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ABSTRACT

Geodetic positioning using range, integrated Doppler, and inter-
ferometric observations from a constellation of twenty-four Global
Positioning System satellites is analyzed. A summary of the proposals
for geodetic positioning and baseline determination is given which
includes a description of measurement techniques and comments on rank
deficiency and error sources. An analysis of variance comparison of
range, Doppler, and interferometric time delay to determine their rela-
tive geometric strength for baseline determination is included. An
analytic examination of the effect of a priori constraints on posi-
tioning using simultaneous observations from two stations is presented.

Dynamic point peositioning and baseline determination using range
and Doppler is examined in detail. Models for the error sources influ-
encing dynamic positioning are developed. Included is a discussion of
atomic clock stability and range and Doppler observation error statis-
tics based on random correlated atomic clock error are derived.
Criteria for establishing observation schedules for optimum geometric
strength for positioning solutions are examined. Results of geodetic
positioning simulation studies are presented.

Satellite interferometry results based on the double differ-
encing of simultaneous interferometric phase measurements from two
satellites are given. The effects of ephemeris and refraction errors

and the nonsimultaneity of observation are considered.

xvix



1. INTRODUCTION

1.1 Background ¢n a Global Positioning System

A Global Positioning System (GPS) is a passive all-weather
navigation satellite system proposed for operation after 1985. The
system uses the concept of passive satellite navigation based on highly
accurate atomic frequency standards to enable the navigator to determine
his three-~dimensional position, velocity, and time instantaneocusly on a
continuous worldwide basis. Range and range-rate measurements taken
simultaneously from four satellites will be reduced to determine these
parameters [Milliken, 1978]. A total of twenty-four satellites in three
orbit planes will be available for navigation giving accuracies and'
availability far exceeding the current Navy Navigation Satellite System
or Transit System [Stansell, 1978a] which GPS is designed to replace for
navigation. With the number of satellites in view always exceeding the
required number for navigation, the user may select a subset of four
based on some criterion which optimizes the geometric strength of the
navigation solution.

The GPS system consists of three major segments: Space System
Segment, Control System Segment, and User System Segment. Each segment
is developed over three separate phases, each being a logical extension

of the previous phase in an integrated and cohesive manner.



Phase I encompasses the initial design and evaluation of system
components including the development of user equipment satisfying the
various navigation applications [Borel, 1978}, testing of urer equipment
at a ground based simulation facility [Denaro, 1978], and the space
bagsed system as satellites become avallable. These satellites are pro-
totypes of operational satellites which will wvalidate a new ranging
technique and the stability of atomic frequency standards in a space
environment [Bartholomew, 1978]. This initial constellation will pro-
vide four-in-view geometry similar to the complete system for up to
three hours each day over selected geographic areas. An initial ground
tracking network will be developed and tested during Phase I as a proto-
type of the operational ground system [Russell, 1978), Certain limited
demonstrations of c_.erational scenarios are to be conducted.

Phase I1 consists of the initial production of low cost user
equipment and development of operational satellites. During this phase
additional satellites will augment the Phase I constellation. This will
result in a constellation of four satellites in each of three orbit
planes providing eight hours of continuous four-in-view geometry each
day. These satellites will later be maneuvered to provide continuous
worldwide two-dimensional navigation.

Phase III builds upon this two-dimensional capability augmenting
the constellation until a total system of twenty-four satellites in
three orbit planes exists, Orbital periods are twelve hours. The
ground tracking stations will become operational and modified as neces-

sary to accommodate full system operation.



Summarizing, Phase 1 is the concept validation period, Phase 11
is the system validation period, and Phase III consists of producticn
and operation. Initial worldwide operational capability should become a
reality after 1985, Phase I has been completed.

The final Space System Segment will comnsist of twenty~four
satellites deployed in three orbit planes separated in right ascension
by sixty degrees. Eight satellites are equally spaced within each
plane. Integrated into each satellite will be at least two atomic fre-
quency standards to maintain stable time and frequency required for pre-
cise ranging.

The Control System Segment is composed of a master control sta-
tion, an upload station, and three monitor stations [Russell, 1978].

The master control station and the upload station are currently located
at Vandenberg Alr Force Base in California and three monitor stations
are located on Guam and in Alaska and Hawaii. These monitor stations
measure the range and range-rate of the satellites, collect meteocro-
logical data and forward this information to the master control station.
Every monitor station Is equipped with a cesium frequency standard. The
master control station processes the data collected at the monitor sta-
tions and its own tracking data to obtain best estimates of satellite
ephemerides and time synchronization offsets for the system. Predicted
ephemerides and clock corrections are forwarded to the upload station
for transmission to the satellite.

The User Control Segment consists of the development and testing
of electronic receivers and assoclated equipment required to perform
navigation. The function of this equipment is to detect and to acquire
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the GPS satellite navigation signals, to extract range and range-rate
information, to perform corrections for ionospheric refraction, and to
compute three-dimensional position and velocity and time. The expected
positional accuracies of the system are nine meters in each horizontal
component of position and ten meters in the vertical component ninety
percent of the time. These estimates of accuracy are based on a single
determination of positionusing four satellites based on the expected
error budget and optimum satellite geometry [Milliken, 1978].

An eventual replacement of the Transit System by GPS would pos-
sibly curtail geodetic positioning currently available with the former
system using integrated Doppler observations and precise satellite
ephemerides [Sims, 1972]. At the present time Doppler positioning is
playing an increasingly important role in many countries for network
densification and control as detailed in the Proceedings of the First
and Second International Geodetic Symposiums on Satellite Doppler Posi-
tioning [1976, 1979]. The curtailment of this program could have sig-

nificant implications within the geodetic community.

1.2 Review of Previous Studies

A Global Positioning System although designed for navigation,
can offer the means for continued geodetic positioning using Doppler or
range observations. Anderle and Tanenbaum [1974) point out that a GPS
system is orders of magnitude better in oscillator stability and sup-
pression of ionospheric refraction and is effected less by uncertain-
ties in the gravity field. These factors imply that the typical errors

present in current Transit positioning would be reduced using GPS.
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In addition the presence of six to nine satellites in view at all times
means that continuous data acquisition will be possible as copposed to
intermittent data obtained from Transit.

However the extreme altitude of these satellites, having an
orbital semi-major axis of over 25,000 kilometers, means that the rela-
tive velocity or Doppler shift between a satellite and an electronic
receiver on the earth would be smaller limiting the amount of posi-
tioning information available from each integrated Doppler observation.
A comparison of simulated range difference data from GPS and Transit
demonstrates this geometric dilution of information. GPS range dif-
ference data which have a maximum value of around 17 kilometers for a
thirty-second integration period are approximately an order of magnitude
smaller than typical Transit observations which can have a maximum range
difference of 150 kilometers over the same integration interval.

Figures 1.2.1 and 1.2.2 illustrate thirty-second integrated Doppler
range differences for a typical Transit pass and for a high elevation
GPS satellite pass respectively. The elevation angle of the satellite
is given at the endpoints of the curve and at the time of closest
approach (TCA). In addition the maximum length of a GPS satellite pass
is about six hours whereas a Transit satellite pass lasts about twenty
minutes. Thus GPS range differences are smaller in magnitude than cur-
rently obtainable Transit observations and, due to the length of a pass,
range differences from consecutive integration periods will vary less.
This implies that continuous tracking of GPS satellites over a complete
pass may not represent an optimum data acquisition procedure. A sequen-

tial tracking appreach in which a number of satellites are tracked over
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segments of a pass may give a more geometrically significant collection
of observations.

Thus it is evident that GPS integrated Doppler observations
offer certain real advantages over Transit observations but lack in
geometric strength of cbservation. However the GPS system coffers addi-
tional observational approaches, namely, ranging and, as will be dis-
cussed below, the potential for interferometric obgervation.

The majority of the investigations made to date have centered on
the navigational capabilities of the GPS system. These studies consist
of both simulations and analysis of actual observations to determine the
accuraclies achievable in numerous navigational applications. Denaro
{1978] describes the initial testing of aircraft and land-based
navigation receivers using the Inverted Test Range at Yuma, Arizona.
These tests involved the use of ground-based transmitters simulating the
satellite system. Stansell [1978b] considers the civil marine applica-
tions of GPS and Cox [1978] describes the augmentation of an inertial
navigation system with GPS observations. Miller [1977] gives results of
an analysis of ocean navigation using GPS range observations, and
Kruczynskl [1978] considers aircraft navigation using a limited opera-
tional phase of the GPS system.

Numerous additional studies have centered on the theme of navi-
gation using the GPS system. However only relatively few studies have
examined the possible geodetic or geophysical potential of this system.
One of the earliest papers, given by Anderle [1978a], discusses the
major error sources effecting GPS range and Doppler observations and
arrives at anticipated accuracies for geodetic positioning and baseline
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components by extrapolating results of a limited analysis based on
single pass sclutions for two components of position. Anderle [1978b]
again gives estimates of precision of relative station positioning based
on GPS range observations. The results were again based on the projec-
tion of limited results. Fell [1979] gives an indication of the effect
of atomic clock stability errors on positioning based on the use of
range and Doppler observations obtained from one or two GPS satellite
passes, These limited studies comprise the present results indicating
the potential of GPS range and Doppler observations for geodetic posi-
tioning derived using a dynamic point positioning approach.

In addition to dynamic positioning, interferometric approaches
have been proposed which utilize radio signals broadcast by GPS satel-
lites to determine baseline components by measuring the time difference
of arrival or phase of these signals at two stations. Counselman [1978]
proposes to utilize interferometric observations derived froma series of
continuous wave signals transmitted by equipment which would augment the
GPS system satellites., Using this approach baselines ranging up toa few
hundred kilometers would be measured. Counselman presents baseline
uncertainty estimates for this system based on the geometry of the
satellite passes. These results are then adjusted to reflect the effect
of unmodeled tropospheric refraction. Applications of the system are
discussed.

MacDoran [1979] proposes to derive interferometric observations
from broadcast GPS satellite radio signals in a manner similar to that
used in very long baseline interferometry [Dermanis, 1977] or im the
portable ARIES system [MacDoran et al., 1978] both using

8



quasar sources. MacDoran gives a summary of the proposed SERIES system
and estimates of the effects of random and systematic error sources. A
graph of estimated baseline accuracy derived from SERIES is given.
Finally, Bender [Letter teo I. I. Mueller, 1979] proposes an
interferometric apprecach in which the phases of the reconstructed GPS
carrier frequencies with respect to a local oscillator are measured at
two stations in order to monitor crustal movements. As with the pre-
vious two interferometric proposals this approach remains in an early
stage of development and the exact magnitudes of the error sources can
only be conjectured at present. A more detailed examinatiom of all pro-

posed systems of usage is presented in Chapter 2.

1.3 Description of Present Study

The major objective of this study 1s to present an analysis of
geodetic positioning obtained from both dynamic point positioning using
GPS range and integrated Doppler observations and from interferometric
satellite observations. One of the basic aims of geodesy is the pre-
cise and consistent determination of the coordinates of points of
interest in an adopted earth-fixed frame of reference. How well this
can be accomplished using GPS satellite observations will depend on
many factors which must be examined in detaill.

The first step in this study, described in Chapter 2, 1is to
examine the proposed wmethods for the geodetic implementation of Global
Positioning System observations. These proposals are divided into two
basic classes, dynamic positioning with range and Doppler observations

based on the use of satellite ephemerides and satellite interferometry.



A discussion of these techniques 1s presented giving the mathematical
description of the observing technique. A brief discussion of rank
deficiency is presented for each system along with a discussion of the
error sources effecting each.

The second phase of the study is a comparison of range, Doppler
and interfercmetric observations to determine their relative geometric
strength for baseline component and chord length determinations.

Ranging observations are treated in three distinct modes, as range, cor-
related range difference and as interferometric observations. A
description of the adjustment procedure is given and an examination of
the effect of a priorl constraints on positioning using simultaneous
observations from two stations is given for each approach. This analy-
sis is presented In Chapter 3.

Dynamic positioning using range and Doppler observations 1s
addressed in Chapter 4. A detailed description of the error sources
influencing dynamic positioning is presented and error models for these
sources are developed. Included are a discussion of atomic clock error
modeling and the development of the statistics for range and Doppler
observation errors due to random atomic clock error. Ephemeris, atmos-
pheric refraction and instrumental error sources are considered. Simu-
lation of GPS range and Doppler observations is discussed along with
criteria for the selection of satellites to be tracked which yield opti-
mum geometric strength of solution. A sequential algorithm is derived
for the estimation of geodetic station coordinates from range and
Doppler observations with fully correlated weighting. Results of geocde-
tic positicning simulation studies are presented,

10



Satellite interferometry results are presented in Chapter 5
based on the double differencing of interfercmetric phase measurements
from two satellites observed simultaneously at two locations. This
observation procedure 1s designed to eliminate the effect of timing
errors on the determination of baseline components. The effects of
ephemeris and tropospheric refraction errors and the nonsimultaneity of
observation are considered.

A final summary and recommendations for additional analysis

are presented in Chapter 6.
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2. SUMMARY AND CONSOLIDATION OF PROPOSED

SYSTEMS OF USAGE

2.1 Introductory Remarks

All currently proposed methods for the geodetic implementation
of a Global Positioning System of navigation satellites have centered on
the use of three basic types of measurement. These observations are
range, integrated Doppler or range difference, and the interferometric
delay in time of reception or difference in phase of electromagnetic
signals at two sites. Ranging and Doppler techniques discussed by
Anderle [1978a] are suitable for dynamic point positioning applications
in which the coordinates of the tracking receiver are determined in an
adopted earth-fixed frame of reference. Coordinate differences, or
baseline components, may also be obtained from such observations
acquired at two or more stations. The interferometric approaches
advanced by MacDoran [1979], Counselman and Shapiro [1979], and Bender
[Letter to I. I. Mueller, 1979], although differing greatly in methodology,
are proposals for using the measured time delay or phase difference at two
stations to determine baseline components in order to densify existing

geodetic control and to monitor crustal movements.

In this chapter a discussion of these techniques 1s presented
which summarizes each observational procedure and gives a mathematical

description of the observation equations. A brief discussion of rank
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deficiency is presented for each system and the error sources effecting

each are addressed.

2.2 Dynamic Positioning Using Range
and Doppler Observations

The concept of dynamic point positioning using satelliite obser-
vations 1s nearly two decades old. At present geodetic point posi-
tioning using integrated Doppler observations from Navy Navigation
Satellites forming the Transit System is performed on a worldwide basis
primarily for network densification and control. Stansell {1978a] and
Laurila [1975]) give overviews of this gsystem and its applications in
geodesy and navigation. Although differing philosophies exist for the
exact implementation of Doppler observations for geodetic positioning,
as seen in the discussions of Brown [1976], Anderle [1974, 1976], and
Colquitt [1979], where differences in methodology exist in such areas
as parameter definition and procedures for treating Doppler observations
either as uncorrelated range differences or as biased range, this system
has made a great impact on geodesy.

With a Global Positioning System of navigation satellites both
range and Doppler observations are available for point positioning,
although the electronic technology required to acquire these observa-

tions differs greatly from current Doppler measurement methods.

2.2.1 Measurement of Range and Doppler

2.2.1.1 Range Measurement Procedure
Each GPS satellite broadcasts on two L band frequencies,
1575.4 MHz and 1227.6 MHz, called L1 and L2 respectively, to allow for
13



precise first order lonospheric compensation. Modulated on the Ll car-
rier are two pseudo random noise (PRN) code sequences known as the pre-
cision (P) code and the course acquisition {C/A) code. The P code is a
binary random sequence generated at a rate of 10.23 megabits each second
and may be considered as a square wave whose frequency is 10.23 MHz and
whose amplitude 1s randomly taken as plus or minus one every cycle
depending on the code sequence. The C/A code is generated at a rate of
1.023 megabits each second ard may be considered as a square wave simi-
lar to the P code but having lower frequency. The C/A code repeats
itself approximately every millisecond; whereas the P code has a repeti-
tion rate of approximately 38 weeks, although in practice the sequence
wlll be reset every week.

Lindsey [1973) discusses the general properties of digital
sequences known as pseudo random noise sequences for use in ranging
applications. The desired properties of these sequences are:

(i) the complete code cycle length must be long enocugh to
aveid ambiguities in range measurements;

(i1) the code symbol repetition rate must be high enough to
obtain the required resolution of the range measurement;

(iii) the autocorrelation function of the code should be simi-
lar to that of band limited white noise having two distinct levels;

(iv) to lmprove efficiency in radio frequency (RF) transmis-
sion the code should have a balanced number of ones and zeros over a
complete period of the sequence so that the power of the modulated sig-

nal is more evenly distributed about the carrier frequency.
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The significance of these properties will be apparent shortly.
The L1 signal transmitted by satellite i1 has the following form
as given by Spilker [1978] due to the biphase wodulation of the PRN

codes and phase quadrature

i -
SLl(t) - ApPi(t)Di(t)cos(wlt+¢)

(2.2.1)
+ Acci(t)Di(t)sin(m1t+¢)
where the L1 carrier has the form
Ll(t) = cos(w1t+¢) . (2.2.2)

In equation (2.2.1) P;(t) is a +1 pseudo random noise sequence. Thus
whenever the P code changes sign the phase of the cosine component is
reversed by 180 degrees or biphase modulated. These phase shifts occur
at the positive zero crossings of the L1 carrier. The factor Ci(t) has
an amplitude of plus or minus one and has the property that when the C/A
code 1s minus one, the phase of the second term in equation (2.2.1) is
reversed by 180 degrees. Thus the first and second term in that equa-
tion will remain out of phase by 90 degrees or retain phase quadrature
regardless of the code values. The factors Ap and Ac represent the
amplitude of each signal when transmitted. The factor Di(t) is an addi-
tional data code of amplitude +1, modulated on the carrier at a rate of
50 bits per second, which gives the navigation message along with the
information required to determine the time shift between the epoch of

the received C/A code and the epoch of the received P code. Figure

2.2.1 taken from [Butler, 1978] displays the biphase modulation of a
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carrier with a PRN code. The resulting RF signal and its power are
spread into a frequency interval centered on the carrier whose distri-
bution depends on both the bit rate of the code and on the code itself.
Figure 2.2.2 also taken from [Butler, 1978) demonstrates this spread
spectrum effect where fc is the frequency of the code.

The L, signal is biphase modulated by either the P code or the

2

C/A code. Assuming the former the L., signal has the form

2
SL;(t) - BpP;(t)Di(t)cos(m2t+¢) (2.2.3)
where
Lz(t) - cos(m2t+¢) . (2.2.4)

Both the L1 and L2 signals and all codes are in synchronization with
one another when gemerated.

To measure range a ground receilver must generate the same PRN
codes that are broadcast by the tracked satellite. This requires
a prioril knowledge of the codes selected for broadcast by each satel-
lite during the current week. With the receiver generating the appro-
priate P and C/A codes the range measurement is obtained by first
shifting the C/A code in time, compensating electronically for the
Doppler shift, until a maximum correlation with the received signal is

obtained. Thus the C/A code is shifted in time by t° and biphase modu-

lated with the received signal giving

- s i - - -
Ci(t—t )SL]_(t) = ApCi(t—t )Pi(t)Di(t)cos(w1t+¢)

(2.2.5)
+ Acci(t-t’)ci(t)Di(t)sin(wlt+¢) .
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When a maximum correlation of the C/A codes is reached the second term
on the right side of equation (2.2.5) will have 1its power compressed
into a much narrower band about the carrier frequency since the product
Ci(t-t')cg(t) is one, demodulating the signal. Since.C;(t—t') and
P;(t) do not correlate the power of the first term is spread into an
even wider band. Since the code correlation functions @(P,C/A)
and ®(C/A,C/A) are essentially two valued with a distinct maximum as
discussed above, a value t” can be determined where maximum C/A code
correlation occurs.

Since the C/A code has a short period, t” may be multivalued,
but a maximum correlation can be obtained readily. The data code Di(t)
then provides the receiver with information relating the epoch of the
broadcast C/A code to the epoch of the P code. Thus the approximate
time required to shift the receiver generated P code to correlate with
the broadcast P code modulated signal can be determined based on t~ and
the data message. The P code correlation proceskes is performed until
a maximum correlation occurs as in the C/A code correlation process.
The unique time T for which P(t-1) correlates with the signal is the
measured quantity. By performing a second correlation on SL; (t) an
estimate of the first order ionospheric refraction may be obtained and
applied to correct T as described in Section 4.1.3 and in [Spilker,
1978). The corrected value of T multiplied by the speed of light c is
known as the pseudo range measurement. It represents the geometric
range between the receiver and the transmitter plus the effect of the
synchronization error between the receiver and satellite clocks. 1In

addition the measurement is subject to cther error sources
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discussed below. For the moment, ignoring these error sources, the
observation equation for pseudoc range 1is

R = et = |5, -5 + et
(2.2.6)

2,1/2 + cAT

2 2
[(us u)” + (vs v)© o+ (ws w) 1
where Uy Voo W are the coordinates of the satellite in an adopted
earth—-fixed reference frame. The quantities u, v, w represent the
receiver coordinates in the same frame and AT represents the synchroni-

zation error between the satellite and receiver clocks.

2,2.1.2 Doppler Measurement Procedure

In the range measurement process both carriers are reconstructed
since the C/A and P codes are correlated and biphase modulated with the
received signal. In addition the data code is deciphered by the
recelver and removed from the carrier. The result is a continuous wave
carrier subject to Doppler shift.

Two approaches may be taken to measure the accumulated Doppler
shift over an interval of time. First, in forming the range measurement
the P code must be correlated with the received signal, Because of the
relative motion of the satellite with respect to the receiver the sig-
nal is subject to a varying Doppler shift and the electronic correlation
process must time shift the receiver code at rates proportional to the
range rate to maintaln correlation. Thus a Doppler measurement can be
obtained by monitoring the code sequence shift rates over an interval.
The second procedure is to difference the reconstructed carrier f8 with

a frequency generated by the receiver f0 and count the zero crossings
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of the resulting signal over a time interval. This second procedure is
the standard Doppler technique in use currently. GPS Doppler receivers
however could theoretically use either approach,

In either case the observation equation for integrated Doppler
can be expressed as the range difference over the integration interval

[ti’tj]' The equation 1is

or = [5,t) - 3] - [o,¢t) - B

(2.2.7)

-—E——[N

£, 31 (£ - £ (x

j-ti)]

where Nji is the accumulated Doppler count over the interval. The
measurement is subject to errors due to oscillator frequency variations
and atmospheric refraction. As with range this measurement is made on
two frequencies to allow for iomospheric refraction correction.

2.2.2 Comments on Rank Deficiency of
Range and Doppler Approaches

Dynamic point positioning solutions are obtained from range and
Doppler observations by linearizing equations (2.2.6) and (2.2.7) about

an initial estimate of station and satellite position

Vv =AX + L (2.2.8)

and minimizing VTPV wictlh respect to the unknown parameters X, This

minimization leads [Uotila, 1967] to the least squares normal equations

NX + U=20 (2.2.9)
where
N = ATpA (2.2.10)
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and

U = ATpL . (2.2.11)

Because of a lack of coordinate system definitiom a unique sclution to
equation (2.2.9) is not possible since N is a singular matrix with rank
less than the number of parameters. Despite the dynamical constraints
imposed on satellite motion a unique solution to equation (2.2.9) can
only be achieved if origin and orientation constraints are imposed on
the solution. In dynamic point positioning soclutions these necessary

constraints are usually imposed through the use of previocusly estimated

satellite ephemerides. The satellite positions appearing in equation
(2.2.6) and (2.2.7) are included in the normal equations (2.2.9) with
weighted constraints based on the accuracy estimates of the satellite
ephemerides utilized. If range or Doppler cbservations are made at two
sites the station position sclutions may be transformed into estimates
of the parameters of the baseline connecting the sites.

Arur [1977] performed a rank analysis of Doppler observations
and found that the vector of coordinate differences between the
observing station and the mid-arc state vector of the satellite pass,
the velocity components of this vector,and the frequency offset (fo-fs)
are estimable. The components of station position only become estimatle
if constraints are imposed on the ephemeris. For coobserving stations
the interstation coordinate differemces are estimable quantities. A
theoretical rank analysis carried out for ranging [Van Gelder, 1978]
showed that the ramk deficiency for the short arc mode is two. Thus

without the use of sufficient constraints unique soclutions to equation
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(2.2.9) are not possible. Pavlis [1979] discusses the general problem
of rank deficiency and procedures for obtaining solutlons.

For positioning applications of the GPS system, satellite
ephemerides will be estimated based on ranging observations from four
stations. The projected accuracy of these ephemerides is discussed in
Section 4.1.2. Range and Doppler positioning studies described in
Chapter 4 will incorporate weight constraints based on assumed ephemeris

accuracy.

2.2.3 Range and Doppler Error Sources

The accuracy of satellite ephemerides and tropospheric
refraction modeling and the stability of satellite and receiver atomic
clocks will have important consequences in the application of range
and Doppler observations to geodetic positioning. An additional factor
will be the precision of the electronic receiver. These sources of
error are discussed in detail in Section 4.1. Their effect on geodetic

positioning are discussed in Section 4.5.

2.3 Satellite Interferometry

Radio signals transmitted by GPS satellites have been proposed
as a new resource for the application of interferometric techniques to
baseline determination. The interferometry technique is based on
observing the time (phase) difference of arrival of radio signals from
a single source at two or more coobserving sites. Three different
satellite interferometry proposals have been advanced. MacDoran [1979]

proposes to utilize the broadcast GPS spread spectrum signals by
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cross—-correlating the recorded signals at two sites as 1n very long
baseline interferometry. The observed quantity is the time difference
of arrival of the signal at the two sites subject to a time syanchroni-
zation error. A second proposal [Counselman, 1979] would derive inter-
ferometric phase observations from a series of continuous wave signals
transmitted by equipmwent which would augment the GPS satellites. Obser-
vations would be made from at least four satellites simultaneously at
each site to recover the components of the baseline in near real time.
This technique relies on measuring the phase of up to ten continuous
coherent signals broadcast from each satellite to eliminate the 2nm phacse
ambiguity which occurs when a continuous wave 1s used. The phase
measurements are differenced at both observing sites to form the inter-
ferometric phase difference. Bender [Letter to I. I. Mueller, 1979]
proposes an alternative approach based on measurement of the phase of
the reconstructed GPS carrier frequencies at two sites. The phase of
the reconstructed carrier is measured with respect to a signal based on
the receivers local frequency standard. Bender proposes making such
measurements from three or more satellites simultanecusly or within a
relatively short time interval so that the local frequency standard
stability is not a serious limitation. The use of a water vapor radio-
meter is proposed as in the MacDoran approach to virtually eliminate
tropospheric refraction effects. This approach is also subject to the
21 phase ambiguity which must be resolved.

Thus three separate proposals have been advanced for an inter-

ferometric determination of baselines. The first is based on observing
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the time difference of arrival of random signals at two sites. The
other two proposals are based on the measurement of phase of continuous
wave signals.

2.3.1 Measurement of Interferometric
Time Delay and Phase

The interferometric time delay 15 the difference Iin the time of
arrival of radio signals from a common source at two sites. In very
long baseline interferometry the sources are the extremely distant
quasars. For the proposals described above the sources are radio

signals emitted from GPS satellites. Using the notation of equation

(2.2.6) the time difference of arrival at sites i and £ is given by
§T = (R, - R )/c = (|ps—pi] - |ps—p£|)/c + (at, -aty) . (2.2.12)

In equation (2.2.12) the earth-fixed coordinates of the satellite
appear since the radio signals received at each site are not incoming
along parallel paths as with gquasar sources. The last term
in equation (2.2.12) is the clock synchronization error of the two
observing sites.

If the observation is interferometric phase based on continuous
wave radlo signals, either broadcast or reconstructed, the observation

equation has the form

2m, =
8 =T[[Ds- ¢

1 - mil + cﬂri] (2.2.13)

where A is the wavelength of the signal, m, is the integer number of

1

wavelengths comprising the geometric range and &Ti is the
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synchronization error of equation (2.2.6). The wavelength X is a func-
tion of time due to the Doppler shift. The difference in phase at two

sites is given by
- =2 = =05 -5 - (m, - - .2.14
AB=B8 -6, =7 [[ps pi! e, p£| (m, -m Ir+c(ar, ~a1,)] . (2.2.14)

Since the Doppler shift in frequency will not be identical at both
observing sites equation (2.2.14) is an approximation to the order of
accuracy that the Doppler shift is known a priori. The third term in
equation (2.2.14) is the 2m ambiguity mentioned previocusly. Its
a priori uncertainty will be a function of the initial accuracy of the
observing station's coordinates.

Finally an examination of equations (2.2.12) and (2.2.14) shows
that the time delay and the difference in interferometric phase are

related by

- Ajal _
8t c[21r+mi mg] (2.2.15)

2.3.2 Comments on Rank Deficiency of
Satellite Interferometry

Equation (2.2.12) and (2.2.14) reveal that satellite interfero-
metry observations are a function of satellite position unlike quasar
observations and are related to the difference in range between the
satellite and the two observing sites., If normal equations for station
position are formed from such observations the normal matrix N will
not have full rank. Unless sufficient information 1is available on

satellite position, a unique solution for earth-fixed station
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coordinates 1s not possible. Even with such constraints the normal
equations can stil]l tend to become singular as the baseline distance

decreases. This i1s demonstrated in Chapter 3.

The following approximation [Counselman, 1978] can be used in
equations (2.2,12) and {2.2.14) to recast these equations in terms of

baseline components

le, -p,1-1Ip

-pf‘[:(oi-pi).p

8 s

(2.2.16)

2 2 - ~ 2 =~ 2
[2(01-02)— (py os) +(pg P 171

1

+
aps

where Py is the unit vector in the direction of the satellite. For

short baselines defined as having
]pi - pﬂ| < o (2.2.17)

the second term in equation (2.2.16) may be deleted. Then equations

(2.2.12) and (2.2.14) become

1 = (EQ_-E&) »p /e + (AT - 8T)) (2.2.18)

and

2 = - -
A0 5 [Py -pg) s p - (my —m)A+clar, -AT)] - (2.2.19)
An examination of the derivatives of equation (2.2.18) with respect to
baseline components and the time synchronization error reveals that

these parameters are estimable if four satellites are observed which do

not lie on the same circle in the sky [Counselman, 1978].
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Equation (2.2.19) has the same form as equation (2.2.18) except for the
21 ambiguity term which cannot be separated from the synchronization

error unless special procedures are implzmented [Counselman, 1979}. The
double differencing approach examined in Chapter 5 is another technique

for handling this problem.

2.3.3 Interferometric Error Sources

MacDoran {1979] and Counselman [1979] outline the systematic
and random error sources effecting their proposals. Included are the
frequency stability of the receilver clocks, transmission media errors
consisting of tropospheric and ionospheric refraction, GPS satellite

positional accuracy and the precision of the instrumentation.
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3. PRECISION COMPARISON OF RANGE, DOPPLER, AND
INTERFEROMETRIC APPROACHES FOR

BASELINE DETERMINATION

A complete comparison of the positioning accuracies obtainable
from range, Doppler, and interferometric satellite observations would be
difficult to perform since proposals based on the latter approach remain
ia an early stage of development. For instance, the exact nature of the
instrumental error sources associated with satellite interferometry can
only be conjectured at present. However range and Doppler geodetic
receivers are currently being tested and estimates of measurement error
are available, Therefore, for the range and Doppler proposals a
detailed error analysis 1is presented in Chapter 4. Then in Chapter 5 an
interferometric observation technique for baseline determination is con-
sidered which has a distinct advantage over the range and Doppler
approaches.

In this chapter a comparison of the geometric strength of the
three approaches 1s given based on the processing of range observations
as range, correlated range difference and as interferometry or dif-
ferenced ranges from twec stations. This analysis will give an indica-
tion of the relative geometric strength of each approach for the
determination of coordinate differences and baseline distances using

observations from a constellation of high altitude satellites.
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3.1 Mathematical Model and Adjustment Procedure

3.1.1 Mathematical Model

Let R,, be the topocentric range from any ground station

13

Pi(ui’vi'wi) to any satellite position Qj(uj'vj'“j) as shown in
Figure 3.1.1, where the earth~fixed coordinate system.(u,v,w), is
oriented towards the Greenwich mean astronomical meridian (u-axis) and
the Conventional International Origin (w-axis) with the v-axis forming a
right-handed coordinate system with u and w, this coordinate system

being defined by the Bureau International de 1'Heure (BIH). From

Figure 3.1.1, the following equation can be written for the topocentric

range

Y24 v v+ e, w2 (3.1.1)

Ryg = lluy-u 17V 17

i

From two consecutive topocentric ranges, R and R

13 1K’ the range dif-~

ference is defined as

&Rijk = Rik - R1j (3.1.2)

and from simultaneous range observations, Rij and jo, taken at two

stations Pi(ui,v ,wi) and Pi(ui,v ,wﬂ), the interferometric observation

i 4

is defined as

GRilj = Rij - le . (3.1.3)
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Figure 3.1.1, Geometry of Topocentric Range

3.1.2 Adjustment Procedure

The mathematical models (3.1.1) through (3.1.3) of the general

form
La - F(Xa) (3.1.4)

may be linearized by a Taylor series expansion about preliminary values
for station and satellite coordinates XO to obtain the observation equa-

tions [Uotila, 1967]
V=AX+1L (3.1.5)
where V is the vector of observation residuals defined by

Vo= La - Lb . (3.1.6)
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The elements of L are the differences between the function F evaluated
at the preliminary values for the coordinates and the observed quanti-
ties Lb and A is a matrix of partial derivatives of F with respect to
the coordinates. The vector X, representing corrections to the prelimi-
nary coordinate values, will be estimated from the observations Lb

giving
Xa - xo + X (3.1.7)

using least squares minimum variance estimation.
For range observations Rij and le made simultaneously at two

stations the rows of the design matrix have the form

dR

A, = 1]
ij 3ui.3u£,3uj
(3.1.8)
= [aij I o 1-aij]
and
N 8R2j
23 aui,aul,auj
{(3.1.9)
= [ 0 |a£j|-a£j]
where
u, — u v, - v v, - W
a = i1, 11, L (3.1.10)
14 ij 1]
and

[du v ydw duz, dwﬂ'duj dvj dwj] . (3.1.11)

The index j ranges over the number of satellite positions where range
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observations are acquired. For single station tracking the parameters
duz, dvl, and dw2 are naturally omitted.

