INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While
the most advanced technological means to photograph and reproduce this document
have been used, the quality is heavily dependent upon the quality of the original
submitted. ’

The following explanation of techniques is provided to help you understand
markings or patterns which may appear on this reproduction.

1.

The sign or ‘““target’’ for pages apparently lacking from the document
photographed is “’Missing Page(s)”. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages.
This may have necessitated cutting thru an image and duplicating adjacent
pages to insure you complete continuity.

. When an image on the film is obliterated with a large round black mark, it

is an indication that the photographer suspected that the copy may have
moved during exposure and thus cause a blurred image. You will find a
good image of the page in the adjacent frame.

.When a map, drawing or chart, etc., was part of the material being

photographed the photographer followed a definite method in
‘sectioning”’ the material. It is customary to begin photoing at the upper
left hand corner of a large sheet and to continue photoing from left to
right in equal sections with a small overlap. If necessary, sectioning is
continued again — beginning below the first row and continuing on until
complete.

. The majority of users indicate that the textual content is of greatest value,

however, a somewhat higher quality reproduction could be made from
“photographs’ if essential to the understanding of the dissertation. Silver
prints of “‘photographs” may be ordered at additional charge by writing
the Order Department, giving the catalog number, title, author and
specific pages you wish reproduced.

.PLEASE NOTE: Some pages may have indistinct print. Filmed as

received.

Xerox University Microfilms

300 North Zeeb Road
Ann Arbor, Michigan 48106



75-3007

BAGCHI, Bhawatosh, 1940-
EXACT ANALYTIC SOLUTIONS IN CONFIGURATION
SPACE FOR SCATTERING WAVEFUNCTIONS AND T
MATRICES FOR A CLASS OF SEPARABLE NONLOCAL
POTENTIALS.

The Ohio State University, Ph.D., 1974
Physics, nuclear

University Microfilms, A XEROX Company , Ann Arbor, Michigan

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED.



EXACT ANALYTIC SOLUTIONS IN CONFIGURATION SPACE
FOR SCATTERING WAVEFUNCTIONS AND T MATRICES

FOR A CLASS OF SEPARABLE NONLOCAL POTENTIALS

DISSERTATION

Presented in Partial Fulfillment of the Requirements for
the Degree Doctor of Philosophy in the Graduate
School of the Ohio State University

by

Bhawatosh Bagchi, M.S.

* & % ok % %

The Ohio State University
1974

Reading Committee: Approved By

Professor Bernard Mulligan
Professor Robert L. Mills

Professor Katsumi Tanaka \anag %w%qm

Advisor d
Department of Physics




ACKNOWLEDGMENTS

Infinite thanks are due to Professor Bernard Mulligan, my advisor
for his invaluable and patient guidance, and for his constant
encouragement when things looked not so good. I owe Dr. Louis G.
Arnold thanks for many helpful discussions and suggestions. In the x?
search routine the invaluable help given by Drs. William M. Wagner and
Robert S. Dixon of I& R Computer Center is gratefully acknowledged.

I thank Dr. Thomas Otto Krause for all the lively discussions we
had regarding nonlocal potentials. I am also grateful to a number of
past and present graduate students of Ohio State University for their
interest in my work, particularly to Thomas O. McCanney, Bruce D.
Metcalf and Dr. Thomas E. Shirley.

Finally I wish to express my gratitude to Mrs. Beth Burger for
carefully typing the manuscript, to Mrs. Elisabeth Clatterbuck for
helping me in typing the rough draft of the dissertation and Ms. Diane C.
Root for proofreading a few chapters and offering a few compliments for

my determination to go through the doctoral program !

ii



VITA

February 17, 1940. . . . . . . . . . Born - Mymensingh, Bangladesh

1970. . . . . . ¢ 4+ e+ ¢« + 4+ + +« + M.S.,Physics, The Ohio State
University, Columbus, Ohio

1967-1974 . . . . .. . . o o . .. Teaching Associate, Department

of Physics, The Ohio State
University, Columbus, Ohio

Publication
B. Bagchi and B. Mulligan, ""Analytic Solutions in Configuration Space

Representation for Scattering from a Class of Separable Nonlocal Potentials, "'
Physical Review C (to be published in July, 1974).

iii



TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS . . . . & . ¢ 4 ¢« v o o o o « e o o o ii
LIST OF FIG[IRESC L] . . L] . L) L L] L . . . L] - L L] L L L] Vi
Chapter
I. INTRODUCTION . . & v v ¢ ¢ ¢ o o ot o o o o o o 1
II. REGULAR SOLUTIONS FOR A CLASS OF
POTENTIALS . ¢ ¢ 4 ¢ v ¢ o e o o o o o o o o o o 12
1. The Method of Solution . .. . .. .. . . . . 15
2. Solutionfor £4=0 ., . . . . . v ¢ ¢ ¢ 4 4 e e o 17
3. Solution for Arbitrary 4 . . . . . . e e e 22
4. The Solution for the General Separable
Potential . . . . . . . ¢ ¢ v ¢ v v v v e o . 25
5. Summary . L] * . - L] L L] L] L L) . L] [ ] - L Ll L ] 32
II. IRREGULAR SOLUTIONS AND EQUIVALENT
LOCAL POTENTIALS . &+ ¢ ¢ ¢ ¢ ¢ o o o « v o o o s 34
1. Irregular and Jost Solutions . . . .. . . . . . 35
2. Equivalent Local Potentials. . .. . . .. . . 51
3' Sulrlmary' L] . L] L] . L] L] . L] L L . L] [ ] . L . L] 53

iv



TABLE OF CONTENTS (continued)

Page
IV. TMATRICES . + + « + v v v o e o oe e 55
1. T Matrix Calculations with a

Separable Nonlocal Potential . . . . . . . . 56

2. Expressions for Off-Shell T Matrices
for a Rank One Potential . . .. . .. . . . 60

3. Off-Shell T Matrices for Many-Term-
Separable Potentials . . . . .. . ... . . 68
4. Summary . . .. .. . 0 oo e o e e 0. 79
V. APPLICATIONS L] - . L] L] L] L] L . L] . a L] L] . L] L[] 81
1. Scattering Length and Effective Range . . . . 82
2. An Alternate Sy n-p Potential . . . .. . . 84
3. SUMMAYY « . .+ ¢ ¢ 4t 4 4 e s e e e e e .. 87
VI. CONCLUSION L L] L L] . L L L] * L] - . L] - L] L] . L] 88
APPENDIX . . &+ ¢ v « ¢ o o o o o o o o o oo o o o= 99
REFERENCES - L] L] . . L] L] L) - L] L] . L] - - * - [ . - L] 104



LIST OF FIGURES

Figure Page
1 "Son—pPhaseShifts.............. 91
2 The Fredholm Determinant A(k) . .. . . .. . 93
3 Zero Energy Wavefunctions . .. . . . . . .. 95

4 Nonlocal Potential withr=r'. . . . . . . . . 97

vi



CHAPTER I

INTRODUCTION

In most of the literature of physics the description of interacting
particleshas been formulated in terms of static, local potentials. However,
the most general potential that can be written is a nonlocal potential, such a
potential being the spatial representative of an arbitrary potential

operator. Consider the Schrodinger equation

(Ho - E) |[¥)=-V|¥)
Operating with the bra (? | and writing (_r. o) = \If(;) we get

B g2 +E)¥ (@) = [ (r|v|™) v @) ar
Cm )= e lviry vy ()

The kernel (T ||} [also often written V(.r'l;') ] of the integro-differential
Eq. (1) is called a nonlocal potential, as the potential energy of the system
at point T depends on the behaviour of the wavefunction at neighbouring
points T',

If we put (;I VI-;') = 6(;—;') V(-;), Eq. (1) reduces to

ha . - - -
(Tm Al E) Ur) =V(r) ¥ (x)



which is the usual Schriodinger equation with a local potential V(;). Thus

the local potential V(;) that is generally used is nothing but a special case

(1
of a nonlocal potential, )

Nonlocality of a potential in configuration space is equivalent to its
dependence on the average momentum and, as such, nonlocal potentials

are also called momentum (or velocity) dependent potentials. This

dependence has been shown by Mu]ligan(z) and Hoshikazi and Machlda( .)

We will discuss this using a simpler method, due to Tamagaki and

(4
Watari -) In terms of Fourier transforms we can write

-—p - —;'

(r|vir" = \21r) [ GIvipn T

1)3 ip-r
2n J ©

Rewriting Eq.(2) with variables

) dp dp (2)

where we have used (?l;} =

P = (p - p') (momentum transfer) and

-

Q= (; + ;')/2 (average momentum) and

~ remembering that the Jacobian is unity, we have

(tlv|TY ( )_j”jv@,b') el[Q (F-r')+P- (247 /2] dP doy

where v(P,Q = {p|vip"



If V(—I;, Q) is independent of 6 , namely a function of the momentum

transfer -15 only, i.e., if

V(P) = V(P,Q), then
- = - - 3 -t '—., - _.' 2 —
Gl = o@-0) (3 [ v T2 g

= §(r-1") V(¥)

- - 3 - % -
where V(r) = len_) J’V(p) eIP T ap

This means that 5 (average momentum) dependence of V(i-’.,a) causes
nonlocality in configuration space.

Interest in calculations involving nonlocal potentials is of very recent
origin, in spite of their being the more general spatial representation of
the arbitrary potential operator V. The reason probably is the success of
local potentials such as the Coulomb potential in many diverse quantum
mechanical calculations. Also, it seems that one can 'visualize ' a local
potential such as a square well potential, whereas the nonlocal potential
may seem to be 'unphysical'. However, the importance of nonlocal

5
potentials was realized as early as 1937 by Wheeler(.)

6
was done till 1941, when Buckingham and Massey ( )used a nonlocal

Not much work

potential to explain the data on neutron-deuteron scattering. Almost

another thirteen years passed before further work was published. In 1954



(M

a pair of articles was published by Yamaguchi to show the usefulness
of a nonlocal separable potential in fitting nucleon-nucleon (N-N) scattering
data.

Again there was almost no work done in this field until 1958, when
Feshbach (B)demonstrated that the nucleon- nucleus optical model-potential was
in fact, nonlocal. The success of local optical models in fitting nuclear
data suggested further work in understanding the effect of the nonlocality.
Pioneering work in investigating the relationship between local and

9
nonlocal potentials was done by Perey and Buck (1962)( ) and B. Mulligan

2 . . (10) . (11)
(1964) . Ghirardi and Rimini (1964) and F. Tabakin (1964)
investigated other aspects of the use of nonlocal potentials. Still, the

(12
attention was so limited that in 1965 W. H. Nichols,Jr. \?vrote in an
article, ' the separable nonlocal potential in quantum mechanics has been
used little in either research or teaching since it seems so unphysical".
But it was soon realized that a nonlocal potential can be used in many
problems where it is reasonable to use a local potential and, in some
instances, it is more convenient to use a nonlocal potential. In fact, after
13) (14) (15) .

the work of Faddeev, Lovelace , and Mitra on many particle
scattering theory, where it was shown that a separable nonlocal potential

reduces the many particle calculations to the level of two particle

calculations, flurries of activities started in this field. Work on the



5

analytic properties of the radial Schrodinger equation for a nonlocal
potentia1(16) now roughly parallels the earlier studies of the analytic
properties of the radial Schrédinger equation for a local potential (-1 "

A nonlocal potential with no conditions attached to it except that it
be Hermitian (to impose that energy eigenvalues be real) is mathematically
extremely difficult to handle. The case is much simpler if the nonlocal
potential is separable. The term separable indicates the fact that the
interaction, which is assumed to be Hermitian, is characterized by
structural features that allow it to be factored in a particular way. The
interaction V(;ll—‘.') =X v(;) v*(x—"') is called a simple separable potential
or a one-term or rank one separable nonlocal interaction. The most

general nonlocal separable interaction, written in the operator

formalism, is

N
V= ZM 3 [va vy |
£35=1

In practice V(;|1-:.') is taken to be real, and the condition of Hermiticity
follows once the individual terms are taken to be symmetric.

Since the publication of the classic papers by Yamaguchi M a
number of separable potential models ) have been proposed for the
N-N interaction. These modhels came into the picture because of the basic
assumption of current nuclear many-body theory that properties of nuclei

such as level ‘spectra and saturation of energy and density can be derived

from a suitable N-N interaction. Since a local or 'static' potential requires
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26
a hard core (26) in order to fit high energy data, and a hard core is a

computational stumbling block, it is no wonder that many varieties of
separable potentials have been used. Because the nucleon-nucleon phase
shift data requires repulsion for very small distances and attraction for
larger distances, almost all separable models use a rank two separable
potential. The Yamaguchi potential, being of rank one, can fit the
experimental data only at low energies. Out of all published separable
potentials the only one-term potential which shows the change of sign of the
phase shift characteristic of a local potential with a repulsive core coupled
with a short-range attraction is that of Tabakin.(zo) The form factor for this
potential, however, is very complicated. The failure to get any polarization

(27

effect from the Yamaguchi potential with a tensor term’ “further suggests
a reason for looking for a realistic potential among rank two or more
separable potentials. In passing, it may be mentioned that Mongan (21)
has done the most extensive separable potential fits to two-nucleon data
and in doing so he has used four types (Case I-IV) of two-term separable
potential models.

