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CHAPTER I 

INTRODUCTION

In e lec t rom agne t ic  problems th e  main ta sk  i s  u su a l ly  to  d e te r 

mine th e  c u r r e n t  d i s t r i b u t i o n  on th e  su r fa ce  of a s c a t t e r e r .  I t  i s  

a r e l a t i v e l y  simple problem to  ob ta in  o ther  parameters we d e s i r e  from 

a knowledge of the  su r face  c u r re n t  d i s t r i b u t i o n .  Obtaining the  cur 

r e n t  d i s t r i b u t i o n  u su a l ly  means we must solve  i n te g r a l  equat ions  de

r iv e d  from Maxwell 's equat ions  and the boundary cond i t ion s .

One of the  well known methods f o r  solving in t e g r a l  equat ions  

i s  the  moment method [ 6 ] , [ 1 2 ] , [ 1 6 ] ,  which conver ts  the  i n te g r a l  equa

t i o n  t o  l i n e a r  a lg e b ra ic  equat ions  having as many unknowns as the  

number of ba s is  fu n c t io ns  used to  approximate the  su r face  c u r re n t  

on th e  s c a t t e r i n g  body. Even though the  moment method g ives us r e l a 

t i v e l y  accura te  r e s u l t s  f o r  a r b i t r a r i l y  shaped bodies ,  i t s  p r a c t i c a l  

use i s  u su a l ly  l im i te d  to  bodies which are  not la rg e  in terms of a 

wavelength.

Another powerful method, which i s  known as the  geometr ical  

th eo ry  of  d i f f r a c t i o n  (GTD), was in troduced  by K e l le r  (1953). GTD 

i s  a ray  o p t i c a l  method which uses the  leading terms of the  asymp

t o t i c  approximation to  th e  i n te g r a l  of i n t e r e s t .  Recently , Kouyoumjian 

and Pathak [5] have developed new fo rm ula t ions  f o r  d i f f r a c t i o n  coef

f i c i e n t s  which produce the  b e t t e r  r e s u l t s  in the  t r a n s i t i o n  reg ions .
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Usually GTD i s  known as a high frequency method s ince  i t  has an ad

vantage when applied  t o  s c a t t e r e r s  which are  e l e c t r i c a l l y  la rge .  

However, GTD so lu t io n s  a re  a v a i la b le  only f o r  r e l a t i v e l y  simple can

onica l  geometr ies.

Although both methods considered above provide us with r e l a t i v e l y  

a ccu ra te  r e s u l t s  in t h e i r  own a p p l i c a t io n s ,  th e re  are  many e l e c t r o 

magnetic problems which cannot be solved by e i t h e r  method alone.  To 

so lve  such problems by using to  advantage th e  two methods mentioned 

above, r e c e n t ly ,  hybrid techniques which combine them have been de

veloped. One approach, which has been in troduced by T h ie le  and 

Newhouse [2] in 1975, combines moment methods with the  GTD ( i . e . ,  

MM-GTD tec h n iq u e s ) .  This technique extends the  moment method through 

th e  use of the  GTD to  obtain  a new modified impedance matr ix  f o r  the  

moment method s o lu t io n .  The a p p l i c a t io n  of t h i s  method was demon

s t r a t e d  by so lv ing  the  problems such as a monopole near a conduct

ing wedge, a monopole a t  the  c en te r  of a f l a t  p lane  or a c i r c u l a r  

d i s c ,  and a monopole near a conducting s t e p .  A l i t t l e  l a t e r  in the  

same y e a r ,  Burnside and h is  co l leagues  [3] showed another  hybrid 

approach by combining th e  GTD with th e  moment method ( i . e . ,  GTD-MM 

tech n iqu e ) .  In t h i s  technique ,  th e  d i f f r a c t i o n  c o e f f i c i e n t  i s  t r e a t e d  

as an unknown c o e f f i c i e n t  in the  moment method and was determined 

by numerical techn iques .  The a p p l i c a t io n  of the  method was demon

s t r a t e d  by ob ta in ing  th e  su r face  c u r r e n t s  on a p e r f e c t l y  conducting 

wedge, and square and c i r c u l a r  c y l in d e r s .  L a te r  M i t t ra  [7 ] ,1 8 ] ,  a lso

2



introduced a new approach f o r  combining the  i n te g r a l  equation and 

the  GTD by using the  f a c t  t h a t  the  Four ie r  t ransform of the  unknown 

su rface  c u r r e n t  i s  p ropor t iona l  to  the  s c a t t e r e d  f a r  f i e l d  and dem

o ns t ra te d  i t s  a p p l i c a t io n s  to  a p e r f e c t l y  conducting i n f i n i t e  s t r i p  

of zero th ic k n es s ,  a th in  conducting rec ta n g u la r  p l a t e ,  and l a t e r

to  a c i r c u l a r  c y l in d e r  in two dimensions.

The GTD-MM method which combines the  GTD with the  moment method, 

r eq u i re s  a p r i o r i  knowledge of the  asymptotic form of the  c u r ren t  

away from the d i f f r a c t i o n  or moment method region .  Therefore ,  the  

GTD-MM technique considered above i s  d i f f i c u l t  to  apply to  a r b i t r a r 

i l y  shaped bodies where the  GTD c u r re n t  forms are  not known a p r i o r i .

In t h i s  paper  a new hybrid method which overcomes the  disadvan

tage  mentioned above i s  p resen ted .  This method which combines the  

moment method with an asymptotic technique as o r g in a l ly  introduced 

by Molinet Cl],  does not  need any p r i o r i  knowledge of c u r r e n t  forms 

away from the  moment method reg ion s .  Thus, the  hybrid method of t h i s  

paper o f f e r s  an advantage in so lv ing  f o r  c u r r e n t s  in GTD t r a n s i t i o n  

reg ions  where the  form of the  c u r re n t  i s  o f ten  d i f f i c u l t  to  determine. 

F u r the r ,  t h i s  hybrid method, which uses the  geometr ical  o p t ic s  c u r re n t  

as the  dominant c o n t r ib u to r  to  the  i n i t i a l  c u r r e n t ,  works s u r p r i s in g ly  

well even f o r  extremely small bodies in the  Rayleigh reg ion .  One 

would expect  t h i s  technique  t o  work well f o r  la rge  bodies s ince  i t  

uses the  geometr ical  o p t ic s  c u r r e n t  which i s  asymptotic with r e sp ec t  

t o  frequency.  The f a c t  t h a t  i t  a lso  works well f o r  low frequency

is  indeed an unexpected bonus.
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The i n t e g r a l  equa t ions  o r i g i n a l l y  in t roduced  f o r  t h i s  new hybrid 

method, were der ived  f o r  th e  wedge problem and are  not  s u i t a b l e  fo r  

o th e r  shaped bod ies .  T here fo re ,  in Chapter I I ,  we cons ider  th e  gen

e ra l  theo ry  f o r  th e  method and a l s o  d e r ive  th e  general  i n t e g r a l  equa

t i o n s  which a re  s u i t a b l e  f o r  a r b i t r a r i l y  shaped bodies .  In th e  de

r i v a t i o n  o f  th e  equa t ions  the  asymptotic  c u r r e n t s  a re  assumed to  

approximately  r e p r e s e n t  th e  dominant c u r r e n t s  on the  su r f a c e s  of a 

conducting body. Then th e  d i f f e r e n c e  c u r r e n t  between the  approximate 

and exac t  c u r r e n t s  i s  ob ta ined  by using th e  moment method in the  

moment method reg ions  which a re  formed around th e  shadow boundary 

reg io n s  or around sharp geometr ical  d i s c o n t i n u i t i e s .  In th e  next  

s t e p ,  we determine th e  c u r r e n t s  in the  non-moment method reg ions  by 

o b ta in in g  th e  c o n t r i b u t i o n  t o  th e  su r fa c e  c u r r e n t s  induced by the  

c u r r e n t s  in th e  moment method r e g io n s .  The process  may be repea ted  

t o  ob ta in  h igher  o rder  s o l u t i o n s .

A p p l ica t io n s  o f  th e  method to  a p e r f e c t l y  conduct ing wedge, square 

and c i r c u l a r  c y l in d e r s  in two dimensions a re  considered  in Chapters 

I I I ,  IV, and V, r e s p e c t i v e l y .  In Chapter VI, ex tension  of  our hy

b r id  method to  th e  t h r e e  dimensional  geometry i s  a lso  cons idered  by 

us ing  a p e r f e c t l y  conducting sphere  as an example, The r e s u l t s  of 

th e  s u r f a c e  c u r r e n t s  on a wedge and a square  c y l in d e r  were compared 

with th e  s o l u t i o n s  from th e  GTD whose d i f f r a c t i o n  c o e f f i c i e n t s  are  

based on th e  r e s u l t s  de r ived  by Kouyoumjian and Pathak [5 ] .  On the  

o th e r  hand, f o r  a c i r c u l a r  c y l in d e r  and a sphere ,  th e  comparisons 

were made with th e  ex ac t  e ig e n fu n c t io n  s o l u t i o n s .



Usually f o r  bodies having only plane  s u r fa c e s ,  th e  general  i n 

t e g r a l  equat ions  f o r  the  method reduce to  r e l a t i v e l y  simple forms, 

but  not  f o r  bodies composed of curved s u r f a c e s .  Also observing those  

equat ions  f o r  the  plane su r f a c e s ,  we can r e a l i z e  t h a t  s i n g u l a r i t y  prob

lems are  not  involved in them. However, t h i s  problem w il l  a r i s e  fo r  

curved su r faces  and must be considered f o r  more accura te  r e s u l t s .  

T h e o r e t i c a l ly  when we eva lua te  the  p r i n c i p l e  value of i n t e g r a t i o n ,  

we must exclude th e  s in g u la r  po in t  f o r  numerical i n t e g r a t i o n ,  but 

p r a c t i c a l l y  we exclude the  patch of a f i n i t e  a rea  con ta in ing  the  s i n 

gu la r  po in t  in s tead  of j u s t  the  s in g u la r  p o in t .  We see t h a t  t h i s

p r a c t i c a l  c a l c u l a t i o n  w i l l  inc rease  e r r o r s  as long as the  su r face  

i s  not d iv ided  in to  very many subpatches so t h a t  the  patch areas be

come very small .  However, cons ider ing  th e  computer running time and 

memory s to ra g e ,  i t  may not be e f f i c i e n t  to  d iv ide  the  su r face  in to  

so many d iv i s io n s .  Therefore ,  in Chapters V and VI we de r ive  some 

cons tan ts  which w i l l  roughly provide the  c o n t r ib u t io n  l o s t  by exclud

ing the  f i n i t e  patch area  in s tea d  of  a s i n g l e  po in t  f o r  th e  eva lua t ion  

of the  p r i n c i p l e  value of i n t e g r a t i o n ,  and the  e f f e c t  of those  con

s t a n t s  i s  shown by comparing th e  r e s u l t s  with and without them. By 

using those  cons tan ts  in the  i n t e g r a l  equa t ions  f o r  th e  method, we 

can decrease  th e  number of d iv i s io n s  f o r  numerical i n t e g r a t i o n s  and 

thus computing time to  ob ta in  th e  same r e s u l t s  t h a t  can be obtained

by increased  number of d iv i s io n s .
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In the  examples which a re  considered  in Chapters I I I ,  IV, V, 

and VI, the  impedance matr ix  f o r  the  moment method i s  derived ex ac t ly  

f o r  th e  wedge, but approximately f o r  th e  square and c i r c u l a r  c y l in d e r s ,  

and the  sphere .  Even though we can de r ive  th e  more accura te  expres

s ion  f o r  i t ,  i t  may not be useful  f o r  numerical c a l c u l a t i o n s  because 

of i t s  complexity.

In Chapter VII, summary and conclusions  are  presen ted  along with 

some of th e  advantages and disadvantages of t h i s  method.
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CHAPTER II  

GENERAL THEORY

2.1 F i r s t  Order Approximation

L e t ' s  cons ider  an a r b i t r a r y  shaped 3-dimensional p e r f e c t l y  

conducting body i l lum ina ted  by a plane wave as shown in Figure  2 .1 .

We d iv ide  the  t o t a l  su r face  S o f  the  body in to  and Ss which r e p re se n t  

th e  l i t  and shadowed reg io n s ,  r e s p e c t iv e ly .  The se p a ra t io n  boundary 

of S i s  the  shadow boundary which i s  shown by the  l i n e  AB in Figure

2 .1 .  In a d d i t io n ,  we s p l i t  each of these  regions  in to  two reg ion s ,

a moment method region  (MM-region) and an asymptotic reg ion  (AS-region) 

which a re  r ep re se n te d ,  r e s p e c t iv e ly  by s{^ and sjjj  ̂ in the  l i t  region 

or by S^M and in the  shadow reg ion .  Therefore ,  we can w r i te  the  

fo l lowing  express ions  regard ing  the  su r f a c e s .

s* °  Smm + Sas (2 - , )

' sS  -  SMM + SAS • <2 ' 2 >

Usually  the  moment method region  i s  sm al le r  than the  asymptotic reg ion .

Next l e t  th e  t o t a l  c u r r e n t  be denoted by "J®*(R*) in th e  l i t  region

and b y U s (R') in  th e  shadowed r e g io n .  The c u r r e n t  can then be expressed 

in terms of dj^CR) and d^$(R) or* ^ j^(R) and ^ j C R )  as



z  Figure  2 .1 .  Three dimensional su r face  i s  divided
in to  four  r eg ion s .

^  “(If) = ^ m(R) T&flf)AS'

jS(R) = + '3a s ( r )JASV

(2.3)

(2.4)

where ^ j (R ^)  and are  the  t o t a l  c u r r e n t s  on S^M and S^M, r e s p e c t 

iv e ly ,  and "3^ 5 (R”) and d^s (^) r e p r e s e n t  the  t o t a l  c u r r e n t s  on S ^  and

S^«j, r e s p e c t iv e ly .

We w i l l  use the  usual form of Maue's magnetic f i e l d  i n t e g r a l  

equat ion  to  der ive  the  general  equat ions  f o r  our hybrid  method. The
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c u r r e n t  a t  an observa t ion  p o in t  P {see Figure  2 .1 )  w i l l  s a t i s f y  the  

magnetic f i e l d  i n te g r a l  equat ion  given by

J(1T) = 2nxITi (K) + 2 n x /  J ( f f ' )  x V'G(r)ds* (2 .5)
s

where "R and IT' a re  th e  p o s i t i o n  vec to r s  of  th e  o bse rv a t io n  p o in t  P 

and th e  source p o in t  P ' ,  r e s p e c t i v e l y ,  and r  = |E -R ' |  i s  th e  

d i s t a n c e  between the p o in ts  P and P ' .  The u n i t  v e c to r  n i s  outward

and normal t o  th e  su r face  a t  P. H^OT) i s  t h e  i n c id e n t  magnetic  f i e l d

a t  P on th e  su r fa ce .  The symbol f  r e p r e s e n t s  th e  p r i n c i p l e  value  of

i n t e g r a t i o n .

