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CHAPTER 1 

INTRODUCTION 

The investigation of the asymptotic properties of the maximum 

likelihood estimator (m.l.e.) when the model is incorrect was first 

begun by Ruber in 1965. More recently, Foutz and Srivastava (1974) 

established the asymptotic distribution of the likelihood ratio test 

statistic when the model is incorrect. In this work, we strengthen 

and expand on some of the large-sample results of the m.l.e. and the 

likelihood ratio test statistic under the incorrect model. In addi­

tion, we will also study the asymptotic properties of the Rao and the 

Wald statistics, and compare the performance of these three test 

statistics. 

In Section 1.1, we briefly outline the development of research in 

this area. The consistency and asymptotic normality of the m.l.e. are 

reviewed in Section 1.2, the asymptotic distribution of the likeli­

hood ratio test statistic under model misspecification is presented in 

Section 1.3 and a method of stochastic comparison of tests used in 

Foutz and Srivastava (1977) is defined in Section 1.4. Finally, we 

motivate and indicate the direction of this research in Section 1.5. 

1 
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1.1 Preliminaries 

The method of maximum likelihood estimation, first proposed by 

Fisher in 1921, has been for years one of the most important tools of 

statistical inference. The controversies surrounding it, especially 

with respect to certain optimality properties that were ascribed to 

it, have plagued the statistical community for quite some time and it 

is only in recent years that most of these are resolved satisfactorily 

with some measure of completeness and finality. 

Associated with this method of estimation is the general hypo­

thesis testing procedure called the likelihood ratio test, first pro­

posed by Neyman and Pearson. As with the maximum likelihood estima­

tor, under certain conditions, the likelihood ratio test possesses 

some nice optimality properties. In addition, there are two other 

important large-sample test statistics due to Rao and Wald that also 

utilize the m.l.e. 

A very crucial assumption implicit in the proofs of all these 

optimality results is the assumption that the probability model used 

to construct the m.l.e. and the related test statistics has been 

correctly specified. The question of model misspecification assumes 

great importance in the case of the m.l.e. due to its lack of robust­

ness in many aspects. Even its status as a sufficient statistic, when 

it applies, relies heavily on the assumption of correct model 
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specification. It is thus of great value to study the behavior of the 

m.l.e. and related statistics when the model is incorrect. 

Let Xi, Xo, ••• be a sequence of independent and identically 

distributed (i.i.d.) random variables defined on the probability 

space (x, B, P). Let F(x) be the distribution function (d.f.) associ­

ated with P; i.e., F(x) = P(X^ £ x) , -<*> < x < °°. In most problems of 

statistical inference, it is assumed that there exists a density g(x) 

of F(x) with respect to some 0-finite measure and that g(x) belongs to 

a parametric family of density functions, {f(x, 0), 9e0}, where the 

index set 0 is an open subset of the k-dimensional Euclidean space E^. 

This parametric family is called the model and it is assumed that g(x) 

= f(x, 6Q) for some 8Qe0. The estimation problem is then to find an 

estimator (preferably one that possesses nice properties such as un-

biasedness, minimum variance, etc.) and a confidence region for 9Q. 

The corresponding hypothesis testing problem is to determine if 9« 

belongs to a subset 0Q of 0. 

The model is correctly specified, or equivalently, the model is 

correct, if g(x) belongs to the specified model, i.e., 

g(x) = f(x, 0) for some 0 e 0 . 

Otherwise, the model is misspecified (or equivalently, incorrect). 

However, we will use the term 'misspecified*and 'incorrect' loosely to 

include also the case when the model is correctly specified. 
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1.2 Asymptotic Properties of the Maximum Likelihood Estimator When 

the Model is Incorrect 

Huber (1965) was the first to prove the consistency and asympto­

tic normality of the m.l.e. when the model is incorrect. Since then, 

other authors such as Foutz and Srivastava (1974) , and White (1980) 

have shown the consistency and asymptotic normality of the m.l.e. 

under various regularity conditions different from those of Huber. 

In this section, we quote the results contained in Foutz and 

Srivastava (1974). Let the likelihood function of X., X„, ..., X 

be defined as 

Ln(e) - n*=1 f(x±, e) . 

Denote by JL L„(9) the k x 1 vector (_JL_; L„(9) , ..., J L L„C9)) '. 
39 n 39x

 n 39k
 n 

A 

The m.l.e. 9 of 9 is a solution to the likelihood equation 

_L Ln(9) = 0. 
39 n 

In their proof of the consistency of the m.l.e., Foutz and Srivastava 

(1974) assumed the following regularity conditions: 

Let E(») denote the expectation taken w.r.t. F(x). 

Al. There exists a 9*e0 such that 

E[log f(X, 9*)] =» sup E[log f(X, 8)]. 
e 



A2. The pa r t i a l derivatives 

SOT E[log fCX' 9>1 

J6 m 

• I, m =» 1, 2, ...,k exist and are continuous in an open neighbor­

hood 0* of e*. 
A3. The matrix 

A (0) = E[ 30„30 
I m 

log f(X, 0)] 

k x k 

$,, m = 1, 2, ..., k is nonsingular for 0e0*. 

A4. For every 0e0*, 

E[log f(X, 0)] = E[-f-log f(X, 0)] 
39A M * 

Xr """ *l-9 ~" 9 • • • > " • 

Theorem 1.2.1 (Foutz and Srivastava); Let X., X2, ... be a 

sequence of i.i.d. random variables having common d.f. F(x). Let the 

family of density functions, {f(x, 0), 0e0}, be an assumed model 

where no f(x, 0) in the model need be a density for F(x). Then with 

0* as in condition Al, conditions A2, A3 and A4 insure the existence 

of a sequence of solutions of the likelihood equation 



^ l o g Ln(6) - O . n - 1 , 2, ... 

which converges almost surely to 0* as n -»• «>. 

To establish the asymptotic normality of the m.l.e., Foutz and 

Srivastava (1974) assume another set of regularity conditions which 

essentially build on those needed in the proof of consistency. These 

regularity conditions are: 

Bl. The m.l.e. for 6 in the model {f(x, 0), 0e0} converges in 

probability to the constant 9*, uniquely satisfying the condition 

E[log f(X, 0*)] = sup E[log f(X, 0)] . 
0 

B2. E[-3- log f(X, 0)] and E[-i_ log f(X, 0) _2_ log f(X, 0)] 
30 30, 30. 

are finite in a neighborhood 0* of 0* for I, m = 1, 2, ..., k. 

B3. E [ — ^ — log f(X, 0)] is finite in 0*, £, m = 1, 2 k. 
30 30 

I m 

B4. E[-g- log f(X, 0)] = _£_ E[log f(X, 9)], Z = 1, 2 k. 

B5 

•30 

1 rn 

30 

a m 30 30 
£ m 

uniformly in 0e0*, £, m = 1, 2, ..., k, where — > denote conver­

gence in probability. 

B6. The matrix 

A (0) = E[ 
30 30 
A m 

log f (X, 0)] 

k x k 

&, m = 1, 2, ..., k is nonsingular for 0e0* . 



Also define the 'pseudo' information matrix 

C(0*) E[_l_ log f(X,0*)_l_ log f(X, 6*)] 
36. 30 

I m 
k x k 

x»j m ~* X ) <i-) • • • j K.« 

Theorem 1.2.2 (Foutz and Srivastava) ; Let X-,, X?, ... 

be a sequence of i.i.d. random variables having common d.f. F(x). 

Let the assumed model, {f(x, 0), 0eQ}, satisfy regularity conditions 

Bl, B2, ..., B6 w.r.t. F(x). Then, with 0 the m.l.e. for 0 in the 

assumed model, ̂ (On - 0*) is asymptotically normally distributed as 

n •*• » with mean vector 0 and covariance matrix 

A -1(0*)C(e*)A-1(e*). 
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1.3 The Asymptotic Distribution of the Likelihood Ratio Statistic 

When the Model is Incorrect 

Let 0g be a subset of 0 defined by 

0Q = {e|9e0, 9j - e0j, j - 1, 2, ..., r} 

where 1 £ r £ k and <5Q = (9Q1» •••» ®0r^ ' is a r x 1 vector of speci­

fied constants. Denote 8' = (61, y') where 6 = (0^ ..., 8r) ' and 

Y = (9r+i ®ir) ' • ^he hypothesis testing problem of interest is 

to test the hypothesis HQ: Q£0Q against the alternative H-̂ : 8e0 -0Q. 

The likelihood ratio is defined as 

^ _ sup{Ln(8): 8e0o} _ L ^ ^ 

n sup{L„(0): 8e0} L (§ ) n n n 

where 9 (9 ) is the restricted (unrestricted) m.l.e. of 9 over 0 (0). 

The likelihood ratio test statistic proposed by Neyman and Pearson is 

defined as 

T =-21og A . n n 

It is well-known that when the model is correct, i.e., 

g(x) = f(x, 8Q) for some 6Q£0 , 

the likelihood ratio statistic Tn has an asymptotic chi-squared distri­

bution with r degrees of freedom under the null hypothesis. Further 

Tn __£__> °° as n •> <» under any alternative 0e0-0Q» so that the test is 

consistent. 



In their 1978 paper, Foutz and Srivastava derived the asymptotic 

distribution of the likelihood ratio statistic T when the model is 
n 

incorrect. We quote below the regularity conditions used to prove 

their results. 

CI. Assume condition Al. 

C2. Assume the k x k matrix A(6*) with (&,m)-th element 

E[Wle~ log f(x' e*)lj l* m * 1' 2* •••» k 

a m 

exists and is nonslngular. Also assume the sequence {6 } converges 

in probability to 0* and assume ̂ 11(0 - 8*) is asymptotically normal 

with mean 0 and covariance matrix 

A^ce^occe^A"1^*) . 

C3. Assume E[~- log f(X, 6*)] • 0, % - 1, 2 k and 

5§- E[^§- log f (X, 0*) - *[„&§- log f(X, 0*)] , 
£ m l m 

X/y HI = l y m • • y K » 

C4. Assume 

~P—> 0 sup 
0* 

i v n a2 , ^/w 0N „r 32 

J L , 38^- log f (Xi' 6) - E[3<30- log f <X> e> J • 1_JL x. m A m 

for some neighborhood G* about 0* . 

Let * denote convergence in distribution. 
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Theorem 1.3.1 (Foutz and Srivastava)t Let X. , X„, ... be a 

sequence of i.i.d. random variables with common d.f. F(x). Let the 

assumed model, {f(x, 6), 0£0}, satisfy regularity conditions CI - C4. 

Denote by M the upper r x r diagonal block of the matrix 

A"1(6*)C(e*)A"1(6*) of conditions C2. Partition A(6*) in a form 

having upper r x r diagonal block A,,: 

(A, 

A(6*) 

11 
A21 

A 21 A 22 

and write W = -A.- + AI, A2i A21> If Q*£©0> then T is asymptoti­

cally distributed as a linear combination of independent chi-squared 

random variables: 

n Lx~l iA 

where x? > Xo > •••» X2 are independent chi-squared random variables 

with 1 degree of freedom and c. >̂  c„ >̂  ... >_ c are the eigenvalues 

of the matrix MW. 

Foutz and Srivastava (1978) also indicated the 'non-null' 

behavior of T in 
n 

Theorem 1.3.2 (Foutz and Srivastava): Assume the existence 

of a unique 6* that maximizes E[log f(X, 6)] over 0Q, and assume 

the model, {f(x, 0), 6e0}, satisfy regularity conditions CI - C4. 
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Assume that for some open neighborhoods 0* and 0* about 6* and 6* 
u o 

sup 
0*U0* 

1 rn i In
=1 log f(X±, 9) - E[log f(X, 9)3 -E-> 0 . 

If Q*tQQ, then 

Tn/n - ^ — > 2{E[log f(X, 9*) - E[log f(X, 9*)]} . 

Since the probability limit is a positive constant, this shows 

that T ->• +0° as n -»• oo for 9*^0n and hence, establishes the 'consis-n 0 ' 

tency' of the likelihood ratio test even when the model used to con­

struct the m.l.e. is incorrect. 
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1.4 Stochastic Comparison of the Performance of the Likelihood 

Ratio Test Under Model Misspecification 

In another paper, Foutz and Srivastava (1977) , a method for 

examining the performance of the likelihood ratio test when the 

model is incorrect is proposed. The resulting measures of asympto­

tic efficiency are based on the concept of Bahadur efficiency. 

It is shown in the above paper that when the model is incorrect, 

the likelihood ratio statistic is a 'standard sequence' and an 

expression for the 'approximate slope' is derived. The ratio of the 

approximate slopes under the incorrect and correct models (as 

9 -*• 0. , if need be) then affords a measure of the (local, if 0 -*• 9Q) 

asymptotic relative efficiency of the likelihood ratio test for 

various departures from the assumed model. 

These concepts will be more clearly defined in Chapter 4. 
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1.5 Direction of Research 

In terms of practical applications such as the construction of 

confidence intervals or confidence regions and hypothesis testing, 

it is not enough just to establish the asymptotic normality of the 

m.l.e., 9 , when the model is incorrect. In ordinary situations un­

der correct model specification, authors such as Rao (1963) and 

Wolfowitz (1965) have pointed out the need to strengthen asymptotic 

normality to the stronger property of uniform asymptotic normality. 

