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ABSTRACT

The re p re se n ta t io n  of e lec tro m agn e t ic  fields by multipole  

expansions and the use  of such expansions in the approx im ate  

solution of sca t te r in g  p rob lem s is  d isc u sse d .  The p rob lem  of 

rep resen t in g  solutions of M ax w e l l 's  equations in homogeneous 

iso trop ic  regions is c o n s id e red  in C hapter  I. Severa l  methods 

for obtaining multipole expansions f ro m  e i th e r  a knowledge of the 

sou rce  d is tr ibu t ion  o r  the values of the tangential fields ov e r  a 

c lo sed  s u r fa c e ,  o r  the field components  and all th e i r  d e r iva t ives  

at a single point a r e  d esc r ib ed .  The application of multipole  

fields in the approx im ate  solution of s ingle-body sca t te r ing  

p rob lem s is  d is c u s se d  in Chapter  II. A method which obtains 

the bes t  approx im ation  to a m atch  of tangentia l field components  

at the s c a t t e r e r  su r face  is d e sc r ib ed .  The c a s e  of a pe rfec t ly  

conducting s c a t t e r e r  is  con s ide red ,  and it is  shown that the 

convergence  of f ie ld -m atch ing  techniques can  be ve r i f ied  and a 

bound on the m ean  sq u are  e r r o r  in the s c a t t e r e d  field obtained 

if a c e r ta in  inequali ty  can  be de r iv ed .  Such an inequality is 

d e r ived  for a s p h e r ic a l  sca t te r in g  su rface .

The applica tion  of approx im ate  field matching techniques 

is i l lu s t r a te d  for  the perfec t ly  conducting p ro la te  and oblate



spheroid  in C hapter  III. F i r s t  and second o rd e r  solutions a re  

obtained for  a p ro la te  sphero id  with 0. 35 and 0. 28 X. axes  and 

for an oblate sphero id  of 0. 42 and 0. 35 \  axes  i l lum ina ted  by a 

plane e lec trom agne t ic  wave incident along the s y m m e try  axis . 

The ca lcu la ted  sca t te r ing  c r o s s - s e c t io n s  at angles of 30°, 60°, 

90° and 1 2 0 °  f ro m  the axis  a r e  c o m p a red  with exper im en ta l ly  

d e te rm in ed  values  and it is concluded that the approx im ation  

is accu ra te  to within 1 decibel for these  s c a t t e r e r s .
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CHAPTER I
THE REPRESENTATION OF ELECTROMAGNETIC FIELDS

A. INTRODUCTION

The interaction between electromagnetic  waves and m ater ia l  

bodies is a subject whose ramifications have engaged theoretical 

physicis ts ,  mathematicians, and e lec tr ica l  engineers over many 

years .  In the analysis of scattering and diffraction problems, a 

formidable a r r a y  of mathematical techniques and concepts have been 

assembled , but the discerning student soon learns  that unless one 

chooses the problem to fit the method, in many cases  no solution 

can be found. This study is concerned with the scattering of 

monochromatic electromagnetic  waves by smooth, finite, perfectly 

conducting bodies. The l i te ra tu re  on this subject is too extensive 

to catalogue here ,  but severa l  comprehensive bibliographies have
1,2

been published. The only finite th ree-dim ensional  shape for

which an exact solution has been obtained is the sphere , and this
3

solution was obtained over fifty years  ago. An exact solution is

defined as one in which the sca t te red  field is given in the form of

a convergent se r ie s  whose coefficients a re  explicit functions of the

s c a t te re r  geometry  and the location and frequency of the source.

Even in this case ,  computation of the sca t te red  field may be difficult

if the se r ies  is slowly convergent, as the l i te ra tu re  on propagation
4 - 1 0

around a spherical  ear th  will a ttes t .
1



The analysis  of sca t te r ing  p rob lem s becomes simplif ied at

e i ther  ex trem e  of the source  spec trum . At v e ry  low frequencies

the j.nterac tion of the field and the body may be cons idered  as a quas.l-

staV.c p ro b le m ; and the e lec tros ta t ic  and magnetosta tic  solutions can

be used to develop a good approximation for harm onic  so u rces .  This

approach was employed by Rayleigh in the c la s s ic  t r e a tm en t  of small

sc a t t e r e r s ,  and this range of s c a t t e r e r  size to wavelength is often
it

ca l led  the Rayleigh region. At v e ry  high frequencies ,  the methods

of geom etr ica l  o r  physical optics may be used to obtain approxim ate

solutions to sca t te r ing  p rob lem s.  In essence ,  the high frequency

approximations t r e a t  the in terac tion  of waves and bodies as  a local

phenomenon, and each p a r t  of the body is a s su m ed  to s c a t te r

ndependently of the field at o ther p a r t s .

The range of s c a t t e r e r  size between these  two ex trem es

may be loosely called  the resonance region. Here the s c a t t e r e r

dimensions a re  com parable  to the wavelength, and a sm all  change

in the body dimensions or the source  frequency may produce much

la r g e r  osc i l la tory  changes in the sc a t te red  field. Scattering from

bodies of this size is perhaps  the m ost  difficult to approxim ate ,

although the prob lem  can be approached from above by extensions

of high frequency approxim ations,  o r  from below by extension of
12  - 1 9

the quas i-s ta t ic  approximation.

2



The goal of this study is the development of methods for 

approximating the solution to scattering problems in finite se r ie s ,  

when the dimensions of the s c a t te re r  a re  of the same o rd e r  as the 

wavelength of the source . The problem will be considered in two 

par ts .  F i r s t ,  the representa t ion  of electromagnetic  fields in 

homogeneous isotropic media by a l inear  combination of basic 

multipole fields will be discussed. The second phase of the problem 

will consider the application of such expansions in various 

scatte ring problems, and methods for evaluating the coefficients 

in a finite se r ies  approximation of the sca t te red  field.

B. RELATIONS BETWEEN ELECTROMAGNETIC 

FIELDS OVER CLOSED SURFACES

A number of useful relations between pa irs  of electromagnetic  

fields of the same frequency are  easily derived from Maxwell1 s 

equations. If two such fields a re  denoted by subscrip ts  1 and 2, 

Maxwell’ s equations for e~ltjt t ime dependence a re

V x_Ej = iojfj H, + Kj , V x E 2 = iuj|i + IC2 ,
( 3)

V x H ]  = J_j -i<ju € E| , V x H2 = J 2 - icje ]£2 .

The vectors  J and IC denote electr ic  and "magnetic"  source cu rren t  

densities, and it is assum ed that the medium is lo s s le s s ,  o r  if 

lossy, that the loss cu r ren ts  a re  accounted for by the use of 

complex values for p and €. Forming appropria te  dot products

3



and combining, it follows that if € and p. a r e  s c a l a r  o r  s y m m e tr ic a l  

m a t r i c e s ,

H2 • V x E j - H ,  • V x E z = H2 * K: - _Hi ’ K z ,
( 2 '/

E 2 * V x H | — E j * V x II2 = E 2 * jJ - - E 1 * J 2 ,

and since V ■ ( A x  B) = B - V x A - A ■ V x B ,

(3; V • ( E 2 x Hi - Ei X H2) = - E 2* J 2+ E -  J>-Hz • Ki + Hj* K2 .

F r o m  the d ivergence th e o re m ,  it follows that for a su r face  S 

bounding a finite volume V of space ,  with outward-poin ting no rm al  n,

( 4; P ( E 2 x Hj - Ej x H2) • n ds = j \  E - • J_2 -E>_ *_Ji + • K2 -

- H2 • KO dv.

If the volume V contains no so u rces ,

(5) jT ( E 2 x Hi - E, x H2) • n ds = 0

On the o ther hand, if the sou rces  of fields 1 and 2 a re  a ll  conta ined 

in the volume V, the d ivergence  th e o re m  can be applied to the 

ex te rna l  region V e x t with S as its inner  su r face  and a la rg e  

concentric  sp h e re  as the outer  su r face .  If the rad ius  R of the 

sphere  Sj^ tends to infinity, application of the rad ia t ion  condition, 

which r e q u i re s  that R |E I and R | h  | r e m a in  bounded as  R tends to 

infinity, and that

( 6 ) I ^  H x n ------------* E
^ e R — 00

on SR . leads to ze ro  con tr ibu tion  f rom  the su r face  Since the



volume in teg ra l  over  is  z e ro ,  the con tr ibu t ion  over  S given

by Eq. (5> m us t  van ish .  It follows that the s u r fa c e  in te g ra l  of 

Eq. (S ' /vanishes p rov ided  the s o u rc e s  of f ie lds  1 and 2 a r e  e n t i re ly  

inside o r  ou ts ide  of S. In addit ion,

w henever  Vj conta ins  the so u rc e s  of f ie ld  1 and V2 conta ins  the 

so u rc e s  of field 2. This  s ta te m e n t  is  one fo rm  of the r e c ip ro c i ty

The su r fa c e  in te g ra l  of Eq. (4) does not van ish  when the 

so u rc e s  of f ie lds 1 and 2 a r e  on opposite  s ides  of the su r fa c e  S. 

In th is  c a se ,

w here  it is  a s s u m e d  that the s o u rc e s  of f ie ld  1 a r e  con ta ined  in  the 

volume Vj en t i re ly  within S, and those  of f ie ld  2 a r e  con ta ined  in 

the volume V2 e n t i r e ly  e x te rn a l  to S. Since the value of the su r fa c e  

in teg ra l  in Eq. O  is  the sam e  fo r  any s u r fa c e  S which s e p a r a t e s  the  

s o u rc e s  of f ie lds 1 and 2 , it m e a s u r e s  a g e n e ra l  r e la t io n  betw een 

the two f ie lds ,  and the nam e " re a c t io n "  has  been su gg es ted  by

in te g ra l  of Eq. ( 8 ) by the sym bol < 1, 2 >g, o r  m o re  g e n e ra l ly ,

(

th e o re m  for  e le c t ro m a g n e t ic  f ie lds ,  o r ig ina l ly  d e r iv e d  by L o r e n tz .20

Kj ) dv =

2 1
R um sey  fo r  th is  quanti ty .  A conc ise  nota t ion  r e p la c e s  the

5



the reac t ion  of field A with field B over  the su rface  S is denoted by 

< A, B>g. Richmond has shown the s ignif icance of Eq. ( 8 ) in t r a n s - 

m  s s ' c n  between antennas in free  space  o r  in the p re se n ce  of s c a t t e r ­

ing bodies,  and the reac t ion  concept has been applied and d .sc u sse d  

by seve ra l  a u th o r s . " 2 <6

It is not poss ib le  to have a n o n -ze ro  field A, due to so u rces  

Inside a c lo sed  su rface  S, which has zero  reac t ion  with all fields 

due to so u rces  outside S, F o r  exam ple , the reac t ion  between A and 

the field of an ex te rn a l  dipole cannot vanish unless  the component 

of the field A p a ra l le l  to the dipole at the e x te r io r  point van ishes .