The f r e e  space Green 's  fu n c t io n  G(r) f o r  th e  two dimensional  

problem i s  given by

G(r) = H£2 ) (Br) (2 . 6 )

and f o r  th e  three-demensional  problem i s  given by

G(r) = (2 .7 )

where (8 r )  i s  th e  ze ro  o rd e r  second kind Hankel fu n c t io n ,  and 3 i s  

th e  f r e e  space propagat ion  c o n s t a n t .  Now v 'G ( r ) ,  where the  prime 

r e f e r s  t o  t h e  c oo rd in a te  system of  the  source  p o i n t s ,  can be ob ta ined  

as

o'G(r) = -  f j  Hj 2 ) (er) r'  ( 2 . 8)

9



fo r the two-dimensional problem and

“ J 0r  •*
7 ' 6 ( r )  = -  (JS + 1 )  r '  (2 .9)

f o r  th e  three-d imensional  problem, where r '  i s  th e  u n i t  vec tor  in the  

d i r e c t i o n  of TP-IT, and ^(3 r ) i s  the  f i r s t  order  second kind Hankel 

fu n c t io n .  The time dependent f a c t o r  e‘*u)t i s  suppressed throughout.

The in t e g r a t io n  su r face  S in Equation (2 .5 )  can be d ivided in to  

£  and Ss , and according t o  those  i n te g r a t i o n  reg io n s ,  the  in te g ra l  

can be separa ted  in to  two p a r t s .  For observa t ion  p o in ts  in the  l i t

r eg io n ,  the  c u r r e n t  ^ ( R )  w il l  s a t i s f y  Equation (2 .5)  or the  fol lowing

equat ion .

J ^ R )  = 2nxH1 (R) + 2f\ x f  J ^ R ' ) x v 'G t r J d s '
S*

+ 2ft x /  J S(R')  x v ’G (r )d s '  (2.10)
Ss

The second and t h i r d  terms are  the  c u r r e n t s  induced by the  cu rre n t s  

a t  source po in ts  in the  l i t  and shadowed r e g io n s ,  r e s p e c t iv e ly .

Since the  c u r r e n t  *JS(T5’1) i s  u su a l ly  small compared to  (IT1), 

th e  t h i r d  term of  Equation (2.10) may be small compared to  the  second 

term, and a lso  both of  them are  small compared to  th e  o p t ic s  term 

2nxTT1 (R), we can ignore the  t h i r d  term in Equation (2.10) and make 

th e  approximation of

10



3 * 0 0 “ ^ p (R ) (2.11)

where the  o p t ic s  reg ion  c u r re n t  J^p (R) i s  given by

= 2fixTP(R) + 2nx f  ^ L ^ ' )  x v ' G f r J d s '  ( 2 . 1 2 )
S*

Also we can w r i te  the  fo l lowing in te g r a l  equat ion f o r  observat ion  

p o in ts  on the  shadowed reg ion .

*JS(R) = 2nxHi (IT) + 2nx J  '^{TT1) x v 'G ( r ) d s '

+ 2nx f  J S(R')  x V G ( r ) d s ' . (2.13)
Ss

I f  we rep la ce  (R‘ ) in Equation (2.13) by the  approximate c u r r e n t
_ 0 r ^ _  

J 0p ( R ' ) ,  which i s  given in Equation (2 .1 2 ) ,  then the  c u r re n t  J (R) i s

no longer ex ac t ,  but  in s tead  i s  approximate. I f  we re p re se n t  t h i s
C _

approximation b y T r  (R), then Equation (2.13) becomes^ r

Jop(^) ~ 2nxTFi (R) + 2nx /  ^ ( R ' )  x v 'G (r )d s '
SA

+ 2nx /  x V 'G(r)ds '  . (2 .14)
C r

Ss

Since J^p(R) in Equation (2 .12)  and J^ p(R) in Equation (2.14) 

a re  approximations f o r  ^ ( f t )  and "3s {"R), r e s p e c t iv e ly ,  ad d i t io n a l  cu r 

r e n t s  a re  req u i red  t o  determine th e  c o r r e c t  c u r r e n t s  on both su r f a c e s .
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Let these  add i t io n a l  c u r r e n t s  be I®'(R") and TS(W) on the  su r faces  

and Ss , r e s p e c t iv e ly .  Then the  exac t  c u r r e n t s  in both the  regions 

are

* ( * )  = ^ p (R) (2.15)

J S(^) = ^ p(*> + TS(^  * ( 2 *16)

According to  Equations (2 .3)  and ( 2 .4 ) ,  the  c u r re n t s  T^(R) and TS(R) 

can be expressed as

T a(R-) = T l ( R )  + T . \ ( R )  ( 2 . 1 7 )

I s (^) = i Sm(R) + Ẑ ( R) • (2.18)

Then from Equations ( 2 .3 ) ,  ( 2 .4 ) ,  (2 .1 5 ) ,  (2 .1 6 ) ,  (2 .1 7 ) ,  and (2.18) 

we can express  the  t o t a l  c u r r e n t s  on the  regions  S^M, S^M, S^s , and

SAS as

= ^ o p ^  + (2.19)

= + ( 2 *20 )

and

Ja s (R) = + Ta s (S) (2-21)
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^s<«> -  + t as(«) (2 .2 2 )

The c u r r e n t s  a t  observat ion  p o in ts  on the  moment method region 

a l so  w i l l  s a t i s f y  Equation ( 2 .5 ) .  Hence,

jjJM(R) = 2nxH1 (IT) + 2nx f  J ^ ' )  x V'G(r)ds '
S*

+ 2nx }  J^ fR1) x V 'G(r)ds1 (2.23)
e-S

and

j Mm(R) = ^nxH1 (R) + 2nx f  / ( R ' )  x V'G(r)ds
SA

+ 2nx f  J S(TT') x V 'G(r)ds '  . (2.24)
Ss

S u b s t i t u t in g  Equations (2 .1 5 ) ,  (2 .1 6 ) ,  ( 2 .1 9 ) ,  and (2 .20) in to  

Equations (2 .23) and (2 .2 4 ) ,  and then using Equations (2 .17) and (2 .1 8 ) ,  

we ob ta in  the  fo l lowing  two equat ions .

J^p (R) + TmV r )  = 2nxTT1 (1T) + 2 nx /  d£p(R ')  x V 'G(r)ds '

13



+ 2nx i  Jop(R ')  x v 'G ( r ) d s ' +  2nx j: T^M(R' )  x V'G(r)ds
c S o S
5 5 mm

2nx /  j As (R' )  x V'G{r)ds' (2.25)

and

AS

+ 2 nx j  x GCr )ds * + 2 nx f
S®'

ljfs (R')  x V 'G(r)ds1

AS

+ 2 nx f  ^ ( R 1) x v 'G ( r ) d s 1+ 2 nx f. i j ^ f R ' )  * V'G(r)ds
S s c s
a MM

+ 2 ii* /  I^S(R ')  x V G frJd s '  . (2.26)
cs 
AS

Sub t rac t ing  Equation (2.12) from Equation (2 .25)  and Equation 

(2 .14)  from Equation (2 .2 6 ) ,  we ob ta in  the  c u r r e n t s  in  the  l i t  and 

shadowed moment method regions  which are  given by
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+ 2 fix f  I ^ R ' J x v ' G t r J d s ' (2.27)

AS
and

= 2 ftx / IMM̂R' ) xV, G ( r ) d s ' + 2nx f l g M( R' ) x7 ' G(r )ds

MM 3MM

+ 2nx J  I a S(R' ) xV 'G (r )d s1 + 2nx f  I^S(R ')xV 'G(r)ds '
cfi, cs
AS AS

(2.28)

Since th e r e  are  four  unknown c u r re n t s  ! mm̂ r  ̂* t mm(r )* t a V r )> 

and I ^ S(R) in two equa t ions ,  we cannot solve  f o r  them without making 

proper  approximations. In Equation (2.27) i t  i s  c l e a r l y  seen th a t  

th e  c u r r e n t  term con ta in ing  Jg p (R ') i s  dominant. However, i t  i s  hard 

t o  compare the  o ther  c u r r e n t  terms with each o th e r  a n a l y t i c a l l y .  As 

we know, the  c u r r e n t s  on th e  r i g h t  s id e  of Equation (2 .27)  rep re sen t  

th e  c u r r e n t s  induced by ^Qp(^) and the  c u r r e n t s  in the  moment and 

asymptotic method reg ion s .
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Now consider ing  t h a t  observat ion  p o in ts  a re  l im i ted  to  the  moment 

method region  and t h a t  the  c u r r e n t  in th e  n e a re s t  reg ion  t o  the  obser

va t ion  p o in ts  w i l l  most c o n t r ib u te  to  the  c u r r e n t  a t  the  observat ion  

p o in t s ,  we can ignore  those  c u r r e n t  terms con ta in ing  T ^ ( R ' ) or 

in both Equations (2,27) and (2.28) to  de r ive  th e  f i r s t  o rder  approxi

mations f o r  T^fR") and T^fR") . Therefore ,  th e  f i r s t  o rder  approxi

mations f o r  Tj$](R) and T^M(R*) can be w r i t t e n  as

TMy R )  * 2nx f  T ^fR 'JxV 'G frJds*  + 2nx f  I j ^ R ' ' )xV 'G (r )ds '
cl c S
5mm ^mm

and

+ 2nx f  (R, )xv ,G ( r ) d s ) (2.29)
C r

Ss

Imm(R) “ 2"x* lMM(R ')xVG (r)ds*  + 2 ^x f  lJjM(R')xV*G(r)ds'
sz SsMM MM

(2.30)

We should r e a l i z e  t h a t  wi thout  ignor ing  those  c u r r e n t  terms conta in ing

t a s<«‘ ) o r  i jJs(R') in Equations (2.27) and (2 .2 8 ) ,  we cannot de r ive

equation s e t s  which can be solved by the  moment method. On th e  o ther

hand, s ince  the  c u r re n t  (R1) i s  known, we can so lve  Equations

(2 .29) and (2.30) s imultaneously  using the  moment method. By th e  same
 £    * _

procedure,  we can de r ive  i n t e g r a l  equat ions  f o r  IAS(R) and I ^ ( R ) .
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However, we can w r i te  down d i r e c t l y  those  equat ions  by not ing  t h a t  

the  c u r re n t s  on th e  asymptotic reg ions  a lso  s a t i s f y  Equations (2.29) 

and (2 .30) f o r  t h e i r  f i r s t  order  approximations.  Thus, we can w r i t e  

th e  fo l lowing equat ions  f o r  (R-) and ' J s m -

I^S(R) = 2nx /  Ij$M(R ')xV 'G (r )ds '  + 2Sx f  I^M(R ' )x v 'G ( r )d s '
cJl eS
MM 5MM

+ 2nx f  J^p (R ')xv 'G {r)d s ' (2.31)

and

za s (r > 2fix f  l J M(R‘ )xV,G (r)ds '  + 2nx f  T ;L (R ')xv 'G (r )ds

5MM MM
(2.32)

ZAS(R) and can obtained  simply by s u b s t i t u t i n g  the

pre-determined c u r r e n t s  T^m(R) and T*,(R) in to  Equations (2.31) and

(2 .3 2 ) .

The above f i r s t  o rder  approximations may not  be enough to  give 

the  c o r r e c t  su r face  c u r re n t s  on some complex bodies .  Therefore ,  we 

w i l l  de r ive  equat ions  f o r  th e  second o rder  approximations f o r  T^(R^) 

and Tj^j(R’) in th e  next  se c t io n .
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2 fis x [2 fis x

AS MM

I§M(R")xv,,G(r1)ds "]x7'G(r2)ds'

2 nsx E2 ns x I saMM(R")xVMG(r1 )ds"]xV'G(r2 )d s '

AS *MM

+ 2ffsx -f [2n&x § jQp (R")x7"G(r1 )d s" Jx 7 'G (r2 )d s '  (2.34)
C & cS
bAS b

where I^(R) and I^(R) are  th e  f i r s t  o rder  approximations f o r

and T^m(R), r e s p e c t iv e ly ,  and and ns a re  the  u n i t  normal vec to rs  

in t h e  l i t  and shadowed s u r f a c e s ,  r e s p e c t iv e ly .  Also r^ and r 2 are  

given by

r ] = JR'-If111 (2.35)

r 2 = |R-R* | (2.36)
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The second order  approximations f o r  T ^ ( R )  ar>d ^ g ( R )  have the  

same express ions  as those  f o r  I mmCr ) and T*M(R), r e s p e c t iv e ly ,  except  

t h a t  observat ion  po in ts  are  moved from th e  moment method regions  to  

th e  asymptotic reg ions .

I f  we r ep e a t  th e  same procedure, we can ob ta in  equations which 

w i l l  give us h igher  order  approximations f o r  7 ^mCr ) and W * )  * ^u_

m e r ic a l ly  t h i s  procedure can be achieved e a s i l y  by i t e r a t i v e  methods.

2 .3  Summary and Discussion

We have derived a l l  equat ions  f o r  th e  f i r s t  and second order  

approximations t h a t  are  necessary  f o r  the  method. For summary and 

l a t e r  convenience, we w i l l  w r i te  those  equat ions  f o r  th e  f i r s t  order  

approximations here  again

dJp (R) = 2nxHi (lT) + 2nx f  j £ p (R' )xv‘G ( r ) d s ' (2.37)

J^pfR) = 2nxHi (R) + 2fix f  j J p ( R ' ) x v ’G ( r ) d s 1

+ 2nx f  J q (R ')xV 'G (r )ds '  (2 .38)
C ^

Ss
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+ 2nx f  Jo p fR 'Jx v 'G tr Jd s '  (2.39)
Ss

lgM(R) = 2nx £ T*M(R*)xV'G(r)ds'  + 2nx £ I*M(R' ) x v 'G ( r ) d s 1
CS

MM MM
(2.40)

The Green 's  fu n c t io n  has an r"^ s i n g u l a r i t y  as th e  observa t ion  

p o in t  P approaches the  source po in t  P'  on the  su r face  of th e  body.

Since the  second term of Equation (2 .37)  and th e  t h i r d  term of Equation 

(2.38) become zero  i f  P and P' are  on the  same s t r a i g h t  su r fa ce ,  the  

s i n g u l a r i t y  problem i s  not involved in the  p lana r  su r fa ce .  However, 

t h e r e  w i l l  be as many s in g u la r  po in ts  as observat ion  p o in ts  f o r  a 

curved su r face  such as in a c i r c u l a r  c y l in d e r  or a sphere.

