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ABSTRACT

The representation of electromagnetic fields by multipole
expans .ons and the use of such expansions in the approximate
solution of scattering problems is discussed, The problem of
representing solutions of Maxwell's equations in homogeneous
isotropic regions is considered in Chapter I. Several methods
for obtaining multipole expansions from either a knowledge of the
source distribution or the values of the tangential fields over a
closed surface, or the field components and all their derivatives
at a single point are described, The application of multipole
fields in the approximate solution of single-body scattering
problems is discussed in Chapter II. A method which obtains
the best approximation to a match of tangential field components
at the scatterer surface is described. The case of a perfectly
conducting scatterer is considered, and it is shown that the
convergence of field-matching techniques can be verified and a
bound on the mean square error in the scattered field obtained
if a certain inequality can be derived. Such an inequality is
derived for a spherical scattering surface.

The application of approximate field matching techniques

is illustrated for the perfectly conducting prolate and oblate

ii



sphero.d ‘n Chapter [Il, First and second order solutions are
obta.ned for a prolate spheroid with 0. 35 and 0, 28 A\ axes and
for an oblate spheroid of 0.42 and 0. 35\ axes illuminated by a
plane electromagnetic wave incident along the symmetry axis.
The calculated scattering cross-sections at angles of 30°, 60°,
90° and 120° from the axis are compared with experimentally
determ:ned values and it is concluded that the approximation

s accurate to within 1 decibel for these scatterers.
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CHAPTER I
THE REPRESENTATION OF ELECTROMAGNETIC FIELDS

A, INTRODUCTION

The interaction between electromagnetic waves and material
bodies is a subject whose ramafications have engaged theoretical
phys._zists, mathematicians, and electrical engineers over many
years, In the analysis of scattering and diffraction problems, a
formidable array of mathematical techniqués and concepts have been
assembled, but the discerning student soon learns that unless one
chooses the problem to fit the method, in many cases no solution
can be found. This study is concerned with the scattering of
monochromatic electromagnetic waves by smooth, finite, perfectly
conducting bodies. The literature on this subject is too extensive
to catalogue here, but several comprehensive bibliographies have

1,2

been published, The only {inite three -dimensional shape for
which an exact solution has been obtained is the sphere, and this
solution was obtained over fifty years a.go.3 An exact solution is
defined as one in which the scattered field is given in the form of
a convergent series whose coefficients are explicit functions of the
scatterer geometry and the location and frequency of the source.
Even in this case, computation of the scattered field may be difficult
if the series is slowly convergent, as the literature on propagation

4-10
around a spherical earth will attest,
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The analysis of scattering problems becomes simplified at
e ther extreme of the source spectrum. At very low frequencies
the interaction of the field and the body may be considered as a quasi-
stat’c problem, and the electrostatic and magnetostatic solutions can
be used to develop a good approximation for harmonic sources, This
approach was employed by Rayleigh in the classiwc treatment of small
scatterers, and this range of scatterer size to wavelength is often
called the Rayleigh region. . At very high frequencies, the methods
of geometrical or physical optics may be used to obtain approximate
solutions to scattering problems. In essence, the high frequency
approximations treat the interaction of waves and bodies as a local
phenomenon, and each part of the body is assumed to scatter
‘ndependently of the field at other parts.

The range of scatterer size between these two extremes
may be loosely called the resonance region. Here the scatterer
d:mensions are comparable to the wavelength, and a small change
in the body dimensions or the source frequency may produce much
larger oscillatory changes in the scattered field, Scattering from
bod .es of this s:ze is perhaps the most difficult to approximate,
although the problem can be approached from above by extensions
of h'gh frequency approximationé, or from below by extension of

12 -19
the quasi-static approximation,



The goal of this study is the development of methods for
approximating the solution to scattering problems in finite series,
when the dimensions of the scatterer are of the same order as the
wavelength of the source. The problem will be considered in two
parts, First, the representation of electromagnetic fields in
homogeneous isotropic media by a linear combination of basic
multipole fields will be discussed. The second phase of the problem
will consider the application of such expansions in various
scattering problems, and methods for evaluating the coefficients

in a finite series approximation of the scattered field.

B. RELATIONS BETWEEN ELECTROMAGNETIC
FIELDS OVER CLOSED SURFACES
A number of useful relations between pairs of electromagnetic
fields of the same frequency are easily derived from Maxwell's
equations. If two such fields are denoted by subscripts 1 and 2,

Maxwell' s equations for e-ivt time dependence are

Vx_E_:l=iwa_l+I_{_l, ng_z th'.l_I‘k +Ez,

(1

VXI'_‘I_]':_.[! -inEI, VXE?_ =_J;Z -inEz.
The vectors J and K denote electric and ''magnetic' source current
densities, and it is assumed that the medium is lossless, or if

lossy, that the loss currents are accounted for by the use of

complex values for p and €, Forming appropriate dot products



and combining, it follows that if € and yu are scalar or symmetrical
matrices,

-

HZ' Vx_]i:l-_I:Il- VXEZ

1
I\

Z-_I_?“ -Bl. KZ ’

( 2}
E,” VxH;- E;» VxH,

i
|

2 Js -~ Eyr I,
and since V- (AxB) =B-VxA-A-9YxB,
(3 Ve (Ez; x Hyi- By x Hp) = -Ep* Jo+ Ei*J, -Ho Ky + Hy» Ko

From the divergence theorem, it follows that for a surface S

bounding a finite volume V of space, with outward-pointing normal n,

(4 _Fl'_F_Jz xH-E;xHz) - n ds = 5@:' Jo-Eo it Hie K, -
- H, - K;) dv.

If the volume V contains no sources,

(5) gtgzxgi-g.xgu-y_d“o

On the other hand, if the sources of fields 1 and 2 are all contained
in the volume V, the divergence theorem can be applied to the
external region Veay,t with S as its inner surface and a large
concentric sphere Sp as the outer surface. If the radius R of the
sphere S tends to infinity, application of the radiation condition,
which rejuires that RIE| and R |H[ remain bounded as R tends to

infinity, and that
{6) ’1"- H X nle—— 3 E
¢ R -+ o

on SR’ leads to zero contribution from the surface SR' Since the



volume integral over Vext is zero, the contribution over S given
by Eq. ({3 must vanish. It follows that the surface integral of
Eq.(5)vanishes provided the sources of fields 1 and 2 are entirely

inside or outside of S, In addition,

(7 L(Ez'ia‘*ljz'gl) dv=£ (Ey» I, + Hy+ Ko dv
1 2

whenever V,; contains the sources of field 1 and V, contains the
sources of field 2. This statement is one form of the reciprocity
theorem for electromagnetic fields, originally derived by Lorentz?®
The surface integral of Eq, (4 does not vanish when the

sources of fields 1 and 2 are on opposite sides of the surface S,

In this case,

( 8) f(_E__:IXI_'IZ‘szEI)'ﬂd5=L(§z‘11“’1_'12'51)dV:
S 1

= [ (Ear L+ Bt Ko av
Va

where it is assumed that the sources of field 1 are contained in the
volume V, entirely within S, and those of field 2 are contained in
the volume V, entirely external to S. Since the value of the surface
integral in Eq.(8 is the same for any surface S which separates the
sources of fields 1 and 2, it measures a general relation between
the two fields, and the name ''reaction'' has been suggested by

21

Rumsey for this quantity. A concise notation replaces the

integral of Eq. (8) by the symbol<«1, 2 >3, Or more generally,



the reaction of field A with field B over the surface S is denoted by

< A, B>g. Richmond has shown the sign.ficance of Eq. (8} in trans-
m'ss’'cn between antennas in free space or in the presence of scatter-
ing bod'es, and the reaction concept has been applied and d.scussed

22-26
by several authors,

It is not possible to have a non-zero field A, due to sources
vnside a closed surface S, which has zero reaction with all fields
due to sources outside S, For example, the reaction between A and
the freld of an external dipole cannot vanish unless the component
of the field A parallel to the dipole at the exterior point vanishes.
This follows from the right-hand side of Eq. ( 8), where the only
term contributing to the volume integral over V., is E,* J for an
electric dipole and Hy+ K for a magnetic dipole, where E, , Hp
‘s the field of A at the dipole, If all such reaction integrals vanish,
the field A must be identically zero outside S.