This follows f ro m  the Tight-hand side of Eq. ( 8 ) , where  the only 

t e r m  contr ibuting to the volume in teg ra l  over  V-> is E^* 1  for an 

e le c t r ic  dipole and K for a magnetic  dipole, where E ^  ,

s the field of A at the dipole. If all such reac t ion  in teg ra ls  vanish, 

the field A m ust  be identically  zero  outside S.

It will be useful to e s tab l ish  an uniqueness th e o re m  which 

s ta te s  that th e re  is  one and only one d is tr ibu tion  of tangentia l  

e lec t r ic  (m agnetic)  field over a c lo sed  surface  S co rrespond ing  to 

a given d is tr ibu tion  of tangential magnetic  (e le c t r ic )  field, 

produced  by so u rces  inside S. The m edium  outside the su r face  S 

m ust  be specif ied , of c o u rs e .  The th eo rem  can be shown to hold 

as  a c o ro l la ry  of a m o re  basic  ex is tence  th e o re m .  A r igo rous

6



proof of such an ex is tence  th e o re m  is  given in R efe rence  2.1. The 

ex is tence  th e o re m  es ta b l i sh e s  in p a r t  that a solution to the s c a t t e r ­

ing problem  ex is ts  fo r  a body with the su rface  S which is a pe r fec t  

conductor of magnetic  o r  e lec t r ic  c u r r e n t .  This im plies  that any 

tangential d is tr ibu t ion  of E 1 due to so u rc e s  outside S can be m atched  

by a field E produced  by a collec tion  of so u rc e s  inside S, since 

the combination of two such fields is n e c e s s a r y  for the solution 

of the sca t te r ing  p rob lem  for a pe r fec t  conductor of elec t r ic i ty ,  

where ( E 1 + E s } x n = 0. S im ila r ly  for any tangentia l d is tr ibu t ion  

of H' se t  up by sou rces  outside S, the re  m ust  ex is t  a se t  of so u rces  

ins .de S which will produce the sam e d is tr ibu t ion ,  since for a 

pe r fec t  conductor of magnetic  c u r r e n t  ( H1 + H9) x n - 0.

Now co n s id e r  two fields over S due to so u rces  inside S 

which produce the sam e tangentia l e lec t r ic  fie ld  on S, but a 

d ifferent tangentia l magnetic  field. It will be shown that th is  leads  

to a con trad ic t ion .  The d ifference between two such fields will be 

a valid solution of M axwell1 s equations outside S, but will have 

zero  tangential e lec t r ic  field with n o n -z e ro  tangential magnetic 

field on S. Its reac t ion  over  S with the field of an a r b i t r a ry  so u rce  

within S m ust  vanish , f rom  Eq. ( 5) . This reac t ion  is jus t

( 9 )  A ^ a x  *?d ) • E  d s  = 0
J S

7



where Hq  is the d ifference  field, and E ^  is the tangentia l field  due 

to an a r b i t r a r y  source  inside  S. But f ro m  the ex is tence  of a 

solution for the sca t te r ing  p rob lem  fo r  a p e r fec t  conductor  with 

su r face  S, E ^  may equally  well r e p r e s e n t  the tangentia l  e le c t r ic  

field of an a r b i t r a r y  sou rce  outside S. It follows that the reac t ion  

of the d ifference field with all sou rces  outside S m ust  be ze ro ,  

and th e re fo re  the d if ference  field is identia l ly  ze ro  outside S .  Due 

to the continuity of tangentia l field com ponents ,  the d ifference field 

is a lso  identically  ze ro  on S. Thus it has been shown that two 

d ifferent d is tr ibu tions  of tangentia l H cannot ex is t  for  the sam e  

d is tr ibu tion  of tangentia l  E over  a c lo sed  su rface  S due to sou rces  

inside S, for a given ex te rn a l  env ironm ent .  A s i m i l a r  proof 

e s ta b l i sh e s  the uniqueness of tangentia l  E, given tangentia l  H.

C. MULTIPOLE FIELDS

1. M athem atica l  D erivation  f rom  Debye Po ten t ia ls

An im por tan t  se t of solutions to M axwell1 s equations a r e

2 8 - 3  3
the so -c a l le d  mult ipole  f ie lds . T hese  c o r re s p o n d  to a funda­

mental  se t of solu tions to the wave equation in s p h e r ic a l  coo rd ina tes ,  

and may be d e r iv ed  read i ly  f ro m  a ra d ia l  H er tz ian  v ec to r  potentia l 

employed by Debye . 3 4

8



In a reg ion  f re e  of so u rc e s ,  the field  vec to rs  B or D can  

be e x p re s s e d  as the c u r l  of a v ec to r  potential I] :

{10} 13 = -iujie V x II ,

o r

r-J
{11} _D̂ = iwpe V x n

If the f i r s t  r e p re s en ta t io n  is chosen ,  since V x E - iwB = 0,

(1 2) V x ( E - k2 II) = 0

for a homogeneous region, w here  p and e a r e  not functions of

position. The constan t  k is equal to <jj^ pe, o r  where  \  is

the wavelength in the medium. The development w here  p or e is 

a. function of posit ion has been given by Ta>, but will not be 

co n s id e red  h e re .  3 3 It follows that El d iffers  f rom  k2n by the 

g rad ien t  of an a r b i t r a r y  s c a la r  U:

(13) El - V U + k 2 II

Substituting in V x H + itoD = 0,

(14) v x v  x n - v u  - k2 n = o .

If II is chosen  to be a  rad ia l  v e c to r  potentia l T. - r  17. in s p h e r ic a l  

co o rd in a tes ,  Eq. {14) becom es

r 1 f  3 /  I I
<15> r ^ a i n e  L 8 9  ( S l n 9 89

f i a2 n i a t  "i
(l6>' -  i  r  d r  89 r 80  J ’  0 '

f  i _  a2 n _ i ay  1  n
( £  (^rsinG 8 r  8$ r  sin  0  8<J> j

9

1 £
sin  0 9<()

r. 'j au , 3
r j + _ + k . n |  = 0 t



where 0, and £  are unit spherical coordinate vectors . ,f  the

911s c a la r  U is  chosen  such that U =• , Eqs. (16, and (17, a re

sat sf ed, and Eq. (15) becomes

a' n i a /  an \  i a n
(18', d S]n 0 3 Q ( s i n  0 ae j  + r :g fn * k V - 0

which can be reduced  to the s c a la r  wave equation in n / r :

(19‘ T • V ( n / r ;  ■+ ( n/ r) - 0.

The potential H is r  t im es  any solution of the s c a l a r  wave equation.

F o u r  types of solution a re  commonly  used:

(*, m
( 20) ugmn = r Jn( k r  ̂ P n ' COS 0* COS ’

( z y ) r emn - r  h n < k r > P ™ < cos 0 ) cos m<i> ,
( 1  fe)

and a co rrespond ing  set no*mn , nomn with cos nnj> rep laced  by 

sin mc|>. The rad ia l  functions jn( kr) and h^  ̂ ( kr)  a re  the spher ica l  

B e sse l  and Hankel functions, and Pj^1 ( c o s  0) denotes the a s so c ia te d  

L egendre  polynomial. The p ro p e r t ie s  of these  functions a re

3 'd isc u sse d  bv S tra t ton ,  and the notation is c o n s is ten t  with b is  work.

The e lec trom agnetic  fields obtained f rom  these  potentia ls  in

cons idera t ion  of Eqs. (10) , (13) and (14) a r e  ca l led  t r a n s v e r s e

magnetic  o r  TM multipole fields:

( 22' —-emn - V x V x ( r  IIem n) ,
o o

C23> « e m n  ~ ^ x <L  nemn> ■
o o

10



The components of these fields in spherical coordinates are given by

n( n+1) fcos m<J> j 
;n( kr) ( cos 9) *jsin m<}> fmn r

i x d 2 x i a ap™ F 0 8  m <t>\
25) JEemn 2.“ r  ^ 0 r  30^ nemn~ r  Zn( k r ) —9q "(sin m<|) J

m
ftemno

- T Zn(r sin 9
m | 6in m<j)

( cos ®) j^cos m<()}
( 27) II * r = 0 ' ' —emn —

(28) H • 9 = -—emn —
-lu)€
r  sin 0

s a
< w ) n emn “ —

imu,€
sin L

cos md-

(29) H—emn
o

_ aDm r o s  mo .
x i«€ / J L \  „ . , ,  % n J L
i  r ( 39 ) emn 1<i>€ Zn( kr; -g§ \ s  in m<)> J

The genera l ized  spher ica l  Besse l  function zn( kr) is used to denote

(i )j n ( kr) for type (1) fields and hn {kr) for type (2) f ie lds. The
A

symbol Zn( kr) denotes the derivative of the product k r  zn ( kr) 

with respec t  to k r .  The use of the t e r m  TM to denote these  fields 

is a consequence of Eq. ( 27) . A corresponding  set of t r a n s v e r s e  

e lec tr ic  or  TE fields can be obtained from the choice of vec tor  

potential given in Eq. (11). The re su l t  can be obtained f rom  Eqs.

( 22-29) by replacing E by H and H by -E everyw here ,  as well as

11



interchanging fi and €. This set of fields also sa t is f ies  Maxwell* s 

equations, and form s another independent set of m u l t5pole fields,

distinguish the TE fields from  the TM.

The multipole fields of types (1) and (2) differ in the ir  

behavior at la rge  and sm all  d istances from the origin , because of 

different choic es of the radial function. F ields of type { 2) sa tisfy  

the radiation condition, becoming spher ica l  waves at la rge  

distances from  the origin, while those of type (1) do not. F ields 

of type ( 1) a re  finite at the origin, while those of type ( 2 ) become 

infinite as the origin is approached. In a genera l  sense ,  fields 

of type ( 2 ) rep resen t  the effects of sources  at the origin, while 

those of type ( 1) a re  essentia l ly  standing waves at the origin, 

represen t ing  fields with equal influx and efflux of energy through 

any surface surrounding the origin.

corresponding TE multipole fields a re  complete in homogeneous, 

source -free regions of space between concentric  spher ica l  su r faces .  

That is to say, the fields in any such region due to sources  outside 

the region can be expanded in a convergent s e r ie s  of multlpole 

fields, in genera l ,  fields of type ( 1) and ( 2 ) will be requ ired ,  but 

If the region inc ludes the origin, only type ( 1) fields will be used.

which we shall denote by tiemno

The multipole fields defined by Eqs. { 24-29) and the

12



On the o ther  hand, if the reg ion  extends to infinity, a ll  so u rces  

being conta ined inside a sp h e r ic a l  su r face  of rad ius  R, only type 

( 2 ) fields will be used  in the expansion outside the sp he re  of 

rad ius  R. Instead  of proceeding  d i rec t ly  to the de te rm ina t ion  of 

such expansions ,  it is useful to c o n s id e r  an a l te rn a t ive  definition 

of multipole  fields of type ( 2 ) in t e r m s  of th e i r  s o u rc e s .