For range difference observations anijk the contribution to the
design matrix takes the form

AR

A - 14k
ik Bui.auk,auj
(3.1.12)
= lag, — 2y |- ag, | a4
where
T
X = [dui,dvi,dwi,duk,dvk,dwk,duj,dvj,dwjl . (3.1.13)

And finally for interferometric observations GRi from two stations

L]

the contribution to the design matrix for each observation is

. ) 35“111
1] aui,aui,auj
(3.1.14)
= [aij | - aﬁj | - aij + alj]
with
T
X = [dui’dvi’dwi'dui'dvl’dwﬂ’duj'dvj'dwj] . (3.1.15)

In the analysis presented in this chapter, which is intended to
compare the geometric strength of these three observational approaches,
the satellite ephemeris will be assumed known and excluded from the
normal equations.

The least squares minimum variance estimate of X based on a set

of obsevrvations is obtained by minimizing the function

¢t = VTPV - ZKT(AX+L—V) (3.1.16)
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with respect to the unknowns V, K, and X. P 15 the weight matrix for
the observation set. After minimizing ¢ and eliminating the unknowns K
and V, the least squares estimate for X is given by the solution of the

normal equations

NX + U =20 {3.1.17)
where
T
N = A'PA (3.1.18)
and
T
U= APL . {3.1.19)

Solving equation (3.1.17) gives

x =Ny . (3.1.20)

The covariance of the parameter estimates is given by the inverse of the

normal matrix provided P is the inverse of the observation covariance matrix,
Z_ =N~ . (3.1.21)

For observations from two stations the uncertainties 1in the base-

line components are obtained by the linear transformation

T
ZAX GZxG (3.1.22)
where
G = [-I 1I] (3.1.23)
and
T
AX = [dua - dui, dvi - dvi, dwjL - dwi] = [Au,Av,Aw] . (3.1.24)

The uncertainty in the cherd length d is given by the transformation
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T, T

o2 = B, H' = HGL G'H (3.1.25)
d Ax x

where

u, — u v, -V W, — W
H-I:’t : NG I i]. (3.1.26)

3.1.3 VWeight Matrix

In minimum variance least squares estimation the weight matrix
is taken to be the inverse of the covariance matrix of the observational

errors
(3.1.27)

For statistically independent range observations with constant variance

the covariance matrix is given by

2
ER =01. (3.1.28)

The dimension of this matrix is equal to the number of observations
acquired.

For N independent range observations taken from a single sta-
tion, whose statistics are given by equation (3.1.28), the least squares

normal equations for station coordinate improvement are

T T
(%PRAR)X + ARPRLR = 0 (3.1.29)

where

XT = [du,dv,dw] . (3.1.30)

For (N~1) correlated range difference observations,defined as

the difference between successive ranges, the least squares normal
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equations can be directly obtained from the matrix components in equa-

tion (3.1.29) by the transformations

- 3
Ann. BAR (3.1.31)
L&R.- BLR {(3.1.32)
T _ = BZ_BY (3.1.33)

AR R e

where the matrix B is defined by

B = . . (3.1.34)

=(N-1xN)

with the range observatien covariance matrix given by equation (3.1.28).

The welght matrix for correlated range difference observations is given

by

-1

Par = Iag

- (B):RBT)'l - Lz 3 B (3.1.35)
J

For unit variance equation (3.1.35) becomes

C2 1 0 . o]t
-1 Y =1 0
0 -1 2 -1 . ] 0
T.-1
Py = (BB = ] (3.1.36)
n 1 2 -1
LO . . 0 -1 2] (N-1 x N-1)
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The normal equations for (N-1) correlated range difference observations,

according to equation (3.1.17), may be written as

T T
(A, PapArp) X+ AP oL o = 0 (3.1.37)

or, using equations (3.1.31) through (3.1.36), equation (3.1.37)

becomes

(A;BT(BBT)_lBAR)X+A%BT(BBT)—IBLR =0 . (3.1.38)

Consider now N independent range observations taken simul-

taneously at two stations at times tl,tz,...,tN

RY = [Ri,...,R;,Ri,...,Rg] i (3.1.39)

The least squares normal equations for the parameter set

T

X = [dui,dvi,dwi,du ,dvg.dwﬁ] (3.1.40)

£

are given by equation (3.1.29) with modifications to allow for the addi-
tional set of parameters. Defining N independent satellite interfero-
metry observations as the difference between simultaneous ranges, the
least squares normal equations for interferometry can similarly be
developed from the matrix components of equation (3.1.29) by the trans-

formations

Agg = MA, (3.1.41)
Leg = “Lg (3.1.42)
L. = MT_ MY (3.1.43)
SR K + 1
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where

M=[-I1] (3.1.44)

(Nx2N) °

The weight matrix for the statistically independent interferometric

observations is given by

1
R

- T,-1 2..-1
P = 26 (MIRM ) = (20°1)

1 (3.1.45)

&R

= (21)

for unit variance. The normal equations for interferometry are

YX+AX P, L 0 (3.1.46)

(4 SR SRR

T

GRPGRAGR

or, using equations (3.1.41) through (3.1.45), are equivalent to
(AﬁMT(mT)“lMAR)x+A:MT(mT)“]m.R -0 . (3.1.47)

Thus the weight mat;ices for range difference and interfero-
metric observations are obtained using the same linear transformation
matrices which convert the range obseivations to the alternative data
form. The range difference observations are correlated since each suc-
cessive range difference observation is formed using a common range.
This is reflected by the off-diagonal elements in matrix equation
(3.1.36). Finally, it was shown that the range difference and inter-
ferometric normal equations are directly obtained from the range normal
equations 1f the weight matrix is alsoc modified accordingly. In equa-
tion (3.1.38) the modified weight matrix becomes BT(BBT)-lB and in

equation (3.1.47) 1t is M?(HMT)_lM.
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3.1.4 Effect of A Priori Constraints on Positioning
Based on Simultaneous Observation

In general, for simultaneous observations from two stations, the
normal equations are developed for two sets of parameters, station coor-
dinates and ephemeris variables. Although the analysis in this chapter
assumes the latter to be known, it 1s of interest to examine the more
general form of the normal equations to arrive at an understanding of
what effect a priori information on either the ephemeris variables or
the coordinates of one station has on the variance of the coordinates of
the second station and baseline components. This situation would natu-
rally arise in network densification using any of the observation types

considered herein.

3.1.4.1 Range and Doppler

For simultanecus range and integrated Doppler observations from
two stations, the least squares normal equations for station coordinates
and ephemeris parameters have the following form for measurements that

are either uncorrelated or are correlated by errors at individual

tracking statlons

11 1s 1 1

- .1.48
0 N,, st xz + U2 0. (3.1 )
No1 Vg2 FNss]lXg Ug

The covariance matrix for station coordinates based on the observations
and on a prioril knowledge of the first station's coordinates and the

ephemeris parameters is
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—

11 "1

L 2S(Nss-i-P )] lu

- -1
Biy By Q1

szl B2 Q)

where the parameter set X is defined by

XT = [du ,dv dw ,du,,dv

1’ 2772

The covariance matrix elements are given by

1 -1
Q) = [By) = By2BypBs )
= [N,.+P, -N, (N +7) Iy N. (N +P) 1N
11 1P " NigNgs+ Py 15 Mss ¥ Fg? Ny
- 1. -1
(Nyp = Nyg(Ngg + Pe) l“sz) 1st(Nss'*Ps) Ng, ]
-1 -1
Q=B 2*'32;321Q 11812822
= [Ny ~Nyg(Ngo +P) lez"“zs(Nss*'Ps) lN51
-1
(N, +P) - N ¢ (N g *Pg) lN NlSNSSstl
-1
= Q181,85
= Q)N g (Ngg * Bg) lez 22~ Npg(Ngg + Pg) 1“
T
Q=% -

Np + P, =N (N +P) 1N51

dwz]

—le(N

Nj2

s*Fs) H%z

-1
- st(Nss +Py) N

52

(3.1.49)

(3.1.50)

(3.1.51)

(3.1.52)

(3.1.53)

The matrix Q,, is the covariance matrix for the first station's
11



coordinates Zx » and sz is the covariance matrix for the second sta-
1
tion's coordinates I_ .

)
The covarilance matrix for coordinate differences, or baseline
components, is obtained from equation (3.1.49) by the linear transfor-

mation

L. = [-I1] (3.1.54)
AX
Qy Py || T

= Q) FQ m Q- Qyy -

In terms of equations (3.1.50) through (3.1.53), equation (3.1.54)

becomes

Iax T Q1 * B;; + B;§321qllBlzB;§ + QllnlzB;;
+ 83585, 3.1.35)
= B;; + [352321 * IlQll[BEEle I
This equation may also be written in the form
$ =L, +ZI, +I B, B Lt+3lls 1 . (3.1.56)
ax " txg Trx i Piaee T Pa2Partxy

Consider now the effect of a priori information on the covari-
ance matrices given by equations (3.1.50), (3.1.51), and (3.1.56). The
following cases are considered:

Case (1). Ephemeris parameters constrained and no knowledge of
station 1 coordinates (PS = o0 P1 = 0). Under these assumptions equa-

tions (3.1.49) through (3.1.56) reduce to the results
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Case (i1i).

coordinates constrained (0 < PS

Case (iii).

coordinates constrained (P, = o, P

Case {(iv).

11

-1
+ sz .

(3.1.57)

(3.1.58)

(3.1.59)

Ephemeris parameters partially known and station 1

< oo, Plsm),
= 0
= [Nyy = NogNgg + Po) lN
= [Ny, = Nyg(Ngg + Pg) lN

Ephemeris parameters constrained and

-m)

S 1

(3.1.60)

(3.1.61)

(3.1.62)

station 1

(3.1.63)

(3.1.64)

(3.1.65)

Ephemeris parameters and station 1 coordinates are

partially known (0 < PS <

ZX = [N

Ny, -

11 +

1

ZS SS

15 g +P)lN
+ P ) lN ) lN
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IS SS

25 SS

- 1
+P) lNSl]

(3.1.66)



z15:2' [Ny~ Ny (Bgg+Py) ]“
+ [sz-st(Nss-tps)“ln ] 1N25 ss*‘Ps)_1“51£xl (3.1.67)
NjgWNgg* ) 1“52 22° 25(Nss'*Ps)_lN32] :
L, =F, +I, +I, B B> + B.1B, L. . (3.1.68)
A TX UK, FX T12722 22°21°K,

A comparison of these results indicates that the uncertainties

in the coordinates Uy, V,s W, are equivalent in cases (1) and (iii)

2
where the ephemeris was assumed known and that this uncertainty can be
expected to increase as the orbit uncertainty increases as in case (1i)
and increase further as the uncertainty 1in station 1 also increases. In

terms of eigenvalues of the covariance matrix, or parameter uncertain-

ties, the following relationship can be established among the cases

NCEtO NN C RN CTO RN E TS

< A . (3.1.69)
%, X, X, X,
The uncertainties in the coordinate differences u2 - ul. v2 - vl,
w, - w, are likewise a function of the assumed a priori information.

Comparison of the results indicates first that if the coordinates of one
of the observing stations are known, increasing the ephemeris uncer-
tainty increases the uncertainty of the baseline components; and second,
that if the ephemeris is known, increasing the uncertainty of the first
station's coordinates also increases the baseline component uncertainty.
The relationships among the baseline component covariance matrices are

egstablished to be

(i11) (11)
A < AAX (3.1.70)

AX
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and

MED (3.1.71)
The most important result however is obtained by noting that for rela-
tively close stations the submatrices le and NZS in equation (3.1.48)
are approximately equal. Thus the last term in equation (3.1.68) of
case (iv) will be negative definite insuring that the covariance for
coordinate differences will be smaller than the sum of the coordinate

covariance matrices, as opposed to case (i) when the ephemeris is con-

strained. Thus in general

{iv) (iv) (1v)
:\AX <xx1 +J\X2 . (3.1.72)

This demonstrates how baseline component determinations may be obtained
successfully in the presence of ephemeris errors which cause larger

uncertainty in the coordinates themselves.

3.1.4.2 Interferometry
For satellite interferometry observations from two statioms the

least squares normal equations for station coordinates and ephemeris

parameters have the form

- ar 1 r A

M1 M2 Mg %] | %

Ny N, Kol |x | +]u,[=0 - (3.1.73)
"s1 Ms2 Mss||%s] [ Us
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After algebraic elimination of the ephemeris parameters the covariance

matrix for station coordinates including a priori information is

_ -1
Njp+Py = Nyg(Ng o+ Po) 1“ Nig~Nig(Ngg+Pg) s,
E -
x —
LN21 Nyg(Ngg+Pg) 1N51 Nyg = Nyg(Ngg +P) 1“
- -1 (3.1.74)
Byy B Q;
Byy By Wy Yy
where the covariance matrix elements are given by
P T
Q= [Byg ~ ByoBs2B,;]
=[N +P N (N +P) ln Ny, - Ny (g +P) 1u (3.1.75)
- -1 - T
(Nyp =Ny (No g + Pg) l“sz) (Nyp ~Nyg(No+P) lez)
-1 -1
+
Qy2 = Bys Bzéleqll By4Bys
- [N, =N, (N._+P ) IN - (N (N +PO 7N ) (3.1.76)
22 ~NagNggtFg) Ngy = (Nyy =Nyo{Ngg -1
- -1
+P. -
(Nyy#P) =N (N +PY) 1“51) Ny ~ Ny (N +P) lN
Q,, =-Q, B _B >
21 = "11812%22
_1 1N (3.1.77)
- - +
Quy(Nyp =Ny g(Ngg +P) "N ) (N, = Ny (N +Po) )
Q. =QqQ: (3.1.78)
2179 - -1

Again Qll and sz are the covariance matrices for the station coordi-

nates.
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The covariance matrix for the baseline components is obtained
using the transformation equation (3.1.54) and has the same form as

equation (3.1.56):

Iax " Q9 Y -y - Qy

“1 , o=l
-f +ZI, +I_B B..+B.B I_ .
X, T %X, T "R 12722 T T227210)

(3.1.79)

For the cases considered previously, equations (3.1.75) through (3.1.79)
reduce to the following
Case {1). Ephemeris parameters constrained and no knowledge of

station 1 coordinates (PS =w©, P = 0).

1
- -1
xxl (N, - leNzéNzlj (3.1.80)
r. = [N.. - N, Ny .17t (3.1.81)
X, 22 21711712 <he
f . =% +%f. +I_N 1w noin T (3.1.82)
AX xl x2 xl 12722 22721 xl ’ i

Case (ii). Ephemeris parameters partially known and station 1

coordinates constrained {0 < PS < o, P1 = o),
ZX = 0 (3.1.83)
1l
- -1
zxz [N,, - Ny (N + PO TN (3.1.84)
- -1
g = Wy = Ny (N + PO, . (3.1.85)

Case (1ii). Ephemeris parameters constrained and station 1

coordinates constrained (PS = ® P = w),

1
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X, = 0 (3.1.86)
5. =nN1 (3.1.87)
x, - M2z

¥ _ ow N2 (3.1.88)
ax ™ ¥o3 - -

Case (iv). Ephemeris parameters and station 1 coordinates are

partially known (0 < P, < =, 0 < P, < @),

S 1

L. = (see equation (3.1.75))

z = (see equation (3.1.76))

-1 -1
Ly = Ix * zxz + leﬂlzszz + Bzszlle : (3.1.89)

An examination of these cases reveals the following relation-

ships in terms of the eigenvalues of the station covariance matrices

Agiii) < xéii) < Aéi“) (3.1.90)
2 2 2
and
AW () (3.1.91)
2 2
For baseline component determinations
(111) (11)
kax < AAX (3.1.92)

In cases (1) and (iv), however, the equations reveal how interferometry
is suited for the determination of baseline components for close sta=

tions. Under those circumstances
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le = ~N22 (3.1.93)

B

2
i
- -]

12 ® “Byp - (3.1.94)

Thus, the last two terms in equations (3.1.82) and (3.1.89) are nearly
the additive inverse of the sum of the first two terms yielding an
acceptable baseline component covariance even in the presence of large
ephemeris error.

Interesting also, under conditions where approximations
(3.1.93) and (3.1.94) are valid, are the results obtained in cases
(1) and (iv) for the coordinate covariances, equations (3.1.80),
(3.1.81), (3.1.75), and (3.1.76). 1In these cases, even when the satel-

lite ephemeris is known, the covariance matrix tends to be singular as

the baseline distance decreases. For interferometry, station coordinates
are not estimable under these conditions; however, baseline components
are.

3.2 Comparison of Range, TCoppler,and
Satellite Interferometry

In this section, a comparison of range, integrated Doppler, and
satellite interferometry techniques for the determination of baseline
components and chord distances 1s described. The basic intent of this
analysis is to compare the relative geometric strength of each techni-
que and obtain a measure of how the results themselves vary under dif-
fering circumstances of usage. The analysis 1s based on statistically
independent range observations of unit variance taken simultaneously

from two sites using a single~-channel receiver as shown in Figure 3.2.1.
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STATION §

STATION |

Figure 3.2.1. Simultaneous Range Measurements
From Two Ground Stations
These observations are treated as range, correlated range difference,
and as interferometric observations. Observations are included in the
analysis 1f the satellite elevation exceeds 10 degrees. An analysis of
variance 1s performed using least squares minimum variance estimation
incorporating the weight matrices of Section 3.1.3. The parameters are

the corrections to the baseline components

Au = du_, - du

2 i
Aw = dwg - dwi

and the chord distance d, defined as

2 2 2,1/2

d = [(ui-u 3T+ (VR-VI) + (wg-wi) ] . (3.2.2)

i

No time synchronization parameters are included.
The orbital elements used in this study are given in Table

3.2.1. With a 24-satellite constellation five to nine satellites are

48



in view of a station at all times. For simultaneous observations from
two stations, the number in view decreases with an increase in the
separation distance. Simultaneous three-station tracking was not con-
sidered since each baseline would not be determined as well, especi-
ally for stations of great separation where the number of satellites in

common view 1is less.

TABLE 3.2.1. GLOBAL POSITIONING SYSTEM ORBITAL ELEMENTS

EPOCHM: 1975 DAY 118.0 a s 2856860km i= §3*
=00 w= p*
SATELLITE M (9]
) o o*
2 45 [+]
a3 90 (4]
4 1as o
5 r8g ¢
& 223 [4
7 270 [e)
a ars C
9 345 120"
10 a0 120
71 75 120
12 120 120
13 185 120
14 210 120
15 255 120
16 300 120
17 15 240"
18 80 240
9 105 240
20 150 240
21 195 240
22 240 240
23 285 240
24 330 240

Two station groups are considered. The first is a mid-latitude
group of three stations whose geodetic coordinates are given in Table
3.2.2. The chord distances separating the station pairs 1001-1002 and
1001-1003 are approximately 100 kilometers. The second group of sta-

tions 1s the so-called "Iron Triangle" very long baseline
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interferometry (VLBI) stations whose geodetic coordinates are given in
Table 3.2.3 and whose chord distances are found in Table 3.2.4. The
maximum baseline distance for this group 1s nearly 4000 kilometers, and
the ninimum is 1500 kilometers.

Since variations in the tracking scenario are possible with
multiple satellites in view, a criterion for satellite selection is
adopted. Given the normal matrix N based on all prior observational
data, the next satellite to be selected for observation will be the one
whose observations, when included with prior data, minimize the trace
of the parameter covariance matrix. For baseline compounents this trace

is the sum of the baseline parameter variances

2 2 2
Tr(Iﬁx) = Opy Y Oy Y O

Au A (3.2.3)

For the chord the trace is the variance of the estimated chord length.
For each type of observation these criteria are virtually independent
since minimizing the trace of the baseline component covariance matrix
does not guarantee that the chord length variance is a minimum. That

will depend on the correlations between the baseline components.

3.2.1 Short Baseline Comparison

An analysis of variance study was made for the mid-latitude sta-
tions with parameter sets consisting of the baseline components.and
chord length. The observation schedules for the two baselines con-
sidered, the north-south baseline 1001-1002 and the east-west baseline
1001~1003, were based on ranging measurements taken every five minutes.
Range observations were processed as range, correlated range difference
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TABLE 3.2.2. GEODETIC COORDINATES OF MID-LATITUDE STATIONS

STATION GEODETIC COORDINATES
NO. LATITUDE LONGITUDE HEIGHT {(m)
1001 30° ¢ 000°| 45° 0  0.00” 0.0
1002 30 54 7.56 45 0 0.00 0.0
1003 30 0 0.00 43 57 48.96 0.0

TABLE 3.2.3. IRON TRIANGLE STATION COORDINATES

GEODETIC COORDINATES
STATION
LATITUDE LONGITUDE HEIGHT (m)
WESTFORD (WS) 42° 36° 46518~ 288° 30° 22.720° 67.4
OWENS VALLEY (OV} 37 13 53.287 241 43 24 11729
FORT DAVIS {(FD) 30 as 44924 258 3 00 1580.0

TABLE 3.2.4, BASELINE DISTANCES (km)

wsS -
ov 3929 -
FD 3135 1508 -

WS ov FD
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and as interferometry. The results are based on an equivalent number of
observations of each type. The satellites selected for tracking were
chosen using the criteria defined above which are a function of the
observation type and the parameter set definition. Several observa-
tion schedules were considered where the time allotted for simultane-
ously tracking each satellite was fixed at one, two, or three hours.

One typical observation schedule is given in Figure 3.2.2 where the
satellite tracking interval is three hours. The analysis of variance
results for the mid-latitude station group are given in Tables 3.,2.5
through 3.2.7. The results are based on 24 hours of continuous obser-
vation with intermediate results given at either 8 or 9 hours. No

a priori knowledge of the station coordinates was assumed in these
results, The range observations were taken as statistically independent
having unit variance or a one meter standard error, To cbtain an esti-
mate of the ultimate precision obtainable for a particular observation
type the results found in the tables must be scaled by the ratio of the
assumed standard error in centimeters of that observation type, con-
verted to the uncertainty of an equivalent range observation, to the 100
centimeter standard error used to obtain the results. For instance, if
it were assumed that correlated range differences may be measured with

a standard error of 10 centimeters themn, noting the defining equation
(3.1.3) for range differences and equation (3.1.35), the standard error
of an equivalent range measurement would be 10 centimeters divided by
the square root of two, The standard error of an equivalent range

measurement 1s defined as that value which when utilized in equation
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(3.1.35) or (3.1.45) would yield the assumed standard error for range

difference or interferometric observations respectively.

F
24 4
)]
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19 19
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&
™ 18 -+
=
2
x
-
pur] n
)
w
-
-
“ B ¥ 1 .—-——.-_.
P————————
5
——
.—..z._-
f 4=
+ t : t : + i + —>
¥ 3 [ ¢ 12 -] 18 21 24

TIME (HOURS)
Figure 3.2.2. Typical Observation Schedule for a Three-Hour
Satellite Tracking Interval (Stations 1001
and 1002, Range Observations)
Using 24 hours of range observations the baseline components

are determined with an uncertainty of approximately 15 centimeters with
slight variation as a function of the time interval each satellite is
tracked. The chord distance has a standard error of approximately 11.5
centimeters and increases, but nct more than 10 percent, as the tracking
interval increases to three hours. This increase 1s due to an increase

in the correlations between baseline parameters. There are no discern-

ible trends due to the orientation of the baseline.
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For correlated Doppler observations based on one-hour tracking
intervals there is a six-fold increase in the baseline component uncer-
tainty compared to the range results as seen from Table 3.2.5, How-
ever as the satellite tracking interval is increased to three hours this
standard error decreases dramatically. The same is true of the uncer-
tainty in chord length. No variation in the Doppler results is seen on
the basis of orientation except with chord length where the uncertainty
in the length of the east-west chord remains significantly larger in
all cases, ranging from a difference of 2 parts to 0.9 parts per million
(ppm). A comparison of the best Doppler results from Table 3.2.7 with
the corresponding range results from Tables 3.2.5 through 3.2.7 indi-
cates that results obtained from range observations with a one meter
standard error can be equivalently obtained using correlated range dif-
ferences if the standard error of the latter observation type is
approximately 49 centimeters. This result is obtained by determining
the uncertainty of an equivalent range observation (35 centimeters)
which when used in the range difference weighting equation (3.1.35) will
scale the Doppler results of Table 3.2.7 to be equivalent to those of
Table 3.2.5 obtained using range observations with a one meter standard
error. To obtain an equivalent uncertainty in estimated chord length,
correlated range difference would require a standard error of 54 centi-
meters.

Also of importance is the ratio of the uncertainty of the esti-
matec parameters to the observation uncertainty. This ratio is obtained
by dividing the parameter uncertainties found in Tables 3.2.5 through
3.2.7 by the standard error of the appropriate measurement type.
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The standard errors for range, range difference, and interferometry obser-

vations are 100, 141, and 14l centimeters respectively which may be veri-
fied using equations (3.1.33) and (3.1.43) assuming the one meter
standard error for range. Based on 24 hours of observation this ratio
is approximately 0.15 for range and 0.28 for correlated range difference
considering the best results for the latter. For the chord length the
ratios for range and range difference are 0.12 and 0.14 to 0.21, respec-—
tively. The last two ratios for range difference reflect the variation
in the results in Table 3.2.7 for the two orientations. These ratios
are of importance as scale facters which can be applied to assumed
observational uncertainties to obtain estimates for parameter uncer-
tainties. TFor instance, if correlated range differences had a measure-
ment uncertainty of X centimeters, the uncertainty in the derived
baseline components would be approximately 0.28X centimeters instead of
the approximately 40 centimeters as given in Table 3.2.7.

With interferometric observations the resulting uncertainties of the
baseline components are approximately twice as large as the range obser-
vation results after 24 hours. The uncertainty increases about 25 per-
cent as the tracking Interval increases fromone to three hours. The
uncertainty in the chord length is about 2.5 times greater than the
range-derived chord. The trace of the covariance matrix from inter-
ferometry shows little variation with orientation but variation in the
distribution of the uncertainty among the parameters exists. The chord
length uncertainty is nearly equivalent for the twc orientatioms. To
produce baseline component uncertainties equivalent to the range

results, the standard error of interferometric observations would be
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required to be 71 centimeters. Agaln this result is obtained by deter-
mining the uncertainty of an equivalent range measurement (51 centi-
meters) which when used in the interferometry weighting equation
{3.1.45) will scale the interferometry results of Table 3.2.5 to be
equivalent with the range results of Table 3.2.5 based on a one meter
standard error of observation. For comparable chord results with inter-
ferometry a standard error of 54 centimeters or an equivalent range
uncertainty of 38 centimeters would be necessary. The ratio of para-
meter uncertainty to measurement uncertainty is approximately 0.21 for
baseline components and 0.38 for the chord length.

The covariance computations for the ome-hour tracking interval
were repeated to obtain a measure of how knowledge of one station's
coordinates could improve the results. The expected change in the base-
line component covariance is given by a comparison of equations (3.1.59)
and (3.1 65), which predict a square root of two decrease in the coordi-
nate difference uncertainty for range and Doppler observations and by a
comparison of equations (3.1.82) and (3.1.88) for interferometric obser-
vations. 1In the latter comparison the exact decrease in the uncer-
tainty to be expected is not as obvious. An examination of Tables
3.2.5 and 3.2.8 show in fact that the uncertainty of the coordinate dif-
ferences and also of the chord length decrease by the square root of two
for range and Doppler. For interferometry the baseline component uncer-
tainties decrease by approximately the square root of three and the
chord uncertainty by approximately the square root of seven. Notice that
the uncertainty in the chord based on interferometry with one station held
fixed is equal, to the number of digits given, to the chord uncertainty
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TABLE 3.2.5. STANDARD ERROR OF BASELINE PARAMETERS FOR MID-LATITUDE STATIONS
BASED ON RANGE, INTEGRATED DOPPLER AND INTERFEROMETRIC TIME
DELAY (ONE-HOUR TRACKING INTERVAL)

TrTAL UBSEHVATION TIME H HOUK: 44 IKAIRS
BALELINE CUONF IOLURAT I ON Uil - Lo il = 1uol 1001 - Juo2 jo0] - 1003
DHSERVATION TYFE R 4] I [ \] I R D I R v I
Bu 25.1 loeb.? 47.4 9.1 1e6.4 53.2 ]| 14.8 95.3 25.2 14.2 95.4 29.4
BASELINE v 3.0 141 2.4 240 t431.7 54.2 | 14.4 92.2 25.6 14.2 92.3 0.8
PARAMETERS
{em) [37] 24.6 l4e.5 $2.3 24,0 l4B.5 43.1 ] 14.4 Bd.1 4.4 15.1 g4.1 21.5

MAQACE 42.0 265.2 94.4 4.0 265.3  BT.1 | 25.1 157.0  49.7 | a5.1 157.2 448.7

BASELINE 2.1 939 w2.3 | a1 oazu.1 se.w | MLLT %240 3008 |i1.2 1.9 29.2
DISTANCES d
{cm) (2.3) 1441 e 2y P tdoa q12.e) (s.nf2y 5.2y (on f oLty 2.9

COMMENTS: NUMBEHS IN PAHENTHESIS [NDICATE RELATIVE PRECISION [N PARTS PER 10Y. RESULTS ARE BASED ON
STHMUL TANEOUS UHSERVATIUNS EVERY 5 MIMUTES WITH MEASUREMENT UNCERTAINTIES OF 100, L4i, AND
141 CENTIHMETERS FOR RANGE, RANCE DIFFERENCE, AND INTENFEROMETRY RESPECTIVELY. TO OBTAIN AN
ESTIMALE OF THE PRECISTON OBTAINABLE USING AN OUBSEHVATION TYPE WITH DIFFERENT MEASUREMENT
UNCEETAINTY MULTIPLY TABLE VALUE BY THE HATIU OF THAT UNCERTAINTY TO THE CORRESPURDING
UNCERTAINTY ABUVE.




TABLE 3.2.6. STANDARD ERROR OF BASELINE PARAMETERS FOR MID-LATITUDE STATIONS
BASED ON RANGE, INTEGRATED DOPPLER AND INTERFEROMETRIC TIME

DELAY (TWO-HOUR TRACKING INTERVAL)

8¢5

TOTAL OBSERVATION TEME A HOURS 24 HOURS
WASELINE CONFIGURATION 1001-1002 001-1003 1001-1002 1001-1001
OBSERVATION TYPE R D t R D I R o 1 R D 1
Ay 29.2 108.7 61.4 | 29.2 108.9 Sp.1| 14.8 49,1 26.6 | 14.6 49.7 36.]
BASELINE dv 6.0 833 67.8 |26.0 854 855 14.1 51.9 20,0 |14.1 51.9 ¥.0
PARAMETERS
tom) Aw 22.1 B86.3 67.1 [22.7 A80.5 40.1] 14.5 43.2 18,7 |14.5 43.2 26.2
\/EEE 45.2 162.9 113.6 {45.2 63,2 109.8| 25.1 81.% 54,7 25.1 835 59.4
BASELINE 26,0 55.7 6.7 |25, 1.7 %6.9| 12.4 8.4 3.6 j13.3 3.6 29.9
DISTANCES d
{cm) (2.6) (5.6} (6.1 | 12.6) (T.2) (5.7 (v.21 (2.8 (1] (1.3 (e (1.o0O)
COMMENTS: NUMBERS IM PARENTHESIS INDICATE RELATIVE PRECISION IN PARTS PER 10%. RESULTS ARE BASED ON
SIMULTANEQUS OBSERVATTIONS EVERY 5 MINUTES WITH MEASUREMENT UNCERTATNTIES OF (00, 141, AND
t4l CENTIMETERS FOR RANCE, RANCE DIFFERENCE, AND INTERFEROMETRY RESPECTIVELY. TO OBTAIN AN
ESTIMATE OF THE PRECISION OBTAIMABLE USING AN OBSERVATION TYPE WITH DIFFERENT MEASUREMENT
UNCERTAINTY MULTIPLY TABLE VALUE BY THE RATIO OF THAT UNCERTAINTY TO THE CORRESPONDING
UNCERTAINTY ABOVE, 4
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TABLE 3.2.7. STANDARD ERROR OF BASELINE PARAMETERS FOR MID-LATITUDE STATIONS
BASED ON RANGE, INTEGRATED DOPPLER AND INTERFEROMETRIC TIME
DELAY (THREE-HOUR TRACKING INTERVAL)

TOTAL ORSERVATION TIME 9 HMUKS 24 HOURS
HASELINE CONFIGURATION 1001-1002 1001-1001 1001-1002 1001-100)
UBSERVATION TYPE ! v I R D 1 R D 1 R D I
Au 0.1 88.1 62.9 |w.4 e8.2 91.9]15.3 430 275|153 351 336
BASELINE Ay 26,3 &l.6  72.7 26.3 6L.7 82.4]114.4 8.0 331 | 4.4 429 4317
PARAMETERS
{cm) bw 24,4 49,7 90.5 |24.4 49.8 92.4 [ 14.3 2.1 41.5 | 14.2 1.5 26.2

RACE 47.0 118.% 132.0 47.0 1i8.6 154.1] 25.4 &5 .8 59.8 | 25.4 63.7 #61.1

BASELINE 21.9 4.5 B4.3 24.H 64.9 74.2 1.6 19.6 34.3 13.0 28.8 .3
DISTANCES d
{em) (2.2) {3.5F (B.4) | (2.5} (6.: (7.4 ¢1.4) (2.0} (L&} (1.3) (2.9 (3.6}

COMHENTS: NUMBERS IN PARENTHESIS INDICATE RELATIVE PRECISION IN PARTS PER 10%. RESULTS ARE BASED ON
SIMULTANEOUS OBSERVATIONS EVERY 5 MINUTES WITH MEASUREMENT UMCERTAINTIES OF 100, l4l, AND
141 CENTIMETERS FOR RANGE, RANCE DIFFERENCE, AND INTERFEROMETRY RESPECTIVELY. TO OBTALN AN
ESTIMATE OF THE PRECISI(N OBTAINABLE USING AN OBSERVATION TYPE WITH DIFFERENT MEASUREMENT
UNCERTALNTY MULTIPLY TABLE VALUE BY THE RATIO OF THAT UNCERTAINTY TD THE CORRESPONDING
UNCERTALNTY ABOVE.
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TABLE 3.2.8, EFFECT OF A PRIORI CONSTRAINT ON STANDARD ERROR OF BASELINE PARAMETERS
FOR MID-LATITUDE STATIONS BASED ON RANGE, INTEGRATED DOPPLER AND
INTERFEROMETRIC TIME DELAY (ONE-HOUR TRACKING INTERVAL)

TUTAL DHSERVATION TIME o OHOOKS 24 HMIRS
BASELINE CONFIGURATION Lol - awz Lol - 100813 ol - MMy 100} - oo}
UBSERVATION TYFE R ] 1 K 4] I R b I R D I
A 17.7 111.6 R 1.7 117.6 EEP 10.4 b7.3 16,5 10.0 67.5 14.8
BASLLINE Av 16.3 10l1.6 id.3 6.3 1ol.e 25.5 10,2 65.1 18.0 10.0 65.2 14.7
PAHAMETLHKS
{em) Lw L7.4 tus.i. 2401 17.4 1us L 24. 8 1.2 59.5 12.7 10.7 59.5 18.6

RACE 29.7 lu7.e 5.3 ] 249.7 1K7.6 qd.9 | 17.8 111.0 27.5 | 17.8 111.1 1.9

BASELIKE 16.5 &6.4 1.4 15.4 HE.S5 21.7 H.3 7.0 11.17 7.9 50.3 11.2
DILTANCE d
(cm) il.?) (b.6) (2.} (1.9} iB.B} (2.2 ¢0.8) (3.7] (1.2)| {0.8B) (5.1) {1.1)

COMMENTS:  NUMBENRS IN PARENTHESIS INDICATE RELATIVE PRECISION IN PARTS PEN 109, RESULTS ARE BASED ON
SIMULTANEOUS OBSERVATIONS EVFRY 5 MINUTES WITH MEASUREMENT UNCERTAINTIES OF 130, 141, AND
lal CENTIMETERS FOR RANLE, RANCE DIFFERENCE, AND INTERFERUMETRY RESPECTIVELY. TO OBTAIN AN
ESTIMATE OF THE PRECISIUN OBTALHABLE USING AN ORSERVATION TYPE WITH DIFFERENT MEASUREMENT
UNCERTAINTY MULTIPLY TAHLE VALUE BY THE KAT10 OF THAT UNCERTAINTY TO THE CORKESPONDING
UNCERTAINTY ABOVE. * STATION 100L FIMLG [N ADJUSTHLNT




based on range with no a priori comstraints. Fo£ shorter baselines
these results will be nearly equal, and this can be shown mathematically
using equation: (3.1.43), (3.1.54), (3.1.59), and (3.1.88) keeping in
mind the partial derivative equations (3.1.10) and (3.1.14). It can be
concluded for network densification that a priori knowledge of the
coordinates of the existing control point has a greater impact on

interferometry than on range and Doppler.