Tt will be useful to establish an uniqueness theorem which
states that there is one and only one distribution of tangential
electric (magnetic) field over a closed surface S corresponding to
a given distribution of tangential magnetic (electr’c) fleld,
produced by sources inside S, The medium outside the surface S

must be specified, of course. The theorem can be shown to hold

as a corollarv of a more basic existence theorem. A rigorous



proof of such an existence theorem is given in Reference 27, The
existence theorem establishes in part that a solution to the scatter-
ing problem exists for a body with the surface S which :s a perfect
conductor of magnetic or electric current, This implies that any
tangential distribution of Ei due to sources outs'de S can be matched
by a fleld gs produced by a collection of sources inside S, since

the combination of two such fields is necessary for the sclution

of the scattering problem for a perfect conductor of electricity,
where (:E_i' + _}ES} x n = 0. Similarly for any tangential distribution
of I_-I_ set up by sources outside S, there must ex'st a set of sources

ins.de S which will produce the same distribution, since for a

perfect conductor of magnetic current (_Iii + _}_-I_S) xn =0,
Now consider two fields over S due to socurces inside S
which produce the same tangential electric field on S, but a
different tangential magnetic field, It will be shown that this leads
to a contradiction. The difference between two such fields will be
a valid solution of Maxwell' s equations outside S, but will have
zero tangential electric field with non-zero tangential magnetic
field on S. fts reaction over S with the field of an arbitrary source

w'thin 8§ must vanish, from Eq. (53). This reaction is just

{9) f(EAXED)-Ed5=0



where ED is the difference field, and E, is the tangential field due
to an arbitrary source inside S. But from the existence of a
solution for the scattering problem for a perfect conductor with
surface S, Ep may equally well represent the tangential electric
field of an arbitrary source outside S. It follows that the reaction
of the d:fference field with all sources outside S must be zero,

and therefore the difference field is identially zero outside S. Due
to the continuity of tangential field components, the difference fleld
is also identically zero on S. Thus it has been shown that two
different distributions of tangential H cannot exist for the same
distribution of tangential E over a closed surface S due to sources
inside S, for a given external environment. A similar proof

establishes the uniqueness of tangential E, given tangential H.

C. MULTIPOLE FIELDS

1. Mathematical Derivation from Debye Potentials

An important set of solutions to Maxwell’' 8 equations are

28-33
the so-called multipole fields. These correspond to a funda-

mental set of solutiona to the wave equation in spherical coordinates,
and may be derived readily from a radial Hertzian vector potential

employed by Debye. 34



In a region free of sources, the field vectors B or D can

be expressed as the curl of a vector potential ] :

{10} B = -iwpevx I,
or

o
(113 D =iwpe Vx I .

If the first representation is chosen, since Vx E - iwB = 0,

(12} Vx(E-k*1) =0

for a homogeneous region, where p and € are not functions of
position, The constant k is equal to wm, or 2nx/\, where \ is
the wavelength in the medium. The development where p or € is
a function of position has been given by Tai, but will not be
considered here.?” It follows that E differs from kz_Il by the
gradient of an arbitrary scalar U:

{13} E = vU+k2 ] .

Substituting in Vx H + iwD = 0,

(14} VxVxII-VU-k*0 =0 .

If I is chosen to be a radial vector potential I = rI' in spher:ical

coordinates, Eq. (14) becomes

) o . any 1 rqy au
(15} £{ rzsine 96 kSlne 8o >+ Sln83¢ Jta—'r"“‘ k HJ =

o 1 81 18U _
(1) 8 {1 ¥ Broe ~r 38 J - 9

_ 1 8% 1 18U | 0
(17 @ {rain6 or 86 rsind 8¢ J 0

9



where r, 8, and ¢ are unit spherical coordinate vectors., .f the
oIl -y g .
scalar U 1s chosen such that U = 3=, Egs. (16) and (17, are

sat'sf-ed, and Ej, (15} becomes

»

o 8 I 1 9 ) oIl - 1 & n :
{1 18) dar¢ 'rfsinod a6 51-n95".§'“)+rk:5;n-.9‘5$‘-“?k 7=0

which can be reduced to the scalar wave equation in /r:

(19 Te T{Mrs + K {T/r) = O.

The potential [l is r times any solution of the scalar wave equation,

Four tvpes of solution are commonly used:

-_" m
(20, O o= orj (kr) P_ {cos 0) cos mé ,
_ (3
{ 21} Femn = r hy (kr) P;n (cos 8) cos m¢ ,

() e)

and a corresponding set I,y , Iy With cos m¢ replaced by

sin m¢. The radial functions jo( kr) and hil"} (kr) are the spherical
Bessel and Hankel functions, and P;n {cos 0} denotes the associated
Legendre polynomial. The properties of these functions are
d:scussed bv Stratton, and the notation s consistent with his work, 3¢
The electromagnetic fields cbtained from these potentials ‘n

consideration of Egs. (10), (13) and (14) are called transverse

magnet.c or TM multipole fields:

(22} Eermn=VxVx (r I 3%
o o

v 235 Ijemn ~iweVx (r lamnp! .
o o

10



The components of these fields in spherical coordinates are given by

. n{n+l cos m¢
{ 24) —Smn ‘r= karz +k? Hemn —-—(r ) n{ kr )P (cos B8)ysin m¢ |
.19 1la ap." [cos mé)
(25 Egmn 9=7 (Br 89) Hgmn- r Zn(kr) 56 sin me
1 a* m

A
(26) Eemn' &7 r sin 6 (31‘ 3¢> Hgmn - :Fr sin 0 Zn( kr)
o n S1n mo
(COS B} LCOS m¢}

(27)

. . _1w€ 1m<~€ m
(28)  Hemn® 2% r sin 6 ( )Hemn Y Sine “nlkr) Py (Colsne‘l"‘d’ i
o {lr!:os md

iwe 78 ap TOo8S Mo -
(29) Homn® 277~ _39> Mernn™ i€ 2n(kr) 35~ {sinme [ -
The generalized spherical Bessel function Z_ (kr) is used to denote
_]n( kr) for type (1) fields and h(:l)(kr) for type (2) fields. The
symbol gn( kr) denotes the derivative of the product kr zn( kr)
with respect to kr, The use of the termJTM to denote these fields
is a consequence of Eq. (27) . A corresponding set of transverse
electric or TE fields can be obtained from the choice of vector

potential given in Eq. (11). The result can be obtained from Egqs.

(22-29) by replacing E by H and H by -E everywhere, as well as

11



interchanging p and €. This set of fields also satisfies Maxwell's
equations, and forms another independent set of multipole fields,
wh’'ch we shall denote by Ebmn and Egmn , using the tilda sign to
dist'nguish the TE fields from the TM,

The multipole fields of types (1; and (2} d'ffer ‘n their
behavior at large and small distances from the origin, because of
different choices of the radial function., Fields of type ( 2) satisfy
the radiation condition, becoming spherical waves at large
distances from the origin, while those of type (1) do not. Fields
of type (1) are finite at the origin, while those of type (2} become
infinite as the origin is approached. In a general sense, fields
of type (2) represent the effects of sources at the origin, while
those of type (1) are essentially standing waves at the origin,
represent.ng fields with equal influx and efflux of energy through
any surface surrounding the origin.

The multipole fields defined by Eqs. (24-29) and the
corresponding TE multipole fields are complete in homogeneous,
source -free regions of space between concentric spherical surfaces.
That is to say, the fields in any such region due to sources outside
the region can be expanded in a convergent series of multipole
fields. in general, fields of type (1) and (2) will be required, but

if the region includes the origin, only type (1) fields will be used.

12



On the other hand, if the region extends to infinity, all sources
being contained inside a spherical surface of radius _R, only type
(2) fields will be used in the expansion outside the sphere of
radius R. Tnstead of proceeding directly to the determination of
such expansions, it is useful to consider an alternative definition
of multipole fields of type (2) in terms of their sources.

