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INTRODUCTION

The parametric buckling of a thin circular cyline-
drical shell vibrating under the action of a harmonically
varying internal pressure has been investigated by Yao [1]%
in vacuo and by Deng and Popelar [2] in an acoustic medium.
In both studies, the breathing motion is considered as the
primary motion of the shell. As a consequence the initial
stresses are only functlons of time and not of the coordi-
nates. Yao investigated the parametrlic buckling of a finite
eircular cylindrical shell under varlous boundary conditions
while Deng and Popelar dealt with an infinitely long circular
cylindrical shell submerged in an acoustic medium.

The shell treated in ref. [2] is an infinitely long
circular cylindrical shell with generators remalning
stralght, i.e., a plane-strain analysis, The shell is con-
sidered to be freely suspended in a compressible fluid med-
ium and to be excited by a pressure which varies harmonically
with time., A dynaﬁic stabllity criterion based upon infin-
itesimal perturbations of the breathing motion and plane-

strain of the shell was developed.

*A number in breckets refers to the Bibliography.
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In this study the generators of the shell are free to
deform upon infinitesimal perturbations of the breathing
motion. A stability criterion, based upon the breathing mo-
tion and a three dimeﬁsional deformation of the shell, is
presented. In so far as the sovérning equations of the shell
are concerned, the abproach used 1s basically the one out-
1ined by Bolotin [3]. The modal matrix of the free vibrations
in vacuo 18 used to reduce the governing equations to the
standard form,

The governing equations of the deformation of a thin
circular cylindrical shell are developed by Washlzu th] on
the basis of the ‘Goldenvelser-Novozhilov theory [5] and are
given by Leissa [6]. These equations are derived using the
Kirkhoff-Love hypothesis. In contrast to the other sets of
governing equations ineluding the prestress forces as devel-
oped by Sanders [7], Flugge [8], Timoshenko [9] and by
Herrmann-Armenakas [10], the Washizu equations are symmetric.
The differences between these theorles are discussed in
Chapters II and III of Leissa's monograph [6].

A thin circular cylindrical shell, excited by a sinu-
soldal internal pressure, 1s said to be stablé'or unstable 1if
its superimposed displacements upon the primary motion expe-
rience temporal decay‘or growth (respectively) when subjected

to infinitesimal disturbances, The parametric buckling anal-
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ysis of thélﬁifcular cylindrical shell yields a set of Hill~-
Mathieu equations whose properties have been studied exten-
sively in the past [11]. On;y periodié solutions of period
bn/w are considered, where w is the forcing frequency. The
boundaries of the principal instabllity regions are found for
some range of the shell and fluld parameters. The results
will be compared with those of Deng and Popelar for a partle-
ular steel shell [2]. The coefficients of the Hill-Mathieu
equatlions encountered in this work are frequency dependent
because of the fluld effects. These types of equations have
been studied by Stevens [12] and Deng and Popelar [2].

The breathing mode motion of a long circular cylindri-
cal shell is understood to be excited by an internal pressure,
p + q cos wt, where p 1s the static pressure and q is the
dynamic or vibratory pressure, Undef the breathing mode
motion, the shell expands and contracts according to the
sense of the vibratory pressure in such manner that its gen-

erators remain straight and its clrcular shape is maintailned.



CHAPTER I
SHELL EQUATIONS

The shell geometry and its governing equations are

defined following the Washizu theory of thin eircular cyline
drical shells [4].

As for all the major classical theories of thin

shells, the Washizu theory of the thin circular cylindrical

shells are based on the following assumptions:

1.

The material of the circular cylindrical shell is

homogeneous, isotropic and obeys Hooke's law.

The shell thickness is small in comparison with other

dimensions of the shell and its radli of curvature:

i NP 1 (1.1)

Ry

The displacements are small and infinitesimal. They
are such that the assumption of smallness of the slopes
is valid., The changes in curvature and twist are gov-

erncd by linear relationships.

The stress component normal to the middle surface 1s

b



small compared to the other stress components and may

be neglected in the stress-strain relationships
op = O (1.2)

5. The normal to the reference surface of the shell re-
mains normal to it and undergoes no change 1ln length

during deformation:

€ =Y

nn xn = Yen

=0 (1.3)
6. Rotary inertia and transverse shear in the shell are

negligible.

The curvilinear coordinates x and 6 are lines of
principal curvatures of the middle surface of the shell be-
fore deformation as shown in Fig. 1 and Fig. 2. The strain-
displacement relationships in cylindrical coordinates are

given as:

n
|2
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The stress resultants and stress-moments are de-

fined in the sense of Novozhilov [5], (Fig. 3 and Fig. 4):

Eh
N, &8 ———— (e_ + ve_)
X (1+v2) 0
Eh
N, = (e, + ve_ )

N = Eh
x6 2(1+v) Yxo



N, = =i ( +h2 K. o)
ex | 2(i1+vy ‘Yxo T Ba “xe

Eh3
M M, =
xe ox 12!I+v5 X8
(1.5)
M, = —Eb’ (&, + v &)
X 1p(1-vd) X 6
EhS

The Washizu matrix operator is defined by Leissak
[6] as:

2

l2a
where:

(Lp_y] is the Donnell-Mushtari matrix operator,
Leissa's eq.(2.7).

¥The pgoverning equations of the motion are those
given by Leissa [6] in his monograph of the "Vibration
of Shells",




[LMOD] is the modifying matrix operator,
Leissa's eq.(2.9a).

[Lil is the matrix operator containing the add-
itional terms which account for the initial

stresses, Leissa's eq.(3.101lc).

