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CHAPTER I

INTRODUCTION

In m ost of the lite ra tu re  of physics the description of interacting 

particleshas been form ulated in te rm s of sta tic , local potentials. However, 

the m ost general potential that can be w ritten  is  a  nonlocal potential, such a 

potential being the spatial rep resen ta tive  of an a rb itra ry  potential 

operator. Consider the Schr'odinger equation

Eq. (1) is  called a nonlocal potential, a s  the potential energy of the system  

a t  point r  depends on the behaviour of the wavefunction a t neighbouring 

points r \

(H0 -E ) |tf>  = -V|tf>

Operating with the b ra  ( r  | and w riting ( r  |^ )  = >£(r) we get

( j — - V2 + E ^ ( r )  = J <r |v|r'> ^ ( r 1) dr1 ( 1)

The kernel <r | vj r ')  [a lso  often w ritte n y (r | r f) ] of the integro-differential

If we put ( r  | v) r*) = 6( r - r ')  V (r), Eq. (1) reduces to

1



which is  the usual Schr'odinger equation with a local potential V(r). Thus
^4

the local potential V(r) that is  generally used is nothing but a special case

(1)
of a  nonlocal potential.

Nonlocality of a  potential in configuration space is  equivalent to its  

dependence on the average momentum and, as such, nonlocal potentials 

a re  a lso  called momentum (or velocity) dependent potentials. This
12\ (3\

dependence has been shown by Mulligan' ' and Hoshikazi and Machida .

We will d iscuss th is using a sim pler method, due to Tamagaki and 

(4 )W atari . In te rm s of Fourier transfo rm s we can w rite

< r |v | r ' )  = ( ^ f )  J 7 < P |V |P’> el(p’ r  ^*r  ) dp dp1 (2)
o -* -*-» w z'  ̂ V3 jrj.

w here we have used ( r |p )  )  e

Rewriting Eq. (2) with variab les 

P  = (p -  p ') (momentum transfer) and
“4 »4 -4
Q = (p + p ') /2  (average momentum) and 

rem em bering that the Jacobian is  unity, we have

< ? |V |0  j ; v ( P ,Q )  e i [ Q - ( ? - r V P - < r « '| /2 ]  d5(1^

w here V(P, Q) s  <p | v| p')



If V(P,Q) is independent of Q , namely a function of the momentum 

tra n s fe r  P  only, i . e . ,  if

T his m eans that Q (average momentum) dependence of V(P,Q) causes

nonlocality in configuration space.

In te rest in calculations involving nonlocal potentials is  of very recen t

origin, in spite of their being the m ore general spatial representation  of

the a rb itra ry  potential opera to r V. The reason  probably is the success of

local potentials such as the Coulomb potential in many diverse quantum

m echanical calculations. Also, it  seem s that one can ’visualize ’ a  local

potential such as a  square well potential, w hereas the nonlocal potential

m ay seem  to be 'unphysical1. However, the importance of nonlocal

(5)
potentials w as realized  a s  early  a s  1937 by W heeler . Not much work

(6)
w as done till 1941, when Buckingham and Massey used a nonlocal 

potential to explain the data on neutron-deuteron scattering . Almost 

another th irteen  y e a rs  passed  before fu rther work was published. In 1954

V(P) = V (P, Q), then

= 6( r - r ’) V(r)

w here V(r)



(7)
a  p a ir  of a r tic le s  was published by Yamaguchi to show the usefulness 

of a  nonlocal separable potential in fitting nueleon-nucleon (N-N) scattering  

data.

Again there was a lm ost no work done in th is field until 1958, when 

(8)
Feshbach dem onstrated that the nucleon- nucleus optical m odel-potential was

in fact, nonlocal. The success of local optical m odels in fitting nuclear

data suggested further work in understanding the effect of the nonlocality.

Pioneering work in investigating the relationship between local and

(9)nonlocal potentials was done by P erey  and Buck (1962) and B. Mulligan
(2) (10) (11)

(1964) . G hirardi and Rimini (1964) and F. Tabakin (1964)

investigated other aspects of the use of nonlocal potentials. Still, the
(12)

attention w as so lim ited that in 1965 W. H. N ichols,Jr. wrote in an 

a r t ic le , " the separable nonlocal potential in quantum m echanics has been 

used little  in  e ith er re sea rch  o r teaching since it  seem s so unphysicalM.

But it  was soon realized  that a  nonlocal potential can be used in many 

problem s w here it  is  reasonable to use a local potential and, in some

instances, i t  is  m ore convenient to use a nonlocal potential. In fact, a fte r
(13) (14) (15) ,

the work of Faddeev, Lovelace , and M itra on many particle

scattering  theory, where i t  was shown that a separable nonlocal potential

reduces the many partic le  calculations to the level of two p artic le

calculations, f lu rrie s  of activ ities started  in this field. Work on the



analytic p roperties of the rad ia l Schr'odinger equation for a  nonlocal 
(16)

potential now roughly para lle ls  the e a r lie r  studies of the analytic
(17)

p ro p ertie s  of the radial Schr’odinger equation for a local potential •

A nonlocal potential with no conditions attached to it  except that i t  

be H erm itian (to impose that energy eigenvalues be real) is  m athem atically 

extrem ely difficult to handle. The case is  much sim pler if the nonlocal 

potential is  separable. The term  separable indicates the fact that the 

in teraction , which is  assum ed to be H erm itian, is  charac terized  by 

s tru c tu ra l features that allow i t  to be factored  in a p a rticu la r way. The 

in teraction  V(r j r 1) = X v(r) v* (r’) is  called a simple separable potential 

o r  a  one-term  o r rank one separable nonlocal interaction. The m ost 

general nonlocal separable in teraction , w ritten in the operator 

fo rm alism , is
N

v =  Z Xi  j iv i i
1J=1

In p rac tice  V(r |r*) is  taken to be re a l, and the condition of H erm iticity 

follows once the individual te rm s a re  taken to be sym m etric.

(7)
Since the publication of the c lassic  papers by Yamaguchi a

(18-25)
num ber of separable potential m odels have been proposed for the

N-N interaction. These m odels came into the picture because of the basic 

assum ption of cu rren t nuclear many-body theory that p ro p erties  of nuclei 

such a s  le v e r  spectra  and saturation of energy and density can be derived 

from  a  suitable N-N interaction. Since a local o r 'static* potential requ ires



(26)
a hard  core in o rder to fit high energy data, and a  hard  core  is  a

computational stumbling block, it  is  no wonder that many varie tie s of

separable potentials have been used. Because the nucleon-nucleon phase

shift data req u ire s  repulsion for very sm all d istances and attraction  for

la rg e r  d istances, a lm ost all separable m odels use a  rank two separable

potential. The Yamaguchi potential, being of rank one, can fit the

experim ental data only at low energ ies. Out of a ll published separable

potentials the only one-term  potential which shows the change of sign of the

phase shift ch arac te ris tic  of a local potential with a  repulsive core coupled

with a  short-range a ttraction  is that of T abak in .^^  The form factor for this

potential, however, is  very  complicated. The failure to get any polarization

(27)
effect from the Yamaguchi potential with a  tensor te rm  fu rther suggests 

a  reason  for looking for a  re a lis tic  potential among rank two o r m ore 

separable potentials. In passing , i t  may be mentioned that Mongan ^  

has done the m ost extensive separable potential fits to two-nucleon data 

and in doing so he has used four types (Case I-IV) of tw o-term  separable 

potential m odels.

Most of the fitting with separable potentials has been done f ir s t  by 

assum ing a reasonable potential (as was done by Yamaguchi) and then 

adjusting the p a ram eters  to fit the required  data. However, many 

theoretical investigations have been carried  out on the inverse  problem , 

i . e . , the problem of finding a potential, expressib le  a s  a  sum of a finite



num ber of separable te rm s , to fit certain  ch arac te ris tics  such a s  phase 

sh ifts a t  all energ ies or the off-shell T m atrices. Chadan^33 ,̂ M ills 

and R ead ing^9), Tabakin^30^, and Fiedeldey^31  ̂ have a ll approached the
/32\

problem  of phase shift fitting. E rn st, Shakin and T haler have

presen ted  a method which perm its  the construction of a  rank-N  separable

potential which has the properly  that the resulting T m atrix  is  exact

both on the energy shell and half off the energy shell a t N selected bound

sta tes and for continuum energies. They have applied the method

to find a separable potential equivalent to a  local square well potential.

Even before extensive fitting was done with nonlocal potentials, it

w as c le a r that certain  p ro p erties  of nonlocal potentials would be different

from  those of local potentials. After the publication of the Perey-B uck 

(9i (33ipaper 7, A ustern found that eigenfunctions of the a ttrac tive  nonlocal 

single p a rtic le  Perey-B uck potential a re  always sm aller inside the region 

of the potential than outside, with the inverse occuring for a  repulsive 

potential of the same form . T his is  the so-called  P erey  effect. The Perey  

effect has been the subject of several recen t p a p e r s /3^ 39^

L a te r on other phenomena such as continuum bound sta tes (CBS) 

and confusion about what constitutes an a ttractive or repulsive separable 

potential have requ ired  a  development of methods involving a comparison 

between ch a rac te ris tic s  of separable potentials and the m ore fam iliar 

phenomenology of local potentials. At f irs t , usual p rac tice  with regard  to



8

the nucleon-nucleon interaction was to re s tr ic t  the com parison to such 

fea tu res as the phase shifts or T m atrix  elem ents. But following 

Fiedeldey^40^, Coz, Arnold and MacKellal4 ^  w ere able to define p rec ise ly  

an equivalent local potential (ELP) and show that a unique potential and 

solutions to an equivalent local equation can be obtained once two

(42)
independent solutions of the nonlocal equation a re  known. Jo st solutions 

have become very prom inent in th is lype of analysis. In fact, Arnold and

MacKellai-43  ̂ have pointed out that the difference between a local and a 

nonlocal potential lie s  in the behaviour of the W ronskian of the two Jost

solutions. This W ronskian is  a constant for a  local potential but is  not

constant for a nonlocal potential. Jo s t solutions a re  norm alized so that

the local potential W ronskian is  everywhere unity, w hereas the nonlocal

potential W ronskian is found to approach unity a t infinity. Thus deviation

(43)of the W ronskian from unity can be taken ; to be a  m easure of the non-

locality of a potential as a  function of k and r .

In analyzing the ELP , Arnold and MacKella r  a lso  pointed out that

a  'spu rious ' state ex is ts  for a  nonlocal potential a t energ ies where the

Fredholm determ inant goes to zero . It had already been shown by Gourdin 

(44)
and M artin that one feature of the separable nonlocal potential is  the 

possibility  of wavefunctions in its  spectrum  which ex ist a t positive 

energ ies yet behave asym ptotically like bound sta tes . These sta tes have 

been labelled as positive energy bound s ta tes, positive energy degenerate



s ta te s , spurious bound sta tes o r simply continuum bound s ta te s  (CBS).

A CBS will always be characterized  by a  zero of the Fredholm determ inant,

but the spurious sta tes shown by Arnold and Maclfellar may also  occur at

energ ies o ther than those at which a CBS is  found. By combining the

Fredholm  determ inant technique with the ELP analysis these authors

have also  been able to show that both kinds of 'spu rious1 behaviour are

ch a rac te ris tic s  only of nonlocal potentials. Chadan^28^, while considering

the inverse  problem  with a  sum of separable potential plus a  local poten tial,

had noted that h is local potential alone would not produce CBS. Work in

(45}th is reg a rd  has been recently  done by Krause and Mulligan . Using a  

G reen 's  function method they have shown that the presence of CBS is 

ch arac te ris tic  only of a  nonlocal potential and a r is e s  when the G reen 's 

function is  cancelled by the separable potential.

It is  now generally accepted on the basis of theoretical argum ents 

that the in teraction between two nucleons is  non local^8^. Since the two- 

partic le  in teraction  is  unknown, in recen t y e a rs  a  num ber of separable 

m odels 1̂8 25  ̂ have been used to fit the two nucleon data. These m odels a re  

a ttrac tive  because of the sim plicity and ease  they bring to the calculations, 

over and above their reasonably good fitting of the data. The two nucleon 

data is  in p rincip le  inadequate to enable us to deduce a  unique nucleon- 

nucleon potential, and each of these potential m odels im plies a  ra th e r 

a rb itra ry  off-shell extension of the two body scattering  amplitude.



10

Unfortunately, however, there  is  practically  no experim ental data available

on the off-shell T m atrix  elem ents. But Faddeev has shown that equations

fo r th ree  body scattering may be obtained in which the only input is  the off-

energy -she ll T m atrices for scattering  of each of the three possible p a irs

of p a rtic le s . It is , therefo re , c le a r that to reduce the ambiguity in the

two nucleon potential one m ust te s t  it  in three partic le  problem , in nuclear

m a tte r , and in general in  nuclear structure  calculations. Several separable

potential m odels with a Yamaguchi form  factor have already been used in

(47)finding the triton  binding energy and in neutron-deuteron scattering  . 

C alculations with the triton  have the advantage that they avoid Coulomb 

effects. I t has been found that triton  binding energy is  very  sensitive to 

the p a ra m e te rs  of the two nucleon separable potential.

