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GLOSSARY

En

X
t(x)

u(x)

W
b
0
e(xfy) 

Ci(xfy)

c(x,y)
z

h(x,y?z)
Dne(x,y)

DnC^x.y)

Euclidean n-space
Non-negative orthant of En
Lebesgue measurable subset of En_i
Real-valued, bounded, Lebesgue measurable 
function defined on X
Real-valued, bounded, Lebesgue measurable 
function defined on X

= (ft t(x) < f(x) < u(x) for all x € x)
Column vector of real numbers with m components
Null vector
Function defined on {(x,y)» xtX, t(x) < y < u(x)j, 
strictly concave in y, partial derivative with 
respect to y exists, and Lebesgue integrable 
with respect to x.
Function defined on {(x,y)»X€X, t(x) < y < u(x)}, 
convex in y, partial derivative with respect to 
y exists, and Lebesgue integrable with respect 
to x.
Column vector (c-j^x.y),c2(x,y),... ,cm(x,y) )T
Row vector of non-negative real numbers with 
m components.

• e(x,y) - zc(x,y)
Partial derivative with respect to y, (the n^  
component of a vector in En )
Partial derivative with respect to y, (the 
component of a vector in E ^

vi



Dnc(x,y) Column vector (Dnc1 (xty),Dnc2(x»y),..., 
Dncm (x,y))T

Si(z) n {x e X:Dnh(x,y}z) < 0 for every y e [t(x) ,u(x)]]
S2(b) s (x e XsE^hCxtyiz) > 0 for every y e[t(x),u(x)]}
S3 (z) s ( x t X t D nh(x,y,*z) * 0 for exactly one 

1 y«[t(x),u(x)]J
g(xjz) Unique point y £ [t(x),u(x)] where Dnh(x,yjz)=0
E(f) tc /e(x,f(x))dx 

X
Ci(f) - /Ci(x,f(x))dx 

*
c(f) Column vecior (C^(f) )* • • • »Cm (f))T
D(f) - C(f)-b
P(b) ■1 £fe WiC(f) < b}, (the set of feasible solutions 

to the dual problem)
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CHAPTER I 
INTRODUCTION

In linear programming problems a common reason for 
finding the dual problem is that the dual problem may be 
easier to solve. Then the solution to the primal problem 
can easily be determined since there is a direct relation­
ship between the solutions of the primal and dual problems.

For most nonlinear programming problems the dual 
problem cannot be determined until the optimal solution to 
the primal problem is found. However, the dual to the non­
linear Neyman-Pearson problem which is the topic of this 
dissertation (both problems are defined in Chapter II) 
involves the solution to the Neyman-Pearson problem only 
in a general form, i.e., it is not required that a complete 
solution for the Neyman-Pearson problem be determined before 
the dual to the Neyman-Pearson problem can be stated.

The problem solved in Chapter V is an example of a 
Neyman-Pearson problem which can be solved in a more 
straightforward manner by attacking the dual of the Neyman- 
Pearson problem. Thus, the duality results of this disser­
tation have advantages similar to those of duality theory
in linear programming. Further, duality provides additional 
theoretical insight and results.



In Chapter II, the Neyman-Pearson problem and its dual, 
the assumptions, and definitions are stated. The literature 
review in Chapter II is a discussion of related published 
work and the numerous areas of application in which the 
Neyman-Pearson problem occurs.

In Chapter III, the usual duality relationship is 
stated: any value for the objective function primal problem 
is always greater than or equal to any value of the object­
ive function of the dual problem. Also, when the optimal 
solutions are determined the values of the objective func­
tions are equal for these two problems. The necessary and 
sufficient conditions for solutions to the two problems are 
obtained, and are constructive in the sense that the solu­
tions are implicit in the statement of these necessary and 
sufficient conditions.

Chapter IV states the duality results for a discrete 
version of the Neyman-Pearson problem and its dual. The 
reader may find the definitions of Chapter IV easier to 
understand; hence Chapter IV may provide insight into the 
results and proofs of Chapter III.

Chapter V is a numerical example which is solved in a 
step-by-step manner to point out the use of the results of 
Chapter III; it also may be useful to the reader when going 
through Chapter III. The numerical example is also present­
ed to aid the reader when he is looking at the applications 
problems of Chapter VI.



Conclusions and recommendations based on the results 
of this dissertation as well as a summary of the results, 
are presented in Chapter VII.



CHAPTER II 
DUALITY PROBLEMS AND LITERATURE REVIEW

2.1 Traditional Definitions and Dissertation Motivation
Before stating the problems analyzed in this disserta­

tion it is worthwhile to point out some traditional termi­
nology. Historically, the Neyman-Pearson problem has been 
referred to as the dual problem and the dual of the Neyman- 
Pearson problem is referred to as the primal problem. This 
will be continued throughout the dissertation.

Literature relative to this dissertation concerns the 
Neyman-Pearson problem and/or the Neyman-Pearson lemma. To 
avoid confusion as to the difference between the problem 
and the lemma we will consider the Neyman-Pearson problem 
as a particular optimization problem and we will consider 
the Neyman-Pearson Lemma as sufficient conditions for a 
solution to the Neyman-Pearson problem.

In 1 9 6 9* Francis and Wright [18*] published duality 
relationships for a linear functional version of the 
Neyman-Pearson problem. This dissertation was motivated by 
their paper and a paper by Wagner [50] which presented a 
nonlinear version of the Neyman-Pearson lemma.

2.2 Assumptions, Definitions, and Notation
Let X be a Lebesgue measurable subset of the Euclidean 

n-1 space E,^, and let t and u be real-valued, bounded,

4



Lebesgue measurable functions such that t(x) < u(x) for all 
x £ X • The set of real-valued, Lebesgue measurrble functions 
on X and bounded by t and u will be denoted by W, so that 
W = {f:t(x) < f(x) < u(x) for all x € x}. We note that W is 
a convex set, for if f^, f2 €W, 0 < a < 1 and f(x) = af-̂ (x)
.+ (1-a) f2(x) f°r all x € X, then ffiW.

The definition of concavity and convexity of functionals 
will also be used during the analysis in this chapter. A 
real-valued functional C(f) is convex if C(af^ + (l-a)f2)
< aCCf-̂ ) + (l-a)C(f2)» 0 < a < 1, for all elements flf f2 
in a convex subset of a linear vector space. Also, a real­
valued functional E(f) is concave if E(af^ + (l-a)f2)
> aE(fj_) + (l-a)E(f2), 0 < a < 1, for all elements f^, 
f2 in a convex subset of a linear vector space. Real-valued 
functionals are strictly convex or strictly concave if the 
inequalities of the previous definitions are strict 
inequalities when f^ / f2

The convex set W defined previously is a subset of the 
linear vector space of real-valued functions and will be the 
domain of the convex and concave functionals used in subse­
quent analysis.

We will also need real numbers b^, b2, ..., bm in the 
subsequent definition of the constraints for the dual prob­
lem. This set of numbers can be expressed as the column
vector b = (b^, b2 ^0 av°i^ confusion between
the scalar zero and the zero (null) vector we will denote the 
zero vector by 0.
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Let the real-valued functions e(x,y) and Cj^x.y),
i=l m be given and defined on the set [(x,y) sx tX,t(x)
< y < u(x)}. For each x «X, assume e(x,y) is strictly 
concave in the n^*1 variable and Cj_(x,y) is convex in the 
nth variable for i=l,...,m. Assume the partial derivatives 

of e(x,y) and Ci(x,y), i=l,...,m with respect to then^h 
variable exist. Represent these partial derivatives as 
Dne(x;0 and Dnc^(x,*»), i=l,...,m. Also, for any f €W, 
assume e(x,f(x)) and c^(x,f(x)), i=l,...,m are Lebesgue 
integrable with respect to x.

Vector notation will be less cumbersome in subsequent 
definitions and analysis. Therefore, it is appropriate to 
use the notation c(x,y) = (ci(x,y), C2(x,y),...,cm (x,y))T 
to define the column vector of functions with entries 
Ci(x,y), i=l,...,m. Also, denote the column vector of 

derivatives by Dnc(x »y) = (Dncl(x >y )i Dnc2(x,y),...,
^ncm(x »y))^*

For ease in stating the primal and dual problems define
h(x,yj z) = e(x,y) - E ZiCi(x.y) = e(x,y) - zc(x,y) where

i=l
z = (zi,...,zm ) is a row vector of non-negative real 
numbers. Since it assumed e(x,y) is strictly concave in 
the n^h variable and ci(x,y) is convex in the n^h variable 
for i=l,...,m, the function h(x,y; z)'is strictly concave 
in the n ^  variable.

For every vector z £ E m+ , the non-negative orthant of 
Em , we define the following sets:
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sx(z) = {x € X sDnh(x , y ; z) < 0 for every yc[t(x),u(x)]}; 
S2(z) = {x £ X :Dnh(x,y;z) > 0 for every y£[t(x),u(x)]}; 
S-j(z) = {x £ X !Dnh(x,y;z) = 0 for exactly one

y6[t(x),u(x)]}; 

Reference to Figures 1 , 2 and 3 which follow may be useful 
, during the subsequent discussion of these sets#

These sets can be interpreted in terms of strictly 
increasing and strictly decreasing functions of y. Fix x 
and z; define ft(y) = h(x,y;z) and ft'(y) = Dj^hix.yjz). If 
ft(y) is strictly decreasing on £t(x), u(x)] then ft'(y) < 0 
on [t(x), u(x;] which implies x cSq(z). If ft (y) is strict­
ly increasing on [t(x), u(x)] then ft'(y) > 0 on
[t(x), u(x)"] v/hich implies x £S2(z). For each element 
x £S-^(z) the function ft(y) is neither strictly increasing 
nor strictly decreasing since ft' (y) = 0 for one 
y € [t(x), u(x)].

In subsequent analysis we will need a definition of the

point in [t(x), u(x)] v/here ft'(y) = 0. Recall ft (y) is
differentiable on [t(x), u(x)] which implies ft(y) is 
continuous on £t(x), u(x)]. Thus, by the Weierstrass 
theorem stated in Appendix A, the max {ft(y);y {[t(x),u(x)]} 
exists. For those elements x in S^(z) define g(x;z) as 
the point in £t(x),u(x)l such that ft(g(x;z)) = 

max {ft(y) « y £ [t(x), u(x)l} .
Now we will show Dnh(x,y;z) = 0 when y = g(x;z),
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i.e., ft'(y) = 0 at the point where the maximum value of 

ft(y) occurs for x eS^Cz).
Let yx £ [t(x), g(xsz)) and y2 6 (g(x5z), u(x)]. Since 

ft(y) is strictly concave, h'(y) > 0 for all y € [t(x),g(x;z)) 
which implies ft' (y^) > 0. Also , 6* (y) < 0 for all y e.

. (g(x;z),u(x)] which implies ft'(y2)< 0* Proposition 1 in 
Appendix B guarantees that ft'( •) takes on every value between 
ft'(yj) and ft'^)* This implies there is a point y £[ylty2] 
where ft'(y) = 0. This point is unique and is g(x;z) by the 
strict concavity of ft(*)* Therefore, Dnh(x,yjz) = 0 when 
y = g(xsz).

Note that if g(x;z) = t(x) then [t(x),g(x;z)) is the 
empty set and ft'(y)<0 for all y £ (g(x;z),u(x)J. Thus, the 
strict concavity of ft(y) and x 6 S^(z) implies there is only 
one y £[t(x) ,u(x)) such that ft'(y) = 0 and this point must 
be g(x;z) = t(x). Similarly, it can be shown that if 

g(x;z) = u(x) then ft'(y) = 0 when y = u(x).
Based on these arguments we can conclude y = g(x;z) 

is the point in [t(x), u(x)] where Dnh(x,yjz) = 0.
The sets Si(z), S2(z), and S3(z) are described in the 

following sketches in the sense that the "typical" func­
tions are shown for fixed x and z. For the purpose of 
reasonable sketches, it is assumed that XSEq, z eEq, and 
c(x,y) is a one component vector.



h(x,y;z)
A

9

_ L _
t(x) u(x) y

x S1(z)

Figure 1

u(x) y
Figure 2

h(x,y;z)

■t(x) g(x;z) u(x) y
x Sj (z) 

Figure 3
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An important property of the sets Sj_(z), S£(z) and 
83(2) is that X = Si(z)uS2(z)vS3(z) and Si(z)nSj(z) is 
the empty set for all i ^ j. The proof of this property is 

given in Appendix C.

2.3 Statement of Primal and Dual Problems
The Fenchal Duality Theorem, several example problems 

in Luenberger [35I1 and the work of Francis and Wright, 
provided the motivation for the construction of the primal 
problem from the Neyman-Pearson problem. The primal 
problem and the dual problem which form the basis of the 
analysis will now be stated.

Primal Problem

Minimize F(z) = / h(x,t(x);z)dx + / h(x,u(x);z)dx
z eEm+ slCz) s2(z)

+ / h(x,g(x;z);z)dx + bTz (1)
S3 (z)

Recall g(xjz) is the value of y e[t(x),u(x)J such that 

h(x;g(x;z);z) = max{h(x,y ;z)sy & £t(x),u(x)J} for fixed x 
and z and Dnh(x;y;z) = 0 when y = g(x;z). is the non­
negative orthant of Em.

Dual Problem (Nonlinear Neyman-Pearson Problem)

Maximize E(f) = / e(x,f(x|>dx (2)
X

subject to

Ci(f) = J c^Cx.f(x))dx < b^, i=l,...,m (3)
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and t(x) < f (x) < u(x) for all x €X (^)
Equations (3) and (4) can be rewritten as 

C(f) * ^ c(x,f(x))dx < b
and f €W, respectively, where C(f) is defined as the column
vector C(f) = (C^f), C2(f) Cm(f))T .

For use in some of the subsequent properties it is 
- appropriate to define the collection of functions satisfy­
ing the constraints of the dual problem in set notation as 
P(b) * {f 6 W s C(f) < b) .

As in the paper by Francis and Wright and in [32], the 
following definitions will be used: a solution to the
primal problem is any global minimum of F(•); a feasible 
solution to the dual problem is any function f(‘) which 
satisfies the dual constraints (3) and (^)j a solution to 
the dual problem is any feasible solution to the dual problem 
that maximizes E(*)- These definitions imply P(b) may be 
considered to be the set of all feasible solutions to the 
dual problem.

Now that we have defined the primal problem and the 
Neyman-Pearson problem, it is appropriate to discuss work 
related to the primal, dual, and the duality relationships.
2.k Related Primal Problems

In 1963» Kuhn [2 9] discovered a dual problem to the 
location problem which is often referred to as the general­
ized Fermat problem or Steiner-V/eber problem. Kuhn [2 9] 
also gives an interesting discussion of the history of the 
generalized Fermat problem; the problem can be stated as
follows s p

Minimize .2^ wk [x - x^J

where the x^ for k * l,2,...,p are given points in the



12

plane. This problem is a special case of the discrete 
version of the primal problem.

Witzgall and Rockafellar [52] also discovered the dual 
to the generalized Fermat problem using W. Fenchal's theory 
of conjugate functions. Francis and Wright [18] give 
references to other related works on the location problem.

If b * 0 and z is a positive real number then we can 
write the linear functional version of the primal problem 
as followsi

z 00Minimize F(z)* /-t(x)(z-x)dx + /u(x)(x-z)dx.0 z

This problem is one form of the one-period stochastic 
inventory model where x is the demand, z is the inventory, 
-t(x) is the storage cost, and u(x) is the shortage cost. 
Also, this might be considered to be a continuous version 
of the Christmas tree problem or the newsboy problem.

Francis and Wright [18] indicate the location problem 
and the one-period stochastic inventory model appear to be 
the only examples of applications of the primal problem,

2.5 Related Dual Problems
The dual problem was formulated by Neyman and Pearson 

and then sufficient conditions for a s o l u t i o n  
(Neyman-Pearson lemma) were published in 1936 [38], Neyman 
and Pearson were considering the testing of simple hypothe­
ses in statistical problems. We can state the problems as 
follows! maximize the power of the test (probability of
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rejecting a hypothesis when it is false') subject to the 
constraint of a given Type I error (probability of reject­
ing a hypothesis when it is true). Dantzig proved the 
necessity of these conditions in 1939 as stated in [11].
Wald developed the necessary conditions independently and 
the results were published jointly with Dantzig in 1951 P-2].

Chernoff and Scheffe' extended the results of Dantzig 
and Wald for a more general version of the Neyman-Pearson 
problem in 1952 [10]. Virsan [^8] obtained necessary condi­
tions for a s o l u t i o n  to a linear functional version 
of the previously stated Neyman-Pearson problem.

Zahl [55] presented necessary and sufficient conditions 
for a solution to the nonlinear version of the 
Neyman-Pearson problem (with one constraint)stated in 
Section 2.3. However, the assumptions are different from 
those stated in Section 2.2. He considered the problem as 
an allocation of resources problem but indicated that 
search problems and some game theory problems have the 
same form.