T h e o r e t i c a l ly  the  p r i n c i p l e  value of i n t e g r a t io n  i s  eva lua ted  

by excluding the  s in g u la r  p o in t ,  but  p r a c t i c a l l y  i t  i s  done by exclud

ing the  f i n i t e  patch a rea  con ta in ing  the  s in g u la r  p o in t .  Therefore ,  

t h i s  exclusion  of th e  patch may cause some e r r o r s  in  the  su r face  cu r 

r e n t  c a l c u l a t i o n s .  This problem w il l  be considered in more d e t a i l  

in  Chapters V and VI.
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Q _ r
When we use the  i t e r a t i v e  method to  so lve  f o r  ^ op(R) and ^ p (R) 

in Equations (2.37)  and (2 .3 8 ) ,  we have to  cons ider  convergence of 

the  r e s u l t .  We cannot prove mathematica l ly  t h a t  th e  i t e r a t i v e  method 

produces a convergent r e s u l t ,  but  in s tead  we must insu re  i t  by numeri

cal c a l c u l a t i o n .

Also i t  appears t h a t  th e re  a re  no d i s t i n c t  ways t o  determine
I

th e  e x te n t  of the  moment method region  in p r a c t i c a l  numerical c a lc u 

l a t i o n s .  However, by numerical r e s u l t s  i t  w i l l  be seen t h a t  th e  e x ten t  

of  th e  moment method region does not  a f f e c t  th e  su r face  c u r r e n t  s i g 

n i f i c a n t l y .  Therefore  we can use an a r b i t r a r y  s i z e  f o r  th e  MM-region 

according to  the  s i z e  of the  body. This i s  very d e s i r a b le  f o r  p rac

t i c a l  a p p l i c a t io n s  of t h i s  method, because i f  the  c u r r e n t s  a re  much 

dependent on the  ex ten t  of the  MM-region, the  method w i l l  not be r e l i 

ab le .  Usually f o r  a f i n i t e  dimensioned body, from one t h i r d  t o  h a l f  

of th e  s i z e  of th e  body w i l l  be reasonable  f o r  th e  moment method r e 

gion. I f  we increase  th e  MM-region, we may get  b e t t e r  r e s u l t s ,  but 

we have to  s a c r i f i c e  the  computer running t ime. Also th e re  w i l l  be 

a l im i t  t o  in c re as in g  th e  MM-region by the  l i m i t  of computer memory 

s to ra g e s .
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CHAPTER I I I  

PERFECTLY CONDUCTING WEDGE

3.1 In teg ra l  Equations

Consider the  wedge geometry in Figure 3 .1 ,  where the  one s id e  

of  th e  wedge i s  i l lum ina ted  by a TE plane wave and the  o ther  s id e  i s  

shadowed. We s e t  up th e  moment method reg ions  around the  edge, which 

a re  rep re sen ted  by and C^M in th e  l i t  and shadowed reg io ns ,  r e 

s p e c t iv e ly .  For the  wedge problem, the  c u r r e n t s  ^ p (R) and ^ o p(R) 

in Equations (2.12) and (2.14) can be reduced to

j J p (R) = 2nxtfi nT) (3.1)

and

J®p (R) = 2nxH1 (T0 + 2nx f  j £ p (R' )xV'G(r)d£,' . (3 .2)
C*

Also the  f i r s t  order  approximate c u r r e n t s  in the  MM-region can be 

s im p l i f i e d  as

Tj5M(R) = 2nx j  T j M(R')xV'G(r)djl '+2nx f  J^n (R'1 )x v 'G (r )d j fMMV ' J c MMV 1 v w ; ^ A °op’

(3 .3)
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and

TgM{R) = 2nx f  T*M(R')xV'G(r)dJl
f'S/

(3 .4 )

0 _  r g r-
The express ions  f o r  I^S(R) and I^ S(R) a re  e x a c t ly  same as Equa

t i o n s  (3 .3)  and ( 3 .4 ) ,  r e s p e c t iv e ly ,  except t h a t  the  observa t ion  po in ts  

a re  moved to  the  asymptotic reg ion .  Therefore ,  i t  i s  not  necessary  

t o  w r i te  those  equat ions here .

Now l e t  us cons ider  the  case where both s ides  of the  wedge are  

i l lum ina ted  by a plane wave as in Figure 3 .2 .  For t h i s  geometry, the
 A   __n   

c u r re n t s  J„„(R) and J„„(R),  where A and B s tand  f o r  the  two su r faces  op op
of the  wedge, can be expressed as

(3 .5)

J^p(R) = 2nxHi (IT) + 2 nx f  j £ p (R' )x V G (r )d£ '  .
CA

(3.6)

—A —The exac t  c u r re n t  on th e  su r face  A, O ^ f R ) ,  can be obtained  from

+ 2nx f  J^X(R'JxV'GfrJdJt1 . 
CA

(3 .7)
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H'

MM
XM

Figure  3 .1 . Wedge i l lu m in a ted  by a TE plane wave, where one s ide  
i s  l i t  and the  o th e r  i s  shadowed.

Figure 3 .2 . Wedge i l lum in a ted  by a TE plane wave, where 
both s id es  are  l i t .
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and

r  = + 2,'2 -  22,2,' cos<|)w (3.11)

The above r e s u l t  can be r e a d i l y  obtained from the  geometry in Figure 

3 .3 .  S u b s t i tu t io n  of Equation (3 .9)  in Equation (3 .8)  leads to

■ 4 f  5r  s r 2, 
l MM l MM

+ 2 f  J l p t a ' J d a 1 . ( 3 . 1 2 )
c s

J J J H J  i  11 M . n  U(.L

Figure  3 .3 .  Geometry showing r e l a t i o n s h i p  between 
2* a't and 4>w in a wedge.
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Now we w i l l  use th e  pulse  b a s i s  fu n c t io n s  and the  po in t  matching 

technique  to  so lve  f o r  IMM in Equation (3 .1 2 ) .  Let be expressed

by th e  s e r i e s

(3.13)

where

Pte)  =

A£
1 for \l-& n\< ?-  

0 e lsewhere.
(3.14)

VM
and where XM re p re s e n ts  the  i n t e g r a t i o n  l im i t  fo r  numerical

i n t e g r a t i o n ,  and N i s  a number of s u b in t e r v a l s .

S u b s t i t u t in g  Equation (3.13) in to  Equation (3.12)  and rea r rang ing  

terms,  we have

N .
I  A f P O m J

n=l n n
" 4 /  GwGt'*fcn)Gw(jl»fc')M ^ ' 1

"MM

2 /  J opte ' )GwCfl' -^ ‘ ) ^ ‘ 
Cs

(3.15)

Mult ip ly ing  both s ides  of Equation (3.15) by 6 U-&m) ,  i n t e g r a t i n g  over

cjJjM, and d iv id ing  them by M-, we have
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N

A
4 f  Gw(H1,» n)Swt4m, l ' ) M  <«■] 

CMM

= 2 ;  ■ £ , ( * ' )Gw( V )dl1' • <3 ' 16>
Cs

Expressing Equation (3.16)  in matr ix  form 

[ZjJnHlJ;] = [Vjl, m , n = l , 2 , . . . sN. (3.17)

allow us to  i d e n t i f y  the  elements of the  impedance matr ix  (zjjj ] as

zmn ’  p < W  -  4 i  s w<4 ‘ > W V * ' > M  d 1 ' <3 ‘ 1 8 >

CMM

where m,n=l, 2 , 3 , . . . ,N

Usually the  second term of Equation (3.18) w i l l  be small compared to
SLthe  f i r s t  term. The elements of the  vo l tage  matr ix  [V ] are  determined

by

C  = 2 /  J op ( * ' ) Gw( V * ' ) ^ '  » m=l > 2 , . . .  ,N. (3.19)
Cs
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3.3  Numerical Resu l ts

We found some l im i t a t io n s  in a p p l i c a t io n  of t h i s  method to  a 

wedge a f t e r  having t r i e d  severa l  wedges with the  var ious  wedge angles 

and wave in c id e n t  d i r e c t i o n s .  I t  w i l l  be seen in the  examples which 

fo l low t h a t  i f  the  wedge angle (<bj or the  wave in c id en t  angle (<}>•)
W 1

i s  small ,  a la rge  i n t e g r a t io n  l im i t  (XM) i s  requ i red  to  ob ta in  

acceptable  r e s u l t s .  For example, i f  <J> i s  90° and <J>. i s  30°,  then
W 1

XM =* 60X i s  needed f o r  a d e s i r a b le  r e s u l t .  Howevever, i f  we decrease 

<|>- to  10° ,  we cannot expect  a d e s i r a b l e  r e s u l t  even with a value of 

XM la r g e r  than 100x. This means t h a t  f o r  the  grazing in c id en t  wave, 

i t  i s  not  p o ss ib le  to  ob ta in  an accep tab le  r e s u l t .  Also we see t h a t  

the  wedge with very small wedge angle meets the  same d i f f i c u l t y .

These l im i t a t i o n s  do not  l i m i t  the  method t h e o r e t i c a l l y ,  but 

do impose a p r a c t i c a l  l im i t a t i o n  f o r  th e  wedge geometry. Since we 

deal with f i n i t e  s t r u c t u r e s  in ac tua l  problems, these  l i m i t a t i o n s  may 

not appear in o ther  p r a c t i c a l  problems.

We obtained the  su r face  c u r re n t s  on the  l i t  and shadowed regions  

up to  5 . Ox from the  edge. The 5 . Ox d is tan ce  was d ivided in to  100 sub

i n t e r v a l s  f o r  numerical i n t e g r a t i o n ,  and 10 pu lse  b as i s  fu n c t ion s  were 

used in the  0 .5 x w i d e  moment method reg io n .  All th e  r e s u l t s  were com

pared with independent GTD s o lu t io n s .  Figure  3 .4  shows the  r e s u l t s  

f ° r  =<!>.•=90°. I t  i s  seen t h a t  th e  magnitude and phase of  th e  su rface
W 1

c u r r e n t s  on both reg ions  a re  in very good agreement with the  GTD 

s o lu t io n s .  In Figure  3 .5 ,  which i s  f o r  <l> =90° and <K=30°, we can recog-
W 1

nize  a l i t t l e  d i f f e r e n c e  in the  magnitude of the  shadow region cu r re n t
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in the  region  from 4 . O x  t o  5 . O x .  Note t h a t  t h i s  r e s u l t  was obtained 

with XM=60X and about t h i r t y  minutes of computing time. The r e s u l t s  

f o r  the  su r face  c u r re n t s  f o r  the  geometry in which both su r faces  are  

i l lum ina ted  by the  in c id en t  wave a re  shown in Figure  3 .6 .  In t h i s  

case ,  as we mentioned befo re ,  the  moment method region c u r r e n t  was 

not used to  ob ta in  the  t o t a l  su r face  c u r r e n t .  The agreement with the  

GTD so lu t io n s  are  shown to  be very good except in th e  region l e s s  than 

0.2X. We show the  r e s u l t s  f o r  <J>W=120° and ^ = 3 0 °  in Figure 3 .7  and 

q u i t e  good agreements with the  GTD r e s u l t s  a re  in d ica ted  except near 

5 . OX, However, f o r  the  r ev e rse  geometry ( i . e . ,  f o r  4> =30° and ^=120°)
W 1

th e  r e s u l t s  become worse as shown in Figures  3 .8  and 3 .9 .  The r e s u l t s  

in Figures  3 .8  and 3.9 were obtained with the  e x ten t  of the  moment 

method region  (CMM) of 0.5X and 1.0X, r e s p e c t iv e ly .  As was expected, 

b e t t e r  r e s u l t s  were obtained with the  l a r g e r  CMM. Even though many 

discrepancy po in ts  are  observed on the  magnitude curve f o r  CMM=0.5X 

th e  r e s u l t s  a re  s t i l l  accep tab le  except in the  region very near  the  

edge. Of course ,  b e t t e r  r e s u l t s  can be obtained  with increased  XM 

in both the  geometr ies considered above.

By observing Figures 3.10 and 3.11 which are  f o r  CMM=0.25X and 

l .Ox, r e s p e c t iv e ly ,  we can r e a l i z e  the  e f f e c t  of the  s i z e  of  

Those r e s u l t s  show t h a t  the  e x te n t  of the  moment method does not  a f f e c t  

the  su r face  c u r re n t s  s i g n i f i c a n t l y .  As we increased  or  decreased the 

s i z e  of f o r  these  curves,  the  width of  the  pulse  used in th e  moment 

method region was kept cons tan t  as 0.05X.

31



I t  i s  seen from th e  r e s u l t s  in Figures  3 .8  to  3.10 t h a t  as the  

wedge angle or the  wave inc iden t  angle i s  decreased,  the  dependencey 

of th e  su r face  c u r re n t  on th e  e x ten t  of th e  moment method i s  increased .

Usually the  GTD s o lu t io n s  f o r  th e  su r fa ce  c u r r e n t s  on th e  wedge 

a re  in very good agreement with exac t  so lu t io n s  except f o r  the  region 

very near t o  the  edge. In Figure 3 .12 ,  th e  GTD and our hybrid method 

so lu t io n s  f o r  the  c u r re n t s  in t h a t  region ( i . e . ,  up to  0.05X from the  

edge) are  compared with exac t  so lu t io n  f o r  the  90° wedge and inc iden t  

ang les .  I t  i s  seen t h a t  the  e r r o r  of the  GTD c u r re n t s  becomes la rge  

as th e  observat ion  po in t  approaches the  edge and a lso  t h a t  ove ra l l  

agreement of our hybrid method so lu t io n  with exact  so lu t io n  i s  a l i t t l e  

b e t t e r  than t h a t  of the  GTD.

All the  r e s u l t s  in t h i s  chap ter  were obtained with the  second 

order  approximation.  Also, by exper ience ,  th e  second o rder  approxi

mations were seen to  be enough f o r  accep tab le  r e s u l t s .  We see t h a t  

f a s t  convergence of the  i t e r a t i v e  method i s  p o ss ib le  with th e  a p p l i 

c a t io n  of t h i s  method t o  a p lana r  su r fa ce .  This w i l l  be re in fo rc e d  

l a t e r  by consider ing  a square cy l in d e r  in Chapter IV.
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CHAPTER IV 

SQUARE CYLINDER

4.1 In teg ra l  Equations

The geometry of a p e r f e c t l y  conducting square c y l in d e r  in two- 

dimensions i s  shown in Figure  4 .1 .  A TE plane wave i s  in c id en t  on 

th e  square c y l in d e r  with an in c id e n t  angle 0 . .  For convenience, we

r e p r e s e n t  the  su r faces  AB, BC, CD, and DA by c \  C2 , C3 , and C4 , r e 

sp e c t iv e ly .  The moment method regions  are  s e t  up around th e  four  edges 

o f  th e  square c y l in d e r  and a re  denoted by C|J|M, C^M, Cĵ M, and cJjM,

r e s p e c t iv e ly  on th e  su r fa ce s  c \  C2 , C3 , and C4 .
1 4I t  i s  assumed in t h i s  geometry t h a t  the  su r faces  C and C are

2l i t  and t h a t  th e  su r face s  C and C are  shadowed. Therefore  th e  in 

c id e n t  angle q . must be between 90° and 180° f o r  the  fo l lowing  equa

t i o n s  which are  derived below.