2. The Sources of Multipole Fields

A distribution of currents which give rise to the various
type ( 2) multipole fields can be constructed from infinitesimal
current elements at the origin of coordinates. It is convenient
to use the concept of the delta function &{x) B(y) 8(z), or in
abbreviated notation 5(x,y, z), which is zero everywhere except

at the origin of coordinates and is defined such that

(30) f' G(x,y,2) 6(x,y,2z) dv = G(O0, 0, 0) -
v

where G(x,y, z) is any scalar function of the coordinates
continuous at the origin and G( 0, 0, 0) is its value at the origin.
The volume V is arbitrary, but must include the origin., In
the same manner, the derivative of the delta function with
respect to the coordinate x is denoted by &6,.(x,y,z), and

( 31 fG(x, y,2) B (%,¥,2) dv = Gu(0,0,0)
v

where Gx( 0, 0, 0) denotes the derivative of G with respect to x

at the origin,
13



:f the current distribution giving rise to the TM mult.pole

—mn’ —emn
[e] O

d:str'but.ons are postulated:

f.elds E H 18 denoted by Eemn » the foilowing source
o

)z 8 Ml (myse
'—J-r-emn‘h Jomn= m( x+iy) Jl(aikx te —5-‘1;/ Fn M)J‘Lﬁ( *>¥-2)

{32% 3

i@ .. N (m4+1),2 1
tz Fgﬂa+laiky) Pr‘i (Wz_>i'5'x=y’z)’

where the occurrence of a differential operator to a power m ‘mplies

th

that it 1s 10 be applied m times, and Pr(n m)(aaikz\) denotes the m
derivat've of the Legendre polynomial Pp(u; with respect to u, the
operator -51_1:35—- replacing u in the resultant expression. Derivatives
with respect to ikx, ilty and ikz are used to make the notation
compact; these can be replaced by the appropriate power of ik times
the derivatives with respect to x,y, and z, The real part of the
express:on in Eq., (32) yields the current distribution for TM
multipole fields of parity '"'e'" and the imaginary part yields the
current distribution for parity ”0'-' TM fields. E juation 32 was
deduced from a general principle first applied by Van der Pol and
©,33

later extended by Erdelyi to the generation of multipole fiel.ds.3

The current distributions associated with the first few

multipole fields are given by

{eo:. = ES(X,Y,Z) ) iell =§6(x,y,z},
Joy: =y 8(x,vy,2) , J_eo:v.:if‘z(xﬂhz):

14



Je:2=x B (%, y,2) +20x(x,y,2) , Jo12=y08z(x,vy,2) + 28,(x,y, 2}

Je »:=x0x(x,y,2) -~ yby{x,y,2), Joz:=y0x(x,y,2) +xBy(x,y,2)
where proportionality factors have been omitted to simplify the
expressions. The orientation of current elements is shown schemati-
cally in Fig. 1 for these multipole sources, The arrows indicate
relativ e instantaneous directions of current flow in infinitesimal
d:poles., The multipole source distribution is obtained by shrinking
this current distribution down to a point function at the origin
while increasing the current in opposing dipole pairs so as to
maintain a fixed moment.

The sources of TE multipole fields can be represented by
the same distribution of currents, but in this case the current
elements are magnetic dipoles produced by magnetic currents K.
With this minor chan. . replacing ismn by "Egmn: Eq. (32)
holds for the sources oi TE multipole fields, and Fig. 1 represents
the magnetic current orientations for corresponding multipoles.

To verify that the current distributions of Eq. (32) do
produce multipole fields, it is convenient to compare the fields
radiated by such currents, in the neighborhood of the origin., The
vector potential A associated with the current distribution J is

determined by

15
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Fig. 1. Source distribution for elementary multipole fields.



ikR
dv ,

411'_A-_=f l(xsy’z)
Vv

R=\l(x'- )2+ (y-y)t (-2,

(33)

where R is the distance between the field point (x/y/ z') and a point
(x,y,2z) on the current distribution, The integration extends '
over the volume occupied by the currents. For the current distri-

bution of Eq. (32), and for infinitesimal distances R from the

origin,
-1
. _ . /a . 0 ( m)
*r{&ermn® { fomn) = m(i‘}.lx){{xaikx iy n
aikz)} R —ll9ikx "~ diky/ ™ n gikz /| R *
The factor ¥R j5 omitted for sufficiently small R. The result of

1
applying such a differential operator to R is given on page 1281 of

Reference 37:

9 caNT AN en-1_m im

n
where we have omitted a ( -1) factor due to a slight change in
notation for R. The resultant value of the vector potential is

obtained by considering only the leading term in P;m) (—Ba—l.k—z—>

(m+1)/ 3 . . - .
and B (m which give rise to the dominant terms at short

distances from the origin:
n-m

(m)/ @ . (2n) | . Mm=n a
(36) RIM( T > )& oy (O (az) :

17



The vector potential is

amlA,__+iAg ) =
- 2n) !

(m]%r?l'l (cos 8) ei{m-1) ¢’)+ _z;P::l (cos 9) elme } .

In spherical coordinates, this expression becomes

4'"'(..4.emn ti -A—Ol‘nn) =
(ik) -n+l (2n) 1 R imo

2@ al

( 38) {r [m sin O %rle-l (cos 8) + cos 6 P:_ll(cos o)

m-1 m
+ g[m cos 8 B , (cos 6) - 8in 0 E,_; (cos 6)

] m-1 |
+¢ [ imF , (cos8) J} .
Calculating the resultant magnetic field Hby H=V x A, after

considerable reduction through use of recurrence formulas for

the associated Legendre polynomials, one obtzins

4™ Hemn * 1 Homn) =
(i) ™+ 1 (2n) ! r P!
(39) 2" nl
. im m imé dR" im¢
{Q sinepn (cos 8) e -g—a-é——-e .

Comparing this expression with Eqs, (28) and (29), it.is seen
that the form of the field produced by the given current distri-.

bution is the same as the TM multipole field of like order and

18



parity, insofar as variation with 0 and ¢ is concerned. Further, the
radias dependence of type ( 2) multipole fields in the neighborhood
cf tte origin can be approximated by

2nt ! -n-1

e
{40 ~i 5 n'!—'(k:r‘. a2 in,(kry®h_ (kr) .

r=R —-0
When th's expression is substituted in Eqs, (28) and (29, , and the
res.l* compared with Eq. (39), :t is found that the two fields are
"dernt’ral ‘n R, 6 and & dependence close to the origin. If the
current d'stribution 1s to yield the same amplitude of field as the
mult‘pole expansion of Eqs. (24-29}, the current distribution
g en by Eq. (32) must be multiplied by a normalizing factor c,
where
{41 cp = ff}{;( i n+l & .
A simslar analysis can be made for the TE multipole fields and the
assoc iated sources, The current amplitudes must be adjusted by
the same factor as given in Eq. (4l), with € and p interchanged,

to produce the basic TE multipole fields.

3, Expansion of Electromagnetic Fields in Mult'pole Series

The mathematical representation of an electromagnetic
field in the form of a multipole series may serve several purposes.
First, it may be convenient for computation of the field at any

po.nt of a region, This would not be the case if the determination

19



of the multipole series required an explicit knowledge of the field at
every point ab initio, We shall show how to obtain multipole
expansions from a knowledge of the tangential fields over a closed
surface, or from the current distribution of its sources, or in some
cases from'the field and all its derivatives at a single po'nt, A
second use of multipole expansions is conceptual, rather than
computational, For example, the assumption that one or more

f elds can be expanded in the form of a multipole series with
unknown coefficients may be useful in obtaining a mathematical
statement of boundary conditions in terms of these coeffic:ients,
which ultimately leads to their determination. In every scatter-
ing problem, one field is known and that is the field of the source.
For a plane wave, the mathematical description in rectangular
coordinates is simple and explicit. Nevertheless, it may be
useful to replace this expression by a more complicated multipole
expansion 1f this is the form in which the scattered field or other
assoc.ated fields are cast.