In 1969, Wagner [50] presented sufficient conditions 
(Neyman-Pearson lemma) for a solution to the 
nonlinear version of the Neyman-Pearson problem when the 
constraints hold as equalities for the solution.
He solves five different example problems to indicate the 
simplicity of using the Neyman-Pearson lemma rather than 
Lagrangian multipliers or dynamic programming as the
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solution techniques. The example in Chapter V of this disser­
tation is a variation of one of Wagner's example problems.

Another example problem given by Wagner was based on 
the following problem by Black and Proschan £ 7 ]. A 
complex system is to be placed in the field and the only 
replacement parts available are those sent initially with 
the system. Maximum assurance of continued operation of 
the system is desired subject to the constraint that the 
optimum spare parts kit is limited by a fixed budget. In 
equation form, this problem is a discrete version of the 
Neyman-Pearson problem stated in Section 2.2. As Wagner 
stated, Black and Proschan achieve the same results but 
they do not state the results as the Neyman-Pearson Lemma.

Wagner gives an extensive literature review of those 
papers presenting linear functional versions of the Neyman- 
Pearson problem to solve the nonlinear functional version 
in addition to those discussed in the following paragraph.
He also presents a review of those papers giving other 
solution techniques to the Neyman-Pearson problem.

Karlin [22], [24], a n d  Rustagi [45] have trans­
formed the nonlinear functional version of the Neyman- 
Pearson problem into a linear functional version to solve 
applications problems. Rustagi [45] indicates there are 
many statistical applications for the nonlinear functional 
version of the Neyman-Pearson problem. In Chapter VI, the 
technique developed in this dissertation is used to give
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sufficient conditions for a solution to the general problem 
presented and solved by Rustagi [4 5 ].

Karlin [22] made the comment that a great deal of 
ingenuity is required when using his linearizing technique. 
Wagner indicates the use of his sufficient conditions is 
more direct since a transformation of the Neyman-Pearson 
problem into a linear function version is not required.
The author believes the solution technique developed in 
Chapter III is more straightforward than Wagner's since 
the necessary and sufficient conditions are constructive 
in the sense that the optimal solution to the Neyman- 
Pearson problem is given explicitly in these conditions. 
Wagner does not state how the solution is determined when 
the upper bound u(x) or lower bound t(x) is achieved by the 
optimal solution.

As indicated by Francis and Wright [18] and Wagner ([50]» 
the Neyman-Pearson problem occurs in allocation problems, 
search problems, control theory, information theory, and 
facility design.

2.6 Duality Relationships
As previously stated, Francis and Wright £1 8 ] presented 

duality relationships for a linear functional version of the 
Neyman-Pearson problem. The following discussion shows that 
the primal problem of this dissertation and the primal 
problem of the linear functional version are equivalent when
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the Neyman-Pearson problem given in Section 2.3 is stated 
as a linear functional version.

Let e(x,y) * e(x)y so that e(x,f(x)) * e(x)f(x) and let 
c(x.y) * c(x)y so that c(x,f(x)) * c(x)f(x). Then we have 

h(x,yjz) = e(x)y - zc(x)y * y[e(x) - zc(x)] 
v/hich implies

DyjhCx.yjz) =» e(x) - zc(x).
If e(x) - zc(x) > 0 for some x € X, the function h(x,y;z)

is a strictly decreasing function of y v/hich implies
x feS^z). If e(x) - zc(x) > 0 for some x £X then h(x,yjz)
is a strictly increasing function which implies x £S2(z).
When e(x) - zc(x) « 0 for some x eJK then x £ (S-l(z)US2(z) )c.
Define (S1(z)uS2(z))c ■ Sj(z). Note that S^(z) does not
equal S3 (z) in a strict sense as S^(z) was defined for h(*)
being strictly concave in y.

Thus, for the linear case
,/ h(x,f(x)jz)dx « ,/ f(x)[e(x) - zc(x)]dx

S3 (z) S3 (z)
* ,/ f(x)Dh(x,y»z)dx * 0

S3 (z) n
since Dnh(x,y;z) ■ 0 for all x es3 (z). Therefore,

./ h(x,f(x);z)dx * 0 for all f €P(b);
S3 (z)

and, in particular, when we make the arbitrary choice 
f(x) * t(x) a.e. on S3 (z). Now the primal problem can be 
written as
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Min F(z) « / t(x)[e(x)-zc(x)]dx+ / u(x)[e(x)-zc(x)]dx
zcEj; Sx(z) S2(z)

+ ,/ t(x)[e(x)-zc(x)]dx + bTz
S^(z)

* / t(x)[e(x)-zc(x)]dx + / u(x)[efc)-zc(x)]dx+bTz 
S ^ O u S ^ z )  S2(z)

. which is the primal problem developed by Francis and Wright. 
The construction of the dual problem given by Francis and 
Wright follows directly from the equations e(x,f(x))
» e(x)f(x) and Ci(x,f(x)) ■ c^(x)f(x), i»l,2,...fm.

Hsiang-Chun Yen [53] presents the dual to .the nonlinear 
functional version of the Neyman-Pearson problem which he 
developed using the Lagrangain Multiplier technique (follow­
ing tradition he also refers to the primal problem as the 
dual of the Neyman-Pearson Problem). His results require the 
sufficiency conditions developed by Wagner? a rather 
restrictive requirement since he requires the solution to 
the Neyman-Pearson problem before he can obtain the primal 
problem. He also restricts the domain of the solution to 
the Neyman-Pearson problem to an open interval on the real 
line. He does not indicate how the solution is determined 
for the Neyman-Pearson problem and does not indicate expli­
citly that the solution to the Neyman-Pearson problem is a 
function of the Lagrangain multipliers.

Hsiang-Chun Yen also presents necessary and sufficient 
conditions for a solution to the nonlinear Neyman-Pearson 
problem based on the restrictions mentioned above.
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Necessary conditions are obtained via the Calculus of 
Variations.

The author's development of the primeil problem is more 
general since Hsiang-Chun Yen required the use of Wagner's 
sufficiency conditions for the development of the primal 
problem while the author has developed the primal problem 
using concavity-convexity arguments and insight based on 
the Fenchel Duality Theorem and Lagrangian multipliers.
In Chapter III, the author compares Wagner's conditions and 
the conditions established in this dissertation. The author 
also develops necessary and sufficient conditions for a 
solution to the primal problemj the primal problem may be 
easier to solve as is indicated in Chapter V.

2.7 Recent Developments
In July 1970, the author's advisor received corre­

spondence from Wagner and Stone [51] giving a proof that 
Wagner's sufficient conditions [5 0] for a solution to the 
Neyman-Pearson problem are also necessary when the constraint 
C(f) * b is satisfied and C(f) is a linear functional. The 
proof is based on the result given by Dantzig and Wald [12].

Necessary conditions were also developed for a solution 
to the Neyman-Pearson problem stated in Section 2.2 when 
e(x,y) is non-decreasing in y and c(x,y) is strictly increas­
ing in y. These assumptions are different than those given 
in Section 2.2. This proof is also based on the result by
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Dantzig and Wald. This author's proof of the necessary 
conditions for a solution to the Neyman-Pearson problem is 
based on Karlin's extension of the Kuhn-Tucker theorem.



CHAPTER III 
ANALYSIS

3.1 Introduction
The purpose of this chapter is to state and analyze 

the duality relationships of the primal and dual 
problems.

A proof of the necessary conditions for a solution 
to the linear version of the Neyman-Pearson problem 
£l8] is also included since it provides an alternative 
approach based on a technique used by Slater in proving 
the Kuhn-Tucker Theorem. The technique is also used 
subsequently in deriving the necessary conditions 
for a solution to the non-linear version of the Neyman- 
Pearson problem.

A single example is developed in Chapter V to 
illustrate the results of this chapter; the reader 
may find the example useful to refer to when going 
through this chapter.

20



3.2 Properties of the Primal and Dual Problems
21

Result 1. - For any feasible solution f(*) to the dual 
problem, and any z e Em+ , E(f) <F(z).

Proof. - Let F(») be any feasible solution to the dual 
problem and let z 6 Em+ . Then

E(f) « / e(x,f(x))dx 
X

m
< / e(x,f (x) )dx + 2 ZiCbi - / Ci(x,f (x) )dxj
X i-1 1 X

= / e(x,f(x))dx + b^z - / zc(x,f(x))dx
X X

* I [e(x,f(x)) - zc(x,f(x))]dx + bTz 
X

** / h(x,f(x)jz)dx + / h(x,f(x);z)dx Sx(z) Sg(z)

+ / h(x,f(x)iz)dx + bTz
s3 (.)

since S^(z), S2 (z), and S-j(z) are pairwise disjoint and 
their union is X. Now h(x,f(x);z)<h(x,t(x)jz) on S-ĵ z) 
since Dnh(x,y;z)<0 for all x€Si(z) and t(x)<f(x)<u(x), as 
is illustrated in Figure 1, Also, h(x,f(x);z)<h(x,u(x)jz)
on S2 (z) since DnhCxjyjzJX) for all x e s 2(z) as is illus­
trated in Figure 2. For each xfS^(z), we have h(x,f(x)jz)
< h(x,g(x?z);z) from the definition of S3 (z). Looking at
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Figure 3 we see the latter inequality is satisfied by the 
"typical" function h(x,y;z).

Using the inequalities of the previous paragraph we
have

f h(x,f(x);z)dx < / h(x,t(x);z)dx,
Sx(z) Si(z)

/ h(x,f(x);z)dx < / h(x,u(x);z)dx,
S2(z) S2(z)

/ h(x,f(x);z)dx < / h(x,g(xjz);z)dx.(z) S3 (z)
Adding the above inequalities gives

E(f) < / h(x,t(x);z)dx + / h(x,u(x);z)dx
Sx(z) S2(z)

+ I h(x,g(x;z);z)dx + bTz 
S3(z)

= F(z)
v/hich is the desired result.

Sufficient Conditions for Solutions to Primal and Dual 
Problem
Result 2. - If there exists a feasible solution f(•) to the 
dual problem, a z e Em+ such that 

m
2 zi [/ ci(x,f(x)dx - bjj = 0, (5)

i=l A
f(x) = t(x) a.e. on Si(z), (6)
f(x) = u(x) a.e. on S2 (z), (?)
f(x) = g(x;z) a.e. on S3(z), (8)

then z is a solution to the primal problem, f(') is a
solution to the dual problem, and E(f) = F(z).
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Proof. - It is clear that z is a solution to the primal
problem and f(x) is a solution to the dual problem by
Result 1 provided we can show E(f) = F(z). Note that

E(f) = / e(x,f(x))dx 
X m

* / e(x,f(x))dx - 2 z^Lf ci(x,f(x))dx - b* J
X i-1 X 1 1

= /[e(x,f(x)) - zc(x,f(x)) |dx + bTz 
X

by hypothesis (5) above. Therefore, we can write
E(f)= f h(x,f(x);z)dx + b^z 

X
= /h(x,f (x); z)dx + /h(x,f (x);z)dx + /h(x,f (x);z)dx + b^z

Sx(z) S2(z) S3 (z)
= /h(x,t (x);z )dx + /h(x, u(x); z )dx + /h(x,g(x; z) \ z )dx + bTz

(z) S2(z) So(z)
3 (9)

by equations (6), (7) and (8) of the hypothesis. The right 
hand side of equation (9) is the objective function of the 
primal problem. Therefore, we have E(f) = F(z).

Necessary Conditions for a Solution to the Dual Problem
While the techniques such as those given in Lueribe£ger£35] 

could be used for establishing the necessary conditions for 
a solution to the dual problem, these general techniques 
are not required for the Neyman-Pearson problem stated in 
this dissertation. The author is indebted to his advisor 
for suggesting the use of a simpler and more straightforward 
approach based on Slater's and Karlin’s proofs of the
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necessary conditions for the Kuhn-Tucker Theorem. For the 
purpose of completeness of this section, the Kuhn-Tucker 
Theorem is stated in Appendix D.

The proof of Property 1 to follow is essentially the 
same as one involving the Kuhn-Tucker conditions by 
Karlin J.22J, and is included in the interest of complete­
ness .

The necessary conditions are developed via Properties 
1, 2, and 3. Result 3 is stated as a summary of results 
for the necessary conditions for a solution to the dual 
problem.

For Properties 1, 2, and 3i it is assumed there is 
at least one f fiP(b) such that D(f) = C(f) - b < 0.

Property 1, - If fo(’) is a solution to the dual problem 
then there exists a z q £Em+ such that

E(f) - z°D(f) < E(fo) - z°D(f0) < E(fo) - zD(f0) (10)
for all f € w and all z e Em+ . Also, we have

z °D(f0) = 0. (11)
Proof: - Let fQ(•) be a solution to the dual problem.
Define A = { (u,v) £ S s u > D(f), v < E(f) for at least one
f £ W} and B = {(u, v) £ E'j^i: u < 0 ,  v > E(fo)} . For the
sets A and B, u = (ultU2  '̂m and v £E1*
= (Dx(f), D2(f),...,Dm (f))T is an m-component column 
vector where D-̂ (f) = C^(f) - b^, i=l m.

A geometric illustration giving an example
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of the relationship between the set A and the set B is 
shown in Figure 4.

v

\ \ . V \ \ - V V V V W
>• u

Figure 4-
It is clear that B is a convex set and the set A is 

shown to be convex in Proposition 6 of Appendix E. Figure 4 
shows geometrically that A and B are disjoint. This is 
shown analytically in the following proof by contradiction.

Assume (u,v)eAnB. Then (u,v) 6 A which implies there 
exists an f £W such that u > D(f) and v < E(f). Also,
(u,v) 6. B implies u < 0 and v > E(fo)» Thus D(f) < U < 0 
and E(fo) < v < E(f) which implies f(*) is a feasible solu­
tion to the dual and fo(') is not a solution to the dual 
problem. But the statement of this property indicates 
fq(*) is a solution to the dual problem. Hence, A and B 
are disjoint.

Consequently, the hypotheses of the separating hyper­
plane theorem given in Appendix F are satisfied so there is 
a separating hyperplane c*(u,v) = d, where d is a real
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number, with c = (z*,-rQ) / 0 (Tq CE^, ce.Ej^q) such that 

-r0 v'' + z* u'' > -rQ v' + z* u', (12)
for all (u*,v') e B and all (u' ' , v' ') <£ A.

We have z* > 0 for if at least one z| < 0, we can make
the i'fch component of u' arbitrarily small for (u',v')eB 
which would imply the inequality (12) would be violated.

It is also true that rQ > 0 since v' can be made
arbitrarily large for (u',v') £ B which implies rQ < 0 would
violate inequality (12).

Now we will show r0 > 0. Choose f tW and let
= (0, E(f q ) ) and x2 = (D(f), E(f)) so that x2 € A. Since

xq is a boundary point (defined in Appendix F) of B (12) 
still holds, by the separating hyperplane theorem. Substi­
tuting X2 and xq in (12) yields

-rQ E(f) + z*D(f) > -rQ S(fq ) + z* 0
and we have

-r0 E(f) + z* D(f) > -r0 E(f0). (13)
Consider two cases, z* = 0; > 0 for at least one i,
where i=l.... m.

Case 1. - Let z* *» 0.
We knov/ rQ > 0 and (z*,-r0 ) ̂  0. Therefore (o,-r0)

/ 0 if and only if rg > 0,

Case 2. - Let zq > 0 for at least one i.
If r0 = 0, (13) implies z*D(f) > 0 for all f £Wj but

it is assumed there exists an few, say fq, such that



27
D(f^) < 0 which implies z? °i^l) < ® f°r z\ > 0 so 
that z* D(fi) < 0. Thus, rQ must be positive.

Combining both cases we'conclude tq > 0 for z* e Em+ . 
Now dividing (13) by rQ gives

-E(f) + z°D(f) > - E(fo) for all f £W (14)
where

In particular, for fQ we have
-E(f0) + z°D(fo) > - E(fo) 

which implies
z° D(f0) > 0.

Since fQ eP(b) implies D(ffl) < 0 and z° > 0 we know 
z° D(f0) < 0 

and thus conclude
z0 ^^0^ = (1 6 ) 

which proves (11).
From (14) and (16) we can now conclude 
-E(f) + z° D(f) > - E(f0) + z° D(f0) for all f eW. 

Multiplying by (-1) in the previous inequality yields
E(f) - z° D(f) < E(fQ) - z° D(f0) (17)
Since D(fo) < 0 we have -z D(fQ) > 0 for all z €Em+ . 

Therefore,
E(fo) £ E ( f 0) - z D(f0)* for all z e Em* , and since

z° D(fo) = 0 we have
E(fo) - z° D(f0) < E(fo) - zD(fq) , for all z *Em+.

(18)



Combining (17) and (18) yields
E(f) - z° D(f) < E(fo) - z° D(f0) < E(f0) - z D(f0) 

for all z £ Em+ and all f f W which is the desired result 
(10) .

Property 2. - If fo(‘) is a solution to the dual problem 
then z°eEm+ , defined in (13) of the previous property, is 
a solution to the primal problem and E(f0) = F(z°).

