This dissertation has been
microfilmed exactly as received 69-4982

STERNBACH, Leonard Paul, 1943~
BASES AND QUASI-REFLEXIVE SPACES.

The Ohio State University, Ph.D,, 1968
Mathematics

University Microfilms, Inc., Ann Arbor, Michigan



BASES AND QUASI-REFLEXIVE SPACES

DISSERTATION

Pregsented in Partial Fulfillment of the Requirements for
the Degree Doctor of Philosophy in the Graduate
School of The Ohio State University

By
Leonard Sternbach, B.,A., M.S.

¥ ok ok ok kR

The Ohio State University
1968 |

Approved by

Adviser
Department of Mathematics



ACKNOWLEDGMENT
I would like to thank my adviser, Dr. David Dean, for his
help and encouregement. I would also like to acknowledge the
help of Dr. William Davis.
This work was done partially under National Science

Foundation Grent =-- GP 9037.

ii



VITA

February 24, 1943 Born =~ Brooklyn, New York

1964 e o o o« BeA., Brooklyn College, Brooklyn, New York

1964=1966 e« o« » o« Teaching Assistant, Department of Mathematics,
The Ohio State University, Columbus, Ohio.

1966 ' e o« ¢ ¢« M.Se, The Ohio State University, Columbus,
Chio

1966-1968 e o « o Teaching Assistant, 'Department of Mathematics,

The Ohio State University, Columbus, Ohio

FIELDS OF STUDY

Major Field: Mathematics

Studies in Analysis Professors F. Carroll,

P. Reichelderifer and B. Bajsanski

Studies in Functional Analysis Professors D'.i Dean, W. Davis
| .

iii



CONTENTS

ACKNOWLEDGMENTS + o o o o o o o o o o o o o o o
VITA o o o o o o e o o o o o oo oo s ooeeos
INTRODUCTION o o o o o o o o o o o o o o o o o
NOTATION, DEFINITIONS, AND WELL~KNOWN THEOREMS
SUBSPACES OF QUASI~REFLEXTVE SPACES o + « o » «

GENERALIZATIONS, EXAMPLES AND UNSOLVED PROBLEMS

iv

34



INTRODUCTION

In [2] Civin and Yood introduced the notion of a gquasi~-
reflexive space. We say a Banach space X is quasi-reflexive of
order n if the natu?al embedding of X into its second conjﬁgate
has codimension n (written ord (X) = n). A space with this
property had been introduced earlier by James [8]. In their
paper Civin and Yood proved the following important theorem:

If ord (X) = n and 1f ¥ 1s a subzpace of X then ord (X) =
= ord (Y) + ord (K) where =

Y Y
respect to Y. Thus, if ord (X) = n then all subspaces of X are

is the quotieht space of X with

quasi-reflexive of order k where k < n. The main theorem of this
work, Theorem 3.22, states that if ord (X) = n then X contaiﬁs
subspaces of all orders less than n, The proof of Theorem 3,22
follows quickly once we show that if ord (X) = n > O then X
contains a subspace Y such that ord (¥) = 1. In order'to show
this, we use a result of Pelczynski [9] which s#ates that every
non-reflexive space X (in particular assume ord (X) =n>0)
contains a non-reflexive subspace Y with a basis
(so n 2Iord (¥) 2 1). We then apply basis theory techniques to
Y.

Singer [iO] introduces the notions of a basic sequence

being k-shrinking or k-boundedly complete, which are generaliza—

tions of the notions of a basic sequence being shrinkiﬁg or
1



2
boundedly complete respectively (i.e. O-shrinking corresponds to
shrinking and O-boundedly complete corresponds to boundedly
complete). Singer shows that if Y has a basis (xi):=l then
ord (Y) = m if and only if (xi)zéL is k-shrinking and q-boundedly
complete, where k + ¢ = m. This g;neralizes James' result [8]
that Y is reflexive if and only if (xi);;l is shrinking and
boundedly complete. We will show (Theorem 3.19) that if (xi):==l
is k~shrinking and q@-boundedly complete where k + @ > O then there
is a block basic sequencw (zi);=l of (xi):=l such that (Zi):=l
is l-shrinking and O-bouvandedly comp%ete or (zi):==l is O-shrinking
and l-boundedly complet:., This shows that ord ([zi]:=l) = 1,
Chapter 3 contains the proof of the main theorem, Theorem 3.23
in a manner as indicated above. |

In Chapter 2 we give some standard information and defini-
tions dealing mostly with basis and projection theory. There is
nﬁthing essentially new in this chapter. LemmaIZ.lO, Proposition
2.14 and Proposition 2.24 which are proved in Chapter 2 could
not be found in the literature by the author, but are most likely
known results to those who have worked with bases and projections.

In Chapter 4 we generalize the notions of k~shrinking and
k-boundedly complete to include Markushevich bages. We give
some examples of quasi-reflexive spaces, and fi;ally conclude

with some problems which may lead to further reéearch in quasi-

reflexive spaces.



NOTATION, DEFINITIONS AND WELL-KNOWN THEOREMS

This section includes standard information and notation
which will be used throughout this work.

Notatlion 2.l. The letters X, Y, and H will always denote

Banach spaces. The conjugate (dual) of X we write as X* and the
second conjugate as X**.

Notation 2.2. There is a natural map Q@ from X into X**

defined by (Q(x))f = £(x) where x € X and £ € X*, We will write
Q(x) simply as x, and the distinction between x and Q(x) will be
obvious from the context. We call Q(X) the natural embedding of
X in X**,

Notation 2.3. When we say A is a subspace of X we will

always take A to be closed. If X DO Y and £ € X* then £|Y e Y*,
where (£|Y)(y) = £(y) for all y € Y. We call £|Y the restriction
of £ to Y. w
%

Definition 2.4, By y = iii Y5» where y, € ¥ for all i, we
n n
~mean z: y4 converges to y with n, in the norm (strong) topology

i=1 ‘

o * o0

of Y, We will write z Ty slmply as Z yi, and will include the
i=1

limits of summation only for finite sums or where the index of

summation is not clear.



Notation 2.5. We will write sequences (ai>:=l as (ai).

Notation 2.6. If (xi) < X, we denote the smallest subspace

of X containing (xi) by [xi].
We now give some results from basis theory.

Definition 2.7. A sequence (xi) C X is a basis for X if

for each x € X there is a unique sequence (ai) such that

X = z:aixi. If (xi) is a basis fpr [xi] we Bay (xi) is & basic
by

. n+l
sequence. If Py < Py < +ee and z = Ej 'hixi, where z # 0
i=p_+L
n

for all n, we say z  is a block basic sequence of (xi). (The fact
that (zi) is basic will follow from Lemma 2.9, given later.)
Pelczynski [9] has proved the following theorem.

Theorem 2.8. If X is not reflexive then X contains a basic

. sequence (xi) such that [xi] is not reflexive.
The nexf lemma is an important characterization of basic
sequences.,
Lemma 2.9. (xi) C X, where x; # 0 for all i, is a basic
n+m

sequence if and only if there is a K such that X|| E:aixi][ >
i=1

m

| Z:aixill for all positive integérs n and m and for all choices
i=1

. | m
of a;. Also if (xi) is basic then ZKII_Z:aixil] > 11 ;Z;aixi[[

for m > n, [12, p. 211].