K= ——-—Eh (107)
1-v o

In the matrix operator [L], all terms in the two first
rows have been multiplied by "=1" so that one can obtaln a
symmetric matrix when the space variation 1s elimlinated.

The Donnell-Mushtarl operator is:

22 (a-v) 32 ) a® ol
as2 2 aa2 2 4590 98
2 2
(1-v°) _2 3
+p a- —s ]
8 E at2
(L. .] = (1+v) _3° [- 1-y) 32 _ 22 __9
D-M 2 9500 2 g2 ;:E 20
2 2
(1-v) 2 9
+p a ]
8 22
2 2
_2 d i, (A=vS) 2 3
T T 14k9 +ps-—E a 3
ot
- (1.8) =




where:

2

=3 -
98

The modifying Washlzu operator:

v--—é"i'—-—

na
n

d 3
938 90

P
a 3%

0 0
(Lo ] 0 2(1 )"2 22
= - -\’ e g STEE—
MOD aB2 ae2
3 3
3 )
0 -(2-v) -
25220 203

The prestress Washlzu operator is:

(1.9)
0
3 3
(2=-v) AP e
38%20  28°
0
(1.10)
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-l 0 0
- 1 13 _ .y 2
[L1] 0 -A + Ne I:-2Ne T 2Nxe S
i
_aNxe]
a8
13 1 3 i
0 [zneﬁ'*wxeas -::u-lsl6
1
. aNxe .
98
L i
(1.11)
where
2 2
- 2 13 1 35 1 )
4 a8 (Nx as) + Ne ae2 * Nxe 9596
? 1 2
* 35 (Nye 39 ) (1.12)

When the initial motion 1is axisymmetric and of

1 1 1
o = 0, Ny and Ny

coordinates s and 6, then the Washlzu prestress operator

breathing mode, 1.e., N independent of the

reduces to



b 2

X 382
(1,1 = 0
0
-

ol 28
8 502
2
1 3 1
x as2 9

11

(1.13)

The equatlons of the perturbed motlon are then given

in matrix form ast

luw

2’ 1 4
(L] (v } =3Is
kw
where

T 0 o0
[S] = 0 0
L 0 0

(1.14)

(1.15)
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The radial foreing pressure Pp 1s positive outwards, 1l.e.
consistent with the radial displacement w. The tangential
components P.sPg of the lateral pressure are neglected when
infinitesimal deflectlions of the shell midsurface are con-

sidered.

i
X

ants in the breathing motion which is assumed to be the

1
and Ne

The membrane forces N are the stress result-
primary motion in this analysis.

Eq.(1.14), in which the operator [L] i1s defined in
eq.(1.6), represent the superimposed motion or the per-
turbed motion of the shell. They result from the pertur-
bation of the initial motion. The displacements u, v, w aré
the additional displacements due to infinitesimal distur-
bances of the origlnal motlon.

To obtain the equations of motion of the free
vibrations of the shell in vacuo, one has to drop out the

prestress matrix operator [L1] in eq.(1.6) and to set p, = 0.

It follows that:

p \
u ) u ( 0
‘ n®
(Lol v r + I;;g [Lyop] { v = {0 ¢
W W 0
' s \ L J
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The purpose of this work is to investigate the
parametric stability of a circular cylindrical shell vi-
brating in an acoustic medium. The fluid effects are re-
flected by the generalized lateral pressure p,, in eq.(1.14).
They should be known beforehand and included in the govern-
ing equations of the perturbed motlon. ;

Therefore the fluild effects upon a vibrating shell are
reviewed in Chapter II and the prestress quantities are '
established in Chapter III before the solution of the per-
turbed motion 1is sought.



CHAPTER IIX
FLUID EQUATIONS

The fluld equations are developed 1n cylindrical co-
ordinates in the foregoing following Junger [13, 14]. This
toplc 1s of great importance when one considers the inter-
action of the fluid on the vlbration of a thin shell oscil-
lating in an acoustic medium. The fluid and the shell will
be connected by the boundary conditions at their interfaces.

The Infinitely long thin c¢ircular cylindrical shell
is freely suspended in an homogeneous, compressible and
invisceid fluid of an infinite extent. As a consequence the
fluid medium will be governed by the linear Laplace equation
whose only solution of interest here 1s an outgoing wave
(see Morse and Ingard [15]).

In cylindrical coordinates the Laplace equation is:

2 2 2 2
3% 1o 1 9°¢ 3¢ 1 378 (2.1)
ape T or | 2 ge2 T i@ 2 52

where ¢ and ¢ are respectively the velocity potential and

the sound veloclty of the fluid medium.

14
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The velocity of the fluid in cylindrical coordinates
is the negatlive of the gradlent of the veloclty potential:

v = - grad ¢ (2.2)

In component form; the velocity 1is:

O]
V1" " ax
1l 3¢
v2=-F.§§' (2.3)
¢
V3 = " 3r

The axial and circumferential components of the fluid
velocity vector may be neglected when the displacements of
the fluid and shell at their interface are small and in-
finitesimal. In this case the velocity of the fluld reduces

to the radial component:

= - 2% (2.4)

It follows that the boundary conditions of the fluld

medlium at the interface and at infinite become:
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a. The radial velocity of the fluid particle is equal to
the radial velocity of the shell particle at the
point of contact, eq.(2.U):

woe -3 (2.5)

r Jr=a

b. The acoustic pressure exerted on the shell by the
surrounding medlum is the pressure at r=a along the

normal of the shell, (Fig. 5).
11
Q=0 3 |r=a (2.6)

¢. The radial veloclty of the fluld at Infinity must
vanish so that its kinetlc energy remains finite

there.

