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CHAPTER 1

INTRODUCT ION

1.1 Communication Protocols

Computer components for data processing are becoming
much more powertul while simultaneously becoming less
expensive. To take advantage of this advance in hardware
technology, today’s data processing 1is often distributed
across a network of mini and micro computers. A
well-defined and agreed-upon set of rules must be
established to regulate the interactions between the
attached entities in a network and to ensure that these
interactions proceed in an orderly fashion. This set of
rules 1is <called the communication protocol and is often a
ma jor factor in providing correct and reliable operation for

the network. The design and implementation of protocols is
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really a key to the effective exploitation of computer
networks on a.large'scale. In this dissertation, we present
a formal model for constructing correct protocols for

computer networks.

lelol Functions of Protocols

In a computer network, a message is transmitted over a
“raw" communication medium that may be noisy and unreliable.
During its passage, the message may be damaged, lost,
duplicated, . or arrive at the destination out of order.
Carefully designed protoccls can overcome those problems and
. Create a "“virtual® communicetion chanmnel that 1is more
reliabie than the raw communication medium. In order to
provide reliable communication between comaunicating
entities over an unreliable medium, protocols in general

have the following functions?

(1) Message transport control —- The detection of and
recovery from erférs caused by damage, loss, duplication,
and an out-oIl—order sequence.

(2) synchronization -- The control of the interactions
between communication entities to avoid deadlock,
incompatinility, infinite idle looping, improper
termination, and unbounded demand for resources.

(3) Flow control -~ The management of message flow from the

source to the destination.
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(4) Failure recovery -- The recovery from network component

tailures.

Besides tnese functions, some protoccls may have
additional features such as acdressing, connection
© management, sequence . control, message fragmentation and
priority. Construction of a protocol for a computer netvork
is thereforé a very complicated problem and a layered

approach is usually adopted for protocol design.

l.l.2 Layered Approach

The advantage of having multiple layers of protocols is
that layering provides a separation of functions which is
always useful in designing any complex system. It allows
implementation and verification of protocols to be carried
out separately for each layer. Also, failure recovery and
error detection can operate independently to handle errors

at. each layer.

For any given layer of tie protocol, there are three
desirable features [Davies731t (1) it should be transparent
to layers above it, so that nothing sent or modified by a
higher layer can be affected or modified by its lower
layerss (2) it should be seli-limiting so that it |is
impossible to require the provision of potentially infinite

storage, or to spend infinite time 1in & program loop or
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waiting states (3) it should be possible to change one
layer of the protocol without requiring extensive changes at
other layers. These features provide support for
evolutionary changes of the protocol since each layer of the

protocol acts as an independent module.

A typical distributed computer network has several
layers of protocol (Ray761]3 hardware level protocols by
which hardware devices exchange signalss communication
sub~-network protocols by which communication processors
exchange messages$s and network protocols by which host

computers exchange messages.

For example, a layered approach has been adopted in
ARPANET for the specification of network protocols. The
inner layers inciude the IMP to IMP, HOST to IMP, and HOST
to HOST protocols, and several high-~level function-oriented
protoccls have also been defined. Fig. | shows what the
network protocols in ARPANET look likes (1) the IMP to IMP
protocol which describes the comnunication in the
communication subnetworks (2) the HOST to HOST protocol
(NCP, TCP) [McKenzie72, TCP791 which describes the
comnunication between losts connected to the communication
subsystemi3 and (3) function-oriented . protocols (such as
icp, TELNET, FTP, RJE, DCP, CP etc.) [Feinler78) which

describe the communication between processes of different
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host computers and represent high-level virtual connections

of the network.

ICP,TELNET ,FTP yRJE,DCP,GP

D L e e ——

\ /
\ HOST /HOST / PROCESSES”
\ === = m e e eeee—/ PRIMITIVES

\ /
\ IMP/IMP / HOST/IMP
N S —
\ /
\  COMMUNICATION /
\ SYSTEM /
\ /
\ e e e e /

Fige | ARPANET protocol hierarchy

For the case of interconnecting different networks, we

need to add internetwork protocol [TCP79]1 to the hierarchy.

leles Protocol Verification

Sunshine [79] and [ISO [78] have used the term ‘“service

specification® of the protocol to clarify the concepts of

specification and verification in the context of a layered

protocol model.
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Service specification is similar to the concept of a
set of desirable properties of protocols. A "structured
verification® concept [Teng78al is useful 1in dealing with
network protocol ver ification. Verification of the
properties of one layer should be done by wutilizing the

proved properties or provided service of its lower layers.

Those desiraole properties have two aspectss (1) the
absence of protocol syntax errors, and (2) the absence of
protocol semantics errors. Protocol syntax errors include
deadlock, incompatibility, infinite idle looping and
improper termination. Protocol semantics errors include
those violations of the assertions defined in the service
specification. The checking of protocol syntax errors is
more amenable to automatic techniques since it only depends
on the protocol’s syntax specification (we assume that those
problems which may cause syntax errors can be detected by
examination of the syntax specification). The checking of
protocol semantics errors is more difficult since it depends
on the protocol“’s semantics specification to form

assertions.

Protocol verification is a demonstration of the freedom
of a protocol specification frdm syntax and semantics
errors. Sunsiine L79)] and West ([78al have called the

checking of protocol syntax errors "protocol validation"., A
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major researcn objective of this dissertation is to provide
a systematic scheme for specifying, verifying and

implementing protocols which are syntax-error free.

l.2 UObjectives of This Research

Although informal descriptions and testing provide
helpful tools in protocol design and validation, they are
inadequate by themselves to handle the increasing variety

and complexity of communication protocols, Our present

- . ablility to handle protocols is similar to the ability we had

with programming languages in the 1950’s, when no convenient
formalism, like the Backus—Naur form [Nauré3] used now, was
available to describe syntactic constructs of languages
[Fraser76]l. Without a formal model as a convenient means of
representation, there are few clues that can lead us to a
systematic scheme, for automatic software/hardware
implementation of communication protocols and little can be

done for the automatic verification of these protocols.

In this dissertation, we will investigate formal
techniques and methodologies for constructing correct
protocols in a computer network environment. We address
manyb protocol construction problems. Five major research

ob jectives addressed in tnis dissertation are given below?



.Objectives of This Research 8

(1) Develop software engineering techniques for specifying
correct protocol . programs which are modifiable and
maintainable, and develop automatic (or semiautomatic) tools
for verifying and implementing protocols in a

straight forward manner.

(2) Provide a systematic scheme to investigate the
fundamental correctness problems of computer network
protocols, and develop a protocol problem checklist (for a
given protocol layer and network topology) as a guideline
for correctness cnecking during the protocol construction
processe. The checklist serves as the basis for the deéign

of verifiable protocols.

(3) Develop a formal specification model which is
theoretically applicable to a broad range of protocols and
is capable ot providing a clear and concise description of
protocol syntax structures. The specification should permit
a complex protocol to be described with a well-structured
notation tnat 1is suitable for human readability and should
be useful for both protocol verification and implementation.
The specification should also provide clear and concise

documentation for both network users and protocol designers.
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(4) Provide protocol designers an effective solution (with
acceptable complexity) to existing protocol correctness
problems . by using automatic protocol verification
tecnniques. The verification techniques should be flexible
and power ful enough to analyze protocols more complicated
than a finite state language, and should be convenient for

checking design and syntax errors.

(5) Provide protocol designers a direct and straight-forward
ilmplementation scheme from a validated protocol
specification, thus eliminating the burden of program coding

with -its attendant errors.

The above five research objectives represent the basis
for a fundamental study into the design and analysis of
computer network protocols in this dissertation. To meet
these objectives, a comprehensive technique for correct
protocol construction has been developed by applying
software engineering and formal language techniques. A
formal model, called the Transmission Grammar (TG) has been
developed for definingy, verifying, implementing and
document ing network protocols, in addition to a conceptual

analysis of protocol problems and their solutions.
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1.3 Related Work

Considerable progress has been made in wusing formal
techniques to meet our objectives of protocol specification
and verification .during the past three years. However, many
new techniques must be applied and some totally new concepts
developed in order to accomplish all of the above research

objectives.

A number of important formal protocol models have been
. proposed, including finite state automata, Petri nets,
programming languages and formal grammars. Sunshinel 78al
and Merlin [79) have provided surveys of various models. We
will also review and compare various models 1in Chapter 3.
The following discussion will summarize some of the

important features of these models.

Finite state automata are convenient for representing
complex control structures of protocols, The schemes using
finite state automata have been very successful for
automatic analysis of syntax errors by exhaustively
generating and checking the global states. However, the
theoretical application of finite state automata is limited
to verifying protocols with a bounded number of states
(lsesy, a T[finite state language). These schemes generally
have the difficulty of “state explosion" and are not

directly applicable to automatic implementation. They are
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also hard to be applied to produce "well-structured"

specification and documentat ion.

Petri nets are also convenient for representing complex
control .structures of protocols, and allow for automatic
reachability analysise. Petri nets are theoretically
applicable to a broader range of protocols than finite state
automata ([(Merlin79] but cannot analyze even a simple
reader-writer problem [Chen75]. The protocol specification
of Petri nets 1is wusually a description of the global
interactions of communicating entities for the purpose of

verification and must be decomposed for implementation.

Programming languages are convenient for representing
variables and counters, but not complex control structures.
The schemes using programning languages provide a relatively
concise means of describing protocols, and proof of protocol
program correctness provides a rigorous, formalized
verification process to handle a wide range of assertions of
the desired properties. Program proving is an extremely
important long-term research project to handle semantics
errors but is considered to be at least 10 years away from
being wuseful to programs of any significance [Glass79].
Using program proving schemes, a protocol designer often

requires several times the amount of work to prove a

protocol program than was required to write +the progranm,
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since programming languages often deal with many

implementation details besides design issues.

Harangozol78] has used a regular grammar model to
specify the HDLC link protocol by incorporating an indexing
technique to accommodate sequence numbering. However, his
model seems to be intended only for the purpose of protocol
specification and cannot define complex protocol 1eatures

which are context-free or context sensitive.

Most of the previous research efforts that we have
ment joned above have concentrated on protocol speciiication
and/or verification. A genheral and comprehensive
methodology is Just being applied to the design of
complicated protocols [Teng78b, Sunshine79]. In order to
achieve tne objectives of this research, fundamental
protocol correctness problems should be 1investigated and
considered during protocol design, specification and
implementation. There are also several neglected problems
~in the protocol research field, such as structured and
modu lar design, entity characteristic analysis, automatic
(or semiautomatic) implementation and documentation

maintenance.
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.4 Our Approach and Contributions

This research is also concerned with correct protocol
construction techniques. We have developed a comprehensive
protocol construction methodology by applying software
engineering and formal language techniques to achieve the
design objectives discussed in Section 12 Our
construction techniques are based on a nongraphic formal
model using a context—ifree grammar, called the Transmission
Grammar (TG), for defining, .verifying and implementing

network protocols.

The transmission grammar model is similar to the
Backus=Naur rorm that has been used to define the syntax of
programming languages, but it is used to define the control
and message .structures of communication protocols. The
step-wise TG specification allows the protocol designer not
only to specity protocol program modules in a
well-structured manner, but to keep the specified structure
(context-free grammar) so simple that automatic validation
and implementation can be easily carried out. The TG
protocol model is more concise and power ful than the finite
state automata (FSA) model, and is also more convenient to
represent and analyze complex control structures than thé
programning language model can. The TG model is capable of

specifying and verifying protocols (languages) which are
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more complicated than the FSA model can [Teng78al. A TG
. protocol specification can contain necessary redundancies
for better human readability, as compared with a finite
automaton model, Since there does not exist any graphic
diagram interpreter for the direct processing of graphic
models (such as FSA, Petri nets and UCLA graphs), the linear
(nongraphic) property of the transmission grammars 1is also

crucial to direct analysis and implementation of protocols.

Based on the 1G model and software engineering
techniques, we develop protocol construction techniques for
systematic and structured design of correct protocols. The
following discussion summarizes some of the more important

capabilities and features of our construction techniques.

(1) Validation Checklist -- We investigate the fundamental
protocol correctness problems that may cause protocol syntax
errors. We summarize and explain the nature of three
important types of correctness problemst message transport
problems, transmit interference problems and reliability
problems. Wnile protocol correctness problems are a major
source of protocol syntax errors, only a subsel of these
problems actually exist in a given protocol topology and
layer. Even an expert may make valicdation mistakes 1if he
does not have a <clear understanding of the potential

correctness problems in his protocol design.
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A deficiency of existing validation techniques
(Hajek78, West78b] 1is the lack of a systematic scheme for
examining protocol correctness problems. We introduce a
validation cnecklist, which contains the "minimum" and
‘Wsufticient" set of existing correctness problems for a
given topology and layer, to be used during our validation
and construction process. The checklist can prevent us from
. wasting our effort in examining non-existent problems and
can lead us to a systematic study of protocol correctness
problems. We will present an example of this validation
checklist in Chapter 2 and use the <checklist to simplify

global validation process in Chapter 5.

(2) Specification and Design =-- To the best of our
knowledge, we are the first to .present: (1) the
context-free and context-sensitive characteristics of
various protocols, (2) hierarchically structured
specification and documentation for protocol design, and (3)
the TG substitution and shuffle operations for constructing
inherently correct protocols from verified protocol

components and/or validation independent parts [Teng78al.

Using the TG model, a protocol program is
hierarchically structured by step-wise refinement. The TG
specification of protocols can preserve the history of the

step-wise refinement for hierarchically structured



Our Approach and Contributions 16

documentat ion. Ne apply tne TG model to specify the
protocol first at an abstract or design level which is easy
to.understand and use during the design stage. The abstract
TG specification 1is related to the concept of a Program
Design Language (PDL) [Caine75] in software engineering and
design. The abstract TG specification contains abstract
communicat ion actions as its terminal symbols. Essentially
any set of English statements could be used to describe the
abstract actions. This abstract specification provides an
easy way to read a protocol program in the design stage, and
also provides documentation which can be refined for future
validation and implementation. We also develop theories and
algorithms to show the importance of TG decomposition and
integration in step-wise design for both validation and
implementation. This "divide and conguer" scheme allows the
construction of inherently correct protocols from
“decomposed" and verified protocol modules to ease the task

of specification and verification.

(3) Validation -- We present an automated approach to verify
protocols which are more complicated than finite state
languages. Our correctness checking includes TG structure
errors and protocol syntax errors. We first check the
.program structure errors since the check of TG structure
errors can reveal those simple errors before checking more

complicated protocol syntax errors.
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A local validation system is developed to automatically
check TG structure errors from the entity’s TG
.spécification. The local validation system is based on the

analysis of {iransitive closure of grammar relations and is

very efficient in locating structure errors.

A global validation system based on the validation -
automaton (VA) model is also developed to check the timing
and interactions between communicating entities .and to
reveal protocol syntax errors. Using this VA model, the
designer can conveniently examine such protocol correctness
problems as message transport, transmit interference, and
reliability problems, by using several basic complexity
reduction rules which will be explained in Chapter 5. The
VA model can comprehensively represent the inter-dependency
between communicating entities and the change of Complicated
channel status by a matrix of message .and acknowledgment
queues ., Ne can easily derive a VA specification of
protocols from a TG specification. The global validation
system can directly read the VA _specification and
automatically generate the global transitions (in a
tractable number of states) for checking protocol syntax

errorse.
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(4) Implementation -- The TG model can be generalized to
have two grammar specificationst® (1) action grammar and (2)
me ssage grammar. The action grammar is used to specify the
action sequences of the protocol. The message grammar
allows us not only to represent the hierarchical structure
of message .formats, but to implement automatic syntax
parsing and error handling of the message structure. From a
validated TG, we can use refinement techniques to specify a
detalled protocol description and to preserve the validated
protocol propert ies., A protocol of the communication
processor layer in the ARPANET 1is specified by the
generalized IG model to describe both the interactions
between communicating entities and the structure of
individual messayes. This specification can contain proper
semantics which is suitable for automatic software/hardware
implementations, and can be directly used to drive a
recognizer for the protocol. We outline the structure of
such a recognizer, called the General Protocol System (GPS),
for automatic software implementations. Other

syntax-directed implementation techniques are also studied.

The . above features and capabilities make our
construction techniques for correct protocols very powerful,
flexible and efficient. Our contribution is both
methodological in developing a framework for systematic

protocol constructions and substantial in presenting
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solutions to tnhe problems of protocol specification, design,
verification and documentation. In addition, the overall
research effort has provided not only some insights into
protocol correctness problems but also practical strategies
for handling these problems during all phases of protocol

construction,

l.6 Organization of Dissertation

This dissertation is arranged so that each chapter
addresses a distinct topic of the protocol research area.
This first chapter serves as a foundation from which the
rest of the research méy be presented. It contains an
overview of the functions of computer network protocol and
outlines protocol construction techniques. The major design
. objectives and the important features of this research are

also presented and discussed.

The organization of the remaining chapters of this
dissertation can be viewed iIn the context of a software
engineering life-cycle for protocol construction as shown in

Fige 2.
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In Chapter 2 we present the protocol correctness and
the protocol architecture requirements for given
communication channel features. We investigate the basic
correctness properties for protocol design and introduce a
systematic scheme to derive a minimum yet "sufficient®
validation checklist with respect to the design requirement
for any given protocol layer and topology. The
investigation of this checklist provides the groundwork for

future validat ion of communication protocols in Chapter 5.

In Chapter 3 we motivate the need for a formal model to
design comnunication protocols and introduce the
transmission grammar model to specify protocols. This model
can represent and interrelate the hierarchical relationships
of protocols. Using fhis model, We can first decompose a
protocol 1into several components for validating the desired
properties and then integrate the validated components for
implementation. The arbitrary shuffle and substitution
operations of formal languages are introduced to construct
inherently correct protocols from those validated
components. [Ihis model provides for step-wise refinement of
the design while preserving the history of the refinement.
Also, it allows the application of many existing techniques
of formal languages and compilers to protocol validation and
impiementation. OShuffle and substitution operations are

applied to manipulate the [Gs in a step-wise design. The
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concise TG description of a protocol can provide
documentation of the protocol design. The model has the
flexibility of describing a complicated protocol with
different degrees of details for validafion and

implementation.

Protocol validation of the TG model is based on the
reachability analysis of protocol behavior. It includes
both local validation and global validation of the protocol.
The local validation chnecks whether a TG has the desired
properties and eliminates program structure errors. The
global validation c¢an analyze the interactions between
comnunicating entities and can reveal many complex syntax
errorse. We introduce a validation automaton model and
automatically generate the global states represented by the
VA model., #e provide ten basic reduction rules which can be
used to reduce the number of states and transitions in the
global validation analysis. A validation system is also
implemented to automate the reachability analysis. These

important topics are discussed in Chapters 4 and 5.

After the specified TG has been validated, we can use
refinement techniques to define a more detailed protocol
description with proper semantics for automat ic
software/hardeare implementation. This detailed TG should

still preserve the validated properties. In Chapter 6 we
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present several automatic techniques for protocol
implementation. The TG model can be used to describe both
the interactions between communication entities and the
detailed structure of individual me ssages. This
specification may be directly used to drive a %recognizer"
for the language (protocol). We call this recognizer a
General Protocol System (GPS). The GPS is designed as an
- interpreter although it may also be implemented as a
“orotocol compiler®, A data transfer protocol . for the
communicat ion processor of ARPANET is specified using the TG
model and GPS operations to demonstrate the overall design

methodology.

Finally, Chapter 7 is the summary for this
dissertation, In addition, further research topics in this

area are also suggested.

In the Appendix, a PASCAL program of the validation
system is listed. This system can automatically periorm the

local validation for protocol specified by the TG model.



CHAPTER 2

PROTOCOL CORRECTNESS

2.1 Introduction

In this chapter we study the protocol correétness
problem. As the number of computer and communication
networks increases, the organizations they serve are
becoming increasingly concerned about protocol correctness.
Compared with centralized systems, the remote comnnunication
nature of computer networks introduces protocol syntax
errors. The problems of detecting, diagndsing, and
recovefﬁng from these. errors are more complex to solve
because of the complex interdependencies between
comnunicating entities and their channels. A global
software engineering technique is needed to design and

verify protocols 1in the networks. Until recently, the

24
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problems of protocol validation and verification were still
not seriously consicered unless the protocol had been found

not to worke.

The importance of protocol verification is only now
becoming generally recognized. Protocol validation can be
performed at (1) the design phase, (2) the development and
test phase, or (3) the operation phase. The relative cost
of correcting protocol errors during the operation phase is
a lot higher than during the design phase. Clearly, it pays
off to invest effort in 1rinding design errors early and
correcting them rather than waiting to find errors during
operations and having to spend in the order of 10 times more
correcting them. We therefore propose to verify protocol
correctness during protocol design and specification in this

dissertation.

The protocol correctness problem is very tricky. For
example, a data transport protocol is correct under normal
operation if it will completely transport messages (data)
between entities Qithout error, loss or improper order. A
correct transport protocol will define what actions are to
be taken to detect and correct error, loss and disorder.
Tne complete transter is an essential part of the
correctness argument. Even if all the delivered messages

are error—-free, we still might suffer from deadlock,



Introduction 26

degradation, interferences, incompatibility, infinite idle
looping, constant transmission noise and other catastrophic
(failure) conditions which prevent complete delivery of the
messages and proper termination. To verify that all the
messages Wwill eventually be delivered is an important

verification problem,

In this chapter we first study the basic property of
protocol correctness and then investigate in detail
comnunication channel characteristics which have an
important impact on protocol architectures and correctness.
It is derived from both the lessons learned from practical
experience and the result of theoretical reasoning. We then
provide a validation checklist of protocol correctness
problems. The checklist contains the “minimum" and
"sufficient" set of existing correctness problems for a
given topology and layer. The checklist can prevent the
designer from wasting effort in examining non-existing
problems and lead us to a systematic study of protocol

correctness problems.
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2.2 Protocol Correctness

Because protocols are a particular type of computer
program, we first study computer program correctness before
we investigate protocol correctness. Conway(78] lists eight

different levels for a correct program?

l. A program contains no syntactic errors.

2. A program contains no compilation errors or tfailures
during program execution.

3. There exist test data for which the program gives
correct answer.

4. For typical sets of test data, the program gives
correct answers.

5. For difficult sets of test data, the program gives
correct answers,

6. For all possible sets of data which are valid with
respect to the problem specification, the program

gives correct answers.

7. For all possible sets of valid test data and all
likely conditions of erroneous input, the program
gives correct answers.

8. For all possible input, the program gives correct
answers.

The appropriate level of correctness needed Ior any
application should be determined at the requirement steage.
Verification of the behavior of a protocol presupposes a
detfinition of what the protocol is designed to do and the
properties to be verified. Because of the complexity of
protocols, level o) correctness 1is considered to be
sufficient in this dissertation. That 1is, &a protocol is
veriitied to be correct, if for all the global interactions

which are realizable according to the problem specification,

tne protocol gives correct answers. The problem



Protocol Correctness 28

specification should specify the "minimum" correctness

requirement as we will discuss later.

Current technology is inadequate for general and
automatic verification of a computer program to level 6
correctness. For the verification of a complex protocol
program we have an even harder problem of global
interactions between communicating entities. As mentioned
in Chapter 1, we will restrict ourselves to the
investigation of an important subset of protocol correctness

(protocol validation) in this dissertation.

Protocol validation is usually based on a
straightforward reachability exploration of the protocol’s
behavior to reveal protocol syntax errors. = Protocol
validation techniques based on the TG model will be
discussed in Chapters 4 and 5 +to assure the absence of

protocol syntax errors.

Since different protocols have different correctness
problems, a "perfect" validation technique for one protocol
may work poorly for others. To clarify some confusion over
the validation problem, we study the fundamental properties
of message transport problems, transmit interference
. problems and protocol syntax errors in +the next three
sections. The detailed discussion of protocol reliability

problems is beyond the scope of this dissertation. However,
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our validation models can also handle the reliability

problems.

2.3 Message Transport Problems

The message transport problems include damaye, delay,
loss and improper sequence.
They are applicable only to protocols below application
layers and can often bpe nandled by properly selected
architectures. For example, a positive acknowledgment and
retransmission (PAR) protocol can usually take care of the
problems of damage, loss, duplicate packets, and improper
sequence by assigning sequence numbers (or ID’s) and
cnecksumns to each packet transmitted, and retransmitting any

packet not positively acknowledged by the other side.

Correciness Hierarchy

In. the protocol nierarcny, we know that protocol
requirements for a protocol layer do not include any message
transport problem that does not exist or has been fully
corrected by its lower layers. This property can alleviate
the complexity of validation. That is, no correctness

cnecking for a message transport problem is needed in any
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layer if the problem has been fully corrected by its lower

layers.

dransport Protocol

. Transport protocols should be available in a computer
network to guarantee that the messages are transported to
the application layers in sequence and without damage, 1loss
or duplication (i.e., no messaye transport errors).
Transport protocols can provide fully reliable message
communication between higher layer entities which must
communicate over a less reliable medium as shown in Fig. 3.
In this way we can prevent redundant checking in application
layer protocols and provide a clean and correct input to

them to simplify their design and verification.

Application layer protocols can therefore be assumed to
have a perfectly reliable virtual channel provided by the
transport protocols. The relationship is shown in Fig. 4.
The design of the application layer protocol therefore need

not consider message transport problems.
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- Ristributed Checking

The checking of message transport problems can be put
off as long as the problems can be fully solved by some
combinations of protocol layers which are lower than the

application layers.

Ne can use the disorder checking of messages in ARPANET
as an example, The interface message processor (IMP) is
responsible for checking packet sequences within a message
(or segment) while the transmission control program (TCP) at
a host is responsible for checking message sequences within
the current session and between sessions. These checks are
fully implemented by the combination of the two protocol
layers, which are 1lower than the application protocol

layers.
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2.4 Transmit Inter ference

A transmit infterference occurs when the timing of the
delivery of two (or more) transmitted messages is such that
tneir relative timing results in interference, thereby
causing the receiver (s) of the messages to react incorrectly

and to obtain erroneous resultis.

The transmit interference problem as mentioned above is
very difficult to resolve because the error is not
reproducible. If the specific timing of two transmit
actions which results 1n interference 1is very rare in
practice, we would not be able to easily locate the error,
because it is not likely to appear again within a short
period of time. It is therefore important to prevent such
errors from happening at the design stage by some formal

veritication and designing techniques.

To simplify the discussion we will restrict our
consideration of interference to that between two transmit
messages. We will examine four types of transmit

interferences delay, reply, collision, and race.
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(1) Delay Interference

Delay interference 1is the interference between two
. transmit messages which have the same syntax format and the
same source and destination. As shown in Fig. 5, this type
of transmit interference is caused by the critical timing of
deliveries between a message ml and a succeeding message m2,
both of which were sent from send module A of entity A to
receive module B of entity B. Duplicate interference occurs
when ml and m2 are the same message and one of them is
duplicated. Disorder interference occurs when mi and m2 are
different messages and the arrival sequence of the two at
entity B is different from the departure sequence at entity

A.

‘ —————- : send ml i —————— i
i | send |=—f==—m—memewe—ew—gp=>ireceivei
{ imoduleA} ——p~~=—m=—~=m—eee——t->inoduleB: |
: ——————— H send m2 H ——————— :
H H H :
H H ' :
\ —————— H H ——————— H
i ireceivei i 1 send 1
E imoduleA; | ¢  itmoduleB;
H ————— H H —————— ]
Entity A Entity B

Fige. 5. Transmits that cause delay interference
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A single message submitted for +transmission may be
duplicated by the timeout retransmission mechanism because
of eithers (1) a premature retransmission by a sender while
positive acknowledgment from its receiver is underway, or

(2) loss or damage of positive acknowledgment.

To attempt resolution of these duplicate messages, the
receiver can maintain a 1list of sequence number(s) of
transmission(s) which it 1s currently expecting. The
duplicate message will not be one of the expected messages
and can be discarded. Sometimes message delay may also
cause a duplicate from a previous closed connection to
arrive during the current open connection. The delay could
cause the following misinterpretationss (1) a “cross line"
problem if incorrect acceptance of the ‘Mold line" duplicate
by the “current line", (2) an incorrect opening or closing
problem if the duplicate is an old open or close command, or
(3) a replay problem ([Fletcher78] if a series of old
duplicates causes the opening of a connection and subsequent
acceptance of "duplicate% messages. Unless we can aiford to
cneck exhaustively all possible ambiguities to verify that
the misinterpretations will not lead to incorrect outcomes,
a more elaborate sequence control mechanism is required
[ICP79]1 to allow the receiver to distinguish all the

possible duplicates from new messages.
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In general, disorder interference can also be prevented
if we have a sequence control mechanism. The scheme is well
covered in the TCP protocol of ARPANET and will not be

discussed here,

(2) Reply Interference

The second type of transmit interference is reply
interference. Reply interference can either be piggyback

interference or multiple reply interference.

(A) Piggyback inter ference ~- This interference appears
in a full-duplex channel and is the interference between a
reply message and a send message at a communication entity.
As we can see from Fig. 6, the send module A transmits a
message ml, and then waits for a reply of ml from receive
module B, If at this time send module B wants to send
message m2 which has piggyback control information and has
the same syntax construct as the reply of ml, then a
piggyback interference might occur.
Wnen the send message m2 of entity B arrives at entity A
before the reply message ml, entity A will "believe" that
entity B is sending a reply ml. Unless careful verification
techniques are used to verify that there is no ambiguity or
confusion between m2 and the correct reply of ml, piggyback
interference 1is 1likely to happen (especially when combined

with the possibility of the damage and loss of ml).
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Fig. 6. Transmits that cause piggyback interference

When m2 contains piggybacked acknowledgment
information, the resulting interference can lead to two

kinds of misleading resultss

‘(al) Loss unawareness -- This happens when entity B
unintentionally contains a positive ACK in m2 for the
outstanding message ml while ml was actually lost because of
a noise burst. So, before entity A’s timeout has expired,
it will receive the incorrect "acknowledgment® for its lost
me ssage. This sequence of actions of loss unawareness thus

causes the irrecoverable loss of message mle.