Lemma 2.10, Let (xi) be a basic sequence and let

m pn+l q
Py < Py ese o If z ( Z ax.) converges in m then Zax
1< P2 3 Mapa 1*1 | e bt
m Po1
converges in ¢. Also if || z: ( Z: .aixi>|| is bounded in m
n=1 "i=p_+1L
n
q
then || z:aixill is bounded in q (i.e. bounded in blocks implies
1=1
- bounded ).

'Pfoof of lemma., Let k < q. Let Pp,<kgax< Ppye We can

pm k~1 Pp
write Zax = Zax.-_Zax - Zax. Let K be as in
g L 1=p, 1%3 i=p, S S A

Lemma 2.9. The conclusion follows simply by noting that

k-1 P Pn ' Pm
D ) 0oL 2x|| 2

| K aixill < 2K| | K aixi][ and || K aixill < 2K| | aixill.
i_pn i_pn i—q +1 i=pn

Notation 2.11. Let (xi) be basic and let fj e [x;]* and
fj(xi) = bij. We call (fj) the biorthognal functionals of (xi).
Whenever we are given a basic sequence (xi), and we write (fj),

we will take (fj> to be the biorthognal functionals of (xi).

Lemma 2.12. If (x;) is a basis for X then (£;) is basic,
[12, p. 210].
Definition 2.13. For (yi) C Y* we say (yi) converges weak

star to y()if (yi(x)) approaches yo(x) for all x € Y. If



L

n
Zyi converges in n weak star to Yo we write Z Yy = Yo

Proposition 2,14, If (xi) is a basic sequence and

f ¢ [xi]*-i:hen f = z f(xilf. and f & [fi] if and only if
Z f(xi)fi = Z f(xi)fi. Also if we define a new norm ||| |]|

on [x 1* by Illz:f(x )f (1] = sup HZf(x )f || where the
=1

supremum is over all n, then the new norm is equivalent to the
old norm,
Proof of proposition. The only non-trival part of the

proposition is proving the equivalence of the norms. (The first

part follows simply by evaluating Z f(x )f at Z a X, .) Since
i=l

Zf(xi)fi = f for all f ¢ [xil* we have that [|If|]|] > |If]]. Let K

be as in Lemma 2.9, and let Ilza.x.ll < 1s0 || Z a.x. || < K.
iTi - i=1 i1 -

|( Z £(x, )1, )(Xaixj)l |( Z £(x, )fi)( Z agx )l = |(f>(§ a,x, )|

l

5Kl|fj||. B Therefore K||f||>||Zf(x)f||for
R ' ) i=1



all m which shows K||£f|] > [||fl]|l. Thus the two norms are
equivalent.
We now consider quotient spaces.

Definition 2.15. Let X D Y. We write the quotient space

of X with respect to ¥ as'%. The elements of %-are the cosets
X + Y where x € X and x + ¥ = {wiw=x +y for y € Y}. We define
llx + Y]| = inf |]x + y]| where the infimum is taken over all

y € Y. With this norm %-is a Banach space [4, p. 6].

Cividn and Yood use the following three theorems in [2].

Lemma 2.16. IfHC%("then there is a closed subspace A of X
such that H = %;

as] o

X
Lemma 2.17. _%_ is isomorphic to 7 where X D HDO ¥,
Y

Lemma 2.18, If % is separable and Y is separable then X is

separable.

We will need some theorems concerning direct sums and projec-

tions.

be contained in X, and for

Definition 2.19. Let Hl and H2

each x € X there is a'unique hl € Hl and h2 € H2 such that

X hl + h2. We say Hl is a direct factor of X and write

X = Hl ® H2. If we define an operator P from X to X by P(hl + h2) = h

then P2 = P, and we call P a projection of X onto Hl

bounded in norm [5, p. 70]. Conversly if P is a bounded linear

operator from X to X and if P2 = P then X = P(X) ® (I-P)(X) where

I is the identity map from X to X.

Notation 2.20. By H © x where x € X, H< X and x £ H we mean

along H,. P is

1



-the direct sum of H and the one dimensional subspace [x].

Definition 2.21. We say (y.¥, »e- yn) is independent of

n
H if z:aiyi € H impliesa oo, = O for 1 = 1,2, ... ne Thus 1if
1=1 + .

(Yl,ya, soe yn) is independent of H we have
(B 950 eeo 7)) =HO®y, @3, 0 ... 0 y,. Clearly if
(yl.ya, eos yn) is independent of H-'then
(yl,y2 + syt ha,y3 +oagy) + h3, cee 4y Ty ta Yy o+ hn) is
independent of H where h2,h3 o hn € H.
Definition 2.22., Let X = Hl @ H2. If the dimension of H2

is n we say Hl has codimension n in X. Hl has codimension n in

X.if and only if any set of n + 1 elements in X is not independent
of H,, and if there exist a set of n elements (yl,y2 coe yn) which
is independent of Hl’ in which case X = Hl @ ylv@ Yo ® ,.0 @ A
[10].

Lemma 2.23. Let P be a projection from X onto Hl along HZ'

* *
Thus X = Hl ® Ha. Let £ € Hl and let g be the extension of f to

X defined by making 8(H2> = O. Then |lgl] < lI£]] |i®ll.

Proof of lemma, Since ]lhl + h2]| < 1 implies ]Ihll[ < 1Pl

i

for all\hl € H and h, € H,, we have Igl | sup|g(hy + h,)| =
= sup[g(hl)] = gup ]f(hl)] < |1£]l] ]1P]] where the supremum is

taken over all h, & Hl and h2 > H2-Wh°1‘e Ilhl + hall < 1.

Proposition 2.24. H has codimension n in X if and only if

n

E= N g l((D where (31’82’ ees ) 18 a linearly independent
i=1 . n

set in X*,



Proof of proposition., Let X = H & Yy @ Yo Q@ ..0 O Yo

Define 85 by gj(yi) = 6ij and gj(H)-= O for i,j = 1,2, «.. n. By

n
the preceding theorem (gl,ga cee gn) < X*. Clearly H= N 85 1(0)
i=1

and (gl,ga, .+« g,) 18 & linearly independent set.
Now assume (gl,ga, cee gn) is a linearly independent set.
There exlst y, € X such that gj(yi) = 6ij [4, po 6], Define P
’ )
n

by p(x) = z:gi(x)yi for all x € X. P is a projection from X onto
i=1

. n _
(¥ 454y oo y_1 and (I-P) is a projection from X onto N g l(O).
1'v2 n 1=1 i

Theorem 2.25. Let H have codimension n in X, There is a
projection Pn from X onto H such that ]IPﬂll <;3p + 7 for all
m>o [6].

Proof of theorem, By proposition 2.24, we can find

n
...l
* -—
(81‘32’ esee £_) C X* such that 2 g; (0) = H and (gl,ga, cee B

are linearly. independent. TFix & > O. Without loss of generality

we can assume that llglll = 1. Thus there is a ¥y, € X such that

sl(yl) = 1 and llylll <1+ 6. Define the projection Q, from

X onto [yl] by Ql(x) = gl(x)yl for all x e X.