A second aspect of the multipole expansion which must be
cons‘dered is its range of validity. It has been stated earlier
that such expansions are complete for the representation of fields
‘n any homogeneous source-free region conta’ned between two

concentric spherical surfaces with the origin as center. The
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extens:on of the representation throughout regions whsch do not
have spherical boundaries may be necessary, for example., In
any case, the proper combination of type (1} and type (2) fields
to represent various source and scatterer combinations must be
chosen before the expansions are explicitly determined.

'f the expansion of a given field in terms of multipoles is

to be obta‘ned, the coefficients amn and‘?a,’mn are required, where

S‘ ~
E =Y (amn Emn * Tmn Emn)
rA

(42

H=> (amn Hmn * Fmn Bun) -

n m
We shall denote the coefficients of a type (1) expansion by a:;)‘n s

'51;11' , and those of a type ( 2) expansion by a,fr‘;l.‘ , ’5;1:?1_1 . 1t is

important to distinguish between two types of field expansion:
those vali.d in the neighborhood of the origin, and those valid at
infin.te distances from the origin, Thus, if the source of a field
is not at the origin, it can be expanded in a type (1) multipole
series valid at the origin. If the source of a field is contained
w'thin a finite closed surface S surrounding the origin, it can
" be expanded in a type (2) multipole series outside this surface.

In general, the expansion coefficients for a tvpe (2} series
<an be obtained when the tangential components of the field are

known over a surface S enclosing the sources. If X denotes the
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source field, M, denotes a TM muiltipole field of order m, n
and ﬁmn denotes the corresponding TE multipole fields, the
react.on of the source field with the various multipole fields of

tvype {1' over S leads to the following system of equations:

@) @) ) ..¢) IR P I
]
(43
~ ) - (2) @) ~~(1} B o~ )
<X, an>s = };Z{aij <Mij ’ Ml’nn>s + aij <Mij’ an>s} .
i
From the principle stated in Eq. (8), the reaction between multi-
pole f'elds 1s the same over any surface S enclosing the origin, so
that the right-hand side of Eq. (43) can be evaluated over a sphere
of large radius. Because of the orthogonal relation between
tesseral harmonics, it then follows that the reaction between any
two multipole ftelds vanishes unless they have the same indices
€
m,n: parity (e or o), and are both TE or TM. 3 Equation ( 43)
thus becomes

<X, I\dl:rin> =a(2) <M(2) Mr(i-‘;xn>

S mn mn ’
( 445 ) z) ~A2) ~A)
<* mn”’g = &mp Mon * Mmn> -

The reaction integrals on the right-hand side of Ej. (44) may be
related to the radiated power in the corresponding multipole field,

and are given by
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&) ) @ ) re,n(n+l) (n+m)!

: 45 , M = eu < Mo = " ‘
(43 ¢ <Mmn> Mmn> b <“Mmn> Mmn ¢ {2n+l} {n-mj!
where € =1, m = 0; € = 2, m # O.

The multipole coefficients in Eq., (42) are

Gr _e'm g (2n+l) (n-m}! )
mn = " Iy e n{n+l) (n+mj! <% Mmn S

{ 46} e € [€ (2n+]) (n-m)! ~()
‘a_.—‘ = _ - <x’ M > -
mn 4 B n(n+l) (n+m) ! mn- g

Equat.on ( 46) determines the multipole coefficients from an evaluation

of the reaction integral over a surface S (enclosing the origin) on which
the tangential field components of X are known, The evaluation of such
:ntegrals may be difficult in specific cases, but is greatly simplified

if the surface is spherical.

An alternative approach may be used when the current distri-
but_.on of the source is known, In this case, from Eq. (8}, the
reaction integral can be evaluated by integrating the scalar product
of the multipole field and the current distribution. Thus, if the

current distribution producing field X is J, contained in V, inside

S
63 ! @)
<x, an>s = / (J° En) dv
(47 v
~&) ' =)
<% Min’s T "/V (3 Emp) dv .

Evaluation of multipole coefficients by this means is discussed in

Reference 28, where the equivalent of Eq. (47) is obtained by a

different approach.
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The expansion of fields in interior regions proceeds along

sim’jar lines, An expansion in terms of type (1) multipole fields

E =) D (amn Emp + ¥ Erl
- ] ~ () 20)
_:Zz(ar(:mzl_n('nzx"‘an‘nhﬁjﬁn) y

if the tangent’al components of field X are known over a

's assumed:

(485

surface S
enclosing the origin, the coefficients are obtained by evaluating

the reaction integrals of the given field with various type ( 2)

multipole fields, and again because of the orthogonal properties

of the multipole fields,

<x, Mgn>s = al(rlr)ln <Mr(rl1)n’ ]!\"[1'(1“-"1)1'1>
( 49) ~(2) ~ ) ) aafe)
<X; Mm>s = a.mn <an, mn> -

Substituting the values of the reaction integrals given in Eg. (45),

6) €m [m (2n+l) (n-m)! {z)
s #mn = "I\ € a(ntl) (atm) 1 X Mmn’g
0)
~(-'-‘; €m e (2n+1) (n-m)! o~ (2)
fmn = T : n{n+l) (n+m) ! <% Mmn>g

The reaction integrals in Eq. ( 50) can be replaced by an equivalent

volume integral of X over the multipole source distribution at the

origin:

{(51)



if the f'eld X and its derivatives are known at the origin, the current
d:stributions J,n and K, for the multipole sources g~ en in Eq., (32!
mav be substituted in Eg. (51). When the correct normallzing
factors g'ven in E3, (4]) are used, the following formulas are

obtained for the multipole coefficients:
m-1

A 9 (m'y_9 ,
‘ demn ( omn) 1 (B1kx +181ky/ B, (a kz){E x tiEy)
{52
) 9 ] 9 m+l’
+<a;kx +1aiky) KWZ\E}\

t 53) 9 P
. ( m+1) }
+(Bikx+1aiky> F )
where 1
n
€m (i) 2n+l .
{ 54, N = - — (2n#l) (n-m)1

mn k - n{n+l) (n+m)!

Equat-ons (52), (53) and (54) yield the values of the multipole
coeff'c’ents of X in terms of its derivatives evaluated at the
or'g.n, To the author':s knowledge, this type of expansion has

not been pres ously derived.

To illustrate the use of this expansion theorem, the
representation of a plane wave field in a multipole ser.es of type
(1} will be derived, If the field i x-polarized, and the wave

travels .n the negative z direction,
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- -ikz
x Eo e

|t
!

{ 55)

B_ _x HO e-ikz .

Since the z components of the field vanish, as well as all derivatives
with respect to x and y, the only non-zero coefficients obta'ned from
Eqgs. (52) and (53) will correspond tom =1, Further, since Ey =

E, = 0and H, = H, = 0, only a and %, coefficients are obtained:
z x z Y 3gin oin

. E?.(i)nﬂ 2n+l B{m) (aiakz) e-ikz

“e:n k [n({n+1) ]2 x=0,y=0, z=0
{ 563
2n+l
Foin = - Ekﬂ‘-’- (i) "+ [n(:n )2 P:Sm)<a?kz> e -tk x=0, y=0, 2=0
Since
(a ?kzjl e k2 _ (" e7IKZ _ ()P at x=0,y=0, 2=0
(57 2™ (et = B Ml - HE