M itra  has shown that quantum m echanical motion of three non- 

re la tiv is tic  p a rtic le s  interacting via  separable potentials can be reduced 

to a  form  not m ore complicated that that of the two body problem ^?^ But 

since the th ree  body calculations requ ire  two body off-shell T m atrices , 

com putationally the problem  is  still very difficult to solve. In the case of 

a  separab le  potential, off-shell T m atrices can be computed from  the 

exp ressions given by T a b a k in ^ ^  These expressions have been widely used 

even though they requ ire  the solution of a  num ber of contour in teg rals. In 

the case  of the Yamaguchi form  factor these contour in teg ra ls  can be 

handled quite easily ; probably that is  why the Yamaguchi form factor has been
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used widely. These form  fac to rs, however, give a triton  binding energy 

higher than the experim ental value.

In short, looking at the situation of the two nucleon separable 

potential we see that what we need is  a  num ber of rea lis tic  separable 

potentials with a  wide c la ss  of form factors which can be easily  used in 

th ree  o r many particle  calculations. This im plies the desirab ility  of a 

sim ple technique to get the off-shell T m atrices, hi th is d isserta tion  we 

take a  reasonable c lass  of nonlocal separable potentials of rank N (the 

Yamaguchi and Mongan case IV potentials a re  special cases  of th is class) 

and find analytic solutions in compact form  in configuration space. We 

also obtain the irreg u la r solutions and Jo s t solutions to determ ine 

analytic expressions for the equivalent local potentials. Next we find 

the off-shell T m atrices for this c la ss  of potentials in a compact form 

which avoids contour integration. In so doing we hope these form  factors 

can be easily  applied in future m any-particle calculations.



CHAPTER H

REGULAR SOLUTIONS FOR A CLASS OF POTENTIALS

In th is chapter we consider a particu lar c la ss  of separable nonlocal 

potentials and dem onstrate a technique by which analytic solutions for 

the wave functions in the coordinate representation  can be found for all 

p a rtia l waves. Although the form alism  which we shall p resen t here  re fe rs  

to sp in less p a rtic le s  and a  spin-independent in teraction, it  is  a simple 

m a tte r  to extend the technique to coupled channel calculation for which 

the coupling term  is  of exponential form.

The Schro’dinger equation for a nonlocal potential in center of 

m ass coordinates has been given as Eq. (1), and is

7 ^  7s *(?) + E * (r)  = J*(r | V| r'> ^ ( r ’) d r ' (3)

in an obvious notation. To expedite the solution of Eq. (3), ^ ( r)  an d (r | V|r^}

(assum ed to be rotationally invariant) a re  norm ally expanded in te rm s of

p a rtia l waves: „  u ^

= 7  P  (cos Q)

£=0

00 S ( r l rb
< r | V | ; , ^  I  J L - U  Y r ( e , , lY f (e, „ ,

1 = 0  m = - t  1 2
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Substituting these expressions into Eq. (3) gives the nonlocal Schroedinger 

equation for each partia l wave £

[ - g r  V r) = }  V r |r , ) V r ’)dr' (4>

w here ka = E.ti2
The c la ss  of potentials g ( r | r 1) for which we a re  able to obtain exact

analytic solutions is  defined by

2 tx  (r+r') n KV JV v
r ’> = S e  ( r r '> S  S  A ffi P ff(r)P i (r?) (5)I  2m v  g=0 i=0 g g

where the £  • a ra  constants; the n a re , for sim plicity, taken to be in tegers 
&• 1/

and pV(r) is  an a rb itra ry  polynomial in r  of o rder i. That is

Pv(r) = S  b(i,y) r j .
j=0 3

(6)

Note that the potential of Eq.(5) w ill be H erm itian only if  a1'  =/ff. andK =J .
gi ig v V

The solution to the potential given in Eq. (5) can be constructed by taking 

advantage of the linear nature of the in tegro-differential equation, Eq. (4). 

T his allows us to base our discussion on a  solution of Eq. (4) for which 

g ( r | r ‘) assum es the simple separable form

g^(r  Ir ’) =  X q(r) q ( r ’) (7)

with

,  , . t x r  n.q(r) = A e r  (8)
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For convenience, the subscrip t £ has been suppressed on both \  

and q(r).

For a  potential of the form  given by Eq. (7), Eq. (4) can be 

w ritten  as
00

[ A _  +k3 u^ (r) = x q(r) J  q(r') u^(r') d r '.  (9)

F or la te r  purposes, i t  is  a lso  convenient to introduce the constant C, 

defined by
00

f q(r') u (r ') d r ' = C. (10)
o 1

Thus we see that the basic  equation to be solved for a  given partia l 

wave is

[ £ 2  + kS  "  ^ +1) ]  V r )  = X C q(r) (11)

subject to the condition (10).

Equation (11) has been trea ted  by several investigators in severa l

(49) (50)different ways. In p a rticu la r, Cassola and Koshel and M oiseiwitsch

have shown that the use of G reen 's function allows one to w rite  down

explicit expressions for the phase shifts and wave functions for any i

fo r an a rb itra ry  potential function q(r). While these expressions a re  of

use for num erical calculations, they lead to analytic re su lts  for w ave-

functions and phase shifts only if  the necessary  in teg rals can be perform ed.
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1. The Method of Solution

The s truc tu re  of Eq. (11) d iffers significantly, depending upon 

w hether n ^ t o r n < t .  Com parison with Schroedinger equations for non­

singular local potentials shows that the case n ^ £ will correspond m ost 

closely to re su lts  which m ight be expected from  calculations with a local 

potential. The conclusions presented in this chapter a re  thus re s tric te d  

to values of n ;> £.

The potential function of Eq. (8) was discussed a s  early  as 1941 

by Buckingham and M assey, who obtained explicit solutions of Eq. (9)
(5iv

in the case  t  = 0. Hussain and Ali '  have suggested a  sim plification of 

the m ethod of C assola and Koshel, and have recalculated  Buckingham 

and M assey’s re su lts  a s  an example of the use of th e ir procedure.

N either group of investigators, however, has attem pted the analytic 

solution of Eq^9) for a rb itra ry  I .

The technique which we have found useful in obtaining solutions of 

Eq. (9) with the potential function (8), and which can be used to obtain 

exact analytic solutions for the potential (5), is  that of introducing into 

(9) fo r u (r) the product e tim es a  power se rie s  in r .  We are  able to 

find the solution in te rm s of th is se rie s , and then, in tu rn , a re  able to 

sum the s e r ie s  to put the solution into a  compact form .
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For the potential function (8), Eq. (9) becom es

[ f r  - ^ ] V r ,= D e - “ r r n (12)

w here D = X CA. Equation (12) is  basically an inhomogeneous spherical

B essel equation, but subject to the subsidiary condition (10) which

a ssu re s  the homogeneity of the original in tegro-differential equation.

Inserting  into Eq. (12) a solution of the form

*TKr  n+2 00 m u^(r) = D e r  E r  > (13)
m=0

we find the following recu rrence  rela tion  for the coefficients am

a  ----------------------   a --------- a i ± k f -----------  a
m (m+n+2+£) (m+n+1 --t) m -1 (m+n+2+^) (m+n+1 -JL) m -2

The homogeneity of the integro-differential equation im poses the additional 

conditions that

a° (n+2+£)(n+l-£)

a = —(2n+4) q___
1 (n+3+-L)(n+2--L) 0 ' '

In o rder to find an expression  for a consistent with conditionsm

(15) and (16), it  is  necessary  to tre a t Eq. (14) by difference equation 

techniques. The general solution to a second o rder difference equation 

contains two a rb itra ry  constants. The two a rb itra ry  constants which 

appear in the general solution of Eq. (14) can be evaluated so a s  to give
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for aQ and a 1 the values demanded in (15) and (16). T here is  no general

procedure  for solving a second o rd er difference equation with variable

coefficients [see , for exam ple, Ref. (52)]. The case of £ = 0, however,

is  fa irly  sim ple, and since i t  suggests the difficulties to be overcom e for

i f iO ,  we p resen t i t  in the following section as a  separate  case.

(531In passing , we point out that in an e a r lie r  paper Luke '  has 

solved an equation sim ila r to Eq. (12). However, in h is case, the operator 

appearing on the left-hand side was that of a  modified B essel equation, 

and resu lted  in a two term  recu rrence  relation (a f i r s t  o rder difference 

equation) which could be solved by standard techniques.

2. Solution for -t̂ O

The case £ = 0 is  sim ple because under th is condition Eq. (14) can 

be converted into an equation with constant coefficients by using the 

substitution
bm (17)a  —-------------

m  (m+n+2) !

The difference equation for b ism

(18)



Using the standard technique for solving a difference equation with constant 

coefficients^54  ̂ we get

bm = (a+ ik>m + C2 <a-ik)m (19)

Equation (12) contains only rea l te rm s and i t  is  the re a l solution 

to th is equation which we w ish to obtain. This can be accom plished by 

the usual p roper choice of the constants Cx and C2 in te rm s of rea l 

constants F and G. The general rea l expression for a ^  can be put into 

the form m + n +2
( 3  1 ,2  2

lm (m+n+2)!---------  cos(m+n+2) 9 + G sin(m+n+2) 0 ] (20)

where

6 = a rc tan  -  (21)
OL

The constants F and G determ ined from  Eqs. (15) and (16) a re :

F , _  n i s i n (n+l) 9  (22a)
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Equation (20) for then reduces to

n U rv3  +k3 i3 m̂+1)a   sin(m+l) 0 (23)m k(m+n+2) ! ’

and we have
m+n+2„  , -n -2 — «—  . m+n+2

£  a r m = . n ' r ________  “  (oi +k ) * s in (m + l)flr_______
„ m n+1 (m+n+2)!m=0 —— m =0 '  '

A
k(o/3 +k3 )

(24)

The se rie s  in Eq. (24) can be evaluated by replacing sin(m+l) 0 in

Eq. (24) by e1(m+n+2) 0 ̂  SLmiming, multiplying by e *(n+1) ^  and taking

t v  r  n+2the im aginary p a rt. Multiplying by De r  , we get a s  a pa rticu la r 
p

solution uQ (r) the resu lt

n! De“a r  r a r  . “  frv3+k3\s /sP  n! De f vvr (rv3+ k 3\ s ^
Uq (r) = ------------------ —  {e s in [k r- (n + l)0 ]+  S AQL— '— r  sin(n+ l-s)0|

k(as + k3 )
2 8=0

(25)
p

The general solution of Eq. (12) is  the p a rticu la r solution u0 (r) plus

the general solution of the homogeneous p a rt, namely M sin k r  + N cos k r.

In specifying M and N we make use of two conditions which the wave function

Uo(r) m ust satisfy. The f ir s t  is  that u0 (r) be zero  a t r  = 0. Since the
p

p a rticu la r solution u0 (r) is  zero  a t r  = 0, we m ust choose N = 0. The 

second condition will determ ine the norm alization of u_ (r). In th is chapter
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we have followed the convention standard in the discussion of Jost

solutions and norm alized the regu lar solution u0 (r) to unit slope at

the origin. This req u ires  that M = 1/k. The read er should note that

th is choice fo r M resu lts  in wave functions which a re  not norm alized to

6(k -k ')/k s , another standard norm alization.

With the boundary conditions specified above we find that

sin  k r  D n ! cosfn+li A . . D n ! sin(n+l) A 
u ^ r )  = — ~ +   sin k r -    cos k r

~2~~ 2 
k(a3 + k 2) k(a2 + k 3)

+ n ! D ^ "  £  .fa2 + k 2 >I  sin (n+l-s) 9 . (26)
—  s=0 s !

k(a2 + k 2)

The constant D can be evaluated by substituting expression  (26) for 

uQ (r) into Eq. (10). We get

_ X A2n! sin(n+l)fl 
n+1 

2
kA (a2 + k 2)

w here
s

A = 1 — XA - £  (n+s) !(o:3+k2)2 sin(n-j-l-s) Q

"T" s = 0 0 n+S+1
k(«2 +k2) s! (2a)

(27a)

(27b)
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It is  in teresting  to note that A is  the same as the Fredholm  determ inant

appropriate  to this potential, which has been discussed extensively

(43)elsew here. ; in p a rticu la r, the zeros of A (k) a re  known to correspond 

to so-called  spurious solutions of Eq. (12). The solution of Eq. (12) 

given-tn Eq.(26) is  not valid a t the energies for which /\(k) = 0.

The phase shift 50 a lso follows from  Eq. (12) once D is  known, 

with tan fi0 given by

ten * -  _  n! D sin (n+1) 0
n+1
2

(o;3+ks ) +n! D cos (n+1) 0

\  Aa (n !)2 sin5 (n+1) Q
n+s+1

k(c^+ka )n+1+xA8n l [ “ - sin(2n+2)0 - £  ^n+s^ a  +̂ +1 s in (n+ l-s)e]

8=0 s !(2a )

(28)

For the case  x= l, n = 1, A = x» the phase shift fyQ given by Eq. (28) agrees 

with that presented  in Mott and M assey5 ^
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3. Solution for A rb itrary  t

For £ > 0, the difference equation (14) cannot be solved by 

standard procedures. To find the general expression for a ^ ,  to which 

we can apply conditions (15) and (16), we multiply Eq. (14) by r m and 

sum over m. We find that the function

* m
y = S amr (29)

m=0

sa tis fie s  the differential equation

r 3y"+[(2n+4)r-2a rs ] y '+ [(n2+3n+2-£-£s )

- 2a(n+2)r+(aa+ks ) r 3 ] y = 0 (30)

The general solution of Eq. (30) is

y(r) = ea  V n"1[C1 h^(kr)+C3h* (kr) ] (31)

w here

ht (kr) = i"<'" 1( k r r 1 e lk r £  < -2 ik r fS (32)
s 0

Expanding y(r) in a  power se r ie s  in r  gives a s  the general solution for

a  =Cl ( V +1 S  - S ^ T T  (-3*k) ' S - ^ ” +n+S+2m i v 7 s  !(-L-s)! (m+n+s+2) !

