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CHAPTER 1
INTRODUCTION

In electromagnetic problems the main task is usually to deter-
mine the current distribution on the surface of a scatterer. It is
a relatively simple problem to obtain other parameters we desire from
a knowledge of the surface current distribution. Obtaining the cur-
rent distribution usually means we must solve integral equations de-
rived from Maxwell's equations and the boundary conditions.

One of the well known methods for solving integral equations
is the moment method [6]1,[12],[16], which converts the integral equa-
tion to linear algebraic equations having as many unknowns as the
number of basis functions used to approximate the surface current
on the scattering body. Even though the moment method gives us rela-
tively accurate results for arbitrarily shaped bodies, its practical
use is usually limited to bodies which are not large in terms of a
wavelength.

Another powerful method, which is known as the geometrical

theory of diffraction (GTD), was introduced by Keller (1953}. GTD
is a ray optical method which uses the leading terms of the asymp-
totic approximation to the integral of interest. Recently, Kouyoumjian
and Pathak [5] have developed new formulations for diffraction coef-
ficients which produce the better results in the transition regions.

1



Usually GTD is known as a high frequency method since it has an ad-
vantage when applied to scatterers which are electrically Igfge.
However, GTD solutions are available only for relatively simple can-
onical geometries.

Although both methods considered above provide us with relatively
accurate results in their own appilications, there are many electro-
magnetic problems which cannot be solved by either method alone. To
solve such problems by using to advantage the two methods mentioned
above, recently, hybrid techniques which combine them have been de-
veloped. One approach, which has been introduced by Thiele and
Newhouse [2] in 1975, combines moment methods with the GTD (i.e.,
MM-GTD techniques). This technique extends the moment method through
the use of the GTD to obtain a new modified impedance matrix for the
moment method solution. The application of this method was demon-
strated by solving the problems such as a monopole near a conduct-
ing wedge, a monopole at the center of a flat plane or a circular
disc, and a monopole near a conducting step. A little later in the
same year, Burnside and his colleagues [3] showed another hybrid
approach by combining the GTD with the moment method (i.e., GTD-MM
technique). In this technique, the diffraction coefficient is treated
as an unknown coefficient in the moment method and was determined
by numerical techniques. The application of the method was demon-
strated by obtaining the surface currents on a perfectly conducting

wedge, and square and circular cylinders. Later Mittra [7],I8], also



introduced a new approach for combining the integral equation and
the GTD by using the fact that the Fourier transform of the unknown
surface current is proportional to the scattered far field and dem-
onstrated its applications to a perfectly conducting infinite strip
of zero thickness, a thin conducting rectangular plate, and later
to a circular cylinder in two dimensions.

The GTD-MM method which combines the GTD with the moment method,
requires a priori knowledge of the asymptotic form of the current
away from the diffraction or moment method region. Therefore, the
GTD-MM technique considered above is difficult to apply to arbitrar-
ily shaped bodies where the GTD current forms are not known a priori.

In this paper a new hybrid method which overcomes the disadvan-
tage mentioned above is presented. This method which combines the
moment method with an asymptotic technique as orginally introduced
by Molinet (1), does not need any priori knowledge of current forms
away from the moment method regions. Thus, the hybrid method of this
paper offers an advantage in solving for currents in GTD transition
regions where the form of the current is often difficult to determine.
Further, this hybrid method, which uses the geometrical optics current
as the dominant contributor to the initial current, works surprisingly
well even for extremely small bodies in the Rayleigh region. One
would expect this technique to work well for large bodies since it
uses the geometrical optics current which is asymptotic with respect
to frequency. The fact that it also works well for Tow frequency

is indeed an unexpected bonus.



The integral equations originally introduced for this new hybrid
method, were derived for the wedge problem and are not suitable for
other shaped bodies. Therefore, in Chapter II, we consider the gen-
eral theory for the method and also derive the general integral equa-
tions which are suitabie for arbitrarily shaped bodies. In the de-
rivation of the equations the asymptotic currents are assumed to
approximately represent the dominant currents on the surfaces of a
conducting body. Then the difference current between the approximate
and exact currents 1is obtained by using the moment method in the
moment method regions which are formed around the shadow boundary
regions or around sharp geometrical discontinuities. In the next
step, we determine the currents in the non-moment method regions by
obtaining the contribution to the surface currents induced by the
currents in the moment method regions. The process may be repeated
to obtain higher order solutions.

Applications of the method to a perfectly conducting wedge, square
and circular cylinders in two dimensions are considered in Chapters
III, IV, and V, respectively. In Chapter VI, extension of our hy-
brid method to the three dimensional geometry is also consiaered by
using a perfectly conducting sphere as an example. The results of
the surface currents on a wedge and a square cylinder were compared
with the solutions from the GTD whose diffraction coefficients are
based on the results derived by Kouyoumjian and Pathak [5]. On the
other hand, for a circular cylinder and a sphere,:the comparisons

were made with the exact eigenfunction solutions.
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Usually for bodies having only plane surfaces, the general in-
tegral equations for the method reduce to relatively simpIe-%orms,
but not for bodies composed of curved surfaces. Also observing those
equations for the plane surfaces, we can realize that singularity prob-
lems are not involved in them. However, this problem will arise for
curved surfaces and must be considered for more accurate results.
Theoretically when we evaluate the principle value of integration,
we must exclude the singuilar point for numerical integration, but
practically we exclude the patch of a finite area containing the sin-
gular point instead of just the singular point. We see that this
practical calculation will increase errors as long as the surface
is not divided into very many subpatches so that the patch areas be-
come very small. However, considering the computer running time and
memory storage, it may not be efficient to divide the_surface into
so many divisions. Therefore, in Chapters V and VI we derive some
constants which will roughly provide the contribution lost by exclud-
ing the finite patch area instead of a single point for the evaluation
of the principle value of integration, and the effect of those con-
stants is shown by comparing the results with and without them. By
using those constants in the integral equations for the method, we
can decrease the number of divisions for numerical integrations and
thus computing time to obtain the same results that can be obtained

by increased number of divisions.



In the examples which are considered in Chapters III, IV, V,
and VI, the impedance matrix for the moment method is derived exactly
for the wedge, but approximately for the square and circular cylinders,
and the sphere. Even though we can derive the more accurate expres-
~sjon for it, it may not be useful for numerical calculations because
of its complexity.

In Chapter VII, summary and conclusions are presented along with

some of the advantages and disadvantages of this method.



CHAPTER II
GENERAL THEORY

2.1 First Order Approximation

Let's consider an arbitrary shaped 3-dimensional perfectly
conducting body illuminated by a plane wave as shown in Figure 2.1.
We divide the total surface S of the body into S% and S° which represent
the 1it and shadowed regions, respectively. The separation boundary
of S is the shadow boundary which is shown by the line AB in Figure
2.1. In addition, we split each of these regions into two regions,
a moment method region (MM-region) and an asymptotic region (AS-region)
which are represented, respectively by SﬁM and Sﬁs in the 1it region

or by S;M and st in the shadow region. Therefore, we can write the

following expressions regarding the surfaces.

s* = SﬁM + sﬁs (2.1)
" S% = Sgy + Sps - (2.2)

Usually the moment method region is smaller than the asymptotic region.
Next let the total current be denoted by ﬁﬁ(ﬁ) in the 1it region
and by ﬁs(ﬁ) in the shadowed region.’” The current can then be expressed

. = = - —=S = = =
in terms of Juu(R) and Jpc(R) or J;M(R) and JZS(R) as

7
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Figure 2.1. Three dimensional surface is divided
into four regions.

TYR) = JER) + TX(R) (2.3)
FR) = Jgy(R) + Tps(R) (2.4)

where ﬁﬂh(ﬁ) and ﬁ;m(ﬁ) are the total currents on Sé& and S;M, respect-
jvely, and U}k(ﬁ) and ﬁis(ﬁ) represent the total currents on Sgg and

SES, respectively.
We will use the usual form of Maue's magnetic field integral

equation to derive the general equations for our hybrid method. The



current at an observation point P {see Figure 2.1) will satisfy the

magnetic field integral equation given by
J(R) = 2AxA(R) + 27 x§ I(R') x V'G(r)ds’ (2.5)
s

where R and R' are the position vectors of the observation point P
and the source point P', respectively, and r = |ﬁlﬁ'| is the

distance between the points P and P'. The unit vector i is outward

and normal to the surface at P. ﬁﬁ(ﬁ) is the incident magnetic field
at P on the surface. The symbol f represents the principle value of
integration.

The free space Green's function G(r) for the two dimensional

problem is given by
= 1_y(2)
G(r) = 13-H0 (Br) (2.6)
and for the three-demensional problem is given by

~-JjBr
4nr

G(r) = £ (2.7)

where Héz)(sr) is the zero order second kind Hankel function, and B is
the free space propagation constant. Now V'G(r), where the prime
refers to the coordinate system of the source points, can be obtained

as

o'6(r) = - 73 H{?) (gr) r (2.8)



for the two-dimensional problem and

-Jgr

V'G(r) = - (38 +'%) = i T (2.9)

for the three-dimensional problem, where ¥' is the unit vector in the
direction of R'-R, and H%z)(ﬁr) is the first order second kind Hankel
function. The time dependent factor ejlut is suppressed throughout.
The integration surface S in Equation (2.5) can be divided into
SE and S°, and according to those integration regions, the integral
can be separated into two parts. For observation points in the 1it
region, the current'ﬁz(ﬁ) will satisfy Equation (2.5) or the following

equation,

T(R) = 2AxA (R) + 2 x § I%(R') x y'G(r)ds’
s?

+2f x §f T(R') x v'G(r)ds' (2.10)
gS
The second and third terms are the currents induced by the currents
at source points in the 1it and shadowed regions, respectively.

Since the current J°(R') is usually small compared to Uﬂ(ﬁ'),
the third term of Equation (2.10) may be small compared to the second
term, and also both of them are small compared to the optics term
2ﬁ£ﬁ1(ﬁ), we can ignore the third term in Equation (2.10) and make

the approximation of

10



T(R) = ng('ﬁ) (2.11)
where the optics region current ng(ﬁ) is given by

ﬁ%p(ﬁ) = ZﬁXHi(ﬁ) + 2fix f 'ﬁﬁp(ﬁ‘) x 7'G(r)ds" (2.12)
st
Also we can write the following integral equation for observation

points on the shadowed region.

TR) = 2AxA (R) + 2fx § TXR') x v'G(r)ds’
gl

+2fx § T°(R') x VG(r)ds' . (2.13)
gS
If we replace J (R') in Equation (2.13) by the approximate current
'ﬁgh(ﬁ'), which is given in Equation (2.12), then the current J°(R) is
no longer exact, but instead is approximate. If we represent this
approximation by ng(ﬁ), then Equation (2.13) becomes

e a L 5 :
Jop(R) = 2nxH " (R) + 2nx gg'jop(ﬂ') X V'G(r)ds’

+ 2fx § ﬁgp(ﬁ') x 9'G(r)ds' . (2.14)
SS

Since ﬁﬁp(ﬁ) in Equation (2.12) and ﬁip(ﬁ) in Equation (2.14)
are approximations for ﬁﬁ(ﬁ) and'ﬁs(ﬁ), respectively, additional cur-
rents are required to determine the correct currents on both surfaces.

