
This dissertation has been 
microfilmed exactly as received 69-4982

STERNBACH, Leonard Paul, 1943- 
BASES AND QUASI-REFLEXIVE SPACES.

The Ohio State U niversity, Ph.D., 1968 
M athematics

University Microfilms, Inc., Ann Arbor, Michigan



BASES AND QUASI-REFLEXIVE SPACES

DISSERTATION

Presented in Partial Fulfillment of the, Requirements for 
the Degree Doctor of Philosophy in the Graduate 

School of The Ohio State University

By
Leonard Sternbach, B.A., M.S.

* * * * * *

The Ohio State University 1968 |

Approved by 

Adviser
Department of Mathematics



ACKNOWLEDGMENT 
I would like to thank my adviser, Dr. David Dean, for his 

help and encouragement. I would also like to acknowledge the 
help of Dr. William Davis.

This work was done partially under National Science 
Foundation Grant —  GP 9037*

ii



VITA

February 2k, 19^3 * • • • Born —  Brooklyn, New York
196^ • • • • B.A., Brooklyn College, Brooklyn, New York
I96IJ—1966 • • . • Teaching Assistant, Department of Mathematics,

The Ohio State University, Columbus, Ohio*
1966 • • • •  M.S., The Ohio State University, Columbus,

Ohio
1966-1968 • • • • Teaching Assistant, Department of Mathematics,

The Ohio State University, Columbus, Ohio

FIELDS OF STUDY

Major Field:
Studies in Analysis

Studies in Functional Analysis

Mathematics
Professors F. Carroll,
P. Reichelderfer and B. BajsanskiIIProfessors D.i Dean, W. Davis

iii



CONTENTS

Page
ACKNOWLEDGMENTS...........................................  ii
V I T A ....................................................  ill
INTRODUCTION............................................. 1
NOTATION, DEFINITIONS, AND WELL-KNOWN THEOREMS..............  3
SUBSPACES OF QUASI-REFLEXIVE SPACES.........................  11
GENERALIZATIONS, EXAMPLES AND UNSOLVED PROBLEMS..............  3̂

iv



INTRODUCTION

In £2] Civin and Yood introduced the notion of a quasi
reflexive space. We say a Banach space X is quasi-reflexive of 
order n if the natural embedding of X into its second conjugate 
has codimension n (written ord (X) = n). A space with this 
property had been introduced earlier by James [8]. In their 
paper Civin and Yood proved the following important theorem:
If ord (X) ** n and if Y is a subspace of X then ord (X) =

respect to Y. Thus, if ord (X) = n then all subspaces of X are 
quasi-reflexive of order k where k < n. The main theorem of this 
work, Theorem 3*22, states that if ord (X) = n then X contains 
subspaces of all orders less than n. The proof of Theorem 3*22 
follows quickly once we show that if ord (X) = n > 0 then X 
contains a subspace Y such that ord (Y) = 1. In order to show 
this, we use a result of Pelczynski £9] which states that every 
non-reflexive space X (in particular assume ord (X) = n > 0) 
contains a non-reflexive subspace Y with a basis 
(so n > ord (Y) > l). We then apply basis theory techniques to

Singer [10] introduces the notions of a basic sequence 
being k-shrlhking or k-boundedly complete, which are generaliza
tions of the notions of a basic sequence being shrinking or

1

ord where y is the quotient space of X with

Y.
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boundedly complete respectively (i.e. O-shrinking corresponds to
shrinking and O-boundedly complete corresponds to boundedly

\  /  \ ° °  complete}. Singer shows that if I has a basis 'then
ord (Y) = m if and only if "̂3 ^-shrinking ^nd Q“boundedly
complete, where k + q *= m. This generalizes James' result [8]
that Y is reflexive if and only if is shrinking and
boundedly complete. We will show (Theorem 3*19) that if (x̂ )̂ °=.̂
is k-shrinking and q-boundedly complete where k + q > 0 then there

/ \°° / \°° / \°° is a block basic sequence Cz* }, . of (x. ). - such that (z.}. -i i=l i i=l i i=l
00is 1-shrinking and O_bovndedly complete or Is O-shrinking

and 1-boundedly complete. This shows that ord (Cz-j_̂ i-l̂  =
Chapter 3 contains the proof of the main theorem, Theorem 3»2§ 
in a manner as indicated above.

In Chapter 2 we give some standard information and defini
tions dealing mostly with basis and projection theory. There is 
nothing essentially new in this chapter. Lemma 2.10, Proposition 
2.14 and Proposition 2.24 which are proved in Chapter 2 could 
not be found in the literature by the author, but are most likely 
known results to those who have worked with bases and projections.

In Chapter 4 we generalize the notions of k-shrinking and 
k-boundedly complete to include Markushevich bases. We give 
some examples of quasi-reflexive spaces, and finally conclude 
with some problems which may lead to further research in quasi- 
reflexive spaces.

1



NOTATION, DEFINITIONS AND WELL-KNOWN THEOREMS

This section includes standard information and notation 
which will be used throughout this work.

Notation 2.1. The letters X, Y, and H will always denote 
Banach spaces. The conjugate (dual) of X we write as X* and the 
second conjugate as X**.

Notation 2.2. There is a natural map Q, from X into X**
defined by (Q(x))f ** f(x) where x e X and f e X*. We will write
Q(x) simply as x, and the distinction between x and Q(x) will be
obvious from the context. We call Q(X) the natural embedding of
X in X**.

Notation When we say A is a subspace of X we will
always take A to be closed. If X o T and f e X* then f )Y e Y*,
where (f|Y)(y) *s f(y) for all y e Y. We call f[Y the restriction
Of f to Y. oo

yDefinition 2.4. By y = L, y. , where y. e Y for all i , we
±=1 1 1n n

mean X  y. converges to y with n, in the norm (strong) topology i=l 1
?! OO

of Y. We will write X  y. simply as X  y., and will include the
i=l 1 1

limits of summation only for finite sums or where the index of
summation is not clear.
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Notation 2.5. We will write sequences âî i=:i as
Notation 2.6. If (x^) c X, we denote the smallest suhspace

of X containing (x^) by [x^].
We now give some results from basis theory.

Definition 2.7. A sequence (x.̂ ) c X Is a basis for X if 
for each x e X there is a unique sequence (a^) such that

x = X s^x^. If is a basis for [x^] we say (x^) is a basic

Y’Pn+^
sequence.' If p. < p_ < ... and z * L  b..x. , where z_ / QL c. n .  - I I  ni=p +1n
for all n, we say z^ is a block basic sequence of (x^). (The fact

that (z^) is basic will follow from Lemma 2.9* given later.)

Pelczynski [9] has proved the following theorem.

Theorem 2.8. If X is not reflexive then X contains a basic 

sequence (x^) such that [x.^] Is not reflexive.

The next lemma is an important characterization of basic 
sequences.

Lemma 2.9. (x^) c X, where x^ 0 for all i, is a basic
n+m

sequence if and only if there is a K such that K| J X  a .x. 1 | >
i=l

m

|| X a.x.j| for all positive integers n and m and for all choices i=l 1 :L
, m

of a^. Also If (x^) is basic then 2K| I X aix± | J > 11 X a±x± I I
i=n

for m > n, [12, p. 211].



Lemma 2.10. Let (x^ ) be a basic sequence and let

P +1m r n q

X  f X  aixi) converges in m then X  a^x^ 
n-1 i=p +1 1 i=l

P-i ^ Pp • • • • If “ -•* ,J-rp +1*n
U i n r j .

in <t* Also if | | I ( i  a^x_^^ | | is bounded in m
n =1 i=Pn+l

m ^nKL
converges

q
then || Z  a.x. | | is bounded in q, (i.e. bounded in blocks implies 

1=1 1 x
bounded).