. .  Jf v . / m m+n+s+2
+P X +l .pt s)—.  (2ik^_S ______  /33\

" ^  " W l  (m+n+s+2) ' (33)
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The constants C1 and C2 can be so chosen a s  to put this solution

into a  rea l form . We get

m+s+n+2
-t 3 2 ^

am = (m+s-fn+2)------- {Fcos[(m+s+n+2) 0 +(s-.e,-l)ir/ 2 ]

+G sin [(m+s+n+2) Q + (s - t- l) f f /2 ]  ) (34)

where

B = _J£ tgU   ,35v
s s!(-t-s) !(2k)s ^

and 0 is  a s defined in Eq. (23).

The choices for F and G a re  fixed by Eqs. (15) and (16), and a re

P =  x(n+l-.t)(n+2+-t) ?„  E s [s i" { (s+”+3)8+ ( s - t - 1) ff/2}
s—u

■  fn+^K n+S+t) cos 8 sin t<s+n+2>8 + f / 25] I3*)

G = s  E. r (̂ i (^ . 'S r A  008 8 cos C(s+n+2) ex(n+l-^)(n+2+^,) __ sL (n+2-^)(n+3+-t)
S  V

+ (s -^ - l)n /2 }  - cos {(s+n+3) Q + (s-vt-1) ff/2) ]  (37)

where s+n+3

= (4.+ S )! (g 3 + k s ) 2 
s s!a-s)!(s+n+3)!(2k)S

and 2n+s+t+5

x = 2  £  (£+s)!(-t/+t) !(qa + k 3) 2 sinf(t-s+l)Q  + (t-s) ff/ 2) (39)

s=0 t=0 s!(-t-s)! t!(^-t) !(2k)S+t (s+n+2) !(t+n+3)!
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<x> m

The se rie s  2  a  r  can be easily evaluated in the same way as 
m=0 m

in the t  -  0 case. As a  p articu la r solution u (r) we get the resu lt
p

u^(r) = F D krj^(kr) + G D krn (kr)

,=0 t=0 t ! s !R - s ) ! (2k)

+ G sin{tQ  +(s—-£/—1) tt/2} (40)

Adding the general homogeneous solution and applying the appropriate

boundary co n d itio n s^  gives

u (r) = ?' k r  j (kr) + F D k r  j (k4) + G D  krn (kr)
k

-/yr ^  n+s+1 (£+s\ !(/y2+k2)i//2r t~s
- D e  *  =  n i ' ! a - S)!(2k)S------ [F o o .{ t# + ( . , l - l>  , /* }

S—U t u

+ G sin { t0 + (s-£ -l) v / 2 )] . (41)

The constant D can be evaluated by substituting expression (41) for u (r) 

into Eq. (10). We get
s -n -1

D = \A 8 !! E Bs (n“s) !<a3+k 2) 2 cos{(n-s+l)0+(s--t-l) 7r/2}/A
k s=0

(42a)

w here s -n -1
t  2

A=1-XA3 E B (n-s)!(o;s +k3) [G sin{(n-s+l)0+ (s -^ -l) ir/ 2}
s=0 S

+Fcos{(n-s+l)0+ (s - t- l )  77/ 2}]

^  s+n+1 Bs(n+t-s) !(0!3+k2)t/ 2
+XA E 2  ---------------n+t^s+1------[F cos{ tg+ (s--t-l) 77/ 2}

s=0 t=0 n 1 S+A
t!(2a)

+G sin{t0+(s-£-l) it/ 2}] (42b)

and Bs is  given by Eq. (35).
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Also, once D is  known, we can w rite

tan* = -  G I (43)

w here F and G a re  given by Eqs. (36) and (37) and D by Eq. (42a). It can

easily  be shown that the equations for a rb itra ry  t  reduce to those given

in the previous section for £ = 0.

Several types of num erical calculations w ere perform ed to check the

equations of th is and the previous section for algebraic e r r o r s .  F irs t , £=0

phase shifts were calculated independently and compared with those from

Eq. (28). Next, num erical values of am given by Eq. (34) w ere shown to

satisfy  Eq. (14). Finally, phase shifts for I  and n from  0 to 4 w ere obtained

by num erical integration of Eq. (12) and were found to agree with those

given by Eq. (43).

4 . The Solution for the General Separable Potential

Before presenting the solution for the general potential given by 

Eq. (5), we will d iscuss two le s s  complicated exam ples. These exam ples 

a re  of in te re s t in that they give additional insight into the form ulation of 

the solution with the general potential, and will be discussed in the next 

section , which deals with the inversion problem . We consider f irs t  a 

potential of the form  of Eq. (5) for which a  is  fixed (no summation over y ) .  

That is ,  we consider the potential

i=0
(44)
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For th is potential, the differential equation for the rad ia l function u (r) 

becom es

L a r  ̂ r  J  1  j=0 j=0 k=0 K k

where

~ (n) % ~aV n+k , „ jk f 6 u (r) d rk , T  ‘

As mentioned e a r lie r , because of the linearity  of the nonlocal 

Schroedinger equation, we can imm ediately w rite a  pa rticu la r solution of 

Eq. (45) a s

(46)

u f(r)  = i  I  b  
4  i=0 j=0 k=0 3

F ^ k r  j (kr) + G ^  k r n (kr) 
J *{/ j

-qt ^  P+n+j+1 ( ,̂+p) !(a2+k2) ^ ^ r ^  P f„(n) r  . . . .  ir~\
- e  S  S  —      cos qe + ( p - t - l )2

p=0 q=0 p !(-t-p )!q!(2k)P 3 L

+G s  inj^qq + (p - 1) |  } (47)

where F ^  and a re  given by the expressions for F and G as defined 

in Eqs. (36) and (37) but with n replaced by n + j. Adding the general 

homogeneous solution and applying the sam e boundary conditions a s  before , 

we get a s  the solution for Eq. (45)
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Vr) = ̂ ~/+ij'kr j.(Icr) + S L L \ * {M 1)c l n) fFSn)kr Mkr)
1 k l  1 1 i=0 j=o k=0 1 3 k k L J 1

. „(n), „ . -o/T I  p+n+j+1 (t+p) !(rvs +ka)q//2 r q-p+G' 'k r  n (kr) -  e £  2  —  ------- --------------
3 1 p=0 q=0 p!q! (t-p ) ! (2k) P

X {fJ^cos[qG +(p--£,-l) 2 ]  +G^  sin £q q + (p--t-l) J  ] } j  (48)

The function u (r) given by Eq. (48) is  completely determ ined once 
*1/

the constants a re  known. To obtain , Eq. (48) for u^(r) can be 

substituted back into Eq. (46), and the order of summation rearranged  to 

give an easily  solvable expression of the form

C<n>= s  R (n> C(n) + U (n) (49)m mj j m ’

where

R<n) = - v  I i  b (i)b(i) V  p+J Hk+1 (*+P>! (o;3 +k  3 m+ n + q - p ) ! 

mj i? j k=0 ‘ ] k p?0 q=0 p iq !R-p)!(2k)P(2a )m+n+q- p+1

x  {F^n) cos[qe+(p-|,-l) 2 ]+ Gif3 sin£qe+(p-vf,-l) £  J

^  ('t+t) !(m +n-t)! (qs +k3 )~g'^m+n ^

t=0 t  I(^,-t) !(2k)t

X { F ^ c o s ^ m + n - t + l )  $ + J  J +G^n) sinjj(m+n-t+l) 0 + ( t - t - l ) ® - ] ] -

(50)



u (n) = &L+1) »3 £  (l+t) ! (m +n-t)! (p,3 +k3 ) <m+n“t+1)

m k ^+1 t=0 t !(-t~t) !(2k)t

X cos£(m+n-t+l) 0 + (t-^-1) £  J  (51)

The phase shift ^ can be determ ined imm ediately from  Eq. (48), and is

E s  s  x - b % ^ c l n)a {n) 
i=0 1=0 k V 11 k k 1

1 i=0 j=0 k=0 3

As expected, Eqs. (48) and (52) reduce to Eqs.(41) and (43) for J=0 

and = A.

The second example which we will consider is  the potential given 

by Eq. (5) with the summation over v retained , but without polynomial 

te rm s  PV(r); that is

^ ( r . r . )  = e ^ < r + r '><rr.,,V  . (53)

For th is  potential, Eq. (4) reduces to

["d r"3 + k2 " J  \ (r) = S  ^  ° V (54)

where
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The solution is

( r)  = - (% .+ ! ) ! !  k r  j  (k r)  + ^  AVQU ^ k r  j (k r)  + G v k r  (fer)
■t k t  y  £

. n ..+s+l .. , ovt/2  t - s^  ̂ /i+s\ i/™2+k3\ r
-  e (vr l  W + ( s , ^ . 1 ) ? 1

s=0 t -0  t ! s ! a - s ) ! ( 2k) *• L v

+ G^sin |^ t^ + { s-^ -l)  | j |  (56)

where and Gy a re  given by Eqs. (36) and (37) with n replaced by n and
v

with a = a rc tan  ----- .
y %
As before, it is  necessary  to specify the constants C in te rm s ofV

an equation involving known quantities. We get

CV = £  R ^ 'c ^ '+ U ^  (57)
V1

where

Rl* '  i  ( * + t ) ! ( n , r t ) ! f a i ^ ) 4 ( n t r t * 1>tv A "  F
t=0 t!(-t~t) !(2k)

x f l^ 'c o s fn  -t+ l)0  + ( t - . t - l ) f )+ G V,sin((n  - t+ l)0  + (t-^ -l)
L I y  V £ J v p  V & i J

t /2
1 V s+1 ^+s)1 <ny ,+t~s) Kq̂ ,  +k2)

s =0 t=0 t  !s!(-C.- s ) !(2k)S(oty+ a ^ ) Iiv+t S+1 

X [ ^ ’cos{t0 ,+(s-4-l) J V  G^'sin^ +(s-t-l) J (58)
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and

= !! £  U+t) i ^ - t )

k ‘t+1 t=0 t!(<t-t)!(2k)t

X cosf(n  -t+1) Q + { t - l - l )  f  1 . (59)
V V 6 J

The phase shift is given by

S  l H c VGv

V  -  < * 4 u + e a W  • <60)
k 4 v

The wave function and phase shift appropriate to the general potential 

given by Eq. (5) combine aspec ts of both of these exam ples. The final 

re su lts  a re

u,(r> = (2t t l i l ! k r  i (kr)+ S  i f '  £  % L Al> ® ’l'>b <i’lV
^  k ^ v g=0 i=0 m=0 j=0 J

/ t I / 2 ,1.2 q-pw y -vyflr  I  p+m+m+1 (f'+P) • (a +k ) r
I ^ k r  j (kr)+G ^kr n ( k r ) - e ^  S  ^  -----------  --------- --------

1 m ^ p=0 q=0 p !q ! ( t-p )! (2k)P

x  { F ^ c o s [ q e i;+(P-<t-i) f  ] + G m sin [ ^ / ( p -'L-1) |  ]}  (61)

and
K J

s  i f  I  I  S  l "
tan  y . J ^ - g° 0 1-0 j=0 g i_m .  i L -m. _________ . (62)

+ Z  £  2  i  E A ^ - ) b f - ) c -G -m
k „ g=0 i=0 m=0 j=0 8 3 J
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w here and a re  given by Eqs. (36) and (37) with n replaced by n +m

and a  replaced by ^  .

The unknown C v  ’s can be found from the condition 
J

CV = E /  c ” ' + U ^  (63)
j '= 0  33 3 3

where

> '  $ '  I  /  ^  b '1" '')  4  < ^ !< y j - t)!
M’ i=j g=0 m=0 1 m j t=0 t !< ^ t>!(2k)‘

X fa2+k2) 2<nf +1 t+1)|F ^ cos(n+ j't+ 1)e^+( t - i - 1) |  j

+ Gm s ln ^ - t+1> V (t' 4 ' 1) 2 ] }
0/2I  p+n .+m+l (-t+P)! (n +j+q-p)!(a3 , +k2)

-  2  ^ ^ ---------;------------

P=0 q=0 I/!p!(^-p)!(2k)P(a^+Q!^,)n^+j+q_P+1

x { F mCOS[ qevl+(p"'t "1) 2 ]  + Gm 2 ] }  (64)

and

r f j . i s t t a u .  £  a + t m y j - t H f r 2 

3 k ^ 1 t=0 t ia -t) ! (2 k )t

x  COS [(n^-t+1) 0^+(t-,t-l) |  J . (65)
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5. Summary

The method presented in this chapter is  closely re la ted  to those 

standardly employed in the solutions for wavefunctions and phase shifts 

fo r the scattering  of pa rtic les by a local potential. To obtain an analytic 

solution for a local potential, one also norm ally expands the solution in 

a  power se rie s  about the origin which resu lts  in a  difference equation 

involving the coefficients of the power se ries . Because in the case of a 

local potential the difference equation is  homogeneous, the regu la r solution 

follows d irectly  from consideration of the indicial equation.

We have shown that in the case of a  large c la ss  of separable nonlocal 

potentials a  s im ila r techniqie can be employed. Consideration of the 

indicial equation m ust be replaced by the task of obtaining the two 

independent solutions of the difference equation . The condition of 

homogeneity of the original integro-differential equation can then be 

imposed upon these solutions. The solutions presented here  for the c lass 

of potentials under study a re  particu larly  s im p le , and could be so 

rearranged  that the se rie s  expansion was identified a s  a combination of 

trigonom etric  functions.

