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INTRODUCTION

The concept of quarks, their bilinear currents and ensuing 

commutation relations and symmetries, has recently been clarified by 

Gell-Mann^ who pointed out the existence of and sharpened the distinc

tion between two different SU(6)W algebras.

One, which will henceforth be called SU(6)W strong> is that
2suggested by Lipkin and Meshkov . It is an approximate symmetry of the 

hadrons, closely related to the original nonrelativistic SU(6), and 

contains results associated with the naive quark model: the hadrons 

act for many purposes as if they were made out of two or three 

"strong" (constituent) quarks. The original SU(6) predicts spin con

servation for collinear three point functions (hadronic decays and 

form factors) and thus leads to some undesirable consequences. These 

can be avoided by noting that collinear form factors have symmetry 

properties which follow only from rotation and reflection invariance 

and do not require other symmetry assumptions. The subgroup g^ of the 

improper Lorentz group, including reflections, which leaves all momen

ta in the z-direction invariant, has been denoted by "collinear little
3group" or "little - W" group . The group g^ contains an arbitrary ro

tation about the z-axis

C   C c/
A  7 - ^  (1-1)

and a reflection about any plane containing the z-axis, which is
1



written as a product of a space inversion, generated by the parity 

operator P, and a 180° rotation about an axis in the x-y plane

-D off (j* C<roG + Jy /Olic (^x <9 * S, / p m
?  * ' J Z* * ■

The equality = holds when all momenta are in the z-direction, P-j^ is 

the intrinsic parity and S the total quark spin. When acting on a 

system of spin 1/2 quarks the right hand side of Eq.(l-2) can be 

written as a product of single quark operators

Csx e*r>€> + Si /-ouxca)
* , (1-3)

If one defines an additive operator i? as

^  - 7>int £  2 C1-43)

£/; (l-4b)

and

ki ’ J (l-4c)

Eqs.(l-l) and (1-2) become

t 't/ i ̂  ̂ 4
~ JL - (l-5a)

and

j , ( j ,  c<r>@ *  Jy i ir fb o t  L’s v & '- lV y
ry = j, . (l-5b)

In terms of quark and antiquark spins and I?- the W-spin operators 

read
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K  * £<a (l-6a)

(l-6b)

and

(l-6c)

thus defining the W-spin classification of mesons and baryons. If the

transverse momenta can be neglected W ,(and consequently L ) is con-z z
served and the hadrons can be classified in multiplets of SU(6)^x 0(2) 

each member being specified by its SU(3) X SU(2)^ properties and the 

orbital excitation. The lowest lying negative parity mesons (pseudo

scalar and vector) then belong to the 1 and 3_5 representations and the
+ +lowest lying positive parity baryons (1/2 octet and 3/2 decimet) to

the _56 representation of SU(6)^.

The second SU(6)W , called SU(6)W currents and introduced by 
4Dashen and Gell-Mann is based on the algebra of integrated local 

current densities measured in weak and electromagnetic interactions. 

According to the Cabibbo theory the currents form a set of eight 

vector and eight axial vector currents, which have the same com

mutation relations and Lorentz behavior as

(l-7a)

and

A*
(1 - 7 b)



respectively. Here A^ is the usual 3 x 3  representation of SU(3) gen

erators and y^1, y^ are 4 x 4  Dirac matrices. In the limit of SlT(3) 

invariance all vector currents are conserved (CVC). If a world scalar 

is added to the system (1-7) and the operators are commuted at equal

times (using quark model commutation relations) the algebra closes on

a U(12). Tensor currents = % q A q are found in the processa 2 a
and their integrated "good" components (for definition see Appendix A)

can be adjoined to the chiral SU(3) x SU(3) algebra to yield a set

of 35 (36) charges of SU(6)T1& W, currents

j£ * Jc/x Cjf(x) (1_8a)

and

■£ ' -  x J S *  i  (i-8b>

4̂, ~ ifJ</x qjXx) (T "jg ^fy). (l-8c)

F is excluded from SU(6)„ ; its inclusion enlarges the alge-o W,currents
bra to U(6)tt . .w,currents

Even though the SU(6)r,  ̂ charges are taken to have& W,strong ° a
the same commutation relations, charge conjugation and parity as the 

quark model expressions (1-8) the two algebras need not be identified. 

It is perhaps tempting to do so and extend the CVC hypothesis accord

ing to which the hadronic vector current which participates in weak 

interactions is identified with the current which generates hadron 

symmetries. However, predictions, based on their equality, such as 

G./G = -5/3 or the vanishing anomalous magnetic moments of the 1/2
A  V



octet baryons^, are not satisfied in nature. This led to a variety

of phenomenological mixing schemes describing the physical baryons as

complex mixtures of irreducible representations of SU(6)W currents’ *n

other words, a baryon which seems to be composed of three quarks with

the naive quark model wave function under SU(6)rr becomes a com- ̂ W,strong
plex object when viewed under SU(6)rT . This picture seems toW, currents ^
be supported by the parton model, which uses an infinite number of 

partons in a hadron to describe the structure functions measured in 

deep inelastic electron scattering (see Appendix B).

It has been suggested that the two seemingly different aspects 

could be reconciled if a transformation between the two SU(6)^ algebras 

was found"*". Candidates for this mechanism have been proposed by Melosh^
gand Gomberoff, Horwitz and Ne'eman whose transformations take the set 

of the current generators (1-8) into exact symmetries of the free quark
qmodel. As noted by GUrsey the same task can also be accomplished by 

the Foldy - Wouthuysen transformation^ and, as we shall show later, by 

other transformations. Some phenomenological implications of the trans

forms have also been tested"*""*".

In this work we inquire into the Fock space realization of 

these formal transformations, check whether and when they can be uni- 

tarily implemented, and in the process construct eigenstates of

SU(6)ri charges and find the overlap between current and con-W,currents °
stituent quark states in the free quark model. This overlap is zero 

unless the theory is cut-off in momentum. Suitable remarks are made 

concerning nonseparable infinite tensor product spaces and the lack 

of unitary implementability. Certain averages and moments, however,



are well defined. These are calculated and discussed in terms of a

parton interpretation. The transformation we study lead to exact

symmetries of the free quark model in the equal time formalism. Corre-
12-14sponding transforms in the light-like formalism are unitary, do

not create pairs, and produce at most a spin rotation.

The paper is organized as follows: In Sec.I we list some 

Foldy - Wouthuysen type transformations and discuss their uniqueness 

and consequences; in Sec.II, in a simplified formalism, we show how 

these transforms are implemented in the Hilbert space; in Sec.Ill we 

obtain the eigenstates of the SU(6)WjStrQng and SU(6)W)Currents 

charges and calculate distributions of current quarks in a strong 

quark. Section IV contains the conclusions. Appendix A defines "good" 

and "bad" operators, Appendix B contains a description of some aspects 

of the parton model and Appendix C treats "exponential ordering", a 

technical tool necessary to study the transforms.