In view of this, we shall establish appropriate regularity condi­

tions in order for uniform asymptotic normality of the m.l.e. to 

hold under model misspecification. 

Also, it is of interest to study the large-sample performance 

of the likelihood ratio test against so-called 'local alternatives'. 

For this purpose, we need the asymptotic distribution of the like­

lihood ratio test statistic under local alternatives when the model 

is incorrect. The above two results are contained in Chapter 2. 

Next, we will focus on the test statistics due to Rao (1947) 

and Wald (1943). Let Efl(») denote expectation taken w.r.t. the 

density f(x, 9). Define the 'quasi' information matrix 

1(9) = h[w~log f(x» e) w~log f(x' e)1 

I m k x k 

X/ j HI —* X } £} • • • y K. 
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and the k x 1 vector 

ve - £ 5-i air 1O* f ( V e>» •••• n1 3-i W l0* f(xi* e»' • 
1 k 

Partition 6 = (6 , y )» e = (fi0»
 Y ) where <$n and 6Q are r x 1 

vectors. The Rao statistic is defined as 

n n 

and the Wald statistic is defined as 

Wn " n<«n " V ^ r °> X""1(V <J'>l"1 («n - fy , 

where I is the r x r identity matrix and 0 is a rx(k-r) matrix of 
1 

zeros. (Note that the matrix (I 0) I-1(0 )(QT) is just the upper 

r x r diagonal block of I~x(9 ).) These two statistics provide 

general tests of the hypothesis HQ of Section 1.3. 

Both the Rao and the Wald statistics utilize the m.l.e. and 

when the model is correct, it is well-known that they have the 

same asymptotic distribution as the likelihood ratio test statistic, 

viz., chi-squared distribution with r degrees of freedom. In 

Chapter 3, we derive the asymptotic distribution of the Rao and 

Wald statistics when the model is incorrect, first, under the 'null' 

hypothesis and, second, under a sequence of 'local' alternatives'. 

Under correct model specification, due to the above distribu­

tional equivalence, it has been traditionally difficult to compare 

and judge the performance of all the three test statistics 
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considered. In Chapter 4, using the asymptotic results of the 

preceding chapters, we shall attempt to compare these test statis­

tics. Our approach follows that of Foutz and Srivastava (1977) 

and is based on a modification of the concept of Bahadur efficiency. 

The last chapter is devoted to a comparison of the likelihood 

ratio statistic vis-a-vis the Rao statistic using an optimality 

criterion introduced by Bahadur for the situation when the model 

is correctly specified. We will show that the Rao statistic is not 

optimal according to this criterion. Further, we will also examine 

the special cases of the 1-parameter exponential model and the 

normal model which is a member of the 2-parameter exponential 

family. 



CHAPTER 2 

UNIFORM ASYMPTOTIC NORMALITY OF MAXIMUM LIKELIHOOD 
ESTIMATOR AND ASYMPTOTIC DISTRIBUTION OF LIKELIHOOD 
RATIO STATISTIC UNDER LOCAL ALTERNATIVES WHEN THE 

MODEL IS INCORRECT 

To facilitate the application of the results contained in 

Theorem 1.2.2 to the construction of confidence regions and 

hypothesis testing, we need to strengthen it to one of uniform 

asymptotic normality under the incorrect model. 

In anticipation of the need to study the local performance, 

under model misspecification, of the likelihood ratio test of the 

hypothesis H_ against alternatives close to the null-hypothesis 

value, we should also make available the asymptotic distribution of 

the likelihood ratio test statistic under model misspecification 

against a sequence of local alternatives of the form 

Q* — Bn + , n = 1, 2, ... . 
0 & 

These two results are established in the following sections. 

16 
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2.1 Preliminaries 

In the usual setting of the estimation problem when the model 

is correct, it is customary to first establish the uniform asymptotic 

normality for the standardized m.l.e. v̂ T (9 - 6). Consider the 

unidimensional case where k = 1. For a prespecified confidence co­

efficient of (1 - a), the corresponding cutoff z #2 *-s determined 

from standard normal tables and the (1 - ot)100% confidence interval 

for 8 is then obtained by inverting the inequalities 

J — n — j 
'1(6) 'l(8) 

to yield the confidence interval 

e - z«/2 < 9 < S + Z « ' 2 

n , — — n , 
nl(9) nl(9) 

where 1(6) is the Fisher information per observation. It should be 

noted that if uniformity in 9 does not hold, then the actual confi­

dence level attained varies for different 9 values. Or to put it in 

another way, different values of n = n(9) are required for each 

value of 6 in order to attain the prespecified confidence level of 

(1 - a). 

Similarly, when the model is incorrect, i.e. 

f(x, 9) 4 g(x), for all 9e0 , 
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it could still be useful to know which member of the model 

{Pfl, 6e0} provide the closest approximation to the true probability 

measure P. This naturally leads to the question of which f(x, 9) is 

'closest' in some sense to g(x). The following argument justifies 

9* (as defined in condition Al) as the proper value of 9 that makes 

f(x, 9) 'closest' to g(x) in an information theoretic sense. 
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2.2 Uniform Asymptotic Normality of the Maximum 

Likelihood Estimator under Model Misspecification 

In many realistic situations, a statistician cannot be 

absolutely certain that the model he has chosen to use to construct 

the m.l.e. is the correct one. Even if he had carried out a stan­

dard goodness-of-fit test to determine the correctness of his model, 

the acceptance of his null-hypothesis merely asserts that there is 

insufficient evidence to reject the model based on the observations 

that he had obtained. At best, this could be interpreted as saying 

that his model is a close approximation to the true underlying dis­

tribution. It would be grossly over-optimistic to claim, upon 

acceptance of the null-hypothesis, that the chosen model is 'the' 

correct one. This seemingly anomalous interpretation of the results 

stems from the striking observation that whenever a goodness-of-fit 

test results in the acceptance of the null-hypothesis that the 

observations come from the family {Pfi, 6e0}, the very same test 

(based on the same data) will also accept the hypothesis that the 

observations come from a bigger family, say {Pfl , (0, y)eQxT}t 

containing {PQ, 9eQ} . In typical situations, this bigger family 

could take the form of a 'generalized' version of the original 

model and we wish to work with the 'limited' model {PQ, 0eO} 

because it may be more convenient and mathematically tractable than 
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the generalized version. An example of this arises when {PQ, 9e0} 

is the family of Poisson distributions with mean 9 > 0 and the 

bigger family is the hyper-Poisson distributions with parameters 

9 > 0 and 0 < X < °° defined by the density, f(x, 9,A) = 

K(9,X) 9xr(X)/r(x+X), x - 0, 1, ..., where K(9, X) is a summation 

constant depending only on 9 and X. Another example occurs if we 

take {Pg, 9e0} to be the family of normal distributions with mean y 

and variance a2 (i.e. 9 = (y, a2)') and the bigger family represents 

the contaminated normal distributions with means y.., y„ and variances 

°1' a2 an<* a m i x t u r e proportion 0 < p < 1. 

From the preceding discussion, it is thus clear that it is 

very useful to know which member of the chosen model {Pfi» 9e0} 

'best' approximates the true underlying probability measure P. We 

shall justify below why PQ^ can claim to be closest to P. 

Let us first define the Kullback-Leibler information measure 

I (f) of f(x, 9) w.r.t. g(x) as 

I (f) = / log(g/f)dP 

= E(log g) - E(log f). 

It is well-known that 0 £ I (f) <_ <» for all density f and I (f) = 0 

iff g = f a.s. P. Hence, we can regard I (f) as a measure of the 

distance or 'similarity* between the probability measures P„ and P. 

By identifying the 9* that maximizes the quantity E(log f(X, 9)), 

we are therefore seeking the member Pflik of the model {P«, 9eQ} that 

is closest or most 'similar' to P in terms of the Kullback-Leibler 

information measure I (f). 
g 
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To implement the search for 6*, we need an estimation proce­

dure that will lead to some kind of an approximate confidence inter­

val (region) for 6*. Having knowledge of the results of the pre­

vious chapter, an obvious approach therefore is to use the maximum 

likelihood method. As pointed out earlier, the asymptotic normality 

of the m.l.e. under the incorrect model has already been established 

by several authors under various regularity conditions. However, 

for purposes of constructing confidence regions for 6*, we need the 

stronger condition of uniform asymptotic normality (over compact 

sets of 9*) to hold as well. The following theorem gives a set of 

regularity conditions under which uniform asymptotic normality holds. 

We shall denote the uniform weak convergence of a sequence of 

probability measures by => . Let C be the space of all real-valued 

<• (xi) I 0 0 

bounded uniformly continuous functions. Let P and {PA , 9e0} n D n—l 

be probability measures. Then by definition, 

p e n ) ^ u p iff I f d pe n ) "* / f dP 

as n •*• °° uniformly in 9 for all f £ C. 

We will first establish some lemmas that will be needed later. 

Lemma 2.2.1; If E |x|k and E |Y|k are both finite (k is a 

positive integer), then E |x + Y| is also finite. 

Proof. First, we will show that 

|X + Y|k < 2k_1(|x|k + |Y|k) . 
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Indeed, it is true for k «• 1. Since |X + Y|k£ | |x| + |Y| |k , 

without loss of generality, we can assume that X and Y are positive. 

Assume that the above is true for k-1. Then 

(X + Y ) k = (X + Y)k-1(X + Y) 

< 2k"2(Xk_1 + Y^ 1) (X + Y) 

- 2k"2(Xk + Y k + XY^ 1 + YXk_1) . 

It is enough to show 

k-1 k-1 V k 
XY* x + YX < XK + YK . 

Case 1. X = Y. The above is trivially true in this case. 

Case 2. It is enough to consider the case when X < Y. (The other 

case when X > Y follows by symmetry.) 

XY •"• + YXK = X Y K i + ( X + Y - X)YK L 

< XYk_1 + Xk + (Y - X)Yk-1 

= Xk + Yk. // 

Finally, we have 

E |X + Y|k < 2k"1E( |x|k + |Y|k) 

= 2k-1(E |x|k + E|Y|k) < ». // 

Lemma 2.2.2. If 0 — E — > e* uniformly in 6* and f is con­

tinuous at 6*, then 

f(6n)
 P > f(6*) uniformly in 0* . 
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Proof. Given e > 0 and 6 > 0, choose 6 > 0 such that 

|f(6) - f(8*)| < e whenever |9 - 9*| < 6. For this e, consider the 

following. 

P{|f(9n) - f(9*)| > e } 

= P{|f(9n) - f(9*)| > e, |9n - 8*| < Y> 

+ P{|f(9n) - f(6*)| > e, | 8n - 8*| > y> 

< P{|f(9„) - f(9*)| > e, |S - 8*| < y} 
n 

+ p{|en - e*| > y} . 

The first term equals zero by the continuity assumption made on f. 

By the uniform convergence of 8 , we can choose an N such that for 

all n > N , 

P(|8n - 8*| > y) < <s 

and so 

P(|f(8n) - f(8*)| > e) < 6 

for all n > N where N does not depend on 8* // 

The following notations are needed for Lemma 2.2.3. Let f be 

a real-valued measurable function on E . Define 

OL.(A) - sup{|f(x) - f(y)| : x, y e A} 

where A c E , and 

wf(x : e) - wf(B(x : e)), x e E , e > 0 



and B(x : e) is the open ball centered at x and of radius e. Also 

define 

wf (e : u) = /wf(x : e) U (dx) 

where y is a probability measure, and 

wf (e : y) = sup{ a)f (e : y) : y e E } 
y 

where f (x) = f(x+y) is the translate of f by y. 

The following lemma is taken from Bhattacharya and Rao (1976) 

[Theorem 13.2, p. 113]. 

Lemma 2.2.3; Let X., X„ X be n i.i.d. random vectors 

with values in Ek satisfying E ^ ) - 0, Var(Xx) = I and 

P4 = E | |XX| P < °° where | |u| | = (ij^ u i
2 ) 1 / 2 is the Euclidean 

norm. Let 0 denote the distribution of (X. + X„ + ... + X )/•n 

and let $ be the standard normal distribution in E . Then for 

every real, bounded Borel-measurable function f on E , 

| /£ d (̂  - /f d * | 

< wf(E
k) a(k) p4//n" 

+ | - co *(27/2 k*'3 P3/Or
1/3^ : «) , 

where p- = E j|x.||3 . 

We are now in a position to prove Theorem 2.2.1. The 

following regularity conditions are assumed to hold. 
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Dl. For almost all x, the second order partial derivatives 

32 

3e£30m 
log f(x, 0), Jo, m = 1, 2, ..., k exist and are continuous in 

0 . 

D2. The m.l.e. for 0 in the model {f(x, 0), 0e0} converges in 

probability uniformly in 0*e0 to the constant 0* uniquely satisfying 

the condition 

E(log f(X, 0*)) = sup {E[log f (x, 0)]} . 
0 

(This is the same as condition Bl.) 