The c u r r e n t s  ^Qp(^) and ^ J p{^) in the  l i t  reg ions  can be expres

sed as

Jop(R) = Zn^H.fR) + 2n-,x f  J^p (R* )xV 'G ( r ) d t ' (4 .1)
C4

and
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^ p ( R )  = Zn^xH1 (R) + 2n4x f  j J p (R 'JxV 'G fr ) * 1 . (4 .2)
C1

o   q
Also th e  shadow reg ion  c u r r e n t s  ^ p ( R )  and ^ p ( R )  can be w r i t t e n  as

and

where r ip  n2 , n3 , and n^ a re  th e  outward u n i t  normal v e c to r s  t o  the

su r f a c e s  c"*, C2 , C2 , and C^, r e s p e c t i v e l y .

The f i r s t  o rder  approximate c u r r e n t s  in  th e  fo u r  moment method 

reg io n s  can be ob ta ined  from:

(4 .5 )

3 3
T|Jm(R) = 2n4x I  f  T j M(R ')xVG (r)dJ i '+2n4x J  /  j £ p (R ')x  V G ( r ) d a ' ;

k~i pk k- 2  pk

(4 .6 )
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J  *  - J ,
T^h(R) = 2ffzx Y /  T*H(R')xVG(r)d*- ; (4 .7)

K"1 pk
kj*2 l MM

o 4 .
TMM(R) = 2fi3 x X I t J j ^ R ' J x V ' G f r J d A '  . ( 4 . 8 )

K- I aK
kj43 MM

y

MM MM

MM MM

MM MM
I

H

Figure 4 .1 .  Surface d iv is io n s  in a square cy l ind e r
in two dimensions.
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The express ions  f o r  the  c u r re n t s  in the  asymptotic reg ions  are  

th e  same as Equations (4 .5)  to  (4 .8 )  except t h a t  the  observat ion  po in ts  

a re  moved from the  MM-regions t o  the  AS-regions.

Observing a l l  these  equat ions  we can see t h a t  the  observat ion  

and source p o in ts  are  not on the  same su r face  in any one equat ion .  

Therefore  as in the  wedge case in Chapter I I I ,  th e  s i n g u l a r i t y  problem 

( i . e . ,  exclus ion  of an e n t i r e  patch con ta in ing  the  s in g u la r  po in t )  

does not  appear in the  square c y l in d e r  case .

The c u r r e n t s  djL(^) and ^ l n (R̂ ) can be solved s imultaneously  by
r  ^  r

the  i t e r a t i v e  method. A f te r  s u b s t i t u t i n g  these  c u r re n t s  in to  the
2  _  o___

equations  f o r  ^ t D(R) and a lso  can be so1ved by tbe  same
r

technique.

4 .2  Impedance Matrix

The moment method i s  used to  solve  Equations (4 .5)  to  (4 .8 ) .

For t h i s  purpose, we use simple pulse  b a s i s  fu n c t ion s  in the  p o in t -  

matching technique .

As we expect  from the  equations we der ived ,  the  r e s u l t i n g  im

pedance matr ix  wil l  be very complicated because th e re  a re  four  unknown 

c u r re n t s  involved in the  c a l c u l a t i o n s .  There fore ,  we w i l l  obta in  an 

approximate express ion  f o r  the  matr ix  by ignoring  c e r t a i n  terms in 

th e  equa t ions .  For the  sake o f  c l a r i t y ,  express ing  Equations (4 .5)  

t o  (4 .8)  in s c a l a r  forms, we have

45



(4.9)

(4.10)

and

‘  2 „ l  t  I m U ' ) G q U , H ' ) d H ' ,  (4.11)
K “  I p K

k^2 MM

!&,(*> ■ 2 1  t  Ih h U 'J G  (4.12)
K“ i pk
k?«3 MM

The r e s u l t  of th e  d i f f e r e n t i a t i o n  of the  Green 's  fu n c t io n  with 

the  a s so c ia ted  vector  c a l c u l a t i o n  i s  expressed as G^&.fi, ') ,  which i s

given by

G QL.fc') = - -A H<2 ) (Br)   . (4.13)
q 4 J  1

46



I f  we s u b s t i t u t e  Equations (4.10) to  (4 .12) in to  Equation (4.9)
1

r e p e a te d ly ,  we ob ta in  an equation which has one unknown c u r re n t  I^M(fc) 

and i s  composed of m u l t ip le  i n t e g r a l s  con ta in ing  1 ^ ( 5 , ' )  in t h e i r  

in teg rands .  A f te r  ignoring  the  t r i p l e  and higher  m u l t ip le  in te g ra l  

terms,  we have

i 4 i
W 1 * = 4  J  ! f  )S  Jd*.' dB."

k-2  pk pi
MM l MM

+ Q(A)+2 f  Q(«.' )G_(A,A' )d£.' (4.14)
C4MM

where

3 kQU) = 2 I  f  U ' ) G  U , j i ' ) d £ ’ . (4.15)
k=2 ^k op q

Assume t h a t  the  so lu t io n  of  Equation (4.14) can be expressed 

in the  s e r i e s  form of

i N i
W * )  = I  : n p ( S r V  <4 - 16)n=l

where

f l  f o r  | 4 - 1 L |  < #  (4.17)
PU> H  V  2

I 0  e lsewhere.
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u
and ^  5 N i s  a number of su b in te rv a ls  in W.

In s e r t i n g  Equation (4.16) in Equation (4.14) and rea r rang ing  

terms, we have

j ,  'n h * - A n >  '  4  j 2 f fc
CMM

= q(!)  + 2 f  Q(*, )Gn( * , t , )d l '  .
c4

*  (4.18)

Mult ip ly ing  both s id es  of Equation (4.18) by 6 ( 5 , - ^ ) ,  m = l ,2 , . . .N ,  

i n t e g r a t i n g  

M ,  we have

i n t e g r a t i n g  them over the  su r face  C ^ ,  and d iv id ing  both s ides  by

j ,  *1 [ P< V * n >  * 4 X  f

CMM

= q(£m) + 2 f  Q ( r ) G q U m, r  ) d r  , m = l ,2 , . . . , N  

l MM

(4.19 )

from which 1^ can be determined by so lv ing  a matr ix  equation of the  

type
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[ p j ]  = [Vjl,  m , n = l , 2 , . . . ,N. The elements of the  imped

ance matr ix  [ Z ^ ]  are  obtained from ^

zmn = p < V * n > - 4 ^  S q (a -  > tn )Gq ( , ) m M '  ( 4 . 2 0 )

CMM

where m,n=l, 2 , 3 , . . . ,N.

Also the  elements of th e  vo l tage  matr ix  [V^] are  determined by

In Equation (4.20) the  most dominant term i s

f  Gq (& ' )M,dB, 1

CMM

which i s  due t o  the  su r face  c u r re n t  on the  l i t  su r face  C^M. Therefore
i

f o r  th e  simpler  form of  Zmn, we can ignore a l l  o ther  terms except the  

dominant term.
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4.3  Numerical Resu l ts

For numerical i n t e g r a t i o n ,  the  length of  one s ide  W of a square 

c y l in d e r  was d ivided in to  60 s u b in te rv a l s .  The moment method region
I,

C ^ (k = l  ,2 ,3 ,4 )  was s e t  up with one h a l f  of W in i t ' s  leng th .  Therefore 

the  e x te n t  of the  moment method region  ( C ^ )  wil l  be changed according 

to  th e  s i z e  of the  c y l in d e r .  However, as we have seen in the  wedge 

problem, the  c u r r e n t  on the  su r face  of a square c y l in d e r  a lso  wil l  

not  be a f f e c te d  by C ^ ,  as we w i l l  see l a t e r  in the  numerical r e s u l t s .

Numerical c a l c u l a t io n s  were performed f o r  various cy l in de r  s i z e s  

and angles  of th e  in c id en t  f i e l d ,  and comparisons were made with inde

pendent GTD s o lu t io n s .  For the  GTD so lu t io n s ,  up to  t r i p l y  d i f f r a c t e d  

f i e l d s  were considered,  and the  d i f f r a c t i o n  c o e f f i c i e n t  formulas ob

t a in e d  by Kouyoumjian and Pathak were used. The magnitude and phase 

of th e  su r face  c u r re n t  on a 0.7X square cy l in d e r  with the  wave inc iden t  

angle 0^=95° are  shown in Figure 4 .2 .  I t  i s  seen t h a t  ove ra l l  agree

ment with th e  GTD so lu t io n s  i s  very good except t h a t  the  phase of the  

c u r r e n t  on th e  deep shadowed region  (C ) dev ia te s  s l i g h t l y  from the  

GTD r e s u l t .  Also the  r e s u l t  f o r  a square c y l in d e r  with W=1.2\and 

0^=120°, which i s  shown in Figure 4 .3 ,  i s  seen to  be in very good 

agreement with the  GTD s o lu t io n .

Resu l ts  f o r  l a rg e r  W, t h a t  i s  W=3.0X and 4.2x a re ,  r e s p e c t iv e ly  

shown in Figures  4 .4  and 4 .5 .  We see t h a t  o ve ra l l  agreements a re  q u i te  

good with s l i g h t  d e v ia t ion s  in the  deep shadow reg ion .  Although we 

ob ta ined  r e s u l t s  f o r  square cy l in d e r s  up to 4.2x on a s id e ,  the  method 

does not show any l im i t s  on the  s i z e  of a c y l in d e r  or on th e  wave
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in c id en t  angle . Next l e t  us examine the  r e s u l t s  of  the  su r face  cur-  

on a 3 .0  square cy l ind e r  with CM[̂ =0.5X and 2 . OX, r e s p e c t iv e ly  in 

F igures  4 .6  and 4 .7 .  The number of pulse  b as i s  fu n c t io ns  in CMM is  

p ropor t iona l  t o  C ^ ,  and the  width of the  pulse  i s  kept cons tan t  a t  

0.05 f o r  those  da ta .  By comparing Figure  4.6 with Figure 4 .7 ,  we 

can r e a l i z e  t h a t  the  l a r g e r  CMM makes the  r e s u l t  s l i g h t l y  b e t t e r ,  

e s p e c i a l l y  in the  deep shadow reg ion .  However, i t  i s  c l e a r l y  seen 

t h a t  th e  e x te n t  of the  moment method region  does not a f f e c t  the  surface  

c u r r e n t  s i g n i f i c a n t l y .

I t  i s  well known t h a t  a square c y l in d e r  can have an i n t e r i o r  

resonance problem s ince  the  in te g ra l  equation has a nonunique so lu t ion  

a t  th e  resonant  f r eq u e n c ie s .  The moment method produces an erroneous 

so lu t io n  f o r  the  su r face  c u r r e n t  on a square c y l in d e r  a t  those  resonant  

f req u e n c ie s .  The geometr ies of the  square c y l in d e r s  which correspond 

to  the  resonant  f requenc ies  are  determined by

from which we can f i n d  an i n f i n i t e  number of square c y l in d e rs  which 

a re  in th e  resonance mode. Some of th ese  geometr ies a re  obtained 

from Equation (4.22) a re  given by W-0.5X* 0.707x, 1.0X, 1.118X, 1.5X, 

1.58X, 2 . OX, 2.121X, 3.0X, 3 .0 4 1 X , . . .  . For a square c y l in d e r ,  the

resonan t  f requenc ies  a re  so sha rp ly  defined t h a t  we may not d e te c t  

th e  resonance phenomena even a t  f req u en c ie s  dev ia ted  very s l i g h t l y  

from them.

9  •  •  • (4.22)
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Figure  4 .8  shows the  r e s u l t s  of  the  su r face  c u r re n t s  on the  

0.707X square  c y l in d e r  with 0^=95° which i s  one of the  geometries 

having an i n t e r i o r  resonance.  Three methods, the  GTD, moment, and 

hybrid methods are  used to  obtain  those  r e s u l t s .  I t  i s  seen t h a t  the  

moment method produces erroneous r e s u l t s  in both the  magnitude and 

phase of the  c u r r e n t .  Also when the  same square cy l in d e r  with 6^=120° 

i s  t r i e d ,  the  moment method so lu t io n s  become worse as shown in Figure 

4 .9 .

On the  o th e r  hand, our hybrid method s o lu t io n s  do not show any 

resonance phenomena and in s tead  show very good agreement with the  GTD 

so lu t io n s  in both cases of 0^=95° and 120°. R esu l ts  f o r  W=1.118X, 

which a l so  correspond to  one of the  resonant  geometries ,  a re  given 

in Figure  4 .10 .  Our so lu t io n  does not show any resonance e f f e c t .

I t  i s  worthwhile t o  mention t h a t  the  GTD and our hybrid method 

so lu t io n s  f o r  W=0.705 X(which i s  s l i g h t l y  d i f f e r e n t  from 0.707X) have 

remarkably good agreement with the  moment method so lu t io n s  as shown 

in Figure  4 .11 .
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CHAPTER V 
CIRCULAR CYLINDER

5.1 In teg ra l  Equations

We w i l l  cons ider  a p e r f e c t l y  conducting c i r c u l a r  cy l in d e r  which

i s  i l lum ina ted  by a TE plane wave as shown in Figure 5 .1 .  The moment
a s

method reg ions  which are  rep resen ted  by C ^  and C ^ ,  r e s p e c t iv e ly  in 

th e  l i t  and shadowed reg ions ,  a re  loca ted  in the  regions near the  

shadow boundary.

MM

A l

'AS
AS

MM +CAS

MM

H 1

Figure  5 .1 .  Surface d iv i s io n s  in a c i r c u l a r  cy l in d e r
in two dimensions.
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The equa t ions  f o r  th e  su r fa ce  c u r r e n t s  on a c i r c u l a r  c y l in d e r  

w i l l  have th e  same forms as th e  general  equa t ions  except  f o r  th e  i n t e 

g r a t i o n  reg io ns .  T here fore  we can w r i t e  t h e  fo l low ing  equat ions  d i 

r e c t l y  from th e  general  equa t ions :

j L ( R )  = 2 nxTf (R") + 2 n x /  j £ D( R ' ) x v 'G ( r ) d a 1 (5 .1)
P C*

JqP(R) = 2 nxH1 (R) + 2n x J  dJp (R' JxV'GfrJtto'
C£

+ 2n x /  3®p { R ' )x V 'G { r)d r  (5 .2)

cs

l{JM(R) = 2n x /  Tj5M(R ')xV,G(r)d£,,+2fi x f  T^M(R' )xV'G (r )d a 'rS, rs
° mm

+ 2n x f  J^ptR 'JxV 'GtrJdA ' (5 .3 )
Cs

I L ( R )  = 2 n x /  I*  (R ' )W 'G ( r ) (k '+ 2 f l  x $ T jL (R '1 )xV'G(r)d* 'MM' A * MMV /AV A T XMMV
^MM CMM

(5.4)

G(r) i s  de f ined  in Equation ( 2 . 6 ) .  The expre ss ion s  f o r  the  c u r 

r e n t s  on th e  asymptot ic  r eg io n s  have th e  same forms as Equat ions (5 .3)  

and (5 .4 )  except  th e  o bse rva t ion  p o in t s  a re  moved from the  moment 

method reg io ns  t o  th e  asymptot ic  r e g io n s .
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5 .2  Considerat ion  of the  S i n g u la r i t y  Patch

As we mentioned before ,  the  equat ions  f o r  the  curved su r face  

have as many s in g u la r  p o in ts  as observat ion  p o in t s .  Therefore Equa

t i o n s  (5 .1)  t o  (5 .4 )  may not be useful  f o r  p r a c t i c a l  numerical c a l 

c u la t i o n s  because we have to  skip some f i n i t e  areas  con ta in ing  the  

s in g u la r  p o in t  in s tea d  of one po in t  f o r  the  eva lu a t io n  of the  p r i n c i p le  

value of i n t e g r a t i o n .

