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NOTATION
A B. A is a subgroup of B.
A ̂  B. A is not a subgroup of B.
A < B. A is a proper subgroup of B.
A B. A is a normal subgroup of B.
a 6 A. a is an element of A.
NK = { nk | n 6 N, k € k] .
N * K. The subgroup NK when N is normalized by K.
M O  K. The intersection of N and K.
ab = b“1ab.
<x,y>. The group generated by x and y
| G | . The order of the group G.
1 X 1 . The order of the element x.
G'. The derived group of G.
cg(n). The centralizer in G of N.
ng(n). The normalizer in G of N.
$(G). The Frattini subgroup of G.
Z(G). The center of G.
Cx,y] - x"V"1xy.
[x,A] = <[x,a] ) a €. A>.
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Introduction 
Given two finite groups N and F, there are many 

extensions of N by F, i.e. groups G with normal subgroup 
N and factor group G/N = F. The question as to what 
determines the extension was answered by Schrier (see 
e.g. Hall [5] theorem 15.1.1) in terms of automor­
phisms and factor sets, and two extensions were called 
equivalent if a change in coset representatives would 
give the same automorphisms and factor sets. As for 
any algebraic structure, the question as to what extent 
the local structure influences the global structure 
arises. In this respect, the question is asked if 

and ^  are extensions of N by F, which subgroups 
of E-̂ and ^  must be equivalent in order to force E-̂ 
and E2 to be equivalent.

Many of the problems reduce to the question 
of splitting, i.e. does there exist a subgroup K of 
G such that G = NK and NflK = l? For that reason 
Chapter I deals with splitting theorems. The well- 
known theorems which are to be used later are given, 
and some new theorems are proved.

In Chapter II a general theory of local equi­
valence is developed. Subgroups and of Ê
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and E2 respectively are said to be equivalent if changing 
coset representatives of N in E^ and E2 gives the same 
automorphisms and factor sets when restricted to 
and l̂ . A class of subgroups of G is called a local 
family if the class determines the extension, i.e. if 
when every member of the class in E^ is equivalent to a 
member of the class of E2 implies that Ê  and E2 are 
equivalent. Several examples are given to show that 
certain families of subgroups are not local. For ex­
ample, it is shown that the family of subgroups whose 
intersect with N is nilpotent is not a local family.

In Chapter III the concept of local equivalence 
is expanded to include all subgroups containing N and 
two extensions E^ and E2 are said to be C-equivalent, 
where C is a class of subgroups of F, if every sub­
group of Ê  which contains N is equivalent to a 
subgroup U2 of E2. In the case where N is abelian, 
the theorem of Gaschutz saying that splitting of G over 
N is determined by the Sylow groups of G, is extended 
to give equivalence of two extensions if they are Sylow- 
equivalent. It is shown that if two extensions are 
cyclic-equivalent, then they have transversals which 
give the same automorphisms on N. A theorem is proven 
that if two extensions have such transversals, they have 
factor sets differing by an element in C (F,Z(N)), the
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second cocyclcs of F into Z(N), i.e. an element of 
PB~(F,Z(N)). Several corollaries follow from this result, 
as does the main theorem, which is a generalization of 
Gaschutz Theorem to the non-abelian case. The theorem 
is that two extensions are equivalent if and only if 
they are Sylow-equivalent.

\



I. SPLITTING THEOREMS 
A group G is said to split over a normal subgroup 

N if there is a subgroup K of G such that G = NK and 
NrtK =1. K is called a complement of N in G. It is of 
great interest to know when G splits and much research 
has been done in this area. One of the basic results is

Theorem 1.1 (Schur-Zassenhaus)
If N is a normal subgroup of G and 

( I N | , |G:N|)=1 then N has a complement in G and
all complements are conjugate.

A local-global theory for the splitting of 
groups has been sought for quite some time. One well- 
known result in this direction is the following theorem 
of Frobenius. K is called a normal p-complement if 

G, G = KP, and K A  P = 1 where P is some Sylow 
p-group of G. In this theorem then, the normal subgroup 
is sought, it is not assumed to exist.

Theorem 1.2 (Frobenius)
G has a normal p-complement if and only if 

the normalizer of each p-subgroup does.
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A more recent result in this same vein is

Theorem 1.3 (Thompson)
Let p he an odd prime, P a Sylow p-subgroup, 

and Z £ Z(P). Let J = <A S P | A is abelian and of 
maximal rank in P>. If Ĉ (Z) and N̂ (J) have normal 
p-complements so does G.

There are papers by Sah [153, Schoenwalder [153, 
Suzuki [193, Baer [13, and Roquette [123 in which 
complements of Hall subgroups are discussed. The 
first four of these papers discuss normal Hall comple­
ments. A paper by P. Hall [63 characterizes groups in 
which all subgroups are complements, one by 
Christensen [4-3 deals with groups in which every normal 
subgroup is complemented, and G. Higman [73 discusses 
complements of abelian normal subgroups. Theorems by 
Carter [53 and Schenkman [143 imply G splits over a 
certain term in a normal series. But basically these 
papers do not attack the problem from a local point of 
view. They do not assume the existence of a normal 
subgroup, but attempt to show the existence of a normal 
subgroup over which G splits. The work in this chapter 
does, and is more in the direction of



Theorem 1.4 (Gaschutz)
Let G be a finite group and N a normal abelian

subgroup of G. Then G splits over N if and only if each
Sylow group P of G splits over PAN.

As is well known, the theorem is not true if 
the normal subgroup is not abelian. An example which 
demonstrates this behavior is given in Scott [173• This 
particular example will be used to demonstrate other 
behavior later as well so it is given now.

Example 1.1
Let N = ( a,b | a4 = b4 = 1, ab = a"1, a2 = b2^

be the group of quaternions, T be the central product
of N with a cyclic group of order 4, T = ^ N,x J x2 = a2, 
[N,x] = 1^ and <r an automorphism of T of order three 
having the action ar  = b, b^ = ab, x ̂  = x. Take G to 
be the split extension of T by <<r>. It can be easily 
seen that although T splits over N, T = N<ax>, NA<ax> = 
= 1, G does not. Since G/N is cyclic of order 6, any 
complement must contain an involution which is centrali­
zed by an element of order 5. Any complement of N in G 
would contain a complement of N in T and the complements 
of N in T are <ax>, <bx>, <b”^x>, <abx>, and
<(ab)~^x>. These are all conjugate so it suffices to



look at <ax>. Since x 6 Z(G) then Ĉ Cax) = Cg(a) = <a,x> 
which has order 8. The involution ax is not centralized 
by any element of order 3 so cannot lie in a complement 
of N in G, nor can any of its conjugates, so there is no 
such complement.

