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INTRODUCTION

This thegls investigates a continuous version of a pair of
nonlinear programming problems originally formulated by Sinha [33].
Sinha's primal problem arises im stochastic linear programming [ 3l].

One version of Sinha's pair of problems is the following:

Primal: _zmﬁéxSl a.Tz - (zTDz)l/a

where Sl-{z €E; Bz < ¢, zZO}

Dual: min cTw
w € S,

where 32={WEEM: BTWZB-DYs YTDYf_l:“Zo: yGEN}.

Here D 1s an N XN positive semidefinite matrix. B is an
M XN matrix, a GEN, and ¢ €E%. of course, if D = O, we

have a familliar linear programming problen:

Primal: max a'rz, sl'{z EEN: Bz < ¢, 220}

z € 8y
Dual: min c'rw, 83 = {w € " 3w > a, w> 0} .
w € S3 - -

The continuous linear programuaing problems to be stated



subsequently were first considered by Bellman [4], [5], who
formulated them as bottleneck problems. Bellman presented some
weak duality results; that is, conditions which guarantee that
feasible solutions meeting them are optimal. However, the first
strong duality results for the problem studied by Bellman were
proved by Tyndall [34]. A slightly more general continuous linear
programming problem, as studied by Levinson [25], Grinold [13],
[1%4], [15], and Tyndall [35], [36] is

Primal : max Jm aT(t)z(t)at
z € S}-L O

vhere §, = {z € Llf,[o,'r]: B(t)z(t) <c(t) + JtK(s,t)z(s)da,
0

z(t) > 0, ogth}

Dual: min f e (t)w(t)at
w € 55 0

where 85 n {w € Lﬁ[O,T]: BT(t)w(t) > a(t) + _]mKT(t,s)w(s)ds,
t

w(t) 20, 0<t<T}.

Here each entry of the M XN matrices B(t) and K(s,t) is
a function of one and two real variables respectively.

Our work will directly generalize each of the above problems.
In Chapter I, continuous verasions of Sinha's non-linear problems
are explicitly defined. Chapter II specifies scme weak duality

results while Chapter III deals with strong duality--the existence



of optimal solutions under appropriate hypotheses. Concluding

remarks appear in Chapter IV.



CHAPTER I
STATEMENT OF THE PROBLEM

BACKGROUND INFORMATION

We shall now formally state the continuous nonlinear problem

pair which is examined herein:

1. Definition: Problem P (Primal): Find a vector-valued

function z € I 0,T] which is optimal for

max (z)

zGCP

r 2
where f{z) = _ImaT(t)z(t)dt - f[zT(t)Dp(t)z(t)]l/ dt
8] p=1 O

and C, = {z € LIi[O,T]: B(t)z(t) <elt) + JzK(s,t)z(s)ds,
z(t) > 0, ogtgm} .

Problem D (Dual): Find a function w € LE[O,T] which

is optimal for

min g{w)
w & CD

where g(w) = J.Tc-r(t)w(t)dt
0



T
snd oy = {w € I[0,71: BT(t)w(t) 2 a(t) + | K'(t,a)w(s)ds
t
r
- pflnp(t)agt),w(t)zo, yo(EID(E)y(t) <2

¥%p€ Lli[O,T], P=1,004,r, ogtgw}.
We require that a(t) € 10,71, c(t) € Li[0,T],
B(t) € L'[0,T], K(s,t) € L(0,7] x [0,T] , and

pp(t) € LﬁF[O,T] for p = 1l,...,r. Further, we require that

each Dp(t) be positive semidefinite for every t € [0,T],

P =1,..4,r.

Since the notation becomes more awkward in succeeding chapters,
hereafter we shall assume r = 1. In Appendix A we indicate how the
proofs need to be modified to obtain the more general results.

It is easily seen that this problem pair includes the
continuous, linear problems of Tyndall [34], Levinson [25], and
Grinold {14) as apecial cases by setting each Dp = Q0. Our
problems also include the nonlinear problems of Sinha by setting
K(s,t) = O and taking all remaining functions to be coustant

functions over [0,T].

2. Remarks: Nonlinearity.

Sinha (31] formulated a stochastic linear programming problem
which leads to a deterministic nonlinear programming problem. The

nonlinearity occurs in the objective function as & sum of square



roots of positive semidefinite quadratic forms. Although the
problem is a concave programming problem, the nondifferentiabllity
of the square root terms in the objective function precludes the
use of many standard methods for sclving concave programing
problems. With this motivation, & reault of Eisenberg [9] was
extended by Sinha [32] and then used by Sinha [33] to formulate

& dual problem where the nonlinearity occurs in the constraints.
Further, the constralnt functions are differentiable.

Eisenberg's work (9] is a nonlinear version of the Farkas
Lemma which 1s fundamental to the theory of linear programming.
Related work has since been done by Mehndiratta [27], Kaul [22],
and Mond [28], [29]. Kaul's results extend directly those of
Eisenberg to complex space, while the work of Mond extends these
results to convex polyhedral cones in complex space.

Of course, Sinha based his duality theorems on his extension
of Eisenberg's work. In order to establish the existence of optimal
solutions, he required the primal constraint set to be a closed
bounded subset of E. later, Bhatia [7] relaxed this requirement
in some of Sinha's programming theorems.

Bhatia and Kaul [8] have expanded Sinha's programming results
to complex space, and Mond [29] has extended these results to
convex polyhedral cones in complex space.