- 3

=0
T (2.7)

=

The displacement patterns of an infinitely long

circular cylindrical shell are those assumed by Leissa®* [6]:
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L ) o
u= J J u__ cos né cos —
m=0 n=0 " L

ve J J v sin ne sin
m=0 n=0 ™

:-l?.
4

w= Y Y w_ cosnesin
m=0 n=0 ™1

]

(2.8)

These displacements are such that

a.

They are periodic of period 2w and continuous in the

circumferential direction 6,

The origin of the circumferential coordinate ¢ 1is
chosen at a particular point so that the ecircum-

ferential phase angle 1s zero.

The form of solution eq. 2.8 assumes that the time
and spatial variables are separable, giving rise to

normal modes executing simple harmonic motlon,

%lelssa's trial displacements for an infinitely long

circular shell are defined in section 2.2 of reference [6]
on page 37.
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the period and phase of the motion being the same for
all points on the shell.

d. The displacement eq. 2.8 1s issued from a complete

Fourier Series in the variable x., But here only
one portion of the solution has been used because of
the linearity of the equations of motions which in-
sures the factorization of terms containing x or s,
6 and t out of each equation. The equations of motion
must be satisfied for all values s, 8, ¢ allowed to
vary independently.

Incidentally these displacements also satisfy the boundary

conditions of the simply supported cylindrical shell.
Because of the boundary condition eq.(2.5), t

velocity potential ¢ is:

¢ = E [OAmn(t)¢ (r) cos no sin E%E (2.9)

m=e(Q n=

Subsequently, the acoustic pressure becomes because of

eq.(2.6):

Q= J I Q, ¢os né sin E%E (2.10)
m=0 n=0
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In free vibration the function Amn(t) has the form:

= & edub (2.11)
Amn(t) Amne

Inserting eq.{(2.9) and eq.(2.11l) into eq.(2.1), one obtains
a Bessel equatlion after collecting terms of the same harmonic
functlons since the solution must be true for all x, 6, and

the time, ¢:

2
C 3¢ 2
mn . 1 _'mn n 2 =
L R N R R B ] 0 (2.12)
o r
in which
K8 = W _ mﬂ)2 (2.13)
mo L2 L *

The solution of eq.(2.12) leading to an outgoing wave
is the Hankel's function of the second kind [16]:

o (k r) = annéz’(kmr) (2.14)
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where

(2) -

Hn (kmr) Jn(kmr) - JNn(km?)

J = =/<T

Jn(kmr) i1s the Bessel functions of order n.

Nn(kmr) is the Neumann functions of order n.

ko = w/c; an = constant |

(2.15)

Definitions:

X =k a m=90

c  ° (2.16)

Upon satisfying eq.(2.5), one obtains the velocity

potential as:

© ® -ﬁmnﬂgz)(kmr)

n=0 m=1 dﬁéﬁ)(xm)
k
m Tk, ) (2.17)

m

. mrx

cos no sin
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And upon inserting eq.(2.17) into eq.(2.6), one gets the

acoustic pressure as:

o o 12k p) -

Q= -p ) mn_ M cos no sin X
n=o m=1  aH’ %’ (x ) L
km dikmrj
(2.18)
which may also be written as:
. (2)
o = pe(=J)xw_H'(k r)
Q= o Tg)n L_ cos no sin E%E
n=0 m=1l dHn (kmr)
X
m d(kmr)
(2.19)
where
w = xoc/a
W = b sin uttec cos wl
mn m m (2.20)

Therefore the acoustic impedance is defined for each mode of
vibration as the ratio of the Fourler coefficlents of the

acoustic pressure and radial velocity:
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Q
z2 (x )= 2 (2.21)

In complex form the acoustic impedance 1s:

Zmn(kmr) = an(kmr) + Jxmn(kmr) (2.22)
in which
(2)
-Jx H (k_r)
emn(kmr) + Jxmn(kmr) = . nfﬁ) "
dHn (xm)
xm aikmrf
(2.23)

The resistance emn(kmr) and the reactance xmn(kmr) are given
as:

1. km is real:

-xo[Jn(kmr)J;(xm)+Nn(kmf)N;(xm)]

X (Kp?') = 2

(2)
aH (xm)

J(m EtEmrS
(2.24)

and
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. '
xo[Jn(kmr)Nn(xm)-Nn(kmr)JA(xm)]

(k. r) =
mn' m 2
dHéa)(xm)
xm d(kmri
(2.25).
2. km is imaginary:
-x. K _(Jk_|r)
Xmn (P = . n' -
*m Knclxml) (2.26)

where Kn(lkmlr) is the modified Bessel function of order n,

and

O (kpr) = 0 (2.27)

Upon inserting eq.(2.20) and eq.(2.22) into eq.(2.18),

one obtains the real part as:

Q.. = -péw[bmnxmn(xm) + ¢ 0 (x )] sin wt

mn mn mn' m

) - bmnemn(xm)] cos ut

-pcu[cmnxmn(xm

(2.28)
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The above function may also be written as:

= 28 X (x ).w. + pco (x )":l (2.29)

an w "mn°  m° mn mn" m° mn

In the light of eq.(2.29), one may easily conclude
that the fluld effects on the shell are of two types:

1. One is to add a virtual mass to the vibrating shell
or to decrease its stiffness, It means that the
virtual mass decreases the natural frequency of the

shell when submerged in an acoustic medium:

(x ) (2.30)

2., Another is to introduce a damping effect of viscous
type. It means that the energy radiated in an

acoustic medium of infinite extent 1s not recoverable:

Cp = pc 0 (x) (2.31)

The plots of the reactance and resistance functions
are given by Junger in reference [13, 14], for L/ma = small
and L/ma = «, The dlagrams of these functions taken from
Junger [13, 14] for the circumferentlal wave numbers

(n=0,2,6) are illustrated in Fig. 6 through Fig. 9.