I CANONICAL TRANSFORMS IN THE FREE QUARK MODEL

Given a formally unitary transformation = exp(iY^), with
+ , the free quark model Hamiltonian

// - J + /3 <0*1]  ) (2-1)

can be transformed into a form

=  V/HV; - Z  ^ 7  H '  , H}, (2-2)

where {Y^ , h ] = [Y^,CY^,... ,[Y^jHJ .. .JJ anc* contains n commutators.

If Y. can be written as 1

yt - f<£ efCx)}-* ij /j (3) (2-3)
J </

where f^(d) are some functions of spatial derivatives and Ti are
J

Dirac matrices, the resulting form of is given by

(2-4)H, =/cd

and can therefore contain only a linear combination of the matrices 

(3, ct̂ , and Y^ Y~*> with k=l,2,3.

A classic example of a is the Foldy - Wouthuysen transfor

mation generated by

—  ̂ 1^1 
= zJ<fx<?Yy) îjj ^ 6 ),  (2-5)



where

/ / /  . ( - T ) ' k)
and leading to an

Hpy - J'cSx c?(*)/3 <%/*). ( 2 - 6 )

The transformed Hamiltonian Hjy coincides with the Dirac Hamiltonian 

H only on the space of states at rest.

Another transformation, with

> f If'" ̂  f /<yn'
yo ' -kj’AcfO') -Jfj Jfj ̂ (‘) (2-7)

has been constructed by Cini and Touschek^ and Bose, Garaba and Sudar- 
16shan . Its effect is essentially to remove the mass term yielding a 

transformed Hamiltonian
*

=  f c A  r $ T  ̂ ‘ )  ( 2 - 8 >

with a mass dependent kinetic energy term. In this case H and H^ 

are equivalent when acting on states of infinite momentum.

The Melosh transformation^ generated by

/  ' f  3 \ ^  J Jd±J. ^  \

/„ Z J  c/x ^  yCx); (2 9)

where

/<•£ /  - (-2* ~ )
'A
J

results in an

h m  *y^/i ef6)[-1 + /$ Js™' 5  J  cy>); (2-10)



where only the transverse components of the kinetic energy term are 

"rotated" into mass term. Obviously H = for states of zero trans

verse momentum.

Yet another transformation, which shall prove relevant to the 

discussion below, is

This transformation does not affect states moving at infinite momentum 

in the z-direction.

by the form of ; they are arbitrary up to a unitary transformation 

V which commutes with the H. In other words, if a has been

For example the transformation Vq used by Gomberoff, Horwitz and

, L K m  K/2
Vo 2 “ ■£' ( 2- 11)

with

( 2- 12)

transforming the Hamiltonian into

(2-13)

None of the above transformations is uniquely determined

t  +found such that V-jHV^ = Hĵ  then also HV{ = , where

J

K  -  V  K - . (2-14)
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where

Yc * 2  let* effx ' (2-16)

leads to Hpy even though Vg ^ V ^ .  Similarly, can be reached

by a different from ,

\/Ji ) ' I /  ̂’Li
V o i  ’  VM  *  J  (2-17)

where

fel » l/rrY-%j / / j , \ o 'Y -/  - /■ \
Yut * "-TJe/x cĵ Cx) i2i {Ucfa* ^(*). (2-18)

Under certain conditions the transformations can be used to generate 

conserved quantities out of nonconserved ones. For example, if an ope

rator F does not commute with the H but it does commute with some 

then

- Vi F  V/ (2-19)

commutes with the original Hamiltonian H. Again, the requirement that 

the - transformed F be conserved determines the transform only 

up to two unitary transformations V and V , such that LV,Hj = 0 

and [V,F] = 0 ; if = V-^Fvt is conserved then also is con

served, with W[ = V^FV^ and

J  . &
Vt -  t' V, l\ (2-20)

This technique has recently been applied in an effort to find 

a conserved SU(6)^ S£rong ln fclie free quark model. The set of gene

rators of SU(6)^ currents 8iven ky Eqs.(l-8) commutes with integrated
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bilinear densities of the type

Je£ •/’ A, / }  (2-21)

where f(d) is some function of spatial derivatives. The set (1-8) 

can be enlarged to U(6) X U(6) if the operators FQ and

£  ~ f A  cff, )/2 X  ^  \  (2-22a)

. -2 f f J -/'/'I  ̂J ̂  JXu, /■ \
£  x  (2-22b)

= i f j *  (2-22c)

are included. The full set now commutes with integrated bilinear den

sities of a general form

J A  <£{*)} / J / 3 $ (2-23)

Accordingly,

/  £  ' j tifM,FW,Ulj J = 0^ (2-24)

and

/ j  (2-25)

thus VM , , and Vuz lead to a conserved SU(6)w ŝtrong , while

V_ and V transform the whole U(6) x U(6) into a symmetry of the G FW
free Hamiltonian.

The transformations which take the SU(6)W currents into 

a conserved SU(6)^ strong must he SU(3) singlets in order for the
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conserved vector current hypothesis generalized to SU(3) to remain 

valid, i.e. FQ = . The classification of states requires other

quantum numbers in addition to SU(6)^ ; one of these quantum numbers 

can be taken to be the spin in the z-direction. Consequently the trans

formation is required to be invariant under spatial rotations about the 

z-axis, [ v , j J  = 0. The transformations considered above do satisfy 

these conditions and thus there is a large amount of freedom left. For
i i texample W3jFW = VFWFa^FW can also be obtained by Vyg since

, F1] = 0 . Similarly, the SU(6) charges of Melosh,UZ a W, strong

m  = , result from both V„ and V.L as Y-, and Y'a,M tra M G UZ G UZ
i i icommute with the Fa 's. This also implies that an<* ^a,FW are

related by a unitary transformation which commutes with the Hamiltonian 

H and turns out to be a momentum dependent spin rotation; similar 

transformations can be used to construct other W a 's.