Proof of lemma. Let k  < q. Let p < k < q < p .  We can ■ ■ — . iiim —  — * * n — m
q pm k-1 pm

write a.x. - X  a.x. - ^  a.x.. Let K be as in• . X «L • 1 1 • >L !L j M 1 ^i=k i=pn i=pn i=q+l

Lemma 2.9* Ihe conclusion follows simply by noting that
k-1 pm pm pm

I | Y I I < 2K| | Y a^x^ | J and j | Y a^.^ | | < 2K| | Y a.jX.̂  |
i=pn i=Pn i=q+l " i=pn

Notation 2.11. Let (x.) be basic and let f. e [x. ]* and3- j i
f^.(x^) = We call (fj) "the biorthognal functionals of (x^).
Whenever we are given a basic sequence (x^), and we write
we will take (f.) to be the biorthognal functionals of (x.).J 1

Lemma 2.12. If (x^) is a basis for X then (f^) is basic,
[12, p. 210].

Definition 2.13. For (y^) c: Y* we say (y^) converges weak 
star to y q if (yi(x)) approaches y^(x) for all x e Y. If



n
X y. converges in n weak star to yn we write X y. » yA. i=l u i o

Proposition 2.1k. If (x^) is a basic sequence and 
*

f e [x.]* than f * I f(x..f. and f e [f.] if and only if1 1 . i X
*

X f(x^)f^ =s X f(x^)f^. Also if we define a new norm | | | | | |
* n

on [x.]* by |||X f (x.)f.||| « sup || X  f (x. )f.J| where theJ* X X • X X1=1
supremum is over all n, then the new norm is equivalent to the 
old norm.

Proof of proposition. The only non-trival part of the 
proposition is proving the equivalence of the norms. (The first

n
part follows simply by evaluating X f(x.)f. at X a.x..) Since

. £ _ 1  x i  i i
*

X f(x. )f. * f for all f e [x. ]* we have that |||f||( > ||f||. Let KjL jL "
m

be as in Lemma 2.9* and let | |Xa.x. || < 1 so || X a.x.|| < K.i i i=1 i i
m m m

K î 1f(aCi)fi)(^ai*i)l = X j ^ ^ i ^ i X ^ v O 1 = 1 (f aiXiX
m

< K| | f | | . Therefore K| |f | | > | | X f I for
i=l
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all m which shows K||f|| > I I [f I I I* Thus the two norms are 

equivalent.

We now consider quotient spaces.

Definition 2.11?. Let X 3  Y. We write the quotient space
X Xof X with respect to Y as The elements of ^  are the cosets

x + Y where x e X and x + Y = (w:w = x + y for y e Y } . We define

||x + Y ]| = inf ||x + yi | where the infimum is taken over all
Xy e Y. With this norm ^  is a Banach space [4, p. 6],

Civin and Yood use the following three theorems in [2].
XLemma 2.16. If H a  Y t h e n  there is a closed subspace A of X 

such that H = y*

Lemma 2.18. If —  Is separable and Y is separable then X is 

separable.

We will need some theorems concerning direct sums and projec
tions.

Definition 2.19. Let and be contained in X, and for

each x e X there is a unique h^ e and h^ e such that

x = h^ + h^. We say is a direct factor of X and write

X = © H^. If we define an operator P from X to X by P(h^ + h^) = h^

then P^ = p, and we call P a projection of X onto along H0 . P is 

bounded in norm [5» p. 70]. Conversly if P is a bounded linear 
operator from X to X and if p 2 = p then X = p(X) © (I-P)(X) where 

I is the identity map from X to X.

Notation 2.20. By H © x where x e X, H c: X and x jL H we mean

Lemma 2.17. _ is isomorphic to jj where X 3  H 3  Y.
X
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the direct sum of H and the one dimensional subspace [x]„

Definition 2.21, We say (y^y,, ... y^) is independent of 
n

H if Lk aiyi e H implies = 0 for i = 1,2, .. >. n. Thus if 

(y1 iy2 » yn) is independent of H we have

Definition 2.22. Let X = © H2. the dimension of
is n we say has codimension n in X. has codimension n in
X if and only if any set of n + 1 elements in X is not independent 
of H1 , and if there exist a set of n elements (y^,y2 ••• yn) which 
is independent of H^, in which case X » © y^ © y2 © ... © yn

Lemma 2.25. Let P be a projection from X onto along H2»

X defined by making g(H2> = 0. Then ||g|| < l|f|| | |P| | .
Proof of lemma. Since J Jh^ + h 2 J | < 1  implies J |h1 lI < |J P| J 

for all h1 e ^  and h 2 e H2 , we have ||g|| = s u p l g C ^  + h2 )| =

= suplgCh^)! = sup J f ( h ^ ) |  <  J J f  J | J | P| | where the supremum is 
taken over all h^ e and h2 e H 2  w h e r e  | |h^ + h2 J J <  1.

Pro-position 2.2*f. H has codimension n in X if and only if
n  - 1H = gĵ  (0) where (g-L,g2 , ... gn ) is a linearly independent 

set in X*.

[H,y1 ,y2, ... yn3 = H © © y2 © ... © y.
(yi,y2 , ... yn) is independent of H'then 
(yn »yP + a_yn + h5,y + a,y- + h.x, ... , ;

[10]

Thus X = H1 © H2» Let f e and let g be the extension of f to



Proof of -proposition. Let X = H © y.̂  © y2 © ••• ® 7n«
Define g. by g .(y.) = 6,. and g.(H) = 0 for i,j = 1,2, ... n. ByJ J 1 1J J

n -1the preceding theorem (gn,g5 ... g ) c: X*. Clearly H = D g. (0)j. d n i=l
and Cg1 ,g2» ••• Sn) 1® a linearly independent set.

Now assume (g^,g0, ... g^) is a linearly independent set. 
There exist y^ e X such that g^(y^) = 6̂ . [*t, p. 6]. Define P 

n
by p(x) = X  g.(x)y. for all x e X. P is a projection from X onto 

i=l 1 1
n -1[y, ,y,j, ... y ] and (I-P) is a projection from X onto fl g. (0). 

x i=l X
Theorem 2.25. Let H have codimension n in X. There is a 

projection P^ from X onto H such that 1 |P̂ | | < 2 .n + 7) for all 
T] > 0 [6].

Proof of theorem. By proposition 2.2^, we can find
n -18̂1 ,S2* *** Sn^ C= X* such that 0 (0) = H and (g-L»g2* ... gn)

are linearly independent. Fix 6 > 0. Without loss of generality 
we can assume that ||g^|| = 1. Thus there is a y^ e X such that 
®l^yl^ = ^ anc* I Î iI I ^ 1 + Define the projection from 
X onto [y1] by Q-ĵ Cx) = g1(x)y1 for all x e X.
I 1 Qi 1 I ^ I Igjl I I ly-J | < 1 + 6. Let P1 = I1~ where is the 
identity map from X to X. P1 is a projection from X onto g1”1(0) 
and 1 IP̂ I 1 < 2 '+ 6. Since g^ and g2 are linearly independent, 
then g2Jg1~1 (o) ^ 0 [5» p. ^21]. Let g2 lg-L_1 (o) = gj. ■ We can 
assume without loss of generality that | |g~| | = 1. Thus there is

a
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a y2 e gi 1( o)  such that I|y2 l| < 1  + 6 and g2 (y2 ) = 1 .  We define

a projection Q2 from g1 1 ( o) to [y2 ] by Q2 (x) - g2 (x)y2 for all

x e g^ ^(o). Thus | |Q2 I | < 1 + 6. Therefore, for the projection

-1 2 -1 I - Q„ from gn (o) onto fl g. (0), where I? is the identity
1 i=l 1

map from g^ 1 (0) to g^ 'L(o), we have ||I2 - Q2 [| < 2 + 6. Let

P2 = I2 - Q2 . Thus P ^ i  is a projection from X onto 

2 -1 2fl g^ (o) and | iP^^l^ I < (2 + 6) . In the same manner we can 
i=l

-1 k -1construct E , a projection from fl g. (0) onto H g. (o) for xC • . X . - Xi<=i 1=1

k =  2,3, ... n, such that | | P. | | < 2  + 6. Thus if P = P P , . . . P nk n n-1 1
n

then P is a projection from X onto fl g. (o) and | | p| | < (2 + 6) .
i=l 1

Since 6 can be taken as small as desired, we have proved the 

theorem.