He g eIl Hyqll <1+ 8. Let Py = I;- Q; where I, is the

identity map from X to X. Pl is a projectlon from X onto gl—l(O)
and IIPl[l < 2+ 6. Since g and ga'are linearly independent,

‘ -1 -1 —

then galgl (o) # 0 [5, pe B21], Let galgl (o) = g+ We can

assume without loss of generality that IIEEII = 1. Thus there is



10
a € —l(o) such that ||y.|] <1 + & and g.(y,) = 1. We define
Yo & 81 2 2\
. -1 L —
a projection Q, from g (0) to [yz] by Qa(x) gz(x)y2 for all

X € gl-l(o). Thus IIQ2|| <1 + 6., Therefore, for the projection

2

I, - Q, from g 1(0) onto N g. 1(0), where I, is the identity
2 2 1 ARt 2

map from gl—l(o) to gl—l(o), we have I[I2 - Q2[| < 2 + 6., Let

P, = 12 - Q2. ThusIPEPl is a projection from X onto

V)

gi—l(o) and ||P2Plll < (2 + 5}2. In the same manner we can
1

T Y

i
k-1 k

construct %&, a projection from N g5 l(O) onto N 8, 1(0)_for
i=1 i=1

k=2,3, ... n, such that IIPKII <2+ & Thus ifP =P P . ...P
o -1 n
then P is a projection from X onto N g, (0) and JlP]l < (2 + 86)".
i=1
Since & can be taken as small as desired, we have proved the
theorem.
Notation 2.26. We say (an ) is a proper subsequence of

i
(ai) if infinitely many integers are not contained in (ni). If

(mi) is the subseguence of the integers obtained from those integers

not contained in (ni),-then we say (am ) is the complementary
' i
subsequence of (an ). In the above i runs through the positive
i
integers only.

1



SUBSPACES OF QUASI-REFLEXIVE SPACES

We define a quasi-reflexive space and then glve known
theorems which we will need on such spaces.

Definition 3.l. If the codimension (see Definition 2.22)

of X in X** (see Notation 2.1) under the natural embedding
(see Notation 2.2) is finite we say X is quasi-reflexive., If
the codimension is n we say X is quasi-reflexive of order n, and

write this as ord (X) n.

Clearly ord (X) O if and only if X is reflexive.

Civin and Yood [2] have proved the.following two important
theorems on quasi-reflexive spaces.

Theorem 3.2, If ord (X) = n and if Y is a subspace (see

Notation 2.3) of X then ord (Y) is less than or egqual to n and

ord (X) = ord (Y) + ord (%) (see Definition 2.15).

Theorem 3.3, If ord (X) = n, then there is a reflexive

subspace Y, of X such that'% is separable.
These two theorems imply that if ord (X) = n then there is
a separable quotient space of X which is quasi-reflexive of order n.

Cuttle [3] has proved the following proposition.

Proposition 3.4, If ord (X) = n then ord (X*) = n.

I. Singer [10] introduces the notions of k=-shrinking and
k-boundedly complete for basic sequences (see Definition 2.7).

11



12
Theorems dealing with these two notions will lead directly to the
main theorem of this work (Theorem 3.22).
Definition 3.5. The basic sequence (x;) (see Notation 2.5)
is k~shrinking if the codimension of [fi] (see Notation 2.6,
Notation 2,11 and Lemma 2.12) in [xi]* is k.
We note that (xi) is O-shrinking implies that [fi] = [x,]*.

We say (xi) is shrinking (4, p. 70] if [[f|[x ,x eeel|] (see

n+l"?
Notation 2.3) approaches O in n for all f in [xi]*. (xi) is

O-shrinking if and only if (xi) is shrinking {4, p. 70].
Definition 3.6. To define k-boundedly complete we consider

the set B[ ] of seQuences (aixi) where (xi) ig a baslc seQuence

]

n
and || z:aixill is bounded in n. Let G[x ] denote the subset of
i=1 i
n
B[xi] consisting of those sequences.(aixi) such that iz;aixi

converges in n. We note that B[ may be considered a vector

x, ]
i
space in the natural way. If there are k sequences Caijxi);L1

for j = 1424 ee« k which belong to B ] such that

[x;
B[xi] = C[xi] ® (ailxi) @ (aiaxi) ® o0 ® (aikxi> (see Defini-

tion 2.19 and Notation 2.20), then we say (xi) i8 k-boundedly

complete., Thus C[xi] has codimension k in B[x ] if and only 1if
i

(zi) is k-boundedly complete.

A basic sequence (xi) is said to be boundedly complete



i3

n

n
[k, pe 69] if whenever || z:a x,|] is bounded in n then z:a x
b . § 171
i=1 . _ i=1
converges in n,
Thus, (x;) is O-boundedly complete if and only if (x,) is
Boundedly complete,
James [8] proved that if (xi) is a basic sequence then
[xi] is reflexive if and only if (xi) is shrinking and boundedly
~complete, Singer [10] generalizes this result in the following
theoren..
| Theorem 3.7, Let (xi) be a basic sequence. Ord ([xi]) =n
if and only if (xi) is k. -shrinking and ka-boundedly complete

1
where kl + k2 = n.

Definition 3.8. Let (x;) be basic in X. £ in X* is said
to be shrinking on (xi) if llfl[xn'xh+l’ +s+]|| approaches 0 in n.

Thus (xi) is shrinking if and only if f e [x,]* implies £

*3
is shrinking on (xi).
Lemma 3.9. Let (xi) be a basim for X and let f £ X*., The

following three mtatements are equivalent:

(1) £ is not shrinking on (xi)..

(2) £ £ [£,].

(3) There exist p; < P, < Py ose and N > O such that
Pn+i . Pr1

11 2: aixill = 1 and lf( 2: aixi)l >T for n = 1,2y eee o
i=pn+l izpn+l

*
Proof of lemma. By Proposition 2.14 we can write f = z:bifi



1k

'n

where b, = f(xi). If £ ¢ [fi] then ;Zibifi converges in n so

- .
1 z:bifill approaches O in n. But this means
i=n

l|f|[xn,xn+l, eees +J]|| approaches O in n, since

X

;%;bifil[x atl? cee] = fl[xn,xn+l, eee]e Thus (1) implies (2).

n

If £ £ [fi] then there exists & & > 0 and p; < p, < oo

, , Pni1
such that || 2: bifill > 8. Thus there exist for each
i=p_+1 .
n

n, z ainxi such that || 2 ainxill = 1 and

Pn+l Pn+l _

. n

](z bf)(z n')l>6. But || z a, x,|] < 2K where

1=p_+1 AR Y i=p 41 T F =

o)

———

K is as in Lemma 2.9. This shows (2) implies (3) where T = SR -
Clearly (3) implies (1) completing the probf of the lemma.
We now proceed to prove geveral theorens ééncerning the
notions of k-shrinking and k-boundedly complete.i These theorems
will enable us to obtain, from a duasi—reflexive space of order n,
subspaces of lesser order.
Proposition 3.10. If (xi) is basic and (zi) is a block
basic sequence of (xi) (gsee Definition 2.7) then:

(1) £ (xi)zis k-shrinking then (zi) is k-shrinking
where k < k.
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(2) 1¢f (xi) is k-boundedly complete then (zi) is’
E~boundedly complete where k < k.
| P+l ‘
Proof of proposition, Let z_ = }E b.x, and z_ £ O for
S e n iTd n
i=p +1
n
all n and for Py < Py < eee o
Assume (xi) is k-shrinking. Therefore we can write
[x;]* = [£,] @ £, © £,, ® «us ® £, (see Definition 3.5 and
Definition 2.22). Let (gj) e [z,]* be the biorthognal functionals
of (zi). We wish to show that the codimension of [gi] in [zi]*
18 less than or equal to k, We deny this by assuming
(301’502’ oo gOk+1> < [zi]* is independent of [gi]. Let EOi be
a functional in [xi]* such that EOil[zi] = goy Tor i =1,2, co. k + 1.