(a2) Receive unawareness -— This happens when entity B
unintent ionally contains a negative ACK in m2 for the
outstanding message ml while ml was actually correctly
received. Constant receive unawareness can cause constant

errors (called tempo-blocking [Hajek78l). For example, if
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entity B always sends a negative acknowledgment with a
retransmit m2 when a timeout has expired, then a situation
may arise such that entity A cannot decide whether the
. transmit of md is due to a negative reply of mi or Jjust a

premature retransmission of entity B.

(B) Multiple reply interference -- This interference
may occur between two replies as shown in Fig. 7. If two
outstanding control messages ml and m2 have been sent by
entity A and the reply of ml and the reply of m2 have the
same syntax format, entity A would "believe" reply mi to be

reply m2 and could thus be led to an erroneous result,

—— . —— - - ——— ——— TS Oty S T s e I A v

- --
- ne Se o= o
*

[ ] []
i 1 send ) == = = = = — - i=>ireceive) |
HE H reply ot ml ¢+ "o
I | S=pmmmm—e— e~ | I
i +moduleAi i reply ot m2 { imoduleB:
o | <—- ettt ] I
: —————— : H ——————— '
Entity A Entity B

Fige 7 Transmits that cause multiple reply interference

To avoid multiple reply 1interference, we can assign
sequence numbers to replies and restrict the receiver to

accept the replies in order. We can also check to formally
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verify the outcome is correct even with the ambiguity. For
example, in ARPANET’s host/host protocol, the CLS command is
used either to initiate closing, aborting and refusing a
connection, or to acknowledge closing. Suppose that host A
sends host B a request for connection, and then A sends a
CLS to host B because it is tired of waiting for a reply.
However, just when A sends its CLS to B, B sends a CLS to A
to refuse the connection, A will Ybelieve" that B is
acknowledging the abort, and B will Ybelieve" that A is
acknowledging 1its refusal [Feinler78l. Therefore, even
tnough a communication entity can take a wrong message as
its reply because of ambiguous interpretation, the outcome

could still be correct.

(3) Collision Interference

The third type of transmit interference 1is <collision
interference., This interference occurs when two
comnunicating entities A and B try to access a channel and
transmit messages ml and m2 respectively at the same time as
shown in Fig. 8. This could cause call <collision if the
channel between the entities are half duplex and they call
one another at the same time and, due to transmission
delays, each finds the other one busy. If the channel is a
common broadcast type in the areas of satellite broadcasting
or radio switching, mutual interference will produce

incorrect reception for both transmissions.
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Fige 8 Transmits that cause collision inter ference

Constant <collision is a deadlock and should be
recovered or prevented. To recover from collision usually
requires random delays and retransmits. To prevent it two
types of control schemes can be used [Kleinrock78l. (1)
Fixed Allocations This 1is a static reservation access
method wnich preassigns channel capacity to users, thereby
. creating “dedicated" channels. (2) Dynamic Reservations
This assigns channel capacity to an entity when the entity
has data to send. Such schemes as Polling (where one waits
to be asked 1f he has data to send), Active Reservation
(where one asks for capacity when he needs it), and
Mini-Slotted Alternating Priority (where a token is passed
among numbered users in a prearranged sequence, giving each
permission to transmit as he receives a token) all fall in
this category. Another scheme using delay buffers [Liu78]

can also be used to prevent collision in a loop network.
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(4). Race Interference

This type of transmission inter ference happens when two
communication entities A and C try to transmit messages mi
and m2 respectively to entity B and to process common data
bases in entity B concurrently and asynchronously as shown
in Fige 9. It is similar to the consistency problem in a
centralized system where many users update a common data
base. The situation 1is .more complicated in a computer
network when the consistency o1 distributed data bases has
to be controlled. The interference could cause a race or
inconsistency condition. In a centralized system, we can
use synchronization mechanisms to synchronize the access of
tnese common data bases, but the approach is more difficult

in a distributed system [Ellis77al.

| ] L ]
[ ] L]
i | send | send ml} irecelve! isend m2i 1 send | |
HEEH e et b N | S=Fommmmee e} HEH
¢ imoduleAy { imoduleBi { imoduleCi
' ————— : H ——————— H H —————— H
' : H ' H H
Entity A Entity B Entity C

Fig. 9. Transmits that cause race interference
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2.5 Protocol Syntax Errors

Message transport  problems, transmit interference
problems .and reliability problems may cause protocol syntax
errors. Protocol syntax errors occur when communication
entities lose synchronization, and they consist of
incompatipbility, infinite idle 1looping and deadlock and
improper termination, These errors are usually applicable
to all protocols. They have to be fully checked within each

individual layer by validation techniques.

(1) Incompatibility

Two communicating modules (send and receive) are
compatible or dually-complete 1if they contain neither
unspecified message receptions (receive incompleteness) nor

unspecified message transmissions (transmit incompleteness).

The receive completeness of a protocol means that it
specifies all the possible message receptions under normal
operating conditions (same as the logical completeness in
{Zafiropulo78l). One of two things can happen if, in the
design of a protocol, a message reception 1is 1inadvertently
onitted, resulting in loss of the message. The protocol can
either initiate an error recovery procedure or it may lose
synchronization and become unpredictable with respect to the
design. Receive completeness is therefore important in a

protocol desiyn [West78al.
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Another design requirement, called transmit
completeness, requires that the design contain no
unspecified message transmission. A natural way of thinking
. about wunspecified +transmission 1is to consider a message
which can never be received due to the fact that the
corresponding message has never been conceived by the
sender. Transmit incompleteness can also cause adverse

behavior and should be avoided.

In general, receive incompleteness is more likely to be
overlooked by designers than transmit incompleteness during
the design phase. For a hardwired protocol like X.2! there
is no input queue between the entities of both sides of a
cﬁannel, andﬁ a message reception has to be processed
immediatelys otherwise, it is likely to be lost. To assure
the receive completeness for a receiving entity with no
input queue, the entity wusually has to remain idle when
waiting for a receive message to come, because it does not
"know" when the message will arrive., The time period of
idle waiting is a waste of resources for a processor entity.
In the case that a protocol has an input queue and input
interrupt handling, it can avoid waiting idly by queueing
input messages before processing them. . This 1is called

queued input completeness,
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(2) Infinite Idle Looping (Oscillation)

Looping is repeated execution of a cycle 6f states and
can cause by definition upboundness and infinite idle
looping. An unboundness error occurs when an entity
requests an unlimited or unbounded amount of storage or CPU
time. JIdle logping is repeated execution of a cycle of
states (actions) by one of the two communicating entities
and no giﬁgg;lgg RIogress can be made by the execution of
any actions in the cycle. Effective progress is made during
communication whenevéf a message is fetched or accepted by
one of the communicating entities. Infinite idle looping is
of course an error situation. An example of infinite idle

looping 1is the continuous retransmission of an outstanding

message over a failing channel.

For example, a correct data transfer protocol has to
correctly and completely . transfer all the messages.
Infinite idle looping is one of the common situations that a
complete transfer might suffer. When we verify a data
transfer protocol to be correct, we have to prove that the
protocol is free of infinite 1idle looping and it will
terminate properly. We will discuss techniques to identify
loopings in Chapters 4 and 5, and show that the potential
unpboundness can be handled by 1inauctive reasoning on the

loopings.
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(3) Deadlock

Deadlock is one of the most serious system malfunctions
possible, and one must take great care to avoid it or to
recover from it. The concept of deadlock is not as well
understood for computer networks as for computer systems.
Five types of deadlock can be classified in a communication

system.

(A) Resource deadlock -- This type of deadlock may
occur when a user’s processes request resources at distant
hostse. A resource (usually bufier space) deadlock in a
comnunication system 1is the situation in which two or more
competing demands are unknowingly waiting for unavailable

resources held by each other.

Flow control procedures coordinate the sending entity
at one end of a channel with the receiving entity at the
other end to prevent overrun of the input buffer space at
the receiving entity. It presents constraints on the flow
of data and if the situation ever arises whereby the
constraint cannot be met, then the flow will stop, resulting

in a buffer space deadlock.

For example, in ARPANET a direct store-—and-forward
deadlock happens when neighboring switches (IMPs) cannot

successfully transmit packets to each other because all the
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store—-and-forward bufters are filled and cannot be released,
An indirect store-and-forward deadlock occurs when all
store-and-forward buffers in a loop of IMPs become filled
with messages, all of which travel in the same direction and
none of which are within one hop of their destination.
Other types of resource deadlock will be discussed later in

this chapter.

(B) Synchronization deadlock -- This type of deadlock
occurs if the protocol is improperly designed or a component
failure occurs in the communication system. The sender and
receiver may lose their synchronization and thus no

effective progress can ever be made.

(C) Receive deadlock —— A receive deadlock occurs when
the sender or receiver is waiting idly for the other to send
a message while there is no such message coming through the
channel between them. The deadlock may be caused by an
incompatibility or a message lost problem. The
incompatibility proplem can be avoided if we have a
careftully validated designs A timeout and retransmission

mechanism can be used to recover from a messaye lost.
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(D) Static deadlock —= A static deadlock is a state
that cannot reach a proper terminate state as we will

formally define in Chapter 4.

(E) Dynamic deadlock == Infinite idle 1looping 1is an
extreme form of looping and is also a dynamic deadlock. A
timeout mechanism can usually eliminate the static deadlock
by timing out to a recovery state when it happens. However
we may still have the unpleasant dynamic deadlock situation
in which a cycle of actions is executed but no effective

progress can gyer be made.

We can see some combinations of the five types of
deadlock. A store-and-forward deadlock 1is a dynamic
resource deadlock. A constant collision 1in a hali-duplex
channel 1is a dynamic synchronization deadlock. For a
hardwired connection protocol like X.21, we may experience a

static synchronization deadlock.

« The classification is useful when we discuss protocol
validations wusing a formal model. To check the resource
(buffer) deadlock, we should include <channel and buffer
storage in the model. To check static deadlock, we only
need to identify a global state with no exit, but to check

dynamic deadlock, we must also check looping.
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2.6 Channel, Protocol and Correctness

Many communication and channel characteristics have a
profound impact on protocol architecture and correctness.
In this section we present a 1list of channel and
communication characteristics and discuss their respective
impact on protocol architecture and correctness. The study
is aimed at investigating the correctness problem checklist
.in a systematic way for protocols of various layers and
topologies. Appropriate protocol architectures should be
used in the protocol design to solve these problems.
Validation models should also be developed to verify that

these architectures do indeed solve these problem.

In tne following, we explain each channel
characteristic and then discuss 1ts respective impact on

protocol architecture and correctness.

(1) Pnysical Proximity

Computers and other digital systems, whenever they are
in <close physical proximity, usually operate on parallel
data, so data is transferred in parallel by a computer bus
with separate control, data and address lines. However, as
the distance between these devices increases, not only do
the multiple wires become more costly, but the conplexity of
the line drivers and receivers becomes greater owing to the
increased ditficulty of properly driving and receiving
signals on a long wire. In most data commnunication and
networks, serial transmission over a single set of lines is
therefore preterable to parallel transmission to reduce
communication cost.
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. argbitecture impact

For protocols ot remote coammunication, the bandwidth
becomes more limited, noise on the channel increases and the
transmission error and delay probability increases. We need
techniques to control the data exchange and correct the
errors. For a fair allocation of the limited bandwidth, we
often need pipelining to break a long message into short
ones. We also need data frapnsparency and formatting
techniques to tell where a data block begins and still be
able to send any data pattern. Data transparency is usually
done by byte stuffing and bit stuffing (like SDLC protocol)
where the sender adds special bytes or bits which the
receiver removes, thereby preserving the original pattern.
Clark [78] indicates that communication lines in a computer
network differ from a “big bus" in both defensiveness and
generality. We tend to feel a need for more fault-tolerant
and generally applicable links procedures and protocols to
control data communication links in a network environment.

correctness impact

Communication between two remote ent ities will
introduce transmission delay and propagation delay. Delay
can be defined as the time between transmission and delivery
of the first bit of the message. There are four components
of delay for remote communicationt (1) transmission delay,
which 1is proportional to the size of the message and
inversely proportional to the transmission bandwidth; 2)
. propagation delay, which 1is a function of the distance of
the transmission <circuit (satellite 1links have a large
propagation delay of about 25@ msec)3 (3) processing delay
incurred at any switching node or store-and-forward
facilitys and (4) queueing delay, which is a function of
system load. Delay can cause problems for many conventional
approaches., Certain types of applications may not become
economically feasible because this delay causes
unsatisfactory response time. Variable delay for different
messages in a packet switching network can also create
problems such as out of order, cross talk and replaye.
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(2) Asynchronous/Synchronous

There are two primary modes of data communication:
asynchronous and synchronous. In asynchronous mode the time
intervals between transmitted data units  (which are
characters) may be of unequal length. This mode is easily
generated by electromechanical equipment (e.g., Teletype
keyboard), Synchronous transmission, on the other hand,
. transmits data units (which can be characters or bits) at a
fixed rate with equal length of time intervals.

architecture Jimpact

Asynchronous transmission is controlled by start and
stop bits at the beginning and end of each character unit.
A start bit is used to indicate the beginning of a character
and the receive side will be able to correctly receive the
character when protocol rules are followed by both sides.
In the synchronous mode the entire block of data string can
be sent without start/stop bits and achieve higher
efficiency. However, a synchronizing signal must be
provided to transmit and to synchronously receive.

correctness impact

The asynchronous -mode is distortjon—-sensitive because
the receiver depends wupon the incoming signal to become
synchronized. Any distortion will affect the correctness
with which the character 1is assembled. This impact
restricts its speed because a reasonable amount of margin
must be build in to accommodate distortion. In synchronous
mode, characters or messages must be sent synchronously
which means buffering is required. Also, even a slight
timing error from the data bit string can cause the entire
me ssage to be faulty.

(3) Input. Queue (Buffering)

For the +type of protocols with input queues, an
interrupt handler can be used to handle the queueing of
input interrupts. This will alleviate the entity from
having to wait indefipitely for an input and then waste
resources. The handler will handle input processing when
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the entity is doing something else. The queued input also
relaxes the requirement of input completeness to a 1loosened
requirement of queued input completeness, and we only need
to make sure that an input is processed sometime before the
buffer overflows.

architeciure impact

Buffer space usually is limited and a flow control
procedure wusually 1is needed to prevent buffer overflow and
to match the sender’s rate with the receiver’s rate.
Several schemes for flow control will be discussed in later
sections.

correciness impact

(A) Incompatibility -— For buffered type protocol,
queued compatibility will need to be verified.

(B) Resource (Buffer) deadlock -- This synchronization
error has already been discussed in Section 2.5.

(4) Transmission Errors and Loss

Noise and distortion . are some undes irable
characteristics and disturbances in most 1long distance
cnannels. They can generate errors in transmission. On a
hardware 1line, unless the line is completely open, it is
likely that a transmitted message will arrive damaged but it
is not likely to be lost. In networks with multiple lines
and nodes in the transmission path, the message 1is more
likely to be lost. Except for voice and speech protocols, a
damaged message usually has to be discarded if it cannot be
corrected. In the <case of networking, if the addressing
field is damaged then the source (sender) can no longer be
identified and the message has to be treated as lost. e
will therefore discuss tnese two characteristics together.
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architecture impact

To pertorm error recovery . (error control) of
transmission errors, error detection mechanisms using.parity
and cyclic redundancy checksums are often used to identify
the error. In a data communication system data integrity is
essential. Refinements are usually added to g¢orrect the
detected . errors, either by operations on the received data
or by activating retransmission from the source. Better
detection/correction requires longer redundant codes,
increases overhead and reduces efficiency.

For lost message recovery, the desirable approach is to
allow for a timeout at the source to either (1) timeout and
retransmit . outstanding messages, such as Positive
Acknowledgment Retransmission Protocols (PAR) or (2) timeout
and send out enquiry such as Binary Synchronization
Communicat ion (BSC) protocols. Generally, a positive
acknowledgment is sent to acknowledye correctly recejved
me ssage(s).

.For the retransmitting type of protocol (PAR), the
destination has the possibility of receiving a duplicate
when a premature timeout or lost acknowledgment happens.
Therefore the source has to identify 1its transmitting
message (usually using a sequence number) for the
destination to be able to detect duplication. For the
enquiry type of protocol, the source never retransmits a
correctly received message and thus has no duplication
problem. However, a message delivery of the enquiry type
protocol requires more. turnaround overhead.

correctness Jimpact

The following are some protocol error conditions that
can result from error/loss characteristics.

(A) Undetected error -- Detecting a damaged message 1is
a well developed technique in coding theory. However, it is
not possible in reality to have a scheme detecting all of
the transmission errors, and occasional acceptance of a
faulty control/data message could be resulted. An  extreme
example which shows why an undetected error is difficult to
eliminate is thist In theory, given any elaborate error
detecting scheme, there always exists a set of bits in a
message and a method of changing these bits during
transmission to result in an undetected error. However rare
this coincidence wnight seem to be, it is still possible for
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it to happen in a real=world communication channel.

An undetected error could result in improper acceptance
0ot a damaged message and could cause protocol malfunctions.
One of the imost serious undetected errors, called ACK error,
occurs when a negative acknowledgment signal changes to a
positive acknowledgment signal due to damage and thus
results 1in unrecoverable loss of that message. In the case
of an undetected addressing error, a message could circulate
forever in a network or could be accepted by a wrong
destination,

From coding theory, we know that a. protocol designer
has various techniques available tc detect errors in
messages to any desired degree of reliability with some
redundancy and checking overhead. Some protocols (as in
ARPANET) even have layers of error detection to reduce the
possibility of an wundetected error. In general, it is
reasonable to assume perfect error detection (i.e. no
.undetected errors) when dealing with reliability.

(B) 1Idle Looping =-- Retransmitting an outstanding
message .for the loss recovery protocol could cause infinite
idle looping.

(C) Dynamic Deadlock -~ This protocol syntax error has
already been discussed in Section 2.5.

(D) Duplicate Interference -— In a transmission channel
wnere error and loss are presented, a duplicate detection
mechanism is necessary at the receiving site.

(E) Error Delay -- Besides transmission and propagation
delays,. transmission errors and loss can also introduce
error delay when a transmitted message is damaged or lost.

(5) Half-Duplex

A nalf-duplex link is a physical 1link connecting two
communication entities and allowing data to be transmitted
by either entity. However, data may not be transmitted by
both nodes at the same time.
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argpitecture impact

Line control schemes are needed to determine which
entity 1is going to transmit and which entity is going to
receive in the half-duplex line,

correctness impact

A collision inter ference cculd happen on a half duplex
cnannel when two or more entities try to transmit at the
same time.

(6) Full-Duplex

A full duplex 1link is a link connecting two
comnunication entities and allowing both entities to
transmit data simultaneously.

architecfure igpackt

To maximize the effective use of bandwidth and to take
advantage of a full-duplex link, control information such as
.acknowledgments is usually piggybacked in data messages by
the acknowledging entity. To avoid piggyback interierence,
an echo mechanism can be used to always retransmit
acknowledgments representing the current status of correctly
recelived messages.

correctness impact

(A) Piggyback interference -- Receive unawareness and
loss unawareness can happen when piggyback acknowledgment is
used in a full-duplex line. Receive unawareness can result
in a tempo—-blocking problem. Tempo-blocking is somewhat
similar to the <collision problem which happened in a
half-duplex line, It is a speed dependent lockup during
wnich no effective progress can be made by ejither of the
communicating entities but might disappear after a suitable
change of relative speed ratio of both entities.
Tempo-blocking is different 1rom idle looping and is
actually a global idle looping (i.e., looping occurring at
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both communicating entities), when the wuseful 1flow of
information in both directions of the channel stops because
of two-sided receive unawarenesses.

(B) Collision interference —- This interference problem
has already been discussed in Section 2.4.

(C) Race condition — When the send module and receive
module of an entity can access channel and buffer
concurrently in a full-duplex line, we should avoid race
conditions between the two modules.

(7) Multiple (outstanding) sends

Single outstanding sending requires a sender to wait
for the acknowledgment of the previous outstanding sending
before it can send the next message. The turnaround time
between sending a messaye and receiving its acknowledgment
is wasted as far as the channel bandwidth is concerned.
This waste could be substantial in the case of satellite
links with very large propagation delays. To increase
channel utilization and transmission efficiency, some of the
powerful protocols (like SDLC, TCP and NCP) have a feature
to allow several sending messages to be outstanding.

architecture impact

To keep the multiple sending messages in order at the
receiving entity, a message ID will not be enough for
sequence control. We need to assign a sequence number
(usually 1in an ascending order) for each message to detect
missing and duplicate messages and to maintain state
information at the sender and receiver. This will allow a
sender to identify the messages which need to be
retransmitted and a receiver to detect duplicate and
out-of—order messages.

Different acknowledgment schemes can be introduced to
handle multiple outstanding sends. For protocols with
“expect receive number" schemes such as SDLC, we can have a
multiple acknowledgment (sequential) scheme which can
acknowledge more than one outstandinyg message at a time.
The acknowledgment can be piggybacked if necessary. For
protocols witn "“reassembly bufier" schemes such as the
interface message processor of ARPANET, we can have queued
acknowledgment and acknowledge any acceptable packet wupon
reception without restricting packets to arrive in order.
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To send a high priority message, we need to have the
capability to interrupt the sequence control mechanism to
. process the priority message before those regular messages
which have arrived earlier.

correctness impact

(A). Disorder interference —— [f control mechanisms
are not well defined in the protocol, the messages could be
received out of order or be duplicated and cause
interference.

(B) Sequence number overflow =-- It is essential to
remember that the actual sequence number space is finite and
is limited by the number of bits assigned for the sequence
number field in a message. Sequence number overflow can be
handled by recycling the number using the MOD function.

(C) Gaps degradation (Kleinrock78] -- A degradation |is
~defined to pe a reduction 1in the network’s level of
performance., For multiple outstanding sends, we usually put
a limit (n) on the number of messages that are allowed to be
outstanding at a time. If n messages are 1in flight, then
the next one may not proceed until an acknowledgment is
returned to the source for some of the n outstanding
messages. Caps degradation comes when the round trip delay
is greater than the time an entity takes to feed the n
messages into the network. This will result in the source
being blocked awaiting ACK’s to release further messages.
Tnis will clearly introduce unnecessary gaps in the message
flow resulting in reduced throughput and should be avoided
wnen we design the multiple outstanding send protocol.

(D) Multiple reply interference =-- This interference
problem has already been discussed in Section 2.4.

(3) Multiple sSwitches

A switch entity is an entity whose primary function is
switching data in a network. For computer networks with
multiple switches for end-to-end communicat ion, three
switching technologies can be used = circuit switching,
message switching, and packet switching. Comparisons of the
switching techniques are well covered in the literature and
will not be repeated here.



Channel, Protocol and Correctness 57

architecture impact

To allow switches in a computer network to route or
fetch an incoming message, a destination ID is needed in the
multiple switch end-to-end communications. This ID is
. defined to be the addressable entity and is the end point(s)
of logical connection(s). To acknowledge a message, we also
should consider end-to-end or logical layer acknowledgment.
We therefore introduce a protocol hierarchy consisting of
two protocols which are a switch-to-switch protocol for the
basic transmission function (destination [ID checking and
routing) and an end-to—-end protocol to deal with overall
transmission integrity.

In a packet switching network, store—-and-forward
deadlock can occur if proper precautions are not taken
{Kleinrock76l. A deadlock prevention protocol therefore
must be considered. For example, a. "buffer class" scheme as
in [Raubold76] to partition the buffers in a switch into
classes can prevent the deadlock.

correciness limpact

(A) Processing delay — In a computer network with many
switches, the messages experience combinations of
transmission, propagation, processing and queueing delays at
each switch along a communication path. The increased
delays need to be properly handled when dealing with
protocol correctness.

(B) Switch addressing error =-- [If a switch in the
network does not detect addressiny damage of a message, it
could either incorrectly accept the message which 1is not
destined for it (acceptance error), or it could incorrectly
reject the message which 1s destined for it (rejection
error)..  An acceptance error could damage the integrity of
data transfer or control synchronization. A rejection error
could result in the message circulating around in the
network and cause degradation.

(C) Store-and-forward deadlock —— This protocol syntax
error has already been discussed in Section 2.5.
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(9) Multiple Paths

In a multiple switched network, we sometimes have
multiple patns between end communication entities. This is
usua lly true for a general distributed topology and is
especially true for the internetwork system. The multiple
paths may provide the opportunity to make the link
fault—-tolerant, However, it may also introduce some complex
problems such as routing and variable delays to the protocol
design.,

architecture impact

If multiple paths exist in a network, the switch then
has to choose a proper route (path) for 1its outgoing
message. . This is the so called the routing problem and a
routing table/algorithm is required to calculate a suitable
route for a complex network.

Alternate paths between two entities also introduce
variable delays when different paths are taken by the
packets. Duplicate messages 1irom a previously closed
connection could arrive and be accepted by the current
connection when the delays vary in a large range. This 1is
the M“cross 1line" problem as we discussed in Section 2.4.
Cross line detection schemes [Fletcher78)] such as sequence
number selection, and three—way handshake of open or close
are needed to solve the cross line problem.

correciness impackt

(A) Path-fault tolerant -- An important opportunity for
increasing the reliability of a network of computers results
from the multiple paths between entities. When a switch or
line tailure does occur 1in a single path type of network
(such as a single loop network or a point to point
connection), it means a termination of communication for
those entities which need to use the node or line,
Alternate paths, on the other hand, can be more fault
tolerant by allowing another path for message delivery.

(B) Variable delay =—— This can be introduced when
multiple paths exist.
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(C) Disorder interference --— Variable delay c¢an cause
problems such as out of sequence, cross line and replay.

(D) Looping degradation -— Looping degradation occurs
due to independent routing decisions made by separate
switches whicn cause traffic to return to a previously
visited switch or cause traffic to make unnecessarily long
excursions on the way to its destination., The occurrence of
loops causes occasional large delays in message delivery.
Some loop—free routing algorithms have been published
[Nayer75, Segall78l.

(E) Direct store-—and-forward deadlock -- This protocol
syntax error has already been discussed in Section 2.b,

(19) Advance Receive

In some sequential acknowledgment protocols like SDLC,
tne message segments have to arrive in sequences otherwise
they will be discarded. For a packet switching network when
variable delays have a relatively large range of values,
tnis will result in an unacceptably large amount of
retransmission, The advance receive feature in a protocol
will solve this problem by accepting disordered segments and
reassembling them in order.

architecture impact

For advance receive of segments, a window mechanism wur
allocation mechanism can pe used for flow control. A window
mechanism has been used in the design of TCP of ARPANET.
Within each message, called segment, an indication of the
amount of data that the sender ot this segment is willing to
receive 1is presented. The segment does not have to arrive
in sequence to be accepted. [t will be acceptable as long
as it 1is within the acceptable window (a range of buffer
space). An allocation mechanism on tne other hand allocates
storage and changes the storage via special allocation
control messayes. Both schemes require features in the
protocol to do the segmentation/reassembly and to maintain
an exXpected receive list at the receiver and a
retransmission list at the sender.
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correctness impact

The advance receive scheme can cause more complex
correctness problems of dynamic resource deadlock such as
reassembly lockup, piggyback lockup and christmas lockup
[Kleinrock781. All these lockups have been experienced as
bugs in previous ARPANET designs. This scheme can also
cause severe per tormance degradation. Single packet
. turbulence and phasing are two phenomena that were
experienced in previous ARPANET designs. We should make an
effort to prevent them when we design this type of protocol.

(11) Internetworking

The 1iInternetwork environment consists of hosts
connected to networks which are in turn interconnected via

gateways.

architecture impact

Besides gateways, a internet protocol needs to have
internet header [TCP79] to fragment and reassemble internet
packets for the transmission between "“large packet" and

“small packet® networks. This type of protocol also need
addressing schemes to transmit the internet packets toward

thelr destinationse.

correctiness lmpact

Besides the problem of message incompatibility between
internet packets, internetwork comnunication has a longer
delay than single network communication and the delay is
usually significant enough to make c¢ross line detection
schemes a necessity.

The result of these communication characteristics and
thelr corresponding impact on protocol architectures and

correctness problems is summarized in Table 1.



Table 1 Channel characteristics and their impact on protocol
architecture and correctness,

CHANNEL/COMMUNICATION
CHARACTERISTICS Architecture impact
1. long distance defensiveness, generality,

channel

asynchronous
synchronous

input queues
(buffering)

error(damage)
loss

HDX

FDX

pipelining, formatting,
data transparency.

start/stop signal (code).
timing signal,

interrupt handler,
flow/congestion control,

Parity/CRC error detection
(ACK,Timeout, Retransmit,
duplicate detection, ID);
(ACK/NACK, Timeout, enquire
for single outstanding).

line control schemes,

piggybacked ACK,
Echo mechanism,

Correctness impact

incompatibility, channel
capacity limitation,
transmission/propagation delay.

distortion sensitive,
timing error.

incompatibility, resource
deadlock.

Undetected error, idle looping,
(no termination), ACK error;
dynamic deadlock,

duplicate interference,

error delay.

collision interference,

receive unawareness,

loss unawareness,

collision interference,

race condition (channel/buffer)

19



Table 1 (continue) Channel characteristics and their impact on protocol
architecture and correctness,

CHANNEL/COMMUNICATION
CHARACTERISTICS Architecture impact
7. multiple seq control, interrupt,
outstanding multiple ACK,echo mechanism
sends

8. multiple switches
(store/forward)

9. multiple paths

10, advance receive

11. Internetworking

duplicate/missing detection
retransmission list,

dest ID checking,
end- to-end ACK, addressing,
buffer class allocation.

Routing table, switching,
cross line detection
scheme (connection SN
selection scheme, 3-way
handshake open/close).

window/allocation mechanism

segmentation/reassembly,
expected receive list.

fragmentation, gateway.

Correctness impact

disorder interference,
sequence no. overflow,

gaps degradation,

multiple reply interference.

acceptance error, rejection
error, processing
delay, S/F deadlocks.

variable delay, can be
link-fault tolerant,
delay interference,
loopings degradation,
direct S/F deadlock.

boundness, piggyback lockup,
reassembly lockup, christmas
lockup, phasing degradation,
single packet turbulance.

incompatibility,
delay interference,

¢9
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2.7 Validation Checklist

Protocol correctness problems are the major source of
protocol syntax errors. As we can see in the discussion of
the previous section, different protocols have different
correctness problems. Only a subset of correctness problems
actually exist in a given protocoi topology and layer. Even
an expert may make validation mistakes if he does not have a
clear understanding of potential correctness problems in his

protocol design.