Most of the fitting with separable potentials has been done first by
assuming a reasonable potential (as was done by Yamaguchi) and then
adjusting the parameters to fit the required data. However, many
theoretical investigations have been carried out on the inverse problem,

i.e., the problem of finding a potential, expressible as a sum of a finite



number of separable terms, to fit certain characteristics such as phase
shifts at all energies or the off-shell T matrices. Chadan(zs), Mills

(29), Tabakin(so), and Fiedeldey(31) have all approached the

and Reading
problem of phase shift fitting. Ernst, Shakin and Thaler(32) have
presented a method which permits the construction of a rank-N separable
potential which has the property that the resulting T matrix is exact
both on the energy shell and half off the energy shell at N selected bound
states and for continuum energies. They have applied the method
to find a separable potential equivalent to a local square well potential.
Even before extensive fitting was done with nonlocal potentials, it
was clear that certain properties of nonlocal potentials would be different
from those of local potentials. After the publication of the Perey-~-Buck
paper(g), Austern(33) found that eigenfunctions of the attractive nonlocal
single particle Perey-Buck potential are always smaller inside the region
of the potential than outside, with the inverse occuring for a repulsive
potential of the same form. This is the so-called Perey effect. The Perey
effect has been the subject of several recent papers.(34_39)
Later on other phenomena such as continuum bound states (CBS)
and confusion about what constitutes an attractive or repulsive separable
potential have required a development of methods involving a comparison

between characteristics of separable potentials and the more familiar

phenomenology of local potentials. At first, usual practice with regard to



the nucleon-nucleon interaction was to restrict the comparison to such
features as the phase shifts or T matrix elements. But following
Fiedeldey(40) , Coz, Arnold and l\fIacKella.l(4 b were able to define precisely
an equivalent local potential (ELP) and show that a unique potential and
solutions to an equivalent local equation can be obtained once two
independent solutions of the nonlocal equation are known., dJost solutions(42)
have become very prominent in this type of analysis. In fact, Arnold and
MacKella§'43) have pointed out that the difference between a local and a
ntMﬁ&.li‘il},%éii)tial lies in the behaviour of the Wronskian of the two Jost
solutions. This Wronskian is a constant for a local potential but is not
constant for a nonlocal potential. Jost solutions are normalized so that
the local potential Wronskian is everywhere unity, whereas the nonlocal
potential Wronskian is found to approach unity at infinity. Thus deviation
of the Wronskian from unity can be taken(43) to be a measure of the non-
locality of a potential as a function of k and r.

In analyzing the ELP , Arnold and MacKellar also pointed out that
a 'spurious' state exists for a nonlocal potential at energies where the
Fredholm determinant goes to zero. It had already been shown by Gourdin

(44) that one feature of the separable nonlocal potential is the

and Martin
possibility of wavefunctions in its spectrum which exist at positive
energies yet behave asymptotically like bound states. These states have

been labelled as positive energy bound states, positive energy degenerate



states, spurious bound states or simply continuum bound states (CBS).

A CBS will always be characterized by a zero of the Fredholm determinant,
but the spurious states shown by Arnold and Mackellar may also occur at
energies other than those at which a CBS is found. By combining the
Fredholm determinant technique with the ELP  analysis these authors
have also been able to show that both kinds of 'spurious' behaviour are
characteristics only of nonlocal potentials. Chadan(zs) , while considering
the inverse problem with a sum of separable potential plus a local potential,
had noted that his local potential alone would not produce CBS. Work in
this regard has been recently done by Krause and Mulligan(4.5) Using a
Green's function method they have shown that the presence of CBS is
characteristic only of a nonlocal potential and arises when the Green's
function is cancelled by the separable potential,

It is now generally accepted on the basis of theoretical arguments
that the interaction between two nucleons is nonlocal(46). Since the two-
particle interaction is unknown, in recent years a number of separable
models(18 ~29) have been used to fit the two nucleon data. These models are
attractive because of the simplicity and ease they bring to the calculations,
over and above their reasonably good fitting of the data. The two nucleon
data is in principle inadequate to enable us to deduce a unique nucleon-

nucleon potential, and each of these potential models implies a rather

arbitrary off-shell extension of the two body scattering amplitude.
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Unfortunately, however, there is practically no experimental data available
on the off-shell T matrix elements. But Faddeev has shown that equations
for three body scattering may be obtained in which the only input is the off-
energy-shell T matrices for scattering of each of the three possible pairs
of particles. It is, therefore, clear that to reduce the ambiguity in the
two nucleon potential one must test it in three particle problem, in nuclear
matter, and in general in nuclear structure calculations. Several separable
potential models with a Yamaguchi form factor have already been used in
finding the triton binding energy and in neutron-deuteron scattering(4.7)
Calculations with the triton have the advantage that they avoidl Coulomb
effects. It has been found (48) that triton binding energy is very sensitive to
the parameters of the two nucleon separable potential.

Mitra has shown that quantum mechanical motion of three non-

relativistic particles interacting via separable potentials can be reduced
to a form not more complicated that that of the two body problem(4.8) But
since the three body calculations require two body off-shell T matrices,
computationally the problem is still very difficult to solve. In the case of
a separable potential, off-shell T matrices can be computed from the
expressions given by Tabakin(l.1 ) These expressions have_ been widely used
even though they require the solution of a number of contour integrals. In

the case of the Yamaguchi form factor these contour integrals can be

handled quite easily; probably that is why the Yamaguchi form factor has been
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used widely. These form factors, however, give a triton binding energy
higher than the experimental value.

In short, looking at the situation of the two nucleon separable
potential we see that what we need is a number of realistic separable
potentials with a wide class of form factors which can be easily used in
three or many particle calculations. This implies the desirability of a
simple technique to get the off-shell T matrices. In this dissertation we
take a reasonable class of nonlocal separable potentials of rank N (the
Yamaguchi and Mongan case IV potentials are special cases of this class)
and find analytic solutions in compact form in configuration space. We
also obtain the irregular solutions and Jost solutions to determine
analytic expressions for the equivalent local potentials. Next we find
the off-shell T matrices for this class of potentials in a compact form
which avoids contour integration, In so doing we hope these form factors

can be easily applied in future many~particle calculations.



CHAPTER II
REGULAR SOLUTIONS FOR A CLASS OF POTENTIALS

In this chapter we consider a particular class of separable nonlocal
potentials and demonstrate a technique by which analytic solutions for

the wave functions in the coordinate representation can be found for all

partial waves. Although the formalism which we shall present here refers

to spinless particles and a spin-independent interaction, it is a simple
matter to extend the technique to coupled channel calculation for which
the coupling term is of exponential form.

The Schrodinger equation for a nonlocal potential in center of

mass coordinates has been given as Eq.(1), and is

_ﬁf__ 2 b g - L —'.' —.‘ d-"
2 o w(® + Eg@ = (T|V|P) ¢ (@) &F @

in an obvious notation. To expedite the solution of Eq. (3), y(T) and (?‘V‘i“)

(assumed to be rotationally invariant) are normally expanded in terms of

partial waves: L2 ou(n
JAT) =>: —L——r P{, (cos pg)
2=0
- - - e g (rlr') %*
ElvlEy =y ) A Y, 0.0 Y, ©.9)
4=0 m=-¢

12
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Substituting these expressions into Eq.(3) gives the nonlocal Schroedinger

equation for each partial wave {

d? 141 _2m e
[‘d—x; +k® -A;:—L] v, () =73 c,)]‘g‘l(rlr)uL(r)dr 4)

2m
where k2 = s E

The class of potentials gL(rI r') for which we are able to obtain exact

analytic solutions is defined by
<o (@) n K J

- B2 v v & Y
g, (lr) = 5 Ze cry ¥ T T A

Y )P (' 5
AR e (5)

where the Avgi are constants;the n are, for simplicity, takentobe integers
14
and PY(r) is an arbitrary polynomial in r of order i. That is
i

P(r) = 5 b (6)
i J=0 j

Note that the potential of Eq.(5) will be Hermitian only if Avngvig andX =J .
The solution to the potential given in Eq. (5) can be constructed by taking
advantage of the linear nature of the integro-differential equation, Eq. (4).
This allows us to base our discussion on a solution of Eq. (4) for which

g (r|r') assumes the simple separable form
ha
g, (rlr) = 53—\ a(r) a@r) (M)
with

q(r) =Ae T (8)



For convenience, the subscript £ has been suppressed on both )
and gq(r).
For a potential of the form given by Eq.(7), Eq.(4) can be

written as
dz P
[_dﬂxhé +k? —i%;—l)-] uL(r) = a(r) "[‘ q(r?) u&(r') dr'.
0

For later purposes, it is also convenient to introduce the constant C,
defined by

«©

[ q(r") u (r') dr' =C.

5 2
Thus we see that the basic equation to be solved for a given partial
wave is

& 2(4+1

subject to the condition (10).

Equation (11) has been treated by several investigators in several

(49)

different ways. In particular, Cassola and Koshel
have shown that the use of Green's function allows one to write down

explicit expressions for the phase shifts and wave functions forany 4,

and Moiseiwitsch

14

®)

(10)

(11)

(50)

for an arbitrary potential function q(r). While these expressions are of

use for numerical calculations, they lead to analytic results for wave-

functions and phase shifts only if the necessary integrals can be performed.
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1. The Method of Solution

The structure of Eq. (11) differs significantly, depending upon
whether n > { or n <{. Comparison with Schroedinger equations for non-
singular local potentials shows that the case n > 4 will correspond most
closely to results which might be expected from calculations with a local
potential. The conclusions presented in this chapter are thus restricted
to values of n = ¢.

The potential function of Eq.(8) was discussed as early as 1941

6
©) who obtained explicit solutions of Eq. (9)

by Buckingham and Massey,
in the case ¢ = 0. Hussain and Ali(sl) have suggested a simplification of
the method of Cassola and Koshel, and have recalculated Buckingham
and Massey's results as an example of the use of their procedure.
Neither group of investigators, however, has attempted the analytic
solution of Eq(9) for arbitrary 4.

The technique which we have found useful in obtaining solutions of
Eq. (9) with the potential function (8), and which can be used to obtain
exact analytic solutions for the potential (5), is that of introducing into
(9) for uL(r) the product e-ozl' times a power series in r.‘ We are able to

find the solution in terms of this series, and then, in turn, are able to

sum the series to put the solution into a compact form.
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For the potential function (8), Eq.(9) becomes

2
[ gra + k2 -—ﬁi—’;—l—)-] u, (@) = De ™ " (12)

where D = ) CA. Equation (12) is basically an inhomogeneous spherical
Bessel equation, but subject to the subsidiary condition (10) which
assures the homogeneity of the original integro-differential equation.

Inserting into Eq. (12) a solution of the form

+ (=3
uL(r) =De ™ " 2 T a ™ ) (13)
m
m=0
we find the following recurrence relation for the coefficients a.

0 = 2¢g/(m+n+1) a _ o® +k® a
m (m+n+2+g)(m+n+l-4) m-1 (m+n+2+L)(m+n+l-f) m-2

(14)

The homogeneity of the integro-differential equation imposes the additional

conditions that

_ 1
%o T (n+2+g)(n+1-1) (19)
- _(2ntd) o (16)

1T 3ty miz-y ¥
| In order to find an expression for a, consistent with conditions
(15) and (16), it is necessary to treat Eq. (14) by difference equation
techniques, The general solution to a second order difference equation
contains two arbitrary constants. The two arbitrary constants which

appear in the general solution of Eq. (14) can be evaluated so as to give
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for a, and a, the values demanded in (15) and (16). There is no general
procedure for solving a second order difference equation with variable
coefficients [ see, for example, Ref. (52)]. The case of ¢ = 0, however,
is fairly simple, and since it suggests the difficulties to be overcome for
4 £0, we present it in the following section as a separate case.

In passing, we point out that in an earlier paper Luke(53) has
solved an equation similar to Eq. (12). However, in his case, the operator
appearing on the left-hand side was that of a modified Bessel equation,
and resulted in a two term recurrence relation (a first order difference

equation) which could be solved by standard techniques.

2. Solution for 40

The case f = 0 is simple because under this condition Eq. (14) can
be converted into an equation with constant coefficients by using the
substitution

bm
= Tt l (17

m " (mintg)!