It follows that

_ (-7 2na

eln ik n(n+l) " °
58
(585 o _(=D)" zne1

ao:.n"‘ ]

ik n{n+l) °
which are the correct values for the expansion coefficien*s obtained

a4
by standard means,
In summary, the multipole expansion of a field X in a
homogeneous region D enclosing the origin can be determined,

g.ven (a) the tangential components of X over any closed surface
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in D surrounding the origin, or (b) the current distribut on of the
sources of X, assumed outside of D but in the same homogeneous
med:.im, or (c¢) the values of the field X and all its der vatives at
the or’gin, when D contains the origin, The expansion 'n tvpe (1)
and { 2} multipole series was considered as two distinct problems
‘n the derivation of Eqs. (43-51), it being assumed in the frst
instance that D :s the unbounded region exterior to a surface S
about the origin, containing the sources of X and in the second
‘nstance that D is the region within some closed surface S
containing the origin, the sources of X lying outside this surface,
This d v.sion is unnecessary and cannot always be made, for D
may be a doubly~connected region enclosing the origin but not
con'a’'ring it, and the sources of X may be on both sides of this
reg on as illustrated in Fig. 2, where the cross-hatched regions
V- and V, contain sources. In every case, the tangential
«omponents of the field X over some surface S in D which
encloses the origin will suffice to determine the expans.’.on of X.
In general, this will consist of a combination of type (1} and ( 2)
f'elds. The coefficients of each type are determined by Eqs, (46}
and ( 50) in this case. In a similar fashion, when the expansion
coeff'cients are derived from the source distribution of field X,
for the case shown in Fig. 2 where the sources of X are on both
s'des of the region D, Eqgs. (46) and (47) may be used to
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determine the type (2) series coefficients, the integraton in Eq. (47
extending over the intermnal source distribution in ~olume V.. An
extens on of Eq. (47) to the evaluation of the type (1, series coef -
fic-ents follows from Eq, (8), and

G

A
<x, an>S = “\/v (J * Emn) ds
2

{59! '

< x, mn>s=-j (i'g;’ln) ds
where the ntegration in this case extends over the external current
distr'but’'on in V.. The combination of the type (1! and tvpe ( 2)
expans .ons then represents X in D, provided the sources and D *
are .n the same homogeneous medium.

As an illustration of the source distribution method, we shall
derive the expansion coefficients for a radial electric dipole lorated
at the pont (rg, 85, $g) Or {xg ,yos Zg) 1n 2 homogeneous medium,
For points within a sphere of radius r, about the or:ig:n, a type (1:

expansior must be used, and by Eqs. (50) and (59}, the value of

the coeff’'vr ‘erts are

. v

"y € K (2n+l) {n-m)1i o
: vhe . . Zm | I ‘ I >R
(60; agmn i 4 € n(n+l) (n+mjl '/"(iD -—gmn’ dv,
Y

where 1. *s the curreni distribution of the dipole, and the volume
V encloses the point (X4, Yo 2g)+ In consideration of Eq. (473,
f the d’pole is to produce a unit multipole field when placed at the

or'g.n, the current distribution ’lD is
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€
(61 Ip = - ; O(x-x,) B(y-vyo) B(z-2g) .

The volume integral in Eq. (60) thus yields the value of the radial

component of -E-:-egz)-m at the dipole locations, and from Eq. (24)
¢]

€, (2n+l) (n-m)} ) (kr.)
o.

(62) al®) -

emn ro {n+tm) }

COS mae
P;n(cos eo)i : o}
Sin még.. .

In the same fashion, the expansion coefficients of the dipole field
‘n a multipole series valid outside the sphere of radius r, about

the origin are in consideration of Eqs, (24), (46}, (47) and ( 61},

. € e (2n+1) (n-m)l
(63; agmn = —1_:?:: (nirm) 1 in (krg)

cCos mo
Pm(cos e.) 3 . ©
n o sin mé,J ,

Eguations (61) and (62) are special cases of a general add’tion
formula for multipole fields. Using Eqs. (32) and {41} for the
current distribution associated with higher order mult.pole fields,
the expans .on of an arbitrary type (2) multipole located at ( ro, 0, $o}
in terms of mult pole fields about the origin can be determined by the
same method, In every case, a type (1) expans.un s obta ned for

r< r,, and a type (2) expansion for r > r_.
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Fig. 2. Multipole expansions in a doubly-
connected region D.

Fig. 3. Regions of convergence for
multipole expansions,
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4, Convergence of Multipole Expansions

Multipole expansions of types (1) and (2) are in many ways
analogous to Taylor and negative power Laurent series expansions.
Just as the Taylor and Laurent series have associated crcles of
convergence, which define the regions in which the series converge,
the mult pole expansions have associated spherical bourdaries
which separate regions within which the expansions converge., Tt
'8 eas ly shown from the expansion of the field of a d'pole at a point
{R,8,¢) that the type (1) multipole expansion converges inside the
sphere of radius R about the origin, while a type (2) expansion
converges outside this sphere., In general, therefore, the type (1)
multipole expansion of a field will converge only within the largest
sphere about the origin e::cluding all sources, and the tvpe ( 2)
mui*'pole expansion will converge only outside the smallest sphere
abcut the origin enclosing all sources,

The situation is illustrated in Fig, 3. A distribution of
currents confined to the cross-hatched volume produces a field X,
if the values of the tangential components of X are known over the
elongated surface S, the coefficients for a type { 2) mult.pole
expansion may be determined by Eg. (46). However the
expansion obtained will converge only outside the sphere of radius
R; which excludes most of the surface S. An expans’on in type (1}

multipole fields will converge only inside the sphere of radius R.
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Although the multipole series of type ( 2) does noft converge
everywhere outside or on the surface S, in a broader sense the
multipole coefficients may be said to represen’ the f.eld X there,
since the multipole expansion could be used to evaluatethe
der-vat'ves of X at some external point such as P, and the tvpe
{1} multipole expansion of X about P obtained from Eqs, (52)
and ( 53} would converge inside the sphere of radius R. about P.
Such a process is analogous to analytic continuat-on of Taylor or
Laurent series beyond the circle of convergence to obta:n a
monogenic analytic function limited only by the natural boundary. 28
'n this case the natural boundary would be the cross-hatched voiume,

The coefficients afﬁn, 'i'r(rzl)n of a multipole expansion of type (2)

must be square-summable when properly normalized, That is,

1 1 2 N &
{ 64} N :Zzem n(n+l} (n+m) i,amn, + rgg;ln' }
m

(2n+l) (n{n+m)?
must be finite if the radiated power in the represented field is finite.
However, a similar restriction on the coefficients in a type (1)
expans on does not exist, If field A is expanded in a tvpe (2} mult’ .~
pole series and field B is a type (1) series about the same or gin,
the reaction over a surface S enclosing the origin is given by the

product
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m (2n+l) {n-m)!

L) 1Y @ G
«{ l‘-':— dmn Tmn - IB— amn 2mn ]l"
1) € )

whenever this sum converges, The reaction between fields of the

( 65) <A,B>. = "Zze n(n+l) (n+m)}
n

S
m

same type vanishes, of course.
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CHAPTER 11
THE SCATTERING OF ELECTROMAGNET C WAVES
BY FINITE SMOOTH BODIES

A. INTRODUCTION

The scattering problems to be considered ‘n this work ‘nvolve
a s'.ngle scattering body. In such problems, a primary electro-
magnetc field F is specified in free space or any other unbounded
.sotrop.c homogeneous medium with constitutive parameters €; and
p-. This f.eld is called the incident field F, with electric and
magnet'c field vectors Ei and _I—!_i defined everywhere in the homo-
geneous medium. A finite scattering body is now introduced into
the medium. This body consists of a singly connected region D
composed of a homogeneous isotropic medium with const:tutive
parameters € and pu, , where €; £ ¢, , and (or) p- v u; . The
effect of introducing this body into the primary field can be
descr-bed by an additional field X, with electric and magnetic field
vectors __Eis and I_-I_s defined everywhere outside the body and called
the scattered field. The sum of the incident and scattered field
then g .vves the external 1.21d everywhere in the presence of the body.
An internal field Y is used in the interior region D to replace the

incident field F'. The electric and magnetic field vectors associated

t
with Y are E and ﬂt , defined in D.
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The scattering problem consists of finding a representation
for f elds X and Y such that each satisfy Maxwell's eguations in

the'r region of definition, and

i
o

nx (E +E° - EY

66" )
e nx(H +H -H) =0

on the boundary surface S of the scatterer, where n is the normal
at each point. 1f the scatterer is a perfect conductor of electricity,
the internal field Y is zero and the single boundary cond:tion

nx (E'+ ES) = 0 is used, For a perfect conductor of magnet.c
current, field Y is also zero and the single boundary cond:tion

nx (_}_-!j + __I—ls) = 0 is used.

