN=COS (PHM~PHN)
FN=FA ()
GN=GA(N)
FNFH=FN+FM
GNGM=GNHG
Sl=aM
S2=BM
IF (CABS(FNFM) .GT.1.E~6) S1=CSIN (FNFM*AM) /FNEM
IF (CABS(GNGM) .GT.1.E-6) S2=CSIN (GNG*BM) /GNGM
RMN=4.*S1*S2*CSHN
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0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0252
0293
0294
0295
0296
0297
0228
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311

0001

290 A(N) =A(N) +BKL*FNEE (N} *CCS (PHN--FH)
END IF
292 HZS=RZS+V{(N) *A(N)
HZS=C1*HZS*DXY
IF (IPW.BQ. 1) HZS=HZS*CSQRT (. 5*P1/GNMN2)
AZS=CABS(HZS)
IF (IWR.EQ.1)WRITE(10,*) 'A2S=' ,AZS
EWL~TP*AZ S*AZS/VIAV2
DB=.0
C FIND THE MORMALIZED SCATTERING ATTENUATION FUNCTICN
IF(IF.BQ. 0) THEN
GR=2.*GAM2*RLS
IF(CABS(GR) .GT.80) THEN
RK=CSORT (. 5*PI/GR) *CEXP (~GR)
GO TO 555
END IF
CALL MBEZ10(CR,BI,BK,EI1,BK1,0,-1)
555 HZI=CI*BK
TYPE*, 'HZI=',HZI
AZI=CABS (HZ2I)
IF (IWR.BQ.1)WRITE(10,*) 'AZI="' ,AZI
AZN=RZS/AZI '
IF(AZN.NE.0.)DB=20,*ALOG10 (AZN)
TYPESY,NEQ, MX, NY, FMC, DB, PFHI
WRITE (10, 9) NEQ, NX, NY, FMC, DB, PHI
GO To 599
END IF
TYPES,NEQ, NX, NY, FMC, EWL.FHI
WRITE(10,9) NEQ, NX, NY, FMC, EWL, PHI
599 IF(IBS.BQ.1.AND. IBISS. EQ.1.AND, IFMC.EQ.1)GO TO 201
IF(IBS.GT.1)I12=2
500 CONTINUE
600 CONTINUE
IF(IPW.EQ.1)WRITE(10,14)
IF(IFV.BQ.0) WRITE(10,13)
WRITE(10,3)
WRITE(10,%)' ER1 & SIGl =',ER1,SIGl
WRITE(10,*)' ER2 & SIG2 =',6FR2,S51G2
WRITE(10,%) ' AWM & EWM =' , AW, BWM
WRITE(10,*) °'RLS=',RLS, 'PHI=',WPH
call getcp(it2)
time=(it2-it1)/100,
WRITE(10,*) ' CPU TIME (SEC) =',TIME
TYPE*,' CPU TIME (SEC) = ',TINE
WRITE(10,*) ‘RCYLHGP.FOR'
1 FORMAT(5X, 'M' ,4X, 'N' ,13X, '2MN' , 24X, 'DZMN' , 26X, ' 2THN"® 25X)
2 FORMAT (1X,215,8(2X,G12.6))
3 FORMAT (1HO)
4 FORMAT(5X, 'M',13X,' W ',25X, 'DUM',23X, 'vIM',21X)
5 FORMAT (1X,15,6 (2X,G12.6))
6 FORMAT (5X, 'M',18%,' A ')
8 FORMAT(SX, 'X',9X, "Y' ,13X, ' AMPLITUDE' ,3X, 'PHASE"')
9 FORMAT(1X,315,6F12.6)
11 PORMAT(1X,2(2X,G10.5) ,5X,2(2X,G12.6))
13 FORMAT (3X, 'NEQ',3X, 'NX',3X, 'NY' ,6X, 'FMC',9X, 'SAF' ,9X, '"PHI")
14 FORMAT (3X, 'NEQ' ,3X, 'NX',3X, 'NY' ,6X, 'FMC',9X, 'EML' ,9X, 'PHI')
CALL EXIT
STOP
END
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0002 SUBROUTINE SPCTRM(SUMT,10123)

0003 CQMFLEX GAM2S,GANZ,GANMOS,FQ,RC,F,FO,FF, UM, SUM2,SUM3, SUMT
0004 COrFLEX FN,FM,GN,Q4,CJ,FF,FF2,FF3,EP2,DSUM
0005 REAL KO

0006 COMMON  /JI/GAM2S, GANMZ , O +ER2,SIG2,EP2
0007 COMMON FN,FM,GN,Q1,AM,BM, DN, XLS, YLS, CSH, SNN, CSM, StiM
0008 DATA PI,TP/3.14159265359,6.28318530718/
0009 DATA EO,U0/8.85416533677E-12,1.25663706144E-6/
0010 Cc3=(0.,1.)

0011 KO=0MBEGA*SQRT (EO*C0)

c012 GAMOS=-K0*K0*(1.,0.)

0013 GC=CHEGA*SQRT (CO*ER2*EQ)

0014 GCS=CC*GC

0015 G1=GC/SQRT (2.)

0016 C SET UP FOR SUMl & SUM2

0017 IF(10123.LT.3)DE~PI/10./ (RM+EHM)

0018 IF(10123.50.3)DEL~P1/10./ (AM+IM+EM)
0015 N5=G1/DEL

0020 IF(NS.LT.20) NS=20

0021 NP=2* (NS/2)

0022 DEL=G1/NP

0023 NP=NP+1

0024 DEL3=DEL/3.

0025 suMl=(0.,0.)

0026 SuM2=(0.,0.)

0027 DO 100 I=1,2

0028 SIGN=1.

0029 DO 100 J=1,NP

0030 W=(3,-~SIGN) *DEL3

0031 IF(J.BEQ.1.0R.J.FQ.NP) W=DEL3

0032 IF(I.BQ.2)G0 TO 31

0033 G=(J-1) *DEL,

0034 GO TO 33

0035 31 B=(J-1) *DEL,

0036 BS=B*B

0037 G=SQRT (CCS-BS)

c038 33 GS=G*G

0039 F=CSQORT (CAM2S+GS)

0040 F0=CSQRT (GAMOS+GS)

0041 IF(10123.6Q.2)FF=FF2(G,F)

6042 IF(SIG2.NE,0.AND. I.BEQ. 2) FQ=B/F

0043 IF(SIG2.EQ.0.AND. 7.BQ.2) FO=(0.,-1.) “
0044 IF(1.EQ.1) SUML=SUMLHT*FE/F

0045 IF(I.EQ. 2) SUM2=SUM2-HT*FF*FQ/G

0046 100 SIGN=-SIGN

0047 C type*, 'npl=',np

0048 FACT=5.

0049 ALPH1=FACT*AMAX1 (KO, CC, CABS(GANM2) )

0050 C SET UP FOR SUM3 & SUM4

0051 DELAI~=DEL

0052 NS=ALPH1/DELAL,

0053 IF(NS.LT.20)NS=20

0054 NP=2* (NS/2)

0055 DELAL=RLPH1/NP

0056 NPT=NP/4

0057 NP=NP+1

0058 C type*,'np & npt =',np,npt

0059 SUM3=(0.,0.)

0060 : SIGN=1.