D3- k E-i w lQs f (V e) - ^ E [ 3 0 ^ r l 0 * f<x> e>i 
Jo m x, m 

uniformly in a neighborhood 0* of 0*, H, m = 1, 2, ..., k. (This 

is the same as condition B5.) 

D4. The matrix 

A(0) E ^ M ; l 0 s f < x ' e ) ] 

k x k 

Jo, m = 1, 2 k is nonsingular for 0e0* . (This is the same as 

condition B6.) 

D5. Assume E[Jr- log f(X, 0*)]**, Jo = 1, 2, ..., k exist 
39Jo 

and are finite. 

D6. Assume the 'pseudo' information matrix C(0*) is positive 

definite where 
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C(0*) E[~- log f(X, 0*) J - log f (X, 0*)] 
•30r 30 m 

k x k 

ft, m B 1, 2, ..., k. 

Theorem 2.2.1. Under regularity conditions Dl - D6, 

•n(0n - 0*) =>u N(0, K~l(B*)C(Q*)A~l(B*) ) . 

P r o o f . L e t <\> n = - ^ - 7 n J L log f(X, , 0*) , ft = 1, 2 k 

£ /S" x = 1 9 8A 

and write <p = (<(>.,, (J)-, ..., <J>, ) ' . For sufficienty large values of 

n, Dl and D2 allow us to expand <$> by Taylor series about 

\' *i' sn
 + £* <e»" v ^ S-i djfc;los £(Xi' $ 

for some 0„ = 0 + Xo(0* - 0 ) , 0 < A0 < 1 and ft = 1, 2 , . . . , k. 
ft n ftv n ' ' — ft — ' ' 

By the maximizing proper ty of the m . l . e . , 

<f> |o - 0, £ - 1 , 2 , . . . , k. 
n 

So we can w r i t e 

<i> - - I t i ^<<L - e*> h E-i lAr loe f ( V e+> 
& m=l nm n u±=l dBnoU i ^ 

In matr ix n o t a t i o n , t h i s reduces to 

4> - A(0+) v^T(0n - 0*) , 

where 
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A <e+) - n 5-1 39^30- log f (Xi' 6£> 

k x k 

£, m = 1, 2, ..., k. Now, by assumption D3, 

A(6+) = A(0*) + o (1) 

where o (1) •*• 0 uniformly in 6* with probability approaching 1 as 

n •*• °° . Hence, for large enough values of n, A-1 (0 ) exists and we 

can write 

/S(Bn - 0*) - [A"1 (6*) + op(l)](J> . (2.2.1) 

By D6, there exists a nonsingular k x k fixed matrix M such that 

M'C(0*)M = I, the k x k identity matrix. Now consider the i.i.d. 

random variables 

Yi = M' (al~ log f(xi» 0*> W~log f(xi» e*))f » 
1 k 

,k ., 
i = 1, 2, ..., n. These random variables take values in E with 

expectation E(Y.) = 0 and covariance matrix Cov(Y.) = I. Write 

M - (m
±j)k x k , i , j = l, 2 k,m = max± ̂ {|m±;.|} and 

LS, = "3TT log f(X» ©*). * - 1. 2, .... k. Let P4 - E H Y J I * . 

Then 

p4- E"$-l»]jV 2 +- + (^-l,,,kJLJ>a]! 
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By assumption D5 and Lemma 2.2.1, p, < °° and hence, the conditions 

of Lemma 2.2.3 are satisfied. Let Q denote the distribution of 

M'(J> and let $ be the standard k-variate normal distribution with 

covariance matrix I. Then for every real-valued bounded measurable 

function f on E , 

| /f dQn - /f d $ | 

< 03f(E
k) a(k) P4/v̂ n"+ (4/3w|(27/2k4/3 p3ir"

1/3n"1/2: $ ) 

where a(k) is a constant depending only on k, and cof(«) and 0)4(0 

are as defined in Lemma 2.2.3. Since the preceding statement is 

true for bounded functions, clearly, it is also true for every 

bounded uniformly continuous function. Since f is bounded, clearly, 

o)f(E ) is bounded, say, by K < °°. Also, since f is bounded and 

* 
uniformly continuous, the second term involving cof can be made as 

small as we please by choosing n to be large enough independently 

of 0*. Thus, given £ > 0, we can choose N (not depending on 8*) 

such that 

| / f d ^ - / f d $ | < e for all n > N, 

and for all bounded uniformly continuous functions f on E . This 

shows that 

Q n = * u * ' 

Let Z denote the standard k-variate normal random variable. Then 
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4> =>u (M')~X Z 

and thus, 

A_1(e*)<J) => A"1 (6*) ( M 1 ) " ^ . 

From this and (2.2.1), it follows that 

^ ( 9 n . 9*) -> u N ( o , A"»(9*)C(e*)A"
1(6*) ) 

where (M ' ) " ^ " 1 = C(9*). // 
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2.3 Asymptotic Distribution of -2 log X Under Local Alternatives 

When the Model is Incorrect 

Similar to the setting of the estimation problem considered in 

Section 2.2, we assume in the usual hypothesis testing situation 

that the model used for constructing test statistics (e.g. the 

likelihood ratio test statistic -2 log X ) has been correctly speci­

fied. If this is true, then in many situations where uniformly most 

powerful test procedures do not exist, the next 'best' procedure to 

look for may be a locally most powerful test, i.e., we seek a test 

that performs best against alternatives that are close to the null 

hypothesis value. In this case, we would then need to derive the 

relevant asymptotic distributions against the so-called sequence of 

'local alternatives'. 

To be precise, in ordinary settings where the underlying probabi­

lity distribution take the form of a family {Pfl, GeO}, it is common 

to define a sequence of local alternatives as 

0 — 6Q + ——_ , n = 1, 2, ... 

where 0_ is the hypothesized value of 0 and A = (A, , ..., A,)', is a 

vector of fixed constants. It is easy to see here that the true 

value of 9 converges to the null hypothesis value 0_ at a rate of 
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Similarly, when the model is misspecified, the same kind of 

formulation is useful for purposes of hypothesis testing. In this 

case, the quantity of interest is 6* as defined in previous sections. 

It might then be of value to study the performance of the likelihood 

ratio test, or other tests based on the m.l.e. such as the Rao and 

the Wald tests, of the hypothesis HQ: 0* = 0 Q against a sequence of 

local alternatives of the form 

e* = en + — , n = I, 2, ... 

where as before, A = (A,, ..., A,)1 is a vector of fixed constants. 

In order to carry out such an investigation, it is then necessary to 

derive the asymptotic distribution of any such test statistic under 

the afore-mentioned local alternatives when the model is incorrect. 

To establish the above .asymptotic distribution, we need the 

following lemma. 

Lemma 2.3.1. Let T, a p x 1 random vector, have the p-variate 

normal distribution with mean vector y and a positive definite co-

variance matrix £. Define the quadratic form 

Q = T'AT, 

where A is a p x p matrix of fixed constants. Then Q is distributed 

as a linear combination of i.i.d. noncentral chi-squared random 

variables: 
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Q - iiml \ x2
± (i, u' r v ) 

where X?(l» U* IfV)* i ° 1» 2, ..., p are independent and identi­

cally distributed noncentral chi-squared random variables with 1 d.f. 

and noncentrality parameter y' £ x y, and -̂, >. ̂o — * • • — ^ a r e t*ie 

eigenvalues of the matrix £A. 

Proof. Without loss of generality, we can assume that A is 

symmetric. Since £ is positive definite, there exists a nonsingular 

matrix L such that I = LL». Let Y = L_1T. Then Y ̂  N(L_1 y, I) and 

Q = Y'L'ALY. Since L'AL is symmetric, there exists an orthogonal 

matrix C such that C'L'ALC is a diagonal matrix whose diagonal 

elements are the eigenvalues X. >_ X? >_ ... >̂  X of L'AL. Let 

= ri C'Y. Then 

Z ̂  N(C'L_1y, I) and 

Q = (CZ)' L'AL(CZ) 

» Z' C L' AL CZ 

t iu \ xi (i, «> 

where x|(l» <$), i = 1» 2, ..., p are i.i.d. noncentral chi-squared 

random variables with 1 d.f. and noncentrality parameter 

6 = <C» L"xy)f (C'L-1y) - y' I"1 y, and Xx > X2 > ... > X are the 

eignevalues of the matrix L'AL. To complete the proof, we have to 

show that X- >_ X2 >. ... >_ X are also the eigenvalues of the matrix 

j[A. However, this follows easily since 
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|L'AL - XI| = O 

<=> |L|*| L'AL - XI|»|L _ 1| = o 

<=> |LL' ALL"1 - xi | = o 

<=> |JA - xi| = o . // 

Before we proceed to state and prove the next theorem,.we will 

need to modify the earlier regularity conditions CI - C4 of Chapter 1. 

All convergences in probability and in distribution implied in CI -

C4 are now assumed to hold uniformly in 9*e0. We shall, for clarity, 

rename this new set of regularity conditions as CI' - C4'. 

Theorem 2.3.1. Assume the regularity conditions CI' - C4' 

hold. Under the local alternatives 

e* = e + . A . , n = I, 2, ... 

where A = (A,, ..., A, )', is a vector of constants, the likelihood 

ratio statistic, T , is asymptotically distributed as a linear com­

bination of noncentral chi-squared random variables: 

D k 

Tn - - 2 log Xn > l±ml C±' Xl
2(l, 3) 

where xi
2(l> 3), i = 1, 2 k are i.i.d. noncentral chi-squared 

random variables with 1 degree of. freedom and noncentrality para­

meter g = (AA)' C""1 (60) (AA) and C^ > C2' >̂  ... >_ Ck' are the 

eignevalues of the matrix -A-1C(6n) . 
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Proof. We write 

- 2 log Xn = 2[fi=1 log f(X±, 0n) - l±ml log f(X±, 90)] 

and expand each term in the parenthesis about 0*. (This is possible 

because of C„'.) 

C i log f (x±, en) 

- C i 1O* f < V e*> + C i <Ki - V> C i 3^ f ( xi« e*> 
+ I £ - 1 <S»£ " V><Snm " V > C l 3 0 ^ l o * fCXi> 6 + ) 

where 0+ = 0* + a(0n - 0*), 0 < a < 1 and 

ln log f(X 0 ) 
i=l x u 

= f±ml log f(x±, 0*) + l^ ( e M - 0£*) £ = 1 4 - log f(X., 0*) 

k n a 
+ 1 Zi.«-1 <60* " V><0Om " V > C l 3 0 ^ l 0 g £ ( V e+*> 

where 04*1" = 0* + $(0Q - 0*), 0 < @ £ 1. 

So - 2 log X 
Li 

3 
n 

" 2 C l (9nll " <W C l 35^ »»« £ < V 9*> 

+ t.w.1 «ol " V " S » " V> C l 3 ^ lo« *<*!• 9+) 

+ i , i <V " V><eo» " V> C i 3e§e; l0s *<V e~> . 

By assumption C2', 0 — 2 — > 0* uniformly in 0*. Also under 
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The local alternatives 9* = 9Q + A/^n, 9* -»• 9Q as n •+ °°. This 

implies that 9+ — E — > 9Q and 0"*"
1" — E — > 0Q. Assumption C21 also 

implies that v̂ T(9 . - 0-*) converges in distribution uniformly in 

0* for each I - 1, 2, ..., k and assumption C4' implies that 

£ £-1 S O T lo* f ( Xi' 9*> " ^ E [39^0- loS f <X' 6*>J " A£m 

I m £ m 

uniformly in 0* for every &, m = 1, 2, ..., k. By Slutsky's 

Theorem, the previous expression can be rewritten as 

. 2 log An = 2 I * = 1 { ^ n ( , - e^*) + A t}-i- ^ A log f (X. ,6*) 
/n x, 

' x, m 

A similar expansion yields 

1 r11 8 
Z±-i a t : l o g f ( x i 6*> 

n r> /<. k. ^ , n 

.I..ST los f <V V + I w <V-«nl> -=- ̂ l-HOe" lo« £<xi9) 

i=l % /n £ m 

where 0 = 0n + y(9* - 6 ) , 0 < _ Y £ 1 . The first term vanishes by 
A 

the maximizing property of m.l.e. By assumption C2' 9 — E — > 0* 

and so 9" — E — > 9*. Hence 

7" C l 357 l08 f <V 9*> 
/n Jt 

= "C i •*•»» - V>" -=- C i OTJSJ- log f < x i - e*> 
x, m 

= ' 4 i •*<«,* " V>V • 
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Let Z - ,/n(6n - 6*). Then 

- 2 log Xn = = = {2 (Z + A) » (-A)Z} 

+ (Z + A) »A (Z - A) 

= (Z + A) ' (-A) (Z + A). 