CHAPTER III
THE AXISYMMETRIC BREATHING MOTION

The solution of the perturbed equatlons of Chapter I
requires one to determine the prestress forces in the primary
motion beforehand. For this purpose one shall consider the
axlsymmetric breathing motion of an infiniltely long circular
cylindrical shell as the primary motion. Such a motion 1s
independent of the circumferential angle 6,

The breathing motion‘pf an infinitely long circular
cylindrical shell is characterized by " n=0 ":

we wo(t)
(3.1)

Ce=

Yo
a
It 1s also assumed that there is no motion in the axlal dl-
rection during the breathing motlon.
The equation of the breathing motion may be deduced

from eq.{1.16) in which the prestress operator 1s set equal

to zero:

25
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pghii, + S5 w (3.2)

in which Pro is the total lateral pressure acting on the
shell.

The radial displacement and the lateral pressure are
positive outwards (Fig. 5). Since the physical quantlties
are independent of the axlal direction, 1t follows:

1 Kv
Nx B == w(t)

(3.3)
i1 _K
Ne = a' W(t)
The lateral pressure consists of two elements:
1. The excitling internal pressure:
p + q cos wut (3.4)

2. The radiated pressure due to the fluild effects:

Q (3.5)

Hence the total lateral pressure 1s (see Fig. 5):

p+qcos ut -~ Q (3.6)
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Then eq.(3.2) becomes:

W X -
pghv + LY p+q cos uwt - Q (3.7)

The steady state solution of eq.(3.7) is obtained by

assuming a trial solution_of the form:
W, = A+ Bcos ut + C sin wt (3.8)

Upon substituting eq.(3.8) into eq.(3.7) and taking

in account eq.(2.22), one may write after collecting terms:

aB + b,C = g (3.9)

in which

M, = &y (y) (3.10)
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The solution of eq.(3.9) i1s obtalned using Cramer's

method:
a.,q
1
B =~
(3.11)
b,q
1
C= %
in which
= al 2
§ = aj + bJ (3.12)
Therefore the radial displacement w becomes:
. aa
w, = %— + %‘; cos (wt=y) (3.13)
in whilch
b
-1,71
¢ = tan (=)
8
(3.14)

i 2 2\%
§¢ = (a1 + bl)

It follows that the membrane forces become:
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1 K )
Ng = pa + ;—‘:,; cos(wt. ¥)

(3.15)

= uN

@ >



CHAPTER IV
STABILITY OF MATHIEU'S EQUATIONS

The equations of the perturbéd motion of a dircular

eylindrical shell vibrating under the actlion of an harmon-~

ically varying lateral pressure were developed in Chapter I.

The prestress forces were established in Chapter III in the

case of an axisymmetric breathing motion. The fluld effects

which must be included as a forcing pressure in the perturb-

ed motion may be found following a similar approach as 1n

Chapter II.

To obtain the equations of the perturbed motion of

the circular cylindrical shell, one has:

l.

To insert the displacement pattern eq.(2.8) into
eq.(1l.14).

i

1 and Ne

X
by thelr actual values, eq.(3.15) into eq.(1.24).

To replace the prestress membrane forces N

To introduce the lateral additional pressure into

eq.{1.14) due to the fluid effects upon an infin-
itesimal perturbation of the breathing motion of
the shell.

30
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The radlal acoustic pressure coefficlent 1s easily
obtainable from eq.(2.29) in terms of eq.(2.30), eq.(2.31),
since 1t 1s proportional to the acceleration and velocity

of the coefficient of the radial displacement, Wen®

an = Mfmnwmn + cfmnwmn (4.1)

where the quantitles M and cfmn are functions to be

fmn

determined when the trizl solution of the perturbed equations

of motion 1s known. Mfmn is the reactance and Cfmn the
resistance. In matrix form eq.{4.l) becomes:
pa = Mrmn Su+ Cf‘mn Sy (4.2)
in which
“mn
u=§8 von ¢
W
L ™
0 0 0
s=] 0 0 0 (4.3)
0 0 1
. .J
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L prl)
f ) P 3
Px1 0
) Pg1 I = 1 0o ?
.prl J kanJ

Hence upon following the steps lndicated above and
making use of eq.(4.2), one obtains the governing equations
of the perturbed motion of a circular cylindrical shell vi-

brating in an acoustic medium as:

- K - - K -
pgh Mu + ;f A u + [aptBq cos(ut-y)]P; u= =Ms S u = Cp Su
(4.4)

in which the inertla matrix M, the stiffness matrix A and the

initlal stress matrix P, are defined as:

[1 o o]
M= 6 1 0
6o 0 1
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- -
831 212 3
A=lay 8 253
831 232 3334
(4.5)
[* -
pll 0 0
Bi=] © Pop Po3
0 p p
23 22
, i

and the coefficients « and B are deflned as:

)
n
o=

B E —t
adst

The coefflcients of the above matrices are given below. The
coefficlents of the stiffness matrix A are:

. (3%5)2 + (1-v) n?

811 )

< . (14v) . mra
8y = =~ n(7)
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. . y(0ra
23 (%
897 F 232
2
= (1-v),mra 2, 2, h mra2,. 2
8pp =~z () A —5l2(1=e) (LR T
12a
a.. = n + h [ (2-v)n(Mi2)24537
23 1282 L
a32 = a23

h mna mra,2, U
a =1+——§[( )+2( Y4n ' )
3 12a (h.6)

The coefficients of the initial prestress matrix ?1 are:

pll - (mﬂa) + n2
Pop ® 1 + 0% + (EI2)2 (4.7)
p23 = 2n

Eq.(4.4) is a system of three linear differentlal
equations of Hill-Mathieu's type.
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In view of Chapter XIV of Bolotin [3], eq.(4.4) must
be reduced to the standard form before attempting any
Mathieu's solution. The idea is to use the modal matrix of
the free vibration of the shell in vacuc so that the inertia
and stiffness matrices will become uncouple.