The difference equation for bm is

- 2 2 -
b -2ab _+@® +kb__ =0 (18)
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Using the standard technique for solving a difference equation with constant

(54)

coefficients, ' we get
.y, T a1, 1
bm =C, (atik) + C; (a-ik) (19)

Equation (12) contains only real terms and it is the real solution
to this equation which we wish to obtain. This can bé accomplished by
the usual proper choice of the constants C, and C, in terms of real
constants F and G. The general real expression for a can be put into

the form

m+n+2
- iaz +k=2 ) .
a (minv2) | [F cos(m+n+2) §+G sin(m+n+2) g ] (20)
where
k
@ = arctan ; (21

The constants F and G determined from Eqgs. (15) and (16) are:

n! sin(n+1) g
ntl

2

ki@?® +k?)

F=- (223)

n! cos (n+l) g
n+l

2
k(a® +k3)

G= (22b)
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Equation (20) for a then reduces to

n!(?® +k3)%(m+1)

m  k(m+nt+2)! sin(m+1) 6 (23)
and we have
-n-2 __2_m+n+2 m+n+2
n!'r o (p2+k?) sinim+1)gr
2_5 m n+tl “~ (m+n+2) !
m=0 7 ™0
kia® +k? )
(24)

The series in Eq. (24) can be evaluated by replacing sin(m+1) g in

i(m+n+2) g -i(n+1) g

Eq.(24) by e , summing, multiplying by e , and taking
+
the imaginary part., Multiplying by De-O‘rrn 2, we get as a particular

solution uoP (r) the result

T n, .. .58/
uop(r) = AiDe 1 {earsin[kr-(n+l)9]+ Zia—LSl:—L—rssin(ml—s)e}
- s=0 )
2
ki® +k?)

(25)
The general solution of Eq. (12) is the particular solution uc}) (r) plus
the general solution of the homogeneous part, namely M sin kr + N cos kr.
In specifying M and N we make use of two conditions which the wave function
Uy (r) must satisfy. The first is that u, (r) be zero at r = 0. Since the
particular solution uQP(r) is zero at r = 0, we must choose N = 0. The

second condition will determine the normalization of uj (r). In this chapter
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we have followed the convention standard in the discussion of Jost

solutions,(55) and normalized the regular solution u, (r) to unit slope at
the origin. This requires that M = 1/k. The reader should note that
this choice for M results in wave functions which are not normalized to
§(k-k")/k2, another standard normalization.

With the boundary conditions specified above we find that

_ sin kr+ Dn! cos(ntl) g _ Dn! sin(ntl) g

o, (2) 2 sl in kr il cos kr

9 2

kig® + k?) klo® + k%)
o z
1 n 2 +k®
s BBE 5 @ KD P gin iy o, (26)
5 s=0 s !
k(a2 + k2)

The constant D can be evaluated by substituting expression (26) for

v, (r) into Eq. (10), We get

D= A A%n! sin(n+1) g

n+l (27a)
2
kA@® + k?)
where
8
A A% n! n 2122 .
=1-—— (n+s) (e +k®)" sin(n+1-s) g
A L T ———e . (27b)

2 s=0
k(az +k2) s! 2x)
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It is interesting to note that A is the same as the Fredholm determinant
appropriate to this potential, which has been discussed extensively
elsewhere.(43) In particular, the zeros of A (k) are known to correspond
to so-called spurious solutions of Eq.(12). The solution of Eq. (12)

| giveru‘n Eq. (26) is not valid g‘zy the energies for which A (k) = 0.

The phase shift §, also follows from Eq. (12) once D is known,

with tan s, given by

n! D sin (n+l) g
ntl
2
(@?+k®) +n! D cos (n+1) @

tan.50= -

AA®(nhH2 sin® (n+l) 8

n+s+1

n 2 2
kie? )™ L 2 [ Bl singansg)g -p SLECHC)

=0 s1eaq

sin(n+1—s)9:|

(28)

For the case 3=1, n =1, A =), the phase shift 5, given by Eq. (28) agrees

with that presented in Mott and Massey.(56)
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3. Solution for Arbitrary 4

For £ > 0, the difference equation (14) cannot be solved by
standard procedures. To find the general expression for a to which
we can apply conditions (15) and (16), we multiply Eq. (14) by r and
sum over m. We find that the function

&

m

y=% amr (29)
m=0

satisfies the differential equation

r2y" +[(2n+4)r-201° J y'+ [(n°+3n+2-4-2%)
~20(n+2) T+g2 +k?) r2 ]y = 0 (30)

The general solution of Eq. (30) is

yir) =¥ r " e, , (kr)+C b (kr) ] (31)

where

L : -
(kr) =1 (kr)“1 ikr Eo ﬁ))"— (-2ikr) 8 (32)

Expanding y(r) in a power series in r gives as the general solution for am

o L+ oS Ja+ik)m+n+s+2
T 1 ( ‘) SZ sl(L- s)v (-21k) (m+n+s+2) |
-r,+1 1 (L+s) ! -8 (a_ik)m+n+s+2
+C, ik) . (33)
sli(t-s)! (m+n+s+2)

s=0



The constants C, and C, can be so chosen as to put this solution

into a real form. We get

m+s+n+2
a = z{l B o® +k?) { F cos[(m+s+n+2) g +(s-4,~1) /2]
m ‘.S (m+s+n+2) 9 U

s=0
+G sin[(m+s+n+2) g +(s-4-1)q/2] }
where

B = (4+s)!
s  s!(4-s)!(2k)°

and g is as defined in Eq. (23).

The choices for F and G are fixed by Eqs. (15) and (16), and are

_ 1 4 )
B ni-g) (2t s [sin {(s+n+3) g+ (s~t-1) /2]

_ (2n+4) (s+n+3)
(n+2-1) (n+3+4)

cos @ sin {(s+n+2) g + (s-1-1) g/21]

- 1 L (2n+4)(s+n+3)
T xern@ez) I Pslasa-ymese ©05 8 008 {52 6

+ (s-4-1)n/2} - cos {(s+n+3) 6 + (s-1-1) 11'/2}]

where 5n+3d
£ - s laPek?) 2
s s!(4-8)1(stn+3) 1(2k)S
and 2ntsHthS
x =£ 2!_‘,’ (Lrs) 14t o +k?) 2 sin{(t-s+1)g + (t-5) 1/2}

8=0 t=0 s!(L-s)! t1(L-t) 1(2k) s+t (s+n+2) 1(t+n+3) !

23

(39)

(39)

(36)

(37)

(38)

(39)
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o m
The series 3 a r can be easily evaluated in the same way as
m=0
in the { = 0 case. As a particular solution u (r) we get the result

ui(r) = F D krj L(kr) + G D krn (kr)

pe & TET e g B

0 t=0 t1s!(4-s) ! (2k)S [ Fcos{(tg+(s-L-1)n/2}
s= = ] !

+ G sin {tg +(s-4-1) ¢/2} (40)

Adding the general homogeneous solution and applying the appropriate
(8)

boundary conditions' ’ gives

u (r) (—)—— ker(kr) + F D kr j-{,(k4) +GD krnL(lqr)

k
r 4 nstl (pig 1052 +k?) t/2_t-s
De® ¥ { t';'& S)!(zk)sr [Fcos{tg+(s-4-1) 7/2}

s=0 t=0
+ G sin{tg+(s-£-1) #/2}]. (41
The constant D can be evaluated by substituting expression (41) for u L(r)

into Eq.(10). We get

s-n-1
2
D =) A® (?;{%!—!SPOB (n-s) (g% +k?) cos{(n-s+1)g+(s-L-1) 1/2}/A
(42a)
where g-n-1
L
A1) A% ¥ Bs(n-s) 12 +k?) 2 [G sin{(n-s+1)g+(s-L-1)q/2}
s=0
+Feos{(n-s+1)g+(s-L-1) 5/2}]
4 stn+l Bs(n-}-t S) l(a2+k2 t/2
A2 ¢ I nitcsr1 — LFcos{tg+(s-L-1) n/2}
s=0 t=0
t1(20)
+G sin{t@+(s-4-1) 7/2}] (42b)

and Bg is given by Eq. (35).
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Also, once D is known, we can write
tan5L—-GD/[—(—'Llll—+FD] (43)

where F and G are given by Eqs. (36) and (37) and D by Eq. (42a). It can
easily be shown that the equations for arbitrary £ reduce to those given

in the previous section for £ = 0.

Several types of numerical calculations were performed to check the
equations of this and the previous section for algebraic errors. First, ;=0
phase shifts were calculated independently and compared with those from
Edg.(28). Next, numerical values of a given by Eq.(34) were shown to
satisfy Eq.(14). Finally, phase shifts for 4 and n from 0 to 4 were obtained

by numerical integration of Eq.(12) and were found to agree with those
given by Eq. (43).

4. The Solution for the General Separable Potential

Before presenting the solution for the general potential given by
Eq. (5), we will discuss two less complicated examples. These examples
are of interest in that they give additional insight into the formulation of
the solution with the general potential, and will be discu'ssed in the next
section, which deals with the inversion problem. We consider first a
potential of the form of Eq. (5) for which ¢ is fixed (no summation over ).

That is, we consider the potential

o T +T')

(rr') z . P(r) P (r"y . (44)

g, (r|r) =—
v i=0
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For this potential, the differential equation for the radial function uL(r)

becomes
L - S 4 (A2 I - 1) ptd o (W) -or 1+
where
Clin) = T‘ e—arrmk uL(r) dr (46)
)

As mentioned earlier, because of the linearity of the nonlocal
Schroedinger equation, we can immediately write a particular solution of

Eq. (45) as

P i i DD M | ), . (n)
u, (r) 1:80 JEO kzO A tg k Ck [Fj kr j L(kr) + Gj kr n L(kr)

o OF g P*;“"J*l (L+p) Ho2+k®) V2 ap {5
p=0 q=0 plit-plalek® ¢

+G§n) si.n[qe +(p4-1) ’21] }] (47

where F(n) and G§n) are given by the expressions for F and G as defined

J
in Egs. (36) and (37) but with n replaced by n + j. Adding the general

)cos[qe+(p-l, 1) 2 J

homogeneous solution and applying the same boundary conditions as before,

we get as the solution for Eq. (45)
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_ @2t J i B, O, | (n), .
u& A1 ~kr j (k) +1—}%) Jzo kzoxlb] b "Cy [1“]. kx JL(kI‘)

-or é ngjH @+p) Ho® +k‘°')q/ 2 3-p

+G(n)kr nL(kr) -e
p=0 gq=0 pla! (4-p) ! (2k) P

j

(m) il (n) _. TN
F +{p—4— + + (p-4-1 » 48
X{j cos[qe (le)z:lGj sm[qF) (p-¢ )2]; (48)
The function uL(r) given by Eq.(48) is completely determined once

the constants Cén) are known. To obtain Clin) , Eq.(48) for uL(r) can be

substituted back into Eq. (46), and the order of summation rearranged to
give an easily solvable expression of the form

e ) (n) () 49
Co, jEORJC] +U (49)

where

RO__J L 0 PRkl g 1020y minta
m] 4 ij k Do, A+ HQ-p+1
i=j k=0 p=0 gq=0 p!q!(L-p) 1(2k)"(20)

v {F{{n) cosl:qe+(p-{,—l) g]—*Gf(n) sm[qe+(p-l,—1) g']

)—-!2= (m+n-t+1)

42, (L+t) 1(m+n-t) ! (@2 +k=
t=0 ti(4-t) !(2k)t

x {Fio cos| men-t+1) g+ (t-4-1) T | +G{sinf (men-t+1) g+t -1 |}

(50)
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and

-3 (m+n-t+1)

(n) _ 24+ 1 1 (4+t) 1(m+n-t) 1 (2 +k?)
Um = 41 = T
k t=0 t1(4-) 1(2K)

X cos[(m+n-t+1) 6+ (t-¢4- 1) I -l (51

The phase shift g L can be determined immediately from Eq.(48), and is

J i i
(1) (1) (n) (n)
Eo ?‘ 23 "11 B C j
L 22+ 11 +§ é }1: Ab(l)b(l) (n) (n)
K1 iS0j0k=0 13 K %7

As expected, Egs. (48) and (52) reduce to Eqs.(41) and (43) for J=0
and b = A.