3. Remarks: Continuous Varisbles.

Tyndall [34] was the first to publish a strong duality theorem
for the continuous linear programming problem. This work assumed

constant matrices for B and K, stronger continuity conditions,



and, of course, D = 0. In addition, he assumed certain algebraic
conditions which implied the existence of optimal solutions.
These conditions are [3%, p. 646]:

(i) [zEEN:BzSO,zZO]=[0]

e

(i1) B>0 , X>0, and c>0.
He also demonstrated that neither hypothesis (i) nor (ii) is
sufficient to insure existence [3, p. 649). 1In addition, he
observed another interesting fact -- namely, the condition that
both primal and dual be feasible, a sufficient condition for the
finite linear programming duality theorem, is not sufficient for
the continuous linear programming problem [3%, p. 648]. Of course,
this is true for our problems as well, since they are a direct
generalization of Tyndall's problems.

levinson [25] extended Tyndall's results by allowing "time-
varying" matrices for K and B. Because of this, an additional
hypethesis was added to Tyndall's. It is this set of hypotheses,
used in the linear problem, that we shall use in Chapter 3 in our
nonlinear problem. Tyndall also used these hypotheses in later
papers [35] and [36] which extended previous results and weakened
the regularity conditions to continuity almost everywhere.

Grinold was attracted by the symmetry of the Tyndall's
primal and dual problems, but was disturbed that the algebraic
conditions did not possess a similar symmetry. In [13], [14] and
[15] he exploited the intrinsic symmetry of the problems and was

able to obtaln duality theorems using weaker symmetric hypotheses.



To best display this symmetry, his algebraic conditions were
phrased geometrically. For example, c¢(t) must lie in the convex
polyhedral cone generated by the matrix (B(t), I]. By definition
this means that B(t)z + Ix = c(t) for some z,x >0; equivalently,
B(t)z < c(t), z >0 has a feasible solution. In addition to four
such algebraic conditions, he alsc imposed the same regularity
conditions and boundedness conditions. The boundedness conditions
are needed for the case B = B(t) and are satisfied by Levinson's
additional requirement.

Grinold [13], [16] has also cbtained some more general results
involving nonlinearity in the objective functionsa. He considers
a primal problem and a lagrangian function to prove some rather
general saddle-point theorems. He does not consider any dual
problem as such. Further, since our dual constraints have a
different form than the constraints of the primal, his work in
this area is not directly applicable toc our problems.

Henson and Mond [20] and Hanson (18] have considered a class
of continuous nonlinear programming problems which incorporate the
same primal constraint set as our problem. However, they require
a twice differentiable concave function as the integrand_in the
objective function to obtain their results.

Gogia and Gupta [12] have investigated a continuous quadratic
programming problem. Essentially, they were able to extend

Levinson's results by linearizing the quadratic problem.



CHAPTER II
WEAK DUALITY

In this chapter we shall develop the basic inequality relating

the objective functions of P and D, and explore the implications of

equality holding for the two objective functions., Conditions which

insure that equality will hold are described in Chapter 3.

The results in this chapter are immediate consequences of the

problem statement and basic concepts. They &re atraightforward

extensions or repetitions of the earlier works in this area; we have

included them here for completeness.

The first result is easily established using Fubini's Theorem.

Lemma: If z € LE{O,T] and w € Lf[o,T] , then
T t T

T
]'ow"(t) [ IOK(a,t)Z(B)ds ] at = Ioz'(t) [ _[tx"'(t,a)w(a)as ] t ,

Integrating Sinha's result (Lemma 1 in [3]) over [0,T]

yields

Lemma: If D(t) 4is positive semidefinite for t € [0,T] ,

and if y,z € LE[O,T]

I:VT(”D“)Z“)“ < f: [ ¥ e)nte)v(e) ]1/2[ 2" (£)D(t)z(t) ]1/2 at

Of course, Lemma (2) is just the Cauchy-Schwartz inequality

e 9
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for the pseudo-inner product (y,z) = meT(t)D(t)z(t)dt.
0

We are noW prepared to prove the fundamental inequality.

Recall, from Definition (1:1) that C_ and cD are the primal

P

and dual constraint sets and that £ and g are the primal

and dual objective functions respectively.

3.

Theoremn: sup (£(2)} < inf {g(w)]

zECP wGCD

Proof: The sup and inf over the empty set are ~o and
o yespectively. Thus it suffices to show that f£(z) < g(w)
for every feasible z and w .

et z and w De feasible for P and D. Then

27(t) [ alt) + j': K"(t,8)w(s)ds - D(t)y(t) ]

< 2T(6)B"(t)w(t) = v (£)B(t)z(t)

t
5wT(t) [c(t) + J. K(s,t)z(s}ds ] .
0
Integrating the above inequality over [0,T], we have
fa"'(t)z(t)dt + fz’(t)[fx"'(t,s)w(s)ds]at - _Cz"(t)n(t)y(t)dt
0 0 t

< _Ec'r(t)w(t)dt + ‘in(t)[IzK(s,t)z(s)da]dt .

Using Lemma (1), this last inequality becomes

r



L.

(1) ﬁaf(t)Z(t) - iZT(t)D(t)Y(t)dt <gw) .

But Lerma (2) and the constraint
y (D (t)r(t) <1

then imply

2
(11) Jzz"(t)n(t)y(t)dt < J:[:z"(t)n(t)z(t)]l/ at .
Thus, combining (1) and (ii) yields

2
(111) £(z) = _]j:a"_(.t)z(t)dt - Ji [z"(t)n(t)z(t)]l/ at

< JzaT(t)z(t)dt - fv’(ﬁ)n(t)z(t)dt < g(w)
0

and the result follows.

Remark: Notice that f£(z) = g(w) 4if, and only if,

expression (3-iii) (or equivalently (3-1) and (3-ii)) hold as

equalities. An immediate consequence of Theorem (3) is the

fallowing:

De

Theorem: If z and w are feasible for P and D
respectively, and if £(z2) = g(w), then z and w are

optimal solutions.