A deficiency of existing validation techniques 1is the
lack of a. systematic scheme for examining protocol
correctness problems. We introduce the use of a validation
cnecklist, wnich contains a set of existing correctness
problems (hoperully is the “minimum" and "sufficient" set)
for a given topology and layer, during our validation and
construction process. The checklist can prevent the
. designer from wasting effort in examining non-existent
problems and can lead us to a systematic study of protocol

correctness problems.

The protocol validation checklist can be easily
obtained in the following way. We first establish a list of
channel and communication characteristics for the topology
and layer we are working one.

Table 2 shows some protocol layers/topologies and their

possible channel characteristicse.



Table 2 Designer's checklist of protocol characteristics

CHANNEL /COMMUNICATION
CHARACTERISTICS

input queues
error, loss

HDX

FDX

multiple switches
meltiple sends
multiple paths
advance receive
concurrent update

Y: Yes,

topology and LAYERS

point to point
X.21 BSC HDLC IMP LIU

star 1loop

=

Zz=Z=2a221

N:No,

ZzzzE k<

o

Zzadz <

Y Y Y Y
Y Y Y Y
- N - -
- N Y Y
- Y Y N
- N Y N
N N Y N
- N Y N
N N N N

: Depend on the design choice

arpanet
IMP NCP PROCESS

Zr iz

Ko

internet
TCP

|

Bzl e
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From these characteristics and the result in Table 1| we
can obtain the validation problem checklist. In Chapter 5
we will show how this checklist can help us construct a
validation model to reveal protocol syntax errors in a

systemat ic way.



CHAPTER 3

FUORMAL APPROACHES TO PROTOCOL DESIGN

3.1 Introduction

Because protocols for communicating entities require
complex global software developmemt, it 1is generally
difficult to verify the correctness of a protocol directly
. from 1its 1informal description. Formal models are usually
required to allow some of the significant <fealures of the
operation of the protocol to be formally specified and then
verifiede A formal model will also be wuseful in protocol

implementation and documentation.

In this chapter we review formal approaches and
introduce a formal model, called the transmission grammar
(TG), using a context~free grammar (CFG) for the design and

specification of communication protocols., It is similar to

66
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the Backus-Naur form that has been used to define the syntax

of an algorithmic language like ALGOL0® [Nauré63l.

To set up the background of a formal approach to
protocol design, we first introduce design problems of
communication protocols. We then summarize and compare soine
otner formal approaches to specification and verification of
comnunication protocols. The transmission grammar (TG) |is
used to define the protocol for the communication entities
of a computer network. qu the layered protocol design, the
comnunication entity of each layer is decomposed into more
detailed inner-layered components and/or validation
.independent partse. The 1local approach is first used to
define the TG for each of the decomposed components and
logical parts. The shuffle and substitution operations are
then applied to integrate the TGs of the logical parts and
the TGs of the components, respectively. Examples are given
to illustrate the grammatical properties of protocols and

some specification techniques of TGs.

3.2 Communication Entity

A communication entity in a network system is a
protocol module ttat can communicate with other entities in
a distributed fashion. It could be a 1logical (software)

entity or a physical (hardware) entity. The network system
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is usually logically structured into layers in a layered
approach. The principle of 1layering can be found in the
Reference Model of Open System Architecture by ISO []S078].
Each layer provides communication entities in the next
higher layer with sets of services. Entities within a layer
can communicate directly only by using services of the next

lower layer.

Each entity in a layer may have its own inner-layered
components and/or several validation .1independent parts
(VIPs) to simplify its design. (For example, an IMP entity
may have sender and receiver parts.) The decomposition and
integration techniques of communication entities -will be

discussed in Chapter 4.

For the TG model, we use a logcal approach in the
following senses instead of having a single set of rules
governing the interactions between several communicating
entities, we define a set of grammar rules within gagch
comnunication entity to regulate the interactions between
them. Each entity, therefore, corresponds to a transmission
grammar (TG) which defines 1its protocol program. The
entity’s TG may be further decomposed into more detailed

inner-layered component TGs or VIP TGs.
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The entities of each layer are designed to be as
.independent as possible so that they can be changed without
requiring extensive changes at other layers. This requires
that the protocol designer must have a clear understanding
of structured design. This structured design of
comnunication protocols will also 3()) reduce the complexity
of verification by way of structured verification (That is,
prove the properties of one layer by utilizing the known
(proved) properties of its lower layers)s (2) reduce the
software implementation complexity and costi and (3)
increase the reliability of the system by redundant error

checking and recovery at different layers.

3.3 Formalism of Protocols

For a network to provide the reliable and flexible
service required by its users, it must be based on a sound,
extendable and well-defined design. A well-defined protocol
design should provide a precise and unambiguous description
of protocol rules to enable its verification, implementation

and tuture extension,
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Motivation of Formalism

Although the protocol .serves an essential role in
communication, protocol design for computer networks remains
a relatively difficult task and an "arcane art". Our
present apbility to handle protocols is just like the ability
we had with programming languages in the 1958/s, when no
convenient formalism (like the Backus—Naur form used now)
was avallable to describe syntactic constructs of 1languages
(Fraser76}. Without such a means of expression, it was very
difficult to make proofs about the languages we invented or
to have a systematic way of implementing a compiler for the
language. nithout such a means of expression, it was
impossible to lead us to the concept of a compiler coimpiler,
a compiler generator or a general grammar .parser (like the

LR(K) grammar parsers).

The breaktihrough came in around 1956 when Noam Chomsky
gave a mathmatical model of a grammar in connection with his
.study of natural languages. In 1958, +the grammar concept
was tound to pe of great importance with the official syntax

description of ALGOL6W using the Backus~Naur Form (BNF).

For the design of a communication protocol, we would
also 1like to have a clear, concise and precise model to
describe various protocol features and to achieve the

folloﬁihg goals.
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Coals of Eormalism

A formal model cannot be used blihdly without
considering the nature of protocols in a complex computer
network. For a network as complex such as ARPANET, the
protocol may involve considerations such as connection
setup, sequence numbering, buffer allocation, flow control,
error recovery and message format conversion. The protocol
design 1is orten so complicated that the hierarchical
approach (layered approach) becomes a hécessity. In order
to provide‘ a tool for the structured design of the
communication protocol, any formal specification first has
to provide a convenient way to represent and inter-relate

various layers of protocols in the hierarchical structure.

Secondly, it should.permit a rich (complex) protocol to
be described with notations that are tractable, anc should
also provide a relatively straightforward analysis for
correctness. The correctness proof for a complicated
protocol might be intractably difficult, but the formal
model should enable the designer to validate some
“important" properties of the protocol (such as deadlock
freeness, proper termination etc.). Thirdly, it should
provide a systematic way of implementing protocols and
should ease the debugging, modification and ifuture extension

of protocols.
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The last, .and perhaps most important, goal for the
formal model 1is to provide clear and concise documentation
of the protocol for both the network users and the protocol
designers. Considering the amount of effort that has gone
into protocol design, there has been relatively 1little
documentation published, Good modeling documentation can
provide a concise and precise way of conveying the
designer’/s 1ideas and the features of protocols to other

people.

3.4 Choice of Models

During the past several years, formal models such as
UCLA graphs {Postel74], finite state automata (FSA)
(Bochmann77b, 78, Danthine78, Gouda76a, 76b, Sundstrom77,
SNA78], type—-3 grammars [Harangozo77,78], Petri nets
{(Merlin76,791 and high level programming languages
[Bochmann75, Hajek78, Stenning76] have been used for the
specification of communication protocols. However, a
general and strong theoretical basis for protocol design in
the context of software -engineering has not yet been

established.
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3.4.1 Types of Models

There are .three basic types of models that can be used
.for +the description of protocolss the local approach, the

global approach and the combined approach.

In the local approach, each communication entity Iis
described by one automaton. or one . programe. In this
approach, we do not worry about global synchronization and
interactions between communicating entities. Since the
local verification does not take the global interactions of
the communicating entities into consideration (as we can see
from the detailed discussion of the local and global
validations in Chapter 4 and 5), it is unable to check
timing problems during communication. However, the model is
.easier to construct and directly related to implementation,
since it describes the action of the entity under

cons iderat ion,

The global approach uses only one automaton to describe
the global 1interactions of two communicating entities and
their channel. It is designed to show the precise global
interactions between the entities and 1s thus more
complicated tian the 1local approach. We can check the
interactions for possible existence of deadlock, infinite
idle looping, improper termination and other error

conditions. Howzver, global modeling is harder to construct
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and is'less related to the actual implementation than local

modeling.

The model of the combined approach uses both the local
and global approaches. The local approach is first used to
describe each communication entity and the channel between
them. Global validation techniques are then applied to
combine the individual automaton of two communicating
entities and the channel to form a global automaton. The
composite automaton of both entities .and the c hannel
together 1is an automaton whose transitions can be analyzed

to check for global error conditions.

3.4.2 Features of Different Models

The formal tecnhniques may be classified as either state

transition techniques or programming language techniques.

State transition techniques are natural to model the
action sequences during communication and allow for more
straight forward reachability analysis to explore protocol
syntax errors. Programmning language techniques make it
easier to model variables and allow for more straightforward

implementation of the models.



Choice of Models 75

State transition techniques show promising results when
applied to protocol veritfication. Many errors in published
protocols have been uncovered by this analysis. The
difficulties are state explosion for complex protocols and a
more restrictive view of veritication (i.e., they only
perform reachability analysis). Programming language
techniques provide the ability to deal with the full range
of correctness problems. The difficulty is that program
proving is very hard to applye. General program proof
techniques do not 1include the consideration of message

transport problems, concurrency and synchronization.

Hybrid techniques have been attempted to combine the
advantages of both techniques {Bochmann77a, T70,
Danthine78}. Merlin [(79] and Sunshinel79] have outlined the
formal techniques and results to dates Sunshine has also

provided a wider survey of various models in [Sunshine78al.

As we mentioned in Chapter 1, the TG model wuse the
local validation technique to reveal program structure
errors by analyzing the TG grammar rules, and use the global
validation techniques to reveal protocol syntax errors by

state transition techniques.
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3.4.3 Features of Transmission Grammar Model

This dissertation uses the combined approach to
protocol modeling and uses state transitién techniques for
protocol validation. The transmission grammar model may be
used for botn local implementation and global validation of
protocols. The simple grammar structure allows state

transition techniques to be used for reachability analysis.

Since there is no graphical high-level language for the
graphical models (FSA, Petri nets, and UCLA graphs), the
linear property of the transmission grammar model is crucial
to facilitate the software auto-implementation directly from
a validation TG. From formal language theory, we understand
that a type-3 grammar (FSA +type) is a special case of a
type-2 grammar (CFG). The reason for choosing a
context-free grammar (BNF-type) in the TG model to describe
action sequences is that it 1is much more concise and
powerful than a type-3 grémmar model, The property of
conciseness Will result in a tremendous reduction of
dimensionality as compared to the FSA-type model. The power
of the CFG model will enable the Reader-#riter type problens
[Chen75] (which are hard to describe by a type-3 gramnar
model or the Petri net model) to be easily represented by

applying the recursive (push~down store) method. We can
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integrate different layers of protocols together by mapping
the terminals of a higher-level TG to non-terminals of its
lower—level TG (by the substitution operation). This
integration would give the designer the flexibility of using
different degrees of complexity in his design. For several
concurrently aoperated TGs in an entity, the arbitrary
shuffle operation can not only be used to ease the TG
construction complexity, but also get an exact and adequate
description of all the possible, valid action sequences. If
we write the model in a validation form, the TG becomes the
validation automaton. The validation automaton can automate
the gloonal validation process and will be covered in Chapter

5.

3.5 The Transmission Grammar Model

This dissertation presents a complete protocol
construction technique based on a grammar model, We use the
combined approach which allows for complex reachability
analysise. In this section, we motivate the need for the
transmission grammar model and present several protocol

specification examples.



The Transmission Grammar Model _ 78

3.5.1 Motivation

Toward a Syntactic Description of Protopcols

In this section, we will illustrate the correspondence
between programming languages and . protocols. From each
comnunication entity’s point of view, the protocol simply
consists of a set of rules that can be used to define the
action sequences during the phase of communication. We will
investigate how to represent the actions of each
communication entity when we outline the generalized TG
model. Some examples of actions in an action sequence ares
(1) put an ASCII character {or packet, message, file, etc.,
depending on the layers of protocol.description) into an
output buffers (2) get an EBCDIC character from an input
buffers (3) set the times (4) time outs (5) erase the
buffery or (6) send the contents of an output buffer to a

lower layer.

There . are surprisingly many similarities between
programming language compilers [Gries71] and communication
protocol software (see Table 3). Here, the communication
system 1s rather like computer hardware. On top of the
computer hardware, we can design the machine language,

internal forms and high level languages. In a similar way,
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we design hardwired layer protocols  from the primitive
actions of communication equipment. On top of the
communication system, we can design other layers of
protocols which are more convenient and already have
safeguards against various kinds of failure by their lower

layer protocols.

Table 3 Comparisons between programming language compilers
and communication network protocols

PROGRAMMING LANGUAGE  COMMUNICATION NETWORK

COMPILERS PROTOCOLS
BMNF i Transmission Grammar
defines languages i defines protocols
each syntactically :Aeach valid and recoverable comm-
correct program v unication activity sequence

¢+ the end of a transmission
i sequence (as defined by the
[}

¢ transmission grammar)

the end of a program

each token (word) i each action (send,receive,
input to tne + timeout etc.,) that occurred
compiler i during communication

program syntax error: unrecoverable error for
i message transfer

programns in the form: action sequences in the form

ofs of?
1) high level 1) higher layer TG
languages terminals

2) internal forms
3) machine language

2) lower layer TG terminals
3) hardwired layer TG
terminals

- — T e D e s G P A TRO W T G B G WO D D T S A S S A S S S S T S P S2) A S A S R A S S S e T S

- we e oo - o=
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If we take all these defined actions as terminals (or
words in a sentence of a language), then each protocol
simply.defines a languége which has all the valid action
sequences as its sentences. Just as the Backus—Naur Form (a
context-free grammar) is used to describe the syntax of a
programming language, a transmission grammar can be used to
describe the communication protocol between communicating
entities. Each communication entity is regulated by a set
of local protocol rules and the rules are represented by a

transmission grammar.

nWe can then see a protocol as a set of grammar rules,
each of which enables a communication entity to produce or
generate communication action sequences (sentences defined
by the gramnar) to communicate with other entities. A
comnunication entity may know how to do the communication
actions well but still may not be able to communicate with
other entities. It must also know how to assemble actions
(words) into valid action sequences (sentences) by the
protocol gramnar rules in order to communicate. The rules
also enable the communication eﬁtity to understand the
receiving action segquences of other entities regulated by
compatible protocols. We say the protocols .for a set of

comnunication entities are correct if they follow the
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designer’s original specification and if they will result in
a proper dialogue among the communicating entities. One
purpose of grammatical description of this set of rules is
to present in a precise and explicit way those facets of the

protocol that each communicating entity must follow.

Let us now take into consideration the hierarchical
property of protocols and regard the TG for each entity in a
layer as a black box. (We will investigate how to
interrelate (integrate) the TGs of the different layers in
Chapter 4.) If a particular action sequence S can achieve a
correct communication activity 1in one layer, then the
syntactic description of protocol L for that layer must be
sucn that it can generate S as a sentence. Similarily, if S
is not considered as a proper action sequence for
communication, then the description must fail to generate S
and must also inform the higher layer protocol entity as to
the. reason for the failure. To summarize these
requirements, it is convenient to think of the syntactic
description of L as a black box that can receive any action
sequence S as input and output its wvalidity, as shown 1in

Flgo 19.
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S grammat ical

:— s v e e e e

i S is a syntactically
valid action sequence

S | syntactic
-—>| description
i of protocol L

Trans. Granmmar

ve e me scas o) ov =e o

report ungrammaticality to
higher layer, or go to
error handling routines

!
|
|
!
H
|
|
v

S ungrammatical

Fig. 19 Transmission Grammar as a black box

One thing worth noting is that just as the same meaning
can be conveyed by a number of different sentences when we
speak English, or the same algorithm can be coded in a
number of different ways When we write a program, correct
communication can be achieved by a number of different
communication . action sequences when two entities
communicate. This is because we can go through various
channels and various error recovery procedures at various
layers for the same communication purpose. We say a
gramﬁatical description of a particular protocol is adequate
if the language it defines includes all the sentences of

action sequences that achieve correct communication.



The Transmission Grammar Model 83

IG Medel Description Notations and Copyentiopns

The context—free grammar (BNF type) is chosen as the TG
modeling tool to describe an entity’s action sequenceé. The
modeling of grammars, FSA and push~down automata in this
dissertation will mostly follow the notational conventions

in [Hopcrofté69l.

A transmission grammar G is denoted by G = ( Vn,Vt,P,<S> ),
where

(a) Vvn is a set of non—-terminal action symbols always
enclosed by < >3}

(b) Vt is a set of terminal action symbols}

(c) Every element in P, the set of production rules, is of
the form <A> 3= x, where <A> e Vn and x € (Vn U Vt)x*,
and it represents a syntactical rule for G§ and

(d) <S> (e Vn) is the starting symbol.

In the grammar which specifies the syntax, the
following notational conventions are used. Nonterminals
(names of syntactic <classes) are written 1in lowercase
letters and enclosed by the brackets *< >%, The brackets "I[
1% are used to enclose a sequence of one or more items, all
of which must occur exactly once. The brackets "( )" are
used to enclose a sequence of one or more optional items,
that 1is, they all occur exactly once or not at all. The

brackets “7/7t agre often used to enclose a terminal action

written in uppercase letters. The symbol "*" jis used to
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indicate that the preceding item or bracketed sequence of
items may be repeated an indefinite number of times in

succession.

The production rules can also be written in the forms:

1]

nonterminal 3$3= alternate~! | alternate~2 | .ee. |

alternate-n {(n>@)

An alternate may be any sequence of terminals,
nonterminals and bracketed sets of alternates. A
context-free grammar can represent all the distinct but
equally valid action sequences by the property that every
left part non-terminal of a production rule can have several
alternative right part strings. For each production rule of
the action grammar, we may arrange 1its alternates in the
desired order of processing. This arrangement enables us to

represent action processing in order of its priority.

3.5.2 Grammatical Properties of Protocol

For the TG model, we use the local approach in the
following senses instead of having a single set of rules
(like Petri net models) governing the interactions between

several communicating ent ities, we define a set of TG rules
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within gach entity to regulate the interactions between
these entities., Each entity, therefore, corresponds to a
transmission grammar which defines 1its protocol program.
The entity’s TG may be decomposed into inner-layered
component TGs or VIP TGs to simplify the design. We can use
the transmission grammar to define each of the components
and VIPs of the communication entity in a layer in a
hierarchical way, and then Jjntegrate the TIGs of the

components and VIPs for the entity.

Fig. 11 shows typical communication entities in an
ARPANET host system [Feinler78l. Each entity in the black
box corresponds to a TG and interacts with neighboring

entities through its external channels.
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USER1 USER2 USER3 USER4 USER

o I I H LEVEL
T-—.—:——-:~:------——~—:-:--:—:-------
| memms meme e ————— ]
¢ 1 Pl P2V ... i P31 ¢ P4 ... PROCESS
| mm——— e ———— ————— ————— + LEVEL
A NN /7 / ANEAN /7 7/ i
b e ————— ;
i1 NCP1 i NCP2 ¢+ ... 1 HOST
| e ———————— + LEVEL
: \ A\ /7 7/ :
: ———— e :
' : IMP : ¢ IMP
: —————————— + LEVEL
' a4 AN i
' e e '
: ' MODEM 1V { | MODEM 2 ¢V ... | HARDWIRED
' e —————————— i LEVEL
e f o f e e e \ =\ e e e

/7 / \ A\

10 WEIGHBORING HOST TO NEIGHBORING HOST

Fig. 11 Decomposed entities of a host

system in ARPANET

nith the local approach, it 1is easier to specify
protocol TG(s) for each communication entity, but the local
protocol specifications for all the entities 1in a network
system 1is not complete without considering the entity“’s
interact ions w#ith other entities in the system through the

global approach.

1C Design Metnodeologies Qverview

In the 1ollowing example [Teng78al, we 1illustrate the

grammatical properties of protocols by the step-wise design
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of some typical TGs of the communication processor level in
a packet switching network. I1/0 interrupt handling,
priority of action, buffer requests/allocations, rgfinement
(internal detail) of each action, and message format
structure are excluded from consideration for the purpose of
simplicity (although these considerations can be easily

added to the TG model).

In general each entity at the communication processor
level (for example the interface message processor (IMP) in
the ARPANET [(Heart721) mainly consists c¢f two validation
independent parts (VIPs), 1i.e. sender rules and receiver
rules, which are processed concurrently. HWe first define a
set otf actions in both parts, and.then design the TG for the
sender and receiver VIPs. The TG integration techniques are

discussed later in Chapter 4.

Actions of the protocol TG

Hessages and Builferss

ACK: acknowledyment packet
Uis packet unit i

Pbs Packet buffer

ACKb® ACK buffer

rbs Reassembly buffer

Sengers

Gs: "Generate Ui and put in Pb"

Sni "Send Ui Never sent before®

Ass "find ACK for an outstanding Ui
in ACKb"®

st "Free Pb, ACKb space for Ui®
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Beceivers

R1s "Receive Ui in Pb destined here"

Cr: "Consume Ui in Pb and put it in RbY

Fus "Free Pb space unit for Uiw

Ar: "transmit ACK out to lower level
channel®

Snt “Send all Ui’s in Rb to host"®

Fr: "Free Receive buffer Rb"

Sender TG designs

g
e

Let’s first consider the following language L, where

L={w! we (Gs,5n;As,Fs}> and (# of Gs’s in w = # of
Sn’s in W = # of As’s in w = # of Fs’s in w) and (for all
X,y such that w=xy then # of Gs’s in x 2 # of Sn’s in x 2
# of As’s in x 2 # of Fs’s in x) )} '

We can see that L consists of gll the sentences that
result 1in correct sending activities and each correct
sending action sequence has to be a sentence defined by L.
In order to investigate the linguistic nature of protocol
transmission grammar, we construct several different types
of grammars, generating sentences that belong to L.

Iy

Case 1t ginyle outstanding send

Single outstanding send requires each sender to wait
until the previous send is completed. This is the simplest
type of protocol and we can define a FSA or a type-3

grammar Gl for it. We write Gl in BNF format ass
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Gl = ( {<5>»),{Gs,Sn,As,Fs),P,<S> ), where P consists ofs

<5> 3= GsSnAsFs<S> | €

Obviously, L(Gl1) is a proper subset of L, so TG GI
defines a set of correct send action sequences as its

sentences.

Case 2% wmultiple oulstanding sends

The TG G1 defined in case 1 is not efficient because
packets cannot be sent out until the previous send is
acknowledged. Some power ful protocols have a feature which
allows several sending packets to be outétanding. This
type of protocol cannot be defined by a type-3 grammar but

by a type-2 grammar (context—free grammar, or CFG) G2

G2 = ( (<5>},{(Gs,Sn,As,Fs},P,<5> ), where P consists ofs

<5> 31= GsSn<S>AsFs<S> | €

By induction on the length of any sentence w in L(G2), we
can prove thatt (the # of Gs“’s (or Sn’s) in w = the # of
As’s (or Fs’s) in w) and (¥ x,y such that w=xy the # of
Gs’s (or 6Sn’s) in x 2 # of As’s (or Fs’s) 1in x).
Therefore, L(G2) defines a set of correct sending

seguences, Notice that L(Gl) is a proper subset of L (G2)

while L(G2) is a proper subset of L.
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Case 3¢ IGC for L

Gl and G2 only define two proper subsets of L. In
order to define a TG for L to represent fhe most
generalized (fully multiplexing) protocol,we need to use a

type-1 grammar (context-sensitive grammar, or CSG) G33

G5 = ( (<S5>,<Gs>,<5n>,<As>,<Fs>)},{Gs,Sn,As,Fs),P,<5>),
where P consists ofs

<5> 1= <Gs5><SnN><As><Fs><S> | €
<X><Gs> 1= <Gs><X> ¥ <X> e (<Sn>,<As>,<Fs>}
<Y><Sn> = <Sn><Y> ¥ <Y> e {<As>,<Fs>)
<Z><AS> 11= <As><7> ¥ <Z> e {<Fs>)
<Gs> 1= (Gs
<Sn> 1t= Sn
<As> $31= As
<Fs> 3t= Fgs

G3 first generates a sentence of L(GlI), and then
applies the production rules to do certain types of
interchanges for the sentence of L(GI) to get a valid
permutation that satisfies the desired property of L}
i.eey ¥ we L(G3), and ¥ X,y such that w = xy, (# of
Gs’s 1in x 2 # of Sn’s in x > # of As’s in x > # of Fs”’s
in x), Therefore, the type-1 grammar G3 defined above

satisfies the condition that L(G3) = L.
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Although the CSG is perhaps the best and simplest way
of representing this generalized sender protocol, the
complexity of relating a CSG to protocol so ftware
implementatioh is increased as compared with CFG. This is
why we have decided to choose context-free grammar as the
model and leave some context sensitive features in the

semantics part.

Case 4t Erropneous chanpnel and roukting

Grammars G1,G2 and G3 ment ioned above work
satisfactorily for a perfectly error~free channel.
Extension to the wunreliable (erroneous) channel and
aadition ot flow control actions are also straightforward.

We first introduce the following actions:

Tot: “Time Out for Uiw

Sst %Send Ui out a lower level channel®
Rts "heset the time for Uiv

St #Set the time for Uiw

e can modify Gl to get

GIl = ( {(<5»),{Gs,Sn,As,Fs,To,Ss,Rt,St},P,<S> ), where P

consists of:

<5> 23= (GsSnSsSt(TossktSt)*AsRtFs<S> | €
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We can also modify G2 to get

GI2 = ( (<S>,<Ret>},{Gs,Sn,As,Fs,To,Ss,Rt,St},P,<S> ),

where P consists ofs

<S> 33= GsSnSsSt<S> [<Ret><S>AsRtFs<Ret>»]<S> | €
<Ret> tt= (ToSsRtSt)x*

The modification of G3 is also straightforward and not

" shown here,

Receiver TG

designs

The protocol for the receiver part is in general less
complicated than the sender part and we will only list a
type-3 grammar Gr (in BNF format) for the case of single
outstanding send:

Gr = ( {<R>)},{Rl,Ar,Cr,Fu,Sn,Fr}),P,<R> ), where P consists
ofs

<R> 32= [R1ArCrFul»ShFr<R> | €
3.5.3 1G Specification of TCP
de have demonstrated the grammatical properties of

simple protocols in the previous section. In this section,

we demonstrate a TG specification of a more complicated
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protocol wused in the connection management part of the

ARPANET Transmission Control Program (TCP).

Fige 12 1is a TG specification of the connection
management protocols of TCP. The specification has been
derived by following the step-wise method presented in the
previous section. The detailed description of the protocol
program can be found in [TCP79]. RSND represents a send
action with retransmission. RCV represents a receive
action., The specification shows protocol structures and

state transitions in & concise and clear forme.
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<closed> 3t= <connecting> <exchange> <closed>
i "RCV.<nonrst-segment>"* ¥RSND.<rst>" <closed>

)

i "RCV.<rst>" <closed>
Kconnecting> si= <active.open> <wait.synack>

1 <passive,open> <listen>

kactive.open> tt= “RCV.<a.open>" "create tcb®
MRSND.<syn>"
Kwait.synack> 3t= Y“RCV.<synack>" “RSND.<ack>"
1 M"HCV.<syn>" ¥clear¥ WRSND.<rst>"

1]
i <break.connect> | <refused> <connecting>

]
break.connect> 3t= "RCV.,<close>" Hdelete tcb"
[ <connecting>
refused> tt= WRCV,.<rst>"
Kpassive.open> $3= WRCV.<p.open>" Ycreat tcb"
<listen> t:= <break.connect> i "RCV.<syn>"
"RSND .<synack>" <listen 3-way>
i M"RCV.<send>" "RSND.<syn>" <wait.synack>
<listen.3-way> 33= “"RCV.<ack>" | <refused> <listen>
i "RCV,.<syn>" BRSND.<rst>"
"clear" <listen>
Kexchange> $:= "send.receive® fexchange> 1 <disconnect>

<disconnect> $t= <end send> | <end receive>
[end.send> 3= M"RCV.<close>" [<send.segment>}=*

"RSND.<fin>% <wait.finack>
end.receive> $t= WRCV .,<fin>" YRSND.<ack>"¥
<wait.close> | YRCV.<finack>" "RSND.<ack>"
wait.finack> 3:= <receive> <wait.finack»>
[ i “"RCV.<fin>" “ESND.<ack>" <fin.3-way>
wait.close> 3i= <exchange> <wait.close>
i "RCV.<close>% “RSND.<fin>" <fin,3-way>
<fin.s—-way> 8t= “RCV,<ack>" "delete.tcb"
i “timeout" Mabort®

Fig. 12 Connect ion management protocols of TCP

3.0 The Generalized TG Model

The action of a transmission grammar often has

transmission message units as its operands, and each

transmission message unit often consists of several

variables or constants. For example, the action of "sending
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a packet out through the send port channel 3% has the packet
as its operand, and the packet has the packet number,
source, destination, etc., as its variables or constants.
For many higher-level protocols, the message syntax could be
so complicated as to make the BNF-type syntax description a
necessity (see the BNF message syntax specifications for the

File Transfer Protocol and Mail Protocol in [(Feinler781l).

The TG model, outlined in [Teng78al, only specifies the
action sequences of protocols. To represent the
interrelationéhib of hierarchical message structures in the
model, the gyeneralized IG model should have two grammar
specificationst 1) message grammar, and 2) action grammar.
Tne addition of a message grammar to the TG model is very
natural because both action and message grammars have the

same BNF forinat.