11



Let these additional currents be P (R) and T5(R) on the surfaces $*
and Ss, respectively. Then the exact currents in both the regions

are

I}

F(R) 'Jg'p(?{‘) + T¥R) (2.15)

I*(R)

'Jgp(ﬁ) + TS(R) . (2.16)

According to Equations (2.3) and (2.4), the currents T&(ﬁ) and T3(R)

can be expressed as

T4R)

T8, (R) + TE(R) (2.17)
T°(R) = Tyy(R) + Tpc(R) . (2.18)

Then from Equations (2.3), (2.4}, (2.15), (2.16), (2.17), and (2.18)

we can express the total currents on the regions Sﬁh, SﬁM, Sﬁg, and

Sps as
Iy (R) = ﬁg'p(ﬁ) + T (R) (2.19)
IgyR) = 'Jf;p('R‘) + Tyy(®) (2.20)
and
TR = TE® + TA®) (2.21)

12



Jas(R) = 'Jgp(ﬁ) + Tps(R) . (2.22)

The currents at observation points on the moment method region

also will satisfy Equation (2.5). Hence,

4]

2AxA (R) + 2Ax £ TXR') x V'G(r)ds’
%
+ 2ix F THR') x V'G(r)ds' (2.23)
g3

Tu(R)

and

oM (R) + 2fix § T*(R') x V'G(r)ds’
2
S

Ty (R)

+2nx § T(R') x V'G(r)ds' . (2.24)
SS

Substituting Equations (2.15), (2.16), (2.19), and (2.20) into

Equations (2.23) and (2.24), and then using Equations (2.17) and (2.18),

we obtain the following two equations.

TE(R) + T(R) = 2R (R) + 2fix S TgpR*) x V'G(r)ds!

+ 2fix § Tﬁh(ﬁ') x V'G(r)ds' + 2nx fz ‘Tﬁs(ﬁ') x V'G(r)ds'

%
Smm Sas
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* 2fix f Top(R') x v'a(r)ds' + 2fix §  Tyy(R') x v'G(r)ds’

S -
+ 2fix § T (R') x v'G(r)ds' + 2fix §  Tyy(R') x v'G(r)ds’
S S
+ 2fix fs Tﬁs(ﬁ') X V'G{r)ds’' (2.25)
Sas

and

Top(®) + Tyy(R) = 2ixi' (R X V'G(r)ds'

M'—h
CJ
zc.-.

+ 2Ax § Tyq(R') x V'G(r)ds* + 2nx f Tﬁ’s(ﬁ') x V'G(r)ds’
s& sk
MM AS

+ 2x § 'Jgp('R") x V'G(r)ds' + 2nx § T;M(ﬁ') X 9'G(r)ds’
sS S

+ 2% ,rs TRS(E') X VG(r)ds' . (2.26)
Sas
Subtracting Equation (2.12) from Equation (2.25) and Equation
(2.14) from Equation (2.26), we obtain the currents in the 1it and

shadowed moment method regions which are given by

14



T%M(ﬁ) = 2fix f ?hM(ﬁ')xv’G(r)ds' + 2nx F Tﬁm(ﬁ“)xV'G(r)ds'

L 5
Smm SMM

+2fix § T (Rxv'G(r)ds' + 2fx §  TEg(R')xv'6(r)ds’
§s SKs

+2ix §  Tpo(R')xv'G(r)ds (2.27)

S
Sas

and

T;M(Ti) = 20X fg T,%M('ﬁ')xv‘G(r)ds' + 20X fs T;M(ﬁ')xV'G(r)ds'
Shim Swm
+ 2fix § Tﬁs(ﬁ')xv'e(r)ds' + 2hx f Tﬁs(ﬁ')xV'G(r)ds'
s S3
AS AS
(2.28)
Since there are four unknown currents Tﬁh(ﬁ), Tﬁm(ﬁ), Tﬁb(ﬁ),
and Tﬁs(ﬁ) in two equations, we cannot solve for them without making
proper approximations. In Equation (2.27) it is clearly seen that
the current term containing 3§p(ﬁ') is dominant. However, it is hard
to compare the other current terms with each other analytically. As
we know, the currents on the right side of Equation (2.27) represent
the currents induced by'ng(ﬁ) and the currents in the moment and

asymptotic method regions.
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Now considering that observation points are limited to the moment
method region and that the current in the nearest region tq.the obser-
vation points will most contribute to the current at the observation
points, we can ignore those current terms containing Tﬂ%(ﬁ') or T:s(ﬁ')
in both Equations (2.27) and {2.28) to derive the first order approxi-
mations for Tﬁh(ﬁ) and TﬁM(ﬁ). Therefore, the first order approxi-

mations for Tﬁh(ﬁ) and Tﬁm(ﬁ) can be written as

T (R) = 2 f Thy(R')xV'G(r)ds* + 2fix 5 Tou(R')xv'6(r)ds’
St Shm

+ 2fix § 'ﬁgp(ﬁ')xv'ﬁ(r)ds' (2.29)
sS

and

Ty(R) = 2Ax{ . Ty (R*)XV'G(r)ds’ + 20x fs Tyy(R')xV'G(r)ds"
S S
(2.30)

We should realize that without ignoring those current terms containing
Tﬁg(ﬁ') or Tﬁs(ﬁ“) in Equations (2.27) and (2.28), we cannot derive

equation sets which can be solved by the moment method. On the other
hand, since the current :Ep

(2.29) and (2.30) simuTtaneously using the moment method. By the same

(R') is known, we can solve Equations

procedure, we can derive integral equations for Tﬁ;(ﬁ) and Tﬁs(ﬁ).

16



However, we can write down directly those equations by noting that
the currents on the asymptotic regions also satisfy Equations (2.29)
and {2.30) for their first order approximations. Thus, we can write

the following equations for Iﬁs(ﬁ) and I;S(ﬁ).

T4 (R) = 2fx : Ty (R )xV'G(r)ds' + 2 3 Tg(R')xv'G(r)ds
SMM Sum
+ 2fx f Jg,(R')xv'6(r)ds" (2.31)
SS
and
Tjs(ﬁ) = 2fix f; Tﬁm(ﬁ“)xv'G(r)ds' + 2hx j; Tﬁm(ﬁ“)xv'ﬁ(r)ds'
Shm Swm

(2.32)

Tﬁs(ﬁ) and Tﬁs(ﬁ) can be obtained simply by substituting the
pre-determined currents Tﬁn(ﬁ) and Tﬁm(ﬁ) into Equations (2.31) and
(2.32).

The above first order approximations may not be enough to give
the correct surface currents on some complex bodies. Therefore, we
will derive equations for the second order approximations for Tﬁm(ﬁ)

and Tﬁm(ﬁ) in the next section.
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Tyy(®) ~T{(R) + 20.x § (2R x § Ty (R")xV"G(r ) ds"1xV'6(r,)ds
Sks S T

+ 2ﬁsx f [2ﬁ2x fs Tam(ﬁ“)xv“G(rl)ds"]xv'G(rz)ds'

2
Shs ShM

+2fix f  [2Agx £ THy(R")xv"6(ry)ds"Ixv'G(r,)ds

s 3
Sas Shim

+2ix £ [2Ax f; Tyw(R")xV"6(ry)ds" 1xv'6(r,)ds

S
Sas Sum

+ 2gx f  [2Ax § To (RU)xv'(r)ds" IxV'6(r,)ds'  (2.34)
s% ss
AS

where'f%(ﬁ) and T?(ﬁ) are the first order approximations for Tﬁh(ﬁ)

and Tﬁm(ﬁ), respectively, and ﬁg and ﬁg are the unit normal vectors

in the 1it and shadowed surfaces, respectively. Also r, and r, are

given by
ry = Iﬁ"Jﬁ"| (2.35)
ry = [R-R* | (2.36)
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The second order approximations for Tﬁs(ﬁ) and Tﬁs(ﬁ{'have the
same expressions as those for Tﬁm(ﬁ) and Tﬁm(ﬁ), respectively, except
that observation points are moved from the moment method regions to
the asymptotic regions.

If we repeat the same procedure, we can obtain equations which
will give us higher order approximations for Tﬁ“(ﬁ) and Tﬁm(ﬁ). Nu-
merically this procedure can be achieved easily by iterative methods.

2.3 Summary and Discussion

We have derived all equations for the first and second order
approximations that are necessary for the method. For summary and
later convenience, we will write those equations for the first order

approximations here again

B (R) = 20l (R) + 2fix fzﬁgb(ﬁ')xv's(r)ds' (2.37)

35 _(R) = 2AxH' (R) + 2fx § 3% (R*)xv'6(r)ds’
p 5 op
S

+ 2fix f ﬁgp(ﬁ')xv'a(r)ds' (2.38)
S
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TﬁM(R) = 2nx § Tﬁm(ﬁ')xV'G(r)ds' + 2fx § Tﬁm(ﬁ')xV'G(r)ds'
2 ]
SMM St
+ 2fx f ﬁgp(ﬁ")xv'G(r)ds' (2.39)
S
Toy(R) = 2fix £ Ty (R')xv'G(r)ds' + 2fx ; Ta(R*)xv'G(r)ds"

SQ

MM S

MM
(2.40)

The Green's function has an r']

singularity as the observation
point P approaches the source point P' on the surface of the body.
Since the second term of Equation (2.37) and the third term of Equation
(2.38) become zero if P and P' are on the same straight surface, the
singularity problem is not involved in the planar surface. However,
there will be as many singular points as observation points for a
curved surface such as in a circular cylinder or a sphere.
Theoretically the principle value of integration is evaluated
by excluding the singular point, but practically it is done by exclud-
ing the finite patch area containing the singular point. Therefore,
this exclusion of the patch may cause some errors in the surface cur-

rent calculations. This problem will be considered in more detail

in Chapters V and VI.
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When we use the iterative method to solve for Uﬁb(ﬁ) and ng(ﬁ)
in Equations (2.37) and (2.38), we have to consider convergence of
the result. We cannot prove mathematically that the iterative method
produces a convergent result, but instead we must insure it by numeri-
cal calculation.

Also it appears that there are no distinct ways to determine
the extent of the moment method region in practical nJmericaT calcu-
lations. However, by numerical results it will be seen that the extent
of the moment method region does not affect the surface current sig-
nificantly. Therefore we can use an arbitrary size for the MM-region
according to the size of the body. This is very desirable for prac-
tical applications of this method, because if the currents are much
dependent on the extent of the MM-region, the method will not be reli-
able. Usually for a finite dimensioned body, from one third to half
of the size of the body will be reasonable for the moment method re-
gion. If we increase the MM-region, we may get better results, but
we have to sacrifice the computer running time. ATso there will be

a 1imit to increasing the MM-region by the limit of computer memory

storages.
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CHAPTER III
PERFECTLY CONDUCTING WEDGE

3.1 Integral Equations

Consider the wedge geometry in Figure 3.1, where the one side
of the wedge is illuminated by a TE plane wave and the other side is
shadowed. We set up the moment method regions around the edge, which
are represented by CﬁM and CﬁM in the 1it and shadowed regions, re-
spectively. For the wedge problem, the currents U%p(ﬁ) and ﬁgp(ﬁ)
in Equations (2.12) and (2.14) can be reduced to

Tp(R) = 2nxH' (R) (3.1)
and
T, (R) = 2ixH' (R) + 2nx f Top(RxVE(rIde . (3.2)

Also the first order approximate currents in the MM-region can be

simplified as

Tin(R) = 2fx i Tau(R*)xv'G(r)de' +2fx 5 Jop(R*)xv'G(r)dg’
c
MM

(3.3)
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and

Tou(R) = 2Px § T (R')xv'G(r)de' . (3.4)

2
Cim

The expressions for Tﬁs(ﬁ) and Tis(ﬁ) are exactly same as Equa-
tions (3.3) and (3.4), respectively, except that the observation points
are moved to the asymptotic region. Therefore, it is not necessary
to write those equations here.