Notation 2.26. We say (a ) is a proper subsequence of
i

(a^) if infinitely many integers are not contained in (n^). If

(hu ) is the subsequence of the integers obtained from those integers

not contained in (n.), then we say (a ) is the complementary
i

subsequence of (a ). In the above i runs through the positive
i

integers only.



SUBSPACES OP QUASI-PEFLEXIVE SPACES

We define a quasi-reflexive space and then give known

theorems which we will need on such spaces.

Definition 5.1. If the codimension (see Definition 2.22) 

of X in X** (see Notation 2.1) under the natural embedding 

(see Notation 2.2) is finite we say X is quasi-reflexive. If 

the codimension is n we say X is quasi-reflexive of order n, and 

write this as ord (X) = n.

Clearly ord (X) = 0 if and only if X is reflexive.

Civin and Yood [2] have proved the following two important 

theorems on quasi-reflexive spaces.

Theorem 5.2. If ord (X) = n and if Y is a subspace (see

Notation 2.3) of X then ord (Y) is less than or equal to n and

ord (X) = ord (Y) + ord (see Definition 2.15).

Theorem 5.5. If ord (X) = n, then there is a reflexive
Xsubspace Y, of X such that y  -̂s separable.

These two theorems imply that if ord (X) = n then there is 

a separable quotient space of X which is quasi-reflexive of order n. 

Cuttle [3] has proved the following proposition.

Proposition 5.^. If ord (X) = n then ord (X*) = n.

I. Singer ClO] introduces the notions of k-shrinking and 

k-boundedly complete for basic sequences (see Definition 2.7).
11
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Theorems dealing with these two notions will lead directly to the 
main theorem of this work (Theorem 3.22).

Definition The basic sequence (x^) (see Notation 2*5)
is k-shrinking if the codimension of Ef.j_] (see Notation 2.6, 
Notation 2.11 and Lemma 2.12) in Ex.̂ ]* is k.

We note that (x^) is O-shrinking implies that Ef^] = Ex.j]*.
We say (x^ is shrinking E^» P» 70] if I If Î xn ’xn+i» •••311 (see 
Notation 2.3) approaches 0 in n for all f in [x^]*. (x^) is
O-shrinking if and only if (x^) is shrinking E^i P» 70].

Definition 5.6. To define k-boundedly complete we consider
the set Bj*x -j of sequences (a^x^) where (x^) is a basic sequence 

n
and |J X  a.x. | J is bounded in n. Let Cr denote the subset of 

i=l LxiJ
n

Bp consisting of those sequences (a.x. ) such that X  a.x.LxiJ i i i=i i i

converges in n. We note that Bj-x -j may be considered a vector
space in the natural way. If there are k sequences (a. .x. )*? ^13 i i=l
for j = 1,2 , ... k which belong to Bj-x  ̂such that

B[x ] “ CEx ] ® âilxi^ ® âi2xi^ ® ••• ® âikxi^ (®ee Defini
tion 2.19 and Notation 2.20), then we say (x.̂ ) is k-boundedly 
complete. Thus Cj-x -j has codimension k in B^x  ̂if and only if

(x^) is k-boundedly complete.
A basic sequence (x^) is said to be boundedly complete



n n 13

[4-, p. 693 if whenever 1 | L, a.x. | [ is bounded in n then
1*1

converges in n.
Thus, (x^) is O-boundedly complete if and only if (x^) is 

boundedly complete*
James [8] proved that if (x^) is a basic sequence then 

[x^] is reflexive if and only if (x^) is shrinking and boundedly 
complete. Singer [10] generalizes this result in the following 
theorem*.

Theorem 5.7. Let (x^) be a basic sequence. Ord ([x^]) = n 
if and only if Cx^) is k-^-shrinking and kg-boundedly complete 
where k^ + kg =

Definition 3.8* Let (x^ be basic in X. f in X* is said 
to be shrinking on (x.^ if | If | [xn»xn+i , ...]|! approaches 0 in n.

Thus (x^) is shrinking if and only if f e [x^]* Implies f 
is shrinking on (x^).

Lemma Let (x^) be a basis for X and let f e X*. The
following three statements are equivalent:

(1) f is not shrinking on (x^)»
(2) f £  [f±].
(3) There exist p1 < p2 < p^ ... and T] > 0 such that

II

Proof of lemma. By Proposition 2.1 -̂ we oan write f * L> b^f^



where b^ = f (x^). If f e [f^3 then X  converges in n so

] 1 X  | approaches 0 in n. But this means
i=n 

||f|[xa,xQ+1, ... ,]|| approaches 0 in n, since
OO

X  bifiltxn>xn+l ’ •••3 * f H-Xn,acn+1* •••]* Thus implies (2), i=n
If- f j£ [f^] then there exists a 6 > 0 and p^ < 

pn+l
such that 11 X  b.f.II > 6, Thus there exist for each 

i=p +1 X X ■*n

n, X  sucb that J 1 X  i = ^ and

• ̂-iPn+l Y,Pn+1
L  b.f.)(Y n )l > 6. But J] L, a,11*.! I < 2K where'i=p +1 1 ai xi? i=p +1 1 1*n rn

K is as in Lemma 2.9. This shows (2) implies (3) where 7] = .
Clearly (3) implies (l) completing the proof of the lemma.
We now proceed to prove several theorems concerning the

notions of k-shrinking and k-boundedly complete. These theorems 
will enable us to obtain, from a quasi-reflexive space of order n, 
subspaces of lesser order.

Proposition 3.10. If (x^) is basic and (z^) is a block 
basic sequence of (x^) (see Definition 2.7) then:

(l) If (x^) is k-shrinking then (z^) is k-shrinking 
where k < k.



(2) If (x^) is k-boundedly complete then (z^) is 
k-boundedly complete where k < k.

pn+l '
Proof of urouosition- Let z s H  b.x. and z 0 for ■ *— " n . - i i ni-p^i

all n and for p^ < p2 < ..• .
Assume (x^) is k-shrinking. Therefore we can write 

Cx±]* = [f^] © fg^ © fQ2 © ... © f ^  (see Definitioh 3»5 and 
Definition 2*22). Let (g^) a [z^]* be the biorthognal functionals 
of (z^). We wish to show that the codimension of [g^] in [z^]* 
is less than or equal to k* We deny this by assuming 
(g01»S02<* *«• S0k+1) c [«±]* is independent of [g±]. Let gQi be 
a functional in [x.̂ ]* such that gQil[zi] » gQi for i = 1 ,2, ... k + 3 
Since has codimension k in [x^]* there exist a-poc^, ... ak+-j_»

k+1 k+1
not all zero, such that H  aj_SQi e Thus X  is shrinking

.1=1 ial

on (x^) (see Lemma 3«9 and Definition 3.8)» But this implies 
k+1 k+1
H a . gn. is shrinking on (z.). Thus I a g e [ g . ] where noti=l i 1 ici 1 1

all (a^,a2 » ••• zero. This is a contradiction and thus
(l) is proved.