The addition of the message grammar to the TG model
enables wus tot (1) represent the hierarchical structure of
message formats (2) represent actions in the action grammar
with message ygrammar non-terminals as their operands,
thereby eliminating the overhead of representing actions in
tne action gyrammar at the bit or character levelis and (3)
implement the automatic syntax parsing and error handling.

An example of a message grammar is shown in Fig. 13. It is
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the message format rules for the network control program

(NCP) in ARPANET.

<trans> 3= [<message>1x
<messaye> 33= <regular msg> i <control msg> { RFNM

source message> 3= <send header> <text>
dest message> 3i= <receive header> <text>
send header> %= <send leader> <byte size>
[ <byte count>

<byte count>

(<control command>]%*
leader> t= <send leader> | <receiver leader>
control commanc>» 3= <rts> i <str> | <cls>
i <all> i<gvb>. i<ret>
Krts> $:= RIS <socket> <socket> "link no"
Kstr> t$t= STR <socket> <socket> "link no“
KCls> tt= (LS <socket> <socket>

Kyvb> 3$3= GVB <link no> “msg fraction"
“bit fraction®

<socket> 3= <user no> <host no>

USERII
nost no> tt= Y8~BIT OF HOST IDENTIFY NO"

[user no> 3= W"24-BIT UNIQUELY IDENTIFY EACH

Fig. 13 Message grammar of NCP in ARPANET

<regular msg> 8= <source messaye> | <dest message>

rsend leader> 33= dest" "msg type" <link no>
<receive leader> 3= VWsource" Y“msg type"
<link no>

kcontrol msg> $3= <leader> "byte size" Ubyte count"

Kall> 3= ALL <link no> "msg space" “bit space"

<ret> 3:= RET <link no> “msg space" “bit space"

receive header> 2t= <recelve leader> <byte size>
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3.7 Properties of TG Model

The TG model has the following propertiess
(1) It provides for a precise and concise description and
documentation for both message and action rules of
protocols. It is the basic reference and guide for protocol

program designers and communication protocol users.

(2) It permits complex protocols to be described with
descriptive notations wnich are tractable. Its linear
representation (grammar rules) has the flexibility to
describe some context-free and context-sensitive properties
" of protocols which are not possible in models using finite
state automata.

The model uses terminals and non-terminals in the
grammar, and the terminals at a higher level can be easily
mapped to the corresponding non—-terminal at a lower level.
The model has the flexibility of describing a complicated
protocol with different degrees of details for validation

and implementation.



Properties of TG Model 98

(3) It allows the protocol designer not only to specify
protocol program modules in a well-structured manner, but to
keep the specitied design structure (context free grammar)
so simple that automatic validation and implementation can
be easily carried out (wnich will be covered in Chapters 4,
5 and 6). Since there does not exist any graphic diagram
interpreter tor the direct processing of graphic models
(such as FSA, Petri nets and UCLA graphs), the linear and
nongraphic property of the transmission grammar model is
also crucial to direct analysis and automatic implementation
of protocols (which also will be covered in Chapters 4, 5

and 6).



CHAPTER 4

PROTOCOL DECUMPOS IT ION AND VERIFICATION TECHNIQUES

4.1 Introduction

Because of the complexity of protocol verification, we
shall cover tne topic in two chapters. This chapter defines
general validation terms, outlines the overall approach and
discusses local validation techniques. The global

validation techniques will be covered in the next chapter.

A difficult step in protocol design is to write down
the TG specification for a given communication entity of a
protocol layer. The hierarchical decomposition of the
entity into several components 1is one way to reduce the
complexity. [Ihe lateral decomposition of the entity into
independent parts is also feasible if the parts are mostly

validation independent. These decompositions allow us to

99
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.reduce the complexity of protocol validation and design.
The decomposed components and parts can be integrated for
either implementation. or final modifications of the
validation modeling. Three integration operations for TGs

are introduced and investigated in this chapter.

TG local validation techniques are also introduced to
detect the syntactic error of protocols. A validation
system has been constructed to automatically format a IG and
validate the M"syntax" of the input TG. It demonstrates the
feasibility of building a more powerful and general

validation system.

4.2 Definition of Terms

In tnis section, we formally define terms and notations
for future discussion of protocols. The notation basically .
follows tne convention used for programming languages 1in

(Gries?il.

Def.l A symbol can be either a message symbol or an aciion
sympol. A  transmit symbol is an action symbol, which
consists of actions of sending and receiving messages, and

may have message symbols as its operands.
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Def.l A message string is a finite sequence of message
symbols. An action string is a finite sequence of action
symbols. An jdle string is a finite sequence of action
symbels such that the string contains no effective

comnunicat ion symbol.

Def.3 An action rule is an ordered pair (<u>,x) where <u> is
an action symbol and x is an action string. It is written
as <u> 3i= x .

A message format rule is an ordered pair (<m>,n) where <m>

is a message symbol and n is a message string.

We shall concern ourselves principally with action
rules and will focus on discussing them throughout this

chapter.

Def.4 A transmission grammar (TG) is a finite non-empty set

of action and. message rules which is used to define a
protocol. A protocol is a set of agreements by which

entities exchange information.

A step-wise refinement approach is necessary for the
design of a sophisticated network protocol. We introduce
the idea of non—-terminal and terminal symbols to formalize

this approach.
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Def.5 The popn=terminal action symbols of a TG are the set of
symbols occurring as left parts of the TG rules. Each

non-terminal is enclosed with the notation < >,

Def.0 The terminal action symbols are the set of symbols in
a TG which are not pepn=terminals.

In the step—wise refinement definition of a TG, we can
substitute a non~terminal for terminals and make detailed

specifications for the new non-terminal.

Ref.1 The gtarting action symbol of a TG is one of the

non-terminals .and the starting symbol is usually obvious

from the TG.

Def.8 Let G be a grammars we say that the string w 1is a
direct derivation of the string v, written v => w, if we can
write
VvV = X<u>Y, W = Xuy
for some strings x and y, where <u> $:= u jis a rule of G.
We say that w is a derivation of the string v,. written
v =>+ W, if there exists a sequence of direct derivations
V.=> Ul 2> U2 =>,0eee => UN = W (n>2) . Finally we

write v =>x w if v =>+ W or v = w.



Definition ot Terms 183

Def.2 Let G be a transmission grammar for an entity. A
string x is called a sentential form if x is derivable from
the starting symbol <st> (i.e., If <st> =>% X), We use the
substringry of x to represent the gtate of the entity, where
<st> => X = wy, w consists only of terminals and the head
symbol of y 1is a non—-terminal. If y is € then we say the
state is a terminating state of the entity and we say the .,

tail symbol of w is a terminating symbol.

From the definition of the state of an entity we know

that the substring y will determine all the possible
derivations from the seéntential .form X. Therefore, all

future state transitions are independent ot the past state

. transitions.,

Def.l®¥ A sentence is a string x derivable from the starting
syimbol consisting only of terminal symbols. A proper
sentence should always have a proper terminating symbol as

tail symbol.

This string may consist of a sequence of actions of one
. transmission transaction (send or receivel), or a sequence of

actions of one connection opening transaction.

Ref.ll A TG is well structured it and only if it is reduced
and generates only proper sentences. A TG is reduced if and
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only if every non-terminal <u> of the TC is such that (1)
<u> is reachable from the starting symbol and .(2) we can

derive a terminal string from <u>.

A well structured TG preserves several nice properties,
such as freedom from deadlock, as we will discuss in Section

4.5.2.

We know a (binary) relation on a set 1is any property
tnat either holds or does not hold for any two ordered
symbols of the set. We usually represent relations over the
set in a computer by a Boolean matrix. The following
relations and their transitive closures are useful when we

discuss the algorithms for protocol validation.

Def.l2 For a relation R, the transitive glosure R+ of R can

be defined as a R+ b, if and only if a R!n b for some n>@.
(He use R!n to represent the repetition of relation R n

times )

For a non-terminal <u> and a symbol S of a TG, we can
define the relation FIRST, LAST and WITHIN over the finite

vocabulary Vn U Vt of the transmission grammar.,

Defeld <u> FIRST S if and only if there is a rule

<y> 8$3= Sooo
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Note that the three dots %,.." represent a (perhaps
empty) string which at this point does not interest us. We
then have by the definition of transitive closures

Defeld <u> FIRST+ S if and only if <u> =>+ S..s

Ref.15 <u> LAST S if and only if <u> 3= ,,.S

Def.lo <u> LAST+ S if and only if <u> =>+ ,,.S

Defal? <u> WITHIN S if and only if <u> 33= ,..S...

Def.l8 <u> WITHIN+ S if and only if <u> =>+ 1¢eSeee
These relations will be used for . protocol validation

when we discuss TG validation techniques in Section 4.5.

EXAMPLE 4.,1. To illustrate the above relations, we 1list
some rules.

<TG> t3= <receive> <TG> | <send> <TG>
<receive> 33= %receive packet® | "receive message"
<send> 83= <recelive> <send> | "send packet" <wait ACK>
i "send message to host" | €

<wait ACK> st= <receive> <wait ACK>
i "retransmit" <wait ACK>

Yacknowledgment®
<send> <wait ACK>
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we then have <TG> FIRST <receive>, <TG> LAST <TG>,
<TG> FIRST+ “send packet", <send> WITHIN+ “retransmit" and

<send> LAST+ "acknowledgment".

4,3 TG Decomposition Techniques

A difficult task for the design and verification of a
complex protocol is to write down the formal specification.
A general strategy to reduce design complexity 1is to
decompose the protocol into smaller layered components
and/or validation .independent parts. This strategy has been
discussed for the decomposition of communication entities in

Section 3.2.

The TG decompositions can be either hierarchical or
lateral. The layered approach to protocol design is an
example of hierarchical decomposition to decompose a host
computer system into several hierarchically related
sub~systems., Further decompositions within a sub-system
(layer) - either hierarchical or lateral - may also be
possible. The hierarchical decomposition of a protocol
decomposes its TG into hierarchically related components.
It corresponds closely to the step-wise refinement concept

in .structured programming. An example of hierarchical
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decomposition is a protocol component for character handling
(such as byte stuffing in SDILC) within another component for
message handling. The lateral decomposition of protocols
decomposes a TG into val idation independent parts (VIP).
(Inese are also <called 1logically independent parts in
(lfen¢78a,78bl.) Etach VIP of a sub-system can be validated
independently of other VIPs of the sub-system even thougn
tne VIPs may be dependent on each other in the actual
implementation. An example of lateral decomposition is the
sending and receiving part of a protocol. Lateral
decomposition may also correspond to alternate parts of a TG

rule.

Atter designiny tnhe TGs components and VIPs, we can
intecgrate tnem together by substitution and shuffle
operations. The shuffle operation is used for the
integration or VIPs. The substitution operation is used for
the integration of hierarchically related componentss fne
relationsnips of TG aecomposition and integration are shown
in Fig. 14. Notice that local VIPs within an entity can be
viewed as concurrent processes in the field of concurrent
programming. VIP processes often share common variables
such as I/0 channels and buifer areas, and need some
synchronizat ion mechanishs to prevent race conditions.
However, VIPs in TG notations oilten describe a design level

action as an Jindiyisible wunit, and race conditions <can
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generally be prevented by viewing design action as a

critical gsection.

Shuffle

Operation
1
i
: ': :
: ‘ : Substitution
: : : Operation
1 COMMUNICATION i ENTITY :

e e e . S —— —— T G e G — S S S S Gl S S o

)
:
Fig. 14 Decomposition and integration relationships

4.4 TG Integration Technigues

Three operations are available to integrate TGs:3 the
arbitrary snuffle, the restricted shuffle and tne

substitution operation.

4,4, Arbitrary Shuftle (//) Operation

The arbitrary shuffle operation (similar to the shuffle
production of [Eilenberg74]) can be used for the integration
of several validation independent TGs. In this section, it
is wused to integrate local VIPs within an entity. It will

be used to integrate ¢lobal validation automata in the next
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chapter. The integration allows us to check race conditions
between VIPs and to ensure the integrity of the channels and

buffers shared by the VIPs for actual implementations.

RDef.l12 Let VI and V2 be two sets of terminals. Given A, a
subset of Vi«j B, a subset of V2% and VI/\ V2 = 43 then
tne arbitrary shuffle product of A and B (A // B) is a
subset of (V] U V2)» and consists of all sentences w e (Vi
U V2)» such that wl e A, w2 e B, and wl 1is derived by
erasing all tne symbols of V2 in w, w2 is derived by erasing
all the symbols of VI in w. The // operation is called the

arbitrary shuffle operation or local shuffle operation.

The // operation of two languages can be imagined as
the shuffling of their respective sentences. The shuffling
of two sentences is similar to an arbitrary shuffling of two
decks of cards (each deck of cards corresponds to a sentence
of a distinct language). The original order of the
individual decks 1is maintained in the combined deck. That
is, if the original sequence of the first deck is 1,2, and
tnat of the second deck is A,B, then the sequence of the
combined deck could bes 1 ,2,A,B% 1,A,B,23% 1,A,2,B3%
A,By 1,23 A,1,B,2% or A,1,2,B. This arbitrary shuffle
operation is very usetul when we design the TGs of several

concurrently operating parts and wish to integrate the TGs.
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For example, ( L(GI2) s/ L(Gr) ) contains the combined
action sequences of the sender and receiver parts, and still
keeps the original sequence of the individual parts. We can
thus use the integrated grammar to represent the

communicat ion-processor level protocol.

The following algorithms can be used to derive the

arbitrary shuffle product of various types of languages.

Toeorem L If VI and V2 are two sets of terminals such that
Vinvz = ¢, then any regular set Rl of VI* is closed under
tne arbitrary shuffle operation with another regular set R2
of V2=,

The steps required to construct the shuffle product of
Rt and R2 are given in Algorithm 1.
Algoritom 1

Let M1
M2

¢ KI,VI,f1,pd,F1 ), and
( K2,V2,f2,q0,F2 )

be the finite state automata that recognize R1 and RZ2
respectively, and 1let VI N V2 = ¢&. Then the finite state
automaton

M3 = ( KI x K2,viI U V2, 3,[p¥,g8},F1 x F2 ) recognizes
Ri1 /7k2, where f3 is defined as followss

¥qi e Kt, f3(lp,qil,a) = [p”,qil
winenever fl(p,a) = p’ in Ml and

¥pi e K2, £3(Ipi,ql,b) = [pi,g*]
whenever f2(q,b) = g/ in M2.

It is clear from the construction that M3 recognizes RI1//R2.
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Ineorem 2 If VI and V2 are two sets of terminals such that
VINV2 = &, then the <class of CFLs of VI* is closed under
the arbitrary shuffle operation with a regular set of V2x.

The steps required to construct the shuffle product of
a CFL and a regular set are given in Algorithm 2.
Algorithm 2
Let L be a CFL. and R a8 regular set. Let

P1 = ( Kp,V1,T, fl ,p@,Z8,Fp )

be a non-deterministic push-down automaton that recognizes
Li ana

A= ( Ka,V2,f2,qd9,Fa )

be a deterministic finite state automaton that recognizes R.
Then the non-deterministic pda

P2 = ( Kp x Ka,Vl U V2,T, f3,(p®,q01,Z28,Fp x Fa )
recognizes L. // R, where f3 is defined as follows:

¥ qi e Ka, f3([p,qil,a,Z) = ([p’,qgil,x)
whenever fl(p,a,Z) = (p’,x) in Pi% and

¥ pieKp, ZeT, £3(lpi,gqlyb,Z) = ([piq”’l,2)
wnenever f2(q,b) = g4 in A.
Corollary The arbitrary shuffle operation is reflexive and

associative.

The corollary is clear from Algorithm 2.

CXAUPLE 4,2 To show an example of the shuffle, we
construct a push-down automaton P2 to recognize L(GIZ2) //
L(Gr) by the following three stepss

(1) First, we construct a push-down automaton P! that
recognizes L(GI2) :

Pl = ( KpyV1,T,f1,P3,20,Fp )

wnere Kp-= { pd,pl,p2,p3,p4,pb5 )
Vi = { Gs,5n,Ts,Rsy,As,Fs,Rt,St )}
T = Zh,X )
Fp = { pv )
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fl is defined as follows:
fl ( p2,e,Z0 )
fl ( p9,€,€ )
f1 ( p5,€,20 )
fl ( p2,Gs,20 )
ft ( p23,Gs,X )
f! ( plySn,X )
f1 ( p2,55,X )
fl ( p3,5t,X )
f1 ( pAy,AsX )
Il ( p4,Rt,X )
ft ( p4,Rt,Z0 )
fl ( pSyFs,X )
Il ( phb,Fs,Z¥ )
f1 ( pB,TB,X )
f1 ( p6,Rt, X )
f1 ( p7,5s5,X )
f1 ( p8,5t,X )

Tne automaton

PN NN TN NN o SN NN NI TN NN o,
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p%,€ )
p2,20 )
pP2,20 )
pl,XZ20 )
plyXX )
p2,X )
pP3,X )
pP,X3)
p4,€ )
p5,X )
p5,20 )
pd,X )
PB,20 )
po,X )
p7,X )
p8,X )
pPP,X )

is also shown in Fig. 15.
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®

€Z20/€ eers/Z0

FsX/X,FsZ0/20 StX/X

SR

S

O i O WDy @ @
RtZ0/729 GsX/7XX
ToX/X
RtX/X
StX
SsX/X

13

Fige. 195. Push-down automaton that recognizes L(GI12)
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(2) Secondly, we can construct a deterministic state
automaton A to recognize L(Gr)

A = ( Ka,V2,f2,q0,Fa )

wnere Ka = { g%,31,92,93,94,95 )
V2 = { Rl ,Ar,Cr,Fu,Sh,Fr )}
Fa=(q¥ )

and 12 1s defined as follows?

f2 ( gq0,Rl1 ) = ql
f2 ( gql,Ar ) = g2
f2 ¢ q2,Cr ) = g3
f2 ( qs,Fu ) = g4
f2 ( q4,k1 ) = ql
f2 ( q4,Sh ) = g5
f2 ( gb,Fr ) = g@

Tne automaton is also shown in Fig. 160.

Fig. 16 Finite state automaton that recognizes L (Gr)

(3) we can then construct a push-down automaton P2 that
recoynizes L(GI) // L(Gr) by following Algorithm 1.
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X Ka,v1 U V2,T,f3,[p9,qvl,Z20,Fp x Fa )

Ka { [p0,q0],(pd,qllyececeecesylpB,g5l,
[pp,q@],[pl,ql],.......,[pl,qS],

[P9+00] 4 (p94Q11yeeeneeey(p9,q5] )
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{ Gs,5n,TsyRs,As,Fs,Rt,StR1,Ar,Cr,Fu,Sh,Fr )}

P2 = ( Kp
where Kp x
Vi U v2 =
Fp x Fa = { (p9,q99]

f3 is defined as followss3

13
3
3
13
3
f3
3
£3
£3
13
£3
3
I3
I3
3
3
£3

£3
3
£3
£3
£3
£3
I3

and
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intersection,
intersection with regular sets.
arbitrary shurfle operation.

Proofs

{p2,qil,€,Z0
(p9,qil,€,€ )
{p5,qil,€,20

[p@,qil,0s,20 )

[pB,qil,Gs,X
(plygil,Sn,X
(p2,qil,Ss,X
[p3.qil.5t.X
(p2,qil,As,X
[p4,qil,Rt,X

(p4,qil,Rt,Z0 )

{p5,q9il,Fs,X

(p5,qi),Fs,20 )

[pP,qil,T0,X
[p6,qil,Rt,X
(p7,9il,5s5,X
[p8,gil,St,X

(pi,q21,Rl,y
(pi,qll,Ar,y
[piyg21,Cr,y
(pi,q3l,Fr,y
{pi,q4l,Kl,y
(pi,g4l,5h,y
(pi,g5l,Fr,y
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substitution,
Then C is closed under

PN N e TN e N

(p9,q9il,€ )
(pv,qil 20 )
(p2,qil,Z@ )
(pt,qil,XZ@2 )
[pl,qil, XX )
[p2,qil,X )
[p3,qil, X )
[Sa:3111x3>
(p4,qil,€ )
{(p5,q9il,X )
(p5,qil,Z0 )
(p¥,qil X )
(p%,q9il,20 )
[p6,qil, X )
(p7,9il,X )
(p8,gil,X )
{p2,qil,X )

(pi,qll,y )
[pi,g2l,y )
(pi,q3l,y )
(pi,q4l,y )
[pi,qll,y )
(pi,g5l1,y )
(pi,q@l,y )

¥ gqi e Ka

¥ pi e Kp

and ¥ y e (X,20)

languages
and

closed

union

under

and
the

Let LI ana L2 be two languages in C which are subsets of Vi
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and V2% respectively. We assume without loss of generality
that the sets VI and V2 are disjoint.

Define two suostitution functions fl and f2 by

fl(a)
f2(b)

V2*a for each a in V1, and
Vixb for each b in V2.

The closure under union and intersection with regular sets
guarantees that all regular sets are in C .and nence V2%a and
Vixb are in C.

Let L1 = f1(L1) U V2~ and L27 = f2(L2) U Vi*x if € 1is 1in
Ll and L2, and L1742 = fl(L1) and L2/ = f2(L2) otherwise.
Then L1“7 1is the set of gall strings of the form
yloly2b2....ynbn, n21, where the b’s are in V1, blb2....bn
is in L1 and the y“’s are in V2%, plus V2% if € is in L1,

L2 is the set of all strings of the form
xlalxl2als.eeoexmamy, m21, where the a’s are in V2, alal2....am
is in Ll2 and tne x’s are in Vla, plus VI~ if € is in L2.

The €-free substitution guarantees that Li4 and L2/
are in C, and we can easily see that the intersection of LI”
and L27 is the same as L1 // L2. Since L1“ and L2’ are

closed wunder intersection, we know C is closed under the
snuffle operation.

From the closure properties of ‘regular, deterministic
context-free, context-sensitive, and type 0 languages, We
know they are all closed under intersection, €-free
substitution, and union and intersection with regulasr sets.

We therefore nave the following result from the above lemma.

Theorem 3 The classes of regular, deterministic
context-free, context-sensitive and type ¥ languages are
closed under the arbitrary shuffle operation.
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4.4.2 Restricted Shuffle (\\) Operation

An important protocol verification step is to validate
that the global interactions of the TGs we design are free
of protocol syntax errors such as communication
incompatibility, communication looping and communication
deadlocks. Global validation techniques will be the topic
of Chapter 5. Basically, the restricted (global) shuffle
operation is used to integrate TGs of two communicating
entities. It can validate the g¢lobal interactions between
the TGs and take into consideration the communication
channel states, This shuffling usually integrates a send

module and a remote receive module as shown in Fig. 17.

Entity 1 Entity 2

H H H H
H ———————— : W e :
H : send H H H + Recelve ‘ H
H : TG1 H : : H TG2 : :
H ————————————— H H ————— e :
———————— e e ———————— e e e e

] s

e e ey

Comnunication Channel

Fig. 17 Glokal (Hestricted) shuffle operation
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Def.2@ Let VI and V2 be two sets of terminals. Given A, a
subset of Vix*3 B, a subset of V2x3 and VI N\ V2 = &3 then
the restricted shuffle product of A and B (A \\ B), is a
subset of (A // B) and consists of all the sentences of
(A /7 B) which are realizable action sequences. A

realizable action seguence cannot contain any string which

has a receive action of V2 (or V1) before its corresponding

send action of Vli.

The algoritnm to <construct the restricted shuffle
product 1is similar to Algorithm ! and Algorithm 2 of the
arpitrary shuffle product . However, for restricted
shuftling, we have to remove all the impossible state

transitions and unrealizable action strings.

TG global validation will be discussed further in

Section 4.7.

4.4,3 Substitution Operation

To integrate TGs with a hierarchigcal relationship, we

use the substitution operation.
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The subst itution operation {Hopcroft69l, which
corresponds closely to the step-wise refinement concept
(Wirth711 in structured programming, can performs (1) the
mapping of ‘a terminal of an entity’s TG to an action
sequence for more detailed protocol descriptions and (2)
the integration of an entity’s TG with its upper and/or
lower layer 1Gs by properly substituting low=1level
non-terminals for high-level terminals to form a new
integrated TG. This operation can be used for top=-down
design of protocols and to inter-relate upper and lower

layers of protocols in a protocol hierarchy.

The theorems and algorithms of the substitution
operation are discussed in Theorem 9.7 of [Hopcrofté69l. It
is known that the classes of regular sets and CFLs are
closed under the substitution operation. The class of CFLs
is closed under €-free substitution. The following 1is a

substitution example of three CFLs?

EXAMPLE 4.3

Let L be ygenerated by the grammar
( {<5>},( "send*, *ack" )}, P,<S> ), where P consists of?
<5> 3= Wgend® "ack" <35> | €

Ne can substitute the terminals "send" and Yack" to get f(L)
in the following:
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{ Gs Sn Ss St(Rs Rt Ts St)* )} and
{ As Rt Fs }3

Let f("send®)
Tt ("ack")

let f("send") be generated by

( {<S1>,<retransmit>),{Gs,5n,Ss,St,Rs,Rt,Ts},P1,<S1> ),
where Pl contains?

<51> 33= Gs 5n Ss St <retransmit>,

<retransmit> 8= Rs Rt Ts St<retransmit> | €.
and let f("ack") pe generated by

( {<S2>),{As,Rt,Fs},{<S2>83=As Rt Fs)},<S52> ).
Then f(L) is generated by
( {<5>,<S51>,<32>)},{Gs,5n,Ss,S5t,Rs, Rt ,Is,As,Fs),P’,<S> ),
where PZ containss

<S> = <S1><S52><S> | €

<S1> 33= Gs Sn Ss St<retransmit>,

<retransmit> %= Rs Rt Ts St<retransmit> ¢ €,
<S2> 3= As Rt Fs.

The first production comes 1rom
<5> 331= UgendWhack" <S> | €
with <51> substituted for "send" and <S2> for ‘“ack". Note
that f(L) 1is a well-formed TG of the language L(GI1) which

is defined in Chapter 3.

For the new grammar, we may again use the substitution
operation to map terminal Ts ("transmit a packet out to a
lower level") to a sequence of actions which are described
at tne character (ASCII) level. More complex substitution
of protocol components (such as SDLC bit stuffing) is also

possible.
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4.5 TG Local Validation Techniques

We concentrate on local TG validation in this section
and leave c¢lobal valiﬁation as the topic ot Chapter 5. TG
validation techniques for veriiying large-~scale software
systems can improve their reliability. The techniques are
mechanical in nature and have been implemented. The cost of
correct protocol development can be greatly reduced using

these validation techniques.

Automatic techniques for TG syntax validation can be
applied without recard to their semantic meanings and actual
execution., They can be used to locate possible structure
flaws to acinieve a correct structure for the TG. Protocol
validation can be considered as the analysis of the
followings (1) no-backup parsing, (2) well structured TG,
(3) receive deadlock, (4) incompatibility and (5) 1loops,

eacn of whicn is discussed below,.
4.5,1 No-backup Parsing

Automatic implementation techniques discussed in
Chapter 6 require that the TG of a protocol is able to parse
without backup. The TG grammar rules that enable the

parsing without backup have to follow two restrictions: (a)
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deterministic TG, and (b) no left-recursion. Note that
these restrictions are nct needed for validation and will

not affect the power of modeling.

a) Deterministic TG

Every pair of initial symbols x and y of alternates in
the grammar production rule of a deterministic TG must

satisfy the restriction that

If x =>%x Au and y =>*% B v, then A # B,

¥ A,B e Vt and u,ve (Vn U Vt)=,
) No left-recursion

This means that there does not exist in the grammar a
derivation:
<u> =>+ <u> vy,

¥<u> e Vn and ¥ y e (Vn U Vtix,

We can design algorithms to list all the non-terminals
and production rules that violate these two restrictions.
Before introducing these algorithms, we first introduce a
techniyue for constructing the transitive <closure of a

relation.
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For some relation R on a set (alphabet, set of symbols)
A and some element U we often wish to construct the set
K=(S 1| UR+S, Se A
for validation checking. From the well-known theory of the
transitive closure of relations [Gries71), we know that if
the set A is finite, then the length of the relation chain

is bounded by the numkter of elements in A.

An important and efficient algorithm using Boolean
matr ix aritnmetic can also be wused to construct the
transitive closure. For a relation R defined on a set S of
n symbols Sl, +...45n we can construct an n by n Boolean
matrix B to represent this relation by putting | in Bli,j]
if and only if Si R Sj. The matrix B+ defined by

B+ =B + BB + BBB + ..... + B!n
can also be proved to represent the transitive closure R+ of
R. The following algorithm [Warshallé2]l is often used for

deriving the matrix B+ from B

le Set a new matrix B+ = B,

2. Set i =1,

3. For all j, if B+[j,il = 1 then for X = 1, ...4n, set
B+{j,k] 3= B+l j,k]l + B+l{i,kl.

4., Add | to i.

5. If i £ n then go to step 33 otherwise stop.

Returning to the previous restrictions that enable the

16 parsing without backup, it is obvious that a non-terminal
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<u> of a TG satisfies the left-recursion condition if and
only if <u> FIRST+ <u> where the relation FIRST was defined
in Definition 12. The following steps can be used to test
left recursion. We can use an algorithm to construct B+
from a matrix B representing the relation FIRST on Vn of the
TG. e then have B+[i,il =1 1f and only if the
non-terminal Si e Vn is left recursive. The deterministic
restriction can also be validated from the relation FIRST+

on Vvn U Vt ot a TG.

4.5.2 Well Structured TG

The transitive-closure construction technique can also
be wused to check a transmission grammar for well structured
form. If the TG is not well structured, it could either

cause errors or increase complexities.

A well-structured TG requires that there is no
undetined non-terminal or superfluous rules, and that each
sentence (action sequence) of the TG terminates properly.
We say a TG is well structured if it follows the following
two restrictions: (A) the TG is reduced, and (B) the TG can

generate only proper sentences,
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The reduced TG defined in Definition 11 prevents
superfluous rules and undefined non-terminals. A TG is
called reduced if and only if every non—terminal <u> e Vn

satisfies the following two conditionss

(1) <u> must be reachable from the starting symbol, i.e.
<u> must appear in the following sentential forms

<st> =>» X <u> vy, for some x, Yy e (Vn U Vt)s, and
<st> is the starting symbol of the grammar.