3.2.2 Long Baseline Comparison

For the long baselines of the Iron Triangle (Table 3.2.3) a simi-
lar analysis was performed to determine the relative geometric strength
of each observation type for determining baseline components and chord
length. The results are based on an observation schedule of simultane-
ous observations taken from two stations every five minutes for a
full day. Here, one- and two-hour satellite tracking intervals are
examined. Parameters corresponding to each side of the triangle are
determined using only observations from the two stations forming that
side. This allows the greatest flexibility in satellite geometry. The
results are given in Tables 3.,2.9 and 3.2.10.

Based on 24 hours of range observations with one-hour tracking
intervals, the uncertainties of the baseline components range from 13.5
to 17.0 centimeters showing minor variation with triangle side despite
the different orientations and lengths. Increasing the satellite
tracking interval to two hours produces a marginal increase in these
uncertainties. The chord length uncertainty alsc increases slightly

with side length but in terms of ppm decreases significantly.
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TABLE 3.2.9. STANDARD ERROR OF BASELINE PARAMETERS FOR IRON TRIANGLE BASED ON RANGE,
INTEGRATED DOPPLER, AND INTERFEROMETRIC TIME DELAY (ONE-HOUR TRACKING INTERVAL)

9

TOTAL OUSERVATION TIME H HiHIHS 24 WK
BASELINE COMF LLURATI N Wot W-l Lt IWeFD Wty W-Fb OV-FD
UBSERVATIOUN TYPE R B 1 R L [ K L H F ] I R 1} ! ] D I
] Il.H 148.] 178.2 Ty B IS N R [RC | L UL R T D B T 170 H1.9 .l 16.4 BA .0 54.5 | 14.6 90.2 11.3
HASELINE Av 5.6 102 4 87,1 25,0 lHoLo ke B2 ey b A 14.7 Qw2 4] .6 14.4 861 0.6 15.0Q 99 .4 17.6
FPARAMLTERS
{cm) A 2.8 Inld 9.4 1.9 s [ TEH P ETR TS L 4 6 11.% 8y, 1 LI BT 9.0 1.4 | 14.4 6.4 il.0

THA E 0.7 Snb.g 2194 L LI R A B T T I R e L LN - Zb. 3 154.H 4.5 | Ju.2 199.) 101 | 2940 1597 59.1

BASELINE L1709 1.y 141.9 FL N T I YR B S 200 1ee Hd it 14.% 71,7 BH_2 111 11.4 31.b b 2.4 £9.2 9.3
CISTANCE d
tem) VI P R N L P T A S U] IR RS BT SR LA R TTOT E R I TR S O 1) U N RN VRS U 11 - TRt WY R P S

COMMENTS:  NUMBEHAS N PARENLHES1S INDILCATE RELATLVE PRECISTUN EN PAKTS RN 1[1". KESUETS ARE BASEL UN STMULTANERUS OBSERVATIUNS EVEKY 5 MINUTES WITH
MEASIREMENT UNCERTAINTIES OF 100, Jal, AN b4l UENETMPTERS FOR RANCE, KANCE DIFPEAENCE, AND INTERFEROMETRY RESPLUTIVELY. TO UBTAIN AN
ESTIMATE 0F THE PHECISION UBTAINABLE USIMG AN ORSFRVATION TYPE W DIFEERINT MEASUREMENT UNCERTAINTY MULTIPLY TaBLE VALUE BY THE RATIC
OF THAT UHCERTAINTY TO THE CORRESPOMDEING UNCEMTAINTY ABOVE.




TABLE 3.2.10. STANDARD ERROR OF BASELINE PARAMETERS FOR IRON TRIANGLE BASED ON RANGE,

INTEGRATED DOPPLER, AND INTERFEROMETRIC TIME DELAY (TWO-HOUR TRACKING INTERVAL)

£9

TOTAL OHSERVATION TIMI e HOF RS 24 HOURS
L
BASELIME CONF [GURAT 10 Wi w-Fln -k Wy W-FD W-FD
OBSERVATION TYFL [ D 3 [ r 1 ® 8 ! R 3] I ® o T R D 1
S 27.9 o401 135.7 W0 1eL.és 10019 'y HA e 71K 17,1 40 _H RY.O 17.4 48.9 1.2 156 46.0 36.4
BASELINE ‘v 40.9 3218 109,31 |56 1210 HWual e 120y ms 1S k1R 46,9 | 1a.3 577 S1.1 f15.1  S4.4  42.0
PARAMETERS )
{cm Y 13.6 A%, HL.n |89 End wmwor|oonod w2 7 [15n 4R 397 | ISR 4601 7.4 154 46.B 1.7
TRACE | 59.5% 1830 192.2 |49.% 1.8 le.w ] 4.7 1 1297 2760 91.4 1033 | 275 @R.A  H9.3 116.7 85.2 64,0
BASELINE PN B PR B AR PL B L B DT I P LA B L I a0 RTL 14 =™ OALLL pEYl 40,20 4.9
DTSTAMNCE d
tcm) IR0 Gy 004 Lol AY e (3o oy s ] gy {1 (LM .s (1. 2o avey (2.7 (2.9
COMMENTS: NITMBFRS [N PARFNTHESIS INDICATE RFLATIVE PRFCISION TN PARTS TFR 107, RESULTS ARE RASFU ON SIMULTANFOUS OBSFRVATIONS EVERY 5 MINUTES
WITH MEASUREMENT UNCERTAINTIES OF 100, 140, AND [4) CENTIMET¥RS FOR RANCE, RANCF NITFERENCE, AND INTERFEROMFTRY RESPFUTIVELY. TO OBTAIN
AN ESTIMATE OF THE PRECISTON DRTAINABLE USINCG AN ORSFRVATINN TYPE WITH (\IFFERFNT MEASUREMENT UNCERTAINTY MULTIPLY TARLE VALUE BY THE
RATEO O THAT UNCERTAINTY TO THE CORRESPONDING UNIERTAINTY AMOVE,




Increasing the tracking interval to two hours produces a small increase
in the standard error of the chord.

For correlated range differences the uncertainties are again
much larger than the range results after one day of observation. The
results improve relative to the range results as the tracking interval
increases. The trace of the baseline covariance matrix shows more vari-
tion with baseline length than range, and the chord uncertainty is about
three times larger than the range case, comparing best results.

Interferometry observations give baseline component results
which are better than correlated range difference results; however, the
uncertainty in the chord length can be determined better from range dif-
ferences from longer satellite tracking intervals. The uncertainties of
the parameters tend to increase as the tracking interval Is increased
and a pronounced Increase in parameter uncertainty is noticed as the
baseline length increases.

For range difference observations to vield equivalent base-
line cowmponent uncertainties to range observations after 24 hours the
standard error of range difference observations would need to be
reduced to approximately 41 centimeters. In that case the range dif-
ference results given in Table 3.2.10 would be reduced to approximately
the level of uncertainty given in Table 3.2.9 for range observations
with a one meter standard error. For chord length a range dif-

ference uncertainty of 46 centimeters would be necessary to achieve

equivalent results with range,
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For interferometry, a statement of the required observational
uncertainty necessary to produce range equivalent results is more com-
plicated since the results based on interferometry are more variable as
a function of station separation. All 24-hour interferometry results in
Table 3.2.9 would be at least as good as the range results in that table
if the Westford-Owens Valley results were equivalent. The parameter
uncertainties are greatest for this baseline. For this to occur a
measurement uncertainty of 41 centimeters would be required for equi-
valent baseline component results and 30 centimeters for chord length.

Ratios of parameter uncertainty to observational uncertainty

may likewise be developed from Tables 3.2.9 and 3.2.10.

3.2.3 Summary

Some general conclusions can be drawn from an examination of
the results. For the observation types considered it 1s evident that
ranging measurements provide the best geometric strength of solution.
The two other derived observation types, correlated range difference
and interferometry, are geometrically weaker although the results
obtained from these latter procedures can be improved upon by increased
observational precision., Correlated range difference observations give
the best geometric strength of solution if observed satellites are
tracked over longer time intervals. With this type of tracking proce-
dure both the baseline component and chord length uncertainties are
minimized. For range and interferometric observations shorter satellite
tracking intervals produce the least uncertainty in the baseline
parameters. Lengthening the tracking interval for these observation

types increases the resulting parameter uncertainties. However the
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rate of increase is smaller than the variation in Doppler results pro-
duced by decreasing the tracking interval. And finally the interfero-
metry apprcach becomes geometrically weaker as the baseline length
increases to become a more significant percentage of the distance to the
satellite, although the relative error in parts per million decreases
for the baselines considered.

The analysis presented above considered the relative geometric
strength of three observation types, two derived from basic ranging.
The results were based on the assumptions that satellite positions in
space were known and that the basic ranging measurements were subject
to uncorrelated stationary random neoise. Some additional comments con-
cerning these assumptions are appropriate. If the ranging tmeasurements
are in addition subject to a receiver timing bias, then timing parameters
would be required to augment the current parameter set, at least one for
each observing station. Under these conditions the range and correlated
range difference results would be approximately equivalent depending on
the satellite geometries sampled, tracking interval adopted, and the
a priori uncertainty of the timing parameters. The interferometry nor-
mal equations will also have to include these parameters and the base-~
line parameter uncertainty will be increased. For close stations the
effective error intrcduced into interferometry observations would be
the difference in the timing error at each station. The effect of
timing error on interferometry canm be greatly reduced by tracking addi-
tional satellites simultanecusly as considered in Chapter 2., If the
first assumption concerning the accuracy of satellite positions is
violated, the resulting baseline parameter uncertainty will increase.
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This was shown analytically. For short baselines the effect of the
ephemeris error will be minor for all three approaches.

Finally a comment concerning Doppler observations is necessary.
In the precision comparison study the derived range difference observa-
tions were correlated since successive range differences were formed
using a common range. If Doppler results were obtained from independ-
ent Doppler counts over the same time intervals the correlations in the
weight matrix would vanish and the resulting parameter uncertainties can

be expected to increase.
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4. DYNAMIC POSITIONING USING RANGE

AND DOPPLER OBSERVATIONS

In this chapter a study 15 presented which attempts to determine
the accuracy of dynamic point positioning using range and Doppler obser-
vaticus from a constellation of twenty-four Global Positioning System
satellites. Two positioning problems have been addressed. These are
the determination of the geodetic coordinates of a station and the
determination of baseline components for stations which lie 100 to 2000
kilometers apart. An error analysis is performed to determine what
effect various systematic and random modeling errors have on tracking
station positions determined by a least squares adjustment using simu-
lated observations. All results are based on the use of a single chan-
nel, dual frequency, sequential receiver whereby only one satellite is
tracked at a time on two frequencies to virtually eliminate ionospheric
refraction.

The observations analyzed consisted of range and integrated
Doppler measurements. For both data types the assumption is made that
the observations are subject to two random noise processes, namely
uncorrelated white noise with a normal distribution and correlated error
due to integrated fractional frequency errors in both satellite and

recelver atomic oscillators.
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In order to perform rigorous simulations of dynamic point posi-
tioning a complete adjustment model must be adopted. Model parameters
included in this study are receiver coordinates, polynomial clock error
models for station clocks, satellite state vector components, and a
polynomial satellite clock model for each pass. A priori weighting con-
sistent with the model error levels introduced is included for satellite
ephemeris and clock parameters allowing station coordinates te be esti-
mated. Since two sources of randoem error are present in the observa-
tions weight matrices used in the adjustment account for each random
process, the complex one being correlated atomic clock error. An analy-
tical method is developed to give the statistics of this random process.
The procedure starts with either actual or models of the Allan variance
for a particular oscillator or class of oscillators and develops the
statistics of range and integrated Doppler observations based on the
two oscillators used in deriving the measurements. Statistics for
residuals to polynomial clock models are then obtained by a transfor-
mation. These residual statistics are incorporated into the adjustment
welghting.

To further define the adjustment procedure, several studies were
performed and are described in this chapter. A study was made to deter-
mine if it is possible to perform a sequential adjustment of the con-
tinuously observed measurements. Since all observations based on the
receiver clock are correlated through random atomic clock error, must
all data be processed simultaneously using a fully correlated weight
matrix or can the measurements be divided into fully correlated blocks

each with independent clock models requiring adjustment? Secondly, a
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study was made to determine the time span over which a given polynomial
clock model might be adopted. Further, tests were conducted for range
and Doppler tracking to determine the optiﬁal selection of satellites
which produce the least uncertainty in derived station coordinates, a
selection which produces the best geometric strength., And finally, the
use of two-body analytic partial derivatives for orbit improvement
rather than rigorous numerically integrated partials based on a spheri-
cal harmonic gravity field complete through degree and corder eight was
examined.

Results from numerous computer simulations of station posi-
tioning are included to demonstrate the effect of the erreor sources and
evaluate the full weight matrix concept. In general the results were
computed for cases where observations are six second ranges smoothed
over 300 second intervals and 60 second integrated Doppler observations

aggregated over 300 seconds.

4.1 Error Sources Influencing Dynamic Positioning

In this section the dominant systematic and random error sources
influencing dynamic point positioning using GPFS range and Doppler obser-
vations are described in detail and error models for these sources are
developed. Also included is background information on atomic clock fre-
quency error characterization required for an understanding of the dis-
cussion in Section 4.4.

The error sources considered here are believed to be the domi-

nate cnes effecting dynamic positioning. They include:
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(1) systematic errors in the computed ephemerides of GPS
satellites represented by periodic radial, along-track, and
out-of-plane errors and in addition by a quadratic along-track error.
Models for these errors were chosen to produce satellite position
errors having the same signature as errors produced in simultations of
ephemeris accuracy by 1nvestigators currently involved in computing GPS
navigational and post-fit ephemerides. The simulations performed by
these investigators were done to establish probable erreor levels in
future estimated orbits;

(i1) residual systematic bias and drift in GPS satellite
clocks after ephemeris and clock error estimates are obtained in the
orbit determination problem. The levels of these errors were extracted
from the same references as in (1);

(111i) correlated random satellite clock errors due to the
inadequacy of polynomial gatellite clock models. These errors are based
on Allan varianée frequency stability models for the rubidium oscilla-
tors on GPS satellites;

(iv) uncorrelated random noise from the tracking receiver.
Nominal range measurement uncertainty is one meter for a six-second
measurement and three centimeters for 6{0-second integrated Doppler;

(v) systematic bias zud drift of the receiver's cesium
atomic clock;

(vi) correlated random receiver clock error based on an Allan
variance model for the receiver cesium frequency standard;

(vii) systematic tropospheric refraction error equivalent to
five percent of the tropospheriec model predictions.
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Residual second-order ionospheric refraction errors were not included
since this error is shown to be only a few millimeters at GPS fre-

quencies.

4.1.1 Atomic Clock Errors and Frequency Stability

A clock is a device which counts the cycles of a periodic
phenomencn and among the most stable clocks in use are the atomic
clocks which form the basis for atomic time scales such as Interna-
tional Atomic Time (TAI). Atomic time is used primarily as a measure of
time interval and is based on the electromagnetic oscillations produced
by quantum transitions within the atom. An excellent reference on time
and frequency is edited by Blair [1974].

Global Positioning System satellites will incorporate rubidium
frequency standards to provide short-term frequency stability for the
navigator, and ground tracking receivers for geodetic utilization will
be assumed to incorporate cesium frequency standards to Iinsure good
long-term stability. The precise definition of stability is found in
Blair [1974]). Basically it is a measure, usually given statistically,
of the random fluctuations in frequency which can occur in a clock's
oscillator over specified periods of time. For a given time interval a
particular oscillator 1is considered best if the expected level of fre-
quency fluctuation is a minimum in terms of the Allan variance defined
below.

This paragraph deals with the characterization of typical errors
associated with atomic clock time scales and statistical measures of

frequency stability. This information provides the general background
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required for the discussion related to the development of observation

statistics and their use in geodetic positioning studies.

4.,1.1.1 Characterization of Atomiec Clock Errors

Let C, represent an ideal clock whose oscillator frequency fI is

T
constant. The period of this c¢scillator is by definition

Ty = l/fI . (4.1.1)

In (t-—to) seconds of 1deal time NI cycles are counted and the time

registered by the clock is

NITI = NI/fI (4.1.2)

where NI is given by the integral

t

N, = tf fIdT = fI(t-to) . (4.1.3)
o

Thus the time elapsed from to is

NITI = fI(t-:o)TI = t - to . (4.1.4)

Consider now a typical atomic clock C, whose frequency is sub-

i

ject to error., From t0 this clock has a frequency represented by the

model
fi(t) = fI + Af + £(t - to) + f(t) (4.1.5)

where Af is a frequency blas, f 18 a drift in frequency, and £{(t) are

random fluctuations in frequency, The clock Ci records Ni
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time interval [to,t] where

t
- "
Ni 1: fi(r)d'r
o (4.1.6)

f(l:-t ) t
7 + f f(‘r)d'r .

t
o

= fI(t - to) +Af(t - to) +

In addition the clocks C, and C_ may not be synchronized at to intro-

p | I
ducing a time or phase error at t, represented as ﬂNoTI. Each count Ni
is incorrectly assigned the period TI giving at t ideal the time ti as
Af
ti-NiTI+ﬁN°T =(t-t )+—£-— (t:—t )
I (4.1.7)
f(t—to) 1 &~
+ ————+_— f f(1)dT+AN T_ .
ZfI fI N oI

o

From a comparison of equations (4.1.4) and (4.1.7) the time error at t is

Af f(t-t) 1 ¢t
T (t)=¢t, -t =— (t-t )+—-——+ANT + = f(-r)d-r (4.1.8)
i i EI o ZfI I fI t

or, rearranging terms and introducing new notation,

1 2 ~
Ti(t) =3 Di(t-— to) + Ri(t—to) + Ti(to) + x(t) . (4.1.9)

The quantity x(t) 1s the random time error at t defined by

x(t) = — [ f(r)dt = [ y(1r)dT (4.1.10)
fI to to

where y(t) is the random fractional frequency error of oscillator 1.
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Consider the quantity Ti(t) written as

D t
- - L oe oy
Ti(t) 'ri(to) + Ri(t to) + 3 (t to) +t_r y{(t)dt . (4.1.11)
L]

Suppose an estimate of Ti(t) was made at ta ag shown in Figure 4.1.1
based on avallable data taken prior to ts' If a clock correction based
on this estimate was applied to the time scale, then at to the error
Ti(to) is due to the error in the prior estimate ;i(ts) which was
applied to the time scale, the effect of fractional frequency errors

over the interval [ts’to]

t
o

;(co) - f y(1)dr (4.1.12)

t
s

and, systematic contributions to the time error in the form of a time

drift and ageing, the quadratic term inm equation (4.1.11). The error

Ti(to) with no clock correction at tS is approximately given by

D to

- i 2
Ti(ts)+Ri(tO-—ts)+ T(to_ts) + [ y(r)ar (4.1.13)

t
8

1

Ti(to)

since Tt(ts) is an estimated quantity. 1If the time scale is corrected
at t_ then Ti(to) would be an estimated offset independent of the cur-

rent oscillator random error y{t) for t greater than to.

The error equation (4.1.9) is the model used to describe the
types of error present in atomic time scales. The deterministic errors
consist of bias, drift, and ageing terms modeled as a quadratic poly-

nominal in time. The ageing term is usually not observable for clocks
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whose long-term stability 1is good such as cesium. The additional term
in equation (4.1.9) represents the random time error due to the integra-
tion of random fluctuations in frequency. The magnitude of this term
depends on the interval of time which has passed since the scale was reset

or calibrated and on the stability of the clock. Table 4.1.1 lists the

error terms assoclated with atomic clock time scales.

TABLE 4.1.1. ATOMIC TIME SCALE ERROR TERMS

DETERMINISTIC NCTATION
TIME BIAS T, (ty)
TIME DRIFT R
AGEING TERM D,

RANDOM

X (t) INTEGRATED FRACTIONAL FREQUENCY

4.1.1.2 Frequency Stability Measurement
and Characterization

Hellwig [1977] points out that "the characterization of the
stability of a frequency standard is usually the most important informa-
tion to the user especially to those interested in scientific measure-
ments and in the evaluation and intercomparison of the most advanced
devices (clocks)." Since the frequency stability of a standard depends
on a variety of physical and electronic influences both internal and
external to the standard, measurement and characterization of frequency
stability are always given subject to constraints or environmental and
operating conditions. In addition frequency stability depends on the

exact measurement procedure used to determine stability.
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Frequency stability characterization is done in both the fre-
quency and time domain. In the time domain a frequently used measure of
stability 1s the Allan variance or its square root. In the frequency

domain it is the power apectral density.

4.1.1.2.1 The Allan Variance. The Allan variance as a time

domain measure of frequency stability is found especially useful in
practice since it is obtainable directly from experimental measurements
of fractional frequency error y{t) and because it contains all informa-
tion on the second moments of the statistical distribution of fractional
frequency error. The Allan variance is defined as follows: Ilet
Yo’yl’yz""’Yk’yk+1’yk+2"" be observed fractional frequency errors
separated by a repetition interval of T seconds. For each integer N
greater than or equal to two calculate ;;, from

_ ]_@ﬁDN-l

Yy = N L Yi m=0,1,2,...M . (4.1.14)

m k’mN

This is an average over N consecutive values of Vi The Allan vari-
ance, os(N), is then obtained from the averages ;; by

M-1 2

2 1 = -
YW = I Gy =Y (4.1.15)

An examination of this equation reveals that the Allan variance for a
particular sampling interval NT 1is the average two-sample varlance of

the ?m(N) .
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For frequency standardas the square root of the Allan variance is
usually given in graphical form on a log-log scale. For individual
classes of frequency standards models for the Allan variance are used
which portray general frequency stability characteristics. Hellwig
[1975] gives examples of such models for many oscillator types. Figure
4.1.2 shows the typical form. In this form, Uy(T) is the square root of

the Allan variance for the sample interval 1. The quantity ¢, 1s called

£

the flicker floor and Tl’ Tz, T., are the break points of the plot. The

3
constants assoclated with this figure are usually specified for each
type of frequency standard. A comparison of such information can facil-
itate the selection of a frequency standard for a specific application.

The stability characteristics shown in the three regions of
Figure 4.1.2 are typically present in many Allan variance plots of
specified oscillator performance. The first part, region I, reflects
the fundamental noise properties of the standard. This behavior con-
tinues with increased sampling time until a floor is reached corres-
ponding to reglon 1I1. After TZ the performance deteriorates with
increased sampling time. Hellwig [1977] outlines the error sources
corresponding to each portion of the graph. The magnitude and slope of
each segment will depend on the particular category of standard.

Figure 4.1.3 details the performance specifications for the
Allan variance for the GPS satellite rubidium oscillator and for the
cesium oscillator used in tracking receivers supporting orbit determi-

nation. This latter oscillator is an example of the type which will be

used in range and Doppler geodetic receivers.
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Figure 4.1.3. Allan Variance for Satellite
and Station Oscillators

4.1.1.2.2 Power Spectral Density. An alternative procedure for

specifying the stability of a frequency standard, in the frequency
domain, is the use of the power spectral density (PSD) of instantaneous
fractional frequency fluctuations y(t). Allan et al. [1974] have given
a useful meodel to represent the PSD for various categories of frequency
standards. This model is in the form of a power law spectral density

having the form

Q
w
hy (27) Oceswy
S {(w) = (4.1.16)
Yy 0 w > w

where o takes on the integer powers between -2 and 2 inclusive depending
on how the interval [O,Mh] 18 to be divided into subintervals, one for
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each a to be used. The quantity ha is a scaling constant and the PSD is
assumed to be negligible beyond the frequency range [O,wh].

Barnes et al. [1971] and Meditch [1975] give the transformations
between the time domain measures of frequency stability in the form of
the Allan variance and the power law spectral densities. Table 4.1.2
taken from Meditch gives these conversions for three types of frac-

tional frequency error sources.

4.1.1.3 Range and Doppler Observation Errors
Due to Random Atomic Clock Error
As previously discussed an atomic clock's time scale can be
expected to differ from ideal time due to both deterministic and random
errors. The random component is due to integration of fractional fre-

quency errors. A range observation determined by correlating the PRN

signal broadcast by the satellite with a similar signal generated in the

receiver is subject to the random errors of both atomic frequency
standards. The effective range error at time t due to the timing error

in one of the time scales ti is

GRi(t) = cTi(t) (4.1.17)
with the random component being the random walk

t
ni(t) =c [ y(1)dT {4.1.18)

t
s

where ¢ is the velocity of light. The random component is due to the
accumulated effect of fractional frequency error since the clock's
start or reset at ts'
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The random error ni(t) is correlated in time. Consider two
measurements of range R(tj) and R(tk) based on the use of the oscilla-
tor in the satellite, and assume momentarily that the receiver’'s oscil-
lator is free from random error. The covariance between these measured
ranges due to correlated fractional frequency error in the satellite

oscillator is

E[R(tj)R(tk)] = E[n(tj)n(tk)]
) tj t,
= ¢'E[ J y(r)dt [ y(t7)dr")
t t
8 8
(4.1.19)
t, t
2 k . .
=c” f J Ely(T)y{(17)]dTtdT
t t
8 8
, £, t
=c” S f ¢ _(T-17)dtdr”
t t Yy
8 S

where @yy(T—T') is the autocorrelation function for fractional frequency

error y(t) defined by

°yy(T-T') = E[y(T)y(17)]

=S I yyf(y,y",T,t7)dy dy” .

- w00

(4.1.20)

The function f(y,y ,T,T”) is the joint probability density function for
fractional frequency error. Here it is assumed that y(t) is a mean zero

stationary random process. The function ¢yy(T-T') can be obtained by
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the inverse Fourier transform of the given power spectral density

) :
yy(m)
1 > imt
B — J 4-1-21
® () S / 8 _ (we dw ( )
where
t=T~-1T" . (4.1,22)

A procedure for obtaining the autocorrelation function ¢yy(t) from the
Allan variance is given in Section 4.4.
The variance of a range observation is obtained from equation

(4.1.19) by taking tj equal to t

k
t, ¢t
2 s 3 3
c. =c¢ f f & (1t-17)d1dT” . (4.1.23)
R Yy
1 ts s

Allowing random frequency error in the receiver oscillator introduces
additional, but similar, terms into equations (4.1.19) and (4.1.23)
which must be considered when assessing the range uncertainty due to all
random clock errors effecting the measurement.

For integrated Doppler or range difference observations the ran-
dom measurement error assoclated with system clocks is the integral of
fraztional frequency error over the Doppler integration interval. The

random error in range difference due to one oscillator is
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n,, = n{t) - n()
i
3 3 k (4.1.24)
t3
=c [ y(t)dt .
ti
Notice in equation (4.1.24) that the random error Nyy is a function of
s tj' and y(t). The error does not depend on ts. Range difference

measurements have the following correlation from each oscillator

E[R AR ] = E[n, ]

(4.1.25)
t t
-c2 J’j J‘p‘dJ (T-17)dtdt”
t t ¥y
i 1’3
with the variance
t t
2 2 J . .
o] =c" T & (t~17)dtdTr” . (4.1.26)
AR yy
1] by ty

Observe that the random range difference errors, whose statistics are
given by equations (4.1.25) and (4.1.26), are stationary; however, ran-
dom range errors, whose statistics are given by equations (4.1.19) and
(4.1.23), are not. A stationary random process is one whose statistics
are invariant 1in time.

For the oscillator performance specifications shown in Figure
4.1.3 examples of the contribution to the range error are given for both
oscillators in Figures 4.1.4 and 4.1.5 over a five-day span. The clocks
are assumed to be perfect initially. Also included is the standard

error for the random walk n(t) obtained using equation (4.1.23). The
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procedure used in simulating the random range error is discussed in

[Meditch, 1975].

TABLE 4.1.2. ALLAN VARIANCE AND POWER SPECTRAL DENSITY
FOR COMMON ERROR SOURCES

ERROR SOURCE ALLAN VARIANCE TWO SIDED SPECTRAL DENSITY

2
y(t) G’ (1) Syy (w)

WHITE NOISE No N,
T

FLICKER NOISE 2Nyin 2 N,
n ju

INTEGRAL OF N, T N
2 2

WMITE NOISE 3 -7

(RANDOM WALK)

4.1.2 Ephemeris Error

The ultimate accuracy of Global Positioning System satellite
ephemerides and satellite clock solutions is difficult to predict since
many factors influencing the final error budget have to be resolved.
Among these are the number and location of tracking sites to support
orbit determination, the exact estimation algorithm to be used including
force modeling, and the final geometry of the satellite constellation.
At present, errors in computed ephemerides significantly exceed accu-
racy design goals, especially in the prediction region used in naviga-
tion as reported by Schaibly [1979].

In order to establish bounds on expected ephemeris and satellite
clock errors simulations of orbit determination were performed assuming

expected levels of model error for gravity, solar radiation pressure,
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pole position, tracking site coordinates, and system clock errors.
The results of these studies reported by Schaibly [1976] indicate the
following:

(1) the radial component of position error is a twelve~hour periodic
function whose amplitude ranges form one to three meters;

(ii) the along-track component of position error has two components.
The first is a twelve-~hour periodic function whose amplitude
ranges from two to five meters. The second component iIs a quadra-
tic function in time introducing maximum errors of up to twenty
meters. In most cases this error appears to average five meters;

(111) the cross-track component of orbit error is a twelve-hour periodic
function whose amplitude ranges from seven to twenty meters. This
error and the periodic radial orbit error appear to have zero
mean;

(iv) satellite clock solution errors have systematic components which
may be modeled as a bias and drift;

{v) ephemeris and satellite clock errors will be correlated in the
sense that the net effect of all error sources on an observation
residual will be smaller than the sum of the individual error
sources.

This analysis of expected orbital accuracy will be used as a basis for

developing error models and a priori statistics for ephemeris state vec-
tor components and satellite clock parameters in simulation studies

designed to predict accuracies for dynamic point positioning.
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4.1.2.1 Ephemeris Error Model

Using the results of the simulations described above, models
for ephemeris error can be developed for use in positioning studies.
These models will consist of varjiations in the osculating orbital ele-
ments for each satellite which will produce radial, along-track, and
cross—track orbit errors comparable with the simulation results. The
magnitudes of these variations can be approximated by noting the errors
introduced by changes in Keplerian orbital e¢lements. For instance,
radial orbit error 1s primarily a function of errors in the semimajor
axis a and eccentricity e of the orbit. The model for radial orbit
error will be developed as follows:
Taking

Aa = 8a cos(M+m+Ba) (4.1.27)

and

Ae = e , (4.1.28)

where §a and 8e are errors in a and e respectively and Ba is the phase
of the error signal Aa, and differentiating the equation for the radius

of a Keplerian orbit

r = a[l-e cos(E)] (4.1.29)
with respect to a
%:—- ™ 1 - g COS(E) ~ l(e-_-r 0) (4-1.30)

one arrives at the error introduced into r by Aa
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Ar = Aa . (4.1.31)

Choosing Aa as in equation (4.1.27) gives periodic radial orbit error of
amplitude §a and phase Ba. The period of the error is orbit period.