In each case, the scattered field X is defined in an exterior
reg on extending to infinity, while the internal field Y (if non-zero)
1s defined in an interior region. If multipole expansions of fields
X and Y are attempted,itis customary to choose an origin inside
D, ‘n which case a type (2) expansion must be used for the scattered
field X and a type (1) expansion must be used for the internal field
Y. The incident field F will be assumed to have its sources outside
D, so that it will be represented on the boundary of D byv a tvype

{ 1) expansion.,
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When the boundary S of the scattering body is a coord nate
surface in a coordinate system for which the vector wave ejuation
is separable, all fields can be expanded in series of e .genfunct-ons
appropriate to the boundary, and these are the natural expansions
to use. 'ndeed, it is such an expansion for spher cal boundaries
which leads to the multipole fields we have considered. n th:s
case, Eq. (66) reduces to an ejuation relating corresponding
multipole terms in the expansions of X, Y and F. The coefficients
for fields X and Y can thus be determined explic'tly from those
of FF. However, if S is not one of these very special surfaces,
the expression for the fields on the boundary becomes complicated
‘n any eigenfunction expansion, and the resulting series cannot be
equated term by term.,

Two methods of obtaining approximate solutions to the
general problermn w:ll be considered, A direct or "brute force"
method consists of approximating the fields X and Y by mult:pole
series w.th a finite number of terms and determining the coef-
fic .ents so as to minimize the left-hand side of Eq. (66). This is
the method of approximate tangential field matching., A second
methc.d to be considered employs a set of exact sojut ons to the
scattering problem, obtained by choosing the ‘nternal fleld Y and

determ ning the multipole expansion of fields F and X from the
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value of Y on the boundary. By combining a finite number of such
solut.ons, an approximate match to the given incident f-eld F can
be obtained as well as an approximate scattered field X.

The method of approximate field matching will be cons‘dered
f.rst, The only flaw in this method lies in the fact that the error
between the approximate solution and the true solution cannot be
est'mated, however small the quantity on the left-hand side of
Eq. (66) becomes, In the case of the perfectly conducting scatterer,
the error between the approximate and exact tangential electric
field can be determined, but we are unable at present to obtain a
bound on the error in the scattered field from a knowledge of the
tangential error field alone, although one intuitively feels that such
a bound exists, In the case of a spherical boundary, the desired
bound can be obtained, but the exact ~olution is available ‘n this

case,

B. SOLUTIONS OBTAINED BY TANGENTIAL
F1IEIL.D MATCHING

An approximate solution to the scattering problem can be
obtained by adjusting the amplitude of N independent :nternal fields
and M scattered fields such that the mean-square deviation from
match of tangential fields at the body surface is minimized. A

d d
tangential difference field E, , H; is defined on S by
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M N
i s t d
[nx(E +ZanE -Z b E ]xE.:Et
B n= n=l1
(67) M N
( i s b t _..d
| nx(H' +) ayHl - ) by Ha)|xn=H
n=1 n=1

where El, H® is the incident field; E., H® the nt'h choice of exterior
-’ = —n
t
field with amplitude a,; and E;'l » H, are the n'® choic e of internal
field with amplitude b,. To obtain a least-square approximate

solution, an appropriate squared norm of the difference field over

S is defined., For example,
6 _ C d d* d . d*
( 68) W-J JCE) © (Ey) + (H) * (Hp) [ ds,
s '

where the asterisk denotes the complex conjugate of a quantity,
may be minimized with respect to the choice of coefficients a,,
bp. If W can be made to vanish, an exact solution is obtained, so
it is reasonable to infer that for small values of W, the approxi-
mation will be close to the true solution. To obtain a quantitative
definit.on of closeness, a bound must be established between the
exact and approximate solutions in terms of W. Since no
component of the exact scattered field _E_:_s, _Iis or internal field

t
E, _I:I_Pt is known, such a bound is difficult to obtain,
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In the case of a perfectly conducting scatterer, the situation is
simpler, since the internal field vanishes and the exact tangential Es

is known. Equations (67) and {68) are replaced by

(69) [gx(§+z an_E_i_z)Jxa=§3
- n¥l )
. » ’
{ 70} W=J(E:1) ‘(EBY  ds .
S

The coefficients a,, are chosen so as to minimize W, and an approxi-
mate scattered field _E‘;s is obtained. In this case the field E{-j
measures the difference between exact and approximate tangential
scattered electric field., The difference field is a valid solution of
Maxwell' s equations in the exterior region and measures everywhere
the difference between exact and approximate solutions. Since the
tangential component is known, it may be possible to obtain a bound
on the power radiated by the difference field,

From the uniqueness theorem, it is clear that a distribution
of tangential E over a closed surface S due to sources inside S
determines the tangential H field over S, and the two produce a
definite radiation field outside S. Although determining the
radiation pattern from a knowledge of tangential E alone is merely
another statement of the scattering problem for a perfectly

conducting body, just as is the determination of tangential H from

39



a knowledge of tangential E, it is in some respects simpler to obtain
a bound for the average radiated power in terms of a norm of
tangent:al E.

To illustrate, such a bound will be determined for a spherical
surface. Any external field due to sources inside the sphere can be

represented by a multipole series of type ( 2} :

£-3 Y 58+ 58, EL

n m
- ZE( Pnr Hin + Fran Hon,)

The average radiated power is given by

{ 71)

) * *
(72) P= ZJ (ExH +E xH) - nds

and in terms of rnultipole coefficients, this becomes
1 ~
(73 P=ﬂzzém n(n+)(n+m)l{\,_:(, ‘+J—l(z
nm (2n+l) {n-m)!

The quantity W in E4. (70), in this case

{ 74) w:J (Exn) - (Exn)™ ds
s

can be reduced, because of the orthogonality of multipole fields

on a spherical surface, to
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(751 w=>S { Il / (B xm - (Eo, xn”ds
n m

Evaluating the integrals over a sphere of radius r, where p= kr,

one obta'ns
(76 _, j— Z Z n{n+l) (n+m)!
b m™
’ (2n+1) (n-m)}
. 2 ) 2 z\
JLE @l 18,00 * + {E 0l [ohnte) “f

2 .
If the greatest lower bound for fﬁn( p) f and ’phn( P) !‘ s denoted

by L.,
7 P 1 € W
(71 £3I4F T -

The bound L is determined by 'ﬁn( P) ’z’ since it can be shown that
Iphn( P) lz > 1. The variation of L, with p is shown in Fig. 4. For
large p, L varies inversely as the one-third power of p. It is seen
that an upper bound on the radiated power in terms of W can be
given for a spherical surface, This bound increases with the radius
of the sphere in terms of wavelength, and it seems reasonable to
choose as an upper bound for a smooth non-spherical surface the
corresponding bound for the sphere which just encloses the

surface., However, this choice is not rigorously establ:shed.
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Returning to the approximate field matching technique of Egs.
(67-70), the particular choice of N independent scattered fields X,
and M Internal fields Y, has not been specified. In general, these
could be any set of independent solutions to Maxwell's equations in
the region of definition, but we shall consider the use of multipole
fields within a fixed origin in the scattering body. The number of
terms required for a close approximation to the correct field will
naturally depend upon the nature of the incident field F, the boundary
shape, and the choice of origin, When the body has one or more
planes of symmetry, it is simplest to choose an origin common to
these. If all the multipole fields M, ... mmn of one type up to a
maximum value ng of the index n are usad, (ng + 1) (n  + 2) terms
are involved in the associated multipole series, since such fields
with m > n do not exist., For the multipole fields Momn' ﬁ:)mn’
{ng) (no + 1) terms are involved since these fields with m > n
do not exist. In many cases, the symmetry of the incident field or
the body greatly restricts the choice of the parameters m, n, e and
o. The case for a rotationally symmetric body will be described
later, It is clear that a multipole expansion of fields X and Y will
be exact for a spherical boundary, and rapidly convergent for
boundaries which are nearly spherical. In this respect, the method
is similar to one described by Mushiake, in which small perturbations

39
in the boundary surface from a sphere were treated analvtically.
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The convergence of the multipole expansions in regions with
non-spherical boundaries may be questioned, In regions with
boundaries such as the surface S in Fig. 3, multipole series used
to represent a tangential field on the boundary converge in the
mean to the given field, and therefore it is possible to minimize
the quantity W given by Eqé. t68) and ( 70) without uniform
convergence of the approximation at every point of the boundary.
Calderon has considered the multipole representation of tangential
fields over an arbitrary surface S with a continuously turning
tangent plane. Using methods of functional analysis, it can be
shown that any continuous bounded tangential electric field over S
can be approximated as close as desired by a type (2) multipole

40
field expansion about an interior point.