The re su lts  which we have obtained provide an opportunity for 

calculations with the c lass of potentials discussed which totally avoid the
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necessity  of num erical integration of the in tegro-differential equation.

T his is  p a rticu larly  im portant, since num erical integration of an in tegro- 

d ifferential equation req u ires  complicated m atrix  methods o r time 

consuming ite rations. In the case of local potential the equation is  

d ifferential in charac ter, and num erical integration techniques presen t 

much le s s  difficulty than in the case of a nonlocal potential. Although 

m atrices  appear in the expressions presented here, they can be handled 

in  a triv ia l way. For the potentials we have considered the 

wavefunctions and phase sh ifts a re  in each case given in closed form  by 

a single expression. For the single-term  potential for the &=Q case , 

the wavefunction and phase shift a re  given by Eqs. (26) and (28) 

respectively . The corresponding equations for the wavefunction and phase 

shift for a rb itra ry  I  a re  Eqs. (41) and (43). For the m ost general many- 

te rm  potential given by Eq. (5), the wavefunction for a rb itra ry  I  is  given 

by Eq. (61), and the phase shift by Eq. (62). The only unknowns which 

appear in the expressions for the wavefunction and phase shift a re  the 

elem ents of the m atrix  C. The m atrix  C will be of dimension equal to 

the num ber of te rm s employed in the potential and thus will usually be 

easy  to invert. In dealing with a particu lar problem , one may wish to 

invert the m atrix  d irectly . If not, the m atrix  inversion involved is  

available a s  a  standard subroutine package for any com puter, such as 

GELG(R, A, M, N ,EPS,IER) from  the IBM lib rary .
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IRREGULAR SOLUTIONS AND EQUIVALENT LOCAL POTENTIALS

To develop a  be tter understanding of nonlocal in teractions it is 

logical that a  com parison be made between the ch arac te ris tic s  of nonlocal 

potentials and the m ore fam iliar phenomenology of local potentials. 

However, only recently have successful attem pts been made to re la te  

the nonlocal interaction to its  'equivalent1 local form  in coordinate space. 

I t has been shown by Coz, Arnold and M a c K e lla l^  that a  unique 

potential and solutions to an equivalent local equation can be obtained once 

two independent solutions of the nonlocal equation a re  known. The above 

authors used two independent Jo s t solutions to get an unique equivalent 

local potential (ELP) from  a  nonlocal potential. Instead of Jo s t solutions, 

the reg u la r and irreg u la r solutions can also be used to form ulate the 

E L P. However, it is  custom ary to find the irre g u la r  solution in term s 

of the Jo s t solution and Jo s t function, as it is  m ore difficult to get the 

irre g u la r  solution from the boundary conditions. In th is chapter, using 

the techniques developed in Chapter H, we will derive the irreg u la r

34
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solution and Jo s t solutions from  the boundary conditions. Then closely

fo r ELP fo r the c lass of separable nonlocal potentials for which we have 

been able to get exact solutions for the scattering  wave functions.

1. Irreg u la r and Jost Solutions

In th is section we will obtain the irreg u la r and Jo s t solutions in a 

num ber of s tep s, as was done in the previous chapter fo r regu lar 

solutions. F irs t , we will consider the one term  separable potential for 

the case jl=0, and then extend the discussion to a rb itra ry  £ . Next the 

m ore general case of the many term  separable potential will be trea ted  

in three steps.

C ase a: Solutions fo r the one-term  separable potential for 1=0:

L e t us consider the case of the single te rm  separable potential 

given by E qs. (7) and (8), that is ,

following Coz, Arnold and we will obtain compact expressions

g(r |r') = x q ( r)q(r')
with

q (r) = A e - a r  n r
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The regu la r solution for th is potential is  given by Eq. (26), which 

asym ptotically reduces to the following form ,

* * > Z  s in  <kr+6) (66)

where

rs l + Dn! cos(n+l) ~n2 + /»Dnl sin(n+l) e (67
j_\k n+1 J  n+1 )  J  '  '

kfa3 + k2 )2 k(<*2+k2 ) 2

sin 6= -  / z  (68a)

k(as + k 2) 2 

n+1

cos 6 = > a-+k2> 2 + Dn^ OS <K+1>9 /  Z , (68b)

k(aa + k s ) 2 

and D is  evaluated from  Eqs. (27a) and (27b).

The irre g u la r  solution does not go to zero  a t the orig in , and is  norm ally 

(17)chosen, so that it  behaves asym ptotically as

0o <r > f ^ >  ‘  cos (kr+6) (69)

The choice of norm alization in Eq. (69) is  such that the W ronskian W(u0 , q0 ) 

a t infinity is  unity. Sometimes th is condition is  slightly c h a n g e d ^ ^ ^  

so that the asym ptotic W ronskian is  e ither -1  or k.
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To incorporate the boundary conditions for the irreg u la r  solution, 

we add M sinkr + N coskr to the particu la r solution given by Eq. (25) 

and adjust M and N accordingly. We find

__ Dn cos(n+l) 0 1M =    + —  sxnfin+1 kZ 0

k(as + k3 ) 2

and

Dn sm(n+l) a 1N = ------------ ----------’- 2 ---- —  COSn+1 kZ 0
.2 , 2kfo8 + k 3)

so that the irreg u la r  solution q0 (r) can be put into the form

1 „ D'n! e 01 n (as +ka )2r sinOn+l-s)©^
e o (r ) = - F z cos(kr+^ +  S T  s   T i --------

—  s=0
k(a2 + k3)

(70)

where

00 — ryr n
D' = \A 2 J e r  0o (r) d r 

o

= _ \A a n! cos f(n+l) 9+5 ]
n+1 1 ;kz(a 2+k2) £ (k)

with A (k) given by Eq. (27b).
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Jo st solutions (k ,r) , Jo s t functions (k) , and the 

relationship between these and the regu lar and irreg u la r  solutions u Q 

and 0Q a re  discussed in the Appendix, where we have shown that

u0 (r> “ 2«r [J° (k) /J(k,r) “ J» (k) ̂ ( k 'r>] (72)
and

0O (r) = - i  [J J (k )"1 f +0 (k,v) + J - (k )“ i / - ( k , r ) ]  . (73)

If we add M sinkr + N coskr to Eq. (25) and apply the boundary 

conditions for Jo s t solutions given in the Appendix, we get a fte r some 

manipulation

f±(k r> = e± ik r+ -±n~—_____  S  ^ a+kg)s / 2 sjn(n+1-s) q b
V  ’ > S±i s? o  s!

k(a3+k3) 2
(74)

where
oo — rrr n  .

D = \ A 3 f e r  /  (k, r) d r
± J Jo

o

XA=n ! e ±1(n+1>0
=  s n   <75>

(a2 +k3)” 2 -  A(k)



Since (k) = (k, 0) we have

J ± ( k )  = 1 + >Asf t !)3 e p sin(n+l) fl
±i(n+1)0

k(a2+k2)n+1 A(k)
(76)

As a  check we can substitute Eqs. (74) and (76) into Eqs. (72) and (73). We 

get back Eqs. (26) and (70), showing that Eqs. (72) and (73) a re , indeed, 

equivalent to Eqs. (26) and (70) respectively .

Case b: Solutions for the one-term  potential for a rb itra ry  ^

For the one term  potential given by Eq. (7), the asym ptotic form 

of the reg u la r solution given by Eq. (41) can be w ritten  as

V r) ~ r  co> Zi  Sin(kr llT + V (77)

w here

(78)

(79a)

(79b)

and D is  defined by Eq. (42a).

Adding Mkrj (kr) + Nkrn (kr) to Eq. (40) and using the boundary condition
4  V
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we get

• M = -  FD + sin 6 (81a)
I  1

N = -  GD + co s 6 (81b)
I  1

Hence the irreg u la r solution q (r) is

Qi r) = ~kz" sin  V  k r  V k r> + l k ~  cos \  k r  \ ^ T)
I  I

n+s+1 (i+s\ Hrv3+ks ^ ^ T ^  ^ ir
" D ’ s?0 t^O  P c o b ^ - D } )

+ G s i n { t e + ( s - ^ - l ) |} ]  (82)

w here D' = ^A 2 J  e a r r n q (kr) dr

s -n -1

= AAs i- £  U,+8)!(n-s>!(n.a +ks )
kZ A (k) L t  s !U -s ) ! (2k)S

v
[ s  s=C

sin{(n+ l-s)0 + (s -^ - l)  |  + 6^} J (83)

and

a  (k) = 1 + \ A 3 ^  ny S+1- < ^ - !l n^ :s) !(ft2W /2  
V  ' X f =Q t?0 s ! (£ -s ) ! t ! (2k) s(20̂ n+t-s+ i

x [ F  cos{t0+(s-£-l) }+G sin[t& i-(s-^-l) g }]

(84)
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To find the Jost solutions y ± (k, r) we add M ^kr j (kr) + N^kr n (kr)
Kt k  K/

to Eq. (40) and, using the boundary conditions for f  ^ (k , r) given in the 

Appendix, we get

= - FD +

N± = -  GD + e±i(t+2)',/2

It follows that

f  ^ (k , r) = e±i^ +1  ̂ ^ 2k r j (kr) + e±i^ +2) ff/ 2 k r  n (kr) 
(< Kt (<

t/2

(85a)

(85b)

_ D e ~aT i  nt S+1 . a +s)l(Q!2t k 3J  fF  -.osftfl+ fs-J-tt 1
D± £  t! s! a - s ) ! (2k)s cos{te^(s U ) 2 }

+ G sin {t9+(s-^,-l) 2 } (86)

where
n  ̂±i

1V> UA

s-n -1

D = \A 3 |  e a  r  y ^ k . r )  d r

_ xAs e*1̂ 1̂ 2 £  lf+s) K n -s ^ s + k g )

■*(
A .(k) s?o s !a - s ) ! (2 k )s

x  eT i[ (n + l-s )0 + (s -t - l) |]  

and ^  (k) is  given by Eq. (84).

(87)
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Using the boundary conditions for Jo s t functions given in the Appendix 

we can imm ediately w rite from Eq. (86)

J ± (k) ,  .  .(2 /.+ 1 a t e±i(-t*2)^/2+ |2t ) !G %  (88)

4 k4  t !  (2k)^

As shown in the Appendix, the regu lar solution u^ (r) and the

irre g u la r  solution q (r) can be w ritten in te rm s of the Jo s t solutions

4* if  (k ,r) and Jo s t functions J  (k), that is

v r ) = 2i r  n ik -r) -  j v k) r t (k>r)] (89>
and

= [J^(k)_1 / +̂ k ’r > + J X(k)_1 / ^ (k’r ) l (90>

Case c: M any-term  Separable Potential fo r a rb itra ry  I

Before presenting the irreg u la r and Jo st solutions for the potential 

given by Eq. (5), we will obtain solutions for two le s s  complicated 

exam ples, as was done in Chapter n . We will then extend the resu lts  

to the general potential given by Eq. (5).
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Example I.

We consider a  potential of Eq. (5) for which a  is  fixed (no 

sum m ation over v ). We thus consider the potential given by Eq. (44), 

tha t is ,

g, ( r | r ') = - £ r  e a ( r + r ) ( r r ') n z  p i(r l )
^ i=0

The regu lar solution for this potential is  given by Eq. (48).

Asymptotically

u (r ) ■=— > Z # s i n ( k r - i ^ a  ) (91)
I  r  -  I  t

w here

v r c ^ + =  s ‘ *  ^l  k i=o j=0 k=0 3 3 '

+ ( e  E S xi b | \ i ) c[n>G<n)y - | i  , 
V i=0 j=0 k=0 J J ^  -

i ln6 = ( - E  E
* 1=0 j=0 k-0 1 J k k J ' 4

and

(92)

(93a)

c o s .  + E E E M  C<”> p f > ) A  <93b)
1 V k 4 i=0 j=0 k=0 k J 7  ^



Following exactly case  b, we can imm ediately write
44

V r) = "kz~ Sin ^  kr V ,Cr) + ~kZ~ C°S \  kr \ {kT)

- e - “ r  I  £  £  c f > r i  T i+1
i=0 j=0 k=0 3 P=0 q=0 P-<£ P) (2k)p

X [Fjn)co s[q 9 + (p -^ -l) |]  + Gjn)sin[qe+(p-,(,-l) £ ] } J  (94)

where

with

^.(n) ® -/yr n+m . 4 ,
c  J  = f  e  r  0 . ( r ) d ro

= s  c '^  + U‘(n) (95)
j i o  m j 3 m

R.(n) = -  v  V \ b(i)h(i)f  i  P+̂ +k+1 ^ +P) !(Qp+k3)q /2(m+n+q-p)
m j j J 0Xi j k L^=0 p !q !a -p )  !(2k)P(2cdin+n+q 1

X [F (^  cos[q0+(p-^-l) J] + sin[qQ+(p-^-l) |]} (96a)

and

TTi( n ) =  J _  * il+1) ! ( m + n - t )  ! ( q a + k » ) ~ * <m * n ~ t+ 1 )
m kẐ  "Q t! a-t)!(2k)t

X sin{(m+n-t+l) q + ( t-^ -1 )  J  + 6^} ' (96b)
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Sim ilarly, the Jo st solutions f  ±(k, r) can be w ritten as
I

f  ±(k, r) = e±i^ +1' ff/2k r  j (kr) + ff//2 k r  T? (kr)
Kt ^ g

J  * 1  b(i)b (i) p W d f ^ P ^ 1 ^ ) ! ^ ) 2^

1=0 j=0 k=0 1 k k Lp=0 q=0 P !<^"P) !^ !(2k)p

X { r jn)co s[q 9+(p-^-l) | ]  + Gjn)sin[q0 + (p -^ -l) * ] ]

(97)

w here the unknown can be found fromk

C(n)± « s  H '(n). c i n ) ± + U(n)± (98)m j ~q mj j m

with

TT<n):fc *i(<l+1) ff/ 2 £  lt+t) !(m+n-t) !(tt3+k 3 ) ^ (rn+n' t+1)
m ^  t l ^ - t )  ! (2k)t

^  e±i[(m +n-t+l)0 + ( t -^ -1) ff/2 ] (9g)

and R^°? is  given by Eq. (96a).