As explicitly shown by Melosh the structure of the "strong" 

charges expressed in terms of the quark fields q(x) is rather compli

cated and it is advantageous to view them in momentum space where they 

become simple. Let us write q(x) in terms of creation and annihila

tion operators,

) J^/0 P * J> jg V  (p) P (2-26)

where r runs over both spin and SU(3) indices, and the operators sa

tisfy the usual anticommutation relations

la
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with all other anticommutators vanishing. The Melosh and FW-transformed 

charges are then

(2-28a)

W f ' i Z i  ( A  p / a f ' t f  * * % ) & ' ' *  x  K a & o )a. rsj  k

J-fs) (r) ,{r) -/ , 2 1 a  (s) . 2
*J>-£ J>_? & fo) %  & 5T #  V

\ ,3 t 'p (  ,3/ ^  $  f(r) (&) +fr) &/■ I
W  ^5"2Li /</* r l a ?  a ?  a  (o ) ^ g  ^  %  a  fo)<X f*g J  k

Jfe) Yr) -ffr.) -/ 3  ̂  A (sL } I
M  t (b)& 6“ 31. &  v  (b)j“”A? — fa y

(2-28b)

(2-28c)

where R=1 for the FW-transformation, while for the Melosh transform^

T> _  J(u>+e )(lu+-m ) j _ _  ck (kx$) j
• 2.(aj(£+M) [ (uj i - s ) j  (2-29)

with
/  s. A  \'/;2.

to ~ [rm ■+■ kx ) (2-30)

Thus Wq ^  are just the effective spin operators, while ^ dif

fer from these by a spin rotation, in accordance with what has been 

noted earlier. This rotation is just an anti-Wigner rotation making 

the charges found by Melosh invariant under boosts in the z-direction. 

The corresponding SU(6)^ strong fchen becomes a collinear symmetry.

On the other hand, the F's, while local functions of the 

fields, contain pair creating terms in momentum space. Their eigen-
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states are expected to be complicated, but can be nevertheless construc

ted using the transfotmations as a technical tool. If the eigenstates 

|qs) (the quantum numbers are supressed in this notation) of a conserv

ed charge W=VFV^ are denoted "constituent" or "strong" quarks, which 

are single particle Fock space states in the Dirac representation, then 

the corresponding eigenstates of F, "current" quarks, are given by

h c> = v+k >  •

Thus the transformations have a property of shifting a kind of 

non-locality, in particle number as well as space, from states to ope

rators, depending on the representation. Although not stated in a sec

ond quantized and Fock space language, this state of affairs is implic

it already in the classic paper of Foldy and Wouthuysen^ who point out 

that their transformation takes the naive and local position operator x,

X 1 ~ J d x  (£(*') x l p'x)

j A r n s

■*- ct^cip [x0 if<C/S -  <CfS ~ Icfon) Co)fe* k ) d % ) ]

i

+ £ ?  /jl-Xo T<C,s le* ~ d % ) ]

+ U Q  d ? [ ~ 2 E  d Cr)r o ) / d % ) '+ 2EX(E+~M) * 'r)fo){-k//%)]* 1

x^r% ) / lv&}o) -  -ZPCe +TT)

into the non-local "mean position " operator X,
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X ‘ - * * ' C

-  T  ■(J3l M  js S' *̂ Y- — „ rs)) 1 / d *> //. ^  , ^ l  ,/wl± J J A e  <£s f j a t  ft - *  ( t j i '& f  / a ?

of1
' iHsY  <L ,(r)) . f + v j &  s a),(r) \}

(Ldk‘lr/ + £  (at a s ' h  )1 (2-32)

17of Newton and Wigner which does have localized eigenstates

ix >  - J < j p [ r  jl>p^  a  ir) f o y . (2-33)

In the next two sections we set out to find the explicit form 

of the strong and current states, |qg) and |qc) . We shall also cal

culate the distribution of the current quarks in a strong quark and de

termine whether this permits the identification of current quarks with 

partons. Since the structure of the transformations is more transparent 

in a simplified formalism we shall discuss that case first.



II. STRUCTURE OF THE TRANSFORMATIONS IN A SIMPLIFIED FORMALISM

The SU(6) operators annihilate the vacuum, arev W,strong F *
conserved and do not create pairs, while the charges of SU(6)^ current

(apart from the common SU(3) subgroup) do not annihilate the vacuum,

are not conserved and do create pairs. Thus the transformation between

them has to contain pair creating terms, and it turns out that this

occurs in all momentum states. As a consequence, the transformations we

are considering are not unitary on Fock space and their implementation

is naturally discussed in the larger infinite tensor product spaces of 
18Von Neumann . To explore their structure we shall restrict ourselves to 

a simplified formalism by neglecting the spin and SU(3) degrees of 

freedom. Let us consider an infinite set of creation and annihilation 

operators labeled by a discrete index k and obeying the anticommutation 

relations

“C ' ,  < 3 - i a )

ll', , ' eC,k', (3-lb)

all other anticommutators vanishing. Apart from counting terms like 

a^a^ the operators of interest have the form

V =• / c £  (/„  F t*  ( 3 " 2 >

where
16



17

&*. J (3-3a)

fjt _ j /■
Hk " ^  -6-4 y (3-3b)

and Yv is some function of k. Since

/ ' / 7  h T 7 ,  f  , fz-c'fa - J ?  J? )L nk } Hk,j J^L> * -*> 04,*' 'j (3-4)

V can be written in a product form

/ '  nk vkJ o-5)

where

\( = ■ c O'* f7* r /A (3-6)

In the nonseparable infinite tensor product space,in which V acts, a

general state |f) is written as

/ /  >  - // / /  y  (3-7)

and thus

V / / }  " /i li //< )>. (3-8)

The inner product is defined by

< Y y  * y  - (3-9)

The k-th mode, is built on the common vacuum, jo^), of a^ and

b_^ , and is in general a normed linear combination of the states jo^),
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I V  = 4 l V  » I V  = b- k l V  and I V  = Ak l V *  <The fermion
commutation relations do not permit any other state.) By a parameter 

differentiation method described in the Appendix C it can be shown 

that

ft* /?7?m Eft* y $  * J
V* - Jt J, ^  (3-10)

where

/  ' //f/ (3‘lla)

Ly*
(3-lib)111

and

/7T7m <Z(?o /«. (3- 11c)

Thus
ifu.

VK /o^y =  V  ’JjpJ (3-12A)

K  J h  > *  tU  (3-12b)

K /I* > ~ (3- 12c)

and

1/ /&  >  =  ^  fr* Ite* >  "  ^  fa /  /0A >. (3- 12d)

The eigenstates of are 11^) and both with eigenvalue one,

and



with eigenvalues exp(±i|Yk |) •

Let us now define an equivalence class corresponding to a

state |f} = n k |fk ) as a set of states which differ from |f) in at 

most a finite number of modes. If the Fock vacuum, |o) = nk|ok) ,

belongs to this class the class spans the Fock space. In general Yk 

is nonzero for an infinite number of k's and consequently, with the

but also to any state of definite particle number, whether finite or 

infinite. Thus V is not unitarily implementable on a separable space 

unless a cut-off procedure is introduced which limits the degrees of 

freedom to a finite number.