Proof. - Let T(x) = t(x) a.e. on Si(z°),
T(x) = u(x) a.e. on S2(z°),
f(x) = g(x;z.°) a.e. on S3 (z°).

Then we can see f (•) eW. Also we can express F(z°) in the
following manner:

F(z°) =. / h(x,t(x);z°)dx + / h(x,u(x);z°)dx
Sx(z0) S2(z0)

+ / h(x,g(x;z°);z°)dx + b^z°S3(z0)
= J e(x,t(x))dx + J e(x,u(x))dx

S1(z°) S2(z°)
+ / e(x,g(x;z°))dx

S3(z0)
- z° [f c(x,t(x))dx + / c(x,u(x))dx 

Sx(z0) S2(z0)
+ / c(x.g(xjz°))dx - b]S3(z0?

from the definition of h(x,y;z).
Using the above definition of f(*) and the expression 

for F(z^) given above we can then write
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F(z°) = / e(x,f(x))dx - z°[/ c(x,f(x))dx - b] 

X X
= E(f) - z° D(f).

By (10) in Property 1 we have
F(z°) = E(f) - z°D(f) < E(f°) - z°D(f0) -i E(f0). (19) 

From Result 1 we have
F(z) > E(f) for all z £Em+ and all f £P(b).

Since f0 £P(b) and z°eEm+ we have
F(z°) > E(f0). (20)

Combining (19) and (20) yields 
F(z0) = E(fo).

Hence, z® is a solution to the primal problem.

Property 3» - If fo(*) is a solution to the dual problem 
then there exists z® 6 ̂ m+ such that

fo(x) = t(x) a.e. when x ^S1(z°), (21)
fo(x) = u(x) a.e. when x 6 S 2(z°), (22)
f0(x) = g(x;z°) a.e. when x £S-j(z°). (23)

Proof. - Since it was shown that there exists a solution z° 
to the primal problem when f(j(*) is a solution to the dual 
problem and z°D(fo) = 0 we can write
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E(f0) = E(f0) - z°D(fn) = /e(x,f0(x))dx ^z-°[/c(x,f0(x) - b]

U X X
= / h(x,fo(x);z°)dx + bTz°
X

= /h(x,f0(x);z0)dx + /h(x,f0(x);z°)dx 
Si(z°) S2 (z°)

+ /h(x,fo(x);z°)dx + b^zO (24)
S3(zO)

Also,
F(zO) = / h(x,t(x);z®)dx + / h(x,u(x)5z®)dx 

Si(z°) S2(Z0)

+ / h(x,g(x;z°);z°)dx + bTz° (25)
s3(z°)

In the previous property it was shown P(z°) = E(fo) s0
equating (24) and (25) yields

/h(x,fo(x);z°)dx + /h(x,f0(x) ;z°)dx + J'h(x,f0(x) ;z°)dx 
S1(Z0) S2(z°) S3(z0)

= /h(x,t(x);z°)dx + /h(x,u(x);z°)dx + /h(x,g(x;z°);z°)dx 
Si(zO) S2(z°) S3(z0).

The above equation can be rewritten as follows:
/[h(x,t(x) ;z°)-h(x^0(x) ;z°)]dx + /[h(x,u(x); z°)-h(x4‘o W  ; z°) ]dx 
S1(z°) S2(z°)

+ /[h(x,g(x;z°);z°) - h(x,f0(x);z°)]dx = 0. (26)
S3(z°)

Since h(x,y;z) is strictly decreasing in y for all 
x ffSi(z°) this implies

h(x,t(x);z°) - h(x,f0(x)jz°) > 0. (27)
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Also, h(x,y;z) is strictly increasing in y for all
x e S2(z°) and so

h(x,u(x);z°) - h(x,fo(x);z°) > 0. (28)
From the definition of S ^ z 0) we also have

hU.gfcqz^jz^ - h(x,f0(x) ;z°) > 0. (29)
for all x 6S^(z0). The sketches in Figures 1, 2 and 3 also
illustrate geometrically that these inequalities must hold.

Therefore, each integrand in (26) is non-negative and
the sum of non-negative terms is zero only when each term
is zero, which yields

/ [h(x,t(x);z°) - h(x,f0(x);z°)]dx = 0, (30)
Si(z°)

/ [h(x,u(x);z°) - h(x,f0(x);z°)]dx = 0, (31)
S2 (z°)

and
/ [h(x,g(x;z°);z°) - h(x,f0(x)jz°)]dx = 0. (32)
S3(z°)

Equations (27) and (30) imply
h(x,t(x);z°) = h(x,fo(x) ;z°) a.e. on Sj_(z°). (33)

If fo(x) t(x) a.e. on S^(z^) then f()(x) > t(x) on a subset 
of S^(z0) of positive measure, which from the definition of 
Si(z0), (h(*) is strictly decreasing in the n̂ 1̂ variable) 
implies h(x,f(j(x) jzO) < h(x,t(x);z°) on a subset of S1(z°) 
of positive measure contradicting (33) • Thus, (21) is 
established.

Similarly, (28) and (31) imply
h(x,u(x)}Z°) = h(x,fo(x);z°) a.e. on S2(z°). (3*0
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Assume fo(x) / u(x) a.e. on S2(z°) then f0(x) < on a
subset of S2 (z°) of positive measure. From the definition 
of S2 (z0)* h(-) is strictly increasing in the n^h variable 
which implies h(x,fo(x);z) < h(x,u(x);zO) on a subset of 
S2(z®) of positive measure contradicting (3*0 • Thus, (22) 
is established.

Equations (29) and (32) imply
h(x,g(x;zO);z°) = h(x,f0(x),zO) a.e. on S3 (z°). (35)
If fq(x) / g(x;z°) a.e. on S3 (z°) then f0(x) / g(x;z°) 

on a subset of S^z^) of positive measure. From the 
definition of S3 (z°) and Figure 3, it can be seen that h(*) 
is a strictly increasing function of y when y < g(xjzO) and 
h(*) is a strictly decreasing function of y when y > g(xjz9)* 
Thus, h(x,fo(x) ;z°) < h(x,g(x;z°);z°) on a subset of S ^ z 0) 
of positive measure which contradicts (35)* Therefore, (23) 
is established.

Properties 1, 2, and 3 can be combined in the follow­
ing result to give necessary conditions for a solution to 
the dual problem.

Result 3. - Suppose there is at least one f €P(b) such that
[/c(u,f(x))dx - b]< 0. If fa (•) is a solution to the dual 
X
problem then there exists a z® e Em+ such that

z°[/ c(x,f(x))dx - b] = 0;
X

f0(x) = t(x) a.e. on S ^ z 0);
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fQ(x) = u(x) a.e. on S2(z°)j
fq (x ) = g(x;z°) a.e. on S-jCz)}

and E(f0 » F(z q ).
Results 2 and 3 can be combined in the following manner

as necessary and sufficient conditions for a solution to the 
dual problem.

Result - Suppose there is at least one f € P(b) such that
[£ c(x,f(x))dx - b] < 0. Then the feasible solution fo(*)
is a solution to the dual problem if and only if there 
exists a z°eEm+ such that

z°[f c(x,f0(x))dx - b] ■ Oi 
X

fq (x ) * t(x) a.e. on Si(z0)}
f0(x) = u(x) a.e. on S2(z°);
fq (x ) ■ g(xjz°) a.e. on S<j(z°).

Also, E(f0) » F(z°).
Note that when Result ^ holds, Result 1 implies z° is 

a solution to the primal problem.
The assumption that there exists an ffiP(b) such that 

^c(x,f(x))dx - b < 0 is usually called a regularity assump­
tion. When this regularity assumption is satisfied, i.e., 
there is a feasible solution for which all constraints are 
inactive, then the solutions to the primal and dual problems 
can be found from the necessary and sufficient conditions 
(Result and the definitions of S^(z), S2(z) and (z).
Also, the values for E(f0) and F(z°) are the same.

An example problem is given in Chapter V to illustrate 
the previous results, the use of the sets Si(z), S2(z),
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S^(z)i and the necessary and sufficient conditions for 
determining the solutions to the primal and dual problems.

3«3 Necessary Conditions for a Solution to the Linear 
Functional Version of the Neyman-Pearson Problem 
Francis and Wright [18 ] give a proof of the necessary 

conditions for the linear functional version of the Neyman- 
Pearson problem based on a proof by Virsan [^8J. However, 
the linear functional version is a special case of the non­
linear functional version as shown in Section 2. 6 which 
implies Result 3 holds. Since Slater's technique appears 
to be more straightforward, it is appropriate to present 
the proof for the linear version using his technique.

Although it is assumed that e(x,*) is strictly concave 
in the n^h variable for the non-linear functional version, 
the Kuhn-Tucker Theorem (Appendix D) requires E(«)°to be 
only concave. It will be shown that £(•) and C( •) being 
linear functionals does not affect the hypotheses of the 
necessary conditions.

Recall from Section 2.2 that the definitions of S1(z) 
and S2(z) are identical with those for the nonlinear func­
tionals. We also defined

S^'(z) = {.x e XsDnh(x,y;z) = e(x) - zc(x) = 0}
= (S-^z) u s2(z))c.

Result 5. - Assume there is a feasible solution f(«) to
the dual problem such that / c(x)f(x)dx - b < 0.

X
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If fo(*) is a solution to the dual problem, then there 
exists a z° £Em+ for which

z°[J c(x)f(x)dx - b] = 0, (36)
X

f0(x) = t(x) a.e. on S1 (zO), (3?)
f0(x) = u(x) a.e. on S2(z°). (38)

Proof: Equations (11) and (36) are the same when c(x,f(x))
= c(x)f(x). Therefore, the proof of Property 1 proves (36) 
since the strict concavity assumption for the dual problem 
was not required for (11) to hold.

Now we can show z° (defined in (15)) is a solution to
the primal problem when fo(*) is a solution to the dual
problem, i.e, we can prove Property 2 for the linear func­
tional version.

Let _
f(x) » t(x) a.e. on S ^ z 0),
f(x) = u(x) a.e. on S2(z°), 
f(x) « t(x) on S^(z°),

(f(») may be chosen arbitrarily on S ^ z 0))
and then we can observe f(*)fW. Recalling the linear
version of the primal problem objective function we have

F(z0) = /t(x)[e(x) - zc(x)]dx /u(x)l_e(x) - zc(x)Jdx + bTz° 
sl(ẑ )'oS3 ' (z°) S2 (z°)

= /e(x)t(x)dx + /e(x)u(x)dx 
S^(z0)u3^20) S2(z0)

- z° £/c(x)t(x)dx + /c(x)u(x)dx - b]
Sl(zO)uSj(zO) S2(z°)
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Using the above definition of f(*) and the expression for
F(z°) given above we can write

F(zO) = /e(x)f(x)dx - z°£/c(x)f(x)dx - b]
X X

= E(f) - z°D(f)•
By (10) in Property 1 we have

F(z°) = E(I) - z°D(f) < E(f q) - z°D(f0) = E(fg). (39)
From the work of Francis and Wright [_183. we have F(z)
> E(f) for all z € Em+ and all feasible solutions to the
linear problem. Since f(j(*) is a feasible solution we have

F(z°)>E(f0). (40)
Combining (39) and (40) yields F(z°) = E(fo); hence

z° is a solution to the dual problem.
Using the proof of Property 3 we conclude, without

using the strict concavity assumption, that
h(x,t(x);z0) = h(x,fo(x);z®) a.e. on Si(z^) (41)

and
h(x,u(x);z°) = h(x,f0(x);z°) a.e. on S2(z°). (42)

Equation (41 ) is equivalent to
t(x)[e(x)-z°c(x)] = fo(x)[e(x)-z°c(x)J a.e. on SjJz0) 

v/hich implies (3 7) is satisfied since e(x) - z°c(x) < 0. 
Equation (42) is equivalent to

u(x)[e(x)-z°c(x)J = fo(x)[e(x)-z°c(x)] a.e. on S2(z°) 
which implies (38) is satisfied since e(x) - z°c(x) > 0.
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3.4 Wagner's Sufficient Conditions for a Solution to the 

Dual Problem
In Wagner's paper £50] sufficient conditions were given 

for a slightly different problem than the dual problem of 
this dissertation. Since this dissertation is partially 
based on Wagner's paper, it is appropriate to compare 

, Wagner's sufficiency conditions and the previously derived 
sufficient conditions. This comparison will be based on the 
following! concavity - convexity assumptions of this disser­
tation, one integral constraint, and Wagner's sufficiency 
conditions for the dual problem.

The following result is Wagner's sufficiency condition 
written in the notation of this dissertation.
Result 6. - Suppose k(»)fiW has the following property! 
there exists a z > 0 such that for all x eX £ e^ (except on 
a set of measure zero)

D2e(x,y) < zD2c(x,y) whenever k(x) < y < u(x) (43)
D2e(x,y) > zD2c(x,y) whenever t(x) < y < k(x) (44)

Then
E(k) » Max (E(f)! f «W and C(f) < C(k)} (45)
G(k) = Min {C(f)i f GW and E(f) > E(k)} . (46)
Since it has been assumed in this dissertation that 

h(x,y;z) is strictly concave in y, the author will prove the 
following result.
Result 7. - When h(x,yjz) ** e(x,y)-zc(x,y) is strictly con­
cave in y then (43) and (44) become

D2e(x,y) < zD2c(x,y) whenever k(x)<y<u(x) (47)
D2e(x,y) > zD2c(x,y) whenever t(x)<y<k(x), (48)

respectively.
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Proof. - Assume there is a point y* e (k(x),u(x)) such that 
D2h(x,y*,z) = 0. Since h(*) is strictly concave in y there 
is at least one y e(k(x),y*) such that D2h(x,y;z) > 0 which 
contradicts (43)* Therefore, there is no point 
y e(k(x),u(x)) such that D2h(x,y;z) = 0. Hence, (43) holds 
as a strict inequality as is given in inequality (4?).

Similarly, if y* £(t(x),k(x)) and D2h(x,y*;z) = 0 then 
there is at least one point y £(y*,k(x)) such that 
D2h(x,y;z) < 0 which contradicts (44). Thus, (48) is a 
restatement of (44) when h(«) is strictly concave in y.

When a function k(•) £W satisfies (43) and (44), (4? ) 
and (48) for h(.) strictly concave in y* Wagner defines 
the function k(*) to be "cost-effective". This problem is 
more general than the dual problem of this dissertation in 
the sense that there is no upper bound on C(k) other than 
C(k) being finite. If we bound C(k), say C(k) < b, then
(46) has no meaning as the problem becomes a constrained 
maximization problem, namely the dual problem of this 
dissertation. Wagner considers this situation in Remark 1 
of [_5 0J and states that if there is a k*(*)€W such that 
k*(») satisfies (43) and (44) and C(k#) = b then k#(*) is a 
solution to the constrained maximization problem. In other 
words, k*(») is the most effective solution for a given cost 
restriction.

However, there is another case that must be considered. 
This is when the solution to the constrained maximization
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problem occurs with the constraints inactive. In other 
words, the maximum value of the objective function to the 
constrained problem is the same as the maximum value for 
the unconstrained problem. In fact, it will be shown in 
the proof of the following property that (47) and (48) are 
not enough information to guarantee that k(*) (defined by
(47) and (48)) is a solution to the dual problem if C(k)<b.

Before stating Wagner's sufficiency conditions for the 
dual problem, it is worthwhile to note that z > 0 was 
required to prove (46). Since (46) is not involved in the 
dual problem of this dissertation it will be seen that the 
requirement can be relaxed to z being non-negative in Wagner's 
sufficiency conditions for the dual problem. However, C(f)
< b so we have k(») restricted to the set P(b).

Property 4. - Suppose k(*) €P(b) has the following property:
there exists a z > 0 such that for all x £ X  (except on a 
set of measure zero)

D2e(x,y) < zD2c(x,y) whenever k(x) < y < u(x), (49)
D2e(x,y) > zD2c(x,y) whenever t(x) < y < k(x). (50)

Then E(k) = Max {E(f): f €W and C(f) < b} (51 )
if C(k)=b, i.e., k(«) is a solution to the dual problem.

Proof. _ The proof follows the technique used by Wagner and 
proceeds in a fashion much the same as the original proof 
of the Neyman-Pearson Lemma.

For all x e x  and f(x) e(k(x),u(x)) we have



f(x)
e(x,f(x)) - e(x,k(x)) = J D2e(x,y)dy

k(x)
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f(x)
< z / D2c(x,y)dy (52)

k(x)
by (49).
Also, when f(x)£ (t(x),k(x)) we have

e(x,k(x)) - e(x,f(x)) = /k^ D 2e(x,y)dy
f(x)

k(x)
> z / D?c(x,y)dy 

f(x) 2
by inequality (50). However, multiplying the inequality 
by -1 yields

k(x)
e(x,f(x)) - e(x,k(x)) < -z / D2c(x,y)dy

f(x)
f (x)

< z / D?c(x,y)dy (53)
k(x) 2

Since (52) and (53) are the same, we have
e(x,f(x)) - e(x,k(x)) < z[c(x,f(x)) - c(x,k(x))] (54)

for all x £ X and z > 0. Integrating both sides of (5 4 ) 
yields

/e(x,f (x) )dx - /e(x,k(x)dx < z/c(x,f (x))dx - /c(x,k(x))dx X X  X X
and we have

E(f) - E(k).< z[C(f) - C(k)]. (55)
Since C(k) * b and C(f) < b we have 

E(f) - E(k) < 0 
which is the desired result.