Efforts to extend this result so as to not 
require that N be abelian have been notably unsuccess­
ful, and only slight progress has been made in this dir­
ection. The following theorem places no constraints on 
the normal subgroup and is a beginning in the direction 
in which we want to proceed.

Theorem 1.3
Let G be a finite group and N<G. Suppose every 

Sylow group P of G splits over Pn N and every maximal 
subgroup M of G splits over MON. Then G splits over N.

Proof:
If N lies in all maximal subgroups, N lies in 

their intersection, ^(G). Since $ (G) is well known 
to be nilpotent, N is nilpotent and N'<N. N/N' is an 
abelian normal subgroup of G/N* and each Sylow group 
PN'/N' splits over (PN'/NO A(N/N') since P = (PON) * KJr
so PN'/N' ON/N'= (PON)N'/N' . Applying the theorem of 
Gaschutz then N/N' has a complement in G/N'. Hence N 
is complemented in G contrary to N lying in ^(G), so



there must be at least one maximal subgroup M which does 
not contain N and M = (HhN) * K, (MhN)O K » 1. Since 
M is maximal G = NM and

1*1 I Nl ImI In I iMrtNl lK> |„| |„|
IG i ’ | k / i h i  r r a i  i” 1 |K|

so K is a complement of N in G.
r Q.E.D.

In example 1.1 only one maximal subgroup fails 
to split over its intersection with N and that is a 
cyclic subgroup of order 12, <xo->. It is of course not 
necessary that all maximal subgroups split over their in­
tersection with N, for if that were the case, applying 
the result to the maximal subgroups of the maximal sub­
groups, we could show that all subgroups split over their 
intersection with N.

Another result is that of the author's in [10J 
in which it is shown that

Theorem 1.6
Let G be a finite group and N a normal subgroup 

of G. If for each p, every p-subgroup P of G splits 
over PnN, then G splits over N.

Since this theorem places no restriction on 
N, it is of some interest then to know under what cir­
cumstances every subgroup of a group of prime power order



will split over a normal subgroup. This is answered in 
the negative in the paper just refered to by giving a 
characterization of p-groups which do not split over a 
normal subgroup, while all proper subgroups do split 
over their intersection with the normal subgroup. Here 
we derive a sufficient condition for a prime power group 
and all its subgroups to split over their intersection 
with a normal subgroup.

Theorem 1.7
Let G be a finite p-group for some prime p and 

N<G. If each subgroup P has the property that for each 
A £ $(P), A^P, every two generator subgroup S/A of P/A 
splits over (SAN)*A/A, then G splits over N and all 
subgroups P of G split over PAN.

Proof;
Let G be a counterexample of minimal order. If 

P is a proper subgroup of g, then P satisfies the cond­
itions of the theorem relative to the normal subgroup 
PAK. Therefore we may assume thst every proper sub­
group P of G splits over PAN.

If N ̂  <t>(G) then N would have a supplement S< G 
so that G = NS. Since S would be proper S » (SnN) *K, 
(SoN)AK = NAK =1 and K would be a complement of N 
in G. So it may be assumed that N 4 4>(G).

Let M be a maximal subgroup of G. Then M contains
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N and by assumption splits over N, so Let A
be a normal subgroup of G maximal subject to the follow­
ing requirements, <|>(M)£ AG ^(G) and NĴ A. Then NA/A 
is minimal normal in G/A and if B/A is also minimal nor­
mal in G and B/A £ <f>(G/A) then BAS ^(G) and BA^G so 
that by the maximality of A, no other minimal normal 
subgroup of G can lie in $(G/A). Suppose B/A is a min­
imal normal subgroup of G/A and B/A& ♦(G/A). Since 
B/A$ ♦(G/A), B/A is supplemented, and being of order p 
is therefore complemented. Since a minimal normal sub­
group of a p-group lies in the center, both B/A and its 
complement are normal so that G/A is a direct product. 
Each minimal normal subgroup which does not lie in

is a direct factor of G/A. The complement of 
the direct factor B/A will have as direct factors each 
minimal normal subgroup not lying in ♦(G/A). Thus G/A 
can be written B-̂ /A x B2/A x ... x Bg/A x L/A where 
L/A has a unique minimal normal subgroup NA/A. If L is 
a proper subgroup of G then L splits over N so L/A 
splits over NA/A and L/A = NA/A x K/A since NA/A - Z(G/A). 
But then a minimal normal subgroup of K/A is also mini­
mal normal in G/A so L/A would not have a unique minimal 
normal subgroup. Thus L must not be a proper subgroup 
of G and we may assume that G has a unique minimal normal 
subgroup.
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Now A 2 ̂ (M) so M/A is elementary abelian. Let 

g€ G/An M/A. The action of g °n M/A can be considered 
as operating on a vector space, so a basis for M/A can 
be selected so that the action of g can be written as a 
matrix in Jordan form. Each Jordan block is normalized 
by g, and of course by other elements of M/A. Each 
block then contains a minimal normal subgroup, and there 
being only one, there can be only one block. In other 
words, the action of g is cyclic. Thus G/A = 
is a two generator group and by assumption splits over 
NA/A and N has a supplement contradicting NS (̂G).

Q.E.D.

We next observe that if a group G is nilpotent 
and each Sylow group P of G splits over Pn N,
P = (Pn N) * K , then the complements K , K commute so

M V " ”
that K = \ Kp/ Kp is a complement of N in G. We 
extend this concept in the following result.