The Jo st functions J  (k) a re  then

J ± (kv = _ e±i(-t+2) It/ 2 j  i i (i) (i) (n) ± (n)

l { ) k l  i? 0 A  £ o Xi j k k t !<2k>* J

(100)
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Example n

The second example is  the potential given by Eq. (5) with the 

sum m ation over v  retained but without the polynomial te rm s P V (r), 

th a t is

g ^ ( r |r ' ) = ^ -  ~  (r+ r V
V

The regu lar solution for th is potential is  given by Eq. (56), which has the 

following asym ptotic form

with

V [ C 2^ ' 1 + s  G ^ S] »  (101)

sin  6^  = -  ( S  A" c^G*) /  Zt  (102a)

cos = ( < * % ■  ‘ + <102b>
k

and CT given by Eq. (57).

Following example I, the irre g u la r  solution can be im m ediately w ritten as 

^ ( r ) = Csin 6^  k r  j^(kr) + cos 5^  k r  n^(kr) ]

-  E E “f +1 A ^ c W  <l+s>!(a3+kS)t/2  rt-S- 
*  s =0 t=0 t l s ! ( t -s)!(2k)S

x { F̂ C os[tev+(s-t -l) I ] + GI'sin[t9+<s-.t -l)  f  ]} (103)



w here

with

and

where

C'v  = £  R'w 'c 'V' + V 'V (104)
v'

r . ^ 1 = _ jP ' i  Y S+1 tt+s) ! ( V + t- 8) !(<ya +ka)t/2
st Q ti Q t! s!(£-s) !(2k)S(Q!i + ^ , ) 1V '+ t-s+l

X [ i ^ '  oos{t0 l+(s - - t - l)* }  + G ^ 'sin fte  .+(s-<t-l) J } ]  (105a)a 1/ u

w v  = _ 1_  i  ( ^ t )! (n„-t)! (a,f +k3) g (lV~t+1>
try "  t

-t t=0 t! (^ -t)!(2k)

X s in  {(n^-t+1) 0+(t-^-l) | +  5^} (105b)

The Jost solutions /* (k ,r )  for th is potential can now be w ritten as
'C

/± (k ,r) = e ^ 1**72 kr jt (kr) + e ^ ^ k r  n<,(kr)

i :  ”* ts+1 -i. i*t -o ^ r  (<-<-s) K a ^ k ^ V -8
* . £ ,  ‘ I K*k»-

x £f ^  cos[t0  + ( s - ^ - l ) f - ]  + Gy sin[t0 + (s -- t- l)^ ]}  (106)1/ a V £J
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with i .
,  L  »  3  " ^ ( n ^ " t + 1 )Tv±_ _ ±1(^+1) 1T/2  £  (<t+t)! (n^-t) !(oT„ + k >

U -  6---------------------------------------------------------------------------------------------------------------------

t=0 t!(-t-t) !(2k)t

x  e ±i[(ni;-t+ l)0[/i+ (t-'t-l)TT/2 ] (10g)

l/V'
and R' is  given by Eq. (105a).

The Jo st functions J  *(k) can now be w ritten  as
*v

e*<U 2 >*/2  + L  a V  ± ^  <1M)

Example in

In th is example we combine the re su lts  of Example I and 

Example n and derive the irreg u la r and Jo st solutions for the potential 

given by Eq. (5). The reg u la r solution is  given by Eq. (61) and the 

asym ptotic form  can be w ritten  as

u^(r) s in tk r  l i t  + 6^]

where
i

L E S S  A ^ b ^ b ^ c l V jI LV kt +l  v g=0 i=Q m=0 j=Q gi m j , mS

\  3v  S 1 , 2 1
+ T e  £  £  £  L Av b b ^ C VG i;S) 1 (110)g=0 i=0 m =0 j=0 gi m j ] V J  ’ (110)

K J

« n # . < - E  E* Z I  s  A ^ ' ^ ' ^ g O / z ,  (U la ,
^  ^  V g=0 i=0 m=0 j=0 g m J J m /  I
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and

m s 6  < m m L + z Ki,  s  I  s / . b ^ ’V V / V z ,
k  1/  g = 0  i= 0  m = 0  j —0  S 1 m  3 3 TdJf tg=0 i=0 m =0 j=(

(111b)

The irreg u la r solution 0^(r) is  then straightforw ard and is  given by

* V r> = kZ~ ^Sin 51 kr ̂ kr  ̂+ C0S 6- tkr n^ kr  ̂̂
i  p+n +m+1

- E  L £  £  i  X.b « * V ’W v  E Z
V g=0 i=0 m=0 j=0 Si m j j p=0 q=0

(^+P) !(°^ + k s )q /2  r q_P y ff
p! q! (-t-p) !(2k) m co s q̂ © ^ (P -^ -1) 2 3

+ sin[q0^+(p—t- l)  |  ] } (112)

w here

with

1/ _r i/p' w’ v
C \  = E E R C \, + UV (113)

J I/' j'=0 JJ J 1

, V  K i/‘ g I  P+n^+m+1 (^ p) , (n +j+q. p) ,
R' , = - E  E E E E A % ( g , v l (1,v) vi i '  . .« -   ̂ -  rn m  n  .33' i=j'g=0 m=0p=0q=0 81 m q!p !(-t~p) I(2k)P

>q/2

W i  tFm eosCqfl^+fp-t-l) \  3
(a + a  .) '  v v u

+ Gm Sin tq9i / + <P“t' 1) 2 ^  (114a)
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and % t
I  (Ut) !<n +j-t) !<oe“ + k 3)~ 2 (n^+J" + > 

U. = “r — £  V V
j kzt  t=o t! (-t-t)!(2k)t

X sin  {(n +j-t+l)0 + (t-'t-l) “  + 6 .)  (114b)1/ i/ 2 'V

The Jost solutions f (̂k,r) can now be written as

/ ^ ( k , r ) = e  kr j^(kr)+e  kr njkr)

K J p+n +m+l

- S S E E S  a" b( g ,0 ba ,,/ )c!/V O*'r S  s
V g=0 i=0 m=0 j=0 S1 m j j p=0 q=0

(-t+p)! (a3 +k 2)q//2 rQ~P 
pTqi(-t-p) !(2k)P {Fm c o s t q e ^ - H )  -  ]

+ G m Sin q̂V (P“'t'"1) 2  ̂* (115)
J  ,

v± vu* v'±
Cm -  =  £  R'jj. C j' + U j <11C>

_ » * _  *<to>f/2 * (to)!(V j-t) K ^ k V  W j- w >
j ® t=0 t!(-L-t)!(2k)t

x  e «C (n^j-t+ l) 0i^-(t-t-l)ff/2] (1

w 'and R1„ ( given by Eq. (114a).

w here

with
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±
The Jost functions J^(k) a re  now seen to be

j _ _ JSitML + B s" z  i  i
I  k V g=0 i=0 m=0 j=0 S1 m j

x c w  a v  ( i is )j t\{  2k) ̂  m '  }

2. Equivalent Local Potentials

In this section we develop expressions for equivalent local

potential fo r the c lass of separable nonlocal potentials for which we have

expressions for Jo st solutions. We develop th is by closely following Coz,

(41)Arnold and M acKellar.

Let / j^ k .r )  be the Jost solutions to the nonlocal equation

2 co
[  - - p  + k 2 -  ]  / *  <k,r) = J  g^(r |r>) (kfr*) d r ' (119)

±
and le t /  (k ,r) be the Jo st solutions to the local equation L

[ “ d ?  + k “ ~ /*<k ’r > = V<r> *L(k’r) (120)

The transform ation function which re la te s  the nonlocal solution to 

the local one is w ritten  a s

/* (k , r) = A(k, r) (k, r) (121)
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w here A(k,r) is  called the damping function. It may be noted that Eq. (121) 

m ust be satisfied  by both of the independent solutions, w hereas a  

'trivially* equivalent local potential applies only for one solution.

If we now define

^ k ’r) = _ 2tk ~  £ /+( k , r ) r l k ,r)  - /~ (k , r ) / +,(k, r) ] (122)

then , r) will be unity necessarily  only at infinity and a t the origin

andp j  (k ,r) w ill be unity everyw here. Talcing advantage of th is property, 
^  L

and rem em bering that^"(k, r) is  a  norm alized W ronskian, we can use 

Eqs. (121) and (122) to w rite

^ N(k ,r) = A 3 (k ,r) (123)

Also, if we substitute Eq. (121) into Eq. (119) and use Eq. (120) and 

Eq. (122) to subtract the local equation, we get

A” A' 3 ±
Cv<r> + T " 2 <1 ) ]  V ( k , r )

00

+ 2( - ^ )  (k, r) = J* g^(r | s,) /  * (k, s) d s  (124)
o

w here the prim e denotes differentiation with respec t to r .
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±*

To get an expression for V(r), we multiply Eq. (124) by / N (k >r ) and 

sub tract the two resulting equations. We then have

3 , »
V(r) = - - f  * 2 ( ^ - )  + [/*<k,r> J gt (r |s )

0
CD

x  ^ N < k ,s  > d s  "  ^ N ( k ’ r)  I  g ^ ( r  ̂ S) ^ N ( k ’ S )  d S  (125)

Since compact expressions for /^ (k ,r )  have been given in 

Section I, using Eqs. (125) and (122), the ELP V(r) can be calculated.

Note that the in tegrals of (k ,r)  with the potential which occur in 

Eq. (125) have already been evaluated in Section I.

3. Summary

In th is chapter the technique developed in Chapter n  is  extended to 

obtain irreg u la r and Jost solutions for the same c lass of separable nonlocal 

potentials discussed there. The irreg u la r wavefunction for the m any-term  

separable potential defined by Eq. (5) is  given by Eq. (112), w hereas Jost 

solutions a re  given by Eq. (115). As in Chapter n, the only unknowns a re  

the elem ents of the m atrix  <D. For the irreg u la r solution the elem ents of 

th is m atrix  can be found by solving Eq. (113) and for Jo st solutions these can 

be found by solving Eq. (116). Since Eqs. (113) and (116) a re  sim ple m atrix
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equations, the solution involves only straightforw ard  m atrix  inversion.

As before, a  standard subroutine package like GELG or double precision

DGELG from the IBM Subroutine L ibrary  can be used.

In passing it may be mentioned that Jost solutions a re  im portant not

only in finding the Equivalent Local Potential (ELP), but a re  also useful

in a  variety  of contexts. Exam ples of other im portant applications of Jo s t

i l l )solutions a re  given by Newton. ’



CHAPTER IV

T MATRICES

The calculation of off-shell T m atrices has been the subject of 

{32 57—,62\num erous investigations.'  ’ One of the fac to rs which have created

in te re s t in off-shell T m atrices has been the work of Faddeev, who has 

shown that the only input necessary  in the equation for three-body scattering  

is  the off-shell T m atrix  of each of the three possible p a irs  of p a rtic le s . 

The form al calculation of T m atrices  is  particu larly  simple for the case of 

a  separable nonlocal potential. W atso n ^ ^  pointed th is out and gave an 

expression  for the separable T m atrix  for a one-term  separable potential. 

L a te r on, Tabakin^18  ̂ obtained expressions for the off-shell T m atrix  for a  

rank  two separable nonlocal potential in te rm s of the m atrix  elem ents of the 

free  partic le  G reen 's  function between the form factors of the potential. 

T abakin 's procedure  can be extended to a  potential of a rb itra ry  rank. 

However, the difficulty with such an extension lie s  in the increasingly large 

num ber of contour in teg rals which m ust be evaluated.

55
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E a rlie r  we obtained exact analytic solutions for the wavefunctions 

and phase shifts for a c lass of separable nonlocal potentials. In th is 

chapter, we p resen t a  method by which the off-shell T m atrix  can be 

obtained fo r the same c lass of separable nonlocal potentials without the 

necessity  of evaluating any in tegrals involving G reen’s functions. In 

p a rticu la r, when calculating a T m atrix  by the technique which we shall 

outline, an increase  in the rank of the potential does not re su lt in as 

significant an increase  in computational effort a s  with the method of Tabakin. 

The expressions a re  in compact form , and given for a ll partia l waves.

To show why the approach presented h ere  can be advantageous for 

the c la ss  of potentials to which it  can be applied, it  is  necessary  to briefly 

review  the construction of off-shell T m atrices for a  separable nonlocal 

potential of a rb itra ry  rank. We then apply the method to a one-term  

separab le  potential before extending the analysis to the c lass  of potentials 

fo r which we already have given the exact solutions in configuration space.

In all of the calculations in th is chapter, we have taken ft2 /2m = l.