Differentiating equation (4.1.29) with respect to e gives

dr
de - 4 cos(E) (4.1.32)

or

Ar = -ape cos(E)
(4.1.33)

1

—-ale cos(M+w)

for e and w approximately zero. Introducing a phase error and using

equation (4.1.28) vields

Ar = -afe cos(M*-mi-Be) . {4.1.34)

Thus an error in orbit eccentricity 8e introduces a periocdic radial
orbit error whose amplitude is ade and whose phase is Be’

Along-track orbit error can be produced by variations in mean
anomaly M and argument of perigee w as well as eccentricity Con-

sidering M + w as a single element the following model will be adopted

+ = + - - »
A(M+ w) S(M+w)cos(M+uw BM—HA) (4.1.35)
For nearly circular orbits
r = afl-e cos(E)] ~a (4.1.36)

and the along-track error due to equation (4.1.35) 1s approximately
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As = aA(M+w)

(4.1.37)

= ad(M+w)cos(M+uw+ B}H-m) .

This orbit period error has anm amplitude of ad(M+w) and phase BH .
An error in eccentricity will also introduce a periodic error

in the along~track satellite position. This error will have the form
As = 2afe sin(Mi—wi—Be) . (4.1.38)

Notice that the along-track error due to e has twice the amplitude of

induced radial error due to de.

An error in the ascending node ) of the orbit plane produces an

along-track bias

As = adflcos(d) (4.1.39)

independent of the in-plane satellite position.

In addition a quadratic along-track error polynomial will be
introduced to produce the quadratic error to fit found in the orbit

accuracy simulation studies. This error is developed through an error

in mean anomaly M of the form

AM = (A+BM+CM2)/a (4.1.40)

where A is an epoch error given in meters and B and C are determined to

allow the quadratic error to be symmetric over a seven-day span:

B = -5040C

(4.1.41)
C = 2A/6350400 .
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The cross—~track or out-of-plane orbit error is due to error in
inclination 1 and ascending node {). The cross-track error due to an

error in orbital inclination has the form

A{rxv) = aAisin (H+m+81) (4.1.42)
for a circular orbit. The error model chosen for inclination is

AL = 81 . (4.1.43)

The cross-track error due to a change in ascending node 1is

Alrxv) = —aAQsin(i)cos(M+m+BQ) (4.1.44)
where Al is given by
AQ = &0 , (4.1.45)

This error has orbit period and amplitude adflsin(i).
Notice that the two radial error signals are 180 degrees out of

phase when Ba and Be are zero. Therefore let
Ba = Be + 180 . (4.1.46)

in order that the total radial error have the functional form found in
the orbit simulation results.

S5ince no along-track bias was present in the simulation results
no error will be introduced into the ascending node in positioning simu-
lations. As a result all cross-track error will be attributed to an

error in inclination.
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In addition the phase B” will be adjusted by 90 degrees to
allow the along-track error due to inclination and mean anomaly plus

argument of perigee to be in phase.

4.1.3 Refraction Errors

4.1.3.1 Tropospheric Refraction Erreor

The nonionized portion of the atmosphere slows the passage of
electromagnetic signals introducing an error into electromagnetic
measurements such as range, Doppler and interferometric phase. Compu-
tations of receiver positions for geodetic control utilizing such
measurements must incorporate either refraction error wmodeling of suf-
ficient accuracy to eliminate these atmospheric effects or incorporate
corrections based on radiometry measurements as suggested by MacDoran
[1979].

Currently, the Hopfield model [Hopfield, 1969] is used exten-
sively to correct for tropospheric refraction present in satellite
observations of range and Doppler. This model requires a knowledge of
surface weather conditions at recelver sites to ensure proper scale.
These weather observations are of surface pressure, temperature, and
humidity. The error in this model is generally assumed to be less than

five percent of the total refraction.

Alternatively, a water vapor radiometer may be used to measure
the tropospheric refraction (wet component) in the slant range direction

to the satellite at the time of observation. MacDoran [1979] has
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indicated that such an approach may have an accuracy of 2 cm to a few

millimeters, virtually eliminating this error source.

4.1.3.1.1 Refraction Modeling Approach. The tropospheric
refraction model adopted fn this analysis is a modified version of the
Hopfield model [Anderle, 1974] involving a change in the form of the
quartic polynomial to allow more rapid calculation.

The theoretical form of the first~order tropospheric refraction

correction for range measurements is given by

T

sat
SR= [ (n-l)r(rz-kz)'”zdr (4.1.47)
T
]
where
k =r sinz (4.1.48)
and

(4.1.49)

0

cCos Z = u ¢

The vectors ?; and ;;at represent the position vectors for the
observing station and satellite, respectively. The zenith angle z is
measured from the ellipscidal normal a; through the station (see
Figure 4.1.6)

The index of refraction m is computed using surface weather
measure#ents. Given the centigrade temperature T, the surface pressure
P in millibars, and the relative himidity H, the index n is computed

using the equations
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Figure 4.1.6. Geometry of Tropospheric Refraction

- - 4.1.50
n-1 M, + M, ( )
2 2
r --ri
. Ni :E._::.-Z- if l.'s <r < I'i (4.1.51)
i 8 i
0 otherwise

where the surface refractivities Ni and radii r, for the dry and wet

components are given respectively by

Np = (.nsxlo""‘)p/TK (4.1.52)
2

- 4.1.53

N, (.3?3)2/’1‘K ( );

ry = T, 4+ 40.1 + .149T (km) (4.1.54)

r,=r_+ 12.0 (km) (4.1.55)
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The quantity TK represents the Kelvin equivalent of the Centigrade tem—

perature T. The quantity E is the water vapor pressure given by

E = (H/100)exp{-37.2465+ .213166T, - .000256908TK2} . (6.1.56)

For radio frequencies up to 15 GHz tropospheric refraction is not a
function of frequency.

For integrated Doppler the refraction correction is taken as the
difference in equation (4.1.47) applied at the end times of the integra-
tion interval. The magnitude of tropespheric refraction on range observa-
tions 13 given in Figure 4.1.7 as a function of zenith angle. This error

grows rapidly when the elevation angle of the satellite falls below ten

degrees,
90 +
80 +
70 +
- 4
o
w 6o+
>3
z 504
e
[
&) 40 4+
b4
- 4
:I 10 4
- 4
20 4+
'O C
o =7 } 4 + + } } + 4
0 10 20 ao 40 50 80 1o 80 90

ZENITH ANGLE (DEGREE)

Figure 4.1.7. Tropospheric Refraction Profile for Range Observations
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The tropospheric refraction model described above attempts to
predict the refraction error as a functiorn of surface weather condi-
tions. How adequately this is done in practice is difficult to deter~
mine especially for non-vertical measurements. Hopfield [1972] has
compared this model to values of tropospheric refraction computed using
meterclogical balloon data and found good agreement for zenith measure-
ments with the contribution due to the wet component suffering the
largest error. However the dry component is predicted accurately from
surface pressure alone.

An adopted technique in utilizing this model is to Iinclude in
the mathematical model for the observation equation a scaling parameter
CR as an unknown to be determined in the adjustment procedure with an
a priori uncertainty. For range observations the mathematical model

equation (2.2.6) becomes

2 2,1/2

R = [(113-u)2 + v -0 w -w? e eat # (tcsR L (4.1057)

Fell [1975] used such an approach for orbit determination using Doppler
observations from Transit satellites. Although this procedure tends to
weaken the normal equations it reduces the level of unmodeled error and

improves the accuracy of the estimated quantities.

4.1.3.2 Tonospheric Refraction Error

The ionosophere, the charged portion of the atmosphere which
extends above 100 kilometers, has a variable index of refraction which
is a function of both the frequency of the passing electromagnetic sig-

nal and the altitude along the signal path since the electron density
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varies with location. The electron density distribution which deter-
mines the refractive index at a particular frequency is quite variable
with a dominate diurnal variation due to earth rotation and with long
term variations with the solar cycle.

Clynch [1979] reviews the second order expansion of the refrac-
tion index n as a function of frequency

2
AlN(h) _ AZN (h)

a=1- (4.1.58)

f f2
where the Ai are constants and N is the electron density, a function of
height along the signal path.
The total fonospheric refraction for range observations 1s the

difference between the integral of the refractive index along the opti-

cal path and the geometric range:

SR = fnds - fds . (4.1.59)
o 4

Using equation (4.1.58) in equation (4.1.59) gives to second order the

ionospheric refraction as

B 32
SR = ~—% - —= (4.1.60)
f f
where
B, = A Minyds . (4.1.61)
[+

If two known frequencies are transmitted from a satellite, fl and fz,
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then each signal is refracted according to equation (4.1.60). These

two equations may be combined to eliminate the first order effect:

2 2
f1 f1
R = | (R+S6R.)~-|=—] (R+SR)D) ]+ |1~ = (4.1.62)
1 f 2 f
2 2
where (R4-6Ri) tepresents the range observed using frequency fi' This
two frequency technique leaves a residual range error eR of
B2
ER = —5— . (4.1.63)
£ Zf 2
1 "2

Clynch [1979] gives examples of two frequency corrected residual range
errors for simulated Navy Navigation Satellite passes. These iono-
spheric errors were computed by ray tracing through an ionospheric
model with a range of sunspot numbers considered. For elevation angles
above ten degrees the upper bound on the residual range errcors is five
meters. Using equation (4.1.63) with €R equal to five meters and the
150 MHz and 400 MHz frequencies of the Transit system, an upper bound
on B2 is obtained. Computing €R using the Global Posgitioning System
satellite frequencies of 1227 MHz and 1575 MHz gives an upper bound of
4.8 millimeters for the residual range error. For observations above
twenty degrees this residual error has an upper bound of 1.9 milli-
meters. Since this error is small, residual icnospheric error was not

included in the positioning studies conducted in Section 4.5.

4.1.4 Instrumental Error Sources

Tracking receivers designed to measure range and integrated
Doppler from GPS satellites introduce random measurement error in
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addition to the random clock error discussed in Section 4.1.1., The
reascns for this error are jitter in the carrier tracking loops and in
the code correlation process and electronic thermal noise. Specifica-
tions of the statistical properties of this noise are usually given for
each receiver type; and in practice estimates of these properties are
usually obtained through examinatfon of observation residuals. Unfor-
tunately it may be difficult to completely separate these receiver
noise effects from clock noise since oscillator errors are manifest in
the residuals.

Jorgensen [1978)] attempts to predict the short-term quality of
range observations by fitting a ninth degree polynomial to 70 minutes of
gix-second high quality range observations taken at the Hawail and
Vandenberg tracking stations from two satellites. In this procedure it
is assumed that the polynomfal models all systematic trends in the
observations. The residuals from this least squares fit appear as white
noise. Jorgensen concludes from this investigation that two frequency
corrected range observations of high quality are subject to 60 centi-
meters of white noise. An extrapolation of Table 4.4.5 indicates that
these residuals are due almost entirely to receiver noise since the
expected level of residual cleock error is much less than this magnitude.

For 60 second dual frequency Doppler observations the Stanford
Telecommunications [1978] specifications for Model 50607 NGR receiver
indicate that the error due to jitter In the carrier tracking loops
should not exceed 0.9 centimeters. Thermal noise may increase this

level to at least one centimeter.
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Based on these results Table 4.1.3 gives bounds on the range of
receiver noise which can be expected from present receiver technology.

These levels will be used in Section 4.5.

TABLE 4.1.3. MAGNITUDE OF RECEIVER WHITE NOISE

DATA TYPE NOMINAL LEVEL OPTIMAL LEVEL
RANGE (6 sec) 1Tm 60 cm
INTEGRATED
DOPPLER (60 sec) 3cm Tecm

4.2 Simulation of Observations

4.2.1 Range and Doppler

Range and Doppler observations were simulated for the tracking
stations of Table 4.2.1 over time intervals ranging from two to five
days. The locations of the three station groups utilized are shown in
Figures 4.2.1 through 4.2.3., Observations of topocentric range and
range difference were based on satellite positions obtained from the
numerical integration of the satellite's equations of motion using a
force model consisting of the WGS72 [Seppelin, 1974] geopotential coef-
ficients to degree and order eight, solar radiation pressure, and
luni~-solar gravitational perturbations. The initial conditions for the
orbit integrations were obtained from Table 3.2.1 for each of the
twenty~-four GPS satellites. The observation sets consisted of range and
Doppler range differences generated every five minutes. Satellites were
tracked sequentially and selected on the basis of criteria discussed

below. The duration of the satellite tracking interval varied from
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TABLE 4.2.1., GEODETIC COORDINATES OF TRACKING STATIONS

STATION GEODETIC COORDINATES
NO. LATITUDE LONGITUDE HEIGHT {m}
1001 0° o 000°'| 4° o  0.00” 0.0
1002 30 54 75 | 45 0 0.00 0.0
1003 30 0 000 | 43 57 48.98 0.0
1004 30 0 G600 | 4 2 1104 0.0
1008 3 0 000 | 43 26 43.44 0.0
1006 3 ©0 000 | 4 33 16.56 0.0
1007 M o0 o000 | 8 24 228 0.0
1008 30 0 000 { 47 3» 275 0.0
1009 S0 0 000 | O 0 000 0.0
1010 89 5 s518 | 0O 0 000 0.0
1011 0 0 o000 | © 0 0.0 0.0
1012 0 6 o000 | © 53 53.93 0.0
1013 0 53 5393 | © 0 000 0.0
1014 3 38 669 | 46 38  6.69 0.0
1015 23 39 3970 | 38 37 18.74 0.0
1016 3 20 2030 | 59 2 a2 0.0

one to three hours as a function of the adopted clock error modeling
procedure.

To the geometrically derived observations of range and range
difference, equations (3.1.1) and (3.1.2), systematic and random error
sources were added as required in accordance with Table 4.2.2. White
nolse consistent with that expected fromsix-second ranges smoothed over
300 seconds or one-minute Integrated Doppler range differences aggregated
over the same interval was added based on the adopted levels in Table
4.2.2 as described in Section4.1.4. Random rubidium and cesium clock
noise were simulated using the algorithm of Meditch [1975]), based on the
selected Allan variance models for the satellite and geodetic receiver
oscillators. Random receiver cesium clock noise was added to the obser-

vations along with a time bias and drift as given in Table 4.2.2.
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TABLE 4.2.2. SIMULATION ERROR SOURCES

ORBITAL ELEMENT PERIODIC ERRORS (RMS)
RADIAL ALONG TRACK CROSS TRACK
am
2.6m 5.3m
i 12m
M+ W 6.4m"
{2
*PLUS Sm QUADRATIC ERAROR
TROPOSPHERIC REFRACTION 5% OF HOPFIELD MODEL PREDICTION
CLOCK ERRORS
1. STATION

BIAS: 30 TO -10 nsec
ORIFT. .000083 TQO -.00004 nsec/sec
RANDOM: CESIUM SPECIFICATIONS
2. SATELLITE
RMS BIAS: 5 nsec
AMS DRIFT: 0002 nsec/sec
RANDOM: RESIDUAL NQOISE BASED ON RUBIDIUM
MODEL FOR GPS SATELLITES

WHITE NOISE
RANGE: 100 - 60cm (6 sec)

DOPPLER: 3 -1 cm (60 sec)
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For each satellite the total time error converted to distance is

given by equaticn (4.1.11) as

¢D

eT,(t) = eT (£ ) + cR (-t ) + —-ii (:-:0)2 + 0 () (4.2.1)
where
t
ni(t) = ¢ tf yi('r ydt . (4.2.2)
O

Assunming the ageing to be negligible over the satellite tracking inter-

val, equation (4.2.1) can be written as

cTi(t) =a+ b(t-t7) + Ei(t) (4.2.3)
where
Dy 2
a= cTi(to) + cRi(t‘-to) + - (t-to) + ni(t’) (4.2.4)
b = CRi (4.2.5)
Ei(t) = ni(t) - ni(t') . (4.2.6)

Letting cTi(t) be the best prior linear estimate of CTi(t) over the

satellite tracking interval, the residual range error is defined as
[T () = T, ()] = (a-a) + (b-B)(t-t") +r () .  (4.2.7)

The expected standard errors of the residual random bias (a—;) and driftc
(b—G) of the satellite clocks were taken to be consistent with the
ephemeris simulation results described in Section 4.1.2 and are given
in Table 4.2,2, The residual random range error ri(t) is obtained from

ni(t) by linear least squares approximation., These quantities are
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added to the geometrically derived range and range differences accord-
ingly, assuming the random bias and drift are normally distributed
although constant within a particular tracking interval.

A residual tropospheric refraction error in the form of five
percent of the Hopfield model prediction was applied to the observa-
tions in certain cases to represent a difference between actual and
modeled refraction. In these cases the adjustment model (Section 4.3)
included tropospheric scaling parameters as indicated in equation
(4.1.57).

The resulting quantities are the observed range and range dif-

ference observations given by

R (t) = R(t) + vR/‘/rT + a4+ b(t-t") + n(t)

R A (4.2.8)
+ (ai-ai) + (bi-bi)(t-t"') + ri(t) + RER(t)
and
AR (t) = R(t) - R(t-At)++vm Vpg t bAL + n{c)
- n(t-At) + (bi-ﬁi)zst + 1, (t) - (c- a0 (4.2.9)

+ R[ER(t) - SR{(t - At)]

where n 1s the number of six-second ranges assumed smoothed, UR are
independent zero mean Gaussian random numbers having a standard devia-
tion equal to that of the six-second ranges, 8 1s 0.05, §R(t) is the
tropospheric refraction error, m is the number of aggregated Doppler,

cbservations, are independent zero mean Gaussian random numbers

VAR
having a standard deviation equal to that of the Doppler measurements,

t” and t° are clock model epochs, and At 1is five minutes.
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The white noise level applied to range differences according to
equation (4.2.9) corresponds to the summation of m independent one minute
Doppler counts. For continuous count integrated Doppler the total noise
of the aggregated count may be less and possibly independent of the
count interval; thus the coefficient of VAR in equation (4.2.9) may be
as small as one. The consequence of this will be examined in Section 4.5.

In the least squares adjustment of range or Doppler observations
actual measurements are differenced from estimates of the measurements.
The estimated observation value is obtained from the geometrically
derived range or range difference by a linear adjustment of this quan-
tity which introduces the assumed level of orbit error. For range

observations this linear adjustment has the form

SR(t)

Bolt) = R+ I Fe ()

. ﬂek(tc) (4.2.10)

Mo

where the Aek(tc) represent errors in the orbital elements of the
tracked satellite at the midpoint of the satellite tracking interval.
These errors are assumed to be normally distributed varying with each
satellite of the constellation. The expected ephemeris error is given
in Table 4.2.2. The required partial derivatives in equation (4.2.10)
are developed 1in Section 4.3.2 and approximated in Section 4.3.3. For
range difference observations an equation analogous to equation (4.2.10)

was utilized,

Notice that the error in the satellite clock was introduced into
the observed quantity along with the estimates a and b. Strictly

speaking these error estimates should be introduced into the estimated

107



observation but the net effect on the difference of estimated and
observed quantities in either case is identical. The same argument

holds for the tropospheric refraction error.

4.2.2 Optimal Design for Dynamic Point Positioning

A Global Positioning System is designed so that six to nine
satellites are usually available for observation from any geographic
location. Since options in the tracking geometry are available, it is
reasonable to design a data acquisition schedule which produces the best
results for the adjusted station coordinates derived from dynamic point
positioning. Some factors to be considered in such a design are the
length of the tracking interval for each observed satellite, possible
criteria for minimizing the coordinate covariance, the period of site
occupation and the type of receiver operation anticipated, sequential
tracking or the use of multiple channel receivers. With these factors
defined a sequence of satellites can be selected whose observations give
the best geometrical strength of solution according to the criterion
adopted.

Various procedures for selecting the satellites to be tracked
can be defined. These include the simplest approach of random selection
from those visible to approaches based on choices for covariance mini-
mization. For dynamic positioning performed using a sequential single
satellite receiver two criteria will be discussed:

(1) the selection of satellites whose observations minimize the square

root of the trace of the accumulated covariance matrix, and
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(11) the selection of satellites whose observations minimize the norm
of the vector of correlation coefficients of the accumulated
covariance matrix.

The first procedure is also known as the evaluation of the geometric

dilution of precision. This second procedure allows a more statisti-

cally independent determination of individual parameters. In evaluating
these criteria observations are assumed subject only to Gaussian white
noise. No correlated random errors are introduced. However in addi-
tion to the station coordinates a recelver clock error model was incor-
porated In some cases.

Using globally distributed stations a geometric analysis of
point positioning for range and Doppler tracking was made exawmining the
two criteria. The use of various station locations insured that
numerous samplings of satellite pass geometry were utilized such as
those shown in Figures 4.2.4(a) and 4.2.4(b). For one particular sta-
tion Figures A.Q.S(b) through 4.2.5(e) give the square root of the
trace of the covariance matrix and standard error in latitude, longi-
tude, and height as a function of the number of one-hour satellite
tracking intervals of range observations having a one meter standard
error. Range observations were assumed every five minutes and no clock
error model was Included in this case. Figure 4.2.5(a) gives the azi-
muth and elevation argles for the epoch of each tracking interval for
selection based on minimizing the trace of the covariance matrix.

Figure 4.2.6 gives analogous information for the second criterion. Obser-

vations below ten degrees elevation were excluded from the results.
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Using these criteria the next satellite to be tracked is that
whose observations over the upcoming interval, when combined with all
previous observations, produces the optimum coordinate covariance with
respect to the selection criterion. Notice in these examples that the
standard error of each position component drops rapidly within the first
day then shows only gradual improvement with additional data. An-exami-
nation of the results using the second criterion shows some reduction in
the parameter correlations but yields an increase in the expected

standard error as evidenced in Figures 4.2.6(b) through 4.2.6(e).

Based on a number of similar determinations the following
general conclusions can be drawn for the optimal selection of GPS satel-
lites for both range and Doppler. First, it 1s readily apparent that
the second technique results in somewhat lower parameter correlations
but at the cost of increased parameter variances with respect to the
first criterion. However, the technique adopted is a matter of choice
since each is independent. For the positioning studies of Section 4.5

the first criterion was utilized to establish the observation schedules

in all cases. Secondly, from the results it is noted that initially the
variance of the estimated parameters increases rapidly as the interval
of tracking each satellite i1s increased. For a fixed number of observa-
tions the results obtained are quite varied when the total observation
time 1s less than six hours. With increased observation time allowing
more sampling of pass geometries the results become virtually equivalent
after twelve hours. Thirdly, with range observations the introduction
of a receiver time bias significantly weakens the variance of station

height as evidenced by comparing Figure 4.2.5(e) with Figure 4.2.7.
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The variance of station latitude and longitude also increase but not as
significantly. The reason for this increase in height uncertainty can be
explained by noting that a time or range bias error in a given observa-
tion is equivalent to a linear combination of a vertical and horizontal
position error of the station. The horizontal error lies along the
projection of the slant range vector onto the horizon plane. Successive
observations taken as a function of azimuth would yield horizontal error
components whose sum would tend to cancel. However the vertical error
component can only be separated from an actual station height error by
using observations of low elevation. At ten degrees elevation the ver-
tical component of range bias is approximately seventeen percent of the
total bias. Therefore with the restriction of observations to elevation

angles greater than ten degrees a weakening of the actual station
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height uncertainty can be expected since a station height error will
tend to be masked by the vertical component of range bias,

Finally, the satellite orbits have repeating ground tracks
yielding a tracking geometry with a diurnal period. For the first
selection criterion this tends to result in a clustering of the initial
satellite azimuth of each tracking interval into a series of three bands
separated by 50 to 150 degrees with a sampling of different elevations
in each band. This is most obvious in cases where the tracking interval
is short. This property is not a fixed rule but a general trend as
demonstrated somewhat in Figure 4.2.5(a). For the second criterion the
distribution of azimuth is less consistent,although in some cases con-
sidered the distribution may fall almost entirely within a single band
of 150 degrees width.

For the determination of baseline components and chord length
only the first criterion was examined and the results were discussed in

Chapter 3.

4,3 Adjustment Procedure

The adjustment of range and Doppler observations using the
method of observation equations may be developed in a mathematical form
which accommodates the introduction of new observations and new para-
meters. Uotila [1967] discusses this sequential approach and it is
emphasized that such a technique 1s valuable in assessing the effect of
additional observations on current parameter estimates. This approach
may be adopted for the analysis of GPS observations taken in a sequen-~
tial fashion as discussed in Section 4.2. The estimation equations for

this procedure are now developed,
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4,3,1 Sequential Adjustment of Parameters

Given N statistically independent sets of observations Lb
i

where

: (4.3.1)
F(x.yN)

LN

equations are developed for the least squares minimum variance estimate
of the primary parameters x and seccndary parameters vy using all N
observation sets. The primary parameters of interest are the
earth-fixed station coordinates or coordinate differences. The second-
ary parameters consist of orbital elements, satellite clock model para-
meters, refraction bias parameters, and tracking receiver clock
parameters. Formulas giving the parameter covariance matrices Zx and
Zyi and the weighted sum square of residuals after adjustment, VTPV,

are developed. The sequential forms of these equations are given as

”~

required. In sequential form the estimated quantity Zy+1 based on N + 1

sets of observations is written as

zN+-1 = zN + ﬂzNi—l (4.3.2)

is the correction to the prior estimate z  due to the inclu-

where AzN N

+1

sion of observations Lb .
N+1

4.3.1.1 Estimation of Primary Parameters
The least squares minimum variance estimate for the parameters
of primary interest x from any one set of observations Lb from equa-
i

tions {(4.3.1) 1is given by
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~ - -1 -1
- - N U -N N U
*1 [N Xy Yy yx]i [ X Xy yy Y]i
(4.3.3)
= . R, = x
xi i 1
where
[N N
= e T (4.3.4)
Ny = N AfPyAy <.
¥y N
5 Yi¥i
U
* T (4.3.5)
U, = . = AW, L, .3.
| Y1
A, = FA A ] (4.,3.6)
i L X yi
-1
P =23 (4.3.7)
i
Lbi
L. =L - (4.3.8)
i 01 Lbi
= 4.3.9
L Fi(xo,y:.L ) ( )
i o

with the a priori variance of unit weight Ug

(4.3.3) is the solution for x based on observations Lb which results
i

equal tc one. Equation

after algebraic elimination of the secondary parameter set yi.

With the additiom of a second observation set Lb the estimate
3

for x becones

o EE T _1 R,4+R. | 4.3.10
*11 xg %y 175y (4.3.10)

Dencting the covariance matrix Ex as Ex » equation (4.3.10) may be

i 1
written using matrix identities as
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A
|
———
™~
i
[ny
L
™
+
™
S
'
e
1
3
(=)
r—-
-]
(Y
+
e
e

I1 1 Xy xI i 1
R Cqa _ 9 . (4.3.11)
=x; - % (E +I ) lxI - (Exld-le) lnj
G ¢ i 1 5
or
X = X 4.3.12
x0T ¥ + axII (4.3.12)
The covariance matrix Zx based on a pair of data sets, assumed uncor-
II
related set-wise, becomes
I o= [5'14-2'1]‘1 : (4.3.13)
X11 X; xj

In general given QN and T based on N sets of observations, the

T

estimate based on the inclusion of an additional observation set is

given by
o1 TN A (4:3.14)
where
_1A
a = - [ +Z ]
xN4-1 xN xN xn+1 xN
(4.3.15)
- Iz 1+E-1 ]-lR o1
N *n+1 o

and the covariance is

T s
*N+1 XN *a+1
(4.3.16)
=T -L [£ +Z 171z
*N XN ™  *an+1 *N
or
T =L + AL (4.3.17)
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where

AZ = ~F [F
N+1 L *n

+ I (4.3.18)

]‘12 :

*n+1 *N

Equations (4.3.15) and (4.3.18), although not necessarily computa-

tionally efficient, give a measure of the expected change to the primary

parameter set estimates and their uncertainties if a new observation set

is added. It is assumed here that:

(1) new normal equations are formed using the same initial parameter

estimates X Yy as used previocusly; and

(ii) the new data blgck LbN+l is uncorrelated with all previously used
observations.

4.3.1.2 Estimation of Secondary Parameters

Consider the least squares normal equations for the observation

set Lb :
]
+ = (] (4.3.19)

or

N_x+ N +U =0
XX xy,” 3

j X
(4.3.20)
N X + N y +U - .,
ij yjyj h| yj
The solution for yj is given by
§j - - 'ly [U, +N x§] (4.3.21)
Y375 Yy Yy

where ; is based on all N observation sets:
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~ N -1
x=-L | 2 (W -N_N" U )

(4.3.22)
(51 X Wy vy ygd

Substituting equation (4.3.22) into (4.3.21) ylelds

A -1 T, -1 -1
y,=-N A +N Y (U -N_ N U ) ]
h| jjjjj jjjxx[ x xyiyiyiyii -
4.3.23
-1 LT, -1 -1
= -N A N E:(APL -N__ N Alr L), |.
yjy j j j j J ij x[ 1 Xy; ¥4Y4 ¥y 171 i]

Equation (4.3.23) can be written as

A -1 T -1 T -1
y,*-N~ A PL +N~ N T |}PL-N N_© Al PL] +qQ U (4.2.24)
] Yi¥y ¥y 3 ijjxx{xjj X7y ¥y3Yy ¥y 3 3] }

where Q is a function of all data sets except Lb « The covariance

matrix I is obtained from equation (4.3.23). Since all data sets are

y
h|
assumed statistically independent the covariance I is given by
h
T
o el e
o= 3 |3 | Pk o (4.3.25)
Yj k'l k Ik - L

Differentiating equation (4.3.23)

—N—ly Al P, +N‘1y N xzx[A:T‘Pj -N N_ly AY PJ:I k= 4
YT 616 IR TR L6 IR RERSIEREIIN
y
[d_Li.]- (4.3.26)
N1 w e [ATPk— N N1 AT Pk] . k # 4
Y45 Y5 x Ve Vil Y Wi

Substituting equation {4.3.26) into equation (4.3.25) and summing over

k ylelds the final result

=n! +x! x w w1 . (4.3.27)

r
Yy Yy¥y Yy VX X Ry Y4y
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The residuals of fit after adjustment are given by the

linearized form of equation {4.3.1)

-

= +
v, [Ax Ayi] L,

oy
[y

or

- al -7 - -
BA A Ayl 0 . ..o XL
y -~

LVNJ LAI: 0 0.. .4 _J._}’;N_ L L

Since the observation blocks are uncorrelated

N T '
T T AT T
ViPY = 30 ILP.L, + [x yi][Ax A, ]rPiLi
i=1] 14

N T
- T AT T
12-:1 LiPiLi + XiAiPiLi]

b

[

= T

.E LiPiLi + ini .
i=1

The a posteriori variance of unit weight is

~2  ylpy

(4.3.28)

(4.3.29)

(4.3.30)

(4.3.31)

(4.3.32)

where d is the number of degrees of freedom in the total adjustment

problem.
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The equations developed here were utilized in the adjustment of
simulated GPS range and Doppler observations. It is an illustrative
approach for determining how the uncertainty and error in station
positioning vary in time as a function of such variables as the number
of observations, method of satellite selection, tracking interval, and

others.,

4.3.2 Model Parameters and Partial Derivatives

In the adjustment of range and Doppler observations the number
of secondary parameters Yy for each data set of equation (4.3.1) is
subject to variation depending on the tracking schedule and the choice
of specific clock error models and additional bias parameters. The
secondary parameter set includes six orbital elements for each satel-
lite tracking interval, a polynomial clock model for receiver clocks
over the time span of each observation set, a polynomial clock model for
each satellite clock over the interval each is tracked, and may include
tropospheric refraction scaling parameters for every satellite-~station
combination within an observation set. The primary parameter set x con-
sists of the geodetic coordinates of the tracking stations in the
adopted earth-fixed frame of reference.

The design matrix A introduced in Section 3.1.2 is developed
from the first partials of the data function with respect to the model
parameters. The partial derivatives of the range observation model,
equation (4.1,57), with respect to the Cartesian earth-fixed coordinates

of the tracking station are
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(t) - u
3R(t) - us
™ ) u -+ v,w (4.3.33)

where ua,vs,ws are the coordinates of the satellite at time t in the

same frame. The partials for geodetic coordinates are obtained using

equation (4.3.33) and the chain rule

oR(t) _ 3R(t) du . 3R(r) 3v , BR(L) 3w , , 4 ¢ (4.3.34)
L) d3u 3 3v 3 3w 3 ’

where the partials of Cartesian coordinates with respect to geodetic

coordinates are given in Rapp [1976] as the coefficlients of the dif-

ferential equations

du = - (M+h)sindcoside - (N+h)cos ¢ sinAdA + cos¢cosidh
dv = -(M+h)sindsinidd + (N+h)cospcosidir + cos¢sinidh (4.3.35)

dw = (M+h) cosddd + sinddh

where M and N are the ellipsold radii of curvature in the meridian and
prime vertical.

The satellite coordinates are obtained in a mean inertial system
by numerical integration of the equations of motion whose forces include
the geopotential to degree and order eight, solar radiation pressure,
and luni-solar gravitational perturbations and are rotated into the
earth~-fixed frame. The initial conditions for the integration are
obtained from Table 3.2.1.

For range difference observations the partials for station

coordinates are given by the difference
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BAR(E) _ us(t) - u ) us(t-ﬁt) -u N
3u R(t) R(t - At) U vLw (4.3.36)

where At is the Doppler integration interval. TFor geodetic coordinates

a similar expression holds

3AR 3R SR(t - At)
aét) - aét) T ¢~ 2h (4.3.37)

Each interval a satellite is tracked six orbital elements are
introduced to model ephemeris error. The elements are represented as
the orbital semi-major axis a, the eccentricity multiplied by the cosine
and sine of the argument of perigee, e coswand esinw, the inclination
i, the sum of mean anomaly M and argument of perigee w, and the
ascending node {i. Letting tc represent the midpoint of the satellite
tracking interval and t0 the epoch associated with the initial orbital
elements, the partial derivatives of range with respect to the elements

at t_ are given by

3R(t) 3R(t) -1 (4.3.38)
= Y ()Y “(e )T(t )
ae* BX*(t) o (4] c c
t s
c
where
9R(t) _|3R(t) B3R(t) 3R(Lt) , 44 (4.3.39)
ax*(t) X (t) 3Y (t) 3z (t)
8 8 s 8
and

BR(t) X (8) - X(t)
axs(t) R(t)

X~+Y,2Z (4.3.40)

where XS,YS,ZS are the satellite Cartesian coordinates in the mean iner-
tial system. The quantities X,Y,Z are the station coordinates in the

same frame. The matrix wo(t) is the state transition whose elements are
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obtained from the homogeneous solution of the satellite's variational
equations [Baker, 1967].