Since Efi] has codimension k in [xi]* there exist ay 0,y ees Gy g9

k+1 . . k+1l
not &ll zero, such that §: igOi € [f J. Thus z: igOi is shrinking
Cl=1 i=1
on (x,) (see Lemma 3.9 and Definition 3.8). But this implies
e+l | . e+l
z:aigci is shrinking on (zi).' Thus ;Z;aigOi € [gi] where not
all (al,aa, eve qk+1) are zero; This is & contradiction and thus
(1) is proved.
Now assume (xi) is k~boundedly complete. Assume B[z ] (see
i

. definition 3.6) contains k + 1 elements‘(aijzi)i___l for -

~
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J = 132y see kK + 1, which are indepen&ént of_C[z ] (see Defini-
. ’ i
tion 2.21). Let (gijxi)i=l
terms of (xi) (i.e. € = 811D :C5 = allbz css 3 €

be the expansion of (aijzi)i=l in

Pl

= cllbpl’cpl¥ll= a21bp1+1 eee)e By Lemma 2.10, (cijxi)izl E B[xi]

for J = 142y eee kK'+ 1. Since C[xi] has codimension k 1n B[xi],

k+1
there exist o, 40, coe @, such thatgglaj(cijxi) € C[xi] where

not all &j are zero (see Definition 2.22)., Thus, we have
k+1
;g;aj(aijzi) & C[zi]. This contradicts the assumption that

(a

ijzi>i=l are independent of C[zi]. Therefore by Definition 2.22

the codimension of C[z ] in B[ ] is less than or equal to k.

1 21
This proves (2).

We wish to show that if (xi) is basic and ord ([xi]) =n >0
then we can find a block basic éequence (zi) of (xi) which will
reduce the shrinking order and the houndedly complete order of
(xi) so that ord ([zi]) = 1 ('in other words so that (zi) is
l-shrinking and O-boundedly complete or O-shrinking and
l-boundedly complete (see Theorem 3.7)).

The previous theorem shows that neither order will be
increased by taking a block basis. The next theorem deals with

reducing the shrinking order. The theorem after that will show
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that we can reduce the boundedly complete order.

Theorem 3.11. If (x,) is a basic sequence and if (x,) is
n-shrinking and i1f k < n then there is a block basic Bequence‘
(z.i) of (xi) éuch that (zi) i8 k-shrinking.

| To prove this theorem we first prove two lemmas.

. *
Lemma 3.,12. If (x;) is basic and £, ,f,,1 ees £, & [x,]

are independent of [£,] then ||f n n f (o)[] >8>0
| 1=1

173

LI

for all m, j = lyZ’ see I and s50nme 6.

Proof of lemma, We will prove this lemma for J = n., This

n-1
is obviously sufficient. Let B, = [x,J7 N N £ l(o). We deny
| 1=1

the conclusion of the lemma by assuming llfonle[l approaches O

in m. Let 6 > O. There is an M such that llfOn[BMll < 6., Let

] for 1 = lg2g ess No If

ToglIxgdy oy = 8o

n
Z'a g€~s = O then Za £o4 E [f ] (i.e. Z £f., = Z B, £
sy %1801 1=1 1 1121 %101 = T Pats

n n M-1

where Bj (Z O:L) J) Thus O B O, I 00 = = 0. gince fOi

n

is independent of [fi] (see Definition 2. 22). Since Za
1=l

1801 = ©

implies Oy =0y = vee & = O we have that 8017802 *°* Bg, are
n-1

linearly independent. By Proposition 2.24, N gB}_(O) has
i o iI=1
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codimension (n-1) in [xiJ:;M' By Theorem 2.25, we can find

zl,zé, coe Z € [X13:=M such that there is a projection Pp,

n~l

from [xi]izM onto By along [zl,zz, vos zn_1] (see Definition 2.19)

T n_l‘ ) , 0o
such that |[[p]]| < 2 1. Thus we have [xi]iuM =By @ z; © ?2 ®
vee ®z__o and if |[b + 5[] = 1 then ||b]| € 7F + 1 where
b & By and z € [zl’zz’ co e zn_lj. Since gqoy18pp1 eoe Son-1
vanish on By and are linearly independent on [xi]:;M' it follows
that 80118027 *°° Bpy-1 2Te linearly independent on
[zl,zz, cee zn—l]' Therefore there exist Gp3%yy eee O o such

n-1

that gon(zj) = (iz;aiSOi)zj for J = 1,2, vee n=1 (i.e. some

linear combination of 301,302,,... 8on-1 must agree with 8o OB
n-1
[zl,za, cve zn_l]). But (SOn - ;Z£a1801>zj =0 for J = 1,2, ses n-1
-n~1

and (SOn - iz;aiSOi)lBM = By, Bluce g,, = 0 on By for

i =1,2y sse n=1., ‘Also llgOn[] = [lfonlBMll < 8+ Therefore by
n-1

- 8
Leéma 2.23, ll(gOn - iZLuigOi)ll < & and Ilgﬂl < 28" + 1 imply

n-1 - n-1
11(80q - iglaigoiﬁl = 11z, - igl“ifm)l[xi]::m“ < @7+ 1

The natural projection By from [xi] onto [xi]:;M
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o0

(i.e. Py ( 2: xi) - z;fixi) has norm bounded in M by 2K where
' n-1

K is given in Lemma 2.9. Let Bj (f - 2: ay Oi)x for

j = 1’2’ ese M‘lo Le‘t h .= £ had Z Z B Therefore
X ,On On i=l 3:1
n—l
o z: -
I[xi 1= l = 0 and hOnI[xi]izM = 8oy aigOi. Therefore

i=1
l[hOnl[xi]I;Ml[ < (2®1 4+ 1)s.  Therefore by Lemma 2.23, since

I12yll < 2K, we have |lngy || < 2K(221 4+ 1)6. Since & can be
taken arbitrarily small we conclude that

£f. . e [(fi),f This is & contradiction and =o

On Ol’fOZ’ coe fOn—l]'
the lemma 1s proved. _
| Lemma 3.13. Let (x;) be a basic sequence in X and

[lxi[[ > & > 0 for some & and for all i. If Zlf(xi)l converges
then f is shrinking on (xi). Thus if (xi) is a basic sequence
and ]f(xi)l approaches O in i then there is a subsequence (x )

i
of (xi) such that f is shrinking on (x e
1

Proof of lemma., Let Z|f(x;)| converge. Let f = T*a, £y

(see Definition 2.13 and Proposition 2.14)., ZLet |[[Zb,x,|] = 1.

i i[

Therefore, there is s X such that [lbixill < 2K for all i. Thus
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byl < 2, l(énmi‘fi)(fbixi)'.; lf(Zb L Zm x|

for all n < m. Since lf(x )| approaches O uniformly in n and
1=n .

m, and uniformly for Zb,x, such that I]Ebixill = 1 we conclude

m ) . n

that || z:a £f,]] approaches O uniformly in n and n so z:a £
. i=n 171 : 4=1 171

converges in n. Therefore f & [fi] and thus by Lemma 3.9 f is
shrinking on (xi).