Another property of linear programuing problems which has

an immediate analogue for our problems involves the concept of

ccaplementary sleckness.
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6. Definition: Let 2z € CP and w € CD o Then z and Ww are

said to be equilibrium solutions, or to satisfy the comple-

mentary slackness conditlons, if the following equations

hold for almost every t € [0,T].

t
1) wTe)e(s) + ]'ox(a,t)z(s)as - B(t)z(t) ] = o,

(i1) zT(t)[BT(t)w(t) - a(t) - I%KT(t,a)w(s)ds-+ D(t)y(t)]a 0,
t

and
/2
(111) =7 (£)D(t)y(t) = [z"(t)nct)zct)]l .
7. Remark: Equivalently, we could rewrite (6-i) and (6-ii) as

(1) w,(6)e(t) + j:x(s,t)z(s)aa - B(t)z(‘b)]i =0, 1 =100,

(12) 2, (&)[B7(E)w(s) - a(t) - J:x"ct,sh(s)aa -] - o,

J = l’.l.,N

where the subscript i(j) denotes the ith(ath

) component

of a vector in EM(EN). The equivalency is demonstrated by
noticing that (6-1) and (6-ii) are just the sumations of the
expressions (i) and (ii) respectively, and that the factors
of (i) and (ii) are non-negative since z and w are

feasible solutions.

8. Theorem: Let 2z € CP and w € Cp - Then z and W are
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equilibrium solutions for P and D 1if, and only if,
£(z) = gv).

Proof: If 2z and w are equilibrium solutions, then
adding Zquations (6-1) and (6-ii) and integrating this sunm
over [0,T] yields:

L

- L '
~Ow'r(t)_c(t) + J;K(s,t)z(s)ds - B(t)z(t)] dt

(1) ©

L]

+ "Tzf(t)PBT(t)w(t) - a(t) - fKT(t,s)w(s)ds + D(‘t)y(t):ldt
‘0 - t

= g(w) - j':a*(t)z(t)dt + JzzT(t)n(t)y(t)dt

4

glw) - JmaT(t)z(t)dt + jm[zT(t)D(t)z(t)]l/edt
] 0

g(w) - £(z).
using Lemma (1) and Equation (6-iii).
Conversely, if we reverse the steps in the above

]

argument, Remark (4), Lemma (1), and Definition (6) imply
Equation (i) above. But the fact that 2z € C, and W € Cp
insures that both integrands of (i) are non-negative, and so
the two integrands must each equal zero. Thus 2 and W

are equilibrium solutiong,

Corollary: If =z and W are equilibrium solutions, then

z and W are optimal solutions.

Proof: An immediate consequence of Theorems (6) and (8).



10.

14

Remark: Perhaps a word of caution is in order. It is possible
to have both primal and dual problems feasible such that there
exists an optimal solution to the primal but there exists no
optimal solution to the dual [13, App. A]j. This contrasts
with the finite linear case where the converse of Corollary (9)

is true [11, p.19].



CHAPTER IIIl

STRONG DUALITY

!

In this section we shall establish the main duality theorem.
We do this by considering a sequence of discrete problems which
are, in fact, equivalent to Sinha's programming problems. For
each of these problem pairs, we establish the existence of
uniformly bounded optimal solutions. We then show that these
discrete solutions converge to optimal solutions for the original
problems P and D. This technique was used by Tyndall [34] in
his original work on continuous linear programuing.

In (5) through (9) of this chapter we define discrete problems
and show that they are equivalent to Sinha's dual problems. In
(10) we show that the primal constraint set is uniformly bounded.
This is not a new result since our primal constraint set is the
same a8 that used in later versions of the continuous linear problen,
However, the proof of (10) does not appear explicitly in the liter-
ature. Proceeding, we then apply duality results for Sinha's
problems to our discrete problems in (11) through (13).

In (14) through (17), we are able to utilize properties of
our dual constraint set and algebraic conditions (2) in order to

subsequently bound the optimal sclutions to the discrete dual

15
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problem. This is done in (18) and (19) by extending the ideas of
Levinson [25]. We thus show the existence of uniformly bounded
optimal solutions to each discrete problem pair.

From these optimal discrete solutiona we are then able to
extract a convergent subsequence of functions. To do this, we re-
view the pertinent background materiasl in (20) through (2k); then,
in (25) we define step functions to which we apply Tyndall's
"diagonal process". The convergent subsequence thus yields functions
which we then show in (27) and (28) to be feasible by extending the
arguments of Grinold [13]. These functions are then shown to be
optimal with the aid of Theorem 2.3,

As in Chapter 1II, some of the definitions and results are
essentially the same ag found in the works mentioned above and are
included primarily for completeness.

In particular, we shall make use of the same algebraic condi-
tions and regularity conditions as were uged in the linear case in

the most recent peper by Tyndell [36].

1. Regularity Conditions:

(i) The functions aj(t), Bij(t) and ci(t) are continuous
fOI‘ B.lmost every t e [O,T]’ i = l,c.-,M, J = l,.-n,Na
(i1) The functions Djk(t) are piecewise continuous for

t € [0,7], J,k =1,...,N.
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2. Algebraic Conditions:

(1) ci(t)lz O for all t € [0,T]
Kij(t).z 0 for all (s,t) € [0,7]) x [0,T] .

(ii) There exists & > 0 such that for each i =1,...,M,
j=11,...,N,t € [0,T], either Bij(t) =0 or
Bij(t) >5.

(iii) For each j =1,...,N, t € [0,T], there exists an

ij (perhaps depending on t) such that B, j(t).z 5 .
J

3. Remark: Condition (2-iii) insures that each column of B(t)
has & positive entry, while Condition (2-ii) bounds each non-zero
entry of B{t) away from zero. This is, of course, slightly
stronger than the condition B(t) >0 ; it is needed in the proof
of Lemma 17.