- -
axs(c) Bxs(t)
3a(t°) BQ(to)
wo(t) = . (4.3.41)

3z_(t) 3z_(t)
Laa(toi Tt BQ(t05 1

and T is the Jacobian matrix

i ]
BXS(tC). o BXS(tC)
3a(tc) . Bﬂ(tc)
T(tc) - . . . (4.3.42)
azs(t) “ s e azs(cc)
da(t ) (e )
| C c a

For range difference observations equation (4.3.38) is modified using

AR
*(c) =[B&R(t) 3AR(t) BAR(E) o 4 0] (4.3.43)
X _(t)  LIX_(t) 3y¥_(r) 3z (1)

whera

aar(r) X (f) = X(B) X _(t-At) - X(t-At)

= - 4-3.44
axs(:) R(t) R(t - At) ) ( )
For polynomial clock models of the form
P(t) =a +a(t-t")+ ...+a (t-t)" (4.3.45)
n o 1 n

the partials of range with respect to the model parameters ao,....an

are just the parameter coefficients
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BE) L (t-t)t gm0,.iu0n (4.3.46)
%1

where t° 1s an arbitrary epoch for each model. The comstant term in

equation (4.3.46) represents the time (range) bias or phase error at t~

associated with the modeled clock. The second parameter a, is proper-
tional te the oscillator frequency bias Afi
a, = < Af (4.3.47)
1 f
and a, is proportional to the frequency drift f
a, = < £ . (4.3.48)

2 2f

For range difference observations derived from integrated Doppler over

the interval [tk’tR] the partials are
BR(L) _ 4 | (4.3.49)
da
o
JAR(t) _ _
5. " Y t, (4.3.50)
1
and
BAR(E) _ ¢r _om2 _ oo .22
Baz (t1 t’) (tk tﬂ) . {(4.3.51)

In terms of frequency bias and drift the partials are

3AR(t) _

AR( £ (gy-t)) (4.3.52)
and
- 2 - 2
3AR(E) £ [(tg - tD7 - (g, - tD7] (4.3.53)
3f

according to equation (4.1.7).
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For the tropospheric refraction scaling parameter the partials

of range and range difference are given by

3%%51_. SR(t) (4.3.54)

R

and

E%%iﬁl = éR(ti) - GR(tk) (4.3.55)
R

using equation (4.1.57).

4.3.3 Use of Keplerian Partial Derivatives
in the Adjustment Model

Numerical integration of the variational equations [0'Toole,

1976]
dr . dF(r,;,p) .
dro dr0 ro M 1-r:: (4.3.56)

gives the variation in a satellite's inertial position and velocity at

time t with respect to changes in the initial state at time t These

0"
partial derivatives are used in forming the observational partial deri-
vatives of the design matrix A when the satellite state vector at to is
included in the adjustment. For satellites at extreme altitudes an
approximation may be introduced. This approximation consists of
replacing the numerically integrated solutions of the variational equa-
tions with Keplerian two body partial derivatives. This approximation
is both economical and valid at GPS altitudes if observation times are
within a few hours of the time at which the satellite state vector is to

be improved. Keplerian partials are analytic expressions derived from

the basic equations of two-body motion [Mueller, 1964].
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The orbital elements at time t are obtained from the elements

at time to by the transformation

[ a] 1 o0 o o o o]fa]
e 1 0 0
) 0 1 0 0 0
= (4.3.57)
M a 0 0 1 0 0 M
w 0 0 D 0 1 0 w
o} fo o o o o 1]iel

©

where & is a time dependent quantity derived from Kepler's third law

o = ,f% (t-t) . (4.3.58)

For Keplerian motion the only time varying element in equation (4.3.57)

is the mean anomaly

M(t) = H(to) + n(t - to) (4.3.59)

where n is the mean motion of the satellite. Differentiating equation

(4.3.59) with respect to the orbital semi-major axis a at tO gives the
rate of change of mean anomaly given a change imn a at tO:
M) _ 3 _n - 4.3.60
Fa(c) - 2 aty (77 - (4.3.60)
o o
All other element variations are of the form
Bei(t) { 1 1= 3
—_— - (4.3.61)
de, () 0 14j .
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At observation time t let {us(t),vs(t),ws(t)} be the coordinates
of satellite position in the earth-fixed system. Let {u,v,w} be the
earth-fixed Cartesian coordinates of the tracking station. For range

observations

u -+ v,w (4.3.62)

For orbital element estimation at time t“ the partials of R(t) with

respect to orbital elements are given by the matrix equation

IR{(t IR(t)
) - cB (4.3.63)
[39- (t )] (6 x 1) [Bu:(t)](B x 1)

where the matrix G is obtained from equations (4.3.60) and (4.3.61)

1 1=3

' 0 i#j excepti=l,j=4
{4.3.64)

de, (t)
G = [Gij] =[——jﬂ—]= {

de_(t7)
i 3n -
-5 (t-tT) 1=1,9=4 .

The last factor in equation (4.3.63) has row dimension three since the

velocity partials of range are zero. The matrix H has the form

‘aus(t) aws(c)T
ga(t) ° : * da(t)
H=[H,,] = y (4.3.65)
i .
du_(t) dw_(t)

G R IO
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The development of the elements of H follows., The transforma-
tion from the mean inertial (I) system of epoch to to the earth-fixed

(EF) system at time t is given by

fu (0] x(t)]

vs(t) = Rz(—xp)Rl(—yp)R3(GAST}NP Y(t)

AL) - 2o |;
- Tx(t{q (4.3.66)

= RlY(t)

z{t) I

where the coordinates in the mean inertial system are given by

[ x(e) ] (% (t)
Y(e)f = R3(-Q)R1(-1)R3(—m) y(t) (4.3.67)
_Z(t)_ Lz(t)_

and {x,y,z} are the coordinates of the satellite in an in-plane coordi-

nate system as defined in Mueller [1964]

x(t) = a(cos E - e)

2,1/2

y(t) = a(l-e%) (4.3.68)

sinE
z(t) = o .,
The quantity E is the eccentric anomaly related to the mean anomaly by

Kepler's equation

M=EF - esinE (4.3.69)

and Xp and yp are the coordinates of the Instantaneous rotation axis of
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the earth [Mueller, 1969]). The rotation matrices P and N account for
precession and nutation and GAST is the Greenwich apparent sidereal
time. In terms of direction cosines equation (4.3.67) has the

form

—X(t;1 —x cos(xX) + y cos(yx)q

Y(t) = | x cos(xY) + y cos(yY) (4.3.70)

LZ(t{‘I Lx cos(xZ) + y cos(yZ)

Equation (4.3.66) may be differentiated with respect to the orbital

elements

du (&)
s | - ploX(e)
[ae(t) . R{Egzzi]l . (4.3.71)

Using equation (4.3.70) and assuming a nearly circular orbit these par-
tials derivatives are

aus(t) us(t)

3 - a (4.3.72)

avs(t) vs(t)

- 4.3.
da a ( 73)

aws(t) ws(t)

- (4.3.74)
da a
3us(t)
The = —a[Rllcos(xX) + Rlzcos(xY) + Rlzcos(xu)] (4.3.75)
ae sin E
-—-——T [Rllcoa (yX) + Rlzcos (yY) + R13cos(yZ) ]
l1-e
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Svs(t)

_— —a[R21cos(xX) +R

de

Bws(t)
ge

Bus(t)
oaM(t)

v (t)
-
oM(t)

dw (t)
_ 8 _
oM(t)

Ju (t)
_s
di

Bvs(t)
i

cos(xY) + R, cos(xZ)]

22 23

_ae sinE

2

[R,,cos(yX) + R, ,cos(yY) + R23cos (yZ})]

21 22

l-e

= —a[R3lcos (X)) + R32cos (xY) + RBBCOS (xZ)

_ae sinE

2

[R,,cos(vX) +R cos(yY)+R33cos(yZ)]

31 32

l-e

-asin E[R,,cos(xX) + R, ,cos(xY) + R, .cos{xZ)]

11 12 13

+ a V1- e2 cosE[Rllcos(yX) + R, . cos(yY) +R13cos(yz)]

12

~asin E[R21cos (xX) + R2 cos(xY) +R,.cos{xZ)

2

+avVl- e2 cosE[Rzlcos (yX) +R

23

2(:nr;hs.(j,r‘f) +R 4COS (vZ)1]

2 s

~a sin E[RBlcos(x}() +R..cos{xY)+ R, _.cos(xZ)]

32 33

+aVi- e2 cosE[R3lcos(yX) + R32cos(yY) + R3 3c:os(y'z:)]

x[Rllsin i sinwsin? - R, .sin 1 sinwcos{l+ R, .cos 1 siniw]

12 13

+ y[Rllsin i coswsinil - R12Sin 1 coswecosl + Rl3cos i cosw]

x[Rzlsin isinwsinf- Rzzsin 1 sinwecos+ RZBCOB isinw)

+ y[Rlein i coswsinfl- R .sin i coswcosfl+ R2 cos 1 cosw]

22 3
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(4.3.78)

(4.3.79)

(4.3.80)

(4.3.81)
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3ws(t)

—7 " x[RBlsin 1 sinwsinfl - Rstin i sinocosfl + R33cos i sinw]
(4.3.83)
+ y[R3lsin i coswsinf) - R3251n i coswcos + R33cos i cosw]
Bus(c)
A x[Rllcos (yX) + Rlzcos (yY) + R13cos (vZ2)]
(4.3.84)
- y[Rllcos (xX) + Rlzcos(xY) + R13cos(xz)]
Bvs(t)
™ x[R21cos(yX) + Rzzcos (vY) + R23cos (yZ)]
(4.3.85)
-y [R21cos (xX) + R22cos(xY) + R23cos(x2) ]
Bws(t)
—Ar " x[R31cos (yX) + R32cos(yY) + R33cos(yz) ]
(4.3.86)
- y[R3lcos (xX) + R32cos(xY) + R33cos (xZ)]
aus(t)
T- x[—Rllcos(xY) + Rlzcos(xx) ]
{(4.3.87)
+ y[-Rllcos (yY) + Rlzcos {(vX)]
av _(t)
--%ﬁ-—-' x[-RZlcos(xY) + Rzzcos (xX>]
(4.3.88)
+ y[~R21cos(yY) + Rzzcos {(vX)]
Bws(t)
TR x[-R31cos (xY) + R32cos(xX)]
(4.3.89)

+ v [—R31cos(yY) + R32cos (vX)]
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Partial derivatives for integrated Doppler measurements are
obtained by differencing range observation partials formed at the end
times of the Doppler integration interval.

The difference in positioning introduced through this approxi-
mation was determined from simulation results of absolute and relative
positioning using range observations from two stations 100 kilometers
apart. Results were obtained using two days of simulated observations
with one hour of observation each time a satellite was acquired.
Initial positioning adjustments were made in which orbital elements
were included as parameters with a priori weights for each hour of
tracking. Variational equations based on the WGS72 potential model
[Seppelin, 1974] truncated to degree and order eight were numerically
integrated and used in forming observational partial derivatives. Then
the adjustments were repeated using the Keplerian two body partials.
Except for this modification the adjustments were identical. A com-
parison of the covariance matrices obtained in each case was made.

For absolute positioning the standard error of the station coordinates
obtained using the Keplerian partial derivatives averaged 2.9 percent
more optimistic, In the determination of coordinate differences the
solutions using Keplerian partials had standard errors averaging 2.4
percent more optimistic.

As a result of this experiment it was decided that Keplerian
two body partial derivatives could be adequately used in the adjustment
of station coordinates when orbital elements were taken as parameters

in the adjustment.
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4.4 Development of Adjustment Weight Matrices

The minimum variance estimate of receiver earth-fixed coordi-
nates obtained from range or Doppler cobservations by least squares
adjustment requires that the weighting matrix be developed using the
second order statistics of the random observation errors as outlined in
[Liebelt, 1967]. 1In the application of Global Positioning System satel-
lite observations of range and Doppler to geodetic positioning the
adjustment weighting must include the observation error statistiecs for
correlated atomic clock errcrs in both the satellite and receiver
clocks and for noise from the tracking receiver. In this chapter the
observation error statistics for atomic clock fractional frequency
error are developed from the Allan variance for each system oscillator
by an analytic procedure which transforms the Allan variance into the
autocorrelation function for random frequency error. The integral of
this function provides the statistics for range or range difference
observations based on the two osclillators used to derive the measure-
ment. Statistics of the residuals to selected polynomial clock models
are obtained by an additional transformation of the range or Doppler
error statistics. These residual statistics are incorporated with the
instrumental white noise statistics into the adjustment weighting. The
correlations between residuals to successive polynomial clock models are
shown to be negligible allowing the adjustment to be performed sequen-

tially.
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4.4,1 Range and Doppler Observation Error Statistics

4.4,1,1 PFractional Frequency Autocorrelation
from the Allan Variance

In section 4.1.1 the equations giving the second order statis-
tics of random range and integrated Doppler cobservation errors due to
random fractional frequency errors were presented. Those equations
require that the fractional frequency autocorrelation function be known.
In this section discussion of a procedure for obtaining an analytic
approximation to this function from the Allan variance is given. This
method avoids numerical difficulties that may arise when the inverse
Fourier transform of the power spectral density is evaluated and yields
simple analytic autocorrelation function.

The Allen variance models shown in Figure 4.1.3 for the satel-
lite rubidium and receiver cesium oscillaters are a function of the

sampling time T having the form

0
T TefTim
2 < <
R Uf Tl__T__Tz
o (1) = (4.4.1)
y N,T
3 T2 2T I
N
3
T T3-i T .

Using the transformations in Table 4.1.2 the power spectral density for

fractional frequency may be developed from equation (4.4.1):
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[o]
N
2
u:l2 woiwiml
S (w) = (4.4.2)
¥y N
2 W, <w<w
w 1 —""—-"2

N, Wy fw<wy

The square root of the power spectral density, or transfer function,

corresponding to the Allan variance specifications of Figure 4.1.3 is
given in Figure 4.4.1. The constants associated with the two functions
and formulas for computing the constants associated with the power
spectral density function based on the Allan variance are given in
Table 4.4.1. These formulas are developed from the transformations of
Table 4.1.2.

The autocorrelation function ¢yy(t) can be obtained from the
pover spectral density using equation (4,1.21)

i
(1) = on L5 (e “ (4.4.3)

2m yY .

—r

With Syy(w) an even function equation (4.4.3) reduces

1 o0
¢'yy(t) = ?’.? -i: Syy(w)coswt dw
(4.4.4)
-1 J'm S (wecoswtdw .
L o ¥y

Using the power spectral density model, equation (4.4.2),1n
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Figure 4.4.1. Oscillator Transfer Functions

TABLF 4.,4,1., OSCILLATOR PARAMETERS

SATELLITE CLOCKS STATION CLOCKS
QUANTITY UNITS FORMULA {AUBIDIUMI ICESIUM)
ty sec 1.00-10° 1.00-10°
2 sec 1.0010" 1.00-10*
13 sec 1.00-10% 100107
wp sec? Iy 1.73-10"* 1739077
wy pec’ 8 tnmr g} 1.32+10°% 1a10™"
wy soc ! 21, 2) 2271107} 227=107%
oy 60010 % 2.00x10"14
N, wec 40,2 3so-10°2 ».00<10" 7
N, no 2 in2 1810 2. 04x30° T
N, sec ! do2iry 108102 27010 %
N, asc o g, 380-10" " soox10®
o (RPN L 238100 8310
wy sec’? wya 203<107% 18710
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equation (4.4.4) gives the autocorrelation function for fractiomal

frequency as

o -
yy(t)

Ll
o

Rl

o

Wa N

1
+;f
Wy

s

L.

S N

N cos(wlt) N

3cos(wt)dw +

lcos(wt)

w

N sin(mot)
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n 2
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(4.4.5)

However this form for the autocorrelation function has an oscillatory

behavior for small t as shown in Figure 4.4.2 as a result of trans-

forming the band limited white noise portion of the spectrum.

an artificiality of the model.
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Figure 4.4.2, Satellite Rubidium Standard Fractional
Frequency Autocorrelation from Inverse
Fourier Transform

An alternate approach for obtaining an autocorrelation function
is to approximate the power spectral density model with a smooth func-
tion whose autocorrelation is expressible in simple analytic form. The
first step in this development is to approximate the flicker noise seg-
ment of the spectrum with a series of cascading functions whose value
alternates between being constant and being inversely proportional to
the square of the frequency. This type of procedure is described by
Meditch [1975] in constructing a linear system which simulates flicker
noise using a white ncise input. Figure 4.4.3 shows the transfer func-
tion for flicker noise. A three stage cascading transfer function is
superimposed consisting of the functions F,, F_, and F_ which are

A B Cc
defined in Table 4.4.2. These functions are defined to have the
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Figure 4.4.3. Three Stage Transfer Functilon Approximation
of Flicker Noise Spectrum

TABLE 4.4.2. DEFINITION OF THREE STAGE TRANSFER
FUNCTION APPROXIMATION

FUNCTION INTERVAL DEFINITION (PSD)
wy S ow ey Nty
Fa wy & wk gw, N.fU:
Fug K wk wy N‘M,w.l
g% we :rzu. N.fa’u.:
Fa aal.u.‘ w € P, N.J'u:
0](9. € Wk oy N.-'O'U.a
wg S w K ety Nylate ?
Fc FLINE SYWE 3 atu, Nch’
FLIE wy N,
WHERE
L
Ny = au N (w:)h
.
iy
Ny = oduy, wy =V
Ne = n'w‘ﬂ' n=j
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required properties and give a continuous although not smooth approxi-
mation to the flicker noise power spectral demsity.

The constants of this approximation are now derived over fre-
quency intervals as given in Meditch [1975]. The general form of the

function FA is

N
F,(w) = A (4.4.6)

2
t

between the frequencies W, and ama. At frequency W, » defined in

Table 4.4.1, the function FA takes on the value

N N

- A1 4.4.7

FA(wa) > ( )
ma 1

since the flicker noise power spectral density has the same function

value at frequency w,. Solving equation (4.4.7) gives

1

N =-L13 2 4N (4.4.8)

A similar analysis gives the constant NB. The function FB has the form

F (w) = — (4.4.9)

[ --]

At frequency uzwa, FB has the function value

N
- B (4.4.10)
2w
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since at uzma the function F_ has the same value as function FA,at fre~

B
quency o (see Figure 4.4.3). Solving equation (4.4.10) gives

2 3
- - 4.4,11
NB o NA a mlnl ( )

using equation (4.4.8). For the function FC’

NC
Fo(w) = —= (4.4.12)

2
W

its function value at frequency aawa equals the value of FB at fre-

quency a3ma giving

N N

by ) = =S . B 4.4.13

o w o w

a a

resulting in the solution
2 5

= - 4,.4.14
N, = a'Npg = oTw N, ( )

using equation (4.4.11). Numerical values for a and wa are given 1in
Table 4.4.1. The power spectral density consisting of the three cas-
cading functions and the remainder of the original function will be
denoted as the second power spectral density model for each oscillator.
The next step in the development of an analytic autocorrelation
function 1is to approximate various segments of this second model with a

first order Markov process power spectral density function, a function

of the form
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S(w) = 5 3 (4.4.15)

where B is the inverse of the correlation time (see [Gelb, 1974]).

The autocorrelation function for a first order Markov process is

o(ty = o2 Bltl (4.4.16)

Graphs of these functions are given in Figure 4.4.4., Notice in equa-
tion (4.4.15) that the power spectral density decreases as the inverse
of the square of the frequency which is the type of functional behavior
seen in the interior of the cascading functions FA c*
also the behavior of the original power spectral density in the inter-

through F It is
val [wo,wll. In addition the power spectral density of the Markov pro-
cess remains virtuwally flat until the frequency reaches a point when the
function decreases rapidly. These properties make this function an
excellent choice for approximating the second power spectral density
model piecewise,

The second model is then divided into five segments defined in
Table 4.4.3. The high frequency cut off W shown as llE)'-1 in Figure
4.4.1, will be increased so that that band limited white noise component
of the power spectral density may be approximated better by the first
order Markov power spectral demsity.

The approximation consists then of fitting a function imn the
form of equation (4.4.15) to each subdivision of the second model
S;y(w) given in Table 4.4.3. There are two parameters & and B8 to be

determined for each segment giving a total of tem parameters.
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Figure 4.4.4. Markov Process (First Order)

Two procedures for this approximation were examined. The first
was a least squares fit of the function S(w) to each segment of S;y(w).
The second, which was adopted for use, was an assymptotic approximation
whereby two constraints were imposed on the Markov power spectral den-
sity function giving @ and B directly. The second procedure was impli-
mented because of simplicity and because the results compared favorably
with the least squares approach as seen by comparing Figures 4.4.6 and

4.4.7. The assymptotic approach develops an approximation on the inter-

val I,,

3
Ij ~ [“’k"“g] (4.4.17)

using the following constraints:
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(1) at zero frequency the approximating Markov power spectral density

equals the second model at frequency w,

S. (o) = S° (w

j vy k) (4.4.18)

(i1) 4in the limit as w increases the value of the function Sj(w) con—

verges to the following function

2028

w2

(4.4.19)

lim Sj(w) =

w + =

and at w, this limiting value is set equal to the value of S;y(m):

2028

w

= S;y(wl) : (4.4.20)

PN

Equations (4.4.18) and (4.4.20) are a system of two equations in
two unknowns. Thelr solution yields the parameters aj and Bj for the
approximating Markov power spectral density function Sj(w). The nature
of the second constraint, equation (4.4.20) 1is to force the function
Sj(w) to assymptotically approach S;y(w) at Wy « The first constraint is
necessary to approximate the white noise or flat component of S;y(w) at
the beginning of each subinterval.

Finally a comment concerning the approximation in the last sub~-
division I5 is necessary. In order to obtain a good approximation to
S;y(w) in that interval it 1is necessary to choose w, large enough to
allow the flat portion of the Markov process spectral density to fit the

white noise component which dominates this interval as seen in
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TABLE 4.4.3., DIVISION OF SECOND PSD MODEL
FOR MARROV PROCESS

APPROXIMATION
NOTATION INTERVAL
1y [0, w,)

I, [wy, aw,)

Iy law,, adw,]
Ig [a¥w,, aw,]
I [oBw,. wp)

L
~
=
E
:
]
- ]
-
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= L ]
T3 B =10
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=
()
—
=
=
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~
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Figure 4.4.5. Assymptotic Fractional Frequency Autocorrelation
Functions Based on Markov Process Approximations
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Figure 4.4.1. Choosing wy three or four orders of magnitude larger than
0.1 and S;y(wh) two tc three orders of magnitude smaller than NO enables
a good approximation to be made but adds power at these higher fre-
quencies. The result is an autocorrelation function whose variance will
increase as w is chosen larger (see Figure 4.4.5) and tends to a delta
function as w, Bgoes to infinity. However, this will have negligible
effect on range and range difference statistics. This point will be
examined in more detail after the development of additional equations
based on the first order Markov approximations,

The smooth fractional fregquency autocorrelation function ¢ (t)
is given by the inverse Fourier transform of the five Markov process

power spectral densities S,{(w). The result of each transformation is an

|
analytic function whose form is given by equation (4.4.16). The final

result is the sum of these functions

5
- 2 -8B, lt| ‘ (4.4.21)
@yy(t) 32;1 o e i .

For range and integrated Doppler observations the statistical contribu-
tion due to random oscillator error is obtained using equation (4.4,21)
in equation (4.1.19) through (4.1.26). Figure 4.4.9 illustrates the
steps discussed in the development of these statistics from the Allan
variance model.

Figures 4.4.6 and 4.4.7 show the original transfer function for
the satellite rubidium oscillator with the smooth least squares and
assymptotic approximations. The least squares fit to each subinterval

of the second model S;y(w) was based on two hundred equally spaced
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TABLE 4.4.4. FRACTIONAL FREQUENCY AUTOCORRELATION
FUNCTION PARAMETERS FOR MARKOV
PROCESS APPROXIMATIONS

ASSYMPTOTIC L SQUARE
OSCILLATON TYPE INTERVAL IALPHAN BETA LALPHAR BETA
RUBIDILM (SPEC) by 31177x10° M 1.3zt EB 7ol L) 10407
s.2428-10° 2032107 760840 2.78-107"
s2e28- 107 11281074 7.5208x10" % 1y
I s.2828-10" ™ $.282:1074 7.8208<10"8 ssan0?
W 1.8000<10"*? 1.000010% 15343107 " sext=30T
CESIUM (SPEC) h 7107 1.722=10"7
Iy 1292907 1.479107%
L 19z0° 7 a3t
Iy L. - Ll 1.113x10°"
i 4.8000x10 1.000=10*"

*wp = 1010" 8'yylw,) = My1.0-107

samples of the function within the subinterval. The parameters
obtained using each approximation procedure are given in Table 4.4.4
for this rubidium oscillator. Since the assymptotic procedure produced
results comparing favorably with the least squares procedure this method
was adopted for use. Hence no least squares parameters appear in
Table 4.4.4 for the cesium oscillator. The assymptotic transfer func-
tion for the cesium oscillator fractional frequency error and the origi-
nal power spectral density are shown in Figure 4.4.8.

4.4.1.2 Observation Error Statistics

Based on Markov Process Approximations
The first order Markov autocorrelation function, equation

(4.4.21) and equations (4.1.19) through (4.1.26) give the second order
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statistics for random range and integrated Doppler observation errors due
to each oscillator used in the measurement process. These integrals may
be evaluated giving analytical expressions for the variance and covari-

ance of range and Doppler observations.

4.4,1.2.1 Range Observation Statistics. Let R(ti) and R(tk)
be range observations subject to random clock error only. The covari-
ance between the observations is given by equation (4.1.19). Using the
first order Markov approximations, the integration of equation (4.1.19)

gives the covariance as

E[R(ti)R(tk)] - E[n(ti)n(tk)]

2
5 o B, (t.,-t ) {(4.4.22)
2 _J.[ 1 ( 373 s
= c E: 2(c, -t ) +——1le
p _18j i ) Bj

-8, (. ~t ) -8, (t, -t )
)

for t greater than t, where t, is the start or reset time of the

i

clock. The variance of the random range error is obtained by setting t

k
equal to t; in equation (4.4.22)
E[R(e JR(t }] = E[n(e In(c )]
vt v (4.4.23)
2
5 20 -8, (t, -t )
2 1 i
Rl g ]

The range error N(t) resulting from the integration of frac-
tional frequency error y(t) is a statistically non-stationary process.
An examination of equation (4.4.22) and (4.4.23) reveals terms in these

expressions which are functions of t, or ty minus t,- Thus the
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variance, for instance, increases with time. This is illustrated in
Figure 4.4.10 for the rubidium clock. The standard error of a range
measurement based on the use of this clock is given for twenty range
observations spaced at fifteen minute intervals starting five minutes,
one hour, and five hours after the start of the clock. The increase in
variance 1s almost linear. An examination of the autocorrelation func-
tion shows that this function, dominately flat, is similar to a random
bias having a constant autocorrelation and whose integral is a random
ramp which increases exactly linearly. Hence a linear growth in
variance is expected as seen in Figure 4.4.10. The correlation coeffi-
clents P, . between the first range observation and the 1i'th in

each of these sequences are given in Figure 4.4.11. As thestarting time
of the sequence from £, increases so does the correlation ameng the ran-
dom errors which again is expected since the variance increases with
time and the errors are correlated.

Figure 4.4.12 gives the autocorrelation function for the cesium
clock based on the Markov process approximation and Figures 4.4.13 and
4.4.,14 give the standard error and correlations of range errors based on
this clock. A comparison of Figures 4.4.10 and 4.4.13 reveals the
greater stability of the cesium clock. After tem hours of operation the
standard error of the cesium clock output is approximately 3.5 nano-
seconds compared to 63 nanoseconds for the rubidium standard. In addi-
tion the correlations among the cesium clock errors decreases more
rapidly than the rubidium clock.

Considering both random clock error sources the total variance
and correlation of range observations Rk(ti) and Rk(tj) measured by
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receiver k are given by the equations

E[R (t IR ()] = E[n_(t)In_(t )] + Eln (e )n, (t,)] (4.4.28)

E[Rk(ti)Rk(tj)] - E[ns(ti)na(tj)] + E[nk(ti)nk(t )1 (4.4.25)

A

where the variances and correlations of the random error n are given by
equations (4.4.22) and (4.4.23). The subscript "s" refers to the satel-
lite rubidium clock.

For simultaneous observations of range by two receivers the

covariance of the observations Rk(ti) and RR(tj)is given by

E[Rk(ti)Rz(tj)] = E[ns(ti)ns(t )] . (4.4.26)

3

In the above equations the random errors N have zero-mean which 1is a con-

sequence of fractional frequency error being zero mean.

4,4,1,2,2 Integrated Doppler Observation Statistics. Let

AR(tn) be an integrated Doppler or range difference measurement over
the interval [ti,tn] and ﬂR(tR) a similar measurement from the same

receiver over the interval [tk’tll' The covariance of the observations

is

E[ARCE ),8R(t,)] = EInCE ) - n(t,),n(ty) - n(t,) ]

=E[n(tn) n(tg)]-EIn(tn) n(tk)] -Etn(ti) n(tg)]

+ E[n(ti) ”(tk)]

o g2 (4.4.27)
I 5~ fl[e-aj(tﬂ-t )_e-Bj(tk-t)
2
I=18]
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The variance of a range difference observation is given by

5 B (¢ -t.)
E[AR(t )AR(t )] = c” 12-31 —;L[(c oy )+—(e 1 -1)] . (4.4.28)

Equations (4.4.27) and (4.4.28) are independent of the clock epoch t_.
The statistics of the range difference error depend only on the Doppler
integration interval or the time difference between observations. Thus
the random range difference error is staticnary. Expressions analogous
to equations (4.4.24) through (4.4.26) express the complete statistics
of range difference observation errors for individual or simultaneous

observations due to clock error.

4.4,2 Statistics of Residuals to Polynomial Clock Models

The statistical characteristics of fractional frequency error
and its integrated effect on range and Doppler observations have been
discussed in detall. ¥FTor range observations the total random error 1is
due to three sources, two of which are correlated noise processes. The

total random range error is expressible as
nt) = ns(t) + nk(t) + E(t) (4.4.29)

where nB and n, are the correlated random range errors due to satellite
and receiver random clock errors respectively. The quantity £ repre-
sents receiver white noise as discussed in Section 4.1.4. The total

integrated Doppler random error over the integration interval [tj’tll is

A“(tz) - “s(tz) - ns(tj) + “k(‘z) - nk(tj) +L, (4.4.30)

where Cﬂ is the white noise associated with the Doppler measurement pro-

cedure. 161
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Depending on the stability of the clock the random range or
Doppler error components, ns(t) and nk(t), may appear quite systematic
over fixed time intervals and may be represented by polynomial models of
varying degree. For short time spans the models for the clocks con-
sidered in this analysis were taken to be a bias and drift for range
observations or a frequency bias for Doppler observations. However
these models and even higher order polynomial models are not sufficient
to entirely represent this correlated error. Thus knowledge of the
rtatistical properties of the deviations of the error from such a model
becomes important since these residuals represent an unmodeled part of

the observation equation after the inclusion of the polynomial model.
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Proceeding, equation (4.4.29) is expressed as follows
- +
n(e) = ¢ _(t) +P () + r (t) + 1, (t) + E(t) (4.4.31)

vhere Pms(t) is an m'th degree polynomial chosen to model the corre-
lated random error ns(t) and Pnk(t) is an n'th degree polynomial
modeling the random process nk(t). The statistics of the residuals
r{t) may be developed from the covariance of the random clock errors
developed in Section 4.4.1 using the procedure derived in Appendix A
which develops the mathematics for polynomial approximation to random
walk segments. Using equation (A.1.9) the second order statistics of

the range residuals r(t) to a polynomial model are obtained as

E[r(t)ri(t)] = GE[R(£)R (r)]1G" (4.4.32)

where

6 = [1I - a(aTa) 1aT) C4.4.33)

and A is the design matrix for the polynomial model selected. The
E[R(t)RT(t)] is the covarilance matrix of the random clock error being
modeled. This covariance is given by equations (4.4.22) and (4.4.23).
For integrated Doppler observations the statistics of the resi-
duals to a given degree polynomial model are similarly obtained from
equations (4.4.32) and (4.4.33) with the use of the covariance matrix
for integrated Doppler random error due to each system clock, equations

(4.4.27) and {(4.4.28). The equation may be written as
T T T
E{Ar(t)Ar (t)] = HE[AR(t)AR (t)}H (4.4.34)

where the matrix H 18 similar to the matrix G of equation (4.4.33)
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with changes due to the choice of the model adopted for clock induced

random Doppler errors

T T
H = [I-A(AAD A7) . (4.4.35)

Equation (4.4.30) has the form

An(tg) - Pis(tg) + ij(tz) + ﬂrs(tg) + &rk(tg) + Cl (4.4.36)

after the selection of the polynomial models.

If the statistics of these residuals were ignored in dynamic
point positioning adjustments the resulting coordinate covariance
matrix would be optimistic. An increase in the degrees of the poly-
nomial clock models would offset this optimism to some extent since the
level of unmodeled error would be decreased. However if a rigorous
adjustment is to be performed then these residual statistics must be
included in the least squares adjustment weight matrix to account for
the unmodeled error r(t) or Ar(t) in a statistical rather than para-
metric fashion. The adjustment should then produce a valid coordinate
covariance matrix regardless of the order of the polynomial models used
provided numerical problems are not encountered and the parameters are
independent and well observed.

The question of adequacy of a particular polynomial for a given
data span needs to be addressed.