1. T  M atrix Calculations with a Separable Nonlocal Potential

The equation for the T m atrix  is  given in te rm s of the potential V and 

the off-shell energy w by

T = V + V (OJ -K-V+iC)-1 V . (126)
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L et us consider the momentum space elem ents of the m atrix  T for the rank 

J+ l separable nonlocal potential defined by

V =  £  Ah K W i I -  <127)
i , j =0 3 J

We get

< k '|T (u )|k >  = s  <k*|vi> 
i , j ,m =0

+ L <v |<C O -K -V +K p|v > A ‘l<v.|k> . (128)
s=0 m  S 3ti 3

Because the potential V has been taken to be separable, we see that i t  is

possible to w rite Eq. (128) for (k '|T (co )|k ) in the form

< k '|T (w)|k> = 2  < k '|v >  W (k|o>) (129)
i=0

w here
J

W (k |w )=  £  iU c o K v Jk )  (130)
j=0 J J

and r .^ to )  a re  the elem ents of the m atrix  |[(co) defined by

r ( w ) = A [ I +  < v |(W -K -V + i€ p |v > A ] . (131)

That is ,  not only does the T m atrix  separate as described  in Eq. (129) , but

the function W. can be w ritten a s  a m atrix  with elem ents T\.> which is  a l Aij

function of ^  only, m ultiplied with the transform ation function (v^jk) which 

is  a  function of k only. It is  th is feature of the off-shell T m atrix  which is  

c ruc ia l to the method which we shall employ.
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As an initial step, we compare Eq. (129) with to = k2 with the h a lf -  

off-shell T m atrix  obtained when solving for the stationary sta te  with

outgoing sca ttered  wave appropriate to the potential of Eq. (127). The
+

state |^>. ) will be the solution of the Lippman-Schwinger equation
* 1C

\ % )  = |k> + 2  (k a -K + ie r1 |v . )A. .<v . | ^ >  • (132)
i j =0 1J J

•f I
To obtain an explicit expression for |>|r, ) ,  we multiply Eq. (132) by (v  |

* JC IQ

<vm l'I'k > =<vm lk> + =  <Tm l<k3 - K+,er 1 lTi>/ 'i l<Tj l 't,k > '  (133)i , j =0

Equation (133) can be solved fo r the coefficients (v  ) * We get

<vm | * k > = S  Mm j< Vj l k> (134>
j=0 J

w here the m atrix  M is  defined by

M = [I  -  <v |(k2 -  K+ i€)“ i |v> A T 1 • (135)

The sta te  | ^ )  is  given by substituting Eq. (134) back into Eq. (132),

\ % )  = |k> + E (k2 -K+ie)-1 |v  > a M <v |k ) . (136)
i , j ,m =0 J J

The half-off-shell T m atrix  also follows from a knowledge of the 
. +

coefficients (v  ntr. ) , and is s m< *k '
J

< k '|T (k2 )|k> = E <k’|v ) W ( k |k 2 ) (137)
i=0
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w here

(138a)

o r using Eq. (134)

(138b)

C om parison of Eqs. (130) and (138b) shows that

J
(139)

Equation (139) estab lishes the fact that if we know the m atrix  1M we can 

calculate the m atrix  F .  But since off of the energy shell IT is  a  function 

of w only (and not k), expression (139) for JT can be continued off the 

energy shell. Off-shell m atrix  elem ents (k 1 j T ^ )  |k ) will be given in 

te rm s  of the JT thus obtained by Eqs. (129) and (130).

The procedure suggested by Tabakin substitu tes the computation of 

the m atrix  elem ents of M  for those of JT. In th is d isserta tion  we d iscuss 

an a lte rna te  method of obtaining the m atrix  JT as defined by Eq. (139) which 

avoids the integration usually necessary  to the construction of the elem ents 

ofJM.



60

2. E xpressions for Off-Shell T M atrices for a Rank One Potential

In Chapter n we have presented a  method for obtaining analytic

solutions for the wavefunction for scattering  from  a c la ss  of separable

nonlocal potentials. Here we consider the general sym m etric potential

g ( r | r ')  defined by 
£

~ o c  (r+r') n
g ( r | r ')  = S  e v  (rr>) v  S  g  (r) P ^ (r') (140)

L v  g=0 i=0 B 8

w here . a re  constants and P^(r) is  an a rb itra ry  polynomial in r  of o rder i»

defined by Eq, (6). The potential of Eq. (140) is  the same a s  that of Eq, (5),

with K - J  and .= . From  Sec. 1 of th is Chapter it  is  c lear that theV V g 1 ig

information necessary  to the construction of the m atrix  r  is  im plicit in 

these solutions. We thus concentrate here  on using these solutions to 

obtain the off-shell T m atrix  for the c lass of potentials given by Eq. (140).

a . Off-Shell T M atrices for £=0

L et us consider f irs t  the single term  separable potential given by 

Eqs. (7) and (8) .*

g ,( r | r ') = X q<m (r') (141)As
with

- a r  n
q(r) = A e r  . (142)

We will also specialize for the tim e being to the case £=0. The norm alization 

chosen for the £=0 wavefunctions presented e a r lie r  w as uQ (0)=0 ,uj, (0)=1.
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Such a  norm alization corresponds to the convention standard in the 

d iscussion  of Jo s t solutions. It has the advantage that the Fredholm 

determ inant ^  (k) w ill always appear in the denominator of the expression 

for the sca tte red  portion of the wavefunction. As discussed in the 

Introduction, in the case of nonlocal potentials, it is well known that the 

ze ro s of ^  (k) correspond to spurious solutions of the Schr'ddinger equation 

for \jr(r), and we have pointed out that solutions presented in Chapter n  

a re  not valid  for ^ (k )= 0.

The f i r s t  step in solving for the off-shell T m atrix  is  to renorm alize 

the wavefunctions to a  delta function. In keeping with usual p rac tice , 

wavefunctions so norm alized will be designated by the D irac b ra  and ket 

notation. That is ,  we will define the wavefunction ( r |^ ^ )0 a s  that which 

sa tis f ie s  the boundary conditions

<r !*°k>0 7 ^  0 <143a>

<r |^°t )o 7 “ ^  "  sin(kr + 6o) (143b)Jv r •* od



The superscrip t o indicates that |^ ^ ) o  *s re a * solution of the rad ia l 

equation, and the subscript o has been used to designate the £ =0 p a rtia l 

wave. We get

<r l«'°k>c Is>/ IT
2 r l Dn!cos(n+l) fl

k J n  L N(k2) n+l
sinkr

N f k ^ + k 2)

Dn!sin(n+1) fl

N(ka)(^+ka)

n+l
2

coskr

I
2 Dn!e 
TT

- o r
— i  £   r Ssin(n+l-s) q (144)

— s=0
N(k2 )(0f+k2)

w here q and D(ks ) a re  given by Eqs. (21) and (27a), and N(k3) is  given by

Nfk8) = Cl+ Dn!cos(n+l) fl-6— V  + / 'Dn I sin (n+l) fl <  
n+l J  " Y  n+l )

(a3 + k a ) <as + ^ ) i

(145)



63

It should be pointed out that in using the techniques discussed in Chapter n  

fo r obtaining wavefunctions norm alized according to Eq, ( 143) , it is  both 

e a s ie r  and m ore instructive to use the norm alization of Chapter n and 

then renorm alize  to Eq. ( 143) .  In th is way the Fredholm determ inant a  

becom es explicit in the T m atrix  which we la te r  obtain from  that 

wavefunction. Equation j(144) can be w ritten in a sim pler form  in te rm s 

of the phase shift 5 defined by Eq. (28), which is

n! D sin(n+l) fl 
n+l ( 146)

(cf+k3)2 +n! D cos(n+l) f)

That is ,  we can w rite the expression for ( r |\£®)0 in the form

sin(kr+ 60 )

£
s=0

n
r  sin(n+l-s) $

For the construction of the T m atrix  we need the wavefunction ( r  j ̂ ) 0

with outgoing scattered  wave, which is re la ted  to the wavefunction ( r |^ ^ )0

by the condition

% (k)
<r|*k>o = <rl*°k>o e <148>(148;
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We will a lso  need the constant D, defined by

D = \ A  |  q(r)u0 ( r ) d r  . (149)
o

From  Eq. (138a) we have

W ^ k 2 ) = x < v |* |c> • (150a)

Using the relationships between uQ (r), < r |^°^)0 , and ( r |>£*)0 we get

w<kl ka>- f ;  ■ ‘150b>

The transfo rm ation  function (k |v )  = (v |k )  is  defined in the £=0 case by

(k |v >0 = A  j1 sinkr e ^  r nd r. (151)
o

This in tegral can be easily  evaluated to give

<k K = A i | - n!sln(n* M  <152>

(a2 + k2)2

Thus from  Eqs. (137), (151) and (152) the half-off-shell T m atrix  for the 

potential of Eqs. (141) and (142) is

( k - i x o f > | k )  a i a a t e t B ^  [- k l^ M o(k> ]  ( 153)

(a2 + k '2)2

where 191 is  given by Eq. (21) with k replaced by k '.
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The function T  necessary  for writing the completely off-shell T 

m atrix  can be obtained by factoring W (k | k2 ) as given by Eq. (150b) into the 

form  indicated by Eq. (138b). Making use of Eqs. (139), (27a) and (152) we 

see that

r  (“  > =  N ( m ) A  ( t o )  • (1

The com pletely off-shell T m atrix  is  given by substituting Eq. (154) into 

Eqs. (129) and (130). We get

As a  check on the accuracy of Eq. (155) we specialized to the case 

of the Yamaguchi form  factor, n=0, fo r which the in teg rals necessary  to 

the computation of the completely off-shell T m atrix  by the usual methods 

(lhat i s ,  the d irec t evaluation of JM using Eq. (135) ) can be easily  handled. 

Both by that procedure and from  Eq. (155) we get

2)As (n !)3 sinfn+1) q1 e^6(/o)) sin(n+l) a 
n+ln+1 N(co)A(oj)

(aP+lf3) 2
fa2 + k2)2

where

17 (of+^XoP+k' )
>AS kk* (157)

and

(158)
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b. Off-Shell T M atrices for A rbitrary  i

The procedure outlined in the previous section can be applied equally 

easily  using the expressions obtained for a rb itra ry  £ in Chapter n. In 

th is  case the boundary conditions on <r |^>°k) a re

< r l * k >  T T t  0 ( l 5 9 >

< r |* °  > - — -> ~  sin [k r  + 6(k)] . (160)
1 K r  -* oo  ̂17

The relationship between the outgoing scattered  wave and re a l solution is

e1* ®  (161)

w here p(k) is  given by Eq. (43). We can thus w rite  for the re a l solution 

(r|\j/°k) the expression

\  n[C1 + ^ 7 7  FD> V kr> + I^T.CDkrn^kr)]

h  k^ 1 De~g r  I  n+®+1 (^,+s)!(rv2 +l^)t / 2r t ~S
~Jir (2l+l) ! !  N gf 0 t=Q s!tl« ,-s)!(2k )S

x  £ f  c o s ( te  + ( s - ^ - 1) J )  + G s i n ( t 0+ s - t- l )  (162)

w here F, G and D a re  defined respectively by Eqs. ( 36), ( 37) and ( 42a),

N is  defined as

and 0 is  given by Eq. (21).
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For a rb itra ry  4, the transform ation function (k | v) can be shown

to  be

< k | v > = A Q  (164)

w here

J s-n -1
Q = E  cos [(n -s+ n e-K s-f-l)  * ]  (165)

s 0

The half-off-shell T m atrix  is  then given by

<f,+l
( k ’|T (k 2 )|k> -  | Q(k.) e W  (166,

To obtain the completely off-shell T m atrix  we m ust factor the expression 

fo r D. We get

D  = x A 2  t ^ - 1) I ' Q  (167)

k*

w here ^  is  the Fredholm determ inant defined by Eq. ( 42b). Thus

Xei6(/co)

• ( l 6 8 )

The expression  for ( k11 T(w ) | k) becomes

<k!|T (w )|k> = - A 2Q(k*)r(aj)Q(k) (169)
ir
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3. Off-Shell T M atrices for M any-Term -Separable Potentials

In th is  section we consider T m atrices for th ree  exam ples of m any- 

te rm  separable potentials.

Case a.

L et us consider f ir s t ,  as  before, a  potential of the form  of Eq. (140) 

for which a  is  fixed (no summation over v ). That i s , we will obtain the 

T m atrix  fo r the potential

g ( r | r f) = e  a<r+r ^ r r ’)11 S  XiIM r )IM rf) (170>
1 i=0

T his potential is  of the type defined in Eq. (127) with yy. =

V =  £  X i  I Vi> < Vi  I <1 7 1 >
i=0

with

( r  | v.) = S  b£> e ~a r r n+m (172)
m =0

In o rd er to obtain the T m atrix  for the potential of Eq. (170) we will need an

expression  fo r From  the solution u(r) for th is potential, given as

E q .( 48), and the phase shift, given by Eq. ( 52), it  is  possible to obtain 

<vi l ^ >  d irec tly .