A non-terminal is reachable from the starting state if
it nas this property, in which case we know that an
unreachable non-terminal is either caused by design errors
or represents superfluous redundancyf A non—-terminal <u>
satisfies the restriction if and only 1if <st> WITHIN+ <u>,.
The algorithm for checking reachability 1is therefore
straightforward. We first construct an n by n Boolean
matrix B representing the relation WITHIN over the set of
non-terminals Vn. The matrix B+ 1Is then derived by
Warshall“’s algorithm. It is clear that all the
non-terminals are reachable from <st> if and only 1if

B+[1,j] =1 1or jJ = 24 seegne

(2) It must oe possible to derive a string t of terminal
syinbols from <u>3 ‘

<u> =>+ t, for some t e Vt+
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Figure 2.11 of [Gries71] contains a flow chart of an
algorithm which recursively checks each non-terminal of a

grammar to see if it can generate a terminal stringe.

The proper sentence restriction requires the proper
termination of all action sequences of a TG. It is clear
tnat x is a terminating symbol if and only if <st> =>+ ...X
and x e Vt, Note that this relati&n is the same as
<st> LAST+ x. A symbol x is a terminating symbol 1if and
only 1if <st> LAST x or there exists a non-terminal <u> such
that <st> LASI+ <u> and <u> LAST x. A simple recursive
routine can e used to list all the terminating symbols for

a given TG.

For a well-structured TG, it is obvious that all the
action sequences will end at a proper exit. wWe can be sure
that from any state of the TG it will be possible to reach
an appropriate terminating state. This 1is an important
property and is also called livepness of all the states of a

protocol.

A static degdlock is a state that cannot reach an
appropriate terminating state. A well-structured TG has the

nice property that it will never reach a static deadlock.
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EXAMPLE 4.4 To show the checking of the above syntax errors,

let us consider the following grammart

<TG> 33= <a> <b> <¢c> # i b ab
<a> 8= <> a

<b> t=b a i b b
<u> 1= <a>

<e> $2= <f>
<i> 3= <e> <e>
In tnis gramnar, we can see that <¢> 1is an undefined
non-terminal, -<a> =>+ <a> a is left recursive, and both <b>
=>% b a and <0> =>» b b nave the same initial symbol. Since
<TG> is the starting symbol, both <e> and <f> do not satisfy
tne two condition that there should not be any superfluous
rules. This example will be also shown as the test example

2 in Section 4.6 when we discuss automatic TG validations.

4.5.5 Receive Deadlock

A receive deadlock nappens when an entity is idle
waiting for another entity to send a message but there is no
such message coming through the channel between them. Even
in a well-structurea TG, we may still have the problem of
receive deadlock. It can be caused by either message loss
or incompatioility. The general technique of preventing a
receive deadlock caused by message loss is to have a timeout

scheme to recover from it. 7Therefore, for each action of
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receive waiting, we should have a timeout and retransmit
action as an alternate part of the transition. The
technique for overcoming the problem of incompatibility is

the topic of the next section.

4.5.4 Incompatibility

A simple but wuseful technique 1is to 1list all the
sending and receiving messages (in non-terminal form) for
two communicating entities. The two sets should have a
one-to-one correspondence if they are compatible. However,
this technique is inadequate to fully check for
incompatibility. A global reachability analysis is
necessary for complete checking. Global validation

techniques will be covered in Chapter 5.

4.,5.5 Loops (Oscillations)

Action loops in the action sequences of a protocol TG
should also be identitied by the validation system. There
are two types of loopst (1) loops with no exit and (2)
loops with a proper exit. We say a loop is looping with no
exit if there exists a non-terminal in the loop which is not
one of the liveness states. In a well-structured TG, it is

clear that all the loops nave proper exits. For a loop with



TG Local Validation Techniques 129

a proper exit, we are 1interested in self-limiting and

dynamic deadlock checking.

The technidue we use to detect loops is to identify the
non-terminals that could generate the following sentential

forms

<u> =>+ X <u> y Ifor some X,y € (Vn U Vti*,

Note that a non-terminal <u> can derive loops if and
only if <u> WITHIN+ <u>. Thus we can construct an m by m
Boolean matrix A representing the relation WITHIN over Vn of
m non-=terminalss 51,52, «esSme We can then derive A+
representing the WITHIN+ relation. It is clear that a
non-terminal S5i e Vn can derive a loop leading to itself if

and only if A+(i,i]l = 1.

In order to prevent the possible infinite looping of
action sequences, one of the action terminals in each loop
has to limit the number of executions of the loop. For
example, a loop in the TG of Fig. 20 (shown in the next

section) is?

<wait> $t= <retransmit> <wait.ack>
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Since the number of retransmissions has to be limited,
. we should include the limitation in the TG. By a similar
argument we snould limit the nuﬁber of outstanding packets
in the TG. Some loops are inherently limited by a
higher—layer protocol and do not need to be limited in the

TG,

Dynamic deadlock is a special type of looping, called
infinite 1idle 1looping. Idle looping happens during a time
period T3-Tl! when time T3>T2>T1 exists such that

state (T1) = State (T3) # State (T2),
and no etfective communication action has been made during
the time period. Idle looping could be a send action which
repeats a number of times without a positive ACK or a
receive action which waits for a message, but no such
message is underway. In designing a TG, we should detect

all such loops and have a scheme to recover from them.

The technique for detecting idle looping is to identify
the non-terminals that could generate the following
sentential forms

<u> =>+ X <u> y for some X,y € (Vn U Vt)* such that

X can generate only idle strings.
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As defined in Definition 2, an idle string contains no
effective communication symbol and therefore no effective
communication progress can be made during idle looping. 'We
can check and identify potential infinite idle looping when

we generate loops using the above techniques,

4.6 The Validation System

A validation system has been constructed to check for
the properties discussed 1in the previous section. The
complete program is listed in Appendix A. The reachability
analysis of a TG should be performed for both local and

global transitionse.

The system reads a TG that needs to be validated and
stores it 1in a carefully designed data structure so that
efficient testing and checking can be made. After informing
the system of the starting symbol, it can parse any test
action'sequence and tell whether it is a valid sentence of
tne TG. It can check for the terminating symbols, left
recursion, unreachable nonterminals and proper terminations.
It will also indent and 1list all the loops (cycles) for

boundedness cinecking.
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Three test examples are shown in Fig. 18, 19 and 24.
Fig. i8 1s a test of a valid TG with four testing action
sequences., 1wo of them are incorrect. Fig. 19 is a test
of an 1invalid TG which is the same TG as Example 4.4. The
system prints out undefined symbols, terminating symbols,
left recursion nonterminals and unreachable nonterminals
more completely than our hand checking result of the
previous section. Fig. 28 is another test of a valid TG
which specifies the sending part of a communication

processor protocol.
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<A> 3= X , ( <B> ) .,
<B> tt= <A> <C> .
<C> 1= + <A> .

X+X)+X)).

| <a»> $8= x ¢ ( <b> ) .
2 <> 318= <a> <C> .
3 <C> 1= + <3> .
4 e i e e e e e e i e e o e
PROPER TERMINATION ANALYSIS
ok Aok ek kK kok kk kk kK kR kk AR KRAKR
** WARNING %% MORE THAN ONE EXITS
THE TERMINATE SYMBOL ISs X )

NO LEFT RECURSION
REACHABILITY ANALYSIS
KK ARAR AR RKAKLE ARKK KX XXX
NO UNREACHABLE NONTERMINAL
ALL NOUNTERMINALS CAN TERMINATE PROPERLY.
ACTION SEQUENCE TESTING
Fk KX Rk sk ok Kok ok kk kk kRkk
5 <a>
6 (x+ ( (x+x) +x) ) .
HE SYNTAX OF THE ABOVE ACTION
SEQUENCE IS: CORRECT
7 ( x+ x) .
THE SYNTAX OF THE ABOVE ACTION
SEQUENCE 1St CORRECT
THE SYNTAX OF THE ABOVE ACTION
SEQUENCE IS® INCORRECT
8 (a+ x).
THE SYNTAX OF THE ABOVE ACTION
SEQUENCE IS: INCORRECT
INDENTED CYCLES LISTING
AXKARK kk AR Ak A% Kk hkhk hkhk

9

19 <a> 3= ( <pb> )

11 <H> 8= <g> <C>
12

13 <pDH> 88= <a> <c>
14 <C> $83= + <a>

Fige 18 Test | of a valid TG
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<TG> 33= <A> <B> <C> # , BAB .
<A> t1t= <D> A .

<B> 3= BA , BB .

<D> 8= <A> ,

<E> t3t= <F> .

<F> tt= <E> <E>

<TG>

ABA#.,

1 <tg> 3= <a> <b> <c> # i bab .
2 <a> 3= <d> a .

3 <b> 3= ba i bb.

4 <d> 3= <a> .

5 <e> 8t= <f>

6 <f> 1= <eg> <e> .,

7 -— - ——— [ ——

UNDEF INED SYMBOL ==> <C>

PROPER TERMINATION ANALYSIS

ke doke ok ok sk skok dok ook dok ko ke ok AR Rkn

** NARNING ** MORE THAN ONE EXITS
THE TERMINATE SYMBOL IS: # B
LEFT RECURSION —> <A>

LEFT RECURSION =-> <D>

LEFT RECURSION --> <E>

LEFT RECURSION =-> <F>
REACHABILITY ANALYSIS

ke dok ke ook dek ek ke kek Kok ddkw
UNREACHABLE NONTERMINAL ---> <E>
UNREACHABLE NONTERMINAL ---=> <F>

Fig. 19 Test 2 of an invalid TG
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<S,.VIP> 1= <35> <S5.VIP> , # .

<S> 31= <S,PACKET> <WAIT.ACK> .

<S.PACKET> 8:= <5 ROUTING> , <S.HOST> .

<5 JHOUTING> $3= S§S RO SN ST SS

<5 .HOST> #:= S5 GS SN ST SS

<WAIT.ACK> :3= <ACK> , <RETRANSMIT> <WAIT.ACK> ,
<S> <WA IT +ACK> .

<ACK> ts3= AS RT FS .

<HETRANSMIT> s$3= TO RT ST SS .

<5.VIP>

So RU SN ST S5 AS RT FS # .

<S.Vip> 3t= <s> <s.Vip> i # .

<s> 3= <s.packet> <wait.ack> .

<s.packet> 3= <s.,routing> | <s.host> .

<s.,routing> 33= ss ro sn st ss .

<s.host> t%= ss gs sn st ss .

<wait.ack> $3= <ack> | <retransmit>
<wait.ack> | <s> <wait.ack> .

<ack> 3= as rt fs ..
<retransmit> 3= to rt st ss .

PKOPER TERMINATION ANALYSIS
sk ok Kk ok ok ek ok Kk Ak AR KR AKX K
THE TERMINATE SYMBOL ISt #
NO LEFT RECURSION
REACHABILITY ANALYSIS
AERKRAXAARNKAAXR KK AXRARN XXX
NO UNKEACHABLE NONTERMINAL
ALL NONTERMINALS CAN TERMINATE PROPERLY.
ACTION SEQUENCE TESTING
K AEK R KKKk Kk dkk hk kk kkkk kkk
19 <s.vip>
11 ss ro sn st ss as rt fs # .
THE SYNTAX OF THE ABOVE ACTION

SEQUENCE 1Ss CORRECT

INDENTED CYCLES LISTING
ke ook doe Ak ke sk ek ek ok ok Kk w

Coo~N OUA Wi —

:j <S,.,Vip> $3= <s5> <s.vip>

:g <s> %= <s.,packet> <wait.ack>

16 <wait.ack> 33= <s> <wait.ack>

:; <wait.ack> 3= <retransmit> <wait.ack>
ég <wait.ack> 23= <s> <wait.ack>

Fig. 20 Test 3 of a valid TG



The Validation System 136

4,7 TG Global Validation

As we discussed in Chapter 2, protocol syhtax errors
such as transmit interferences, looping, deadlocks and
incompatibility may arise when two (or more) entities
communicate with each other. We may derive a shuffled TG to
represent the interactions of the entities by the restricted
shuffling of their respective TGs. The same syntax checking
techniques can then be applied to the integrated TG to
ensure that it 1is well structured,'non—deterministic and

free of deadlockse.

DQI;ZS A global siate of two communicating TGs 1is a
composite state [51,S2)], where S| and S2 are the states of
the communicating ent ities. The global state may also
include the state of the channel between the TGs for the

purpose of validation.

PDef.24 A realizable state of two communicating TGs is a
global state which can be reached from [S0,50“] where S@ and
S¥’ are the starting states of the TGs. A receive action of
a TG cannot occur unless a corresponding send action at the

other communicating TG has already occurred.
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Static structure validation techniques for a local
environment of the previous section can be applied to global
validation. Incompatibility can also be checked from the
restricted shuftling operation. Algorithms can be used to
list all the loopings, static deadlocks and
incompatibilities by exhaustive checking of all the possible

transitions between gylobal states.

However, TG global validation techniques do sufter from
the state explosion problem when the number of .states
involved 1is relatively large. For two communicating
entities with states numbering nil and n2 respectively, the
number of global interacting states arfter restricted
snuffling 1is bounded by the Cartesian product of nl and n2.
Tne state explosion problem is even more serious when we
have to model complex channel states such as loss and out of
order. A validation automaton model 1is introduced in
Chapter 5 to perform automatic global validations in a clear

and concise manner.

4.8 Structured Verification

The following step—-wise validation techniques can be

used to verify the protocol correctness of the TG protocol
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model. .First, induction rules can be conveniently used to
prove protocol properties of validation independent parts

directly from the transmission grammar.

Local validation can be applied to check the syntax of
the TG to see if it is well structured and global validation
can be applied to reveal sophisticated protocol syntax

errorse.

By the arbitrary shuffle operation, the validation
independent part TGs can then be integrated into a new TG
while still keeping the action sequences and the verified
protocol properties of the individual validation independent
part TGs. We may add some semantics to the integrated TG
and apply the TG for the purpose of automatic

implementation.,

From tne required nhierarchical design of protocol 7TGs,
the complexity of verification can be further alleviated by
way of structured verifications that 1is, proving the
properties of one layer by utilizing the known (proved) TG

properties of its lower layers.
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Induction proof

We will demonstrate a protocol proof example from TG
specificatione. The example is similar to the sending part
of G2 in Chapter 3. The purpose of this example is to
demonstrate that the TG specification can contain certain
protocol "semantics" properties. We can prove that it will
generate the following language L. (GsSn and AsFs are two
atomic symbols,) We use the symbol *#" as the meaning of

"the number of occurrences".

L={wiwe{GsSn,AsFs}* and (the # o1 GsSn’s inw = the # of
AsFs’s in w) and (for all x,y such that w=xy with x#€, the
# of GsSn’s in x >the # of AsFs’s in x) '

Properties of Lt

(1) L is the language of all sentences W in . {GsSn,AsFs}x
such that if one scans w from left to right, he will always
have encountered at least the same number (if not more) of
occurrences of GsoSn’s as AsFs’s and at the end of the scan

tne # of GsSn’s must equal to the # of AsFs’s.

(2) If GsSn = ( and AsFs = ) then L is equivalent to the set
of balanced parenthesis strings, i.e., the set

(O, D))y ((()))yeeeele Therefore we call the string

generated by L a palanced string.
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EXAMPLE 4.5

Claim If G2 is a CFG2 for L, where

G2=(Vn,Vt,P,<st>)
Vn={<st>,<5>)
Vt={GsSn,AsFs}
Ps
<sSt> 83= <s> |} €
<s> 8$3= (GsSn <st> AsFs <st>

then L{G2)=L
Proof

Ne will prove by induction on n, the length of sentence
w, that for all n2il, <st> =>w if and only if w is a

sentence in Ly 1i.e., (the # of GsSn’s in w = +the # of
AsFs’s in w) and (for all x,y such that w=xy with x#€, the
# of GsSn’s in x 2 the # of AsFs’s in Xx)

(a) (<=) prove if w is balanced then w is a string in L(G2).
For n=0, i.e., w=€ and w€L(G2) is trivially true.

For n>@, let the hypothesis hold for all k<n where k is the
length of the string.

If w is a string whose length is n, then w is the form
W = GsSn w| AsFs w2

where wl! and w2 are balanced strings and may be null. Since
w is of length n, wl and w2 must have length less than n,
therefore wl and w2 can be generated by G (by assumption).
i.e.

<st> => wl, <st> => w2
But trom the production rules, we observed thats

<st> 18= <s>
<s> 3= GsSn <st> AsFs <st>

so we have <st> => w

From the induction rule we know (a) holds for all n e N,

(b) (=>) prove if w is a string in L(G2) then w is balanced.
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For n=0, <st> 33= € and € is a balanced string, therefore
the hypothesis holds.

For n>9, let the stings derived irom <st> be balanced if
they are of length less than n. Now, consider a derivation
of a string w of length n and w = GsSn wl AsFs w2

whnere Wl and w2 are strings in L(G2). Since wl and w2 must

have length less than n, therefore wil, w2 are balanced
strings(by assumption). Now, w = GsSn w| AsFs w2 is

balanced if wi and w2 are both balanced.

From the induction rule, hypothesis (b) holds for all n e
N.



CHAPTER 5

GLOBAL VALIDATION TECHNIQUES

5.1 Ulobal Validation Overview

lTechniques for global validation of computer network
protocols have progressed significantly in the past two
years (Sunshine78a,bl. Part of the increased success of
recent efforts has involved the ability to automate some
steps of the protocol analysis, .particularly the checking of
the global state space. A global state is the state of two
communicating entities plus messages flowing in the
transmission channel between then. Transitions 1rom one
global state to another are derived from the state
transitions of the individual entities, by including all
realizable transitions of either entity, given the state of

the transmission mediume.

142
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Hajek (78, 791 and West [78bl] have developed programs
which interactively generate all the reachable global states
from an initial start state of the system and have
identitied the occurrences of a number of errors such as
déa&locks and incompatibility (receive incompleteness). The
algoritnm 1is essentially a tree generation scheme which
works as followss (1) first generate all possible
transitions given the initial state to derive a number of
new global states, ana (2) repeat the process for each of
tne .newly generated states until no new states can be
generated. (otop the exploration for transitions that lead
to already generated states.) West has validated the call
establishment paft of the CCITT X.2! protocol and uncovered
a number of incompleteness (incompatibility) errors. Hajek
has designed a protocol verification program (APPROVER)
which has revealed a number of errors in some published

protocols.

In Chapter 4, we have snown that the Jlocal grammar
description of a communication entity allows us to automate
reachability analysis and to Jderive a protocol with correct
program (TG) structure. The reachability analysis is also
well-suited to validate the structure for global state
transitions. It can detect protocol syntax errors such as

deadlocks, incompatibility and infinite idle looping.



Global Validation Overview 144

Although the global state models are able to —model
control aspects of protocols well when the numbers o1 global
states are relatively small, the major difficulty of this
technique 1is M"state explosion®, The cardinality of the
composite states between two communicating entities is equal
to (the cardinality of states 1in one entity) x (the
cardinality of states in the other entity) x (the
cardinality of states in the transmission medium). The
global state explosion problem arises when the number of
states involved is relatively large. The explosion problem
is especially serious when we have to model a large number
of sequence spaces, multiple outstanding sends and random
delays. The difficulty 1is that these characteristics
introduce non-polynomial complexity. For the case of 10
messages outstanding with random delay, the number of
possible arrivals at the receiving entity is 128!, This
explosion 1is large enough to make a program with an
execution time of seconds become an execution time of years.
.This level of complexity certainly makes it impractical to
generate and check all reachable states in reasonable time

and storage.

We will introduce the validation automaton (VA) model
using a special validation language to handle the state
explosion problem. Several important types of protocols

have been successfully validated by the VA model in this
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chapter. Reduction techniques can be used in the VA model

to simplify the validation process for the protocols.

We shall use the abbreviations "VA"™ +to represent
“validation automaton® and "VAs" to represent ‘"validation

automata" throughout tne rest of the dissertation.

5.2 Validation Automaton Model

The validation automaton model is designed to . describe
tne interaction and interdependency of communicating
entities. Using the va model, we first specify a VA for
each of the communicating entities and then derive a global
va from the VAs of the entities to represent the global
state transitions. This wvalidation model allows global
state transitions in the global va to be represented 1in a
simple and clear manner. It can conveniently model complex
channel characteristics such as loss, disorder and multiple
outstanding sends to reveal protocol syntax errors. The
idea is to "view" the channels between the communicating
entities as a set of queues and use actions in each VA to
manipulate the queues. The actions are designed to have the
capability of reducing the number of global states. We will

first restrict ourselves to the case that only two entities
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are communicating and then expand tne model to handle more

than two ent ities.

As shown in Fig. él, a full-duplex channel between two
communicating entities A and 3 is represented by two sets of
acknowledgment and message queues, one for each entity. The
convention we use for naming a channel queue is to put the
name of the queue first, followed by the name of the entity
for. which the queued elements are destined. (The two names
are separated by a "_".) For example, the name ACK_E means
the acknowledgment queue which contains acknowledgment
elements flowing toward entity B3 MSG_A means the message
queue which contains message elements flowing toward entity
A. For eacn validation automaton, we specify validation
actions whicn manipulate the queues or change some relevant
~state information. The set of validation actions which can
be used to manipulate tne queues will be presented in the

Next section.
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Fig. 21 Channels represented by a set of queues
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A global validation state ot two communicating entities
A and B can be represented as the state information of both
entities plus the channel represented by channel queues.
For two-entity interaction, we can represent the global
state by the following matrix format (excluding the

interfaces with higher-layer entities).

Entity A MSG_B ACK_AY Entity B
State H H State
Information ACK_B MSG_A, Information

Each entity has a column in the matrix wnich includes
an acknowledgment queue and a message queue oI €lements
flowing toward the other entity. Since the matrix already
has queues of channel information to represent the
interactions, the state information usually is not required

in the representation.

Th order to include the interactions with higher-layer
entities of entities A and B, the channel queues can be
represented by a two-row matrix with multiple columns. The
queues in the top row contain messages flowing to the
immediate right entity and acknowledgments flowing to the
immediate left entity. The queues in the bottom row have

the opposite direction of flow to the top row. The channel
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queues of the vcommunicating entities A and B are shown in
Fig; 22, including the interfaces to higher-layer entities
Al and Bl. To prevent confusion arising .from using the same
queue and destination names at different entities, we may
include the source entity in the queue name. For example,
ACK_A(B) means that the acknowledgment queue has elementé

. originating trom source entity B and destined for A.

Entity A1 ¢ Entity A H Entity B : Entity BI
L] [] ]
MSG_A | ACK_Al MSG_B § ACK_A MSG_BI1 ACK_B
] t []
ACK_A + MSG_AI ACK.B I MSG_A ACK_B1 i MSG_B

Fig. 22 Channel queues including higner-layer .interfaces.

As we can see in Fig. 22, each row in a channel matrix
represents the message transfer one direction and the
acknowledgment . transfer in the other direction, We
therefore need only one row to represent the global state of

a half-duplex channel.
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5.3 Validation Actions

The following is a list of the actions which are useful
to manipulate messages in the channel queue. Each action is
usually followed by a queue name and a message name as its
operand. The convention is to put a "." to separate the

names of the action, queue and message.

(1) Queue (Q) —- This action inserts the specified message
into the specified queue in a first-in-first-out (FIFO)

manner (i.e., it puts the message at the end of the queue).

(2) Priority Queue (P) =-- This action inserts the
specified me ssage into the specified queue in a
last-in-first-out (LIFO) manner (i.e., it puts the message
at the front of the queue). It is the same as a PUSH

operation in a stack structure.

(3) Fetch (F) =- This action deletes the specified message
from the specitfied queue in a random manner. The action
cannot "“occur" during tne global state generation if there

is no message in the queue,

(4) Dequeue (D) —- This action deletes a message from the

top of the specified queue (in a FIFO manner).



Validation Actions 151

(5) POp (0) — This action deletes a specified message

from the bottom of the specified queue (in a LIFO manner).

(6) Clear (C) — This action deletes all o1 the messages

from the specified queue (i.e., clears the queue).

(7) Empty (E) -— This action tests whether the specified
queue 1is empty. The empty action should appear as a head
action symbol in an alternate part of a grammar rule in the
VA. All the actions in the alternate part cannot Yoccur®
during global state generation if the queue 1is not empty

(i.e., the empty condition is not true).

(8) Non-empty (N} =-- This action tests whether the
specitried queue 1is non-empty. The non-empty action should
appear as a head action symbol in an alternate part of a
grammar rule in the VA. All the actions in the alternate
part cannot "“occur® during the global state generation if
the queue 1is empty (i.e., the non-émpty condition is not

true).

e can use a special sympol ¥*" to represent all the

queues in an entity. For example C.*A means clearing all

tne queues of entity A.
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From a protocol specified in TG model, we can easily
derive its dorresponding VA by changing all the terminal
actions of the TG to the corresponding validation actions.
These eight validation actions are adequate to model all the
global state changes. In general, a send action puts a
message into a queue for a period of time and a receijve
action deletes a message from a queue. Buffer size may be

included 1in the validation automaton and can be checked

automatically during the global VA generation.

An example of the validation automaton model 1is shown
below for a simple point-to-point protocol between entities
A and B. The interfaces witn higher—-layer entities have

been omitted in the example.
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The TGs for a simple protocols

<idle> 31= Ycreate.message" "send.MSG" <pending>
<pending> 33= Yreceive .NACK" "retransmit' <pending>
i"receive.ACK" <idle>

2enderA

<wait> 8= Yreceive.MSG" <consume> <wait>
<consume> $t= "send.ACK" | "busy" "send.NACK"

ReceiverB

The corresponding VAs for A and B aret

<idle> 3:= Q.MSG_B.MSG <pending>
<pending> tt= F,ACK_A.NACK Q.MSG_B.MSG <pendinc>
i FJACK_A.ACK <idle>

YA of JenderA

<wait> 8t= F . ,MSG_B.MSG <consume> <wait>
<consume> 33= Q.ACK_A.ACK { Q.ACK_A.NACK

YA of RecelverB

Tne ¢lobal VA for the local VAs is shown in Fig. 23. Note
that we usually put lower case letters to represent elements
in the acknowldgment queues, and state 5 changes to state 2
by per forming indivisible actions F.ACK_A.NACK and
Q.MSG_B.MSG.
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Fig. 23 Global VA of SenderA and ReceiverB

As we have discussed earlier, the major difficulty of
this global validation model is "“state explosion". Before
using the model to represent and validate the global
transitions of more complex protocols, we must investigate
basic techniques for alleviating the global state explosion

problem.
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5.4 Reductions of States and Transitions

In the following, we present userul rules for reducing
the number of states and transitions (arrows) in a global
validation automaton, which can alleviate the global state
explosion problem. The basic idea of the reduction is to
remove all the states and transitions which are irreleyant

or redundant for the .purpose of validation.

5.4.1 General Reductions

Rule 13 It is not needed to model non-existent

problems .

The validation problem cnecklist for a protocol can be .
derived according to the method described in Chapter 2. The
validation problems have to be included in the VAs for the
global validation but it is not needed to model those

problems that do not exist in our design.

RBule 2% A sequence of actions within a communication
entity should be combined into an indivisible action
[Hajek78] or an atomic action [Sunshine78bl] as long as it is

known to be indivisible from the designer’s point of view.
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The validation automaton fepresented by the validation
actions is already a simplified model because actions that
are irrelevant to the global interactions are not included.
The idea of combining actions together further reduces the
number of local states in the VA, .and thus reduces the
number of global states in the global VA. 1In order to
validate the actualvdesign, the validation result should be
the same even we combine actioné together. During the
process of the global state generation, any action can be
performed witbout delay if it does not depend on the current
content of channel queues. For a validation -automaton
specified in a grammar form, there is an algorithm available
to combine the grammar rules [Wirth761]. We can use a

similar technique to derive the indivisible actions.

Bule 3t Any global transition that causes local state

changes for both of the two communicating entities cannot

occur in the global VA»mddel.

This simple rule helps us reduce transitions of
.simultaneous state changes for both of +the entities
[Sunshine78bl. Although the composite transition resulting
from .simultaneous transitions is perfectly legal, it can be
represented by'é sequence of the two individual transitions

at either end,
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5;4.2 Homogensous Reductions

The TGs of two communicating entities are said to be
honmogeneous if one is a mirror image of the other (by mirror
image we mean that the TGs or validation automata of these
two entities are identical except that the directions of the
messages are opposite). Two global states are said to be
symnetric [HHajek781 if they are. identical except for
switching entity states and messaye directions in the

channel queues.

Rule 4t If the TGs of two communicating entities are
homogeneous, it is not needed to trace the extra symmetric

global states in the process of global validation.

A large number of real-world protocols have homogeneous
TGs among the communicating entities. We can reduce up to
half of the global.states in the global validation automaton
by excluding the redundant symmetric states. The reason
that we need to model only one of the symmetric states is
that the states have the same Ypattern" of transitions and
the 1investigation of any one of them will .serve our

validation purpose o1l finding syntax errors.

Two symmetric states always have opposite directions of
message flow. The following steps may be used to derive the

symmetric state for any given global states (1) interchange
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the two rows 1in the matrixi (2) reverse the sequence of
both rowsy and (3) change the names for both the state
informat ion and the elements of one entity to the

corresponding names used by the other entity.

The checking of symmetric states can be done by a
computer program if we use hashing techniques to check the

elements of the state matrix.

Rule 4.1 If the channel between two homogeneous
entities 1is halrf-duplex, it need validate the message flow
for one direction only§ that is, the sending part of one

entity and the receiving part of the other.

This rule is obvious because of the symmetric property

of the protocols for each direction of message flow.

Bule 4.23 If the channel betveen two nomogeneous
entities is full-duplex and the message flow in one
direction does not intertere with the message flow in the
other direction, only one direction of message flow need be

checked in the global validation process.