Algebraic Conditions (2) were originally employed by
Levinson [25]. Earlier Tyndall [34] had used the following con-
straint quaiification for constant non-negative matrices B :

{z: Bz <0, 2 >0} = {0} for every t € [0,T] .
Clearly this is equivalent to (2-iii) above when B(t) >0 .
The main result of this chapter is the proof of the following

theorenm.

4. Theorem {(Duality): If the regularity conditions (1) and the

algebraic conditions (2) are satisfied, then there exist
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optimal solutions for P and D, feasible for all t € [0,T],

and with equal objective function values.

The remainder of this chapter is devoted to the proof of
Theorem 4. We begin by defining discrete variables and problems,

only slightly different than those used by Tyndall [3k].

5+ Definition: For any n = 1,2,..., and Xk =1,2,...,n,

T n,k K n,k-1 ,n,k
let 4 =z, €7 =ki, and I7° = (87070, £77F),

Also let
vk o a(kdh),
gk B(ka ),
MK o 0(kﬂn),
p™* < p(ka ), and

Krl"e,k = hn K(tﬂn’kﬁn), L = 1,2,...,1‘1-

When working with a fixed n, the superscript n will often

be cmitted.

6. Definition: Problem P° . Find vectors zn’l,...,zn’n E.EN

which maximize
n o on,k\T n,k n n,k T n,k n,k 1/2
= (@) -z [ o]

subject %o
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k-1
cn’k + L Kn’z k n,l, k=1,ees,n
£=1

n,kzn,k

B <

zn’kZO, k -l,...,n.

Problem D": Find vectors wn’l,...,wp’n € B! whbich

minimize
‘5 (DY T Bk
k=l
subject to
(pn,k)w n,k o k| E (Kn,k, ) n, 4 _ n,kyn,k

L=k+l
k = l,a,...,n

T
(f,k) Dn,kyn,k 5 1’ k = l,...’n

Vn’k 5 0, k = 1’2, .Io,n.

We can shorten the statement of problems Pn and IJn with

the following definition.

I
7. Definition: Problem P : Find a vector Zn € EnN which

maximizes

n,.n n.T.n 1 n,T.n.n /2
F(Z7) = (A)Y2" - T|(2) z]l
= [
subject to &'z% <c®

z' >0 .

Problem DO :+ Find vector W €E M which minimizes

G (W) = (M)W



8 ec ﬁnTWn n- 5
ubject to ( )W > A z 8y
&Y' <1 k=1,..0,n
w'>o0 .

8. Remark. It is easily seen that problems P° and P~ are
equivalent, as are problems D and D", where (omitting the

superscript n):

e -y F- = —
A o1 yl?
L] - L ] nN
Z2=;.1, A=j,{, Y=g, are vectors in E ,
e D .
Lo Sl > 4
— - - .
W et
W={.}{, D=|[2 are vectors in EnM,
n n
¥ €
- -
B o vee O
K2 B ... 0
P = ] is an nM X nN matrix,
_xl,n _Ka,n ... B9
-0 - L ] » - L ] OT
and ﬂk = { - Dk . is a symmetric nN X nN matrix.
0 L L J L L ] L 0
b -

We should also notice that P° and D" are equivalent to Sinha's

problems.



In particular, each D* is positive semidefinite by
Definitions (1:1) and (5), so each 8 is positive semidefinite
also.

An immediate yet important cbservation is the following:

9. Lemma: If algebraic conditions (2) hold for P and D,

then the corresponding conditions hold for P and D",

We first devote our attention to establishing the existence
of optimal solutions to P". Our Lemma (10) is & more compact

version of a result originally proved by Tyndall.

10, Lemma: If algebraic conditions (2) hold, then P" is
feasible for each n. FMarther, the set of feasible solutions
to P" is bounded.

Proof: let n be fixed, and omit the superscript n. By

Lemme 9, zZ- =0 k = 1,...,n 1is a feasible solution for P.
Jow consider z%, the k' term of a feasible solution.

Let e’ = (1,1,...,1), e €E". Then, using (2),

e'B >%e’ >0, Fram Definitions (1:1) and (5), ¢* and

% are vounded, say |c*| <v eand b dal < pb for

£ =1,...,n. The constraints of P" when multiplied by e"

beccome
k-1

(i) eTBkzk 5 ﬂ.rck + E eTK.e,kzz k= l,.-.,n .
A=l

But e'B'z" >8e™ZX = 8|2F]. Also eTe® = [F|l <y,



k-1 K-l
and T e’k < I IeTl(k’zl Iz"'l so that we have
L=

£=1

k-1

BRizE] <y 4 pa Lfllz"l , or

. k-1
Blzk] <v+ rlek
L=l

12%] 5%{ + %é jfllzzl for % = 1,2,...,n. Using induction,

-1
k
we can show [z | < Bx [1 + %]k . Clearly, this is true

for k = 1,2. Assume it is true for k. Then
L=l

k Kk
|zk+1|$g+i§ E|z£|<g+ﬁg Eg[li-%
2= L]

1+ B8 - 1 X
TR e R

Now e* >1+ x implies
k n
k Y A Y ( b) Y oaBin Y T
1< F G- B8 < s B+5) s et~ § e
Thus each ]zkl is bounded independent of n.

Lemma: If the algebraic conditions (2) hold, then each P

has an optimal solution.

Proof: The set of feasible solutions for each P° s
non-empty and bounded by Lemma 10, and closed. Since the
objective function of each P~ 1s continuous, it attains a

maximum over & closed bounded set.



12.

13.

e3

Theorem (Bhatia, [7 , p. 605]): If there exists an optimal

solution to P ; then there exists an optimal solution to

oo, Further, the objective function values are equal.