Theorem 1.8
Let G be a solvable group, N^G and G/N be nil- 

potent. Suppose every Sylow subgroup P of G splits 
over Pn N, P = (PnN)Kp. If there is a chain of sub­
groups N = Nq>N^>N2>...>-Ns ® 1 which is stabilized 
by each K̂ , then G splits over N and there is a complement 
K which contains all the K .
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Proof:
By induction on s, the length of the chain. It 

may be assumed that each factor is abelian, for
if not intermediate steps can be inserted, 

s = 1
N is abelian and ^(N) 2 N • < \ | p  j | G l >  G 

so N£Z(G) and G is nilpotent, and the conclusion follows.
Assume now that the conclusion holds for groups 

with s<n. For each prime p the multiplier group 
K(N,Kp) <  SXS**’1’J g£N, x6 Kp^ is a normal subgroup of 
N by Satz 1 of Kaloujnine [11], It is also normalized 
by Kp, since for y 6 Kp, y”16Xg“1y = g^g"*7 = g*7*7 ^g ”*7
= Cg7)*7 J"xy(gy)“1 6 K(N,K ). Then N’K(N,K )<JNK andr Xr XT
N/N'K(N,K ) is the maximal abelian factor group of N

Jr

which Kp stabilizes, so N-̂ 2 N'K(N,Kp.).

N/N'K(N,K) £Z(NK /N'K(N.,K_)) so Ej/N'KCN^K )<*NK /N'K(N,K n P P P P P  ̂P/
and is normalized by N <Kp | p | IGÎ  = G.
G/N, is nilpotent since N/N, fe Z(G/N, ) and &/Ni CC G/N1 l x  TT7N^
is nilpotent. Therefore there is a complement K/N^ 
which contains each of the KpN̂ /N̂ . We note that 
NoK£Nr

Now consider the group K relative to the chain 
N ^  NgC* ••• = 1. The Kp stablize the chain so by
induction N̂  has a complement C which contains all the
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K . K = N *C, and N, r\ C » 1. Since G - N*K » N*N,C ■ NC P 1 1 x
and NncSNoK^Np it follows that NnC * N̂ /l C » 1, and 
C is also a complement for N in G.

Q.E. Da
In [11] Kaloujnine calls a group N K-nilpotent, 

if K acts on N to stabilize a chain of normal subgroups 
of N. N need not be nilpotent itself, as can be seen in 
the following example.

Example 1.2
Let N = ̂ a,b,c ) â  = b^ = ĉ  = [a,b] = 1, a° = b,

bc = ab^ , and? the automorphism of order 2 which maps
c = ca, a = a, b =b. Let G = N*<x> where x = 1 and
x acts as ? on N. G is not nilpotent, but satisfies the
hypothesis of theorem 1.8 relative to the normal chain

2 3KKa,bXN, so G splits over N and <x >*<xO is a 
complement.



II. BASIC LOCAL THEORY AND EXAMPLES
Considerations arising from problems in extensions 

of number fields and their relation to their Galois 
groups lead us toward a particular concept of localiza­
tion. In his thesis Sonn [18] studies the problem of 
determining the existence of a Galois extension L of an 
algebraic number field k with Galois group G(L/k) = G. 
Reduction theorems lead to the embedding problem of det­
ermining the existence of L given that L must also con­
tain a Galois extension K of k, where G(L/k) is a given 
extension of N = G(L/K) by G(K/k). In this chapter we 
look at this concept of localization and see several ex­
amples in which the conditions set forth are not suffi­
cient to give a local-global theory of group extensions 
and a stronger notion of localization is required.

Results in extension theory of groups are given 
in two different notations; one as given in Marshall 
Hall C5J, and another as in W. R. Scott [17]. Both 
notations are to be used so they are given here.

In Hall E is said to be an extension of a normal 
subgroup N by a group H if N <  £ and E/N ̂  H. The 
basic result is

Theorem 2.1 (Schrier)
Given a group E with a normal subgroup N and

14
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factor group F = E/N. If we choose coset representatives 
u where uN-*-u € F, taking 1 = 1, then automorphisms and a 
factor set are determined, satisfying

(au)v = (u,v)”1(aUV)(u,v); a, (u,v)feN; u, v«F 
(uv,w)(u,v)w = (u,vw)(v,w); (1,1) = 1.

Conversely, if for every u6 F there is given an automor­
phism a-*-au of N, and if for these automorphisms and the 
factor set (u,v)€ N ; u, vtF, the above conditions 
hold, then elements ua, ufeF, afe N, with the product rule 
ua vb = uv(u,v)avb define a group E with normal subgroup 
N and E/N = F.

The extension is denoted E[N,H,au,(u,v)] and equiv­
alence of two extensions is given in the following:

Definition 2.1 .1
Two extensions E, = E[N,H,au ,(u,v)"L] and2 2E = E[N H a11 1 are equivalent if the automorphisms

and factor sets are related by
a = •((ufVVtu)
(u,v)2 = <*.(u,v)-1(u,v)1ot (u)ToC (v) 

where ô (u)is a function of elements u6 F with values in 
N and o( (l) = l.

These same concepts are given by Scott in the 
following manner. An extension of a group N by a group 
F is an exact sequence of groups
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1 £-> N ► E — - > F--- ►* 1.

Equivalence of extension̂  is given in

Definition 2.2
An extensipn

1]- £i1-- *-N-- ►E1a-VF--*-1
is equivalent to pn extension

121---*-N--->-E2̂ 2-^F-- >1

if and only if there is an isomorphism : Ê —->*E2 
such that the following diagram commutes and is exact:

1 1 1
1 ii i 6l I
ht -rr\ J- _ -ra1--- > N---- =>- E,-id • id ->1

£?1--- ► N---- > Ep' d > F---- ► 1
1 I 1 
1 1 1

Lemma 2.1
For each subgroup U of E and each natural 

epimorphism 0 : E— ►E/M we have the extension
i(U,e) c(u,e)

1--->N(U,e)----->*0U  ►F(U, &  )■
where N(U,e) = i-1(Un iN)/i-1(Un iNn ker ©)

F(U,0) * £ U/(£Un £ ker 0)
i(U,e Xn/i^CUniNnker©)) = ©in, nei^CiNnU) 

and £(U, 0)(0u) ■ £ u/(£ U r \ tker©) u 6 U.
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Proof:
It is necessary only to show that the sequence is

exact.
i) exactness at i(U,0).