How assume (x. ) is k-boundedly complete. Assume Br (s
o.definition 3*6) contains k + 1  elements (aij2i^i-l for

ee
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j = 1,2, ... k + 1, which, are independent of C ^  (see Defini
tion 2*21)* Let ( t,e ^ e  expansion of in
terms of (x1) (i.e. *" ’ CP11=

= allbPl>Cp1+ll= a2l \ +l By lemna 2-10’ Cold*i>r=l e B[=c±]
for j = 1*2, ... k + 1. Since C|-x -j has codimension k in B^x -j-»

i i i
k+1

there exist ... such that X (c.̂  ̂x^ ) e c[x ]̂ where

not all are zero (see Definition 2.22). Thus, we have 
k+1
X  a.(a. .z. ) s Or This contradicts the assumption that
j—2. « « J

(a. .z. ). _ are independent of Cr Therefore by Definition 2.22ij i i=l
the codimension of Cr in Br n is less than or equal to k<l*±l [Z±]
This proves (2).

We wish to show that if (x^) is basic and ord ([x^]) a n > 0 
then we can find a block basic sequence (z^) of (x^) which will 
reduce the shrinking order and the boundedly complete order of 
(x^) so that ord ([z^]) = 1 ('In other words so that (z^) is 
1-shrinking and O-boundedly complete or O-shrinking and
1-boundedly complete (see Theorem 3.7)).

The previous theorem shows that neither order will be 
increased by taking a block basis. The next theorem deals with 
reducing the shrinking order. The theorem after that will show
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that we can reduce the boundedly complete order.

Theorem 5.11. If (x^) Is a basic sequence and if (x^) is 
n-shrinking and if k < n then there is a block basic sequence 
(z^) of (x^) such that (zi) is k-shrinking.

To prove this theorem we first prove two lemmas.
Lemma 5.12. If (x^) is basic and foi*f02’ **" f0n e x̂i^*

C O  ^  — T

are independent of [f^] then 1 1 ^ xi^i=m ^ ^ > 6 > 0i=sl

for all m, j = lt2, ... n and some 6.
Proof of lemma. We will prove this lemma for j .** n. This

oo a-1 _
is obviously sufficient. Let Bm * X̂i-̂ isxm ^ ^ f0i^0 *̂ We deny

the conclusion of the lemma by assuming 1 Ifon1Bm iI approaches 0 
in m. Let 6 > 0. There is an M such that | ^ 6*

f Qi I ̂ Xi^i=jfl ** Sqi lor i as 1^2* ... n. If
n n n M-l
^ ai^0i ** ^ "tB.en X Z = Zi=l 1 1*1 1 Ui 1 1“x x i*l 1 U1 i=l 1 1

n
where 0j *  ̂Z “^oi) xj)* Thus ai “ a2 “ “ an = 0 since fQi

n
is Independent of [f.] (see Definition 2.22). Since Z a. g~. * 0

1 1*1 1 01

i plies a£ an ® w® have that e01’e02* *’* S0n ar®
n-1 _

linearly independent. By Proposition 2.2^, fl glj'(O) has
i*l 01
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codimension (n-l) in Lx^]”^ .  By Theorem 2*25, we can find

OQ
zl ,z2* *** zn-l e x̂I-̂ IsaM suclx "that there is a projection p,

oofrom oirto Bm  a-I-onS Cz _̂»z2 , *•• z -̂3 (see Definition 2,19)

such that 1 JfpJ J < 2n ^ Ml* Thus we have Cx^j^jyj “ ^  ®
• *. © zn_2, an<* 1^ I |b + z|| = 1 then | JbJ [ < 2n 1 + 1 where 
b e BM and z e [ z ^ ,  z ^ ] .  Since g01*g02* ... g ^ ^
vanish on B^ and are linearly independent on [x^]^^* follows 
that goi’®02’ *** ®On-l ĴCe H nearly independent on 
[z^,z2  ̂ ... zn_i3. Therefore there exist a^,a2, ... «n_^ such

n-l
that g0n(Zj) = ^ X  a^g0i^Zj for j = 1 ,2, ... n-l (i.e. some

linear combination of g ^  ®q2’ *** eOn-l nmst aSree with g^n on
n-l

-̂zl ’z2’ *̂n—1  ̂̂ * Bnt "" ^  ai®Oi)zj = ® for j = 1 ,2 , .*» n—1
• n-l

and (s0n “ J^aigOi)I:8M “ Son" 6ince S01 5 0 oa hi for
i « 1*2, ... n-l. Also llg0nU » ^ Therefore by

n-l
Lemma 2.25, 1  l(gQn - X “i^oi) I I < 6  a n d  I l P j l  I <  S 1 1 " 1  +  1 implyi=l

n-l n-l

^ ( e0n " ^ “i^i)^ “ ^ ( f0n “ ^ “^Oi^^i^isM^ < <2n 1 + 1 )6.

The natural projection P^ from [x^3 onto Cx^ ^ jj



M f W

fi.e. p;, ( X a.x.) w X a.x. ) has norm bounded in M by 2K where 
v “ vi«l 1 x/ i=M X

19

x . for J

n-l
K Is given in Lemma 2*9* lot *

n M-l
j » 1 ,2 , ... M-l. Let hn *» fn - X a. fn. - X p .f .. ThereforeOn On ial i Oi j=l •>

n-l

hOnICxi]iIl = 0 and h0n|[xi]i=M s ®0n " .J,aisOi* Ther*for*isl

1 Ihon 1 ̂xi]inM^ ̂ 1 + •L^5* Therefore by Lemma 2.22* since

IiP^II ^ we lave JllQn l1 < 2K(2n 1 + 1)6. Since 6 can be 

taken arbitrarily small we conclude that

fQn c [(f^),f0^,f02» ... ^on-l^‘ l̂̂ -s a contradiction and bo

the lemma is proved.
Lemma 2.15. Let (x^) be a baBic sequence in X and

11x^1| > 6 > 0 for some 5 and for all i. If Slf(x^)I converges
then f is shrinking on (x^). Thus if (xi) is a basic sequence
and |f(x^)l approaches 0 in i then there is a subsequence (x^ )
of (x.) such that f is shrinking on (x ).

1 ni

Proof of lemma. Let E|f(x^)| converge. Let f = E*a^f^
(see Definition 2.13 and Proposition 2.14). Let [1Sb^x^[| a 1.

Therefore, there is a K such that IJb^x^jl < 2K for all i. Thus
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■ v  < f  • '(.^ViX^Vi)1 - if( ^ v O i  s f j -i=n l=n i=n
m

for all n < m* Since X  |f(x.)| approaches 0 uniformly in n and
i=n 1 '

m, and uniformly for Eb^x^ such that ||Eb^x^|| ** 1 we conclude
m . n

that j | X â f.jJ 1 approaches 0 uniformly in n and n so I ai^i 
i»n i=l

converges in n* Therefore f e [f^] and thus by Lemma 3*9 £ is 
shrinking on Cx^).

Proof of theorem* By hypothesis there exist

f01’f02’ •** f0n e [xi]* BUCh that f01’f02’ •" f0n ar* 
independent of [f.j_] and [xi3* = ® foi ® f02 ® •** ® f0n*
We construct a block basic sequence (y.) (see Definition 2*7)3 !
of (x^) with the following properties: j

Cl) \  < i|yjI I < §  for all i.

(2) If0i (ynq+i)1 > 6 > 0 for i " *•* n ’
q = 1 ,2 , **» and some 6.

C3 ) I £q j Cynq+^) I ̂ for i = 1 ,2 , n , i j4 J,
and q — 1,2 , ••* *

We will show how y^ and y^ are constructed from which the 
construction of the rest of the sequence (y^) will be obvious1.