Lemma: If algebraic conditions (2) hold, then there exists
an optimal solution to each p".
Proof; This 1s a direct consequence of Lemma (11), Theorem

(12), and Remark (8).

Notice that Lemma (10) insures uniform boundedness for the

optimal solutions [zk: kK = 1,ese,n} to P". We shall now show

that the optimal solutions {w': k = 1,...,n} and {y*: k =1,...,n)

to

n

D" are also uniformly bounded. We shall first factor D and

transform variebles.

1k,

Lemma: If D(t) 1is a symmetric matrix whose entries are
piecewise continuous functions, then there exists a matrix
Q(t), also piecewise continuous, such that D(t) = Q?(t)q(t).
Proof: Denote the eigenvalues of D by 11 with corres-
ponding normalized eigenvector Vye If R 1is the matrix

th T

whose 1 column is Vio then R 1is orthogenal and R'DR

is the diagonal matrix with entries li. Thus D = Q?Q where

Qij = ./ Xi vij and vij is the Jth-component of w

Now P(A) = 0 where P(A) is the characteristic

il

polynomial of D. Since A 1s a continuous function of the

coefficients of P [26, p.3) which themselves are continuous
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functions of the piecewise continuous entries of D , A is
a8 piecewise continuous function of t . Thus each minor of
D = A is a plecewise continuous function of + .

Now consider any sublinterval such that no points of
discontinuity of any minor occur within that subinterval.
In each of these (finitely many) intervals we may invert
the largest non-singular submatrix of D - AI +to obtain
eigenvectors continuous on that interval. Thus a piecewisge

Q exists.

Definition: In Problem D" , 1let

phAs _ GQn’k)TQn’k , and
xn,k nQn,kyn,k .

Notice that we can rewrlte the constraintas of Dn as

follows;

(Bk)'rwk > 8 4 . (Kk,z)-rwz ) (Qk)'rxk ,

L=k+1

(xk)"xk <1, Ww*>0,k=1,..c,n .
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16, Lemma: For Kk =1,...,n, (xk)Txkf_l implies

H(Qk)‘rxkl |, is bounded independent of n.

Proof: If K, j denotes the jth column of Q and hence the

jth row of QT, then

umkkauimgx 5 2 < max |1, 17l ||2_ max [lQf 15
J

_ T _ k

But DS, is bounded by Definitions (1:1) and (3:5). Thus

Jd
]l(Qk)Txkllw is bounded independent of n.

K k T kxk
Since ¢ >0 and w > 0, to minimize T cw we wish
K=l
to make each wk as small as possible maintaining feasibility.

Following Levinson [25], we shall obtain a bound on V. We

first prove an intermediate result.
17. Lemma: In Problem D" let l|a°| <q, k™¥) < B4, and
II(Qk)TkuIm < T according to Definitions (5), (1), and
(1:1) and Lerma (16). Define the scalax
k_ (g—g—n)(l + E;ﬁl. ) o Then, omitting the superscript n,

N
2. £) k _k
k. = 2 LN L]
13 mem for 1,2, sn

5p > a +Z(}: _13

2=k+l 1=l



n Nek-l n=ke«l y 4
oot Bt B0 5 BB
~k
- @R -8 - 4],
N n
o a.f; * £=k+1(i-.1xk£ L i mflqgm{ zar Bazalfi-lpz .

SRTOWCES. (P

-K
(ax + 'n)(l + %)n =5 as desired.

18, Lemma: If wn' gove ,wn are feasible for Dn, and if algebraic

conditions {2) hold, then there exists vectors vl ,...,vn

feasible for D° such that

0<v<vw and 0<vF

k
isp, k=l,..-,n; i =l,.0.,M,

where ¢° 15 defined in Lemma (17).
Proof: The proof is essentially the same as Levinson's
Lemma 3.1 [25, p. 78] with obvious modifications using

our Lemma (17). A proof is included in Appendix B.

19. Lemma: If algebralic conditions (2) hold, then there exist

uniformly bounded optimal solutions for D",

Proof: Lemma (13) insures existence. According to Lemma (18),

n
each v?’k is bounded. Since c“-'kg 0, L cn’kvn’k
k=l

< T MRME mus, for fixed n, if there exists en
k=l



optimal solution, there exists a bounded optimal sclution.

Further,
pA_-n-k B4
n,k n,k -+ _n a+1\[ n
Vi 26 'a[1+a ST trw
80 vn’k‘(a"'nexpaal")nguexpﬂ
i -~ & ) e’ 5 ?

independent of n.

Now that we have shown the existence of uniformly bounded
optimal solutions to the discrete problems P and Dn, we shall
follow Grinold's argumants [13] to show that they converge to
feasible solutions to P and D . We then show that these solutions
are in fact optimal for P and D. We begin with statements of

some standard theorems needed subsequently.

20. Theorem (Lebesgue Convergence Theorem [30, p. 76]):
Let g be integrable over S and let {gn]:: g bea
sequence of measurable functions such thet [g.|<g on s

and gn(x) + g(x) a.e. on 8. Then
[e_(x)ax + [ atx)ax .
] S
21. Definition (Weak Star Convergence):

Let g €L_[0,7] for n =1,2,ee. . Then g +¢g ine

weak star sense if

- at ¢ £ €1.[0,T] .
sz(t)gn(t)dt Er(t)g(t) t for every 1[
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Also, a vector-valued function converges in a weak star

sense¢ 1f each component function converges weal star.

22. Lemma (Tyndall [34, p. 653}): Iet g, € L (0,T] for
n=1,2,.... Then there c.:ists a function g ¢ L_[0,T] end a

subsequence [nk} such that gnk + g {weak star).