2. The Sources  of Multipole F ie lds

type ( 2 ) multipole fields can  be c o n s t ru c te d  f rom  in f in i tes im al  

c u r r e n t  e lem en ts  a t the or ig in  of co o rd ina tes .  It is convenient 

to use the concept of the delta  function 6 { x) 5( y) 5( z) , o r  in 

abb rev ia ted  notation 8 ( x ,y ,  z) , which is  z e ro  eve ry w h ere  except 

at the or ig in  of coo rd ina tes  and is defined such  that

w here  G( x, y, z) is any s c a l a r  function of the coo rd ina tes  

continuous at the o r ig in  and G( 0, 0, 0) is  i ts  value at the  orig in . 

The volume V is  a r b i t r a r y ,  but m us t  include the or ig in .  In 

the sam e m an ner ,  the de r iva t ive  of the delta  function with 

r e s p e c t  to the coord ina te  x is denoted by 6 x ( x , y , z )  , and

w here  G^f 0, 0, 0) denotes the der iva t ive  of G with r e s p e c t  to x 

a t  the orig in .

A d is t r ibu t ion  of c u r r e n t s  which give r i s e  to the var ious

5( x, y, z) dv = G( 0, 0, 0)

13



1 the c u r r e n t  d is tr ibu t ion  giving r i s e  to the TM mult-.pole

fields E£ m n -[ H mn is denoted by £ eTYlTl t the following source  
o o o

d is tr ibu tions  a r e  postu la ted:

8  8 ( m ’t
+ Pn ™ ( J L - ) h <  x ,  y . z )

+ i  i  (T H S  + Pn m + A f ) }  5 .' X , V , *> ,

where the o c c u r re n c e  of a d ifferentia l  o p e ra to r  to a power m  im plies

that it is to be applied m t im e s ,  and i^~z, ^  denotes the thm

derivative  of the Legendre  polynomial P n ( u> with re sp e c t  to u, the

8
;zo p e ra to r  — replacing u in the re su l ta n t  exp ress io n .  Derivatives

with re sp e c t  to ikXj iky and ikz a re  used  to make the notation 

com pact;  these  can be rep laced  by the a p p ro p r ia te  power of ik t im es  

the de r iva t ives  with r e sp e c t  to x, y ,  and z. The r e a l  p a r t  of the 

ex p ress io n  in Eq. ( 32) yie lds the c u r r e n t  d is tr ibu tion  for TM 

multipole  f ields of pa r i ty  ue" and the im ag in a ry  p a r t  yields the 

c u r r e n t  d is tr ibu t ion  for p a r i ty  "o" TM fie lds .  Equation 32 was 

deduced f ro m  a g ene ra l  p r inc ip le  f i r s t  applied  by Van der  Pol and

3 , 33
l a t e r  extended by E rde ly i  to the genera t ion  of multfpole fields*

The c u r r e n t  d is tr ibu tions  a s so c ia te d  with the f i r s t  few 

multlpole  fields a r e  given by

J e o = Z 6 ( x, y, z) , J e n  = x 5( x, y, z) ,

J o i:. -  y_ 5 (x ,y ,  z) , £eo 2 = £  fz ( x , y , 2 ) ,

14



&Z*X’ y ' Z* + — x , y * * J oi2 = X 5 z( x > y> z ) + £ 5 y( x »y»z)

Je * :: -x &x ( x, y, z) -£& y(x, y , z ) ,  J °* 2 = 2. &x( x, y » z) + x h y(x, y, z)

where proportionality fac tors  have been omit ted to simplify the 

express ions .  The orientation of c u r re n t  e lem ents  is shown sc h e m a t i ­

cally in Fig. 1 for these multipole sou rces .  The a r ro w s  indicate 

re la t ive  instantaneous directions of c u r re n t  flow in infin itesim al 

dipoles. The multipole source dis tr ibution is obtained by shrinking 

this c u r re n t  d is tr ibution  down to a point function at the origin 

while increasing  the c u r r e n t  in opposing dipole pa i rs  so as to 

mainta in  a fixed moment.

The sou rces  of TE multipole fields can be r e p re s en te d  by 

the same distr ibution  of c u r re n ts ,  but in this case  the c u r ren t  

e lem ents  a re  magnetic dipoles produced by magnetic c u r ren ts  K.

With this minor chan . -.. replacing Jgmn ^y “iSgmn ’

holds for the sources  oi TE multipole fields, and Fig. 1 re p re sen ts

the magnetic c u r re n t  orienta tions for corresponding multipoles.

To verify  that the c u r re n t  d is tr ibutions of Eq. ( 32) do 

produce multipole fie lds, it is convenient to com pare  the fields 

rad ia ted  by such c u r r e n t s ,  in the neighborhood of the origin. The 

vec tor  potential A assoc ia ted  with the c u r r e n t  d is tr ibution  is 

de te rm ined  by

15
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Source d is tr ibu tion  for e lem en ta ry  multipole fields,
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( 33)

r  e ikR4;r A = / J( x, y, z)  —— dv
V

R =^| ( x ' -  x) 2 + ( y ' -  y) 2 + ( z '  -  z )  2 ,

where R is the d is tance between the field point ( x {  y*, z/ ) and a point 

( x, y, z) on the c u r re n t  d is tr ibution. The in tegra tion  extends 

over  the volume occupied by the c u r re n ts .  F o r  the c u r re n t  d i s t r i ­

bution of Eq. ( 32) , and for inf in ites im al d is tances  R f rom  the 

origin,
a m  -1 
9 N ( m )

( 34)

^ ) }  i ■ " T ^ K

i l c RThe fac to r  e is omit ted  for sufficiently sm all  R. The re su l t  of

1
applying such a d ifferentia l  ope ra to r  to — is given on page 1281 ofR

Reference  37:

( 3 5 )  ( a b + i s r )  r i ) - ^ R - ^ o s e ) . * “ ♦

n
where we have om it ted  a ( -1) factor due to a slight change in 

notation for R. The resu l tan t  value of the vec to r  potential is 

obtained by considering  only the leading t e r m  in ( 3  ikz

and m+1) w **ich 8 v̂e r i®e to dominant t e r m s  at short

d is tances  from  the origin:

17



The vector potential is

4 tt ( A  + i A ,—,.) =

. . . .  -n+1 ( n̂) i D . n / .  , . . ( lk)-----------------------R n -i(x + 1 y)
2 n n 1 I “  JL( 3 7 ) 2 n nl

(cos  0 ) z P ^  (cos  0 ) eim<t> |

In spherical  coord ina tes ,  this express ion  becomes 

4tt( Agmn + * Aomn) =

(ik) - n+1  < 2n> ! R ' n e im<t>
Z“ n!

( 38) - |^  £m sin 0 * ( cos 0 ) + cos 0 P ^ ( c o s  0 ) J

[ m -1 m |
m cos 0  (cos  0 ) - sin  0 (cos  0 )

+ £  £ im 1 ( c o s 0 ) j j -  

Calculating the resultant  magnetic field H by H = V x A , a f te r  

considerable  reduction through use of re c u r re n c e  formulas for 

the associa ted  Legendre polynomials, one obtains

Sem n + * Momn  ̂ ~
( i k r n + l (2n) l  R -n -l

(39) 2 n n!

im o m / ™  ax ^im 4> . , 8F^n
Ja T-»m / a %  imAT0 -------- P (co s  0) e - A
I”  sin 0 n * 0 0  J

Comparing this expression  with Eqs. (28) and ( 29) , it .is  seen  

that the form of the field produced by the given current d is tr i­

bution is the same as the TM multipole field of like order and

18



pari ty ,  insofar as varia t ion  with 0 and <j> is concerned. F u r th e r ,  the 

ra.diaj dependence of type ( 2 ) multipole fields In the neighborhood 

c-f t i e  orig in  can be approxim ated by

When this express ion  is substi tu ted in Eqs. ( 28) and ( 29) , and the 

re s  il* compared  w i t h  E q .  { 39) f -t is found that the two fields a re  

’.dentlr aJ in R, 0 and dependence close to the origin. If the 

c u r re n t  distr ibution is to yield the same amplitude of field as the 

muMipole expansion of Eqs. ( 2 4 - 2 9 )  . the c u r ren t  dis tr ibution 

gl- en by Eq. ( 32) must  be multiplied by a normalizing factor  cn , 

where

A s im . la r  analysis  can be made for the TE multipole fields and the 

assoc iated sou rces .  The c u r r e n t  ampli tudes must be adjusted by 

the sam e factor  as given in Eq. ( 41) , with e and p. in terchanged, 

to produce the basic TE multipole fields.

3. Expa nsion of E lectrom agnetic  F ie lds in Mult‘.pole Ser ies

field in the form of a multipole s e r i e s  may se rve  sev e ra l  purposes .  

F i r s t ,  it may be convenient for computation of the field a t  any 

point of a region. This would not be the case  if the determination

r  * R -* 0

The m athem atica l  rep resen ta t ion  of an e lectrom agnetic

19



of the multipole se r ies  required an explicit knowledge of the field at 

every point ab initio. We shall show how to obtain mult'pole 

expansions from a knowledge of the tangential fields over a closed 

surface, or from the curren t  distribution of its sources, or in some 

rases  from the field and all its derivatives at a single po nt, A 

second use of multipole expansions is conceptual, ra ther  than 

computational. For  example, the assumption that one or more 

f elds can be expanded in the form of a multipole se r ies  with 

unknown coefficients may be useful in obtaining a mathematical 

statement of boundary conditions in term s of these coefficients, 

wht.ch ultimately leads to their determination. In every s c a t t e r ­

ing problem, one field is known and that is the field of the source. 

For  a plane wave, the mathematical description in rectangular 

coordinates is simple and explicit. Nevertheless, it may be 

jseful to replace this expression by a more complicated multipole 

expansion if this is the form in which the sca tte red  field or other 

associated fields a re  cast.

A second aspect of the multipole expansion which must be 

considered is its range of validity. It has been stated e a r l ie r  

that such expansions are  complete for the representation of fields 

in any homogeneous source-free  region contained between two 

concentri.c spherical surfaces with the origin as center.  The

20



extension of the r e p re s e n ta t io n  throughout reg ions wh^ch do not 

have sphe r ic a l  boundaries  m ay  be n e c e s s a ry ,  for exam ple .  In 

any ca se ,  the p ro p e r  combination of type ( 1) and type ( 2) fields 

to r e p r e s e n t  var ious  so u rce  and s c a t t e r e r  com binations m ust  be 

chosen before  the expansions a r e  explic itly  de te rm ined .