However, when the constraint is inactive (C(k)<b) for a 
solution to the■Neyman-Pearson problem, there is no guarantee
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that z[C(f)-C(k)] < 0 since there is a possibility that C(f) 
>C(k) for some feasible solution f. Therefore, the comple­
mentary slackness condition z£C(k)-b[]=0 is needed to "fix
up" Wagner's sufficiency conditions for the dual problem.

Adding and subtracting bz on the right hand side of 
(55) gives

E(f) - E(k) < z[C(f)-b + b - C(k)]
< z[C(f)-b] - z[C(k)-b].

The term z£c(f)-b] is nonpositive and the addition of the 
complementary slackness condition z[C(k)-b]*0 yields E(f)
- E(k) < 0 which implies k(•) is a solution to the dual 
problem.

Including the complementary slackness condition and 
deleting the requirement that C(k)=b in Property 4 yields 
sufficient conditions for the solution to the dual problem, 
which are stated formally in the following result.
Result 8. - Suppose k(») £P(b) has the following property: 
there exists a z > 0 such that for all xeX, (except on a 
set of measure zero)

D2e(x,y) < zD2c(x,y) whenever k(x)<y<u(x), (56)
D2e(x,y) > zD2c(x,y) whenever t(x)<y<k(x), (57)
z[C(k) - b] - 0. (58)

Then k(*) is a solution to the dual problem.
Since Wagner's conditions have been changed to be suffi­

cient for a solution to the dual problem it is appropriate to 
show Result 2 and Result 8 are equivalent. Since (5) and 
(58) are identical we can show any feasible solution that 
satisfies the properties of Result 2 also satisfies the 
properties of Result 8 by proving the following property.



Property 5» Let k(*) be in P(b) and z > 0. If 
k(x) = t(x) a^e. on S^(z),
k(x) = u(x) a.e. on S2 (z)»
k(x) = g(x;z) a.e. on (z)

then k(«) satisfies
D2h(x,y;z) < 0 when y e(k(x) ,u(x)),
D2h(x,y;z) > 0 when y e(t(x),k(x)),

for all x ex except on a set of measure zero.

Proof: Let x be any point in S^(z) such that k(x) = t(x).
Then D2h(x,y;z) < 0 for all y £[t(x),u(x)] which implies 
D2h(x,y;z) < 0 for y e(k(x),u(x)) so (62) is satisfied.
Since k(x) = t(x) the interval (t(x),k(x)) is empty which
implies (63) hold vacuously.

Let x be any point in S2(z) such that k(x) = u(x).
Then D2h(x,y;z) > 0 for all y g[t(x),u(x)] which implies
D2h(x,y;z) > 0 for y € (t(x),k(x)). Also, (k(x),u(x)) is 
the empty set so (6 2 ) and (63) are satisfied.

Now let x be any point in S3 (z) such that k(x) = g(x;z).
Then, the strict concavity of h(») with respect to y and 
the definition of S3 (z) implies

D2h(x,y;z) < 0 for all y £ (g(x{z),u(x)]
L2h(x,y;z) > 0 for all y 6 (t(x),g(x;z)].

Hence, (62) and (63) are satisfied.
All possible x eX except possibly a set of measure zero 

has been checked. Hence, Property 5 is proven and we can

(5 9)
(60) 
(61)

(62)
(6 3)
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conclude solutions satisfying the conditions of Result 2 
will also satisfy Result 8.

Suppose there are feasible solutions which satisfy the 
properties of Result 8 but do not satisfy those of Result 2. 
Then there is a solution which satisfies the properties of 
Result 8 but not those of Result 2. This is not possible 
if there is a feasible solution, say f^, to the dual problem 
of this dissertation such that C(fi)-b<0 for then the proper­
ties of Result 2 are also necessary for a solution to dual problem.

Therefore, the author concludes Wagner's sufficiency 
conditions for a solution to the dual problem and Result 2 
are equivalent when the regularity assumption C(f) < b is 
satisfied for some feasible solution to the dual problem,

3. Alternate Necessary and Sufficient Conditions for 
Solutions to the Primal and Dual Problems 
As in the paper by Francis and Wright [l8]» there are 

alternate necessary and sufficient conditions for solutions 
to the primal and dual problems. The sufficient conditions 
developed by the author are given in this section.

Sufficient Conditions for Solutions to the Primal and Dual 
Problem
Result 9» - Suppose there exists a Em+ such that
/ci(x,t(x))dx + /ci(x,u(x))dx+ /cj,(x ,g(x; z0J)dx < bi,i=l,...,m 
Si(z°) S2 (z°) S3 (z0 ) (64)

and
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m
2 z0i[/'ci(x,t(x) )dx+ /ci(x,u(x) )dx+ /ciCx.gCxjZoJJdx-bi^ 0. 

i=1 Si(zO) S2(z0) S3(zO) (65)

Define the function fo(*) on X as follows: 
fo(x) = t(x), a.e. on S-l(z°);
f0(x) = u(x), a.e. on S2(z°);

= g(x;z0), a.e. on S3 (z°).
Then z° is a solution to the primal problem, f0(•) is a
solution to the dual problem, and E(fo) = F(z^).

Proof. - First it must be shown that fo(*) is a feasible
solution to the dual problem. By the definition of f0(*)t
t(x) < fo(x) < u(x) for all xeX. By the definition of
fo(‘) and (64) we have

/ci(x,f0(x))dx = /ci(x,t(x))dx+ /ci(x,u(x))dx + /ci(x,g(x;z°))dx 
X Sx(z0) S2(Z0) s3 (z0)

< b^, i=l,...,m

Therefore, fo(*) is a feasible solution.
Now if vie show E(fo) = F(z°) the conclusion will 

follow from Result 1. By (64) and the definition of fo(*) 
we can write



^5
E(fo) = Je(x,f0(x))dx 

X m
= /e(x,f0(x))dx - £ z°i(7ci(x>t(x) )dx + /c^x.uCx) )dx 

X i=1 Si(z°) S2(z°)
+ /ci(x,g(x;z(̂)dx - bi]

S3 (zO)

= /e(x,t(x) - z°c(x,f(x))dx + /£e(x,u(x) )-z°c(x,u(x))]dx 
S ^ z 0) S2(z°)

+ /[e(x,g(x;z0)) - z°c(x,g(x;z°)]dx + bTz°
S3 (zO)

= /h(x,t(x);z°)dx+/h(x,u(x);z°)dx+/h(xg(xjz°);z°)dx 
Si(z°) S2(z0) s3(zO)

= F(z°)
which is the desired result.

Necessary Conditions for a Solution to the Primal Problem 
To prove the sufficient conditions in Result 9 are 

necessary, we need to know the function F(z) is convex. By 
redefining F(z) in an equivalent form the convexity can be 
shown quite easily. The redefinition of F(z) is based on 
the global and local optimization theory as presented in 
Luenberger's text [35].

Property 6. - The objective function in the primal problem
is F(z) = sup [E(f) - zD(f)]. few
Proof. - In Result 1 the proof of E(f) < F(z) also showed



kS

E(f) - zD(f) <F(z) for all f f W and z £ E m+ . Therefore,
sup jjE(f) - zD(f)] < F(z). (6 6 )

f e w
If we let

f(x) = t(x) a.e. on S^z),
f(x) = u(x) a.e. on S2 (z),
f(x) = g(x;z) a.e. on S^(z)»

then f(•) 6 W and
F(z) = /h(x,t(x);z)dx + /h(x,u(x);z)dx + /h(x,g(x;z)jz)dx

Si(z) S£(z) S3 U )

+ b^z
= /h(x,r(x);z)dx + b^z 
X

= /e(x,f(x))dx - z[/c (x,f (x) )dx - b]
X X

= E(f) - zD(f) < sup fE(f) - zD(f)] (6 7 )f e w
Combining (66) and (6 7) yields the desired equality.

With this property we can now prove the convexity of
the objective function F(z).

Property 7. - F(z) = sup fE(f) - zD(f)^ is a convex functionf e w
of z on Era+ .

Proof. - Let 0 < a < 1 and z^, z2 e Em+ then
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F(az-, + (l-a)zp) = sup^E(f) - (azi + (l-a)z2 )D(f)]

f e w
= sup[aE(f)+(l-a)E(f) - (azi+(l-a)z?)D(f)J 
f fc W

- sup/a£E(f)-zxD(f)[| + (l-a)[E(f)-z2D(f)]i 
f e w 1 J

< a sup[E(f)-ZiD(f)3 + (l-a)sup[E(f )-z?D(f) J 
f fcW few *

= a F(zi) + (1-a) F(z2)
which is the desired result.

Assume F(z) is a differentiable function and denote
the partial derivative with respect to Zj_ as D^F(z) for
i=l   Also, the gradient of F(z) will be denoted by
VF(z) where VF(z) = (DxF(z), D2F(z) DmF(z))T . The
Kuhn-Tucker conditions [31] state that z^F(z) = 0 is a
necessary condition for z to be a solution to the primal1

problem.
Therefore, we only have to show the form of DjF(z),

i=l,...,m to state the necessary conditions for a solution
to the primal problem. To develop the expression for DjF(z),
i«l,...,m we need the expression F(z0) + F'(zq)(z-Zq) where
F'(zq)(z-Zq) is the inner product of F'(z0) and (z-zQ).
The function F'(zq) we define as

F' (z0>» b-/c(x, t(x) )dx - /c(x,u(x) )dx - /c(x,g(x; ZQ))dx (6 8 ) 
Si(z0) S2 (zq) S3 (zo)

where zo is an arbitrary point in E ^ .
Writing out F(zq) + F'(z0 )(z-z0) in terms of h(*)» z, 

and b we have
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F(z0) + F'(z o)(z-z o)

= bTzn + /h(x,t(x);z0)dx + /h(x,u(x);zn)dx 
S-jJ z q ) S2(z o )

+ /h(x,g(x;zo);z0)dx + bTz - bTz0 
S3(z0) U

- z/c(x,t(x))dx - z/c(xfu(x))dx - z/c(x,g(x;z0))dx
SjJ z q ) S2(zq) S3(z0)

+ zn/c(x,t(x))dx + z0/c(x,u(x))dx + z0/c(x,g(x;zn))dx
S1  ̂z0) S2 (zq) 8^(z o)

= bTz + /e(x,t(x))dx + /e(x,u(x))dx + /e(x,g(x;z q ))dx
4j_(zq) ^2 0  ̂ S3 (z0)

- z/c(x,t(x))dx - z/c(x,u(x))dx - z/c(x,g(x;z0))dx
SjlU o ) S2(z q ) s3(z0)

^ b^z + /[e(x,t(x)) - zc(x,t(x))Jdx 
Sx U q )

+ /[e(x,u(x)) - zc(x,u(x))]dx 
S2 (z0)

+ /e(x,g(x;z0)) - zc(x,g(x;z0))dx 
S3 (z0)

Summarizing in terms of h(*) yields 
F(z0) + F'(zQ)(z-z0)
= b^z + Jh(x,t(x);z)dx + /h(x,u(x);z)dx 

S^(z q ) S2(z q )

+ /h(x,g(x{Z0 );z)dx 
S3 (z0)
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Add and subtract /h(x,u(x);z)dx + /h(x,u(x);z)dx

SjJzq) S3 (zq)
from the preceeding expression and we have
F(z0)+ F'(z0 )(z-z0)= bTz + /[h(x,t(x)jz) - h(x,u(x);z)]dx

Si(z0)

+ /[h(xfg(x;zo);z) - h(x,u(x);z)]dx 
S3 (z 0 )

+ /h(x,u(x) ;z)dx (69 )
X

Now we can also change the form of F(z) by adding and
subtracting /h(x,u(x);z)dx + /h(x,u(x);z)dx, to give

Sx (z) S3 (z)

F(z)= /[h(x,t(x);z)-h(x,u(x);z)]dx 
Si(z)

+ /[h(x,g(x;z) ;z)-h(x,u(x) ;z) Jdx 
S3 (z)

+ /h(x,u(x);z)dx + bTz. (70)X

We are now in a position to prove the form of VF(z).

Result 10. - The gradient of F(*) is
VF(z) = b - J'c(x,t(x) )dx - /c(x,u(x) )dx - /c(x,g(x; z) )dx

Si(z) S2 (z) S3 (z) (71)

Proof. - Rockafellar £43]] defines a subgradient, for a 
finite, convex function F(*)» at a point zq as a point in 
Em , say F'(z q ), such that

F(z) > F(z0) + F'(z q )(z-z o ) for all z £1^.

Rockafellar also states the result that the subgradient
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(here defined in (6 8 )) is the usual gradient for the
function F(*) when it is differentiable. Thus, we only
have to show F(z )-F(z q )-F'(zQ)(z-z0) > 0 for all z eEm
to prove (71) holds.

Define H(z) = F(z) - F(z0) - F'^0)(z_zo): then we
have to show H(z) > 0 for all z

From (6 9 ) and (7 0 ) we have
H(z)= /[h(x,t(x)jz)-h(x,u(x);z)]dx 

S1 (z)
- /[h(x,t(x);z)-h(x,u(x);z)]dx 
Si(z0)

+ /[h(x,g(x;z);z) - h(x,u(x);z)Jdx 
S3 (z)

- /[h(x,g(x;z0) ;z)- h(x,u(x) ;z)]dx (7 2 ) 
S^(z0)

Since Si(z)nSjL(z0), Si(z)ASi(z0)c» and Sj_(z)crtSi(z0)
are disjoint for i=l, 3 we can rewrite (7 2 ) in the following
manner:
H(z)
= /[h(x, t (x );z)-h(x,u(x);z)]dx+ /[h(x,t(x);z)-h(x,u(x);z) Jdx 
Si(z)«Si(z0)c S1 (z)nS1 (z0)
-/[h(x,t(x);z)-h(x,u(x),z)Jdx - /[h(x,t(x);z)-h(x,u(x);z )]dx 
S^(z )r>S^(zo) b^ (z )^7\S^ ( Zq)

+ /[h(x,g(x;z) ;z)-h(x,u(x);z) ]dx + /(h(xg(x; z); z)-h(x,u(x); z )]dx
S3 ( Z )rtS3 ( Z q )C S3 (z )o S3 (Zq )

-/[h(x,g(xjZo) ;z)-h(x,u(x);z) Jdx - /[h(x ,g(x; zq ); z)-h(x, u(x) 5 z) Jdx S3(z)nS3(z q) (z)̂  b3(z q)
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This equation reduces to:
H(z)
=/£h(x,t(x);z)-h(x,u(x);z)]dx - /[h(x,t(x)jz)-h(x,u(x);z)]dx 
S1 (z)nS1 (z0)C S^z)0, ^ ^ )

+ /[h(x,g(x;z);z)-h(x,u(x)}z)]dx + /[h(>c ,g(x; z) ;z)-h(x,g(x}Zo);z )]dx 
S^(z )aS^(z0)c S-̂ (z ) aS^(z q)

- /[h(x,g(x;z0 );z) - h(x,u(x);z)]dx (7 3)
S3 (z)cn S^ (Zq )

Since S^z), S2 (z), and S^(z) are disjoint for each 
z €Em this implies

S1 (z0)c = ^2 ^ 0  ̂uS^(zq)
Sx(z)c = S2 (z)v S3( z )

J (7*0
S3 (z0)c = SiCzo) uS2 (z0)
S j  ( z ) = S3 (z ) u S2 (z ).

Note that every integral in (73) involving S^(*)c can 
be decomposed into two integrals using equalities 
in (7*0» Thus, a direct computation establishes that
H(z) = £ H^(z) where

Hi(z) = /[h(x,t(x);z) - h(x,u(x);z)]dx,
S1 (z)nS2 (z0)

H2 (z) = -/£h(x,t(x)?z) - h(x,u(x);z)]dx,
S2 (z)aSi(z0)

Ho (z) = /l_h(x , g(x; z); z) - h(x, u(x); z )dx,
S-̂ (z) /1&2 (z0)

h2l(z) = /|_h(x,g(x;z) i z ) - h(x,g(x;z0);z ) ]dx, 
S3 (z)aS3 (z0)
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Hc(z)= /[h(x,t(x);z)-h(x,u(x);z)]dx 
D S1 (z)aS3 (z0)

- /Lh(x,g(x;zn);z) - h(x,u(x);z)]dx 
S1 (z)nS3 (z0 )

= /[h(x,t(x) ;z) - h(x,g(x;zo);z)]dx,
S1 (z)aS-j(z0)

ha(z)= /[h(x,g(xjz);z) - h(x,u(x);z)]dx 
S3 (z)aS1 (z0)

- /[h(x,t(x);z) - h(x,u(x);z)]dx 
S3 (z)nS1 (z0)

= /[h(x,g(x{z);z) - h(x,t(x);z)]dx,
^3 (z )nS-̂  (z q )

and
H7 (z)*-/[h(x»g(x;ZQ);z) - h(x,u(x);z)]dx 
( S2 (z)nS3 (z0)

= /[h(x,u(x);z) - h(x,g(xjz0 );z)]dx.
£>2 (Z ) n S 3 ( Z q  )

To show H(z) > 0 we only have to show H^(z) > 0, i=l,
•••»?•

From the definition of S^(z) and the typical sketch in 
Figure 1 it can be seen that h(*) is a decreasing function 
of the n’k*1 variable for xeS]_(z). Therefore, h(x,t(x);z)
- h(x,u(x);z) > 0 for all xeSi(z) and, in particular, for 
x c S1 (z)rkS2 (zo) which implies H^(z) > 0. Also, h(x,t(x);z)
- h(x,g(xjZQ);z) > 0 for all x £ S1 (z)oS3 (zq) which implies 
H5 (z) > 0 .