Let n £ i^CUniNVi’^Un iNn ker © ). 
i(U,©)n = 0  in where n is a representative of n in UAiN, 
and since ker i = 1 so ker i(U,© ) = 1 “^(ker@ f\ iN/\U).
If n £ ker i(U,0) then n = 1.

ii) exactness at £ (U,©).
Let u £ U. £(U,©)©u = 1 if and only if 

£ u € £(Unker©), i.e. if £u£ £ker ©. That happens 
if u € ker© or u 6 ker £. Now if u £ ker 0 0u = 1, 
and if u 6 ker£ * iN then u £ iN f\ U so u = in, 
n £ N and © u £ ker £ (U, ©) if and only if u is in the 
image of i(U,©).

Theorem 2.2
If and E2 are equivalent extensions of N by F 

and O  ̂ is the natural epimorphism of E-̂ on E-j/M then 
there is an epimorphism © 2 of E2 such that for any 
subgroup of E-̂ there is a subgroup Ug of E2 which 
satisfies

a) N(Ul,01) = N(U2,©2)
b) FCUl,©!) - P(U2,e2)
c) the extensions



are equivalent.
Proof:
Let $ be an isomorphism P which satis­

fies the conditions in Definition 2.2. Let ker ©1 = M1. 
Let M2 = $ M̂  he the kernel of the natural epimorphism
^ 2:E2“>E2/M2 and U2 = 4>U1.

a) Then i21(U2ni2N)
N<u2-e 2> ■ Teri2 (U2A i2Nn ker &2)

i ^ C t U ^  <|»i N)
= — *------- ----- ------ and since i~ = ri, ,
^  ^ Uin ̂ i 1** 4>ker0 1) * 1

î 1 = i^1^"1 it follows that N(U2,^2) “
i^14>’1(<t>U1n î-jN) i^CU-^ijN)

iJ1^"1(^U1n ti]Nn (t,ker©1) i^C^n i-jNnker©^ "

b) P(U2,0 2) = £2U2/( £2U2^ e2*er&2) = 
€2Pv1/(£2P\Jln e2p}zer01) - 6 ^ / C f ^ n  £ 1ker©1) = 
F(u1>e 1).

c) It must be shown that the diagram following 
commutes and is exact, where is ’t'*16 maP induced
by 4> and is given by <(>(^,6 )6 lU - 0 2<l>u, u6 D1.



Exactness of the horizontal sequences is given by 
lemma 2.1, and , is exact since 0 ^  € ker
if and only if u 6 ker e 2<}> , i.e. if and only if 
4*u € ker ©2» which happens if and only if u € ker^ 
so that 0 ^  = 1.

To show that the left square is commutative, let 
n 6 ^ i]N) = n i2N *̂
<|>(U1,©1) i1(U1,©1)(n/i“1(U1ni1Nnker©1)) =
4̂ (U1,©1) 0 ^ ^  - © 2^ iin = ® 2i2n “
i(U2, © 2^ n/̂ L2̂ Û2r* ̂2^ n ^er^ 2^*

To show that the right square is commutative, let
u £  U x . f 1k e r © 1 ) =

£ 2^ u/( ̂ 2^ Uln ^2 >̂ker^l» 8111(1 ^ CU2»^2^ ^ U1’̂ 1^ 1u
= £(U2,©2^2^>u “ ^ 2^u^  ̂ 2U2 n £2lcer̂ 2^‘ Since 
4>UX = Ug the two are equal and the diagram commutes and 
is exact so that the two extensions are equivalent.

Q. E. D.
In view of Theorem 2.2 the question arises as to 

whether or not two extensions are equivalent if epimor- 
phisms of certain subgroups are. In order to investigate



20
this question more fully we make the following defini­
tions.

Definition 2.3
Let Ê  and Ep be two group extensions of N by 

F. Let 0^ be a natural epimorphism of Ê  and 0p a 
natural epimorphism of Ep. The pair of a sub­
group of Ê  and 0^ and the pair (U^Op) of a sub­
group U2 of E2 and @2 are said to be equivalent if

a) = N(U2,e2)
b) F(U1,01) = F(U2,©2)
c) The extensions

i(lL,0,) ^ £(U, ,0,)l-^NCUpe^  -----------   L--—^-F(U1$© !)->-l
i(U2,0?) £(Up,0?)

i - ^ N ( u 2>e 2 ) — ^ © 2u2 ------ ^— 4*- f(u2,&2)-*»i

are equivalent.

Definition 2.4-
Let Ê  and Ep be extensions of N by F. Let 0-̂  

be an epimorphism of E^ and 0p an epimorphism of Ep.
Let (Ê ) be a family of pairs for and
^  (Ep) be a family of pairs (Up,0p) of Ep. The exten­
sions Ê  and Ep are said to be -equivalent if for each 
(U^,0^)€ Ji (Ê ) there is a (Up,©p)* J^(Ep) to which 
it is equivalent, and conversely given a pair in £. (e2) 
there is a pair in (E-.) to which it is equivalent.
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If E, and Ep are equivalent extensions of N by F,

J?0-̂  an epimorphism of Ê  and dL(E^) a family of pairs 
(U1,^1) of Ê , then let
^ ( E 2) - { ( ♦ v l e v ® : . )  6
he a family for E£. According to theorem 2.2 these 
families are equivalent so that E, and E0 are
JP(^-equivalent. In order to phrase the question of 
the converse, when does -equivalence imply equiva­
lence, we make the following definition.

Definition 2.3
A family & e) is said to be a local family 

if -equivalence implies equivalence.

We see immediately that there are local families. 
For example J^(E) = £(E,1)^ is a local family. The 
collection of all families can be ordered by set 
inclusion and then any family containing a local family 
is also local. Our problem then becomes one of deter­
mining non-trivial local families. Some examples show 
rather quickly that a local family probably will need 
to have (N,©) as one of its elements. In order to 
indicate this we will use the following notation.
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Notation 2.1

Let Si and <5*2 be ErouP theoretic properties.
Let E be an extension of N by F and ©  a natural 
epimorphism of E. Denote by >£} the family
of pairs (U,©) for which N(U,©) has property S i  
and F(U,0 ) has property S  g.

The next theorem shows that the family of sub­
groups whose intersections with N are abelian does not 
determine the extension. Let be the property of 
being abelian and $  the property of being a group.

Theorem 2.3
is not a local family.

Proof: by example 2.1

Example 2.1
Let N = ^a,b | a4 = b^ = 1, a2 = b2, ab = a"1̂  

be the quaternion group of order 8 and P = ^c | c5 = 1^. 
The two extensions to be considered are

E1 = ^  N,x J ax = b, bx = ab, x^ « 1^ and
E2 - ^N,y | ay - ab, by - a, ŷ  - 1 ̂  .