0061 C IABORT=0

0062 DELA3=DELAL/3.

0063 DO 200 I=1,NP

0064 Wl=3.-SIGN
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0065
0066
6067
0068
0069
0070
€071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090

W=W1*DELA3
IF(I.BQ.1.0R.T.E).NP)W=DELA3
34 ALPHA=(1-1) *DELAL
C type*,'i & w =',i,w
ALPHS=ALPHA*ALPHA
G=SQRT (ALPHS+GCS)
GS=G*G
F=CSQRT (CAM2S+GS)
FO=CSQRT (GAMOS+GS)
IF(10123.EQ. 2) FF=FF2(G,F)
IF(SIG2.NE.0) FQ=ALPHA/F
IF(SIG2.EQ.0)FQ=(1.,0.)
DSUM=IPFF*EQ/G
SUM3=SUM34DSUM
IF(IABORT.BQ.1) GO TO 300
IF(CABS(DSUM) .LT. (CABS(SUM3) /1000.) .AND.I.GT.NPT.AND, W1 .EQ.4.
&) THEN
IABORT=1
W=DELA3
GO To 34
BD IF
SIGN=-SIGN
type*, 'np2=',np
SUMT=SUML +SUM2+SUM3
RETURN
END

OgOGOOGOO
o

w
(=3
(=]

FUNCTIONS AND SUBROUTINES REFERENCED

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032

COMPLEX FUNCTION FF2(G,F)

COMPLEX FN,FM,GN,Q@1,F,SNK1,SNK2,SNK3,SNK4,SNKS, SNK6 , SHK7 , SNK8
COMPLEX EX1,EX2,T1,T2,T3,T4,T5,T6,CJ.FXE,FX0,SNY,CSY, PEX, EXM
COMPLEX EXBM,EXBP,SYBM,SYBP,CSBM,CSBP,S1,S2,S3,54,55,56,57,58
COMPLEX EXEMN, EXBPN,CST1,CST2,F1,F2

COMFLEX GNEG,GNMG, GMFG ,GMG, FMEN, FNEF , FMMF , FMPF , FNME

COMMON FN,FM,GN,GM,RM,EM,DM, XS, YL.S, CSN, SNN, CSM, SNM

COMMON /JERK/ CST1,CST2,CSHN

CJ=(0.,1.)

GNEG=GM+G

GNMG=GN-G

QEG=QHG

GQMG=E1-G

FMEN=FM+FN

FNPF=FN+CJ*F

FV¥MF=FM-CJ*F

FMPP=FM+CI*F

FNMF=EN~CJ*F

SNK1=BM

IF (CABS(GNFG) . GT.1.E-6) SNK1=CSIN (GNPG*EM) /GNFG

SNK2=EM

IF (CABS(GT'G) . GT. 1 .E~6) SNK2=CSIN (GG *EM) /QT'G

SNK3=BM :

IF (CABS(GNNG) .GT. 1.E~6) SNK3=CSIN (GNNG*BM) /GIMG

SNK4=EM

IF(CABS (GMPG) .GT. 1.E~6) SNK4=CSIN (QIEG*EM) /GHPG

SNK5=nM

IF (CABS(FMEN) .GT.1.E-6) SNKS5=CSIN(FMFN*AM) /FMFN

SNK6=2M

IF (CABS (FMMF) .GT.1.E~6) SNK6=CSIN (FMMF*AM) /FMMF
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APPENDIX E

Subroutine SMRFLNZ2 is based on the formulation of Section E in
Chapter V. The program uses Figure 5-3 as its model. The evaluated
integral is output as SUMT. The rest of the inputs are self

explanatory.
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31

33

SUBROUTINE SMRFLD2(X,Y,XP,YP,D,ER2,SIG2,FMC,I01,SUMT)

THIS IS PROGRAM (SMRFLD2.FOR) WHICH USES SIMPSON'S

RULE TO INTEGRATE A SUMMERFELD INTEGRAL FRQM ZERO TO INFINITY.
IT CAN BE USED TO TEST A MODIFIED BESSEL FUNCTION K0(Z)

IF 101= 1 RC IS THE ELECIRIC REF. COEF.

IF 101=-1 RC IS THE MAGNETIC REF. COEF.

IF 101= 0 RC IS = 1.

IF 101> 1 RC IS =-1.

PROGRAM WRITTEN BY JAMAL S. IZADIAN NOV.-81

COMPLEX GRM2S,GAM2,F,FF,SUML,S0M2,SUM3, SUM4, SUMT, EP2
COMPLEX S1,S2,S3,GAM,CGAMOS,FQ,CL,FO,RC,EF,C2,AN, EXAA, 2
REAL KO

DATA PI,TP/3.14159265359,6.28318530718/
DATA EO0,U0/8.85418533677E~12,1.25663706144E-6/
IF(1aBS{101) .GE.1) ARG=2.*D-X-XP

IF (IABS(I01) .EQ.0) ARG=ABS (X-XP)
OMEGA=TP*F}C*1.E6

KO=CMEGA*SQRT (EC*U0)
GAMOS=-KO0*K0*(1.,0.)
EP2=CMPLX (ER2*E0 , ~SIG2/OMEGA)
GAM2S=-OHEGA*CHMEGA*U0*EP2

GAM2=CSQRT (GAMN2S)
C1=(0.,-1.)*OMEGA*U0/TP

GC=QMEGA*SQRT (UO*ER2*EQ)

GCS=CC*GC

C2=((0.,1.) *OMEGA*U0*SIG2-+GANOS-GCS) /8.
Gl=CGC/SQRT (2.)

SET UP FOR SUML & SUM2

DEL~P1/10./ (RRG+Y~YP)

NS=G1/DEL

IF(NS.LT.40) NS=40

NP=2* (NS/2)

DEL~G1/NP

NP=NP+1

DEL3=DEL/3.

suMi=(0.,0.)

sum=(0.,0.)

DO 100 1=1,2

SIGN=1.

DO 100 J=1,NP

W=(3.-SIGN) *DEL3

IF(J.EQ.1.0R.J.BEQ.NP) W=DEL3
IF(I.EQ.2)C0 TO 31

G=(J-1) *DEL

GO TO 33

B=(J-1) *DEL

BS=B*B

G=SQRT (CCS-BS)

GS=G*G

P=CSQRT (GAN2S+GS)

FO=CSQRT (GANMOSHGS)
IF(101.BEQ.1)RC=(F~F0)/ (F+F0)
IF(101.EQ.~1) RC=(EQ*P-EP2*F0) / (EO*F+EP2*F0)
IF(IABS(I01) .EQ.0)RC=(1.,0.)
IF(IABS(I01) .GT.1)RC=(~1,0.)

EF=CEXP (-F*ARG)

CS=00S (G* (Y-YP))

FF=RC*EF*CS

IF (SIG2.NE.0.AND.I.BQ. 2) FO=B/F
IF(SIG2.BQ.0.AND.I.BQ.2) FQ=(0.,-1.)
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APPENDIX F

Computer program RCYLEGP is the same as RTUNLE except, this has
used Trapazoidal rule to integrate all the integrations over the cross
section. The treatment is similar to RCYLPWE of Appendix A. 1In
addition this program models the air-earth interface. When the
interface is not modeled, the plane wave incidence excitation may also

be used.
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41

LINK WITH CROUT & MBEZ10

THIS PROGRAM (RCYLEGP.FOR) USES TRAVELING FLANE WAVE EXPANSION
AND GALEPKIN METHOD TO CALQULATE THE SCATTERED FIELD BY

A LOSSY DIELECTRIC INFINITE RECTANCULAR CYLINDER, AND

FOR AN ELECIRIC LINE SOURCE PARALLEL TO AXIS OF THE CYLINDER.
THE CYLINDER MAY BE INMERSED IN A LOSSY HOMOGENECOUS MEDIUM,

OR IT MAY BE BURIED IN A LOSSY HOMOGENEOUS EARTH.