25. lemma (Tyndall (3%, p. 653]): Let 2" € Lli[o,T] n=1212,c00 o
Then there exists a vectorevalued function z ¢ LIi[O ,T] and a

subsequence [nk} such that
t t

2 2
L__ znk(t)dt - f z(t)dt for 0<t
1 "t

<t,<T.

1l 2

1

2%, Ilemma: Let £ + c
, N 2 2 2t
ci-{z €0, 11:[ B(t)z(e)ar < [ e(wdat + [ k(s,t)z(s)asat,

1 1 tl

z(t) >0, for every t., t, where 0 < t, < t, f_T} .

1’ vz
s 2
cD={w eL’i[o,T]:I BT(t)w(t)dt ZI a(t}dt
% £
1 1
for = |
+ j KT(t,s)w(s)ds dt - J’ D{t)y(t)dt ,
tl t tl :

1

t
e
| yT D )y(e)at < - v, v € Lil0,T], w(t) 20,

2

for every tl, t2 where 0 < t’l < t2 < ‘I‘} .
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Then (i) =z €C, if, and only if, 2z is feasible m.e. for P;

wiyg =

(ii) w €cC. 1if, and ondy if, w 1is feasible a.e. for D.

o

Proof: The proof of (i) is the same as that for a similar
result of Tyndall [34, p. 652]. The proof of (ii) is similar
and makes use of the fact that, if F(x) = rf(t)dt,

- 8
F'{x) = £f{x) a.e. A proof appears in Appendix B.
In order to progress from the discrete problems P? and p°

to the continuous problems P and D, we now define atep functions

using Definitions (5) and Lemmas (11), {(13) and (15).

25, Definition: For n = 1,2,+ee, and k = 1,...,n, let {zn’k]
and {wn’k] be the optimal solutions to P" and D"
respectively. For t € In,k let

a.n(t) - an,k

cn(t) = cn,k

Bn(t) _ Bn,k
() =
wn(‘b) - wn,k
2 (t) = 2F

) = 28,

For {s,t) € In"z xIn’k, lel

K(s,t) = EJ; s oK
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Now that we have shown the existence of uniformly bounded
optimal solutions to the discrete problems P® and Dn, we can
use Tyndall's "diagonal process' to extract a common subsequence
{nJ} such that there exist bounded measurable functions z, w,

and x +to which the subseguences of our step functions, that is

{znj(t)}, {wnd(t)} and {xn'j (t)}, converge in a weak star sense.

26. Lemma: If condition (2) holds, then there exist functions
N M
z,x €L [0,7] and w €L_[0,T] and a subsequenge {nd]
n
such that, using Definition (25), =z 'j(t) + z(t),

xn'j(t) + x(t) end wn'j(t) + w(t), a1l in a weak star sense
on [0,T].

Proof: We simply extend Tyndall's argument [34, p. 653]
to the N components of x'(t) as well, using Lezmas

(10), (16), (19), and {23).

Hereafter, we shall denote the convergent common subsequences
of functions as simply z (t), x"(t) and w°(t).

We next show that 2z and w are feasible a.e. for P and
D. Grinold has shown feasibility for =z wusing slightly different
notation, and we need only slightly modify his argument to show

that w is feasible also.

27. Lemma:; If Regularity Conditions (1) hold, then, in Lemma (26),

2z 1s feasible for P a.e. on [0,T].
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Proof: Grinold [13, App. Cl.

lemma: Given Definitions (15) and (25) and Lemma (26), there

exists & y(t) such that x{t) = Q(t)y(t) .

Proof: As in the proof of Lemma (14), consider any nondegenerate
subinterval such that all minors of ¢ are continuous in it.
[The continuity of each minor insures that we can further sub-
divide that interval into finitely many non-degenerate sub-
intervals such that some submatrix of order r is non-singular
but all submatrices of order r + 1 are singular]. Let

I = (a,b) denote any one of these (finitely-many) subintervals
with this latest property, and consider Q(t) on I . That is,
the rank of @(t) on I is r . Since Q_id(t)=mvij(t)

and the eigenvectors v, are linearly independent, 11 = 0

i
on I for some N - r of the indices i . Thus the corres-
ponding N -~ r rows of @ are zeroon 1.

For n sufficiently large, we have the following:

I = (a,b)
/-\'_A/-‘;b
1 a! 1 1 - 3
"nad-ln,J tn,k-1 Tn,k
t t t t

—

" (tn,j’ tn,k)
From the definition of Q°(t), the same N - r rows of

Q"(t) and hence of x(t) are zero on I° .

Thus the corresponding N ~ r entries of x(t) must be
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zero on I since the lengths of [tn’j'l,a] and [b,tn’k] be-
come arbitrarily small for large n . Finally, since Q(t)

has renk » on I , the conclusion follows.

Lemma: If Regularity Conditions (1) hold, then, in Lemma (26)
w ig feasible for D a.e. on [O,T] .
Proof: TFollowing Grinold [13, App. C] for t € [0,T), let

W) = [Be) - 3(0)] Wh(e),

H

(t) = jtfbn[x“(t,s) - K(t,a)] T'wn(s)ds , and

(¢) = [ - () | £(x)

where D(t) = @ (t)Q(t) and Q is piecewise continuous on
[0,T7] . Also let h°(T) = HYT) = @*(T) = 0 . Following
Grinold's arguments, it is easy to see that n®(t), Ht) and
q"(t) are bounded in norm from Definition (1:1) and the fact
that x" ¢ Lli[o,ml and W € Lli{O,T] . Further, Regularity
Conditions (1) insure that h"(t) +0 , X(t) 0, and

n,k

g (t) +0 a.e. on [0,T] . Now the feasibility of W for

Problem D° implies
T T
@ () P > e + f,,, K8) wia)as

- @) P,

using the fact that, from Definition (23),
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n