Now let us consider the case where both sides of the wedge are

illuminated by a plane wave as in Figure 3.2. For this geometry, the

currents 3ﬁp(ﬁ) and‘ﬁgp(ﬁ), where A and B stand for the two surfaces

of the wedge, can be expressed as

T (R) = 2AxH (R) + 2fx § TB(R')xV'G(r)de’ (3.5)
op . 0P
B(R) = 2AxH (R) + 2Ax § T2 (R')xv'G(r)de’ . (3.6)
op A op
=A

The exact current on the surface A, JEx(ﬁ), can be obtained from

ﬁ?x(ﬁ) = 2fixH" + 2fx fé ﬁEx(ﬁ')xv‘G(r)dg'

C
Fay —A_l [ 1
+ 2Ax § Jex(R')xv G(r)de' . (3.7)
A
C
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Figure 3.1. Wedge illuminated by a TE plane wave, where one side
is 1it and the other is shadowed.

Figure 3.2. Wedge illuminated by a TE plane wave, where
both sides are 1lit.
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and

r =‘j£2 + 212 - 200 cos¢,, _ (3.11)

The above result can be readily obtained from the geometry in Figure

3.3. Substitution of Equation (3.9) in Equation (3.8) leads to

IﬁM(Q) =4 fs f IﬁM(E')Gw(z",z')Gw(z,n")dg'dg"

2
Cvm Ciim
+2f Jgp(z')ew(g,z')dz' . (3.12)
CS
v'G(r) !

Ole 2 ’l r

Figure 3.3. Geometry showing relationship between
2 &', and ¢w in a wedge.
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Now we will use the pulse basis functions and the point matching
technique to solve for Iyy in Equation (3.12). Let Iﬁh(g) Le expressed

by the series

N
2 — 4
Tiwe) = . IPle-g,) (3.13)
where
AL
1 for |g-2n|< 7
P(g) =
(3.14)
0 elsewhere,
XM

and pg = ﬁ—~where XM represents the integration limit for numerical

integration, and N is a number of subintervals,
Substituting Equation (3.13) into Equation (3.12) and rearranging

terms, we have

N

nZﬂ Ripe-g,) - 4 ,cs 6, (2 '+8,)6, (20 Jag d2']
C
MM

=2§ sz(ﬂ,')Gw(,q.,g,')dﬂ,' . (3.15)
cS
Multiplying both sides of Equation (3.15) by G(Q-Rm), integrating over
CﬁM, and dividing them by A%, we have
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N
2:' | 1 1
) Iip(e,-2,) - 4 f G, (2',2,)6, (% .20 d2']

n=] S
Com
=2 fs sz(n')aw(zm,z-)dm= ; (3.16)
C

Expressing Equation (3.16) in matrix form

b it = Wi, mens1,2,0000N, (3.17)

allow us to identify the elements of the impedance matrix [Z%n] as

Zn%n = P(&p-%) - 4 fs G, (%', % )G, (%,8')A8% d& (3.18)
C
MM

where m,n=1,2,3,...,N

Usually the second term of Equation (3.18) will be small compared to

the first term. The elements of the voltage matrix [Vﬁ] are determined

by

Ra_ S 1 [} ] -
Vo = 2 Cfs Jop(g )Gw(9 , 2)¥de , m=1,2,...,N. (3.19)
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3.3 Numerical Results

We found some limitations in application of this method to a
wedge after having tried several wedges with the various wedge angles
and wave incident directions. It will be seen in the examples which
follow that if the wedge angle (¢h) or the wave incident angle (¢i)
is small, a large integration limit (XM) is required to obtain
acceptable results. For example, if ¢h is 90° and ¢i is 300, then
XM = 60X is needed for a desirable result. Howevever, if we decrease
b; to 10%, we cannot expect a desirable result even with a value of
XM Targer than 100). This means that for the grazing incident wave,
it is not possible to obtain an acceptable result. Also we see that
the wedge with very small wedge angle meets the same difficulty.

These Timitations do not limit the method theoretically, but
do impose a practical limitation for the wedge geometry. Since we
deal with finite structures in actual problems, these limitations may
not appear in other practical problems.

We obtained the surface currents on the 1it and shadowed regions
up to 5.0 from the edge. The 5.0) distance was divided into 100 sub-
intervals for numerical integration, and 10 pulse basis functions were
used in the 0.5)\ wide moment method region. All the results were com-
pared with independent GTD solutions. Figure 3.4 shows the results
for qﬂ=¢i=90°. It is seen that the magnitude and phase of the surface
currents on both regions are in very good agreement with the GTD
solutions. In Figure 3.5, which is for ¢h=900 and d§=30°, we can recog-

nize a little difference in the magnitude of the shadow region current
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in the region from 4.0 to 5.0A. Note that this result was obtained
with XM=60A and about thirty minutes of computing time. Thg results
for the surface currents for the geometry in which both surfaces are
illuminated by the incident wave are shown in Figure 3.6. In this
case, as we mentioned before, the moment method region current was
not used to obtain the total surface current. The agreement with the
GTD solutions are shown to be very good except in the region less than
0.2x. We show the resuits for ¢w=]20° and ¢1.=300 in Figure 3.7 and
quite good agreements with the GTD results are indicated except near
5.0x. However, for the reverse geometry (i.e., for ¢w=30° and ¢1=]200)
the results become worse as shown in Figures 3.8 and 3.9. The results
in Figures 3.8 and 3.9 were obtained with the extent of the moment
method region (CMM) of 0.5A and 1.0A, respectively. As was expected,
better results were obtained with the larger CMM‘ Even though many
discrepancy points are observed on the magnitude curve for CMM=0.5A
the results are still acceptable except in the region very near the
edge. Of course, better results can be obtained with increased XM
in both the geometries considered above.

By observing Figures 3.10 and 3.11 which are for CMM=0.25A and
1.0), respectively, we can realize the effect of the size of CMM'
Those results show that the extent of the moment method does not affect
the surface currents significantly. As we increased or decreased the
size of CMM for these curves, the width of the pulse used in the moment

method region was kept constant as 0.05).
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It is seen from the results in Figures 3.8 to 3.10 that as the
wedge angle or the wave incident angle is decreased, the dependencey
of the surface current on the extent of the moment method is increased.

Usually the GTD solutions for the surface currents on the wedge
are in very good agreement with exact solutions except for the region
very near to the edge. In Figure 3.12, the GTD and our hybrid method
solutions for the currents in that region (i.e., up to 0.05x from the
edge) are compared with exact solution for the 90° wedge and incident
angles, It is seen that the error of the GTD currents becomes large
as the observation point approaches the edge and also that overall
agreement of our hybrid method solution with exact solution is a little
better than that of the GTD.

All the results in this chapter were obtained with the second
order approximation. Also, by experience, the second order approxi-
mations were seen to be enough for acceptable results. We see that
fast convergence of the iterative method is possible with the appli-
cation of this method to a planar surface. This will be reinforced

later by considering a square cylinder in Chapter IV.
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Figure 3.4. Currents on a wedge for ¢ =90°,

=90%, Cyy=0.51, and XM=20AY
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Figure 3.5. Currents on a wedge for ¢w=900’
¢1=30°, cMM=o,5A, and XM=60Xx.

34



di )

GTD
+++ AS -~ MM
XM= 20\

\

180 —

PHASE (DEGREES)

d{A)

Figure 3.6. Currentos on a wedge for ¢w=900’
¢.i=150 , and XM=20x.

35



180

90

PHASE (DEGREES)

d(A)

GTD

+++ AS — MM
XM =50

I

d(d)

Figure 3.8. Currents on a wedqe for by =30°,
L =120°, Cyp=0-31 5 and XM=50A N

37



PHASE (DEGREES)

"

4 "

e g Al b 2 2 2
AL B e e

180 —

d(A)

GTD
+++ AS — MM
XM =50\

A ) ]

d(A)

Figure 3.9. n@wxm:ﬁm on a wedge for ezuwoo.
eﬂndmo . nzzud.oy. and XM=50A.

38



PHASE (DEGREES)

|91

180

“
N
o

°

—l | 1 1 l 1 1 [ 1 i.:'lj'l.'l.jr'r‘l"l‘;:;::Wl
0 | 2 3 4 5
d({))

GTD
++4+ AS—~ MM
XM= 40X\

d(A)

~ Figure 3.10. Currents on a wedge for ¢ =60°,
$,=60°, Cyy=0.251, and XM=40A."

39



PHASE (DEGREES)

d(\}

GTD
+++ AS — MM

XM = 40X

180

90

d (X)

Figure 3.11. Currents on a wedge for 4 =60°,
q=50°, Cyy=1-02, and XM=40A. W

40



0.00 0.0t 0.02 0.03 0.04 0.05
d({)
300 EXACT
_ —=—=GTD
+ 44 AS— MM
- . XM= 2\

PHASE (DEGREES)
o
o

-300Lt st o bty a1y aadl s v v a1y al
0.00 0.0l 0.02 0\ 0.03 0.04 0.05%
d(\)

Figure 3.12. Currents on a wedge in the region very near to the
edge for ¢,=90°, $;=90°, C,,=0.5), and XM=2A.

41



CHAPTER IV
SQUARE CYLINDER

4.1 Integral Equations

The geometry of a perfectly conducting square cylinder in two-
dimensions 1is shown in Figure 4.1. A TE plane wave is incident on

the square cylinder with an incident angie 91. For convenience, we

represent the surfaces AB, BC, CD, and DA by C], C2, C3, and C4, re-
spectively. The moment method regions are set up around the four edges

of the square cylinder and are denoted by C&M, CﬁM, CgM, and CgM,

respectively on the surfaces C], Cz, C3, and C4.

1 and C4 are

It is assumed in this geometry that the surfaces C
T1it and that the surfaces CZ and C3 are shadowed. Therefore the in-
cident angle 6; must be between 90° and 180° for the following equa-
tions which are derived below.

The currents ﬁgp(ﬁ) and ng(ﬁ) in the 1it regions can be expres-

sed as
T (R) = 2RxA.(R) + 2hx F T5 (R*)x0'G(r)ct" (a.1)
op 177 1 4 OP :

and
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Uﬁp(ﬁ 2R, X (R) + 2,x f 3! JROXE(r)a . (4.2)
C .