The definition of S2 (z) and Figure 2 shows h(») is an 
increasing function of the n^h variable for x eS2 (z). 
Therefore, h(x,u(x);z) - h(x,t(x);z) > 0 for x eS2 (z)aS1 (zq)
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which implies H2 U) >0. Also, h(x,u(x) ;z) - h(x,g(x;z0) ;z) 
> 0 for x 6 which implies Hr,(z) > 0,

From Figure 3 and the definition that h(x,g(x;z)jz)
= sup (h(x,y;z) :y € [t(x),u(x)]} for all x e S 3 (z) we have

h(x,g(x;z);z)-h(x,u(x);z) > 0 for x CS3 (z)*S2 (z0)» (7 5 )
h(x,g(x;z);z)-h(x,g(x;z0);z ) > for x e S3 (z (zQ), (7 6 ) 

and
h(x,g(xjz);z)-h(x,t(x);z) > 0 for x € S3 (z )nS1 (zQ). (77)

The inequalities (75)» (76) and (7 7 ) imply ^(z) > 0,
H4 (z) > 0 , and H£(z) > 0 , respectively.

Therefore, H(z) > 0 which means F'(zo) is the sub­
gradient of F evaluated at z q  and (71) holds.

In Result 10 the form of VF(z) was determined so we 
can state the necessary conditions for a solution to the 
primal problem when F(z) is differentiable with respect to 

,l—l ,...,m.

Result 11. - If z° is a solution to the primal problem then
VF(z°) = (b-/c(x,t(x))ix-/c(x,u(x) )dx-/c(x,g(x;z°))dx] > 0 

Si(z°) S2 (z°) S3 (z°)
and

z° F(z°) * 0.

Proof. - Using the Kuhn-Tucker Conditions [31] for differ­
entiable functions it is clear that VF(z°) > 0 and 
z^VF(z°) = 0 which is the stated result.



Combining Result 9 and Result 11 yields necessary and 
sufficient conditions for a solution to the,primal problem.

Result 12. - The point z® c Em+ is a solution to the primal 
problem if, and only if

This result then gives the interesting result that 
finding a solution z° satisfying (7 8 ) and (7 9 ) implies 
(from the proof of Result 9) that we can define 

f0 (x) = t(x) a.e. on S1 (z°),

and then fo(*) is a solution to the dual problem. There­
fore, we have the following result relating the primal 
and dual problems.

Result 13. - If z® is a solution to the primal problem then 
defined by (80), is a solution to the dual problem 

and E(fQ) = F(z°).
From the necessary and sufficient conditions for a 

solution to the dual problem given in Result 4 and the 
necessary and sufficient conditions for a solution to the 
primal problem as stated in Result 12, it can be seen that 
we can determine the solutions to the primal or the dual 
problem using either set of conditions. This can be 
summarized as follows.

VF(z°) > 0 
z° VF(z°) = 0.

(78)
(79)

fQ(x) = u(x) a.e. on S2 (z°), 
f0 (x ) = g(x5z) a.e. on S^(z°).

(80)
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Result 1^. - The primal problem has a solution z if»
and only if, the dual problem has a solution f(*)i and 
E(f) - F(z).

This result generates the question as to when a solu­
tion does exist for the primal problem or dual problem so 
that we know a solution exists for each problem. Therefore, 
the following section considers the existence of a solution 
to the Neyman-Pearson (Dual) Problem.

3.6 Existence of a Solution to the Dual Problem
To prove the existence of a solution we will show the 

set of feasible solutions is compact when the domain T for 
each of the feasible solutions is a finite measurable subset 
of En-l» The domain T must be a set of finite measure since 
it is required that dx be finite in Properties 9 and 10. 
Previous results required only a measurable set (defined as 
X). This restriction is not too severe since this just 
guarantees /jc(x,f(x))dx is finite for all functions f in 
the set of feasible solutions. For example, any closed, 
bounded interval in Eq is a set of finite measure.

It will be assumed that ^Dnc^(x,y)| < M for i=l,...,m 
and |Dne(x,y)| < N, for all xeT, i.e., the partial deriva­
tives of ci(x,*) and e(x,*) not only exist with respect to 
y but are bounded.

It will be shown that E(•) is an upper semicontinuous 
functional and the Weierstrass theorem, given in.Appendix A, 
guarantees a solution exists to the dual problem.



The proof of existence is rather lengthy so the proof 
of the existence theorem is divided into several properties 
and then summarized after the proof is completed.

Property 8 . - The set W = [fst(x)<f(x)<u(x),xeTj
= tt [t(x)u(x)] is a compact set. 
x £ T

Proof. - The definition of W = tt [t(x),u(x)] is discussed in
x e T

Appendix G.
Since t(*) and u(*) are bounded, real-valued functions,

the intervals £t(x),u(x)] are compact for each x £T. The
Tychonoff Theorem, as given in Kelley [25] and other topology
texts, states the Cartesian product of compact sets is
compact. Therefore, W = rr £t(x),u(x)] is a compact set.

3c fi-T
Property 9 . - The set of feasible solutions P(b)
= {f 6 W:/c;(x,f(x)dx < bi, i=l,...,irA is compact.

T
Proof. - To show that the set P(b) is compact we only have 
to show P(b) is a closed subset of the compact set W. 
Clearly, P(b) 5  W so we only have to show that P(b) is closed.

Let {f6̂  ^ be a convergent net (definition of net
in Appendix H) in P(b), Then f^— *-f0 where f 0 £ W since 
W is compact. To show closure we must prove fg « P(b).

Since {f̂ } is a convergent net in W v/e can choose 
an arbitrary £> 0 so that there exists a 60 £ ^ such that 
6 > 60 implies

| f 6(x) - fQ(x) I < 1 for each x €T.
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Since f 6 6 P(b) for all 6 £ A we have

J<j\c^(x,f ̂(x) )dx 4. b^, i=l,...,m, 6 € A , 
which implies

^  [ci(x,f6 (x))-ci(x,f0 (x)) + Ci(x,f0 (x))] dx<biti=l m
and this is equivalent to

/^ci(x,fQ(x))dx<bi + /j;ci(x,f0 (x))-ci(x,f6(x))]dx,i=lf... ,m

= bi + D c(x,y)dy]dx,i=l,... ,m.fp f j(x)
Since it is assumed that |Dnc^(x,y)| < M for all x £T and 
i=l,...,m, it follows that

/Tci(x,f0 (x))dx < bi + Jjj(f0 (x)-fft(x))dx,i*l,... ,m

< b; + /M(-^-)dx, i=l,... ,m and 6 > 6n~ x t “ — o

= b^ + / e dx, i=l,...fm and 5 > 60.
T

The positive number e can be made arbitrarily small 
which implies

/Tci(x,f0 (x))dx < bit i=lf...,m.
Now f0 satisfies the integral constraints for f0 to 

be an element of P(b), but the question of whether or not 
/Tci(x,f 0 (x) )dx > i=l,...,m must also be considered
since it is assumed that Cj_(x,») is Lesbegue integrable 
with respect to x.

For 6 > 60 we have |f6 (x)-fo(x)| < £ for each x<T, 
Therefore,
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|/Tci(x,f6(x)) - /Tci(x,f0 (x))dx|
</T |ci(x,f6 (x)) - ci(x,f0 (x))| dx, i=l,...,m 

, f 6(x)= /T l/fo x̂ )Dnci(x,y)dy/dx , i=l,...,m

^ /ipM|f ̂(x) — £q (x )jdx f i=l,». <, m 
< /rj, £ dx , i=l,. •. ,m

which implies /^c^(x,f q(x) )dx > -°°, i=l,...,m since these 
integrals differ by no more than f^e dx from
/fpQ^(x|f fi(x) )dx, i=l,...,m and 6 > 6Q. Thus,

- oo < /Tci(x,f0 (x))dx < bit i=l,...,m 
which implies fQ^P(b); hence P(b) is closed.

Property 10. - The concave functional E(• ) = J^e(x,f(x))dx 
is upper semi-continuous on the compact set P(b).

Proof. - One of the forms of the definition of upper semi­
continuity is as follows: E(*) is upper semi-continuous on
P(b) if Q(r) = { f e P(b):E(f) > r , r is a real number } is
a closed set for every real number r.

To show the closure of Q(r), let be a
convergent net in Q(r); then we can choose € > 0 so that 
there exists a 6 > 6q which implies

fffi(x) - fQ(x)| < £ for each x £T.
Since f fi-Q(r) for all 6 U  this implies

(̂**5 ) > r for a11 •
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Therefore, E(f6) - E(60) + E(fQ) > r which implies 

E(fo) > r + E(f0) - E(f6).
Proceeding in the same manner as the proof in Property 9 
we have

E(fo) = /Te(x,fo(x ))dx > r - /T £ N dx

where N > |Dne(x,y)l for all x £T since we have assumed that 
Dne(x,y) is bounded. Since £ is arbitrary, E(fo) > r which 
implies f0 £Q(r); hence Q(r) is closed.

Now that we have shown that E(*) is upper semi- 
continuous on P(b) we are in a position to formally state 
the property for existence of a solution to the dual problem.

Result 15.- The maximum value of E(*) exists for some 
f P(b).

Proof. - Since P(b) is compact and E(•) is upper semi- 
continuous for all f tP(b) the V/eierstrass theorem stated in 
Appendix A guarantees the existence of a solution.

Thus, we can conclude that when the domain X (of the 
set of feasible solutions P(b)) has finite measure, a solu­
tion to the Neyman-Fearson problem exists. Of course, 
e(x,») and c(x,*) must have bounded derivatives with respect 
to the n^b variable and also e(x,f(x)) and c(x,f(x)) are 
Lebesgue integrable with respect to x for all few.

Result 4 gives necessary and sufficient conditions for 
a solution to the Neyman-Pearson problem while Result 12 
gives necessary and sufficient conditions for a solution to



the primal problem. Either result can be used to develop 
solutions to both the primal and dual problems. The 
technique used will depend on the particular problem, as 
shown in the example in Chapter V.

A complete summary of results developed by the author 
is stated in Chapter VII.



CHAPTER IV 
DISCRETE VERSION OF ANALYSIS

4.1 Introduction
This chapter includes the statement of the primal and 

dual problems for a discrete version of the Neyman-Pearson 
Problem. All the properties are stated but only the 
existence theorem is proved since the proofs of Chapter.
Ill follow in a direct manner with the integral symbol 
replaced by the summation symbol. The proof of the 
existence is given since it is more straightforward for 
the discrete version.

4.2 Assumptions, Definitions, and Notation
Only those definitions of Chapter III that are changed 

due to the consideration of the discrete version will be 
stated.

Let t and u be real-valued functions (or vectors) with 
the domain J = { 3 : j = l,2,...,n}f such that tj < Uj for all 
3 € J . The set of real-valued functions defined on J and 
bounded by t and u will be denoted by W={f:tj<fj<Uj, for 
all 5 eJ) which is clearly a convex set.

Let the real-valued functions e(j,y) and c^(j,y),

61
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be given and defined on the set {(j.y).j eJ,

< y < uj}* For each j £J, assume e(j,y) is strictly
concave in y and ci(j,y) is convex in y for i=l m.
Assume e(j,y) and ci(j,y), i=l,...,m are continuous with 
respect to y.

As in Chapter III we will define a function h as 
follows:

m
h(j,y;z) = e(j,y) - 2 ZjC^j.y) = e(j.yjz) - zcfj.y)

i=l
whore z « E m+ .

For every vector z €Em+ , we define the following sets: 
^x (z)= {jeJ jh(j,y* 5z)>h(o,y";z),tj < y* < y" < Uj}j 
S2 (z) = {j£J sh(j,y’5z)<h(j,y";z),tj < y* < y" < Uj}; 

and
S^(z)* { j€J:h<3,g(j}z)jz)>h(j,ysz),y c[tj,Uj],

y ¥ g(j!z)i and h(j,y;z) is not strictly mono­
tonic in y). The point g(jjz) £ [tj;uj] is defined in an 
analogous manner to g(x;z) of Chapter III. The following 
okotches are similar to Figure 1, 2, and 3 but it is not 
required that h(*) be differentiable everywhere in y for 
the discrete version.



63

h(j,y;z)

u yj
j es^z)

Figure 5 
h(j,g;z)

Figure 6

Figure 7
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k,3 Statement of Primal and Dual Problems
Based on the work of Luenberger, Francis and Wright, 

Wagner, and the development of F(z) in Chapter III the 
following primal problem may be stated.

Primal Problem
Minimize F(z)= E h(j,t.:;z) + E h(e4,uijz) 

z € E m+ j e S 1 (z) J j e S 2 (z) J J
+ 2 h(j,g(j;z) i z) + bTz

j € (z)

Dual Problem (Discrete Neyman-Pearson Problem)
nMaximize E(f) = E e(j,f-i)
j=l nsubject to: Ci(f) = E Ci(j,fJ < b-,i=l,...,m

j=l J 1
nor c(f) = 2 c(j,f^) < b 

• j=l J
and tj < fj < Uj for all j eJ
or f € W.
As in Chapter III we define the set of feasible solu­

tions P(b) = (f fV/:C(f) < b}.
If the non-linear discrete version of the Neyman- 

Pearson Problem is changed to a linear discrete version, 
which is then equivalent to a discrete version of the
problem in [18J, the dual problem becomes

nMaximize E(f) = E e^f^j=l J J
n

subject to: E ci-jf̂  < b; , i=l,...,m
j=l J ~ 1

and tj < fj < uj .



which is the bounded variable problem of linear programming. 
If we rewrite h(*) for the linear discrete version we

have
h( j i y ; z ) = e jy ^ zicijy

m
2

i=l
m

“ yCej ”^ lzicij]» 
m• j eS1 (z) when ej - 2 z jC-y < 0 ,

m
j €S2 (z) when ej - £ ZjC^j>0 ,

mj eS^(z) when ej - £ ZjCij = 0

so the primal problem stated above becomes
Minimize F(z) = 2 ^iCei “ zci.1

Z fEm+ jd S 1 (z)vS3 (z) J
+ 2 u*Tei - zc-s'] + bTz
j t S2 (z) J' J 3

Yoshimura [5^] has shown that the latter problem is 
equivalent to the standard dual of the bounded variable 
linear programming problem.

Sections 4,4 and 4.5 are statements, without elabora­
tion of properties relating the primal and dual problems. 
These properties follow directly from their counterparts in 
Sections 3»2 and 3.5 of Chapter III.

4.4 Properties of the Primal and Dual Problem
Result 16. - For any feasible solution f to the dual 
problem, and any .z dEm+ i E(f) <F(z).
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Sufficient Conditions for Solutions to Primal and Dual 
Problems
Result 17. - If there exists a feasible solution f to the 
dual problem, a z € Em+ such that 

m n
2 Zi[ 2 c.(jtfj) - b±J = 0 , 

i=l j=l
and

f . = t. on Si(z),J J 1
fj = Uj on S2 (z),
fj = g(jiz) on Sj(z),

then z is a solution to the primal problem, f is a solution 
to the dual problem, and E(f) = F(z).

Necessary Conditions for a Solution to the Dual Problem
Result 18. - If there is at least one f € P(b) such that
[ £ c(j,fi) - b3 < 0  and if f is a solution to the dual 
0=1 J

problem, then there exists a z’£Em+ such that

m _ n 
jj^zil- .2^ci (0*»f j) ~ b^3 = 0,

Tj = tj on S^z),
fj = Uj on S2 (z),

= g(o>z) on S^(z).
Also, E(f) » F(z).

As in Chapter III the necessary and sufficient condi­
tions can be combined into the following result.
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Result 19. - If there is at least one f£ P(b) such that
n _ _
2 c(j,fJ - b < 0 then the feasible solution f is a solu-
j=l J
tion to the dual problem if and only if there exists a 
z € Em"*" such that

m
2

i=l
_ n
Zf£ 2 Cj_(j.fj) - bj.]