The second example which we will consider is the potential given
by Eq.(5) with the summation over y retained, but without polynomial
terms Pli'(r); that is

g (r,r") = -ﬁ—- z A e-aV( (rr')nV . (563)

For this potential, Eq. (4) reduces to

[+ - 280y - e T Y ¢V (54)

where

c’ = J‘e-aurrnv u,(r) dr . (55)
S 4
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The solution is

u{’(r) A2 R kr j{‘(kr) +3 AVcY F'kr j L(kr) +GYkrn L(kr)
14

ku—l
L Dytstl 12 412 t/2 t-s
e R % (Ars) HoP+ )S r {Fvcosg.tg +(s-.g,-1)g-]
s=0 t-0 t!1s1(L-s) 1(2k) LV
+ GYsin [tg Hs-4-1 T (56)
v ZJJ

where F¥ and GY are given by Egs. (36) and (37) with n replaced by n and
v

with g = arctan X .
v o,

As before, it is necessary to specify the constants C in terms of
v

an equation involving known quantities. We get
1 1
/=5 gW ¥+ (57)
vl

where

-4 (n,-t+1
£=0 £1(4-t) 1(2KS

ol - -1 I+ s - ooy 1Y
x[ cos{nv t+1) 9v+(t 4-1) 9 }+G sm{(nv t+1) 9v+(t £4-1) 9 ;]
n+stl  (L+s)l(n +t-s) (0P +k2)t/2
‘L V' y'

- E E 1 -
s=0 t=0 ¢ !s!(L-s)!(2k)s(au+av,)nv+t stl

% [FV 'cos {tev,+(s—4,—1) 121} + Gv'sin{tev,+(s-t-1) g}] (58)
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and

o eenr b i ey 20D
kP =0 t1(L-t) 1(2k)°"

X cos[(nv-t+1) 9v+(t-.¢,—1) g ] . (59)

The phase shift is given by

4
tan §, = - . (60)
£ (2&+1)!!+2Aucvfu

K 4+1 v

The wave function and phase shift appropriate to the general potential
given by Eq. (5) combine aspects of both of these examples. The final

results are

u(r) u'Jr—l)'—'kr_j (kr)+ 3 I EU Z‘ A b(g V)b(l U)CV

kt* } g0 ic0m=0jc0 B M J
r 4 ptn,m+l (L+D)'(az2 +k?) /2 1P
ol T 3, (kr)+Gv kr n, (kr) e W 5 %’
p=0 q=0 pla!L-p) 1(2k)P
X {FU cosrqe +(p-4-1) ﬂ'-l"*Gv sin l:qev"'(p%‘l) g' ]} (61)
and
K 8) :
v v 8 1
b)) §0 §0 E_O ; A lb(lgn V)b(l’U) cV P:;
tan 6, v £70 70 m=0 j°0 € J ) . (62)
K J
+1) 11 g i ,
@l ¥ ¥ 5 p Ap% VWY 6¥
k vy =0 i=0 m=0 j=0
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where F':n and G:n are given by Egs.(36) and (37) with n replaced by n +m
14

and ¢ replaced by ¢ ..
v

The unknown ij 's can be found from the condition

W ow
c/=x ¥ RS c, +uVY (63)
) p' §'=0 J

L+t !(ny+j—t) !
t1(L-t) 1(2k)t

J Ky
' V'S

V' b(g’b") b(i’v')
i’ i=j g=0 J

T A =
m=0 gl m t=0

1 <
2 2,2yt r )t e L L, B0
x (o tk<) JLFJIJHCOSL(_nJ'J t+1)ev+(t 4-1) 2_]

v L en X
+ Gm sin énlj—] t+1)9u+(t 4-1) 5 :lj.

¢ Pl (Rl e e, 2yl
-% % —
p=0 g=0 uzp!u-m!(2k>p(av+av.)“v+’+q pri

' il ! .
x{ F’I/ncos [qevﬁ(p—l,—l) E ] + G:l sml:qev F(p-1-1) g' ]} (64)

and
4 (L+t)!(ny +j-t) (o3 +ka)—%(nu+j—t+1)
v

W = 24+ 1!
J

kP o t4-t) 1 (2K

% COS [(nv—t+1) 6, +t-4-1) '21:] : (65)
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5. Summary

The method presénted in this chapter is closely related to those
standardly employed in the solutions for wavefunctions and phase shifts
for the scattering of particles by a local potential. To obtain an analytic
solution for a local potential, one also normally expands the solution in
a power series about the origin which results in a difference equation
involving the coefficients of the power series. Because in the case of a

local potential the difference equation is homogeneous, the regular solution

follows directly from consideration of the indicial equation.

We have shown that in the case of a large class of separable nonlocal
potentials a similar techniqe can be employed. Consideration of the
indicial equation must be replaced by the task of obtaining the two
independent solutions of the difference equation . The condition of
homogeneity of the original integro-differential equation can then be
imposed upon these solutions. The solutions presented here for the class
of potentials under study are particularly simple, and could be so
rearranged that the series expansion was identified as a combination of
trigonometric functions.

The results which we have obtained provide an opportunity for

calculations with the class of potentials discussed which totally avoid the
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necessity of numerical integration of the integro-differential equation.
This is particularly important, since numerical integration of an integro-
differential equation requires complicated matrix methods or time
consuming iterations. In the case of local potential the equation is
differential in character, and numerical integration techniques present
much less difficulty than in the case of a nonlocal potential. Although
matrices appear in the expressions presented here, they can be handled
in a trivial way. For the potentials we have considered the
wavefunctions and phase shifts are in each case given in closed form by
a single expression. For the single-term potential for the 4=0 case,

the wavefunction and phase shift are given by Eqs. (26) and (28)
respectively. The corresponding equatiors for the wavefunction and phase
shift for arbitrary £ are Egs. (41) and (43). For the most general many-
term potential given by Eq.(5), the wavefunction for arbitrary 4 is given
by Eq. (61), and the phase shift by Eq.(62). The only unknowns which
appear in the expressions for the wavefunction and phase shift are the
elements of the matrix €. The matrix C will be of dimension equal to
the number of terms employed in the potential and thus will usually be
easgy to invert. In dealing with a particular problem, one may wish to
invert the matrix directly. If not, the matrix inversion involved is
available as a standard subroutine package for any computer, such as

GELG(R, A, M, N, EPS, IER) from the IBM library.



CHAPTER I

IRREGULAR SOLUTIONS AND EQUIVALENT LOCAL POTENTIALS

To develop a better understanding of nonlocal interactions it is
logical that a comparison be made between the characteristics of nonlocal
potentials and the more familiar phenomenology of local potentials.
However, only recently have successful attempts been made to relate
the nonlocal interaction to its 'equivalent' local form in coordinate space.
It has been shown by Coz, Arnold and MacKellagu) that a unique
potential and solutions to an equivalent local equation can be obtained once
two independent solutions of the nonlocal equation are known. The above
authors used two independent Jost solutions to get an unique equivalent
local potential (ELP) from a nonlocal potential. Instead of Jost solutions,
the regular and irregular solutions can also be used to formulate the
ELP. However, it is customary to find the irregular solution in terms
of the Jost solution and Jost function, as it is more difficult to get the
irregular solution from the boundary conditions. In this chapter, using

the techniques developed in Chapter II, we will derive the irregular

34
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solution and Jost solutions from the boundary conditions. Then closely
following Coz, Arnold and MacKellai"‘u) we will obtain compact expressions
for ELP for the class of separable nonlocal potentials for which we have

been able to get exact solutions for the scattering wavefunctions.

1. Irregular and Jost Solutions

In this section we will obtain the irregular and Jost solutions in a
number of steps, as was done in the previous chapter for regular
solutions. First, we will consider the one term separable potential for
the case £=0, and then extend the discussion to arbitrary 4 . Next the
more general case of the many term separable potential will be treated
in three steps.

Case a: Solutions for the one-term separable potential for £=0:

Let us consider the case of the single term separable potential

given by Eqgs.(7) and (8), that is,

g(r|r") =xq(r)q(r)
with

q(r) = A e ¢,
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The regular solution for this potential is given by Eq. (26), which

asymptotically reduces to the following form,

() 752 Z sin (kr+g) (66)
where
2 . 3
- [rl, Dnlcos(n+l) ~°  , Dnlsinn+l) g ~°13%
2= [ i) " nei) @0
k® +k°)” Kig+k? )
. «__ Dnlsin(n+l) g
sin 6= ¥E) y/ (68a)
kg® + k®) 2
n+l
2
_ (®+k®) = + Dn! cos (n+l) g
cos § ol z, (68b)
2

k(g® + k%)
and D is evaluated from Egs. (27a) and (27b).
The irregular solution does not go to zero at the origin, and is normally

chosen(,17) so that it behaves asymptotically as

1
8o (Y) 752 ~ [z ©°5 (kr+g) (69)

The choice of normalization in Eq. (69) is such that the Wronskian W(u, ,g,)
NPT . . . e . (40)@46)
at infinity is unity. Sometimes this condition is slightly changed' ™

so that the asymptotic Wronskian is either -1 or k.
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To incorporate the boundary conditions for the irregular solution,
we add Msinkr + Ncoskr to the particular solution given by Eq. (25)

and adjust M and N accordingly. We find

_ Dn! cos(n+l) g 1 .
M n+1 * gz 56
k(o® + k?) 2
and
_ Dn!sin(ntl) g 1
N vl K7 cos g
k(g® + k%) 2

so that the irregular solution g, (r) can be put into the form

s
-or n 2 7 . 8
1 D'n! e +k2)“ sin(n+1-s
6o (r) = - k_Z cos(kr+g) + e o )s' ( s)r
— s=0 )
k(g? +k®) 2
(70)
where
© -0 n
D' =)A=z J‘ e T g(r)dr
o]
_ A\A2n! cos [(n+1) 9+5] (71)

kz(e?+k2)™ T Al

with A (k) given by Eq. (27b).
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Jost solutions = (k,T) , Jost functions 3% (k) , and the

relationship between these and the regular and irregular solutions u

and g, are discussed in the Appendix, where we have shown that

1
Uy (1) = 5y (95K 73 (k1) ~ I3 &) f5 (k1)) (72)
and |
8o (r) = =% [JE )~ so(k,r) + I5 (W)L fo(k,1)] . (73)

If we add Msinkr + Ncoskr to Eq.(25) and apply the boundary

conditions for Jost solutions given in the Appendix, we get after some

manipulation
-or
. ! 2
bz = etiE, 221 D o) Panm1g g s
f 1) n+1 s!
° 2 50
k(g2+k?)
(74)
where
® -or n 4
= 2
Di AA J‘e rf, (k,x) dr
0
i(nt1) g
AZn) A0
= A T (75)

(o +k®) A (k)
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Since J oi (k) = j: (k, 0) we have

aazay D0 5inmey g
ki2+k2)™ ! A9

JEy =1+ (76)

As a check we can substitute Egs. (74) and (76) into Egs. (72) and (73). We
get back Egs. (26) and (70), showing that Eqgs. (72) and (73) are, indeed,
equivalent to Eqs. (26) and (70) respectively.

Case b: Solutions for the one-term potential for arbitrary 4

For the one term potential given by Eq.(7), the asymptotic form

of the regular solution given by Eq. (41) can be written as

uL(r) oo ZL sin(kr -3 g + 5’&) (77)
where
= (2!l 2 E
z, [_\ o + FD) + (GD)Z] , (78)
sin By =" GD/ZL (79a)
Sy e TR ob
cos 5, ( 1 + >/ZL’ (79b)

and D is defined by Eq. (42a).