' i  the expansion of a given field in t e r m s  of m ult ipoles  is 

to be obtained, the coeffic ients  amn an<^^rnn a re  requ ired ,  where

— = ( amn —mn + ®mn ;Emn)
n m

( amn iim n + amn ilmn^ 
n m

(:}
We shall denote the coeffic ients  of a type (1) expansion by a m n » 

a'iri'n , and those of a type ( 2) expansion by , 1pv'n . it is

im por tan t  to d is tinguish between two types of field expansion: 

those valid in the neighborhood of the orig in ,  and those valid  at 

infinite d is tances  f rom  the orig in . Thus, if the sou rce  of a field 

is not at the orig in ,  it  can be expanded in a type ( 1) mult ipole  

s e r i e s  valid at the orig in .  If the source  of a field is conta ined 

within a finite c losed  su rface  S surrounding  the or ig in , it  can 

be expanded in a type ( 2) multipole  s e r i e s  outside th is  su r face .

In g en e ra l ,  the expansion coeffic ien ts  for a tvpe ( 2) s e r i e s  

can  be obtained when the tangentia l components  of the field a re  

known over a su r face  S enclosing the so u rc e s .  If X denotes the



source  field, Mmn denotes a TM multipole field of o rd e r  m, n 

and Mmn denotes the co rrespond ing  TE multipole f ie lds ,  the 

reac t ion  of the sou rce  field with the var ious  multipole fields of 

type ( 1'. over S leads to the following s y s te m  of equations:

< x > Mmn>S = < ^  + Mmn>s}

( 43) 1 j

—' t )  w  r (2) (2 ) 0) j ? ) ^ ) \
<x, M j ^ n ^  = 2  ̂ < ^ i j  ’ ^ mn>S + a ij ^ m n :>gj *

* j

F r o m  the princip le  s ta ted  in Eq. ( 8) , the reac t ion  between m u l t i ­

pole f elds is the sam e over  any surface  S enclosing the orig in , so 

that the r igh t-hand  side of Eq. ( 43) can be evaluated  over  a sphere  

of la rg e  rad ius .  Because of the orthogonal re la t ion  between 

t e s s e ra !  h a rm o n ic s ,  it ihen follows that the reaction  between any 

two multipole fields van ishes  unless they have the sam e  indices 

m, n; pa r i ty  ( e or  o) , and a r e  both TE o r  TM. 3t Equation ( 43)

thus becom es

( 44)

< x, Mm n>s  - < M ^ n . Mmn>

_ ( z )  ~ ( z )
< x, M = a < >mn g mn mn mn

The reac t ion  in teg ra ls  on the r igh t-hand  side of E^. ( 44) may be 

re la ted  to the rad ia ted  power in the co rrespond ing  multipole field, 

and a r e  given by
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mn
^ m 11* n+1) ( n+m) 1 
c ( 2n+l) ( n-m ) I

where - 1 , m  = 0 ; - 2 , m /  0 .

The multipole coeffic ien ts  in Eq. (42) a re

^  m fiT ( 2n+l) ( n -m ) I  ̂
a mn “ " T V  >1 e n( n+1) ( n+m) ! * X

( 2 n+l) (n - m ) l  fc)
----------------------------—r  <  X ,
n( n+1) ( n+m) ! m n

( 2 n+l) (n -m )  I __

n(n+l) (n+m) I * ^ mn S

t )
< x t

S

( 4^' ^ m  rL  ( 2 n+l) (n -m )  I
a mn 4 n  n(n+l) (n+m) Ia mn ~

Equation ( 46) d e te rm in e s  the mult ipole  coeffic ients  f rom  an evaluation

of the reac t ion  in teg ra l  over a su r face  S (enc los ing  the origin) on which 

the tangential field components  of X a r e  known. The evaluation of such 

Integrals  may be difficult in specific  c a s e s ,  but is g rea t ly  s im plif ied  

if the surface  is  sp h e r ica l .

An a l te rn a t iv e  approach  may be used  when the c u r r e n t  d i s t r i ­

bution of the so u rc e  is known. In th is  c a se ,  f rom  Eq. ( 8 ) , the 

reac t ion  in teg ra l  can  be evaluated by in tegra t ing  the s c a la r  product  

of the multipole field and the c u r r e n t  d is tr ibu tion .  Thus ,  if the 

c u r re n t  d is t r ibu t ion  producing field X is J j  con ta ined  in V, inside 

S

Evaluation of multipole  coeffic ients  by this  m eans  is  d isc u sse d  in 

R eference  28, where  the equivalent of Eq. (47) is  obtained by a 

d ifferent  approach .

mn S
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The expansion of fields in in te r io r  reg ions  p roceeds  along 

s im  J a r  l ines .  An expansion in t e r m s  of type ( I) multipole fields 

is  a ssum ed :

* ■ 1 1

fa*0 E E  >( amn “ m n + amn f lm n 1

{ 48> H - V V l ,  H <*> + 1  (l' H<*> 1£1 7  7  mn mn mn i im n '

If the tangentia l  components of field X a r e  known over  a su r face  S 

enclosing the orig in , the coeffic ients  a r e  obtained by evaluating 

the reac t ion  in te g ra ls  of the given field with va r ious  type { 2 ) 

multipole f ie lds , and again because  of the orthogonal p ro p e r t ie s  

of the multipole fields,

< x ’ Mm n >S = a mn < M $ d , * * £ „ >
* ^  (0 w(i) ^ ( 2)

< x ’ m n>S " am n <Mmn> Mm n >

Substituting the values of the reac t ion  in te g ra ls  given in Eq. ( 4 5 ) , 

t*) €  m  H r ( 2 n+l) ( n - m ) |  6s)

I ?
( 50)

a mn ~ 4ir >| e n ( n+i) ( n+m) I < X’ Mm n >S

' J - r  e  m  IT* (2 n+ 1) ( n-m ) 1r- m  F   ̂̂  E
am n = T i T  Jp  n(n+l) (n+m) I < X’ Mmn>S

The reac t ion  in teg ra ls  in Eq. ( 50) can be rep laced  by an equivalent 

volume in tegra l  of X over the multipole so u rc e  d is tr ibu t ion  at the 

or-* gin:

< x, M*°n> = - j  ( J m n . E) dv

. Mmn>S = - /  (Kmn ■ H) dv .
J V
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If the field X and its d e r iva t ives  a r e  known at the orig in ,  the c u r r e n t  

d ls tr ibut ions Jrnn and Krnn for  the multipole sou rces  g en in Eq. ( 321 

may be substi tu ted  in Eq. ( 51) . When the correct,  norm aliz ing  

fac to rs  given in Eq. (41) a r e  used, the following fo rm u las  a r e  

obtained for the multipole coeffic ients :

+ + 1 E v '

+  ( T ^ r  +  ‘ w )  F ‘n m + r ( A i ) E z }

m-1

8  ikx 3 iky J  n 8  Jcz J  zj *

where
-  . .. n+1
e m (l)  ( 2 n+l) (n -m )  !

( 54,
mn k n( n+1) ( n+m) !

Equat ions ( 52) , ( 53) and ( 54) yield  the values  of the multipole 

coeffic ients  of X in t e r m s  of i ts  d e r iv a t ives  evalua ted  a t the 

or lg .n .  To the a u th o r 1 s knowledge, this  type of expansion has 

not been p rev ious ly  derived .

To i l lu s t ra te  the use of this  expansion th e o re m ,  the 

re p resen ta t io n  of a plane wave field  in a multipole  s e r i e s  of type 

( 1< will be de r ived .  If the field is1 x-polar:.zed, and the wave 

1;ra\ els In the negative z d irec t ion ,
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Since t.he z components of the field vanish, as well as all derivatives  

with re sp ec t  to x and y, the only non-zero  coefficients obta ined from  

Eqs.  ( 52) and ( 53) will co r respond  to m = 1. F u r th e r ,  since Ey = 

E z -  0 and Hx = Hz = 0, only a ein an d 'aoin coefficients a r e  obtained:

.  . -  -  2 E o ( f , n+1 2n+1 D l m l  / _ § _  \  „ - l k
T — (1) „ + ! , ] *  ®  (, S i k z  J x= 0 . y = 0 , z - 0

i 56)

f oln* - £ £ ° ( i ) n + l  (n(n+1) ]2 4 !x=0>y=0>z=0

Sine e

C* i k z )  e  lkZ ■ < _1)n e ' xkz = ( - l ) n a t  x = 0 , y = 0 , z  = 0

< 5 7 ’ Pn( m )  ( T O ? ) " * 11”  -  - l ) n+1 .

It follows that

a = - Lzi)—  2n+1  E 
eln ik n( n+1) °

(58) . n
H  f “x> 2n+ 1 tt

° in ik n( n+1) °

which a re  the c o r r e c t  values for the expansion coefficients obtained

36
by s tandard  m eans .

In sum m ary ,  the multipole expansion of a field X in a 

homogeneous region D enclosing the origin can be de term ined ,  

given (a) the tangential components of X over any closed surface



in D surrounding the or ig in ,  o r  {b) the c u r r e n t  d is tr ibu t  ion of the 

s o u rces  of X, a s su m e d  outside of D but in the sam e homogeneous 

m edium, or  (c) the values of the fie ld  X and all its de r iva t ives  at 

the orig in ,  when D contains the orig in .  The expansion in type (1) 

and { Z) multipole s e r i e s  was co n s id e red  as  two distinct p rob lem s 

in the derivation  of E q s .  (43-51) , it being a s su m e d  in the f i r s t  

instanc e that D Is the unbounded region e x te r io r  to a su r face  S 

about +he orig in , containing the so u rces  of X and in the second 

•'nstance that D is the region within some c lo sed  su rface  S 

containing the or ig in ,  the so u rces  of X lying outside this su r face .  

This d .i is Lon is u n n e c e s sa ry  and cannot always be m ade ,  fo r  D 

m ay  be a doubly-connected region enclosing the orig in  but not 

con’s r ing  it, and the so u rces  of X may be on both sides of this 

region as i l lu s t r a te d  in F ig ,  Z , where the c r o s s - h a tc h e d  regions 

V- and V;< contain s o u rc e s .  In ev e ry  c a s e ,  the tangential  

t omponents of the f ie ld  X over some su rface  S in D which 

encloses  the orig in  will suffice to de te rm ine  the expansion of X.