WRIITTEN BY JAMAL IZADIAN JAN. 1982,

OOHPLEX BKK(25,25) ,FNEE(25) ,FMEE(25) ,FK(75) ,QMN(25,25) ,B(25)
COMPLEX A(25),FA(25) ,GA(25) ,DCMN(25,25) ,CTIRI(25,25)
CQIPLEX EZSR,C1,GC,VEE, SUMI', SDD

COOHMPLEX BGXP,EGYP, BGXL, BGYL, EGX1,FN, EM, GN, Q4

COMPLEX EZI,FPF,GPG,SS1,SS2

COHPLEX SFPF,SGEG,FMKP, GQYP, FNXL ,GNYL

COMPLEX CSF,CII,CIK,CV1,EP1,EP2,ETA2,CST,CSS,EZ]l,EZS,SEE
COOMPLEX GAM1,GAM2,BI,BK,.BI1,BK1,GR.K1,K2,REE

DIMENSION XM(450) ,YM(450)

INTEGER P

DATA FP,TD2,(X/12.5663706144,0.,.0174533/

DATA ETA,PI,TP/376.730366239,3.14159265359,6.28318530718/
DATA ICC,N¥X,ISIZE,NJ,ITBL/25,30,10,0,0/

DATA EO0,U0/8.85418533677E-12,1.25663706144E-6/

call getcp(itl)
READ(7,*)ER1,SIGl,ER2,SIG2,FMQMX, AWM, BWl4, DM, XLS, YLS,, TWR,

&IFILD,IWRC, IPW,IBS, IBISS, IFMC, IEQ, IGRCND

PHI=ATAN2 (YLS, XLS) /0174533
RLS=SORT (XLS*XLS+YLS*YLS)

WPH=PHI

IF (IEQ. BQ.0) TYPE*, 'GIVE NEQ & NY ='
IF (IEQ. BQ. 0) ACCEPT*, NEQ, NY

IF (IFMC.GT.1) GO TO 41

TYPE*, 'GIVE FHC="

ACCEPT*, FMC

IF(ENC.LT.0) €0 TO 600

DO 500 JF=1,IRMC

IF (IFHC. GT. 1) FNC=JF*FNQMX/FLOAT (IF¥C)
11251

AM=RA/2.

BU=BRMW/2.

OMEGA=TP*FIIC*1.E6
BTS1=OHEGA*CHEGA*UO*ERL*EQ

BETL=SQRT (ETS1)
EP1=CMPLX (ER1*EO ,~SIG1/OMEGA)
EP2=ER2*E0* (1. ,.0)

IF (TD2.GT. 1.E~10) EP2=FR2*EQ*QUPLX (1. ,~TD2)
IF (SIG2.GT. 1.E~10) EP2=CHPLX (ER2*EQ ,~S1G2/OMEGA)
ETA2=CSORT (U0/EP2)

GAM2=OHEGA*CSQRT (~U0*ER2)
GDML=OHEGA*CSQRT (-UO*EP1)

K1=(0.,~1.) *GAML

K2=(0.,~1.) *CAN2

BET2=ATNMAG (CAN2)

BTS2=BET2*BET2

VAV1=TP/BETL

WAV2=TP/BET2

CPH=1.-P1/ (14 ¥BETL*AM)

DPH=FCOS (CPH)

IF (IEQ. BQ. 1)NBQ= (1.+P1/ (2. *DPH) ) *2
IF(NBQ.LT.4) NEQ=4
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0063 IF (NEQ. GT.ICC)CO TC 600

0064 IF(IEQ. PQ. 1) NY=15.*BETL *BvM/PX
6065 IF (NY.LT.6.AND. IEQ. BQ. 1) Ny=6
0066 IF(NY.GT.NYX) NY=NYX

0067 NY=2+ (NY/2)

0068 NX=INT (AM/EM) *NY

0069 K= (1%/2) *2

0070 NY2=NY/2

0071 NX2=NY/2

0072 KK=NXANY

0073 DPE=1P/NEQ

0074 DO 90 J=1,NEQ

0075 PHi= (J-1) *DPH

0076 FA(J) =K1*C0S (PH)

€077 GA(J)=K1*SIN(PH)

€078 90 CONTINUE

0079 DX=2¥21/MX

0080 DY=BWM/NY

0081 DXY=DX*DY

0082 DX2=DX/2.

0083 DY2=D¥/2.

0084 C FIND THE RADIOUS OF BQUIVIANT CIRQULAR CELL
0085 Q=SQRT (DX*DY/PT)

0086 GC=GAMZ*QH

0087 CALL MBEZ10 (GAM2*Q,BT,BK,BI1,BK1,1,-1)
0088 CSP=~CHEGA*CMEGA*UO* (EP1~EP2) *DXY*DXY/TP
0089 CS5=(1.,~GC*BK1) * (EP1~EP2) /EP2
0090 CST=GC*BI1* (EP1~EP2) /EP2
0091 . CIK=CSS*2. *PT*Q*BI1/GAM2
0092 CII=CST*2,*PY*QU*BI1/GAN2
0093 CV1=-ETA2*Qi*pIl

0034 C1=(0. ,~1.) *OMEGA*U0/TP
0095 RAB=SORT (AWM A+ EVR*BIM)
0096 2 DELTR= (RAB-DX) /ISIZE

0097 IF (DX.GT.DELTR) GO TO 23
0098 ISIZE=ISIZE+5

0089 G0 O 21

0100 23 DO 22 I=1,ISIZE

0101 RR=I*DELTR

0102 CALL MBKOZ (GAM2*RR,EK,~1)
0103 FK (1) =BK*CII

0104 22 CONTINUE

0105 TYPE*, 'ISIZE=',ISIZE

0106 =0

0107 Y=-EMHDY2

0108 ¢ SET UP THE COORDINATES OF CENTERS OF CELL M
0109 - DO 40 J=1,NY

0110 X=-AN+DX2

0111 DO 30 I=1,NX

0112 M=t

0113 XM(M)=X

0114 YH (%) =Y

0115 30 X=X

0116 40 Y=Y4DY

0117 DO 42 J=1,25

0118 DO 42 1=1,25

0119 42 BRK(1,)=(0.,0.)

0120 C SET UP IMPEDANCE MATRIX
0121 DO 200 M=1,NEQ

0122 FM=FA (M)

0123 GH=GA ()

C124 DO 180 NeM,NEQ

0125 =FA(N)
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35

75
80

CGN=GA(N)

FPP=FN+FM

CPG=Ci+t4

SEPF=CSIN(FPF*AM)

SGPG=CSIN (GPG*EM)

SS1=MM

IF (CABS(FPF) .GT.] . E-6) SS1=SFPF/FPF
SS52=BM

IF (CABS(GPG) .GT. 1. E-6) 8S2=SGPG/GPG
REE=4.*S51*552

DCMN(N,N)=(0.,0.)

CQMN(M,N) =REE

180 CONTIMUE
200 CONTINUE

DO 160 P=1,KK

XP=XM(P)

YP=YM(P)

JP=(D-1) /NX+1

IP=P-(JP-1) *NX

DO 140 L=1,KK

XI~XM(L)

YL~M (L)

JL={L~1) /NX+1

IL=L~ (JL~1) *NX

YY=YP-YL

YS=YY*YY

XX=XP-XL

XS=RXX*XX

II=1+IABS(IP-IL)

JJ=1+IABS(JP-JL)

ROH=SQRT (XS+YS)

IF(ROH.LT.DX2) GO TO 79
IF(EKK(1I,JJ).BQ. (0.,0.) ) THEN

CALL INTFRP(ROH,BKK(II,JJ) ,DELIR,FK,ISIZE)
BKK(JJ,II)=BKK(II,JJ)

NI=}J+1

END IF

DO 80 M=1,NEQ

FM=FA(M)

GH=GA (M)

FMXP=FM*XP* (0.,~1.)
CHMYP=GIM*YP*(0.,~1.)