Also the shadow region currents ﬁgp(ﬁ) and ng(ﬁ) can be written as

T2 (R) = 2h XA (R) + 2f ; f 3 (®)xv'6(r)de
op ) = 2n,xH (R) figX kzl y 0p(R YxV'G(r)
kf2 C
and
-3 4 .
Jop(ﬁ) = 20yxH T(R) + 2 ax ;1 Jc (R )xv'G(r)dy (4.4)
ck
k#

where ﬁ], ﬁz, ﬁ3, and ﬁ4 are the outward unit normal vectors to the

surfaces C], C2, C3, and C4, respectively.
The first order approximate currents in the four moment method

regions can be obtained from:

] my o= of ¢ ST 1 1496 3 =X /T i
Iam(R) = 2h;x k);z fk Ty(R*)x V'E(r)d &' +2f;x k=)-:2 fk Jop(R*IXVE(r)de';
Coam C

(4.5)
3
cMM 2 ¢k
(4.6)
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Figure 4.1. Surface divisions in a square cylinder
in two dimensions.
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The expressions for the currents in the asymptotic regions are
the same as Equations (4.5) to (4.8) except that the observation points
are moved from the MM-regions to the AS-regions. |

Observing all these equations we can see that the observation
and source points are not on the same surface in any one equation.
Therefore as in the wedge case in Chapter III, the singularity problem
(i.e., exclusion of an entire patch containing the singular point)
does not appear in the square cylinder case.

The currents 3gp(ﬁ) and 3gp(ﬁ) can be solved simultaneously by
the iterative method. After substituting these currents into the
equations for ng(ﬁ) and ng(ﬁ), they also can be solved by the same
technique.

4.2 Impedance Matrix

The moment method is used to solve Equations (4.5) to (4.8).

For this purpose, we use simple pulse basis functions in the point-
matching technique.

As we expect from the equations we derived, the resulting im-
pedance matrix will be very complicated because there are four unknown
currents involved in the calculations. Therefore, we will obtain an
approximate expression for the matrix by ignoring certain terms in
the equations. For the sake of clarity, expressing Equations (4.5)

to (4.8) in scalar forms, we have
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4 3
Ig(®) = 2§ £ 1206 (e.00)de'+2 T F I8 (2')6q(s.2")dR,
k2 ok k2 ok E_
MM
(4.9)
4 3 K o Ao ran o K o0 o
Im(2) =2 1 Iyy(e')6g(R,0')de'+2 § £ Jo.(2')6(2,2')dR;
k1 ok =2 ok
MM
(4.10)
2 4 k
Iy(®) =2 kz1 fk Iyw(2')6g (250" )dp ", (4.17)
k#2 CMM
and
3 4 k
IMM(R) =2 kz] fk Imm(l')eq(Lgl')dl'- (4.12)
k#3 Chm

The result of the differentiation of the Green's function with
the associated vector calculation is expressed as Gq(z,z'), which is

given by

B (.2") = - 28 i er) E— . (4.13)

! J 22412
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If we substitute Equations (4.10) to (4.12) into Equation (4.9)
repeatedly, we obtain an equation which has one unknown current I;M(ﬁ)
and is composed of multiple integrals containing I;M(z') in their
integrands., After ignoring the triple and higher multiple integral

terms, we have

4
Iiu(2) = 4 22 fk {1 IQM(Q-)eq(m",n')sq(z,z")dz-dn"

" Cw Com
+ Q(R)+2 f4 Q(R')G, (2,2 )de! (4.14)
Coam
where
_, 3 K /o0 Nefor
Q(g) =2 kzz gk Jop(z )Gq(ﬂ.,ﬂ, )dg . (4.15)

Assume that the solution of Equation (4.14) can be expressed

in the series form of
1 N g
Iyq(2) = nzl I P(%~%) (4.16)

where

o) = 1T for {2-g ] <2A9- (4.17)

0 elsewhere,
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and ag =-%, N is a number of subintervals in W.

S

Inserting Equation (4.16) in Equation (4.14) and rearranging

terms, we have

4
I:rl; {P(ﬂrﬂ.n) -4 kzz éck Gq(g"aﬁn)ﬁq(ﬂ‘,ﬂ.')M.dﬂ.']
MM

it~ 2
-t

n

=Q(r) +2 f Q(z')Gq(z,z')dz' .

4
C
MM (4.18)

Multiplying both sides of Equation (4.18) by G(R-Rm), m=1,2,...N,
integrating them over the surface C;M, and dividing both sides by

A%, we have

4
1 ' |
I [P(“m““n) -4 kzz fk Gq(z ,zn)eq(zm,z')azdz]
" Cyu

N~ 22
-

n

= Q) + 2 f4 Q(n')Gq(zm,z')dz' , m=1,2,...,N
Cham

(4.19)

from which I; can be determined by solving a matrix equation of the

type
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[ZJJ HJ] = [VJ], m,n=1,2,...,N. The elements of the imped-

——

ance matrix [Zgn] are obtained from

4
Z*n = Plag-2,) - 4 E » fk Gq(2's2)6g (2. 0" ) Arde’ (4.20)

° Cuy

where m,n=1,2,3,...,N.
Also the elements of the voltage matrix [V%] are determined by

i) v 2 £00 Gt idet Mz N (.20)
c
MM

In Equation (4.20) the most dominant term is

f4 G2 "s2p)6g 0,0 Jo0 e
Crm

which is due to the surface current on the 1it surface CﬁM. Therefore

1

for the simpler form of Zm

n»> We can ignore all other terms except the

dominant term.
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4.3 Numerical Results

For numerical integration, the Tength of one side W of a square
cylinder was divided into 60 subintervals. The moment meth;; region
CEM(k=1,2,3,4) was set up with one half of W in it's length. Therefore
the extent of the moment method region (CMM) will be changed according
to the size of the cylinder. However, as we have seen in the wedge
problem, the current on the surface of a square cylinder also will
not be affected by CMM’ as we will see Tater in the numerical results.

Numerical calculations were performed for various cylinder sizes
and angles of the incident field, and comparisons were made with inde-
pendent GTD solutions. For the GTD solutions, up to triply diffracted
fields were considered, and the diffraction coefficient formulas ob-
tained by Kouyoumjian and Pathak were used. The magnitude and phase
of the surface current on a 0.7A square cylinder with the wave incident
angle ei=95° are shown in Figure 4.2. It is seen that overall agree-
ment with the GTD solutions is very good except that the phase of the
current on the deep shadowed region (Cs) deviates slightly from the
GTD result. Also the result for a square cylinder with W=1.2)and
61=120°, which is shown in Figure 4.3, is seen to be in very good
agreement with the GTD solution.

Results for larger W, that is W=3.0A and 4.2)\ are, respectively
shown in Figures 4.4 and 4.5. We see that overall agreements are quite
good with slight deviations in the deep shadow region. Although we
obtained results for square cylinders up to 4.2\ on a side, the method

does not show any 1imits on the size of a cylinder or on the wave
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incident angle. Next let us examine the results of the surface cur-

on a 3.0 square cylinder with CMM=D.5A and 2.0\, respectively in
Figures 4.6 and 4.7. The number of pulse basis functionsrin CMM is
proportional to CMM’ and the width of the pulse is kept constant at
0.05 for those data. By comparing Figure 4.6 with Figure 4.7, we

can realize that the larger CMM makes the result slightiy better,
especially in the deep shadow region. However, it is clearly seen

that the extent of the moment method region does not affect the surface
current significantly.

It is well known that a square cylinder can have an interior
resonance problem since the integral equation has a nonunique solution
at the resonant frequencies. The moment method produces an erroneous
solution for the surface current on a square cylinder at those resonant
frequencies. The geometries of the square cylinders which correspond

to the resonant frequencies are determined by
A m,n=0,1,2,3,... (4.22)

from which we can find an infinite number of square cylinders which
are in the resqnance mode. Some of these geometries are obtained
from Equation (4.22) are given by W=0.5), 0.707), 1.0A, 1.718A, 1.51,
1.58x, 2.0A, 2.121x, 3.0), 3.041Ax,... . For a square cylinder, the
resonant frequencies are so sharply defined that we may not detect
the resonance phenomena even at freguencies deviated very slightly

from them.
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Figure 4.8 shows the results of the surface currents on the
0.707X square cylinder with 9i=950 which is one of the geom®tries
having an interior resonance. Three methods, the GTD, moment, and
hybrid methods are used to obtain those results. It 1is seen that the
moment method produces erroneous results in both the magnitude and
phase of the current. Also when the same square cylinder with ei=120°
is tried, the moment method solutions become worse as shown in Figure
4.9.

On the other hand, our hybrid method solutions do not show any
resonance phenomena and instead show very good agreement with the GTD
solutions in both cases of 6,=95% and 120°. Results for W=1.118),
which also correspond to one of the resonant geometries, are given
in Figure 4,10, Our solution does not show any resonance effect.

It is worthwhile to mention that the GTD and our hybrid method
solutions for W=0.705 A (which is slightly different from 0.707.) have
remarkably good agreement with the moment method solutions as shown

in Figure 4.11.
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CHAPTER V
CIRCULAR CYLINDER

5.1 Integral Equations

We will consider a perfectly conducting circular cylinder which
is illuminated by a TE plane wave as shown in Figure 5.1. The moment
method regions which are represented by th and C;M’ respectively in
the 1it and shadowed regions, are located in the regions near the

shadow boundary.

Figure 5.1. Surface divisions in a circular cylinder
in two dimensions.

63



The equations for the surface currents on a circular cylinder
will have the same forms as the general equations except for the inte-
gration regions. Therefore we can write the following equations di-

rectly from the general equations:

T (R) = 2iaf! (R) + 28 x § T (R*)xv'6(r)dy’ (5.1)
3
c
IS (RY = oneA R 4 < g ' '
Jop(R) = 2nxH (R) + 2n x fzdop(R )XV'G(r)de
+ 20 x T3 (R'XV'G(r)dg' (5.2)
¢s F
5 (R =20 x § T (R)xV'G(r)de'+2fi x § Top(R')xy'G(r)dg*
MM g MM ¢ MM v %
Cham Chm
+ 20 x f Jg,(R')xv'G(r)de' (5.3)
CS
Toy(R) = 20 x §  Thu(R' )@ '6(r)d +2h x § Tyy(R')xV'G(r)dg’
Ch Chau

(5.4)

G(r) is defined in Equation (2.6). The expressions for the cur-
rents on the asymptotic regions have the same forms as Equations (5.3)
and (5.4) except the observation points are moved from the moment

method regions to the asymptotic regions.
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5.2 Consideration of the Singularity Patch

As we mentioned before, the equations for the curved Eurface
have as many singular points as observation points. Therefore Equa-
tions (5.1) to (5.4) may not be useful for practical numerical cal-
culations because we have to skip some finite areas containing the
singular point instead of one point for the evaluation of the principle
value of integration.

Let us consider the exaggerated part of the curved surface shown
in Figure 5.2. The points A, B, C and D are the boundaries of di-
vision, and Po’ Py and P, represent observation points which are lo-
cated at the center of each division. Thus, the currents at the points

Py, P_. and P2 represent the currents on the subintervals AB, BC and

1o
CD, respectively.