In g e n e ra l ,  this will co n s is t  of a combination of type ( 1 ) and ( Z) 

f ie lds .  The coefficients  of each  type a r e  d e te rm in ed  by Eqs .  ( 461 

and ( 50) in this c a s e .  .In a s im i la r  fashion, when the expansion 

coeffic ients  a r e  de r ived  f ro m  the source  d is t r ibu t ion  of f ie ld  X, 

for  the c a se  shown in F ig .  Z w here  the so u rc e s  of X a r e  on both 

sides of the region D, E qs .  (46) and (47) may be used to



determine the type (2) ae r ies  coefficients , the in tegral  on In Eq. ( 47) 

extending over the in te rna l  source distr ibution in volume V: . An 

e x te n sn n  of Eq. (47) to the evaluation of the type ( 1, s e r ie s  coef

ij ds

f .c en»s follows from Eq. ( 8 ) , and

fcj , J - )
< x ' Mm n>S = '  L  ( -  ’ - ™ n;

i 59' 2
< x, M^nn>g -  - j ( J  ds

V2

where the ntegration in this case  extends over the ex ternal  c u r re n t  

distr ibution in V-. The combination of the type ( I t  and type ( 2) 

expans ons then rep resen ts  X in D, provided the sou rces  and D 

a re  n the same homogeneous medium.

As an i l lus tra t ion  of the source  dis tr ibution method, we shall 

derive the expansion coefficients for a rad ia l  e lec tr ic  dipole located 

at the point ( r Q, 0 o , (f>0) or ( xQ , yQ, zQ) m a homogeneous medium. 

F o r  points within a sphere  of radius r Q about the on.g.n, a type ( 1)

expans I or must  be used, and by E qs .  ( 50) and ( 59) , the value of

the coeff’r e r t s  a re

/An - I m  ( 2 n+l) (n -m )  1 ; (•/ ,
< ° ' N e n( n+1) ( n+m) I / *-£> —emn* dv ’o ■ y

where ~s the c u r ren t  d is tr ibution of the dipole, and the volume 

V encloses  the point (x G, yQ, zQ) . In considera t ion  of Eq. ( 47) ,

1  the dipole is to produce a unit multipole field when placed at the 

orig: n, the c u r re n t  dis tr ibution is
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4 tt r r
(63* lx> -  - J  “  5( x “x o) 6 ( y - y 0 ) B( * - a Q) .

The volume Integral in Eq. { 60) thus yields the value of the radial

component of E ĝ n a t the dipole locations , and f rom  Eq. ( 241
o

, (-) ( 2n+1) ( n - m ) !  j:)
( 6 2 > a pmn = :— —  — :—:— n ---------- <k*o>omn k r Q ( n+m) ! n

jcos m<t>o \
>oH . A rLain m<b0 JPnm f cos Qo . -1 m <t>0 .

In the same fashion, the expansion coefficients of the dipole field 

n a multipole se r ie s  valid outside the sphere  of radius r Q about 

the origin a re  in considerat ion  of Eqs.  ( 24) , ( 46) , ( 47) and ( 61) ,

f5) _ 6  m ( 2n+l) ( n-m) i
Jjl I Kr0 /

cos m<(» i
<63' emn -7- “ -   «------- Jn ( k r o)0  k r 0  ( n+m) I

„  mm 1
p  ( c o s  0 ) \  . ° k

n o (^sin m^^j

Equations (61) and (62) a r e  specia l  c a se s  of a genera l  addition 

formula for multipole fields. Using Eqs. (32) and (41) for the 

c u r re n t  d is tr ibution assoc ia ted  with higher o rd e r  multipole fields, 

the expansion of an a r b i t r a r y  type ( 2 ) multipole loc ated at ( r 0 , 90 »$0) 

in t e rm s  of multipole fields about the origin can be de te rm ined  by the 

same method. In every  case ,  a type (1) expansion is obtained for 

r  < r Q, and a type ( 2 ) expansion for r  _> r Q .
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N.

Fig . 2. Multipole expansions in a doubly- 
connected  region D.

F ig .  3. Regions of convergence  for 
multipole  expansions.
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4. Convergence of Multipole Expansions

Multipole expansions of types (1) and ( 2) a re  in many ways 

analogous to Taylor  and negative power Lauren t  s e r ie s  expansions. 

Just  as  the Taylor and Lauren t  s e r ie s  have a ssoc ia ted  c i rc le s  of 

convergence, which define the regions in which the s e r ie s  converge, 

the multipole expansions have assoc ia ted  spher ica l  boundaries 

which sepa ra te  regions within which the expansions converge. It 

>.s eas i ly  shown from  the expansion of the field of a dipole at a point 

(R, 8 , 4>) that the type ( 1) multipole expansion converges  inside the 

sphere  of radius R about the orig in, while a type ( 2) expansion 

converges  outside this sphere .  In genera l ,  th e re fo re ,  the type (1) 

multipole expansion of a field will converge only within the la rg es t  

sphere  about the orig in  excluding all sou rces ,  and the tvpe ( 2 ) 

muit pole expansion will converge only outside the sm a l le s t  sphere 

ab ru t  the origin enclosing all so u rces .

The situation is i l lu s t ra te d  in Fig. 3. A dis tr ibution  of 

c u r ren ts  confined to the c ro s s -h a tc h e d  volume produces a field X.

If the values of the tangential components of X a r e  known over the 

elongated surface  S, the coefficients for a type ( 2) multipole 

expansion may be de term ined  by Eq. ( 46) . However the 

expansion obtained will converge only outside the sphere of radius 

R£ which excludes most  of the surface  S. An expansion in type (1) 

multipole fields will converge only inside the sphere  of radius RQ.
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Although the multipole s e r i e s  of type ( 2) does not converge 

everyw here  outside or  on the su r face  S, in a b ro a d e r  sense  the 

multipole coeffic ients  may be sa id  to r e p r e s e n t  the field X th e re ,  

since the multipole  expansion could be used  to evaluate  the 

der  vat.'ves of X at some ex te rn a l  point such as P , and t.he tvpe 

( 1} multipole expansion of X about P  obtained f rom  E q s .  ( 52) 

and ( 5.31 would converge  inside  the sphere  of radius  about P.

Such a p ro c e s s  is analogous to analytic  continual-.on of T ay lo r  or  

Lauren t  s e r i e s  beyond the c i r c le  of convergence  to obtain a 

monogenic analytic function l im ited  only by the na tu ra l  boundary. 38 

'n this c a se  the na tu ra l  boundary  would be the c r o s s - h a tc h e d  volume.

The coeffic ients  a^ n » °f a multipole  expansion of type ( 2)

m ust  be sq u a re - su m m a b le  when p roper ly  no rm a l ized .  That is ,

m ust  be finite if the rad ia ted  power in the r e p re s e n te d  field is finite. 

However, a s im i la r  r e s t r i c t io n  on the coeffic ien ts  in a type (1) 

expansi on does not. ex is t .  If fie ld  A is expanded in a tvpe ( 2) m u lt i -  

pole s e r i e s  and field B is a type (1) s e r ie s  about the sam e orig in , 

the reac t io n  over  a  su rface  S enclosing the orig in  is given by the 

product

( n -m ) i
( n+m) ! 

mn
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<651 <A, B>_ = - r Y Y f f  n <n+1) (n+m) 1
S L  L  m ( 2 n+l) ( n-m) !

m n

i IT  ^  ITT &^  J  — a mn a mn ~ J  — a mn amna mn amn f

whenever this sum converges .  The reaction  between fields of the 

sam e type vanishes, of cou rse .
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CHAPTER II
THE SCATTERING OF ELECTRO MAGNETIC WAVES 

BY FINITE SMOOTH BODIES

A. INTRODUCTION

The sca t te r ing  problem s to be cons idered  In this work Involve 

a single scatter ing  body. In such prob lem s,  a p r im a ry  e l e c t r o ­

magnetic field F is specified in free space or  any other unbounded 

Isotropic homogeneous medium with constitutive p a ra m e te r s  e-A and 

p~. This f.eld is ca lled  the incident field F ,  with e lec tr ic  and 

magnet 'c  field vec to rs  E 1 and H1 defined everywhere  in the h o m o ­

geneous medium. A finite sca t te r ing  body is now introduced into 

the medium. This body cons is ts  of a singly connected region D 

composed of a homogeneous isotropic  medium with c o n s t \tutive 

p a ra m e te r s  e2 and p 2 , where e2 M i ,  and (or)  p- p f . The 

effect of introducing this body into the p r im a ry  field can be

descr ibed  by an additional field X, with e lec t r ic  and magnetic field 

s s
vec tors  El and H defined everyw here  outside the body and called

the sc a t te red  field. The sum of the incident and sca t te red  field

then gives the ex te rnal  i;eld everywhere  in the p resence  of the body.

An in te rna l  field Y is used in the in te r io r  region D to rep lace  the

Incident field F. The e lec tr ic  and magnetic field vec to rs  assoc ia ted  
t t

with Y a re E and H , defined in D.
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The sca t te r in g  p rob lem  co n s is t s  of finding a re p re s e n ta t io n  

for f elds X and Y such that each sa t is fy  Maxwell '  s equations in 

th e ;r  region of definition, and

n x ( E 1 + E S - E fc) = 0

( 66' s t
n x ( H1 + H - H ) = 0

on the boundary surface  S of the s c a t t e r e r ,  where n is the n o rm al  

at each point.  If the s c a t t e r e r  is a p e rfec t  conductor  of e le c t r ic i ty ,  

the in te rna l  fie ld  Y is zero  and the single boundary  condition 

ri x ( E 1 + E s ) ~ 0 is used. F o r  a pe r fec t  conductor  of magnetic  

c u r r e n t ,  field Y is a lso  z e ro  and the single boundary condition 

n x ( HJ + Hs ) = 0 i s used.

In each c a se ,  the s c a t t e r e d  field X is defined in an  e x te r io r  

region extending to infinity, while the in te rn a l  field Y {if non-zero)  

is defined in an in te r io r  region. If multipole  expansions of fields 

X and Y a r e  a t tem p ted . i t  is c u s to m a ry  to choose  an o r ig in  inside 

D, In whir h c a se  a type ( 2) expansion m ust  be used fo r  the s c a t te re d  

field X and a type (1) expansion m us t  be used  for the in te rna l  field 

Y. The incident field F will be a s s u m e d  to have its so u rc e s  outside 

D, so that it will be r e p re s e n te d  on the boundary of D bv a tvpe 

( 1 ; expansion.
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When the boundary S of the sca t te r ing  body is a coord.nate 

surface in a coordinate  sys tem  for which the vector  wave equation 

is separab le ,  all fields can be expanded in se r ie s  of e. genfunrt'.ons 

appropria te  to the boundary, and these a re  the natural expansions 

to use. Indeed, it is such an expansion for spher  cal boundaries 

which leads to the multipole fields we have considered .  In this 

case ,  Eq. ( 6 6 t reduces to an equation relating corresponding 

multipole t e rm s  in the expansions of X, Y and F. The coefficients 

for fields X and Y can thus be de term ined  explicitly f rom  those 

of F. However, if S is not one of these very special su rfaces ,  

the express ion  for the fields on the boundary becomes complicated 

n any eigenfunction expansion, and the result ing serves cannot be 

equated t e r m  by t e rm .