By Lemma 3*12, letting M = 1 there, we can find Ea^x^ and 6 > 0 
such that ljEa^JI a 1 , J f ( E a ^ ) J  = 0 for j - 2,3, ... a and
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> 6* There is an integer such that if

Ni
y- a Z a.x then y, satisfies (l), (2), and (3 ), Letting j s 2

and M = N- + 1 in Lemma J.12 we see that there is X  a.x. such 
^ i » N +1 1 1
CO 00

that li X  a.x.|| a l, |fn?f Z a.x )| > 6 and
i=lL+l 1 1 U^\l=N.+1 1 17
~ . . .

|fn Y  Z ajx.} | ~ for j a 1,3,4-, ... n. Therefore there isU3'iaN_+l x/ *

‘I
an N? such that if y, a Z a.x. then yp satisfies (l), (2)r

irfTj+l ^ .

and (3)« We now assume (y^) Is a block basic sequence of (x̂ ) 
with properties (l), (2), and (3). Let 1 < k < n. We consider 
a subsequence (z^) of (y^) consisting of the elements of the form 
/ \°°*̂ nq+i qaO w^ere ••• k (i.e, we take the first k elements

drop the next n-k elements, take the next k elements and
so on). We will show that (z.) is k-shrinking. Let g. e [z.]*,u J J ̂
g^Cz^) a 6.^ and “ e0i for 1 “ 1,2» •** n* i’or each
g e [z±]*, there is an f e D*^]* such that flCz^] a g. If

f s then * shrinking on [x^] (see Lemma 3«9) and thus f
is shrinking on [z±] so fl[z±] s Cg^]* By Lemma 3.13» since

OO OO

Z |fQ .(y . )J < Z for j » k + l,k + 2t ... n and forqal n*+i qai 2
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i a 1,2, ... k, we have fok+l,fOk+2* *** f0n 8X0 shrinl:illff on 
(zi) so g0k+1 Ŝ01j.+2T •••, g0n e Cgj]. If we can show that

®01’e02* *** ®0k are dndepen<te,nt °f tgj] we will have proved the 
theorem for 1 < k < n (see Definition 2.21). since then

[zi]* * [ei] ® *01 ® e02 ® *’• ® S0k‘ Let
is. is.
/ “is0i “ 8 s then = - _I «1=1 w i*=2

k

g0i + «•

Consider the subsequence (yi*yn+i*y2n+l of S is
shrinking on this subsequence and, by Lemma 3*13 and by (3) 
s02,s03 **• s0k aro a’Ls0 shrinking on it

CO OO

(i,e* ±̂ s0^ yni+l^ “ ^ ^ O j ^ n i + l ^  < ~ for  ̂“ 2’5, k)r 

But since IS^Cy^.^)! > 6 > 0 by (2), and since 1 |yni+1l I < \

by (l), we have that gQ1 is not shrinking on (y^ ̂  )”g1. Since 
the sum of shrinking functionals is shrinking then ** 0. In 
the same way a2 = « ... = 0. By Definition 2.21,
e01tS02’ *** s0k are ind6Pendent of C^]. Therefore Iz^] is 
k-shrinking* To complete the proof we have only to consider the

n _1 n+1
case k b 0* But D fi contains a non-zero element

i=l
z^, since the codimension of fl f^CO) D in

i=l i “
is at most n (see Proposition 2.24). In a similar way we can
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find z} m i21f0i (0) n ,'here ZJ * °* «■•"!»• «•

in the above proof [z^] is O-shrinking since ̂ q^Cz^] 5 0 for

i ** 1*2, ... n«
Corollary 5.14. If (x^) is a basis for X and if ord (X) a n 

and (x̂ ) is boundedly complete, then there is a block basic
sequence (ẑ ) of (x^) such that ord ([z^]) = k for k = 0,1,2, ... n.

Proof of corollary. By the preceding theorem, we can find 
a block basic sequence (z^) of (x^) such that (ẑ ) is k-shrinkingt 
since by Theorem 3»7 (x^) is n-shrinking. By Proposition 3*10,
(ẑ ) is O-boundedly complete. Thus by Theorem 3*7 ord ([z^]) « k.

The above corollary is the strongest result we have in the 
sense that it not only yields subspaces of all orders less than 
the order of the space, but it gives these subspaces a basis 
which is a block basic sequence of the original Bpace. In trying 
to reduce the boundedly complete order we can not show that we 
get all orders, less than the original order by using block 
bases. The next theorem does show however, that if the boundedly 
complete order Is positive we can always reduce that order to 1,

Theorem 3.15. Let (x̂ ) be a basic sequence and let (x^) be 
k-boundedly complete. Then we conclude the following:

(l) if k > 2 and 1|x^1| > 6 > 0 for all I and some 6
and if (a^x^) e Bj-̂  -j (see Definition 3*6), where a^ does not
approach 0 In i, then there is a subsequence (x ) of (x.) suchn ^  i
that (xq ) is (k-l) — boundedly complete.
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(2) if k > 1 then there Is a block basic sequence 
(z^) of (x^) such that (z^) is 1-boundedly complete.

(3) if k = 1 then there is a block basic sequence 
(z^) of such that lIz^Jl > 6 > 0 for some 6 and for all 1,

rn
and (z.) is 1-boundedly complete, where 1 J Z z j j is bounded in

1=1
n. Also if (z^) is 1-boundedly complete, ||z^|[ > 6 > 0 for

n
some 6 and for all 1 , and if (| Z z.[[ is bounded in n then (z )

1=1 1 ai
is O-boundedly complete where (z ) is any proper subsequence

nl
(see notation 2,2.6) of (z^), (We note that in this case

B[z1] “ °[zi] ® ^ i ^ -

Proof of theorem. Assume the hypothesis in (l). Since 
does not approach 0 in i , ^ c[|x ]• Thus we can write

B[x±] - °[^] ® (ailxi> ® (ai2xi} ® (ai3xi) * —  ® (aikxi>
n

where Since ]| Z aJLjx l̂ 1 bounded in n for

j = 1,2, ... k, and since llx^JJ > 6 for all i we have < M

for some M, i = 1,2, and j = 1,2, ... k (see lemma 2,9),
Thus there is a subsequence (a ,) of (a.,) such that a _n^i il n^l
approaches ^  ̂  0 in i. Since < M for i n 1,2, ..., and'
j « 1,2, ... k, then we can assume without loss of generality
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that (a .) approaches a. in ± for J ■ 2,3t ••• By Defini- 

i
tion 2.21 we can write

B[xi] “ C0 ±] 8 CailxlJ 8 (ai2x± “ ̂  allxi}

8 <ai3Xi " ̂  *3J.*L> 8 • "  8 <ai A  ‘ al^'i>-
aiBut a . - —**• a . approaches 0 in 1. Therefore we can write 

niJ ®1 “i3

h*±: ■ ° U 1] 8 W A 5 8 (ai2xi ) 8 8 (V i > ’

and assume without loss of generality that a . approaches 0 inn^ j
i for j a 2,5, a* Also without loss of generality we can

assume that ja .| < for all i and J = 2,5* ... k. Therefore 
ni3 2

m ....
X  a .x converges in ra for j = 2,5, •*. k. Thus by Defini- 
i-1 l*1 i
tion 2.21 we can assume without loss of generality that we can

write B. , = Op , « C a ^ )  ® Ca-y^) ® ... ( a ^ )  .here
1 i . . .