The minimization of the parameter W is in some respects
similar to a variational approximation to the solution of scatte ring_
problems described by Kouyoumjia.n.“ In the application of the
variational method to perfectly conducting scatterers, for example,
the surface current may be expanded in a finite series of
independent current distributions whose amplitudes are chosen so
as to render an expression for the far-zone scattered field
stationary. Unlike the method of approximate field matching,

however, the amplitudes obtained will change with the direction in
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which the scattered field is evaluated. In bot.: methods, it is
difficult to obtain bounds on the error incurred in a finite expansion.

C. MULTIPOLE EXPANSIONS OF A SET
OF EXACT SOLUTIONS

As an alternative to the approximate field matching method,
a technique which obtains a set of exact solutions to the scattering
problem will be considered, Since it is difficult to obtain the
scattered field X and the internal field Y for a given incident field
F, the internal field Y will be chosen and X and F determined. Let
us assume Y =Y has been chosen and is represented by a particular
type (1) multipole series in the interior of the body. This series
may consist of a single term., The tangential components of Y, on
the scatterer surface can be obtained explicitly, A multipole
expansion in type (1) and ( 2) terms valid in the exterior region can
then be determined from Eqs. (46) and (50), using only the
tangential components of Y, on S. The series of type (1) thus
obtained is identified as the incident field F, and the series of type
(2) is identified as the scaftered field Xo. A particular solution
Xo: Yo: Fgo of the scattering problem is obtained. The process
can be repeated with other choices of the internal field Y = Y,
Y2, etc. A set of solutions Xj, Y;, F,; are thus generated, in

principle, although their exact determination may require an
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infin’te number of multipole terms in each case for X, and F; .

An approximate solutinn to the scattering problem is now obtained
by expanding the true incident field F in a finite combination of the
F, and the assoc:ated scattered field X and internal field Y by the
same finite combination of the X; and Y;. 1If all fields are expressed
‘n multipole series and a finite number of terms retained, the
expansion of F in terms of the F; reduces to the solution of a
system of linear equations.

When applied to a perfectly conducting scatterer, this method
reduces to the choice of the tangential field on the surface of the
scatterer. Since n x E = 0 on such a surface, only tangential H
must be chosen., The determinatinn of incident and scattered field
multipole expansions follows as before from Eqgs. (46) and (50).
The set of fields F;, X, obtained are then used to obtain an appr.oxi-
mate representation of the true incident field and the associated
scattered field,

In many respects, this method is sim'lar to one proposed by
Rumsey, In which the reaction between the approximate scattered
field and varicus test sources is minimized and the assoc:iated
expansion coefficients for the scattered field thereby determined. én
1. is bel’eved that the use of the multipole representation for the

fields involved will enable this procedure to be systematized for

high-speed numerical computation.
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CHAPTER III
APPLICATION TO PLANE WAVE SCATTERING BY A
PERFECTLY CONDUCTING SPHEROID

A. INTRODUCTION

The "perfectly' conducting scatterer is a convenient mathe-
matical abstraction which is approximated closely in the microwave
region by most metallic bodies. For scatterers of this type, the
solution of the boundary value problem only requires the determi-
nation of a scattered field defined in the external region whose
tangential E components reduce to the negative of those for the
incident field at every point of the conducting surface., The scatter-
ing problem is further simplified in the case of rotationally
symmetric bodies, where incident fields with a given azimuthal
dependence produce scattered fields with the same azimuthal
dependence. If the incident field is a plane wavé along the symme-
try axis, the multipole expansion of incident and scattered fields
requires the use of -E-:-em' .I__Ieln, rE—-oxn and Eoln type multipole
fields only. The restriction to the single eigenvalue m = 1 reduces
the determination of the expansion coefficients to a single parameter
family rather than a double parameter set in rn and n.

The choice of coordinates for this problem are shown in Fig.

5. The incident plane wave is polarized in the x-direction, traveling
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Fig. 5. Coordinate System for Rotationally Symmetric Scatterer,
in the negative z-direction, which coincides with the axis of symme-
try of the scatterer, Unit tangential vectors t and ¢ are defined on
the surface, with t the analogue of 0 in spierical coordinates, and
¢ identical with the sanie vector in spherical courdinates. Tiae unit
normal is n and the angle between the unit normal and the spherical
coordinate vector r, measured in the directioﬁ of increasing G, is
denoted by v, The components of the incident plane wave in this

coordinate system are
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i i
(78) E=E,n+Et+Ey ¢

E{ = cos (6 + 1) elkr cos B . g b
E;: _exkr cos © sin ¢ .

The tangential field components produced by a collection of multi-

poles at the origin are given by

(79) E; = }J(anx Yn) cos ¢
n
Eg = Z (apx, + b;l %) sin ¢
n
Xy = kaé:)n s ¥ = -ik E "’(Z)

on

where x_ and y  are related to the coefficients of the nth order

electric and magnetic multipoles, respectively and where

1
‘ @ cost) 9Pn  n(n41) sin ¢
08¢ =Egp' T =4 25 -l

{t)
hn( P)

P;(cos 6)}(:05 ¢

~2(2) oo Teo8 T )
(80) bhcos ¢=E /T is-un 3 h'/(p) Ph(cos G)JL cos ¢

‘ () )
al, sin¢g = —eln "¢ = { -p—-s—l-r-l—e-l—l(‘ {p) P n{ cos 9)} gin ¢

-(1) apl .
b’n sind = E:-gzn b = {hn( el #‘} sin ¢

p=kr .

To obtain an exact solution to the scattering problem would require

that the tangential components of E produced by the multipole fields
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be the negative of the tangential components of g:_i over the surface

of the scatterer, or that

Z an( I‘,e) xn+bn( r, 9) ¥Yn = -CO8 {9+T(r,e)} eikl‘ cos B

(81) n
ikr cos @

Za'n(r,e) xn+b;1(r,6) Yp = €

n

where r = {(8) and T(r, 0) are specified by the scatterer surface,
To obtain a solution in finite terms, the continuous equations above
are replaced by a set of equations holding at M points on the surface
and involving multipole fields up to a maximum order N, If N = M,
this becomes a system of 2N equations in 2N unknowns, but in

general, M will be chosen greater than N and the following system

is obtained:

Z 2n *ntPmnyn = -cos (8+47) elkrm cos Om
n=
N
. ’ .
(82) Z a';‘nn Xn + bmn ¥n = elkrm cos Opm
n=
amn = an( rm. em) bmn = bn( rm’ em)
4 B 4 /
amn = 3p{ Tm» Om) bmn = bn{Tm, 6p,)

where the M points (r_,, Bm) are on the scatterer surface. The
system of equations can be solved in the sense of least squares,
which is to say the unknowns x, and y,, are chosen so0 as to
minimize the mean square error between the approximate multipole

field and the exact tangential scattered field _E_:s at the M points of
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the surface, This procedure essentially replaces the parameter
W previously defined as the surface integral of the absolute square
of the tangential electric error field by the average of a finite sum.
For fielda which are not rapidly varying with position on the
scatterer surface this approximation is quite accurate for a relatively
small number of points. In any event, the exact value of W as an
integral can be computed when the coefficients X s ¥n have been
determined by this method. The accuracy of the approximation can
then be evaluated, For a linear system of M equations in N unknowns
( 83) (A)X=C
the resulting N X N system is
(84) (A°T) (AX= (A")C
where C1 denotes the complex conjugate transposed matrix. This
type of problem can be handled easily by modern digital computers
for N up to 20 or 30, and for much larger values of M.
B. CALCULATED SCATTERING CROSS-SECTIONS