Nevertheless, expectation values of Fock space operators in 

V-transformed Fock states do not vanish , Certain "inclusive" probabili

ties are also well defined, such as the probability P(np) °f finding 

n-pairs in the p-th mode and anything else in the other modes

exception of the eigenstates of V and their equivalence classes, 

and V|f> lie in different spaces corresponding to distinct equiva

lence classes. For example

(3-14)

is orthogonal not only to the vacuum,

< o / v t o y  - //K (3-15)
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giving

7>fq0)^ e+J/fp/, (3-17a)

and

® (3-17b)

The average number of pairs in v|o) can also be evaluated by taking 

the expectation value of the pair number operator N = in the

v|o) state

<N)> = <0l\ItfZV)OS> ~ Zj (3-18)

We can also show that V, even though not strictly unitary, 

does not lead to states of infinite norm and, in fact, V has a unit 

norm. Let us take an arbitrary state |f> = IT^|f^>, where

//* y ~ o/M ^ y  + y + h . iz* y, (3-19)

whose norm is

/Iff// = I /k (  ̂ + />£ /*)' (3-20)
The norm of vjf) ,

—  r 1 L /*•
K / / ^  ^ //k / c/k <*0 0 /oA y * jjrjo/A /otu,/j't / /2ky

■f-/3k /ik y + /jk y (3-21)



is given by

// vip/i =  I T J u  A  //?, A  A  /v. r )

(3-22)
*  / / / / /

and thus the norm of V is one. V also has an inverse since to each 

vector jg> = \ | g k >,

y * iOK > I1,} + A .  /iM ) f hK / A  >, (3-23)

corresponds one and only one vector |f) given by Eq.(3-19), where

a / /
- C  Ctv//* / - 'Tf) ^  7* }J (3-24a)

*; (3-24b)

^ k - j (3-24c)

and

= A* doo /y* / Iy><■ / A ^ *//*/ (3-24d)

This inverse V \

V (3-25)

is seen to be equal to , the adjoint of V.

Thus when in the next section we calculate the probability of



finding a specified configuration of current quarks in a constituent 

quark it should come as no surprise that these probabilities vanish 

unless the high momenta are cut-off, whereas inclusive probabilities 

associated with these distributions, such as averages and moments, 

are well defined.



III. EIGENSTATES, DISTRIBUTIONS,AND OVERLAPS

In this section we implement the Foldy-Wouthuysen and Melosh

transforms on Fock or larger spaces. Some results will also be given

for the transformation. We shall find the eigenstates of the

strong and current charges, and calculate the distribution of current

quarks in a strong quark as well as some expectation values of current

quark operators in strong quark states. To avoid cumbersome SU(3)

indices, which can be easily incorporated, we limit the discussion to
1 2  3the W-spin subalgebra of the SU(6)tt charges, writing F * ’ forW

F1 ’ 2’ 3 and W1 ’ 2’ 3 for V . F 1,2,3vt , where i =  FW or M. o i 1 o 1 ’
As mentioned in Sec.I, the W^ commute with the Dirac 

Hamiltonian and create no pairs; they also commute with the momentum 

operator ? , the quark number operator

~ 2, f e f i r  (<4-D

and its charge conjugate, the antiquark number operator N- . In addi- 
3tion, the W. commute with J_, the z-component of the angular momen- x z

turn. Let us denote by a

strong quark, which is a simmultaneous eigenstate of the classifying

charges $.)^, W? , H , t* , J , N and N- , and belongs to the W?l i z q q i
eigenvalue r = ±1/2 , i = FW or M, provided

5 (?) a creation operator for a single
S • X

23
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(4-2)

The corresponding state is then given by

14s, P, r, i >  = M  ) /0>j (4-3)

where is a normalization factor. In general r would include the
J. /-f-\

SU(3) indices. Since ag ^ (?) *s a single particle creation operator, 

its most general form is a linear combination of the usual fermion 

operators >

CLsl.(p' ~ {U-i'P'G'jg + P  (4-4)

and similarly for the strong antiquark

J>s. t- Cp) ~ A, ( p ) ( p J - h j o  j  ( 4 - 5 )

where y, u, A and K are complex functions of the momentum. Since

at(+) an(j belong to distinct W? eigenvalues the correspond-s, i s,i 1
ing states have to be orthogonal to each other and we obtain

P  p J  * ~ 0  (4_6)

and

JL* U ~  T  * X- (*1 )* =  o  . (4-7)

for the antiquarks. Furthermore, if

\ p f  + lvrl*= lx,lt * /*rj/ * «  / (4_8)
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the strong operators will obey the usual anticonnnutation relations.

The linear combinations (4-4) and (4-5) are determined from Eq.(4-2) 

and a similar relation for the strong antiquark operators combined 

with Eq.(4-8). This yields

/-■» \ _
a s,ftv (P '  ~ J (4-9)

P (r)
(P J  ' , (4-10)

and

+ (+) ) _ [(F+ujXm +uj)! s +(+) p 3P+ +(-) )
P ' L 3 uj(E+M)J {ftp (Er+lA>)(t1+u~>) O'p 'j (4-11)

t-M . /  (£+uj)(t1+-u>) /  if-p) P  P*- +(~) )
l S M C p ) ~ l  j2uj(£T+J*)J (J>p +  / j (4-12)

2 2 1/2 1 2 where w = (M + px ) and p+ = p ± ip . Thus the eigenstates of
3 3 tthe FW-transformed charges WfW = V ^ F  are simply the naive spin

states created by the usual fermion operators, whereas the eigenstates 
3of Ŵ . differ from these by a momentum dependent spin rotation which 

does not affect particles moving in the z-direction or in the trans

verse plane. As pointed out in Sec.I this is just a Wigner rotation 

arising when a state of a given transverse momentum is boosted in the 

z-direction; the Wigner rotation is necessary if the W^-spin classi

fication is to be z-boost invariant.

We also introduce creation and annihilation operators for 

"current quarks" and antiquarks, related to the strong operators by



with an analogous relation for b"^5^ (?) • The corresponding single
C ,  1

current quark states created by these operators

!$*, P j r, < ^  =  K- ̂ 1% j p> r>« ^

(4-14)
-  A/; a ‘'i (jS ) I  Oj i  X

are time dependent eigenstates of (I?)2 , F3 , vtHVi , 3̂  and of
the current quark number operators

i i / -  -  L j < 4 >  r  & c j ( p )<£]i (p) (4-i5)

and vtN-V. . The current vacuum

is annihilated by a (r? (?) , b (r?(?) , F1’2’3 and V+HV. , andc,i c,i 1 ±
carries no momentum. Since the act as homogeneous operator trans

forms, the are again linear combinations of ordinary creation/c, 1
annihilation operators, with all the complexity, and possible subtle
ties of the transforms contained in the transformed vacuum |0,i>' c

Before obtaining these linear combinations we must introduce 

some notation. If we define

~  (4-17)

with Aj. an operator on a ? mode subspace and g(?) a complex 

function of momentum, then the generators have the form
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y. =  -  l c f a i ) -  c_DF/3 c)  + t C ( o / i )  +  i D f f i  )  +- f t y ) ;  (4-18)

where

n + - f +C-) ,t(*) +(+) .U-) )
t p  " i a p  J> -p  ~  CL# £>-j5 J A  j  (4-19)