4.4.2.1 Comments on the Choice of

Polynomial Error Models

To determine what degree polynomial model would be best to

represent random clock error various factors have to be considered.
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First among these are the length of the data span being modeled and the
number of additional parameters which need to be introduced into the
geodetic positioning adjustment. Use of a higher order polynomial will
reduce the variance of the clock model residuals but may tend to numeri-
cally weaken the adjustment normal equations.

To determine how well a given order polynomial model repre-
sents correlated clock error over a fixed time interval a series of
first and second order polynomial fits were made using simulated ran-
dom clock error. The algorithm of Meditech [1975] was used to generate
sequences of clock error which were then converted to range error. The
polynomial fits were equal weighted least squares approximations to the
range errors. A sampling rate of one minute was used. From the
residuals of fit r(t) autocorrelation functions were numerically
obtained for each approximation using

1 ©

¢j(T) =3 I r(ti)r(ti+-r) (4.4.37)
1=1

where n depends on T and the total number of samples. The variance of
the residuals from each case were averaged to determine an overall
variance for the residuals of f£it for both the linear and quadratic
polynomials. For the rubidium clock three time intervals were
considered with a linear polynomial fit. The root mean square
errors are given in Table 4.4.5. For the cesium clock the
results indicate that the longer the interval the better the second
order polynomial performs, as expected. However this increase in good-

ness of fit is less significant as the length of the interval decreases.
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TABLE 4.4.5. RANGE RESIDUAL STANDARD ERRORS BASED ON
POLYNOMIAL FITS TC SIMULATED CLOCK ERROR

RMS ERROR OF FiT {cm)

POLYNOMIAL MODEL | NO. CASE
CLOCK TYPE (0] Q L MO O s anr s L 18 hr ] 24 he
CESIUM LINEAR 10 8.7 | 118 187 .1 ]
QUADRATIC 10 7.0 83| 161 174
2 hr 4w 8hr
RUBIDIUM LINEAR 0 18.1 36.5 88.3

It is obvious that a tradeoff exists between the level of model error
remaining and the number of model parameter required. For instance two
linear models over 16 hours leaves an 1ll.8-centimeter sample standard
error for the residuals, while a single quadratic fit over the same
interval leaves 15.1 centimeters of expected error. An increase in one
parameter produces a 22-percent decrease in the expected error. For
the rubidium clock the expected level of residual error is higher due to
the poorer short term stability of this clock (see Figure 4.1.3) and is
comparable only to the cesium if the fit interval is about one-eighth
the length. Figures 4.4.15 and 4.4.16 give examples of the residuals of
fit for each clock for a linear fit over 8 hours. 1In Table 4.4.5 the
length of the rubidium clock cases was limited to 8 hours since one
clock model for each satellite pass was anticipated for the positioning
studies to be conducted.

Finallv, the theoretical standard errors for range residuals teo

a linear fit were determined using equation (4.4.32) for these clocks
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for the same intervals with the exception of the 4-hour case for the
cesium clock. The results are given in Figures 4.4.17 and 4.4.18.
These figures support the conclusions drawn above, and in addition,
graphically demonstrate that the statistics of the residuals to the
clock modeling polynomial are not statiomary. The variance of a
residual depends on the order of the polynomial, the interval length
and the location within the sample. The correlation coefficient matrix,
contoured in Figure 4.4.19 for an 8-hour linear fit for the cesium
clock, does not have the constant diagonals except for equally spaced
samples of a stationary statistical process. However, by Theorem A.l
of Appendix A, the statistics of the residuals will be constant from
interval to interval of the same length provided the sampling is per-

formed equivalently and the same order polynomial is used.

4.4.2.2 Correlation Between Sets of Residuals

An examination of equations (4.4.22), (4.4.23), (4.4.27) and
{(4.4.28) shows that the random errors due to oscillator instabllity are
correlated over all time. That this is the case 18 a consequence of
the error being a random walk or the difference in elements of a random
walk where the underlying process is fractional frequency error.
Since correlation between range or Doppler observations is due
entirely to clock error, it becomes interesting to examine the cor-
relation between the residuals of two successive polynomial fits to ran-
dom clock error. If the cross correlations are relatively small, the
assumption that successive observation sets can be taken as statisti-

cally independent is justified when polynomial clock models are adopted.
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Figure 4.4.19. Contoured Correlation Coefficient Matrix
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This assumption would then permit sets of correlated observations to be
introduced into a geodetic positioning adjustment as independent blocks
in a sequential least squares approach., Computationally this implies
that the dimension of the observation covariance matrix to be inverted
to form the least squares weight matrix is reasonable.

To test that assumption the residual covariance matrix was
computed using equation (A.2.5) of Appendix A for two linear fits

to successive clock error segments for both the cesium and rubidium

clocks:
[ = =T — =1 ] (= =T, _ = =T
E[rltll E[rer] E[RIRI] E[Rle] .
= G G (4.4.38)
— =T, _~—=T = =T, _ = =T
E[rzrll E[rzrz] E[Rle] E[RZRZ]
where
G = [I - A(ATA)-lAT] (4.4.39)
and
Al Y]
A = (4.4-40)
0 Az

The correlation coefficient matrix for the residuals was computed and
the coefficients from the off-diagonal block, E[;i;g] were compared to
the correlation coefficients from the diagonal blocks, E[;i;f] and
E[;é;g]. The results indicated in all cases that the correlation ccef-
ficients between residuals from two different fits were at least two
orders of magnitude smaller than the correlation coefficients for

residuals from the same polynomial fit. These results support the
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assumption that successive blocks could be treated as independent

although each block itself would be finternally correlated.

4.,4.3 Weight Matrix

The introduction of polynomial clock models tends to statisti-
cally decouple the residuals from successive polynomial fits; thus, GPS
range and Doppler observation sets, which are correlated in time by
random clock error, may be treated as independent when polynomials are
adopted to model these random components. Each set is itself fully
correlated and the statistics of the residuals tc the adopted poly-
nomial models must be included in forming the least squares adjustment
weight matrix as shown in Figure 4.4.20, The size of each correlated
data set will depend on the time interval over which the models are
applied which, along with the degree of polynomial, determines the
variance of the remaining residuals. Since the receiver cesium clock
has better stability than the satellite rubidium clock the time inter-
val over which a single receiver polynomial ciock model is adopted may
span multiple intervals of satellite tracking data each with its own
clock model. This will of course depend not only on clock stability,
but also on the geometric strength of the observations taken. Figure
4.4.21 1llustrates this coucept in which observations within block K
are assumed statistically independent of observations within block L,
each of which includes range observations from four satellites taken in

this case simultaneously from two stations,

The weight matrix, taken as the inverse of the covariance matrix

of random observation errors, 18 assumed to be block diaponal wherein
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each block contains the second order statistics of the residuals to the
selected polynomial clock models and of the white noise due to the
receiver. The weight matrix corresponding to the observation schedule
of Figure 4.4.,21 is shown in Figure 4.4.22. Each diagonal block is the
inverse of the sum of three covariance matrices. For relative posi-
tioning using range observations from two stations observing simultane-
ous the form of the diagonal block is given by equation (4.4.41) where
the covariance matrices E[rrT] are based on equation (4.4.32). The form
of the matrix is identical for Doppler cbservations using the covariance

E[arﬂrT] given in equatfon (4.4.34).

4.5 Results of Dynamic Positioning Studies

The simulated range and integrated Doppler observations
developed in Section 4.2.1 according to equations (4.2.8) through
(4.2.10) were used in the sequential least squares adjustment algorithm
developed in Section 4.3.1 to obtain minimum variance estimates of
geodetic station coordinates and baseline components using a dynamic
positioning approach. Observations from three separate station
groupings were considered in this analysis. The geodetic coordinates
of these stations are found in Table 4.2.1. The GPS orbital elements
adopted in this study are given in Table 3.2.,1 referred to the mean
equator and equinox of 1950.0.

Solutions were obtained for the geodetic coordinates of indi-
vidual tracking stations then for baseline components and chord lengths
from simultaneous observations from pairs of stations. Solutions were
developed using either range or integrated Doppler observations sepa-
rately. No sclutions based on both observation types were considered
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although this possibility may be available with two frequency Doppler
receivers having a two frequency ranging capability. For each posi-
tioning problem the effects of the random and systematic error sources
of Section 4.1 were addressed and the adjustment weighting procedure
developed in Section 4.4.3 was utilized as a function of the random
error sources considered and the error models chosen to represent atomic
clock error.

Integrated Doppler observations were assumed to be independent
sixty-second measurements aggregated every five minutes, not correlated
range differences, as in Chapter 3. This latter type of treatment would
add additional strength to the least squares normal equations enhancing
the Doppler results presented below. The type of correlations con-
sidered in this analysis however are those due to the correlated random
atomic clock error present in both the receiver and satellite clocks.

Range observations were considered subject to time errors
and the normal equations included timing parameters in accordance
with the tracking scenaric under consideration. The inclusion
of such parameters weakens the normal equations as considered in
Chapter 3. However in actual applications these parameters are neces-—
sary since tracking receiver clocks will be subject to timing offsets
and drifts with respect to an adopted time system such as GPS5 system
time.

The solutions presented were based on two basic tracking proce-
dures each with the adaptation of similar modeling for atomic clock
errors. The first data acquisition procedure consisted of tracking

satellites over three hour intervals and performing the least squares
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adjustment for station coordinates every nine hours. In this case a
linear model was used to approximate the error in each separate clock.
Thus the satellite rubidium clocks were modeled by a linear function of
time over three hour intervals and the tracking station's cesium clock
error was modeled by the same type of function over the nine hour inter-
val. Sclutions were performed sequentially approximately every nine
hours with some variation 1f a tracked satellite's period of observ-
ability is less than three hours. Observations were utilized only if
the topocentric elevation angle of the satellite exceeded ten degrees.

The second tracking scenario reduces the satellite tracking interval to

one hour with a sequential adjustment of parameters occurring after

four hours of observation. A similar clock modeling procedure was
adopted but over the shorter intervals. This latter tracking procedure
allows a more rapid sampling of the satellite pass geometries and a bet-
ter approximation of the random clock error; however, this procedure
introduces a larger number of parameters of solution over a fixed period
of site occupation.

In all cases considered parameters representing the satellite
orbital elements were introduced into the adjustment with a prioril
weighting consistent with the amplitude of the ephemeris error intro-
duced, as deseribed in Section 4.1.2. Orbital elements were introduced
for each satellite tracking interval and corrections to these elements
at the midpoint of the interval were estimated as described in Sectiom
4.3.2. The inclusion of these parameters in the adjustment is con-
sistent with the approach of Brown [1976] although the modeling proce-

dure for ephemeris error is different.
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As a final introductory comment it must be noted that the trans-
formations between the mean Celestial System of 1950.0 and the
earth-fixed coordinate system are assumed known. This implies that no
errors in precession, nutation, earth rotation, or polar motion are
introduced into the results. The consequence of errors in these vari-
ables is of great importance in geodesy but are not addressed in this
study. Therefore in the following it is assumed that an error free

transformation into the earth-fixed coordinate system exists.

4.5.1 Dynamie Point Positioning

4.5.1.1 Range Solutions Based on Three-Hour
Tracking Intervals

A limited set of simulations based on two frequency compensated
range observations were made using observations from Stations 1001 and
1002 with each selected satellite of the GPS constellation tracked for
three hours. A sequential adjustment of the earth-fixed Cartesian sta-
tion coordinates was performed every nine hours over a five day perioed.
The complete parameter set included a linear clock model for each
satellite rubidium cloek for every three-hour interval of tracking,

a linear model for the receiver cesium clock for every nine-hour
interval, ephemeris parameter corrections for every three hours of
tracking, and the earth-fixed Cartesian coordinates of the station.
In addition a tropospheric scaling parameter, as described in Section
4.1.3, was included for every three hours of observation when

tropospheric refraction errors were introduced into the observations.
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To evaluate the effects of random and systematic error sources
on station positioning, simulations were made in which individual
error scurces were introduced into the range observations and only a
limited number of parameters were adjusted. First, the effect of
random cesium clock error on station positioning was examined. Simu-
lated random cesium clock errors were developed for the cesium clock
specifications given in Figure 4.1.3 using the algorithr of Meditch
{1975]). This random cesium clock error was added to the geometric
ranges to GPS satellite positions according to equation (4.2.8). The
satellites were selected using the criterion of minimizing the trace of
the station covariance matrix as described in Section 4.2.2. To these
ranges an optimistic ten centimeters of Gaussian white noise was intro-
duced. The adjustment parameters included the Cartesian coordinates of
the station and a first degree polynomial in time to represent the
cesium clock error every nine hours. The adjustment weighting was based
solely on the white noise statistics and the station coordinates were in
error initially by 100 meters in latitude. Figure 4.5.1 gives the error
in estimated position of station 1001 as a function of time with a
sequential adjustment in station position performed every nine hours.
With a random white noise level of ten centimeters the range observa-
tions would predict standard errors of 0.17, 0.21, and 0.15 centimeters
for the u, v, and w components of station position in this example.
According to Figure 4.4.18 adopting a linear model to represent random
cesium clock error over nine-hour intervals would leave an unmodeled
random residual error with approximately a 12 to 16 centimeters standard

error. The thirteen sets of this random residual error introduced the
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Figure 4.5.1. Effect of Random Cesium Clock Error on

Positioning Using Range Observations
(Station 1001)

station position errors in Figure 4.5.1. The residual random clock
errors represented by the difference between the random clock error and
the best fitting linear model are correlated as shown in Figure 4.4.19.
The errors introduced into station positioning by these random clock
errors, mcdeled as a linear function, will not average as those intro-
duced by Gaussian white noise of a similar magnitude as evidenced by the
station position errors shown im Figure 4.5.1. A comparison of these
errors with the standard errors expected by 10 centimeter Gausslan white
observation noise, given above, indicates the level of error expected
from unmodeled cesium clock noise. Errors of similar magnitude although
different in their distribution were present in the results from station
1002. The magnitude of this error plays a more critical role for the

determination of baseline components and is discussed in Section 4.5.2.
181



The effect of atomic clock error om station positioning also
includes the effect of unmodeled random satellite rubidium clock error.
For the dynamic positioning approach under examination in this analysis
it is assumed that estimates of each satellite’s clock error are pro-
vided with the ephemerides. For the current study this implies that
these estimates will take the form of the best linear f£it and will pro-
vide an estimate of the systematic rubidium clock error over the inter-
val of satellite tracking utilized in geodetic positioning. 1In the
current examples that represents a three-hour interval of time.
Assuming for the moment that over this interval the bilas and drift of
the satellite clock are known, then the question raised is what effect
will the unmodeled random residual satellite clock error produce in
station positioning? To obtain an estimate of this errer station posi-
tioning simulations were made introducing this residual rubidium clock
error into the same geometric ranges used in the previous examples.
This random residuzl error was computed by differencing simulated ran-
dom rubidium clock noise with the best linear least squares fit to the
noise over the tracking interval. The residuals from such a fit have an
average standard error of approximately 30 centimeters as seen from
Figure 4.4.17. The rubidium clock noise simulated was consistent with
the rubidium oscillator Allan variance given in Figure 4.1.3. Ten
centimeter Gaussian white noise was also introduced into the observa-
tions representing an unrealisticly optimistic level of random receiver
noise. The adjustment parameters included the station's earth-fixed
Cartesian coordinates. Figure 4.5.2 gives the position errors for

station 1001l as a function of time. The error represents the magnitude
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Figure 4.5.2., Effect of Residual Random Rubidium Clock Erreor on
Positioning Using Range Observations (Station 1001}

of the difference between actual and estimated station coordinates after
each nine hour update., The observations were weighted using onlv

the white noise statistics. Based on a ten centimeter standard

error of observation the full set of range observations would predict an
uncertainty in station position of 0.11, 0.12, and 0.09 centimeters for
the u, v, and w coordinates. The final errors in the station coordi-
nates were 1.3, 0.8, and 0.6 centimeters after 117 hours of observatiom.
Again, scaling the predicted standard errors by 3.0, the error intro-
duced into station ccordinates by the sequences of correlated residual
rubidium clock error averages although not as rapidly as errors
introduced by white observation noise of an equivalent variance. In
this example the residual rubidium clock error even though of higher
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variance than the residual cesium clock noise produces a smaller posi-
tioning error. The rate at which the errors in station positioning
average will depend on the variance and correlation of the residual
noise process, the number of noise segments introduced, and the correla-
tions among station position coordinates and the clock modeling para-
meters Introduced into the adjustment. However, as in the previocus
example, the effect of unmodeled residual rubidium clock error on the
determination of station coordinates 1is negligible.

To further refine the estimate of station position error
introduced by atomic clock error sources, an adjustment of station
coordinates and linear clock error models was made in which random
cesium clock error, residual rubidium clock error and ten centi-
meters of Gaussian white receilver noise were introduced into the geo-
metric ranges. Adjustment welighting was based on the statistical
modeling develcped in Section 4.4 including the fully correlated
welghting due to unmodeled atomic clock errors, The results of this
adjustment are given in Figure 4.5.3(a) through 4.5.3(c) for each
Cartesian coordinate of station 1001. The atomic clock errors intro-
duced into the range observations were simulated as previously described
for the cesium and rubidium clocks under consideration. Remembering the
results of the previous two examples where the resulting standard errors
of station positioning based only on Gaussian white noise were extremely
small, it can be seen that the standard error in station position com-
ponents due to correlated atomic clock error sources ranges from 8 to 1l

centimeters after one day of observation and from4 to S centimeters after
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five days. The magnitude of this error will be of importance in the
determination of baseline components discussed in Section 4.5.2.

To obtain an estimate of the effect of the ephemeris error
described in Section 4.1.2 orbit error was introduced inte station
positioning simulations using equation (4.2.10). The nominal level of
ephemeris error utilized throughout this study is given in Table 4.2.2
and the assumptions regarding its distribution are discussed in Section
4.2.1. Adjustment results for the Cartesian coordinates of Station 1001
are given in Figure 4.5.4 where the absolute value of the cecordinate
errors are given, Parameters in the adjustment included only station
coordinates, ephemeris error modeling belng momentarily 1ignored.

Ten centimeters of Gaussian white noise were again applied to the obser-
vations and formed the basis for the adjustment weighting. The results
indicate that the level of orbit error addressed in this analysis may
introduce errors into station position of greater than one meter in each
component even after five days of continuous observation. Modeling of
the ephemeris error tends to reduce this error. These results are simi-
lar to those obtained for Station 1002. The errors introduced into
positioning by each error source are dominated by the effect of errors
in the satellite ephemerides. This error will be the limiting factor in
the overall accuracy to which geodetic station positions may be obtained
using GPS ranging.

To define an upper bound on the effect of unmodeled tropospheric
refraction error on starion positioning a five percent error was assumed

in the predicted tropospheric refraction correction based on the
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Figure 4.5.4, Effect of Uncompensated Systematic Orbit Error on
Positioning Using Range Observations (Station 1001)
Hopfield model discussed in Section 4,1.3. This error was taken with a
constant sign. Observations below ten degrees elevation angle were
excluded. The results of a positioning simulation for Station 1001 are
given in Figure 4.5.5 where the adjustment included only the Cartesian
ccordinates of the station. Ten centimeter Gaussian white unoise was
included as before. Refraction scaling parameters discussed in Section
4.1.3 were not included in the adjustment. The results demonstrate that
a constant percentage model error in tropospheric refraction of five
percent can introduce errors in station position varying between 8 and
12 centimeters. If the actual modeling error had taken the form of a
constant percentage for each observation but with a random sign varia-
tion for each tracking interval, the error in station positioning would
be considerably less since the sign of the station position errors from

each interval of tracking would have variations resulting in better
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averaging. Subtracting the mean of each component of station position
erroc from the results in Figure 4.5.5 gives an estimate of 4 to 6
centimeters of variation at 1 day and 1-2 at 5 days which could be
expected in such a case. Again the magnitude of this error, even con-
sidering a worst case as in this example, 1s small in comparison to the
effect of ephemeris error.

Finally, the effect of a realistic level of receiver white noise
i1s assessed in Figure 4.5.6 in which the standard error of the Cartesian
station coordinates are given as a function of time. After twenty-four
hours of continuous observation the standard errvr of the solution for
each coordinate 1is approximately 2 centimeters and reduces exponentially
to approximately 1 centimeter after five days of observation. A com-

parison of Figures 4.5.6 and 4.5.3 reveals that, in the absence of
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systematic errors such as satellite position and tropospheric refrac-
tion, improvement in the receiver range measurement noise will not
improve the quality of station positioning since the effect of random
atomic clock error will dominate.

Table 4.5.1 summarizes the approximate levels of error intro-
duced into station positioning from the error sources discussed above
when the satellite tracking interval is three hours.

For Stations 1001 and 1002 complete simulations of dynamic
point positioning were made using range observations from three hour
tracking intervals. The error sources introduced into the observations
consisted of ephemeris error, satellite rubidium clock error, receiver
cesium clock error, tropospheric refraction error, and one meter of
Gaussian receiver white noise in accordance with Table 4,2.2. Various
independent sequences of random atomic clock error were utilized in the
analysis of station positioning for both stations. Figure 4.5.7 gives
the standard errors and actual position errors for Station 1001 for one
case. The parameters of the adjustment consisted of the full set
described above weighted according to the level of erreor introduced into
the observations. This set included station coordinates, ephemeris
parameters for each three hour interval, a linear error model for the
receiver clock over every ninme-hour interval, a linear error model for
each satellite clock for every three-hour tracking interval, and a
tropospheric refraction scaling parameter every three hours. The least
squares adjustment algorithm incorporated the fully correlated adjust-
ment weighting based on random atomic clock error and the Gaussian white

receiver noise, Initially the station's position was in error by 100
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Figure 4.5.6. Standard Error of Station 1001 Coordinates
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TABLE 4.5.1. EFFECT OF ERROR SOURCES ON
RANGE OBSERVATIONS USING A

ERROR SQURCE

TROPOSPHERIC REFRACTION (£ 5%)
EPHEMERIS

RESIDUAL SATELLITE RUBIDIUM CLOCK ERROR
RANDOM RECEIVER CESIUM CLOCK ERROR
RECEIVER WHITE NOISE (1m)

POSITIONING DERIVED FROM
THREE-HOUR TRACKING INTERVAL

APPROXIMATE COORDINATE

ERROR (cm)
1 DAY 5 DAYS
8-12 4-6"
150-200 806-120
6 2
8 4
1.5-2.0 7.9

*"ASSUMING AN AVERAGING DUE TO SIGN VARIATIONS
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Figure 4.5.7. Complete Simulation of Station 1001 Positioning Using

Range Observations over Three-Hour Tracking Intervals
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meters Iin latitude. An examination of the solution with all error
sources included indicates that each component of station position can
be determined with an accuracy of from 1.5 to 2.3 meters after one day
of observation and from 0.8 to 1.2 meters after five days.

The staFion positioning analysis based on a three-hour tracking
interval was not immediately extended to include the other stations in
Table 4.2.1. Instead consideration was given to improving the current

results.

4.5.1.2 Range Solutions Based on One-Hour
Tracking Intervals

Taking into account the results obtained in Section 4.2.2 for
the optimal selection of satellites for point positioning, improvement
in the geometric strength of the solution could be obtained by decreasing
the tracking interval and sampling the satellite constellation geometry
more rapidly. Thus a second scenario was investigated consisting of
tracking each selected satellite for one hour and estimating station
position every four hours. For a fixed interval of site occupation
this approach introduces additional modeling parameters but allows
a better sampling of satellite-station geometry. Using this approach
ephemeris parameterg are included for each hour of observation along
with a linear satellite clock error model. A linear receiver clock
error model is introduced every four hours. Since the clock modeling
intervals are reduced the linear models are a better approximation to
the random noise processes and the residual error statistics are
reduced. However the inclusion of additional modeling parameters will
have the opposite effect of weakening the least squares normal equa-

tions.
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To determine if an improvement in the prior station positioning
results was achievable a series of solutions were made for Stations 1001
and 1002 adopting this new approach. These positioning simulations were
based on one hcir tracking intervals with a total site occupation
ranging from two to five days and were designed to measure the effect of
random and systematic errcrs on positioning based on this tracking

.

scenario. Table 4.5.2 gives estimates of the effects of these error
sources in a form comparable with Table 4.5.1. The magnitude of the
errors introduced are again taken from Table 4.2.2.

TABLE 4.5.2. EFFECT OF ERROR SOURCES ON POSITIONING DERIVED FROM RANGE
OBSERVATIONS USING A ONE-HOUR TRACKING INTERVAL

APPROXIMATE COORDINATE

ERROR SOURCE ERROR (cm)
1 DAY S DAYS
TROPOSPHERIC REFRACTION (*5%) 8-12 4-6"
EPHEMERIS 50-80 25-40
RESIDUAL SATELLITE RUBIDIUM CLOCK ERROR 4 !
RANDOM RECEIVER CESIUM CLOCK ERROR 5 2
RECEIVER WHITE NOISE (1m) 1.5.2.0 .7-.9

"ASSUMING AN AVERAGING DUE TO SIGN VARIATIONS

An examination of Tables 4.5.1 and 4.5.2 reveals that this
change in the observation and modeling procedure reduces the effect of
two primary error sources, ephemeris error and random atomic clock
error. The effect on positioning due to residual tropospheric refrac-
tion and receiver white noise remain virtually the same. These latter

effects will be discussed first.
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Simulations of station positioning were made in which Gaussian
white noise with a standard error of one meter was introduced into the
geometrical ranges to GPS satellites selected using the criterion which

produces the smallest trace of the station coordinate covariance

developed sequentially. The adjustment results for Station 1001 are
given in Figure 4.5.8 where the standard error and magnitude of the
station position erro¥ are given for each component. The results are
similar to those given in Figure 4.5.6 for the three-hour tracking
interval demonstrating that the effect of receiver instrumental noise

on positioning averages equivalently for each observation procedure.

The results indicate that the error in each component of position due to
receiver noise is approximately 1.5 to 2.0 centimeters after one day and
0.7 to 0.9 centimeters after five days of continuous observation.

For tropospheric refraction the results based on a five percent
bias in the predicted refraction corrections show station position com—
ponent errors ranging from 5 to 20 centimeters. With the sign of the
modeling error taken as constant the error in the station coordinates
appears as a blas in the range of values just given with variations
generally on the order of five centimeters. Thus the overall effect of
residual tropospheric rafraction error remains at a level similar to
that from the prior tracking approach. However with the introduction of
refraction bias parameters this error is substantially reduced. Figure
4.5.9 gives the results of an adjustment with range observations subject
to a systematic tropospheric refraction error of five percent and ran-
dom instrumental noise with a one meter standard error. In addition to

the Carteslan station coordinates refraction scaling parameters, as
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given in equation (4.1.57), were included, one for each hour of
tracking. The errors in positioning due to refraction were recuced to
a level of approximately 4 to 6 centimeters after one day and 2 to 4
centimeters after five days of observation. Thus refraction errors
will not play a critical role in the determination of earth-fixed
coordinates from GPS range observations,

The adoption of a one hour satellite tracking interval with
linear modeling of random clock error over shorter time intervals
decreases the effective error in station positioning as mentioned
earlier. After a linear approximation of random cesium clock error over
a four hour interval the unmodeled correlated residual errors remaining
have standard errors of approximately 9 centimeters compared to the 12
to 16 centimeter standard errcr after an eight hour linear approxima-
tion. Similarly residual rubidium clock noise over a one hour interval
has a standard error of approximately 12 centimeters compared to approx-
imately 30 centimeters for a three hour fit interval. Thus the expected
magnitude of the unmodeled clock error will decrease with this alternate
tracking approach. However the number of model parameters required in
the adjustment will increase tending to weaken the normal equations for
station position. Figure 4.5.10 gives an example of the errors in
station position when random cesium clock error and instrumental
receiver noise with a standard error of one meter are present in the
observations. The adjustment parameters included station position and
a linear receiver clock model for each four-hour interval. The adjust-
ment weighting was developed using the statistics of the two random

error sources. Taking into account the results given in Figure 4.5.8,
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" Figure 4.5.10 indicates that random cesium clock errors, consistent with
the stability specifications adopted for the receiver oscillator, Iintro-
duce approximately 5 centimeters of error in each component of station
position after one day of observationand 2 centimeters after five days.

The random rubidium clock error modeled as a linear function of
time over one-hour intervals was also considered. This error source
introduces errors of approximately 4 and 1 centimeters after one and
five days of continuous observation respectively. With both atomic
clock random error sources and random instrumental noise included in the
adjustment, using the complete statistical weighting, the standard
errors of station position were reduced to approximately 60 percent of
the error present in the three-hour tracking procedure.

With the selection of a satellite occurring each hour the
effects of ephemeris error, whose distribution is discussed in Section
4.2.1, averages to a greater extent than in the three-hour tracking
scheme. Figure 4.5.11 gives an example of the errors in positioning
expected from range observations subject to one meter random instrumen-
tal erreor when ephemeris errors are present. Adjustment parameters
include station position and six orbital elements for each one-hour
interval. A priori weighting consistent with the amplitude of
ephemeris error introduced was included for the orbital elements. The
expected error in position due to the level of ephemeris error outlined
in Table 4.2.2 is given in Table 4.5.2 to be 50 to 80 centimeters after
one day and 25 to 40 centimeters after five days of observation.

Finally in Figure 4.5.12 results are given for Station 1001 for

a complete simulation of station positioning in which all error sources
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from Table 4.2.2 were included. All modeling parameters wexe included
in the adjustment and the full weight matrix based on all unmodeled ran-
dom error sources was utilized. These results indicate that the
expected error in the components of station position range from 70 to
140 centimeters after one day of observation and from 35 to 60 centi-
meters after five days. A comparison of Figures 4.5.7 and 4.5.12 gives
the improvement obtained using the shorter tracking interval. The
improvements in the accuracy of the recovered station coordinates for
Station 1001 were approximately 125, 90, and 30 centimeters for the u,
v, and w coordinates respectively after one day of observation and 65,
55, and 20 centimeters respectively after five days of continuous obser-
vation. Similar gains in accuracy were achleved for Station 1002.
Since the adoption of the shorter tracking interval produced a
significant increase in the accuracy of the recovered station position,
simulations of dynamic point positioning were made for all stations in
Table 4.2.1. These simulations incorporated all error sources from
Table 4.2.2, the full set of modeling parameters with a priori weights
consistent with the level of error introduced, and the weighting pro-
cedure developed in Section 4.4.3 for single station tracking. Table
4.5.4 presents the uncertainties in the geodetic coordinates for all
stations under investigation obtained from dynamic point positioning
using range observations. Table 4.5.3 1s provided as a key for tables
presenting simulation results. For the adopted levels of systematic
and random errors utilized these results indicate that the geodetic
coordinates may be recovered to the 100 to 150 centimeter level or

better after one day of continuous GPS range observations. After five
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TABLE 4.5.3. KEY TO ADJUSTMENT ERROR SOURCES, PARAMETERS
AND WEIGHTING FOR SIMULATION RESULTS

ERROR SOURCES

EPHEMERIS 1 — TABLE 4.2.2 VALUES UTILIZED
2 — 50% OF TABLE 4.2.2 VALUES

TROPOSPHERIC REFRACTION | 0 — NO ERROR
1 — 5% OF MODEL PREDICTION

SATELLITE CLOCKS 1 — RESIDUAL BIAS AND DRIFT
2 — RESIDUAL RANDOM ERROR BASED
ON ADOPTED RUBIDIUM CLOCK

STATION CLOCK 1 — BIAS AND DRIFT
2 — RANDOM CESIUM CLOCK ERROR

ADJUSTMENT PARAMETERS 1 — COMPLETE PARAMETER SET
2 — TROPOSPHERIC SCALING
PARAMETERS DELETED

ADJUSTMENT WEIGHTING 1 — INCLUDES WHITE NOISE AND
RANDOM CLOCK ERROR
STATISTICS
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TABLE 4.5.4.

RANGE OBSERVATIONS USING A ONE-HOUR TRACKING INTERVAL

LATITUDE, LONGITUDE, AND HEIGHT UNCERTAINTIES BASED ON GPS5

SYSTEMATIC AND RANDOM ERROR SOURCES ADJUSTMENT RESULTS {cml
30" | coveuens | ooeosmnc | saraure | sarow | RGSE | ™y | i [ 108t
lem) Oy a9 L 04 0 Oy, - o Oy
00 1 1 1.2 1.2 100 1 1 78 (1184 | 1251 | 5.7 | B2 48 | W7 | 5231 | 658
1002 1 1 1.2 1.2 100 1 1 888 | 1187 | 1837 | 90 n B4 | M | 544 ] 579
1063 1 1 1.2 1.2 100 1 1 524 | 12465 | 1138 | 588 | 884 33| 378 | 517 | SB4
1004 1 1 1.2 1.2 00 1 1 885 ;1978 | 1196 | 6§70 | BT Mo | 1 A3 | 43
1005 1 1 1.2 1.2 100 1 1 219,/ 1258 | 1115 | 578 | 813 832 | WY | 525 | 543
1008 1 1 1.2 1.2 100 1 1 882 | 1961 | 2468 | 589 | K26 | K36 | 773 | 54D | B38
kil 1 1 1,2 1.2 10 1 1 A22 | 1270 | 1133 | 674 | 839 Do | M6 | 628 | 34)
1008 1 1 1.2 1.2 100 1 1 M6 [ 1145 |[12851 | 5BR | N1] T} 374 | 542 | B4D
1009 1 1 1 2 1.2 100 1 1 M24 | 06X (1070 | 778 I 753 | 476 | 472 %3
1010 1 1 t. 2 1.2 100 1 1 114 | 1041 | 1087 | 781 ne 750 | 479 : 477 | &4
oM 1 1 1.2 1,2 1o 1 O | 145 [ 1457 | 499 789 | 1W3 | N0 ] 511 "o
1012 t 1 1.2 1.2 100 1 1 728 | %023 | 18508 | 56 7e | 1152 1{ 128 | A9 ns
103 1 1 1.2 1,2 100 1 L] 705 | 1076 |147% | 494 | 7B | W78 | 208 | 510 | 992
e 1 1 1.2 1.2 00 1 t 885 (VI8 (1281 (802 | 113, B4G | M8 | 524 | 559
101% 1 1 1.2 1.2 100 1 1 T | 1278 {1064 | 554 | PO M1 | 127 | 622 | 837
108 t 1 1.2 1.2 100 1 1 B9 | 1124 505 | 598 "3 800D § MY 532 | 518




days the accuracy of the recovered coordinates is between 30 to 70
centimeters. The dominant error source in these results is the satel-
lite ephemeris.