Proof of theorem. By hypothesis there exist

f f ees I > [x 1* such that f f are

o1'%o2? on o1*%o2r ¢+ Ton

independent of [f ] and [x 1* = [f ] @ fqq @ £ é © eee @ £y 0

We construct a block basic sequence (yj) (see Definition 2.7)
|

of (xi) with the followlng properties: E

@ =< gl < 2 for all j.

| (2) lfOi( q+i)l > 6> 0 for i = 1 v2y see N,
q = 1’,2’ ' X 3 and Some 6‘
(3). Ifoa( nq+i)l < ;E for i =1 2, eee n, 1 # 3,

and q = 1 2 see o
We will show how I and y, are constructed from which the

construction of the rest of the sequence (yj) will be obvious.

Beremma 3,12, letting M = 1 there, we can find Eaixi and & > O

such that-llzaixill =1, ]foj(zaixi)l =0 for J = 2,3, eu. n and
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li‘OI(Eaixi)l > 8. There is an integer N, such that 1f -

Ny

Yo = E:a x, then y, satisfies (1), (2), and (3). Letting j = 2
! 1 .

and M = N, + 1 in Lemma 3.12 we see that there is 2: a;x, such

1 _ i=N1+1

o0 00

that ||} z axll-—-l, | £ (Z a,x,)] > 6 and
18, 42 11 02\, ¥ 41t )

*

lij( Z ayx )I < %- for j = 1,3,4', ees n. Therefore there is
1 ,

N +1 |
2 [
an N, such that if y, = Z a’ixi then y, satisfies 1), (2),
1N, +1 .

and (3). We now assume (yj) is a block basic sequence of (xi)
with properties (1), (2), and (3). Let 1 < k < n. We consider

a subsequence (zj) of (yj) consisting of the elements of the form
X oQ

(ynq+i)q=0 where 1 = 1,2, eos k (L.e. we take the first k elements

of (y j>" drop the next n-k elements, take the next k elements and

so on)., We will show that '(zd) is k~-shrinking. Let gy € [zj]*,
gj(zi) = Bij and foil[zj] = goy for i = 1,2, .ee n. For each
g & [zi]*, there 48 an f ¢ [xi]"' such that fl[zi] = ge If

f g [fi] then f is shrinking on [xi] (see Lemma 3.9) and thus f

is shrinking on [zi] BO f[[zi] £ [gd]. By Lemma 3,13, since

Z.f

)] < Z ——-forjxk+1,k+2, eses n and for

O;j nq+i q=l 2q
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i = 1,2y ves ky we have £ are shrinking on

ok+1'Fo+2? *** fon

(zi) B0 By .1 80K427 oo Bop € [gj]. If we can show that
801'80p *** B, are independe nt of [gj] we will have proved the

theorem for 1< k < n (see Definition 2.21). since then

[2,1* = [g,] © gy ® By © evv © oo Lot
L

k k

Za.g =g e [g,]e If a. # O then a.g ='Zag + g
;o %1801 3 1 ‘ 1801 ¥ 7 2 *afo1
Conslider the subsequence (yl'yn+l'y2n+l ees) of (zi). g i=s

ghrinking on this subsequence and, by Lemma 3.13 and by (3)

are almo shrinking on it

Zlf

But since |gy (v, 10! > 6 > 0 by (2), and since Hy 11 <2

802803 *** 8ok
00

(‘:L.'e. Z ]

)] € o for J = 2,3, eee k).
i= *

-9"03(3’11.“1)I = Oj(yni+l

by (1), we have that 8oL is not shrinking on (yni+1):=l' Since

the sum of shrinking functionals is shrinking then a, = O, In

1
the same way o, = a3 = eee Oy = 0. By Definition 2.21,
811802 *°+ Bg 2Tre independent of [zi]; Therefore [zi] is

k-shrinking. To complete the proof we have only to consider the

case k = O, But n fOi(O) n [xi]i y contains a non-zero element
i=1

l’ since the codimension of ﬂ £ 1(0) N [z i] 1in (x ]n+1
i=1 i

is at most n (see Proposition 2.24). In a similar way we can
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Jn+J
find zy & iﬂlfOi(o) n [x ]ia(j-l)n+j-l where z # O, Clearly as
in the above proof [zi] is O-shrinking since fOi[zi] & 0 for

i = lyag vees g

Corollary 3.1k, If (xi) 48 a basis for X and if ord (X) = n

and (x;) is boundedly complete, then there is a block basic
sequence (zi) of (xi) such that ord ([zi]) =k for k = 09142y ese 1.

Proof of corollary. By the preceding theorem, we can find

_ & block basic sequence (zi) of (xi) such that (zi) is k~sghrinking,
since bf Theorem 3.7 (xi) is n~shrinking. By Proposition 3.10,
(zi) is O-boundedly complete. Thus by Theorem 3.7 ord ([zi]) = k.
The above corollary is the strongest result we have in the
sense that 1t not only ylelds subspaces of all orders less than
the order of the space, but it glives these subspaces a basis
which is a bleck basic sequence of the original space. In trying
to reduce the boundedly complete order we can not show that we
get all orders, less than the original order by using block
" bases. The next theorem does show however, that if the boundedly
complefe order is positive we can always reduce that order to 1,
Theorem 3.15. Let (x,) be & basic sequence and let (x,) ve

k-boundedly complete, Then we conclude the following:

(1) 4fk >2and ||x,[| > 5> 0 for all 1 and some &
and if (a i) £ B[x ] (see Definition 3.6), where a; does not

approach O in i, then there is a subsequence (=, ) of (x ) such
oy
that (xn ) is (k-1) - boundedly complete.
. X : ,
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(2) if kx > 1 then there is a block basic sequence
(zi) of (xi) such that (zi) is l-boundedly complete.
(3) 1 k¥ = 1 then there is a block basic mequence
(zi) of (xi) such that ||z,[] > & > O for some & and for all i,

n

and (zi) is l-boundedly complete, where || z:zi[l is bounded in
. i1=1 —

n, Also if (zi) is l-boundedly complete, llzil[ > &> 0 for
n

some 6 and for all i, and 4if || 2: l is bounded in n then (z )
i=l 2y

is O~boundedly complete where (zn ) 1s any proper subsequence
i .

(see Notmtion 2.26) of (zi). (We note that in this case

B[zi] = C[zi] " (zi)).

Proof of theorem. Assume the hypothesis in (1), Since a,

does not approach O in 1, (a xi) f G[x ].‘ Thus we can write
. ' i

where (aixi) = (ailxi)' Since || z:a || is bounded in n for

ij i
J = 142y ees ky and since |]x ]l > 6 for all i we have |a jl <M

for some My 4 = 1,2y seey @8nd J = 1,2, ... k (see Lemma 2.9).