• / -  /  ,  / / - ) , / - ( - )  + ( + )  ,+(*■) ) l i t * 0

•2>p * TpJ a ?  *P~a ?  ̂ - p  ) jL (4_20)

r  r *  - F  F  /H'} lfp ) f  t&) (-) ) ]  n ,
ip  '  Ip j i-P +  C P 'b -p -b -p  '~ P -  ' a p  a p  ' - b p  J> .p J J j (4-21)

Cj. and D̂ . are hermitian conjugates of and , respectively,

and the functions a, 3 and y are

<PFU/ ( p ) * i  /p ~ / O A p lfcm  /vfj  (4-22)

. , / ipJ / ipf
/ 3 f „  ( p )  =  - 5 l } T )  ~M j  (4-23)

(4-24)* o

for the FW transform, and

. _  ' p3,pJ - /  ,pd
<xM C p )  ~ 2  e c e * m )  a l c c a s i  m  (4-25)

/ M E  y ip p i
/ 3 „ ( p )  = - X  ~e T e 7m )  o a c c o * t, p j j (4-26)

» ' FL j  I B !
( p )  =  jf E~ O AClCM v M  (4-27)

for the Melosh transform. It is then straightforward to show that
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1/ tP) 1/f - L 1̂ +fr) ^Vc a p  % -  a  p  *

n  f  t'■{+) _ $i£-L- / +C-)
-  o * < -  t a ?  / 7 / p J y ^ ' a ^

- J l f t o  /  0 ^ _  / . )  _  & £ +  , P )  ) . „  ?  /V

+ *  ' r? -^-p F j

< n r +(-) +. J^L^- J. rp+  t *o/ i  r a p  f- ’/p j  y  v  c ip

(4-28)

-JlLXo f  c/c_ /(p  ^ &]2=-
- Jt r * L L(+> V- if'* ) ^ r i f  

1 ?  *-? /?ipJ J ?  1 f drJ-j

where T = (a^ + 8^ + » snd hencei i l i

E+h1 E +r+) r -£i—  /(+) , P3 !<-> ) -HP*o 7\ / E+H \*-r+(+) f J-±- [(+) _. p  -- /-■> \-̂ iEXc 
ac: Fiv fp) ‘~££~) *-aP ''e+n-t>_p E+n-t>p)i Jj (4-29)C , Flv lP  

and

,r,) r , _
a £ & )  ■ S ? ( 7 £ t [ t o + M . u ) c ! ? +  ^ i - a f

,(+) . 3 uJj±. ,C~) ) -J-lP x* 1
\P t--h _ p  f>  b j+ E  J, g  )  £  J '

(4-30)

p

Note that at this point we have three, in general different, kinds of

creation and annihilation operators: the ordinary fermion operators as

alĵ r) , strong operators as a| ^ ( ? )  an^ current quark operators

as a ^ ^ ( £ )  . c j i
It is often helpful to write as a product of exponential

operators with all operators which annihilate the vacuum appearing to 

the right of those which do not annihilate the vacuum. This ordering
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procedure is described in Appendix C, The result is

=  jup / r t f ' J  fcC^")*J>C^')l

' fi rfh, )] i K { ^  )j;

where

A'ff - f  jro)-c#>a$ -og'ci}

/ "  -[/ * ■ $  ( w  - i r ' f r l

/ V / *

f ! ’’ = -Li*$ * ? ]  ' ( w

f). =■ tfstĉ a ?z ( ~j=r 

and

/mc - 2  ̂  [ / v- (fL *) +- '

(4-31)

(4-32)

(4-33)

(4-34)

(4-35)

(4-36)

(4-37)

(4-38)

(4-39)
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Then, finally, we can write

i( i c y ' m /. l e O 0

(4-40)

• M/L f -  <rCo)Jcfo [ / + c/f'y + c/c~

a form which strikingly illustrates that V^|0> is orthogonal to any 

state of definite particle number. (Crudely speaking, any such state 

| ¥> cannot develop an infinity from <'f|exp{C^(f + D^(f^^)}|0> 

to cancel the zero coming from the strongly divergent negative expo

nent.) Nonetheless, as discussed earlier, V^|0> is normed, but it 

does not reside in Fock space. Consequently, the probability of find

ing n strong quarks and m strong antiquarks in a current quark,

j /mqs I qc > / y

vanishes even if n and/or m are infinite. This state of affairs
3persists even if we quantize in a finite volume (2L) leading to 

discrete momenta

/= / /  L (4-41)

where n = (n , n , n ) are integers.With x y z

i Cl* CL?, f 1M  % f drs a??*,r  j J (4-42)

a shorthand for



the generators are given by

(4-44)

~ 7̂1 ( &)-E*Z - o/;(£jC? {£)£>? f- cĵ f? !j

with

K  -  Ti, yu  =  nt ^ (4-45)

a bona fide infinite tensor product, each factor £ of which can 

be put in "ordered" form

Kr,r fc'W C e -//felZW
(4-46)

V
where

A,-» ~ J2~ Cl? a ?  ~ CL ? Clp -Jh? J>.j? J>.j? J>£ (4-47)

and all other functions the same as in Bqs.(4-34) - (4-39). Again,

l£ /0> - / J A  ( f t p U f i h r f J  A  * { ; % £ ] 10> M-48)

is orthogonal to all states of definite particle number unless a



momentum cut-off, |l£j ~ A, is introduced, which makes the number of

degrees of freedom finite.

However, there are distributions which do not vanish even if 

A -*■ 00 , such as the average number of current quarks in a strong state. 

Even though these can be calculated directly by evaluating the appro

priate matrix elements, it is more instructive to find these from the 

expansion of a strong quark state in terms of current quark states. 

Since

(4-49)

this expansion is found by evaluating V^|qg> and subsequently re

placing each strong operator by a current operator, yielding

(4-50)

where, by Eq.(4-48)

^  tOjFw'Z * !o>= $  1



J

and

t  io , m >c - n \  U + ( f Z t t ) f * ( f M % lf ] [/* ■  f i t )  ijc f f ) ]  //

/ _ . ,, I (4-52)
- f  , v  4 W t ) L \  o Q t f / ' Z f - r )

The picture of a strong quark of momentum p as composed of current 

quarks, which emerges from Eq.(4-50), is that of a "leading particle" 

carrying the momentum p and a cloud of pairs, with momenta £, -Ic, 

clustering about the origin in momentum space (not about £), with 

zero overlap on states containing a definite number of current quarks. 

This picture can be viewed from any frame, including the infinite
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momentum frame, and is not conspicuously amenable to a parton inter

pretation, if only because the "parts’1 do not follow the "whole".