Let us cons ider  th e  exaggerated p a r t  of th e  curved su r face  shown 

in Figure  5 .2 .  The p o in t s  A, B, C and D a re  th e  boundaries of d i 

v i s io n ,  and P0 , P-j and P2 r e p re se n t  observat ion  po in ts  which are  lo 

ca ted  a t  the  c en te r  of each d iv i s io n .  Thus, the  c u r r e n t s  a t  th e  po in ts  

P-|, PQ and ?2 r e p r e s e n t  th e  c u r re n t s  on the  su b in t e r v a l s  AB, BC and 

CD, r e s p e c t iv e ly .

Figure  5 .2 .  Source p o in ts  around the  s in g u la r  p o in t  PQ.
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When we perform numerical i n t e g r a t i o n  with the  observat ion  po in t  

a t  P0 , the  c o n t r ib u t io n  of th e  source c u r r e n t s  which are  loca ted  in 

th e  in te rv a l  BC w i l l  be d is regarded ,  and th u s ,  the  e r r o r s  w i l l  be in 

c reased .  I f  we subdivide the  i n t e r v a l  BC in to  many s u b i n t e r v a l s ,  then 

th e  r e s u l t i n g  e r r o r s  wil l  be decreased .  However, t h i s  way of solving 

th e  problem may not be e f f i c i e n t  when we consider  l im i t s  of computer 

memory s to rage  and running time. Therefore  we w i l l  de r ive  the  magnetic 

f i e l d  i n te g r a l  equat ion  which w i l l  be useful  f o r  p r a c t i c a l  c a l c u l a t i o n s  

in general  and then de r ive  the  s p e c i f i c  r e s u l t  f o r  th e  c i r c u l a r  c y l 

inder  problem.

J u s t  in s id e  th e  su r face  of a p e r f e c t l y  conducting body, th e  f o l 

lowing boundary cond i t ion  w i l l  be s a t i s f i e d .

nxTf CH') + fixHs (lT) = 0 j u s t  in s id e  S (5.5)

 ̂ s _
where H (R) i s  th e  in c id e n t  magnetic f i e l d ,  and H (ll) i s  the  magnetic

f i e l d  due to  th e  e l e c t r i c  su r face  c u r r e n t  on S and i s  given by

HS(R) = 7  x J  J (R ' )  G{r) d s '  (5 .6)
S

From Equations (5 .5 )  and ( 5 .6 ) ,  we have

nxT?1^ )  + nxvx ^  J^R' ) G ( r ) d s 1 = 0 . (5 .7)

Using th e  vec to r  i d e n t i t y  V x (AEf) = (VA) x ¥  + A(Vxl3) and noting t h a t  

Vx'J(R’1 )=0, we have
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nxH1^ )  + fix/ J (R ' )  x V 'G (r )d s1 = 0 (5.8)
S _

where we used the  r e l a t i o n s h i p  VG(r)=-V'G(r) , and V‘G(r) r e p re se n ts  

g rad ie n t  of G(r) in the  source coord ina te  system. I f  we d iv ide  the  

su r face  S in to  two su r f a c e s ,  S-S^ and Sf which i s  f i n i t e  and includes  

a s in g u la r  po in t  a t  th e  c en te r  of i t ,  we can w r i t e  Equation (5 .8)  as

nxHn(R) + nx /  J (R ' )x7 'G (r )ds*  + nx /  J (R 1)xV 'G(r)ds '  = 0. 
S-Sf  Sf

(5 .9)

Since the  t h i r d  term of Equation (5 .9 )  s t i l l  has an r “  ̂ s ingu

l a r i t y  as Rf approaches R^, we w i l l  cons ider  a hemispherical  su r face  

Se which i s  mounted over th e  s in g u la r  p o in t  Pg with r ad iu s  r c as shown 

in Figure  5 .3 .  Then Equation (5 .9)  can be r e w r i t t e n  as

fixTTi (tf) + nx /  J(1T' )xV'G(r)ds '
S-S*

+ lim ^nx /  *3(R')xV'G(r)ds'  + nx J  J { ^ ' ) x v 'G ( r ) d s ’J=0

(5.10)

Let

U-i(R) = lim nx f J('R'1 )xV 'G(r)ds '  (5.11)
1 S +0 Se e
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Figure  5 .3 .  Surface d iv is io n s  around the  s in g u la r  po in t  P

and

Jo(R) = lim nx f J (R ' )xV 'G (r )ds '
* S ->0 Sjr~Se f  e

(5.12)

Then Equation (5.10) becomes

nxH1^ )  + fix J  J (R ' )x V 'G ( r )d s '  + U n(R) + J , (R)  = 0 
S-Sf  1 d

i (2) ,

(5.13)

Using a small argument approximation f o r  ' ( f i r ) ,  J-j(R) can be e a s i l y  

ob ta ined  as ( see  Appendix A)

J-j (R) ~ ~ \  JOO (5.14)
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Although t h i s  r e s u l t  i s  obta ined f o r  the  two dimensional problem, the  

same r e s u l t  can be obtained f o r  the  th re e  dimensional sphere problem 

which we w i l l  cons ider  in  Chapter VI.

Next we w i l l  cons ider  3 s (fT) in Equation (5 .1 2 ) .  Let ’J(R') be 

in the  d i r e c t i o n  of € on the  su r face ,  then we can w r i te

The u n i t  vec to r  iT wil l  be f o r  the  geometry in Figure  5 .1 .  Also 

l e t

Since n x ( t ' x r 1) = ^ cos0 , where 0 i s  the  angle  between the  u n i t  

v ec to rs  n '  and r ' ,  Equation (5.12) can be r e w r i t t e n  as

J(tf) = t  J(]f) . (5.15)

V'G(r) = ? 1 Gc ( r ) (5.16)

where

Gc (r) = - £  H ^ h u r ) (5.17)

and r '  = ■ *
I * * ' I

(5.18)
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or s ince  n ' * r '  = cose,  we can w r i t e  Equation (5.18) as

J , (R )  = lim € f n - r ‘ J (R ' ) G J r ) d s ' (5.19)
c S +0 S/-S ce t e

where n' i s  the  u n i t  normal vector  to  the  su r face  a t  the  source po in t .

To ob ta in  th e  approximation f o r  we assume t h a t

J (R ' )  (5.20)

f o r  th e  small f i n i t e  a rea  Sf . Then Equation (5.19) becomes

J„(R) s  TJ(TT) lim f V * r '  Gr ( r ) d s '  . (5.21)c s + o  s . - s
e  t  e

From Equations (5 .1 3 ) ,  (5.14) and (5.21) we have express ion  f o r  J (E ) ,  

which i s  given by

J(R) » Cn [2nxH1 (R) + 2nx f J (R ’ )xV'G(r)ds ']  (5.22)
u S-Sf

where th e  cons tan t  CQ i s

CQ = --------------1-------------------------------  . (5.23)
1-2  lim J n ' * r '  G_(r)ds '

S +0 S.-S„ ce f  e
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Now l e t  us c a l c u l a t e  Cg e x p l i c i t l y  f o r  a c i r c u l a r  c y l in d e r .  Consider 

an exaggerated p a r t  of the  c i r c u l a r  su r face  shown in Figure  5 .4 .

P o in ts  A and B are  the  boundaries of the  f i n i t e  su r face  and the  

observa t ion  po in t  P i s  loca ted  a t  the  c en te r  of AB. The value of n ' - r '  

can be obtained from Figure  5 .4  as

\

Figure 5 .4 .  Surface around the  s in g u la r  p o in t  P to  give 
r e l a t i o n s h i p  between a, r ,  and 9 .

Also th e  small argument approximation fo r  Gc ( r )  i s  given by

A a A  a _n ' *r '  = cose  = ^ (5.24)

0
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Gc (r ) -  “ ( I 2" + J F) f o r  sma11 Pr * (5.25)

S u b s t i t u t in g  Equations (5.24) and (5.25) i n to  Equation (5 .2 3 ) ,  we 

obtain

CQ » -----------------   . (5.26)
c

1 im /  
rVf*0  r .1-4  I imn I  h ) { ¥ -  + j  i f r )dr

0

Evaluat ing th e  i n t e g r a t i o n  in Equation (5 .2 6 ) ,  we obta in

C - 1
0 " r  . 9 9 \  • (5.27)

1+ c/

Notice t h a t  f o r  very small r c , Cq becomes one, and th u s ,  Equation

(5.22)  becomes th e  usual magnetic f i e l d  i n t e g r a l  equat ion .

The Equation (5.22) w i l l  be useful  f o r  p r a c t i c a l  numerical i n t e 

g ra t io n  because the  f i n i t e  area  i s  removed in s tea d  of j u s t  a po in t  

f o r  e v a lu a t io n  of th e  p r i n c i p l e  value of i n t e g r a t i o n .  The cons tan t  

Cg w i l l  supplement the  c o n t r ib u t io n  which i s  l o s t  by removing the  

f i n i t e  a rea  S^. Although th e  r e s u l t  in Equation (5 .27)  i s  obtained 

f o r  a c i r c u l a r  c y l in d e r ,  the  same r e s u l t  may be used as an approxi

mation f o r  an a r b i t r a r y  smooth su r fa ce  in two dimensions.
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5.3  Impedance Matrix

To solve f o r  I mm(r ) and T^m(R), we use the  moment method. For 

th e  sake of s im p l i c i t y ,  we wil l  de r ive  th e  approximate form of the  

impedance matr ix  by ignoring a l l  p o ss ib le  terms t h a t  make a minor con

t r i b u t i o n .  Expressing Equations (5 .3)  and (5.4)  in th e  s c a l a r  forms, 

we have

I§M(R) = 2 J  Ii5M(R«)Gd( R , ^ ) d r  + 2 J  I ^ { R ’)Gd< R ,R ' ) d r  

CMM CMM

+ 2 f  J* (R 'JGjtR .R 'JdJf  (5.28) 
Cs

and

M̂M̂R̂ = 2  ̂ IjWR')Gd<R’*'>d*'+2  ̂ M̂m(R ' )®d(̂ »̂" ̂ d̂ 'rSL r s
MM l MM

where

Gd(R^ ' )  = -  hi 2 ) (3| R-TT'I ) . (5 .30)

S u b s t i t u t i o n  of  Equation (5.29) in Equation (5.28) leads to

rMM(R> = 2 f  M̂M̂R*>®d^R*R'
MM
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+ 4 f  f  l £ M( R' ) Gd (R%R') Gd ( R , R " ) d r d j l "
Cs pfi,
MM l MM

+ 4 f  f  I^M( R , )Gd (R",R' ) Gd ( R , K " ) d J l ' d r
r s pS

+ 2 f  JoP(R' ) Gd( R - ^ ' ) d^ r •
Cs

(5.31)

I f  we s u b s t i t u t e  Equation (5.29) i n to  Equation (5 .31) r e p e a te d ly ,  we 

w i l l  have an i n f i n i t e  number of m u l t ip le  i n t e g r a l  terms. For an ap

proximation,  we ignore a l l  m u l t ip le  i n t e g r a l s  higher than double in 

t e g r a l s .  This approximation can be j u s t i f i e d  by noting t h a t  th e  

dominant terms in Equation (5.31) are  th e  f i r s t  and l a s t  terms. 

Therefore  Equation (5.31) can be reduced to

+  4  /  i  l JjM( R , ) G d ( R , , , R ' ) G d ( R , f f ' ' ) d a , d r  
r s pA

(5.32)

74



'  2 /  Jop(R , ) Gd(Rm-R , ) d1'
Cs

m =l,2 ,3  N. (5.36)

I f  we re p re se n t  Equation (5.36) in the  form of

= (V*1] m , n , = l , 2 , . . . , N ,  (5.37)

we have th e  impedance matr ix  [Z^n] whose elements a re  given by

Zmn " P<Rm-Rn> '  2 Gd < W “

“ 4 i  Gd(R ' ,Rn)Gd(Rm,R*)AWifi,' . (5.38)
CsMM

Also th e  elements of [V^] are  determined from

V* = 2 f  p(R, )6 d(Rm,R, ) dS'' • (5 .39)
Cs

5.4  Numerical Resu l ts

We d iv ide  the  circumference of  the  c y l in d e r  in to  120 sub

i n t e r v a l s  f o r  th e  var ious  numerical c a l c u l a t i o n s  which fo l low .  The 

t o t a l  e x te n t  of th e  MM-region on th e  l i t  s u r f a c e ,  c j ^ ,  was 6 0 °  in angle , 

and 20  pu lse  b a s i s  fu n c t io n s  in the  poin t-matching technique were used
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to  ob ta in  th e  c u r r e n t  in th e  MM-region. Our r e s u l t s  (marked by + in

a l l  data)  were compared with the  exact  s o lu t io n s  (marked by~the s o l id

l i n e s ) .  Usually the  second or  th e  t h i r d  order  approximations were

enough f o r  accep tab le  r e s u l t s .  Also a l l  r e s u l t s  were obtained with

th e  cons tan t  Cq given in Equation (5 .2 7 ) ,  which was noted by CgjM in

th e  f i g u r e s  to  fo l low.

Figures 5.5  to  5 .8  show the  magnitude and phase of the  su rface

c u r re n t s  on the  c i r c u l a r  c y l in d e rs  of 0.2A to  5.7X r a d i i .  I t  i s  seen

t h a t  agreement with the  exac t  c u r r e n t s  are  q u i te  good re g a rd le s s  of

th e  c y l in d e r  s i z e .  By comparing Figure  5 .9  with Figure  5 .10 ,  which

show the  c u r r e n t  r e s u l t s  on a 5.2X c i r c u l a r  c y l in d e r ,  r e s p e c t iv e ly

with cjJjM=30° and C^M=120°» we can see the  e f f e c t  of the  e x te n t  of the

MM-region on th e  su r fa ce  c u r r e n t s .  I t  i s  shown t h a t  the  su r face  cur-
0

r e n t s  are  a f f e c te d  very l i t t l e  by the  s i z e  of  CjJjM, which i s  a very

d e s i r a b l e  f e a t u r e  of t h i s  method. However, i t  w i l l  be seen t h a t  as 
£

CjyjM i s  increased ,  a s l i g h t l y  b e t t e r  r e s u l t  i s  obtained.