7 i = on S-^z),

7 i = uo on S2 (z)»

7i - g(j>z) on S3 (if).
Also, E(f) * F(z).

Note that z is a solution to the primal by Result 16.

4.5 Alternate Necessary and Sufficient Conditions for Solu­
tions to the Primal and Dual Problems 

Sufficient Conditions for Solutions to Primal and Dual 
Problems
Result 20. - Suppose there exists a z € i£m+ such that

2 c^j.tj) + 2 ci(j;uj) + 2 ci(ĵ ,g( j ; z ) ) < bifi=l .
0 € S1 (z’) j £S2 (z) J 6 S3 U)
and
m _ _
2 zi [ 2  Cj,(^,tj) + 2 ci(j,u,) + 2 ci(j,g(j;z)) - b ^  = 0. 

i=l j tS1 (z) jfeS2 (z) j feS3 (Z")
Define the function F on J as follows:

fj = tj on S^z),
Fj = Uj on S2 (z),

= g(jsz) on S j ( z ) .



Then z is a solution to the primal problem, f is a solution 
to the dual problem, and E(f) = F(z).

Necessary Conditions for a Solution to the Discrete Primal 
Problem

As in the continuous version we can rewrite the func­
tion F(z) as follows:

F(z) = sup £E(f) - zD(f)"j. 
f £ W

Then it can be shown that F(z) is a convex function in the 
same manner as the proof of Property 7.

Assume F(z) is differentiable with respect to z^» 
i=l,...,m as was done in the continuous version in Chapter 
III. With F(z) being a convex, differentiable functional 
the development of the form of the gradient follows directly 
from Result 10,and we can immediately state the necessary 
conditions for a solution to the discrete primal problem.

Result 21. - If z is a solution to the primal problem then
VF(z) = b - 2 c (j, t j) - 2 c(j,uj) - 2 c(j,g(jjz))> 0 

j e SjJz) j £ S2 (z) j € S^(z)

and _ _
z VF(z) = 0 .

Results 12, 13, and 14 of Section 3*5 are so similar to 
those for the discrete version, they are not repeated in this 
chapter. The proof of the existence of a solution to the 
discrete dual problem is simpler than the proof for the 
integrable version. Because there are some differences in



the proofs of the existence theorems for the discrete and 
integrable versions, the proof for the discrete dual problem 
is given in the following section.

4.6 Existence of a Solution to the Dual (Discrete) Problem 
As in Section 3*6 we will show the set of feasible 

solutions is compact. Instead of showing semi-continuity 
of E(•) we will show E(») is continuous on the set of 
feasible solutions and then appeal to the Weierstrass 
theorem for justifying the existence of a solution to the 
dual problem. The proof of the existence theorem is divided 
into several properties.

Property 11. - The set W = £f:tj < fj < uj,j £ j} = n^tj,Uj] 
is a compact set.

Proof. - The equivalence of the sets follows from the more 
general case discussed in Appendix H. It is a well-known 
result that a closed, bounded subset of En is compact. 
Therefore, W is compact. Alternatively, W is a cross- 
product of closed, bounded intervals which is well known to 
be compact.

Property 12. - The set of feasible solutions

is compact.

Proof* - A well-known result in real analysis is that a 
finite sum of continuous functions is continuous. Since

m n
p(b) = n  (f e\V: Z Ci ( j,f .) < bjL
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ci(j,y) is continuous in y for each j, the functional 

nCi(f) = 2 Ci(j,fi).is a continuous function of f.
0=1 J

The interval is closed and 0^(*) is a
continuous function so the inverse image (definition in 
Appendix I) C ) = {f £W: Ci(f) < b^} is a closed 
set based on the Proposition 7 stated in Appendix I.
Since the intersection of closed sets is closed we have 
P(b) being a closed subset of W which implies P(b) is 
compact.

Property 13» - The functional E(*) is continuous for all 
f €P(b).

Proof. - As stated in Property 12 the finite sum of continu-
n

ous functions is continuous which implies E(f)= 2e(j,f-)
j=i 3

is continuous since it was assumed e(j,y) is continuous in 
y for all j € J.

The existence property can now be stated.

Result 22. - The maximum value of E(f) exists for some 
f€P(b).

Proof. - The Weierstrass theorem in Appendix A guarantees a 
solution exists since P(b) is compact and E(*) is continuous.

Since these results follow directly from the results in 
Chapter III, we can use these results and the definitions of
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Sjl(z), S2 (z), and S^(z) for the discrete version to deter­
mine solutions to the Neyman-Pearson problem and its dual. 
The technique is similar to that for the continuous version.



CHAPTER V 
NUMERICAL EXAMPLE

5»1 Introduction
In Chapter III and Chapter IV we stated the primal and 

dual problems for continuous and discrete versions of the 
Neyman-Pearson problem. Since necessary and sufficient 
conditions were stated and proved in two different forms 
for the continuous version it is appropriate to sho-w the 
solution technique, based on these conditions, for a sample 
numerical problem. The problem chosen to show the solution 
technique is a variation of Example 2 in Wagner's paper[5 0] 
and a statistics problem discussed by Rustagi This
problem fits the dual problem formulation of Chapter III and 
satisfies the strict concavity and the convexity assumptions 

The solution technique is similar, but not identical 
to Wagner's technique since his sufficiency conditions were 
revised for the dual problem by adding the complementary 
slackness condition (z(C(f) - b) = 0) as shown in Property 4 
and Result 8.

5.2 Outline of Solution Technique
The following steps are used in determining the primal 

problem and finding solutions to the primal and dual problem
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(1) Check the dual problem to determine whether a solution

exists (when X has finite measure, Properties 8 , 9» 10
and Result 15 are satisfied)}

(2) Determine the partial derivative of h(x,y;z) = e(x,y)
- zc(x,y) with respect to y;

(3) Determine the sets S]_(z), S2 (z)» and S^(z) (Recall
Si(z), i*l,2,3 is based on D2h(x,yjz));

(h) Write out the primal problem;
(5) Show a feasible solution to the dual problem exists 

when the integral constraint is inactive which is 
required for the conditions to be necessary (as in the 
following example this can be usually done by inspec­
tion) }

(6 ) Use the necessary and sufficient conditions to deter­
mine the solutions to the primal and dual problems.

5.3 Example Problem
The general problem may be specialized to the example

problem as follows
Maximize E(f) “ /(j - (f(x) - x)2dx (81)
subject tos C(f) * /(jf(x)dx < g (82)
and 0 < f(x) < 1  for 0 < x < 1 (83)
The set X * [0,l] which has measure 1. Also, D2e(x,y) 

and D2c(x,y) are bounded for all xe £0 ,1 ] and the functions 
e(x,f(x)) and c(x,f(x)) are Lebesgue integrable for all 
few *= {f :t(x)<f (x)<u(x),0<x<l^ . Thus, Properties 8 , 9» 10 
and Result 15 are satisfied which implies a solution to this 
numerical example of the Neyman-Pearson problem exists.

Note that the results of the previous paragraph were
determined by inspection. This should usually be the case.
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From (81) and (82) we have

h(x, y; z) = e(x,y) - zc(x,y)
= -(y-x)2 - zy where z > 0. (84)

Taking the partial derivative of equation (84) with respect 
to y yields

D2h(x,y;z) = -2(y-x) - z. (85)
The sets S1(z), S2(z), S^(z) are determined by investi­

gating the values of D2h(x,y;z) for all y £[0,1] when x and 
z are fixed. For this example problem 
W = [f :0 < f (x) < 1, 0 < x < l} so we have

S-j (z) = {x £ [ 0,1 ]:Dgh(x , y ; z) = 0 for only one y e [0,l]} . 
Therefore, setting(85) equal to zero we can solve for y in 
terms of x and z which yields

y = x - | (86)

so S^(z) = (xt [0,1]: y = x - for exactly one y £[0,l]"^ .

For any particular z, equation (86) is a straight line 
which is sketched below,

y

>-x
-z

Figure 8
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Since D?h(x,y;z) = 0 only when y =* x - % we see from 

c 2 _ rj
Figure 8 that for each x €|_^,1 J (when 0 < z < 2) there is 
only one y e[0,l*j such that D2h(x,y;z) = 0. Thus,

S^(z) = Cf .11 f°r 0 < z < 2 and S-̂ (z) is the empty set for 
z > 2.

From the notation of Chapter III we defined g(x;z) as
the number such that D2h(x,y;z) = 0 when y = g(x;z). Since
D?h(x,y;z) = 0 when y = x - - we have g(x;z) = x -2 2

For this example the definition of S^(z) becomes 
S^z) = jxt £0,l]:D2h(x,y;z) = -2(y-x)-z < 0 for all ye[0,l]}

= {x£[0,l]:y > x - ~ for all y £[0,1]).

The following sketch demonstrates clearly that 
S-̂ (z) = [0, |-) when 0 < z < 2.

y

ST— > y=x-z

Figure 9

From the sketch we see that for any 0 < x < | we have
y > x - |- for all y 6[0,1]. However, for x > it is not
true that y > x - for all y 6[0,1~J. Note that when z > 2
we have y > x - — for all y e[0,l] and each x e[0,l],
Therefore, S^(z) = [0,l] for all z > 2.



Since the domain off(x) is [0,1] we have
S-ĵ z) u S2(z) u S^(z ) = [0,1]. However, since Si(z),i=l,2,3
are pairwise disjoint and we have just shown that
Sjl(z) v 3-j(z) = [0, — ) V *= [0,1] for 0 < z < 2, and
sl(z) = [0,1] for z > 2 this implies S2(z) is the empty
set for all z > 0.

Primal Problem
Recall the statement of the primal problem is
Minimize F(z) = / h(x,t(x);z)dx+ /h(x,u(x);z)dx 
z > 0 S^z) S2(z )

+ / h(x,g(x;z);z)dx + bz (87)
S3 (z)

when there is only one integral constraint for the dual 
problem.

From (83) we see that t(x) = 0 for xt[0,l] and 
u(x) = 1 for x fc[0,l]. Also, S2(z) is the empty set for 
this example problem. Therefore, we can rewrite(87) as 
follows:
Minimize F(z) = / h(x,0;z)dx + / h(x,x-|j-;z)dx + i z (88)
z > 0 Sx(z) S3(z) ^ 8

where g(x;z) = x - 5. as shov/n previously.
2 2 Since we have S]_(z) = C°,2) and S3 (z) = [2 »l] for

z € [0,2], S^z) = [0,1] for z >2, and h(x,y;z)
= e(x,y) - zc(x,y) we can write the objective function of
(88) as follows:



Clearly a feasible solution exists for the dual problem 
when the constraint (82) is inactive, for if we choose 
f(x) = 0 for all x eCO.l] then 0 dx = 0 <

From the necessary and sufficient conditions we must 
have the solution defined as follows:

fQ(x) = 0 a.e. for x cS-^Zq) (9 0 )
fQ(x) = x - ^ a . e .  for x e S-j(zq) (91)

where Z q  is the solution to the primal problem. Also,
zn [ / fn(x)dx + / fo(x )dx - i] = 0. (9 2 )

S1(z0) b^(z0) 8
Therefore, either zQ = 0 or the dual constraint holds as an
equality.

If Z q  s 0, then the constraint becomes 
0I? 1 0 V 1 1/ 0 dx + / (x-p)dx = 2 > 8 *0 0 2 ^ o

2
Since the constraint (82) is not satisfied this implies
Z q   ̂ 0.

N o w  /^fn(x)dx *= - . From (90) and (91) we have0 0 g
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C(f0) = h$r 0 dx + (x - ^)dx = | for 0 < z < 2 (93)
0 &0

~T
and

C(fn) = J1 0 dx ^  for z > 2, 
0 8

(94)

Equation (94) is incorrect which implies z0 cannot be
greater than 2. Therefore, from (93) we have

1\ ,x* z0x x I
0(f0> = < 2 - — > lzo 8 (95)

Solving (95) for zQ yields 
(zQ - 3) (z0 - 1) = 0.

Therefore, z0 = 1 since (93) is the equality for 0 < z < 2
and (94) indicates the equality of the integral constraint 
(82) does not hold for z > 2.

Since zQ = 1 is the solution to the primal problem we 
have the following solution to the dual problem:

f0(x ) = 0 a,e* for x 6S1 (1) =

f 0(x ) = x ~ \ a*e‘ for x 6 S^(l) = L|»l]

which is illustrated in the following sketch.
y

(96)

(97)

Figure 10
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We can now show E(fo) = F(z q ) "to verify further that 

Zq and fo(*) are solutions to the primal and dual problems, 
respectively.

Substituting z q  = 1 into ( 8 9 )  yields F(l) = Writing
E(f) in terms of S^(z) and S^(z) yields

E(f) = /^-(f(x)-x)2dx + /^-(f(x)-x)2dx for 0 < z < 2.
0 2. ~

2 (98)
Thus, (9 8 ) and (97) reduces (9 8 ) to 

1
E(f0) = /*- x2dx + idx= -i .

2
Hence, E(fQ) = F(z0).

5»^ Example Problem Solution Using Alternate Conditions
The solutions to the primal and dual problems can also

be determined by using the alternate necessary and sufficient
conditions which were developed with the emphasis on finding 
the solution to the primal problem. For this particular 
example, the alternate conditions are more straightforward 
than the conditions used in the previous section.

Recall the necessary and sufficient conditions for a 
solution to the primal problem are as follows:

V F (z0) > 0 , (9 9)
z0 V  F(z0) = 0 (100)

if and only if zq is a solution to the primal problem.
Since z e Ej_ the derivative of F(z) and the gradient VF(z)
are identical. Therefore, from (8 9 ) we have



8 2 8 ~

VF(z) »  ̂ (101)
| , if z > 2

which can also be verified using Result 10.
Also,

z(-|2+ § - |) = 0, (0 < z < 2)
Z VF(z) (102)

z / 0 for z > 2.8
From(L02) we can see that z0 ^[0,2]. If zQ = 0 then from 
(101) we have VF(z) = -1 when zQ = 0 which contradicts (99)• 
Therefore, zQ e(0,2] which implies

VF(Z0) = - fo£ + z0 _ 3 = Ofor 0< z0 < 2. (103)
8 T  8

Solving 0-03) yields z0 = 1 or z0 = 3 but 3 does not satisfy
the requirement that 0 < zq < 2. Therefore, Zq = 1 as was
determined using the other set of necessary and sufficient
conditions. From Result 13 we have the solution to the dual 
problems ,

f0(x) = 0 a.e. on (1) = [0,j)
fQ(x) = x - 1 a.e. on S^U) = tf'1]*

Note that the solution to the dual problem can be determined 
by inspection of the primal problem when F(») is written in 
terms of z q » i.e.,
F(z0)= /h(x,t(x)sz0)dx+ /h(x,u(x);zn)dx + /h(x,g(x;z0);zn)dx 

SjiUq) S2(z0) Sj Iz q )
+ bTz0

Recall that the solutions are the same as those found in
Section 5*3 and shown in Figure 7.
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As a comparison of the methods we have just used it 

seems likely that when the integrals of the objective 
function F(z) (of the primal problem) are easy to evaluate 
and F(z) is differentiable, the more direct method would 
be the use of the alternative set of conditions. In other 
words, solving z0[FF( z q )1 = 0 might be easier than 
solving

zoC/c (x >fo(x ))dx - b l * 0X



CHAPTER VI 
TWO APPLICATIONS PROBLEMS

6.1 Introduction
As indicated in the literature review there are a 

number of applications problems which may be formulated 
as nonlinear Neyman-Pearson problems. One example is the 
oil drilling problem which has been solved by Karlin [22], 
Luenberger [35]* and Wagner [50].

Karlin solved this nonlinear functional Neyman-Pearson 
problem by choosing a transformation which converted the 
problem into a linear functional problem. Luenberger used a 
Lagrangian multiplier method which is somewhat similar to 
the technique used by Wagner.

Although Wagner's solution technique and the author's 
solution technique are similar and the solution to the oil 
drilling problem has been published several times, it is 
appropriate to solve the problem as a further illustration 
of results derived in this dissertation, and because some 
analysis is required to determine the primal problem (dual 
to the oil drilling problem). In subsequent sections, the 
primal problem is determined and an economic interpretation 
of the primal problem is discussed.
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The other applications problem is stated and sufficient 

conditions for a solution are given in Section 6.5* This 
problem has been formulated and solved by Rustagi [4 5] using 
the technique of transforming the nonlinear functional
version of the Neyman-Pearson problem into a linear func­
tional version.
6.2 Problem Statement for Oil Drilling Problem

Assume there is a known amount of oil, say b barrels, 
in an oil reserve. Then we want to maximize the total 
discounted profit E(f), by using an optimum extraction rate,
f0(t), for removing the oil from the reserve. This can be
formulated as a Neyman-Pearson problem as follows:

Maximize E(f) = e£f(t)] v(t)dt (10*0

subject to: C(f) = /pf(t)dt < b, (105)0 “
0 < f(t) < M for all t e£Ofp] (106)

where p is chosen so that b</PMdt<«>. (With p being finite 
we satisfy the assumption that c(t,f(t)) = f(t) is Lebesgue 
integrable with respect to t for all 0 < f(t) < M.)