Adding Mkrj‘b(kr) + NkrnL(kr) to Eq. (40) and using the boundary condition

1
8, 752 - iz, cos [kr -3 tm+5,] (80)
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we get

.M = ~ FD + sin § (81a)

kZ
L 2

N=-GD+ cos 5& (81b)

1
kZ
1

Hence the irregular solution eL(r) is

1 1
r) = — sin kr j (kr) + — cos kr n (kr

t/2_t-s
~ar & DSl (i) 12 +k3) x
-Dpe @ Lz sm_g! @0 [F cos{tg+(s~4-1) }
8= =

+ G sin {t9+(s~¢-1) T }] (82)

where D' =)A2 [ e ¥ " g (k) dr

o
s-n-1

__2A2 i _ure) !(n-s) R +k?)
kZLA L(k) [ s!1(4-s) 1(2k)S

>
s=0
- T

sin{(m+1-5)g+ (s4-D g+ 6,}] (83

and

_ mEStl (i) e tms) 12 4k2) 7
AL(k) =1+ AA-2 szio tEO S!(&‘S) !t!(zk)S(za)n'i't-S'fT

K[ F cos{tB+(s-4-1) T }+G sin{tBr(s-4-1) T 1]

(84)
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To {ind the Jost solutions i(k,r) we add M*kr j L(kl‘) + Ntkr n{‘(kl‘)

to Eq.(40) and, using the boundary conditions for f i(k, r) given in the

Appendix, we get

ME = - pp + 2 D/2 (853)
NE = - gD + o212 T/2 (85b)
It follows that
f i(k,r) = e*i({’+1) Wzkr j (kr) + e:ti(ﬁz) n/2 kr n (krx)
A L 4
- 4 nistl o212 2

_ ar (,{/'FS).(& +k ) n N1
o sz_—;.o =0 t!st(-s)!2ks [Feos{td(s~4-1), 3

+ G sin {t8+(s—p-1) ’21} (86)

where

0
D =)A=2 e oF 0tk 1 dr
A £ fL( ).

s-n-1
a2 HIIT2 g sty k)
A, oy S8 kS
9 e:;:i[(n+1-s)9+(s-{,—l)g] (87)

and AL(k) is given by Eq. (84).
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Using the boundary conditions for Jost functions given in the Appendix

we can immediately write from Eq. (86)

sEe = - 2D AWN/2, (24)1GD, (381
v Kt 11 (2Kt

As shown in the Appendix, the regular solutionuy (r) and the
irregular solution eL(r) can be written in terms of the Jost solutions

f:(k,r) and Jost functions J :(k) , that is

= __1_. - - -
u (r) = S [J- (k) fl(k’r) J*}/(k) f{.(k’r)] (89)
and

(7) = -3 [3, (07 fi00m) + T30 57 ()] (29)

&)

Case c: Many-term Separable Potential for arbitrary j

Before presenting the irregular and Jost solutions for the potential
given by Eq.(5), we will obtain solutions for two less complicated

examples, as was done in Chapter II. We will then extend the results

to the general potential given by Eq. (5).
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Example I.
We consider a potential of Eq. (5) for which o, is fixed (no
summation over ). We thus consider the potential given by Eq. (44),

that is,

- ' J
(r|r) ——ﬁ—- o OATFT )(rr')n )3 liPi(r) Pi(r')
i=0
The regular solution for this potential is given by Eq. (48).
Asymptotically

i -1
u{’(r) =2 Z{, sin(kr -1 pqt+ ,5&) (91

where

2+ 11 I3 @), () (n) (02
7, [(phr £z ol

—0 =0 k=0
i=0 j=0 k=0
J 1 (i, () o™ G
sing =(- X E;\b b )/Z (93a)
=0 j=0 k-0 ') 5V
and
_ozenn L L @) (N L
cos 5, +5 X I kb b . (93b)
k'u‘l i=0 j=0 k=0 k k J /,
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Following exactly case b, we can immediately write

9&(1') = sin 5& kr jL(kr) + klz cos 6& kr nL(kr)
2 1
. 1 q
I 10O b P (p) 1gP AR ¥
i=0 j=0 k=0 13 kK K Ll gg=0 PHAPdl(zkP
x (5] cos{ag+p~1-nF1 + ¢ Vsinfagre2-n 1)) 00
where
() _ T -orf ntm
C m Jo' e r QL(r) dr
T o o,
=y B4y (95)
S my o m
j=0
with
R@o_ 3 A i 0r L P gip) e e /2 (mnvq-p)
mj” "k Z ) [p Lo o Plalt- R ™
% {F ) cos[ag+(p-t- yTy+ G Sin[qe+(p-,b-1)g']} (962)
and
g o L A et e ke BERED

1
m kZL =0 t! (£-t) 1(2k)¢

x sinf{(m+n-t+1) g + (t-4-1) 12[+ 5, ) ’ (96b)
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Similarly,the Jost solutions f i:(k, r) can be written as

+H(g+1y /2 +i(4+2) /2

f :(k, r)y=e kr j&(kr) +e kr nL(kr) g
- J i i 4 p¥n+j+l HAPHEY 1 2 9-p
of b(l)b(l) ™ (4+D)PHE) T
- 1——% JEO k§0 M k 7k '—;? O§_0 p!(4-p) !q!(2K)P
X {1‘ )COS[qe‘*(p-{,—l) '-'21] + ng)sin[qe + (p-4-1) 121]}
(97)
where the unknown Cgi can be found from
(n) + J (n) (n)+ _(0)+
Cm = E R'm_ C_ + Um (98)
=0
with
U(n) *_ :tl(&"'l) m2 L (p+t) 1(m+n-t) I (o2 +k?3) -% (m+n-t+1)
m =0 tI(L-t) '(Zk)t
x e;ti[(m+n-t+1)9 + (t-4-1)1/2)] (99)

and R'I(nr;_) is given by Eq. (96a).
The Jost functions J :(k) are then
P 2 LR U L N by o AL 0
4 k

tZ I I N
i=0 §=0 k=0 k' ket

(100)
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Example I
The second example is the potential given by Eq. (5) with the
summation over j, retained but without thé polynomial terms P'i’(r) ,

that is

' n
gL(rlri) =§ﬁmi 5 AY e Oy (r+r)(rra) v
v

The regular solution for this potential is given by Eq. (56), which has the

following asymptotic form

u® ., Z,skr -3 1ptp)
with
(244111 2 3
z,=[( TSR A chEY) +Qz, et ) ]% (199
1 %4
sin 5& =~ (EAV CVGV) /2y (102a)
0 (-(—92- ZAVCVFV> / 7 (102b
cos O y L )

and Cv given by Eq. (57).

Following example I, the irregular solution can be immediately written as

0,(r) = 7% —=— [sin 6 kr j, (kr) + cos g, krn (kr)]
n +s+1 t/2 t-
y 520 t=0 ts! ”’"S)'(Zk)s

X {FVe °S[t9v+(s‘!,‘1) ’21] + Gvsin[t6V+(s-,L—1) 121]} (103)
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where
1] 1 U
C|V = 3 le CIU + U (104)
with

n
4 Dyrtstl () 1 Pyrit-g) !@tv'2+k2)t/2
t!s1(e-s) 1(2k) S+ ) TytHtostl

s=0 t=0
x[F cos{tev'-r(s—{,—l);—r }+ Gv'sin{teu,+(s-{,—1) g-}] (105a)
and
A (p -
ool L tyimn gt WD
KZp o t1(t-t) 12k -
X sin {(n -t+1) B+(t-t-1) 12’-+ 5,) (105b)
The Jost solutions f:(k,r) for this potential can now be written as
f:(k,r) e L (k) + /2 n, (kr)
L yrs+l _ Ly 2 .2,1/2 t-8
-5z 5 AW L St),!fi(;: ),(2krs
v s=0t=0 Psl(t=s)1zk)
X{chos[tﬁu+ (s-4-1) %] + Gvsin[teu-i-(s-l,-l) g-]} (106)
where
c/t= 5 »" MM (107)

v'
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with
~E(n,,~t+1)

UL AW /2 ;’: (A+t) Hny-t) 105 + k)

t=0 t1(L-t) 1(2k)

x Lyt 1) 8y+ (t-2-1ym/2] (108)

oW
and R is given by Eq. (105a).
+
The Jost functions J L(k) can now be written as

£ (244111 HH(4+2)7/2 vyt (24!
3, (k) L_k_E_)I_e + EA C U(zk)LG (109)

Example III

In this example we combine the results of Example I and
Example II and derive the irregular and Jost solutions for the potential
given by Eq.(5). The regular solution is given by Eq. (61) and the

asymptotic form can be written as

U (1) = 2, sinlkr-3 47+, ]

where I{u I .
v 8 1
2" 2“1;1” +Z Z £ T LA b(gv)b(1 V) ch"\2
k v g=0 i=0 m=0j=0 & ™ )
KU JV i . 2
I Xz z z v . (gV.,.i,»nw v v %
* 5 g=0 i=0 m=0 j= A'gi bm bj Cj Gm) ] ’ (110)
Ky dy g

i
_{ Vo (€Y (LY YV /
=Gz z T T 3 A& 111
00K ¥ e20 iom=o0jm0 Bim % G Gm> 2, (13
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and
J

K i
_ et v &V, i,» v v /
cosb, G——E-)—k et Zl:} L X E Z AN b b e, Fm> Z,

g=0 i=0 m=0 j=0 &1 m

(111b)
The irregular solution 8 L(r) is then straightforward and is given by
0 D) = Z,L —— [sin 5 kr j, (k) + cos 6 kr n &(kr)]
Jd . p+n_ +m+1l
v v g i 1 v
- X ¥ T Z A’b(gV)(IV)C.V or s 3w
v g=0 i=0 m=0j=0 B8im J J p=0 q=0
Wil +kHYE AP .
p! a! (4-p)!(2k) LFy, cos[a +p-t-1) ]
+G Y sinlqf SHe-t-1) 5 713 (112)
where
d,
v v v
=z z rY , c'_, + U (113)
s vt oji=0 31" ] j
with
+n +m+1 .
e v tyrg P @) @,p TP Hrap!
R.,=-Z Z X I Z AV &
' i=j' g=0 m=0 p=0 q=0 gi m ij q!p!(£-p) I(2k)P
(oz ke )q/ 2 . .
X — {F" cosiqf ,+(p-t-1) =]
(@, e el m v 2

+ Gn’;' sin [qev,+ (p-2-1) g 13 (114a)
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and 1 .
R L G a Rt o i
1 T2 ee—
Uj kZ, tfo t1 (4-t) 1(2k)t
X sin {(n +j-t+1)8 + (t-L-1) -;1+ 6,} (114b)
+
The Jost solutions f L(k’ r) can now be written as
+ . .
f,k,x)= e:h('wl)‘"/2 kr j,(kr) + e:h(u-z)"/zkr n,(kr)
o) L 2
Ky 9 ¢ i g Prormil
v g=0i=0 m=0j=0 &l m j 7 p=0 q=0
e A2 TP .
plq!(1-p) 1(2KP {F, coslgf +p-1-1) -, ]
+ Gn';sin[qevﬂp-x,—n Ez 1} (115)
where
vt Ty w' vt v+
C_ =X X R'., C. +U, (116)
m  yro4=0 U i j
with
. 2 2 ‘%(nv+j—t+1)
Uv:h-—_ eil('rﬂ"l)ﬂ/z ‘L ('{’+t) !(nV+J t) !(av +k )
i =0 t1(L-t) 1(2k)t
% e:n[(nm -t+1) B H(t-4-1) /2] (117

and R':,} given by Eq.(114a).
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+
The Jost functions J &(k) are now seen to be

K& .

. v v g i .
i = - UL HWHT2 5 5 57 £z AV pE Y Y
L k v g=0 i=0m=0 j=0 & m 7]

J

vi 241! v
X C, —i?%k—)z G (118)

2. Equivalent I,ocal Potentials

In this section we develop expressions for equivalent local
potential for the class of separable nonlocal potentials for which we have
expressions for Jost solutions. We develop this by closely following Coz,
Arnold and MacKellarS‘H)

Let fi(k,r) be the Jost solutions to the nonlocal equation

d2

= k® - K%H] f:I(k,r) = !l gL(rlr') f; (k,r") dr' (119)

+
and let fL (k,r) be the Jost solutions to the local equation
a2 2 YLy E _ +
[:"'Eg +k 2| T = Vi) £ k) (120)

The transformation function which relates the nonlocal solution to

the local one is written as

£ 3 +
fN(k,r) = Ak, 1) fL (k, 1) (121)
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where A(k,r) is called the damping function. It may be noted that Eq. (121)
must be satisfied by both of the independent solutions, whereas a
'trivially' equivalent local potential applies only for one solution.

If we now define

1 -
%k,r) = - Ur* k,v) 7k, 1) ~ F(k, 1) £k, 1) ] (122)
then é{N(k,r) will be unity necessarily only at infinity and at the origin
andgL(k,r) will be unity everywhere. Taking advantage of this property,

and remembering thatg (k,r) is 2 normalized Wronskian, we can use

Eqgs. (121) and (122) to write

gN(k,r) = A% (k,1) (123)
Also, if we substitute Eq. (121) into Eq. (119) and use Eq. (120) and

Eq. (122) to subtract the local equation, we get

1"

Al A2 &
iy + -2 1 7 )

v gt .
+z(%) fyton=[ gl s.')f;:(k:s) ds (124)
[o) . .

where the prime denotes differentiation with respect to r.
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i!
To get an expression for V(r), we multiply Eq. (124) by fN (k,r) and

subtract the two resulting equations. We then have

A" Al 2 1 A:]:' ®
Vir) = - 2= +2 () + == k) [ g,]9)
") =-"% A+ Eae Uy®n ey
x fls) ds - £k, x) £ gL(rl s) f"l'q(k,s) ds ] (125)

+
Since compact expressions for fN(k,r) have been given in
Section I, using Egs. (125) and (122), the ELP V(r) can be calculated.
+
Note that the integrals of fN (k,r) with the potential which occur in

Eq. (125) have already been evaluated in Section I.

3. Summary

In this chapter the technique developed in Chapter II is extended to
obtain irregular and Jost solutions for the same class of separable nonlocal
potentials discussed there. The irregular wavefunction for the many-term
separable potential defined by Eq. (5) is given by Eq. (112), whereas Jost
solutions are given by Eq. (115). As in Chapter II, the only unknowns are
the elements of the matrix €. For the irregular solution the elements of
thismatrix can be found by solving Eq.(113) and for Jost solutions these can

be found by solving Eq.(116). Since Egs.(113) and (116) are simple matrix
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equations, the solution involves only straightforward matrix inversion.
As before, a standard subroutine package like GELG or double precision
DGELG from the IBM Subroutine Library can be used.