The e f f e c t  of th e  cons tan t  Cq i s  shown by Figures  5.11 to  5 .14.  

The r e s u l t s  in Figures 5.11 and 5.12 were obtained  with a c i r c u l a r  

c y l in d e r  of th e  4.8X ra d iu s .  We see t h a t  a l i t t l e  improvement was 

made with the  co ns tan t  C q .  However, f o r  the  r a d iu s  of  3 . OX, th e  n in th  

o rder  approximation gave the  r e s u l t s  in F igures  5.13 and 5 .14 ,  where 

i t  i s  c l e a r l y  seen t h a t  the  co ns tan t  Cq provides a g rea t  improvement 

in the  magnitude and a l i t t l e  improvement in the  phase of the  su r face  

c u r r e n t .  We r e a l i z e  t h a t  the  rad iu s  of 4.8X corresponds t o  a non

resonan t  frequency and t h a t  th e  r ad iu s  of 3 . OX i s  near a resonance
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mode. For the  geometr ies corresponding to  the  resonan t  f req u e n c ie s ,  

th e  higher order  approximations are  shown to  be needed to  ob ta in  

accep tab le  r e s u l t s .

Recently,  severa l  methods such as th e  combined source, combined 

f i e l d ,  and hybrid methods have been p resen ted  to  solve the  i n t e r i o r  

resonance problem. However, i t  seems t h a t  any of these  methods are  

d i f f i c u l t  t o  apply to  our method because we use the  i t e r a t i o n  technique 

f o r  (R) and "J®d(R)» which needs a proper i n i t i a l  s t a r t i n g  c u r r e n t .^ r  K
A ctua l ly  the  i n t e r i o r  resonance does not a f f e c t  the  su r face  

c u r r e n t  on a c i r c u l a r  c y l in d e r  so s e r io u s ly .  Although we obtained 

th e  r e s u l t s  f o r  the  c y l in de rs  of up to  the  rad iu s  of 5 . 7 X, th e  method 

does not have d i f f i c u l t i e s  f o r  the  l a rg e r  c y l in d e r s .  Also th e r e  are 

no d i f f i c u l t i e s  in t h i s  method f o r  the  c y l in d e r s  of  r a d i i  sm aller  than 

0 . 2 X.
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CHAPTER VI 
SPHERE

6 .1 In te g ra l  Equations

So f a r ,  we have considered conductors only in two-dimensions 

where i n t e g r a l s  over th e  su r face  reduced to  l i n e  i n t e g r a l s .  In t h i s  

chap te r ,  we w i l l  cons ider  a th re e  dimensional problem, t h a t  of a pe r 

f e c t l y  conducting sphere.

Since the  i n t e g r a t i o n  must be performed over the  su r face  of the  

sphere ,  a longer computer running time and increased  memory s to rage  

w i l l  be needed f o r  the  three-d im ensional  problem than f o r  the  two- 

dimensional one. However, by using the symmetric p roper ty  which a 

body of r ev o lu t io n  has, we can decrease the  computing time very g r e a t ly  

and a lso  the  computer memory s to rag e  needed.

The general  equat ions  we derived  in Chapter I I  cannot be reduced 

to  a simpler  form f o r  a sphere ,  but in s tea d  i t  w i l l  be useful  to  derive  

i n t e g r a l  equations  f o r  the  su r face  c u r re n t s  in the  E- and H-planes.

The geometry in which a sphere i s  i l lu m in a ted  by a plane wave i s  shown 

in Figure  6 .1 .  Let the  in c id en t  magnetic f i e l d  be xpo la r ized  and 

t r a v e l i n g  t o  the  nega t ive  z d i r e c t i o n  as shown in Figure 6 .1 .  At an 

observa t ion  po in t  P th e  induced su r face  c u r r e n t  "3(1T) can be separa ted  

i n to  two components e J e (ft) and ^ ( R 1) ,  where 6 and $ r e p r e s e n t  the  

u n i t  vec to rs  in th e  d i r e c t i o n s  of 6 and <j>, r e s p e c t iv e ly .
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5 4 t

Figure  6.1 Geometry of a sphere i l lum in a ted  by the  x -po la r ized
plane wave.

Consider the  magnetic f i e l d  in te g ra l  equat ion given by

J(ff) = tT1 (TF) + 2nx f  )xV 'G (r)ds '
S

(6 . 1)

where

J 1 (R) = 2nxHn(R) . (6 .2 )

Since J 1 (T?) and J(R) are  composed of the  0 and $ components, they  can 

be w r i t t e n  as
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and

3 1(*) = e  j 1e(R) + $ j ’ r o  „ (6 . 3 )

■30?) -  8 Je (IT) + ? J t m  • (6 .4 )

The c u r r e n t s  J e{TT) and J^CR) can be ob ta ined ,  r e s p e c t iv e ly  by 9, ’J(E') 

and $*'J(JT), which are  given by

J e(R) = 4 ( f f )  + 20*n x $ J fR 'Jx V 'G f r Jd s1 (6 .5)
3

= jJ ,(R) + 2$*n x £ JCR'JxV'GtrJds '  (6 . 6 )

By using th e  vec to r  i d e n t i t y  A-BxU = C*AxB and noting t h a t  9xn=-(J> and 

$xn=§ on th e  sp h e r ica l  su r fa ce ,  we can r e w r i t e  Equations (6 .5)  and 

(6 . 6 ) as

J 0(*) = JefW) -  2 <f$ .? ( f f , )xV,G ( r )d s '  (6 .7)
S

J^fR) = Jj(ff)  + 2 /  ©-"J(R-* )xV'G(r)ds 1 (6 . 8 )
3

S u b s t i t u t in g  Equation (6 ,4)  in to  Equations (6 .7 )  and (6 . 8 ) ,  we obtain  

de(TT) = j j ( f f )  -2 J  j V e ‘J Q(R' )+$■$'J^(R'*)jxV'G(r)ds'  (6 . 9 )
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V K) = + 2 { [@"0 ’ Je (R'' ) + e - $ ' j J x v ' G f r J d s *  (6 .10)

where § '  and $ 1 are  the  u n i t  v ec to rs ,  r e s p e c t iv e ly  in the  0 and <f> 

d i r e c t i o n s  a t  a source p o in t  P ' .  Let

V’G(r) = r 'G s ( r )  (6.11)

and

a s ( r )  = - U e  + p) T j f -  • (6 . 1 2 )

CB0 ( r )  = $ . 0 ' x r '  G . ( r )  (6.13)

Using th e  n o ta t ion s  given by 

■00

Cg^tr) = $ .$ ’ X ?' Gs ( r )  (6 .14)

C^g( r ) = § . § '  x f '  Gs ( r )  (6.15)

C ( r )  -  8 4 '  x ?• Gs ( r )  (6 .16)

we can express Equations (6 .9)  and (6.10) as

0e (K) -  Je1 m  -  i f  [ce e ( r ) ^ ( R ' )  + < ^ < r > ^  ( * ) ] * ■  (6.17)

and

V ’f) = Ji TO + 2 ( [ V r)Je( R , ) 'f V r)V f , ) ] ds' • (6- 18)
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A fte r  c a l c u l a t in g  the  vec to rs  in Equations (6.13) t o  (6 .1 6 ) ,  we can 

obta in  the  fo l lowing  r e s u l t s  t

C6 0 ^  = C<f>(|>̂  = ^  ^s inB's ine+cos^-^'Jfcosecose' - l j j f igCr)

(6.19)

and

CQ(J)( r )  = - C^0 ( r )  = £  (cose-cosQ 1) s i n (,},-((,' )Gg( r ) .

where r  i s  given by

r  = a j 2 ^1- s  i n0 s i n e 'c o s  (^-( j j 'J -cosecose 'l  

and a i s  the  sphere r a d iu s .

* * •

Since H (R-) i s  x -p o la r i z e d ,  Jg(R) and J^(R) a re  given by

Jj(i?) = 2 sirnj) eJ’3acos0 (6.22)

^ ( t f )  = 2 cose coS(|) ej3acose . (6.23)

Equations (6.17) to  (6.20) are  not very useful  f o r  p r a c t i c a l  

numerical c a l c u l a t i o n s  s ince  so many observa t ion  p o in ts  a re  involved 

in them. Therefore  we w i l l  de r ive  i n t e g r a l  equat ions  having only the  

E- and H-plane c u r r e n t s  as unknowns. For t h i s  purpose,  i f  we rep re se n t  

th e  E- and H-plane c u r r e n t s  of 7T1 (TT) as <^(e) and j j f o ) .  r e s p e c t iv e ly ,  

Equations (6 .22) and (6 .23) can be expressed as

(6 . 20)

(6 . 2 1 )
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J0(ff) = J0(0)sin<|> (6.24)

jJ(ff) = Jj j(0 )cos<{> (6.25)

where J 0 ( 6 ) and J ^ ( ©) are  independent on the  angle * and are  given 

by

J qU )  = 2 e J ' e a c o s e  ( 6 . 2 6 )

J^( 0) = 2 COS0 Ba c o s ® ( 6 .2 7 )

Also the  r e l a t i o n s h i p s  of  Equations (6.24) and (6.25) a re  v a l id  f o r  

J . fR”) and J .(IT). Thus,0 q)

J 0(R) = J 0(0 ) s ir^  (6.28)

^ ( R )  = J (0 ) cos* . (6 .29)

Equations (6.28) and (6.29) a re  useful  p r o p e r t i e s  which can be applied  

t o  an a r b i t r a r y  conducting body of r e v o lu t io n  when TT1^ )  i s  x -p o la r ized .  

Using Equations (6 .2 4 ) ,  (6 .2 5 ) ,  (6 .28) and (6.29) in Equations (6.17) 

and ( 6 .1 8 ) ,  we can ob ta in

Je (0 ) = J j ( 0 ) - 2 J  ^C1 ( r 1 ) J0 ( 0 <) + C2 ( r 1 )J<j>(©>)J d s 1 (6.30)

and

V e) = Jj(0) + 2 i [Dl(r2>J0{0,> + D2<r2>Ĵ t0,>Jds' (6’31)
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where

aGs ( r i )  r 1
C-j(r i )  =  j r —  ^sin0sin0 '+sin<|>'(cos0cos0‘-1) I sin<t>' (6.32)

aG ( r ^  ?
) =  f r -  (cos©-cos0 ' ) co s  (6.33)

aG ( r 2 ) ?
D-j( r*2 ) =  f r -  ( c o s e - c o s e ' ) s i n  cj)1 (6.34)

aGs ( r 2 ) r -i
D2 ^r 2  ̂ = ------ r^~ ̂ s in 0sine'+cos(j)' (cos0cos0 ' - l ) J  cos^ ' . (6.35)

Also r-j and rg are  given by

r-j = a Jz  ( l - s i n e s in o ' s i n ^ ' - c o s o c o s © 1) (6.36)

r 2 = a J2 { l - s i n 0s i n 0 , coS(J)'-cos0cos0 , ) . (6 . 3 7 )

I f  the  c u r r e n t s  J Q{0) and J , ( 0) are  known, th e  su r face  c u r r e n t s  a tU (p
any a r b i t r a r y  p o in t  on the  sphere can be r e a d i l y  determined from Equa

t io n s  (6.28) and (6 .2 9 ) .  Equations (6 .30) and (6.31) can be applied

d i r e c t l y  t o  any equat ions  we derived in Chapter I I  by adding proper

s u b s c r ip t  and s u p e r s c r ip t .

I f  we look a t  Equations (6.32) to  (6 .3 7 ) ,  we can e a s i l y  see t h a t  

Dl ( r 2 ) and D2 ^r 2  ̂ can be obtai*ned» r e s p e c t iv e ly  from C g t r ^  and ^ ( r ^ )  

j u s t  r ep lac in g  <j>' by 90° ± 0 ' .  This c h a r a c t e r i s t i c  w i l l  make th e  com

p u te r  program simple.
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6 .2  Considerat ion of  the  S in g u la r i t y  Patch

For reasons we d iscussed  in Section 5 .2  of Chapter V,-^we need 

t o  cons ider  th e  s i n g u l a r i t y  problem. We w i l l  use a p a r t  of the  r e s u l t  

of Section 5 .2  t o  de r ive  the  proper con s tan ts  f o r  th e  sphere.  I f  we 

r e w r i t e  Equation (5 .13) here again with the  d i f f e r e n t  d e f i n i t i o n  of 

V'G(r) given by Equation (6 .1 1 ) ,  the  equation w i l l  be

ffxH1 (tf) + n x f J(E ' )x v 'G ( r )d s '  + ' J 1(R) + 7L(R) = 0 (6.38)
S-Sf  1 *

where "J-|(R") and ^ ( R )  are  given in Equations (5.11) and (5 .1 2 ) ,  r e 

s p e c t iv e ly .

By th e  s im i l a r  procedure as done in Section 5 .2 ,  we can e a s i l y  

f in d  TT-j (R-) in the  th re e  dimensional case ,  which i s  given by (see  Ap

pendix B)

^ ( ^ )  = - j  J(R) • (6.39)

Now l e t  us de r ive  ’J 2(R‘) f o r  th e  § and $ components. Using th e  r e s u l t s  

of  Equations (6.30) and (6 .3 1 ) ,  we can w r i t e  and ^ 2 ^ ^  as

J 2 e ( 0) = - 2 11m J  [ c 1( r 1) ^  (e *) + C2 ( r 1) J})( e ' ) l d s '  (6.40)
S -+-0 S^-S L Je t  £

and

V e) = 2 J™0 s / s  tDi (r2 )Je (e, )  + D2 <'-a>Ve ' ,] ds'
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where J 20(0) anc* 2̂(j)  ̂ a re  t *ie curren^s observed on the<|>=90o and

<J>=0° l i n e s ,  r e s p e c t iv e ly .  ~

Since th e  su r face  a rea  i s  small ,  we can make the  fol lowing 

approximations f o r  J 2q (0) anc* 2̂t(> ^

<f>‘ = f  on Sf  f o r  J 2 e ( e )  (6.42)

<t>' -  0 on Sf  f o r  J j^ fo )  • (6.43)

Then using Equations (6.42) and (6 .4 3 ) ,  the  approximations f o r  C-jfr-j), 

C2 (r-j) ,  D^(r2 ), and D2 ( r 2 ) on can be obtained as

c lCr l ) -  -  Gs (r a> on Sf  (6.44)

C2(r-j) = 0  on Sf  (6.45)

and

D-j ( r 2 ) =0  on Sf  (6.46)

D2( r 2 ) = -  Gs ( r a ) on Sf . (6.47)

where
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r fl = a | 2 ( l - s i n e s i n e ' -cosecose 1) on (6.48)

S u b s t i t u t io n s  o f  Equations (6.44) and (6.45) in Equation (6 .40) and 

Equations (6.46) and (6.47) in Equation (6.41) y i e l d

J 2e(s)  .  -  2 limo J  ( - ^ f ) G s ( r a ) J9 (9 ' ) d S ' (6.49)
e e

J2<t,(e) “ 2 sS (-lf>Gs<ra>V0')ds' • (6-50)
e* e

Also f o r  the  small su r face  area  S^, we can make the  fo l lowing approxi

mations.