±1 €iFor 1 > N ----—>EX--F ------- >-1
î  is the identity map and “ c ^or n ̂  ^1̂ .

h  tiFor 1---- >• N ->  E2 F  V* 1 ig is the
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identity map and £^(yn) = c for n 6 i2N. Let be 
the identity map.

If U1 N, clearly the corresponding group 
U2 - E2 is such that (Upl) is equivalent to (U2,l), 
so we need examine only subgroups ^ N. Therefore 
U-̂ must contain elements of order 3. One of the ele­
ments of order 3 must be in the coset xN and one in 
2x N. If U-jH N is to be abelian, it must be one of the 
groups ^a2 ^, i » or ^ab^. But
^ a } xn = <b^ for all n € N so U ^ N  / <a^.. 
Similarly it cannot be <*> or <ab> and must be 
^ a2^ . a2 lies in the center of E-̂ so is genera­
ted by commuting elements of order 2 and 3 and must 
therefore be a cyclic group of order 6. We may write 

» ^ a 2,xn^ n € N such that (nx)̂  = 1.
Since E1 and E2 are isomorphic under the map

2which fixes N and takes x— >»y , the same conditions
hold in E2 so the only subgroups of E2 whose intersec­
tion with N is abelian are <  a2 ,y2n > where n is such 
that (y2n)̂  =1.

For ^ a2,xn^ there is a one to one corres­
pondence with U2 = ^a2,y2n^. Then

a) NCU.pl) - ( a2> = N(U2,1)
b) FCU.pl) - F - F(U2,1)
c) the extensions are equivalent by the map
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>̂(U1,l)(xn) = (y*n )_1» <(>(U;L,l)a2 = a2.

/ 2 v i(un i) y 2 \ 1---------- >  \  a / -----^  /  a  , x n /   5* F  1

the left square commutes because each map is the identity 
on a and the right square commutes because £(U,l)xn =
- £ 1(xn) = c = £ 2(y2^-1 = £ (U^lXy2̂ -1 =
® £ (U-pl)^ (Û ,l)(xn). Thus by definition 2.5 the pair 
(U-pl) and the pair (I^l) are equivalent so the exten­
sions Ê  and E2 are ,>§̂) - equivalent.

It must be shown now that the extensions are not 
themselves equivalent. If they were, by definition 2.1 
the automorphisms would be related by

gx = o( (c)“Vo<(c)
where (c) € N. since £-,(x) = £ 0(y) » c. In other1 d 2 2

words, gx = for some n£ N, or g? x * g7 yn « gn,
pso that y x would be an inner automorphism of N. But

2the automorphism induced by y is the same as that by2 2
x so gy x - gx which is an automorphism of order 5 and 
cannot be inner, and Ê  and E2 cannot be equivalent.

The next theorem shows that subgroups U which 
intersect N in groups of prime power order do not 
characterize the extension either. Let pp be the 
property of being a group of prime power order.
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Theorem 2.4-

^(PP»^) is not a local family.
Proof: "by example 2.2

Example 2.2
Let N « ^a,b ) a15 = b2 - 1, ab = a“^  be the 

dihedral group of order 30 and F = <c)c2 = 1>.
Let Ex = ^N,x| ax = a, bx = b, x2 = l) and 

~ | &X - a\  bx » b, y2 = 1^ where for
1  h-N -> E1 -g-l—>  F---- ^1 ±1 is the
identity map and C^xn) = c for n € N and for
1----->- N ■ 1 * > E2-£-̂-> F----^ 1 i2 is the
identity map and £^(yn) = c for n-̂ N. E2 can be 
described as a direct product of a group of order 3 by 
one of order 5» extended by an involution which inverts 
all elements, further extended by an involution which 
fixes elements of order 3 and inverts elements of ord­
er 5• Note that y acts on in the same manner as x, 
while the element by acts on in the same manner 
as x.

We first observe that the extensions are not 
equivalent, for the automorphism induced on N in Ê  by x 
is inner, while the automorphism induced on N in E2. by y 
is not.

As was observed in the previous example we need
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only look at subgroups ^ N. U^ON, being of prime 
power order, is of order 2, 3 or 5- |û :Û rt n| =2 
so is of order 4, 6, or 10. Let us assume &  is tbe 
identity • 
case lUjJ = 4-

is a Sylow 2-group of and is therefore a
conjugate of <b,x> which is an elementary abelian 
group of order 4. U2 would be a Sylow 2-group of E2 
and would be conjugate to , which is also an
elementary abelian group of order 4. Then

a) NCU^l) = <b> = N(U2,1)
b) FCU^l) « f - f(u2,i)
c) The two extensions U^and U2 are equivalent 

under the map ♦ (ILplXb) = b and ^(U^lXx) = y.
Any conjugate of is also equivalent to U2 by first 
conjugating and then applying ,1). Also conjugates
of U2 are equivalent to Û .
case I UjJ « 6

the only subgroup of order 3.
| Ei:Ce (â ) j » 2 and CE (â ) « ^a,x^ while

lE2:CE2 â^H = 2 3111(1 °E2 â^̂  = ^a,y y *
If xn is any involution in 0E (â ) then let

* ^a^,xn^ and U2 ■ ̂ a^,ym^ where ym can be taken 
to be any involution in CE (â ). If xn is any involution
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not in Cg (â ) then let = ^a^,xn^ and U2
where ym can be taken to be any involution not in
C-v (â ). Then in either event 2

a) NCU^l) » (a5) = N(U2,1)
b) P(UX,1) - * “ f(u2,i)
c) and U2 are equivalent extensions under the

map (̂(U1,l)(â ) = â  and £(1^ ,l)(xn) « ym
case 1 Û l = 10

U-jA N = < ■ ’> , the only subgroup of order 5« As 
in the previous case |ei:Ce (â )| = 2 and
Cg (â ) = ^ a,x^ while )E2:Cg (â )j = 2 and
1 T . .Cg (a3) = ^a,by^ . Again as in the previous case 
N has only one automorphism of order 2 so any 

involution in not in Cg (â ) must induce that auto­
morphism, and so must any involution in E2 not in 
Cg (â ). The situation then is exactly as in the prev­
ious case and so if U-jO N ® 5 the pair (tJ.pl) and the 
pair (U2,l) are equivalent.