Thus there is a subsequence (anil) of (ail) such.that anil

~approaches a; A 04in 1, Since laij[ < Mfor 4 = 1,2, eeey and

J = 1y2y ees k} then we can assume without loss of generality .
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that (an J) approaches ad in 4 for J = 2,3, +e. ke By Defini-
i ‘ .

tion 2.21 we can write

Prx, 1 ™ =1 ® (8;1%;0 @ (&%, = Y 8y9% )

a
.}. -k
0 (ay %y =22 8;9%,) 0 aee @ (ag,x 5, ik %y e
a .
But & - —j'a "approaches O in 1. Therefore we can write
n,d & md

and assume without loss of generality that a, i approaches O in
i

1 for J = 2934 eee ne Also without loss of generality we can

assume that |a_ .| < 4 for al1 i and J = 2493y eee k. Therefore
nij 21
m

Z:a x converges in m for j = 2,3, ... k. Thus by Defini-
121 2qdmy

tion 2.21 we can assume wlthout ldss of generallity that we can
write B[xi] = c[xi] [ (alixi) ® (azixi) ® coe (ékixi) where

a = 0 for all 4 and ] = 2,3, ««« k, Bince (an X ) € Cfxi]

n, J g3y

for J = 2,3, esas ks Let m, be the complementary sequence (see

~ Notation 2.26) of We will show that (xm ) 18 (k-1)=-boundedly

i

complete. First we note that (aﬁﬂz m ), (a i3 n )y eas (a, m, K mi>

k

ni.-

‘is independent of C | for if E:a (a_ _x ) s C then
: [xmi] ymz 3 mydTmy [= miJ
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k
z:a (a i) £ C[xi] S0 &y = Ay = ... = oy = 0. Thus (xmi)

is at least (k~l)-boundedly complete. Also by Proposition 3.10
(xm ) is less than or equal to k-boundedly complete. Assume

i
(xm ) is k-boundedly complete. Then there are k sequences

(v X ) € B[x ] for j = 1,2, eeo k which are independent of

m, J .
i i my
C -« But this dmplies the sequences are independent of C .
[x ] [x.]
mi i
Therefore Bry. ] = c[X ] e (b %X, ) ® (b, X )@ .0 @ (b m Ve
i i i i i i i i

Thus there exist o;,0, «es o, =nd (cixi) € C[xi] such that
(g;,%.) = (eyx,) + a (b 1x ) +a(b % ) eue + o (b ,x ).
1171 174 1 mil my 2 my ey k mik my

m n

It follows that &, = and aq = c + albm 1+ “abm 2y for
i i i i 1 i

all i, But anil approaches aq Z 0 in i and c# approaches 0 in

i
i since (c.x,) € C ve This is a contradiction. Thus (x_ ) is
171 [x, 3] o4
not k-boundedly complete, s0 (xm ) is (k-1)-boundedly complete.
i

This completes the proof of (1).

To prove (2) we show that there is a block basic sequence
(zi) of (xi) such that (zi> is strictly less than k-boundedly
complete and greater than or equal to 1—boundediy complete. If
we can prove this then (2) will be proved, since if (zi) is a
block basic sequence of (xi) and if (yi) is a block basic sequence

of (zi), then (yi) is a block basic sequence of (xi).
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Let (aixi) £ B[xi and (= xi) £ C[ There exist

xi]
Pn+l
Py < Py < ses and & > 0 such that if z, = Z: 8, x, then
i=p +1
n
mn
1[z [} > 8 for n = 142y sus o |l E:z 11 is bounded in m since

n=1
Pm+l

(ai ) e B x, 1’ and Z Z 8, X Therefore (zi) is at
i :

i=pl+1 174

least 1-boundedly complete since (z ) € B[ and (zi) £ C[z 7*
14 .

7 ]
Also by Proposition 3.10 (zi) is less than or equal to k-boundedly
complete; If (zi) is strictly less than k-boundedly complete we
are done, If not we can use (1) to get (zni) (k-1)-boundedly -
complete for k > 2., (2) is now proved. Also,.the construction

of (zi) 1s sufficlent tq prove tﬁe first statement in (3).

Now assume (zi) is l-boundedly complete and ]lzill >6>0

n
for some & and all i, Also assume || E: [ is bounded in n,
i=l
Let (z_ ) be a proper subsequence of (z,) and (z_ ) the .: .
ni i mi

complementary sequence of‘&h). Assume (zn ) is l-boundedly

. . i 1
complete, Let (a_ z_ ) & B. put (a_ z o Th

P ) oy By [z, ] By ni) # [z, 1° s

b 1
B c o (a z )e Therefore there is an « and
(23]~ "Tz,] et

(cizi) £ C[zi] such that (zi) = a(anizni) + <cizi)’ singe



28
(zi) € B[z 7 But c; approaches O in 1 and by the above equa-
i

tion ¢, = l. This is a contradiction. Therefore (zn ) is
1 4

O—ﬁoundedly complete. This proves (3) and completes the proof
of the theoren.

Corollary 3.16. Let (x;) be a basic sequence and let it
be k-boundedly complete where k > 1. Then there 1s a block basic
sequence:(zi) of (xi) such that (zi) is l-bouadedly complete,

n
‘|:|(zi“ > 6> 0 for some & and &1l 4, “izlzi“ is bounded in n,
and (zni) is O-boundedly complete where (zni) is a proper
subéequence of (zi);

This corollary follows directly from (2) and (3) of the

preceding theorem,

Corollary 3.17., Let (xi) be & shrinking basic sequence.
If ord ([xi]) = n > 0 then there 1s a block basic sequence (zi)
of (x,) such that ord ([z,]) = 1 and ord ([z_ ]) = 0 1f (z_ ) is

i 1 n, ng
8 proper subsequence of (zi).

Proof of corollary., By Theorem 3.7 (xi) is n~boundedly
complete. We get (zi) from the preceding corollary, and note
that zy
again, we complete the proof of the corollary.

is O-shrinking by Proposition 3.10. Using Theorem 3.7

‘We have been able to reduce the mshrinking order of a non-
shrinking basis to 1 (Theorem 3.1l), and to reduce the boundedly

&omplete order of & non~boundedly complete basis to 1



(Theorem %,1%). The next theorem deals with a basic sequence
(xi) which is l-shrinking and i-boundedly complete. It is the

last result we need in order to show that 1f ord ([xi]) =n>0

then ord ([zi]) = 1, for (zi) which is some block basic sequence
of (xi). This last result follows the rext theorem.

Theorem 3.18, Let (xi) be basic. If (xi) is l-shrinking

and l-boundedly complete, therg is a block basic sequence (zi)
of (xi) suck that ord ([zi]) =1 (i.e. (zi) is 1l-shrinking and
O-boundedly complete or (zi) is O=-shrinking and l-boundedly
complete). |

Eroof of theorem. Let (z;) be a block basic sequence as
described in Corollary 3.,16. If (zi) is O-shrinking we are done.
If not then (zi) is 1-shrinking so there is an f [zi]* which
is not shrinking on [zi]. Therefore by Lemma 3.9 there exist

a
P; <4 < P,y < a4, eo. such that [If[[zi]izp [| > & > 0 for some
n

6« Therefore the proper subsequence ZP ’
1

Z .1 *ee By 12 eees OFf (zi) is l-shrinking. By Corollary 3.16

Z L N Z ,Z 1]
Py L 1 P2
this proper subsequence is C-boundedly complete. This proves the

theoren,

Theorem 3.19, Let (xi) be a basic sequence and let

ord ([xi]) =n > 0, We have the following:

(1) There is a block basic sequence (zi) of (xi)

such that ord ([zi]) = 1,

(2) If in (1) (zi) is shrinking then we can obtain
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a baslc sequence (yi) from (zi) in such a way that [yij = [zi]
and (yi) is boundedly complete.
(3) If in (1) (zi) is boundedly complete then we can
obtain a basilc sequence (yi) from (zi) such that [yi] = [zi] and

(yi) is shrinking.