Some varifations in the results are evident. For instance, the
solutions for the polar Stations 1009 and 1010 have a larger standard
error for latitude and a smaller uncertainty in longitude and height
than the results obtained in the mid-latitude station group solutions.
This difference can be explained by examining the change in
station-satellite geometry. For high latitude stations the maximum
elevation angle 1s considerable less. Up to a latitude of 63 degrees
satellite crossings of the zenith are possible. However for higher
latitudes the maximum elevation angle decreases to approximately 54.5
degrees meaning that a larger percentage of the observations will be at
lower elevation angles. As noted in Section 4.2.2 increasing the num-
ber of lower elevation observations increases the strength of the height
solution in the presence of timing errors. With lower elevation angle
observations the strength of the latitude and longitude components will
depend on the distribution of observing azimuths. The equitorial sta-
tions show a larger uncertainty in height and a lower uncertainty in
latitude and longitude, again due to the distribution of observing ele-
vations and azimuths. The increased frequency of higher elevation obser- ]
vations ig reflected in the increased height uncertainty. Figure 4,5,13
gives the positioning results for Station 101l.

For these adjustment solutions the a posteriori variance of unit
weight was computed from equation (4.3.32). The square root of this

quantity, 80, for the solutions given in Table 4.5.4 ranged from 0.879
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to 0.914. ¥For a least squares gdjustment in which the mathematical
model for the observation equation is exact and the second order sta-
tistics of the random processes are modeled correctly in the weighting,
the theoretical value of the a posteriori variance is unity. Deviation
from unity is primarily due to error in the above assumptions. The
range adjustment results given in Table 4.5.4 are not scaled by this
quantity.

Some specific reasons for the range adjustment a posteriori
variance not being unity are the following. First, the Markov process
transfer functions given in Figures 4.4.7 and 4.4.8 both assign more
power to certain frequencies than the specified transfer functions given
in the same figures. For the satellite rubidium oscillator this addi-
tional power is at frequencies whose wavelength is greater than 100
seconds. The actual clock noise sequences simulated using the Meditch
[1975) algorithm do not contain the same power at these frequencies.
Thus the second order range statistics will predict observation uncer-
tainties in excess of their value based on the exact use of the speci-
fied transfer function. This tends to decrease the a posteriori
variance. Secondly, the errors introduced into the ephemeris using the
equations of Section 4.1.2 are periodic in mean anomaly but modeled by
a constant amplitude correction at the midpoint of each tracking inter-
val. This modeling difference affects the a posteriorl variance
since the level of error introduced into the observations was smaller
than the a priori orbital element uncertainty. And finally with a small
number of degrees of freedom for each tracking interval white and cor-

related noise sequences will tend to be fit better than expected causing
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a decrease in the a posteriori variance. The interpretation of the
results should take these factors into comnsideration.

Finally Table 4.5.5 gives the decrease in the standard error of
geodetic coordinates obtained in two previous examples when the variance
of the instrumental white noise is decreased and the tropospheric
refraction 1s compensated completely. The first case shows that no sig-
nificant increase in the accuracy of the adjusted station coordinates
can be expected by decreasing this instrumental random error component.
Decreasing the standard error of this component from 100 to 60 centi-
meters produces a decrease of only 1.1 centimeters or less as opposed
to an expected decrease of 40 percent based on range measurements sub-
ject to white measurement noise only. In this case however, with the
inclusion of the fully correlated statistics for unmodeled atomic clock
error, the resulting decrease is marginal.

In the second case assuming that tropospheric refraction effects
can be compensated the refraction scaling parameters are excluded from
the adjustment. The decrease in the standard error of the geodetic
coordinates ranges from 1.1 to 3.0 centimeters after one day of obser-
vation and from 0.8 to 1.6 centimeters after five days. The largest
decrease is in the height uncertaint ; although, the net effect on the

determination of earth-fixed coordinates 1is minor.

4.5.1.3 1Integrated Doppler Solutions

Solutions based on integrated Doppler or range difference obser-
vations were examined subsequently. Range differences over five—minute
intervals were formed by aggregating independent one minute integrated

Doppler observations with an instrumental measurement uncertalnty of
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TABLE 4.5.5.

VARIATION IN RESULTS FROM TABLE 4.5.4 DUE TO DECREASE IN INSTRUMENTAL WHITE NOISE
AND ACCURATE PREDICTION OF TROPOSPHERIC REFRACTION {RANGE OBSERVATIONS,
ONE-HOUR TRACKING INTERVAL)

SYSTEMATIC AND RANDOM EAROR SOURACES

VARIATION 1M ADJUSTMENT RESULTS (cm)

STATION PARAMETER | WEIGHT
oo TROPOSPHERIC | SATELUITE | sTaTion | WHITE MAT 1 DAY Z DAYS 5 DAYS
NO. | EPHEMERIS | "o caacTion | clock | crock | MO'SE SET Aix
lcm) -1 [ L™ Oy [ 1 ay, 0* ay Oy
1001 ' 1 1.2 1.2 80 1 1 06 | 06 | 11 |04 |04 | 10 | 02| 04 | 07
1003 1 0 1.2 1,2 100 2 1 11 17 j a0 | o | 1] 23 | o | o8] 14




three centimeters. The parameters of the adjustment were equivalent

to the range solution set with the exception of the clock models., For
integrated Doppler observations the linear clock error models were each
teplaced with a single parameter representing time drift or frequency
blas. Ephemeris elements, tropospheric refraction corrections, and the
geodetic station coordinates were retained.

An initial solution was made for Station 1001 using range dif-
ference observations over three-hour tracking intervals. Observations
were simulated using equation (4.2.9) and ephemeris error was intro-
duced into the adjustment using an equation analogous to equation
(4.2.10). Error sources were taken from Table 4.2.2., Adjustment
weighting included both the instrumental white noise statistics and the
random clock error statistics developed in Section 4.4.2. The receiver
clock was modeled over a nine-hour interval as in the range solutions
based on the same interval of tracking. Table 4.5.6 gives the results
for this adjustment. These results indicate that after one day of
observation the geodetic coordinate errors can be expected to range from
125 to 215 centimeters and reduce to from 60 to 100 centimeters after
five days.

For this station a simulation based on a one-hour tracking
interval was next tried to determine if better results could be obtained
as in the range case with a receiver clock model adopted every four
hours. The results from this solution are given at the beginning of
Table 4.5.7. A comparison of the three and one-hour tracking interval
results shows that significant improvement is obtained with the shorter

tracking interval, This latter tracking procedure allows a better
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TABLE 4.5.6.

UNCERTAINTY IN CEODETIC COORDINATES OF STATION 1001 BASED ON
GPS INTEGRATED DOPPLER OBSERVATIONS USING A THREE-HOUR INTERVAL

SYSTEMATIC AND RANDOM ERROR SOURCES

ADJUSTMENT RESULTS (cml

STATION PARAMETER | WEIOHT
TROPOSPHERIC | SATELLITE | STATION | Trnec MATRIX 1 DAY 2 DAYS 5 DAYS
NO-  |EPHEMERIS | ‘oermacrion | ciock | clock |NO'SE[  SET A
lem) 2, 04 L 9, o, o, a, o a,
1001 1 1 1.2 12 3 1 1 1245 2158 [ 1761 | 950 [ 1652 [ 1402 [ 585 [ w91 [ w26
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TABLE 4.5.7.

DOPPLER OBSERVATIONS USING A ONE-HOUR TRACKING INTERVAL

LATITUDE, LONGITUDE, AND HEIGHT UNCERTAINTIES BASED ON GPS INTEGRATED

SYSTEMATIC AND RANDOM ERROR SOURCES

ADJUSTMENT RESULTS (cm)

ST:EON kpHEMERIS | TROPOSPHERIC | SATELLITE | STATION :gg: nn;:rnsn "M"i'f,,':: 1 DAY 2 DAYS 5 DAYS
REFRACTION | clLOCK | clock | oo o o Lo Jon 1o T [ ] @]
[ oo } 1.2 1.2 3 1 1 1027 | 1452 1782 | 718 | 1004 | 970 | 483 | 632 | 535
002 1 1,2 1.2 3 1 1 1003 {1470 1417 | eas | 9o0 [ ese | 454 | 622 | 582
ez | T 1.2 1.2 ) 1 1 1020 | 1508 [ 1407 | 724 | 995 | 938 | 481 | 820 | 848
1004 - I 1.2 1.2 3 1 1 1048 (1497 (1415 | 703 | 975 | 980 | 450 | 521 | S84
1007 1 12 1,2 ' ' v | 1032|1510 |1299 | 725 | 984 | 955 | 7 | 018 | 549
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representation of random clock error with the same model, permits better

sampling of satellite geometry, and produces a more rapid averaging of

the effects due to systematic and random error sources. The result is
an uncertainty in station position coordinates in the range of 100 to

150 centimeters after one day and 45 to 65 centimeters after five days
of observation.

Since this shorter tracking interval yielded such improvement in
the results,station positioning adjustments were made for most of the
stations in Table 4.2.1. These results are given in Table 4.5.7. Again
the height uncertainties for the polar Stations 1009 and 1010 are signi-
ficantly less than for all other stations since the higher occurrence
of lower elevation observations allows a better separation of height
and timing errors. However for these stations the latitude and longi-
tude solutions are weaker. The results for the mid-latitude stations
show less variation than the range solution results. 1In general the
results indicate that range difference observations yield position com-
ponent accuracles of from 85 to 200 centimeters after one day of obser-
vation and from 40 to 80 centimeters after five days of continuous
tracking. Variations in the results with location are to be expected
with the weakest solution for latitude and longitude occurring toward
the poles. Figure 4.5.14 gives the positioning results for Station
1013.

The a posteriori variance of unit weight was computed using
equation (4.3.32) for each adjustment of Table 4.5.7. The square root
of this quantity varied from 0.967 to 0.998 indicating more consistency

in the adjustment modeling and weighting than in the range observation

simulations.
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Table 4.5.8 summarizes the effects of various error sources on
positioning based on integrated Doppler observations using a omne~hour
tracking interval. Again the ephemeris error dominates the effects of
all other error socurces. Because of the geometric weakness of the inte-~
grated Doppler observations the effect produced by three centimeter
instrumental white noise is much larger than that due to a one meter
standard error in range.

TABLE 4.5.8. EFFECT OF ERROR SOURCES OK POSITIONING DERIVED

FROM DOPPLER OBSERVATIONS USING A ONE-HOUR
TRACKING INTERVAL

APPROXIMATE
ERROR SOURCE COORDINATE
ERROR (cm)
1 DAY 5 DAYS

TROPOSPHERIC REFRACTION (5%) 20 10"
EPHEMERIS 60-150 30-70
RESIDUAL RANDOM RUBIDIUM
CLOCK ERROR 5 2
RANDOM RECEIVER CESIUM
CLOCK ERROR 7
RECEIVER WRITE NOISE 16-18 6-8
*ASSUMING AN AVERAGING DUE TO SIGN VARIATIONS. TROPOSPHERIC
AREFRACTION SCALING PARAMETERS WOULD REDUCE THIS ERROR TO
APPROXIMATELY 5 CENTIMETERS.

And finally Table 4.5.9 gives the reduction in the geodetic
coordinate uncertainties with modifications to the assumed error levels
introduced into the adjustmwent for Station 1007. Assuming that tropo-
spheric refraction can be accounted for completely either through

measurement or modeling and that the scaling parameters are deleted from
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TABLE 4.5.9,.

VARIATION
AND ADJUSTMENT PARAMETERS (DOPPLER OBSERVATIONS, ONE-HOUR TRACKING INTERVAL)

IN RESULTS FOR STATION 1007 DUE TO MODIFICATION OF ERROR MAGNITUDES

SYSTEMATIC AND RANDOM ERRORA SOURCES

VARIATION IN ADJUSTMENT RESULTS icmi

STATION PARAMETER | WEIGHT
NO TROPOSPHERIC | SATELLITE | sTamown | WHITE MATRIX 1 DAY 2 DAYS 5 DAYS
. EPHEMERIS NOISE SEY I
REFRACTION CLOCK CLOCK
feml LA 0, ay, o, o oy oy o1 oy
1007 1 0 12 1,2 k| 2 1 0.2 | &1 19 | 03 10 1| o1 04 | o8B
1007 1 t 1.2 1.1 t 1 1 18 | 24 27 13 15 18 07 | o8| 0%
1007 1 t 1.2 1,2 0.2 1 1 8 | 27 31 14 17 8] 08 04 10
1007 2 1 1.2 1.2 3 ] 1 A3 [ B84 | 803 | 320 | 458 | 415 | 200 | 291 | 2a8




the set of adjustment parameters, the resulting decrease in position
uncertainty is negligible as shown in the table. Also a decrease in the
ilnstrumental noise level from three centimeters to (0.2 centimeters pro-
duces only a minimal reduction in the coordinate uncertainty. Minor
decreases are realized in these cases because the ephemeris error
totally dominates these error sources. Thus for absolute positioning
additional refinements in the refraction prediction or improvements in
the noise level of the receiver will not provide any real improvement
unless the ephemeris error is greatly reduced. As a final example the
level of ephemeris error adopted in Table 4.2.2 was halfed and as expected
a significant level of improvement in position uncertainty was achieved.
The uncertainty in the results improved by approximately 45 percent.

A comment concerning continuous count integrated Doppler 1s in

order. In the above analysis opne-minute integrated Doppler counts,

assumed statistically independent, were aggregated to form five minute
range differences. The instrumental noise thus increased by /5. For a
continuous count integrated Doppler system this is not true. The five
minute Doppler counts in that case would still be subject to approxi-
mately the same white noise level as one minute observations. The
results presented here consider one-minute observation noise levels of
from 0.2 to 3 centimeters or 0.45 to 6.7 centimeters for five minute
aggregated range differences. For continucus count integrated Doppler
this latter interval would be approximately 0.2 to 3 centimeters, a

more optimistic but partially overlapping interval. From the results in
Tables 4.5.7 and 4.5.9 the accuracy of continuous count Doppler utilized

as independent range differences can be established.
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4.5,2 Determination of Baseline Components

Tn this section results are presented for the determination of
baseline components and chord length from simultaneous range and inte-
grated Doppler observations from two stations. The least squares normal
equations now include the earth-fixed cocordinates of each tracking sta-
tion. After each sequential solution the resulting station coordinate
covariance matrix is linearly transformed into coordinate differences
and chord length using equations (3.1.22) and (3.1.25) or analogous
equations when the coordinates are expressed as geodetic latitude,
longitude, and height. Satellites are selected using the criterion dis-
cussed in Chapter 3 and the simulations described in this section

include Table 4.2.2 error sources.

4.,5.2,1 Range Solutions

As in Section 4.5.1 initial results were based on the three-hour
tracking interval. Simultaneous range observations were simulated
for five days for Station 1001 and 1002. These stations lie on the same
meridian separated by approximately 100 kilometers as shown in Figure
4.2.1. Simultaneous observations were excluded from the adjustment 1if
the elevation angle from either station was below ten degrees.

The effect of individual error scurces on baseline components
was investigated for these stations by introducing each into the
adjustment, For this 100 kilometer north-south baseline the results are
given in Table 4.5.10. A comparison of these results with Table 4.5.1
demonstrates that the sensitivity of the baseline components to these
error sources is quite different than for the determination of geodetic
coordinates from range. Since the baseline distance is small relative
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TABLE 4.5.10. EFFECT OF ERROR SOURCES ON BASELINE COMPONENTS
DERIVED FROM RANGE OBSERVATIONS USING A
THREE-HOUR TRACKING INTERVAL (100 km BASELIN:)

APPROXIMATE
ERROR SOURCES COMPONENT
: ERROR {cm}
1 DAY 5 DAYS
TROPOSPHERIC REFRACTION (5%) 6-8 2-3
EPHEMERIS 1-3 05-15
RESIDUAL RANDOM SATELLITE
RUBIDIUM CLOCK ERROR 0.2 0.1
RANDOM RECEIVER CESIUM
CLOCK ERROR 12 6
RECEIVER WHITE NOISE {1 m) 2-3 1-156

to the distance to the satellites the effects of errors in the satellite
ephemeris and clock project almost identically into the coordinates of
each station. The transformation into coordinate differences removes
the majority of the effect. Thus although satellite position errors

can contribute 150 to 200 centimeters of uncertainty in station position
after one day of observation, this same error has only an effect of from
1 to 3 centimeters on the coordinate differences. This fact precludes a
requirement for & precise ephemeris in this application. Figure 4.5.13
demonstrates the error in the Cartesian baseline components due to
ephemeris error. After five days this error can be expected to range
from 0.5 to 1.5 centimeters. The effect of the satellite clock error

is likewise minor.
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The effect of tropospheric refraction error will also be
reduced if the signature of the error is almost equivalent at both
sites. In the cases considered here a common five percent error was
introduced. For sites separated by up to a few hundred kilometers the
difference in tropospheric refraction will be primarily a function of
elevation angle difference and the difference in weather conditions.
Assuming the difference is a function of the former, a constant percen-
tage error will produce approximately the sawme error at each site and
the effect on baseline components will be small. In actual applica-
tions where a more complicated prediction of tropospheric refraction
exists the baseline component errors may increase to a value greater

than that given in Table 4.5.10.
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The dominant error source in this application is the instability
of the tracking receiver clock. For the cesium oscillator considered in
this study the error introduced into baseline components can be expected
to range from 12 to 6 centimeters after one and five days of observation
respectively, Figure 4.5.16 presents the Cartesian baseline component
errors as a function of time. These errors tend to average with time
but at a rate which depends on the stability of the cleck. For the
dynamic determination of baseline components a significant decrease in
this error can only be achieved bv increasing the stability of the

Teceiver oscillator if the tracking Interval is held fixed.
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Figure 4.5.16. Effect of Random Cesium Clock Error on Baseline

Components derived from Range Observations
(Three-Hour Tracking Interval)
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For a complete simulation of relative positioning five days of
range observations were adjusted sequentially. The parameters of the
adjustment included two pairs of station coordinates, ephemeris para-
meters, a linear satellite clock model every three hours and a linear
model for each tracking station clock every nine hours. Two tropo-
spheric refraction scaling parameters were introduced for every three
hours of tracking. The adjustment weighting was based on all random
errors added to the observations. The weight matrix used every nine
hours had the form of equation (4.4.41). Errors were introduced into
the range observations according to Table 4.2.2 with the instrumental
white noise uncertainty taken as one meter. The result of the adfust-
ment was Cartesian baseline coordinate uncertainties of 23, 21, and 18
centimeters after one day of observation and 10, 11, and 8 centimeters

after five days.

The simulation for Stations 1001 and 1002 was repeated using a
cne~hour tracking interval. The uncertainties in the Cartesian base-
line components after one day of observation were 28, 15, and 12 centi-
meters. After five days of continuous observation the resulting
standard errors were 12, 7, and 6 centimeters for the Au, Av, Aw compo-
nents. A comparison of the trace of the covariance matrix with that
from the previous three-hour interval simulation shows that the shorter
tracking interval produces marginally better results. This is con-
sistent with the marginal increase in geometric strength for range
observations demonstrated in Chapter 3.

For the one-hour tracking procedure the effects of error sources

on baseline components are given in Table 4.5.11 for the 100
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kilometer baseline. The major difference between Tables 4.5.11 and

4,5.10 1is the decrease in the effect of random receiver clock noise.

TABLE 4.5.11. EFFECT OF ERROR SOURCES ON BASELINE COMPONENTS DERIVED
FROM RANGE OBSERVATIONS USING A ONE-HOUR TRACKING

INTERVAL (100 km BASELINE)

APPROXIMATE
ERROR SOURCE COMPONENT
ERROR (cm)
1 DAY & DAYS
TROPOSPHERIC REFRACTION (5%} 6-8 2-3
EPHEMERIS 1-3 0.5-15
RESIDUAL RANDOM SATELLITE
RUBIDIUM CLOCK ERROR 0.2 0.1
RANDOM RECEIVER CLOCK
ERROR 8 3
RECEIVER WHITE NOISE {1 m) 2-3 1.0-15
Using the one-hour tracking scenaric simulations were performed
to assess the accuracy to which baseline components and chord lengths
might be determined using simultaneous GPS range observations from two
sites. The complete parameter set and welghting based on all random
error sources were included in the adjustment. The resulting uncer-
tainties in the baseline parameters are given in Table 4.5.12. The

uncertainty in the chord length d is also expressed in parts per mil-

lion (ppm). For baselines less than 300 kilometers in length these

results indicate that the uncertainty in the latitude component of the

baseline ranges from between 10.1 and 12.7 centimeters after one day of

observation and from 4.4 to 5.8 centimeters after five days.

The longi-

tude component uncertainties are slightly weaker ranging from 10.6 to
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TABLE 4.5.12.

BASELINE COMPONENT AND CHORD LENGTH UNCERTAINTIES BASED ON

SIMULTANEOUS RANGING (SATELLITE TRACKING INTERVAL ONE HOUR)

APPROXIMATE SYSTEMATIC AND RANDOM ERADR SOURCES ) AOIUSTENT RESULTS icm,
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17.4 centimeters after one day and from 4.3 to 7.5 centimeters after
five days of simultaneous observation. The height difference between
the stations has the largest uncertainty due to the correlation of height
error with receiver timing error and refraction., For baselines under 300
kilometers the height difference uncertainty ranges from 25.2 to 27.7
centimeters for one day of observation and from 12.0 to 15.0 centi-
meters after five days. For these baselines the uncertainty in chord
length ranges from 9.9 to 16.0 centimeters (0.5 to 1.8 ppm) after

one day and from 4.3 to 6.9 centimeters (0.2 to 0.8 ppm) after five
days. The chord length uncertainty increases with baseline distance
as seen in the results for baselines 1007-1008 and 1015-1016., How-
ever the relative error in parts per million decreases. The increase
in the uncertainty is due to an increasing projection of the ephemeris
error onto the baseline compohents. Figure 4.5.17 gives the baseline
component errors and uncertainties for baseline 1011-1012. The

chord length between these stations is approximately 100 kilometers.
The chord uncertainty as 8 function of time is given in

Figure 4.5.17(d).

Two final examples are presented in Table 4.5.13 which show how
the uncertainty in the results given in Table 4.5.12 are subject to
change with variations in the simulation. Decreasing the instrumental
white noise to 60 centimeters decreases the uncertainties of the base-
line components from 1.5 to 2.4 centimeters after one day of observa-
tion and from 0.6 to 1.2 centimeters after five days for the 80

kilometer baseline 1001-1014. The decrease in the uncertainty of the
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chord length ranges from 0.3 ppm to 0.1 ppm for the interval of site
occupation in this case. Finally if tropospheric refraction error can
be measured or predicted with high accuracy then the deletion of the
tropospheric refraction scaling parameters will produce a significant
decrease in tﬁe standard error of the baseline parameters since the
removal of these parameters will strengthen the normal equations. The
results for the 200 kilometer baseline 1003-1004 are given in Table
4.5.13 demonstrating that the measurement of tropospheric refraction
with a water vapor radiometer may be required to obtain the best pos-

sible results using a dynamic approach.

4,5.2.2 Integrated Doppler Solutions

Simultaneous integrated Doppler observations from a pair of
stations were analyzed to determine the accuracy to which baseline
parameters can be determined. Adopting a one-hour tracking imterval
the effect of the systematic and random error sources given in Table
4.2.2 on the vector components of the baseline were evaluated for Sta-
tions 1001 and 1002, These results are given in Table 4.5.14. As with
the use of range observations the stability of the tracking receiver
clock will contribute significantly to the error in this positioning
problem while satellite ephemeris and clock errors have no significance
for such short baselines. As mentior:d previously a five percent
unmodeled error in tropospheric refraction having constant sign can
introduce errors of up to 50 centimeters in position. However for short
baselines a large portion of this error is in common at both sites and

the resulting error in the coordinate differences ranges from 4 to 8
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TABLE 4.5.14, EFFECT OF ERROR SOURCES ON BASELINE COMPONENTS
DERIVED FROM DOPPLER OBSERVATIONS USING A ONE-HOUR
TRACKING INTERVAL (100 km BASELINE)

APPROXIMATE COMPONENT

ERROR SOURCE ERROR (cm)
1T DAY 5 DAYS
TROPOSPHERIC REFRACTION 4-8 2-3
EPHEMERIS -] 1
RESIDUAL SATELLITE RUBIDIUM CLOCK ERROR .2 .05
RANDOM RECEIVER CLOCK ERROR 10 4
RECEIVER WHMITE NOISE (3 cm) 20-25 8-10

centimeters after one day to 2 to 3 centimeters after five days of
observation. In actual applications the signature of this error may
not be equivalent at each site and the resulting baseline component
errors may be different. The receiver white noise plays the most
important role. Because of the geometric weskness of range difference
observations a 3 centimeter standard error for receiver noise will
restrict baseline component uncertainties to be more than 20 to 25
centimeters after one day of observation and from 8 to 10 centimeters
after five days. Turthermore it will be shown below that reducing the
receiver noise level will have only limited success in reducing the
baseline component uncertainties.

For the case just considered a complete simulation was made to

determine the uncertainty in the baseline components and chord using
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five days of continuous observation. The results are presented in

Table 4.5.15. 1In terms of the geodetic coordinate differences the
uncertainties are 27.7, 41.6, and 45.5 centimeters after one day and
13.0, 17.1, and 18.2 centimeters after five déys for the latitude,
longitude, and height differences. The uncertainty in the chord was 2.8
Ppm and 1.3 ppm after one and five days respectively. Results for the
same baseline were then obtained using a three hour-satellite tracking
interval. These uncertainties are given in Table 4.5.16. Comparing the
24 hour rtesults with those obtained using 27 hours of observation from
three—tpur tracking intervals demonstrates that each tracking procedure
gives comparable results, After five days of observation it appears
that using a longer tracking interval has some advantage for deter-
mining the chord.

Since the three-hour tracking procedure did not appear to pro-
duce a significant overall advantage results for other baselines were
determined using.the one-hour tracking interval and are also presented
in Table 4.5.15. These results indicate for baselines less than 500
kilometers that the latitude difference uncertainty ranges from approx-
imately 30 centimeters after one day to 13.5 centimeters after five
days and is the best determine component of the baseline as in the case
of range observation. This is due to the fact that the majority of the
observations are from north or south going pass geometries as shown in
Figures 4.2.4(a) and (b). The uncertainty of the longitude component
of the baselines ranges from 37.3 to 44.8 centimeters after one day
and from 14.5 to 19.1 centimeters after five days. Height difference

uncertainty ranges from 35.1 to 44.8 centimeters after one day and from

231



[4%4

TABLE 4.5.15.,

SIMULTANEQUS DOPPLER OBSERVATIONS (SATELLITE TRACKING
INTERVAL ONE HOUR)

BASELINE COMPONENT AND CHORD LENGTH UNCERTAINTIES BASED ON
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TABLE 4.5.16,

BASELINE PARAMETER UNCERTAINTIES FOR STATIONS 1001 AND 1002 BASED ON
SIMULTANEOUS DOPPLER OBSERVATIONS USING A THREE~HOUR TRACKING INTERVAL
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15.8 to 19.1 centimeters after five days. The uncertainty in the chord
is significantly smaller for north-south baselines for the same reason
as the latitude component. This iz alsc true for the range observation
examples although the difference as a functicon of orientation is less
pronounced after five days of observation. Finally, the uncertainty
increases with station separation althcugh the ratio of the uncertainty
in the chord to its length decreases with the longer baselines given
here. The increase in uncertainty is again due to the increased effect
of ephemeris error. Figure 4.5.18 gives the results obtained for base-
line 1015-1016. As is typical with the results from the other baselines
considered the decrease in parameter varlance appears as an exponential
decay.

Finally, in Table 4.5.17 various cases are considered in which
modifications are made to the error sources., Elimination of tropo-
spheric refraction produces a decrease in the baseline component uncer-
tainties ranging from 1.0 to 7.3 centimeters after one day of
observation to 0.7 to 2.7 centimeters after 5 days. The height uncer-
tainty is decreased to the greatest extent. The chord uncertainty

decreases by 0.2 ppm after one day of cbservation and by 0.1 ppm after an

additional four days of observation. Decreasing the ephemeris error

by 50 percent produces only minor variations in the results as expected.
And finally the last two cases of Table 4.5.17 show that reducing the
random receiver noilse to 1 centimeter produces a significant increase in
accuracy but improvement beyond that level gives only limited success
since the effect of randowm receiver clock error begins to dominate the

resulting parameter uncertainties.
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Stations 1015 and 1016
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TABLE 4.5.17. DECREASE IN BASELINE PARAMETER UNCERTAINTIES DUE TCQ MODIFICATION
OF DOPPLER ERROR SOURCES (ONE-HOUR TRACKING INTERVAL)
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5. A PRELIMINARY EVALUATION OF SATELLITE

INTERFEROMETRY FOR BASELINE DETERMINATION

5.1 Introduction

In the preceding chapter the accuracy of baseline determinations
from range and Doppler observations was analyzed considering the effects
of various error sources. It was found that the range results were pre-
dominantly influenced by tropospheric refraction modeling error and ran-
dom receiver clock error while Doppler results were influenced most by
the same and by random receiver noise. Tropospheric refraction errors
may be reduced by the use of a water vapor radiometer [MacDoran, 1979]
and Doppler receiver noise levels may actually be as low as one centi-
meter [Stanford Telecommunications, Inc., 1978), hence the baseline
uncertainties obtained from range and Doppler may be enhanced as demon-
strated in Tables 4.5.13 and 4.5.15. However the resulting baseline
uncertainties would still be effected by random correlated clock errors
and, in the case of Doppler, also by the weaker geometric strength of
the observations themselves. Accuracies on the order of 1 ppm may be
achieved using these methods if the period of site occupation 1s at
least 2 days for range and 5 days for Doppler observation.

Since neither of these two observational approaches will sup-
port a rapid first-order determination of baselines, this chapter is

included to address the utilization of interferometric phase measurements
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for this applicaticn. Although the interferometric proposals discussed
in Chapter 2 are currently under development, enough information is
available to support a general estimate of the performance of an inter-
ferometric approach. The technique examined in this chapter is based on
the double differencing of interferometric phase from two satellites
made simultaneously at two sites. This approach has the advantage of
eliminating most of the clock errors which required polynomial modeling
in the range and Doppler approaches. The analysis presented here is of
a preliminary nature intended to provide a general estimate of the
accuracy of baseline determination using interferometry. A more
detailed analysis of the proposed interferometric procedures of Chapter

2 should be performed as the specifics of these techniques are refined.

5.2 Double Differencing of Interferometric Phase

The approach which is introduced in this section assumes that
interferometric phase observations are based on the reconstructed con-
tinuous wave GPS carrier frequencies. The following observational model
is adopted for the phase measurement with station 1 observing satellite
j:

27
Sij(t) = —)\:j-(t_) [Rij(t) -—mij(t)lij(t) - cﬁti(t) +c§tj(t)

(5.2.1)
- BBRij(t) +Yij(t)] .

In this equation A is the wavelength of the GPS carrier frequency,

ij

Rij is the geometric distance between station i and satellite j, mij is

the integer number of full wavelengths comprising Rij’ GRij is the
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tropospheric refraction error modeled to within a percent B, and y
represents uncorrelated measurement error. The quantities cﬁti and

cétj represent systematic and correlated random time or phase errors,
converted inte units of length, of the geodetic receiver and satellite
atomic clocks respectively arising from the accumulation of fractiomal
frequency error. The wavelength lij is also a function of time due to
the Doppler shift caused by the relative motion of the satellite with

respect to the receiver. Hence,

2
(t) = ——d— (5.2.2)

A
13 1 - ple

where Aj is the carrier frequency and p is the component of relative
velocity along the topocentric range vector,

If satellite j is simultaneously observed at station £ then

the difference in phase measured at the two sites is

AB () = 81

j (v) - 81 () . (5.2.3)

h| J

Ignoring for the moment the Doppler shift in the carrier frequency and
assuming the same level of refraction modeling error at both sites,

equation (5.2.3) may be written as

2T
28, (€) =i-j—-{Rij(t) - Ry, (0 - fm, (6) - mp ()],
(5.2.4)
- e[6r (1) - 8, (6)] - B[6Ry () -8Ry, ()] - [y, (O -yuct)]}.

Notice that the error in the satellite clock does not appear in

equation (5.2.4) due to the differencing.
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If in addition a second satellite k is simultaneously observed

at both stations then the double difference is deflned as

neik(t) = aej(t) - Aek(t)
(t) -

(5.2.5)

= g (t) - Sik(t) + eik(t) .

13 %91

Again ignoring the Doppler shift and assuming that the frequencies Aj

and Ak are equal and that B is constant for all observations, equation

(5.2.5) may be written as

2m
&Bjk(t) = X—j— {Rij(t) - Rij(t) - Rik(t) +R£k(t) +njk(t)}\j
(5.2.6)
- B[ﬁRij(t)-GRRj(t)-GRik(t)+-GR£k(t)]-—Y12jk}
where
Mo ™ "5 TPy T Bk T Mk (5.2.7)
and

In equation (5.2.6) no atomic clock errors appear; thus, the double dif-
ferencing approach appears to eliminate the timing errors which required
modeling previously. The integer term njk(t) represents the difference
between a pair of "21m ambiguities" which exist in each single dif-
ferencing of phase according to equation (5.2.4). This ambiguity repre-
sents the integer number of full wavelengths comprising the difference
in the distances between the stations and the satellite.