a . = 0 for all i and j = 2,5, .•* k, since (a .x ) e Cr nnj_J n3_ LX^J
for j 2,5 , ••• k* let be the complementary sequence (Bee 
Notation 2*26) of n^* We will show that (xm ) is (k-l)-boundedly

complete* KLrst we note that (a 0x ), (am _xw ), ... (am )1 ml mi5', ml mlk m±

X a.(aM .x̂  )is independent of Cr_ n for if L  a^a^ ax ) s Cr_ n then
V

/i- “I A V i  JLO. U  . .Jt J 6  »*>r 1
CA ] j=2 J V i -



is at least (k-1)-boundedly complete. Also by Proposition 3»1̂ '
(x ) is less than or equal to k-boundedly complete. Assume 

i
(x ) is k-boundedly complete. Then there are k sequences 

i
(b .x ) e Br -i for n = 1,2, ... k which are independent ofm, j m. I xi° i L mi'i
Cr i. But this implies the sequences are independent of Cr -i.L m^J
Therefore Br = Cr n © (b _x ) © (b ?x ) © . . . ©  (b ,x ).LxiJ LxiJ m±l m± m±2 m± m±k m±

Thus there exist ••• ^nd Cĉ x.̂ ) e Cr -> such thati-l
(s.nx ) = (c.x ) + (b -.x ) + a (b, ?x ) ... + a, (bm .x ).xx jL ± i x tn, X m. 2 zn. zn, id .i i x i i i
It follows that a_ = c and a_ = c + anb + a_b , for^Ln. n. lm, ra. 1 m, 1 2 m, 2’i i i 1 i i
all i. But an ^ approaches / 0 in i and c^ approaches 0 in

i since (c.x.) s Cr This is a contradiction. Thus (x ) isI i LX^J
not k-boundedly complete, so (x^ ) is (k-l)-boundedly complete.

This completes the proof of (l).
To prove (2) we show that there is a block basic sequence

(z^) of (x^) such that (z^) is strictly less than k-boundedly 
complete and greater than or equal to 1-boundedly complete. If 
we can prove this then (2) will be proved, since if (z^) is a 
block basic sequence of (x^) and if (y^) is a block basic sequence 
of (z^), then (y^) is a block basic sequence of (x^)#
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Let Ca^x^) s -j and (a^x^) jd Cj-̂  There exist

i i
*n+l

p, < p,. < ... and 6 > 0 such that if z * X  a.x. then x 2 n . , t i. a.• i=p +1a
m

J \z 11 > 6 for n *» 1 »2 , ... * 11 X z J1 is hounded in m since
■d 11=1 m ^m+l

(a.x.) s Br -p and X  z » X  a.x.. Therefore (z.) is at
1 1 L iJ n«l n i=P]L+l 1 1 x

least 1-boundedly complete since (z^) e Bj-̂  -j and (z^) / Cj-̂  -j.

Also by Proposition 3*10 ̂zi^ lesjs than or equal to k-boundedly
complete. If (z^) is strictly less than k-boundedly complete we
are done. If not we can use (l) to get (z ) (k-l)-boundedly

nlcomplete for k > 2. (2) is now proved. Also, the construction
of (z^) is sufficient to prove the first statement in (3).

Now assume (z^) is 1-boundedly complete and Jlz^ll > 6 > C
n

for some S and all 1. Also assume j [ X  z. [ 1 is bounded in n.
1=1 1

Let (z ) be a proper subsequence of (z, ) and (z ) the ; ni 1 ml
complementary sequence of (a ). Assume (z ) is 1-boundedlyn± n±
complete. Let (a z ) s Br n but (a z ) Cr

ni ni L V  -1 ni ni [\ ]
ThusJi

1 a n ® (a„ Therefore there is an a andLziJ l-̂i-J ni ni

ĉizi^ e C[z ] such (z±) a a (an zn ) + ĉizi ^  siacei A, i



(z^) e -j» But c^ approaches 0 in i and by the above equa

tion c » 1. This is a contradiction. Therefore (z ) is
i ni

O-boundedly complete* This proves (5) and completes the proof 
of the theorem.

Corollary 5.16. Let (x^) te a basic sequence and let it 
be k-boundedly complete where k > 1. Then there is a block basic 
sequence (z.jO of (x^) such that (z^) is 1-boundedly complete*

n
| |(z. |1 > 6 > 0 for some 6 and all i, 11 X  z. H  is bounded in n,
' i«l

and (z ) is O-boundedly complete where (z ) is a proper 
i ai

subsequence of (z^).
This corollary follows directly from (2) and (3) of the

preceding theorem.
Corollary 3.17. Let (x^) be a shrinking basic sequence.

If ord = n > 0 then there is a block basic sequence (z^)
of (x. ) such that ord ([z.]) » 1 and ord C[z ]) s 0 if (z ) isa. ni ni
a proper subsequence of (z^).

Proof of corollary. By Theorem 3*7 (x^) is n-boundedly
complete. We get (z^) from the preceding corollary* and note
that z^ is O-shrinking by Proposition 3»10* Using Theorem 3.7
again* we complete the proof of the corollary.

We have been able to reduce the shrinking order of a non-
Bhrinking basis to 1 (Theorem 3»H)* and to reduce the boundedly
complete order of a non-boundedly complete basis to 1
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(Theorem 3.13). The next theorem deals with a basic sequence 
(x^) which is 1-shrinking and 1-boundedly complete. It is the 
last result we need in order to show that if ord ([x^]) = n > 0

then ord ([z^]) = 1 , for (z w h i c h  is some block basic sequence 
of (x^). This last result follows the next theorem.

Theorem 5.18. Let (x^) be basic. If (x^) is 1-shrinking 
and 1-boundedly complete, there is a block basic sequence (z^) 
of (x^) such that ord ([z^]) = 1 (i.e. (z^) is 1-shrinking and
O-boundedly complete or (z^) is O-shrinklng and 1-boundedly 
complete).

Proof of theorem. Let (z^) be a block basic sequence as 
described in Corollary 3»l6* II (z^) is (-'-shrinking we are done. 
If not then (z^) is 1-shrinking so there is an f e [z^]* which
is not shrinking on [z.]. Therefore by Lemma 3»9 there exist

^ qnp^ < q1 <  P 2 <  q2 ... such that IlfiCz^]^ || >  6 >  0 for some
_pn

6. Therefore the proper subsequence z ,z _ ... z ,z ,
P1 P1 ql p2

z ... z„ ,z ... of (z. ) is 1-shrinking. By Corollary 3.16
P2 q2 P3
this proper subsequence is O-boundedly complete. This proves the 
theorem.

Theorem 3.19. Let (xi) be a basic sequence and let 
ord C[xi]) = n > 0. We have the following:

(1) There is a block basic sequence (z.) of (x.)i i
such that ord ([z^]) = 1.

(2) If in (l) (zi) is shrinking then we can obtain
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a basic sequence (y^) from (z^) in such a way that [y^] * [z.̂ ] 
and (y^) is boundedly complete,

(3) If iu (1) (zĵ ) is boundedly complete then we can 
obtain a basic sequence (y^) from (z^) such that [y^] = [z^] and 
(y.̂ ) is shrinking.

Proof of theorem. Let (x^) be k-shrinking and q-boundedly 
complete. If k » 0 or q ** 0 we have (l) by Corollary 3*1^ or 
Corollary 3»l6« If not then by Theorem 3*11 we can find a block 
basic sequence (ŷ  ̂ ) of (x^) such that (ŷ -ĵ  I“shrinking, If 
Cy^) is O-boundedly complete we are done. If not then by 
Theorem 3*13 we can find a block basic sequence (y?^) of (y^  ) 
such that (y?  ̂) is 1-boundedly complete. If (y^ ) is 0-shrinking 
we are done. If not (y?:> ) is 1-shrinking and 1-boundedly complete, 
so by Theorem 3-18 there is a block basic sequence (y^) of (y^ ) 
such that ord ([y^]) = JL. This prcwes (l).