The elgenvalues of the free vibration of the shell in

vacuo are obtalned by solving the characteristic determinant:

- 2 -
8y9-A P 233
a a -Az a = 0
21 22 23
2
3 - (4.8)
in which:
wg = K/pshaz (4.8)
22 = (u/uy)? (4.9)

The solution of eq.(4.8) ylelds three eigenvalues:

Ay > Ay > A3 (4.10)
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to which respectively correspond the three eigenvectors:

(o L) o)

(4.11)

It follows that the modal matrix of the free vibratlon in

-tla} o] 1o

-G

21

Gap

23

G

G

31

32

33

(4.12)

In view of the modal matrix, the displacement is

vacuo 1is:
that 1s:
[
€11
G = |G
Gy3
defined

=1

1~

<1

(4.13)
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in which ¥ is the principal or normal coordinate:

=4y, ¢ | (4.14)

<l

Eq.(4.4) may also be written as:

2
1 < - -
S Mu+ Au+ %T LaptBq cos(ut-y)] B) u =
Yo
2 X 2 .
a - g -
=% Memn 3U - K Cpn B0

(4.15)

Upon substituting eq.(4.13) into eq.(4.15) and

multiplying both sides of the resulting equations from left

T

by the transpose of the modal matrlix G, one obtains after

multiplying again each side from left by AIlz

CY+EY + %{' [ap*8q cos(ut~¢)] B ¥ =

* e

g2 -
tmm EY T o OV

]
X
=

(4.16)



in which:

G2
@ = 1%,
|1
QI'QTQQ
ky
A, = 0
o
I=¢ 8¢
r
m
1= [ o
0

21

22

38

(4.17)



| pshaa -1
¢r—x— 4 1
r L
3 0 0
0
1
g = 0 —lf 0
Ry
1
0 0
"
] -
1 0 0
g = 0 1 0
0 0 1
P= A;l {QT 1:1 9 }
i
a;,7K, 9127%)
B fan/ky 97k
in/ky 9327%3
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(4.17)

QQ3/k2

q433/K3

(4.18)
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A2 = (uy/u)? (4.18)

1/kq l/kl l/k1

"
n
-
~
~
o

l/k2 1/k2

l/k3 l/k3 l/k3

(4.19)

The transformed equations eq.{(4.16), written in the
standard form, are also-a system of three linear differ~ '
ential equations of Hill-Mathleu's type. The theory of
Floquet still applies in this case [3]). Consequently the
boundaries of the instability reglons correspond to periodic
solutions of eq.(4.16) with period 2nx/w and 4w/w. Although
the presence of the damping effect usually leads to the
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consideration of the first instabllity region as the region
of any major significance, compared to regions of higher
order, 1t 1s sometimes convenient to have this damping
negligible for computational purposes in order to reduce the
s8lze of the characteristic determinant. If the arguments of
the Bessel functions are imaginary, the acoustlc resistance
1s identically zero. Therefore the first reglon of in-
stability, called also principal region of instability, is
not necessarily the critical one untll actual evaluations of
the higher regions of Iinstability are made to assess the
effect of the acoustic reactance and resistance,

The present 1n#estigation is restricted to the de-
termination of the fluid effects upon the principal reglon
of instability, which corresponds to a periodic solution
of eq.(4.16) with period 4n/u:

w

y= 1 a, sin z(ut=y) + J b, cos =(ut-y)
k=1,3,5 k € k=1,3,5 k 2

(4.20)

At this point one may determine the Fourier coefficient
of the acoustic pressure Q. To obtain this functlon, one

makes the following changes in eq.(2.28):
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a. In the harmonic function

ot -+ % (ut=y)

b. In the other factors

k
w*i-w

The Fouriler coefficlent of the radial displacement w is
given in view of eq.(4.13) and eq.(4.20) as:

] k L k
sinz(uwt-y) + | L,, cosz(ut=y)
2 Ki1,3,5 2k 002

W L

=
mn k=1,3,5 1k

(4.21)

then the Fourier coefficlent of the acoustlc pressure Q 1s

given as:

Quk) = = 25 T [kDg,x

+ kLakeéﬁ)(xm)]sin %(wt-w)

. 2t ¥ [KL., x %) (x )
2 k£1,3,5 2Kk mn m

- kL (k)(xm)]cos %(mt-w)

lkemn
(4,22)
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in which

2 2,2
xc (k) e Kow a8 (mna)e

uca L

(4,23)

= kua
Xo (k) 2¢C

In view of equation eq.(2.29), the Fourier co-
efficient of the acoustic pressure eq.(4.22) may be written

as:

Qy, = ﬁ; (k)(x )w + pceéﬁ)(xm)&mn

(4.24)

Therefore the acoustic reactance and resistance functions

Mrmn and Crmn become:
= wlk) o 200 (k)
Mfmn M -E_ mn (xm)
(4.25)
cfmn = Déﬁ) = pco(k)(x )

The Mathieu equations eq.(4.16) may then be

written because of eq.(4.25) as:



by

2 2 .
(k) 2 b (k) a€ o =
{9 ¥ an K Fyvy ¢ Dmn K £y

a® -
+ { E + 3 [ap+gq cos(ut-y) 1P } y=0
| (4.26)

Inserting eq.(4.20) into eq.(4.26), one obtains after

collecting the coefficients of the same harmoniec function:

2 2 2 2
51{'%9'%”;3)%?*@*%“??
2 2
2 w pfl) a_
'ﬁf"q?} ~by F 0’ ¥ F

2

; (4.27)

| L +by C
2 2 2
-4 Méi) %F F+E+ %F apP

(4,28)
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k= 3,5,... . (4.29)

H o~
b= -
S®
="
[Rrs )
+
(o3
- !
Py,
]
-
n
DII\J
Q2

k= 3,5, ... (4,30)

The set of eq.(4.27) through eq.(l4.30) represents a
system of a double‘infinite homogeneous algebraic equations
with double infinite unknowns 2, and Ek (k=1,3, «o. =),

For non-trivial solution, the determinant of the

coefficients must vanish. It may be shown that such infinite



determinant is convergent [16].
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A first approximation of the infinite determlinant

corresponds to the harmonic solution:

- e T wt-'l,b - wb=v
y=a sin(-ﬁ- ) + by cos(-—ﬁ—-) (4,31)
It follows that this determinant 1s{
T “H2 |
=0 (4.32) ;
Hyo Hap |
where
2
=wpll)e
312 50m T F
2 2 2
s . W .u w(l) a
By =7 C-F My TEHE
.2 2
‘g oep - 5
2 2 2
- . U s (1) &
Hyp == C- T My, TEHE
2 2
i A A o

(4.33)



47

The matrix 312 represents the damping effects of the fluld
medium.

The characteristic determinant corresponding to the
principal regions of instabillty may be reduced to a de=-
terminant of lower order if the damping effects are insig-

nificant or vanishing. In this case one obtains after ne-
glecting the matrix 512’

il - [u] -

In terms of eq.(l4.33), the above determinants become:

2 2 2 2
"“T‘E ¥ FEE %—hpt%‘*)l:l-o
" (4.34)

One deflines the .following:

2 2 2
L LW W (1) _a°
%11 H;? T Yo ky 1
1
2 32 Bqll

(4.35)



031 -

2 2 Bq
a a 12
Rky “Pd12 * Ry 72 9
%12
2 2 Bq
a a 1
Kk, °Pd;3 * Rk, 2 ¢
2 2
w® (1) a
- T Man” R
2 2 Bg
a a 21
Kk, aPdy; * Kk, 2 q
2 2 2
wo_ow (1) =a
1o " Tlm R
2
2 2 8q
a a 22
Rk, aPdoy = Rk, ~2 Q
%21
2 2 8q
B L2 23
Kk, 9Pdp3 * Rk, ~2 1
2 2
w- L(1) _at
-~ T Y ks

48
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2 2 Bq
a a 1
Rics ePd3y = Rig —2 q
%31
2 2 Bq
a a 2
Kic *Pd3p = Ry 72 q
P ¢ D
g2 T “mn K 3
3
a2 a2 Bq33 q

® Kk, P33 ¢ Rk, 2

w

(4.35)

If the static pressure is identically zero, the de-

terminant eq.(4.34) becomes after making use of eq.(4.35):

a37%8929
LPIMLEIE

u31+531q

008950 ay3+84 50
yp*By00 PEMPES =0
a32+8320 433633

(4,36)

The expansion of the above determinant ylelds a

characterlstic equation in terms of the vibratory pressure q,



the static pressure being identically zero:

3 2 -
P31q +P32q +P33q+P3u 0

where:

Pyy ™ B11800B33781183082348 1060383

=BypBo1B33%By3B518357813B3180;

Pyo = 7782283379171832823%811%206833
+811822%337811%328237811832%23
ta)5873831701801 83348120383
+812P239317812%218337F12821%33
tay3By18357013837800%8739031 832

+813821%307813931822787 3831 %22

50

(4.37)

(4.38)
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P33 = 911%2833%9131P22%337%11%32%23
=811832%23%811%22%337811%32%3
+a12“2333'1”“12523“31'“12521“33
~812%21P33%B10903%317872921%33
+u13“21332*“13”21“32‘“13‘5‘31322
=213831%22%613%21 932781 3931 %02

P

34 =911%22%337%11%32%23%91,2%03%33

B R L A R R S Ak PR e VAP
(4,38)

The eigenbuckling pressure of a long circular
ceylindrical shell under internal lateral pressure 1s de-

fined as [9]:

3, 2
Eh7(n“~1)
P = : (4.39)
N 92a3(1-v9)
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If the ratio v is .defined as:

vl

(4.40)
n
then equation eq.(l4.37) becomes:
P P . P
e s R (4.41)
31'n P31Pn P31Pn

Since the quantitles P31’ P32, P33 and PBM are functions of
the frequencies, one may solve eq.(4.41) for y once the

frequencies are given. Of course y is a dimensionless

vibratory pressure.



CHAPTER V
NUMERICAL ANALYSIS

The aim of this study from the beglinning has been to
determine the conditions under which a shell vibrating in
its breathing motion may loose 1ts stabllity. In other words,
the question is to find a set of parameters for which the
initial motion of the shell i1s stable or unstable. The
governing equations of the perturbed motion developed in the
previous chapters, are valid for any type of circular cylin-
drical shells vihrating in an acoustic medium as well as 1n
vacuo. Of course to obtaln the governing equations of the
shell in vacuo, one has to set the acoustic reactances and
resistances equal to zero.