+ /i k̂ +1
<V. K >  T , f t s s W . ) (173)
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where

ry, J  i i L(i), (i) _(n) (nK2

A m V 1 ) »  m >

+ r - i £ ^ — i  i  i  i b (i>b(i)c (n )^ nK i *  ( m i
W D I !  £  £  m%  V j  m  m  G J ; j  <1?4)

and F ^  and a re  defined by Eqs. ( 36) and ( 37), respectively , with 

n replaced by n+j. The transform ation function ( v j  u) follows from 

Eq. (172) and the definition

_(n) T -o x  n+mC.V = f e r u(r)dr (175)m

and is

m=0

From  Eq. (138a) we see then that

<v.|u) = S  bW . (176)

(177)W (k |k s ) = > f -  k t* le ‘8-k>  I  b ( i ) C (n)i' 1 ’ WIT (2t + l ) ! !N(k=) ^  m Cm 'm -0

Since the potential ( r |  v .) defined by Eq. (172) is  expressed  a s  a  sum of 

te rm s , i t  is  convenient to define subfunctions [vg |k ]  such that

i /ft
<v |k> = s  b '  [v |k ]  . (178)

8=0



The inform ation necessary  for obtaining an expression for [v  |k ]  has
s

been given in Chapter n, since

[v Ik] = (179)
s 1 J i t  (2^+1) ! !  s

and U<n) is  defined by Eq. ( 51). The half-off-shell T m atrix  for the 

potential of Eq.(170) w ill, therefo re , be

2 J  _ /k,\^'+^ * -i k^+^ * (il (ni
< k '|T (k ? ) |k > = - n  Vk,)] (2^+1) ! !  N(k2) nJ 0bm Cm *

(180)

For the completely off-shell T m atrix  we m ust rew rite  Eq. (177) for 

W .(k |k3 ), a s  required  by Eq. (138b). From  Eq. ( 49) we have

C<n> = s  K (n) C<n) + U (n> m  P q mj j m

o r, in m atrix  notation

[ I - ® ] C  = D (181)

L et us fo r convenience define the m atrix  IL by

TL = [ I -  IR]"1 (182)

Then
ln\ J  (n\
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Substituting Eq.(183) into Eq. (176) gives

<v.ju> = S  ( E bW L . ) u (n)
j=0 m=0 m mj >

Putting th is back into Eq. (177) for W .(k |k2) and using Eq. (179) gives

J  i /jv
W .(k |ks ) = X. S  ( L b L ) [v  k] .l 1 i N(k3) "  '  u  n m  m s L s ' J'  ’ s=0 m=0

Equation (185) cannot be d irectly  compared with Eqs. (138b) and (139) to 

determ ine r  . Introducing Eq. (178) into (138b) we get, a fte r changing 

an o rd e r of summation

J  J  J  / i \

a  m* * i m  m i
s=0 m=0 j=s

Wi<k | kn =  S  •

Since the coefficients b a re  constants, independent of e ith er a) o rk ,s

Eq. (130) can be rew ritten  in the form

W.(k|cO>= £  y  (c )  [V |k ]
s=0

w here

y is(») = S r a<») b®  .
J = S

Comparing Eqs. (186) and (187) shows that

J  J  ii\
v . = L  S  A. M ,b u; .
“ i s  _ , ' i m  mi sm=0 j=s J

(184)

(185)

(186)

(187)

(188)

(189)
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It then follows that the off-shell T m atrix  is  given by

.^ +1 MX 1rl+1
< k '|T (W)|k> ^  Df < k>

(190)

w here, from Eq.(185),

e i6  J 1 (i\
V- (to) = X- "TT £  ( £  b w  L ) .  (191)r i s w N . m m s' v ’s=0 m=0

Case b.

As a second example, we consider the nonlocal potential

~oc (r+r') n 
g ( r | r ')  = £  A V e ^ ( r r 1) v  (192)

L u=0

fo r which the wavefunction and phase shift w ere determ ined in Chapter n.

F or ( i p  | we get

+ & kl+1 e W
(2^ + l) ! j ^ l u> N(k2 ) (193)

w here

N = [C1+( W !  =  A" c " F " ) X ( ^ r ;  s  W ? ] * .

(194)

The transform ation function (v^ ju) is  given by

oo ~0£ f
(v^ |u ) = C V = f e v  r  ^ u(r) d r . (195)
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From  Eq. (138a) we see then that

^ k * ,  - J l

Since
^ +1

*  ■ (197)

w here Uy is  given by Eq. ( 59), the half-off-sheU T m atrix  for the potential 

of Eq. (170) will be

<k.|T(k=)|k> = -  s  A (2 (+ l)!! ^ k ’> f c r  ° v

(198)

w here can be determ ined using Eq. ( 57), namely

Cv  = 2  R^*7' CV'+ i f  (199)

and l f v  h as  been defined by Eq. ( 58). 

From  Eq. (198) it  follows that
.» . .1

Cv = E Lv v  i f  (200)
V'

where

1L = [ I - I R ]"1 . (201)

Thus we get for the off-shell T m atrix  the expression

<k'|T(U )|k> = *  S  ^ n ~  uV<k’> < t p j 7 I  u l' ,(k) (202)
v , v



where

T v v '  = e  6_  L w '  <2Q3)

Case c.

As a  final example we consider the T m atrix  associated with the 

general potential defined by Eq. (140). This potential can be w ritten  as

J
v =  L  Z V (204)

V i,j= 0  J

w here
- a  r  n

( r j v . ^ ^ e  V x v  p t '( r )  . (205)

Such a potential is  still of the general form defined in Eq. (127). In w riting

the potential as  in Eq. (198), we have m erely broken down the J+ l

dim ensional m atrix  A y a se  ̂ ° f  square subm atrices of dimensions

J  +1, (r,=0,1 . . . ) ,  a s  indicated by the presence of the su p ersc rip t v , such 
V

that

J+ l = s  (J +1) (206)
V=0 V

Following the procedure used in I, we obtain the wavefunction and phase 

shift appropriate to the potential the expressions
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Again i t  is  convenient to w rite the transfo rm ation  function in te rm s 

of subfunctions, in the following m anner

< V m l k >  =  bT ’V) t V i l k ]
J

w here the function [v ^ |k ]  w ill be given by

^  -  h  u s • <208)

Equation (129) fo r the off-shell T m atrix  becom es

J
< k '|T (w )|k> = L ( k 'l v ^ W ^ k lw )  (209)

V i=0

and, in  analogy with Eqs. (187) and (188)

W y( k |< o ) = S  [v"s'|k ]  (210)
s=0

with

(207)

n /  =. f  * lj /  '>'"*[<?/+ X <vj l ( “ ~k-V+i<|"1 | v £  A ^t ]  •
j =0 t=s m=0 J

(211)

a ■

F or th is  potential, the expression  for is  given by

/t+1
( v v  |t f+> = ( v v  |u> e ifi^  [ -  — --------------  (212)' Vm I*k> 1 m  l ;  (2^+1)!! N(k^) K ]



w here the phase 6(k) was defined in Eq. (62) and 

r l +1 S 1
N = JS  «  J /  r  F  av h^g ’^  r v

>1 + (2t+ l , „  ^ l t g=0 m=Oj=0 g m ^  ° l V >

+ ^ J S   r  v" l! E A*' b b ^  C*' G vV(2/+ 1)M s  s  S  ^  Agi m °1 j m yv w  v i, g=0 m =0 j=0 J m y

Since
m

<v>> - s  b p ’*') c»  ,
j=0 J J

it  follows from  Eq. (212) that

|* +S = f- kl+1 e- - —  F b(m,I/) CvJ n  (2^+l)!!N (k2) ,5o j Cj *

T hus, from  the definition of the half-off-shell T m atrix

Jy +
<k'|T(k=)|k> = E E A ^ k ' l v V x v ^ l ^ )  

V l»m=0

we have that

where

J
<k' |T(k2) |k) = 2  i f  <k'|v^> W? (k |k2)

1/  i=0 1 1

J  To ir'f'+1oi6(k) m v
xxrlS/irI l r3 \ = ^  AV /£!. — 5 ____£  v  h (m »p) r u

i ' } ^ =Q Aim  J ff (2^+1)! !N(k2 ) j Cj *
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To obtain the off-shell T m atrix , it is  necessary  to factor Eq. (212)

into a  form  which m akes the expression for explicit. For this

pu rpose , we m ust transfo rm  Eq. (63) to a form which can be inverted for

the unknowns cV in te rm s of the known quantities . As mentioned 
J J

e a r l ie r ,  following the introduction of the single supersc rip t v  in 

Eqs. (204) and (205) , the addition of such a supersc rip t m erely breaks the 

m atrix  elem ent into subm atrices which lie along the diagonal. The 

double su persc rip ts  on R in  Eqs. (63) and (64) indicate that the subm atrices 

of which i t  is  composed will not lie along the diagonal. Thus for the 

inversion p ro cess  a t hand we m ust consider the J+ l dimensional m atrix  ]R 

with components R_ composed of the subm atrices R ^ f . The 

equation

[ I + f f ] C  = U (219)

w ill correspond to the usual ru le s  for m atrix  m ultiplication if the m atrix  

IR and the vector C a re  constructed as follows
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R**,
JJ

R12,
JJ

R*3 ,JJ

1 
1 

l 
l

l 
i

R2 1 ,33
R2 2 ,

JJ
R23
Rj j '

*R3 1 ,
JJ R32,JJ

R33
Rj j '

1
1

1 t
1

1
1

I —
\  i 
\ /

On th is b asis , Eq. (219) can be inverted to give

C =1L U

o r , breaking the la rg e r m atrix  1L, into subm atrix form ulation

3 y ' s=0 8

(220)

(221)

Substituting Eq.(221) into Eq.(218), making use of Eq. (208), and changing 

an o rder of summation gives for W^(k| k 2) the resu lt

W f(k|k=) = g  y ™ ' [v ^ |k ] (222)



79

w here

(223)

It then follows that the off-shell T m atrix  is  given by

<k' | T(u ) | k>

1r
2

(224)

where y ^ v  (w ) is  given by Eq. (223) with k replaced by / w .

4. Summary

For local potentials, closed form  expressions for off-shell T m atrix  

elem ents fo r a rb itra ry  t  a re  not available in the lite ra tu re . For the case 

I  =0 analytic expressions a re  available only for a few very special 

potentials like the exponential and H ulthen potential. Even for separable 

nonlocal potentials, for which the form al expressions for T m atrix  

elem ents a re  relatively sim ple, expressions in closed form  are  available 

only for a  very  few special cases. P artly  as a re su lt of the frustrations 

encountered in calculating T m atrices from potentials, attention is  now

m atrix  elem ents as experim entally, since it is  T and not V which is  

m easured .

being paid to avoiding a  potential form alism  and fitting directly  the T



In th is chapter we have derived in closed form  expressions for 

T m a trice s  (half-off-shell and off-shell) for the c la ss  of separable 

nonlocal potentials defined by Eq.( 140). Equation (217) gives the expression 

for half-off-shell T m atrix  elem ents, w hereas Eq.(224) gives the 

expression  for the completely off-shell T m atrix  elem ents. In both 

equations the only unknowns a re  the m atrix  elem ents of C, which can be 

determ ined in the m anner discussed in Chapter n . However, 

Eq.(224) uses a special form  of C; that is , the m atrix  elem ents oflL 

which a re  given by Eq. (221).



CHAPTER V

APPLICATIONS

In Chapter n  we derived equations for the phase shifts for a c lass 

of separable potentials. However, from the general expression  for the 

phase shift for a  m any-term  potential it is  not c lear how one can obtain 

exac t algebraic expressions for the scattering  length and effective range. 

If the potential is  simple in fo rm , then the p roper m a trice s  can be easily  

inverted  and expressions for the scattering  length and effective range can 

be found without much difficulty. For adjusting potential pa ram eters 

to f it phase shift data, availability of such expressions m akes the fitting 

m uch e a s ie r  to handle.

As an application, we take the case of a  well-known, tw o-term ,

(21)
separab le  potential, Mongan's potential (Case IV). T his potential 

has been widely used in nuclear calculations and certa in  drawbacks to 

the use of th is potential have been pointed out. We begin our discussion 

of th is potential by reproducing the known re su lts  and commenting on

81
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these drawbacks. Next we find a tw o-term  separable potential, but with 

only th ree adjustable param eters, which fits the ^  n-p phase shift data 

reasonably well and is free  from  the shortcomings pointed out for the 

M ongan-potential.

1. Scattering Length and Effective Range

From  the form ula for the phase shift produced by a tw o-term  

potential it  is  possible to obtain explicit expressions for the scattering  

length and effective range in te rm s of the p a ram eters  of that potential.

The scattering  length and effective range a re  very  sensitive functions 

of the potential param eters . For this reason, num erical approaches to 

the calculation of the scattering  length and effective range can be 

m isleading, and the exact expression should be used when possible.

The Mongan (Case IV) potential is  of the form  of Eq. (53) and is

g(rlr') = [X, e - a i <r+r\  Xs e - “ * (r+r’>] (22;

We found a  reasonable fit to the ISo n-p phase shift data with the following 

se t of param eters:

Xi = 3454. 8 fm~3 = 143264 MeV fm”1 

X2 = -28. 293 fm"3 = -  1173. 25 MeV fm“x 

0£i = 6.157 fm”1 

Q£2 = !• 786 fm”1
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In obtaining these values, he used a scattering  length of -23.687 fin 

and an effective range of 2. 729 fm. Recalculation of the values of these

led to the rev ised  num bers a  = -23. 862 fm and r  = 2.323 fm.

As the analytic expressions for the scattering  length and 

effective range for the potential of Eq. (225) we get

A = 2ax Qi2 (a1 + 0!2)[2(0!1 + a s )(X1a l+ X 2 0!t)+X1Xs (Q:1 - a s )3 ]

(228)

B = 2(a1+a2) [4 a 10!2 (0i+a2)(Xi0!i+Xs a i) -X 1 X ^c^  - a 2)2 ]

(229)

C = 2 a ic 4 (a 1+0!2)3[2oi3o!|H X1Qjf+X2Q'i]+XiX2Q'2G'2 (Q!i -  Ofe)3

(230)

D = 8a f a f ( a 3 + c§)(ax + a s f  +2X1a 2 (a 1+cfe )3 (2a 3 -a f )

+2\za?(otl +Q& f ( 2 a |- a L2) >sf (a1s+o|+4a1 ct$
(231)

two param ete rs  for the Mongan potential by Serduke and Afnan^65  ̂ has

(226)

(227)

w here
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Substituting into Eq. (226) and (227) the values of the Mongan 

potential p a ram ete rs  we obtain a = -  23. 874 fm and r  = 2. 323 fm. Thus 

our expressions substantiate the revised  values published by Serduke 

and Afnan.