Since Z + A > N(A, A lc(60)(A')
 x) by assumption C2, an 

application of Lemma 2.3.1 yields the desired result: 

D k 

_ 2 log Xn > l±ml C±'X\ (1, 6) 

where x? (1» <$) , i = 1, 2, ..., k are i.i.d. chi-squared random 

variables with 1 d.f. and noncentrality parameter 

= (AA)' C_1(e0)(AA) , 

and C ' >. C21 >. ... >_ C,' are the eigenvalues of the matrix 

A^COgHAT^-A) = -A_1c(e0). II 

Remark. When the model is correct, -A = C(6Q). So 

Cl' = C 2 ' = "• " Ck' = !» 5 = A' C(9Q)A and -2 log An is asympto­

tically distributed (under the sequence of local alternatives) as 

a noncentral chi-squared raondm variable with k degrees of freedom 

and noncentrality parameter A' C(0_)A which agrees with known 

results. 



CHAPTER 3 

ASYMPTOTIC DISTRIBUTION OF THE RAO 
AND WALD STATISTICS UNDER MODEL 

MISSPECIFICATION 

In Chapter 1, we discussed three important hypothesis testing 

procedures, namely, the tests based on the likelihood ratio test 

statistic, the Rao statistic and the Wald statistic. Foutz and 

Srivastava (1978) derived the asymptotic distribution of the like­

lihood ratio test statistic when the model is incorrect. 

In this chapter, we shall derive the corresponding asymptotic 

distributions of the Rao statistic and the Wald statistic under 

model misspecification. 

37 
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3.1 Asymptotic Distribution of the Rao Statistic Under Model 

Misspecification 

Before we proceed with the asymptotics, we will recall again 

the expression for the Rao statistic R . Let 9' = (6', Y')» 
% Oj 

V = (\, -.., 6r), V = (9^! 6 k), 1 < r < k and 

K6) = Ee[W~log f ( X j e ) * W~ l o g f(x> e ) ] 

£ m 

k x k 

it, m = 1, 2, ..., k. Define 

G0 - {8| 6eG, 0J = 0oj> 1 < j < r} 

= {6| 0eG, 5 = 6Q} , 

where 6Q = (0QT» •••» 0 Q r)' is a r x 1 vector of fixed constants. 

Let 0 denote the restricted m.l.e. of 0 over 0rt and let n 0 

v0 = (•-— l±ml w ~ log f<x., 0), ..., -^ ̂ =l •§§- log f(x±, 0))' 
vn 1 _ . i-

For testing the hypothesis 

HQ: 0 e 0- versus H,: 0 e 0 - 0Q, 

the Rao statistic is defined as 



39 

n n 

To avoid unnecessary complications and to afford easy compari­

sons, we shall use the same notations and assume the same regularity 

conditions as in Foutz and Srivastava (1978), namely CI - C4, as 

well as the following condition C5, to prove the main theorems in 

this chapter. 

C5. Assume that the third order derivatives 

93 

36036 96 x. m n 
log f(x, 6), %, m, n = 1, 2 k exist and are finite 

in a neighborhood of 0*. 

Theorem 3.1.1. Under the regularity conditions Cl - C5, and if 

0* e Q Q , then R is asymptotically distributed as a linear combina­

tion of k i.i.d. chi-squared random variables: 

D k 

R > L , A.x? 
n L±=l iAi 

where ^ — ^2 — " ' — ^k a r e t l i e e i S e n v a l u e s o f 

0 
CO*)!!"1^*) -

\ - r 
(A'2) *LA 2 J(0 ' Ik_ r ) ] 

2 2 2 
and X-i» Xo» •••» Xi, a r e k i.i.d. chi-squared random variables with 

1 degree of freedom. (Here I. is the (k-r)x(k-r) identity matrix 

and 0 is the rx (k-r) matrix of zeros.) 
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Remark. It is interesting to note that if the hypothesis is 

simple, i.e., H Q = 9 = 9Q, then the proof of this theorem is straight 

forward. In this case, 9* - 9Q. So V0 — - — > N(0, C(9Q)) by the 

Multivariate Central Limit Theorem and by Lemma 2.3.1, 

D 
Rn = V90'

 1 ~ l ^ \ — - ^ i - l ^ X i 

where x?» Xo» •••» x£ are k i.i.d. chi-squared random variables with 

1 degree of freedom and &•, ^_ %>2 — " ' — V are the e i S e n v a l u e s of 

C ( 9 Q ) I - 1 ( 9 0 ) . In particular, if the model has been correctly 

specified, then C(9Q) = I(9Q), implying that l^ = %2 = ... \ = 1 

and thus R is asymptotically distributed as a chi-squared random 

variable with k degrees of freedom. 

^ % % 
Proof of Theorem 3.1.1. Write Y n = CYni» •••» ^nCk-r)^'* 

under the assumption 9*e0n, 9* = (Sn', Y*')' a
n d we can regard 

V Q / I~ 1(9*)V Q A as a function of Y* = (
e£+i» 

Expanding this function about 9 (i.e. Y )» 
n n 

, 9*)' only. 

•\ + C ^ - V 4j(ve' i-»(e)ve) 

k-r 

9=9 
n 

+ I ItJ-l <YJ -Yni)(YJ -Ynj) 3 ^ - (Ve-r'(6)Ve) 
e=e^ 

. f\j r\j 

where 9 • 6n + A(6* - 6 ) t 0 < A < 1. First, let us consider the 

second term. Write 



n 
4>o " — L=i W~ l08 f <Xi» 9) , A - 1. 2, .... k and 

I"*1^) - d^kxk* A, m = 1, 2, ..., k. Hence, VQ = <* r .... * 

and 

r£m 

k 

^7 <v r»(e>v = l,)n=1 ^ a- w 9_ ,T&m 

'j 

where ̂ - (I*m ^ n ) 

- (-977) *£*a + 1 (377) <»m + 1 *£<*T> . 
•J J J 

By the definition of restricted m.l.e. 0 , under H, 
J n* ' 

0' 

*c 

s° w (I"mw 

0=9 
n 

r\j = 0 for each j = 1, 2, ..., k-r and 
0=0 

n 

« T-V 
IT V * (9)V0 
J n J 

% = 0 . 
0=0 

n 

Next, we consider the third term. By direct computation, 



a ^ r ( v e ' r l(6) VQ) 
e"e 

2_Am 3 ha 3 ^ 

' hj-1 { [ (W[3Y7 Wm + ( - 3 Y 7
 ) (^Y7)

 *I 
,3"l 

'J 

l3Y4 

2 , im »A_ sT£m 30o 

+ I ( 3Y7W7 ) * m + I ( ^ Y T ) ( 3 Y 7 ) ] 

i .1 1 i 

~T Ux 3(f) « 3<J)p 3<j> 

' i J i J 

r£m 32<J> 
+ I mV^>3> 

e=en 

2T&m 

NOW (Y* - y ^ m * - Y ^ C C ^ r )•*•.] 
e=en 

n n ^2 T ^m (()0 (J) 

e=e"1 

-^—> 0 s ince Je—> o 

e=en 

(because 6 —E—> 9* and as a consequence of the Weak Law of Large 

Numbers) and /n(Y? - Y J ) converges in d i s t r i b u t i o n by assumption 

C2. In a s i m i l a r fashion, a l l o ther terms converge to zero in 

p r o b a b i l i t y except terms of the form 



T*.r!*i
 8*m + ^ !*m, 

1 l3Y± 3YJ 3"*, 3Yi J " 

So, with probability 1 as n -*• °°, we reduce the third term to 

J J 

9 ^ 3 ^ 

3Y± 3YJ 

3<N 

e=en 

Let W(i,j) = ̂ Q- , i, j = 1, 2, ..., k and W = (W(i,j)) kxk* The 

preceeding expression then becomes 

I C = l (Yk - Y^XYJ " Ynj) I^m=1 I M W(£,j+r)W(m,i+r) 

+ I ^ ^ i I ^ U . i+r)W(m,j+r)} 
e=en 

k-r 
" I Zi fJ-l ( Y i " YmXTfJ - \ j ) % + r ^ ^ «i+r 

+ W' I"1(6)W. } 

e=en 

where W = (W^, ..., W,) and Wn, p = 1, 2 k are k x 1 vectors. 
<\,PJ 

Note that jg±' I * (6) W. is the (i,j)th element of W'l
 X(0)W and by 

symmetry, 

w« I'^ew, = w» riO)w. . 
Oyj %i %i »v3 
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Let B(6) be the lower (k-r) x (k-r) diagonal block of W'I_1(0)W. The 

last expression can then be compactly written as 

A> 
& (Y, - Y*) ' 

'n 
MM a. 

^n(Y„ - Y*). 
'n 

<\j 'Vi 

By assumption C2, 0n £ 9*. This implies 6+ * 0*. Also »̂ i(Y„ - Y*) 
n 

converges in distribution. Further, assumption C2 and C4 imply 

B(9+) P L 

n 

where L is the lower (k-r)x(k-r) diagonal block of A'I-1(9*)A. Thus, 

by applying Slutsky's Theorem, we can write 

a.d. 
R ^ 

n 
VQ*

? l"1(9*)Veik - n(Yn - Y*)'L(fn - Y*) 

a d where " ^ *" denotes "equal in asymptotic distribution." By a similar 

expansion, letting U - (<J> -, ... , <(>,) = (0 I. )VQ where 0 repre­

sents the (k-r)xr matrix of zeros and I. is the (k-r) x (k-r) iden­

tity matrix, we have 

v - ^ + 
' 'n 

3=1 ̂ Yj* V 3Yj 

j=l ^ Y j * Ynj ; 9Y.. 9 = 0 

where O** = &„ + 6(0* - ft,), 0 £ $ £ 1. Alternatively, since U^ = 0 
n n 

by the definition of the m.l.e. 0 , under Ho, 
n' ' 



V "d" A 22 * <V* " Vn> 

(since 0 ^ 0 * implies 6 ++ P 
->• 9*). So we have 

* (Y* - vn) a : d - A 2 2 - 'U Y 4 
A22~' (0 " V. 

Hence, 

R a : d ' v M 
n - 0* 

I *(0*) -
0» 
I 
k-r 

(A 2 2-Hi A22-»(0- Ik.r) V 0* 

By the Multivariate Central Limit Theorem, 

D V9* X N ( 0> C(0*) >• 

Applying Lemma 2 . 3 . 1 , i t follows t h a t 

R a : d - Zk . fc.X? 
n = x=l xA i 

where x?» ••• > Xu a r e i«i.d. chi-squared random variables with 1 

d,f. and JL > &0 > ... > A, are the eigenvalues of 

C(0*) 

1. - 2 -

I *(©*) -
0' 
I 
k-r 

(A22')->L A 2 2"V0' Ik_r) 

Remark. When the model is correct, we have 

22 C(0*) = 1(0*) = -A, L = -A99 and so the above matrix expression 

reduces to 

I -
r o A 1 2 > A 2 2 

0 I k-r 

\ ~AU A22 
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It is clear that £ . = . . = £ = 1 and & «, = ... = &, = 0 and so 
1 r r+1 k 

R has an asymptotic chi-square distribution with r d.f. When the 

model is incorrect, it is our conjecture that there are only r nonzero 

roots. However, we are unable to establish this at this point. 

We indicate the "non-null" behavior of R in the following 

theorem. 

Theorem 3.1.2: Assume the existence of a unique 9 that maxi­

mizes E[log f(X,9)] over 0 , and assume that the regularity conditions 

C1-C2 hold. Also assume that for some open neighborhood 0 about 9 , 

sup 
* 9e 0 o " i " i ^ l o g f ( X l ' e > " E l 4 l o g t ( x ' e ) 1 So, 

£ = 1, 2, ..., k. If 9* i 0 , then 

•f * E<V )• r»<e*> E(Ve*) 

o 

where E(VQ4c) = ( E[ -gj-logf[X,6*] Efc|-logf(X,9*)] )'. 
o i k 

Proof; Let ZQ(Q) - ( £ Z g|- logf(X±,9), ... , £ Z gf-logf (X.,,9))' 
i=l 1 i=l k 

Then since ? n £ 0*, £n(6n) £ EVQie by the Weak Law of Large Numbers. 
» o 

Also I_1(9n) 5 I
_1(9*) and the result follows. 

Remark; Since l""1^*) is positive definite, this establishes the 

consistency of the Rao test which rejects for large values of R (because 
t> 

_n converge in probability to a positive constant under 9* £ 0 ). 
n 



47 

3.2 Asymptotic Distribution of the Wald Statistic Wn Under Model 

Misspecification 

A /\ 

Partition the unrestricted m.l.e. e
n
 = (5n Y n)•

 T n e W a l d 

statistic W is defined as n 

Wn - n« n - toy [(!r 0) !-•«„> £ > ]"'(«„ - «o) 

where I is the r x r identity matrix and 0 is the r x (k-r) matrix of 

zeros. Let 0 be as defined in the previous section. 

Theorem 3.2.1; Under the regularity conditions C1-C2 and if 

8* e 0i then W is asymptotically distributed as a linear combination 

of r i.i.d. chi-squared random variables: 

W 5 S d. v? 
n i-1 X Xx 

I 
where d- > d2 j> ... >. dr are the eigenvalues of M[(I 0) I_1(9*) (J^)]"1, 

M being the upper r x r diagonal block of lC1C(B*)(A')"1, and x?»..., y^ 

are r i.i.d. chi-squared random variables with 1 degree of freedom (df). 