Proof of theorem. Let (xi) be k-shrinking and q-boundedly
complete. If k = b or 4 = O we have (1) by Corollary 3.1l4 or
Corollary 3.l6. If not then by Theorem 3.1l we can find =z block
basic sequence (yli) of (xi) such that (yli) is l-shrinking. If
(yli) is O-boundedly complete we are done. If not then by
Theorem 3.15 we can fiﬁd a block basic aequeﬁce (yZi) of (yli)
such that (yZi) is l-boundedly complete., If (yZi) is8 O-shrinking
we are done. .If not (yZi) is l-shrinking and l-boundedly complete,
80 by Theorem 3.18 there is & block basic sequence (yBi) of (yZi)
such that ord ;[y3i]) = 1, This prcves (1).

If we assume the hypothesis in (2) then (zi) is l-boundedly
complete. By Corollary 3.l6 there is & block basic sequence
(yy) of (zi) such that Ilyi]l.> & > O for some & and all i,

n ’ .
] 1 2£yi[l is bounded in n. Singer [11, p. 354] cslls such basic
1= 'n

sequences type P seqQuences znd proves that if W, = z:yi then
i=1

[Wi] = [yi] and (wi) is a basic sequence. Singer also shows
. that there i1s an £ ¢ [wi]* such that f(wi) = 1, But since

llwill is bounded in 1, we have that £ is not shrinking on (w&ﬂ.
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Thus (wi) is not shrinking. Since || z:jill is bounded in n we
1=1

have that (yi) is l-boundedly complete and ord ([yi]) = 1, Thus,
ord ([wi]) = ord ([yi]) = 1, Since (wi) is not shrinking then
(wi) must be l-shrinking and O-boundedly complete. This proves
(1.
Now let (zi) be l-shrinking and boundedly complete. Let
> [zi]* and £ not shrinking on (zi). By Lemma 3.9 there are
P

n+l

Py < p2.< ssey (ai), 6 > O and M such that 1if y = 1] E:

a,z, ||
i:pn+1 171

then M >-llyil[ > 5 for all 1 and lf(yi)] > M for all i and some

N. Let gy € [yi]* and gj(yi) = 613' Since I*g; = fl[yi] we have

n
that || E:Sill is bounded in n., TFor (yi) with the above
i=1

properties Singer [11l, 356] uses the term P*. He shows that if

» Wl = yl’ W2 = yl—y21 w3 = YZ'YB, W}+ = ys-y)_‘.’ eee then (Wi) is

n
basic and [wi] = [yi]. Also || z:wi]l = l'Zyl;Yn[l which is

i=1

bounded in n, and [lwi[l4is bounded may from O by Lemma 2.9. Thus
(wi) € B[wi] and (wi) £ C[wi]. Thus (w;) is not boundedly complete.

Also ord ([wi]) = ord ([zi]) = 1, =0 (wi) is l-boundedly complete

and O-shrinking. This proves the theorem,

_ i
Corollary 3.20. If ord (X) = n > O then % contains a
|
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subspace Y which is separable, has a basis and ord (Y) = 1.

Proof of corollary. By Theorem 2.8 X contains a basic
sequence (xi) so0 that [xi] is not reflexive. By Theorem 3,2
n > ord ([xi]) > 1. By Theorem 3,19 there isia block basic
sequence (zi) of (xi) such that ord ([zi]) = 1. The proof is
completed by noting that a space with a basis is separable.

The following- corollary was proved in [7] in a different

manner.

Corollary 3.21., If ord (X) = n and X D H then H contains
an infinite dimensional subspace which is reflexive.

Proof of corollarye. If ord (H) = O then we are done., If

ord (H) = k > O then by the preceding theorem there is a subspace
Y of H such that ¥ = [xi] where (xi) is basic and ora ([#i]) = 1,
If (xi) is l-shrinking we apply Theorem 3.1l and see that the
corollary is proved. If (xi) is l-boundedly complete then we
apply Corollary 3.l6 and see that the theorem is proved.

We now conclude this chapter with the main theorem of this
work. |

Theorem 3,22, If ord (X) =n and k< n then there is &

subspace of Ak of X such that Ak is separable and ord (Ak) = k.

Proof of theorem. The case k = O is treated in the

preceding theorems The case k = 1 is treated in éofollary 3.20.

We will now show we can find A2 from which the construction
of A3,A4 cew A will be obvious. By Theorem 3.2 ord (%;

By Corollary 3.20 there is & separable subspace W of jg-such that

™

) = n-l,
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ord (W) = 1, By Lemma 2.16 there is an A2 in X such that

A .

2 X
vm— - Let Y =3 -——t
g A

TLemma 2,17 %-is isomorphic teo X Thus ord (i;ﬁ = n-2 and s0

W = Again by Theorem 3.2 ord (%? = n—2. By

A2 2
ord A2 = 2, Also sBince W is geparable and Al is separable we
have that A, is separable by Lemma 2.18. This completes the

2

proof of the theorem.
We note here that the case k = n in the above theorem was

proved by Singer in [10].



GENERALIZATIONS, EXAMPLES AND UNSOLVED PROBLEMS

We can ask which of the results in Chapt;r III that deal
with bases can be generalized to Markushevich Bases, which we
will now define [1].

Definition 4.1. We say (x,) is a Markushevich basis for
X if'[xi] = X, there exist biorthognal functionals (fi) of (xi)
and (fi) is total on X (i.e. if x € X and £f,(x) = 0 for all i
then x = 0), Clearly a basis is a Markushevich basis.

A pnatural generalization of k=shrinking for Markushevich
bases would be as follows:

Definition 4.2. We say the Mérkushevich basis (x,;) is
k-shrinking if the codimension of [fi] in [xi]* is k.

We will now give some background to justify a definition
of k-boundedly compiete for Markushevich bases.

Proposition 4.3. If (x;) is a Markushevich basis for X
then (fi) is a Markushevich basis for [fi].

Proof of proposition. For x € X we define ¢(x) to be a

linear functional on [fi] by (p(x))f = £(x) where f ¢ [fi].
Clearly |lo(x)Il < IlxI| so o(x) e [£,]*. Also (p(x;)) are the
biorthognal functionals of (fi)‘ Thus we need only show that
&m(xi)) is total on [fi]. Let f ¢ [fi] and assume (@(xi))f = O,
Thus f(xi) = O for all i so £ 458 O on X so f = O.

34
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We have the following theorem [10].

Proposition 4.4, Let (x;) be a basis for X. (x;) is
k-boundedly complete if and only if (fi) is k=-shrinking, and
(xi) is k-shrinking if and only if (fi) ié k-boundedly complete.

We can now define k-boundedly complete for a Markushevich
basis.

Definition 4,5. A Markushevich basis (#i) is k-boundedly
complete if (fi) is k=shrinking.

By Proposition 4.4 this definition corresponds to
Definition 3.6 in the case where the Markushevich basis (xi) is
a basis,

We canigeneralize Theorem 3,7 to include Markushevich bases
with the help of the following lemma.

Lemma 4.6, Lét Hc X* and H total over X. Let ¢ map X
into H* by (p(x))(f) = f(x) for x € X and f ¢ H{ Then ord (X) = n
if and only if the codimension, kl’ of H in X* is finite and the
codimension, k,, of @(X) in H* is finite and k, + k, = n,

Proof of lemma. Assume ord (X) = n. Since H is total over
X and (p{(X)) is total over H we have that k, and k, are finite

1

and k ® ... ®Ff

10 K

< n[10]. Let X* =H & f Let

2 o1 Ok, °

1l

*x %K =
X011%X0pr ees X € X** and in(H) = 0 and

1
.(foj) = 6.. for i, j = 1q2g eee kK

x Let

l.