=kl

Rewriting (i) using the functions defined earlier, we have
T

BT(e)WR(8) + BR(6) 2a™(t) + | KT(t,8)w (s)as + H(t)
t+A

r
: n
- (@) =% - ) .
Integrating the above inequality over [tl,ta] and then

taking the limit as n + o , we have

'b2 t2 t2 T
(i1) J' BT(t)w(t)dt > f a(t)dt-i-I _[‘ kT (t,s)w(s)dsdt
tl 1.'.1 tl t
2
- [ Qe
51

33

T (Kn’k’ ‘)Twn’k—-IT [Kn(t,s):l'rwn(a)ds, K=21le0e,n =1,
Lk

where we have used Theorem {20) and the fact that w (t) = w(t)

and x°(t) » x(t) weak star by Lemma (26). Since we also

T
have [xn(t):] x*(t) <1, thus
s 2
(111) Ll[xn(t)]'rxn(t)dt > Itle(t)x(t)dt A
Thus lemmas (24t) and (28) imply that w(t) is

feasible a.e. on ([0,T] as w(t) > 0.

Lemma: If Regularity Condition (1) hold, then, in Lemma (26),

£(z) = g(w) .
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Proof: The proof is again similar to that of Tyndall {34],
[36] or Grinold [13). Fram Theorem (12) and Remark (8)

we nave F (2") = G*(W"). Thus
5 }El(an,k)'rzn,k - klél[(zn,k)'rnn,kzn,k:ll/ 2
= J:[a“(t)Tzn(t)dt - _r:[(zn(t))TDn(t)zn(t)]l/aclt

=4 ; 1, k) Rk Jm[c (t)] W (t)dt.

k=l

Therefore, in a manner similar to that in the proof of Lemma

(29) ,week star convergence and Regularity Conditions (1) imply

f [an(t)]Tzn(t)dt > Jm a'(t)z{t)dt,
0 0

ff' (t)) D H(t)z (1:)T1 dt ~ I‘Tl-z'r(f-)l)(‘e)z(t)TL dt.

fr( (t) D B(t)z (1-.):|l dt*f[ "(*c)n('e)z(t):[:L dt, and

J-TLc (t)] W (t)dt - ch (t)w(t)at, Thus £(z) = g(w).
0
The fact that z and w are feasible for P and D only

a.e. on [0, T] is no problem.

3. lemma: Let z and w be as in Lemma (30). Then there
exists 7z and w feasible on [0,T] for P and D

respectively with f£(z) = g(w).



Proof': Let SP be the set of measure zero where 2z 1is not
feasible for P . Define
z(t) if t £ Sp
z(t) =
0 it ¢t € Sp
Then z is feasidble on [0,T] and f£(z) = £(z) .

Similarly let S, be the set of measure zero where w

D
is not feasible for D . Let a > la{t)| and B > [K(s,t)]| .
Define -

w(t) 1if t £ 8, v{t) if t £ 5y
w(t) = and y(t) =
U{t) if t € Sy 0 if t €8,

where U(t) is the M x 1 vector with each entry equal to

u(t) = g-exp 1 g t) -Then, as in Ievinson [{25], U(t) is

T
feasible for D since du(t) =a+ p J u{s)ds and
t

BT(t) w(t) >dult)e > alt) + ItTKT(t,s) w(s)ds . Clearly we

have f£(z) = £(z) = g(w) = g(¥) as desired.

This completes the proof of Theorem {4#) since we have shown
the existence of equilibium solutions which are therefore optimal

by Theorem (2:9).



CHAPTER IV
CONCLUDING REMARKS

Chapter I mentlons several works related to this thesis.

While our work directly generalizes results of Sinha [33], Tyndall
(341, [351, [36] and Levinson [25], scme other possible extensiona
are rather obvious.

One possibility is to attempt to use Grinold's Algebrajic and
Boundedness Conditions [14, p. 86, 88] which include our Condition
(3:2) as a special case. There are several immediate difficulties
with this approach. One is that our discrete non-linear forerunner
does not possess the symmetry of the discrete linear programming
problem stated in the Introduction. Another difficulty is that
feagibility alone does not imply existence of optimal solutions to
our discrete non-linear problem whereas it does imply existence
for the discrete linear problem. Finally, in Grinold's proof
(14, Lemma 3.12] the linear structure of the objective function is
used directly to sequentially quarantee an optimal scolution.

Another possible extension is to use the latest results of
Mond [28] which generalize Sinha's problem [33] to convex polyhedral
cones in complex space. The primary difficulty here apparently

igs finding suitable hypotheses to insure boundedness of the

36
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constraint sets In the discrete problems corresponding to our p°
and D".

In an effort to obtain more symmetry in the Primal and Dual
Problems, it is conceivable that one may be able to generalize
Sinha':c problem by including additional semidefinite forms both in
the dual objective function and in the primal constraint set. Of
course, this is pure speculation.

One other formulation which has been investigated unsucceas-

fully by this author is the following:

Primal: max T(z)
z €C
P
Dual: min_ g{w)
w € CD

Here g and CP are as in Definition (i:1) while

fz) = Jis."(t)z(t)dt - [_]ijzz"(s)n(a,t)z(t)dsdt}l/e, and
‘a.'r(t)z(t)dt - [ijmz'r(s)n(a,t)z(t)dsdtT/E,

v € L7{0,T7): w(t) >0, } ] ¥ (8)D(a,t)y(t)dsdt <1, and
0"0

CD=

A=

BT{t)w(t) > a(t) + fKT(t,s)w(a)ds - fn(a,t)y(s)dn}
t ¢

This problem is appesling in several ways. In particular, it is

easy to show that T(z) <g(w) for z € C, and w € ED' Also

this problem directly generalizes those of Tyndall and Sinha.
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Further, if one defines discrete versions of this problem similar
to Definition (3:6), these discrete problems are equivalent to
Sinha's problems. However, if our Conditions (1) and (2) are
assumed, there apparently is a problem in uniformly bounding

n,k

the analogue to our x and then passing from the discrete to

the continuous case,



APPENDIX A

In this appendix we indicate changes necessary to prove the re=-
sults stated for the problems of Definition (1:1) rather than those
proved in the text for the case r =1 .