The latter effect is due to the fact that the transformation is bi

linear in the fields and commutes with the momentum; for example, a 

transformation which is quadrilinear in the fields has a property of 

distributing the momentum of the strong quark among the particles it 

creates. It is interesting to note that the non-covariant cut-off pro

cedure not only cures the zero overlap problem but also forces the 

choice of a natural frame in which to view the strong quark (£=0), 

where the current quark pairs cluster about the "leading particle".

The probability P(nc> of finding in the vacuum,

|0>, n£ current quarks in the Ic-th mode and anything else in other 

modes can be easily found from Eqs. (4-51) and (4-52),
— J2

7>rc?c , ry oSt c)= [t* (fl'fnU j (4-53)

and

^ 4  I  0S , J .  ' (4-55)

(Due to the exclusion principle nc cannot be larger than two.) This 

enables us to determine the average number of current quarks of mo-
-V-mentum k in the vacuum

S o / Z c C ’f k V a Z  (e)/0>
/  ' TT J  '



Similarly, we can write down the probabilities P(n , k, 1 , i)c s
of finding in a strong quark |qg, p, +, i> nc current quarks in 

the It-th mode and anything else in other modes

?<'oC) T, O - f e t  ) ? r°oj £  11  <4-57>
I

m , r ,  ( * , ? , • ) f a c  J

(4-58)
(/'(fa*) ̂ 0Cj oSj C ),

and

(4-59)
o  - jpt z ) osj c )j

yielding the average number of current quarks of momentum it in a 

strong quark

(tffc, tj * )>  /r?c 7>Co\J k; is j  &  i )
(4-60)

2 2The fluctuations of number distributions V - <N > - <N> are given by



3 ^  'C °S, =  ^  ( 4 _ 6 1 >

and

£  ts,jS, c ) ’ 0 - i < ^ >i) % ,  t, oSJ i )■ « - « >

The values of the quantities (4-53), (4-54), (4-55), (4-56), (4-60),

(4-61) and (4-62) for FW, Melosh and UZ transformations are given in

Table 1. While the distribution of the current quarks ft r the FW case

is spherically symmetric in momentum space, the transverse direction

is prefered by the current pairs of Melosh, with none of them moving

in the z-direction --- another aspect making the parton interpretation

difficult, since a transverse momentum cut-off is assumed in most 
19 20parton models * . Also the high momentum region is more populated

by the pairs than the low one, with the maximum population reached at 

infinite momentum (infinite transverse momentum for Melosh and UZ). 

Without a cut-off, the average number of current quarks in a strong 

quark is infinite, even though the number of current quarks in each 

mode is finite. If a transverse momentum cut-off is introduced, the 

total number of current quarks in a strong quark becomes finite for 

the M- and UZ-transformations; it remains infinite for the FW-trans- 

formation.

Note, that since the spins are summed over, the distributions
<v>in Table 1 are insensitive to the spin rotations V which, as dis

cussed in Sec.I, connect the various W^'s. Thus no matter what the 

W , the form of the distribution depends only on the choice we make 

for the current quarks.
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Distributions related to matrix elements of Fock space ope

rators between a current and a strong state are meaningful only if A 

is finite. From Eq.(4-50), for example, we can read off the probability 

of finding a current quark of momentum k (and nothing else) in 

|qs» P, +, i>

the probability of finding a current quark of momentum k and a pair at 

a given momentum

£ +,i > f
/sjt

=  f  >* L f/tc ) ] + [ f i O V jf t  

• 2 {[0 d / * L 0 i * f ] y io>i;

or the probability that |qg, p, +, i> will contain a current quark

of momentum Ic accompanied by two current quark - antiquark pairs both 
-v(l)at momenta k , -k
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In general, there is an additional multiplicative factor of 

2([f^^(k)]^ + [f|^(k)]^} for each current quark - antiquark pair 

in the k-th mode and a factor {[ff^(ie)]^ + for each
/- x x

double pair in the k-th mode. The above quoted probability amplitudes 

strictly vanish unless a cut-off keeps the common factor

<0 / K io> -  7T{)* y?fr)f+
it

from vanishing; they can be interpreted as relative probabilities, 

all of which vanish as A -> °° , but with well defined ratios.



IV. CONCLUSIONS

We have studied a class of operators V which transform the

charges of SU(6)„ . into conserved quantities W = VF VT ;W, currents ^ a a
the latter may be identified with the generators of an SU(6)W strong* 

The results are derived in the context of the free quark model in the 

equal time formulation. The transforms V, V=exp(iY), create pairs in 

all momentum modes and are thus not unitary in Fock space. When 

discussed in terms of a larger non-separable infinite tensor product 

space they map one separable space onto another separable space pre

serving the norm of the states. The V-transformed state, i.e. the 

image, is in general orthogonal to the object state. We have defined 

"strong quarks", |qg> , as single particle states with simple trans

formation properties under the W^ charges, and "current quarks",a

+ 3| q > , b y  |q > = V | q >  (this amounts to diagonalizing F andc c s
“f*V HV simmultaneously). Thus the current quarks, which have simple 

transformation properties under the SU(6)W currents » are orthogonal 

to the strong quarks unless a cut-off procedure is introduced limiting 

the degrees of freedom to a finite number. Such a cut-off, even though 

reminiscent of most parton models, is a non-covariant procedure and, 

in a spin 1/2 theory, it also implies a finite number of current 

quarks in a strong quark. The latter would be true in any reference 

frame since a boost in a free theory does not create any particles.

39
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On the other hand, Fock space operators do have well defined 

matrix elements between members of the same equivalence class, or 

expressed differently, V-transformed Fock space operators remain well 

defined in Fock space. Consequently we find a finite non-vanishing 

mean number of current quarks of a given momentum in a strong quark, 

leading to distributions of a surprisingly rich structure and complex

ity. It therefore seemed tempting to speculate on their relevance to 

the parton model, keeping in mind that the transformations we studied 

induce symmetries in the absence of interactions and need not have 

properties more general than the framework from which they sprang.

As discussed in Sec.I the 1s we consider are related bya
a momentum dependent spin rotation. Since the distributions given in 

Tab.I are summed over the spins of the current quarks, the effect of 

this spin rotation is eliminated. The specific form of the distribu

tion depends then only on the choice we make for the current quarks,
+or ultimately on the transformed Hamiltonian V HV, which is the

"energy" operator of the current quarks. No pairs are created in mo

mentum modes not affected by the transformation; loosely speaking,

pairs are produced "in proportion" to the difference within a given
+momentum mode between the forms of V HV and H. Thus no zero mo

mentum pairs are created by VFW , no pairs in the z-direction are

created by VM , and no pz -* °° pairs from V^z . None of the distri

butions have a transverse momentum fall-off. Such a fall-off could 

be achieved by a transformation which does not affect large transverse 

momentum modes, but since the resulting transformed Hamiltonian would
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not commute with F1 , this transformation will not lead to an exacta
symmetry.