The analysls undertaﬁen ls restricted to the determin-
ation of the principal reglions of instabllity when the static
pressure is identically zero. It follows that eq. (4.,41) is
the basls of the computations. This equation has been
derived assuming that the acoustic resistance 1s zero or
negligible. The set of parameters used here shows that the
assumption is valid since the arguments of the Bessel func-
tions are imaginary over a good range of the frequency ratio

a, * u/amn, where w and w, are respectively the foreing

53
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frequency of the shell vibrating in vacuo, when the circum-
ferential wave number is n. Table V gives the range of the

parameters a_. for which the Bessel arguments are imaginary.

n
This table, when read at the same time as Fig. 10 through
Fig. 14, shows that the damping effects due to the fluid
medium have no influence upon the principal regions of in-
stabllity. This point is discussed below. From Chapter II,
it is known that the acoustic resistance is identically zero
when the arguments of the Bessel funétions are imaginary.

In order to determine the coefflclents of the cubic
algebraic equation eq.(4.41), the following steps must be
‘executed fop each given frequency ratilo a,?

a. Determine the natural frequency W of the vibrating

shell in vacuo. (See Table I).

b. Determine the forcing frequency w given the

frequency ratlo a,

a, = u/2wn

¢. Compute the argument of the acoustic¢ reactance and
resistance functions owing to the perturbed motion

using eq.(2.12) for the breathing motion and eq.(4.22)
for the additional motion

yol xoa xm
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d. Determine the acoustic reactances and resistances:
xoo(yo)’ Goo(yo)

(x_)

xmn(xm) B an m

(1) (1)
an ’ Dmn

e. Calculate the coefficients of the cubic equation

eq.(4,41)

P310 P320 P33: F3y

and the eigenbuckling pressure
1 3%

f. Filnally find the smallest absolute value of the

nondimensional dynamic pressure

Yy = a/p, from eq. (4.41)

A test 1s made to assess the valldity of the equations
developed in the present lnvestigation when these are com-
pared to those derived by Deng and Popelar in reference [2].
The results of the test are plotted in terms of the dimenslon-
less dynamic pressure y versus the frequency ratio a, &5
shown in Fig. 10, The Deng~Popelar analysis corresponds to
L/ma = = while the present study corresponds to L/ma = 100.

The computations are performed over the same range of shell

and fluld parameters when the circumferential wave number 1s



n =6,
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The data used in this chapter for a steel shell and

water are:

a/h = 100
p = 1,94 slug/ft3
pg = 15 slug/ft>

v=20,3

p(1)

mn 0

o
m
o

The variable functions are the circumferential wave number n

and the ratios L/ma.

1.

2.

The analysis of the test as deplcted in Fig. 10 shows:

The agreement between the Deng-Popelar graph and the
graph of the present study 1s very good 1n an acoustic

medium as well as in vacuo.

The principal regions of instability emanate from

“6 = ] in vacuo.

The Deng-Popelar graph (n=6, L/ma==) exhibits an area
of the principal region of instability larger than

the graph (n=6, L/ma=100) in vacuo since the former

has a width larger than the latter at y = 1 or
q/pg = 1.
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4., In an acoustic medium the prinecipal regions of in-
stabllity are shifted towards the left of ag = 1,
The graph (n=6, L/ma==) has a cut=-off at ag = 0.57
while the graph (n=6, L/ma=100) has one at ag = 0.6
in the diagram of y = ag (Fig. 10).

5. The widths of the principal reglons of instability

are larger in vacuo than in an acoustic medium.

6. The acoustic resistance in the perturbed equations
of motion is identically zero and has no effect on

the principal reglon of instability.

The effects of the fluild medium at the parametric
resonance of the principal instability regions are shown in
'Table II and Table III., The results lndicate that the
acoustic medium, here water, has a tendency to shift the
princlpal regions of instability towards the left of the
principal region of instability in vacuo, which exhibits a
cut-off in the plot of y = L3 at a, = 1.

Figure 11 displays the graphs (n=2, L/ma=l) beslde
those of Deng-Popelar (n=2, L/ma=«), Whille the Deng-Popelar
graph and the graph (n=2, L/ma=l) emanate from ay = 1l in
vacuo, the latter exhibits another branch of instabllity at

ay = 0.78, which corresponds to the ordinary resonance of

the breathing motion, In fluild the graph (n=2, L/ma=l) is
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more shifted towards the left of a, = 1 than the graph (n=2,
L/ma=s=), The widths of the principal regions of instabllity
for {(n=2, L/ma=1) are smaller than that of the graph (n=2,
L/ma==) in vacuo as well as in an acoustic medium. Similar
features are exhibited in Fig. 12 for the graph (n=6, L/mazw)
and the graph (n=6, L/ma=l) in fluid and in vacuo; the branch
5ttached to the ordinary resonance in vacuo is out of range
of the parameters used here (“6 = 0,1 to ag = 2.0). The
results of the principal regions of instability for the graph
(n=2, L/ma=2) are illustrated in Fig. 13. Although the
graphs in Fig. 13 present the same characteristics as the
graphs (n=2, L/ma=1) in Fig. 11, the ordinary resonance of
the breathing motion occurs at the right of ay = 1 at

ap * 1.53. The graphs (n=6, L/ma=2) in Fig. 1i4 1llustrate
the same features as graph (n=6, L/ma=l) in Fig. 12.

How does the parametric buckling occur physically at
the principal resonance a, = 1 In vacuo for instance? Since
the shell particles are assumed to vibrate in their normal
mode executing simple harmonic motion with the period and
phase of the motion being the same for all points on the

shell, the parametric buckling 1s explained as follows:

a. Uhen the exciting internal pressure 1ls compressed
going from zero to its negative maximum and from thils

maximum to zero, the shell expands going from zero to
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its posit 1\}e maximum,

b. VWhen the shell starts to go from its positive maximum
to zero, the exciting pressure expands going from
zero to its positive maximum and from this point to
zero, That is the exciting internal pressure helping
the shell to quickly return from its positive maximum
displacement to zero. The internal pressure is
introducing new energy in the system. That is why
the displacement of the shell starts to increase with-

out bound.