Proof: By assumption C2, 9 5 6*. Thus I_1(9 ) S I*"1 (9*). 

Also j/n (6 - 6 ) * N(0, M) where M is the upper diagonal block of 

A~1C(9*)CA')~1. By Lemma 2.3.1 and also by the application of Slutky's 

Theorem, 

I r 

Wn
 ald- n(6n - 6Qy [(Ir 0) f

 J(9*) (0?) ]
_1(6n - 6Q)

 a;d* Z d±x| 

where x?i ••• i xt a r e independent and identically distributed chi-

squared random variables with 1 df and d- >_ d„ > ... > d are the 

eigenvalues of 
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M [(Ir 0) I'
1 (6*) (J) ] _ 1 . 

The non-null behavior of W is indicated in 
n 

Theorem 3.2.2: Under assumptions C1-C2 and if 0* t 0-, then 

W I 

-f £ (<S* - 60)« [(Ir 0) l"He*) (J) I"1 (5* - 6Q). 

Proof; The proof follows immediately from assumption C2. 

Remark: This establishes the 'consistency' of the Wald test for 

the same reasons as in the case of the Rao test. 

3.3 Examples 

We will conclude this chapter by considering two examples. 

Example 3.3.1: Consider the family of Poisson distributions with 

mean 8>0 as the model chosen for the purpose of testing the simple 

hypothesis that the mean of the distribution of X is a specified con­

stant 0 . The m.I.e. for 0 is X and the likelihood ratio statistic 

o 

constructed from this model is -2 log X where 
n 

Xn = ( V * ) n X exp {n(* " 6 o ) } ' 

Direct computation yields 1(0) = 1/0 and so the Rao and the Wald 

statistics take the following forms: 

Rn - n(x - e0)Veo 

W n = n(X - 0Q)
2/X. 
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1/2 
[Note that in this example, W = 8 R /(8 R /n + 6 ) .] 

n o n o n o 

When the Poisson model is incorrect and X has a discrete distribu-

tion {P } _n satisfying assumptions C1-C5 (e.g. the binomial distri­

bution with parameters k (a positive integer) and p (0 < p < 1), then 

it can be easily shown that 

9* = e f = -w = -1/0 , C(6*) = Var(X)/62, 

M = Var(X) where Var(X) denotes the variance of X, so -21ogX is asymp­

totically distributed as [Var(X)/0 ] x
2 

Similarly, 1(9*) = 1/9 and so W has the same asymptotic distri­

bution [Var(X)/9o]-x£. Also C(9*) I_1(9*) = [Var(X)/92] [1/9J"1 

= [Var(X)/0 ] and the same asymptotic distribution holds true for R . 

However, if 9* £ 9 , all three statistics have different probability 

limits, viz., 

- ̂  log An 5- 2[(9 - 9*) + 9*(log0* - log 9 )], 

M P (e* . 0o)2/eo> 

^ I (9* - 9 )2/9*. n o 

Example 3.3.2: Consider the problem of testing that a random 

variable X has a specified variance a2 . Suppose the family of normal 

distributions with variance 9, > 0 and unknown finite mean 92 is 

chosen as the model for constructing the tests. The restricted m.l.e. 

of 9 - (9-, 99)', 9 , is (a X)', and the unrestricted m.l.e. 9 is 

(Sn X)' where S is the sample variance. Suppose the normal model is 

incorrect and instead, X has a uniform distribution on the interval 

(a, $), then assumptions C1-C4 are satisfied with 
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6* - ([3 - a]2/12, [3 + a]/2)\ 

Direct computation yields 

N = 
' -72/(3 - a)k 0 

0 -12/(3 - a) 2 

C(9*) = 
28.8/(3 - a)' 

and hence, A 1C(6*)(A') M - 1 = 

0 

12/(3 

(3 

- a); 

a)'•/ISO 

0 

0 

(3 - a)2/12 

Thus M - (3 - a)Vl80, W = 72/(3 -a) 1* and -21ogAn is asymptotically 

distributed as .4x?. 

To obtain the asymptotic distributions of R and W , we first 

compute 

1(9*) = 
72/(3 - a)" 0 

0 12/(3 - a) 2 

So A'l *(0*)A -
72/(3 - a)* 0 

0 12/(3 - a) 2 

A - -12/(3 - a) 2, L = 12/(3 - a) 2 and R is asymptotically distri-
22 

buted as £-X? + ^o^2 w ^ e r e ^i an<* ^? a r e ' t* i e e i 8 e n v a l u e s °f 

28.8/(3 - a)** 0 

0 12/(3 - a ) 2 

.4 0 

0 0 

(3 - 01)772 

0 (3 - a)2 /12 

0 0 

0 (3 - a)2 /12 
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Thus R * .4x?. Similarly, W is asymptotically distributed as c-X? 

where 

Cx = [(6 - a)Vl80]. [72/(3 - a)*] = .4 

Hence, all three statistics have the same asymptotic distributions, 

viz., .4x?. 

3.4 Asymptotic Distributions of the Rao and Wald Statistics under 

Local Alternatives when the Model is Incorrect 

In this section, corresponding to the result in Theorem 2.3.1, 

we will derive the asymptotic distributions of R and W when the 

model is incorrect under a sequence of alternatives of the form 

0* = 0 +A/^n , n - 1, 2, ... (3.4.1) 
o 

where = (A- A.) is a vector of constants. 

Theorem 3.4.1: Assume the regularity conditions C1'-C4I and C5 

hold. Under the above local alternatives (3.4.1), the Rao statistic 

R is asymptotically distributed as a linear combination of i.i.d. 

noncentral chi-squared random variables: 

n k 

R * * V Xi (1'3) 
i=l 

where x| (1»S)» i=l» 2, ..., k are i.i.d. noncentral chi-squared random 

variables with 1 degree of freedom and noncentrality parameter 

3 - A'C(0Q)A, and S.^ > l^ > ... :> Z^ are the eigenvalues of the 

matrix C(0o)l"
1(0o). 



Proof: Expanding R - VQ ' I'^S )VQ about 0*. we obtain 
-———— n tf- o o 

o o 

+ I J . «ci " 9i><e<v! " 8j> 367557 < V I _ '<V ve+> 

where 

e+ = e* + x(eo - e*), o < x < i . 

Using the same notations as before, let 

1 n 9 
h = i S 39~ l o g f< x i ' e>» A = 1. 2, . . . , k, 

>m i=l 5. 

r l ( 0 ) - ( I £ i n ) k x k , and 

C ( 0 ) = ( C * » W *. » " 1. 2 . . . , k. 

k P 
S o V ' I _ 1 (e ) Vfl = E I <M and 

x.,m=l 

357 <V ' " 'We 'v ' . i " " "* ' 
j it,m=l j 

A _ /TT I T ~ l / Q N t r \ _ ^ 3 / - r^m 

Now, ^g- (I ^ ) - ̂ _ ^ B + i _ ^ + I ^ g e T , 

By assumption C31, E [ -g|- log f(X,6*) ] - 0, j = 1, 2, ..., k. So 
j 

we have, by the Weak Law of Large Numbers, 

r *1 = I 2 30" log f (Xi» e*> ̂  °" •n J i=l i x 



53 

In addition, ̂ n (0 . - 0.) = ̂ 1 ( 1 ) = -A. under the specified 

local alternatives and applying the Central Limit Theorem in conjunc­

tion with assumption C2* yields 

*j = ̂  ,S W~ log f<Xi'6*> * N ( 0» Cj.j (e*> >> J=1» 2' ••• » k-

Now, we rewrite the second term in the expansion of R as 

J - l ° J 3 *,m-l " j ^ m ^ J m 

i !!* 
+ lilm V * "j > > • 

and observe that 

r>T&m JL A p 

~39~~ * & I* *m ° f o r a 1 1 A» m» J ' a n d 

j 

1 3*Jl 
I*™ ( ? 397) * a ' d * I£mC„(() . / n j ' Tm = 3 Urn 

Let d. = 2 IZm C.0 = (j,m)
th term in C(9*) I_1(9*) and note that 

k 
Ed. (() is the ith component of C(9*) I_1(0*) VQ.. Thus , jm m o* m—1 

k k i 9<frg, 
S , £ (6 . - 9*) Z Ilm (P 397 ) * a : d * -A' C(6*) I_ 1(9*) VflA 

j - l ° j 2 A,m=l /n j m - 9* 

and similarly, 

k 0 JL % , k „ 
z I *o C JZ 96- ) a ^ I*™ (j>0C . 

n , Tx, /n i ' = „ , Tx, mi 
&,m=l J JL,m=l J 
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= j t h component of C(0*) i " 1 ^ * ) ^ * . Thus, the second term i n the 

expansion of R reduces a s y m p t o t i c a l l y t o -2A' C(0*) I ~ 1 ( 0 * ) V Q A . 

L a s t l y , we c o n s i d e r the t h i r d term. 

3 0 . 9 0 . v n v0 
i 3 

( ^ V ' T 1 ( 0 ) V o ) 

k 
S { 

£,m=l 

2 T A m <j>0 <j> 3 2 I 
3 0 . 9 6 , ' r • r 

— i j / n / n 

„ y ^_&m .. 3 0 o d) 

90. / - 30 . • r 

/n i /n 

3 l £ m , *£ . 3(J) 
1 Tm r£m 

• n / n i x 

3 l - u . 1 Uz <Pm „ 1 v y £ ?' *0 1 

30 •n j V'II 
) _ s + I - ( ± 30,30, / n i v^r 

THm , 1 8 * £ w 1 3*m , , A r 3 l * m , *£ w 1 * * i 
1 V s e - /" 36. ; J l 30 

•n i / n l 

< - = > < ^ 3 ^ ) + 
/ n / n j 

. M , 1 3*£, x , 1 3 < j > m x . a m , *l 

^ 

•A i 9 K 
/ n j / n / n i j 

) 1 } . 

Noting that (0 - 0*) = *• O a s n -* «> , we have 0, •*• 0* as n 

and so 

& 
£̂ ->- 0 , Z - 1 , 2 , . . . , k and 

•n i 
"*" ^£x' 1 - ^ » 2» • • • » k. 

By the same kind of argument as used in the proof of Theorem 3.1.1, 

32 

we can show that all terms in QQ gQ ( -Vg' I *(0) VQ ) vanish asympto­

tically except for terms of the form 
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Hm r , 1 8 * l , , 1 *K s . , 1 3 * l x , 1 - m 
/n i /n j 

which converge in p r o b a b i l i t y to 

3<j> 

) ( = ^ ) > / - 30 ' v / - 904 ' ' v / - 30. ' v / - 30, /n i /n j /n j /n i 

Since Z I C0 . C , 
o i ill mi 
x,,m=l J 

0 = 0. 

0 = 0 

k k -

m=l m ± £=1 J * 0 = 0. 

E C0 . d. * i jm m-1 0 = 0 . 

= ( j , i ) t h element in C(0 ) I - 1 ( 0 ) C(0 ) , 

and s i m i l a r l y , Z I C„. C . 
A,m=l %X m j 

a Q i s the ( i , j ) t h element i n 
0 = 0 Q 

C(0 ) I-1(0 ) C(0 ), the third term reduces to ^ o o o 

A' C(0 ) I_1(0 ) C(0 )A . 
o o o 

Thus, we have shown that 

R ald* Vfl » r
a(0 ) V0 - 2A' C(0 ) I_1(0 ) VA + A' C(0 ) I_1(0 ) C(0 )A 

n = 0o o °o v o' o' 0o v o o o 

- ( v 0 o - c ( 0 o ) A ) » r i ( 0 o ) (v 0 o - C ( 0 O ) A ) a : d - z» r i ( 0 o ) z 

where Z is a k-variate normal random variable with mean C(0 )A and 

covariance matrix C(0 ). Finally, an application of Lemma 2.3.1 yields 

the desired result. // 
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Theorem 3.4.2; Assume the regularity conditions Cl'-C4' hold. 

Under the local alternatives (3.4.1), W is asymptotically distributed as 

a linear combination of noncentral chi-squared random variables: 

r 
W 2 S d fx2 (1. A» M-1A) n ± = 1 l i 

where x? (1» A'M-1 A), i=l, 2, ... , r are i.i.d. noncentral chi-

squared random variables with 1 degree of freedom and noncentrality 

parameter A'M *A and d' >̂  dl _> ... >_ d' are the eigenvalues of the 

matrix 

M(9 O) [ (i o) i
-1(eo) ( J,) ]

 -1 , 

where M(0 ) is the upper r x r diagonal block of the matrix 

A_1(6o) C(0 O) A
_ 1(e o). 