J Q( 0 ' )  -  J 0(e) on Sf  (6 .51)

V 0, J * V 0* ° n Sf * (6.52)

Then by s u b s t i t u t i n g  Equations (6.51) and (6.52) i n to  Equations (6.49) 

and (6 .5 0 ) ,  we ob ta in



~r a,
S -*0 Sjj-S e t £

Assuming t h a t  th e  patch Sf  i s  a c i r c u l a r  su r face  with the  rad iu s  r g , 

then we can ob ta in  th e  fo l lowing r e s u l t s  from Equations (6 .53) and 

(6 .5 4 ) .

J s ( e )  * -  s 0 j 0 (e) (6.55)

J 20(e) - Sq J^ fe )  (6.56)

where

;0 = w [ 2 - (2+ j6 rS)e ' J6 rS ]  • (6 -57)

Then from Equations (6 .3 8 ) ,  (5 .1 1 ) ,  (5 .1 2 ) ,  (6 .55) and (6.56) we can 

ob ta in  the  fo l lowing  in t e g r a l  equa t ions .

Jfl(6) = Sfl 9 • | EnxlT1 (E)+2nx J (R ' )X 7 'G ( r )d s ' ]  (6 .58)
. =  IT  
* 16 6 L "  s - s f .........................J * . *

^ ( e )  s S $ • fanxH1(ff)+2nx /  J(TC )x? 'G (r)ds  '1 (6 .59)
S“Sf  J(j) =0
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or by using the  r e s u l t s  of Equations (6.30) and (6 .3 1 ) ,  we can express  

Equations (6.58) and (6.59) as ~

yo> - sei g(e)  -2 sJ s  [ c l ( r l > y e , )+C2<r l>J$<9 '> ]d s J '  (6 . 6 0 )

V 6) = S^ < 6  ̂ +2 J s D1<r'2 ) J0<e ‘ >+D2 t r 2 ) J4, ( e ‘ )] ds J"  (6-61)

where

Se = (6.62)

s4, = • ( 6 . 6 3 )

We see t h a t  as r s approaches zero ,  SQ and approach one. This means 

t h a t  i f  the  sphere  su r face  i s  d ivided in to  very many subpatches then 

th e  co n s tan t s  5  ̂ and w i l l  not  a f f e c t  th e  i n te g r a l  equat ions  s i g 

n i f i c a n t l y .  However, d iv id in g  the  su r fa ce  in to  many d iv i s io n s  may 

not  be e f f i c i e n t  f o r  numerical c a l c u l a t i o n s .  By using th e  cons tan ts  

and we can provide  the  same e f f e c t  as using a la rge  number of 

d iv i s io n s  f o r  numerical i n t e g r a t i o n .

6 .3  Impedance Matrix

In c a l c u l a t i n g  th e  impedance m a t r ix ,  th e  moment method region 

i s  s e t  up around th e  shadow boundary making a r in g  form as shown in 

F igure  6 .2 .  I f  we consider  a l l  po in ts  on SMM as unknowns, the  computer
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s torage  may not handle the  matrix because of too many unknowns. There

f o r e  we w i l l  use the  r e s u l t s  we have derived in Section 6.2L to  obtain 

the  impedance matrix .

MM MM

AS
AS

SHADOW  BOUNDARY

Figure 6 .2 .  Surface d iv is io n s  in a sphere.

Also s ince  the  equat ions f o r  cu r ren ts  are  involved with two 

c u r r e n t s  J e(e) and the  express ions f o r  the  impedance matr ices

and Z ^  w i l l  be very complicated and may not be useful  f o r  nu

merical c a l c u l a t io n s .  Therefore we w i l l  der ive  comparat ively simple 

approximate forms by ignoring a l l  the  terms t h a t  co n t r ib u te  i n s i g n i f 

i c a n t l y  to  c a l c u l a t i o n s .  Let
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where

1^ ( 6) = 2 J; [D1( 0: 0 ' , t ' ) l S 0( e , )+D2 { e i e ' , * , ) i g 4, ( e ' ) ld s
c J

* 2  f

I SAM0

SMM

+ F Ce) (6.67)
<P

(e) = - 2 f  f c i ( e ; o , ,c|., ) iJ |9( e , )+c2 ( e ; 9 , , t , )ift | t( 8 , ) ] d s '

SMM

- 2  /_  [ c 1 { e ; e ' t)|,I ) l g Q(e)+C2 (0 ; 0 , , + , ) I ^ ( e , ) J d s 1 (6.68)

SMM

I s1̂ ( 0 ) = 2 /  [d - , (eso1 a) iftB( e ' )+d2(®s©' , * ■ ) i j ^ O ' ) J d s •

SMM

+ 2 f  | D̂1(e;e* ,4>* )lMe(e * )+D2 ( 0 ; 0, ,4)* ) ] ds '  (6.69)

SMM
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(0 ; ef ,0 1) (0  1 )+C2 ( 0  ;e 1 ’ ) Jj^ ( 6  1 )j ds1 (6.70)

and

F„,(8) = 2 i :[D1( 9 ; e ' , 4 , ' ) J ^ e ( 8 , )+D2 ( e ; e , , * , ) J ^ ( 9 ' ) l d s '  ( 6 . 7 1 )
rS J

anc* re p re se n t  the  0 and $ components of 0 ^ ( 0 ' ) ,

r e s p e c t iv e ly .  S u b s t i t u t in g  Equations (6.68) and (6.69) i n to  Equations 

(6.66) and (6.67) r e p e a te d ly ,  and ignoring  the  t h i r d  and th e  higher 

m u l t ip le  i n t e g r a l s ,  we ob ta in

ifieO^ “" ^ [ c -1 (0 ; 0 1, + ' )  Imb(0 ' )+c2 (o;o ' 1 >iM4»Ce ■ )J ds ■
MM

4/  f  i m0 C© ' )  C1( 6 " ; 0 , , (() , ) C 1( 0 ; e , , , < t , " ) - D 1( 0 , , ; e ' , < t ) , ) C 2 ( 0 ; 0 " , ( i , " ) !  d s 1 ds"
cS rfl, t  JCs c
MM MM

4 J b ^Mtj/®') ^ 2 ( 0 " J 0 ' j'},' )C1( 0 ; 0 ll,<J,")-D2 ( e " ; 0 l , 4)' )C2 ( 0 ; 0 , , ,(f),,)j ds 'd s"

SMM SMM

+ F0 ( 0 )  ( 6 . 7 2 )

^di Cose' xli' ) I mgC0< )+D2(©i0'-<t»* ) I m̂ ( 0, ) l |d s '

SMM



S u b s t i t u t i n g  Equation (6.73) in to  Equation (6 .72) r ep ea ted ly ,  

and then ignor ing  the  t r i p l e  or the  higher m u l t ip le  i n t e g r a l s  c o n ta in 

ing I ^ ( e ' )  and the  double or the  higher  m u l t ip le  i n t e g r a l s  conta in ing
0

F ^ fe ) ,  we ob ta in  the  fo l lowing approximation f o r  Ih0( 6)-

- 4 f  /  l J 0( 0 , )D1 ( 0 ,,i e , ,41, )C2 (0;0",<(,")ds'ds"

+ 4 f  /  Im0{ 0, )C1 (0";0',<i>, )C-] ( e ; 0 ,,,<t)"jds., ds"
cS pS,
MM MM

+ F0(0) - 2 /  F ^ ' J C ^ O j e ' . ^ d s '  . (6.74)

Also by a s im i l a r  procedure we can ob ta in  an express ion  f o r



4 * ( 0 ) ”  2  f i H * ( 0 , ) D 2 ( s ; 9 ' , 4> ' ) d -  

MM

-  4 /  /  iM1K(0 , )C2 ( 0 " ; 0 , »<t>')D1 ( e ; e , , ,(j),l) d s ' d s "M$vc cX.
MM 5MM

+ 4 f  /  l L ( 0 , )D2 ( e M; 0 , ,<t., )D2 ( 0 ; 0 " , (( ,")ds1ds"
s s  sz M<|)MM MM

+ F ^ e )  + 2 j  F0 { e ■ )D1 ( e ; e **4>* ) d s 1.

MM

Assume t h a t  I^q (0)  and I ^ ( e )  can be approximated by

!He t e ’ = j ,  >en p <0 -0 n>

' W 01 = J ,  *♦" P l e - en)n=l

where

1 f o r  | e - e n | <  #  
P ( 6 )  = J i ni 2

0 e l se w h e r e .

and A6 = # where N i s  a number o f  d i v i s i o n s ,

( 6 . 7 5 )

( 6 . 7 6 )

( 6 . 7 7 )

( 6 . 7 8 )
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S u b s t i t u t in g  Equations (6 .76) and (6.77) i n to  Equation (6 .7 4 ) ,  and 

r ea r ran g in g  terms, we have

N
ten p (0 -0n) + 2 /  C1(0 ;0 n ,<|)')d4>'

*MM

+ 4 /  f  D1(0 " ;0 n,<j>')C2 (0;0",<|>")dc|>1ds" 

SMM ^MM

= Ffi(0 ) -  2 f  ^ ( e ’ J C p f e j e ' ^ ' j d s ’ ( 6 ,

MM

where the  i n t e g r a t i o n  region  4 )^  r e p r e s e n t s  the  l i t  moment method

reg ion  f o r  th e  angle <t>.

Mult ip ly ing  both s ides  of Equation (6.79) by 6 (e -0 m) ,  m=l,2,
0

in t e g r a t i n g  them over and then d iv id ing  both s ides  by A0, we 

ob ta in

N

n=l p C6n f9 n> + f 2 /
♦mm

79)

. . .N ,
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+ 4 /  D-, (0” ;0 n,4>' )C2(em;e",<J>")dc{>-ds"

SMM ^HM

- 4 i  j  C1{0";0n ,<t) ' )C 1(em;e",(t.")di) 'ds'’j  a2s in0 nA0 

SMM *MM

= F0 ^m)  “ 2 /  F4>( e , ) c 2 (em; e 1.4>1)ds-

HMM

Representing Equation (6.80) in the  matr ix  form of

[ 4 m n l [I0n) * i^m l  m*n=1-2  N t6 ’81>

0
means t h a t  the  elements of the  impedance matr ix  [Zfi ] are  given by

zemn " p <enf''n> + { z  f  C, ( e m ; e n „ f  W
s 4>mm

+ 4 f  f  D1 ( e " ; e nJct,, )C2 ( 0m;e '1s<t,'1)d -ds" 

SMM 4>mm

- 4 /  f  Ci (©"; en , <jj ) C-, ( 0m; 0 , (|> ) dq> * ds 1 
s sMM 4>mm

a2s in0nA0 . (6.82)
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Also th e  elements of [V ^]  can be obtained from

vem ■ Fe « W  '  2 ^  )C2( 0ra;e ' ,< t . ' ) d s■ . (6.83)

SMM

By th e  same procedure we can ob ta in  the  impedance matr ix  and 

th e  vo l tage  matr ix  f o r  the  $ component of the  su r face  c u r r e n t ,  whose 

elements a re  given by

SMM ^MM

- 4 £  f  D2 ( e " ; e n ,(!), )D2 (0m; 9 M,(|)")clj,, dsM J-a2s i n e nAe

* *  (6.84)

and

*5™ -  V 8ra) + 2 f F9 ( 8 , )D1(emi e 1. t ' ) d s '  . (6.85)

SHM

The dominant terms in Equations (6.82) and (6.84) a re  th e  f i r s t  

two ones. Therefore  i f  we want the  s impler  forms f o r  computer pro

grams, we may ignore the  l a s t  two terms in those  equa t ions .
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6 .4  Numerical Resu l ts

Two p o ss ib le  segmentat ion schemes f o r  numerical i n t e g r a t i o n  over 

th e  sphere su r face  a re  shown in Figures  6 .3  and 6 .4 .  In th e  uniform 

segmentation shown in Figure 6 .3 ,  the  su r face  i s  divided in to  equal 

angles in th e  e and $ d i r e c t i o n s .  Therefore  the  patch areas around 

6=0° w i l l  be very small compared to  those  around e=90°.

On th e  o ther  hand, in the  v a r i a b le  <}> segmentation shown in Figure 

6 .4 ,  we d iv ide  the  su r face  e qu a l ly  in th e  0 d i r e c t i o n  and p ropor t iona l  

t o  s in0  in th e  4> d i r e c t i o n  so t h a t  a l l  patch areas are  almost equal.  

Experience shows t h a t  the  b e t t e r  numerical r e s u l t s  a re  ob ta ined  with 

th e  v a r i a b le  $ segmentation scheme. All numerical r e s u l t s  f o r  a sphere 

were ob ta ined  with the  v a r i a b le  segmentation scheme, where we divided

X
11

Figure  6 .3 .  Uniform segmentation scheme.
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X

Figure  6 .4 .  Variable  $ segmentation scheme.

th e  su r face  of  the  i n t e r v a l  6=0 t o  tt/2 i n to  twenty four  bands (we 

c a l l  th e  number of t h i s  d iv i s io n  N) and each band s t a r t i n g  a t  the  pole 

(6=0) in th e  i n t e r v a l  <}f0 to  tt/2 was d iv ided  in to  subpatches as f o l 

lows; 1 , 2 , 4 , 5 , 7 , 8 , 1 0 j 1 ,1 3 ,1 4 ,15 ,1 6 ,1 8 ,1 9 ,2 0 ,2 0 ,2 1 ,2 2 ,2 2 ,2 3 ,2 3 ,2 4 ,  

24,24. With th e  l a r g e r  number of N, b e t t e r  r e s u l t s  can be ob ta ined ,  

but  a l so  the  r e s u l t i n g  computational time w i l l  be increased  s i g n i f i 

c a n t ly .  For example, the  computer* running time with N=24 i s  about 

twenty s ix  minutes f o r  th e  seventh o rder  approximation,  but i f  we 

in c re a s e  the  number N by two t im es ,  th e  computing time w i l l  be 

inc reased  by approximately  s ix  times f o r  the  same order  approximation.

*Modified D a tac ra f t  model 6024.
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This example shows t h a t  th e r e  i s  th e  upper l im i t  on the  sphere s i z e  

which can be handled p r a c t i c a l l y  by t h i s  method. ~

The i n t e r i o r  resonance appears t o  a f f e c t  th e  su r face  c u r re n t  

more s e r io u s ly  on a sphere  than on a c i r c u l a r  c y l in d e r .  This seems 

to  be due t o  the  i n t e r a c t i o n  of the  two c u r r e n t s  Jg(0) and (0 ) .