Another feature, which makes a parton interpretation difficult, 

is that the current quarks are produced in a disconnected manner, not 

sharing the momentum of the strong quark. This phenomenon can be traced 

to the bilinear character of the transformations. A quadrilinear trans

formation, if one could be found, would distribute the momentum of the 

strong quark among the current quarks, and it might still conserve mo

mentum.

The complete hadronic distribution could be viewed as a

distribution of constituent quarks in a hadron (the naive quark model

wave function) convoluted with the distribution of the current quarks

in a constituent quark. This approach has been suggested by Altarelli,
21Cabibbo, Maiani and Petronzio in a different context. It turns out, 

however, that, due to the character of FW-type transformations, a 

transverse momentum cut-off for the current quarks cannot be achieved 

by any constituent wave function. Essentially, whatever the distribu

tion of the strong quarks in a hadron, the number of current quarks is 

found to increase with transverse momentum. This result is also inde

pendent of the longitudinal momentum frame.

For these and other reasons cited in the text, the distribu

tions we have calculated do not readily lend themselves to a parton 

interpretation. This is perhaps not surprising considering the lack 

of dynamics in the free quark model. The effect of interactions on V 

can be answered only if a more complete theory is at hand; one
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possibility, and one we investigated, was that V was closely approx

imated by the free quark model transformation, and that a realistic 

parton distribution might arise if only the convolution described 

above were performed. This did not turn out to be the case, which 

may indicate that V is particularly sensitive to dynamics. In fact, 

we are forced to conclude that any reasonable distribution requires 

that Y be at least quadrilinear in the fields, and thus even the 

algebraic structure of the transformations may be more complex than 

that suggested by the free quark model expressions.



APPENDIX A

GOOD AND BAD OPERATORS

In a discussion of amplitudes involving currents, the behav

ior of matrix elements at infinite momentum plays an important role; 

accordingly, the terms "good" and "bad" are used to classify operators. 

"Good" operators are those whose matrix elements do not vanish when 

taken between states moving at infinite momentum. Operators whose

matrix elements vanish as pz^ are "bad", and those with matrix
—2elements proportional to pz are sometimes called "terrible". A non

covariant normalization,

is implied in these definitions.

These concepts are closely related to the saturation of com

mutators at infinite momentum. Let us, for example, consider an ope

rator of the type

which, in the free theory, has the following form in momentum space

(A-l)

(A-2)

(A-3)
43
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+ (r) +(s) T(r), f * \ r ?  &>/->) *'£ *u-o *• Ms C-k )  P  V  (A / A  (A-3)

, /r) (s) n* jPsVP) a~'2,£*°" ^ C’A ✓ /̂c (k / *-£■ '

Matrix elements of a commutator of two such operators

< P j sm l[£ / ^  *Jlp\ S” >J

where m, n are spin (SU(3)) indices, are saturated by one- and three- 

particle intermediate states, with the latter leading to so called 

z-graphs. Thus

< ^ l [ f y n]!/-? »  ' L  . i><f?llIFal)5'ls»>

-  £  , < p ^  I r t / f %  p %  p ! i P i p ’, ~ >
P " ) p ' p p a>
/ J * k

—  <A“4> 

The one-particle contribution is given by

P  Zp iS p p )  r  P e p )  P .P C /S )  (A_ 5 )

-  / v « p ) j

while the three-particle contribution reads

T 1 Z  (a—6)

—  (■*-* /3)
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and corresponds to a z-graph

At pz ■* 00 u ^  (p) and v^r^(p) become eigenstates of a?,

ip3
3  ( r ) y \ < ... Ioi M, (ft) ~  j 3f sU, (pĵv  (A-7)

and

^  ^ (?) ~  fp3/ (A-8)

Then

(A-9)

if^Y-p)r  M^Yp?) — * -f  rrV-p)[r, *t3] ( p ) j  (A-10)

and the contribution of the three-particle intermediate states van-
g 3

ishes if at least one of the operators T , T commutes with a . 

The matrix element

< i p , n r > / F  ! p J, / * > > ^  Jf J j f ^ Y p )  F )  Jp/ p ) (Aril)

is at p 00 given by the anticommutator of with az

p p p r p v p  P ^ r p )  (A.l2)

and vanishes if {ra ,a3} = 0. By the same reasoning, the single
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particle contribution to the commutator vanishes if any of the opera-
3tors involved anticommute with a ,

To summarize, operators are 
3a) good if [T,a ] = 0; their matrix elements and their contribution 

from one-paricle intermediate states is of order one, and their 

contribution from three-particle intermediate states is of order p ^

b) bad if {T,a } = 0; their matrix elements and their contribution 

from one-particle intermediate states are of order P2\  while their 

contribution from three-particle intermediate states is of order 

one,
3c) sometimes called terrible if they are given by (1-a )T' , where

3 -2[r',a ] = 0 , their matrix elements are of order pz and thus

both their one- and three-particle contributions vanish as A ->• 00



APPENDIX B

THE PART ON MODEL

One of the original motivations for this investigation was 

the clarification of the connection, if any, between current quarks 

and partons. It is therefore appropriate at this point to review 

and summerize those aspects of the parton model which are relevant in 

this context. We shall follow the presentation of Ref.19.

like constituents called partons. It is assumed that the interactions 

confine the partons in a finite region of the momentum space and, 

consequently, the larger the momentum P of the hadron, the smaller 

the relative importance of the transverse momenta of the partons. The 

relativistic transformation to large momenta P also dilates the 

interaction times and as P ->■ 00 the partons behave as free particles 

(on mass shell).

The parton model received its greatest impetus from its 

success in explaining deep inelastic electron scattering, e+p -*■ e+X.

According to the parton model a hadron is composed of point-
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In this process the incident electron scatters off the proton target, 

a virtual photon of energy V = E - E* (in the laboratory frame) and 

mass q < 0 is exchanged, and in the final state only the electron 

is observed. The cross section is proportional to
i 22 / //* • I

(B-l)

H  (pUyC-y ) lx )> (x / j^  (c p lp y  £]f - (p + q^)\

2and depends on two invariants, q and P*q = Mv , where P is the 

four-momentum of the proton and M its mass. When summed over the spins 

the electron vertex contributes

Tr A * ^

(B-2)

* Kvbp* ~fa*

The hadron vertex

/< * Z.<plJ„(-%)IX><xl$.(plp>2«J'fM?-(p̂ f) (B_ 3)

is,for unpolarized protons, symmetric in y,v and must have a form

P-& \ /  P '9-

%  2. <B~4)

Bjorken has suggested that the structure functions and VW2

depend, for large v and q^ , on one variable only, the scaling
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2variable w = -2M /q = 1/x . This hypothesis is born out by the data.