Proof; Partition 6* = (<$*', y^)', 6 = (<$ \ Y' )'where 6* and 6 ' ' " o o' o o 

are r x 1 fixed vectors. Then 

Jo. (6 - 5 ) = r 05 - 6**) + /- (6* - 5 ) = /- (6 - 6*) + A . n o' /n v n ' /n v o' /n v n 

By assumption C2: /- (6 - 6*) -»• N(0, M) where M is the upper r x r 

diagonal block of A~1C(9*)A~i . In addition, 9* •*• 9 as n •> » . So 

& (6„ - 6 ) 5 N(A, M(9 ) ) . n o o 

Also, 9n -»- 9Q and so I
-1(Qn) + I ^ O ). Thus» under the local 

alternatives (3.4.1), 

wn
 a;d- z' [ (i o) r»<e ) (J,) p z , 
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where Z is a r-variate normal random variable with mean A and 

covariance matrix M(6 ). Upon application of Lemma 2.3.1, the result 

follows. 



CHAPTER 4 

PERFORMANCE OF THE LIKELIHOOD RATIO, 
RAO AND WALD STATISTICS UNDER MODEL MISSPECIFICATION 

Having established the asymptotic results connected with the 

test statistics R and W , we are now in a position to examine and 
n n' r 

compare their performance against the likelihood ratio statistic 

-21ogXn. 

In this chapter, we follow the approach adopted by Foutz and 

Srivastava (1977) in using the concept of Bahadur efficiency to com­

pare the performance of these test statistics. 

58 
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4.1 Asymptotic Relative Efficiencies of Test Statistics 

« 

In order to evaluate the performance of the three test statistics 

using the concept of Bahadur efficiency, we shall first state the 

definitions of a standard sequence, the level attained by a standard 

sequence and the approximate slope of a standard sequence as found 

in Foutz and Srivastava (1977). [In the following definitions, T 

stands for any sequence of statistics and-not just -21ogX.] 

Definition 4.1.1: A sequence T = T (X.,, X2, ... , X ) of 

measurable functions is called a standard sequence for testing the 

hypothesis H : 0 e 0 in the model P if the following conditions are 

satisfied: 

(i) Let Pn be the joint distribution of X., X„, ... , X . For 

every 0 £ 0 , there is a continuous distribution function 

G (t) such that 
0 

n-*» 
lim Pn{(x1, ... , x n ) : Tn(X;L, ... , xR) < t} = GQ(t) 

for every t. 

(ii) For every 0 e 0 , there is a constant a(0), 0 < a < °° , such 

that 

log {1-Ge(t)} = -at {1 + o0(l)} /2 

where, as t-*» , 6fl(l) •> 0* uniformly for 0 e 0 . 
o 0 

(lii) There exists a function b(0) on 0 - 0.. , with 0 < b < «> 
o 

such that for each 0 e 0 - 0 , 
o 

T n 

— -*• b(0) a.s. P. 
n 
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Definition 4.1.2; Let T be a standard sequence for testing 

H; 6 e O . in the model P, and let GQ(t) be defined as in (ii) above. 

For any given data X., X„, ... , X , the approximate level attained by 

{T } for testing H in the model P is defined by n 

Ln(x1, ... , xn) = sup {1 - GQ(T (xx xn) ): 6 e 0Q}. 

We now quote the following theorems from Foutz and Srivastava 

(1977): 

Theorem 4.1.1 (Foutz and Srivastava): Under the conditions C1-C4, 

the approximate slope of {-21ogX } for testing H: 0 e 0 in P is given 

by 

ST (0*) - inf{ ̂ y , 0 e 0O }.bT (0*) 

for 0* e 0 - 0 . The constants {ci (0), 0 e 0 } are the eigenvalues 

specified in Theorem 1.3.1, and b (0*) is the almost sure limit of 
n 

-21ogX /n when the distribution of X is P for 0* e 0 - 0 . n o 

For completeness, we will also quote the following lemmas from 

Foutz and Srivastava (1977) that are used to prove Theorem 4.1.1: 

Lemma 4.1.1: Let $(t) be the standard normal distribution, i.e., 

$(t) = -i- / e"
x2/2 dx. 

/2TT -«» 

Then log{l - $(t)} = t2 {l + 0(1)}/2, where 

t"2 {21ogt + log(27r)} < 0(1) < t"2 {log(2ir) - 21og(l/t + 1/t3)} 

for every t > 1. 
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Lemma 4.1.2; Let H,(t) be the chi-squared distribution function 

with k degrees of freedom. Then 

log{l - \(t)} = -t {1 + 0k(l)}/2, where 

-2klog(t/2)/t < 0k(l) < {log(27r) - 21og(t"
1/2 - t"3/2)}/t. 

r 
Lemma 4.1.3; Let G(t; C^, C2, ... , C±) = P( Z C ^ <_ t) where 

ci 1. co — ••' — C — ® an<* X?» Xo» ••• » X2 a r e independent chi-squared 

random variables with 1 degree of freedom. Then 

log{l - G(t; Cv C2, ... , Cr)} = -t{l + 0(1)}/(2^), where 

-2Cir log(t/(2C1) )/t < 0(1) < C1[log(27r) - 21og{(C1/t)
1/2 

-(^/t)372}]/! 

for t > C... 

The proofs of Lemmas 4.1.1, 2 and 3 are given in Foutz and Sriva-

stava (1977). 

Since all the three test statistics R , W and -21ogX have the 
n n & n 

same form of asymptotic distributions, viz., a linear combination of 

i.i.d. chi-squared random variables with 1 degree of freedom, it is 

clear that the test statistics R and W must also be standard sequences 
n n 

for testing the hypothesis H: 0 e 0 in the same way as -21ogX . 

Also, their approximate slopes are similarly expressed as follows: 
Theorem 4.1.2; Under the conditions C1-C5, the approximate slope 

of Rm for testing H : 9 e 0 in P is given by n o o 

SR (9*) - inf { j f a , 9 e 0o} .bR (9*) 
n n 
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for 9* e 0 - 0 . The constants {£,(9), 9 e 0^ are the eigenvalues 
o o 

specified in Theorem 3.1.1, and b_ (9*) is the almost sure limit of 
u 

R /n when the distribution of X is P for 9* e 0 - 0 . 
n o 

Theorem 4.1.3; Under the conditions C1-C4, the approximate slope 

of {W } for testing H : 9 e 0 in P is given by n o o 

SWn (e*> = inf {ZIW ' 9 £ 9 o } *bW <9*> 
1 n 

for 9* e 0 - 0 . The constants { dx (9), 9 e 0 } are the eigenvalues 

specified in Theorem 3.2.1, and b„ (9*) is the almost sure limit of 
n 

W /n when the distribution of X is P and for 9* e 0 — 0 
n o 

The proofs of Theorem 4.1.2 and Theorem 4.1.3 follow exactly as 

that of Theorem 4.1.1. 

Following Bahadur, the asymptotic relative efficiency of a standard 

sequence {U } w.r.t. another standard sequence {V } for testing the 

hypothesis H : 9 e 0 against the alternative 9* e 0 - 0 is defined o o o 

as 

ARE(Un, Vn) = Sy (9*)/Sv (9*) 
n n 
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4.2 Examples 

In this section, we shall consider some examples of model misspeci-

fication and compare the performance of R , W and T . 

Example 4.2.1; Consider again the problem in Example 3.3.1. 

Based on the Poisson model with mean 0 > 0, we wish to test the hypo­

thesis HQ: 0 = 0 . It is easy to show that the approximate slopes 

of T , W and R are n' n n 

ST (0*) = [6 /Var(X)] 2{(0Q - 0*) + 0*log(0*/eo)} , 
n 

q /fi*\ _ ° (9*-0o) 
SW (8*) - Var(X) 0 
n o 

respectively where 0* ̂  0 . Let ARE (T-, T2) represent the Bahadur 

asymptotic relative efficiency of T, with respect to T2. Then 

ARE(Wn, Tn) - Sw (6*)/S (6*) 
n n 

( 9*Q^ O ) / (2(0o - 0*) + 20*(log0* - log 0Q)} 

= (r-l)2/{2r[l - r + r log r]} 

where r = 0*/0 . Similarly, 

ASE^n* V = SR ( 9*> / ST
 (8*> 

n n 

= [(6* - 6o)
2/0o]/ {2[(0Q - 0*) + 0* log(0*/0o)]} 

» (r - 1)2/[2(1 - r + r log r)] - r ARE(Wn, T n). 
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Clearly, ARE(R , Wn) = r. The following table lists the various 

asymptotic relative efficiencies for some values of r = 6*/6 . 

From Table 1, we see that W performs better than both R and T when 
' n r n n 

the true mean 0* is less than the specified value 9 . However, R 

fares better than both W and T when 0* > 0 and does worse if 
n n o 

0 < 0* < 0 . Thus, none of them can claim superiority over the 

others against all possible alternatives 0* e 0 - 0 . 

Remark: It should be cautioned here that the preceding comment 

is made while keeping in mind that any comparison made using approxi­

mate slopes is subject to the possibility of error. This is so because 

the approximate slope of a test statistic is not always a close indi­

cator of the exact slope. For a deeper discussion of this, see 

Bahadur (1967). 

Example 4.2.2: Consider the problem in Example 3.3.2. The chosen 

model is the family of normal distributions with variance 01 > 0 and 

finite mean 0„. We wish to test the hypothesis H : 0, = a2 . When 

the model is incorrect and the random variable has a uniform distri­

bution on the interval (a, 3)> it can be shown directly that 

0* = (Var(X),E(X) )' = ( (6 - a)2/12,(6 + a)/2)' = (^,0*)' if 0* E QQ. 

Also, 

1(0*) = 2a 4 o 

a' 
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TABLE 1 

ASYMPTOTIC RELATIVE EFFICIENCIES OF TEST STATISTICS 
(POISSON MODEL, P SATISFIES CONDITIONS C1-C4) 

• - e*/e 
o 

0.1 

0.3 

0.5 

0.7 

0.9 

1.1 

1.3 

1.5 

1.7 

1.9 

3.0 

4.0 

5.0 

10.0 

15.0 

ARE(Rn,Wn) 

0.1 

0.3 

0.5 

0.7 

0.9 

1.1 

1.3 

1.5 

1.7 

1.9 

3.0 

4.0 

5.0 

10.0 

15.0 

ARE(Wn,Tn) 

6.05 

2.41 

1.63 

1.28 

1.07 

0.94 

0.84 

0.77 

0.71 

0.67 

0.51 

0.44 

0.40 

0.29 

0.25 

ARE(R ,T ) 

0.60 

0.72 

0.81 

0.89 

0.97 

1.03 

1.10 

1.16 

1.21 

1.27 

1.54 

1.77 

1.98 

2.89 

3.68 



C(0*) - 0.2 

2a " o 

a' 

A = 

2a* o 

0 

X 
a1 

so that A'cf^e*) A 1 
0.80* 

o 
0 

a' 

L = -—2- and M = 0.8a . Direct computations yield 
o 

Rn/n = (-1 + [(n-l)/n]. Sn
2/a2 )2/2, 

W /n = (S 2 - a2)2/(2S * ) , and 
n n o' n '' 

Tn/n = -l°8(Sn
2/a2) + [(n-l)/n]Sn

2/a2 - (n-l)/n, 

so that as n -*• °°, we have 

R /n £ (-1 + Var(X)a2)2/2, 
n 

W /n £ (Var(X) - a2)2/{2[Var(X)]2}, and 
n 

Tn/n + -log[Var(X)/a2] + Var(X)a2 - 1, 

where under 6* e 0 - 0Q, Var(X) f a2 . Also, all three 
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have the same limiting distributions with C. = 0.4. Thus, their ap­

proximate slopes are 

SR (6*) = (l/0.4)[-l + Var(X)/o-2]
2/2 

n 

= [-1 + Var(X)/a2] 2/0.8, 

Sw (0*) = (l/0.4)[Var(X)/a
2 -l]2/{2(Var(X)/a2]2} , 

n 

and ST (6*) = (1/0.4){ -log[Var(X)/a
2] + Var(X)/a2 -l}, and the 

n 

asymptotic relative efficiencies are 

ARE(Rn,Tn) = [-1 + Var(X)a
2 ]2/{2[-log[Var(X)/a2] + Var(X)a* -1]} , 

ARE(R ,W ) = [Var(X)/a2]2 and n n o 

ARE(W ,T ) - ARE(R ,T )/ARE(R ,W ). n* n n' n7 N n' n 

So the ARE's depend only on the ratio Var(X)/cr2 = r, say. We display 

in Table 2 some values of these ARE's for various values of r. 

From Table 2, we see that for r > 1, R is to be preferred over 

W and T . For r < 1, W is to be preferred over R and T . However, n n ' n r n n * 

if the true variance Var(X) is not known to be either larger or smaller 

than the hypothesized value a2, then a clear choice among the three 

test statistics cannot be made. 