In passing it may be mentioned that Jost solutions are important not
only in finding the Equivalent Local Potential (ELP), but are also useful
in a variety of contexts. Examples of other important applications of Jost

solutions are given by Newton.(17)



CHAPTER IV
T MATRICES

The calculation of off~shell T matrices has been the subject of

(32,57-62) 516 of the factors which have created

numerous investigations,
interest in off-shell T matrices has been the work of Faddeev, who has
shown that the only input necessary in the equation for three-body scattering
is the off-shell T matrix of each of the three possible pairs of particles.
The formal calculation of T matrices is particularly simple for the case of

63
(©39) pointed this out and gave an

a separable nonlocal potential, Watson
expression for the separable T matrix for a one-term separable potential.
Later on, Taba.kin( 18) obtained expressions for the off-shell T matrix for a
rank two separable nonlocal potential in terms of the matrix elements of the
free particle Green's function between the form factors of the potential.
Tabakin's procedure can be extended to a potential of arbitrary rank.

However, the difficulty with such an extension lies in the increasingly large

number of contour integrals which must be evaluated.

55
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Earlier we obtained exact analytic solutions for the wavefunctions
and phase shifts for a class of separable nonlocal potentials. In this
chapter, we present a method by which the off-shell T matrix can be
obtained for the same class of separable nonlocal potentials without the
necessity of evaluating any integrals involving Green's functions. In
particular, when calculating a T matrix by the technique which we shall
outline, an increase in the rank of the potential does not result in as
significant an increase in computational effort as with the method of Tabakin.
The expressions are in compact form, and given for all partial waves.

To show why the approach presented here can be advantageous for
the class of potentials to which it can be applied, it is necessary to briefly
review the construction of off-shell T matrices for a separable nonlocal
potential of arbitrary rank. We then apply the method to a one-term
separable potential before extending the analysis to the class of potentials
for which we already have given the exact solutions in configuration space.
In all of the calculations in this chapter, we have taken 32 /2m=1.

1. T Matrix Calculations with a Separable Nonlocal Potential

The equation for the T matrix is given in terms of the potential V and

the off-shell energy ,, by

T=V+V (w-K-V+Hey1 V | (126)
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Let us consider the momentum space elements of the matrix T for the rank
J+1 separable nonlocal potential defined by
J 12
V—.)_‘,__ Aij|vi)(vj| . (127)
i,j=0
We get

Jd
(K|Tw |k = = . G AT WY

i,j,m=

J
2> (vml(w—K-V+i€»)'1 IVS)ASJ(V_“{) . (128)
et B

Because the potential V has been taken to be separable, we see that it is

possible to write Eq.(128) for (k'| T(w)|k) in the form

J
(K [T() [k = = (k'|v,) W.(k|w) (129)
i=0
where
J
Wilk|w) = 5 T (w)(v]k) (130)
j=0

and rij(w) are the elements of the matrix [\(,y) defined by

Clw) =A[E+ (V|(w-K-V+He [V AT (131)
That is, not only does the T matrix separate as described in Eq.(129) , but
the function Wi can be written as a matrix with elements rij’ which is a
function of ;, only, multiplied with the transformation function (vj|k) which
is a function of k only. It is this feature of the off-shell T matrix which is

crucial to the method which we shall employ.
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As an initial step, we compare Eq.(129) with w =k?® with the half -
off-shell T matrix obtained when solving for the stationary state |\p;) with
outgoing scattered wave appropriate to the potential of Eq. (127). The

+
state I\I’k) will be the solution of the Lippman-Schwinger equation

J .
I\I{) = | k) +iz§=0 (k2 -K+igy? |v.) Aij(vj|\p;) . (132)

To obtain an explicit expression for |@;) » we multiply Eq. (132) by ( vm|

J
+y o 2 ricnn +

(vmlxpk) (vmlk) + izj;=0 (v, | (k° -K+iey |Vi> Aij(vjlxyk) . (133)

Equation (133) can be solved for the coefficients ( vm|q/-;) . We get

+ J
(V10 ) = jEZ) My (V110 (134)
where the matrix M is defined by

M=[I-(v|(k®-K+ief2|v) AT?. (135)

-+
The state |\I;k) is given by substituting Eq. (134) back into Eq. (132),

(v

k) . 136
0 (136)

o J 2 e
1% = 0 +i,jz,m=0 (K™ vy AimMmj

The half-off-shell T matrix also follows from a knowledge of the
. - ) + 3
coefficients ( vml T Y, and is

d
RITEI = 5 (W) (137)
l=
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where

J
W, (k| k%) "z Ay (Vo 1) (1382)

or using Eq.(134)

W, (klkz) —J E A1m mJ(lek) . (138b)

Comparison of Eqs. (130) and (138b) shows that

Ti; E A; (139)

im m]
m._

Equation (139) establishes the fact that if we know the matrix M we can
calculate the matrix I', But since off of the energy shellI’ is a function
of , only (and not k), expression (139) for I' can be continued off the
energy shell. Off-shell matrix elements (k'|T(y)|k) will be given in
terms of the I thus obtained by Egs. (129) and (130).

The procedure suggested by Tabakin substitutes the computation of
the matrix elements of M for those of ', In this dissertation we discuss
an alternate method of obtaining the matrix I' as defined by Eq. (139) which

avoids the integration usually necessary to the construction of the elements

of M.
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2, Expressions for Off-Shell T Matrices for a Rank One Potential

InChapter I we have presented a method for obtaining analytic
solutions for the wavefunction for scattering from a class of separable
nonlocal potentials. Here we consider the general symmetric potential

gL(r| r') defined by

~q (r+1') nodJd, J,
g(rjth=g e V @) V5§ Ay Py PR (140
1 v g=0 i=0

where A’/g , are constants and P“i'(r) is an arbitrary polynomial in r of oxder i,
defined by Eq.(6). The potential of Eq.(140) is the same as that of Eq. (5),
with Kv=Jv and A'él= Ali}g . From Sec. 1 of this Chapter it is clear that the
information necessary to the construction of the matrix I is implicit in
these solutions. We thus concentrate here on using these solutions to
obtain the off-shell T matrix for the class of potentials given by Eq. (140).
a. Off-Shell T Matrices for =0
Let us consider first the single term separable potential given by
Eqgs. (7) and (8):
g L(rlr') = A r)q(r" (141)
with
am)=Ae Tr. (142)

We will also specialize for the time being to the case 4=0. The normalization

chosen for the =0 wavefunctions presented earlier was u (0)=0,uy, (0)=1.
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Such a normalization corresponds to the convention standard in the
discussion of Jost solutions. It has the advantage that the Fredholm
determinant A (k) will always appear in the denominator of the expression
for the scattered portion of the wavefunction. As discussed in the
Introduction, in the case of nonlocal potentials, it is well known that the
zeros of A (k) correspond to spurious solutions of the Schriédinger equation
for \y(r), and we have pointed out that solutions presented in Chapter II
are not valid for A (k)=0.

The first step in solving for the off-shell T matrix is to renormalize
the wavefunctions to a delta function. In keeping with usual practice,
wavefunctions so normalized will be designated by the Dirac bra and ket
notation. That is, we will define the wavefunction ( rlqﬁk)o as that which

satisfies the boundary conditions

(rlq/-”ko =3 © (143a)

2 .
<r|‘1’°k)o = . sin(kr + §,) (143b)
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The superscript o indicates that |q;°k)° is the real solution of the radial
equation, and the subscript o has been used to designate the } =0 partial

wave. We get

_ |2 1 Dnlcos(ntl) 9 7 ..
(rl\p?{>o j; [ N(ke) + ntl _l sinkr

N(k?) 7 HE) 2

coskr

N fg Dn!sin(n+1) g

T n+1

N(2) (P +k?) 2

-ar s/2

2 Dnle n +k2 s .

‘j—; n+l Z S r sin(nt+l-s) g (144)
— s=0 ’

N( ) (o i) 2

where g and D(k?) are given by Eqs. (21) and (27a), and N(k®) is given by

3
- Dnlcos(n+l) g ~° Dnl!sin(n+1y g <2
Nee) = | (1+ ﬂ) +(- d (145)

o k%) o +18)?
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It should be pointed out that in using the techniques discussed in Chapter II
for obtaining wavefunctions normalized according to Eq. (143), it is both
easier and more instructive to use the normalization of Chapter II and
then renormalize to Eq.(143). In this way the Fredholm determinant A
becomes explicit in the T matrix which we later obtain from that
wavefunction. Equation (144) can be written in a simpler form in terms

of the phase shift § defined by Eq.(28), which is

tang, =- ! DsnmH' O (146)
° n+l
(,f"+k2)2 +n! D cos(n+l) §

That is, we can write the expression for (r|\pcl’{)o in the form

2 .
(r|\1_,°k)o = ﬁT sin(kr+ 8§, )

- 2
2 nlDe oF N2 k® s/ s .
+j:- 3 > e oy ) r sin(n+l-s) § .
1r ntl 2 !

2
N(I® Yo’ +k°) (147

For the construction of the T matrix we need the wavefunction (rlq;'l:)o
with outgoing scattered wave, which is related to the wavefunction (rlq,‘l’{)o
by the condition

N ig (k)
(r| g =<(r|¥% ) © (148
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We will also need the constant D, defined by

D=)A T q(ryu, (r) dr . (149)
o]

From Eq.(138a) we have

W(k|K®) =)\(v|\p';'{) . (150a)

Using the relationships between u_ (r), ( r|\1,°k)o , and ( r|\p':{)o we get

5. (9
_[2 k ppe) &0
W(k|1) _\/; A RIS . (150h)

The transformation function (k|v) = (v|k) is defined in the ;=0 case by
_ 2 2 . -OTr n
(k|v), = A‘/:r J‘ sinkre ~ r dr. (151)
o

This integral can be easily evaluated to give

_ 2 nlsin(ntl) g
(k|vy, = A/; ) (152)

o + k)
Thus from Egs. (137), (151) and (152) the half-off-shell T matrix for the

potential of Egs. (141) and (142) is

i5 (kK
2 nlsin(n+l) g’ kD(K) e15°( )
1r n+l N () J

(a2 + k|2)2

(k'| T(E) |ky = (153)

where 9' is given by Eq.(21) with k replaced by k'.
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The function I' necessary for writing the completely off-shell T
matrix can be obtained by factoring W(k|k2) as given by Eq. (150b) into the
form indicated by Eq.(138b). Making use of Eqgs. (139), (27a) and (152) we

see that

i5(/w)
T () =2—. (154)

N(w)A (w)

The completely off-shell T matrix is given by substituting Eq. (154) into

Eqgs.(129) and (130). We get

(155)

(K| T | = 2>\A:(n!)2 sin(n+l) §' VW  ginmily g

n+l  N(w)Alw) ntl

2 o +k2)2

(o +k*)

As a check on the accuracy of Eq. (155) we specialized to the case

of the Yamaguchi form factor, n=0, for which the integrals necessary to
the computation of the completely off-shell T matrix by the usual methods
(that is, the direct evaluation of M using Eq.(135) ) can be easily handled.

Both by that procedure and from Eq. (155) we get

(K| T() | K = _2%1_ {1+ A4° [ - lz_A:D -120/w]) (s

2a B
where
3 )AQ kk!
N7 @AY KT (157)
and

AB 2
ﬁ=(w+a2 - Aé'&' +20 2%, (158)
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b. Off-Shell T Matrices for Arbitrary g
The procedure outlined in the previous section can be applied equally
easily using the expressions obtained for arbitrary g in Chapter II. In

this case the boundary conditions on (r]q,ok) are

(rle%) w3 °© (159)
TS gz o sl kom0l (160)

The relationship between the outgoing scattered wave and real solution is
igk
gty = (xlgsy 0% (161)

where 5(k) is given by Eq.(43). We can thus write for the real solution

(r[qﬂk) the expression
r|ye) = 1+ k& e FDkrj (kr ﬁ-—GDkr (kr
ey = [, [( @erntr /k L5 T gy @, )]

_fz W peo 4 ME g1y 2412, /2, b

r e N 25 sltgs) 12k

% [F cos Q:g +(s4-1 T >+ G sm(t9+s—{,—1) 121>_I (162)
where F, G and D are defined respectively by Egs. ( 36), ( 37) and ( 42a),

N is defined as

21 p1
k FD \ -k GD
N= [ ear ) *Cem )? (163)

and g is given by Eq.(21).
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For arbitrary 4 the transformation function (k|v) can be shown

to be
2
klvy =A [— 164
(k| vy /; Q (164)
where
_ L% _rs)im-g)! 3 | ,,_
Q= I Sig-s)1@ns oK) cos [(n-s+1)@s-4-1) 7]  (165)
s=0 °° : .