The parton model, as we shall show below, has this scaling 

feature "built in". When the proton is hit by the photon of momentum 

q, the latter interacts with a parton of some momentum p-̂  , which is 

then scattered at a momentum p-j+q. This scattering is assumed to be

incoherent and thus the total cross section is given by the sum of 

cross sections of individual partons. If the mass of the parton is
Om then

2E Im I 2.1fS(rm - j (B-5)

where E and are included because of normalization. For spin 1/2
ry

partons |M j is given by

IMI - if ■ !r /V/4 (/z£ +/?*)/*}

(B-6)

If p^ = £P , where £ is a number between zero and one, which 

signifies the portion of P carried by a given parton, |M | becomes

(B-7)
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(Note that the transverse momenta have been neglected.) Let us also 

introduce f(x)dx , the number of partons with momenta between x 

and x+dx , weighed by their charge squared, and use Eq.(B-4) to 

rewrite Eq.(B-5) as

/T r 7*9, \ /- 7'$. \
~ M  I ̂ ^ 2 ~ <2-̂, 'ef ) C ^  ^

- W ,  M  (frt ~ / (B-8)

The argument of the 6-function can be expressed in terms of the va

riable x introduced earlier

(^P+yf-zm =  cf-

(B-9)
- f*M - i M v

2As V -* 00 and q -> -oo with x fixed, the mass terms in Eq.(B-9) can 

be neglected and the 6-function now reads

cCCzMv (f ~ ~  J.MV (B-10)

Since E/E^ = l/£ we obtain from Eqs.(B-7) and (B-8)

£*)
(B-ll)
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where we have also used the relation P*q = MV . If the two sides of 

this equation are compared to each other one obtains the scaling pre

dictions

V' H. 0, $*) *= *fCx)j (B-12)

and

l M W t (»,$*) ~ /fx) • (B-13)

Experimentally, the VW^ approaches a constant, .32 , as x 0, 

which means that f (x) goes as .32/x at x -*■ 0. Consequently, the 

number of partons diverges logarithmically as P -*



APPENDIX C

"EXPONENTIAL ORDERING"

As mentioned in Sec.Ill, all the transformations we analyze 

can be written as

M / .  f c  - tVcSJ - 7 ) ^ )  * i f f y ) /  (Q.D

with the symbols defined in Eqs. (4-17) - (4-21). If * ^2 ’ ^3 ’
f . , f_ , are some arbitrary functions of momenta, the algebra4 j o
of the set of operators C^(f^), D ^ ^ ) ,  C(f^), D(f^), F(f^) enlarged

•j* *by K(f,), K(fg) = [C(f),C (g)], closes and their commutation rela- c
tions are as follows

[C ff\ J )(p ]=[cP),J>£)J=0/ (0-2)

[C//1 )] . )J* \ (0.3,

LMff),C(j)]= IC C fe), (M)

(C-5) 

(c.6)

/ (C-7)
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(08)

[C(/),J>p]' -cFf/c? I (0-9)

[ F ' f ) ,  C f y ) ] =  - M D
f,-

7 (010)

-'£77 = - A ' A * V (C-ll)

(012)

(013)

[Mffi ), ffj, )J O. (c_ 1 4 )

•j* 4*The operators C, D and F annihilate the vacuum, C and D do not.

K contains a c-number part and a part which annihilates the vacuum.

We assert that Eq.(Ol) can be written in an "ordered" form

A y  f c Z / )  f j f c s )  '  C & )  - l f / 3 )  *  i  F f r ) /

f " ('/,) )}y i  'jy. fAF/^n)}.

This is a generalization of the well known identity

(015)

ft *2 ft 2
J (016)

which holds only if A and B commute with [A,B]. In order to relate 

the functions f, g, h and m to the known functions a, $, and y, we
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the functions f, g, h and m to the known functions oc, B, and Y, we 

introduce a real parameter A and define

£ 0  ) — ,.£€/{ / /\Co-n)/
(C-17)

- f-tmjj ju/. 7- cfr )-2>g* J-cY/J-jffc)/

■.ie/ fjlLC*fa)''J>i/s)-C6'.)-Jltfe)*iffy)]{

where f, g, h and m are now functions of both A and the momentum. Then

) - Jr- QC ~\) ~  (Ji(a. J

f-Lffo’) -jujl }'iFfc)}LCfy)+J)fa)Jaa
'S L/

V/ i-1 rft )}M , f-<ya, y-ltGi, )He7f.)-J?&. ')J/U fee?,)'
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where

r  - o/ y

K ■*£/

°fr j

}/ &  ('fa

(C-19)

(C-20)

(C-21)

(C-22)
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*£/* s, y* (/'f* -At*  ̂

H  =  [- (fi.s-fij) * ) -^+£/3)C/,/> -fif,)

+ 'v''-/ ' 5 y i ^ ,  j,

/V- ~  ^/l /G J o/ 7̂ 5, /5y^- ^ ) ^ / / ^ /  )

* r/~ L̂ ~ / * ^ '  )•

(C-23)

(024)

Because of the linear independence of the operators C, D, C , D , F 

and K, this leads to six first order linear differential equations

0)
*0,/ (0-25)

r , / } v=r .O '4 /s (C-26)

(C-27)

y  - y (C-28)

H - h ' ~ = 0 ,
Lf IS

and

(C-30)

/ ~ /yy> (C-31)
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which have a unique solution if the six boundary conditions at A = 

/  ft)) -fe fo) A Co) -  srrjfo) (C-

are imposed. The solutions are

9  9 ?  1/2where T = (a +8 +y ) . Eq.(C-17) now holds for all values of A,

we use it only at A = 1 to obtain Eq.(G-15).

Let us return to the commutation relations (G-2) - (G-14) 

we choose F = 0 and a = 8 , the relevant operators (C+D)/^2 ,

(C^"+D^) /At. and K/2 satisfy SU(2) commutation relations

/ (c tb)0 .  (c

0,

-32)

-33)

-34)

-35)

-36)

-37)

-38)

but

. If 

-39)

(0-40)
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and

7 /
/ /3T )'/ ) t A ~ ^  ft* (c-4l)

These operators can thus be identified with the operators of angular 

momentum, for example

/

(C+J>)*~> t Z ;  (C_42)

/
(C-43)

and

j- /( « ^  ̂ (C-44)

If we also choose a = 8 = i//2 (y=0 is understood) we find from

Eqs.(C—33) - (C-38)

 ̂ ’ Aj (C-45)

^  ~ suit/A. / V o / ( C - 4 6 )

and

/??? ~ ^  C w / A  j (C-47)

leading to a remarkable identity

fjrtusn/?'a J J - Z A ) Z
£  —  JA £  , (C-48)
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Table 1. Pair Distributions As a Function of Momentum