Figure 5.2. Source points around the singular point Po‘
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When we perform numerical integration with the observation point
at P, the contribution of the source currents which are lecated in
the interval BC will be disregarded, and thus, the errors will be in-
creased. If we subdivide the interval BC into many subintervals, then
the resulting errors will be decreased. However, this way of solving
the problem may not be efficient when we consider limits of computer
memory storage and running time. Therefore we will derive the magnetic
field integral equation which will be useful for practical calculations
in general and then derive the specific result for the circular cyl-

inder problem,

Just inside the surface of a perfectly conducting body, the fol-

Towing boundary condition will be satisfied.
AXT(R) + AXAS(R) =0 just inside S (5.5)

where A'(R) is the incident magnetic field, and A°(R) is the magnetic

field due to the electric surface current on S and is given by

B(R) =v x [ T(R') G(r) ds’ (5.6)
S
From Equations (5.5) and (5.6), we have

WAV(R) + fixyx Srﬁ(rz'*)e(r)ds- =0 . (5.7)

Using the vector identity V x (AB) = (VA) x B + A(VxB) and noting that

wdJ(R')=0, we have
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AXA(R) + Mef IR x TG(r)ds’ = 0 (5.8)

where we used the relationship VG(r)=-v'G(r), and ¥'G(r) represents
gradient of G(r) in the source coordinate system. If we divide the
surface § into two surfaces, S-Sf and S¢ which is finite and includes

a singular point at the center of it, we can write Equation (5.8) as

AXH'(R) + fix [ J(R')x9'G(r)ds* + dx [ J(R')xv'G(r)ds' = 0.

(5.9)

Since the third term of Equation (5.9) still has an r~} singu-
larity as R approaches R', we will consider a hemispherical surface

Se which is mounted over the singular point Py with radius r. as shown

in Figure 5.3. Then Equation (5.9) can be rewritten as

AXAT(R) + fix [ J(R*)xv'G(r)ds"
S"Sf

+ Tim Jdax [ TJR')xV'G(r)ds' + nx fﬁ('R")xv'G(r)ds'j}‘O
SS’*O Sf-Se SE

(5.10)

Let

'U](ﬁ) = Tim fx [ J(R')xv'G(r)ds' (5.11)
SE-o-O SE

67



Figure 5.3. Surface divisions around the singular point Po'

and

Ax S [ J(R')xv'G(r)ds' . (5.12)

Then Equation {5.10) becomes

AAT(R) + fix [ J(R)xG(r)dst + J;(R) + Tp(R) =0 . (5.13)
S-Sf
Using a small argument approximation for ng)(sr), 3&(?) can be easily

obtained as (see Appendix A)

3R = - 23R . (5.14)
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Although this result is obtained for the two dimensional pfob]em, the
same result can be obtained for the three dimensional sphere problem
which we will consider in Chapter VI.

Next we will consider ﬁg(ﬁ) in Equation (5.12). Let J(R) be

in the direction of f on the surface, then we can write

JR) =T IR) . (5.15)

The unit vector £ will be -§ for the geometry in Figure 5.1. Also

let
V'G(r) = B G (r) (5.16)
where
6.(r) = - & 1{?) @r) (5.17)
c 7 " .
and 7' = R'-R
| R-R"|

Since f x (£'x7') = ¥ cosep, where © is the angle between the unit

vectors fi' and #', Equation (5.12) can be rewritten as

J,(R) = Tim t [ cosé J(R*)G (r)ds" (5.18)
+0 ~

1
se 5f €
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or since n'-r' = cosp, we can write Equation (5.18) as

B = lin £ AR ARG ()" (5.19)

Sé+0 Sg= c

where ©' is the unit normal vector to the surface at the source point.

To obtain the approximation for 3é(ﬁ), we assume that

J(R') =J(R) (5.20)

for the small finite area Sg. Then Equation (5.19) becomes

T(R)= JR) Tim [ AP G (r)ds' (5.21)
S€+0 Sf‘se

From Equations (5.13), (5.14) and (5.21) we have expression for J(R),

which is given by

I(R) = cp [20xH (R) + 2fx £ J(R')xV'G(r)ds'] (5.22)
-S¢

where the constant CO is

Co = (5.23)

1-2 1im  J #'ep G.(r)ds'
S*0 Se-S.
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Now let us calculate C0 explicitly for a circular cylinder. Consider
an exaggerated part of the circular surface shown in Figure 5.4.

Points A and B are the boundaries of the finite surface Sf, and the
observation point P is located at the center of AB. The value of h'.?!

can be obtained from Figure 5.4 as

A'QA - =-r‘—
n'sr' =coso T (5.24)

Figure 5.4. Surface around the singular point P to give
relationship between a, r, and 9.

Also the small argument approximation for Gc(r) is given by
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Gc(r) = “'gj ( %r-+ J EgF) for small gr, (5.25)

-

Substituting Equations (5.24) and (5.25) into Equation (5.23), we

obtain

1
Cy = . (5.26)

-
c

. . 2

o { @ EE e

1-4 1
Yo

Evaluating the integration in Equation (5.26), we obtain

Co = ] (5.27)
= . 5.
1+ e 2 s Bzrg
2am ° g

Notice that for very small res CO becomes one, and thus, Equation
(5.22) becomes the usual magnetic field integral equation.

The Equation (5.22) will be useful for practical numerical inte-
gration because the finite area S¢ is removed instead of just a point
for evaluation of the principle value of integration. The constant
C0 will suppiement the contribution which is lost by removing the
finite area S.. Although the result in Equation (5.27) is obtained
for a circular cylinder, the same result may be used as an approxi-

mation for an arbitrary smooth surface in two dimensions.
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5.3 Impedance Matrix

To solve for Tﬁh(ﬁ) and Tﬁm(ﬁ), we use the moment method. For
the sake of simplicity, we will derive the approximate form of the
impedance matrix by ignoring all possible terms that make a minor con-

tribution. Expressing Equations (5.3) and (5.4) in the scalar forms,

we have

I(R) = 2§ Ig(R'G4(R.R')de' +2 £ Igy(R')G,(R,R')de’
2

S
Cim Cam

+2 § 35, (R")Gy(R,R")de'  (5.28)
CS

and

() = 2 ic IR )G, (R,R" )dg ' +2

f Igy(R')G4(R,R*)de' (5.29)
c Cy

MM MM
where

64(R.R') = - gl%l- 2 elRR) . (5.30)

Substitution of Equation (5.29) in Equation (5.28) leads to

Ify(R) = 2 IJLc Im(R' )64 (R,R* )dg!
Chm
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+ 4 JC Jt Ihﬁ'M('ﬁ'l)Gd('ﬁu’ﬁl)Gd(‘ﬁ"ﬁ'u)dgldzu

S g
Com  Coim

PAFF I5,(RNG(RYRY)E(R,R")det det

S S
Com Cpa

+2 f Jgp(ﬁ-)sd(ﬁ,n-)dz' . (5.31)
CS

If we substitute Equation (5.29) into Equation (5.31) repeatedly, we
will have an infinite number of multiple integral terms. For an ap-
proximation, we ignore all multiple integrals higher than double in-
tegrails. This approximation can be justified by noting that the
dominant terms in Equation (5.31) are the first and last terms.

Therefore Equation (5.31) can be reduced to

Ioy(R) = 2 f  IR(R*)G,(R,R")de"
Chiy

I Ty (R )6 4(R",R* )G 4(R,R" ) de *de”
Com  Coim

t2f 95 (RIGy(RR )R . (5.32)
3
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=2 ,i Jgp(ﬁ')ad(ﬁm,ﬁ')dg-
C

m=1,2,3,...,N. (5.36)

If we represent Equation (5.36) in the form of

% 1118 = v& -
ztink = b w2000, (5.37)

we have the impedance matrix [Zéh] whose elements are given by

. _ B _ —_— =
zt = P(R,R,) - 2 64(R R, )AL

-4 ,ts Gd(ﬁ',ﬁn)ed(ﬁm,ﬁ')awz' . (5.38)
Com
Also the elements of [V%] are determined from

vi=2 5 Iop(R1G4(R LR )de' . (5.39)
c

5.4 Numerical Results

We divide the circumference of the cylinder into 120 sub-
intervals for the various numerical calculations which follow. The
total extent of the MM-region on the 1it surface, CﬁM, was 60° in angle,

and 20 pulse basis functions in the point-matching technique were used
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to obtain the current in the MM-region. Our results {marked by + in
all data) were compared with the exact solutions (marked by-the solid
lines). Usually the second or the third order approximations were
enough for acceptable results. Also all results were obtained with
the constant C, given in Equation (5.27), which was noted by C4#1 in
the figures to follow.

Figures 5.5 to 5.8 show the magnitude and phase of the surface
currents on the circular cylinders of 0.2\ to 5.7x radii. It is seen
that agreement with the exact currents are quite good regardless of
the cylinder size. By comparing Figure 5.9 with Figure 5.10, which

show the current results on a 5.2x circular cylinder, respectively

2
MM

MM-region on the surface currents. It is shown that the surface cur-

with CﬁM=30° and Cy,,=120°, we can see the effect of the extent of the
rents are affected very little by the size of CﬁM, which is a very
desirable feature of this method. However, it will be seen that as
CﬁM is increased, a slightly better result is obtained.

The effect of the constant Cq is shown by Figures 5.11 to 5.14.
The results in Figures 5.11 and 5.12 were obtained with a circular
cylinder of the 4.8\ radius. We see that a 1ittle improvement was
made with the constant CO. However, for the radius of 3.0:, the ninth
order approximation gave the results in Figures 5.13 and 5.14, where
it is clearly seen that the constant Co provides a great improvement
in the magnitude and a Tittle improvement in the phase of the surface
current. We realize that the radius of 4.8\ corresponds to a non-

resonant frequency and that the radius of 3.0A is near a resonance
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mode. For the geometries corresponding to the resonant frequencies,
the higher order approximations are shown to be needed to qptain
acceptable results.

Recently, several methods such as the combined source, combined
field, and hybrid methods have been presented to solve the interior
resonance problem. However, it seems that any of these methods are
difficult to apply to our method because we use the iteration technique
for Ugb(ﬁ) and 3gp(§), which needs a proper initial starting current.

Actually the interior resonance does not affect the surface
current on a circular cylinder so seriously. Although we obtained
the results for the cylinders of up to the radius of 5.7A, the method
does not have difficulties for the larger cylinders. Also there are

no difficulties in this method for the cylinders of radii smaller than

0.2A.

78



180

—
w
L
w
[+ 4
O
(1]
(=]
b4
w
w
<<
X
Q.

—|80

20

. ¢ EXACT
-H-©o. + ++ AS—-MM
Ny X H' a=0,2 )\
Ciku=60
Co# |

90|

Figure 5.5.

0 45.0 90.0 135.0 190.0
¢ (DEGREES)

—

B ] 1 ] 1 ] ] l | 1 | |

(o] 45.0 90.0 135.0 180.0
¢(DEGREE5)

Current gn a circular cylinder for

a=0.2,

—_en0

79



180

PHASE (DEGREES)
o

|
©
o

7
O

-

- é EXACT
w 2 ---|-|—e_)i + ++ AS—MM
H a=1.2 A

cdu=60

Co#!