BGXP=CEXP (FMXP)

EGYP=CEXP (Q%P)

FMEE (M) =BGXP*EGYP

DO 80 N=M,NEQ

FN=FA(N)

GI=GA(N)

FNXL~=FN*XL* (0. ,-1.)
GNYL~GW*YL* (0. ,-1,)

EGXL~=CEXP (FNXL)

EGYL~CEXP (GNYL)

FNEE (N) =EGXL*EGYL

IF(IGROND.EQ.1)CALL SMPFLD2(XP,YP,XL,YL,DM,ER2,SIG2,FMC,1,SUMD)
IF (IGROND. EQ. 1) NI=NI+1

IF (IGROND. EQ. 1) DCMN (M, N) =DCMN (14, N) +FMEE (M) *FNEE (N) *SUMI'*CSF
IF(ROH.GT.DX2)GO TO 35

QN (M, N) =N (M, N) +FMEE (M) *FNEE (N) *CIK
GO T0 75

BK=EKK (1I,JJ)

QN (4, N) =Q1N (M, N) +FMEE (M) *FNEE (N) *BK
IF (IGROND. BEQ. 1) CTMN (M, N) =N (M, N) +DCHMN (M, N)
CONTINGE
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0200
0201
0202
0203
0204
0205
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0207
0208
0209
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0221
0222
0223
0224
0225
0226
0227
0228
0229
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0231
0232
0233
0234
0235
G236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251

140
160

210

219

220

240

202

COHTINUE
CONTINJE
TYPE*, 'NJ=',NJ, 'NI=',NI
NI=0

MJ=0
IF(IWR.BQ.1) THEN
WRITE(10,2)
DO N_.o m._.HuLZE
DO 210 N=k,NEQ
WRITE(10,3)M,N, QM (4, N) ,DON (¥, N) ,CTHN (M, M)

CONTINUE

END IF

IF (IWR. EQ. 1) WRITE(10,9)

IF(IWR.EQ. 1) WRITE(10,4)

DO 500 JI=1,IBS

IF (IBS.GT.1) PiiI=(JI-1)*360./FLOAT(IBS-1)

PH1=CX*PHI

C51=CCs (Flil)

SN1=SIN(PH1)

XLS1=RLS*CS1

YLS1=RLS*SN1

SET UP THE VOLT2GE MATRIX COLUMN

DO 240 M=1,NEQ

FM=FA(M)

QI=GA(M)

sop=(G.,0.)

SEE=(0.,0.)

DO 220 P=1,KK

X=XM(P)

Y=y (P}

FMXP=FM*%* (0.,-1.)

QIYP=GM*Y*(0.,~1.)

BGXP=CEXP (FMXP)

BGYP=CEXP (QMYP)

FMEE (M) =EGXP*EGYP

IF(IFW.BQ.1) THEN

IF (IGROND. EQ. 1) TYPE*, 'NO FORMULATION FOR P.W.REFLECTION YET!!!®
PS11=X*CSL+Y*SN1

BGX1=CEXP (GAM2*PSI1)

Cv1=(1.,0.)*DX*DY

GO T0 219

END IF

X1=XL81-X

Y1=YLS1-Y -

RA1=SQRT (X1*X1+Y1*Y1)

CALL MBKOZ (GAM2*RH1,BEGK1,-1)

IF (IGROND. EQ. 1) CALL SMRFLD2 (X,Y,XLS1,YLS1,Di,ER2,8IG2,FMC,1,SUNMT)
VEE=EGX1

IF(IGROND.EQ. 1) SDD=SDD+FMEE (M) *SUMT
SEE=SEE+FMEE (M) *VEE

CCNTINUE

A(M)=SEE*CV1

IF (IGROKD. BQ. 1) B(}) =SPD*CL*DXY

CQUITINUE

IF (IWR. EQ. 1) THEN

DO 202 M=1,NEQ ’
WRITE(10,5)M,A(M) ,B(M), (A(M)+B(M))

WRITE(10,9)

END IF

IF (IGRD. BQ. 1) THEN

DO 204 FM=1,NEQ

A =A(MI4B(N)

DO 204 N=M,MNEQ
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0252 204 QAN (M, N) =CTMN (M, N)