In Theorem (2:3) replace the constraint ¥~ (t)D(t)y(t) <1
with y;(t)Dp(t)yb(t) <1,p=1, ..., r, and all other terms in-
volving only D{t)y(t) or ¥y (t)D(t) with ;1 Dp(t)yp(t) and

p=

r
T y;(t)DP(t) respectively. Also in equations (ii) and (iii)
-1

the term ['4*-"'(1;)13(1:)z(1:)31/2 is changed to 1::: [2"(1:)131)(1:)_z(1.-.)]]'/2 .
p=1

These same changes are also needed in Definition (2:6-ii), Remark
{2.7) and Theorem {2:8), while Definition (2:6-1ii) is modified
to read as follows:
26D, (8),(8) = (276D ()2(6) 12 p =1, .o, v
Regularity Condition (3:1-ii) is extended to apply to each
entry of each D, p=1, ..., *, &8 is Definition (3:5). Next

P
the objective function of P" in Definition (3:6) is changed to

n

k=1 P

hH

n
T [(zn,k)-rnn,k_zn,kll/a
lk = P

39
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and that of T® in Definition (3:7) beccmes
(8%) 72D - :;: ; [(Zn)'r%n 2,’11]1/2 )
p=1 kel P
Similarly the dual cons'tra.ints of Definitions (3:6) and (3:7) are
changed in the manner prescribed above for Chapter 2, additional
superscripts notwithstanding.

In Remark (3:8), for p =1, ..., r let

[ [ 0nernnn0 |
yp .l.Ol.. .
: . Ik
= N D
Yp . and ﬂk,p . b .
yn |-0. s oOJ
L P

where the position of D:]‘I: is determined by k , not p . That is,

D]IE is the kth N x ¥ diagonal submatrix. The equivalence of the

modified Pn and fn as well as DI’1 and I-)n

are then seen by
rewriting the double sums over k and p as a single sum over
¢, X =1, «e., nr where & = (p -~ 1) n + Kk, sk’p= 8, and
Yaag} a=(p-l) l{“l" l’ "=y pk-
n,k
In (3:15), ’

and the constraints rewritten accordingly. In (3:16) each
X Xk
()" x
n=-k

D’ p=1, ..., r is bounded in L_ norm , say by 1 .
Then, in (3:17), the scalar p ¥ - (9‘-—1"—5-7-5) (x + %é) will have the

and x’;’k are defined for each P = 1, «ve,

H

desired property, again replacing the terms Q'rx by T Q xP .
p=1

0f course in lLemma 3:19 we must again replace T with Tr .
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In Definition (3:25) we replace Q°(t) and x(t) by
Qg(t) and x;(t) Pp=1, ..., * Tespectively. The diagonal process
is extended to all xg(t) P=1 ooy r in (3:26) and lemma (3:28)
holds for each p =1, ..., r . The necessary changes for the re-
mainder of Chapter 3 are obvious - = for example, defining q;(t)
appropriately for each p =1, ..., r , replacing the term

QT(t) x(t) by
P

M

Q;(t) xp(t) , and modifying constraints and
1

obJective functions as before.



APPENDIX B

In this appendix we present proofs for Lemmas (3:18) and
(3:24).

3:18 lemma: If wl, seey w' are feasidble for Dn, and if Algebraic

Conditions (3:2) hold, then there exists vectors vl,..., vt
feasible for D® such that O < vk < wk and O '5."’1; < pk s
K= 1lyeee,n , 1 =1, ..., M, where pl*l is defined by Lemms

3:17.

Proof: Consider any k, k=1, ..., n and amit the super-
script k where possible. Let

I=[i:w5p} and I'={i :w, >p} . Let

i i
-wi ir 1 €I
v, = . If I' =@ we are done; if I' # ¢
o if 1 €1
we have
M
T B,,v,> L B, = T B.,o>28p>
3=1 1Ty WL ygq U
n M 4 2 N
a, + ¥ Z K.p" = T Q. .x >
7 ey 4y 13 m=1 9% %
n M PR N

a, + T T K..v, = T Q. x by Iemma (3:17).
3 g1 i-1 L g JEm

Thus vk is feasible.

42
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3:24«(ii) Lemma: Let

t t
¢t = (weillo,1] : I 2 3T(t)w(t)at Zf 2 a(t)at +
t 21

t, T t
J' e j K (t, 8) w(s)ds dt - j 2p(t)y(t) at ,
£, "t t

t
f e ¥ (t) D(t) y(t)at < t, -t , Y€ Lﬁ[o, t], w(t)>0,
" .

1

for every tl,t where 0 <t, <t

1<t 2T}

2

Then w € CI]}' if, and only if, w 1is feasible a.e. for D .

1
Proof: If w is feasible a.e. for D, clearly w € CD- . If

1
w € CD ’ consider 1.'1 fixed, O gtl < t2 < T . We have

t &
— ("2 B™(t)w(t)at > = U a(t)at +
2" %1 g, 2=ty b,

b &
f ¢ _meT(t,ao) w(s)ds dt - f 2 D(t)y(t)dt], and
‘tl t tl

1 (‘t2 Y'r

t- tlJt

(t)D(t)y(t)at < 1.
1

Taking the limit as t, ~ tl vields the desired result (since

t'l is arbitrary) using the fact that Dx rf(t)dt = £(x)
&

(30, p. 88] .
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