Two methods of obtaining approxim ate  solutions t.o the 

genera l  p rob lem  will be considered .  A direct, o r  ’’brute  fo rce"  

method cons is ts  of approximating the fields X and Y by multipole 

s e r ie s  with a finite number of t e r m s  and determining the coe f - 

fic ents so as to minim ize  the left-hand side of Eq. ( 6 6 ) . This is 

the method of approxim ate  tangentia l field matc hing. A second 

method to be cons idered  employs a set of exact solut ons to the 

sca t te r ing  p rob lem , obtained by choosing the Internal field Y and 

d e te rm  .n-ng the multipole expansion of fields F and X f rom  the
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value of Y on the boundary. By combining a finite number of such 

solutions, an approximate  match to the given incident f eld F  can 

be obtained as well as an approximate  s c a t te re d  field X.

The method of approxim ate  field matching will be cons\dered  

f i rs t .  The only flaw in this method l ies  in the fact that the e r r o r  

between the approxim ate  solution and the true solution cannot be 

es t im ated ,  however sm all  the quantity on the left-hand side of 

Eq. ( 6 6 ) becom es. In the case  of the perfec tly  conducting s c a t t e r e r ,  

the e r r o r  between the approximate  and exact tangential e lec tr ic  

field can be de term ined ,  but we a re  unable at p resen t  to obtain a 

bound on the e r r o r  in the s c a t te red  field f rom  a knowledge of the 

tangential e r r o r  field alone, although one intuitively feels that such 

a bound ex is ts .  In the case  of a spher ica l  boundary, the d es i red  

bound can be obtained, but the exact solution is available  in this 

ca se .

B. SOLUTIONS OBTAINED BY TANGENTIAL 
FIELD MATCHING

An approxim ate  solution to the sca t te r ing  prob lem  can be

obtained by adjusting the amplitude of N independent In ternal fields

and M sc a t te red  fields such that the m e an -sq u are  deviation from

match of tangential fields at the body surface  is m inim ized. A

d d
tangential difference field E^ , Hj. is defined on S bv
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M N
d

x n = E.- Y  b n S J  ]
n=l n=l J

< 67> M N

an H^ bn & . ) ] * £  =
n= 1 n=l

g

where E 1, H* is the incident field; E_, HS the n**1 choice of e x te r io r  — — —11 —n
t  ̂ thfield with amplitude an ; and E n , Hn a r e  the n choic e of in te rna l

field with ampli tude bn . To obtain a l e a s t - s q u a r e  approx im ate

solution, an app rop r ia te  squa red  n o rm  of the difference field  over

S is defined. F o r  example ,

( 6 8 ) W = / J ( E ^ )  • ( E f ) * + ( H f )  • (H f)* f  ds,
S '

where the a s t e r i s k  denotes the complex conjugate  of a quantity, 

may be m in im ized  with r e s p e c t  to the choice of coeffic ients  an , 

bn . If W can be made to vanish , an exact  solution is  obtained, so 

it is reasonab le  to in fe r  that fo r  sm a ll  values  of W, the a p p ro x i ­

mation  will be c lo se  to the t ru e  solution. To obtain a quantitative 

definition of c lo s e n e s s ,  a bound m us t  be e s tab l ish ed  between the 

exact and approx im ate  solutions in t e r m s  of W. Since no

component of the exact  s c a t t e r e d  field  ISs , Hs o r  in te rna l  field 

t t
E , H is known, such a bound is  difficult to obtain.
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In the case of a perfectly conducting scatterer, the situation is

s im pler , since the in ternal field vanishes and the exact, tangential E s

is known. Equations ( 67) and { 6 8 ) a re  replaced by

M
(69)

( 70) W  = /  ‘ < £ td > * d s

The coefficients an a re  chosen so as to minimize W, and an approxi-

m easu res  the difference between exact and approximate tangential 

sca t te red  electr ic  field. The difference field is a valid solution of 

Maxwell1 s equations in the ex te r io r  region and m easures  everywhere 

the difference between exact and approximate solutions. Since the 

tangential component is known, it may be possible to obtain a bound 

on the power radiated by the difference field.

F ro m  the uniqueness theorem, it is c le a r  that a distribution 

of tangential IS over a closed surface S due to sources inside S 

determines the tangential H field over S, and the two produce a 

definite radiation field outside S. Although determining the 

radiation pattern  from a knowledge of tangential E alone is m erely  

another s ta tement of the scattering problem for a perfectly 

conducting body, just as is the determination of tangential H from

s dmate sca t te red  field E is obtained. In this case  the field E t
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a knowledge of tangential E, it is in some respects  simpler to obtain 

a bound for the average radiated power in terms of a norm of 

tangential IS.

To illustrate , such a bound will be determined for a spherical 

surface. Any external field due to sources inside the sphere can be 

represented by a multipole se r ies  of type { 2) :

E = £  ( a g n e £ ’„ + a m n  I m n i

H - Y Y ( a W HW + r (,) >— /_j Ij  amn» Limn + amn “ mn^
n m

The average radiated power is given by

1 * *
(72) P  = -  J  ( E x H  + E  xH ) • n d s

S

and in te rm s of multipole coefficients, this becomes

„ „  „ ,  w i F k i i n f . j ;  }
"  £  (2n+l) (n-m)I Wn 1

The quantity W in Eq. ( 70) , in this case

(74) W = / ( E x n) • ( E x n) * ds
J S

can be reduced, because of the orthogonality of multipole fields 

on a spherical surface, to
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( 7 5 )  W |  I a m n  I * f  ( ^ , n x 2> ' ( 4 n  *  £ '  * ds
n m S

+ l ^ n l 2 / (E ^ n  x £) ‘ (fm n  x £ i * d4  •
'JS  J

Evaluating the in tegrals  over a sphere of radius r, where p~ kr, 

one obtains
IT" V  n( n+1) ( n+m) !(76) W , 27r l \ \ e m --------------------------
A *  U  ( 2n+l) ( n-m) !

m
n m

i>["j7 la?Lil  p* I + J"?~ I amn h' I Phn( P) |*j- *

If the g rea tes t  lower bound for |l^n( p) j  and | pbn ( p) J  *  is denoted 

by L,
1 I T  W

( 7 7 )  p  ^  7  J p  L

The bound L. is determined by |Hn(p) | 2, since it can be shown that.

| phn( p) | 2 > 1. The varia tion of L with p is shown in Fig. 4. F o r

large  p, L. varies  inverse ly  as the one- th ird  power of p. It is seen 

that an upper bound on the radiated power in te rm s  of W can be 

given for a spherical  surface. This bound inc reases  with the radius 

of the sphere in te rm s  of wavelength, and it seem s reasonable  to 

choose as an upper bound for a smooth non-spherical surface the 

corresponding bound for the sphere which jus t  encloses the 

surface.  However, this choice is not r igorously  established.
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F i g .  4 .  A  l o w e r  b o u n d  o n  j H n (  p )  ‘ 1 sm  a  f u n c t i o n  o f  p .

42



Returning to the approx im ate  fie ld  m atching  technique of Eqs.

( 67-70) , the p a r t i c u la r  choice of N independent s c a t t e r e d  f ie lds Xn

and M in te rna l  fields Ym  has not been specif ied . In g en e ra l ,  these

could be any se t  of independent solutions to M axw ell1 s equations in

the region  of definition, but we shall  co ns id e r  the use of multipole

fields within a fixed or ig in  in the sca t te r in g  body. The num ber  of

t e r m s  re q u i re d  for  a c lose  approxim ation  to the c o r r e c t  f ie ld  will

n a tu ra l ly  depend upon the n a tu re  of the incident fie ld  F ,  the boundary

shape, and the choice of or ig in .  When the body has  one o r  m o re

planes of s y m m e try ,  it is  s im p le s t  to choose an o r ig in  com m on to

these .  If all  the multipole fields Me m n , Mem n of one type up to a

m ax im um  value n0 of the index n a r e  used, ( nQ + 1) { nQ + 2) t e r m s

a re  involved in the a s so c ia te d  multipole s e r i e s ,  s ince  such fields

with m > n do not ex is t .  F o r  the multipole  fields Mo m n, Mo m n ,

( nQ) { nQ + 1) t e r m s  a r e  involved since these  fields with m > n

do not ex is t .  In many c a s e s ,  the s y m m e try  of the incident f ie ld  o r

the body g rea t ly  r e s t r i c t s  the choice of the p a r a m e te r s  m, n, e and

o. The ca se  for  a ro ta tionally  sy m m etr ic  body will be d e sc r ib e d

la t e r .  It is  c l e a r  that a mult ipole  expansion of f ie lds X and Y will

be exact  for a sp h e r ic a l  boundary, and rapidly convergen t  for

boundaries  which a re  n ea r ly  sp h e r ic a l .  In this r e sp e c t ,  the method

is  s im i l a r  to one desc r ib ed  by Mushiake, in which sm a l l  p e r tu rba t ion s

39
in the boundary su rface  f rom  a sphere  w ere  t r e a te d  ana ly tica lly .
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The convergence of the multipole expansions in regions with

non-spher ica l  boundaries may be questioned. In regions with

boundaries  such as the surface  S in Fig. 3, multipole s e r ie s  used

to re p re sen t  a tangential field on the boundary converge in the

mean to the given field, and the re fo re  it is possib le  to m in im ize

the quantity W given by Eqs.  ( 68) and (70) without uniform

convergence of the approximation at every  point of the boundary.

Calderon has cons ide red  the multipole rep resen ta t ion  of tangential

fields over an a r b i t r a ry  surface  S with a continuously turning

tangent plane. Using methods of functional ana lys is ,  it can be

shown that any continuous bounded tangential e lec tr ic  field over  S

can be approxim ated  as c lose  as d e s i re d  by a type ( 2) multipole

40
field expansion about an in te r io r  point.

The minimization of the p a ra m e te r  W is in some re sp ec ts  

s im i la r  to a varia tional approximation to the solution of sca t te r ing  

problem s desc r ibed  by Kouyoumjian. In the application of the 

varia t ional  method to perfec tly  conducting s c a t t e r e r s ,  for example, 

the surface c u r re n t  may be expanded in a finite s e r ie s  of 

independent c u r re n t  distr ibutions whose amplitudes a re  chosen so 

as  to render  an express ion  for the fa r -zone  sc a t te red  field 

s ta t ionary .  Unlike the method of approximate  field matching, 

however, the amplitudes obtained will change with the d irec tion  in
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which the sca t te red  field is  evaluated. In both methods, i t  i s

difficult to obtain bounds on the e r r o r  in c u r red  in a finite expansion.