The global transitions for both directions of message
flow in the previous full-duplex channels are simply the
arbitrary shuffle product of the global VAs Ifor both of the
half-duplex channels. This property will be shown in the

example of Fige. 31 later in this chapter.
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5.4.3 Retransmission Reductions

A message is said to be fully retrapsmittable if it
satisfies the following two conditions: (1) the message has
a retransmission mechanism or Iis a response to a
retransmittable message, and (2) the retransmit has the
original message as its content or part of its content so
that the semantics of the original message will be correctly

delivered.

Rule 58 It is not necessary to model loss of a message
(including acknowledgment message) and its retransmission in
the validation automaton if the me ssaye is fully

retransmittable.

Thus a fully retransmittable message can simply be
modeled to remain in 1its channel queue in the global VA
until it is tetched by the receiver. The second restriction
of a fully retransmittable message is important and cannot
be taken for ygranted. For example, if a retransmit is an
acknowledgment in a piggybacked message, it should have its
original acknowledgment as its content or part of its
content. (The -echo protocol, which echoes the current
status ot the number of messages received, is an example of
having the original acknowledgment as part of its content.)
Without this restriction, the retransmit cannot be assumed

to represent its original content, and interference errors
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might happen if the incorrect assumption 1is made. IfT a
message is not fully retransmittable, we have to model all

the distinct retransmits and their losses in the global VA.

5.4.4 Multiple Outstanding Send and Disorder Keductions

Bule 6¢ 1If, at a global state, an entity has the state
information . about acceptable sequence(s) of incoming
me ssage(s) from the other entity, the following
simplifications can be made for the transitions from the
global state: (1) multiple outstanding sends can then be
modeled by a FIFO queue and received at the receiving site
in the corresponding F IFO sequence$ (2) no delay message
(with an old sequence number) need be modeled; and (3)
non-acceptable messages in the queue can be directly cleared

and need not oe dequeued.

The first simplification of Rule 6 is significant for
protocols that allow multiple outstanding sends. As we
explained before, the number of possible arrivals at the
receiving entity will be 10! for 10 outstanding message
sends. In many cases, we simply cannot afford to have such
a non—-polynomial complexity in the algorithm for generating
the global state transitions. Accepting the outstanding
sends in a FIFC sequence, on the other hand, means that

there will be Jjust one possible arrival sequence that need
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be checked from the validation point of view.

The modeling of delayed messages from a previous or
current connection session is very tedious and complex., The
second simplification of Rule 6 is of course important since
it removes the requirement of considering them. The third
simplification eliminates the need for modeling transitions
in a global VA to dequeue non-acceptable elements from

me ssage queues.

As we explained in Cnapter 2, application layer
protocols have the guarantee of an input sequence which is
the original output sequence from the sender. This property
is equivalent +to having the sequence information about
acceptable messages all the time. Therefore, the validation
of all the application layers can be greatly simplified and
no delayed messages need be modeled. The connection
management protocol of TCP can also use this rule as we

shall explain in Case 4 of the next section.

If entities A and B are communicating through a channel
with variable delay and each entity does pot have knowledge
about the expected sequence of the incoming messages from
the other entity, then we must mocel the delay messages.
The tollowing rule can help us reduce the number of states

required for modeling delays in the global VA [Sunshine78bl].



Reductions of States and Transitions 162

Bule I3 All the delay messages M of entity A can be
represented as Mx 1if they have the same validation effect
and it 1s superfluous to distinguish them. In general, a
mesage M is labelled according to the following notations

for communicating entities A and B3

Ma 8 stands for a current message sent out from entity A.
Mo ¢ stands for a current message sent out from entity B.
Mx ¢ stands for a delay message sent out from entity A.
My ¢ stands for a delay message sent out from entity B.

Rule 8¢ Delay messages may appear in a channel queue

one message at a time and should be dequeued immediately.

Rule 23 If a channel queue has semantically
homogeneous elements, the queue can be modeled by a stack

which consists of identical elements.

If the data or control messages in any channel queue
are homogeneous, their fetching sequences at the receiving

site are irrelevant to the validation.

Rule 14t The elements in an acknowledgment or message

queue should be fetched individually.

This rule helps us reduce the number of transitions in
a global VA by eliminating the transition of the fetching of

multiple elements in a queue. Although multiple
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acknowledgment or message delivery is perfectly legal and
possible with respect to the actual implementation, it can

be represented by a sequence of single receptions.

5.5 Global Validation Examples

In order to apply the VA model and various reduction
rules descrioed in the previous sections, we consider in
this section four validation examples. For simplicity, we
assume the perfect error detection of messages (i.e., wWe can
always detect the message error and damage). We also assume
that the protocols are operated under normal conditions

without hardware failures.

(1) Case 1t Hajek’s echoing protocol

This simple and special protocol introduced in
[Lynchod, Hajek78) is homogeneous for entities A and B, and
we only show the protocol program for A in Fig. 24, It
uses an implicit timeout scheme and sends out a message when
tne timeout occurs. It uses a simple half-duplex channel
for a point-to-point connection and allows single
outstanding send. It is also assumed to always have a

ready—-to-be-sent message at each end,
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EntityAs % Echoing protocol
begin %A <msgBtoA>tt= <verifyBtoA> <altBtoA>
% <databtoA> <checkBtoA>
altdA s= altsA 8= @3 gotackA st= trues
everfetchedA 3= false}
while true do 4 until doomsday
begin % begin receiver
bufferinA 3= msgBtoAs % got empty or invalid
% or valid input
msgBtoA = emptys} % message "removed" from
#B-to~A channel head
if checkBtoA is valid then
begin gotackA 3= verifyBtoA:
it altBtoA # altda then
begin queueinA 3= dataBtoAj % accepted
altdA t= | - altdAs
ends}
ends$ % end receiveri begin sender
it gotackA = altsA then
begin if everfetchedA then delete (queueoutA)s
altsA =1 - altsAs
bufferoutA 3= altdA & altsA & queueoutA &
checkAtoEs
everfetchedA 3= truet
ends
msgAtoB 3= bufferoutAs %sent
% end sender
end whiles
ends

Fig. 24 Hajek’s echoing protocol program

Since an echoing acknowledgment 1is wused in the
protocol, it does not have the piggyback interference

problem, Both the message and the acknowledgment are fully
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retransmittable. According to reduction rule 5, it is not
necessary to model the message loss and retransmission in
the validation automaton for the protocol. We derive the
" VAs and the global VA in the following to reveal potential

syntax errors.,

<A> 33= (F.MSG_A.B Q.ACK_B.b) Q.MSG_B.A <A’>
<A’> 33= (F.MSG_.A.B Q.ACK_B.b)(F.ACK_A.a Q.MS5G_B.A) <A’>

By following rules 2,3 and 5 we can derive the global
validation automaton as shown in Fig. 25. By following
rule 4, we can derive the simpliiied global VA as shown in
Fig. 26, The glotal VA demonstrates several important
correctness properties: there is no deadlock state and the

entities are compatible.

The original validation scheme 1in [(Hajek78] did not
apply the reduction rules and therefore has more states and
transitions than the global VA. However, the major
simplification 1is possible only if the messages are fully

retransmittable.
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Fig. 25 CGlobal validation automaton for case 1.
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(2) Case 2t This protocol is similar to the protocol of
case |, but it has an explicit timeout retransmission
mechanism and the messages are not always ready-to-be-sent.

Tne transmission grammar for the protocol is3

<st> $3= MWreceive data" <st> : "send data" <wait>
<wait> 33= ¥receive data" <wait> | "acknowledged" <st>
i Y"retransmit" <wait»>
Because of the full retransmission and echo
acknowledgment, we need not model the retransmission and
loss for the protocol. Tne TG for entity A can be rewritten

as the following validation automatons

<st> 1= F.MSG_A.B Q.ACK_B.b <st> { Q.MSG_B.A <wait>
<wait> 3= F.MS5G_A.B Q.ACK_B.b <wait> | F.ACK_A.a <st>
By tollowing rules 2,3 and 5 we can derive the global
validation automaton as shown in Fig. 27. By following
rule 4 we can further simplify the global VA to be the one

shown in Fig. 28.
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Fig. 27 Global validation automaton for case 2.
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Fig. 28 Simplified global VA of Fig. 27.
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The glooal state diagram for case 2 protocol
demonstrates several aspects of protocol correctness. The
entities are compatible and there is no deadlock in the

global state diagram.

Since the protocol in case 2 1is homogeneous and the
message flow. In one direction does not interfere with the
message flow in the other direction, we can apply rule 4,2
to simplify the model by checkinyg only one direction of
message flow. We then need only to -model the global
Validation automaton for sendA (send VIP of entity A) and
recelvB (receive VIP or entity B). The global VA for sendB
.and receiveA 1is tor the other direction of message flow.
The global VA has +therefore been separated into two
validation independent parts as shown in Fig. 29 and each

part models one direction of message flow.
The VAs for sendA and receiveB3 are shown belows:
<sendA> 33= Q.MSG_B.A <waitA>

<waltA> 3= F,ACK_A.a <sendA>

<receiveB> tt= F MSG_B.A Q.ACK_A.a <receiveB>
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Fig. 29 Global validation .independent parts.

We can derive the global VA of sendA and receiveB, Al,
as shown in the upper left part of Fig. 3@, and the global
VA of sendB and receiveA, A2, is shown in the wupper right
part of Fig. 30. The global VA of entity A and B is the
arbitrary shuffle product of Al and A2, and is shown in the
lower . part of Fig. s¥. It is the same as the global VA of
Fig. 25 which represents the global interactions of the

full-duplex channel.
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Specificly, we can formally write the global VA for

sendA and receiveB as automaton Al

Al = ( Klytl,[€ €1,F1 )

{ (€ €l,[A €],[€ al )
{ e el )

wnere Kl
Fi

and fl is defined as followss

fl ( (€€ )=( [A€])
£1 ( (A€l ) =([€al)
f1 ( [€al)=(L[€e€)),

The global VA for sendB and receiveA is written as automaton
A23

where K2
F2

{ le el,[e Bl,[b €] )}
{ (e €1)

and 12 ié defined as follows?

f2 ( (€€ )= ([€B])
£2 ( (€ Bl )= ([b€))
2 (b €l)=((€€l),

The global VA for entity A and B is therefore Al//A2t
Al/7A2 = ( Kl x K2,f3,[(e €]1,[€ €11,F3 )

where Kt x K2 = ( [l€ €ll€ €1],([e elle Bll,[le €1[b €11,
(LA €lle €1]1,[[A elle B11,[[A €llb €11,
(Le all€ €11,[[€ alle Bll,[[€ allb €1]
F3 = ( [le elle €1] )

)

and f3 1s defined as followss

f3 ( [[e €],qil )
f3 ¢ [[A €],qi] )
3 ( [Le al,qil )

( [[A €1,qi] )
(€ al,qil )
( ([ €l,qil ) ¥ gi € K2

W nan
-~~~

and f3 ( [pi,l€ €1] )
f3 ( [pi,l€ Bl]
f3 ( [pi,lb €1]

( [pi,i€ Bll )
(pi,[b €11 )
( lpi,le €11 ) ¥ pi € Kl

it nu
~~
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(3) Case 3% Multiple outstanding sends

As we have discussed in Chapter 3, some powerful
protocols have a feature to allow several sending packets
outstanding. This type of protocol can be modeled by a
type-2 transmission grammar or a push-down automaton. The
protocol in tnis case is homogeneous and full-duplex. It is
validation independent for each direction of message flow
and the elements in each queue are homogeneous. From
reduction rules 3, 4, 4.1, 5 and 9, we can use the following

validation automata for sendA and receiveB.

<sendA> 33= Q.MSG_B.A <sendA> F.ACK_A.a <sendA> | €

<receiveB> :t= F.MSG_B.A Q.ACK_A.a <receiveB> | €

From these VAs we can get the global VA 1or the
direction of message flow from entity A to entity B as shown
in Fig., 30. Because of the boundness of protocols, the
nunber of outstanding messages has to be limited in the
protocol., The figure shows that entity A can have at most n
messages outstanding at any time, (Ne have to wuse a
context-sensitive grammar to specify the global VA 1if the
number of outstanding messages 1is unbounded.) The figure
also shows that (1) when a message is sent from entity A,tne
state moves downward one level$ (2) when an acknowledgment

is received by entity A, the state moves upward one levels
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(3) when a message is received by entity Bs the state moves
one step to the rightsy and (4) the total number of elements
in both queues. is equal to the number of outstanding
me ssages, and the cardinality is the same for all the states

at the same level.
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Fig. sl Glopal VA tfor one-way message flow of case 3.
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The global VA in Fig. 31 also demonstrates several
aSbects of protocol correctness for a half-duplex channel.
There is no deadlock state and the entities are compatible.
The. protocol will eventually terminate at the state on the
top level after all the messages have been sent and

.acknowledged.

The following context-sensitive grammar can be used to
specify the global VA which defines all the global action

sequences for an unbound number of outstanding sends?

<Exchange> :$= <Qm><Fm><Qa><Fa><Exchange> | €
<X><Qm> 3= <Qm><X> ¥ <X> e {(<Fm>,<Qa>,<Fa>)
- <Y><Fm> 3t= <Fm><Y> ¥ <Y> e {<Qa>,<Fa>)
<Z><Qa> 38= <Qa><Z> ¥ <Z> e (<Fa>)}

<Qm> 3= Q.MSG_B.A

<Fm> 33= F.M5G_B.A

<Qa> 33= Q.ACK_A.a

<Fa> $t= F.ACK_A.a

The global VA for the full-duplex channel can also be
derived Dby the arbitrary shufile operation of the global
VIPs. The shuffled global VA will be correct because it
preserves the action sequences and the verified properties

of the individual global VAs.
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(4) Case 4% Connection setup for variable delay channels.

Since a logical connection between two entities of the
host/host layer in a computer network requires significant
resources, it is desirable to maintain a connection only if
the entities are comnunicating. This requires mechanisms

for opening a connection when needed.

In a packet switching network, the mechanisms should
also handle delay and failure. When a connection exists, a
sequence checking mechanism can be used to reject duplicate
messages from a previous closed connection or the current
connection. If no connection exists, then no duplicate from
a previous closed connection should cause a connection to be
opened and duplicate data accepted by the next layer. The
sequence checking mechanism used when a connection exists
cannot be used if no connection exists, because the receiver
does not have the required sequence information to check the
incoming message, We can use a three—-way-handshake
procedure to protect against the interference of packets in
an old connection by not allowing data to be passed to the
next layer until the successful exchange of three messages

[Cert77,Fletcner78]. It works as followss

Assume that an entity A wishes to communicate with an
entity B in a tull-duplex channel and <SYN> is the control

packet to open a connection.
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(1) A sends B a <SYN> packet with an initial sequence
number a.

(2) B acknowledges the receipt of the sequence number a in
a <SYN-ACK> packet which contains its own initial sequence
number b.

(3) A in a third packet acknowledges receipt of B’s
initial sequence number b.

The reason for the three-way—-handshake can be seen by
assuming that the 1initial message from A is an old <SYN>x
packet with sequence number X. B has no way of knowing
this, so it responds <SYN-ACK>b with sequence number b and
acknowledges the packet X. However, when A gets B’s
acknowledgment of the old opening (packet x), it can
recognize that B 1is not acknowledging a valid sequence
number., It can then reply with a reset signal <RST>x to
break tne connection rather than an acknowledgment of B’s

initial sequence number, b,

There are many subtleties with the three-way-handshake
procedures, such as what happens if any of the three
messages gets lost, if both sides receive o0ld opening
packets, or if both A and B try to open simultaneously. We
would also like to know if +this procedure will lead to
deadlock or incorrect establishment. In order to 1ormally
study the three-way-handshake protocol, we first specify a
TG for the TCP connection protocol as shown in Fig. 32. We
can then derive the validation automata for both A and B

from the TG, and check the global VA of the VAs.
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The VAs in Fig. 33 illustrate local state changes of
entities A and B, but contain neither the inter faces with
higher~layer entities nor actions which are irrelevant to
the state changes. Notice that the VAs are homogeneous and
are very similar to the current version of connection
management protocols of the TCP in ARPANET. The
transmission grammar describing TCP has been shown in

Cnapter 3.

To model A, we have to model old messages 1lor the
channel where variable message delays are possible., The
message elements are <RST>, <SYN-ACK> and <SYN> which are
represented as R, A and S respectively in Fig. 33. <SYN>
is a control message used at the initiation of a connection
to indicate where the sequence numbering will start.
<SYN=~ACK> is a control message to acknowledge a received
<oYN>, <RST> is a reset control message, indicating that
the receiver should delete the current connection without
further interactions. The receiver can determine, based on
tne sequence and acknowledgment fields of the incoming
me ssage, whether it should honor the reset command or ignore

it.
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<c losedA>» 3= <receiveA> | <sendA>
i "RCV.<rst>" <closedA>

:

<receive.old.synack> <closedA>
KreceiveA> :3= <receive.syn> <wait.ack>

receive.syn> 8= “RCV.<syn>" “RSND,<synack>"
wait.ack> $3= “RCV.<ack>" |

i YRCV.<rst>" "clear"
<closedA>
KsendA> 33= WRSND.<syn>" <waite.synack>
<wait.synack> 3= <receive.synack> i <collision>
i <receive.old.synack> <wait.synack>
i <syn.rejection> <closedA>
receive.synack> 23= "RCV.<synack>% YRSND.<ack>"
Ecollision> 3= MRCV.<syn>" #clear" “RSND.<rst>%
syn.rejection> 3t¢= "RCV.<rst>" W¥clear"

Kreceive,old,synack> 23= WRCV.<old.synack>" "RSND.<rst>"

Fig. 32 TG for TCP connection protocols
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<closedA> 33= <receiveA> | <sendA>
+ F.MSG_A.R <closedA>
! <receive.,old.synack> <closedA>
KreceiveA> 3t= <receive.syn> <wait.ack>
¢ Q.MSG_A.Sy <receive.old.syn> <wait.rejection>
receive.syn> 3= F,MS5G_A.Sb Q.MSG_B.Aa Q.SN_A.a
Q.ACK_B.b Q.RN_A.b (F.MSG_A.R)
wait.ack> si= FoACK_Aoa
receive.old.syn> $3= F.MSG_A.Sy Q.MSG_B.Aa Q.SN_A.a
Q.ACK_B.y Q.RN_A.y (F.MSG_A.R)
<wait.rejection> 3= F.MSG_B.hy C.»A <CclosedA>
KsendA> 33= Q.MSG_B.Sa Q.SN_A.a <wait.synack>
<wait.synack> $8= <receive.synack> | <collision>
i <receive.old.synack> <wait.synack>
i <syn.rejection> <closedA>
<receive.synack> $t= F.MSG_A.Ab F.ACK_A.a
Q.ACK_B.b Q.RN_A.b
kcollision> 3= <current.collision> <closedA>
i Q.MSG_A.Sy <old.collision> <closedA>
current.collision> 3t= F.MSG_A.Sb C.xA Q.MSG_B.R
old.collision> 3:t="F.,MSG_A.Sy C.=A
(F.ACK_A.a Q,ACK_A.x)
(F.RN_Be.a Q.RN_B.X)
(N.MSG_A.a E.ACK_A Q.MSG_B.R)
Ksyn.rejection> $8= F.MSG_A.R C.*A <closedA>
Kreceive.old.synack> 33= F MSG_A.Ab F.ACK_A.x Q.MSG_B.Rx

Fig. 33 Local VAs for TCP connection protocols
(Continued on the next page)
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<closedB> 8t= <receiveB> | <sendB>
i FeMSG_B.R <closedB>
i <receive.old.synack> <closedB>
<receiveB> tt= <receive.syn> <wait.ack>
i Q.MSG_B.Sx <receive.old.syn> <wait.rejection>
<receive.syn> 3= F,M5G_B.Sa Q.MSG_A.Ab Q.SN_B.b
Q.ACK_A.a Q.RN_B.a (F.MSG_A.R)

waitoaCk> 3= F.ACK-B cb
receive.old.syn> 1= F.MS5G_B.Sx Q.MSG_A.Ab Q.SN_B.b
Q.ACK_A.x Q.RN_B.x (F.MSG_B.R)

<wait.rejection> 3i1= F.MSG_B.Rx C.*B <closedB>

<sendB> 3= Q.MSG_A.Sb Q.SN_B.b <wait.synack>

<wait.synack> $3= <receive.synack> ; <collision>

i <receive.old.synack> <wait.synack>

i <syn.rejection> <closedB>
<receive.synack> 3= F.MSG_B.Aa F.ACK_B.b
Q.ACK_A.a Q.RN_B.a
<collision> 3= <current.collision> <closedB>
! Q.MSG_B.Sx <o0ld.collision> <closedB>
l<current.collision> 3= F,MSG_B.Sa C.*3 Q.MSG_A.R
<old.collision> $38= F.MSG_B.Sx C.*B

(F.ACK_B.b Q.ACK_B.Yy)

(F.RN_A.b Q.RN_A.Yy)

(NMSG_B E.ACK_B Q.MSG_A.R)

<syn.rejection> 33=. F,MSG_B.R C.*B <closedb>"
<receive.,old.synack> tt= F,MSG_B.Aa F.ACK_B.y Q.MSG_A.Ry

Fig. 33 Local VAs for TCP connection protocols

The VAs in Fig. 33 are modeled to reduce the number of

states and transitions in their global VA. The sequence

numbers are labeled according to reduction rule 7, and

actions are combined into an indivisible action.

Retransmissions need not be modeled according to rule 6.
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The VAs in Fig. 33 also contain other specialized reduction
techniques which are suitable for the connection part of
TCP. We model the state information of the send sequence
number (SN) and the expected receive sequence number (RN) as
queués} in the VAs. We can represent the global state of A

and B by the following format.

SN_A{MSG_B ACK_AYRN_B
: '
RN_A} ACK_B MSG_A } SN_B

SN_A is the gueue whicn has the send sequence number of
entity A and RN_A 1is the queue which has the expected
receive sequence number ol entity A. RN_B and ©SN_B have
similar meanings. The sequence information is an important
tactor during global state transitions. From the VAs we can
derive the global VA as shown in Fig. 39. We explain the
global state diagram of Fig. 39 by the following cases of

transition traces.

The normal case of the three-way-handshake is shown in
Fige. 34, This figure should be interpreted in the
following way. Entity A has four channel queues, MSG_B,
ACK_B, RN_A and OSN_A. Entity B has four queues, MSG_A,
ACK_A, RN_B and SN_A. The empty sign (€) indicates that the

queue is empty. Messages of the first row flow from left to
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right while acknowledgments flow from right to left.

Starting from initial closing states at both VAs, A begins

by sending a <SYN>a (Sa as its abbreviation) indicating that

it will use sequence numbers starting with sequence number
a., b then takes the message from queue DATA_B, sends a
<SYN~-ACK>b (Ab as 1its abbreviation) and acknowledges the

<SYN> received from A by sending acknowledgment a in ACK_A.

In the next state, A fetches acknowledgment a and <SYN-=-ACK>b

from the queues and responds w#ith acknowledgment b in queue

ACK_B. After B Tfetches acknowledgment b from ACK_B, the

correct connection will be established.
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Fig. 35 A recovery'from simultaneous openings

The principle reason for the three-way-handshake is to

prevent old duplicate connection openings from causing an

interference error. Two simple cases of recovery from an

old {(duplicate) <SYN> message are shown in Fig. 36 and 37.

‘e & 7sx € ‘e x3x Rx €x fe &
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Fig. 36 A recovery from an old <SYN>x
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Fig. 37 A recovery from an old <SYN>y
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A complicated case of recovery from two old <SYN>

duplicates is shown in Fig. 38.

‘e ) fsx. {e Nx  fe xXIx alAa xXix
' o= ! RSt S - ! - ! ]
L6 €; G €} (€ Abjb (€ SyAbjb yly Abjb
[}
:
/ v
fe ) ‘hx x le XIx afe x) x
i IR T HEE i €- H
€ €} € €ib € Abjb y(€ RyAbjb

Fig. 38 A recovery from old <SYN>x and <SYN>y

Automatic technigques can be used to read the VAs of A
and B and generate the ylooal VA. Fig. 39 shows the global
VA which contains all the transitions we want to validate
following the reduction rules of this cHapter. The global
VA model demonstrates several aspects of protocol
correctnesss (1) there is no deadlocks (2) all the states
except the terminate state can reach the initial state’ and
(3) the on;y terminate state is the state where both A and B
are at théi correctly synchronized local states. These
results show the sufficiency of the three-way-—-handshake
connection technique. Those global states which have queues
containiny more than 2 elements are omitted in Fig. 39 to

cut down the size of the figure.
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Fig.39 Global VA for TCP connection setup
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The validation system in Appendix A can also be used to
automate the reachability analysis of the global VA in Fig.
39. Fig. 40 is the output of the reachability analysis by
the system. It shows that the proper terminating state of
the global VA is state 18 as shown in Fig. 39. It also
snows that there is no deadlock, incompatibility or looping
in the global VA. The format of the output of Fig. 40 is

the same as the output of local validations.
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THE TERMINATE SYMBOL IS: 19

NO LEFT RECURSION

REACHABILITY ANALYSIS
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NO UNREACHABLE NONTERMINAL

ALL NONTERMINALS CAN TERMINATE PROPERLY.
ACTION SEQUENCE TESTING
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I 248 10 .

THE SYNTAX OF THE ABOVE ACTION
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INDENTED CYCLES LISTING
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<4> 3= 4 9 <|iI>
<ll> 3= || <|)3>
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<23> 1= 25 <|>
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Fig. 44 Validation of the global VA in Fig. 39
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CHAPTER 6

PRO10COL IMPLEMENTAT IONS

we know that a transmission grammar is a control
sequence specification of a protocol to regulate
communication between communicating entities. The purpose
of this chapter is to generate an algoritnm that will encode
the transmission grammar description of any protocol into a
form that. is suitable for automatic software/hardware
implementations. Through the grammar model, the "“syntax"
and "semantics" of various protocols can be specified and
tnen pe executed by either software or hardware. This
chapter starts with the discussion of a design and
implementation methoaology for a basic data transfer
protocol. [he discussion then leads to an 1idea of

syntax—-directed protocol implementations. A framework for

192
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automatic sottware/hardware implementations of protocols has

also been constructed.

6.1 A Protocol Design Methodology

In tnis section, we present a step-wise methodology for
protocol design and implementation using our generalized TG
.model, A typical protocol at the communication processor
layer in a packet switching network 1is wused as an

illustrative example.

In general the entity at the communication processor
layer (e.g., the interface message processor (IMP) in the
ARPANET (Heart74]1) mainly consists of two validation
.independent parts (VIPs), i.e. the sender and the receiver.
We will define several sets of terminal actions at different
levels of abstraction for both parts in order to design the
1Gs for tne tne VIPs of the sender and receiver. The TG

integration techniques are then applied to combine the TGs.

(1) Step I8 Define the message grammar.

Since transmission actions have message units as their

operands, we need to define the message grammar in order to
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complete the protocol specification. The message grammar
enables us not only to represent the hierarchical structure
of the message format, but to implement the automatic syntax
parsing and error hanaling. We feel that the generalized TG
specification is especially suitable for the design of
higher—layer protocols. Fig. 41 shows the message grammar

for the communication processor entity.
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CONSTANT S

letter.size = {MAXIMUM OF CHARACTERS IN <letter>)
message.size = {(MAXIMUM OF CHARACTERS IN <message>)
timeout = |1U9 msec

local.hosts = (SET OF LOCAL HOST NUMBERS)

ack = (CONSTANT REPRESENTING ACK)

channel.i: {CHANNEL NUMBER REPRESENTING RECEIVE PORT)

VARIABLESS

user.not (24 BIT USER NO UNIQUELY IDENTIFY ING EACH USER)
nhost.not (8 BIT HOST IDENTIFY NO FOk user.no)
size,source,dest,l ink.no,msg.nod INTEGER
send.channel: {CHANNEL NUMBER REPRESENTING SEND PORT)
complete.flag: BOOLEAN

MESSAGE GRAMMAR:

<message(B)> 3t= <msg header> <msg text>
<msg header> 33= <msg leader> size
<msg leader> 3= source dest link.no msg.no
<msg text> 331= <text>
<text>» 318= (character)x*

<packet> s82:= <ACK> | <local packet> | <routing packet>
<ACK> 33= ack <packet header>
<packet header> 3= msg.no source dest link.no
packet .no
<local packet> 3= <local host> <packet header> <letter>
<local host> 33= ANY LOCAL HOST
letter(B)> 3%3= (character)*
Krouting packet> $3= dest <packet header> <letter>

FIG. 41 Message grammar for IMP

(2) Step 28 Define the abstract action grammar.

Fig. 42 shows the action grammar for the communication

processor entity at an abstract level. By the induction

rule, we can prove that in the sender part, <send> will
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always Qenerate the action sequences that have an equal
number of <send packet> and “acknowledgment®, Both VIP
parts can be easily understood due to the simplicity of the

model.

<send VIP> 3t= <send> <send V]IP>
<send> 3i= <send packet> <wait ACK> : €
<send packet> 3= %send routing packet"
i “send host packet®
<wait ACK> %3= -Macknowledgment"
i "retransmit® <wait ACK>
¢ <send> <wait ACK>

<receive VIP> 8= <receive> <receive VIP>
{ ¥send message to host" <receive VIP>

<recejive> $3= “receive packet" | Yreceive messaye"

Fig. 42 Action grammar for IMP entity at
an abstract level

(3) Step 3% Validate protocol properties

We can check the protocol correctness requirement for
this architecture and use both local and global validation
techniques to validate the required correctness properties.
The validation automata for the protocol are easier to
construct from the abstract TG. The global VA of the VAs

can also be constructed, which is similar to the structure

of example 3 in Chapter 5.
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(4) Step 48 Refinement of the action grammar.

For a more detailed description of the protocol, we can
define the following list of actions (see Table 4) for both
sender and receiver parts, and then use the substitution
operation to substitute non—-terminals for the terminals of
the model in Fig. 42 while describing these new
non-terminals by the terminal actions of the refined
(detailed) level. The substituted grammar is shown in Fig.