) | ] 1 1 ] ! I ] 1 i ]
0 45.0 90.0 135.0 190.0
¢ (DEGREES)
{ 1 | | 1 1 1 ] ] I 1 ]
0 45.0 90.0 135.0 180.0
¢ (DEGREES)

Figure 5.6. Current L&n a circular cylinder for
a=1.2x, MM=so°, and C_#1.

80



180

90

PHASE (DEGREES)

|
©
o

—i80
o

U L L B

EXACT

‘ 4 <. + ++ AS—MM

N/ ¥ " a=3.2\
cd,=60°
Co® |

o

45.0 90.0 135.0 190.0
¢ (DEGREES)

) | | l 1 I 1 i i y ]

45.0 90.0 135.0 180.0
¢ (DEGREES)

Figure 5.7. Current gn a circular cylinder for
a=3.2x, cMM=so°, C,#1.

81



S —— EXACT
- +++ AS—MM
- a= 5.7\
R cd,=60°
2 Co*!
=L
I =
ol ] | 1
0 45.0 90.0 135.0 190.0
¢ (DEGREES)
180 — *
w sol- \’ \
w ol
[+l .
©
g e "
~ o ) B -
w
w f— 4
<
E -
—o0 |- i \
—180 _ T ! Q M L | N }
0 45.0 90.0 135.0 180.0

¢ (DEGREES)

Figure 5.8. Current op a q}rcu1ar cylinder for
a=5.7h , Cyyy=60°, and C #1.

82



—— EXACT
+++ AS—MM
a=5.2)
Cun® 30°
Co#!

=L
[ ==
ol
0 45.0 90.0 135.0 190.0
¢ (DEGREES)
W 90 k
Ll
o
< +
S o
s
n
et
a
- 90 1
—|80 ] ] } ] H| l ] L “
90.0 i335.0 180.0

¢ (DEGREES)

Figure 5.9. Current qp a cwrcu1ar cylinder for
a=5.2A, C -30 , and C #1.

83



180

“PHASE (DEGREES)

l
@
o

—I180
0

TT T T 1T T 11

-—

EXACT
+++ AS—MM
a=5.2 \
clys 120°
Co;el

o

45.0 90.0 135.0 190.0
¢ (DEGREES)

AEARRRRRARA

90.0 135.0 180.0
¢ (DEGREES)

Figure 5.10. Current on a circular cylinder for
a=5.22, C§M=.1zo°, and C #1.

84



180

4 s0

w

o

(L]

=

S o

(17}

[/ 7]

<

E
—90

—180
0

IIII_]

\® —— EXACT
0 Air -eﬂ—{gi + 4+ 4+ AS—MM
a H 10-4u81

CHu =B 60°

45.0 90.0 135.0 180.0
¢ (DEGREES)

45.0 90.0 135.0 180.0
¢ (DEGREES)

Figure 5.11. Current on a circular cylinder for
a=4.8, Cyyy=60°, and C =1.

85



T T T T[T 111

-

n A® EXACT
—~ 0 > <O, +++ AS~MM
— a H Qo 4.8 A
[~ C..- 600

Co #!

o) 1 1 | l 1
o] 45.0 90.0 135.0 190.0
¢ (DEGREES)
180 —
W 90} 'L
us
o -
IT)
g L
L ° e
w
w =
-
E -
—90 |-
—i80 | ] | | 1 | L ]
o] 45.0 90.0 135.0 180.0

¢ { DEGREES )

Figure 5.12. Current gn a gircular cylinder for
a=4.8), CMM=60 , and Coﬂ.

86



EXACT

. o 2 "H-Qi +++ AS—MM

- a H as=3.0A

- Chy=60°
Co=!

=1
) -
N +
0
0 45.0 90.0 135.0 190.0
¢ (DEGREES)
180 —
W 90|
w
= -
o
g -
-~ 0
w
n
<
o
-—90
—|80 ] ] ] A
0 90.0 138.0
¢ (DEGREES)

Figure 5.13. Current on a circular cylinder for
a=3.0a, Cp\=60°, and c,=1.

87



180

w
o

PHASE {DEGREES)
o

I
©
o

—180
(o)

I I

A =
\ AP —— EXACT
o > 4+|—Qi +++ AS—MM
H a=3.0\

cﬁ..-so’
Co#|

45.0 90.0 135.0 190.0
¢ (DEGREES)

90.0 135.0
¢ (DEGREES)

Figure 5.14. Current gn a circular cylinder for
a=3.0), Cyy=60°, and C_#1.

88



CHAPTER VI
SPHERE

6.1 Integral Equations

So far, we have considered conductors only in two-dimensions
where integrals over the surface reduced to line integrals. In this
chapter, we will consider a three dimensional problem, that of a per-
fectly conducting sphere.

Since the integration must be performed over the surface of the
sphere, a longer computer running time and increased memory storage
will be needed for the three-dimensional problem than for the two-
dimensional one. However, by using the symmetric property which a
body of revolution has, we can decrease the computing time very greatly
and also the computer memory storage needed.

The general equations we derived in Chapter II cannot be reduced
to a simpler form for a sphere, but instead it will be useful to derive
integral equations for the surface currents in the E- and H-planes.

The geometry in which a sphere is illuminated by a plane wave is shown
in Figure 6.1. Let the incident magnetic field be xpolarized and
traveling to the negative z direction as shown in Figure 6.1. At an
observation point P the induced surface current J(R) can be separated
into two components §Je(ﬁ) and $J¢(ﬁ), where 8 and o represent the

unit vectors in the directions of 6 and ¢, respectively.
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Figure 6.1 Geometry of a sphere illuminated by the x-polarized
plane wave.

Consider the magnetic field integral equation given hy

J(R) = T(R) + 2fx gﬁ(R")xv'G(r)ds' (6.1)

IR/ = anxA (R) (6.2)

Since J'(R) and J(R) are composed of the & and ¢ components, they can

be written as
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TR) =8 IL(R) + $ajb(ﬁ) _ (6.3

and
J(R) = ﬁJe('R) + $J¢(R') . (6.4)

The currents J4(R) and J¢(R) can be obtained, respectively by 8-J(R)
and $-J(R), which are given by

fl

Jo(R) = dH(R) + 28.n x %cﬁ(ﬁ')xV'G(r)ds‘ (6.5)

It

34(R) J;('ﬁ) + 280 x £I(R)xVG(r)ds’ (6.6)
5

By using the vector identity A.BxC = C-AxB and noting that 6xﬂ£-$ and

$xn=8§ on the spherical surface, we can rewrite Equations (6.5) and

(6.6) as
J4R) = J4R) - 2 £5-T(R")xV'G(r)ds" (6.7)
S
3,(R) = J;(m +2 f 8.J(R)xv'G(r)ds’ (6.8)
S

Substituting Equation (6.4) into Equations (6.7) and (6.8), we obtain

Jg(R) = Jg(ﬁ) -2 gf[$-6=ae(ﬁ')+$-$-a¢(ﬁ')] xV'G(r)ds" (6.9)
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() = M) + 2§ (84609, ®)40.5'3 B | sir)as

(6.

where §' and $' are the unit vectors, respectively in the @ and ¢

directions at a source point P', Let

v'G(r) = ?'Gs(r)

and .
_ . 1 e'JBr
G(r) = - (JB+7) S

Using the notations given by

Coplr) = $.8' x ' Gg(r)

Cop(r) = 88" x P' Gy(r)

Coo (1) 6.8' x ' G(r)

”~

§.6' x ' G (r)

n

Cop ()

we can express Equations (6.9) and (6.10) as

i o " 1
JB(R) Je (R) - 2fs [Cee (r')Je(R ) + Ceq)(r)J(b (R )]ds

and

(=]
=g
P
=i
Sy
|
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After calculating the vectors in Equations (6.13) to (6.16), we can

obtain the following results -

Cee(r) = C¢¢(r) =-§ [sine'sine+cos(¢-¢')(cosecose'-1)]Gs(r)
(6.19)

and

Ce¢(r) = - q¢e(r) = %-(cose-cose')sin(¢-¢')Gs(r). (6.20)
where r is given by

r = ajZ[T-siresine'cos(¢-¢')-cosecose'] (6.21)
and a is the sphere radius.
Since Fd(ﬁ) is x-polarized, Jg(ﬁ) and J;(ﬁ) are given by

J(R) = 2 sinp eJBacoss (6.22)

Jq‘; (R) = 2 cose cosy eJBacosd (6.23)

Equations (6.17) to (6.20) are not very useful for practical
numerical calculations since so many observation points are involved
in them. Therefore we will derive integral equations having only the
E- and H-plane currents as unknowns. For this purpose, if we represent
the E- and H-plane currents of 'Ji (R) as Jei(e) and Jc: (6 ), respectively,
Equations (6.22) and (6.23) can be expressed as
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AR = 33(e)sing (6.24)
Jl(R‘) = J}(8)cose (6.25)
where J;(e) and Jl(e) are independent on the angle ¢ and are given
by
Ji(e) = 2 edacose (6.26)
Jjb( 8) = 2 cosg eJBaCOSO (6.27)

Also the relationships of Equations (6.24) and (6.25) are valid for
JG(R) and J¢(ﬁ). Thus,

JS(T!') = Je(e) sing (6.28)

J¢(ﬁ) J¢(e) cosp . (6.29)
Equations (6.28) and (6.29) are useful properties which can be applied
to an arbitrary conducting body of revolution when Hj(R) is x-polarized.
Using Equations {6.24), (6.25), (6.28) and (6.29) in Equations (6.17)

and (6.18), we can obtain

1]

Je(e) Jg(e) -2 é [C](r])de(e') + Cz(r])d¢(6'i]ds' (6.30)

and

3,(8) J;(e) + 2 ,sf [u](rz)ae(e-) + Dz(rz)J¢(0')]ds' (6.31)
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where
aGs(r]) '
CI(r]) _——FT—_ [sinesin9'+sin¢'(cosecose'-l)]sin¢' (6.32)

aG.(ry)
Cz(r]) —*5ijf%— (cose-cose')cosz¢' (6.33)

D;(r,) EEEEEZl ( oser-cose')sin2 ' (6.34)
1\ rs ¢ ¢ .

i

aGs(rz)
Dz(rz) = ____F;_ [sinesine'+cos¢'(cosecose'-T)]cos¢' . (6.35)

!

Also ry and r, are given by

a\/2 (1-singsing'sing'~cosocoso’) (6.36)

1]

"

r, = a J2 (1-sinesing'cos4¢'-cosBcosp’) . (6.37)
If the currents Je(e) and J¢(e) are known, the surface currents at

any arbitrary point on the sphere can be readily determined from Equa-
tions (6.28) and (6.29). Equations (6.30) and (6.31) can be applied
directly to any equations we derived in Chapter II by adding proper
subscript and superscript.