Also i t  i s  observed t h a t  th e  resonance problem becomes more severe  

f o r  th e  l a r g e r  spheres .  Therefore  t h i s  resonance phenomenon l im i t s  

th e  numerical c a l c u l a t i o n s  f o r  a r b i t r a r y  s i z e s  of  a sphere but  may 

not be of any consequence f o r  o th e r  3-dimensional  geometries.

We obta ined  accep tab le  numerical r e s u l t s  f o r  conducting spheres 

o f  r a d i i  0.25\. t o  2.3X using N=24. Compared to  a c i r c u l a r  c y l in d e r ,  

h igher  order  approximation were needed f o r  a sphere .  The su r face  

c u r r e n t  on a sphere was obtained  with the  seventh t o  th e  e leven th  order  

approximations. Also in the  moment method reg io n ,  whose s i z e  was 30° 

in angle f o r  a l l  d a ta ,  e ig h t  pulse  b a s i s  and d e l t a  weighting fu n c t ion s  

were used. All r e s u l t s  were compared with th e  exact  e igenfunc t ion  

s o lu t io n s  which were denoted by s o l i d  l in e s  in th e  f i g u r e s .

In F igures  6 .5  and 6 .6  th e  H-plane and E-plane c u r r e n t s ,  which 

a re  denoted by and J Q, r e s p e c t iv e ly ,  a re  shown f o r  a sphere of 

rad iu s  a=0.25X. The agreements with th e  exac t  so lu t io n s  are  remarkably 

good in both the  E-plane and H-plane c u r r e n t s .  Also the  r e s u l t s  f o r  

a=0.5X are  in good agreement with the  exac t  so lu t io n s  as shown in 

F igures  6 .7  and 6 .8 .
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Figures 6.9 and 6.10 show the  su rface  cu rren ts  fo r  the  1.0X 

sphere, where we can see t h a t  the  d i f f e ren c e s  from the  exact  so lu t ions  

a re  l a r g e r  in both the  magnitude and phase f o r  the  surface  cu rren t  

compared to  the  r e s u l t s  obtained f o r  the  smaller  spheres .

I t  seems t h a t  the  su r face  cu r re n t  on a sphere i s  a f f e c te d  not 

only a t  the  resonance frequency but a lso  the  f requencies  around i t .  

Therefore we cannot f in d  many s iz e s  of spheres with which we can obtain 

numerical r e s u l t s  by t h i s  method. For example, although a=1.5X and 

2 . OX are  not the  exact  geometries t h a t  have the  i n t e r i o r  resonance, 

the  su r face  cu rren ts  on those  spheres are  much d i f f e r e n t  from the  exact  

c u r r e n t s .  The r a d i i  of the  spheres which are  in the  i n t e r i o r  resonance 

modes around a=1.5X and 2 .Ox are  a 1.48X and 1.98x, r e s p e c t iv e ly .

The su r face  curren t  r e s u l t s  f o r  the  sphere of 1.7x are  shown in Figures 

6.11 and 6.12 and are  in f a i r l y  good agreement with the  exact  r e s u l t s .  

However, i t  i s  obvious t h a t  they are  not t h a t  good compared to  the 

r e s u l t s  f o r  the  spheres of 0.5X or  1.0X rad iu s .

The l a r g e s t  rad ius  of a sphere f o r  which we obtained numerical 

r e s u l t s  was 2.3X, and the  r e s u l t s  are  shown in Figures 6.13 and 6.14.

We can observe t h a t  even though the  r e s u l t s  are  accep tab le ,  the  mag

n i tude  curves show many o s c i l l a t i o n s  compared to  o ther  s iz e s  of spheres.  

The g r e a t e s t  depar ture  from the  exact  so lu t io n s  i s  shown in the  phase 

of the  H-plane cu r re n t  in the  shadow region .  The o s c i l l a t i o n s  shown 

on th e  magnitude curves can be decreased a l i t t l e ,  but not  s i g n i f i 

c a n t ly  by increas ing  the  number of d iv i s io n s .  However, as i t  has
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been mentioned be fo re ,  by inc reas in g  the  number of d iv i s io n s  th e  com

pu t ing  time w i l l  be g r e a t l y  increased .  Therefore  in s tea d  of  inc reas ing  

N, i t  w i l l  be more e f f i c i e n t  to  use the  cons tan ts  ^  and which are 

given in Equations (6.62) and (6.63) t o  make improvement in the  r e 

s u l t s .  Notice  t h a t  the  r e s u l t s  in F igures  6.13 and 6.14 were obtained 

with those  c o n s ta n t s .

I f  we examine th e  r e s u l t s  shown in Figures  6.15 and 6 .16 ,  where 

we used N-24 without  the  con s tan ts  SQ and S , , we can r e a l i z e  t h a tb <P
those  c o n s ta n t s ,  which were der ived  on t h e ' b a s i s  of v e ry .c a re fu l  

approximations,  make th e  magnitude curves cons iderab ly  smoother.

Although we obta ined  numerical r e s u l t s  f o r  spheres of up to  the  

2.3X r a d i u s ,  i t  w i l l  be p o ss ib le  t o  ob ta in  the  su r face  c u r r e n t s  f o r  

l a r g e r  spheres by using a l a r g e r  number of d iv i s io n s  with the  cons tan ts  

SQ and S^.
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Figure 6 .5 .  The H-plane c u r r e n t  on a sphere  f o r  
a=0.25X, N=24, and SMM=30 .
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Figure 6 .8 . The E-plane current on a sphere fo r
a=0.5X, N=24, and SMM=30o.

118



PH
AS

E 
(D

EG
R

EE
S)

3 r E— PLANE CURRENT

a * I. OX
M fcil

180.0135.09 0 .0  
8  (OEGREES)

  EXACT
+ + + AS — MM

ISO

9 0

9 0

— 180
180.0135.09 0 . 0  

8 (DEGREES)
4 5 .0

Figure 6.10. The E-plane current on a sphere fo r
a=l .OX, N=24, and S^i^SO •

120



PH
AS

E 
(D

EG
R

EE
S)

H — PLANE CURRENT3

2

0 80.1359 0 .0  
9  (DEGREES)

4 5 .0

  EXACT
+ + +  AS “  MM

180

9 0

l++
9 0

180
180.0135.09 0 . 00 4 5 .0

9 (DEGREES)
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CHAPTER VII 

SUMMARY AND CONCLUSIONS

We have derived the  necessary  i n te g r a l  equat ions  f o r  the  hybrid 

AS-MM method and applied  them to  four  d i f f e r e n t  shaped p e r f e c t l y  con

ducting bodies ,  namely a wedge, square and c i r c u l a r  c y l in d e rs  and a 

sphere.

The modified geometr ical  o p t ic s  c u r r e n t  terms which were denoted
n — —S ___

by J Qp (R) and J op(R), r e s p e c t iv e ly  in the  l i t  and shadow reg ions  were

obta ined  by an i t e r a t i v e  technique in numerical c a l c u l a t i o n s .  The
0 —

c u r r e n t s  in the  moment method reg ions ,  which were denoted by 

a n d T ^ ( R ) ,  r e s p e c t iv e ly  in th e  l i t  and shadow reg ions  were solved 

by a matr ix  technique  ( i . e . ,  the  moment method). For t h i s  purpose, 

we derived  the  impedance matr ix  f o r  each conduct ing body. The c u r re n t s  

in o th e r  than the  moment method region were determined by using the 

c u r r e n t s  in th e  MM-region in the  magnetic f i e l d  i n t e g r a l  equation fo r  

th e  f i r s t  order  approximation.  For the  higher  order  approximation, 

th e  i t e r a t i v e  method was used to  obtain  both the  moment method and 

asymptotic region c u r r e n t s .  The ex ten t  of the  moment method region 

did not a f f e c t  th e  su r face  c u r re n t  s i g n i f i c a n t l y .  Usually th e  second 

or th e  t h i r d  order  approximation produced good r e s u l t s  f o r  the  wedge, 

square  and c i r c u l a r  c y l in d e r s ,  but  f o r  th e  sphere  h igher  than th e  f i f t h
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order  approximations were req u i red  to  give accep tab le  r e s u l t s .  This 

i s  maybe due to  the  i n t e r i o r  resonance problem. ~

The s i n g u l a r i t y  pa tch problem in th e  curved su r face  geometries 

was considered  and some cons tan ts  were derived  on th e  ba s i s  of  approxi

mations t o  make up some of the  c o n t r ib u t io n  l o s t  by excluding th e  patch 

area  in s tea d  of j u s t  the  s in g u la r  po in t  in the  c a l c u l a t i o n s .  I t  was 

seen t h a t  the  cons tan ts  made po ss ib le  good improvement in the  r e s u l t s  

of the  su r face  c u r r e n t  and t h a t  they  were useful  f o r  p r a c t i c a l  numeri

cal c a l c u l a t i o n s .

In t h i s  s tudy we considered a technique  f o r  combining a moment 

method c u r r e n t  and an asymptotic c u r r e n t  in both two and th re e  dimen

s ion s .  From th e  fo rm ula t ions  f o r  the  su r face  c u r r e n t  on a conducting 

body, we see t h a t  the  method does not  need any a p r i o r i  knowledge of 

th e  c u r r e n t  form away from the  moment method reg io n .  Also we d o n ' t  

have to  fo l low ray  paths on th e  su r face  of a conductor as we do in 

the  GTD method. Therefore  these  advantages of t h i s  method tend  to  

make i t  r e l a t i v e l y  easy to  ob ta in  the  su r face  c u r r e n t  on a r b i t r a r i l y  

shaped bodies .

As we have seen from the  severa l  examples, t h i s  method does not 

have d i f f i c u l t i e s  in i t s  a p p l i c a t io n  to  the  a r b i t r a r y  s i z e s  of bodies .  

However, t h i s  method u su a l ly  r e q u i r e s  r e l a t i v e l y  la rge  computing time 

and memory s to rage  e s p e c i a l l y  f o r  bodies having many su r f a c e s .  This 

disadvantage  may l im i t  th e  method in p r a c t i c a l  numerical c a l c u l a t i o n s .
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As we have seen in the  wedge problem in Chaper I I I ,  t h i s  method 

cannot provide us acceptable  r e s u l t s  f o r  the  su r face  c u r re n t  on the  

wedge i f  the  magnetic in c id e n t  f i e l d  i s  grazing to  th e  l i t  su r face  

or  i f  th e  wedge angle i s  small .  Of course these  l i m i t a t i o n s  are  of 

no consequence in bodies whose dimensions are  f i n i t e .

Also i t  was shown t h a t  t h i s  method could not  e l im in a te  what ap

pears to  be spurious resonances appearing in the  la rge  s iz e s  of a 

sphere.  However, t h i s  method was not a f f e c te d  by the  resonance in 

i t s  a p p l i c a t io n s  to  the  square and c i r c u l a r  c y l in d e r s .

In s p i t e  of these  disadvantages and l i m i t a t i o n s ,  t h i s  method 

provides  g en e ra l ly  good r e s u l t s  f o r  th e  su r face  c u r r e n t s  on th e  pe r 

f e c t l y  conducting bodies .  Extension of t h i s  method to  more complex 

bodies should be p o s s ib l e .  Future  work should s tudy ways to  reduce 

the  computer running time by making ap p ro p r ia te  approximations in the  

i n t e g r a l s .  Future work should a lso  cons ider  the  p o s s i b i l i t y  of com

bining  t h i s  hybrid method with the  GTD. Thus, one would t r e a t  areas  

f a r  removed from shadow boundaries and/or  sharp d i s c o n t i n u i t i e s  in 

geometry by the  GTD thereby  e l im in a t in g  numerical i n t e g r a t i o n  time. 

The hybrid method of t h i s  paper could then be used to  handle a wide 

v a r i e ty  of d i s c o n t i n u i t i e s  in geometry f o r  which d i f f r a c t i o n  c o e f f i 

c i e n t s  a re  unknown.
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Appendix A

CURRENT CALCULATION AT A SINGULAR POINT FOR 
TWO-DIMENSIONAL PROBLEMS

To de r ive  Equation (5 .14) from Equation (5 .1 1 ) ,  we consider  a 

se m ic i rcu la r  path Jl£ as shown in Figure  Al. Let the  Surface cu r re n t  

'J(E’) be in the  d i r e c t i o n  of £, then Equation (5.11) can be expressed 

as

■JWR) = t  lim f  J (R ' )  ( n ' - r * )  dz (Al)
1 e *0 9e

where

g( £ ) = -  4  Ho2>fGe) ■ (A2>

For small Be, H ^ ( B e )  can be approximated as

H ^ O J c ) -  1 - j  f  logfi peg*) (A3)

where y i s  E u le r ' s  c o n s tan t .  Then  ̂ can be eva lua ted  asdC

■ < A 4 >
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Figure . A l .  I n t e g r a t io n  path around th e  s in g u la r  p o in t  
P in two dimensional  problems.

A lso  f o r  small c i r c u l a r  path 2, ,̂ J ( R-' ) can be approximated as J(7T). 

S u b s t i t u t i n g  Equation (A4) in t o  Equation ( Al ) ,  and not ing  th a t  n ' * r ' = l  

and J ( R”1 )=:JCR), we obta in

J, ( R)  = £ J(R) l im J  ( y — )dA
‘ e+0 A ^e

= J(R) l i m /  ( -  J L - J e  d9 
e+0 o £1Te

= - \  J(R) (A5)

which lead s  to  Equation ( 5 - 1 4 ) .
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APPENDIX B

CURRENT CALCULATION AT A SINGULAR POINT FOR 
THREE-DIMENSIONAL PROBLEMS

Consider a hemispherical  su r face  S£ with the  rad iu s  shown in 

Figure  Bl. By th e  same way as done f o r  Equation (A l) ,  Equation (5.11) 

can be w r i t t e n  as

■j,(R) = t  lim / j ( R ' ) ( n 1 * ? ' )  3G( E) ds '  , (Bl)
0 Se 9e

Using = - (j’B + ^ )  > ds '  = e?sin 0 'd 0*d<Jj' , and approximation

J ( f f ' ) — J(TT) f o r  small su r face  in Equation (B l ) ,  we have

_  _  _  2 tt7t/ 2 ,  Q- J B e  o
Ji (R)  = t  J(R) lim /  J  ( - jB -  i ) - f - 7 -  cZsine'de'd<| , '  

e*0 o o  u

2THT/2
= -  J(l?) lim J J  (^£§±1) ej3G s in O 'd e 'd * '

6̂ 0 o o ^

J(^ )  (B2)

which leads to  Equation (6 .39 ) .
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Figure  Bl. Hemispherical i n t e g r a t io n  su r face  around the  s in g u la r  
po in t  P i n  th re e  dimensional problems.