0253 END IF

0254 ISYM=0

0255 CALL CROUT(CMN, A, ICC, ISYM, IWRC, I12,NEQ)
0256 IF (IWR.BQ. 1) THEN

0257 WRITE(10,6)

0258 DO 244 M=1,NEQ

0259 WRITE (10,5)M,A (M)

0260 244 CONTIMUE

0261 WRITE (10,9)

0262 END IF

0263 WRITE (8,*) KK,NX

0264 C FIND THE FIELD IN CELLS OF FIRST QUADRANT
0265 IF(IFIID.NE.1) GO TO 45
0266 WRITE(10,8)

0267 DO 248 1~1,KK

0268 Ez1=(0.,0.)

0269 XL=RM(L)

0270 YL~YM(L)

0271 DO 246 N=1,NEQ

0272 FN=FA(N)

0273 GI=GA (N)

0274 FNXI~FN*XL* (0. ,-1.)

0275 GNYL~GN*YL* (0. ,~1.)

0276 BGXL~=CEXP (FMXL)

0277 BEGYL~CEXP (GNYL)

0278 FNEE (N) =BGXL*EGYL

0279 Ez1=EZ1+A(N) *FNEE(N)

0280 246 CONTINUE

0281 C IF(XL.GT.0.AND. YL.GT.0) THEN
0282 RE=REAL(EZ1)

0283 ATE~ATMAG(EZ]1)

0284 AMP=CABS(EZ1)

0285 PHASE=ATAN2 (AIE,RE) /CX

0286 WRITE (10,11) XL, YL, AMP, PHASE
0287 WRITE (8.*) L, AMP, PHASE

0288 C END IF

0289 248 CONTINUE

0290 45 IF (IWR.EQ. 1) WRITE(10,9)
0291 PHS~FH1

0292 DO 500 JK=1,IBISS

0293 IF(IBISS.GT.1)THEN

0294 PHI=(JK-1) *360./FLCAT (IBISS-1)
0295 PHS=CX*PHI

0296 gD IF

0297 XLS=RLS*COS (PHS)

0298 YLS=RLS*SIN(PHS)

0299 C FIND THE BACKSCATTERED FIELD
0300 EZ58=(.0,.0)

0301 EZSR=(0.,0.)

0302 DO 280 I~=1,KK

0303 XI~=XM (L)

0304 YI=YH(L)

0305 YY=YLS-YL

0306 YS=YY*YY

0367 XX=XL.S~XL

0308 XS=XA*XX

0309 IF(IPW.BQ.1) THEN

0310 PSI=XL*COS (PHS) +YL*SIN (PHS)
0311 BK=CEXP (GM2*PSI)

0312 GO TO 47

0313 END IF

0314 ROIH=SQRT (XS+YS)
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0315 CALL MBKOZ (CAM2*ROH,BK,-1)

0316 IF (IGROND.BEQ. 1) CALL SMRFLD2(XL,YL,XLS,YLS,DM,ER2,S1G2,FMC, 1, SOMD)
6317 47 E21=(0.,0.)

0318 DO 260 N=1,NEQ

0319 FN=FA(N)

0320 GN=GA ()

6321 FIOT=FN*XL* (0.,-1.)

0322 GNYL=GN*YL* (0. ,-1.)

0323 BGXL~CEXP (FNXL)

0324 EGYL=CEXP (GNYL)

0325 FNEE (M) =BGXL*EGYL

0326 E21=EZ1+A(N) *FNEE (N)

0327 260 CONTINUE

0328 E%2S=EZS+EZ1*BK

0329 IF (IGROND. BQ. 1) EZSR=EZSR+EZ1 *SUMT
0330 290 CONTINUE

0331 EZS=-CST*EZS

0332 EZSR=EZSR*C1*(0.,1.) * (EP1~EP2) *OMEGA*DXY
0333 E2S5=EZS+EZSR

0334 IF(IPW.BQ. 1) EZS=EZS*CSQRT (. 5*PL/GANM2)
0335 NZS=CABS(EZS)

0336 IF(IWR.BQ.1)WRITE(10,%) 'AZS=" ,AZS
0337 EWL=TP*AZS*A%S/WAV2

0338 DB=.0

0339 C FIND THE MORMALIZED SCATTERING ATTENUATION FUNCTION
0340 IF(IPW. BQ. 0) THEN

0341 GR=2.*GAMN2*RLS

0343 . E2I=C1*BK

0344 AZI=CABS(EZI)

0345 IF(IWR.PQ. 1) WRITE(10,*) 'AZI=" ,AZI
0346 AZN=RZS/R2T

0347 DB=20. *ALOG10 (RZN)

0348 TYPE1,NEQ,NX,NY,FMC,DB,PHI |

0349 WRITE(10,1)MEQ, NX,NY,FMC,DB, PHI

0350 GO TO 599

0351 EXD IF

0352 TYPEL, NEQ, NX, NY, FMC, EVIL, PHI

0353 WRITE (10,1) NBQ,MX,NY , FNC, EWL, PHI

0354 599 IF(IBS. BQ.1.AND. IBISS. BQ. 1.AND. IFMC.EQ. 1) GO 10 20
0355 112=2

0356 500 CONTINUE

0357 600 CONTINOE

0358 IF(IFV. BQ. 1) WRITE (10,14)

0359 IF(IPW.BQ. 0) WRITE(10,13)

0360 WRITE(10,9)

0361 WRITE(10,*)' FR1 & SIGl =',ER1,SIGl

0362 WRITE(10,*)' ER2 & SIG2 =',ER2,SIG2

0363 WRITE(20,*) ' AWM & E¥M =' ,AWM,BWM

0364 WRITE(10,*) 'RLS=',RLS,'PHI=',WPH

0365 call getcp(it2)

0366 time=(it2-it1)/100.

0367 WRITE(10,*) ' CPU TIME (SEC) =',TIME

0368 TYPE*,' CPU TIME (SEC) = ',TIME

0369 WRITE(10,*) 'RCYLBGP.FOR'

0370 WRITE(10,*) ER1,SIG1,ER2,SIG2,FMQIX, A1, BiM, D, XLS, YLS, TWR, IFILD, IWRC
0371 &, IPVI, IBS, IBISS, IFMC, IEQ, IGROND

0372 1 FORMAT (1X,315,6F12.6)

0373 2 . FORMAT(5X, 'H' ,4X, 'N' 13X, ' ZMN' , 21X, 'DZMN' , 21X, ' ZBIN')
0374 3 FORMAT (1X,215,8F12.6)

0375 4 FORMAT (5X, 'M',18X, "WN' 21X, 'DVM', 21X, 'VIM')

0376 5 FORMAT (1X, I5,5X,8F12.6)

0377 3 FORMAT (5%, 'M',18%,' A ")
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0378 8 FORMAT (5X, 'X'.9X, 'Y’ ,13X, ' AMPLITUDE' ,3X, ' PHASE'}

0379 9 FORMAT (1H0)

c3¢e0 11 FORMAT (1X,2F10.5,5X,2F12.6)

0381 13 FORMAT (3X, 'NEQ' ,3X, 'NX',3X, 'N¥' ,6X, 'FMC' ,9X, 'SAF', 9X, 'PHI')
0382 14 FORMAT (3X, 'NEQ' ,3X. 'NX',3X, 'NY',6X, "FNC' ,9X, "EVL' ,9X, 'PHI')
0383 CALL EXIT

0384 END
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APPENDIX G

Program LSOIFP calculates near field patterns of electric or
magnetic line sources on or off an interface between media I and II.
The model for this program is Figure 5-3, except region I is not
restricted to free space. The program always assumes the line source is

in medium II, where in the limit it can be moved to be placed on the

interface.
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0007 COMPLEX EP1,GAMOS,FQ,F0,RC,EF,BI,BK,BI1,BK1

€008 DATA PI,TP/3.14155265359,6.28318530718/
6009 DATA EO,U0/8.85418533677E-12,1.25663706144E-6/
0010 C TYPE*, 'ER1,SIG1,ER2,SIG2=' ,ER1,SIGl,ER2,SIG2
0011 D1=D-XP

0012 IF(X.GT.D)E=X-D

0013 ARG=2.*D-X-XP

0014 OMEGA=TP*FMC*1.E6

0015 EP2=CMPLX (ER2*EQ ,—SIG2/OMEGA)
C016 EP1=CMFLX (ER1*EQ,~SIG1/OMEGA)
c017 GAN2S=—-OMEGA*OMEGA*UO*EF2

oole GRM2=CSQRT (GAM2S)

0019 GAMOS=—QMEGA*CIMEGA*UO*EP1

0020 GC=CMEGA*SQRT (UG*ER2*E0)

0021 GCs=CC*GC

0022 G1=GC/SQRT(2.)

0023 C SET UP FOR SUM1L & SUM2

0024 DEL=PI/10./ (ARGH+Y~YF)

0025 NS=G1/DEL

0026 IF(NS.LT.40) NS=40

0027 NP=2* (NS/2)

0028 DEL~GL1/NP

0029 NP=NP+1

0030 DEL3=DEL/3.

0031 soM1=(0.,0.)

0032 suM2=(0.,0.)

0033 DO 100 1=1,2

0034 SIGN=1.

0035 DO 100 J=1,NP

0036 W=(3.~SIGN) *DEL3

0037 IF(J.EQ.1.0R.J.EQ.NP) W=DEL3
0038 IF(I.EQ.2)R0 TO 31

0039 G=(J-1) *DEL

0040 GO 10 33

0041 31 B=(J-1)*DEL

0042 BS=B*B

0043 G=SQRT (CCS-BS)

0044 33 GS=G*G

0045 F=CSQRT (GAM2S+GS)

0046 FO=CSQRT (GAMOS+GS)

0047 IF(I01.BQ.1)RC=(F-F0)/(F+F0)
0048 IF(I01.BQ.-1)RC=(EPL*F~EP2*F0)/ (EP1*F+EP2*F0)
co49 WRITE(8.*) 'G,F,FO,RC=',G,F,F0,RC
0050 IF (12BS(101) .BQ.0)RC=(1.,0.)
0051 IF(IABS(I01).GT.1)RC=(-1,0.)
0052 IF(X.GT.D)RC=1.4RC

0053 IF (X.LE.D) EF=CEXP (~F*ARG)

0054 IF (X.GT.D) EF=CEXP (-F*D1-FO*H)
0055 CS=COS (C*(Y-YP))

0056 FF=RC*EF*CS

0057 IF(SIG2.NE.O.AND. I.BEQ. 2) FQ=B/F
0058 IF(SIG2.EQ.0.AND. I.BQ. 2) FO=(0. ,~1.)
0059 IF(I.EQ.1) SUML=SUM]1HV*FF/F

0060 IF(I.EQ. 2) SUM2=SUM2HV*FF*FQ/G
0061 SIGN=-SIGN

0062 100 CONTINUE )

0063 ALPH1=5.*ANAX1 (GC,CABS (GAM2) ,CABS (CSQRT (GAMOS) ))
0064 C SET UP FOR SUM3 & SUM4

0065 DELAL~DEL

0066 NS=ALPH1/DELAL

0067 IF(NS.LT.40) NS=40

0068 NP=2*(NS/2)

0069 DELAL=ALPH1/NP
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G070
G071
co72
0073
0074
0075
€076
0077
0078
007¢
0080
0081
0082
6083
ooe4
€085
0086
0087
ooss
0089
0030
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103

200

(eXeXeXe!

NP=NP+1

sUM3=(0.,0.)

SIGN=1.

DELA3=DELAL/3.