43.
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Table 4 Actions of IMP protocol at a more detailed level

Messages and Buffers:

Uis packet Unit
Po ,ACKb,Rbs Packet buffer, ACK buffer and
Reassembly buffer

2ender s

Sss "allocate Space Pb for sender"

Gss "Generate host message Ui, put in Pb®

Snd Y“send host message Ui Never transmitted before"
Ast ufind Acknowledgment for an outstanding Ui in ACKb"
Rot “get Routing Ui not destined here"

Tos "Time Out for Uiw

Sst “send Ui out lower level channel®

Rts “Reset the time ftor Ui%

Sts #set the time lor Ui

Fss “Free Pb, ACKb space for Ui"

Receivers

Rns "Receive Host message"

Ras “Receive Acknowledgment for Ui®

Rlt “Receive Ui destined here"

Rrs “"Receive Ui not destined here"

Ars Y“transmit Acknowledgment out to lower level channel"
Cr: "Consume Ui in Pb and put it in Rb"

Fus "“Free Pb space Unit for Ui"

Shs %5Send all Ui’s in Rb to host"®

Frs “Free Receive buffer RD"
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<send VIP> t3= <send> <send VIP>
<send> 3t= <send packet> <wait ACK> i €
send packet> 3= <send routing packet>
: i <send host packet>
Esend routing packet> 83= Ss Ro 5n St Ss
send host packet> $:= Ss Gs Sn St Ss

wait ACK> 3= <acknowledgment>
{ <retransmit> <wait ACK>
! <send> <wait ACK>
Eacknowledgment> 3= As Rt Fs
retransmit> $31= To Rt St Ss

xreceive VIP> t3= <receive> <receive VIP>
{ <send message to host> <receive VIP>
<receive> 33= <receive packet> { <receive message>
receive packet> 33= <receive ACK> | <receive local>
i <receive routing>

receive ACK> t3= Ra
Ereceive local> s3:= Rl Ar Cr Fu

receive routing> 23= Rr Ar
receive message> 3t= Rh

<send message to host> 3:= Sh Fr

FIG. 43 Action grammar of IMP at a more detailed level

(5) Step 5¢ Integrate VIP action grammars.

To integrate the VIP TGs, we can use the arbitrary
snuffle operation [Teng/78al to combine these two logically
independent parts together. The arbitrary shuffle operation
of two languages is similar to an arbitrary shuffling of two
decks of cards (each deck of cards corresponds to a sentence
of a distinct language). In order to ensure the integrity
of the data and variables of both parts, we should keep a

set of variaobles for each part or store the previous values
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of variables if the incoming action belongs to a different
VIP. We may also combine a cluster of actions in each VIP
into an indivisible action, thus preventing the development

of a race condition between the VIPs.

For the purpose of simplicity, we will shuffle the VIP
TGs of Fig. 42. In this case, we. assume that each terminal
in Fig. 42 is a cluster of actions from Fig. 43 which must
execute together. Furthermore, we assume that the actions
have the following priority sequencest = "“receive packet",
"receive message'", "Yacknowledgment", “retransmit", ¥send
routing packet", "send host packet" and %“send message to
hostv, We can thus easily combine the two TGs in Fig. 42
to give the combined 1G for the protocol, as shown in Fig.

44,

<TG> $8= <receive> <TG> | <send> <TG>

receive> $3= Wreceive packet" | "receive message"
send> 3t= <recejve> <send> | "send packet" <wait ACK>
i “send messaye to host® | €
<wait ACK> 3= <receive> <wait ACK>
“acknowledgment®

HWretransmit® <wait ACK>
<send> <wait ACK>

FIG. 44 Integrated action grammar of Fig. 42



A Protocol Design Methodology 201

The integrated action grammar of Fig. 44 is shown in
Fig. 45 at a more detailed level by ‘applying the
substitution operation directly to the TG of Fig. 44 (i.e.
Step 3). The same could be achieved if we had directly
applied the snuffle operation to the VIP TGs of Fig. 43
(i.eey Step 44)3 however, the resulting combined TG would

be much more complicated than that of Fig. 45.

<IG> st1= <receive> <TG> | <send> <TG>
<receive> 38= <receive packet> | <receive message>
<receive packet> 33= <receive ACK> i<receive local>
i <receive routing»>
receive ACK> 2:= Ra
Ereceive local> 3= Rl Ar Cr Fu
receive routing> 3:= Rr Ar
receive messaye> 33= Rh
Ksend> $t= <receive> <send>
¢ <send packet> <wait ACK>
i <send message to host> | €
<send packet> st= <send routing packet>
i <send host packet>
Esend routing packet> t:= Ss Ro Sn St Ss
send host packet> 33= Ss Gs Sn St Ss
Kwait ACK> $8= <receive> <wait ACK>
<acknowledgment>
<retransmit> <wait ACK>
<send> <wait ACK>
acknowledgment> 33= As Rt Fs
retransmit> 38= To Rt St Ss
Ksend message to host{CH)> s$31= Sh Fr

FIG. 45 Action grammar of Fig. 44 at a detailed level
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(6) Step 68 Syntax—directed implementation.

.For some time, it has been recognized that a
context-free grammar is a good meta-language 1or the
syntactic description and specification of a programming
language. Various top—down and bottom-up parsing techniques
(Gries71] have been utilized for programming language
compilers., Deterministic top—down parsing appears to have a
variety of attractive features for the recognition of TG
action sequences and message structures, and could be
applied to parse both the message grammar and the action

grammar.

The transmission grammar description of communication
protocols tnerefore leads naturally to syntax-directed
protocol program implementations. In‘the next section, we

present the general idea of protocol implementations.

6.2 Syntax-Directed Implementations

When we discuss protocol implementations, we usually have an
architectural block diagram ot the protocol in our mind.
The block diagram usually consists of [/0 wunits, queues,
registers, buffers, data paths and other hardware

components.
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Some actions such as receive or timeout can be viewed
as -Yevents¥®, The protocol 1is a parser for event sequences
during execution and each event may trigger the execution of

a cluster of actions.

6.2.1 Implementation Specifications

There are a few differences between an abstract
protocol specification and its actual implementation
specification. The implementation specification should be
more specific about implementation details than the abstract
specification., For example, an acknowledgment action in an
abstract specification may be implemented by some
combination of the following schemes? (1) positive
acknowledgment and retransmission, (2) negative
acknowledgment, (3) piggybacked acknowledgment, (4) multiple
acknowledgment, or (5) queued acknowledgment. The
architecture detail 1is not important for the abstract
specification but 1is necessary .for the implementation

specification.
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For example, the abstract speciiication of the data
exchange protocols of IMP and TCP are similar but their
implementation specifications are quite different. TCP uses
a window scheme tor flow control, allows for advance message
receptions, and uses a piggybacked acknowledgment scheme.
For comparison purposes, we have constructed a detailed
specification for the data exchange protocol of TCP. | Table
5 is a list of actions for both sender and receiver parts.

Fig. 406 1is tne action grammar specification.
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Table b Detailed actions of TCP data exchanges

Sender

Bs: “agllocate Buffer for sender’s letter®

Gst  “Generate letter"

Qys "Queue Generate"

Fgs "Fetch Generate queue"

ond t5end segment Never sent before"

Ss nsend se¢gment out a lower channel%

Fas “Fetch Acknowledgment queue"

AFst  "find Full Acknowledgment for the outstanding
segments"

APs: "find Part Acknowledgment 1or the outstanding
segments®

Qrt: "Queue Timed outstanding segment?®

Dt: "Dequeue (Reset) timed outstanding segment”

FI[t: "Fetch Timed outstanding segment queue (Timeout)"

Fss "Free retransmission space"

Receiver

Rus "Receive Unacceptable segment"

1ls "Receive segment overlap the Left side of receive
window"

Rms "receive segment within the Middle of recieve window"

Ras #leceive Acknowledyment for sender®

Qat "Queue Acknowledgment®

DQn: "Dequeue Queue New send queue"
DATt: ®"Dequeue Queue Timed outstanding queue"

Ars "transmit Acknowledgment to lower entity®
Crs "Consuiie receive segment into window"

Fus "Free the segnent unit®

Qp: "Queue received letter to Process"

Fp? “Fetch received letter to Process"

Sps "Send letter to process"

Fws "Free left part of acknowledged receive Window"
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<send VIP> $3:= <send> <send VIP>
<sencd> 3t= <send segment> <wait ACK>
send segment> 3= Fg Sn Ss QTt
wait ACK> 33= <full ACK> : <part ACK> <wait ACK>
i <retransmit> <wait ACK>
i <send segment> <wait ACK>
full ACK> 38- Fa AFs Dt Fs (Ap)
Fpart ACK> t3= Fa APs (Dt Fs)
<retransmit> 8$:= FTt Ss QTt

<recejive VIP> t3= <recelve> <receive V]IP>

i <send letter to process> <receive VIP>

rreceive> tt= <receive segment> <Ar>
{ Y"receive process calls"
<receive segment> 32= <receive unacceptable>
i <receive acceptable> Ra (Qa)
Ereceive unacceptable> $3= Ru
receive acceptable> $3= -V"receive control segment®"
1 <receive data segment>
$3= "receive duplicate"
i <receive left window>
1 <receive middle window>
receive left window> 3:= Rl Cr (Qp)
receive micdle window> tt= Rm Cr
KAr> 33= <piggyoack ACK> | "send ACK segment"
<piggyoack ACK> :t= DQn : DQTt
Ksend letter to process> 23= Fp Sp Fw

<recejive data segmnent>

Fig. 46 Action grammar ot TCP data exchange protocols

6.2.2 Deterninistic Parsing Algorithm

Abstract specifications of protocols usually are in the

form of a nondeterministic grammar, but corresponding

implementation specifications should be in deterministic

form for automatic implementation. A nondeterministic
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algoritnm is permittea to contain statements that specify
selecting one of several choices and to contain redundant
statements for better human understanding. In a
nondeterministic algorithm, the device executing the
algorithm is supposed to make the correct choice at each
such step (the choice that will lead to success if any
choice will). Such an algorithm is not suitable for an
efficient computer implementation since without further
directions in the algyoritnm, the computer will have no way

of knowing which choice to make.

It is always possible, however, .to modify a
nondeterministic algorithm so that each place where a choice
is required, directions are provided which cause each choice
to be tried successively. Once a nondeterministic algorithm
is converted to deterministic algorithm it can be executed

in a straightforward way.

The conversion of a nondeterministic algorithm to a
deterministic algorithm usually increases the bookkeeping in
tue algorithm, since the deterministic algorithm must keep
track of all the various choices made so that it can go back
to try the alternate choices.

Since this additional bwbookkeeping obscures the basic
structure o1 tne algoritnm, many algorithms concerning with

parsing are best presented in nondeterministic form.
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0.2.5 Software/Hardware Implementations

We can use the recursive decent technique to write a
top-down parsing program for a protocol from 1its
transmission grammar specification. In tihe next section is
presented the 1idea of the general protocol system to
automate the process of protocol construction from a
validated implementation specification. Automatic hardware
implementations of protocols will be the topic of Section

6.4.

6.3 lhe General Protocol 5ystem

Instead of composing a specific program for each
protocol TG that arises, we may construct a single, general
parsing program. Individual protocol grammars are then fed
to the general program to make the general program act like
the protocol. The General Protocol System (GPS) 1is a
translator from transmission grammars into parser-driving
data structures. The translator could be an interpreter to
interpret the actions and data structure or a compiler to
compile the TG into a self-controlled program. For
simplicity, we assume the translator to be an interpreter in

tne 1ollowing discussion. The translator accepts the BNF
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productions of a message grammar and an action grammar,
converts them into the desired data structures to be stored
in the +translator program, and then interpretes the TG

stored in the data structure as shown in Fig. 47.

PROTOCOL Pi
LTRANSMISSION GRAMMAR INPUT

Messaje Grammar Action Grammar

e e e e o e o e e e 2 B e e e e S o e S . S e o o e

v v

Message sStructure Action Structure

; ;
; :
; :
| :
: TABLE " TABLE :
' TTTTTTTTTSTTTTTTTTTTT cTTTTTTTTTTT LT T '
[] [} ] [}
: S —— : :
' v : Basic GPS ‘ : :
; ——— PP — :
H H - Houtines H H
: e e ;
; :
[ ] [}
; PERFORM THE FUNCTION OF PROTOCOL Pl ;
[} [ 1

"Fige. 47. Architecture of the general protocol system
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The GPS is both a language and a computer program. As
a language, it can unambiguously describe communication
protocols., As a computer program, it can interpret and

execute the protocol described in the GPS language.

The GPS strictly follows the rules of the simple
top~-down parsing method, and it is straightforward if the
underlying TG is deterministics that is, if the sentences
of the TG can be parsed with one symbol of lookahead and

without backtracking.

However, the transmission grammar described in previous
chapters only . defines the syntax of the protocol. .For the:
purpose of automatic implementation, we need to relate the

semantics of the protocol to the TGC.

6.3.1 Actions of GPS Language

In the following, a subset of actions for the GPS (see
Table 6) 1s introduced to describe the semantics of the TG
in Fige 45. GPS actions are designed to be very powerful
and flexible so that tney can easily describe the semantics
of the protocol. Each GPS action carries with it

information falling into two categories:
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a) Operation - The Yoperation" of an action is a “verb"

suygestive of the task the action accomplishes.

b) Uperands - The operands may be thought of as the
arguments wused in calls on subroutines and we underline the
operands that are eXxpected to returp values or message
units. The number of operands each action has is not fixed.
When operands are not explicitly‘provided. the GPS assumes

no such operands to exist.

In Table 6, five types of GPS actions are shown which
are of particular interest for describing the semantics of

communication protocols.
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Table 6 Actions of the General Protocol System

OPERATION .OPERANDS

ALLOCATE ptr,size

FREE ptr,size
ROUTE send channel,destination
SEND msg unit,send port,ptr,size

RECEIVE wmsg unit,receive port,ptr,size

SEGMENT segment no,ptri,sizel,ptr2,size2,
segment size,complete flag

REASS segment no,ptri,sizel,ptr2,size2,
segment size,couplete flag

QUEUE name,key,ptr,size,wait time,
other operands

DEPART name, key

LOOKUP name,key,exist flag

FETCH name,key,pir,size,other operands
CLEAR names

CONDITION operand l,operand 2,relation operator

(1) Space .management actions

ALLOCATE (ALC) - This operation specifies the requested
buffer size. A pointer (ptr) specifying the beginning of

tne allocated buffer is returned.

EREE (FRE) - This operation returns the buffer specified

by the buffer descriptor (ptr,size) to the GPS.
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(2) Send and receive actions

ROUTE (RUT) - This operation requests the . routing
algorithm to return the send channel from "the given

destination.

SEND (SND) - This operation sends the msg unit specified
in the message grammar (such as <letter(B)> in Fig. 41) out
of the send channel. The msg unit is sent out (generated)
éccording to its syntax definition in the message grammar in
tne tollowing ways? 8) The GPS will send out the values of
the variables and constants which are defined as the
terminals of the msg unit until a buffer indicator 1is
vencountered. (A buffer indicator is énclosed as (B) inside
a non-terminal, such as <letter(B)>.) b) When the buffer
indicator is encountered, the GPS will start sending out the

msg unit from the buffer area.defined by the ptr and size.

RECEIVE (RCV) - This operation receives and checks the
syntax of the input of the receive channel according to the
syntax of the msg unit. The GPS will store all the received
values into the variables of the msg unit. When the buffer
indicator is encountered, the GPS will also store the msg

unit into the buffer area defined by the ptr and size.
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If the specified channel has no input or the input is
not the specified initial terminal of the alternate in the
msg unit grammar rules, the GPS will try the next alternate

of the action grammare.

(3) Segmentation and reassembly actions

SECMENT (SEG) - This operation gets the buffer descriptor
(ptr2,size2) of the packet space (with its packet # equal to
tnhe segment no.) from the known message buffer descriptor
(ptri,sizeil) and regular packet size (segment size). HWhen
the complete flag is on, it means the last piece of packet

in the message has been taken out.

REASS (RAS) - This operation reassembles the packet at
(ptr2,size2) into the message reassembly buffer
(ptrl,sizel). It is similar to the SEGMENT action.

(4) Event synchronization actions

The following six queues are of particular interest 1in

our design example.

A Acknowledgment queue

T outstanding packets Time out queue
SK Send Routing packet queue

St Send {Host packet queue

OH Qutput to Host queue
S Space allocation queue
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QUEUE (QUE) - This operation creates an entry in the queue
specified in the name operand, with Key operand as index and

the remaining operands as information to be queued.

REQUEUE (DEQ) - This operation deletes an entry in a FIFO

manner from tne queue specified in the name operand.

LOOKUP (LKP) -~ This operation checks if an entry with the
key specified in the key operand is in the queue specified

in the name operand.

EEICH (FCH) - This operation retrieves the information
from the Qqueue specified in the name operand in a FIFO
manner, and puts the information in the appropriate
variables specified in tnhe operands. If the queue is empty,

tne GPS will try the next alternate action.

CLEAR (CLR) - This operation resets and clears all the
queue names specified and 1is wusually used for error

recovery.
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(5) Condition testing action

CONDITION (CND) - This operation compares the specified
variable 1| and variable 2 with the relation (e.g., Equal,
Not Equal, Oreater or Less) specitied in the relation
operator, and 1if the condition is not satisfied, the GPS

will take the next alternate in the action grammar.

There are many other important operations that should
be included in the GPS. For example, a UNIQUE operation may
be needed to get a unique initial sequence number for a new
connection, Some other functions may also be needed to
handle the semantics of flow control mechanisms and

interprocess communication primitives [(Walden72].

Fig. 48 shows botn the syntax and semantics of the
action grammar for the protocol at the communication
processor layer. This figure is obtained by applying the
substitution operation to the action grammar of Fig. 45.
Note that the ALLOCATE operation in Table 6 1s not used,
because we assume that it is specified at the interprocess

communication layer (i. e. Host/Host).



The General Protocol System 217

<IG> tt= <receive> <IG> | <send> <TG>

Kreceive> t8= <receive packet> | <receive message>

Kreceive packet> 3t= <receive ACK> | <receive local> | <receive routing»
kreceive ACK> 3t= <Ra>

<Ra> 1t= MRCV <AuK>,channel.i®
Bl KP Ty<packet header>,gxist"
<checkl> [check if it acknowledges an outstanding packetl
<checkl> 3= NCND exist 0 ,NE"
"QUE A,<packet header>"
HI

kreceive local> 3t= <R1> <Ar> <Cr> <Fr>
KR1> 23= WRCV <local packei>,channel.i,ptr,size"
KAr> tt= #“SND <ACK>,channel.i%
kKCr> $8= “FCH S,<msg leader>,ptrl.,sizel®
"RAS packet.no,ptri,sizel,ptr,size,letter.size,
somplet #
<check2>» [check if all the message packets has receivedl]
<check2> s$3= %CND complete, flag,TRUE,E"
“QUE OH,<msg leader>,ptri,sizel®
'€
kFr> 33= ®FRE ptr,size®
kreceive routing> t1= <Rr> <Ar»>
<Rr> ti= V“RCV <routing packet>,channel.i,ptr,size"
“QUE SR, <packet header>,ptr,size®
Krecelve message> 23= <Rh>
<Rh> 33= WRCV <message”>,channel.i,ptr,size"
WQUE SHy <msg header> ptrysize,,}"
ksend> $8= <receive> <send> | <send packet> <wait ACK> !
<send message to host> | €
kKsend packet> $3t= <send routing packet> | <send host packet>
send routing packet> 31= <55 Ro Ns> <St> <Ts>
ESS Ko Ns> t1s= WFCH SR,<packet header>,ptr,size"

St> s3= MQUE T,<packet header>,ptr,size,timeout®
Ts> ss= WRUT send.channel,desi™
WSND <routing packet>,send.channel,ptr,size"
send host packet> $i= <S55 Gs Ns> <St> <Ts>
<Ss Gs Ns> 13= "FCH SH,<msg header>,ptrl,sizel,packet.no”
WSEG packet.no,ptri,sizel,plr,size,letter.size,
complete.flag"
<check3>
{check if all the message packet has generated]
<check3> ss1= UWCND complete.flag,TRUE,NE"
?QgE SH,<msg header>,ptri,sizel,,packet.no+i"
[]
kwait ACK> $3= <receive> <wait ACK> | <acknowledgment> !
<retransmit> <wait ACK> | <send> <wait ACK>
acknowledgment> $i1= <As> <Rt> <Fs>
As> 1= WECH A,<packet header>"
ERt> tt= “DEQ T,<packet header>,ptr,size"
Fs> 11= wWFRE ptrysize®
retransmit> t3= <Rs Rt> <St> <Ts>
<Rs Rt> 11= WFCH Ty<packet header>.ptr,size"
Ksend message to host> t$= <Sh> <Cb>

[Sh> t1= WECH OH, <msg leader>,ptr,size"

"pPUT send.chaooel,dest"

"SND <me ssage>,send.channel,ptr,size"
Cb> 1= WEFRE ptrysize"

"DEQ S,<msg leader>"

Fig.4§ GPS action specification for IMP protocols
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The action grammar of Figs 48 and the message grammar
of Fige. 41 form a transmission grammar which contains
enough semantics and can be directly translated by the GPS

into executable data structures.

Automatic techniques can be applied to indent and
format tne grammar rules of the TG, and to obtain a listing
showing the derivation cf tne final hierarchically
structured document. (e.g., the listing in Fig. 48). We
can tnen use validation techniques to <check for possible
syntax or logical errors, make modifications on the listing,
and directly input the neatly formatted TG in the case of

automatic implementations.

The GPS can check the syntax errors of the GPS actions.
Such an error could be a missing operand of the msg unit for
the SEND operation, or a specified operand that has

different data type than expected.
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6.3.2 Another GPS example

The master control part of the Binary Synchronization

Communication (BSC) protocols is shown as another example of

GPS action specification. Fig. 49 shows an abstract

specification and Fig. 50 shows a GPS implementation

specification,

<contention> ::= "pidding" <outcome>

<outcome> $t= Wrefuse" <contention>

i "busy" "enguire" <outcome> | "master" <trans>
i "clear" <outcome> i “"timeout" "enquire" <outcome>

<trans> t= Y“generate" <send> <trans>

i Yend trans¥ <contention»

<send> 3= "send msy" <wait ACk>

<wait ACk> 33= "“acknowledgment"
1 "retransmit" <wait ACk»>

Fig. 49 Abstract specification for BSC protocols
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<content ion> 8= <bidaing>» <outcome>

bidding> %3= WRECEIVE <eng>, Ul "
“SEND <eng>, M2%
<QTt>
<QTt> 3= WQUEUE Tleye3"

outcome> 3= <refuse> <contention>
i <busy> <enquire> <outcome> } <master> <trans>
1 <clear> <outcome> | <timeout> <enquire> <outcome>

<refuse> $3= MWRECEIVE <nack>, M2%
“SEND <pack>,Ui"
Kbusy> 3= "RECE IVE <wbt>,M2"
<enquire> 3$3=¥SEND <eng>, k2"
<QTt>
<master> 33= BWRECEIVE <ack> M2n
"DEQUEUE Tw
. M“SEND <ack>,uln
<timeout> 33="DEPART ™
kclear> $8= WMRECEIVE s M2M
Ktrans> 33= <generate> <send> <trans>

i <end trans> <contention>
<generate> $3= <Gs>
s$3= WRECEIVE ptr,ui»
<send> 3= <send msg> <wait ACK>
send ms¢g> 2= <5s> <QTt>
[ <Ss> $3= “SEND <msg> M2,ptr#
wait ACK> 3= <acknowledgment>
i <retransmit> <wait ACK>
acknowledgment> 3= <As> <Dt>

As> 33= WRECEIVE <ack>,M2"
Dt> s3= “"DEQUEUE ™
retransmit> 33= <Dt> <Qs> <QTt> | <Ap> <QTt>
Dt> s3= WDEPART ™
EOS> $3= W“SEND <eng>,M2%
Ap> 33= WRECEIVE <acke.old>,M2¥
<end trans> $3=VRECEIVE <eot>,Ul"
HSEND <eot>,M2¥
WRECEIVE <eot>,M2"

Fig. 5@ A GPS action specification for BSC protocols
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O0e.3.3 Architectures and Data Structures

we can construct a 1list structure to represent the
grammar rules in main memory [(Gries71,Wirth76l. The grammar
is assumed to be represented in tne form of a deterministic
set of rules, It is translated into the appropriate list
structure instead of an executable program structure. The
data type definition for the GPS is shown in Fig. 51. Each
terminal or non-terminal symbol in the right part
(corresponding to a node in the list structure) consists of

tne three components SYMBOL, ALTERNATE and SUCCESSOR, where

l. SYMBOL (SYM) represents two variants: one for terminal
and one for non—terminal symbols. If the node represents
a terminal, SYM is tne symbol name in some internal form.
I1 it represents a terminal GPS action, its internal form
stiould be able to inform the GPS of its operation and
operands. If the node represents a non-terminal, SYM is
then a pointer to an entry in the hash table
(hasnl@..primel in Fig. 51) which contains the index of
the array structure (K[@..maxheader] 1in Fig. 51)
representing tne corresponding non—termihal symbol. Both
variants contain two pointers, alternate and successor.

2. ALTERNATE (ALT) points to the first symbol of the next

alternate in the right part following the one in which
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the node occurs (NIL if none). This is only tfor the
first symbol in the right part.
3. SUCCESSOR (SUC) points to the next symbol in the right

part (NIL if none)d.

In addition, each non-terminal 1in the left part is
represented by a header node that contains the name of the
non-terminal symbol and a pointer to the first symbol in its

first right part.

A hash table is used to speed up the table 1lookup of
the non-terminals for both constructing a structure from a

TG and the actual parsing of events.,

The resulting data type definition represented by

PASCAL is as followss
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const
maxheader = 583%
/% max number of nonterminals »/
prime = 9973
/% prime number for hashing table size */
type
tblrange = ¥..maxheaders}
alpha = packed arrayll..20]1 of chars
pointer = “nodes}
node = record
suc, alts pointers
case terminal: boolean of
truet (tsym¢ alpha)ls
falses: (nsym: tblrange)
ends}
header = record
syms alphas
entry? pointer
enas;
var
k: arrayltblrangel of headers
hasnt packed arrayld..primel of -1 ..maxheaders}

Fig. 51 Data structure of the GPS

The translation rules from grammars into

structures are straightforward.

l. A sequence of symool Si S2... Sn of a right part

translated into the following list of data nodes?

223

data

is
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2. The list of alternative right parts of a grammar rule

translated into the following data structure:

ol

'
]
..-.;.....-....—-

v

S2

e e et —
v

on

NIL

224

is
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3. A loop is translated into the following data structures

H S :
| T ————————
' H 1€
——f——————
'
v
5 empty E
[ Siaatdstendtatbn el |
i NIL ¢ —

We can also represent extra components in the node .for the
analysis of iteration (loop) of strings, for the data type
descriptor o1 the terminal in the message grammar, and for
the buffer indicator specification of the non-terminal in

tne message grammare.

The approach to parsing using syntax and data structure
can be wused to automate protocol construction, thereby
reducing the possibility of implementation errors from a
validated TG specification. Its powerful actions provide
many of the ouilt-in semantics handling capabilities to
simplifty the protocol designe. It can provide the
flexibility to extend or modify protocols by changing

syntactic and semantic constructs, without extensive coding
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and testing efforts. A more ambitious scheme even allows
several protocols to be dynamically stored in the translator
(either for security reasons or tor different network
protocols) and to perform proper actions depending on which
protocol the input message belongs to. A possible
application is to store both X.25 and SNA protocols in the

GPS.

The TG of higher-level protocols, defined in a machine
independent form for a host system, can be portable to other
host systems, thereby reducing the cost and time of protocol

implementation.

6.3.4 GPS Parsing Techniques

A sentence (action sequence) of a ianguage (protocol)
is a sequence of receive, timeout or synchronization events
occurring during communication. After constructing the data
structure of a protocol, the GPS is ready to check (parsef
the action seyuences (sentences) by following (interpreting)
the protocol (adata structure). The parsing of an action
seguence consists of a repeated statement describing the
transition from one node to the next node. The

interpretation procedure is activated recursivelye.
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A simplified parsing program is shown as part of the
validation system program listed in Appendix A. It can work
on a non-deterministic grammar which. contains no choices
between several alternative non-terminal symbols and
contains no lgft recursione. More sophisticated parsers
which operate on less restrictive classes of context-free

grammars may pe easily derived from it.

It is also feasible to convert a non-deterministic
context-free grammar to a deterministic push-down automaton.
Tne automaton is a table of state transitions with stack
manipulation capabilities and may be executed more

erriciently by avoiding recursive procedure calls.

The GPS is still in its early design stage and more
work 1is needed., We have not yet addressed the semantics of
the GPS such ast (1) routing algorithm, (2) flow control,
(3) failure recovery and (4) contention control. A fully
implemented GPS should have a more powerful -¥protocol
language" to simplify botn the semantics representations and

processings.
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6.4 Hardware Implementations

Recent advances of hardware technology in the field of
microprocessors and large-scale integration of circuitry
have made it possible to have hardware implementation of
protocols. Hardware implementation of protocols could
reduce the overhead of the host computers, and can also be
used to implement the specialized protocol actions in a

cost-effective way.

Theoretically speaking, every algorithm which can be
implemented by software can also be implemented by hardware.
Tnere are two approaches to hardware implementation of

protocolsd hardwired circuits and microprogramming.
(A) Hardwired Circuits

Hill [Hill73] designed a formal model, A Hardware
Programming Language (AHPL), to describe the hardware design
of digital computers. AHPL includes operations . which
satisfy the constraints imposed by avallable hardware.
Every AHPL step written down by the designer will répresent
some action or some already speciiied hardware elements.
Tne precise correspondence between an AHPL statement and its

nardware realization has also been established.
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It is feasible to automate the hardware circuit
generation from TG implementation specifications.. From the
implementation specification of a protocol, we can translate
to AHPL .description of hardware. The AHPL compiler can go
~through the hardware descriptions to construct the data part
of protocol hardware, including register groups, register
sizes, bus connections, decoders and clocks. There are
several special representation techniques of AHPL for GPS
actions, but we will not discuss the detailed correspondence
between the GPS actions and AHPL statements in this
dissertation. It will be left as part of our future

researche.