Example 4.2.3; Consider again the same problem as in Example 

4.2.2 except that now the true distribution of X is a contaminated 

normal distribution of the form 

Q (B) - .9P (B) + .IP (B) 
a2,y,y a2,u o2,\i 

l 2 
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TABLE 2 

ASYMPTOTIC RELATIVE EFFICIENCIES OF TEST STATISTICS 
(NORMAL MODEL, P - UNIFORM DIST. ON (a , 6) ) 

r - V a r ( X ) / a 2 ARE(R ,W ) ARE(W ,T ) ARE(R ,T ) 
N o N n ' i r N n ' n ' n* n 

0.1 

0.3 

0.5 

0.7 

0.9 

1.1 

1.3 

1.5 

1.7 

1.9 

3.0 

4.0 

5.0 

10.0 

15.0 

0.01 

0.09 

0.25 

0.49 

0.81 

1.21 

1.69 

2.25 

2.89 

3.61 

9.00 

16.00 

25.00 

100.00 

225.00 

28.88 

5.40 

2.59 

1.62 

1.15 

0.88 

0.71 

0.59 

0.50 

0.43 

0.25 

0.17 

0.13 

0.06 

0.04 

0.29 

0.49 

0.65 

0.79 

0.93 

1.07 

1.20 

1.32 

1.45 

1.57 

2.22 

2.79 

3.35 

6.05 

8.68 
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for measurable sets B where P 2 denote the normal distribution with 

variance a2 and mean y. (This example was considered in Foutz and 

Srivastava (1977).) The parameter y = <J?/02 is assumed known. Since 

R W T 

the model used is unchanged, the probability limits of — , — and _£ 

are the same as in Example 4.2.2. What is affected is the limiting 

distributions. By direct computation, 

n 

1(9*) = 
2a 

0 

1 
"a5 

c( *) = |~3(.9 + .1Y2) .1 
|_ (.9 + .1Y)2 " 1 J '<% 0 

and A - 1 
2c? 

a' 

So A'C"1(6*)A -

[3(.9+.lY2)/(.9+.lY)z-l]a 2_n««t 

L = and M . 3(.9+.ly2) _ ] H 
[ (.9+.lY)

2 1J ao 

a' 
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It is then straightforward to see that all three statistics have the 

same limiting distributions with the largest characteristic root 

_ 1.5(.9 + .ly2) - .5(.9 + .IV)2 

Ll (.9 + .IV)2 

Hence, the form of the ARE's remain the same as those computed in 

Example 4.2.2 because the approximate slope is the product of —=-
Cl 

and the corresponding probability limit. It is thus possible to 

compute the ARE's for various values of V* First, we note that under 

the contaminated normal distribution, 

Var(X) = (.9 + .lY)aJ , 

So that for a fixed value of V» the ARE's depend only on the ratio 

a2/cr2 = r, say, as follows: 

ARWT, T v _ _ .5{(.9 + .lY)af/g£ - l} 2 

ARECRn,Tn) - {_log[(.9 + .iY)a*/c£] + (.9 + .lY)crJ/cr; -1} ' 

ARE(Rn,Wn) = (.9 + .IV)
2 ( ^ / ^ Q ) 2 and 

ARE(W ,T ) = ARE(R ,T )/ARE(R ,W ). n' n' n' n n' n' 

Table 3 displays some values of the ARE's for various values of 

Y and a*/a2 . 

Note; If v = 1» i.e., there is no contamination, then the ARE 

values computed under the uniform (a, 3) distribution are also those 

that belong to the present case of the normal distribution without 

contamination; i.e., when there is correct model specification. In 

other words, under the normal model, the three test statistics are 
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able to discern departures from the null hypothesis in terms of var­

iance while remaining relatively insensitive to model misspecification. 

Also, the ARE's here exhibit the same trends as in previous ex­

amples; i.e., in general, R is more efficient than both T and W 

when oZ/o2 is large ( > 1) and W is more efficient than both R and 1 o — n n 

T for small values of a2/a2 ( < 1). n l o — 
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TABLE 3 

ASYMPTOTIC RELATIVE EFFICIENCIES OF TEST STATISTICS 
(NORMAL MODEL, P - CONTAMINATED NORMAL) 

r = a*/a2 

1 o 

0 .1 

0.3 

0.5 

0.7 

0.9 

1.1 

1.3 

1.5 

1.7 

1.9 

3.0 

4.0 

5.0 

10.0 

15.0 

* y - a|/crj 

Table 3a. Y = 2 

ARE(R ,W ) n' n 

0.01 

0.11 

0.30 

0.59 

0.98 

1.46 

2.04 

2.72 

3.50 

4.37 

10.89 

19.36 

30.25 

121.00 

272.25 

ARE(W ,T ) n* n 

24.85 

4.70 

2.26 

1.42 

. 1.03 

0.78 

0.63 

0.52 

0.44 

0.39 

0.22 

0.16 

0.12 

0.05 

0.03 

ARE(R .T ) n n 

0.30 

0.51 

0.68 

0.84 

1.01 

1.14 

1.28 

1.42 

1.55 

1.68 

2.39 

3.01 

3.62 

6.58 

9.46 



(Table 3 Continued) 

Table 3b. y » 3 

r - a[/ol 

0.1 

0.3 

0.5 

0.7 

0.9 

1.1 

1.3 

1.5 

1.7 

1.9 

3.0 

4.0 

5.0 

10.0 

15.0 

ARE(R ,W ) n* n' 

0.01 

0.13 

0.36 

0.71 

1.17 

1.74 

2.43 

3.24 

4.16 

5.20 

12.96 

23.04 

36.00 

144.00 

324.00 

ARE(W ,T ) n' n' 

21.68 

4.14 

2.01 

1.26 

0.90 

0.69 

0.56 

0.47 

0.40 

0.35 

0.20 

0.14 

0.11 

0.05 

0.03 

ARE(Rn,Tn) 

0.31 

0.54 

0.72 

0.89 

1.05 

1.21 

1.36 

1.51 

1.65 

1.80 

2.56 

3.24 

3.90 

7.11 

10.24 



(Table 3 Continued) 

Table 

r » 02/o2 ARE(R ,W ) 1 o N n* n 

0.1 

0 .3 

0.5 

0.7 

0.9 

1.1 

1.3 

1.5 

1-7 

1.9 

3.0 

4 .0 

5.0 

10.0 

15.0 

0.04 

0.32 

0.90 

1.77 

2.92 

4.37 

6.10 

8.12 

10.43 

13.03 

32.49 

57.76 

90.25 

361.00 

812.25 

ARE(W ,T ) n n 

10.68 

2.15 

1.07 

0.69 

0.50 

0.39 

0.31 

0.26 

0.23 

0.20 

0.11 

0.08 

0.06 

0.03 

0.02 

ARE(R , n ' 

0.39 

0.70 

0.97 

1.21 

1.45 

1.68 

1.91 

2.13 

2.35 

2.57 

3.73 

4.76 

5.78 

10.76 

15.66 

3c. 



CHAPTER 5 

NONOPTIMALITY OF THE RAO STATISTIC 
UNDER CORRECT MODEL 

Bahadur (1965) showed that under certain regularity conditions, 

there exists an upper bound to the exact slope of any standard sequence 

and, further, that the exact slope of the likelihood ratio test sta­

tistic achieves this upper bound. 

In this chapter, we will show that whenever the Rao statistic 

possesses an exact slope, this slope does not attain this upper bound 

and, thus, it cannot be an optimal sequence. 

75 
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5.1 Preliminaries 

In previous chapters, we have examined the asymptotic properties 

of the Rao and Wald statistics in conjunction with that of the likeli­

hood ratio statistic under model misspecification. The examples in 

Chapter 4 show clearly that when the model is incorrect, there is no 

overall superiority of one method over the others. In most cases, it 

is quite reasonable to expect that a statistic will perform better 

than the others only for a subset of the class of alternatives and 

actually do worse outside this subset. 

However, a different situation exists when the model is correct. 

Bahadur (1965) established a certain kind of optimality property for 

the likelihood ratio test statistic. To be precise, he showed that 

under certain regularity conditions, the exact slope (which corresponds 

closely to the approximate slope and is defined in terms of the exact 

finite sample distribution of the sequence) of any standard sequence 

is bounded from above by a constant which is a function of the Kullback-

Leibler information number. (In fact, as shown in Raghavachari (1970), 

this upper bound exists without any regularity conditions whatsoever.) 

Further, he also showed that under suitable regularity conditions, the 

exact slope of the likelihood ratio statistic achieves this upper 

bound. This at once establishes the likelihood ratio test statistic 

as an optimal sequence. 
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5.2 Nonoptimality of the Rao Statistic Under Correct Model 

We shall first state one of the results contained in Bahadur 

(1965). For any 6 e 0 and 9 e 0Q, let 

1(8, 0O) = " Aog[f(x, 9o)/f(x,9)] dPQ 

be the Kullback-Leibler information measure of f(x,9) w.r.t. f(x,9 ) 

and define 

J(9) - inf { 1(9, 9 Q ) : 9 Q e 0Q }. 

We assume that for each 9 e 0 - 0 and 9 e 0 such that 1(9, 9 ) 
o o o o 

there exists a t = t(9, 9 ) > 0 such that 
' o 

/ [ f(x, 9)/f(x, 9Q)]
t dPQ < oo 

Let T be a measurable function of S - (x., x„, ...) that depends on 

S only through x-, x2, ... , x . For each 9, define 

Fn(t, 9) = PQ (TQ(S) < t) 

Gn(t) = inf { FQ(t, 9): 9 e 0Q } and 

Ln(S) = 1 - Gn (Tn(S) ) . 

Theorem 5.2.1 (Bahadur): For each 9 e 0 — 0 , 

lim inf i log Ln(S) > -J(9) 
n •*• °° 

with probability one when 9 obtains. 

Remark; If PQ admits a density w.r.t. PQ , say, dPg = f(x)dPg let 
o o' 
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I*(6, 9o) = Ee[log f(x)]; 

otherwise, let I*(9, 0 ) = °°. Also let 

J*(0) = inf {I*(9, 0 ): 0 e 0 } . 
v ' o o o 

Then, without assuming any regularity conditions, Raghavachavi (1970) 

showed that 

lim inf - log L (S) > -J*(6) 
n " n' 

n •*• °° 

with probability one when 0 obtains. 

In the following, we will consider the case when is a subset 

of the real line. Let X_, X_, ... , X be i.i.d. observations from 

the distribution PQ. We wish to test the hypothesis H : 0 = 0 where 

0 o o 

0 is a specified constant. In this case, the Kullback-Leibler infor­

mation number is 
K 0 , 0Q) = Aog[f(x, 9)/f(x, 9o)] dPQ . 

This represents the optimal slope of any test statistic; i.e., for any 

statistic T , n' 

l im inf ^ log P (T > T (x , . . . , x ) ) > - 1 ( 0 , 0 ) 
n -»• ~ n 0 Q n n i . n o 

Now consider the Rao statistic 

where 1(0 ) = EQ [ -r̂- log f(X, 0 )] 2 . For convenience and ease of 
O 0 ot) O 

° Rn 
computation, we will use the equivalent statistic S = — . 

/a 
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To compute the exact slope of S , we need to evaluate 

lim £ log PQ {Sn > Sn(x1, ... , xn)} . 
n-H» o 

When the right situation exists, this can be accomplished through the 

following two theorems due to Bahadur: 

Theorem 5.2.2 (Bahadur); Suppose K satisfies the following two 

conditions: 

K 
(a) For 6 e 0- 0 , — - • b(0) a.s. PA , - °° < b(6) < °° . 

o / ty 

•n 

(b) There exists an open interval I containing { b(0):0 £ 0 - 0 and 

a function g continuous on I such that 

lim - ̂  log [1 - G ( f i t t) ] = g(t), t e I. 

Then for 0 e 0 — 0 
o 

- £ log [1 - GQ (Kn(X;L, ... , xn) )] •*• g(b(0) ) a.s. PQ . 

Theorem 5.2.3 (Bahadur): Let Y., Y 2 ... denote a sequence of i.i.d. 

observations of Y, an extended real-valued random variable much that 

p(-oo <_ y < bo)= i. Let u be a real variable and let the function f be 

defined by 

exp [-f(u)] = inf {e"tu<j>(t): t > 0 } 

00 

where (J>(t) = E(e ). Also let {u } , be a sequence of constants such 
n n55! 

that 

lim u = u, -°° < u < oo , 
n-x» n 



and assume P (Y > u) > 0. Then 
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lim ^ log P(Y1 + . . . + Y n > n u n ) = -f(u). 
n-*» 

A proof of Theorem 5.2.2 can be foundin Serfling (1980) while 

the reader is referred to the article of Bahadur (1971) for a proof 

of Theorem 5.2.3. 