The extraction rate f(*) has units of barrels/day. 
Clearly, the upper limit M is realistic since the oil cannot 
be removed instantaneously from the oil reserve. The 
function e[»] is the profit rate (dollars/day) in terms of 
the extraction rate f(*)» It is assumed that e[y] is a 
strictly increasing, strictly concave function of y with a 
continuous derivative with respect to y and e[0]*0.
Actually e[0]a0 may be an economic real requirement since



there can be no profit if oil is not being extracted from 
the oil field.

The function v(*) is the discount factor (dimension- 
less) and is assumed to be a continuous, strictly decreasing 
positive, Lebesg.ue integrable function for all t ̂  [0,p],

6.3 Problem Solution and Statement of the Primal
The function h(t,yjz) = e[y]v(t) - zy so we can differ­

entiate h(*) with respect to y and then determine S^z), 
S2(z), and S3 (z). Denote the derivative of e[«] with 
respect to y as ey[*3» Then we have

D2h(t,yjz) = ey[y]v(t) - z. (10?)
Setting (107) equal to zero and solving for ey[y] yields

e*Cy] = •

Since e[»] is strictly concave the derived function 
eyC O  is a strictly decreasing function of y. It is a well- 
known result that if a function is strictly decreasing and 
continuous then the inverse function exists and is a strict­
ly decreasing, continuous function. Therefore,

y - when D2h(t,y;z) * 0

and we have
£[0,p]t D2h(t,y;z)*0 for exactly one y 6[0,M]]

= {t£[0,pl« y « e"1( ^ y )  for y£[0,M]}.



From the definition of S]_(z) and S2 (z) we have 
Si(z) «{ts [0,p]*ey[y]v(t) - z < 0 for all y e [0,m]}

and
S2(z) ■ { t € [0,p]:ey[y]v(t) - z > 0 for all y e [0,M] .

Now,
ey[y]v(t) - z < 0  for all y £ [0,M]

or
ey[y] < — 5—  for all y c £o ,m ]. (108)

v(t)
As previously stated ey£*] being strictly decreasing implies 
ey~'1‘(*) is strictly decreasing. Therefore, inequality (108) 
is equivalent to

y > ey’1(-nrx-) for a11 y J v(t)'
Thus,

S*i (z) - {t € [0,p] jy > ev-1(— ^— ) for all y^[0,M]}. 
x * v(t)
Similarly, we can rewrite S2(z) since

ey£y]v(t) - z > 0  for all y ̂ [0,M]
if and only if

y< ) for all ye [0,M] which implies
y v(tr

which implies
S2(z) ■ {t ̂  [0,p]sy < ey“1(^^y) for all ye [0,m ]).

If we knew e[*") and v(») specifically we could proceed 
with the statement of the primal problem and/or solving the 
Neyman-Pearson problem. However, without knowing e[»] and 
v(*) specifically we can sketch the possible typical



functions for ey"1^)* The five sketches which follow 
represent all possible cases that can occur for the 
function g(t;z) s ey-^ - ^ . )

Figure 11

Figure 12

Figure 13



8?

g(tjz)

Figure 1^

Figure 15

Note that the curve in each sketch above is actually 
one of a family of curves. There is a different curve for 
each value of z > 0 .

It can be easily shown that D2h(x,y;z) > 0 for the 
points (t,y) below the curve in each sketch; D2h(x,y;z) < 0  

for each point (t,y) above the curve in each sketch. There­
fore, using sketches (Figures 11 through 15) we can also 
determine the sets S]_(z), S£(z)» and S3 (z) geometrically.

Looking at Figure 15 it can be seen that 8 3 (2 ) *
From the necessary and sufficient conditions for a solution 
to the dual problem if a solution exists then we have
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fQ(t) » M a.e. on [0,p"|.

However,
Mdt > b

which implies f0(t) ® M is not a feasible solution to the 
dual problem. Thus, we know that Figure 15 is not a repre­
sentative sketch of a solution to the dual problem.

Since , ,
g(t,z) - ey- l ( ^ )

is an extraction rate when 0 < y(t;z) < M, Figures 11 and
12 are more representative of what we would expect (from a
physical standpoint) for a specific e£*] and v(*)» Thus,
we will assume Figure 12 is representative of g(tjz), in
that there exist points t'(z) and t"(z) in £0,p] such that
g(t'(z);z) * M and g(t"(z)?z) * 0; then we will continue the
analysis of the oil drilling problem.

The function v(*) is strictly decreasing and continuous
which implies v-1(*) exists and v_1(*) is continuous. We
can solve for t'(z) and t"(z) as followss

g(tjz) = ey'1 (~^jry) = M when t = t'(z)
which implies

v(t)eyCMl * 77T~  wilen t “ ■t'(z)
and then

v(t'(z))
ey[M] ’

Solving for t'(z) yields

Similarly, when t * t"(z) we have
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g(t;z) ■ ^— ) ■ 0 when t » t"(z)

and solving for t"(z) yields

t,(,) ■ v'1(i ^ o J )-
From the previous definitions of Sj^z), S2(z), and 

S-j(z), and Figure 12 we have
Sx(z) - (t"(z),p] * (v-1(— z ),pl,

eyL°J
S2(z) ■ [0,t'(z)) » [0,v“1 (— S__))f

eyLM]
S3 (z) * O ' (z), t" (z) ] » [v-1 (ey£M-j) • v-Ce^o,)].

Using these definitions of S^(z), i*l,2,3 and recalling
the statement of the primal problem in Chapter III we have
the followings

v 1 (—
} eyLMj7

Minimize F(z) = fp{ero"]v(t)-0z} dt + /fe[M]v(t) - Mz}dt
z > 0 <r-lV z \ 0

-If Z

J  { e C e y ' 1 ( ^ y ) > ( t ) - z e y ' 1 ( 7 ^ 7 ^ d t  +  b z
v-lf-eyCMl

Since it is assumed that e[0] « 0 we can reduce the primal 
problem to



f eyLMJ
Minimize F(z) (e[M3v(t) - Mz} dt 
z > 0 0

eyC°J
+ {e[ey-1( ^ T)]v(t)-zey-1( ^ 7)}dt+ bz (1 0 9 )

v
j P T

From the necessary and sufficient conditions for a
solution to the dual problem we know fo(') is a solution if
and only if there exists a zq > 0 such that

fQ(t) * 0 a.e. on S-^Zq ) - -1)>p]> (110)eyL0J
fQ(t) - M a.e. on S2(zQ) * [0,v-l(— A .)), (Ill)

ey[MJ

fo(t) “ ey_1( ^ V )  a,e* on s3(zo}

yL (112)and
z0C/^f - h] « 0. (113)

If Zq * 0 then h(x,y>0) ■ e[y]v(t). Since is
strictly increasing (eyt/^O) and v(*) is positive we have 

D2h(x,y;0) * ey[y]v(t) > 0 
which implies S2(0) ■ [0,pj. However,

J^Mdt > b
which contradicts (105). Therefore, z0 is a positive 
number. To satisfy the complementary slackness condition
(113) we must have



v - i ( - 5 2 _ )
ey [M]

(114)

Luenberger considers this problem when S2(z) is the 
empty set (there was no upper bound M on the feasible solu- 

' tions) and stated

was continuous so that ti(zQ) could be determined; hence Zq 
could be determined. It is conjectured here that

is continuous. Thus we can solve (11*0 for zQ, given speci­
fic functions e£*] and v(*)«

After determining zQ we verify that t'(z0) 311(1 ^"(z q )
are in [0,p]. If t'(z0) and t"(z0) are in [0,p] then v/e can
state fo(') (defined by (110), (111) and (112)) for specific
subsets of [0,p]. If t'(z0) and/or t“(z0) are not in £0,p],
then the analysis must be redone considering one of the other
representative sketches (Figure 11, 13» or 14).

Note that it might be easier to attack the primal prob­
lem by differentiation of the objective function rather than 
solving (114), as was done in the example given in Chapter V.
6.4 Interpretation of the Primal Problem

In nonlinear programming problems it is often difficult 
to give an interpretation to dual problems (the primal

M dt +
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problem in this instance). However, we can gain some 
insight by checking the units of the terms in the primal 
problem. Consider the integral

Jq ^  e[M]v(t) - zM dt 
which is the first term of (109), the primal problem. The 
function e[*] has units of dollars/day and v(*) is dimen- 
sionless. Therefore, zM must have the same units. Since 
M has units of barrels/day, the units for z must be 
dollars/barrel. Therefore, the integral has units of 
dollars and the objective function F(z) must also have units 
of dollars for the primal problem to be dimensionally 
correct.

Luenberger states there is an economic significance 
to the Lagrangian multiplier for the oil drilling problem.
He states that the Lagrangian multiplier is the derivative 
of the maximum total discounted profit with respect to the 
number of barrels of oil available in the oil field. It 
is conjectured here that z q * the solution to the primal 
problem, has the same meaning since the development of the 
primal problem is similar to the Lagrangian equation 
technique.

6.5 Direct Solution of the Problem Solved by Rustagi [^5]
Rustagi [^5] indicates there are many statistical 

applications involving the minimization of a convex 
functional. He solves the following problem by using the
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technique (attributed to Karlin) of transforming the 
nonlinear functional into a linear functional version of 
the Neyman-Pearson problem and then showing the solution 
to the linear functional is also the solution to the non­
linear functional problem.

Problem. - Let P “ {(x,y): - a < x < a, 0 < y < l) where 
"a" is a specified real number. Let q(*) be a function 
defined on the closed, bounded set P in E2 such that q(*) 
is bounded and continuous on P. Also, q(x,*) is strictly 
convex and twice differentiable with respect to y.

Minimize Q(f) - /a q(x,f(x))dx (115)-a
subject to

/a x d[f(x)] ->•(,, (1 1 6 )-a

/a x2d[f(x)l , (11?)
-a c

0 < f(x) < 1 for all x e[-a,a], (118)

f(x) * 0, x < -a, f(x) » 1, x > a.

This problem is concerned with finding the cdf (cumula­
tive distribution function) f(’) defined on £-a,al which 
minimizes the convex functional Q(f). The real numbers m . ± 
and m . 2 in (116) and (117) are the known (given) values of 
the first and second moments, respectively, of the cdf that 
solves the minimization problem.



Rustagi integrated (116) by parts to yield

/a f (x)dx » a - (119)-a

and integrated (117) "by parts to yield

/a xf(x)dx « &2 ~ a 2 (120)-a 2

before attempting to solve this problem.
We can convert the objective function to a concave 

function and write (119) and (120) as inequalities to 
put the problem in the form of the dual problem. Let 
e(x,y) - -q(x,y). Then e(x,») is strictly concave and 
twice differentiable in y so we can restate the problem 
equivalently in the form of the dual problem as follows:

Maximize E(f) ** /a e(x,f(x))dx (121)

subject to
^(f) - /a f(x)dx < a

C£(f) « -/a f (x)dx < -(a - ^ ),
-a (122)

C9(f) * /a xf(x)dx < 3,2 ~^2 , 
-a o

C^(f) ■ -/a xf(x)dx < - (a2--^) 
-a  o---’

t(x) < f(x) < u(x), for x e [-a,a] (123)
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where

u(x)

and

t(x)

'1, -a < x < a

k0, x * -a,

r0, -a < x < a

JL, x * a.

Using the sufficiency conditions of this dissertation 
we will be able to solve this problem directly. Since 
there is no feasible solution f(•) such that the inequali­
ties (122) are strictly satisfied, the regularity 
assumption required for the sufficient conditions to be 
necessary is not satisfied. However, it is conjectured 
that the regularity assumption is not required when the 
integral constraints are linear functionals.

Rustagi assumed q(x,») is twice differentiable with 
respect to y so that D2q(x,*) is continuous. The method 
of this dissertation requires only that I^eCx,*) be 
continuous so this is the assumption we will use.
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Solution. - Since e(x,y) is not a specific function of x 
and y we will not be able to determine the solution expli­
citly. However, we can state the solution in general terms 
as was done by Rustagi.

For this problem we have
h(x,y?z) * e(x,y) - z-jy - z2(-y) - z3xy - z^(-xy).

The partial derivative of h(x,y?z) with respect to y is 
D2h(x,yjz) = D2e(x,y) - (zj^Zg) - (z3-z^)x.

Then we have
S-l(z) * (x e£-a,a]t D2e(x,y) - (z1-z2) - (z^-z^Jx < 0 

for all y e [t(x),u(x)]}
S2(z) * {x t [-a,a"): D2e(x,y) - (z1-z2) - (z^-z^Jx > 0 

for all y e {/fe(x) »u(x)]}
and

S3(z) » {x 6 [-a,a]i D2e(x,y) - (z1-z2) - (z3~z^)x > 0 
for exactly one y € Ct(x),u(x)3).

Since e(x,y) is strictly concave and D2 e(x,y) 
is strictly decreasing and continuous? this 
implies the inverse of D2e(x,») exists with respect to the 
variable y. Thus, given a specific function e(x,y) we 
could state Sj^z), S2(z), and S3 (z) explicitly.

As in Chapter II let g(x;z) be the value of y such 
that D2h(x,y;z) * 0; then we can state the solution to the 
problem in general terms. The sufficient conditions for a 
solution to the dual problem yields 

f0(x)=t&) a.e. for x c S^Cz q ), 
fo(x)«u(x) a.e. for x £S2(z q ),
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*o(x) “ g(xjz0) a.e. for x ^ ( z q ) ,  

where S ^ z o ^ S ^ Z q )  ̂ ( z q )  = [-a,a], f0(*) is a solution to 
the dual problem, and z0 t E^+ is the solution to the primal 
problem.

Note that when f0(*) maximizes E(f), the solution 
f0(*) also minimizes Q(f). Therefore, this is the same 
result determined by Rustagi except that he does not 
explicitly state the disjoint domains Si(zq). S2 (zq), and 
S (zq) for the solution fo(*)*

As a matter of interest and for completeness we can 
immediately state the primal problem, which might be easier 
to solve for z0 depending on the specific function given 
for e(x,y). Recalling the general statement of the primal 
problem we have the following primal problem for this 
example*
Minimize F(z)» /e(x,0)dx+ /[e(x,l)-(zi -z?)-(zr,-zi, )x]dx 
zeE^+ sx(z) s2(z) x 3

+ /h(x,g(x;z) ;z)dx + (zi-z2)(a-/<i)
S3(z)



CHAPTER VII 
CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary and Conclusions
As previously indicated, the Neyman-Pearson problem 

occurs in the following areas: statistics, search theory, 
information theory, facility design, allocation problems, 
and some game theory problems. Since the linear function­
al version of the Neyman-Pearson problem is a special case 
of the nonlinear functional version, the results developed 
in Chapter III have expanded the class of Neyman-Pearson 
problems which can be solved in a straightforward manner.

In linear programming the dual problem is useful 
since it is often easier to solve the dual problem than it 
is to solve the primal problem. Although, the primal 
problem (dual to the Neyman-Pearson problem) involves the 
solution to the dual problem it was illustrated in the 
example problem of Chapter V that the primal problem could 
be solved more directly. This may not always be true, but 
the primal problem will often give insight which will 
prove useful when determining the solution to the Neyman- 
Pearson problem.

The author believes the solution technique based on
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the results in Chapter III is straightforward and easy to
use. The use of the necessary and sufficient conditions to
determine solutions to the primal and dual problems requires
only a knowledge of elementary calculus and the properties
of concave and convex functions. This is certainly an
easier technique than using Calculus of Variations and
requires less ingenuity than linearizing a nonlinear
functional before determining a solution.

The following section gives a summary of the pertinent 
results developed in Chapter III,

7.2 Duality Relationships for the Nonlinear Neyman-Pearson 
Problem 

Given:
set
X measurable subset of E ^ i  

functions
e(x,y) from X X  E]_ into E ^ x  in y in Ej_)
Ci(x,y) from X X  %  into for i»lf...,m 
t(x), u(x) from into Eq̂

vectors
z ■ (zlf...,zm ) , b * (bi»...»bm )T (b^ known constants) 

Assumptions
t(x) < u(x) for all x in Xj t(x), u(x) are bounded and 

Lebesgue measurable 
e(x,y) is strictly concave in y for all x in X
c^(x,y) is convex in y for all x in X, i«l,...,m 
Dne(xf y) * <2e(x,y)/ c* y exists and is bounded for all 

y e £t(x),u(x)] and almost all x € X
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Dnci(x,y) * ^Ci(x,y)/dy exists and is bounded for all 

y £[t(x),u(x)] and almost all x fcX,
1* 1 »•••

Definitions
Ej*: nonnegative orthant of

m
h(x,ysz) ■ e(x,y) - 2 zici(x,y) where

i»l
x is in X, y is in [t(x),u(x)], z is in Em+
S1 (z) * {x in X:Dnh(x,y;z) < 0 for all y in [t(x),u(x)]}
S2(z) * {x in XsDnh(x,yjz) >0 for all y in £t(x),u(x)]}
S^(z) * {x in XsDnh(x,y;z) * 0 for exactly one y in

[t(x),u(x)]}
g(x;z): the unique point in £t(x),u(x)] for which

h(x,g(xjz)jz) * max (h(x,y;z) : y in 
[t(x),u(x)]}

Primal Problem (P)
min F(z) « /h(x,t(x);z)dx + /h(x,u(x);z)dx + /h(x,g(x;z);z)dx 
z in Em sl<z) s2<2) s3 <2)

+ b^z 
Dual Problem (D)
max E(f) * /e(x,f(x))dx 

X
subject to

/ci(x,f(x))dx < b^j i*l,...,m 
X

t(x) < f(x) < u(x)# all x in X.
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Definitions
feasible solution to P: any z in E ^
feasible solution to Di .any function f(*) for which the

integrals of D exist and the constraints are all 
satisfied

, solution to Ps any point in Em+ which minimizes F(z)
solution to D: any feasible solution to D which maximizes

Properties of the Problems
Result 1. - For any feasible solution f to D. and any 
feasible solution z to P, E(f) < F(z).