Not only the mechanism of parametric buckling occurs
at the principal resonance 1in vacuo, but also 1t occurs at
the principal resonance in an acoustic medium as well as at
any point of the instablility reglon.

Table IV summarizes the important results at the

principal regions of instabllity in a fluld:

a. the values of the cut-off frequency in the plot

q/pn versus a  at q/pn =0,

n
-b, the widths of the instability regions at q/pn = 1,

With the help of Table IV, one sees that there is no clear
rule between the frequency ratlios and the lncrease of the
length-radius ratios L/ma. The lack of rule agaln exlsts

between the widths and the 1ncrease of the ratio L/ma.
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‘The reason 1s that the acoustic reactances, called also
"added mass", are functions of the ratios L/ma. The
1mportance of the "added mass" is exemplified by larger
shifts towards the left of a, = 1, exhibited by the prin-
clpal reglon of instability in an acoustic medium.

To obtain the Deng~Popelar results, one has to let
L/mago to =+ Then the arguments of the Bessel functions
are real. Consequently the damping effects may become
important. But 1f L/magoes to zero, these arguments become
imaginary and tend towards J= where ] = -/=1. Therefore the
acoustlc reactance may reach 1ts maximum and then tends to-
wards the value zero. In this case.the "added mass" tending
towards zero leads to no shift at all of the principal reglon
of instabllity in an acoustic medium.

The motion of the shell will be stable or unstable
depending upon the fact that a representative point in this
space falls either outside or inside the boundary reglons of
instability. If it falls inside, then the displacements
will grow without limit. If it falls outside, then the
motion will be a steady state motion. Although the magnlitude
of the statlic pressure is the determining factor in the
static stability analysis, the frequency ratios are the
characteristic elements of the dynamic stabllity. It means

that the dynamic pressure q may exceed the static buckling
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pressure p, without causing a loss of stabllity as long as
the representative point is outside the reglion of

instability.



CONCLUSION

In summary, the discussion of the graphs of principal

regions of instabllity has shown that:

a.

c.

d.

The "added mass" owing to the fluid medium has the
effect of shifting the principal region of instabllity
towards the left of @, = 1 in the plots of q/pn'

versus un.

The widths of the principal regions of instability
in rluid'médium are smaller than those in vacuo for

the same range of parameters. '

The effects of the ratlos L/ma are significant for
the shifts of the prineipal reglons of instability

in an acoustic medium.

The correlation of L/ma and ratlos a, or the widths
of the principal reglion of instabllity cannot be
established clearly for lack of sufficient infor-

mation.
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TABLE 1

Frequency Parameters of a Circular Cylindrical Thin Shell:

ps/p = 7,7, v=0.3, a/h = 100, wy = 2134.798 rad/sec.

"
L/ma n Al Ay A3
1 2 3.76 2.2678 0.6527
1 6 6.8187 4.,0392 0.238696
2 2 2.7334 1.4662 0.327206
2 6 6.1353 3.564 0.10256
100 6 6.0824 3.5497 0.099655

* Ai = (wi/mo)



TABLE Il
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Frequency Ratlios and Arguments of Bessel's Functlons at the
Principal Resonance: pg/p = 7.7, v = 0.3, a/h = 100,

e/cg = 0.282, w, = 2134,.798 rad/sec., p = 0, Déi) z 0
]
n L/ma Vo © 2%, X, Xn a,. = 5;;
6 100 0.424 0.212 0.21 0.6
2 2 0.974 0.487 -1.493 0.42
6 2 0.128 0.064 -1.57J 0.18
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TABLE III

Dimensionless Forcing Frequencies at the Principal Parametric
Resonance: p./p = 7.7, v = 0.3, ¢/cg = 0.282, a/h = 100,

wy = 2134.798 rad/sec., p = 0, Déi) =0

#
n L/ma ay Ag w/w,
6 100 0.6 0.099655 - 0.12
2 1 0.35 0.6527 0.U56
6 ' 1 0.34 0.238696 0,167
2 2 0.42 0.327206 0.275
6 2 0.18 0.10256 0.037
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TABLE IV

Frequency Ratlos at the Principal. Resonance and Vidths of
the Princlpal Reglons of Instability at y = 1: ps/p = 7.7,
v=20.3,c/e, = 0.282, a/h = 100, w_ = 2134,798 rad/sec.,

o
p 0, Déi) =0
n L/ma LI wildth at y = 1
2 1 0.35 1.0
2 2 0.42 0.8
2 ol 0.ho 1.7
6 l 0.34 1.0
6 2 0.18 1.7
6 100 0.6 3.5
6 ok 0.58 3.0
L1

%# L/ma = « are results found by Deng and Popelar in Ref.[2].



TABLE V

The Range of Vanishing Acoustic Resistance

67

n L/ma (a,)y=(ap ), (%)
6 100 0.1 - 2,0 0
2 1 0.1 - 1.3 0
6 1l 0.1 - 2.0 0
2 2 0.1 - 1.3 0
6 2 0.1 - 2,0 0
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Fig.1

Shell Geonetry and Coordinate system and
Displacenents.
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Fige 2

Cross section of Cylindrical Shell.



Fig- 3

Membrane Forces and Sign Convention.



Stress loments and Sign Conventione
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p+q coswt
£ _ £
w
shell
¢
31 = internal acoustic medium.
£2 = external acoustic mediume.
p+q coswt =internal acoustic pressure.
Q ~= external acoustic pressurce

Fig.d

Direetions of the Internal ond External Acoustic
Pressureg.
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