(B) Microprogramminy

The control sequence (written in AHPL) can be stored in
a memory rather than being hardwired. This implementation
is called microprogramming. It is one level more detailed
and one level closer to the hardware than machine language
programning. A control store 1is used to hold the

microprogram.

A microprogrammed protocol mac hine per forms
communication actions as it reads successive locations in

the control store. The individual steps of protocol actions
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can be éohtrolled by the microprogram. The transfer of data
between registers, the sequence and timing of communication
events, the - selection of operands of GPS operations, the
specification of GPS action functionsi all these and more
are under the control of microprogram. The hardware control

signals are produced directly from the microprogram.

The attractive features o1 microprogrammed protocol
machines are the flexibility 1in design, testing and
moditication. we can tailor the processor’s performance to
meet particular needs of GPS actions. We can define very
powerful protocol instructions which move time-consuming
operations from software to firmware. Since protocols
perform mostly specialized operations, the firmware can be
‘designed to execute the operations efficiently. Many of the
protocol operations can be eXxecuted in the same cycle,
thereby providing a high degree of parallelism. Hardware
decoding techniques may also handle interrupts in parallel.
Tnis provides dramatic new processing power to protocol

machines.

Another area of application is protocol emulation which
is, in a way, an extension of one protocol architecture
(say, SNA) to cover another protocol architecture (say,

X.2b). A protocol macnine of one architecture can perform
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functions for another protocol architectures by changing the

microprogram in the control store.

We can see various
cnapter in Fig. 52.
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reduce an LR(k) grammar to an LR(1) grammar and to be a
deterministic algorithm. The discussion of optimization
techniques is not presented because this subject has already

been extensively covered in the literature.

If we can represent a TG with a deterministic
algoritnm, the parser for the TG can run fairly fast. There
are mechanical techniques to help the construction of a
deterministic algoritnm for a given context-free grammar.
Once the algorithm is constructed, it can be easily

implemented by hardware circuits.



CHAPTER 7

SUMMARY AND SUGGESTIONS FOR FURTHER RESEARCH

In previous chapters of this dissertation, we have
aadressed various issues for constructing protocol programs
that are correct, modifiaole and maintainable. Our research
goal. was primarily directed towards practical techniques
that enable these programs to be implemented in an eiffective
way and at acceptable cost. 1In order to reach this goal,
the lransmission Grammar (TG) model has been introduced for

a systematic construction of communication protocols.

In this chapter we shall summarize the significant
features of the TG model and the main result of this
research. We shall also indicate some topics for further

researche.

233



234
7.1 Significant Features of the TG Model

During the research of the transmission grammar model,
attention was focused on extending and integrating formal
language and software engineering techniques to produce a
comprehensive design methodology for communication
protocols. As a result of this effort, new concepts and

techniques were developed, some of which are listed below.

le This research has produced a general and comprehensive
design methodology .for the construction of complicated
protocols. Prior research on netwerk protocols has
focused mostly on protocol verification. Based on the TG
model, we developed a systematic and structured
methodology for the spec ification, validation and
implementation of protocols. The TG model has been
applied to various phases of protocol software life cycle.
The step~wise TG specification allows the protocol
designer to specify protocol program modules in a
we ll-structured manner, In addition, the specified
grammar structure is kept so simple that automatic

validation and implementation can be easily carried out.

2. The TG model is capable of specifying protocols which
are more complicated than those modeled by finite state

automata. wWe illustrated structured TG specification of



Significant Features of the TG Model 235

protocols .. which may have strictly context-free and
context-senistive characteristics. The TG model can also
contain necessary redundancies for better human
readability, as compared with the FSA model. Using the TG
model, we demonstrated a step-wise refinement technique
for protocol specification and protocol documentation.
The model was also shown to have the flexibility of
describing complicated protocols with differeni degrees of

details for validation and implementation purposes.

3. Local validation techniques has been developed and
used to reveal the TG structure errors. . Grammar notations
were used to formally define the following TG errors: (1)
lelt-recursion, (2) non-deterministic grammar, (3)
undefined non—terminal, (4) superfluous rule and (5)
improper termination. We also outlined the corresponding
algorithms in 1locating these structure errors., Local
validation does not take into consideration global timing
and interactions between communicating entities, and is a
relatively easy task whern compared with global val idation.
Local validation can reveal most of the "simple" protocol

errors before global validation.

4. Global validation tecnhniques have also been developed

to check the timing and interactions between communicating
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entities and to reveal protocol syntax errors. We have
presented the validation automaton (VA) model which can
comprehensively represent the interdependency between
communicating entities. Several complexity reduction
rules were summarized to reduce the number of states and
. transitions during the automatic validation process. A
validation checklist concept was also introduced to
provide a systematic scheme for examining the fundamental
correctness problems that may cause protocol syntax

errorse.

5. One of the most significant features of the TG model
is its grammar integration operations. We have introduced
the use of the arbitrary shuffle and substitution
operations of formal 1languages to construct inherently
correct protocols from validated components and/or
independent partse. ane properties and the algorithms of
these operations have been also shown in‘ this

dissertation.

6. We have generalized the TG model to represent the
hierarchical structure of message .formats. Using this
generalized specification, we have proposed the structure
of a protocol recognizer for automatic software/hardware

implementation of protocols. We have also outlined the
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structure of such a recognizer, the General Protocol
System. Other syntax-directed implementation techniques

also .were studied in this dissertation.

These teatures combine to make our design and
construction schemes very efficient and useful for
constructing correct protocol programs. Thus, it would seem
tnat this research was rather successful in accomplishing
its original goal of constructing correct, modifiable and

maintainable protocols.

7.2 Suggested Research Problems

The following is a list of future research projects

which follows from the work in this dissertation.

(1) In Chapter 2, we studied the fundamental protocol
correctness problems and the derivation of a protocol
validation checklist. We restricted ourselves to those
correctness problems that may cause protocol syntax errors.
Further research could be done in developing a protocol
verification checklist for +the complete verification of

protocol semantics.
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(2) A complex computer network is bounded to have
failures of its components. Computer network protocols must
include M“graceful" failure recovery schemes that are
transparent to the users, execute rapidly and require little
manual work at the time of failure. In Chapter 3 and 4, we
have demonstrated TG specification techniques tfor the
purpose of protocol validation. We could further expand the
TG protocol specification to include fault-tolerant schemes

for reliability validation.

(3) A global validation technique, using the validation
automaton model, has been addressed in Chapter 5. It would
be worthwhile to investigate the possibility of automating
the derivation of a validation automaton from a TG
specification. We could also implement an efficient global
validation system to generate global state transitions in
nicely formatted listing. Hashing techniques could be
included in the validation system to check symmetric states
during the state generation. We might also expand channel
queue notations to represent interactions between more than
two entities. These investigations should yield additional

refinements to the current global validation techniques.

(4) In tne field of protocol implementation, work could
be done in developing a protocol language designed along the

idea of syntax-directed protocol implementations. The
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protocol language can be viewed as a set of actions for the
General Protocol System. An actual implementation of the
General Protocol System might take debugging or.
error-recovery into consideration. The optimization of
transmission grammars also seems to be useful for reducing

the look—-ahead during protocol program execution.

The most obvious "next-step" is, however, the
implementation and verification of some real-world
communication protocols by using the techniques developed in

this dissertation.

Because of the drastic improvement o1 computer and
communication technologies, distributed processing has been
an important research area 1in recent years. Reliable
protocol constructions are crucial in assuring correct
synchronization in any distributed system. We expect our
view of the communication protocol problems and their
solutions will contribute to clarify the poorly understood

(

field of distributed systems.



APPEND IX
VALIDATION SYSTEM PROGRAM LISTING

const
maxprtln = 803 /% max print line =/
maxheader = 403 /% max number of nonterminals */
maxtop = 413} /% max pointer to next header =/
prime = 9973 /% prime number for hashing table size */
free = =13}

type

tokentype = (terminal,nonterminal,alternate,period,
separator,repeatri,repeatlf,empty,equalls
tblrange = @..maxheaders
alpna = packed array{1..20] o1 char}
pointer = “nodes}
node = record
suc, alts pointers;
case terminal? boolean of
truet (tsym? alpha)i
falset (nsyms$ tilrange)
ends}
header = record
syms alphas
entrys pointer
ends
index = @..primesj
/» transitive closure matrix type */
matrix = packed arrayl(d..maxheader, @..maxheader] of
booleans
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var

ascii,joklisintegers
inpfg ¢ booleant

pgmeof ¢ booleans /% program eof flag */

/= to print listing of program */

prtln ¢ array (l..maxprtlnl] of chari /*xoutput buffer =/
alti:chars

prtinptr 8 d..maxprtlng /= output buffer ptr */
prtincnt & integers /% line # counter =/
prtlnfg 3 booleanj /= print line now? %/
prtlnum ¢ pooleant /% print line number? =/

i integers

chars,fill,cr,l1fstchar;

symbol’types tokentypes

topheader,n: ¢Y..maxtops;

n, currnsym?: tolranges
_toptindexs

nl: tblranges /* rule number =/

n2s V..190% /% alternate number =/

a,p3 pointers

syms alphas

okt booleans

ks arrayltblrangel of nheader}

hashs packed arrayl@..primel of -1..maxheaders;
foundt booleani

first, firstall: matrixs

within, withinall: matrixs

t3 l.e.l@3 /» index of terminet symbols */
terminett arrayli..i18] of alphas

altents array(d..maxheader] o1 1..103%
firstflags booleani

lastflags packed arrayl(#..maxheader] of booleans
stop,newmarks booleans

mark: array (¥..maxheaderl of boolean}
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procedure prtcnrsg
var -_

i j..maxprtins;

ibegin

WO D e T e EE PO CN PE Ee P B P R AT, PO GE O6 PO Da RSO Re B NS N DA G Be DO e T GBS O B O B e ®

/% is there a line to be output? (this depends on

prtlinfg) if so, print the line up to the buffer
printer (prtlnptp) print line with either line numbers

. or not (prtlnum). then reset all values. */

if prtinitg

then

ibegin

if prtlnum

then

i begin

i prtlncnt 3= prtlncnt + 13
¢ write(/ /,prtlncnts5,” 7)3
iend

else write(” ’)3
for i ¢= 1 to prtlnptr do
ibegin

if prtinlil in [(“a%..”27]
then

1 begin

i ascii s= ord(prtinlil) + 32%
i prtinii] s= chr(asciils
1endj

write(prtiniilsi)s;

{ ends

writelns

prtilnptr t= 03

prilnfg 3= falsesj
prtlnum 3= trues

tends

-oe BnPE B e B B BE Ge Ve e B Re B Be B Be Ba Se B B
e e 6o o=n

/= buffer(prtln) tine characters as they are input. print
the buffer whenever the end of a line is encountered on
the input stream or when the buffer gets full, which
depends on maxprtln. ®/

prtlnptr t= prtlnptr + 13

if cnars = 7,/

then prtlinlprtlnptr] $= chr(i124)
else prtinlprtlinptrl = charss
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if inpfg
then
if eoln(input)
then prtlnftfg s= true}
if prtlnptr = maxprtln
then
tbegin
i prtilntg ¢= truet
¢ prtlnum t= false}
{ ends
iendas
procedure readnxchrj
. +begin
if eof(input)
then pgmeof $= false
else
tbegin
¢ read(input,chars)s
i prtenrs
iends
ends
procedure prisyms
1begin
18=13
i repeat
i chars 3= symlilj
i prtchri
1= 1+ 13
tuntil (chars = 7 “) or (i > 20)%
if (i>29)
then
ibegin
i chars t= 7 73 prtchri
{ends
' ends
procedure prtrules
1begin
inpfg t= false}
sym 3= kinll.syms
is=13
irepeat
chars t= symlils
prtchri
it=1+ 13
wuntil (chars=7 7) or (i>20)3
if (i>20)
then
. ibegin
i chars = 4 73} prtcnrs
iends

Se®oe croe Cehs G %o we U

SO me AT he o= o~ o



e G B B G- PE B B e O® b e Ge G- e

chars 8= 7373 prtchri
chars 8= -“s¢“/3 prtchrs}
chars 8= =’ prtchri}
chars 1= - “’3 prtchri
a 3= kintl.entrys

i loop

i n2 3= n2 - |3}

iexit if (n2 = 0)3%

a $= a8~ .alts
end}
repeat

if a®.terminal
then sym t= a®.tsym
else sym 8= kla®.nsyml.symj}
a t= a”,.,sucsi
prtsyms.

iuntil (a = nil)s
prtlnfg 3= trues
chars 8= filljs
prtcnry
end?
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procedure cycless$
var
levelflgs booleans /= flag to mark start level of
prtpath =/
useds array [(¥..maxheader] of booleanj
currptrt record /= pointer to next node in the trace of
current rule =/

alts 1..10%
suctpointer
end}

ruleptrs /= ptrs for current traces of the rules =/
arrayld..maxheader] of record

alts 1..103%
sucspointer
ends

ikl integeri
initptrs pointers /= ptr to the initial entry ot current
rule =/

.nyrootttolranges

paths array(@..maxtopl] of record

rule: tblranges
alts 1..10
endas

startlevel,level:s g..maxtops
procedure prtpaths

var

.nodes V..maxtops}

indent: tblranges
begin /a list one cycle (path) */
for node 8= startlevel to level do
s begin

' nl 3= pathlnodel.rules
n2 := pathlnodel.alts
chars = 7 /3

indent = noaqe}
while (indent»>®?) do

ibegin /= output indentation */
i prtchrs prtchrs prtchrg

i indent t= indent — 13}

iend}
prtrules

' ends

chars 3= fills

prtlnfy 8= trues

prtchri
ends

[ ]
]
[}
[ ]
]
]
[
L
[3
]
[]
]
14
'
[3
]
3
t
4
]
3
[}
]
]
[)
]
[}
]
[]
[}
[]
]
]
[}
L}
]
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1begin
/% indented cycles listing =/
writelns
writeln(”/ indented cycles listing”)}
writeln ¢/ Jedede ko ek deok ok ko kk kkk kkxkn’) §
writelns
levelflg = trues /% initialize flag =/
n t= topneader = 1§ /* n is the number of

nonterminals */
for root 3= € to n do
tbegin /x see if root can reach itself %/
if witninalllroot,rootl]
then
tbegin /x root can reach itself */
.begln /% initialize tree for root =/
level 8= 03
initptr t= kirootl.entry;
patni@d].rule t= roots
patnl¥l.alt = 13
i 8= roots

for k1 3= root to n do

ibegin

usedlkl] 3= falses3

/% initialize ruleptr to the start of the
first alt =/

ruleptrlkll.suc s= klkil.entrys

ruleptrlkil.alt = 13
vends

ends

e Te B DO e e T® G- ee T g @
- e B oo o=

currptr $= ruleptrl{ils

irepeat {* Creat tree for all the paths from root */
J = ~-13

while ((currptr.alt<=altcntl(il]) and (Jj=-1)) do
ibegin /* locate next nonterminal =/

v while ((currptr.suc<>nil) and (j = —1)) do

v if currptr.suc®.terminal

i then currptr.suc = currptr.suc®.suc

1 else

i i1begin

i + J t= currptr.suc®.nsym;

i | currptr.suc := currptr.suc®.sucs

]

‘

;

:

:

e Te B P Ge NS B BeBe e e e T Of B NS ee Ge PO ge e e B

B G- e e we B e B De e Se P G- o- B P o~ B o

i ends
if (j = =1) /% currptr.suc = nil =/
then

if (currptr.alt <= altcentlil)

then

e RO Ve De B G ®, CeBe R Ee B® S -
B B B G N G- e e e G TE O® Ge b
. e e e e G e e Te Qe e S0 Be P B



G e Be e Ba PE B Te B e e B Be G Be co me PEED . P ce o e e

e B e Ge e B PO Ge G TS ha R P O e B PE S Ge B Es e P @O GE B PO BE B GO PE B B B P B e O SO e ve Dave g0 es oe oe Se ee
- PE B e B PE Ge BT ST a0 e OO N DE TGS B NAEGe e e RS Be Be G B GO B BO Ve PO e B Ge B S TO e o DO B LB e B e O

247

ibegin

¢ currptr.suc 8= jinitptrs

¢ for k1 3= 1 to currptr.alt do

i currptr.suc 3= currptr.suc®.alts

i currptr.alt t= currptr.alt + 13

i end}

t ends

if j<>=1i

then /=~ check reachability %/

/» we know root within+ i and i within j, if J
within+ root then we can extend the path */
if (witninalllJj,root] and (not (usedl[ j]l)))
then

.begln /% extend path to j =/
ir.(levelflg)

then

ibegin /% startlevel is the starting trace

level after last cycle printed =/
startlevel t= level}

level flg 3= false}

' ends

pathllevell .alt 8= currptr.alts

if (currptr.suc = nil)

then

1begin

i currptr.suc t= initptrs

{ for k1l 2= 1 to currptr.alt do

¢ currptr.suc 3= currptr.suc”.alts

i currptr.alt 3= currptr.alt + 13

i ends

ruleptrlil $= currptrs

if (Jj=root)

then

i begin

prtpatns /= after printing path, reset flag

' to store next trace =/

i levelflg 8= trues

: end

else

y begin

usedl j] 8= trues

initptr = kijl.entrys /x extend new

entry */

e he G- B PO Pe CE SRS B me P De Se e OS Be Ge Se B
-

level t= level + 1|3
pathllevell.rule 3= j3
currptr 3= ruleptrl{ jls
ist= j3

\ ends
ends
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if (currptr.alt > altentl(il)

then

ibegin /% backtrack in tree resetting ruleptr
and used »/

ruleptr{il.alt = 13

ruleptrliil.suc 3= initptrs

usedl{i] 3= falses

levelflg 3= trues

/% reset flag for the new try */

if (level > )

then

1begin /= backup one rule */

i level 3= level =13

i 8= pathllevell.rules}

initptr 8= ki{il.entrys /= backtrack old

entry */

currptr s= ruleptri(ils
iends

iends

tuntil ((j==1) and (level = )
and (currptr.suc=nil))s

. Ee B PE R Be P P CCDe DE G O e Pe PO S G®
- . PE Gn e B . e BE Be Ge O B = w-

i ends

/% end of generating all cycles from root */
usedlroot] 3= truet /* mark used */

{ends

/x try next nonterminal as the root */

/% end of main loop */

iendl

Be e pe G b Ge Te Ge Pe QoS G B O Pe R e Oe TR e e e e O
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procedure getsyms}

. procedure getterms

i begin
i sym s= 7 43

symbol’type $= terminals
sym 3= “ 43
i 8= 13
while not(chars= 4 “) and not(eof(input)) do
{ begin :

if 1 <= 20

then
. +begin

+ symli] 8= charss

i1 o3= i+l

1ends

reaanxchrs}
i ends

iends
begin

while (chars = < “) and not.(eof(input)) do
1begin _

e e e B e e O e P On G- e D @
-

readnxchrs

ienas

if not(eof(input))
then

ibegin

¢+ case chars of
P ]
1begin

symbol’type t= nonterminals
sym 8= 4 ‘3
is=13
while not(chars = 4 “) and not(eof(input)) do
ibegin

if 1 <= 20

then

1begin

i symli) s= charss

v 1 8= 41 + 13

renas

reacnxchrs
enal
ends

e e B B e e e -G B PO wa e G-
—e e B0 86 oo Oa O ee

.f*-’ 4

i sym 3= “’x 73
¢ symbol’type $= empty}
rends

[}
[]
[}
L}
[)
L]
[]
L
]
]
1
]
13
[ ]
[}
]
]
’
)
(]
[}
¢
[}
]
4
]
]
]
]
[}
[)
[}
1
]
)
)
[}
(]
]
)
]
L]
[}
L}
[}
]
[}
]
)
[ ]
]
]
13
]
[
L}
[}
[ ]
1]
]
[3
]
[
)
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L3378
ibegin
i readnxchri readnxchri3 symbol’type 3= equals}
iends}
4,78 symbol“/type 3= alternates
“{73 sympol’type 3= repeatlfi
1]/% symool’/type 3= repeatrisj
Pl 3
tbegin
i while (chars = 4=’) do readnxchrj}
{ symbol’type $= separatori
tends
2.7t symbol’/type 2= periodj}
4073 getterms
otherss getterm
ends .
readnxchrs
endj
end /xgetsym=/3}
procedure find(st alphaj
/% locate nonterminal symbol s in list. if not present,
insert it %/
/= use hashing technique to speed up table lookup =/
var
d,hls indexs
h2s inteyers}
i begin
h2 3= 0% d t= |3}
found t= falses
for i 3= 1 to 5 do
h2 t= ord(slil]l) + h2x1283
hi t= h2 mod primet /= hash function */
irepeat |
{ 1f hashlhl]l = -1
then _
ibegin /% insert %/
found t= true}
hash{ht] 8= topheaders
h &= topheadersi
klh]l.sym t= s}
kinl.entry = nils
topheader $= topheader + 13§
' end
else
if (klhashlhlll.sym = s)
then

1
*
]
[]
]
13
'
]
]
[]
]
]
L}
(]
]
]
]
’
[ ]
[}
]
]
]
1
]



251

' i begin
H i found $= trues
I i h = hashlhils
I iend
1 I else
{ ¢+ . ibegin /% collision =/
N i hl t= ni + d3
I 1t d 3= o + 2%
HIEH i if hl >= prime
L i then hl 8= hl = primes
‘o i it d = prime
I i then
I { ibegin
I it + writeln(~ **%%x*xx table overflow- !!-7)}
. { | ok 3= falses
I i 1end
H 3 {end
¢ wuntil founds
'endi
. procedure errori
tbegin
writelns

L}
¢ writeln (Zincorrect syntax’)s ok 3= false
1end/=errora/}
procedure term(var p,q,rs pointer)s
var

a,b,ct pointers

procedure factor(var p,qs pointer)i

var
a,bt pointers hs tblranges
. c i begin
if symbol’type in [terminal,nonterminal,empty]l
then
.begin /xsymoolx/
new (als
if symbol’type = nonterminal
then

.begln /nonterminalx/

flﬁd(sym.h)i

“.terminal := falset

if.firstflag

then/x construct relation matrix while parsing =/
first [currnsym, hl 8= trues

within [currnsym, n] 3= trues}

a”.nsym 3= h
end

e o e B ve MeBe be be e e Ge oo Se g
e e B B e SOSS e he e e e
-

- - o 0 ve sea



252

else

1begin /xterminalx/
i a”.terminal &= truet

]

¢ if symbol’type=empty

i then a®.tsym 8= “% ’
i else a".tsym = sym3

i ends

firstflag 3= falses;
p 3= ai g $= aj$ getsym

i end
else

if symbol’type = repeatlt

then

ibegin
1 getsyms term(p,a,b)? b .suc t= p3 new(b)3}

b®*.terminal t= trues
b*.tsym = “% 3
a®.alt = bt q 3= b3}
if symbol’type = repeatri
then getsym
else error

: end
else error

iend /*factor=/3j
1 begin
i factor(p,al)s q = a3
i while symbol?type in
i [terminal,nonterninal,repeatlf,emptyl do
E 1begin
¢
]
'

e e e o e o oo e ®e
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factor (a®.suc, b)s b".alt t=nil 3 a t=»b
ends
= a

H
]
r’ =

nd /xterm=/3}

e



procedure expression(var p,qs pointer)i
var
a,b,ct pointers
{begin '
firstflag 8= trues}
term(p,a,c)s c*.suc t= nils
if (lastflagihl)
then /~ trace possible terminate symbols =/
if (c®.terminal) ‘

then
tbegin
i if (c®.tsym <> terminetit])
i then
i i1begin
i | terminetlt] 3= c®.tsyms
vt e=t + 13
i iend
i end
else

lastflaglc®.nsyml] ¢= trues
/% set flag for terminate trace =/
while symbol’type = alternate do
ibegin
getsyms
firsttlag 3= trues
term(a®.alt,b,c)$ c“.suc 2= nilsy a t= b}
altentlcurrnsyml] 3= altcntlicurrnsyml + 13
if (lastflaglhl)
then
if (c®.terminal)
then
ibegin
i if (c®.tsym <> terminetl[t])
i then
¢ 1 begin
i + terminetlt] t= c*.tsym}
Pyt s=t o+ 13
1 1end
iend
else
lastrlaglc™ .nsyml 3= trues}
/5 set for terminate trace */
ends
t= a
end /*expressionx/3}

)
d
E
]
'
i
:
'
i
i
'
H
:
s
:
g
:
:
:
'
g
n
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procedure parse(goals tblrangei var matchs boolean)s
var
st pointers
ibegin
s ¢= kigoall.entrys
irepeat
if s®.terminal
then
ibegin
if s®.tsym = sym
then
1begin
i match t= true$ getsym
1 end
else match 3= (s®.tsym = “’= ’)
 end
else parse(s” .nsym, match);
if match
then s 3= s®.suc
.else s = s®.alt
runtil s =nil
end /xparse=x/j

]
]
]
]
]
]
]
]
]
]
]
]
]
]
'
1
]
1
1
]
]
t
t
]
|
'
]
]
]
]
]
]
1
]
]
]
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ibegin /=productions»/

- R me R WE Be e EE B E- G- e B BE B EE m- B VS GE P R DO G e T BT G BE R BT G- Em- B TS Be e W MR BEWe B SE @ eSS e ®e

/% initialization */
inpfg $= trues

for j = | to prime do
hashl j]l t= -13
prtlncnt t= 03}

prtilnfg 3= falses}
prtlnum 3= trues
prtlnptr = @3

/» special characters for nice output =/
1t 3= chr(i1d)s

Till 3= chr(127);

cr $= chr(i13);

alt s= chr(l24);

readnxchr;
topheader 3= 0%
Jetsyms

t ¢= 13

/+ initialize lastflag for terminate trace */
lastflagl®d] 3= trues

for is= | to maxheader do

lastflagli]l 3= false

/% initialize matrixes =/

for i 3= 0 to maxheader do

for j 3= @ to maxheader do

first (i, j] s= falses

within 8= firsts

while symbol/type <> separator do

1begin /«x construct data structure for transmission

: grammar rules., the date structuer can be used
to parse action sequence, to validate tg and
to list cycles =/

find (symn, h)}

currnsym 3= nhg
altentlcurrnsym] s= 1%
getsyms

if symbol’type = equal
then getsym

else errors

expression (klhl.entry,p)$ p“.alt 3= nils
if symbol’type <> period
then errori

getsyms i
enal
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/% start protocol validation =/
h t= 0% ok 3= true$ /= check whether all symbols are

defined */
while nh <> topheader do
i begin '
if k(hl.entry = nil
then
ioegin
i writeln(/ undefined symbol =——> 7/,

k[h]l.sym)3
ok t= false

e @S e 2o pewe w= -
- me e -

/= proper termination analysis %/

writelns

writeln(”/ proper termination analysis”)}

writeln(’ KAKKAARRKARAR ARKAX KA ARAR Ak khdk’ ) §

writelns

if (¢ > 2)

then

writeln(”s - %% warning ** more than one’,
7 exits’)s

writelns

write (s the terminet symbol ist “)3%
for i 2= 1 to (t - 1) do

write(terminet(ils20);

writelns

n 3= topheader - 13
/=« relation matrix within and first are constructed during
prasing tor efficiency, we construct transitive closure
of relations first and within »/
firstall := firsts withinall 3= withins
for i 3= @ to n do
for j 3= @ to n do
1 begin
if firstall [J§,1i]
then '
for k1 8= 0 to n do
firstall [j,k1] ¢= firstall (j,k!]) or firstall [i,kl113
if withinall (j,1i]
then
for k1l 8= ¢ to n do
withinall [j,kl1] 3= withinall [j,k!l] or
withinall [i,k1l13
ends

e mw e EE e e B Ee e -
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/» left recursion checking =/

for i = 12 to n do

if firstall [i,1i)

then

' begin .

i writeln (7 left recursion ==> 2, ,kl{il.sym)s
\ ok t= falset

i ends;

if ok

then writeln(’ no left recursion’)s

writelns
writeln(”/ reachability analysis’)
writeln(’ AEAXKKRARAKARAARKRAARARR ) §

writelns

/» reachability analysis x/

for i 8= 1 to n do

it not(withinalll@,il)

then

i begin

i writeln(” unreachable nonterminal --—> 7,
: klil.syms20)3

{ ok 3= falses

' ends

i1 (ok)

then writeln(’ no unreachable nonterminal“)s

/» check for <u> 8t=t for some t in vi+ =/

for i 8= @ to n do

mark(i] s= false}

i1 (ok)

then

ibegin /* nonterminal termination checking */

i irepeat /= check all nonterminals to see if can
i derive a terminal string =/

newmark $= falses

for i ¢= @ to n do

if not(marklil)

then

tbegin

p 3= klil.entrysi

stop 2= falses

while

((p~.suc<>nil) and (not(stop)))

do

if (p”.terminal)

then

p ¢= p~.suc

. - EE e e B S e B Pe e me Be -
o e e m. B m- e -
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else
{ begin

1

{ then

i p 3= pT.suc

i else

E stop 8= true

]

if not(stop)

then

1 begin

« markli] = trues
i hewmark s= trues

stop 8= falses

i = 13

while (i < n) and (marklil) do
is=1+ 13

if (i = n)

then newmark $= falses
until

((stop) or (not(newmark)))s
if not(newmark)

then

writeln(” all nonterminals can terminate’,
/ properly.”’)

else

for 1 3= 0 to n do
if not(markl(il)

then
writeln(”/ the nonterminal’,kl( il .syms20,
/can not terminate properly’)$ writelns
iends
if not(ok)
then goto 99%
writelns
writeln(/ action sequence testing”)s
writeln(’ AR ARRA KRR KR RAAKXNKK AR ANRAL) §

writelns
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/*goal sympol*/

getsym$ find(sym,h)3}
/asentences*x/

getsymsj

while not(eof(input)) do

i begin

parse (n,ok) 3

ir (symbol”’type <> period)
then ok 3= falses

getsyms}

writeln(/ the syntax of the above action’/)j
write(”’ sequence ist /)3
if ok

then

writeln(/correct’)

else writeln(Zincorrect’)s

ok &= trues

i ends

if (ok)

then cycless /« list all the cycles x/
993

iend.
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