Result 2. - Suppose there exists a feasible solution f to 
D. and a feasible solution z to P such that

Then z is a solution to P, f(*) is a solution to D, and 
E(f) - F(z).

Regularity Assumption - There exists at least one feasible 
solution f(*) to D such that

E(f).

f(x) » t(x) a.e. on S^Cz), 
f(x) * u(x) a.e. on S2 (z), 
f(x) » g(x;z) a.e. on S^(z), 
m

(12*0
(125)
(126)

E z,[/ci(x,f(x))dx - bi] ■ 0 . 
i-1 X

(127)

(x))dx < bi for i»l
X

m.

Result 3. - Suppose the regularity assumption is satisfied.



If f(’) is a solution to D. then there exists a solution z 
to P such that f(*) and z satisfy (12*0, (125)» (126), and 
(12?), and K(f) » F(z).

Result *4-. - Results 2 and 3 combined give necessary and
sufficient conditions for a solution to D.

Result 9. - Suppose there exists a feasible z to P such that
/c4 (x,t(x))dx + /ci(x,u(x))dx + /ci(x,g(x;z))dxf b^, i*l,...,m
S1 (z) S2 (z) S^(z)

and
m
2za[/c*(x,t(x))dx + /c(x,u(x))dx + fc*(x,g(x?z))dx-bj* 0 . 
i-1 Sj'tz) S2 (z) s3tz)

Define the function f(') on X as follows.*
f(x) * t(x) a.e. on S1 (z)
f(x) » u(x) a.e. on S2 (z)
f(x) - g(x;z) a.e. on S3 (z).

Then z is a solution to P, f(‘) is a solution to D, and
E(f) * F(z).

Assumption. - The primal function F(*) is differentiable.

Result 10. - For i»l m

bi - /ci(x,t(x) )dx - /ci(x,u(x))dx - jci(x,g(x;z) )dx 
i Sx(z) S2 (z) S3 (z)

Result 11. - If z is a solution to p, then z satisfies



Thus, if P has a solution z, then (by Results 9 and 10) 0 
has a solution f(*)i and E(f) * F(z).

Result 12. - Results 9 and 11 combined give necessary and
sufficient conditions for a solution to P.

Result 14. - The primal problem has a solution z if and only 
if the dual problem has a solution f(*)» and E(f) « F(z).

Result 15. - If the region of integration in the dual prob­
lem is restricted to a subset of finite positive measure,
T of En_i, and the domain of t(*)» u(»)# and f(*) is also 
restricted to T, then there exists a solution to the dual 
problem.

7.3 Recommendations for Future Research
There are several areas where further work can be done 

to extend the results developed in this dissertation. The 
functions e(x,y) and c(x,y) were assumed to be strictly 
concave and convex in y, respectively, in Chapter II. The
author conjectures that the sufficient conditions for a
solution to the dual problem are easily satisfied when the 
assumption that e(x,y) is strictly concave in y is weakened 
to concavity in y. However, one must be careful when 
redefining S^(z), S2 (z), and S3 (z). Considerable effort 
will probably be required to prove necessary conditions for
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a solution to the dual problem since it is conceivable that 
the solution to the dual problem may not be a unique func­
tion when e(x,y) is only convex.

As indicated in Chapter II some work has been recently 
accomplished by Wagner and Stone [5 1] when the assumptions 
on e(x,») and c(,») have been relaxed in a slightly differ­
ent manner.

Another possible area of study is that of proving or
disproving the author's conjecture that the regularity
assumption (C(f) < b) is not required for proving the
necessary conditions for a solution to the dual problem
when C(f) is a linear functional. Luenberger [35] refers
to a similar problem in the homework assignment section of
Chapter 8 of his text.

A problem of theoretical interest might be the
consideration of the following version of the Neyman-
Pearson problem:

Maximize E(f) * /e(x,f(x))dx
X

subject to
C(f) - /c(x,f(x))dx < b(p),

X
t(x) < f(x) < u(x) for x X

and
0 < p < P

where p might be considered to have units of time in an 
applications problem and b(p) is a continuous function of 
time, i.e., the upper bound on C(f) might change continuous­
ly with respect to time. It would be interesting to
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determine the dual to this version of the Neyman-Pearson 
problem and then investigate the duality relationships.

Some work has been done by Stone [^6] in this area 
when considering a generalized version of the oil drilling 
problem. The problem was written in the context of a 
search problem and C(f) was a linear functional.

Another interesting problem is that of weakening the 
assumption that the objective function F(*) of the primal 
problem is differentiable. For example, in linear program­
ming the objective function of the primal problem is not 
always differentiable.

From the previously stated areas of research there 
should be some interesting results still to be discovered.
It is also likely that when these areas are investigated 
other problems related to those of this dissertation will 
be discovered.
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APPENDIX A

Weierstrass Theorem* - An upper semicontinuous functional 
on a compact subset P(b) of a normed linear space L 
achieves a maximum on P(b).

NOTE. - The space L of all bounded real-valued functions 
on Ejj is a linear vector space since fj_,f2 ^L implies 
af^(x) + bfgCx) is a bounded real-valued function for 
all x €En , where a and b are scalars.

The Weierstrass theorem given here is a general version 
stated in [35~]» Many sources in real analysis give various 
statements of this theorem. For example, a closed, 
bounded subset of Ei is compact so a common version of the 
Weierstrass theorem is as follows: If a function is continu­
ous . on a closed, bounded interval then the extreme values 
of the function are achieved on the interval.
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APPENDIX B

The following well-known result in real analysis, 
which can be found in [1 9]» is written in the notation 
of this dissertation.

Proposition 1. - Let ft(*) be a real-valued, differentiable 
function defined on [yi»y2 l* Then ft'(') takes on every 
value between ^'(y^) and

108



APPENDIX C

Proposition 2. - Let g(’) be a strictly concave, differ­
entiable function on the interval [a,b] and let y* £[a,b] 
maximize g(•).
If g'(y*)>0 then y* = b and g'(y)>0 for all y g[a,b]. (128)
If g'(y*)<0 then y*=a and g'(y)<0 for all yt[a,b], (1 2 9 )
If g'ty*)3̂  and y*=b then g'(y) > 0  for all ye[a,b). (1 3 0 )
If g'(y*)=0 and y* = a then g'(y)<0 for all y&(a,b]. (131)
If g'(y*) 0 and a<y*<b then g'(y)>0 for all y£r[a,y*) 
and g '(y)<0 for all y e(y*,b]. (1 3 2 )

Proof. - Since y* maximizes g(*) we have g(y*) > g(y) for
yc[a,b]. By the strict concavity of g(*) we have
g'(y) > 0 for all ye[a,y*) and g* (y) < 0 for all y£(y*,b"|.

Assume g'(y*) > 0 and (y*,b] contains at least one 
point. Then g'(y) < 0 for y e(y*,b] and g'(y*) > 0 
implies there is a point y0 fc(y*,b] such that g (y0) = 0 

by Proposition 1 in Appendix B. Elementary calculus tells 
us that yQ must be the point that maximizes g(*) but this 
contradicts the hypothesis that y*, which is a unique maxi­
mum, maximizes g(«). Thus, (y^b] must be the empty set, 
i.e., y* = b. Since g'(y) > 0 for all ye[a,y*) and 
g (y*) > 0 we have g (y) > 0 for all y t [a,b"| and (128) 
holds.
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If g'(y*) < 0 and [a,y*) contains at least one point,

then g'(y) > 0 for y e[a,y# ) and g'(y*) < 0 implies there
is a point yQ e[a,y*) such that g'(yo) = 0 by Proposition 1. 
This implies yg is the point which maximizes g(•) but this 
contradicts the hypothesis that y*t which is a unique maxi­
mum, maximizes g(*)* Thus, y* = a and we have g'(y) < 0 
for all y t[a,b] and (1 2 9 ) holds.

Statements (130). 0-31). and 0-32) follow directly from the 
strict concavity and differentiability of g(*)» Clearly, 
(1 2 8)-(1 3 2 ) are exclusive and exhaustive since g(‘) is strict­
ly concave.

Proposition 3. - X = Si(z)u3 2 (z)uS3 (z) and the sets
S^(z), i=l,2,3 are pairwise disjoint.

Proof. - To prove X = Si(z)vs2 (z) (z) we only have to 
show X c Si(z) wS2 (z)wS3 (z) since S^z), S2 (z), and S^(z) 
are all subsets of X which implies SjL(z)wS2 (z)^3-j(z) c X.

Recall Si(z) for i=l,2,3 is defined by the partial 
derivative Dnh(x,y;z). As in the text we will define 
fi'(y) = Dnh(x,y;z) and then for an arbitrary x £ X  we will 
show x is in S-^z) or S2 (z) or S^(z) depending on the 
values of ti' (y).

Let x i X and let y* maximize ft(y) on [t(x),u(x)].
If ^i'(y^) > 0 then(128) implies x £S2 (z). If ft*(y*) < 0 
then 0-29) implies xeSi(z). If $i'(y*) = 0 then (130), (131), 
and 0-32) imply x e S^ (z). Hence X £ Si (z ) uS2 (z) uS^ (z).



Clearly, the sets are pairwise disjoint since there 
is no way that statements 0-28) through 0-32) can occur 
simultaneously for a specific x.



APPENDIX D

Kuhn-Tucker Theorem - Assume there exists an f P(b) 
such that C(f) - b < 0. If E(*) is concave and C(*) is 
convex then fo(') is a solution to the dual problem if and 
only if a vector zq exists such that:

f o c W ' Z0 C Em+
and

E(f0) -z[C(f0 )-b] > E(f0) -z 0CC(^)-b]>E(f) -zQ [C(f)-b] 
for all f e W  and z t Em+ .

The requirement that a feasible solution exists when 
the constraints are inactive is a regularity assumption 
due to Slater and Karlin.
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APPENDIX E

Proposition 4. - Assume c(x,») is convex in the nth
variable then D(f) = C(f) - b is convex. In other words,
D. (f) is a convex functionalfor i=l,...,m.1

Proof. - We must show D(af^ + (l-a)f2) < aD(f^) +(l-a)D(f2), 
0 < a < 1, for all elements f^, f2 in the convex set W.
Let f = af-̂  + (l-a)f2, 0 < a < 1. Then

D(f) = / c(x,f(x))dx - b
X

= /[c(x,afi(x) + (l-a)f2 (x))]dx - b 
X

< /ac(x,f-. (x) )dx + /(l-a)c(x,f?(x))dx - (ab + (l-a)b)
X X

since c(x,«) is convex in the n^h variable. Therefore,
D(f) < a/c(x,fq(x))dx - ab+ (1-a) /c(x,f2 (x))dx - (l-a)b 

X X
= a[/c(x,f1 (x))-b] + (l-a)[/c(x,f?(x) )dx-b]

X X
= aD(f^) + (1-a) D(f2), 0 < a < 1

which is the desired result.

Proposition 5» - Assume e(x,») is concave in the 
nth variable then E(>) is a concave functional.

Proof■ - Since e(x,«) is concave in the n^*1 variable,
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-e(x,») is convex in the n^h variable. From Proposition 4 
we know —E(*) is convex. Hence E(*) is a concave function­
al.

Proposition 6 . - The set A * {(u,v) > D(f),
v < E(f) for at least one f sw} is convex.

Proof. - The vector u * (u^,^,... ,um )T is in Em and v is 
in Ej_.

Let (u',v') and (u" ,v") be elements of A. Then we want 
to show (u,v) * a(u*,v') + (1 -a)(uw,v")» for 0 < a < 1 , is 
in A.

Since (u\v') e A we have u' > D(f') and v' < E(f}) for
some f' eW. Also, (uM,v")e A implies u" > D(f") and vw
< E(f") for some f” € W. Therefore,

u * au' + (l-a)u” > aD(f') + (1-a) D(f")
> D(af' + (l-a)f") 

since D(•) is convex as shown in Proposition 4 of this 
appendix. Also,

v * av* + (l-a)vM < aE(f') + (1-a) E(f”)
< E(af' + (1-a) f"), 0 < a < 1 

so v < E(af' + (l-a)f") for 0 < a < 1 since E(*) is concave
as shown in Proposition 5 of this appendix. The set W is
convex which implies [af* + (l-a)f"J W. Therefore,
(u,v) € A which is the desired result.



APPENDIX F

Definition. - A point g is a boundary point of the set G 
if every neighborhood of g contains at least one point in 

' the set G and contains at least one point not in the 
set G.

Definition. - A point g eG, a subset of a normed linear 
space, is an interior point if there exists a neighborhood 
of g which contains only points of G.

Separating Hyperplane Theorem. - If G and K are two convex 
sets with no interior points in common, then there exists 
a hyperplane that separates G and K. In other words, there 
exists a non-zero vector c and a scalar d such that 
eg > d for all g e G and ck < d for all k e K.

The above theorem can be found in £22], £35] and 
other texts.

An important point in this theorem is that the 
inequalities are still satisfied for boundary points of 
G and K since it only is required that the interiors of 
G and K be disjoint.
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APPENDIX G

The following definition can be found in [25] and 
other topology texts.

Definition. - The set W = {f:t(x) < f(x) < u(x), x £ t)
can also be written as W = tt [t(x),u(x)] where tt is the

X6T
symbol for the Cartesian Product.

To gain insight into this definition, consider the 
following example where the index of the Cartesian Product

2  r- -iis finite. Let X = rr Xi where X< = [0,1] for i=l,2.
i=l 1

This is just a subset of the vector space E2» namely the 
unit square as shown in the following sketch.

-~tt[0 , l] 5*  [ 0 , l]x[0,1  ]=X 
i*l

Figure 16

If x is a vector in X then x = (xltx2) with x̂  ̂* X-̂ and 
x2 £ X2.

Now consider the set of all real-valued functions
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defined on T. This set is a vector space since the sum of
real-valued functions is a real-valued function and a
scalar multiple of a real-valued function is a real­
valued function.

Therefore, W is a subset of the vector space of real­
valued functions. Since f e w  is a vector we can consider 
f(x) as the x̂ *1 component of the vector f.

The set X is a subset of a finite dimensional vector 
space Egi while W is a subset of real-valued functions on 
T. Therefore, we could also compare X and W in the sense
that x eX is a point in the plane Eg and is denoted by
(xl,x2) while f e w  is a point in the infinite dimensional 
space of real-valued functions with the x"*'*1 coordinate of 
f is denoted by f(x).



APPENDIX H

Definition. - The set A  is a directed set if a < b and 
b < c implies a < c for a, b, c £ A  , and if a,b c A
then there is a c such that a < c and b < c. In other
words "<" is an ordering of the directed set A and A 
is unbounded.

An example of a directed set is the set of natural
numbers where the symbol < is the usual ordering of the
natural numbers. Another example is the set of all 
subsets of a given set, say X. In other words, C £ D 
if and only if D < C. Note that C £ D and D C E  implies 
C c E which is the same as D < C and E < D implies 
E < C.

The following definition is for the particular problem 
involved in proving the existence of a solution to the dual 
problem.

Definition. - Let A  be a directed set and f^(‘) be a map 
from A into the reals for each x C T, a set of positive 
measure. Then called a net.

For example, if A  is the set of natural numbers then 
f a sequence. The reason for using nets 
r a t h e r  than sequences is that a sequence converging
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to a point in a set is a necessary but not sufficient condi­
tion for closure of the set for some topological spaces. 
However, a net converging to an arbitrary point is neces­
sary and sufficient for the closure of a set. In other 
words, by using nets we are not restricted to index sets 

' having a countable number of elements.
A complete explanation of nets can be found in £36] 

and other topology texts.



APPENDIX I

Definition* - Let A be subset of the range Y of the 
mapping f from X into Y. The set £x tX:f(x) £A^ is 
called the inverse image of A. The usual notation for this 
set is f-1[A].

The following result can be found in many topology 
texts such as [36],

Proposition 7* - Let f be a mapping from X into Y. The 
function f is continuous if and only if the inverse image 
of each closed subset of Y is closed in X.
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