The method described above was used to approximate the
scattering of a plane wave incident along the symmetry axis of a
prolate and an oblate spheroid. The major and minor axes of the

prolate spheroid were 0. 35 and 0. 28 wavelength, and those of the

oblate spheroid were 0.42 and 0. 35 wavelength,
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Using 21 evenly spaced points on the surface, approximate
solutions in the form of multipole expansions were obta'.ned by least
square matching of the tangential fields. For a first order solution,
two electric and two magnetic multipole terms were used, including
dipole and quadrupole terms. A second order solution was also
obtained, using four electric and four magnetic multipoles, The
coefficients in the associated system of linear equations were
obtained with a desk computer, and an existing IBM 650 program for
the least squares solution was utilized after the system was reduced
to a system of linear equations with real coefficients. Further
simplification was obtained because of the symmetry of the body
about the xy-plane, and the resulting system of equations was 21 by
4 for the first order solution and 21 by 8 for the second order
solution, In each case, two such systems were solved to determine
the complete set of multipole coefficients.

The least squares fit to the exact tangential E distribution
obtained for the first order approximation is shown in Fig. 6 for
the prolate spheroid and in Fig. 7 for the oblate spheroid. The
incident plane wave is assumed of unit amplitude and the graphs
show the variation of real and imaginary parts of the complex
tangential field components E¢ and Et versus the angle 6 from the

symmetry axis of the spheroid., Figures 8 and 9 present the same
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data for the second order approximation. The improvement in field
matching obtained with the second order approximation is significant,
the mean square error decreasing by a factor of approximately eight
in both cases.

The values for the normalized multipole coefficients X, and
v, ©f Eq. (79) obtained from the first and second order approxi-
mations are given in Table I. The change in the values of the
coefficients for the second order approxirhation does not exceed 5%
of the largest coefficient for the prolate spheroid, nor does it
exceed 11% of the largest coefficient for the oblate spheroid. The
calculated scattering cross sections for the two approximations
are given in Fig. 10 for the prolate spheioid and in Fig. 11 for
the ol;late spheroid., The scattering cross-section o in square
wavelengths is plotted as a function of the bistatic angle between
the spheroid symrnétry axis and the receiver direction. A
bistatic angle of 0° corresponds to back scattering along the
symmetry axis and a bistatic angle of 180° corresponds to forward
scatter along the same axis. When the polariiation of incident
plane wave and the receiving antenna are perpendicular to the
plane of scattering, the curves labeled H-plane apply; when the

polarizations are parallel to the scattering plane, the E-plane

curves apply.
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TABLE I

VALUES OF MULTIPOLE COEFFICIENTS x, and y,

PROLATE SPHEROID

Coefficient First order solution Second order solution
X3 -0,27810 +1i 0.53526 -0.27465 + i 0,55683
X, -0.02389 - i 0.00005 -0, 02618 + 1 0.00002
My -C. 00049 + i 0. 00058
X - -0. 00005
Y1 -0.29381 +1i 0. 06250 ~0.27246 + i 0. 05451
Yz 0.00093 - i 0.01582 | 0.00244 - i 0.01868
Y3 -0. 00039 + i 0.00011
Y& -0, 00001 -1 0.00003
OBLATE SPHEROID
Coefficient First order solution Second order solution
Xy -0, 70282 +i 0,69165 | -0.82232 +i 0, 78372
X2 -0.03381 -1 0.00529 | -0.05557 - i 0.00755
X3 0. 00152 - i 0, 00233
Xg 0. 00015 + i 0. 00002
Y1 -0.48201 +i 0.16471 ~0.49990 +1 0.17382
Y2 -0. 00025 -i 0.03117 -0.01265 - i 0.02598
V3 0.00134 -i 0.00042
Y i 0.00015

C. EXPERIMENTAL RESULTS

Values of the scattering cross section for the

were obtained experimentally using a microwave reflection~

measuring system in an anechoic chamber,

were obtained at a source frequency of 9380 + 20 megacycles,

using properly scaled aluminum spheroids.
at bistatic angles of 30°%, 60°, 90°, and 120° was recorded as a

function of spheroid rotation in a horizontal plane, and calibrated
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The measurements
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by comparison with the scattered signal from 0. 69, 0.51 and 0. 33
wavelength diameter aluminum spheres at the same bistatic angles.
The scattering cross section of the spheres can be computed for all
bistatic angles, so that any sphere can be used for calibration. The
use of three spheres permits an estimate of experimental error to
be made, however,

A comparison of the measured and calculated scattering
cross sections for the spheroids is given in Figs, 12 and 13. The
deviation does not exceed one decibel, which is within the usual
limits of experimental error for a system of this type. The E-
plane results agree remarkably well with the calculated values,
H-plane results showing somewhat larger deviations between theory
and experiment.

Exact and measured scattering cross sections for the
spherical standards are compared in Figs. 14, 15 and 16. At
each bistatic angle the value of the measured cross section of
one sphere can be arbitrarily set, and the measured values of
the other two are then determined by the relative level of the
recorded signals., In the experiment, this arbitrary value was
chosen so as to yield the minimum average deviation between
theoretical and measured values for the three spheres, The
average minimum deviation obtained is lessl than one-half decibel,

as shown in Figs. 14-16,
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1t is concluded from the experimental data that the calculated
values of scattering cross section obtained from the second order
approximate solution for oblate and prolate spheroid are within one
decibel of the true value everywhere, with an average deviation of

the order of one-half decibel,.
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CHAPTER 1V
CONCLUSIONS

Solutions to electromapgnetic scattering problems are obtained
by choosing a mathematical representation of fields valid in interior
and exterier domains and imposing boundary conditions at the surfaces
of separation. The use of multipole expansions as a field represen-
tation is desirable because the expansion coefficients can be determined
from a knowledge of the tangential field over any closed surface or,
in interior regions, from a knowledge of the field and its derivatives
at a point. The multipole expansion is also well-suited for the
representation of fields at great distances from the source, where the
wavefront is spherical.

Given a representation of fields in the form of series with
unknown coefficients, an approximate solution to scattering problems
in finite terms can be obtained by requiring that the least square
deviation from match of tangential fields be obtained on all boundary
surfaces., In the case of a perfectly conducting scatterer, the mean
square deviation from the correct tangential electric field over the
bounding surface can be determined for each approximate solution.
The minimum deviation obtained can be used to estimate the mean
square error in the scattered field at large distances, Fundamentally,

the existence of a bound on the radiated power from any tangential
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distribution of E over a closed surface S in terms of its mean square
value is required to prove that tangential field-matching methods
converge to the true solution. If a value of the bound can be determaned,
the error in a finite approximation can be estimated even when the

exact solution cannot be found.

The application of field-matching techniques to smooth
perfectly-conducting scatterers has been demonstrated for prolate
and oblate spheroids of low eccentricity. Calculated scattering cross -
sections have been verified experimentally, for spheroids close to the
first resonance peak in back scattering. It is concluded that field
matching techniques are useful for scatterers whose major dimensions
are of the order of the wavelength, although computation of scattering
cross sections by this method will require the use of high speed
computers. A general computer program to obtain a sequence of
approximate solutions from a mathematical description of the
scatterer surface and the direction of incidence for a plane wave
source should be developed.

Although the method has not been applied to bodies of high
eccentric ity or dimensions larger than the wavelength, these
conditions could at worst increase the number of terms in the
multipole series required to give a good match at the boundary.

Since the examples considered were computed on an IBM 650 in
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less than ten minutes, it is believed that an IBM 704 would suffice
for most smooth bodies in the resonance region. At any step in
the cormputation, the error in a finite approximation could be
estimated by a comparison of the exact and approximate tangential

electric fields,
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