We have shown then that Ê  and E2 are 
equivalent but not equivalent. Note that if is a
natural epimorphism and ker N then
ker^ = or <a5> • Take 0 2 to be the natural
epimorphism E2~-̂  E2/M and ker©2 = ker © p  Then in 
either event the pair (Ep©^) is equivalent to the 
pair (E2,©2) since

*(PPv^ )-
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a) N(E1,©1) = i^Ci^N/i^Ci-j^NA ker ©1) ■ N/kerO-̂

and N(E2,^2) = ker®2^ " N/ker®i
b) FCE^^) = C ^ / C E ^ A  £1ker©1) = € ̂  - F

and E(E2,02) - E 2E2/(£.2E2 n £2ker ©2) - £ 2E2 « F.
/c) the extensions E^/M and E2/M are equivalent 

under the map •PCE-p© nM = nM for n £ N and 
$>(E1,&1)xM = yM if M = <«5> and <ĵ (E1,^1)xM = byM
if M - ^ a?y .

Any subgroup of E1 has a subgroup U2 of E2 
so that (U-p̂ .̂ ) is equivalent to (U2,©2). We have 
shown then, that for any epimorphism of E1 with 
ker N, ^(PP,^) is not a local family.

The essential point of this example is that the
v

automorphism of any coset representative of N in E2 is 
like one inner automorphism on a Sylow 5-group and like 
another inner automorphism on a Sylow 3-group. Since 
the example is dependent upon the existence of inner 
automorphisms one might hope that if N is abelian then 
■̂ (PP,3J) would be a local family. That this is not the 
case is shown in the next theorem.

Theorem 2.5
Let E be an extension of an abelian group N by 

a group F. Then << PPi is not a local family for E.
Proof: by example 2.3
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Example 2.3

Let N = 1 a^ *= 1 ̂  and F = ̂ c J ĉ  *» 1^ .
Let Ê  = ^ N,x | ax = a\ x^ «= a7^ and 
■̂2 “ ^^,y I ~ â , y5 “ a7^ where for
1---- *-N— — ^-F--- >»1 is the identity
and C-j/301) = c f°r a € N, and for
2_----— -*—>- Ê —^ — V F ------^ “1 ± 2  is the identity
and £2(yn) «= c for n 6 N. Let ©  ̂ be the identity 
map. We want to show that Ê  and E2 are ^ (pp,#  )- 
equivalent but that Ê  and E2 are not equivalent.

-Any coset representative of xN in E, say xa1,
has order 9 since (xa"5-)̂  = x^(ai)1+x +x * x^(ai)'L+̂ +̂ '=

*5 7= x̂  = af which has order 3- Thus if U-̂ is a subgroup 
of E-̂ not contained in N, and if N is a group of 
prime power order, then the prime is 3. The same 
situation obtains in E2, since
(ya1)3 = y^a1)1™ 2™  = y^a1)1^ 16 = y3 = a? is of 
order 3• Thus the'family t  (PP» •if ) for (Ê ,l) con­
sists only of the pairs ( ^ a ^  »1)»( ̂ a7^,l) and 
(P-pl) where P-̂ is a Sylow 3-group of Ê . The family 
3^(PP»<0 ) for (E2,l) consists of ( ̂ a ^  ,1),
( ̂ a7} ,1), and (P2,l) where P2 is a Sylow 3-group of 
E2. In the first two pairs, the subgroup lies in N so 
the pair for E^ and E2 are equivalent. (P-̂ ,1) and 
(P2,l) are equivalent since
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a) N(P1,1) - ^a7 > = N(P2,1)
b) P(P111) - F s F(P21l)»and
c) under the map ♦(P^lHa7) = a7

,l)(xai) = ya the extensions

1--- ^(a7) - ^  Kj-) ^

A \  c W  ^i — »* \a / —  <ya / ~~~ f — =>-1

' are equivalent. Thus the families are equivalent and 
the extensions are not.

The last result considering families where 
(N,l) is not in the family is in showing that even all 
subgroups U where UrtN is nilpotent do not characterize
the extension. Let If be the property of being nilpotent,

Theorem 2.6
is not a local family.

Proof: by example 2.4

Example 2.4-
Let A be an elementary abelian group of order 64. 

There is an automorphism of order 63 which is transitive 
on the non-identity elements of A. Denote the seventh 
power of this automorphism by 0" . Thus <T has 
order 9. We now look, at a Sylow 3-group of the automor-
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phism group of A, i.e at Syl(3) of GL(6,2), which

Llhas order 3 * 81. Let P he a Sylow 3-group containing
. ye want an element T" of P such that T  ̂

P is not cyclic since 81 > 64. If x € C («") and
hr

x̂  = 1, then let /T = x and /T ̂  = x̂ tr ̂  = <T If
no such x exists then Cp( G~ ) is cyclic. If 0̂ (5“) > <<r>
then with o( = (T would be a fixed point free auto-
morphism of order 27 of a group of order 64 which does
not occur. So (r ) is self-centralizing. Then
y  < y ) is of order 3̂  and there is an x in N̂ ( < » )
such that -xt = 1. The only automorphisms of order 3 of
a cyclic group of, order 9 are (T-** <T ̂  and its square2

<r~7m In either event (x <T )5 - x5 <r1+x +x -
= (p l+Z|‘+7 = (p ̂ so we take T" = x (T .

Let Ê  = ^ A, <r| <r̂  = 1 and E2 =
= ̂ A, T | = l) . If we let N * ^  A,0" ̂  and
identify QT  ̂» 'T'i then both and E2 are exten­
sions of N by F * ^ c ) ĉ  = 1 ̂ . Although these 
groups are isomorphic we want to show that the exten­
sions are not equivalent.