Let us now apply these two theorems to this problem. By the 

Strong Law of Large Numbers, 

n Ji ̂ l o 8 f ( x i * V "c(0) a*s- pe 

where 

0, if 9 = 0 c 

EQ[ -^ log f(X,8o)], if 9 * 9o . 
C(9) = { g ° 

Thus, it follows that 

n 
i S = ji=[J £ ^r log f(X., 9)]2/I(9) — n — n . , do i o o j - n i=l /n 

and this converges a.s. PQ to [C(9)]2/I(0 ). Consider the following 

large-deviation probability of S under the null hypothesis. For t> 0, 

P6 (sn>v£t) = P0 ( f >t) 
o o 

= P0 {1 n A h lQ8 f (Xi> V I > *&J** o i=l 

= P0 {n A Je lo« f (Xi' 9o ) > ^ ^ } 

1 n 

+ P0o '» i=l {§ lo* f <V 9o> < " ,/f<VF } ' 
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Let us first consider the first term. Assuming that 

po {"IT i°s f(x» e ) > ZKQJt }>0, 0 l 38 o 

and letting u = /l(0 )t = u, it follows from Theorem 5.2.3 that 

lim ^ log Pe { S -^ log f(X±, 0Q) > n /I(0Q)t} = -h( /l(0o)t) 
n 

n-x» " vo i=l 

where 

exp [-h(/l(0o)t)] = inf {e"
6/l(8o)t: (J>(6): 6 > 0} 

= inf {EQ [e6(Y " / I ( 6o ) t : ) ]: 6 > 0} and Y = -£r log f(X, 0 ). 
0 — do O 
o 

Example 5.2.1; Consider the following special case. Suppose 

Pfl represents the Poisson distribution with mean 0 > 0. Then 

f(x, 0) - e"X0X/x», x - 0, 1, ... 

Y = -^ log f (X, 0 ) = -1 + X/0 and 
do O O 

^V = W"1 + X/0o>2 ' 1 / 9o-
X la 

Thus exp [-h( ^ ( F ) I )] = inf{ e"6 v/E7°o" e
[-6+ 9o< e ° ~1)]:S >0) 

so that -h( /I(e )t ) = inf {-6(1 + JtJW ) + 0 (e6/9° -1): 6 > 0 }. o o o — 

We can show directly that the infemum is achieved at 

6* - 0^ log (1 + /t/0 ) > 0 for t > 0 and so o o 
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Also, C(0) - 0, if 9 = 9 
{ ° 
f--l, if 9^9Q 
o 

~- - 1 for all 9, 
o 

so that -i— = — R -v (9-9 )2/9 a.s. PQ. Now, an application r- n n N o' o 9 rr 

/n 

of Theorem 5.2.3 yields 

lim ± log P { i ? 3I log f(X., 9o)> /TOTH } 
n-*» o i=l 

= /t9Q - 9 Q (1 + /t/9Q ) log (1 + /t/9Q ) = gĵ Ct), t > 0. 

Similarly, we can also show (by considering -Y = - T T log f(X, 9 ) 
do O 

instead of Y) that 

lim I log Pe { i S a log f (X 0 ) < -/E(0jt } 
n-*» o i=l 

= - / t e o - 9o(i - TETF ) log (i - JUQ^~ ) = g 2 ( t ) , for o< t < eo. 

In view of the domain of definition of goCO, i«e« t n e interval (0, 9 ), 

we shall restrict the set of alternatives to {9: 0 < (9 - 9 )2/9 < 9 } 
o o o 

so that 0 = {9: 0<9<20 } and the actual testing problem becomes 

testing 

H : 9 = 9 vs. H,: 0 < 0 < 0 or 9 < 0 < 20 . o o 1 o o o 

With this restriction, then {b(0) = (0 - 0 )2/0 : 0 e 0 } is contained 
o o 

in the open interval (0, 0Q) in which both g,(t) and g2(t) are contin­

uous. 
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Remark; If we wish to simplify the discussion, 0 could simply 

be taken as the interval (0, 6 ) and the testing problem is then one­

sided, i.e., we will be testing 

H : 6 = 9 vs. H.: 0 < 9 < 6 . o o 1 o 

Now, - log P0 [S > 7n t] ' n & 0 l n J 

o 

- £ lo* [p9 ^ A a! lQs f <V V > *®o>* } 

O 1=1 

+ P0 { n A d! log f(Xi' 9o ) < " ̂ V 1 >l-o x=l 

Since for any sets A., and A„, 

log[Pe(A1) + Pe(A2)] > max {log ^Q(\), log PQ(A2)} , 

we have 

lim sup — log Pn (S > /a. t) > lim inf ^ log PQ (S > /n t) n u n "— n o n n -* °° o n -»- » o 

> max { l im ± log PQ [ £ E TJ- log f (X±, 9o)> / l ( 9 Q ) t ] , 
n 
Z 

n-*» " ~Q " i = l 

lim I log PQ 1^} 4 l o 8 f < V 9o> < " > / f <V I 1 > 
n-*30 o i=l 

max{v'teo" - eo( i + / t / e o log a + v'ETe- ) , 

- StT - 9o(l - Jt/T ) log (1 - /tTF" )} = L ( t ) , say. 

This implies that whenever the limit 

lim £ log Pfl (S > SZ t) 
n-*» o 



exists, it cannot be less than L (t). It then follows from Theorem 

5.2.2 that the exact slope of S , when it exists, cannot exceed 

- IL KQ ~ e
o>

2 / 0o ] where 

t [(9 - 9o)
2/9Q] = max {|9-9j-9o(l+ |9-9Q|/0O) log [l+|9-90|/60] , 

-|9-9o|-9o(l-|9-9j/9o) log [l-|9-9j/9o]} 

-max {(6-9o)- 91og (9/9 Q), 

(9-9) + (29-9) log [9/(29-9)]}, 9̂  < 9< 29^ 

\> o o o o o 

•max {(0 -9)-(29 -9) log [(29 -9)/9 1, 
o o o o 

(9-9 ) + 21og(0o/9)}, 0 < 9 < 6Q 

max {(9-9 Q) - 91og(9/9o), (9 Q-9) + (29 Q-9) log [9o/(29Q-9)]} . 

Now, the optimal slope of any standard sequence is given by 

e"e9x/x!" 
1(9, 9Q) = Z log 

x=o -9flx,.., e 0 /x! 

i.e., for any standard sequence {T } , 

e"V 
D = 9 - 9 + 91og(9/9 ); x! o 6 o' 

n 

l i m i n f n" P9o {Tn > Tn ( xl x n » * " I(9>8o>-
n -»• oo 

However, L [ (9-9 )2/9 ] 

= max {-1(9,9Q), (9Q-9) + (29Q-9) log [9o/(20Q-9)]} . 

Thus, we are done if we can show that for some 9 e (0, 29 ) , 

(9Q-9) + (29o-0) log [9o/(29Q-9)] > - 1(9,9Q). 
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By letting q = 6/9 , the problem is reduced to showing that there 

exists a real number q, 0 < q < 2, such that 

2(l-q) > q log [q/(2-q)] + 2 log (2-q). 

Utilizing the inequality log x <. x-1 for x > 0, the r.h.s. of the 

above equation becomes 

q log q + (2-q) log (2-q) < q2 - q + (2-q) (2-q-l) = 2(q-l) < 2(l-q)2 

for o < q < 1. 

This shows that S does not attain the optimal slope for 0 < 9 < 0 . 
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5.3 The 1-Parameter Exponential Model 

Let us consider the more general setting where P belongs to the 

1-parameter exponential family defined by the density 

f (x,9) = K(9) e
6 T ( x ) , -co < x < co 

We will restrict ourselves to those members of this family that satisfy 

the regularity conditions C1-C5. In this case, 9* is defined by 

E[ g| log f (X,9*) ] = K ^ * > + E[T(X)] = 0, 

where K' (9) = -STQ K(9). This equation can be rewritten as 

log[K(9*)] = - 9* E[T(X)]. 

Similarly, the m.l.e. 9 (when it exists) is given by the equation 

log K(9n) = -9n T(X) 

n 
where T(X) = — I T(X.). We shall restrict ourselves to the problem 

i=l 

of testing the simple hypothesis, H : 9 = 9 , where 9 is a specified 

constant. By direct computation, we deduce 

1(9*) = {E [T(X)]}2 - {2E [T(X)] Efl [T(X)] + Efl[T(X)]
2}| 

D D 9* » 

C(9*) - Var [T(X)], and A(6*) = K"(9*)/K(9*) - {E[T(X)]}2 

Thus, A"1C(9*)A"1 

- EtT(X)]2 - {E[T(X)1}2 

(K"(9*)/K(9*) - {EITCX)]}2)* 



87 

= M, the matrix defined in Theorem 1.3.1. Also, the other matrix 

W = -A and so under the 'null' hypothesis 9 = 9*, we have 

MW = , E[T(Xj12 - {E[T(X)j}2 

[{E[T(X)]}5 - K"(9o)/K(9o)] 

Similarly, it is easy to show that 

cre^r^e*) = E[T(X)12 - {E[T(X)]}2 

L^ )L K* } {EtTCX)]}* - 2E[T(X)]EQ[T(X)]L + E[T(X)]2 e l * x « / j , e ^ ' ^ J l9 

o o 

and MI(9*) 

= ( E[T(X)]2 - {E[T(X)]}2) ({E[T(X)].}2 - 2E[T(X)]E0[T(X)]|Q 
o 

+E0[T(X)]
2|Q )/(K"(9 )/K(6 ) - (E[T(X)]}

2)2 . 
o 

Thus, all three statistics will have the same asymptotic distributions 

if {E[T(X)]}2 - K"(9o)/K(9Q) 

= {E[T(X)]}2 - 2E[T(X)] EQ [T(X)]| Q + EQ[T(X)]
2|Q_ , 

o o 

which reduces to 

-K"(9o)/K(9o) = -2E[T(X)] E0 [T(X)]|Q + Eg [T(X)]2|Q . 

o o 

Remarks; (a) Let PQ be the Poisson distribution with mean 

9 > 0. The density function is 

f(X. 9) - e'99X/X!, X = 0, 1, ... 

and the above condition reduces to E(X) = 9 

Since 9* - E(X), this is satisfied under the 'null' hypothesis 9* - 9 . 

(b) Let PQ be the binomial distribution with parameters n and 9, 
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0 < 0<1. Consider n fixed. The density function is 

f(X, 6) - < £ ) eX(l - 6) n" X , X - 0, 1, ..., n 

and the condition becomes E(X) = n0 

Again, since 9* = E(X)/n, thus under the 'null' hypothesis 

0* = 0 , the condition is satisfied and all three statistics have the o' 

same asymptotic distributions. 



89 

5.4 An Example of 2-Parameter Exponential Family - The Normal Model 

Let Pg represent the normal distribution specified by the density 

F(X, 6) = (2Tra
2)"1/2 exp { -<x -y)

2/(2a2)} , - °° < X < » 

where 0 = (y, a 2)'. Suppose the null hypothesis of interest is 

,2\ t 

o 
2 

H : 0 = 0 , where 0 = (y a )' is a constant vector. It is easy o o ' o Ko o J 

to show that y* - E(X) and z* = Var(X). These are the almost sure 

limits of the m.I.e. 0 = (X S2 )', where X is the sample mean and 

S2 is the sample variance £ (x- - x)2/n« Also, 
n i=l 

1(0*) = l/Var(X) 0 

0.5/[Var(X)]: 

C(0*) = l/Var(X) 

E(X - y*)3 

" 2[Var(X)]3 

E(X - y*)3 

" 2[Var(X)]* 

0.5/[Var(X)]: 

and A - -l/Var(X) 

-0.5/[Var(X)]2 

Thus, we have 

M = A ^(e*)^ l _ Var(X) -E(X - y*)3 

-E(X - y*)3 2[Var(X)]; 
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W = -A - l/Var(X) 

0.5/[Var(X)]2 , and 

MW = -E(X-y*)3/{2[Var(X)]2 

-D(X-u*)3/Var(X) 

The eigenvalues of this matrix are 

cx = 1 + 
E(X-u*) 

Var(X) /2Var(x) 

E(X-y*) 
and C2 - 1 - V a r ( x ) / 2 V a r ( x ) 

So that under 6* = 9 , -2 logAn 5 C.jX* + C2X* 

where x2 and x| a r e independent chi-squared random variables with 1 

degree of freedom. Similarly, it is easy to verify that the correspond­

ing matrix for the Rao statistic R is 

° n 

-E(X-y*)3/{2[Var(X)]2} 

-E(X-y*)3/Var(X) 

and the matrix for W is 
n 

-E(X-y*)3/Var(X) 

-E(X-u*)3/{2[Var(X)]2} 

Since these possess the same eigenvalues as Ml/, we deduce that all 

three statistics have the same asymptotic distributions under the 
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Incorrect model and if 6* - 0 ; i.e., if E(X) = ]J and Var(X) - a2 . 
O O O 

This is true regardless of the underlying distribution P as long as 

conditions C1-C5 hold. 
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5.5 Concluding Remarks 

We have shown in this work that under model misspecification, none 

of the three competing procedures can claim outright superiority over 

the others (at least not with regard to the criterion of approximate 

Bahadur efficiency). 

However, when the model is correct, the likelihood ratio test 

statistic is better than the Rao statistic since the former is an op­

timal sequence and the latter is not. It would be desirable if the 

same kind of statement can be made concerning the Wald statistic. 

Unfortunately, the calculation of large deviation probabilities in 

this case proved to be intractable. 

A closely related subject concerns tests of model misspecification. 

White (1980) has recently proposed such a test. However, its properties 

and operating characteristics have not been studied. More research in 

this direction is needed and perhaps, other tests of model misspecifi­

cation would arise in the course of such research. 
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