If the Doppler shift in frequency is included, then the double

difference equation (5.2.6) would be replaced by the substitution of the
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appropriate equations (5.2.1) into equation (5.2.5) and a complete can-
cellation of clock error could not be expected. In the preliminary
analysis presented in this chapter the carrier frequency lj(t) will be
assumed known and equation (5.2.6) will be adopted as the observation
equation., Introduction of the Doppler shift will some cause additional
uncertainty in the results depending on the a priori errors in station
position and satellite position and velocity.

An additional assumption implied in equation (5.2.6) is that
simultaneous observations of phase are to be differenced. The recogni-
tion of simultanecus events depends on accurate time tagging of the
observations or knowledge of the relative time error between station
clocks. The first of these i1s impossible to achieve and the latter
requires either portable clock comparisons or the adoption of additional
parameters in the estimation algorithm. If phase differences are formed
from observations at two sites having a time of observation difference
of At seconds, then the error introduced into the double difference is
given approximately by

snp o ZTAE (3R£k ) 3an)+ ; (amﬂj ) Bmﬂk)
T W AN T T A I T

) C(B(Sti_ aack)+ (asnu ) angk)
At 3t B\ %t 3t X

This equation is obtained from a first order Taylor series expansion of

(5.2.9)

equation (5.2.6) assuming that the observations selected from station §
for differencing are At seconds away from those from station i. An

examination of equation (5.2.9) reveals that the time synchronization
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error consists of a geometric term due to the position change of each
satellite relative to station £, a term which is a function of satel-
lite clock frequency stability and a term due to the variation in tropo-
spheric refraction over At. An evaluation of this equation for a
synchronization error of 200 nanoseconds gives a bound on this error of
0.05 centimeters. Synchronization to much better than this level could
be achieved by time tagging observations with the satellite time infor-
mation encoded in the transmitted GPS signals.

Adjustment of baseline parameters using double differenced
interferometric phase observations requires the differentiation of
equation (5.2.6) with respect to the earth-fixed coordinates of the

observing stations, the integer n and the constant 8, at a minimum.

ik
Satellite position also enters into equation (5.2.6) and represents an
additional set of parameters which strictly should be included. In the
results given below corrections to the satellite ephemerides are not
incorporated but the effect of error in satellite position is dis-

cussed, The partial derivatives used to form the design matrix for the

least squares adjustment are the following

dAb - -
jkl(t) _ E[ujm vy u (8) “1] (5.2.10)
aui Aj Rij(t) Rik(t)
u-*v, w
ond - -
Jk(t) - 21["1 uJ(t) % % () ] (5.2.11)
3ug 3 Ry (6 Ry, (t)

u-+v, w

243



—3‘1"— = 27 (5.2.12)
njk

3aB, . (t)

_Jk 7 _2n - -
58 Aj IESRij(t) Gjo (t) 6Rik(t) +6R£k(t)] . (5.2.13)

The integer n for an observed satellite pair is a function of

Jjk

time, changing at each observation time. If the receiver however main-
tains a count of accumulated phase change over the tracking interval,

then the rate of change of n is known and only a single integer

jk

unknown needs to be incorporated for each interval of tracking. An
adjustment based on equations (5.2.10) through (5.2.13) will not pro-

duce Iinteger solutions for the n Since no constraints are known

h L
which will produce an integer result directly, this initial adjustment

will provide a set of estimates and variances for the n From these

ALY
quantities various test sets of integers may be formed. The number of

such sets will depend on the estimates of the n and on the magnitude

ik
of their corresponding variances. For each test set a second least
squares adjustment would be required utilizing these integers. This
second adjustment would include a set of absolute constraints fixing

the n From these adjustments the weighted sum of squares of residuals

AL
VTPV may be compared to determine which test set of integers produces a
minimum. The covariance matrix of the station coordinates from this

solution may be transformed using equations (3.1.24) or (3.1.25) into

baseline component and chord length uncertainties.
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5.3 Effect of Error Sources

The error sources Influencing satellite interferometry measure-
ments were mentioned in Chapter 2. For the double differencing approach
the error sources will be the same except that it appears that most
error due to frequency instability will be removed. The error sources
considered in the results presented here are the satellite ephemerides,
tropospheric refraction, and the random error associated with the
measurement of phase. The magnitudes of the ephemeris and tropospheric
refraction errors are equivalent to those used in the range and Doppler
positioning studies as outlined in Table 4.2.2. The precision of a
single phase measurement is assumed to be 3 centimeters which was the
nominal precision adopted for integrated Doppler observations in Chapter
4, Counselman [1979] estimates the random phase error of the Miniature
Interferometer Terminals to be less than 1 centimeter. Table 5.3.1
gives estimates of the effects these error sources have on baseline com-
ponents and chord length for sites separated by 100 kilometers. These
Tesults are based on simulations using a total of six hours of observa-
tion, tracking individual satellites for a fixed one-hour interval.
TABLE 5.3.1. EFFECT OF ERROR SOURCES ON BASELINE PARAMETERS DERIVED

FROM SIX HOURS OF DOUBLE DIFFERENCED INTERFEROMETRIC
PHASE USING A ONE-HOUR TRACKING INTERVAL (100 km

BASELINES)
COMPONENT ERROR CHORD ERROR
ERROR SOURCE fcm) fcm)
TROPOSPHERIC REFRACTION (5%) 2-4 1-2
EPHEMERIS 1-5 2-3
RECEIVER WHITE NOISE (3 cm) 1-4 !
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5.4 Baseline Determination Results

Double differenced interferometric phase observations were simu-
lated every five minutes for the baselines previously considered in
Chapter 4, These observations were developed using equation (5.2.6).
Three initial adjustments were performed using observations from sta-
tions 1001 and 1002 simulated using a one~half, one, and two hour
satellite tracking interval. Satellite positicon errer and a five per-
cent error in tropospheric refraction modeling were introduced into the
adjustment. Parameters of the adjustment included the latitude, longi-
tude, and height of each station, the integer njkf and the constan~ B for
each tracking interval. The uncertainty of the latitude, longitude, and
height components of the baseline and of the chord length obtained from
these initial adjustments are given in Table 5.4.1 after six hours of
observation, As the fixed interval for observing a pair of satellites
is increased from ocne-half to two hours, there 1s a marked decrease in
the parameter uncertainties except for the height component. However,
with additional cobservations this trend is apparent for height also.
After ten hours of observation the height component uncertainties are
7.8, 4.6, and 3.2 centimeters for the three intervals utilized. This
trend is due to the decrease in the total number of parameters Tequired
in the adjustment as the tracking interval is lengthened resulting in a

general strengthening of the normal equations,
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TABLE 5.4,1., VARIATION IN BASELINE PARAMETER UNCERTAINTY WITH SATELLITE
TRACKING INTERVAL (BASELINE 1001-1002, SIX HOUR RESULTS,
INITIAL ADJUSTMENT)

TRACKING INTERVAL Ose Oax Can, o,
0.5 hr 9.3 ¢cm 12.2 1.4 5.6
1 5.3 8.1 7.5 3
2 2.5 4.6 9.0 1.8

For the solution based on a one-hour observing interval Table
5.4.2 gives the actual and estimated values for the integers njk and the
uncertainty of their solution. It is typical in the shorter tracking

interval cases for the uncertainty of the estimated n to exceed 0.5,

jk
When this occurs, the number of test sets of integers required in sub-
sequent adjustments may be large. For instance in Table 5.4.2 the
solution for njk for the fourth hour of observation was -15.2. With

the standard error of this solution 0.71 anyfaf the following integer
values, <13, -14, -15, -16, -17, could be expected as the correct solu-
tion for this interval. If all solutions lying within a 95 percent con-
fidence interval are considered, the number of possible unique sets of
integers to be used in subsequent adjustments may be extremely large,
TABLE 5.4.2. RESULTS OF ADJUSTMENT FOR INTEGERS n4ykx BASED ON INTER-

FEROMETRIC PHASE MEASUREMENTS AT STATIONS 1001 AND 1002
USING ONE-HOUR TRACKING INTFRVAL

INTEGER ESTIMATE UNCERTAINTY
TRACKING INTERVAL ix ik o"jk
1 7 7.2 .16
2 -6 ~5.8 .15
3 J 0.5 .16
4 -16 -15.2 A
5 ~-13 -13.0 .24
6 -1 -10.7 .54
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Since initial adjustments using observations from two-hour
tracking intervals produced the smallest uncertainty in both baseline

components and more importantly in the integers n solutions were made

ik’
for all baselines considered in Chapter 4 using observation schedules
based on two-hour tracking intervals. Ephemeris, tropospheric refrac-
tion, and instrumental errors were added to the observations. The
satellite palrs were selected for tracking to optimize the trace of the
baseline parameter covariance matrix given by either equation (3.1.25)
when the chord was estimated or by an equation analogous to equation
(3.2.3) when latitude, longitude, and height components were estimated.
After an initial adjustment the same observational data were utilized in
a subsequent adjustment in which the correct integer values njk were
included and fixed by absolute constraints. In actual practice many
such solutions may be required. The results of the second adjustment
are given in Table 5.4.3. The results after six hours of observation
indicate that the uncertainty of the baseline components generally
ranges frombetween 1.0 and 4.0 centimeters for baselines of 100 kilo-
meters. These uncertainties increase with baseline length. For shorter
baselines the height component has the largest uncertainty. The accu-
racy of the chord length exceeds C.1l ppm in all cates considered with
the relative accuracy improving with increasing station separation.
Although these results do not reflect the uncertainty due to
ephemeris error, they include the uncertainty due to a five percent
error in tropospheric refraction and a measurement uncertainty of 3 cen-

timeters. The ephemeris error will increase the uncertainties of the

estimated parameters as demonstrated by the error magnitudes given in
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TABLE 5.4.3,

BASELINE COMPONENT AND CHORD UNCERTAINTIES

(TWO~HOUR TRACKING INTERVAL)

BASED ON SATELLITE INTERFEROMETRY

BASEUINE

APPROXIMATE

SYSTEMATIC AND RANDOM
ERROR SOURCES

ADJUSTMENT RESULTS {cm}

CONFIGURATION|  LENGTH TROPOSPHERG | WHITE | A RAtETER 2 HOURS 4 HOURS 5 MOURS
hm} EPMEMERIS | aEraacTion |NO'SE - .

tcen) AR LA LA T4 | PP g 0 Ak [ g | PO nag | aay | AR [ fd | PR
1001.1002 100 ' ' 3 . 247|278 |122) 20 |02 |15 {24 |32 [ 12 f0or |2 r1]20}10] 0
1001.1003 100 1 1 3 . 196|269 |162{ 20 (02| v2 [ 20{3e |18 |02}12 |20 |36 |09 |0
1011.1014 00 ' ' 3 . 250|279 127} 13 |0z |18} 28{39 |- |or |13 |16 |31 jon |09
1003.1004 200 ' 1 3 . 249 |283[131} 25 |01 |7 [ a3]a215fo01[1s |28 |39 [12 ]00e
1005-1008 300 1 1 3 . 269(308 | 164} 29 |01 | 22 | S8 |49 |72 [007| 20 |84 |47 |15 |o0s
1007.1008 500 1 1 3 . 31 |3saf19a] a5 007 a1 |91 [es |20 008|321 |85 |se]| 1200
1015.1018 1880 1 1 3 . 198 |a13{275| o5 |00s| 60 136987 |83 [003| 62 128|981 a0 |00
1009.1010 100 1 1 2 . malaazjraar| 4z o8 |37 {16 |s0|r1z2[0r[23]18]es|[0s]0s
1611.9012 100 1 1 3 . 134|239 ea|as [oa|vr| 2033|1502 ref1e[22]08]0
1011.1013 100 1 1 3 . 168|291f 90|27 o0a|ref[1a|as}f17|[02]17[10] 24 [10]0n

*ADJUSTMENT PARAMETERS INCLUDE STATION COORDINATES AND TRAOPOSPHERIC REFRACTION CORRECTION
RESULTS ARE S8ASED ON SIMULTANEOUS OBSERVATIONS EVERY & MINUTES




Table 5.3.1. However even with such increases the double differencing
approach appears to be adequate for providing rapid first-order

determination of baselines.
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6. SUMMARY AND RECOMMENDATIONS

6.1 Precision Comparison

Some general conclusions were drawn in Chapter 3 from an exami-
nation of the results. For the observation types considered it was
evident that ranging measurements provided the best geometric strength of
solution. The two other derived observation types, correlated range
difference and interferometry, were geometrically weaker although the
results obtained from these latter procedures can be greatly improved
upon by increasing the observational precision. Correlsted range dif-
ference observations had best geometric strength when observed satellites
were tracked over longer time intervals. With this type of tracking
procedure both the baseline component and chord lemngth urncertainties
were minimized. For range and interferometric observations shorter
satellite tracking intervals produced the least uncertainty in the base-
line parameters. Lengthening the tracking interval for these observa-
tion types increased the resulting parameter uncertainties. However the
rate of increase was smaller than the variation produced in the Doppler
results by decreasing the satellite tvacking interval. And finally the
interferometry approach became geometrically weaker as the baseline
length increased to become a more significant percentage of the distance
to the satellite; although, the relative error in parts per millien

decreased for the baselines considered.
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The analysis presented in Chapter 3 considered the relative geo-
metric strength of three observation types, two derived from basic
ranging. The results were based on the assumptions that satellite posi-
tions in space were known and that the basic ranging measurements were

subject to uncorrelated stationary random noise.

6.2 Dynamic Point Positioning

The range observation results presented in Chapter 4 indicate
that such observations from GPS satellites can provide geodetic coordi-
nates to an accuracy of approximately 85 to 125 centimeters using
twenty-four hours of continuous observation. Those results were based
on the use of a one-hour tracking interval, selecting satellites which
provide the best geometric strength for the solution. If a longer site
occupation period is utilized, then the uncertainty in the geodetic
coordinates can be reduced further to approximétely 35 to 65 centimeters
after five days of observation. Since the majority of satellite passes
are north-south, the estimated latitude has a smaller standard error
than longitude and height except for stations located toward the poles.
For these latter stations height uncertainty tends to be smaller since
a higher frequency of lower elevation observations provide a better
separation of height and timing errors. If a longer tracking interval
is utilized, larger uncertainties in estimated position are to be
expected since the effects of systematic satellite position error will
not average as rapidly. The dominant error source limiting the accuracy
of geodetic coordinates is this error in satellite position. Thus

improvement in the receiver noise level and in measurement or modeling
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of tropospheric refraction will yield only minor increases in accuracy.
Therefore the geodetic utilization of GPS range observations in a
dynamic point positioning approach will require satellite ephemerides
to be estimated as accurately as possible.

Integrated Doppler observations based on independent counts can
be expected to yleld geodetic coordinate uncertainties ranging from 95
to 150 centimeters after twenty-four hours of observation. The uncer-
tainties will diminish to 45 to 65 centimeters after an additional four
days of observation. These results are based on a one-hour tracking
interval with an expectaed receiver noise level of 3 centimeters. An
increase in the tracking interval to three hours produces a substantial
increase in the geodetic coordinate uncertainties. Thus, as with
ranging, the best procedure is to track satellites over short intervals
to obtain stronger geometric strength of solution. Increasing the pre-
cision of the Doppler receiver or the accuracy of tropospheric refrac-
tion prediction will produce only a minor change in the results. Again
the uncertainty introduced into station position by ephemeris error
dominates the effects of all other error sources. Reduction of the
ephemeris error by fifty percent produces a decrease in position uncer-
tainty of approximately 45 percent. Therefore precise ephemeris compu-
tation will be required for accurate geodetic positioning using GPS
Doppler observations.

The major conclusion which can be stated regarding dynamic point
positioning using ranmge and Doppler observations from a Global Posi-
tioning System of navigation satellites is that the accuracy of esti-

mated geodetic coordinates will be comparable with the results
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obtainable with Transit Doppler observations. KNo major increase in
accuracy can be anticipated. Thus replacement of the Transit System
with a Global Positioning System will not be detrimental to the geode-
tic community since with proper electronic receivers similar levels of
performance can be expected. The GPS system does offer a distinct
advantage, This system provides continuous observation thereby
decreasing the interval of time required to obtain comparable results
with the Transit System enabling satellite surveying to become a more
efficient operation. Table 6.2.1 summarizes the effect of systematic
and random error scurces on dynamic point positioning.

TABLE 6.2.1. EFFECT OF SYSTEMATIC AND RANDOM ERROR SOURCES ON DYNAMIC
POINT POSITIONING USING ONE-HOUR SATELLITE TRACKING

INTERVALS
APPROXIMATE COORDINATE ERROR (cm)
ERROR SOURCE RAMNGE DOPPLER
1 DAY 5 DAYS 1 DAY 5 DAYS
TROPOSPHERIC REFRACTIONM 10 5 10 5
EPHEMERIS 50-80 25-40 60-150 10-70
RESIDUAL SATELLITE RUBIDIUM
CLOCK ERROR 4 1 s F
RECEIVER CESIUM CLOCK ERROR ) 2 7 J
RECEIVER WHITE NOISE
(RANGE Tm, DOPPLER 3cm) 2 1 iB )

6.3 Baseline Determination

Simultaneous range observations from two stations were utilized
to determine baseline components and chord length. Solutions based on
a one-hour tracking interval,selecting satellites which provide the best
geometry, indicated after one day of observation that the lati-

tude and longitude components of the baseline have uncertainties
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of from 10 to 17 centimeters for baselines under 300 kilometers. The
latitude component was determined with greater accuracy because of the
frequency of north and south going satellite passes. For baselines
under 300 kilometers the uncertainty of the height component ranged from 25
to 28 centimeters. After five days of observation uncertainties in the
latitude and longitude components were reduced to approximately 4 to 7
centimeters and the height component uncertainty to 12 to 15 centi-
meters. The uncertainty of these components increased with baseline
distance reflecting an increasing projection of orbit uncertainty into
the estimates. For shorter baselines the uncertainty in chord length
ranged from 10 to 16 centimeters after one day of observation and from
4 to 7 centimeters after five days. The uncertainty was less for
north-south baselines and increased with station separation. However
for the baselines considered here the relative uncertainty or ratio of
the uncertainty in the chord to its length decreased with increased
baseline distance. The accuracy of 100 kilometer baselines was approxi-
mately 1 to 1.5 parts per million after one day of observation. An
increase in the length of the satellite tracking interval slightly
degraded these results.

The dominant error sources which will effect the accuracy of
baseline determination using range observations are the stability of the
receiver clock and error in refraction prediction. Increasing the
modeling accuracy of tropospheric refraction will significantly
increase the accuracy of the baseline parameters. Reducing the receiver
noise level from 1 meter to 60 centimeters will produce a marginal
increase in accuracy.
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The stability of the receiver clock can be improved by using an
atomic oscillator with better stability properties. However the oscil-
lator model chosen for use in this study was typical of cesium oscilla-
tors having good stabllity; thus, it is anticipated that the baseline
parameter uncertainties attributed to random receiver clock error in
this study are typical of those expected for an operational survey sys-
temn.

With Doppler observations from one-hour satellite tracking
intervals the uncertainties in the baseline components ranged from 27 to
50 centimeters after one day and from 13 to 19 centimeters after five
days of continuous observation., The chord length uncertainty ranged
from 28 to 44 centimeters after one day and from 13 to 19 centimeters
after five days. The latitude component of the baseline was determined
with the least uncertainty and the chord lengths of north-south
baselines were determined significantly better. These results are for
baselines under 200 kilometers and are based on a 3 centimeter receiver
white nolse standard error. Increasing the tracking interval to three
hours produced some increase Iin the accuracy of the chord but the
results appeared mixed for the baseline component uncertainties.

The accuracy of the baseline parameters obtained by the geo-
metrically weaker Doppler observations are improved significantly by
decreasing the receiver noise level to 1 centimeter. Below that level
the clock error statistics dominate and further increased precision will
yield only marginal improvement. Enhanced modeling or measurement of
tropospheric refraction would improve the Doppler results but not as

significantly as for ranging.
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Assuming an instrumental noise level of 1 centimeter, uncer-
tainties in the baselline components would be reduced to approximately 9
to 14 centimeters after five days of observation. The uncertainty in
the chord would also be approximately 9 to 14 centimeters after five
days for baselines under 200 kilometers. The errors limiting the
accuracy of baseline determination using GPS Doppler observations are
receiver noise and the stability of the receiver oscillator.

Simultaneous interferometric phase observations from two sites,
twice differenced to eliminate timing errors, were examined as an alter-~
native procedure for the determination of baseline components. The use
of continucus wave phase measurements requires the introduction of inte-
ger unknowns into the adjustment related to the ambiguity in recognizing
the exact cycle on which phase measurements were made at the two sites.
As a consequence initial and secondary adjustments of the baseline para-
meters are required.

Results obtained using a two-hour tracking interval with a phase
measurement uncertainty of 3 centimeters revealed that baseline compo-
nents may be recovered with an uncertainty of from 1.0 to 4.0 centi-
meters after six hours if sites are separated by up to a few hundred
kilometers. The uncertainty in the recovered height difference between
observing sites was larger than the uncertainties in the latitude and
longitude differences for baselines under a few hundred kilometers. The
accuracy of the chord length exceeded 0.1 ppm in all cases considered and
improved with station separation. These results included uncertainty
due to a five percent error in tropospheric refraction. Probable

ephemeris error will increase the uncertainty of the baseline components
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as indicated in Table 6.3.1; however, even with such increases this
approach appears to be adequate for rapid first-order determination of
baselines under 200 kilometers. 7“able 6.3.1 summarizes the effect of
various systematic and random error sources on baseline component deter-

mination.

6.4 Recommendations

The results presented in Chapter 4 demonstrated that GPS range and
integrated Doppler observations will provide sufficient accuracy for
estimation of geodetic coordinates, These observations taken simul-
taneously at two sites can be utilized to determine baseline parameters
to better than 15 centimeters after five days of observation. A
limiting factor for both observetional approaches is the stability of
the receiver oscillatur. TFor certain geodynamic applications such as
earthquake prediction accuracies of 10 centimeters or better may be
required within a short time interval., GPS range and Doppler observa-
tions might be capable of providing such accuracies in the future but
the time interval required to obtain such results will preclude this
application.

Satellite interferometry techniques can be developed which cir-
cumvent the requirements for high stability frequency standards. This
lead to the examination of the double differencing of interferometric
phase. Thus one limiting factor for the range and Doppler approaches is
theoretically not a critical limitation for interferometry.

There are several interferometric approaches which have been

proposed using GPS satellites as radio sources. These proposals
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652

TABLE 6.3.1. EFFECT OF SYSTEMATIC AND RANDOM ERROR SOURCES ON BASELINE
DETERMINATION USING ONE-HOUR SATELLITE TRACKING INTERVALS

APPROXIMATE COMPONENT ERROR (cm)

DOUBLE DIFFERENCED

ERROR SOURCE RANGE DOPPLER PHASE
1 DAY 5 DAYS T DAY 5 DAYS 6 HOURS
TROPOSPHERIC REFRACTION 6-8 2-3 4-8 2-3 2-4
EPHEMERIS 1.3 05-15 5 1 1.5
RESIDUAL SATELLITE RUBIDIUM
CLOCK ERROR 2 1 2 1 -
RECEIVER CESUIM CLOCK ERROR 8 3 10 4 -

RECEIVER WHITE NOISE
{RANGE tm, DOPPLER 3 cm, PHASE Jcm) 2-3 1-1.5 20-25 B8-10



have been described in this study and the error sources assoclated with
satellite interferometry have been mentioned. It is recommended that a
detailed error analysis of these interferometry proposals be made to
determine their effectiveness for determining baseline components. The
specific details of each need to be examined so that a fair comparison
is realized. Further consideration should be given to the long-term
cost effectiveness of these proposals including the range and Doppler

instrumentation utilized in dynamic point positioning.
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APPENDIX A

LEAST SQUARES POLYNOMIAL APPRCXIMATION

OF RANDOM WALK SEGMENTS

A.l1 General Polvnomial Approximation

Let {u, } be a discrete stationary zero-mean stochastic process
Yk

and define {zn}to be its running sum with

£
z, - T oou, . (A.1.1)

The quantity z, is one element in the discrete random walk sequence

e
{zn}. By stationary it is meant that the random process {uk} is one

whose statistical properties are invariant in time. Further, assume

that over selected time intervals the random walk {zn} appears to be

dominated by systematic components enabling {zn} to be modeled by an mth

degree polynomial Pm(t). The difference between z, and Pm(ti) will be

called the residual T,

T, =z - Pm(tg) £ =1,2,...,N (A.1.2)

where the polynomial model is defined by

m
Pm(t) = ¥

(t—to)j ) (A.1.3)
i=o

%5
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The constant ts in equation (A.1.3) 4is arbitrary. The coefficients of
the approximating polynomial can be determined by a least squares fit of
Pm(t) to the random walk elements z sampled within a selected time

interval. The least squares solution for this approximation is

[Uotila, 1967]

2 = (aTay 'aTz (A.1.4)
vhere

=T ]

a = [ao,al,...,am

~T
z = [zl,zz,...,zN]

The design matrix A is given by

1 (tl-to)..........(tl-to)m
m
A = 1 (tz— to).....:....(tz'-to) (A.1.5)
: m
L-1 (tN-to)..........(tN-to) 1.

The covariance for the polynomial coefficients Eldepends on the choice

of to' In terms of the underlying process {uk}, it is given by the

following equations

Ela] = (ATA)_IATEf;] = 0

(A.1.6)
E[aa ] = (ATA) 1ATE[37 ja(a’a) T
where the covariance E[EET] is given by
—T ——1 [RT
E{zz" ) = [R S]E[uu] T (A.1.7)
S
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and
=T
u’ = [ul,uz,...,uN] .

The matrices R and S are given below.
Notice that the fitting procedure, equation (A.l.4), is non-
weighted least squares. The problem considered here is one of approxi-

mation, not linear estimation, since the a, are based on samples from

i
{zn} not subject to an observation or sampling error. Also the proce-
dure is independent of how the z are selected within the time interval.

Using equations (A.1.2), (A.1.3), and (A.l.4), the residual vec-

tor r can be written as

Tez-a@a1laz
= [1-a Ty ATz (A.1.8)
= Gz .

The residuals represent the discrepancy between the samples of the ran-
dom walk and the approximating polynomial and may be interpreted as
"noise’ with respect to Pm(t). The statistics of these residuals are
obtained from the statistics of the random walk by the linear transfor-

mation

E[TT ] = GE[zz )G! . (A.1.9)

This equation is derived using equation (A.1.8). For the

residuals

E[r] = E[Gz] = GE[z] = O (A.1.10)

since, using equation (A.l.1), each z has zero mean.
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Thus,

E[TT'] = E[C22.G1] = GE[Zz']G" . (A.1.11)

Therefore given the statistics of {uk} and an mth degree polynomial
model Pm(t) to approximate {zn} over a given interval of time, the

statistics of the residuals to that model may be developed.

Theorem A.l: The covariance E[EET] is (1) independent of the

evoch of {uk} provided this underlying process is stationary, and is
(11) invariant provided the {zn} are sampled 1in an identical fashion in
each of two intervals with comparable polynomial models being adopted.

The proof is as follows:

Let
=T
z] {zl,zz,...,zN}
and
ET = {z z z...}
11 N+1?N+2°"""*“2N

be two identically sampled sequences of the random walk {zn}. Since

Znel T PN T Uil
. (A.1.12)

Zon Tyt gy tooee YUy

where

equation (A.1.12) can be written using
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as

where R ig8 an N x N matrix of all ones and § is an N x N

lower-triangular matrix of ones. Equation (A.1.13) can be

£ sl
= [RS]] -
‘11 Yrrld .

By a linear transformation, taking GT = (Gi,ﬁil),
Elzy 23] = [RSIE[un] [‘S‘:]
- RE[a,u]IR" + SE[a ui]R
+ RE[u u ]S + SE[u GT ]ST .
1 II I1 1I
From equation (A.1.9)
Elr; ?1] = CE[z},z iI]GT
- GRE[GIG§]R:GT + GSE[GllﬁilRTGT
+ GRE[GIGEI]STGT + GSE[u qu II]s Tt .

However
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written as

(A.1.14)

(A.1.15)

(A.1.16)



GR = [I-—A(AIA)-IAT]R = [I-C]R

) N
1- % clk'
k=1
N
ToC
kel NE O}
L. -

Since the coefficients Cik’

(A.1.17)

£ =1,2,...,N, are based on the least

squares approximation of Pm(t) to the sampled {zn}, it is true that

(see lemma below)

n ot
]
it
-

1 2k

for every . Therefore
GR =0

and equation (A.l.16) reduces to

-T T
]STG

- T -
El ] = GSE[uIIuII .

Y1111

Using the stationarity assumption on {uk} and the result that

= =T - =TT
E[zIzI] SE[quI]S .
equation (A.1.20) becomes
- -T ~ -T. T - -T
E[rIIrII] GE[zIzI]G E[rIrI]

(A.1.18)

(A.1.19)

(A.1.20)

(4.1.21)

(A.1.22)

since the matrix G in either case is identical. Thus the quantity

=T 'I‘ -
IIuII]S is the only partial sum of the 2z
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mapped by G into the statistics of T The additional terms in equa-

11’
tion (A.1.16) involving the R matrix are mapped into zero by G.

Lemma A.l: For least squares polynomial approximation

E Cij = ] and I Gij =0 (A.1.23)
i
where
G=1--2¢C
c = AaTA) 2aT .

The proof 1is as follows:

The coefficients of the approximating polynomial

are determined through a least squares procedure.

Thus
a = (ATA}_IAT;
and

r=2z-4Aa=z-~- A(ATA)-IAT;

- Cz =Gz .

"
™1

Consider the matrix product ATG

T

A'G = AT(I-C) - AT[I-A(ATA)*I

ATy
(A.1.24)

= A? - AT =0 .
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Since by definition the first row of A: consists only of ones because

the approximating functiom is a polynomial, it follows from equation

(A.1.24) that

G = 0(1=row, = column)
1 1

for all j. Since G is symmetric

for all i. From equation (A.1.23)

i 1] i 13
Therefore,

IcC =1 .

i 11

The above theorem also holds for random walks in which the
underlying process is continuous. For instance if equation (A.l.l) is

replaced by the continuous random walk

N

2y = z(tN) = tf u(t)dt , (A.1.25)
0

then using equation (A.l1.25), equation (A.l.13) can be expressed as
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- R 7
N | Syl
S u(t)dt S u(t)de
o N

':'EH - ) + . (A.1.26)

N ton
J u{t)dt J u(t)dt
t t

| 0 4 LY A

=Q+T.

The residuals based on the mth degree polynomial fit are

r

ir = (1-0z

= (I~-C)(Q+T) (A.1.27)

= {I-C)Q+ (I-0C)T .

Since Q 1is a vector of equal constants and since equation (A.1.18) holds

as before, it is obvious that
(I-C)¢ =0 (A.1.28)
and therefore

r = (1-0r1

I (A.1.29)
= GT .
The covariance for the second set of residuals is
-~ =T T..T
- .30
E[rIIrII] GE[TT 1G (A.1.30)
since
E{T] = 0 . (A.1.31)
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Since {uk} is assumed stationary with autocorrelation function

Ru(t-t’), the following integral equation 1s valid

N+l SR CN+7 Tt Ener T
! R, (t- t*)dedt” = S S Ru(t*- t*“yde*ac*”
tx ty 0 0
(A.1.32)
A .
= f f Ru(t - t**)yac*de*~
0 0
where
* —
t t -t
t* =t -t .

Lpplving equation (A.1.32) to each element of the covariance matrix

E[TTT], it 1s seen that
E[TT ] = E[EIEgl (A.1.33)

and thus equation (A.1.30) becomes

-T,.T

E[T..Z.] = GE[EIzI]G

11711
(A.1.34)

- =T
= E[rIrI] .
Therefore the theorem is valid in the continuous case.

A.2 Correlation Between Residuals from Approximationg
to Successive Random Walk Segments

Consider two elements of the random walk sequence {zn}
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z = I u (A.2.1)
N+L k=1 k
and
N
z_ = L (A.2.2)
N k=1 o

From the assumption that {uk} is a zero-~mean process

Ef I - E[zN] =0 . (A.2.3)

ZN+i

The correlation between these elements is given by

E[zﬂ+i zN] = E[zN zN] + E[uN+l zN] + ...+ Efu ]

N+i 2N
(A.2.4)

2 1
OZN + E[uN+l zN] + ...+ E[uN+i 2, .

The correlationsbetweenzN and the elements uN+j depend on the correla-
tions among the elements of the underlying process {uk].
Now consider the following question. If samples or a segment of
{zn} are to be modeled by a polynomial of degree m, what correlations
exist between the residuals from successively fitted segments? Consider
for example the random quantities z(tn) where
n

z(t ) = I wu(t) n=1,...,%,...,22 .
,on k=1 k

Suppose the distribution of the z is as follows:
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z(tl)

: (Segment 1)
z(ty)
z(‘:'11+1)

: (Segment 2)
2(ty) .

Let t~ and t7 represent, without loss of generality, the midpoint of

each segment. If a polynomial is chosen to model the 2 over each seg-

ment as

P(E) = I a(e- £33 (Segment 1)

and

m
Qm(t) = 7 bj(t——t")j (Segment 2)

j=o

can it then be assumed that ;I and ;II are uncorrelated? Teo answer this
question perform a least squares fit of Pm(t) and Qm(t) simultaneously
to the {zn} segments and then linearly transform the statistics of {zn}
to obtain the residual statistics and compare the correlation coefficients

between the two groups of residuals with those within each group. The

equation for this transformation is

—

- - ——

E[T.7°]  E[F.TY.] E[>.2Y]  E[z.2%.]
171 1511 171 1“1r’ |
- G ¢ (A.2.5)
_ T - T - T R
Elry;ry)  Elrpprygl LE[zIIZI] Elzy1274]

272



where

G = [I-A(ATA)_lAT] (A.2.6)
and
A, O
A= ) (A.2.7)
0 A, |

A comparison of the correlation coefficients

E(r

174!
p
L /E[riri]E[rjrj]

(A.2.8)

—_ - —-— ..T .
of the off-diagonal blocks, E[rIrgl] or E[IIIrI], with those of the

T ], can be a basis for deciding 1if

__T - p—
diagonal blocks, E[rIrI] and E[rIIrII

the sets of residuals may be assumed to be independent of not.
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