If we assume the hypothesis in (2) then (z^) is 1-boundedly 
complete. By Corollary 3*16 there is a block basic sequence 
(y^) of (z^) such that Ily^lJ > 6 > 0 for some 6 and all i, 

n
I I X  y*11 is bounded in n. Singer [ll, p. 35*0 calls such basic 
i*l

n
sequences type P sequences and proves that if w » X y. then

n i=l
[w^] s= [y±] and (w^) is a basic sequence. Singer also shows 
that there is an f s [w^]* such that f(w^) =1, But since 
1 IwjJ 1 is bounded in i, we have that f is not shrinking on (ŵ -).
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Thus (w. ) Is not shrinking. Since j | X y. I I is- bounded in n we

1=1
have that (y^) is 1-boundedly complete and ord C[y^]) =* 1. Thus* 
ord ([w±]) «= ord C[y^]) = 1. Since (w^) is not shrinking then 
(w^) must be 1-shrinking and O-boundedly complete. This proves 
(1 ).

How let (z^) be 1-shrinking and boundedly complete. Let 
f e [z^]* and f not shrinking on (z^). By Lemma 3*9 there are

Pn+1
Pl < P2 < ..., (a.), 6 > 0 and M such that if y « I| X aizil1l=p +1 ■*n
then M > 1 ]ŷ | | > 6 for all i and |f(y^)I > T) for all i and some 
T], Let gj e [yil* and gj(yi) = 6̂ .  Since 2*g± = flCy^] we have 

n
that 11 X g.11 is bounded in n. Tor (y.) with the above 

1=1 1
properties Singer [11, 356] uses the term P*. He shows that if

W1 “ yl ’ w2 “ yl~y2’ W3 *“ y2"y3» w4 = ^3“^ *  ••• then is
n

basic and [w.] « [y ]. Also 11 I w, I 1 = 11 £y,-y„11 which is i x ±=1 x ± n

bounded in n, and J 1 w^{J is bounded way from 0 by Lemma 2.9. Thus

(w^ e B^w -j and (w^) ft Cj-̂  -j. Thus (wi) is not boundedly complete,

Also ord ([w^]) = ord ([z^]) » 1, so (w^) is 1-boundedly complete
Iand O-shrinking. This proves the theorem.

iCorollary 3.20. If ord (X) s n > 0 then xj contains a
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subspace Y which is separable, has a basis and ord (Y) = 1.

Proof of corollary. By Theorem 2.8 X contains a basic 
sequence (x^) so that [x.̂ ] is not reflexive. By Theorem 3.2 
n > ord ([x^]) > 1. By Theorem 3.19 there is a block basic 
sequence (z^) of (x^) such that ord ([z^]) = 1. The proof is 
completed by noting that a space with a basis is separable.

The following- corollary was proved in [7] in n different 
manner.

Corollary 3.21. If ord (X) e n and X 3 E then H contains 
an infinite dimensional Bubspace which is reflexive.

Proof of corollary. If ord (EQ ** 0 then we are done. If 
ord (H) = k > 0 then by the preceding theorem there is a subspace 
I of H such that Y ** [x^] where (x^) is basic and ord ([x^]) « 1. 
If (x^) is 1-shrinking we apply Theorem 3*11 and see that the 
corollary is proved. If (x^) is 1-boundedly complete then we 
apply Corollary 3*16 and see that the theorem is proved.

We now conclude this chapter with the main theorem of this
work.

Theorem 3.22. If ord (X) = n and k < n then there is a 
subspace of A^ of X such that Â_ iB separable and ord (A^) = k.

Proof of theorem. The case k = 0 is treated in the 
preceding theorem. The case k = 1 is treated in Corollary 3*20,

We will now show we can find A^ from which the construction
Xof A^,A^ ... A^ will be obvious. By Theorem 3.2 ord = n-1.
XBy Corollary 3*20 there is a separable subspace W of 7—  such that
*1
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ord (W) a 1* By Lemma 2.16 there is an A^ in X such that

A2. X  TW *s *£-' • Let Y = Again hy Theorem 3*2 ord (~) = n-2* By
Y X  XLemma 2.17 yj is isomorphic to . Thus ord C^~) - n-2 and so

ord Â , = 2. Also since W is separable and A^ is separable we 
have that A^ is separable by Lemma 2.18. This completes the 
proof of the theorem.

We note here that the case k « n in the above theorem was 
proved by Singer in [10].



GENERALIZATIONS, EXAMPLES AND UNSOLVED PROBLEMS

We can ask which of the results in Chapter III that deal 
with bases can be generalized to Markushevich bases, which we 
will now define [l].

Definition 4.1, We say (x^) is a Markushevich basis for 
X if {x±] = X, there exist biorthognal functionals of (x^)
and (f/) is total on X (i.e. if x e X and f^x) = 0 for all i 
then x = 0). Clearly a basis is a Markushevich basis.

A natural generalization of k-shrinking for Markushevich 
bases would be as follows:

Definition b.2. We say the Markushevich basis (x^) is 
k-shrinking if the codimension of in [x^]* is k.

We will now give some background to justify a definition 
of k-boundedly complete for Markushevich bases.

Pronosition b.3« If (x^) is a Markushevich basis for X 
then is a Markushevich basis for [f^].

Proof of proposition. For x e X we define cp(x) to be a
linear functional on [f^ by (cp(x))f = f(x) where f e 
Clearly ||cp(x)|| < | |x| | so cp(x) e [f±]*. Also (cpCx^) are the 
biorthognal functionals of (f^). Thus we need only show that 
(cpCx.̂ )) is total on [f^. Let f e [f^ and assume (cpCx^Jf = 0.
Thus f(x^) = 0 for all i so f is 0 on X so f = 0.

3^
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We have the following theorem [10],
Proposition 4.4. Let (x^) be a basis for X* (x^) is 

k-boundedly complete if and only if is k-shrinking, and
(x^) is k-shrinking if and only if is k-boundedly complete.

We can now define k-boundedly complete for a Markushevich
basis.

Definition A Markushevich basis (x^) is k-boundedly
complete if is k-shrinking.

By Proposition 4.4 this definition corresponds to 
Definition j5.6 in the case where the Markushevich basis (x^) is 
a basis.

We can generalize Theorem 3.7 to include Markushevich bases 
with the help of the following lemma.

Lemma 4.6. Let H c X* and H total over X. Let tjp map X 
into H* by (cp(x))(f) = f(x) for x e X and f e H.j Then ord (X) = n 
if and only if the codimension, k^, of H in X* is finite and the 
codimension, k2, of <p(X) in H* is finite and k^ + k2 = n.

Proof of lemma. Assume ord (X) = n. Since H is total over 
X and (cp(X)) is total over H we have that k^ and k2 are finite
and kx , k2 < n [10]. Let X* = H © fQ1 © ... © fQk . Let

X01*x02’ *'* xok  ̂X** and Xq^(H) - 0 and 

~ ^ij ii j “ ... k^. Let
H* = <p(X) © yQ1 © ... © y ^  . Let yQ± e X** and yQi|H = yQi

and y0i (f0j) = i,j = 1,2, ... k2# We will show
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(xo r x02* xokj*y01*y0e * **• y0k  ̂is indePendent of x* Assume 

kl k2 k2
1  ̂ 0i ♦ X ^iyOi != x e X* But then X IH = ^  ^iyOi e i=l i=l i=l
Since (yoi»y02* *** y0k  ̂ indePeBdent 9 (X) we have p^ * 0T2

kl
for i = 1,2, ... k_. Since X  a -xoi = 0 on H and E is total theni=l 1 UL

x = 0. Thus ai = 0 for i = 1,2, ... k^ since (x01,xQ2, ••• x0k ^

are linearly independent. Thus (x01,x02, ... xQk^*yQl ’y02* •" y0k2^

is independent of X. Thus X** £ X  © xQ1 © xQ2 © ... © xQk © y ^

© yQ2 © ... © yQ^ • Let F e X**. Let F|H a cp(x) + 

k2 k2
X  P^Qi* F"(x + Pi^oi) “ 0 on H 60 there e*ist ai*a2» •••

k2 kx

?~(x + J ^ i O  = i ^1ai xo i ’such that F-( x + L  p. J = Lx a..x04 . Thus F e X © xQ1 © ... xQk

e y01 e ... e y ^  and x** = x e *01 e xQZ e ... ® e J01 e y02

© ... © yQk . Therefore k^ + kg = n.