The half-off-shell T matrix is then given by

+1
2 K bz gk
' 2 = - )
(k'| T(k2) k) nQ(k)(zul)!!N(k?) e (166)
To obtain the completely off-shell T matrix we must factor the expression

for D. We get

D =5 A? (211! Q (167)
k{,+1 A

where A is the Fredholm determinant defined by Eq. ( 42b). Thus
N elﬁ(/ w)
T(w) = . (168)

The expression for (k'|T(y)|k) becomes

2
(k'| T(w) |k) = - APQ(k")T () Qk) (169)
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3. Off-Shell T Matrices for Many-Term-Separable Potentials

In this section we consider T matrices for three examples of many-
term separable potentials.

Case a.

Let us consider first, as before, a potential of the form of Eq. (140)
for which  is fixed (no summation over ;). That is, we will obtain the

T matrix for the potential

- ' J
A Y ™ 5 PP (170)

g (rir") =e
1 i=0

This potential is of the type defined in Eq. (127) with Aij = kiaij:

J
. Z SIALSA (7
with
i g -
(r|vy = % bl o @T ntm (172)
1 m=0 m

In order to obtain the T matrix for the potential of Eq. (170) we will need an
expression for <vi|‘1’;) . From the solution u(r) for this potential, given as
Eq.( 48), and the phase shift, given by Eq.( 52), it is possible to obtain

+ .
(vi | o } directly.

k4,+1 is(k) )
v;lw) f Y G Tinges) (173)
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where

i .
N={{lt7—o" 5 £ I xibfl)b
™~ m=

() ) (3
C \
ernrr B2 B A Pm O F

|
4+1 . . .

K J 1 1 (1) , () o) (85

+(-—T £ £ T ab'b’C G.D]a (174)
11
((2414'1) s * i=0 j=0 m_._..o 1 J m m ]
(n) (n) - ' : .

and Fj and Gj are defined by Eqs. ( 36) and ( 37), respectively, with
n replaced by n+j. The transformation function (vil u) follows from

Eq.(172) and the definition

cg) = f e "My ryar (175)
(v}
and is
i -
vlw =z vDc (176)
m=0
From Eq.(138a) we see then that
2+1 ip(k) i .
_. |2 K e (i) (n

Wylk|x=) 'lij; (2¢+1) I IN(k2) mZ=0 bm) Cm)- (177)

Since the potential (rlvi) defined by Eq.(172) is expressed as a sum of

terms, it is convenient to define subfunctions [vslk] such that

Y ¢
(v, k) = z b " [v [k] . (178)
8=
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The information necessary for obtaining an expression for [vslk] has
been given in Chapter II, since

L+l
-2k~ W
[vglk1 = m (241! Us (179)

and Uén) is defined by Eq.( 51). The half-off-shell T matrix for the
potential of Eq.(170) will, therefore, be

Canttt i (1 dsk) g

1 =-2- ' (i) .(m)
(K| T iy =7 i§0 M2+ T sfo Uk )] (2411 N(k2) mzzobmcm :
(180)

For the completely off-shell T matrix we must rewrite Eq. (177) for

Wi(klkz), as required by Eq. (138b). From Eq.( 49) we have

T R

J
c= 5 g™ gl
§=0 J )
or, in matrix notation
[I-R]C=U (181)

Let us for convenience define the matrix IL by
L=[I-R]? (182)

Then

o\ (183)



71
Substituting Eq. (183) into Eq. (176) gives

v.|w Loy o™ (184
<il ]_z (II?—-O m mJ j )

Putting this back into Eq. (177) for Wi(k[kg) and using Eq. (179) gives

JRETL T S ty,
1 N(®) SEO (mz=0

) [V [k] - (185)

2 —
Wi(klk) A m ms

Equation (185) cannot be directly compared with Egs. (138b) and (139) to
determine rij' Introducing Eq.(178) into (138b) we get, after changing

an order of summation

Wk =z 3 % A el (vlkd (186)
s=0 m=0 j=s

Since the coefficients béJ) are constants, independent of either w ork,

Eq. (130) can be rewritten in the form
J
W, (k| w) = Sz=0 ¥iglw) [VglK] (187)

where

¥y (0 = > Iyl b)) (188)

j=s

Comparing Eqgs. (186) and (187) shows that

J J -
=3 % a.Mm b0 (189)

y- . .
is 7o i=s Am mj s
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It then follows that the off-shell T matrix is given by

Ao 2+l

_aJiJk_>_u)(> k ()
(k' T(e) |k = i§0 t§—0 EITSYL b, ("yy; L )(2”1),, U_ (k)
(190)
where, from Eq.(185),
i5 5 i .
e i
yie) " S To(z DL 5. ey
s=0 m=0
Case b.
As a second example, we consider the nonlocal potential
- (rtr?) n
g,(|™) = ¢ AV e V (rxty Y (192)

v=0
for which the wavefunction and phase shift were determined in Chapter 1I.

For (v |\11;) we get

2 k'l ALY
Ply) = - e YW TRaey (193)
where
2+l 1+1

- Kk Vvl o kK - VN R
N=[C eppm Z A cVF ) +(@ppr z AT SONEE

(194)

The transformation function (VV | u) is given by

ot n
(Wlwy =cV = [‘ e % r Vur) dr . (195)

(o]
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From Eq.(138a) we see then that

2+1 ig(k)
V2 = |2 _K e’ Vv
w (klk )_\[,‘-.r 24+ 11 N(k?2) ANCY. (196)

Since

k,w—l
(V|1 f @t ’ _ (197)

where UV is given by Eq. ( 59), the half-off-shell T matrix for the potential

of Eq. (170) will be

2+1 iﬁ(k) 2+l
2 k' k
' 2 =2 v_((KY" 1 (k) v
RITEDD =L 2 MG aTT PR Ny @ ©
(198)
where CY can be determined using Eq.( 57), namely
t t
¢V =g RV Y+ Y (199)
v
1
and RV has been defined by Eq.( 58).
From Eq. (198) it follows that
! |
V=5 VYV ¥ (200)
1
14
where
L=[-R]"? . (201)

Thus we get for the off-shell T matrix the expression

2+l

' =2 _.(li')f*-_l._ ' v, K '
(k' T(w) [ =~ vzvl e VP gap VR @202



74
where

I,vv' _ A_I?I__ LYY (203)

Case c.
As a final example we consider the T matrix associated with the

general potential defined by Eq.(140). This potential can be written as

J
V=g zv Al{.|v.v)(v.vl (204)
P § LIS S
p 1,j=0
where
- r n .
(x|vy=e VY r Vpi"(r) . (205)

Such a potential is still of the general form defined in Eq. (127). In writing
the potential as in Eq. (198), we have merely broken down the J+1
dimensional matrix Aij into a set of square submatrices of dimensions
Jv+1, (y=0,1...), as indicated by the presence of the superscript ;, such
that

JHl = § (J +1) (206)
v=) V

Following the procedure used in I, we obtain the wavefunction and phase

shift appropriate to the potential the expressions
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Again it is convenient to write the transformation function in terms

of subfunctions, in the following manner

(vV|k) = % b( [v'f|k] (207)
i=0 )

where the function [v?'k] will be given by

L+1
v w
Equation (129) for the off~shell T matrix becomes
Jv
(K'|T) |k = £ T (K[vIWVik|w) (209)
vy =0

and, in analogy with Eqgs. (187) and (188)

14 = V. v '
WYk|w) = 5 = o7 k] (210)

with
.id 7’5 . K bV B (| (wkveig VY AL T
j=0 ) t=s J m=0 J
(211)
For this potential, the expression for (vn‘;l\y’;{) is given by

. 1+l
oo igk)y (2 _k
g =Y jw e® ,/;r FoTTINGD) (212)
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where the phase &k) was defined in Eq. (62) and

4+1 J g i
/1 k 2 (g U) b( ’V) Cv
IS e 21 gz-l—O n;’:_OJ_O Agl m m)
L+1 J 3
K 1 g 1 € o) W N ) 3
+f r Z bV b v S GV
24+ 1! vzi’ gEO m=0 §=0 Agl m m/
(213)
Since
m
(volw = T bgm"’) C'g ; (214)
j=0

it follows from Eq.(212) that

£+1 ig(k)
o2 K e m,y) v
VLl = [ e ivae) Jzo by G (219)

Thus, from the definition of the half-off-shell T matrix

J
y +
(k'|T()|k) = = i E_ AL LR VY ) (216)
v i,m=
we have that
J
(K1) Ky = £ 2 (K[ WY (k[1?) (217
17 i=0

where

+li k

v (m,y)
WY(k|k2) = z'f A - (2.{,+1)"N(k3) Eo b, c/ - (218)
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To obtain the off-shell T matrix, it is necessary to factor Eq. (212)
into a form which makes the expression for 7li)sv' explicit, For this
purpose, we must transform Eq. (63) to a form which can be inverted for
the unknowns C;.’ in terms of the known quantities U'; . As mentioned
earlier, following the introduction of the single superscript, in
Egs. (204) and (205) , the addition of such a superscript merely breaks the
matrix element Aij into submatrices which lie along the diagonal. The
double superscripts on R in Eqgs. (63) and (64) indicate that the submatrices
of which it is composed will not lie along the diagonal. Thus for the
inversion process at hand we must consider the J+1 dimensional matrix R
with components R—ij composed of the submatrices Rv;j’,' . The
equation

[E+R ] c=U (219)
will correspond to the usual rules for matrix multiplication if the matrix

R and the vector C are constructed as follows
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=11 ﬁ12 ~13
ji’ ji' ii’
=21 §22 23
33" 33" ii’
=31 =32 =33 3
C.
RJJ' RJJ' RJ'j' \J'J
| | | | \ /
] I ] i \ |/

C=L U (220)

J
v V' 1
c;’= T Oz L'J{s U'; (221)
V' s

Substituting Eq.(221) into Eq.(218), making use of Eq.(208), and changing

an order of summation gives for W';(kl k2) the result

J 1
v 1
WY(k|k?) = L v Y|k (222)
8= ’
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where
m ig(k) '
' _ v e” ~  (my) . pv 9223
Yie =L T A b, L . (223)
is 2o §=0 im N(k?) j js

It then follows that the off-shell T matrix is given by

(k' () | k)
J I 41 . L1 '
_2 y Y & K (i) W VU k v
=< T ————— b VUK 4V V() U (k)
4 v?:v' iz=:0 sz;;o g=o (ZerD1L £ %s @) @i s
(224)

1
where 7"1': () is given by Eq. (223) with k replaced by /.

4. Summary

For local potentials, closed form expressions for off-shell T matrix
elements for arbitrary {4 are not available in the literature. For the case
4 =0 analytic expressions are available only for a few very special
potentials like the exponential and H ulthen potential. Even for separable
nonlocal potentials, for which the formal expressions for T matrix
elements are relatively simple, expressions in closed form are available
only for a very few special cases. Partly as a result of the frustrations
encountered in calculating T matrices from potentials, attention is now
being paid(64)to avoiding a potential formalism and fitting directly the T

matrix elements as experimentally, since it is T and not V which is

measured.
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In this chapter we have derived in closed form expressions for

T matrices (half-off-shell and off-shell) for the class of separable
nonlocal potentials defined by Eq{140). Equation (217) gives the expression
for half-off-shell T matrix elements, whereas Eq. (224) gives the
expression for the completely off-shell T matrix elements. In both
equations the only unknowns are the matrix elements of C, which can be
determined in the manner discussed in Chapter II. However,
Eq.(224) uses a special form of C; that is, the matrix elements of I

which are given by Eq. (221).



CHAPTER V
APPLICATIONS

In Chapter II we derived equations for the phase shifts for a class
of separable potentials. However, from the general expression for the
phase shift for a many-term potential it is not clear how one can obtain
exact algebraic expressions for the scattering length and effective range.
If the potential is simple in form, then the proper matrices can be easily
inverted and expressions for the scattering length and effective range can
be found without much difficulty. For adjusting potential parameters
to fit phase shift data, availability of such expressions makes the fitting
much easier to handle.

As an application, we take the case of a well-known, two-term,

(21) This potential

separable potential, Mongan's potential (Case IV).
has been widely used in nuclear calculations and certain drawbacks to
the use of this potential have been pointed out. We begin our discussion

of this potential by reproducing the known results and commenting on

81



82

these drawbacks. Next we find a two-term separable potential, but with
only three adjustable pé.rameters,which fits the 1Sc, n-p phase shift data
reasonably well and is free from the shortcomings pointed out for the
Mongan-potential.

1. Scattering Length and Effective Range

From the formula for the phase shift produced by a two-term
potential it is possible to obtain explicit expressions for the scattering
length and effective range in terms of the parameters of that potential.
The scattering length and effective range are very sensitive functions
of the potential parameters. For this reason, numerical approaches to
the calculation of the scattering length and effective range can be
misleading, and the exact expression should be used when possible.