)

To be equivalent the automorphisms <T and /T 
must be related by a = a11 where n €. N. Then
a®" = h”**" where, x ^  < <r> is an automorphism of

nx n x”1order 3* and so a * a, a ■ a and the only innder
automorphism of N of order 3 is (T
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Next we want to see that Ê  and E2 with epi­

morphism ©  = 1 are )-equivalent. For
U-̂ ̂  N, contains an element of order 9 which is 
transitive on the elements of order 2 so if con­
tains any element of order 2, = Ê . Thus
^  (77 ) » £ ( <o-> ,1) and (Sx,1) where S1 is a
nilpotent subgroup of N j for Ê  and [( <r> ,D 
and (S2*l) J for E2. The pair (S-̂ ,1) and (S2,l) are 
clearly equivalent for any nilpotent S £ N and

a) N( < 0O ,1) « ((r 3> - N( < r> ,1)
h) F( <o*> ,1) = F - F( ,1)
c) <fr( <o-> ,1) (<r) = t is an equivalence

of the extensions
-- 1 .»» F --► !  and

■1.



III. MAIN RESULTS 
One sees from the examples and results of 

Chapter II that as long as the family i ( ^ , 4 )  is
such that subgroups having property are all 
properly contained in N, we are likely to not have a
local family. The primary difficulty seems to be that 
although two extensions may have automorphisms which 
when restricted to various subgroups have the same 
action, the two extensions do not both have an auto­
morphism which gives the same action on all of N. 
Another difficulty is that, there simply were not 
enough subgroups U, with Ur\N having property and 
U/U r\ N having property £ order to get a local
family then it seems almost necessary to include N in 
property This gives a set of automorphisms to
begin with as well as putting each element of N in some 
U. Since N will be assumed to have property £  ̂ , the
family lf£ 2) Will
so we make the following definition

Definition 3.1
Let N and F he groups and



1 -=s» N — - > 1  be two extensions
of N by F. Let 0 be a class of subgroups of F. The 
two extensions are said to be O-equivalent if for each 
subgroup D of F which is in C, the extensions of N by 
D in Ê  and in E2 are equivalent. In other words 
Ê  and E2 are i  m  ,C) equivalent.

Using this definition we can extend theorem 1.4, 
the theorem of G&schiitz which says that if N is an 
abelian normal subgroup of G, the splitting of G is 
determined by the splitting of the Sylow groups of F, 
to give equivalence of the extensions if the Sylow 
extensions are equivalent. This theorem, then, shows

Theorem 3.1
Let N be a finite abelian group and F a finite 

group. Let Ê  and E2 be two extensions of N by F. Then 
E1 and E2 are equivalent if and only if they are 
Sylow equivalent.

If E-̂ and E2 are equivalent, let 0 = 1  and 
Ui = NP-̂ where P is a Sylow group of Ê . Then 
Theorem 2.2 tells us that E^ and E2 are Sylow-equiva- 
lent. Now for the converse.

Since N is abelian, the factor sets form a group

that local family if N is abelian

Proof
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and both extensions can be multiplied by the inverse of 
the factor set (u,v) of E-p so we may assume that E-̂ 
is a splitting extension of N by P.

Let D be a Sylow p-group of P and and Dg the 
extensions of N by D in Ê  and E2 respectively. Since 
Ê  splits over N, splits over N and the Sylow p- 
group P̂  of E1 does too. Since D-̂ and Dg are equivalent 
by assumption, Dg must split over N and the Sylow p-group 
P2 of E2 splits over PgO N. This is true for each prime 
p, so an application of Gaschutz' theorem gives that 
Ê  splits over N.

Since both extensions E^ and E2 split we may 
assume the factor sets (u,v) =1. Thus the two exten­
sions are equivalent if the automorphisms are related by 
u2 -1 U1a = o( (u)“ a oUu) and since N is abelian it must be 

Up u.
shown that a = a , where € 2̂ u2̂  = "̂l̂ ul̂  = u and 
a Q N. If u is an element of p-power order then let 
D be a Sylow p-group of P containing u. The pre-images 
D, and Dp of D in E, and Ep are equivalent by assumption

u2 uiso a = a for all a € N. Any element u 6 Ê  is the
product of elements of prime power order, say
u = u-jUg k̂* ^  = û  €. P, choose û  in
E2 so that ^p^i^ “ ui le-t: u “ ̂ 1^2 **• **k* Since
u. . u. u 5 -a = a for each i, a = a for each a €: N, u € Ê ,
u 6 Eg such that ^(u) ® £g(u). Q.E.D.
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The next result uses some of the standard 

notation of cohomology theory, as it relates to exten­
sion theory of groups. Let A be an abelian group which 
is acted on by a group G.

C2(G,A) . [ f  I f:GxG— ~ A, f(g1g;j,Bk)f(e1.Sij)Sk- 
f(slt These are the factor sets of
extensions of A by G, the two-cocycles of G to A.

B2(G,A) = [f€C2(G,A) 1 f(gitg.,) =
— g -i

(SiS-p^CSi) J°<(Sj)» o(: G  Aj . These are~S-

the principal factor sets, the coboundaries of G to A.

H2(G.A) = c2(g ,a) .' » 7 —x  xs the second cohomology group
B (G,A)

of G to A and is the group of extensions of A by G.
pDifferent elements of H (G,A) correspond to inequivalent 

extensions of A by G.

Theorem 5.2
Let E^ and Eg be extensions of N by J and suppose 

there are transversals £ x̂ "j and £ y^ for Ê  and Eg such 
that g = g^ for all g £ N. Let f ĉ  .7 be the factor 
set determined by ■ x^c± j Ei 81X1(1
the factor set determined by the y^ in Eg. Then

«  * ■i.ac °2^ . zw >

ii) E.̂ and Eg are equivalent if and only if
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z. . £ B2(F,Z(N)) 1 »d

Proof; x.x. x. c. . x. x .
i) Since g J = g and also g J

= gV j  = we have (g’V 1-;’ = ( g^V1-3,
and thus the inner automorphisms induced by c. . and1»«J
d. . are the same. So the automorphism induced by 1»0
c. jdT1. is the identity on N and 1 » 0 1» 0
c. d̂T1. = z. .€ Z(N).••■id x»d x»d

To see that z. . £ C2(F,Z(N)), first observe-•■id
that F is an automorphism group on Z(N). For g£ Z(N), 
x.x. xkc. . xkc. . xk
g J = g = g »J = g  . Taking the cocycle
condition for d. .1 * d

ykd. . , d.. a d. .,d. ,1 0 ,k i,j i,jk o,k

we invert and get
,_̂ k,-1 ,-1 ,-1CL. *CL* • i s CL • i CL* *i i»«J o,k i,jk

and then multiply on the left by

°i;S,k0i*j “ ci,jk°i,k «

getting
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xk “7k _1 _1 _1

cij,kci,j di,o did»k “ ci,jk°j,kdj,k dj,k di,jk .
ykSince the automorphism g — g is the same as 

xkg  g , we may write

x k  "y k x k  "x k  , - 1 Nx k
°i,j di,d * °i,d di,j ” i»d

and since c. . dTdj and c. v dT1. lie in Z(N) our 1 » d 1 » d d*̂ - d
equation becomes