If we look at Equations (6.32) to (6.37), we can easily see that
D](rz) and Dz(rz) can be obtained, respectively from Cz(r]) and C](rl)
just replacing ¢' by 90° * ¢'. This characteristic will make the com-
puter program simple,
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6.2 Consideration of the Singularity Patch

For reasons we discussed in Section 5.2 of Chapter V;we need
to consider the singularity problem. We will use a part of the result
of Section 5.2 to derive the proper constants for the sphere. If we
rewrite Equation (5.13) here again with the different definition of

V'G(r) given by Equation (6.17), the equation will be

AATR) + A x [ JRIxw'G(r)ds' + T(R) + L,R) =0 (6.38)
S-Sf
where J;(R) and J,(R) are given in Equations (5.11) and (5.12), re-
spectively. '
By the similar procedure as done in Section 5.2, we can easily
find'U](ﬁ) in the three dimensional case, which is given by (see Ap-

pendix B)

J,(R) = - 2 IR) . (6.39)

Now let us derive ﬁ%(ﬁ) for the 8 and § components. Using the results

of Equations (6.30) and (6.31), we can write JZG(G) and J2¢(¢) as

‘329(9) = -2 ;:;:TO Sf{Se [01(r1)Je (') + Cz(r])Jq)(e')} ds' (6.40)
and
J%(B) =2 ;i.TO Sf{se [D-I(rz)Je(e') + Dz(rz)J¢(9')] ds' (6.41)
€
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where dJ,.(6) and J2¢(e) are the currents observed on the $=90° and
$=0° lines, respectively. -
Since the surface area Sf is small, we can make the following

approximations for JZe(e) and J2¢(e)

' =-% on Sg for J,.(0) (6.42)

1t

d'= 0 on Sg for J2¢(9) . (6.43)

Then using Equations (6.42) and (6.43), the approximations for C](r1),
Cz(r]), D](rz),and Dz(rz) on Se can be obtained as

r
Cylry) = - 52 Gg(r,)  on S (6.44)
Cz(r]) ~ 0 on Sg (6.45)

and
Dy(r,) =0 on S¢ (6.46)

a
Dy(ry) = - 52 Gg(r,) on Sg. (6.47)
where
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ry = qu(1-sinesine'-cosecose') on Sf (6.48)

Substitutions of Equations (6.44) and (6.45) in Equation (6.40) and
Equations (6.46) and (6.47) in Equation (6.41) yield

r
Tpg0) = - 2 lin sfis (- 33)8g(ry) 3y (0" s’ (6.49)
£ e
r
Jp5(0) =2 ;;TO Si'se (- 73)65(ry)d (a")ds' . (6.50)

Also for the small surface area Sf, we can make the following approxi-

mations.
Jgle') = d(e) on S¢ (6.51)
J¢(e') o J¢(e) on S¢ . (6.52)

Then by substituting Equations (6.51) and (6.52) into Equations (6.49)
and (6.50), we obtain

-r
Tgle) == 2 3g(e) lim sg[s (—3)6(r,)ds" (6.53)
€
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~-r
Iyp(e) = 2 3, (0) Tim [ (—53)G (r )ds' . (6.54)

- - -
€ f e '

Assuming that the patch Sf is a circular surface with the radius L

then we can obtain the following results from Equations (6.53) and

(6.54).

dx ) =- So Je(e) (6.55)
3p4(8) =Sq J,(e) (6.56)
where
1 . -JBrg
S0 = 2333-[2 - (2+33rs)e ] . (6.57)

Then from Equations (6.38), (5.11), (5.12), (6.55) and (6.56) we can

obtain the following integral equations.

Jg(8) = Sy g - [2ﬁxﬁi(R‘)+2ﬁx J ﬁ(ﬁ')xv'e(r)ds'] (6.58)
S-Sf = ™
¢= 7
J¢(B) = S¢ $ - [Zﬁiﬁi(ﬁ)+2ﬁx I 3(§')xv'G(r)ds'] (6.59)
S=S¢ $=0
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or by using the results of Equations (6.30) and (6.31), we can express

Equations (6.58) and (6.59) as -
Je(e) = Se{idg(g) -2 S{Sf[c](r])de(e-)+cz(r])J¢(e'i‘ds?}’ (6.60)

35(8) = S¢{J;(e) +2 S{Sf[D1(r2)Je(e')+Dz(r2)J¢(e')] ds-} (6.61)

where
S, = - (6.62)
o - TS, )
S, = e . (6.63)
$ ~ T1-5

We see that as re approaches zero, Se and §¢ approach one. This means

that if the sphere surface is divided into very many subpatches then
.the constants %3 and ﬁp will not affect the integral equations sig-
nificantly. However, dividing the surface into many divisions may
not be efficient for numerical calculations. By using the constants
%3 and §b we can provide the same effect as using a Targe number of
divisions for numerical integration.

6.3 Impedance Matrix

In calculating the impedance matrix, the moment method region
is set up around the shadow boundary making a ring form as shown 1in

Figure 6.2. If we consider all points on Sy as unknowns, the computer
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storage may not handle the matrix because of too many unknowns. There-
fore we will use the results we have derived in Section 6.2 to obtain

the impedance matrix.

A x
- 4
Sum | Swmm
\
\
\
\ s
S:s ‘|SAS j.Fli
o _
__—__—7F\G } -
(|
yd | {
/
/
/
)
y

SHADOW BOUNDARY

Figure 6.2. Surface divisions in a sphere.

Also since the equations for currents are involved with two
currents Je(e) and J¢(a), the expressions for the impedance matrices
Zemn and Z¢mn will be very complicated and may not be useful for nu-
merical calculations. Therefore we will derive comparatively simple
approximate forms by ignoring all the terms that contribute insignif-

icantly to calculations. Let
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-

I,%q,( 6) = 2 {[D](e;e',¢')1ﬁe(e')+02(e;e',¢')I,’&¢(e')]ds'
S
MM

+2 f [01(9;9',(::')159(9')+Dz(e;e',¢‘)1,§,¢(e')]ds'

S
S

+ F¢(e) . (6.67)

fig(e) = - 2 JER, [Cl(e;e.’q”)lﬁe(e')+C2(9;9'=¢')1ﬁ¢(e')]ds-
Shin
eyl Py 1S oo i1 1S . ,
- 2 i;m[cl(e’e s )IMB(B)+C2(6’G P )IM¢(9 )]dS (5.58)

I5,(6) = 2 2 {D;(e;e',¢')Iﬁe(e')+02(9;9',¢')Iﬁ¢(9')]d5'
MM

+2 f [01(9;9',¢')1,?19(9')+02(9;e',¢')1§¢(e')]ds' (6.69)
SS
MM

where

103



Fale) = -2 SfS[C](e; g0 ')er (e')+C2(e;e',¢')J,S,q,(e')]-_ds' (6.70)

and

Folo) = 2 S;;[Dﬂe;e',¢')J;B(e')+Da(9;e',¢')J;¢(e')]ds' (6.71)

JS ] S ] ~ -~ S )
pe(e ) and Jp¢(e ) represent the § and ¢ components of Jop(e )s

respectively. Substituting Equations (6.68) and (6.69) into Equations
(6.66) and (6.67) repeatedly, and ignoring the third and the higher

multiple integrals, we obtain

Tyig (®) =-2f£[c1 (056" ¢" ) Ifig (8" )4C, (830" 10" ) Ifg, (0" )] ds'
S
o Iﬁe(e-)[c1(e";e',¢')cl(e;e",¢")-nl(e";e-.¢-)c2(e;e",¢"ﬂ ds" ds"
Swm Stim
+4J' :F Iﬁ(pfel)[Cz(en;es’cb:)C](B;eu,d’u)_oz(eu;el,¢1)cz(e;eu’cpu)]dsldsu
Sum St

+ F (o) (6.72)

Iﬁ¢(e)52£2 [D](e;e',¢')Iﬁe(e')+Dz(e;e‘,¢')1§¢(e')]d5'
MM

+4J( Jt IQ.Me(el )[_C](ell;el ’¢1 )D](e; 9",4)")""0] (ell;el ,¢l )Dz(ﬂ; en’¢.u):l ds'ds"®
S St
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+4-£ f Imdﬁe')[—Cz(e";e',¢')D1(e;e“,¢“)+02(e“;e',¢')02(a£b",¢"ilds'ds"
Swm Sk

+ E (o) (6.73)

Substituting Equation (6.73) into Equation (6.72) repeatedly,
and then ignoring the triple or the higher multiple integrals contain-
ing Ig(e') and the double or the higher multiple integrals containing

F¢(e), we obtain the following approximation for I&e(e),
12' ) -2 JC IR‘ ( l)c (e-el l)d [
Me(e = Mo 0 119 sd S

J'A
Sum

-4 f fg Iﬁe(e')01(6";9',¢')C2(6;6“,¢")ds'ds"
Smm Stm

+ 4 f f I%.(6')C{(0";0',')Cq(8;0",0")ds" ds"
sS. s
MM SMM

+ Fgoe) - 2 fﬂ F¢(e')c2(e;e',¢')ds' . (6.74)
Smm

Also by a similar procedure we can obtain an expression for

Ijf,(0) as
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thﬂe) =2 f@ 1§¢(6')Dz(e;9'.¢')ds'
S

e Ijo(0')Co(6"50" 0" Dy (050", ¢" ) ds " ds”
SMM SMm

+af f Iﬁ¢(9')D2(e";e',¢')Dz(e;e",¢")ds'ds"
Sy S
MM MM

+ F¢(B) + 2§ Fole')Dy(0:0',0')ds'.
2
Shim

Assume that Iﬁe(e) and Iﬁ¢(e) can be approximated by

N
Iho (8) = L 2, Plo-6,)
n=

N
MQ)(G) = n=),_| I¢n P(G‘Bn)

where
1 for |e-0,]< 42
P(e) = l < 2
0 elsewhere.
and a6 = 2T _ where N is a number of divisions.
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Substituting Equations (6.76) and (6.77) into Equation (6.74), and

rearranging terms, we have

N
I T {%(e-en) + 2 f 00300 )"
bpim

+4f f Dy(6";0,,6')C5(0;0",4")dd'ds"

%
Sum MM

2 po)

45 f c](e";en,¢')cl(e;e",¢")d¢'ds"] a®sno a0
|
MM PMM

Fa(8) - 2 F Fy(6')C,(0:0",¢")ds’ (6.79)
St

where the integration region ¢ﬁm represents the 1it moment method
region for the angle ¢.