C. MULTIPOLE EXPANSIONS OF A SET 
OF EXACT SOLUTIONS

As an a l te rnative  to the approximate  field matching method, 

a technique which obtains a set  of exact solutions to the sca t te r ing  

prob lem  will be considered .  Since it is  difficult to obtain the 

sc a t te red  field X and the in te rna l  field Y for a given incident field 

F , the in ternal  field Y will be chosen and X and F  de te rm ined .  Let 

us a ssum e Y = Y0 has been chosen and is re p re sen te d  by a p a r t icu la r  

type (1) multipole s e r ie s  in the in te r io r  of the body. This s e r ie s  

may cons is t  of a single t e rm .  The tangential components of Y0 on 

the s c a t t e r e r  surface  can be obtained explicitly. A multipole 

expansion in type ( 1) and ( 2) t e rm s  valid in the e x te r io r  region can 

then be de te rm ined  from Eqs.  ( 46) and ( 50) , using only the 

tangential components of YQ on S. The s e r ie s  of type ( 1) thus 

obtained is identified as the incident field F Q and the s e r ie s  of type
, A

( 2) is identified as the sc a t te re d  field Xo* A p a r t ic u la r  solution 

X0, Y0? F 0 of the sca t te r ing  problem  is  obtained. The p ro cess  

can be repeated  with other choices of the internal field Y = Y1;

Y2 , etc . A set of solutions Xi, Yj, F^ a r e  thus generated ,  in 

pr incip le ,  although the ir  exact determination  may requ ire  an
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infinite num ber  of multipole t e r m s  in each c a s e  fo r  and Fj *

An approx im ate  solutinn to the sca t te r in g  p ro b lem  is now obtained 

by expanding the t rue  incident fie ld  F  in a finite combination of the 

F x and the a s so c ia te d  s c a t t e r e d  field X and in te rna l  field  Y by the 

sam e  finite combination of the Xj and Yj. If a l l  fields a r e  e x p re s se d  

’n multipole  s e r i e s  and a finite num ber  of t e r m s  re ta ined ,  the 

expansion of F in t e r m s  of the F^ red uces  to the solution of a 

sy s te m  of l in e a r  equations.

When applied  to a pe rfec t ly  conducting s c a t t e r e r ,  th is  method 

reduces  to the choice of the tangentia l field on the su r face  of the 

s c a t t e r e r .  Since n x E = 0 on such a su r fa c e ,  only tangentia l  H 

m u s t  be chosen .  The d e te rm ina t io n  of incident and s c a t t e r e d  field 

multipole  expansions follows as  before  f rom  E qs .  (46) and ( 50) .

The set of f ie lds F^» Xj obtained a r e  then used to obtain an a p p ro x i ­

m ate  r e p re s e n ta t io n  of the t rue  incident field and the a s so c ia te d  

s c a t t e r e d  field.

In many r e s p e c t s ,  this method is s im  la.r to one p roposed  by 

R um sey ,  in which the reac t ion  between the app rox im a te  s c a t t e r e d  

field  and var ious  te s t  so u rc e s  is m in im ized  and the a s so c ia te d  

expansion coeffic ients  for  the s c a t t e r e d  field the reby  d e t e r m in e d .4*"

It. is  believed that the use of the mult ipole  r e p re s e n ta t io n  for the 

fields involved will enable  this  p ro c e d u re  to be sy s te m a t iz e d  for

h ig h -sp e e d  n u m e r ic a l  computation.
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CHAPTER III
APPLICATION TO PLANE WAVE SCATTERING BY A 

PERFECTLY  CONDUCTING SPHEROID

A. INTRODUCTION

The "p e rfec tly ” conducting s c a t te r e r  is a convenient m a th e ­

m atica l ab s trac tion  which is approxim ated  c lo se ly  in the m icrowave 

region by m ost m etallic  bodies. F o r  s c a t te r e r s  of th is  type, the 

solution of the boundary value problem  only re q u ire s  the d e te rm i­

nation of a s c a t te re d  field defined in the ex te rna l region whose 

tangential E components reduce to the negative of those for the 

incident field at every  point of the conducting su rface . The s c a t t e r ­

ing problem  is  fu r th e r  sim plified  in the case  of ro ta tionally  

sym m etric  bodies, where incident fields with a given azim uthal 

dependence produce sc a t te re d  fields with the sam e azim uthal 

dependence. If the incident field is a plane wave along the sy m m e ­

try  ax is , the multipole expansion of incident and sc a t te re d  fields
rl~ -

re q u ire s  the use of HelI1( *Loin and ^iom tVPe multipole

fields only. The re s t r ic t io n  to the single eigenvalue m = 1 reduces 

the de te rm ination  of the expansion coefficients to a single p a ra m e te r  

fam ily  ra th e r  than a double p a ra m e te r  se t in m  and n.

The choice of coord ina tes for this p rob lem  a re  shown in F ig .

5. The incident plane wave is  po la rized  in the x -d ire c t io n , traveling
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z

Fig. 5. C oordinate  System  fo r R otationally  Sym m etric  S c a t te re r .  

in the negative z -d ire c tio n ,  which co incides with the ax is of sy m m e ­

try  of the s c a t te r e r .  Unit tangentia l v ec to rs  _t and £  a re  defined on 

the su rface , with t the analogue of 0 in sp h e rica l  co o rd in a tes , and 

identical with the sam e v ec to r in sp h e r ica l  c o o rd in a te s .  Tae unit 

norm al is n and the angle between the unit no rm al and the spherica l 

coord inate  v ec to r  r_, m e a su red  in the d irec tion  of in c reas in g  0, is 

denoted by r .  The com ponents of the incident plane wave in this 

coord inate  sy s tem  a re
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The tangential field com ponents produced by a co llection  of m u lti-  

poles at the orig in  a re  given by

( 79)  E t = ^  ( a n xn + bn yn) cos 4,
n

E<|> = £  <a nxn + bn fc) sin 4>
n

, (2) .. f t  —(2)
xn = kaein * Yn  = - l k J e ao n

tViwhere xn and yn a re  re la ted  to the coefficients of the n o rd e r  

e lec tr ic  and magnetic m ultipo les, re spec tive ly  and where

»n « » .  ♦ = 5 2 n  1  -  ^ n ( P ) ^  - a ( u &  ^  T h»< P)

P^( cos 0 )J-cos <J>

( 80 )
-E®  - T=J

-cos T
h*>flom — |t sin 0 n

' i  =—ei n
/ .  1
I p sin  9

* ch - ~om  x. “
r (0

| h n( P)
3Pi

ae
■J- sisin 4>

p = kr

To obtain an exact solution to the scattering problem would require

that the tangential components of E produced by the multipole fields



be the negative of the tangential components of E* over the surface 

of the s c a t te re r ,  or that

^  an( r ,  0) 3̂  + bj^ r ,  0) yn = -cos {0+t( r ,0 )  } e lk r cos 0

ik r cos 8
(81) n

an( r ,  0) ( r ,  0) yn = e
n

where r = f( 0) and t ( r, 0) a re  specified by the s c a t te re r  surface.

To obtain a solution in finite te rm s ,  the continuous equations above 

a re  replaced by a set of equations holding at M points on the surface 

and involving multipole fields up to a maximum o rd e r  N, If N = M, 

this becomes a system  of 2N equations in 2N unknowns, but in 

general, M will be chosen g re a te r  than N and the following system  

is obtained:
N

^  a mn xn + bmn Yn = - cos ( 0 + T) m elk r m cos 9m 

N

( 82) y  amn xn + bmn Yn = c o s  0m
n^l

amn = an/ r m» 0m) bmn ~ bn  ̂r m ’ 0m)

amn = an( r m* 0m) bmn = bn( r m* ^m)

where the M points ( r m , 0m ) a re  on the s c a t te re r  su rface . The

system  of equations can be solved in the sense  of le a s t  squares , 

which is to say the unknowns xn and yn a re  chosen so as to 

minimize the mean square  e r r o r  between the approxim ate multipole
g

field and the exact tangential sca tte red  field E_ at the M points of
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the su r fa c e .  This p ro c ed u re  e s se n t ia l ly  re p la c e s  the p a ra m e te r  

W p rev iously  defined as  the su rfac e  in te g ra l  of the absolu te  sq u a re  

of the tangen tia l e le c tr ic  e r r o r  fie ld  by the av e rag e  of a fin ite  sum . 

F o r  fields which a r e  not rap id ly  vary ing  with position  on the 

s c a t te r e r  su rface  th is  app rox im ation  is  quite a c c u ra te  for a  re la tiv e ly  

sm all num ber of po in ts . In any event, the exact value of W as  an 

in te g ra l  can be com puted  when the coeffic ien ts  xn> yn have been 

d e te rm in ed  by th is  m ethod. The a c c u ra c y  of the app rox im ation  can  

then be evaluated . F o r  a l in e a r  sy s te m  of M equations in N unknowns 

( 83) ( A) X= C

the re su ltin g  N X N sy s tem  is

(84) (ACT) (A)X= ( a c t ) c

w here Cl denotes the com plex  conjugate t ra n sp o se d  m a tr ix .  This 

type of p rob lem  c a n  be handled e a s i ly  by m o d ern  d ig ita l co m p u te rs  

fo r  N up to 20 o r  30. and fo r  m uch l a r g e r  va lues  of M.

B. CALCULATED SCATTERING CROSS-SECTIONS

The m ethod d e sc r ib e d  above was used  to ap p rox im ate  the 

sc a t te r in g  of a p lane wave incident along the sy m m e try  axis of a  

p ro la te  and an oblate sphero id . The m a jo r  and m inor axes of the 

p ro la te  sphero id  w ere  0. 35 and 0. 28 w avelength, and those of the 

oblate sp hero id  w ere  0 .42  and 0. 35 w avelength.
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Using 21 evenly spaced  points on the su r fa c e ,  approxim ate  

solutions in the fo rm  of m ultipole  expansions w ere  obtained by le a s t  

square  m atching of the tangen tia l f ie lds. F o r  a f i r s t  o rd e r  solution, 

two e le c tr ic  and two m agnetic m ultipole te rm s  w ere  used, including 

dipole and quadrupole te rm s .  A second o rd e r  solution was a lso  

obtained, using four e lec tr ic  and four m agnetic  m u ltipo les . The 

coeffic ien ts  in the a s so c ia te d  sy s te m  of l in e a r  equations w ere 

obtained with a desk  co m p u te r , and an ex isting  IBM 650 p ro g ra m  for 

the le a s t  sq u a re s  solution was u tilized  a f te r  the sy s te m  was reduced  

to a sy s te m  of l in e a r  equations with r e a l  coeffic ien ts . F u r th e r  

s im plif ica tion  was obtained because  of the sy m m e try  of the body 

about the xy -p lane , and the re su lt in g  sy s te m  of equations was 21 by 

4 for the f i r s t  o rd e r  solution and 21 by 8 fo r  the second  o rd e r  

solution. In each  c a s e ,  two such sy s te m s  w ere  solved to de te rm ine  

the com plete  se t  of m ultipole  coeffic ien ts .