-1 _ x  xk -1 -1
cij,kdij,k^ci,j di,o^ = °i»dk di»dk ^°d»k dj,k^

which is
x kZ. • 1 z. = z. z . , .id»k i»d i»dh d,k

ii) Assume that E1 and are equivalent. By 
definition 2.1, there is a function °< from P to N 
satisfying

ax - °^(y)-1ay c< (y)

°i,d ■ * (yi*y;jrl di,d0t(yi)7;’o<'(yj)-
Since ay » ax , d(x) must be in Z(N). Then

°i,d di!d ■ zi,d '
which says that z. . is a coboundary of F into Z(N).1 » d p

Conversely, suppose that z. . is in B (F,Z(N)),1»d
so that there is a function ol from F to Z(N) such that 

°i,d di!d = zi,d " « ( yi>yj>"lo‘(yi)7;io(̂ ) -  111811
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1 yici ,0 ■ °^Cyityj) d°^(yi)» and since

oUy) 6 Z(N), o( (y)”1 ay *Xy) » ay « ax ,
and the extensions are equivalent. Q.E.D.

Lemma 3.1

If E^ and Eg are cyclic-equivalent extensions
of N by F, then there are transversals ] x. { for E,

f ? xi yiand } 7±\ for E2 sucJl "that S = S for all g € N.
Proof:
Let ^x. j be a transversal of N in E^. Auto­

morphisms g — ►  g * and a factor setjc^ ̂  are deter­
mined satisfying XjX^ = xk°i y

The subgroup D^ = < xi-N>  is equivalent to 
some subgroup Dg of Eg by assumption, so there is an 
isomorphism ^ i :Dl— D2* Let yi = 
is a transversal of N in Eg since £g(y^) * “
= £l(x.) covers F.

. x. x. ^
If g € N, T^(g ) = g since must be

the identity on N. But also 4> i(xT1gxi) =

= <J>i(x71) 4>i(s)^(x.) - * i(xir 1* 1(g) ^ ( x ±) =
-1 yiy sy^ - g • q .e .d .

Corollary 3.1
If E^ and Eg are extensions of N by F which are
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pcyclic equivalent, and H (P,Z(N) > 1, then E^ is 

equivalent to E^.

Corollary 3.2
If Ê  and E£ are extensions of N by P which are 

cyclic equivalent, and Z(N) = 1, then E^ is equivalent 
to Eg*

Corollary 3.5
If Ê  and E  ̂are extensions of N by F which are 

cyclic equivalent, and ( | F J , J Z(N) | ) = 1, then
E^ is equivalent to E£.

Proof:
By Corollary 5-1-7 of Weiss 22 , if ( j f) ,|z(N)j ) = 

= 1, then H2(F,Z(N)) = 1. Q.E.D.

An example of groups which are cyclic-equivalent 
hut not equivalent is:

Example 5.1
Let N » ( c | c3 = 1^ , F = ^a,b [ a3 = b3 =

= a,b = 1y , and Ê  the non-abelian group of order 27 
and exponent 3* Let E£ have trivial factor set so that 
E^ is the elementary abelian group of order 27. These 
groups are clearly not equivalent, but all proper sub­
groups are elementary abelian and are equivalent.
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In the next theorem we see that efforts to gen­

eralize the theorem of Gaschutz, (theorem 1.4) to the 
case where N is non-abelian do not lead in the proper 
direction. The proper formulization for the theorem 
is that of theorem 3.1, and the splitting which is des­
cribed by theorem 1.4 is due to the cohomology which is 
available when N is abelian.

Theorem 3.3
Let and E^ be extensions of N by P. Ê  and 

E£ are equivalent if and only if they are Sylow-equiva- 
lent.

Proof:
Let D S P be cyclic and £ = D̂ , £

If P is a p-Sylow group of F, then £ ̂ P  = is
equivalent to ^2^  “ ^2 assumPtion so let P be such 
that P/*> D is a p-Sylow group of D. Then theorem 2.2 
gives that is equivalent to P£ O  D ,̂

Let = <X,N> and be a transversal
of N in D̂ . For each x^ such that |£ixil Is a prime
power there is a y. € D~ such that ^ x. ,N^ and ̂ y.,N^

xi yiare equivalent, and so g » g for all g € N. The 
set of yi's is completed to a transversal of N in 
in the following manner.

Let yN be a coset of N in Dg* Let Z
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where x^C f  x±l • There is a representation of
t 2y M £ 2 ^  2^2 • • • ^ 2^1 r where « 2̂ 1.
has order a power of p. , with p. / p. . Since

0 1J Tc
12 y± - Ejlj we have i jy, ••• .1 2  r
* lxin flxiP **• flxi_ = ^l(xi, xip **• xi ) " 1 2  r 1 2 r
£ and so x^ x^ ... x^ u = x^ where u £ N.

1 2  r
Choose the coset representative for yN to be
7v m 7* 7* • • • 7i u 3111(1 thenx 11 2 r
v 7± 7± ...yi U x. x. ...X. u3c 1 X2 r „ 2 r xkS - g = S - 6 •
Thus for each coset we choose a representative y,

xk xkso that for each gC N, g = g . We may then apply 
theorem 3.2.

Consider the extension G of the abelian group
xiZ(N) by F which is given by the automorphisms g— ► g ,

and the factor set ? z. • ?, where z. . is given byC 1 »J J 1 »0
theorem 3.2. Restricting arguments i and j to a
p-Sylow group P of F, z. . € B^(P,Z(N)) since P, andX y J X
Pg are equivalent. Thus every p-Sylow group of G 
splits over P<^ Z(N). Theorem 1.4 now implies that G 
splits over Z(N). Since G splits over Z(N) it follows 
that z.  ̂ € B^(F,Z(N)) and by theorem 3*2, Ê  is
equivalent to Eg. Q.E.D.
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