2. An Alternate 1S0 n-p Potential.

The solutions presented  in Chapter n facilitate the inverse p rocess

of determ ining from the c la ss  of analytic form s under discussion the

p a ra m ete rs  of a particu lar potential appropriate to a  given se t of phase

shifts. Since Mongan proposed the potential of Eq. (225) m ore accurate

values of the 1S0 n-p scattering  length and effective range have become

available. The accepted values a re  n o w ^ ^

a  = -  23.715 ± 0 .015  fm

r  = 2. 73 ± 0 .0 3  fm.

Our expressions for these param ete rs  have shown that the calculations

of Serduke and Afnan a re  essen tia lly  co rrec t with resp ec t to the Mongan

Case IV potential, which is  thus no longer in agreem ent with the newly

accepted values of a  and r .  In addition, it has been pointed out by Arnold 

(43)
and M acKellar that there may be other difficulties associated  with the 

use of the Mongan Case IV potential, in that it has a  spurious state 

a t  19.6 BeV.
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We consider now an alternate  potential of a different analytic fo rm , 

namely

g ( r ’r,) = 2 ^ [Xl+Xs(r,r,)2  ] e " ° 5(r+r,). (232)

This potential is  a special case of the type presented in Eq. (44). The 

phase shift is  given by

ta n  6 = -  N/M (233)

where

N = 32a6k(a2+k2 f  + X2 128oP k(a2+k2 )(3a 2- k 2)3

+X1 Xe 8ole (210? -4of* k3 -42a4 k4 -20a3k6 -31c ) (234)

M = 32a6 (a2 +k2 )7 +Xi I60P (a4 -k4 )(a2 +k2 f

+ X2 8a(a2+k2 )(33a1Q-215a8 k2 -30a6k4 -54a1 k6 -19a2ks -3k1(J

+2Xa^(17a10-135a8k2 -182a6k4 -14a4 k6+21ofi k8 +5k1Q ). (235)

In pursuing a  fit with the potential of Eq. (232) our objectives were 

to  use a sim pler potential (note that the potential of Eq. (232) has only 

three adjustable param eters a s  compared to four fo r the Mongan potential) 

and to obtain a  potential for which the Fredholm determ inant would be

and



g rea te r  than zero  for a ll energ ies (no spurious sta tes), while norm alizing

to the new values of the scattering  length and effective range. With

these considerations in mind, we were able to find a  reasonable fit to 

the 1S0 n-p phase shifts of MacGregor e t a l / 67  ̂ The potential param eters 

we found which best fulfilled the c rite r ia  used w ere

Xi = 3. 91 fin-3  = 162. 2 MeV fm"1 

X2 = -  41. 06 fm"7 = -  1702. 8 MeV fm"B

a. = 2.286 fm"1 .

In a ll calculations in th is chapter we have used fis / 2m = 1/41.47 MeV”1 fm" 

Figure 1 com pares our calculated values of the phase shifts with the 

experim ental values. The values of the scattering  length and effective 

range for th is potential a re

a = -23.711 fm 

r  = 2. 718 fm.

In o rd er to provide a  com parison of th is potential with the Mongan 

potential, we have plotted the Fredholm determ inant A(k) in Fig. 2. The 

in se rt in Fig. 2 is  the Fredholm determ inant for the Mongan potential. 

Figure 3 provides a plot of the zero  energy wave functions for the potential 

of Eq. (232) , using the pa ram ete rs  lis ted  above. Since there is  no 

spurious sta te , the wave function does not exhibit the ex tra  node which 

occurs for the Mongan wave function, plotted on the sam e figure for 

comparison.
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Finally, we have plotted a s  Fig. 4 the nonlocal potential of Eq. (232) 

for the case r '= r . In o rder to provide a  depth pa ram eter in MeV, the 

potential has been divided by a  .

3. Summary

In th is chapter we have employed the solutions derived in Chapter n  

to obtain pertinent re su lts  for two different separable potentials, one being 

the well-known Mongan potential (Case IV) and the other being a potential 

which h as not previously been reported  in the lite ra tu re . Since Mongan*s 

potential has been widely used in nuclear calculations, our purpose in 

applying the p resen t method to obtain exact re su lts  for th is potential was 

twofold. F irs t , we wanted to reproduce the two-nucleon data which a re  

available from num erical calculations, thus verifying in th is special case 

the co rre c tn e ss  of the exact expressions derived in Chapter II. Second, 

we wanted to compare these calculations with the re su lts  obtained using 

the new potential. By also fitting the data with a second potential, we 

w ere able to dem onstrate the utility of both the c la ss  of potentials discussed 

in th is d isserta tion  and the method presented for obtaining exact solutions for 

potentials of th is c lass.



CHAPTER VI 

CONCLUSION

In considering the use of a nonlocal potential for the description 

of the nucleon-nucleon in teraction, several im portant points m ust be 

em phasized. There is  no a p rio ri reason to assum e that the interaction 

between two nucleons can be expressed  in te rm s of a  local nucleon- 

nucleon interaction. In fact,in  the attem pt to com press the descrip tion of 

th is very  complex in teraction into the form of a standard two-body 

Schrodinger equation one would, until evidence could be produced to 

the con trary , expect the potential to be of the m ost general form , i . e . , 

nonlocal. In the case of the many body problem of a  nucleon interacting
yg\

with a  nucleus, it has been dem onstrated by Feshbach that the m ore

general nonlocal interaction is requ ired  for its  description. In th is case,

the evidence for the necessity  that the potential be nonlocal has been

provided by the dem onstrations, particu larly  by P erey  and B u c k ^  and 

(2)Mulligan, that nonlocality can lead to the dependence of the depth of the 

optical potential upon the energy of the incident partic le  required  for

88



fitting the experim ental data. Although there has been much success 

with the description of nucleon-nucleon data in te rm s of local potential 

m odels, evidence is  now beginning to surface strongly suggesting that the 

use of a  nonlocal interaction is  required  if a descrip tion of all of the 

experim ental data is  to be had in te rm s of a  potential model. The work 

of Arnold and Seyler^*^ is  the f irs t  rea lly  strong evidence that a nonlocal 

potential may be required for fitting experim ental data in the case of the 

nucleon-nucleon interaction.

Replacing the m ore commonly used local interaction by a nonlocal 

one in the description of the nucleon-nucleon problem  should not be looked 

upon a s  resu lting  in a  fu rther complication of an already very  complex 

calculational problem . For exam ple, K erm ode^^has shown that a 

p rec ise  fit to the experim ental 1So neutron-proton phase shifts with a 

local potential req u ires  fourteen te rm s. Although a p recision  fit using 

a  nonlocal potential has not yet been obtained, it is  hoped that such a  fit 

w ill requ ire  fewer term s. Also, a s  shown in the calculations of this 

d isserta tion , i t  is  relatively  easy to obtain exact expressions in closed 

form  for wavefunctions, T m a trice s , phase sh ifts, etc. for a large 

num ber of separable nonlocal potentials. Exact analytic solutions for so 

wide a  c lass of local potentials have not yet become available. Considering 

the complexity of the calculations which make use of wavefunctions and T



m a tr ic e s  to  s ta r t  w ith, i t  is  im p o rtan t to keep e x p re ss io n s  a s  sim ple a s  

p o ss ib le  fo r th ese . A nother point to be co n sid ered  in the use of sep a rab le  

nonlocal po ten tia ls  is  the s im p lifica tio n  of the th ree -b o d y  problem  which 

ta k e s  p lace  when T m a tr ic e s  using these  p o ten tia ls  a re  in troduced .
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Figure 1

xSo n-p phase shifts. For th is figure the experim ental phase shifts

in the 0.1 to 10 MeV region have been calculated from the following 

(66)
accepted values: scattering  length = -  23.715 fm and effective

1 1 2range = 2. 73 fm, using the form ula k cot 6 = - — + — rk  . The values
9. Li

above 10 MeV are  from MacGregor e t al. , who norm alized their fits 

to a  sm aller value for the effective range. The experim ental phase shifts 

a re  shown by the solid line. The phase shifts calculated using the 

potential of Eq. (232) and the p aram eter values quoted in the text a re  shown 

by the short broken lines. Phase shifts for the ivlongan potential (Case IV) 

w ere calculated using the expression developed in th is paper, and are  

indicated by the long broken lines.
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Figure 2

The Fredholm determ inant A<Jc) for the potential of Eq. (232) with 

the p aram eter values quoted in the text. The phase shifts shown in Fig. 1 

by the sho rt broken lines correspond to th is potential. The in se rt is the 

Fredholm determ inant for the Mongan potential (Case IV). The phase 

shifts for th is potential a re  given in Fig. 1 by the long broken lines.
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Figure 3

Zero energy wave functions for the potential of 

Eq. (232) (solid line) and for the Mongan 

potential (Case IV) (broken line).



•  0  0.1 0.2 0.3 0.4 0.5 0.6
r ( f m)



Figure 4

The nonlocal potential of Eq. (232) for the case 

r '= r . To provide a  depth param eter in MeV , 

the potential has been divided by cl .
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APPENDIX

We want to derive expressions for the regu lar solution U^(r)
i

and the irreg u la r solution 0^(r) in te rm s of the Jost solutions /^(k , r)

i
and Jo s t functions J,(k ).

Jo s t solutions are  defined by the boundary conditions

/ * ( k , r ) e Tikr = l .  (A-l)

and Jo st functions by

J> =  (A-2>
i  i

w here W( / . ,  u ) is  the W ronskian of /  (k ,r) and u (r). Note that in the
v v v v

case of a nonlocal potential, the Wronskian w ill depend upon the point 

a t which it  is  evaluated. This im plies the necessity  of the lim iting 

p ro ce ss  in the definition in Eq. (A-2). It can be shown that Eq. (A-2) is 

equivalent to the statem ent

J*(k) = (2^+1) ^ o r 'L /^ (k ,r)  .

Thus in the case <t=0, Jj^k) = fo (k, 0).
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Since /  (k ,r) a re  two linearly  independent solutions of the 

integro-differential equation we can write

V r) =ah + bfl <A_3)

and

dl{r) = C/1 + dC  (A_4)

where the constants a , b, c and d a re  to be determ ined. To find the

(411values of a and b we make use of the fact 1 that for an in tegro-d ifferential 

equation with a  sym m etric kernal the W ronskian of the two independent 

solutions sa tisfies the condition

W l = W | (A-5)r  o r  00

Evaluating the Wronskian of /*  and / ” a s  r  -»00 and making use of 

Eq. (A-5) we get

2ik  (A- 6>

Using Eq. (A-3) we can w rite

W (/* ,u ^ ) = b W ( / + , / ' )  (A-7)

W(/i >u )̂ = a W ( / r / l ) (A' 8)
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If we substitute Eq. (A-6) into Eqs. (A-7) and (A-8) and use E q . (A-2) we 

find that

J7(k)
a = i i -  (A-9t

J +(k)

b = - ~ k r  ( A - 1 0 )

It then follows that

V r )  = ~ 2 U T  C jI (k) f l ( k ,T )  ~ J I (k) / ? k , r ) ]  (A_11)

It is  m ore complicated to obtain an expression  for the (real) 

ir reg u la r  solution 0^(r) in te rm s of Jost solutions and Jost functions.

For th is purpose we can divide Eq. (A-7) into Eq. (A-8) o r take the 

W ronskian of u with a s  given by Eq. (A-3) to get

0 = aW(/+, u^) + bW (/", u^)

or

a W{fV u d = const (A-12)
b W ( f +v u t )

Sim ilarly , taking the W ronskian of 0^with 0^as given by Eq. (A-4) we get

c = const . (A-13)
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We now use the property of the solutions at infinity. We can show from 

the definitions of the asym ptotic form s of f ^  and of an<* 0^  given in 

Chapter in that

w (/+, 0,) W (/“ , U j) > -ik  (A -14)
p  “4  00

and

W( /J .9 t ) • W (/J, u ) ___ > ik (A-15)
p  05

From Eqs. (A-14) and (A-15) we can immediately conclude

w(^.e4, - w(rt ,ut) (A-16)

Noting that the ra tio s  in Eqs. (A-12) and (A-13) a re  constants everyw here, 

it  follows that Eq. (A-16) is  true  for all r .  Thus from  Eq. (A-16),

c  J l (k)
d ■ - j j w  ( A ' 1 7 )

Also, from  Eqs. (A-3) and (A-4) we can w rite

W(u 0 ) = b c W (/J  , / ^ ) + a d W ( /T , / ; )

= (be -  ad) W( / " ,  /* )

But a t infinity W( u^, 0^) = 1 and W(f~^, /£ )  = 2ik .
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T herefore bc-ad = —77- (A-18)2ik

Utilizing Eqs. (A-9), (A-10), (A-17) and (A-18) we see that

1

2JI  <k>

2J~ (k)

Hence from  Eq. (A-4) we get

e .(r )  = - i  [j+  (k) _1 / + (k ,r) + j ;  (k)~a / ; (k ,r) ] (A-19)
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