The le a s t  sq u a re s  fit to the exact tangentia l IS d is tr ibu tion  

obtained for the f i r s t  o rd e r  approx im ation  is  shown in F ig . 6 for 

the p ro la te  sphero id  and in F ig . 7 for the oblate sphero id . The 

incident plane wave is a ssu m e d  of unit am plitude and the graphs 

show the v a r ia t io n  of re a l  and im ag in a ry  p a r ts  of the com plex  

tangen tia l f ie ld  com ponents E^ and E* v e rs u s  the angle 6 f ro m  the 

sy m m etry  ax is of the sphero id . F ig u re s  8 and 9 p re se n t  the sam e
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data fo r  the second o rd e r  app rox im ation . The im p ro v em en t in  fie ld  

m atching obtained with the second o rd e r  app rox im ation  is  s ign ifican t, 

the m ean  sq uare  e r r o r  d e c rea s in g  by a fac to r  of app rox im ate ly  eight 

in both c a s e s .

The values fo r  the n o rm a lized  m ultipole coeffic ien ts  xR and 

yn of Eq. (^9) obtained f ro m  the f i r s t  and second o rd e r  ap p ro x i­

m ations a re  given in Table I. The change in the va lues of the 

coeffic ien ts  fo r  the second o rd e r  app rox im ation  does not exceed  5% 

of the la rg e s t  coeffic ien t fo r  the p ro la te  sp hero id , nor does it 

exceed  11% of the la r g e s t  coeffic ien t fo r the oblate sphero id . The 

ca lcu la ted  sc a tte r in g  c ro s s  sec tions fo r  the two approx im ations 

a r e  given in F ig . 10 for the p ro la te  sp h e io id  and in F ig . 11 for
i

the oblate sphero id . The sc a t te r in g  c ro s s - s e c t io n  tr in squ are  

wavelengths is  p lo tted  as  a  function of the b is ta tic  angle betw een 

the sphero id  sy m m e try  ax is  and the r e c e iv e r  d irec tio n . A 

b is ta tic  angle of 0° c o rre sp o n d s  to back sc a t te r in g  along the 

sy m m etry  ax is and a b is ta tic  angle of 180° c o rre sp o n d s  to fo rw ard  

s c a t te r  along the sam e ax is .  When the p o la r iza tio n  of incident 

plane wave and the rece iv ing  antenna a r e  p e rp e n d icu la r  to the 

p lane of sc a t te r in g , the c u rv e s  labeled  H -plane apply; when the 

p o la r iza tio n s  a re  p a ra l le l  to the sc a tte r in g  p lane , the E -p lane  

c u rv es  apply.
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TABLE I
VALUES OF MULTIPOLE COEFFICIENTS and yn

PROLATE SPHEROID
Coefficient F i r s t  o rd e r  solution Second o rd e r  solution

xl -0. 27810 + i 0. 53526 -0.27465 + i 0.55683
x2 -0.02389 - i 0.00005 -0. 02618 + i 0. 00002
X3 -0. 00049 + i 0. 00058
x4 - -0. 00005
yi -0.29381 + i 0. 06250 -0. 27246 + i 0. 05451
Yz 0. 00093 - i 0. 01582 0. 00244 - i 0. VI8^8

_ _Yz -0. 00039 + i 0.00011
y* -0. 00001 - i 0. 00003

OBLATE SPHEROID
Coefficient F i r s t  o rd e r  solution Second o rd e r  solution

x i -0. 70282 + i 0 .  69165 -0. 82232 + i 0. 78372
x2 -0. 03381 - i 0. 00529 -0. 05557 - i 0. 00755
*3 0. 00152 - i 0. 00233
*4 0. 00015 + i 0. 00002

_ yi -0. 48201 + i 0. 16471 -0. 49990 + i 0. 17382
Yz -0. 00025 - i 0. 03117 -0. 01265 - i 0. 02598
Yz 0. 00134 - i 0. 00042
Y< i 0.00015

C. EXPERIMENTAL RESULTS

Values of the sca tte r ing  c ro s s  section for the two spheroids 

were obtained experim enta lly  using a m icrowave re flec tion - 

m easuring  sy s tem  in an anechoic cham ber. The m easu rem en ts  

w ere obtained at a source  frequency of 9380 +. 20 m egacycles, 

using p roperly  sca led  alum inum  sphero ids . The sc a tte re d  signal 

a t b is ta tic  angles of 30°, 60°, 90°, and 120° was reco rd ed  as a 

function of sphero id  ro ta tion  in a horizon ta l plane, and ca lib ra ted
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by com parison  with the s c a t te re d  signal from  0. 69, 0, 51 and 0, 33 

wavelength d iam ete r  alum inum  sp h eres  at the sam e bistatic  angles. 

The sca tte ring  c ro s s  section  of the sp h e res  can  be computed for all 

b ista tic  angles, so that any sphere  can  be used for ca lib ra tion . The 

use of th ree  spheres  p e rm its  an e s tim a te  of experim en ta l e r r o r  to 

be m ade, how ever.

A com parison  of the m easu red  and ca lcu la ted  sca tte ring  

c ro s s  sections for the sphero ids is given in F ig s . 12 and 13. The 

deviation does not exceed one decibel, which is  within the usual 

l im its  of experim en ta l e r r o r  for a sy s tem  of th is  type. The E - 

plane re su l ts  ag ree  rem ark ab ly  well with the ca lcu la ted  values, 

H-plane re su lts  showing somewhat l a r g e r  deviations between theory  

and experim ent.

Exact and m easu red  sca tte r in g  c r o s s  sections for the 

spherica l s tandards  a re  com pared  in F ig s . 14, 15 and 16. At 

each b ista tic  angle the value of the m e a su red  c ro s s  section  of 

one sphere  can be a rb i t r a r i ly  se t,  and the m e asu red  values of 

the o ther two a re  then d e te rm ined  by the re la tive  level of the 

reco rd ed  s ign a ls . In the experim en t, th is  a r b i t r a ry  value was 

chosen so as to yield the m inim um  av erage  deviation between 

theo re tica l  and m e a su red  values for the th re e  sp h e re s .  The 

average  m inim um  deviation obtained is le s s  than one-half decibel, 

as shown in F igs . 14-16.
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It is  concluded from  the experim en ta l data that the ca lcu lated  

values of sca tte r ing  c ro s s  section obtained from  the second o rd e r  

approxim ate solution for oblate and p ro la te  sphero id  a re  within one 

decibel of the true  value everyw here , with an average  deviation of 

the o rd e r  of one-half decibel.
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CHAPTER IV 
CONCLUSIONS

Solutions to e lec trom agne tic  sc a t te r in g  p rob lem s a r e  obtained 

by choosing a m a th em a tica l re p re sen ta t io n  of f ie lds valid  in in te r io r  

and e x te r io r  dom ains and im posing boundary conditions a t the su rfa c es  

of sep a ra tio n . The use of m ultipole expansions as a field  r e p r e s e n ­

tation  is  d e s ira b le  because  the expansion  coeffic ien ts  can  be d e te rm in ed  

from  a knowledge of the tangential field  over any c lo se d  su rface  o r ,  

in in te r io r  reg ions , f ro m  a knowledge of the fie ld  and its  d e riv a tiv es  

at a point. The m ultipole expansion is  a lso  w e ll-su ited  for the 

re p re se n ta t io n  of fie lds at g rea t  d is tan ces  fro m  the so u rce , w here the 

w avefront is sp h e r ic a l .

Given a re p re se n ta t io n  of fields in the fo rm  of s e r ie s  with 

unknown coeffic ien ts , an approx im ate  solution to sc a tte r in g  p ro b lem s 

in finite te rm s  can  be obtained by req u ir in g  that the le a s t  squa re  

deviation fro m  m atch  of tangentia l fie lds be obtained on a ll  boundary 

su r fa c e s .  In the c a se  of a p e rfec tly  conducting s c a t t e r e r ,  the m ean 

square  deviation from  the c o r r e c t  tangen tia l e le c tr ic  fie ld  o v e r  the 

bounding su rface  can  be de te rm in ed  fo r  each  ap p rox im a te  solution.

The m in im um  deviation obtained can  be used  to  e s t im a te  the m ean  

square  e r r o r  in  the s c a t te re d  field  a t la rg e  d is ta n c e s .  Fundam enta lly , 

the ex is tence  of a bound on the rad ia ted  pow er f ro m  any tangentia l
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d is tr ib u tion  of 32 over a c lo sed  su rface  S in te r m s  of i ts  m ean  sq uare  

value Is re q u ired  to prove that tangen tia l f ie ld -m atch ing  m ethods 

converge to the tru e  solution. If a value of the bound can  be d e te rm in ed , 

the e r r o r  in a finite approx im ation  can  be e s t im a te d  even when the 

exact, solution cannot be found.

The application  of f ie ld -m atch ing  techniques to sm ooth 

perfec tly -conducting  s c a t t e r e r s  has been d e m o n s tra te d  fo r p ro la te  

and oblate sphero ids of low e c ce n tr ic i ty .  C a lcu la ted  sc a tte r in g  c r o s s -  

sec tions have been v e r if ied  ex perim en ta lly , fo r sphero id s  c lo se  to  the 

f i r s t  resonance  peak in back  sc a tte r in g . It is  concluded that field  

m atching techniques a r e  useful fo r s c a t t e r e r s  whose m a jo r  d im ensions 

a re  of the o rd e r  of the wavelength, although com putation  of sc a tte r in g  

c r o s s  sec tions by this m ethod will re q u ire  the use of high speed  

c o m p u te rs .  A g e n e ra l  co m p u te r  p ro g ra m  to obtain  a sequence of 

approx im ate  solutions f ro m  a  m a th em atica l d e sc r ip tio n  of the 

s c a t t e r e r  su rface  and the d irec tio n  of incidence fo r a p lane wave 

so u rce  should be developed.

Although the m ethod has not been applied  to bodies of high 

e c c e n tr ic i ty  o r d im ensions l a r g e r  than the w avelength, th ese  

conditions could a t w ors t in c re a s e  the num ber of te r m s  in the 

m ultipole s e r ie s  re q u ire d  to  give a good m atch  a t  the boundary .

Since the exam ples co n s id e red  w ere  com puted  on an IBM 650 in

6 5



le s s  than ten m inu tes , it is  believed tha t an  IBM 704 would suffice 

for m ost smooth bodies in the resonance  reg ion . At any step in 

the com putation, the e r r o r  in a finite approxim ation  could be 

es tim ated  by a com parison  of the exact and approxim ate  tangential 

e lec tr ic  fie lds.
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