DO 200 I=1,NP

W=(3.-SIGN) *DELA3
IF(I.BQ.1.0R.I.BQ.NP)W=DELA3
ALPHA=(I-1) *DELAL
ALPHS=ALPHA*ALPHA

G=SCRT (ALPHSHGCS)

GS=G*G

F=CSQRT (GAM25+GS)

FC=CSQRT (GAMOS+GS)
IF(I01.EQ.1)RC=(F-F0)/ (F+FQ)
IF(101.BQ.-1)RC=(EP1*F-EP2*F0)/ (EP1*F+EP2*F0)
IF(IABS(I101) .BQ.0)RC=(1.,0.)
IF(IABS(101) .GI.1)RC=(-1.,0.)
IF(X.GT.D)RC=1.+RC

IF(X.LE.D) EF=CEXP (-F*ARG)
IF(X.GT.D) EF=CEXP (-F*D1-FO*H)
CS=C0S (G* (Y-YP))

FF=RC*EF*CS

IF(SIG2.NE.0) FQ=ALPHA/F
IF(S1G2.1Q.0)FQ=(1.,0.)
SUM3=SUM3HT*FF*FQ/G
SIGN=-SIGN

CONTINUE

SUMI'=SUML-+SUM2+SUM3
HH=2.*D1+(X-XP)

ROH2=SQRT (HH*HH+(Y~YP)* (Y-YP))
CALL MBEZ10(GAM2*RCH2,BI,BK,BIl,RK1,0,~1)
TYPE*, 'BK,SUMI="' ,BK,SUMD
RETURN

END
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APPENDIX H

Subroutine MBEZ1¢ (courtesy of Professor Richmond) is used to
calculate the modified Bessel functions of order zero and one.
SZ: 1is the complex argument of the Modified Bessel Function to be
calculated.
SBI: the calculated Modified Bessel Function of first kind of
order zero.
SBK: the calculated Modified Bessel Function of second kind of
order zero.
SBI1: the same as SBI except of order one.
SBK1: the same as SBK except of order one.
- ID: if zero, only zero order functions are calculated. 1If one,
only functions of order one are calculated. IF > 1, both

orders of zeros and ones are calculated.
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12

SUBROUTINE MBEZ10(E2Z,SBI,SBX,SBI1,SBK1,ID, ISC)

DOUBLE PERCISION

MODIFIED BESSEL FUNCTIONS WITH OOMPLEX ARGUMENT
ORDER ZERO AND ONE

SET 1ISC=-1 10 AVOID SCALING.

SET ISC=1 FOR SCALED FUNCTIONS.

IF ISC=1 AND REAL(Z).CE.0, I(2)
IF ISC=1 AND REAL(Z).LT.0, I(2Z)

BI*CEXP(Z).
BI/CEXP(Z).

IF 1ISC=1l, K(Z)= BK/CEXP(Z).

8

10

11

14

15

REAL*8 ABT,ALG,AY,CT2,S5T2,T1,X,Y,YP,AC2,AM,C,CY2,EMX2
REAL*8 R2,STPR,XI,AC21,ARE,C2,DX,EPX2,R4,5,SY2,THETA
REAL*8 XM,C57,PI,YT,AS2,PSI,RB,S2,T,1K,XP,YM
REAL*8 IMIZ,IMKZ,R,REKZ,REIZ,ZRE,2IM,Y2,T2
COMPLEX SZ,SBI,SBK,SBI1,SBK1

COMFLEX*16 BIO,BKO,F1Z,FKZ,Z,E2

COMPLEX*16 BI,BEK,BIl,BK1l

COMPLEX*16 BIA,BIB,BIC,EKA,BKB,BKC,EA,EB,FA,AL

DATA PI/3.1415926535897932/

DATA FMX/1.E16/
DATA C57/.5772156649015328/
2=5%

R=CDNBS(Z)

ZRE=DREAL(Z)

ZIM=DIMNG(Z)

THETA=DATANZ (2IM,ZRE)

C=ZRE/R

S=21/R

BI=(.0,.0)

BK=(.0,.0)

BI1=(.0,.0)

BK1=(.0,.0)

IF(R.GT.9.)G0 TO 10

IF(ISC.LE.0)GO TO 8

EX=DEXP (ZRE}

EZ=EX*DCMPLX (DCOS (2IM) ,DSIN(ZIN})}

ALG=DLOG(R/2.)+C57

C2=2,*C*C-1.

S2=2.*C*S

R2=R/2.

R4=R*R/4.

GO TO 15

R8=8.*R

ARE=DABS(ZRE)

EMX2=.0

mHUxN"rmu

IF(ARE.GT.40.)C0 TO 11

IF(ZRE.CGE,.0) EMX2=DEXP (-2.*ZRE)

IF (ZRE.LT..0) EPX2=DEXP (2.*ZKE)

IF(ISC.GT.0)GO TO 14

IF(R.LT.80.)GO TO 12
TYPE*,' ARGUMENT MAGNTTUDE EXCEEDED 80 !!!'
GO 10 81
EX=DEXP (ZRE)

EZ=EX*DCMPLX (DCOS (2IM) ,DSIN(ZIM))

¥2=2,*%2IM

CY2=pCOS(Y2)

SY2=DSIN(Y2)

STPR=DSQRT (2, *PL*R)

T2=THETA/2.

CT2=DCOS(T2)

ST2=DSIN(T2)

TK=DSQRT (P1/(2.*R) }

NA=1
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C064 NB=2

0065 IF(ID.BQ.0)B=1

€066 IF(ID.BQ.1)NA=2

0067 DO 80 NP1=NA,NB
0068 N=NP1~1

0069 IF(R.GT.59.)G0 TO 50
0070 AC2=C2

0071 AS2=52

0072 T=1.

0073 X=l.

0074 Y=.0

0075 DO 20 J=1,1000

0076 T=T*R4/ (J*(N+3))
C077 X=X+T*AC2

0078 Y=Y+T*AS2

0079 AY=DARS(Y)

0080 AM=DABS(X)

0081 IF (AY.GT.AM)AN=AY
0082 IF(T.LT.AM/FMX) GO TO 21
0083 AC21=AC2

0084 AC2=pC21*C2-AS2*S2
0085 20 AS2=NS2*C2+AC21*S2
0086 21 REIZ=X

0087 IMIZ=Y

0088 IF(N.EQ.0)CO TO 25
0089 REIZ=R2* (X*C-Y*S)
0090 IMIZ=R2* (X*S+Y*C)
0091 25 AC2=C2

0092 . AS2=52

0093 T=1.

0094 PSI=-ALG

0095 IF(N.EQ.1)PSI=.5~ALG
0096 X=pSI

0097 Y=~THETA

0098 DO 40 J=1,1000

0039 IF(N.EQ.1)GO TO 30
0100 PSI=PSI+l./J

0101 T=1*R4/ (J*J}

0102 GO T0 35

0103 30 JP=(J+1)*J

0104 PSY=PSI+(J+.5)/JP
0105 T=T*R4/JP

0106 35 DX=T*(AC2*PSI+AS2*THETA)
0107 X=X+X ‘

0108 Y=Y+T% (AS2*PSI-AC2*THETA)
0109 AY=DABS(Y)

0110 AM=DRBS (X} .

0111 IF (AY.GT.AM)2N=AY
0112 IF(DABS(T*PSI) JLT.AM/FMX)GO TO 41
0113 AC21=pC2

0114 AC2=AC21*C2-AS2*S2
0115 40 AS2=AS2*C2+AC21*S2
0116 41 REKZ=X

0117 IMKZ=Y

0118 IF(N.BEQ.0)CO TO 70
0119 REKZ=C/R- (X*ZRE-Y*ZIM)/2. -
0120 IMKZ=-S/R-(Y*ZRE+X*ZIM)/2.
0121 GO TO 70

0122 50 »2C2=C

0123 AS2=8

0124 MU=4*N*N

0125 I=-1

0126 =1.
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0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154

0155 .