* = ¥ * v =
H p(X) @ Yop © «-- © yOkz. Let yo; & X** and inIH Yo

and §Oi(f0j) = 0, for 1,5 = 1,2, «.o k

i

o We will show
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) is independent of X. Assume

(o X020 =v X1 Vo2 r == ok,

kl k2 k2

Xa.x A E B.¥-. = x € X. But then x|H = Z B.¥n: € @(X).

jo1 1 oi 121 i“oi 121 ivoi

Since (yOl.yozg-... yoke) is independent of ¢(X) we have By = O
k1

Since E:aix = Oon H and H is total then

for i = 1’2’ ese K .
i=1 * &

2.

x = 0. Thus a; = 0 for i = 1,2, ... k

N , since (xOl’xOZ’ coe X )

1

are linearly independent. Thus (x01,x02, coe kai’yOl'yOZ’ cee yOka)

® x ® ... & x

] : * k
is independent of X, Thus X 2 Xe Xo1 02

oy
Okl 0l

® Yoo © c-0 @ yOka' Let F € X**, Let F|H = ¢(x) +

k, ks

;Z;Biin' F-(x + ;Z;Biin) = 0 on H so there exist Gps8oy eee O
k k

1

2 1
such that F-(x + .E:ﬁiin) = Loa;Xo. Thus F ¢ X @ X451 ® .o X0k
i=l i=l 1
- - o - -
® Yo1 @ o0 @ yOka and X** = X @ Xo1 @ X0 ® .00 O kal @ Yo1 @ Yoz

® ... ® §Ok2‘ Therefore kl + k2 = n.

The proof of the converse is the same,
Theorem 4.7, Let (xi) be a Markushevich basis for X.
Ord (X) = n if and only if (x;) is k, -shrinking and k,~boundedly

complete where kl + ka = N
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Proof of theorem. By the previous theorem, since [fi]'is
total on X we need only show that (xi) is ka-boundedly complete
if and only if the codimension of @(X) in [f,]* is k,, where ¢
is as defined in the previous theorem. (xi) is k,-boundedly
.complete if énd only if [m(xi)] has codimension k, in [fi]*.

But [¢(xi)] = ¢[X] and this completes the proof.

The following lemma gives a set of sufficient conditions
for a basic sequence to be l-boundedly complete., Thus if (xi)
is a basic shrinking sequence and satisfies the conditions of the
lemma; then ord ([xi]) = 1,

Lemma 4.8. Let (x;) be a basic sequence, and let
llxill > 6> 0 for some & and all i. (xi) is l-boundedly complete
if the following conditions are satisfied:

n

1) 11 inll < M for all n and some M.
i=1

n

(2) 1If || z:a.x.ll is bounded in n then (a.) is a
i=1 1 1 lv

Cauchy sequence.
: n

(3) If || z:aixill is bounded in n and if the
i=1
n
segquence (ai) approaches O then E:aixi converges in n.
i=l

Proof of lemma. By (1) (x;) € Bry ] and since
i

| Hxs 11 > 8> 0, (x;) £ c[xi]. We will show that
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B = C ® (x,) and this will complete the proof. Let
L [x,] i

xi]

(aixi) belong to B[x 3¢ By (2) there exists an a such that
i

(ai) approaches a. By (3) ((ai-a)xi) € C[xij and

(aixi) = ((ai-a)xi) + a(xi). Thus B[xi] = C[xi] ® (xi).

Corollary 4.8. If (x;) is basic, O-shrinking and satisfies
conditions (1), (2) and (3) of the above lemma then ord ([xi]) = 1,
The space which started the study of quasi-reflexive spaces
is the James space denoted by J [8].
| Definition 4,10, Let J consist of those sequences (ai).
n

-a, )2) is finite where

which approach O and for which sup ( z:(a
: i=1 34 i

the supremum is taken over all sequences such that
P, <q <P, <q,< Py eee o The norm of (ai) is the supremum
given above, If x, denotes the element of J which has 1 in the

ith

place and O elsewhere then (xi) is a basis for J. R. C. James
shows that (xi) is shrinking and satisfies conditions (1), (2) and
(3) of Lemma 4.8, Thus ord (J) = 1, Also if (f,) are the
biorthognal functionals of (xi) then J* = [fi] since (xi) is
shrinking and by Theorem 4.4 (fi) is boundedly complete and
l-shrinking.

We remark here that if Jp consists of those sequences (ai)

as defined above except with the norm

1

n
Il(ai)ll = sup ( z:la -8 lp)p then J_ is a Banach space and
j=1 47 Pi P
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ord (Jp) = 1l, This last statement is proved exactly the same
way R. C. James proved ord (J) = 1 [8].
Since (xi) is a basis of type P (see the froof of part (2)
of Theorem 3.19) of Jp then (yi) is basic, boundedly complete,

*

n
and (y,) = J_ where y_ = sz.. We now computeithe'norm of
. i Y n 3=1 T N

Loy, dagy, - (Z e v (Z e (323)

j=2 J

1

Thus IIZ;iyill = sup ( Z;lap + apj+l + eoe aqj-l'p)p where the

supremum is taken over all sequences Py < Q) < Po <‘q2 < p3 eee o

If X=H @® Y then %-is isomorphic to Y. Thus by Theorem 3.2,

ord (X) = n if and only if ord (H) + ord (Y¥) = n. Since we have
a quasi-reflexive space of order 1 we can get quasi-reflexivel
spaces of all orders simply by taking direct sums.

We conclude this work by listing some unsolved problems
which are suggested by the results found here.

"A) If (xi) is a k-boundedly complete basis, can we find
block bases of (xi) which are boundedly complete of all orders
less than k, as we can do in the k-shrinking case?

B) If (xi) is basic and ord [xi] =n cﬁn we find a block
_basic sequence (zi) of (xi) such that ord [zi] = k for each

k < n?
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A negative answer to A would imply a negative answer to B,
whereas a positive answer to A would go a long way in providing
a positive answer to B. A positive answer to B would go far in
solving the following problen,

c) 1If (xi) is basic and m-shrinking and n-boundedly
complete, can we find a block basic séquence (zi) of (xi) such

that 2z, is k=-shrinking and g-boundedly conmplete for any k and q

i
less than or equal to A and n respectively?

Theorem 3,11 answers C when n = O,

D) Can we prove any of the theorems in Chapter 3 dealing
with block bases in the more general setting of block Markushevich
bases?

E) Being able to find quasi~reflexive subspaces of all
orders less than the order of fhe space suggests the question as
to whether we can project onto any of these subspaces. In
particular do all quasi~reflexive spaces of order n contain a-
quasi~-reflexive subspace of order n, which is the direct sum of
n quasi-reflexive spaces of order 1? A positive answer to this
question would make the proof of Theorem 3.22 trival. The author
has not even been able to construct a quasi-reflexive space of
order n > 2 in which there is not an obvious projection onto
subspaces of order 1,

F) Is there a quasi-reflexive space of order n in which
there is not a projection onto a separable quasi-reflexive space
of'order n?

G) What does the norm in Jp* look like?
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