The Mongan (Case IV) potential is of the form of Eq. (53) and is

ne ’ - 1 - 1
g(rlr') = om e @ (r+r ), Az € Qe (r+r )] (225)

We found a reasonable fit to the 1S, n-p phase shift data with the following
set of parameters:

A, = 3454.8 fm™°= 143264 MeV fm™*

Az = -28.293 fm™® = - 1173. 25 MeV fm™*

@ =6.157 fm™*

oy = 1.786 fm™*



83
In obtaining these values, he used a scattering length of -23.687 fm
and an effective range of 2.729 fm. Recalculation of the values of these
two parameters for the Mongan potential by Serduke and A,fnan(Gs) has
led to the revised numbers a = -23.862 fm and r = 2. 323 fm.

As the analytic expressions for the scattering length and

effective range for the potential of Eq. (225) we get

A
-4 6
a =" (226)
_ 2 (BC_ .\
r=-y ( A D) (227)
where
A = 20 0z (0 +0) [2(04 +az) (Mg 05+ X207 )+ Xy An (@ - 02)7 ]
(228)
B = 2(0t, +0z) (40 0z (08 +0i2) Ay 03+ Xz0f) - Ny Az (e ~0z)° ]
(229)
C = 205053 (0 +02)° (202 03 X, 05 205 T+ My Aaof e (0 - 08)°
and (230)

D = 8ofad (0} + 0 )(y + az)® +2\, ad (e +0e ) (205 -af)

+2X,0%(0y +o2 P (203 -0) -M Aa(@) -05 P (0405 +H0 o)

(231)
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Substituting into Eq. (226) and (227) the values of the Mongan
potential parameters we obtain a = - 23,874 fm and r = 2, 323 fm. Thus
our expressions substantiate the revised values published by Serduke
and Afnan.

2. An Alternate 'S, n-p Potential.

The solutions presented in Chapter II facilitate the inverse process
of determining from the class of analytic forms under discussion the
parameters of a particular potential appropriate to a given set of phase
shifts. Since Mongan proposed the potential of Eq. (225) more accurate
values of the 'Sg n-p scattering length and effective range have become
available. The accepted values are now(66)

a=-23.715 £0.015 fm

r=2.73 £0.03 fm.
Our expressions for these parameters have shown that the calculations
of Serduke and Afnan are essentially correct with respect to the Mongan
Case IV potential, which is thus no longer in agreement with the newly
accepted values of a and r. In addition, it has been pointed out by Arnold
and MacKellar(43)that there may be other difficulties associated with the

use of the Mongan Case IV potential, in that it has a spurious state

at 19.6 BeV.



85
We consider now an alternate potential of a different analytic form,
namely

‘h2
2m

g(r,r") = D Ae(r,rh® ] o AT (232)

This potential is a special case of the type presented in Eq. (44). The

phase shift is given by

tan 6 = - N/M (233)
where
N = X3 320°k(o® +k® ¥ + X2 1280F k(o +k2 )(30 >~k 3)°
+y g 8aks (210 -40f k® -420*k* -200°k® -3K ) (234)
and

M = 320°(0®+k® )7 +A, 1607 (0 -k*)(a®+k®)*
+ Az 8040 +K° ) (330 ©-2150° kK° -300° k* -540f k®-190°K® -3k §
+22, A70°-1350° k" -1820°K* 140 k°+210° k®+5k*?). (235)

In pursuing a fit with the potential of Eq. (232) our objectives were
to use a simpler potential (note that the potential of Eq. (232) has only
three adjustable parameters as compared to four for the Mongan potential)

and to obtain a potential for which the Fredholm determinant would be
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greater than zero for all energies (no spurious states), while normalizing

to the new values of the scattering length and effective range. With
these considerations in mind, we were able to find a reasonable fit to
the *So n-p phase shifts of MacGregor et a1.(67) The potential parameters

we found which best fulfilled the criteria used were

A1 =3.91 fm 2 = 162.2 MeV fm™*
Az =-41.06 fm™’ = - 1702.8 MeV fm™®
o= 2.286 fm™*
In all calculations in this chapter we have used #°/2m = 1/41.47 MeV ™! fm™ 2
Figure 1 compares our calculated values of the phase shifts with the
experimental values. The values of the scattering length and effective
range for this potential are
a=-23.711 fm
r=2.718 fm.

In order to provide a comparison of this potential with the Mongan
potential, we have plotted the Fredholm determinant A (k) in Fig. 2. The
insert in Fig. 2 is the Fredholm determinant for the Mongan potential.
Figure 3 provides a plot of the zero energy wave functions for the potential
of Eq. (232) , using the parameters listed above. Since there is no
spurious state, the wave function does not exhibit the extra node which
occurs for the Mongan wave function, plotted on the same figure for

comparison.
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Finally, we have plotted as Fig. 4 the nonlocal potential of Eq. (232)

for the case r'=r. In order to provide a depth parameter in MeV, the

potential has been divided by o .

3. Summary

In this chapter we have employed the solutions derived in Chapter II
to obtain pertinent results for two different separable potentials, one being
the well-known Mongan potential (Case IV) and the other being a potential
which has not previously been reported in the literature. Since Mongan's
potential has been widely used in nuclear calculations, our purpose in
applying the present method to obtain exact results for this potential was
twofold. First, we wanted to reproduce the two-nucleon data which are
available from numerical calculations, thus verifying in this special case
the correctness of the exact expressions derived in Chapter II. Second,
we wanted to compare these calculations with the results obtained using
the new potential. By also fitting the data with a second potential, we
were able to demonstrate the utility of both the class of potentials discussed
in this dissertation and the method presented for obtaining exact solutions for

potentials of this class.



CHAPTER VI

CONCLUSION

In considering the use of a nonlocal potential for the description
of the nucleon-nucleon interaction, several important points must be
emphasized. There is no a priori reason to assume that the interaction
between two nucleons can be expressed in terms of a local nucleon-
nucleon interaction. In fact,in the attempt to compress the description of
this very complex interaction into the form of a standard two-body
Schrodinger equation one would, until evidence could be produced to
the contrary, expect the potential to be of the most general form, i.e.,
nonlocal. In the case of the many body problem of a nucleon interacting

(8)
that the more

with a nucleus, it has been demonstrated by Feshbach
general nonlocal interaction is required for its description. In this case,
the evidence for the necessity that the potential be nonlocal has been
provided by the demonstrations, particularly by Perey and Buck(g) and
Mulligan,(z) that nonlocality can lead to the dependence of the depth of the

optical potential upon the energy of the incident particle required for
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fitting the experimental data. Although there has been much success
with the description of ‘nucleon—nucleon data in terms of local potential
models, evidence is now beginning to surface strongly suggesting that the
use of a nonlocal interaction is required if a description of all of the
experimental data is to be had in terms of a potential model. The work
of Arnold and Seyler(46) is the first really strong evidence that a nonlocal
potential may be required for fitting experimental data in the case of the
nucleon-nucleon interaction,

Replacing the more commonly used local interaction by a nonlocal
one in the description of the nucleon-nucleon problem should not be looked
upon as resulting in a further complication of an already very complex
calculational problem. For example, Kermode(6 8)has shown that a
precise fit to the experimental *So neutron-proton phase shifts with a
local potential requires fourteen terms. Although a precision fit using
a nonlocal potential has not yet been obtained, it is hoped that such a fit
will require fewer terms. Also, as shown in the calculations of this
dissertation, it is relatively easy to obtain exact expressions in closed
form for wavefunctions, T matrices, phase shifts, etc. for a large
number of separable nonlocal potentials. Exact analytic solutions for so

wide a class of local potentials have not yet become available. Considering

the complexity of the calculations which make use of wavefunctions and T
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matrices to start with, it is important to keep expressions as simple as
possible for these. Another point to be considered in the use of separable
nonlocal potentials is the simplification of the three-body problem which

takes place when T matrices using these potentials are introduced.
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Figure 1

1S, n-p phase shifts. For this figure the experimental phase shifts
in the 0.1 to 10 MeV region have been calculated from the following
accepted values:(es) scattering length = - 23. 715 fm and effective
range = 2. 73 fm, using the formula k cot 6 = - i+ %rk2 . The values
above 10 MeV are from MacGregor et al. , (67) who normalized their fits
to a smaller value for the effective range. The experimental phase shifts
are shown by the solid line. The phase shifts calculz;.ted using the
potential of Eq.(232) and the parameter values quoted in the text are shown
by the short broken lines. Phase shifts for the Mongan potential (Case IV)
were calculated using the expression developed in this paper, and are

indicated by the long broken lines.
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Figure 2

The Fredholm determinant Ak) for the potential of Eq. (232) with
the parameter values quoted in the text. The phase shifts shown in Fig. 1
by the short broken lines correspond to this potential. The insert is the
Fredholm determinant for the Mongan potential (Case IV). The phase

shifts for this potential are given in Fig. 1 by the long broken lines.
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Figure 3

Zero energy wave functions for the potential of
Eq.(232) (solid line) and for the Mongan

potential (Case IV) (broken line).
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Figure 4

The nonlocal potential of Eq. (232) for the case
r'=r. To provide a depth parameter in MeV ,

the potential has been divided by & .
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APPENDIX

We want to derive expressions for the regular solution U L(r)
+
and the irregular solution 6 &(r) in terms of the Jost solutions f L(k,r)
+
and Jost functions J L(k)'

Jost solutions are defined by the boundary conditions

LL fi:(k,r) e T o, (A-1)

r o
and Jost functions by

By = L wit (A-2)

4 r-o v

* . * .
where W(f 24y is the Wronskian of f L(k,r) and u L(r). Note that in the
case of a nonlocal potential, the Wronskian will depend upon the point
at which it is evaluated. This implies the necessity of the limiting
process in the definition in Eq. (A-2). It can be shown that Eq. (A-2) is
equivalent to the statement

X Lt ot
J&(k) - (2'{""1) r—o0 r f&(k’r)

+
Thus in the case 4=0, Jo (k) = f& (k, 0).
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+
Since f L(k’r) are two linearly independent solutions of the

integro-differential equation we can write

u(r) = afz +bf] (A-3)
and
8,(r) = cf} +df}" | (A-4)

where the constants a, b, ¢ and d are to be determined. To find the

(41)

values of a and b we make use of the fact that for an integro-differential
equation with a symmetric kernal the Wronskian of the two independent

solutions satisfies the condition

(A-5)

Evaluating the Wronskian of f;, and fz as r »~ and making use of
Eq. (A-5) we get

+ - .
Wi, . f ) s - 2ik (A-6)

Using Eq. (A-3) we can write

W(f}:, u,)=b W(fz L) (A-T7)

97

W(f, suy) =aW(fy.f}) (A-8)

2
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If we substitute Eq. (A-6) into Egs.(A-7) and (A-8) and use Eq. (A-2) we

find that
J; (k)
__41 -
2 =9k (A-9)
3K
b=- ok (A-10)
It then follows that
| - - gt - _
() = o (o B k) - 30 f L(k,r)] (A-11)

It is more complicated to obtain an expression for the (real)
irregular solution 6 L(r) in terms of Jost solutions and Jost functions.
For this purpose we can divide Eq. (A-7) into Eq. (A-8) or take the

Wronskian of u 1 with Uy as given by Eq.(A-3) to get

0= aW(fz, u,) + bW(fz, u,)

or
W(f ,u)
a 4 4
= = - ———— = const A-12
b W(fyuy) (A-12)
Similarly, taking the Wronskian of waith OLas given by Eq. (A-4) we get
d w(f v ] 2
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We now use the property of the solutions at infinity. We can show from
the definitions of the asymptotic forms of fz: and of u& and 6 L given in
Chapter III that

W8 Wi, uy _  -ik (A-14)
rte ’
and
W8y - W(fpuy o ik (A-15)
T

From Egs.(A-14) and (A-15) we can immediately conclude

W( jz, ] 0 W(f}:, u,)
LRI CATY

(A-16)

Noting that the ratios in Egs. (A-12) and (A-13) are constants everywhere,

it follows that Eq. (A-16) is true for all r. Thus from Eq. (A-16),

I (o)
a - —T—JL ® (A-17)

Also, from Egs.(A-3) and (A-4) we can write
W(u,.8,)=be W(f, ,fr)+ad W(fy,f)
= (be - ad) W(f, , f;)

. Tons — - + = 93
But at infinity W( u£,el) = 1and W(f 2 fL) 2ik .
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1
_ —_-—— A-18
Therefore bc-ad e ( )

Utilizing Eqs. (A-9), (A-10), (A-17) and (A-18) we see that

1
+
2J 1 (k)

c:

1
23, (k)

d=-

Hence from Eq.(A-4) we get

0,m = - L3y (9™ i) + 37 (07 f k)] (A-19)
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