0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0178
0180
018l
0182
0183
0184
0185
- 0186

60
61

66
68

70

74

78

79

80
8l

XM=1.
YM=.0
Xp=1.
YP=.0
Ti=1.
DO 60 J=1,1000
K=2*%J-1
T= (NU-K*K) *T/ (J*R8)
ABT=DABS(T)
IF(ABT.LT.1.E-30)GO TO 61
IF(ABT.GT.T1)GO TO 61
T1=ABT

=XM+I*T*AC2
YM=YM-I*T*AS2
XP=XP+1*AC2
YP=YP~T*AS2
AC21=AC2
AC2=nC21*C-AS2*S
AS2=NS2*C+AC21*S
I=-I
1=1
IF(N.BQ.1) I=-1
J=1
IF(ZIM.LE.0)J=-1
K=I*J
IF(ZRE.GE..0)GO TO 66
XI=-K*YP+(XM*CY2-YM*SY2) *EPX2
YI= K*XP+(XM*SY2+YM*CY2) *EPX2
GO TO 68
XI=XM+K* (XP*SY2-YP*CY2) ¥EMX2
YI=VM+K* (XP*CY2+YP*SY2) *EMX2
REIZ=(XI*CT2+YI*ST2)/STPR
IMIZ=(YI*CT2~-XI*ST2)/STPR
REKZ=TK* (XP*CT2+YP*ST2)
IMKZ=TK* (YP*CT2-XP*ST2)
FIZ=DCMPLX (RE1Z, IMIZ)
FKZ=DCMPLX (REKZ , IMK2)
IF(ISC.GT.0)CO TO 74
IF(R.LE.9.)GO T0 78
IF{ZRE.LT..0)FI1Z=FIZ/EZ
IF(ZRE.GE..0) FIZ=FIZ*EZ
FKZ=FKZ/EZ
GO TO 78
IF(R.GT.9.)GO-TO 78
IF(ZRE.LT..0) FIZ=FIZ*EZ
IF(ZRE.GE..0)FI2=FIZ/EZ
FKZ=FKZ*EZ
IF(N.FQ.1)G0 T0 79
BI=FIZ
BK=FKZ
GO TO 80
BI1=FIZ
BK1=FKZ
CONTINJUE

SBI=BI

SBK=

SBI1=RIl

SBK1=BK1
RETURN
END
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APPENDIX I

Subroutine CROUT (courtesy of Professor Richmond) uses Crout's

method to solve a system of simultaneous linear equations.

C:

S:
ICC:
ISYM:
IWR:

112:

the NxN matrix to Be solved.

the excitation column as input, and the solution as output.
maximum number of linear equations or unknowns.

set to zero if C is symmetric, otherwise set to 1.

if one, the subroutine prints some numerical values for
debugging purposes, otherwise set to zero.

if 1, inverts and solves, if 2, it only solves.

number of unknowns or linear equations to be solved.
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0063
C064
0065
0066
0067
0068
0069
0070

44

SA=CABS(SS)

IF(SA.CT.0.) PH=57.29578*ATAN2 (AINAG(SS) ,REAL(SS) )
WRITE(6,3) I,SNOR,PH,SS
WRITE(6,5)

100 RETURN

END

246



APPENDIX J

Program RECT (courfesy of Professor Richmond) modified slightly to
calculate some curves for checking the results of some of the programs.
It calculates the scattered electric field from a rectangular
cylindrical scatterer considered throughout the dissertation. Some of
the outputs of this program are included in Chapter III. This program

uses Pusle Basis Point Matching (PBPM).
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0001
6002
0003
0004
0005
0006
0007
0008
0009
6010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
o021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062

[eXeXg)

—=Juro
[

201

18
20

LINK WITH CROUT & HANK
THIS IS PROCRAM RECT.FOR FOR EZ POLARIZATION

COMPLEX HO,H1,EQ4,EP,EZ,CII,CST
COMPLEX C(£00,500) ,V(500)
DIMENSION X(500),Y(S00)
DATA ETA,PI,TP,E0/376.727,3.14159,6.28318,8.85E-12/
FORMAT(1X, 8E15.4)
FORMAT (1X,315,8F12.6)
FORMAT (1H0)
FORMAT(7F10.5)
FORMAT (1H1) .
call getcp(itl)
IDM=500
TYPE*, 'GIVE IBS,IBISS,PHI='
ACCEPT*, IBS, IBISS, FHI
IFRSCT=IBISS
IPISS=IABS(IBISS)
WRITE(10,*)1BS, IBISS, IFMC
TYPE*, 'GIVE FMC,NY'
ACCEPT*, FMC,NY
IF(FMC.LT.0) GO TO 300
SIG=.3E-3
ER=4.
OMBEGA=TP*FMC*1.E6
TD=SIG/ (OMEGA*ER*EQ)
EP=ER*QMPLX (1. ,~TD)
EQ{=EP-1.
IFMC=1
AMN=1.
BM=.5
NX=(AM/BM) *NY
WAV=300./FMC
RI=RM/WAV
TYPE*, 'Al~=',AL
BL~BM/VAV
AK=TP*AL
BK=TP*BL,
DX=AK/NK
DY=BK/NY
K=0
YY=DY/2,
DO 20 J=1,NY-
XX=DX/2.
LO 18 1=1,NX
K=K+1
X(K)=XX
Y(K) =YY
XX=XX+DX
YY=YY+DY
N=IX*NY
CK=SQRT (DX*DY/PX)
CALL HANK(CX,HO,H1,1)
CII=1.4+EQ4*(.0,.5) *(PI*CK*H1-(.0,2.))
B1=REAL(H1)
CST=-(.0,1.)*(1.,1.) *CK*B1*EQM/ (2. *1.414214)
DO 200 1=1,N
XI=X(I)
YI=Y(I)
C(I,I)=CII
Lo 200 J=I,N
IF(J.BQ.1)GO TO 200
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0063
0064
0065
0066
€067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
co84
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
o1
0122

200

202

QOO0

220

250

600
300

XI=X{(J)
YJ=Y (J)}
R=SQORT ( (XJ-XI) **2+(YJ-YI) **2)
CALL HANK(R,HO,H1,0)
C(I,J3)=.5*PI*CX*(.0,1.) *ECM*B1*H0
COUTINUE
112=1
DO 600 JI=1,IBS
IF(IBS.GT.1)PHI=(JI-1)*360./FLOAT (IBS-1)
DPHR=.0174533*PHI
CPH=COS (PHR)
SPH=SIN(PHR)
DO 202 1=1,N
XI=X(I)
YI=Y(I)
PSI=XI*CPH+YI*SPH
V(I)=CPLX (COS(PSI) ,SIN(PSI})
OITINUE
IWR=0
ISW=0
CALL CROUT(C,V,IDM,ISYl1,IWR,I12,N)
112=2
DO 220 J=1,4
NS=55-wJ*10
DO 220 I=NS,NS+5
FACT=WAV/TP
WRITE(10,%*) 'X=", (X (1) *FACT) ,'¥=', (Y (I) *FACT)
RE=REAL(V(I})
AIE=ATMAG(V(I))
AMP=CABS(V(1))
PHAS=ATAN2 (A1E,RE}/.0174533
WRITE(10,*) 'EZ1=",AMP, 'PHASE=",PHAS
CONTINUE .
IF(IFRSCT.EQ.-1) PHR=PHR+PI
DO 600 JK=1,IBISS
IF(IBISS.GT.1)THEN
PHI=(JK~1) *360./FLOAT (IBISS-1)
PHR=,0174533*PHI
END IF
CPHE=CO0S (FHR)
SPH=SIN(PHR)
EZ=(.0,.0)
DO 250 1=1,N
PSI=X(I)*CPH+Y(I)*SEH
EZ=EZ+V(I) *QIPLX (COS(PSI) ,SIN(PSI))
E2=CST*E2
EZA=CABS(EZ)
EWL~TP*EZA*EZA
WRITE (10,2)N,NX,NY, FMC, EWL,PHI
TYPE2,N,NX,NY,FMC, EVIL, PHI
IF(IBS.EQ.1.AND.IBISS.BEQ.1)GO TO 201
CQITINGE
WRITE(10,%)? FNC EWL N XY
call getcp(it2)
WRITE(10,*) 'FHI=',PHI
WRITE(10,*) 'aWM=",AM, 'Bil4=" ,BM
time=(it2-itl1)/100.
type*, 'cpu time secs=',time
CALL EXIT
END
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APPENDIX K

Program SQCYLH (courtesy of Professor Richmond) modified slightly
to calculate magnetic scattered fie]d‘from a rectanqular cylindrical
geometry considered in this dissertation. Some of the outputs of this
program is included in Chapter IV.