Multiplying both sides of Equation (6.79) by G(S—Bm), m=1,2,...,N,
integrating them over eﬁM, and then dividing both sides by A8, we

obtain

N
) Igﬁ{}(em-en) +-[2 F Ci(ep:0,,0")do!
n=1 [

Pmm
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+4 f f Dy(6":0,,0')C,(0,56",0")d " ds"
Spry B
MM MM

af 01(9";9n’¢')51(9m;9"’¢")d¢"d5"} azsinerpe}
s .0
Stm P

= Fy(0p) = 25 Fp(0')C(68,30 " 50" )ds'

(6.80)
MM
Representing Equation (6.80) in the matrix form of
(25 100G = Vgl man=1,2,...,N (6.81)

means that the elements of the impedance matrix [Zéﬁn] are given by
7% [

omn = P(Bm"‘iin) +12 fﬂ, C](em;en’¢")d¢'
oMM

+4F  f Dy(e";0n.9')Cx(ep56"0")d 1ds”
S ¢2
MM SMM
12

-4 f f C1(0"56,50' )Cq(0y:0"59")dg'ds" ¢ a®sing A0 . (6.82)
So o J[
MM MM
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Also the elements of [V%m] can be obtained from

Vom = Folop) - 2 £ Fylot)Cy(opi0ts0t)ds’ (6.83)
s
MM

By the same procedure we can obtain the impedance matrix and
the voltage matrix for the § component of the surface current, whose

elements are given by

I

Zimn = P(6-6,) +{i- z'fg Dy (Bps®pse ) do'
MM

+ 4 :F f Cz(au;en,(b')D](em;e",d)")dd).ds"
S
-4 4 fﬁ Dz(e";en,¢')Dz(em;e",¢")d¢'dsJ}'azsinenae
SS
MM PMM (6.84)
and
vim = Fylop) + 2 § nFe(e')D](em;e',¢')dS' . (6.85)
S
MM

The dominant terms in Equations (6.82) and (6.84) are the first
two ones. Therefore if we want the simpler forms for computer pro-

grams, we may ignore the last two terms in those equations.
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6.4 Numerical Results

Two possible segmentation schemes for numerical integration over
the sphere surface are shown in Figures 6.3 and 6.4. In the uniform
segmentation shown in Figure 6.3, the surface is divided into equal
angles in the @ and ¢ directions. Therefore the patch areas around

6=0° will be very small compared to those around 9=90°.

X
A

AR

—
—
—

|
~ _—
-

Figure 6.3. Uniform segmentation scheme.

On the other hand, in the variable ¢ segmentation shown in Figure
6.4, we divide the surface equally in the 0 direction and proportional
to sin6 in the ¢ direction so that all patch areas are almost equal.
Experience shows that the better numerical results are obtained with
the variable ¢ segmentation scheme. A1l numerical results for a sphere

were obtained with the variable ¢ segmentation scheme, where we divided
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= X

Figure 6.4. Variable ¢ segmentation scheme.

the surface of the interval 6=0 to w/2 into twenty four bands (we

call the number of this division N) and each band starting at the pole
(6=0) in the interval ¢=0 to 7n/2 was divided into subpatches as fol-
lows; ],2,4,5,7,8,]0;1],]3,]4,]5,15,18,19,20,20,21,22,22,23,23,24,
24,24. With the larger number of N, better results can be obtained,
but also the resulting computational time will be increased signifi-
cantly. For example, the computer* running time with N=24 is about
twenty six minutes for the seventh order approximation, but if we
increase the number N by two times, the computing time will be

increased by approximately six times for the same order approximation.

*Modified Datacraft model 6024.
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This example shows that there is the upper 1imit on the sphere size
which can be handled practically by this method. =

The interior resonance appears to affect the surface current

more seriously on a sphere than on a circular cylinder. This seems
to be due to the interaction of the two currents Je(e) and J¢(e).
Also it is observed that the resonance problem becomes more severe
for the larger spheres. Therefore this resonance phenomenon Timits
the numerical calculations for arbitrary sizes of a sphere but may
not be of any consequence for other 3-dimensional geometries.

We obtained acceptable numerical results for conducting spheres
of radii 0.25. to 2.3X using N=24. Compared to a circular cylinder,
higher order approximation were needed for a sphere. The surface
current on a sphere was obtained with the seventh to the eleventh order
approximations. Also in the moment method region, whose size was 30°
in angle for all data, eight pulse basis and delta weighting functions
were used. A1l results were compared with the exact eigenfunction
solutions which were denoted by solid 1ines in the figures.

In Figures 6.5 and 6.6 the H-plane and E-plane currents, which

are denoted by J, and JB’ respectively, are shown for a sphere of

¢
radius a=0.25A. The agreements with the exact solutions are remarkably
good in both the E-plane and H-plane currents. Also the results for
a=0.5X% are in good agreement with the exact solutions as shown in

Figures 6.7 and 6.8.
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Figures 6.9 and 6.10 show the surface currents for the 1.0A
sphere, where we can see that the differences from the exact solutions
are larger in both the magnitude and phase for the surface current
compared to the results obtained for the smaller spheres.

It seems that the surface current on a sphere is affected not
only at the resonance frequency but also the frequencies around it.
Therefore we cannot find many sizes of spheres with which we can obtain
numerical results by this method. For example, although a=1.5)\ and
2.00 are not the exact geometries that have the interior resonance,
“the surface currents on those spheres are much different from the exact
currents. The radii of the spheres which are in the interior resonance
modes around a=1,5)\ and 2.0 are a 1.48\ and 1,98), respectively.

The surface current results for the sphere of 1.7\ are shown in Figures
6.11 and 6.12 and are in fairly good agreement with the exact results.
However, it is obvious that they are not that good compared to the
results for the spheres of 0.5\ or 1.0A radius.

The largest radius of a sphere for which we obtained numerical
results was 2.3\, and the results are shown in Figures 6.13 and 6.14.
We can observe that even though the results are acceptable, the mag-
nitude curves show many oscillations compared to other sizes of spheres.
The greatest departure from the exact solutions is shown in the phase
of the H-plane current in the shadow region. The oscillations shown
on the magnitude curves can be decreased a 1ittle, but not signifi-

cantly by increasing the number of divisions. However, as it has
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been mentioned before, by increasing the number of divisions the com-
puting time will be greatly increased. Therefore instead of increasing
N, it will be more efficient to use the constants §3 and S¢ which are
given in Equations (6.62) and (6.63) to make improvement in the re-
sults. Notice that the results in Figures 6.13 and 6.14 were obtained
with those constants.

If we examine the results shown in Figures 6.15 and 6.16, where

we used N=24 without the constants Se and S, , we can realize that

those constants, which were derived on thefiaéis of very.careful
approximations, make the magnitude curves considerably smoother.
Although we obtained numerical results for spheres of up to the
2.3\ radius, it will be possible to obtain the surface currents for
larger spheres by using a larger number of divisions with the constants

S6 and S¢.
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Figure 6.5. The H-plane current on a §Phere for
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CHAPTER VII
SUMMARY AND CONCLUSIONS

We have derived the necessary integral equations for the hybrid
AS-MM method and applied them to four different shaped perfectly con-
ducting bodies, namely a wedge, square and circular cylinders and a
sphere.

The modified geometrical optics current terms which were denoted
by'ﬁﬁp(ﬁ) and ﬁgp(ﬁ), respectively in the 1it and shadow regions were
obtained by an iterative technique in numerical calculations. The
currents in the moment method regions, which were denoted by Tﬁm(ﬁ)
and TﬁM(ﬁ), respectively in the 1it and shadow regions were solved
by a matrix technique (i.e., the moment method). For this purpose,
we derived the impedance matrix for each conducting body. The currents
in other than the moment method region were determined by using the
currents in the MM-region in the magnetic field integral equation for
the first order approximation. For the higher order approximation,
the jterative method was used to obtain both the moment method and
asymptotic region currents. The extent of the moment method region
did not affect the surface current significantly. Usually the second
or the third order approximation produced good results for the wedge,

square and circular cylinders, but for the sphere higher than the fifth
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order approximations were required to give acceptable results. This
is maybe due to the interior resonance problem. *

The singularity patch problem in the curved surface geometries
was considered and some constants were derived on the basis of approxi-
mations to make up some of the contribution lost by excluding the patch
area instead of just the singular point in the calculations. It was
seen that the constants made possible good improvement in the results
of the surface current and that they were useful for practical numeri-
cal calculations.

In this study we considered a technique for combining a moment
method current and an asymptotic current in both two and three dimen-
sions. From the formulations for the surface current on a conducting
body, we see that the method does not need any a priori knowledge of
the current form away from the moment method region. Alsoc we don't
have to follow ray paths on the surface of a conductor as we do in
the GTD method. Therefore these advantages of this method tend to
make it relatively easy to obtain the surface current on arbitrarily
shaped bodies.

As we have seen from the several examples, this method does not
have difficulties in its application to the arbitrary sizes of bodies.
However, this method usually requires relatively large computing time
and memory storage especially for bodies having many surfaces. This

disadvantage may 1limit the method in practical numerical calculations.
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As we have seen in the wedge problem in Chaper III, this method
cannot provide us acceptable results for the surface current on the
wedge if the magnetic incident field is grazing to the 1it surface
or if the wedge angle is small. Of course these limitations are of
no consequence in bodies whose dimensions are finite.

Also it was shown that this method could not eliminate what ap-
pears to be spurious resonances appearing in the large sizes of a
sphere. However, this method was not affected by the resonance in
its applications to the square and circular cylinders,

In spite of these disadvantages and limijtations, this method
provides generally good resuits for the surface currents on the per-
fectly conducting bodies. Extension of this method to more complex
bodies should be possible. Future work should study ways to reduce
the computer running time by making appropriate approximations in the
integrals. Future work should also consider the possibility of com-
bining this hybrid method with the GTD. Thus, one would treat areas
far removed from shadow boundaries and/or sharp discontinuities in
geometry by the GTD thereby eliminating numerical integration time.
The hybrid method of this paper could then be used to handle a wide
variety of discontinuities in geometry for which diffraction coeffi-

cients are unknown,
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Appendix A

CURRENT CALCULATION AT A SINGULAR POINT FOR
TWO-DIMENSIONAL PROBLEMS

To derive Equation (5.14) from Equation (5.11), we consider a
semicircular path Re as shown in Figure Al. Let the Surface current

J(R) be in the direction of £, then Equation (5.11) can be expressed

as
IR) = i [ a®) (a-pr) Bled gy (A1)
e+0 €
where
6(e) = - 4 H{Z)(ge) . (A2)

For small ge, ng)(se) can be approximated as

12 ge)= 1 -3 2 109, (4E) (A3)

where y is Euler's constant. Then ﬁgégl can be evaluated as

aG(e) _

]
5%¢ " - " Fme (A4)
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¥

Figure .Al. Integration path around the singular point
P in two dimensional problems.

Also for small circular path ze, J(R') can be approximated as J(R).

Substituting Equation (A4) into Equation (A1), and noting that n'-r'=1

and J(R')=J(R), we obtain

£ IR 1 —-)de
® nf o

3,(R)

]
]
]
o
-
=]
g

which leads to Equation (5-14).
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APPENDIX B

CURRENT CALCULATION AT A SINGULAR POINT FOR
THREE-DIMENSIONAL PROBLEMS

Consider a hemispherical surface S, with the radius  shown in
Figure B1. By the same way as done for Equation (A1), Equation (5.11)

can be written as

3,(R) = £ Tim fJ®')(A'-7r) 88e) g0 (81)
o . de
-jBe
Using —";—g-gﬁ)- = - (jB + le) gm— . ds'=éfsin e'do'd¢', and approximation

J(R') =J(R) for small surface S in Equation (B1), we have

2nm/2 -JBe
- 0 1 e 2 3
J(R) Tim -jB- =) e“sing'do'd¢’
0 O.r OJ' ( [ 4“ E ¢

n
o

2run/2 . R
= - IR) vim [ (BEH) IBE ingrdordg:
e+*0 00

_2mm/2 ;o
= - I®) [ [ de'de!
00

= - 2 IR (82)

which leads to Equation (6.39).
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Figure Bl. Hemispherical integration surface around the singular
point P in three dimensional problems.
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