The proof of the converse is the same.
Theorem 4.7. Let (x.) be a Markushevich basis for X.X . *'

Ord (X) a n if and only if (x^) is k^-shrinking and kg-boundedly 
complete where k^ + kg » n.
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Proof of theorem. By the previous theorem, since [f^] is 

total on X we need only show that (x^ is k-boundedly complete 
if and only if the codimension of cp(X) in [f^]* is where cp
is as defined in the previous theorem. (x^) is kg-boundedly 
complete if and only if [cpCx^] has codimension k^ in [fi3*.
But [<p(x̂ )] = cp[X] and this completes the proof.

The following lemma gives a set of sufficient conditions 
for a basic sequence to be 1-boundedly complete. Thus if (x^) 
is a basic shrinking sequence and satisfies the conditions of the 
lemma, then ord ([x^]) = 1.

Lemma 4.8. Let (x^) be a basic sequence, and let 
I|x^|| > 6 > 0 for some 6 and all i. (x^) is 1-boundedly complete 
if the following conditions are satisfied:

n
<i) II L  x. | | < M for all n and some M« 

i=l 1
n

(2) If || L  a.x. | | is bounded in n then (a.) is a 
i=l 1 1  1

Cauchy sequence.
n

(3) If I I L  a x I I is bounded in n and if the
■ •% 1  aX»1=1i=l n

sequence (a..) approaches 0 then converges in n.
i=l i i

Proof of lemma. By (l) (xi> e Bj-x -j and since

||x̂ || > 6 > 0, (x^) ^ C[x.]* We will show that



© (x.) and this will complete the proof# Let

(aiXi> belong to Bj*x -j. By (2) there exists an a such that

Thus B

Corollary 4jJ8. If (x^) is basic, O-shrinking and satisfies 
conditions (l)» (2) and (3) of the above lemma then ord ([x^]) = 1# 

The space which started the study of quasi-reflexive spaces 
is the James space denoted by J [8].

Definition 4.10. Let J consist of those sequences (a^)t

given above* If x^ denotes the element of J which has 1 in the

shows that (x^) is shrinking and satisfies conditions (l), (2) and
(3) of Lemma 4.8. Thus ord (J) = 1. Also if (f^) are the 
biorthognal functionals of (x^) then J* = since (x^) is
shrinking and by Theorem 4.4 is boundedly complete and
1-shrinking.

We remark here that if J consists of those sequences (a.)P 1
as defined above except with the norm

n
which approach 0 and for which

the supremum is taken over all sequences such that
p^ < q^ < P2 < ^2 ^ Pj *•* • norm of (a^) is the supremum

i place and 0 elsewhere then (x^) is a basis for J. R. C. James

n
then J_ is a Banach space and P
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ord ( J ) = 1. This last statement is proved exactly the same

Xr

way R. C. James proved ord (J) = 1 [8].
Since (x^) is a basis of type P (see the proof of part (2)

of Theorem 3«19) of J then (y.) is basic, boundedly complete,
P

»n
and (y.) = J where y = X  x.. We now compute the norm of i P a i=1 i I

OO OO OO

L tyt - ( +  ••• + * —  *

11 1
Thus | |Xa.y. | | =» sup f X  |a + a  -,+... a n !P)P where the

1 1 Xj=l Pj Pj qj" '

supremum is taken over all sequences p^ < q^ < P£ < qg ■< Pj • • • *
yIf X s H 8 I then ^ is isomorphic to Y. Thus by Theorem 3*2,

ord (X) = n if and only if ord (H) ord (Y) = n. Since we have 
a quasi-reflexive space of order 1 we can get quasi-reflexive 
spaces of all orders simply by taking direct sums.

We conclude this work by listing some unsolved problems 
which are suggested by the results found here.

A) If (x^) is a k-boundedly complete basis, can we find
block bases of (xi) which are boundedly complete of all orders 
less than k, as we can do in the k-shrinking case?

B) If (x^) is basic and ord [x^] = n can we find a block
basic sequence (z. ) of (x.) such that ord [z.] = k for each3* JL 1
k < n?
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A negative answer to A would imply a negative answer to B, 

whereas a positive answer to A would go a long way in providing 
a positive answer to B. A positive answer to B would go far in 
solving the following problem.

C) If (x^) is basic and m-shrinking and n-boundedly 
complete, can we find a block basic sequence of (x^) such
that is k-shrinking and q-boundedly complete for any k and q 
less than or equal to m and n respectively?

Theorem 3.11 answers C when n = 0.
D) Can we prove any of the theorems in Chapter 3 dealing

with block bases in the more general setting of block Markushevich 
bases?

E) Being able to find quasi-reflexive subspaces of all 
orders less than the order of the space suggests the question as 
to whether we can project onto any of these subspaces. In 
particular do all quasi-reflexive spaces of order n contain a 
quasi-reflexive subspace of order n, which is the direct sum of
n quasi-reflexive spaces of order 1? A positive answer to this
question would make the proof of Theorem 3.22 trival. The author 
has not even been able to construct a quasi-reflexive space of 
order n > 2 in which there is not an obvious projection onto 
subspaces of order 1.

F) Is there a quasi-reflexive space of order n in which 
there is not a projection onto a separable quasi-reflexive space 
of order n?

G) What does the norm in J * look like?P



BIBLIOGRAPHY

1. Arsove, M.G. and Edwards, R.E. Generalized “bases in
topological linear spaces. Studia Math., 
vol. 19 (19^0 ), 95-113.

2. Civin, P. and Yood, B. Quasi-reflexive spaces. Proc. Amer.
Math. Soc, vol. 8 (1957), 906-911.

3. Cuttle, Y. On Quasi-reflexive Banach spaces. Proc. Amer.
Math. Soc., vol. 12 (19&L), 936-910'•

Day, M.M. Normed Linear Spaces. Academic Press Inc. 
Publishers, New York, (1962).

5- Dunford, N. and Schwartz, J. Linear Operators. Interscience 
Publishers, Inc., New York (195&)•

6 . Grunbaum, B. Some Applications of Expansion Constants.
Pacific J. Math., (i960), 193-201.

7 . Herman, R. and Whitley, R. An example concerning reflexivity.
Studia Math., vol. 2B"(l9t'7), 2^9-29^.

8 . James, R.C. Bases and reflexivity of Banach spaces. Annals of
Math., vol. 52, no. 3] (1950*7, 518-52/' •

9. Pelczynski, A. A note on the paper of I. Singer "Basic
sequences and reflexivity of Banach spaces". Studia 
Math., vol. 21 (1962), 371-37^

10. Singer, I. Bases and quasi-reflexivity of Banach spaces.
Math. Annalen, vol. 153 (198^-), 199-209.

11. Singer, I. Basic sequences and reflexivity of Banach spaces.
Studia Math., vol. 21^1962), 3 5 1 - 3 ^

12. Wilansky, A. Functional analysis. Blaisdell Pub., New York,
(196^).

)4l