(PBPM).

It uses Pulse Basis Point Matching
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0001 C LINK WITH CROUT & DMBEZ10

0002 COMPLEX Q1N(S00,500) ,A(500)

C003 COMPLEX EGR,GP,GR,HZI,HZS,CIX,CTY,BKK,BKX,BKY
0004 COMPLEX EP1,EP2,ETA2,GAM2,CST,BI,BK,BI1,BK1l
0005 DIMENSION XM(500),YM(500)

€006 DATA FP/12.5663706144/

0007 DATA ETA,PI,TP/376.730366239,3.14159265359,6.28318530718/
0008 DATA EO,U0/8.85418533677E-12,1.25663706144E-6/
0009 1 FORMAT(IX,215,6F12.3)

0010 2 FPORMAT(1X,F12.6,15,6F12.6)

0011 5  FORMAT(1HO)

0012 9 FORMAT (1X,315,6F12.6)

€013 READ(7,*) ER1,SIGl FR2,SIG2,FNQIX, Ayld, BYWM, DM, XLS, YLS, IWR,
0014 &IFILD, IWRC,IPW,IBS,IBISS, IFMC, ICMN
0015 WRITE (10,*) MAX (IBS, IBISS, IFMC)

€016 CALL GETCP(IT1)

0017 20 TYPE*,'GIVE FMC,NYY'

0018 ACCEPT*, FNC, NYY

0019 Il2=1

0020 ICC=500

0021 CX=.0174533

0022 PHI=ATAN2 (YLS, XLS) /CX

0023 RLS=SQRT (XLS*XLS+YLS*YLS)

0024 PH=CX*FHI

0025 AM=RYM/2.

0026 BM=ElM/2.

0027 DO 500 JF=1,IFMC

0028 IF{IFMC.GT.1) FMC=JF*FMQX/FLOAT (IFMC)
0029 OQMEGA=TP*FMC*1.E6

0030 BET1=C{{EGA*SQRT (UO*ER1 *EQ)

0031 EP1=(MPLX (ER1*E0,~SIG1/OMEGA)

0032 EP2=ER2*E0*(1.,.0)

0033 IF(SIG2.GT.1.E~10) EP2=(MPLX (ER2*E( ,~SIG2/OMEGA)
0034 ETA2=CSQRT (U0/EP2)

0035 GAM2=0MECA*CSQRT (~U0*EP2)

0036 WEV2=300./FMC/SQRT (ER2)

0037 C NY=5. *BET1*AWM/TP

0038 NY=NYY

0039 NY2=NY/2

0040 NY=2*Ny2

0041 IF(NY,LT, 2) NY=2

0042 NX=TNT (AM/EM) *NY

0043 NX2=NX/2

0044 NX=2*NX2

0045 NEQ=MX*NY

0046 IF{NEQ.CT. ICC)G0 TO 600

0047 DX=AWM/NX

0048 DY=E/NY

0049 DX2=D¥/2.

0050 DY2=DY¥/2.

0051 C=DX/SQRT (P1)

0052 CALL MBEZ10(GAM2*Q4,BI,BK,BI1,BK1,1,0)
0053 CST=~C4* (EP1-EP2) *BI11/ (DX*EP1)

0054 M=0

0055 Y=-BM+DY2

0056 DO 40 J=1,NY

0057 X=-AM+DX2

€058 DO 30 I=1,NX

0059 M=h+1

0060 XM (M) =X

0061 YM(M)=Y

€062 30 X=X+DX

0063 40 Y=Y+4DY
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€064 IF(IQN.BQ.0)CO TO 299

0065 Do 50 J=1,NEQ

0066 DO 45 I=1,NEQ

0067 45 (I, n=(.0,.0)

co68 50 QN(J,3)=(1.,.0)

€069 DO 200 M=1,NEQ

0070 X=XM (§)

0071 Y=Y11(M)

0072 PO 180 N=1,NEQ

0073 IF(M.BQ.N)CO TO 1€0

0074 N=XM (N

€075 YN=YM (N)

0076 XX=X-XN

0077 YY=Y-¥N

0078 RH=SQRT (XX*XX+YY*YY)

0079 CALL MBEZ10 (GAM2*RH,BI,BK,BIl,BK1,1,0)
0080 BK1=CST*BK1/Rd

0081 J=1+(N~-1) /NX

0082 I=N-(J-1) *1X

0083 NP=N

0084 IF(I.GT.NX2) NP=N-1

0085 N)=N

0086 IF(J.GP.NY2) NU=N-NX

0087 NV=NU+NX

0088 NO=NP+1

0089 CMN (M, NP) =N (M, NP) -XX*BK1
0090 QN (M, NQ) =N (14, NQ) +XX*BK1
0091 CHMN (M, NJ) =QIN (M, NJ) -YY*BK1
0092 QN (M, NV) =N (3, NV) +YY*BK1
0093 180 CONTINUE

0094 200 CONTINUE

0095 299 CONTINUE

0096 DO 500 JI=1,IBS

0097 IF(IBS.GT.1) PHI=(JI-1) *360./FLOAT (IBS-1)
0098 PH=CX*PHI

0099 CPH=COS (PH)

0100 SEH=SIN(PH)

C101 XL.S=RLS*CPH

0102 YLS=RLS*SPH

0103 DO 240 M=1,NEQ

0104 X=XM (M)

0105 Y=YM(M)

0106 IF (IPW.EQ.0)CO TO 238

0107 PSI=X*CPR+Y*SPH

0108 CGP=GAM2*PSI

0108 BGR=CEXP (GP)

0110 GO TO 240

0111 238 XX=XLS-X

6112 Yy=YLS-¥

0113 YS=YY*YY

0114 RH=SQRT (XX*XX+YS)

0115 GR=GAM2*PH

0116 CALL MBEZ10(GR,BI,BK,BIl,BK1,0,0)
0117 BGR=EK

0118 240 A(M)=EGR

0119 IWRC=0

0120 ISwM=1

012 IF (ICMN. BQ. 0 .AND. JI.EQ. 1) THEN
0122 DO 298 M=1,NEQ

0123 DO 298 K=1,NEQ

0124 298 RERD (8, *) CUN(M,N)

0125 112=2

0126 END IF
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01¢<0 DB=20.*ALOGLO (AZN)

€191 TYPES,NEQ,NX,NY,FNC, DB, PHI
0192 WRITE (10,9) NEQ,NX,NY, FMC, DB, PHI
01¢3 C IF(NYY.LT.100)GO TO 20

0194 400 IF(IBS.GT.1) 112=2
0195 500 COTINUE

0196 CALL GETCP(IT2)

0197 TIME=(1T2-IT1) /100,

0198 WRITE(10,*) 'ERl & SIGl=', ER1,SIGl

0199 WRITE(10,*) 'ER2 & S1G2=',ER2Z,SIG2

0200 WRITE(10,*) 'FMC ,XLS ,PHI =',FNC,XLS,FHI
0201 WRITE (10,%) *AM=" ,AM

0202 WRITE(10,*) 'CPU TIME=',TIME,'SEC’

0203 WRITE (10, %) ' SQCYLH. FOR'

0204 600 CALL EXIT

0205 END
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